Science.gov

Sample records for afm analysis showed

  1. STM and AFM; Which is Better for Surface Structural Analysis? Non- contact AFM Studies on Ge/Si(105) Surface

    NASA Astrophysics Data System (ADS)

    Hasegawa, Yukio

    2006-03-01

    Scanning tunneling microscopy (STM) has been utilized to determine surface atomic structure with its highly resolved images. Probing surface electronic states near the Fermi energy (EF), STM images, however, do not necessarily represent the atomic structure of surfaces. It has been believed that atomic force microscopy (AFM) provides us surface topographic images without being disturbed by the electronic states. In order to prove the surpassing performance, we performed noncontact (nc) AFM on the Ge/Si(105) surface [1], which is a facet plane of the ?hut? clusters formed on Ge-deposited Si(001) surface. It is found that STM images taken on the surface, either filled- or empty-state images, do not show all surface atoms because of the electronic effect; some surface atoms have dangling bond states below EF and other surface atoms have states above EF. [2]. In a nc-AFM image, on the other hand, all surface atoms having a dangling bond are observed [3], directly representing an atomic structure of the surface. Electronic information can also be obtained in AFM by using a Kelvin-probe method. From atomically resolved potential profile we obtained, charge transfer among the dangling bond states is directly demonstrated. These results clearly demonstrate that highly-resolved nc-AFM with a Kelvin-probe method is an ideal tool for analysis of atomic structures and electronic properties of surfaces. This work was done in collaboration with T. Eguchi, K. Akiyama, T. An, and M. Ono, ISSP, Univ. Tokyo and JST, Y. Fujikawa and T. Sakurai, IMR. Tohoku Univ. T. Hashimoto, AIST, Y. Morikawa, ISIR, Osaka Univ. K. Terakura, Hokkaido Univ., and M.G. Lagally, University of Wisconsin-Madison. [1] T. Eguchi et al., Phys. Rev. Lett. 93, 266102 (2004). [2] Y. Fujikawa et al., Phys. Rev. Lett. 88, 176101 (2002). [3] T. Eguchi and Y. Hasegawa, Phys. Rev. Lett. 89, 256105 (2002)

  2. AFM as an analysis tool for high-capacity sulfur cathodes for Li-S batteries.

    PubMed

    Hiesgen, Renate; Sörgel, Seniz; Costa, Rémi; Carlé, Linus; Galm, Ines; Cañas, Natalia; Pascucci, Brigitta; Friedrich, K Andreas

    2013-01-01

    In this work, material-sensitive atomic force microscopy (AFM) techniques were used to analyse the cathodes of lithium-sulfur batteries. A comparison of their nanoscale electrical, electrochemical, and morphological properties was performed with samples prepared by either suspension-spraying or doctor-blade coating with different binders. Morphological studies of the cathodes before and after the electrochemical tests were performed by using AFM and scanning electron microscopy (SEM). The cathodes that contained polyvinylidene fluoride (PVDF) and were prepared by spray-coating exhibited a superior stability of the morphology and the electric network associated with the capacity and cycling stability of these batteries. A reduction of the conductive area determined by conductive AFM was found to correlate to the battery capacity loss for all cathodes. X-ray diffraction (XRD) measurements of Li2S exposed to ambient air showed that insulating Li2S hydrolyses to insulating LiOH. This validates the significance of electrical ex-situ AFM analysis after cycling. Conductive tapping mode AFM indicated the existence of large carbon-coated sulfur particles. Based on the analytical findings, the first results of an optimized cathode showed a much improved discharge capacity of 800 mA·g(sulfur)(-1) after 43 cycles. PMID:24205455

  3. AFM as an analysis tool for high-capacity sulfur cathodes for Li–S batteries

    PubMed Central

    Sörgel, Seniz; Costa, Rémi; Carlé, Linus; Galm, Ines; Cañas, Natalia; Pascucci, Brigitta; Friedrich, K Andreas

    2013-01-01

    Summary In this work, material-sensitive atomic force microscopy (AFM) techniques were used to analyse the cathodes of lithium–sulfur batteries. A comparison of their nanoscale electrical, electrochemical, and morphological properties was performed with samples prepared by either suspension-spraying or doctor-blade coating with different binders. Morphological studies of the cathodes before and after the electrochemical tests were performed by using AFM and scanning electron microscopy (SEM). The cathodes that contained polyvinylidene fluoride (PVDF) and were prepared by spray-coating exhibited a superior stability of the morphology and the electric network associated with the capacity and cycling stability of these batteries. A reduction of the conductive area determined by conductive AFM was found to correlate to the battery capacity loss for all cathodes. X-ray diffraction (XRD) measurements of Li2S exposed to ambient air showed that insulating Li2S hydrolyses to insulating LiOH. This validates the significance of electrical ex-situ AFM analysis after cycling. Conductive tapping mode AFM indicated the existence of large carbon-coated sulfur particles. Based on the analytical findings, the first results of an optimized cathode showed a much improved discharge capacity of 800 mA·g(sulfur)−1 after 43 cycles. PMID:24205455

  4. Analysis of AFM cantilever dynamics close to sample surface

    NASA Astrophysics Data System (ADS)

    Habibnejad Korayem, A.; Habibnejad Korayem, Moharam; Ghaderi, Reza

    2013-07-01

    For imaging and manipulation of biological specimens application of atomic force microscopy (AFM) in liquid is necessary. In this paper, tapping-mode AFM cantilever dynamics in liquid close to sample surface is modeled and simulated by well defining the contact forces. The effect of cantilever tilting angle has been accounted carefully. Contact forces have some differences in liquid in comparison to air or vacuum in magnitude or formulation. Hydrodynamic forces are also applied on the cantilever due to the motion in liquid. A continuous beam model is used with its first mode and forward-time simulation method for simulation of its hybrid dynamics and the frequency response and amplitude versus separation diagrams are extracted. The simulation results show a good agreement with experimental results. The resonance frequency in liquid is so small in comparison to air due to additional mass and also additional damping due to the viscosity of the liquid around. The results show that the effect of separation on free vibration amplitude is great. Its effect on resonance frequency is considerable too.

  5. AFM analysis of bleaching effects on dental enamel microtopography

    NASA Astrophysics Data System (ADS)

    Pedreira de Freitas, Ana Carolina; Espejo, Luciana Cardoso; Botta, Sergio Brossi; Teixeira, Fernanda de Sa; Luz, Maria Aparecida A. Cerqueira; Garone-Netto, Narciso; Matos, Adriana Bona; Salvadori, Maria Cecilia Barbosa da Silveira

    2010-02-01

    The purpose of this in vitro study was to test a new methodology to evaluate the effects of 35% hydrogen peroxide agent on the microtopography of sound enamel using an atomic force microscope (AFM). The buccal sound surfaces of three extracted human lower incisors were used, without polishing the surfaces to maintain them with natural morphology. These unpolished surfaces were subjected to bleaching procedure with 35% hydrogen peroxide that consisted of 4 applications of the bleaching agent on enamel surfaces for 10 min each application. Surface images were obtained in a 15 μm × 15 μm area using an AFM. The roughness (Ra and RMS) and the power spectral density (PSD) were obtained before and after the bleaching treatment. As results we could inquire that the PSD analyses were very suitable to identifying the morphological changes on the surfaces, while the Ra and RMS parameters were insufficient to represent the morphological alterations promoted by bleaching procedure on enamel. The morphological wavelength in the range of visible light spectrum (380-750 nm) was analyzed, showing a considerable increase of the PSD with the bleaching treatment.

  6. Evaluation of shooting distance by AFM and FTIR/ATR analysis of GSR.

    PubMed

    Mou, Yongyan; Lakadwar, Jyoti; Rabalais, J Wayne

    2008-11-01

    The techniques of atomic force microscopy (AFM) and Fourier transform infrared attenuated total reflectance (FTIR/ATR) spectroscopy are applied to the analysis of gun-shot residue (GSR) to test their ability to determine shooting distance and discrimination of the powder manufacturers. AFM is a nondestructive technique that is capable of characterizing the shapes and size distributions of GSR particles with resolution down to less than a nanometer. This may be useful for estimation of the shooting distance. Our AFM images of GSR show that the size distribution of the particles is inversely proportional to the shooting distance. Discrimination of powder manufacturers is tested by FTIR/ATR investigation of GSR. Identifying the specific compounds in the GSR by FTIR/ATR was not possible because it is a mixture of the debris of several compounds that compose the residue. However, it is shown that the GSR from different cartridges has characteristic FTIR/ATR bands that may be useful in differentiating the powder manufacturers. It appears promising that the development of AFM and FTIR/ATR databases for various powder manufacturers may be useful in analysis and identification of GSR. PMID:18761553

  7. Viscoelasticity of gelatin surfaces probed by AFM noise analysis.

    PubMed

    Benmouna, Farida; Johannsmann, Diethelm

    2004-01-01

    The viscoelastic properties of surfaces of swollen gelatin were investigated by analyzing the Brownian motion of an atomic force microscopy (AFM) cantilever in contact with the gel surface. A micron-sized glass sphere attached to the AFM cantilever is used as the dynamic probe. When the sphere approaches the gelatin surface, there is a static repulsive force without a jump into contact. The cantilever's Brownian movement is monitored in parallel, providing access to the dynamic sphere-surface interaction as quantified by the dynamic spring constant, kappa, and the drag coefficient, xi. Gelatin is used as a model substance for a variety of other soft surfaces, where the stiffness of the gel can be varied via the solvent quality, the bloom number, and the pH. The modulus derived from the static force-distance curve is in the kPa range, consistent with the literature. However, the dynamic spring constant as derived from the Brownian motion is much larger than the static differential spring constant dF/dz. On retraction, one observes a rather strong adhesion hysteresis. The strength of the bridge (as given by the dynamic spring constant and the drag coefficient) is very small. PMID:15745019

  8. Structural changes of polysulfone membrane use for hemodialysis in the consecutive regime: nanometric analysis by AFM

    NASA Astrophysics Data System (ADS)

    Batina, Nikola; Acosta García, Ma. Cristina; Avalos Pérez, Angélica; Alberto Ramírez, Mario; Franco, Martha; Pérez Gravas, Héctor; Cadena Méndez, Miguel

    2013-08-01

    Nowadays, the hemodialytic treatment of patients with either acute or chronic renal failure has been improved by promoting biocompatibility in the use of new materials and improve membrane surface characteristics. Low and high flux polysulfone membranes (PM) used in dialysis and ultra filtration have been studied in order to understand the geometry and surface chemistry of the pores at inner (nanometric) and outer (micrometric) membrane parts. The surface changes of polysulfone cartridge membrane (PM) during different number of consecutive reuse trials: after 1st, 10th and 23th times of use. The morphology of the hollow fibers surfaces was studied by means of the atomic force microscopy (AFM) imaging and the surface roughness analysis. The roughness of both inner and outer part of PM surface increases with numbers of reuse trails. Thus, small and medium size pores were wiped out when the number of uses changed from zero to 23 on the outer surface. The pore density decreases. The inner part of membrane shows some nanometric size deformation in forms of new openings and raptures. The AFM analysis show differences in the PM morphology at the nanometric level, not previously revealed, which could be important in the evaluation of the PM.

  9. Automated AFM force curve analysis for determining elastic modulus of biomaterials and biological samples.

    PubMed

    Chang, Yow-Ren; Raghunathan, Vijay Krishna; Garland, Shaun P; Morgan, Joshua T; Russell, Paul; Murphy, Christopher J

    2014-09-01

    The analysis of atomic force microscopy (AFM) force data requires the selection of a contact point (CP) and is often time consuming and subjective due to influence from intermolecular forces and low signal-to-noise ratios (SNR). In this report, we present an automated algorithm for the selection of CPs in AFM force data and the evaluation of elastic moduli. We propose that CP may be algorithmically easier to detect by identifying a linear elastic indentation region of data (high SNR) rather than the contact point itself (low SNR). Utilizing Hertzian mechanics, the data are fitted for the CP. We first detail the algorithm and then evaluate it on sample polymeric and biological materials. As a demonstration of automation, 64 × 64 force maps were analyzed to yield spatially varying topographical and mechanical information of cells. Finally, we compared manually selected CPs to automatically identified CPs and demonstrated that our automated approach is both accurate (< 10nm difference between manual and automatic) and precise for non-interacting polymeric materials. Our data show that the algorithm is useful for analysis of both biomaterials and biological samples. PMID:24951927

  10. Analysis of grating inscribed micro-cantilever for high resolution AFM probe

    NASA Astrophysics Data System (ADS)

    Balajee, N.; Mahapatra, D. R.; Hegde, G. M.

    2013-06-01

    We present a mathematical modelling and analysis of reflection grating etched Si AFM cantilever deflections under different loading conditions. A simple analysis of the effect of grating structures on cantilever deflection is carried out with emphasis on optimizing the beam and gratings such that maximum amount of diffracted light remains within the detector area.

  11. Preparation, fluorescence spectroscopy, and AFM analysis of erbium oxide nanocolloid

    NASA Astrophysics Data System (ADS)

    Patel, Darayas; Vance, Calvin; King, Newton; Jessup, Malcolm; Sarkisov, Sergey

    2009-02-01

    Nanocolloids of compounds containing fluorescent rare earth ions have recently attracted significant attention as agents for biolabeling, bioimaging, bio- and chemical sensing, and other applications. Erbium oxide nanocolloids have been prepared for the first time in water and gammabutyrolactone. Optical dynamic scatterometry and atomic force microscopy determined an average size (average mean height) of erbium oxide nanoparticles to be 10-11 nm. Prominent optical absorption peaks of the nanocolloids at 442.5 nm, 450.0 nm, 487.2 nm (strong), 492.0 nm, 523.0 nm (strong), 541.6 nm, 548.6 nm, 652.6 nm, and 665.7 nm (strong) can be attributed to erbium ions hosted within nanoparticles. Laser fluorescence spectroscopy of the nanocolloids was conducted using excitations with the lines of argon-ion laser (514 nm, 488 nm, 476 nm, and 458 nm) and 980-nm semiconductor laser. Strong green emission at 571 nm is more likely from transition between 4S3/2 and 4I15/2 levels and relatively weak red emissions from transition between 4I9/2 and 4I15/2 level of erbium was observed at excitation with visible laser radiation 488 nm and 476 nm. The reported nanocolloids thus showed to be good candidates for fluorescent biosensing applications and also as a new lasing filling medium in fiber lasers.

  12. Sequence-controlled RNA self-processing: computational design, biochemical analysis, and visualization by AFM

    PubMed Central

    Petkovic, Sonja; Badelt, Stefan; Flamm, Christoph; Delcea, Mihaela

    2015-01-01

    Reversible chemistry allowing for assembly and disassembly of molecular entities is important for biological self-organization. Thus, ribozymes that support both cleavage and formation of phosphodiester bonds may have contributed to the emergence of functional diversity and increasing complexity of regulatory RNAs in early life. We have previously engineered a variant of the hairpin ribozyme that shows how ribozymes may have circularized or extended their own length by forming concatemers. Using the Vienna RNA package, we now optimized this hairpin ribozyme variant and selected four different RNA sequences that were expected to circularize more efficiently or form longer concatemers upon transcription. (Two-dimensional) PAGE analysis confirms that (i) all four selected ribozymes are catalytically active and (ii) high yields of cyclic species are obtained. AFM imaging in combination with RNA structure prediction enabled us to calculate the distributions of monomers and self-concatenated dimers and trimers. Our results show that computationally optimized molecules do form reasonable amounts of trimers, which has not been observed for the original system so far, and we demonstrate that the combination of theoretical prediction, biochemical and physical analysis is a promising approach toward accurate prediction of ribozyme behavior and design of ribozymes with predefined functions. PMID:25999318

  13. Simulation of CNT-AFM tip based on finite element analysis for targeted probe of the biological cell

    NASA Astrophysics Data System (ADS)

    Yousefi, Amin Termeh; Mahmood, Mohamad Rusop; Miyake, Mikio; Ikeda, Shoichiro

    2016-07-01

    Carbon nanotubes (CNTs) are potentially ideal tips for atomic force microscopy (AFM) due to the robust mechanical properties, nano scale diameter and also their ability to be functionalized by chemical and biological components at the tip ends. This contribution develops the idea of using CNTs as an AFM tip in computational analysis of the biological cell's. Finite element analysis employed for each section and displacement of the nodes located in the contact area was monitored by using an output database (ODB). This reliable integration of CNT-AFM tip process provides a new class of high performance nanoprobes for single biological cell analysis.

  14. AFM and pulsed laser ablation methods for Cultural Heritage: application to archeometric analysis of stone artifacts

    NASA Astrophysics Data System (ADS)

    Barberio, M.; Veltri, S.; Stranges, F.; Bonanno, A.; Xu, F.; Antici, P.

    2015-09-01

    In this paper, we introduce the use of the atomic force microscope (AFM) and of the pulsed laser ablation as methods for morphological diagnostic with nanoscale precision of archeological artifacts and corrosive patina removal from stone artifacts. We test our methodology on stone artifacts extracted from the Church of Sotterra (located in Calabria, South Italy). The AFM microscopy was compared with different petrographic, chemical, optical and morphological analysis methods for identifying the textural characteristics, evaluating the state of preservation and formulating some hypotheses about the provenance and composition of the impurity patina located on the artifact surfaces. We demonstrate that with the nanometric precision obtained with AFM microscopy, it is possible to distinguish the different states of preservation, much better than using conventional petrographic methods. The surface's roughness is evaluated from very small artifact's fragments, reducing the coring at micrometric scale with a minimal damage to the artworks. After the diagnosis, we performed restoration tests using the pulsed laser ablation (PLA) method and compared it with the more common micro-sandblasting under dry conditions. We find that the PLA is highly effective for the removal of the surficial patina, with a control of a few hundreds of nanometers in the cleaning of surface, without introducing chemical or morphological damages to the artifacts. Moreover, PLA can be easily implemented in underwater conditions; this has the great advantage that stone and pottery artifacts for marine archeological sites do not need to be removed from the site.

  15. Ultrasharp high-aspect-ratio probe array for SECM and AFM Analysis

    NASA Astrophysics Data System (ADS)

    Tao, Ye; Fasching, Rainer J.; Prinz, Fritz B.

    2004-07-01

    A powerful experimental tool, ultra-sharp nano-electrode array is designed, fabricated and characterized. The application on a combination of Scanning Electrochemical Microscopy (SECM) and the Atomic Force Microcopy (AFM) is demonstrated. It can measure sample electrochemically initiated by SECM changes of topography while detecting topography using AFM. In order to realize this, a specialized probe system that is composed of a micro-mechanical bending structure necessary for the AFM mode and an electrochemical UME-tip required for a high performance SECM is crucial. The probe array is a row of silicon transducers embedded in silicon nitride cantilever array. The sharp high-aspect ratio (20:1) silicon tips are shaped and a thin layer of silicon nitride is deposited, which embeds the silicon tips in a silicon nitride layer so that they protrude through the nitride. Thus, the embedded silicon tips with a diameter less than 600 nm, the top radius less than 20 nm, and the aspect ratio as high as 20 can be achieved. A metal layer and an insulator layer are deposited on these tip structures to make each probe selectively conductive. Finally, cantilever structures are shaped and released by etching the silicon substrate from the backside. Electrochemical and impedance spectroscopic characterization show electrochemical functionality of the transducer system.

  16. Dynamic modeling and sensitivity analysis of dAFM in the transient and steady state motions.

    PubMed

    Payam, Amir Farokh

    2016-10-01

    In this paper, based on the slow time varying function theory, dynamical equations for the amplitude and phase of the dynamic atomic force microscope are derived. Then, the sensitivity of the amplitude and phase to the dissipative and conservative parts of interaction force is investigated. The most advantage of this dynamical model is the ability to simulate and analysis the dynamics behavior of amplitude and phase of the AFM tip motion not only in the steady state but also in the transient regime. Using numerical analysis the transient and steady state behavior of amplitude and phase is studied and the sensitivity of amplitude and phase to the interaction force is analyzed. PMID:27448201

  17. Crystallinity and compositional changes in carbonated apatites: Evidence from {sup 31}P solid-state NMR, Raman, and AFM analysis

    SciTech Connect

    McElderry, John-David P.; Zhu, Peizhi; Mroue, Kamal H.; Xu, Jiadi; Pavan, Barbara; Fang, Ming; Zhao, Guisheng; McNerny, Erin; Kohn, David H.; Franceschi, Renny T.; Holl, Mark M.Banaszak; Tecklenburg, Mary M.J.; Ramamoorthy, Ayyalusamy; Morris, Michael D.

    2013-10-15

    Solid-state (magic-angle spinning) NMR spectroscopy is a useful tool for obtaining structural information on bone organic and mineral components and synthetic model minerals at the atomic-level. Raman and {sup 31}P NMR spectral parameters were investigated in a series of synthetic B-type carbonated apatites (CAps). Inverse {sup 31}P NMR linewidth and inverse Raman PO{sub 4}{sup 3−}ν{sub 1} bandwidth were both correlated with powder XRD c-axis crystallinity over the 0.3–10.3 wt% CO{sub 3}{sup 2−} range investigated. Comparison with bone powder crystallinities showed agreement with values predicted by NMR and Raman calibration curves. Carbonate content was divided into two domains by the {sup 31}P NMR chemical shift frequency and the Raman phosphate ν{sub 1} band position. These parameters remain stable except for an abrupt transition at 6.5 wt% carbonate, a composition which corresponds to an average of one carbonate per unit cell. This near-binary distribution of spectroscopic properties was also found in AFM-measured particle sizes and Ca/P molar ratios by elemental analysis. We propose that this transition differentiates between two charge-balancing ion-loss mechanisms as measured by Ca/P ratios. These results define a criterion for spectroscopic characterization of B-type carbonate substitution in apatitic minerals. - Graphical abstract: Carbonated apatite shows an abrupt change in spectral (NMR, Raman) and morphological (AFM) properties at a composition of about one carbonate substitution per unit cell. Display Omitted - Highlights: • Crystallinity (XRD), particle size (AFM) of carbonated apatites and bone mineral. • Linear relationships among crystallinity, {sup 31}P NMR and Raman inverse bandwidths. • Low and high carbonated apatites use different charge-balancing ion-loss mechanism.

  18. Fabrication of an electrochemical tip-probe system embedded in SiNx cantilevers for simultaneous SECM and AFM analysis

    NASA Astrophysics Data System (ADS)

    Fasching, Rainer J.; Tao, Yao; Prinz, Fritz B.

    2004-01-01

    An electrochemical transducer system embedded in silicon nitride cantilevers has been fabricated for simultaneous Scanning Electrochemical Microscopy (SECM) and Atomic Force Microscopy (AFM) analysis. Sharpened high-aspect ratio silicon tips are shaped combining isotropic and anisotropic deep-reactive etch processes and form the body of the transducer. Deposition of a silicon nitride followed by a back-etch step allows embedding these silicon tips in a silicon nitride layer so that they protrude through the nitride. This way, embedded silicon tips with a diameter smaller than 600 nm, a radius smaller than 50 nm, and an aspect ratio higher than 20 can be achieved. Subsequently, a platinum layer and an insulator layer are deposited on these tip structures. Introducing a metal masking technology utilizing Focused Ion Beam (FIB) technology, a precise exposure of the buried metal layer can be achieved to form ultra-micro electrodes on top of the tip. Finally, cantilever structures are shaped and released by etching the silicon substrate from the backside. Electrochemical and impedance spectroscopic characterization show electrochemical functionality of the transducer system. Due to the high aspect ratio topography of the tip structure and low spring constant of silicon nitride cantilevers, these probes are particularly suited for high resolution SECM and AFM analysis. Furthermore, this technology allows a production of both linear probe-arrays and two-dimensional probe-arrays.

  19. Protein-DNA interactions in high speed AFM: single molecule diffusion analysis of human RAD54.

    PubMed

    Sanchez, Humberto; Suzuki, Yuki; Yokokawa, Masatoshi; Takeyasu, Kunio; Wyman, Claire

    2011-11-01

    High-speed AFM (atomic force microscopy also called scanning force microscopy) provides nanometre spatial resolution and sub-second temporal resolution images of individual molecules. We exploit these features to study diffusion and motor activity of the RAD54 DNA repair factor. Human RAD54 functions at critical steps in recombinational-DNA repair. It is a member of the Swi2/Snf2 family of chromatin remodelers that translocate on DNA using ATP hydrolysis. A detailed single molecular description of DNA-protein interactions shows intermediate states and distribution of variable states, usually hidden by ensemble averaging. We measured the motion of individual proteins using single-particle tracking and observed that random walks were affected by imaging-buffer composition. Non-Brownian diffusion events were characterized in the presence and in the absence of nucleotide cofactors. Double-stranded DNA immobilized on the surface functioned as a trap reducing Brownian motion. Distinct short range slides and hops on DNA were visualized by high-speed AFM. These short-range interactions were usually inaccessible by other methods based on optical resolution. RAD54 monomers displayed a diffusive behavior unrelated to the motor activity. PMID:21986699

  20. Comparative quantification and statistical analysis of η′ and η precipitates in aluminum alloy AA7075-T651 by TEM and AFM

    SciTech Connect

    Garcia-Garcia, Adrian Luis Dominguez-Lopez, Ivan Lopez-Jimenez, Luis Barceinas-Sanchez, J.D. Oscar

    2014-01-15

    Quantification of nanometric precipitates in metallic alloys has been traditionally performed using transmission electron microscopy, which is nominally a low throughput technique. This work presents a comparative study of quantification of η′ and η precipitates in aluminum alloy AA7075-T651 using transmission electron microscopy (TEM) and non-contact atomic force microscopy (AFM). AFM quantification was compared with 2-D stereological results reported elsewhere. Also, a method was developed, using specialized software, to characterize nanometric size precipitates observed in dark-field TEM micrographs. Statistical analysis of the quantification results from both measurement techniques supports the use of AFM for precipitate characterization. Once the precipitate stoichiometry has been determined by appropriate analytical techniques like TEM, as it is the case for η′ and η in AA7075-T651, the relative ease with which specimens are prepared for AFM analysis could be advantageous in product and process development, and quality control, where a large number of samples are expected for analysis on a regular basis. - Highlights: • Nanometric MgZn{sub 2} precipitates in AA7075-T651 were characterized using AFM and TEM. • Phase-contrast AFM was used to differentiate metal matrix from MgZn{sub 2} precipitates. • TEM and AFM micrographs were analyzed using commercially available software. • AFM image analysis and TEM 2-D stereology render statistically equivalent results.

  1. Using 2D correlation analysis to enhance spectral information available from highly spatially resolved AFM-IR spectra

    NASA Astrophysics Data System (ADS)

    Marcott, Curtis; Lo, Michael; Hu, Qichi; Kjoller, Kevin; Boskey, Adele; Noda, Isao

    2014-07-01

    The recent combination of atomic force microscopy and infrared spectroscopy (AFM-IR) has led to the ability to obtain IR spectra with nanoscale spatial resolution, nearly two orders-of-magnitude better than conventional Fourier transform infrared (FT-IR) microspectroscopy. This advanced methodology can lead to significantly sharper spectral features than are typically seen in conventional IR spectra of inhomogeneous materials, where a wider range of molecular environments are coaveraged by the larger sample cross section being probed. In this work, two-dimensional (2D) correlation analysis is used to examine position sensitive spectral variations in datasets of closely spaced AFM-IR spectra. This analysis can reveal new key insights, providing a better understanding of the new spectral information that was previously hidden under broader overlapped spectral features. Two examples of the utility of this new approach are presented. Two-dimensional correlation analysis of a set of AFM-IR spectra were collected at 200-nm increments along a line through a nucleation site generated by remelting a small spot on a thin film of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). There are two different crystalline carbonyl band components near 1720 cm-1 that sequentially disappear before a band at 1740 cm-1 due to more disordered material appears. In the second example, 2D correlation analysis of a series of AFM-IR spectra spaced every 1 μm of a thin cross section of a bone sample measured outward from an osteon center of bone growth. There are many changes in the amide I and phosphate band contours, suggesting changes in the bone structure are occurring as the bone matures.

  2. Crystallization of Probucol in Nanoparticles Revealed by AFM Analysis in Aqueous Solution.

    PubMed

    Egami, Kiichi; Higashi, Kenjirou; Yamamoto, Keiji; Moribe, Kunikazu

    2015-08-01

    The crystallization behavior of a pharmaceutical drug in nanoparticles was directly evaluated by atomic force microscopy (AFM) force curve measurements in aqueous solution. A ternary spray-dried sample (SPD) was prepared by spray drying the organic solvent containing probucol (PBC), hypromellose (HPMC), and sodium dodecyl sulfate (SDS). The amorphization of PBC in the ternary SPD was confirmed by powder X-ray diffraction (PXRD) and solid-state 13C NMR measurements. A nanosuspension containing quite small particles of 25 nm in size was successfully prepared immediately after dispersion of the ternary SPD into water. Furthermore, solution-state 1H NMR measurements revealed that a portion of HPMC coexisted with PBC as a mixed state in the freshly prepared nanosuspension particles. After storing the nanosuspension at 25 °C, a gradual increase in the size of the nanoparticles was observed, and the particle size changed to 93.9 nm after 7 days. AFM enabled the direct observation of the morphology and agglomeration behavior of the nanoparticles in water. Moreover, AFM force-distance curves were changed from (I) to (IV), depending on the storage period, as follows: (I) complete indentation within an applied force of 1 nN, (II) complete indentation with an applied force of 1-5 nN, (III) partial indentation with an applied force of 5 nN, and (IV) nearly no indentation with an applied force of 5 nN. This stiffness increase of the nanoparticles was attributed to gradual changes in the molecular state of PBC from the amorphous to the crystal state. Solid-state 13C NMR measurements of the freeze-dried samples demonstrated the presence of metastable PBC Form II crystals in the stored nanosuspension, strongly supporting the AFM results. PMID:26106951

  3. Morphological analysis of stainless steel scale like surface morphology using STM and AFM

    SciTech Connect

    Vignal, V.; Olive, J.M.; Desjardins, D.; Roux, J.C.; Genton, V.

    1997-12-19

    A combined atomic force microscopy (AFM) and scanning tunneling microscopy (STM) investigation of stainless steel like surface morphology formed either in electropolishing bath or in HNO{sub 3} medium is reported. A new numerical technique using the Nanoscope III software is proposed. The dimension, slope and orientation of scales can be easily determined. Moreover, grain boundaries structure and probable oxides present in the upper part of the film can be deduced.

  4. Application of the Discrete Wavelet Transform to SEM and AFM Micrographs for Quantitative Analysis of Complex Surfaces.

    PubMed

    Workman, Michael J; Serov, Alexey; Halevi, Barr; Atanassov, Plamen; Artyushkova, Kateryna

    2015-05-01

    The discrete wavelet transform (DWT) has found significant utility in process monitoring, filtering, and feature isolation of SEM, AFM, and optical images. Current use of the DWT for surface analysis assumes initial knowledge of the sizes of the features of interest in order to effectively isolate and analyze surface components. Current methods do not adequately address complex, heterogeneous surfaces in which features across multiple size ranges are of interest. Further, in situations where structure-to-property relationships are desired, the identification of features relevant for the function of the material is necessary. In this work, the DWT is examined as a tool for quantitative, length-scale specific surface metrology without prior knowledge of relevant features or length-scales. A new method is explored for determination of the best wavelet basis to minimize variation in roughness and skewness measurements with respect to change in position and orientation of surface features. It is observed that the size of the wavelet does not directly correlate with the size of features on the surface, and a method to measure the true length-scale specific roughness of the surface is presented. This method is applied to SEM and AFM images of non-precious metal catalysts, yielding new length-scale specific structure-to-property relationships for chemical speciation and fuel cell performance. The relationship between SEM and AFM length-scale specific roughness is also explored. Evidence is presented that roughness distributions of SEM images, as measured by the DWT, is representative of the true surface roughness distribution obtained from AFM. PMID:25879382

  5. XPS and AFM analysis of antifouling PEG interfaces for microfabricated silicon biosensors.

    PubMed

    Sharma, Sadhana; Johnson, Robert W; Desai, Tejal A

    2004-09-15

    In the past two decades, the biological and medical fields have seen great advances in the development of biosensors capable of quantifying biomolecules. Many of these biosensors have micro- and nano-scale features, are fabricated using biochip technology, and use silicon as a base material. The creation of antifouling sensor interfaces is critical to avoid serious consequences that arise due to their contact with biological fluids. To this end, we have created thin PEG interfaces of various grafting densities on silicon using a single-step PEG-silane coupling reaction scheme. Initial PEG concentration (5-50 mM) and coupling time (0.5-24 h) were varied to attain different grafting densities, and different PEG interfaces so created were analyzed using XPS and AFM. Furthermore, all the PEG interfaces were evaluated using XPS and AFM for their antifouling abilities using fibrinogen as the model protein. Results indicated that PEG interfaces created in this investigation are appropriate for biosensors with micro- and nano-scale features, and are efficient in controlling protein fouling. PMID:15308226

  6. No-Show Analysis. Final Report.

    ERIC Educational Resources Information Center

    Kalsbeek, William D.; And Others

    The National Assessment of Educational Progress; Second Science Assessment No-Show Study assessed the magnitude and causation of nonresponse biases. A No-Show is defined as an individual who was selected as a sample respondent but failed to be present for regular assessment of the 17-year-old group. The procedure whereby a sample of eligible…

  7. Analysis shows revamp route to naphtha feed

    SciTech Connect

    Aguilar, E.; Ortiz, C.H.; Arzate, E. )

    1988-11-21

    An existing ethylene plant was studied, using a computer-simulated flexibility analysis, to determine the changes required to convert one of the cracking furnaces from ethane feed to naphtha feed. The simulation determined the changes in flow rate, operating temperature, and steam/hydrocarbon ratio that would result from the liquid feed.

  8. Raman and AFM study of gamma irradiated plastic bottle sheets

    SciTech Connect

    Ali, Yasir; Kumar, Vijay; Dhaliwal, A. S.; Sonkawade, R. G.

    2013-02-05

    In this investigation, the effects of gamma irradiation on the structural properties of plastic bottle sheet are studied. The Plastic sheets were exposed with 1.25MeV {sup 60}Co gamma rays source at various dose levels within the range from 0-670 kGy. The induced modifications were followed by micro-Raman and atomic force microscopy (AFM). The Raman spectrum shows the decrease in Raman intensity and formation of unsaturated bonds with an increase in the gamma dose. AFM image displays rough surface morphology after irradiation. The detailed Raman analysis of plastic bottle sheets is presented here, and the results are correlated with the AFM observations.

  9. Effect of tip mass on frequency response and sensitivity of AFM cantilever in liquid.

    PubMed

    Farokh Payam, Amir; Fathipour, Morteza

    2015-03-01

    The effect of tip mass on the frequency response and sensitivity of atomic force microscope (AFM) cantilever in the liquid environment is investigated. For this purpose, using Euler-Bernoulli beam theory and considering tip mass and hydrodynamic functions in a liquid environment, an expression for the resonance frequencies of AFM cantilever in liquid is derived. Then, based on this expression, the effect of the surface contact stiffness on the flexural mode of a rectangular AFM cantilever in fluid is investigated and compared with the case where the AFM cantilever operates in the air. The results show that in contrast with an air environment, the tip mass has no significant impact on the resonance frequency and sensitivity of the AFM cantilever in the liquid. Hence, analysis of AFM behaviour in liquid environment by neglecting the tip mass is logical. PMID:25562584

  10. Biophysical analysis of bacterial and viral systems. A shock tube study of bio-aerosols and a correlated AFM/nanosims investigation of vaccinia virus

    SciTech Connect

    Gates, Sean Damien

    2013-05-01

    The work presented herein is concerned with the development of biophysical methodology designed to address pertinent questions regarding the behavior and structure of select pathogenic agents. Two distinct studies are documented: a shock tube analysis of endospore-laden bio-aerosols and a correlated AFM/NanoSIMS study of the structure of vaccinia virus.

  11. Nanoscale structural features determined by AFM for single virus particles.

    PubMed

    Chen, Shu-wen W; Odorico, Michael; Meillan, Matthieu; Vellutini, Luc; Teulon, Jean-Marie; Parot, Pierre; Bennetau, Bernard; Pellequer, Jean-Luc

    2013-11-21

    In this work, we propose "single-image analysis", as opposed to multi-image averaging, for extracting valuable information from AFM images of single bio-particles. This approach allows us to study molecular systems imaged by AFM under general circumstances without restrictions on their structural forms. As feature exhibition is a resolution correlation, we have performed AFM imaging on surfaces of tobacco mosaic virus (TMV) to demonstrate variations of structural patterns with probing resolution. Two AFM images were acquired with the same tip at different probing resolutions in terms of pixel width, i.e., 1.95 and 0.49 nm per pixel. For assessment, we have constructed an in silico topograph based on the three-dimensional crystal structure of TMV as a reference. The prominent artifacts observed in the AFM-determined shape of TMV were attributed to tip convolutions. The width of TMV rod was systematically overestimated by ~10 nm at both probing resolutions of AFM. Nevertheless, the effects of tip convolution were less severe in vertical orientation so that the estimated height of TMV by AFM imaging was in close agreement with the in silico X-ray topograph. Using dedicated image processing algorithms, we found that at low resolution (i.e., 1.95 nm per pixel), the extracted surface features of TMV can be interpreted as a partial or full helical repeat (three complete turns with ~7.0 nm in length), while individual protein subunits (~2.5 nm) were perceivable only at high resolution. The present study shows that the scales of revealed structural features in AFM images are subject to both probing resolution and processing algorithms for image analysis. PMID:24056758

  12. Determination of surface roughness and topography of dental resin-based nanocomposites using AFM analysis.

    PubMed

    Lainović, Tijana; Vilotić, Marko; Blažić, Larisa; Kakaš, Damir; Marković, Dubravka; Ivanišević, Aljoša

    2013-02-01

    The aim of this study was to determine surface roughness and topography of polished dental resin-based nanocomposites. Four representative dental resin-based nanocomposites were tested in the study: two nanohybrids (Filtek Z550 and Tetric EvoCeram) and two nanofilled (Filtek Ultimate Body and Filtek Ultimate Translucent); and two reference materials: one microfilled (Gradia Direct) and one microhybrid (Filtek Z250). Polymerized cylindrical specimens (4 mm x 2 mm) were polished with multi-step polishing system- Super Snap. Immediately after the polishing, topography of each specimen was examined by Veeco di CP-II Atomic Force Microscope. Specimen's surface has been scanned in 6 points in contact mode with CONT20A-CP tips. 1 Hz scan rate and 256 × 256 resolution were used to obtain topography on a 90 µm × 90 µm scanning area. Measured topography data were processed by Image Processing and Data Analysis v2.1.15 software. Following parameters were compared among specimens: average roughness and maximum peak-to-valley distance. All of the tested materials had similar average surface roughness after finishing and polishing procedure. The lowest values occurred in the material Filtek Ultimate Body, and the highest in the Filtek Z550. When interpreting maximum peak-to-valley distance the larger differences in values (up to 100%) occurred in Filtek Z550, Filtek Z250 and Filtek Ultimate Body, which is a result of the deep polishing channels and tracks. Type, size, distribution of fillers and filler loading in tested materials, didn't influence average roughness values, but had an impact on maximum peak-to-valley distance values. PMID:23448609

  13. Topographic Characterization of Cu-Ni NPs @ a-C:H Films by AFM and Multifractal Analysis.

    PubMed

    Ţălu, Ştefan; Stach, Sebastian; Ghodselahi, Tayebeh; Ghaderi, Atefeh; Solaymani, Shahram; Boochani, Arash; Garczyk, Żaneta

    2015-04-30

    In the present work three-dimensional (3-D) surface topography of Cu-Ni nanoparticles in hydrogenated amorphous carbon (Cu-Ni NPs @ a-C:H) with constant thickness of Cu and three thicknesses of Ni prepared by RF-Plasma Enhanced Chemical Vapor Deposition (RF-PECVD) system were investigated. The thin films of Cu-Ni NPs @ a-C:H with constant thickness of Cu and three thicknesses of Ni deposited by radio frequency (RF)-sputtering and RF-PECVD systems, were characterized. To determine the mass thickness and atomic structure of the films, the Rutherford backscattering spectroscopy (RBS) spectra was applied. The absorption spectra were applied to study localized surface plasmon resonance (LSPR) peaks of Cu-Ni NPs (observed around 608 nm in visible spectra), which is widened and shifted to lower wavelengths as the thickness of Ni over layer increases, and their changes are also evaluated by the 3-D surface topography. These nanostructures were investigated over square areas of 1 μm × 1 μm using atomic force microscopy (AFM) and multifractal analysis. Topographic characterization of surface samples (in amplitude, spatial distribution, and pattern of surface characteristics) highlighted 3-D surfaces with multifractal features which can be quantitatively estimated by the multifractal measures. The 3-D surface topography Cu-Ni NPs @ a-C:H with constant thickness of Cu and three thicknesses of Ni prepared by RF-PECVD system can be characterized using the multifractal geometry in correlation with the surface statistical parameters. PMID:25839675

  14. The importance of correcting for variable probe-sample interactions in AFM-IR spectroscopy: AFM-IR of dried bacteria on a polyurethane film.

    PubMed

    Barlow, Daniel E; Biffinger, Justin C; Cockrell-Zugell, Allison L; Lo, Michael; Kjoller, Kevin; Cook, Debra; Lee, Woo Kyung; Pehrsson, Pehr E; Crookes-Goodson, Wendy J; Hung, Chia-Suei; Nadeau, Lloyd J; Russell, John N

    2016-08-01

    AFM-IR is a combined atomic force microscopy-infrared spectroscopy method that shows promise for nanoscale chemical characterization of biological-materials interactions. In an effort to apply this method to quantitatively probe mechanisms of microbiologically induced polyurethane degradation, we have investigated monolayer clusters of ∼200 nm thick Pseudomonas protegens Pf-5 bacteria (Pf) on a 300 nm thick polyether-polyurethane (PU) film. Here, the impact of the different biological and polymer mechanical properties on the thermomechanical AFM-IR detection mechanism was first assessed without the additional complication of polymer degradation. AFM-IR spectra of Pf and PU were compared with FTIR and showed good agreement. Local AFM-IR spectra of Pf on PU (Pf-PU) exhibited bands from both constituents, showing that AFM-IR is sensitive to chemical composition both at and below the surface. One distinct difference in local AFM-IR spectra on Pf-PU was an anomalous ∼4× increase in IR peak intensities for the probe in contact with Pf versus PU. This was attributed to differences in probe-sample interactions. In particular, significantly higher cantilever damping was observed for probe contact with PU, with a ∼10× smaller Q factor. AFM-IR chemical mapping at single wavelengths was also affected. We demonstrate ratioing of mapping data for chemical analysis as a simple method to cancel the extreme effects of the variable probe-sample interactions. PMID:27403761

  15. Qplus AFM driven nanostencil.

    PubMed

    Grévin, B; Fakir, M; Hayton, J; Brun, M; Demadrille, R; Faure-Vincent, J

    2011-06-01

    We describe the development of a novel setup, in which large stencils with suspended silicon nitride membranes are combined with atomic force microscopy (AFM) regulation by using tuning forks. This system offers the possibility to perform separate AFM and nanostencil operations, as well as combined modes when using stencil chips with integrated tips. The flexibility and performances are demonstrated through a series of examples, including wide AFM scans in closed loop mode, probe positioning repeatability of a few tens of nanometer, simultaneous evaporation of large (several hundred of micron square) and nanoscopic metals and fullerene patterns in static, multistep, and dynamic modes. This approach paves the way for further developments, as it fully combines the advantages of conventional stenciling with the ones of an AFM driven shadow mask. PMID:21721701

  16. AFM nanoscale indentation in air of polymeric and hybrid materials with highly different stiffness

    NASA Astrophysics Data System (ADS)

    Suriano, Raffaella; Credi, Caterina; Levi, Marinella; Turri, Stefano

    2014-08-01

    In this study, nanomechanical properties of a variety of polymeric materials was investigated by means of AFM. In particular, selecting different AFM probes, poly(methyl methacrylate) (PMMA), polydimethylsiloxane (PDMS) bulk samples, sol-gel hybrid thin films and hydrated hyaluronic acid hydrogels were indented in air to determine the elastic modulus. The force-distance curves and the indentation data were found to be greatly affected by the cantilever stiffness and by tip geometry. AFM indentation tests show that the choice of the cantilever spring constant and of tip shape is crucially influenced by elastic properties of samples. When adhesion-dominated interactions occur between the tip and the surface of samples, force-displacement curves reveal that a suitable functionalization of AFM probes allows the control of such interactions and the extraction of Young' modulus from AFM curves that would be otherwise unfeasible. By applying different mathematical models depending on AFM probes and materials under investigation, the values of Young's modulus were obtained and compared to those measured by rheological and dynamic mechanical analysis or to literature data. Our results show that a wide range of elastic moduli (10 kPa-10 GPa) can be determined by AFM in good agreement with those measured by conventional macroscopic measurements.

  17. Diamond-modified AFM probes: from diamond nanowires to atomic force microscopy-integrated boron-doped diamond electrodes.

    PubMed

    Smirnov, Waldemar; Kriele, Armin; Hoffmann, René; Sillero, Eugenio; Hees, Jakob; Williams, Oliver A; Yang, Nianjun; Kranz, Christine; Nebel, Christoph E

    2011-06-15

    In atomic force microscopy (AFM), sharp and wear-resistant tips are a critical issue. Regarding scanning electrochemical microscopy (SECM), electrodes are required to be mechanically and chemically stable. Diamond is the perfect candidate for both AFM probes as well as for electrode materials if doped, due to diamond's unrivaled mechanical, chemical, and electrochemical properties. In this study, standard AFM tips were overgrown with typically 300 nm thick nanocrystalline diamond (NCD) layers and modified to obtain ultra sharp diamond nanowire-based AFM probes and probes that were used for combined AFM-SECM measurements based on integrated boron-doped conductive diamond electrodes. Analysis of the resonance properties of the diamond overgrown AFM cantilevers showed increasing resonance frequencies with increasing diamond coating thicknesses (i.e., from 160 to 260 kHz). The measured data were compared to performed simulations and show excellent correlation. A strong enhancement of the quality factor upon overgrowth was also observed (120 to 710). AFM tips with integrated diamond nanowires are shown to have apex radii as small as 5 nm and where fabricated by selectively etching diamond in a plasma etching process using self-organized metal nanomasks. These scanning tips showed superior imaging performance as compared to standard Si-tips or commercially available diamond-coated tips. The high imaging resolution and low tip wear are demonstrated using tapping and contact mode AFM measurements by imaging ultra hard substrates and DNA. Furthermore, AFM probes were coated with conductive boron-doped and insulating diamond layers to achieve bifunctional AFM-SECM probes. For this, focused ion beam (FIB) technology was used to expose the boron-doped diamond as a recessed electrode near the apex of the scanning tip. Such a modified probe was used to perform proof-of-concept AFM-SECM measurements. The results show that high-quality diamond probes can be fabricated, which are

  18. Snacking on Television: A Content Analysis of Adolescents’ Favorite Shows

    PubMed Central

    Larson, Nicole I.; Gollust, Sarah E.; Neumark-Sztainer, Dianne

    2016-01-01

    Introduction Snacking is a complex behavior that may be influenced by entertainment media. Research suggests that snacking and unhealthy foods are commonly shown in programming that targets young audiences, but shows selected for study have been limited. We conducted a content analysis on shows that were named as favorites by adolescents to characterize portrayals of snacking on popular television. Methods A diverse sample of 2,130 adolescents (mean age, 14.3 y) listed 3 favorite television shows in a 2010 school-based survey. Three episodes each of the 25 most popular shows were coded for food-related content, including healthfulness, portion size, screen time use, setting, and social context. We also analyzed the characteristics of characters involved in eating incidents, the show type, and the show rating. We used χ2 tests, binomial tests, and multilevel regression models to compare incidence of snacks versus meals, the characteristics of those involved, and snacking across show characteristics. Results Almost half of food incidents on television shows were snacks. Snacks were significantly more likely than meals to be “mostly unhealthy” (69.3% vs 22.6%, P < .001) and were more likely to include screen time use (25.0% of snacking incidents vs 4.0% of meals, P < .001). Young characters and those coded as being of low socioeconomic status or overweight were overrepresented in snacking incidents. Sitcoms and shows rated for a youth audience were significantly more likely to portray snacking than were shows for adult audiences. Conclusion Media awareness and literacy programs should include foods and snacking behaviors among the issues they address. More healthful portrayals of food and dietary intake in entertainment shows’ content would create a healthier media environment for youth. PMID:27197079

  19. The effect of 5% sodium hypochlorite, 17% EDTA and triphala on two different rotary Ni-Ti instruments: An AFM and EDS analysis

    PubMed Central

    Prasad, Pramod Siva; Sam, Jonathan Emi; Kumar, Arvind; Kannan

    2014-01-01

    Aim: To use Atomic Force Microscope and Energy Dispersive X-ray Spectroscopy to evaluate the effect of 5% NaOCl, 17% EDTA and triphala on ProTaper and iRaCe rotary Ni-Ti instruments. Methodology: A total of eight Ni-Ti rotary files, four files each of ProTaper - S2 (Dentsply) and iRaCe - R3 (FKG DENTAIRE) were used. Three out of four files each from ProTaper and iRaCe were immersed in 5% NaOCl, 17% EDTA and Triphala separately for five minutes. The Roughness average (Ra), Root Mean Square (RMS) and Mean Height of Roughness Profile Elements (Rc) of the scanned profiles were then recorded using AFM and the elemental composition was evaluated with EDS. Data were analyzed by Student's t test, One Way ANOVA and Duncan's Multiple Range Test. Results: Topographic irregularities at the nanometric scale were observed for all files. Files immersed in EDTA and NaOCl showed highly significant surface roughness than untreated files. Conclusion: Short-term contact with 17% EDTA and 5% NaOCl can cause significant surface deterioration of ProTaper and iRaCe rotary NiTi files. AFM proves to be a suitable method for evaluating the instrument surface. PMID:25298649

  20. Hourly analysis of cerebrospinal fluid glucose shows large diurnal fluctuations.

    PubMed

    Verbeek, Marcel M; Leen, Wilhelmina G; Willemsen, Michèl A; Slats, Diane; Claassen, Jurgen A

    2016-05-01

    Cerebrospinal fluid analysis is important in the diagnostics of many neurological disorders. Since the influence of food intake on the cerebrospinal fluid glucose concentration and the cerebrospinal fluid/plasma glucose ratio is largely unknown, we studied fluctuations in these parameters in healthy adult volunteers during a period of 36 h. Our observations show large physiological fluctuations of cerebrospinal fluid glucose and the cerebrospinal fluid/plasma glucose ratio, and their relation to food intake. These findings provide novel insights into the physiology of cerebral processes dependent on glucose levels such as energy formation (e.g. glycolysis), enzymatic reactions (e.g. glycosylation), and non-enzymatic reactions (e.g. advanced endproduct glycation). PMID:26945018

  1. Characterization of single α-tracks by photoresist detection and AFM analysis-focus on biomedical science and technology.

    PubMed

    Falzone, Nadia; Myhra, Sverre; Chakalova, Radka; Hill, Mark A; Thomson, James; Vallis, Katherine A

    2013-11-01

    The interactions between energetic ions and biological and/or organic target materials have recently attracted theoretical and experimental attention, due to their implications for detector and device technologies, and for therapeutic applications. Most of the attention has focused on detection of the primary ionization tracks, and their effects, while recoil target atom tracks remain largely unexplored. Detection of tracks by a negative tone photoresist (SU-8), followed by standard development, in combination with analysis by atomic force microscopy, shows that both primary and recoil tracks are revealed as conical spikes, and can be characterized at high spatial resolution. The methodology has the potential to provide detailed information about single impact events, which may lead to more effective and informative detector technologies and advanced therapeutic procedures. In comparison with current characterization methods the advantageous features include: greater spatial resolution by an order of magnitude (20 nm); detection of single primary and associated recoil tracks; increased range of fluence (to 2.5 × 10(9) cm(-2)); sensitivity to impacts at grazing angle incidence; and better definition of the lateral interaction volume in target materials. PMID:24113400

  2. [AFM fishing of proteins under impulse electric field].

    PubMed

    Ivanov, Yu D; Pleshakova, T O; Malsagova, K A; Kaysheva, A L; Kopylov, A T; Izotov, A A; Tatur, V Yu; Vesnin, S G; Ivanova, N D; Ziborov, V S; Archakov, A I

    2016-05-01

    A combination of (atomic force microscopy)-based fishing (AFM-fishing) and mass spectrometry allows to capture protein molecules from solutions, concentrate and visualize them on an atomically flat surface of the AFM chip and identify by subsequent mass spectrometric analysis. In order to increase the AFM-fishing efficiency we have applied pulsed voltage with the rise time of the front of about 1 ns to the AFM chip. The AFM-chip was made using a conductive material, highly oriented pyrolytic graphite (HOPG). The increased efficiency of AFM-fishing has been demonstrated using detection of cytochrome b5 protein. Selection of the stimulating pulse with a rise time of 1 ns, corresponding to the GHz frequency range, by the effect of intrinsic emission from water observed in this frequency range during water injection into the cell. PMID:27562998

  3. AFM indentation study of breast cancer cells

    SciTech Connect

    Li, Q.S.; Lee, G.Y.H.; Ong, C.N.; Lim, C.T.

    2008-10-03

    Mechanical properties of individual living cells are known to be closely related to the health and function of the human body. Here, atomic force microscopy (AFM) indentation using a micro-sized spherical probe was carried out to characterize the elasticity of benign (MCF-10A) and cancerous (MCF-7) human breast epithelial cells. AFM imaging and confocal fluorescence imaging were also used to investigate their corresponding sub-membrane cytoskeletal structures. Malignant (MCF-7) breast cells were found to have an apparent Young's modulus significantly lower (1.4-1.8 times) than that of their non-malignant (MCF-10A) counterparts at physiological temperature (37 deg. C), and their apparent Young's modulus increase with loading rate. Both confocal and AFM images showed a significant difference in the organization of their sub-membrane actin structures which directly contribute to their difference in cell elasticity. This change may have facilitated easy migration and invasion of malignant cells during metastasis.

  4. Authenticity and TV Shows: A Multidimensional Analysis Perspective

    ERIC Educational Resources Information Center

    Al-Surmi, Mansoor

    2012-01-01

    Television shows, especially soap operas and sitcoms, are usually considered by English as a second language practitioners as a source of authentic spoken conversational materials presumably because they reflect the linguistic features of natural conversation. However, practitioners are faced with the dilemma of how to assess whether such…

  5. Adhesion forces in AFM of redox responsive polymer grafts: Effects of tip hydrophilicity

    NASA Astrophysics Data System (ADS)

    Feng, Xueling; Kieviet, Bernard D.; Song, Jing; Schön, Peter M.; Vancso, G. Julius

    2014-02-01

    The adherence between silicon nitride AFM tips and redox-active poly(ferrocenylsilanes) (PFS) grafts on gold was investigated by electrochemical AFM force spectroscopy. Before the adhesion measurements silicon nitride AFM probes were cleaned with organic solvents (acetone and ethanol) or piranha solution. Interestingly, these different AFM tip cleaning procedures drastically affected the observed adhesion forces. Water contact angle measurements on the corresponding AFM probe chips showed that piranha treatment resulted in a significant increase of AFM probe chip surface hydrophilicity compared to the organic solvent treatment. Obviously this hydrophilicity change caused drastic, even opposite changes in the tip-PFS adhesive force measurement upon electrode potential change to reversibly oxidize and reduce the PFS grafts. Our findings are of pivotal importance for AFM tip adhesion measurements utilizing standard silicon nitride AFM tips. Probe hydrophilicity must be carefully taken into consideration and controlled.

  6. PREFACE: Non-contact AFM Non-contact AFM

    NASA Astrophysics Data System (ADS)

    Giessibl, Franz J.; Morita, Seizo

    2012-02-01

    This special issue is focussed on high resolution non-contact atomic force microscopy (AFM). Non-contact atomic force microscopy was established approximately 15 years ago as a tool to image conducting and insulating surfaces with atomic resolution. Since 1998, an annual international conference has taken place, and although the proceedings of these conferences are a useful source of information, several key developments warrant devoting a special issue to this subject. In the theoretic field, the possibility of supplementing established techniques such as scanning tunneling microscopy (STM) and Kelvin probe microscopy with atomically resolved force micrsoscopy poses many challenges in the calculation of contrast and contrast reversal. The surface science of insulators, self-assembled monolayers and adsorbates on insulators is a fruitful field for the application of non-contact AFM: several articles in this issue are devoted to these subjects. Atomic imaging and manipulation have been pioneered using STM, but because AFM allows the measurement of forces, AFM has had a profound impact in this field as well. Three-dimensional force spectroscopy has allowed many important insights into surface science. In this issue a combined 3D tunneling and force microscopy is introduced. Non-contact AFM typically uses frequency modulation to measure force gradients and was initially used mainly in a vacuum. As can be seen in this issue, frequency modulation is now also used in ambient conditions, allowing better spatial and force resolution. We thank all of the contributors for their time and efforts in making this special issue possible. We are also very grateful to the staff of IOP Publishing for handling the administrative aspects and for steering the refereeing process. Non-contact AFM contents Relation between the chemical force and the tunnelling current in atomic point contacts: a simple model Pavel Jelínek, Martin Ondrácek and Fernando Flores Theoretical simulation of

  7. Characterizing Cell Mechanics with AFM and Microfluidics

    NASA Astrophysics Data System (ADS)

    Walter, N.; Micoulet, A.; Suresh, S.; Spatz, J. P.

    2007-03-01

    Cell mechanical properties and functionality are mainly determined by the cytoskeleton, besides the cell membrane, the nucleus and the cytosol, and depend on various parameters e.g. surface chemistry and rigidity, surface area and time available for cell spreading, nutrients and drugs provided in the culture medium. Human epithelial pancreatic and mammary cancer cells and their keratin intermediate filaments are the main focus of our work. We use Atomic Force Microscopy (AFM) to study cells adhering to substrates and Microfluidic Channels to probe cells in suspension, respectively. Local and global properties are extracted by varying AFM probe tip size and the available adhesion area for cells. Depth-sensing, instrumented indentation tests with AFM show a clear difference in contact stiffness for cells that are spread of controlled substrates and those that are loosely attached. Microfluidic Channels are utilized in parallel to evaluate cell deformation and ``flow resistance'', which are dependent on channel cross section, flow rate, cell nucleus size and the mechanical properties of cytoskeleton and membrane. The results from the study are used to provide some broad and quantitative assessments of the connections between cellular/subcellular mechanics and biochemical origins of disease states.

  8. Ability of Lactobacillus rhamnosus GAF01 to remove AFM1 in vitro and to counteract AFM1 immunotoxicity in vivo.

    PubMed

    Abbès, Samir; Salah-Abbès, Jalila Ben; Sharafi, Hakimeh; Jebali, Rania; Noghabi, Kambiz Akbari; Oueslati, Ridha

    2013-01-01

    Aflatoxin M1 (AFM1) has been detected in many parts of the world both in raw milk and many dairy products, causing great economic losses and human disease. Unfortunately, there are few studies dealing with AFM1 immunotoxicity/interactions with lactic acid bacteria for potential application as a natural preventive agent. The aim of this study was to isolate (from dairy products) food-grade probiotic bacteria able to degrade/bind AFM1 in vitro and evaluate whether the same organism(s) could impart a protective role against AFM1-induced immunotoxicity in exposed Balb/c mice. Bacteria (Lactobacillus plantarum MON03 and L. rhamnosus GAF01) were isolated from Tunisian artisanal butter and then tested for abilities to eliminate AFM1 from phosphate-buffered saline (PBS) and reconstituted milk (containing 0.05, 0.10, and 0.20 µg AFM1/ml) after 0, 6, and 24 h at 37°C. Results showed that the selected bacteria could 'remove' AFM1 both in PBS and skimmed milk. The binding abilities of AFM1 by L. plantarum MON03 and L. rhamnosus GAF01 strains (at 10(8) CFU/ml) in PBS and reconstituted milk ranged, respectively, from 16.1-78.6% and 15.3-95.1%; overall, L. rhamnosus showed a better potential for removal than L. plantarum. 'Removal' appeared to be by simple binding; the bacteria/AFM1 complex was stable and only a very small proportion of mycotoxin was released back into the solution. L. rhamnosus GAF01 had the highest binding capacity and was selected for use in the in vivo study. Those results indicated that use of the organism prevented AFM1-induced effects on total white and red blood cells, and lymphocyte subtypes, after 15 days of host treatment. These studies clearly indicated that L. rhamnosus GAF01 was able to bind AFM1 in vitro and-by mechanisms that might also be related to a binding effect-counteract AFM1-induced immunotoxicity. Moreover, by itself, this bacterium was not toxic and could potentially be used as an additive in dairy products and in biotechnology for

  9. Fracture Mechanics Testing of Titanium 6AL-4V in AF-M315E

    NASA Technical Reports Server (NTRS)

    Sampson, J. W.; Martinez, J.; McLean, C.

    2016-01-01

    The Green Propellant Infusion Mission (GPIM) will demonstrate the performance of AF-M315E monopropellant on orbit. Flight certification requires a safe-life analysis of the titanium alloy fuel tank to ensure inherent processing flaws will not cause failure during the design life of the tank. Material property inputs for this analysis require testing to determine the stress intensity factor for environment-assisted cracking (KEAC) of Ti 6Al-4V in combination with the AF-M315E monopropellant. Testing of single-edge notched, or SE(B), specimens representing the bulk tank membrane and weld material were performed in accordance with ASTM E1681. Specimens with fatigue pre-cracks were loaded into test fixtures so that the crack tips were exposed to AF-M315E at 50 C for a duration of 1,000 hours. Specimens that did not fail during exposure were opened to inspect the crack surfaces for evidence of crack growth. The threshold stress intensity value, KEAC, is the highest applied stress intensity that produced neither a failure of the specimen during the exposure nor showed evidence of crack growth. The threshold stress intensity factor for environment-assisted cracking of the Ti 6Al-4V forged tank material was found to be at least 22 ksivin and at least 31 ksivin for the weld material when exposed to AF-M315E monopropellant.

  10. Tracer kinetic modeling of [(11)C]AFM, a new PET imaging agent for the serotonin transporter.

    PubMed

    Naganawa, Mika; Nabulsi, Nabeel; Planeta, Beata; Gallezot, Jean-Dominique; Lin, Shu-Fei; Najafzadeh, Soheila; Williams, Wendol; Ropchan, Jim; Labaree, David; Neumeister, Alexander; Huang, Yiyun; Carson, Richard E

    2013-12-01

    [(11)C]AFM, or [(11)C]2-[2-(dimethylaminomethyl)phenylthio]-5-fluoromethylphenylamine, is a new positron emission tomography (PET) radioligand with high affinity and selectivity for the serotonin transporter (SERT). The purpose of this study was to determine the most appropriate kinetic model to quantify [(11)C]AFM binding in the healthy human brain. Positron emission tomography data and arterial input functions were acquired from 10 subjects. Compartmental modeling and the multilinear analysis-1(MA1) method were tested using the arterial input functions. The one-tissue model showed a lack of fit in low-binding regions, and the two-tissue model failed to estimate parameters reliably. Regional time-activity curves were well described by MA1. The rank order of [(11)C]AFM binding potential (BPND) matched well with the known regional SERT densities. For routine use of [(11)C]AFM, several noninvasive methods for quantification of regional binding were evaluated, including simplified reference tissue models (SRTM and SRTM2), and multilinear reference tissue models (MRTM and MRTM2). The best methods for region of interest (ROI) analysis were MA1, MRTM2, and SRTM2, with fixed population kinetic values ( or b') for the reference methods. The MA1 and MRTM2 methods were best for parametric imaging. These results showed that [(11)C]AFM is a suitable PET radioligand to image and quantify SERT in humans. PMID:23921898

  11. Label-free and quantitative evaluation of cytotoxicity based on surface nanostructure and biophysical property of cells utilizing AFM.

    PubMed

    Lee, Young Ju; Lee, Gi-Ja; Kang, Sung Wook; Cheong, Youjin; Park, Hun-Kuk

    2013-06-01

    In this study, the four commonly used cytotoxicity assays and the mechanical properties as evaluated by atomic force microscopy (AFM) were compared in a cellular system. A cytotoxicity assay is the first and most essential test to evaluate biocompatibility of various toxic substances. Many of the cytotoxicity methods require complicated and labor-intensive process, as well as introduce experimental error. In addition, these methods cannot provide instantaneous and quantitative cell viability information. AFM has become an exciting analytical tool in medical, biological, and biophysical research due to its unique abilities. AFM-based force-distance curve measurements precisely measure the changes in the biophysical properties of the cell. Therefore, we observed the morphological changes and mechanical property changes in L929 cells following sodium lauryl sulfate (SLS) treatment utilizing AFM. AFM imaging showed that the toxic effects of SLS changed not only the spindle-like shape of L929 cells into a round shape, but also made a rough cell surface. As the concentration of SLS was increased, the surface roughness of L929 cell was increased, and stiffness decreased. We confirmed that inhibition of proliferation clearly increased with increases in SLS concentration based on results from MTT, WST, neutral red uptake, and LIVE/DEAD viability/cytotoxicity assays. The estimated IC₅₀ value by AFM analysis was similar to those of other conventional assays and was included within the 95% confidence interval range. We suggest that an AFM quantitative analysis of the morphological and biophysical changes in cells can be utilized as a new method for evaluating cytotoxicity. PMID:23582483

  12. Characterization of the interaction between AFM tips and surface nanobubbles.

    PubMed

    Walczyk, Wiktoria; Schönherr, Holger

    2014-06-24

    While the presence of gaseous enclosures observed at various solid-water interfaces, the so-called "surface nanobubles", has been confirmed by many groups in recent years, their formation, properties, and stability have not been convincingly and exhaustively explained. Here we report on an atomic force microscopy (AFM) study of argon nanobubbles on highly oriented pyrolitic graphite (HOPG) in water to elucidate the properties of nanobubble surfaces and the mechanism of AFM tip-nanobubble interaction. In particular, the deformation of the nanobubble-water interface by the AFM tip and the question whether the AFM tip penetrates the nanobubble during scanning were addressed by this combined intermittent contact (tapping) mode and force volume AFM study. We found that the stiffness of nanobubbles was smaller than the cantilever spring constant and comparable with the surface tension of water. The interaction with the AFM tip resulted in severe quasi-linear deformation of the bubbles; however, in the case of tip-bubble attraction, the interface deformed toward the tip. We tested two models of tip-bubble interaction, namely, the capillary force and the dynamic interaction model, and found, depending on the tip properties, good agreement with experimental data. The results showed that the tip-bubble interaction strength and the magnitude of the bubble deformation depend strongly on tip and bubble geometry and on tip and substrate material, and are very sensitive to the presence of contaminations that alter the interfacial tension. In particular, nanobubbles interacted differently with hydrophilic and hydrophobic AFM tips, which resulted in qualitatively and quantitatively different force curves measured on the bubbles in the experiments. To minimize bubble deformation and obtain reliable AFM results, nanobubbles must be measured with a sharp hydrophilic tip and with a cantilever having a very low spring constant in a contamination-free system. PMID:24856074

  13. Modeling the Interaction between AFM Tips and Pinned Surface Nanobubbles.

    PubMed

    Guo, Zhenjiang; Liu, Yawei; Xiao, Qianxiang; Schönherr, Holger; Zhang, Xianren

    2016-01-26

    Although the morphology of surface nanobubbles has been studied widely with different AFM modes, AFM images may not reflect the real shapes of the nanobubbles due to AFM tip-nanobubble interactions. In addition, the interplay between surface nanobubble deformation and induced capillary force has not been well understood in this context. In our work we used constraint lattice density functional theory to investigate the interaction between AFM tips and pinned surface nanobubbles systematically, especially concentrating on the effects of tip hydrophilicity and shape. For a hydrophilic tip contacting a nanobubble, its hydrophilic nature facilitates its departure from the bubble surface, displaying a weak and intermediate-range attraction. However, when the tip squeezes the nanobubble during the approach process, the nanobubble shows an elastic effect that prevents the tip from penetrating the bubble, leading to a strong nanobubble deformation and repulsive interactions. On the contrary, a hydrophobic tip can easily pierce the vapor-liquid interface of the nanobubble during the approach process, leading to the disappearance of the repulsive force. In the retraction process, however, the adhesion between the tip and the nanobubble leads to a much stronger lengthening effect on nanobubble deformation and a strong long-range attractive force. The trends of force evolution from our simulations agree qualitatively well with recent experimental AFM observations. This favorable agreement demonstrates that our model catches the main intergradient of tip-nanobubble interactions for pinned surface nanobubbles and may therefore provide important insight into how to design minimally invasive AFM experiments. PMID:26751634

  14. AFM analysis of the multiple types of molecular interactions involved in rituximab lymphoma therapy on patient tumor cells and NK cells.

    PubMed

    Li, Mi; Xiao, Xiubin; Zhang, Weijing; Liu, Lianqing; Xi, Ning; Wang, Yuechao

    2014-08-01

    Rituximab is a monoclonal antibody drug approved for the treatment of patients with lymphomas. Rituximab's main killing mechanism is antibody-dependent cellular cytotoxicity (ADCC). During ADCC, rituximab's fragment antigen binding (Fab) region binds to the CD20 antigen on the tumor cell and its fragment crystallizable (Fc) region binds to the Fc receptor (FcR) on the natural killer (NK) cells. In this study, two types of molecular interactions (CD20-rituximab, FcR-rituximab) involved in ADCC were measured simultaneously on cells prepared from biopsy specimens of lymphoma patients by utilizing atomic force microscopy (AFM) with functionalized tips carrying rituximab. NK cells were detected by specific NKp46 fluorescent labeling and tumor cells were detected by specific ROR1 fluorescent labeling. Based on the fluorescence recognition, the binding affinity and distribution of FcRs on NK cells, and CD20 on tumor cells, were quantitatively measured and mapped. The binding affinity and distribution of FcRs (on NK cells) and CD20 (on tumor cells) were associated with rituximab clinical efficacy. The experimental results provide a new approach to simultaneously quantify the multiple types of molecular interactions involved in rituximab ADCC mechanism on patient biopsy cells, which is of potential clinical significance to predict rituximab efficacy for personalized medicine. PMID:25117605

  15. Charging C60 islands with the AFM tip.

    PubMed

    Hoff, Brice; Henry, Claude R; Barth, Clemens

    2016-01-01

    We show that electrons can be transferred on demand from an AFM tip into single bulk-like C60 islands, which are supported on the insulating NaCl(001) surface. We exemplify this by controlled charge-manipulation experiments conducted in ultrahigh vacuum by noncontact AFM (nc-AFM), electrostatic force microscopy (EFM) and Kelvin probe force microscopy (KPFM). KPFM shows a homogeneous contrast at the islands, which is a signature for an equal distribution of the electrons in the T1u band. The charge dissipates during half a day due to an interaction of the charged C60 islands with defects in the near surface region of NaCl. Our results open the perspective in photo-voltaics to study charge attachment, stability and charge exchange with the environment of any C60 bulk-like system. PMID:26617348

  16. Charging C60 islands with the AFM tip

    NASA Astrophysics Data System (ADS)

    Hoff, Brice; Henry, Claude R.; Barth, Clemens

    2015-12-01

    We show that electrons can be transferred on demand from an AFM tip into single bulk-like C60 islands, which are supported on the insulating NaCl(001) surface. We exemplify this by controlled charge-manipulation experiments conducted in ultrahigh vacuum by noncontact AFM (nc-AFM), electrostatic force microscopy (EFM) and Kelvin probe force microscopy (KPFM). KPFM shows a homogeneous contrast at the islands, which is a signature for an equal distribution of the electrons in the T1u band. The charge dissipates during half a day due to an interaction of the charged C60 islands with defects in the near surface region of NaCl. Our results open the perspective in photo-voltaics to study charge attachment, stability and charge exchange with the environment of any C60 bulk-like system.We show that electrons can be transferred on demand from an AFM tip into single bulk-like C60 islands, which are supported on the insulating NaCl(001) surface. We exemplify this by controlled charge-manipulation experiments conducted in ultrahigh vacuum by noncontact AFM (nc-AFM), electrostatic force microscopy (EFM) and Kelvin probe force microscopy (KPFM). KPFM shows a homogeneous contrast at the islands, which is a signature for an equal distribution of the electrons in the T1u band. The charge dissipates during half a day due to an interaction of the charged C60 islands with defects in the near surface region of NaCl. Our results open the perspective in photo-voltaics to study charge attachment, stability and charge exchange with the environment of any C60 bulk-like system. Electronic supplementary information (ESI) available. See DOI: 10.1039/C5NR04541J

  17. Imaging resolution of AFM with probes modified with FIB.

    PubMed

    Skibinski, J; Rebis, J; Wejrzanowski, T; Rozniatowski, K; Pressard, K; Kurzydlowski, K J

    2014-11-01

    This study concerns imaging of the structure of materials using AFM tapping (TM) and phase imaging (PI) mode, using probes modified with focused ion beam (FIB). Three kinds of modifications were applied - thinning of the cantilever, sharpening of the tip and combination of these two modifications. Probes shaped in that way were used for AFM investigations with Bruker AFM Nanoscope 8. As a testing material, titanium roughness standard supplied by Bruker was used. The results show that performed modifications influence the oscillation of the probes. In particular thinning of the cantilever enables one to acquire higher self-resonant frequencies, which can be advantageous for improving the quality of imaging in PI mode. It was found that sharpening the tip improves imaging resolution in tapping mode, which is consistent with existing knowledge, but lowered the quality of high frequency topography images. In this paper the Finite Element Method (FEM) was used to explain the results obtained experimentally. PMID:25080273

  18. Single ricin detection by AFM chemomechanical mapping

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This research reports a method of detecting ricin molecules immobilized on chemically modified gold (Au;111) surface by chemomechanically mapping the molecular interactions with a chemically modified Atomic Force Microscope (AFM) tip. AFM images resolved the different fold-up conformations of single...

  19. Fracture Growth Testing of Titanium 6AL-4V in AF-M315E

    NASA Technical Reports Server (NTRS)

    Sampson, Jeffrey W.; Martinez, Jonathan; McLean, Christopher

    2015-01-01

    The Green Propellant Infusion Mission (GPIM) will demonstrate the performance of AF-M315E monopropellant in orbit. Flight certification requires a safe-life analysis of the titanium alloy fuel tank to ensure inherent flaws will not cause failure during the design life. Material property inputs for this analysis require testing to determine the stress intensity factor for environmentally-assisted cracking (K (sub EAC)) of Ti 6Al-4V in combination with the AF-M315E monopropellant. Testing of single-edge notched specimens SE(B) representing the bulk tank membrane and weld material were performed in accordance with ASTM E1681. Specimens with fatigue pre-cracks were loaded into test fixtures so that the crack tips were exposed to the monopropellant at 50 degrees Centigrade for a duration of 1,000 hours. Specimens that did not fail during exposure were opened to inspect the crack surfaces for evidence of crack growth. The threshold stress intensity value, KEAC, is the highest applied stress intensity that produced neither a failure of the specimen during the exposure nor showed evidence of crack growth. The threshold stress intensity factor of the Ti 6Al-4V forged tank material when exposed to AF-M315E monopropellant was found to be at least 22.0 kilopounds per square inch. The stress intensity factor of the weld material was at least 31.3 kilopounds per square inch.

  20. Tumor suppressor protein SMAR1 modulates the roughness of cell surface: combined AFM and SEM study

    PubMed Central

    2009-01-01

    Background Imaging tools such as scanning electron microscope (SEM) and atomic force microscope (AFM) can be used to produce high-resolution topographic images of biomedical specimens and hence are well suited for imaging alterations in cell morphology. We have studied the correlation of SMAR1 expression with cell surface smoothness in cell lines as well as in different grades of human breast cancer and mouse tumor sections. Methods We validated knockdown and overexpression of SMAR1 using RT-PCR as well as Western blotting in human embryonic kidney (HEK) 293, human breast cancer (MCF-7) and mouse melanoma (B16F1) cell lines. The samples were then processed for cell surface roughness studies using atomic force microscopy (AFM) and scanning electron microscopy (SEM). The same samples were used for microarray analysis as well. Tumors sections from control and SMAR1 treated mice as well as tissues sections from different grades of human breast cancer on poly L-lysine coated slides were used for AFM and SEM studies. Results Tumor sections from mice injected with melanoma cells showed pronounced surface roughness. In contrast, tumor sections obtained from nude mice that were first injected with melanoma cells followed by repeated injections of SMAR1-P44 peptide, exhibited relatively smoother surface profile. Interestingly, human breast cancer tissue sections that showed reduced SMAR1 expression exhibited increased surface roughness compared to the adjacent normal breast tissue. Our AFM data establishes that treatment of cells with SMAR1-P44 results into increase in cytoskeletal volume that is supported by comparative gene expression data showing an increase in the expression of specific cytoskeletal proteins compared to the control cells. Altogether, these findings indicate that tumor suppressor function of SMAR1 might be exhibited through smoothening of cell surface by regulating expression of cell surface proteins. Conclusion Tumor suppressor protein SMAR1 might be

  1. EEMD based pitch evaluation method for accurate grating measurement by AFM

    NASA Astrophysics Data System (ADS)

    Li, Changsheng; Yang, Shuming; Wang, Chenying; Jiang, Zhuangde

    2016-09-01

    The pitch measurement and AFM calibration precision are significantly influenced by the grating pitch evaluation method. This paper presents the ensemble empirical mode decomposition (EEMD) based pitch evaluation method to relieve the accuracy deterioration caused by high and low frequency components of scanning profile during pitch evaluation. The simulation analysis shows that the application of EEMD can improve the pitch accuracy of the FFT-FT algorithm. The pitch error is small when the iteration number of the FFT-FT algorithms was 8. The AFM measurement of the 500 nm-pitch one-dimensional grating shows that the EEMD based pitch evaluation method could improve the pitch precision, especially the grating line position precision, and greatly expand the applicability of the gravity center algorithm when particles and impression marks were distributed on the sample surface. The measurement indicates that the nonlinearity was stable, and the nonlinearity of x axis and forward scanning was much smaller than their counterpart. Finally, a detailed pitch measurement uncertainty evaluation model suitable for commercial AFMs was demonstrated and a pitch uncertainty in the sub-nanometer range was achieved. The pitch uncertainty was reduced about 10% by EEMD.

  2. AFM CHARACTERIZATION OF LASER INDUCED DAMAGE ON CDZNTE CRYSTAL SURFACES

    SciTech Connect

    Hawkins, S; Lucile Teague, L; Martine Duff, M; Eliel Villa-Aleman, E

    2008-06-10

    Semi-conducting CdZnTe (or CZT) crystals can be used in a variety of detector-type applications. CZT shows great promise for use as a gamma radiation spectrometer. However, its performance is adversely affected by point defects, structural and compositional heterogeneities within the crystals, such as twinning, pipes, grain boundaries (polycrystallinity), secondary phases and in some cases, damage caused by external forces. One example is damage that occurs during characterization of the surface by a laser during Raman spectroscopy. Even minimal laser power can cause Te enriched areas on the surface to appear. The Raman spectra resulting from measurements at moderate intensity laser power show large increases in peak intensity that is attributed to Te. Atomic Force Microscopy (AFM) was used to characterize the extent of damage to the CZT crystal surface following exposure to the Raman laser. AFM data reveal localized surface damage in the areas exposed to the Raman laser beam. The degree of surface damage to the crystal is dependent on the laser power, with the most observable damage occurring at high laser power. Moreover, intensity increases in the Te peaks of the Raman spectra are observed even at low laser power with little to no visible damage observed by AFM. AFM results also suggest that exposure to the same amount of laser power yields different amounts of surface damage depending on whether the exposed surface is the Te terminating face or the Cd terminating face of CZT.

  3. ezAFM: A low cost Atomic Force Microscope(AFM)

    NASA Astrophysics Data System (ADS)

    Celik, Umit; Celik, Kubra; Aslan, Husnu; Kehribar, Ihsan; Dede, Munir; Ozgur Ozer, H.; Oral, Ahmet

    2012-02-01

    A low cost AFM, ezAFM is developed for educational purposes as well as research. Optical beam deflection method is used to measure the deflection of cantilever. ezAFM scanner is built using voice coil motors (VCM) with ˜50x50x6 μm scan area. The microscope uses alignment free cantilevers, which minimizes setup times. FPGA based AFM feedback Control electronics is developed. FPGA technology allows us to drive all peripherals in parallel. ezAFM Controller is connected to PC by USB 2.0 interface as well as Wi-Fi. We have achieved <5nm lateral and ˜0.01nm vertical resolution. ezAFM can image single atomic steps in HOPG and mica. An optical microscope with <3 μm resolution is also integrated into the system. ezAFM supports different AFM operation modes such as dynamic mode, contact mode, lateral force microscopy. Advanced modes like magnetic force microscopy and electric force microscopy will be implemented later on. The new ezAFM system provides, short learning times for student labs, quick setup and easy to transport for portable applications with the best price/performance ratio. The cost of the system starts from 15,000, with system performance comparable with the traditional AFM systems.

  4. 3D Color Digital Elevation Map of AFM Sample

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This color image is a three dimensional (3D) view of a digital elevation map of a sample collected by NASA's Phoenix Mars Lander's Atomic Force Microscope (AFM).

    The image shows four round pits, only 5 microns in depth, that were micromachined into the silicon substrate, which is the background plane shown in red. This image has been processed to reflect the levelness of the substrate.

    A Martian particle only one micrometer, or one millionth of a meter, across is held in the upper left pit.

    The rounded particle shown at the highest magnification ever seen from another world is a particle of the dust that cloaks Mars. Such dust particles color the Martian sky pink, feed storms that regularly envelop the planet and produce Mars' distinctive red soil.

    The particle was part of a sample informally called 'Sorceress' delivered to the AFM on the 38th Martian day, or sol, of the mission (July 2, 2008). The AFM is part of Phoenix's microscopic station called MECA, or the Microscopy, Electrochemistry, and Conductivity Analyzer.

    The AFM was developed by a Swiss-led consortium, with Imperial College London producing the silicon substrate that holds sampled particles.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  5. Structural investigations on native collagen type I fibrils using AFM

    SciTech Connect

    Strasser, Stefan; Zink, Albert; Janko, Marek; Heckl, Wolfgang M.; Thalhammer, Stefan . E-mail: stefan.thalhammer@gsf.de

    2007-03-02

    This study was carried out to determine the elastic properties of single collagen type I fibrils with the use of atomic force microscopy (AFM). Native collagen fibrils were formed by self-assembly in vitro characterized with the AFM. To confirm the inner assembly of the collagen fibrils, the AFM was used as a microdissection tool. Native collagen type I fibrils were dissected and the inner core uncovered. To determine the elastic properties of collagen fibrils the tip of the AFM was used as a nanoindentor by recording force-displacement curves. Measurements were done on the outer shell and in the core of the fibril. The structural investigations revealed the banding of the shell also in the core of native collagen fibrils. Nanoindentation experiments showed the same Young's modulus on the shell as well as in the core of the investigated native collagen fibrils. In addition, the measurements indicate a higher adhesion in the core of the collagen fibrils compared to the shell.

  6. Conductive supports for combined AFM SECM on biological membranes

    NASA Astrophysics Data System (ADS)

    Frederix, Patrick L. T. M.; Bosshart, Patrick D.; Akiyama, Terunobu; Chami, Mohamed; Gullo, Maurizio R.; Blackstock, Jason J.; Dooleweerdt, Karin; de Rooij, Nico F.; Staufer, Urs; Engel, Andreas

    2008-09-01

    Four different conductive supports are analysed regarding their suitability for combined atomic force and scanning electrochemical microscopy (AFM-SECM) on biological membranes. Highly oriented pyrolytic graphite (HOPG), MoS2, template stripped gold, and template stripped platinum are compared as supports for high resolution imaging of reconstituted membrane proteins or native membranes, and as electrodes for transferring electrons from or to a redox molecule. We demonstrate that high resolution topographs of the bacterial outer membrane protein F can be recorded by contact mode AFM on all four supports. Electrochemical feedback experiments with conductive cantilevers that feature nanometre-scale electrodes showed fast re-oxidation of the redox couple Ru(NH3)63+/2+ with the two metal supports after prolonged immersion in electrolyte. In contrast, the re-oxidation rates decayed quickly to unpractical levels with HOPG or MoS2 under physiological conditions. On HOPG we observed heterogeneity in the re-oxidation rate of the redox molecules with higher feedback currents at step edges. The latter results demonstrate the capability of conductive cantilevers with small electrodes to measure minor variations in an SECM signal and to relate them to nanometre-scale features in a simultaneously recorded AFM topography. Rapid decay of re-oxidation rate and surface heterogeneity make HOPG or MoS2 less attractive for combined AFM-SECM experiments on biological membranes than template stripped gold or platinum supports.

  7. Dielectric charging by AFM in tip-to-sample space mode: overview and challenges in revealing the appropriate mechanisms.

    PubMed

    Makasheva, K; Villeneuve-Faure, C; Laurent, C; Despax, B; Boudou, L; Teyssedre, G

    2015-07-24

    The study of charge distribution on the surface and in the bulk of dielectrics is of great scientific interest because of the information gained on the storage and transport properties of the medium. Nevertheless, the processes at the nanoscale level remain out of the scope of the commonly used diagnostic methods. Atomic force microscopy (AFM) is currently applied for both injection and imaging of charges on dielectric thin films at the nanoscale level to answer the increasing demand for characterization of miniaturized components used in microelectronics, telecommunications, electrophotography, electrets, etc. However, the mechanisms for dielectric charging by AFM are not well documented, and an analysis of the literature shows that inappropriate mechanisms are sometimes presented. It is shown here that corona discharge, frequently pointed out as a likely mechanism for dielectric charging by AFM in tip-to-sample space mode, cannot develop in such small distances. Furthermore, a review of different mechanisms surmised to be at the origin of dielectric charging at the nanoscale level is offered. Field electron emission enhanced by thermionic emission is identified as a likely mechanism for dielectric charging at the nanoscale level. Experimental validation of this mechanism is obtained for typical electric field strengths in AFM. PMID:26133237

  8. Dielectric charging by AFM in tip-to-sample space mode: overview and challenges in revealing the appropriate mechanisms

    NASA Astrophysics Data System (ADS)

    Makasheva, K.; Villeneuve-Faure, C.; Laurent, C.; Despax, B.; Boudou, L.; Teyssedre, G.

    2015-07-01

    The study of charge distribution on the surface and in the bulk of dielectrics is of great scientific interest because of the information gained on the storage and transport properties of the medium. Nevertheless, the processes at the nanoscale level remain out of the scope of the commonly used diagnostic methods. Atomic force microscopy (AFM) is currently applied for both injection and imaging of charges on dielectric thin films at the nanoscale level to answer the increasing demand for characterization of miniaturized components used in microelectronics, telecommunications, electrophotography, electrets, etc. However, the mechanisms for dielectric charging by AFM are not well documented, and an analysis of the literature shows that inappropriate mechanisms are sometimes presented. It is shown here that corona discharge, frequently pointed out as a likely mechanism for dielectric charging by AFM in tip-to-sample space mode, cannot develop in such small distances. Furthermore, a review of different mechanisms surmised to be at the origin of dielectric charging at the nanoscale level is offered. Field electron emission enhanced by thermionic emission is identified as a likely mechanism for dielectric charging at the nanoscale level. Experimental validation of this mechanism is obtained for typical electric field strengths in AFM.

  9. Novel Polymer Linkers for Single Molecule AFM Force Spectroscopy

    PubMed Central

    Tong, Zenghan; Mikheikin, Andrey; Krasnoslobodtsev, Alexey; Lv, Zhengjian; Lyubchenko, Yuri L.

    2013-01-01

    Flexible polymer linkers play an important role in various imaging and probing techniques that require surface immobilization, including atomic force microscopy (AFM). In AFM force spectroscopy, polymer linkers are necessary for the covalent attachment of molecules of interest to the AFM tip and the surface. The polymer linkers tether the molecules and provide their proper orientation in probing experiments. Additionally, the linkers separate specific interactions from nonspecific short-range adhesion and serve as a reference point for the quantitative analysis of single molecule probing events. In this report, we present our results on the synthesis and testing of a novel polymer linker and the identification of a number of potential applications for its use in AFM force spectroscopy experiments. The synthesis of the linker is based on the well-developed phosphoramidate (PA) chemistry that allows the routine synthesis of linkers with predetermined lengths and PA composition. These linkers are homogeneous in length and can be terminated with various functional groups. PA linkers with different functional groups were synthesized and tested in experimental systems utilizing different immobilization chemistries. We probed interactions between complementary DNA oligonucleotides; DNA and protein complexes formed by the site-specific binding protein SfiI; and interactions between amyloid peptide (Aβ42). The results of the AFM force spectroscopy experiments validated the feasibility of the proposed approach for the linker design and synthesis. Furthermore, the properties of the tether (length, functional groups) can be adjusted to meet the specific requirements for different force spectroscopy experiments and system characteristics, suggesting that it could be used for a large number of various applications. PMID:23624104

  10. Determination of the aflatoxin M1 (AFM1) from milk by direct analysis in real time - mass spectrometry (DART-MS)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Certain fungi that grow on crops can produce aflatoxins, which are highly carcinogenic. One of these, aflatoxin B1 can be metabolized by mammals to aflatoxin M1, a form that retains potent carcinogenicity and which can be excreted into milk. Direct analysis in real time (DART) ionization coupled to ...

  11. High speed AFM studies of 193 nm immersion photoresists during TMAH development

    NASA Astrophysics Data System (ADS)

    Ngunjiri, Johnpeter; Meyers, Greg; Cameron, Jim; Suzuki, Yasuhiro; Jeon, Hyun; Lee, Dave; Choi, Kwang Mo; Kim, Jung Woo; Im, Kwang-Hwyi; Lim, Hae-Jin

    2016-03-01

    In this paper we report on our studies of the dynamic process of resist development in real time. Using High Speed - Atomic Force Microscopy (HS-AFM) in dilute developer solution, changes in morphology and nanomechanical properties of patterned resist were monitored. The Bruker Dimension FastScan AFMTM was applied to analyze 193 nm acrylic-based immersion resists in developer. HS-AFM operated in Peak Force mapping mode allowed for concurrent measurements of image topography resist stiffness, adhesion to AFM probe and deformation during development. In our studies we focused on HS-AFM topography data as it readily revealed detailed information about initial resist morphology, followed by a resist swelling process and eventual dissolution of the exposed resist areas. HS-AFM showed potential for tracking and understanding development of patterned resist films and can be useful in evaluating the dissolution properties of different resist designs.

  12. Nano Mechanical Machining Using AFM Probe

    NASA Astrophysics Data System (ADS)

    Mostofa, Md. Golam

    Complex miniaturized components with high form accuracy will play key roles in the future development of many products, as they provide portability, disposability, lower material consumption in production, low power consumption during operation, lower sample requirements for testing, and higher heat transfer due to their very high surface-to-volume ratio. Given the high market demand for such micro and nano featured components, different manufacturing methods have been developed for their fabrication. Some of the common technologies in micro/nano fabrication are photolithography, electron beam lithography, X-ray lithography and other semiconductor processing techniques. Although these methods are capable of fabricating micro/nano structures with a resolution of less than a few nanometers, some of the shortcomings associated with these methods, such as high production costs for customized products, limited material choices, necessitate the development of other fabricating techniques. Micro/nano mechanical machining, such an atomic force microscope (AFM) probe based nano fabrication, has, therefore, been used to overcome some the major restrictions of the traditional processes. This technique removes material from the workpiece by engaging micro/nano size cutting tool (i.e. AFM probe) and is applicable on a wider range of materials compared to the photolithographic process. In spite of the unique benefits of nano mechanical machining, there are also some challenges with this technique, since the scale is reduced, such as size effects, burr formations, chip adhesions, fragility of tools and tool wear. Moreover, AFM based machining does not have any rotational movement, which makes fabrication of 3D features more difficult. Thus, vibration-assisted machining is introduced into AFM probe based nano mechanical machining to overcome the limitations associated with the conventional AFM probe based scratching method. Vibration-assisted machining reduced the cutting forces

  13. Resveratrol Protects Chondrocytes from Apoptosis via Altering the Ultrastructural and Biomechanical Properties: An AFM Study

    PubMed Central

    Chen, Tongsheng; Wang, Xiaoping

    2014-01-01

    Osteoarthritis (OA), a degenerative joint disease with high prevalence among older people, occurs from molecular or nanometer level and extends gradually to higher degrees of the ultrastructure of cartilage, finally resulting in irreversible structural and functional damages. This report aims to use atomic force microscopy (AFM) to investigate the protective effects of resveratrol (RV), a drug with good anti-inflammatory properties, on cellular morphology, membrane architecture, cytoskeleton, cell surface adhesion and stiffness at nanometer level in sodium nitroprusside (SNP)-induced apoptotic chondrocytes, a typical cellular OA model. CCK-8 assay showed that 100 μM RV significantly prevented SNP-induced cytotoxicity. AFM imaging and quantitative analysis showed that SNP potently induced chondrocytes changes including shrunk, round, lamellipodia contraction and decrease in adherent junctions among cells, as well as the destruction of biomechanics: 90% decrease in elasticity and 30% decrease in adhesion. In addition, confocal imaging analysis showed that SNP induced aggregation of the cytoskeleton and decrease in the expression of cytoskeletal proteins. More importantly, these SNP-induced damages to chondrocytes could be potently prevented by RV pretreatment. Interestingly, the biomechanical changes occurred before morphological changes could be clearly observed during SNP-induced apoptosis, indicating that the biomechanics of cellular membrane may be a more robust indicator of cell function. Collectively, our data demonstrate that RV prevents SNP-induced apoptosis of chondrocytes by regulating actin organization, and that AFM-based technology can be developed into a powerful and sensitive method to study the interaction mechanisms between chondrocytes and drugs. PMID:24632762

  14. LET Spectrum Measurements In CR-39 PNTD With AFM

    NASA Astrophysics Data System (ADS)

    Johnson, C. E.; DeWitt, J. M.; Benton, E. R.; Yasuda, N.; Benton, E. V.

    2011-06-01

    Energetic protons, neutrons, and heavy ions undergoing collisions with target nuclei of varying Z can produce residual heavy recoil fragments via intra-nuclear cascade/evaporation reactions. The particles produced in these non-elastic collisions generally have such extremely short range (˜<10 μm) that they cannot be directly observed by conventional detection methods including CR-39 plastic nuclear track detector (PNTD) that has been chemically etched for analysis by standard visible light microscopy. However, high-LET recoil fragments having range on the order of several cell diameters can be produced in tissue during radiotherapy using proton and carbon beams. We have developed a method to analyze short-range, high-LET tracks in CR-39 plastic nuclear track detector (PNTD) using short duration chemical etching (˜<1 μm) following by automated atomic force microscope (AFM) scanning. The post-scan data processing used in this work was based on semi-automated matrix analysis opposed to traditional grey-scale image analysis. This method takes advantage of the 3-D data obtained via AFM to achieve robust discrimination of nuclear tracks from other features inherently present in the post-etch detector surface. Through automation of AFM scanning, sufficient AFM scan frames were obtained to attain an LET spectrum spanning the LET range from 200-1500 keV/μm. In addition to our experiments, simulations were carried out with the Monte Carlo transport code, FLUKA. To demonstrate this method, CR-39 PNTD was exposed to the proton therapy beam at Loma Linda University Medical Center (LLUMC) at 60 and 230 MeV. Additionally, detectors were exposed to 1 GeV protons at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL). For these exposures CR-39 PNTD, Al and Cu target foils were used between detector layers.

  15. LET Spectrum Measurements In CR-39 PNTD With AFM

    SciTech Connect

    Johnson, C. E.; DeWitt, J. M.; Benton, E. R.; Yasuda, N.; Benton, E. V.

    2011-06-01

    Energetic protons, neutrons, and heavy ions undergoing collisions with target nuclei of varying Z can produce residual heavy recoil fragments via intra-nuclear cascade/evaporation reactions. The particles produced in these non-elastic collisions generally have such extremely short range ({approx}<10 {mu}m) that they cannot be directly observed by conventional detection methods including CR-39 plastic nuclear track detector (PNTD) that has been chemically etched for analysis by standard visible light microscopy. However, high-LET recoil fragments having range on the order of several cell diameters can be produced in tissue during radiotherapy using proton and carbon beams. We have developed a method to analyze short-range, high-LET tracks in CR-39 plastic nuclear track detector (PNTD) using short duration chemical etching ({approx}<1 {mu}m) following by automated atomic force microscope (AFM) scanning. The post-scan data processing used in this work was based on semi-automated matrix analysis opposed to traditional grey-scale image analysis. This method takes advantage of the 3-D data obtained via AFM to achieve robust discrimination of nuclear tracks from other features inherently present in the post-etch detector surface. Through automation of AFM scanning, sufficient AFM scan frames were obtained to attain an LET spectrum spanning the LET range from 200-1500 keV/{mu}m. In addition to our experiments, simulations were carried out with the Monte Carlo transport code, FLUKA. To demonstrate this method, CR-39 PNTD was exposed to the proton therapy beam at Loma Linda University Medical Center (LLUMC) at 60 and 230 MeV. Additionally, detectors were exposed to 1 GeV protons at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL). For these exposures CR-39 PNTD, Al and Cu target foils were used between detector layers.

  16. LET spectrum measurements in Cr-39 PNTD with AFM

    SciTech Connect

    Johnson, Carl Edward; De Witt, Joel M; Benton, Eric R; Yasuda, Nakahiro; Benton, Eugene V

    2010-01-01

    Energetic protons, neutrons, and heavy ions undergoing collisions with target nuclei of varying Z can produce residual heavy recoil fragments via intra-nuclear cascade/evaporation reactions. The particles produced in these non-elastic collisions generally have such extremely short range ({approx}< 10 {mu}m) that they cannot be directly observed by conventional detection methods including CR-39 plastic nuclear track detector (PNTD) that has been chemically etched for analysis by standard visible light microscopy. However, high-LET recoil fragments having range on the order of several cell diameters can be produced in tissue during radiotherapy using proton and carbon beams. We have developed a method to analyze short-range, high-LET tracks in CR-39 plastic nuclear track detector (PNTD) using short duration chemical etching ({approx}< 1 {mu}m) followed by automated atomic force microscope (AFM) scanning. The post-scan data processing used in this work was based on semi-automated matrix analysis opposed to traditional grey-scale image analysis. This method takes advantage of the 3-D data obtained via AFM to achieve robust discrimination of nuclear tracks from other features. Through automation of AFM scanning, sufficient AFM scan frames were obtained to attain an LET spectrum spanning the LET range from 200-1500 keV/{mu}m. In addition to our experiments, simulations were carried out with the Monte Carlo transport code, FLUKA. To demonstrate this method, CR-39 PNTD was exposed to the proton therapy beam at Loma Linda University Medical Center (LLUMC) at 60 and 230 MeV. Additionally, detectors were exposed to I GeV protons at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL). For these exposures CR-39 PNTD, Al and Cu target foils were used between detector layers.

  17. Wedged AFM-cantilevers for parallel plate cell mechanics.

    PubMed

    Stewart, Martin P; Hodel, Adrian W; Spielhofer, Andreas; Cattin, Cedric J; Müller, Daniel J; Helenius, Jonne

    2013-04-01

    The combination of atomic force microscopy (AFM) and optical microscopy has gained popularity for mechanical analysis of living cells. In particular, recent AFM-based assays featuring tipless cantilevers and whole-cell deformation have yielded insights into cellular function, structure, and dynamics. However, in these assays the standard ≈10° tilt of the cantilever prevents uniaxial loading, which complicates assessment of cellular geometry and can cause cell sliding or loss of loosely adherent cells. Here, we describe an approach to modify tipless cantilevers with wedges and, thereby, achieve proper parallel plate mechanics. We provide guidance on material selection, the wedge production process, property and geometry assessment, and the calibration of wedged cantilevers. Furthermore, we demonstrate their ability to simplify the assessment of cell shape, prevent lateral displacement of round cells during compression, and improve the assessment of cell mechanical properties. PMID:23473778

  18. Hydration states of AFm cement phases

    SciTech Connect

    Baquerizo, Luis G.; Matschei, Thomas; Scrivener, Karen L.; Saeidpour, Mahsa; Wadsö, Lars

    2015-07-15

    The AFm phase, one of the main products formed during the hydration of Portland and calcium aluminate cement based systems, belongs to the layered double hydrate (LDH) family having positively charged layers and water plus charge-balancing anions in the interlayer. It is known that these phases present different hydration states (i.e. varying water content) depending on the relative humidity (RH), temperature and anion type, which might be linked to volume changes (swelling and shrinkage). Unfortunately the stability conditions of these phases are insufficiently reported. This paper presents novel experimental results on the different hydration states of the most important AFm phases: monocarboaluminate, hemicarboaluminate, strätlingite, hydroxy-AFm and monosulfoaluminate, and the thermodynamic properties associated with changes in their water content during absorption/desorption. This data opens the possibility to model the response of cementitious systems during drying and wetting and to engineer systems more resistant to harsh external conditions.

  19. An Evaluation of the Impacts of AF-M315E Propulsion Systems for Varied Mission Applications

    NASA Technical Reports Server (NTRS)

    Deans, Matthew C.; Oleson, Steven R.; Fittje, James; Colozza, Anthony; Packard, Tom; Gyekenyesi, John; McLean, Christopher H.; Spores, Ronald A.

    2015-01-01

    The purpose of the AF-M315E COMPASS study is to identify near-term (3-5 years) and long term (5 years +) opportunities for infusion, specifically the thruster and associated component technologies being developed as part of the GPIM project. Develop design reference missions which show the advantages of the AF-M315E green propulsion system. Utilize a combination of past COMPASS designs and selected new designs to demonstrate AF-M315E advantages. Use the COMPASS process to show the puts and takes of using AF-M315E at the integrated system level.

  20. AFM study of polymer lubricants on hard disk surfaces

    NASA Astrophysics Data System (ADS)

    Bao, G. W.; Troemel, M.; Li, S. F. Y.

    Thin liquid films of PFPE (perfluoropolyether) lubricants dip-coated on hard disk surfaces were imaged with non-contact mode AFM. Demnum lubricants with phosphazene additives exhibited strong interactions with a silicon tip due to the formation of liquid bridges between the lubricants and the tip, as indicated by a remarkable hysteresis loop between approach and retraction curves in force vs. distance measurements. Features resulting from capillary forces due to tip tapping to the lubricants were revealed, which demonstrated that the capillary forces could be used to lock the non-contacting tip at a certain separation from the substrate surface to obtain AFM images. Force vs. distance curves for Fomblin Z-dol lubricants showed negligible hysteresis effects and features corresponding to lateral distortion of the tip by the lubricants only were observed. In both cases, only when the tip was positioned far above the surfaces could the natural distributions of the lubricants be imaged.

  1. Network Analysis Shows Novel Molecular Mechanisms of Action for Copper-Based Chemotherapy

    PubMed Central

    Espinal-Enríquez, Jesús; Hernández-Lemus, Enrique; Mejía, Carmen; Ruiz-Azuara, Lena

    2016-01-01

    The understanding of the mechanisms associated with the action of chemotherapeutic agents is fundamental to assess and account for possible side-effects of such treatments. Casiopeínas have demonstrated a cytotoxic effect by activation of pro-apoptotic processes in malignant cells. Such processes have been proved to activate the apoptotic intrinsic route, as well as cell cycle arrest. Despite this knowledge, the whole mechanism of action of Casiopeínas is yet to be completely understood. In this work we implement a systems biology approach based on two pathway analysis tools (Over-Representation Analysis and Causal Network Analysis) to observe changes in some hallmarks of cancer, induced by this copper-based chemotherapeutic agent in HeLa cell lines. We find that the metabolism of metal ions is exacerbated, as well as cell division processes being globally diminished. We also show that cellular migration and proliferation events are decreased. Moreover, the molecular mechanisms of liver protection are increased in the cell cultures under the actions of Casiopeínas, unlike the case in many other cytotoxic drugs. We argue that this chemotherapeutic agent may be promising, given its protective hepatic function, concomitant with its cytotoxic participation in the onset of apoptotic processes in malignant cells. PMID:26793116

  2. Meta-analysis of aspirin use and risk of lung cancer shows notable results.

    PubMed

    Hochmuth, Friederike; Jochem, Maximilian; Schlattmann, Peter

    2016-07-01

    Aspirin is a promising agent for chemoprevention of lung cancer. We assessed the association of aspirin use and the development of lung cancer, with a focus on heterogeneity between studies. Databases were searched for relevant studies until September 2014. Studies evaluating the relationship of aspirin use and incidence of lung cancer were considered. Relative risks (RR) were extracted and a pooled estimate was calculated. Heterogeneity was assessed by the I measure, random-effects models, and finite-mixture models. Sources of heterogeneity were investigated using a meta-regression. A decreased risk of lung cancer was found including 20 studies [RR=0.87, 95% confidence interval (CI): 0.79-0.95] on the basis of a random-effects model. Strong heterogeneity was observed (τ=0.0258, I=74.4%). As a result, two subpopulations of studies were identified on the basis of a mixture model. The first subpopulation (42%) has an average RR of 0.64. The remaining subpopulation (58%) shows an RR of 1.04. Different results were found for case-control (RR=0.74, 95% CI: 0.60-0.90) and cohort studies (RR=0.99, 95% CI: 0.93-1.06) in a stratified analysis. In a subgroup analysis, use of aspirin was associated with a decreased risk of non-small-cell lung cancer in case-control studies (RR=0.74; 95% CI: 0.58-0.94). At first glance, our meta-analysis shows an average protective effect. A second glance indicates that there is strong heterogeneity. This leads to a subpopulation with considerable benefit and another subpopulation with no benefit. For further investigations, it is important to identify populations that benefit from aspirin use. PMID:26067033

  3. Transcriptional and functional analysis shows sodium houttuyfonate-mediated inhibition of autolysis in Staphylococcus aureus.

    PubMed

    Liu, Guoxing; Xiang, Hua; Tang, Xudong; Zhang, Kaiyu; Wu, Xiuping; Wang, Xuelin; Guo, Na; Feng, Haihua; Wang, Guangming; Liu, Lihui; Shi, Qiyun; Shen, Fengge; Xing, Mingxun; Yuan, Peng; Liu, Mingyuan; Yu, Lu

    2011-01-01

    Sodium houttuyfonate (SH), an addition compound of sodium bisulfite and houttuynin, showed in vitro antibacterial activity against 21 Staphylococcus aureus (S. aureus) strains grown in planktonic cultures. Microarray results showed decreased levels of autolysin atl, sle1, cidA and lytN transcripts in the SH-treated strain as compared to the control strain, consistent with the induction of the autolytic repressors lrgAB and sarA and with the downregulation of the positive regulators agrA and RNAIII. Triton X-100-induced autolysis was significantly decreased by SH in S. aureus ATCC 25923, and quantitative bacteriolytic assays and zymographic analysis demonstrated SH-mediated reduction of extracellular murein hydrolase activity in these cells. Anti-biofilm assay showed that SH is poorly active against S. aureus grown in biofilm cultures, whereas SH diminished the amounts of extracellular DNA (eDNA) of S. aureus in a dose-dependent manner, which suggested that SH may impede biofilm formation by reducing the expression of cidA to inhibit autolysis and eDNA release in the early phase. Some of the microarray results were confirmed by real-time RT-PCR. PMID:22019573

  4. AFM PeakForce QNM mode: Evidencing nanometre-scale mechanical properties of chitin-silica hybrid nanocomposites.

    PubMed

    Smolyakov, G; Pruvost, S; Cardoso, L; Alonso, B; Belamie, E; Duchet-Rumeau, J

    2016-10-20

    PeakForce Quantitative Nanomechanical Mapping (QNM) AFM mode was used to explore the mechanical properties of textured chitin-silica hybrid films at the nanoscale. The influence of the force applied by the tip on the sample surface was studied for standard homogeneous samples, for chitin nanorods and for chitin-silica hybrid nanocomposites. Thick films of superimposed chitin nanorods showed a monotonous increase of DMT modulus (based on the Derjaguin-Muller-Toporov model) owing to an increase in modulus at the interface between nanorods due to geometrical constraints of the AFM acquisition. A similar variation of DMT modulus was obtained for chitin-silica hybrid thick films related to mechanical strengthening induced by the presence of silica. This work revealed the role of the organic-inorganic interface, at the nanoscale, in the mechanical behaviour of textured materials using PeakForce QNM mode, with optimized analysis conditions. PMID:27474579

  5. Conductance of AFM Deformed Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexei; Maiti, Amitesh; Anatram, M. P.; Biegel, Bryan (Technical Monitor)

    2002-01-01

    This viewgraph presentation provides information on the electrical conductivity of carbon nanotubes upon deformation by atomic force microscopy (AFM). The density of states and conductance were computed using four orbital tight-binding method with various parameterizations. Different chiralities develop bandgap that varies with chirality.

  6. Contact nanomechanical measurements with the AFM

    NASA Astrophysics Data System (ADS)

    Geisse, Nicholas

    2013-03-01

    The atomic force microscope (AFM) has found broad use in the biological sciences largely due to its ability to make measurements on unfixed and unstained samples under liquid. In addition to imaging at multiple spatial scales ranging from micro- to nanometer, AFMs are commonly used as nanomechanical probes. This is pertinent for cell biology, as it has been demonstrated that the geometrical and mechanical properties of the extracellular microenvironment are important in such processes as cancer, cardiovascular disease, muscular dystrophy, and even the control of cell life and death. Indeed, the ability to control and quantify these external geometrical and mechanical parameters arises as a key issue in the field. Because AFM can quantitatively measure the mechanical properties of various biological samples, novel insights to cell function and to cell-substrate interactions are now possible. As the application of AFM to these types of problems is widened, it is important to understand the performance envelope of the technique and its associated data analyses. This talk will discuss the important issues that must be considered when mechanical models are applied to real-world data. Examples of the effect of different model assumptions on our understanding of the measured material properties will be shown. Furthermore, specific examples of the importance of mechanical stimuli and the micromechanical environment to the structure and function of biological materials will be presented.

  7. A Batch Fabricated SECM-AFM Probe

    NASA Astrophysics Data System (ADS)

    Dobson, P. S.; Macpherson, J. V.; Holder, M.; Weaver, J. M. R.

    2003-12-01

    A scheme for the fabrication of combined Scanning Electrochemical Microscopy — Atomic Force Microscopy (SECM-AFM) probes is presented for both silicon nitride and silicon cantilevers. The advantages over exsisting methods used for their production is explained. The process flow is described and initial results from electrodeposition of silver are presented.

  8. Preliminary analysis showed country-specific gut resistome based on 1,267 feces samples.

    PubMed

    Yang, Zhenyu; Guo, Zhirong; Qiu, Chuangzhao; Li, Yinhu; Feng, Xin; Liu, Yanhong; Zhang, Yanlin; Pang, Pengyu; Wang, Ping; Zhou, Qian; Han, Lijuan; Dai, Wenkui

    2016-05-01

    Gut microbiota (GM) plays an important role in drug metabolism and absorption. Ever-increasing antibiotic use could result in high accumulation of antibiotic resistance genes (ARGs) in GM, which will reduce the recovery rate of many infectious diseases. The foci of this study is to unravel ARG distribution in GM of 1267 subjects from four countries in three continents, by annotation with ARDB (Antibiotic Resistance Genes Database) and ARG-ANNOT database. Analysis results showed that all three continents had similar ARG composition, but Chinese had the highest ARG relative abundance, followed by American and European. This is possibly attributed to delayed policies on antibiotic use in China, and restrict legislation in Europe. Delivery time and application scope are proportional to ARG enrichment in GM. Findings in this study indicate that ARG accumulation could be associated with government policies on antibiotic use, and corresponding delivery time and application scope, which will be a significant reference to control antibiotic abuse. PMID:26827794

  9. Genome-wide methylation analysis shows similar patterns in Barrett’s esophagus and esophageal adenocarcinoma

    PubMed Central

    Gu, Jian; Ajani, Jaffer; Wu, Xifeng

    2013-01-01

    Barrett’s esophagus (BE) is a precursor of esophageal adenocarcinoma (EAC). To identify novel tumor suppressors involved in esophageal carcinogenesis and potential biomarkers for the malignant progression of BE, we performed a genome-wide methylation profiling of BE and EAC tissues. Using Illumina’s Infinium HumanMethylation27 BeadChip microarray, we examined the methylation status of 27 578 CpG sites in 94 normal esophageal (NE), 77 BE and 117 EAC tissue samples. The overall methylation of CpG sites within the CpG islands was higher, but outside of the CpG islands was lower in BE and EAC tissues than in NE tissues. Hierarchical clustering analysis showed an excellent separation of NE tissues from BE and EAC tissues; however, the clustering of BE and EAC tissues was less clear, suggesting that methylation occurs early during the progression of EAC. We confirmed many previously reported hypermethylated genes and identified a large number of novel hypermethylated genes in BE and EAC tissues, particularly genes encoding ADAM (A Disintegrin And Metalloproteinase) peptidase proteins, cadherins and protocadherins, and potassium voltage-gated channels. Pathway analysis showed that a number of channel and transporter activities were enriched for hypermethylated genes. We used pyrosequencing to validate selected candidate genes and found high correlations between the array and pyrosequencing data (rho > 0.8 for each validated gene). The differentially methylated genes and pathways may provide biological insights into the development and progression of BE and become potential biomarkers for the prediction and early detection of EAC. PMID:23996928

  10. Phylogenomic analysis shows that ‘Bacillus vanillea’ is a later heterotypic synonym of Bacillus siamensis.

    PubMed

    Dunlap, Christopher A

    2015-10-01

    ‘Bacillus vanillea’ XY18 ( = CGMCC 8629 = NCCB 100507) was isolated from cured vanilla beans and involved in the formation of vanilla aroma compounds. A draft genome of this strain was assembled and yielded a length of 3.71 Mbp with a DNA G+C content of 46.3 mol%. Comparative genomic analysis with its nearest relatives showed only minor differences between this strain and the genome of the Bacillus siamensis KCTC 13613T ( = BCC 22614T = KACC 16244T), with a calculated DNA–DNA hybridization (DDH) value of 91.2 % and an average nucleotide identity (ANI) of 98.9 %. This DDH value is well above the recommended 70 % threshold for species delineation, as well as the ANI threshold of 95 %. In addition, the results of morphological, physiological, chemotaxonomic and phylogenetic analyses indicate that the type strains of these two taxa are highly similar with phenotype coherence. A core genome multi-locus sequencing analysis was conducted for the strains and the results show that ‘Bacillus vanillea’ XY18 clusters closely to the type strain of Bacillus siamensis. Therefore, it is proposed that the species ‘Bacillus vanillea’ XY18 ( = CGMCC 8629 = NCCB 100507) should be reclassified as a later heterotypic synonym of Bacillus siamensis KCTC 13613T ( = BCC 22614T = KACC 16244T). An emended description of Bacillus siamensis is provided. PMID:26296875

  11. Quantitative nano-mechanics of biological cells with AFM

    NASA Astrophysics Data System (ADS)

    Sokolov, Igor

    2013-03-01

    The importance of study of living cells is hard to overestimate. Cell mechanics is a relatively young, yet not a well-developed area. Besides just a fundamental interest, large practical need has emerged to measure cell mechanics quantitatively. Recent studies revealed a significant correlation between stiffness of biological cells and various human diseases, such as cancer, malaria, arthritis, and even aging. However, really quantitative studies of mechanics of biological cells are virtually absent. It is not even clear if the cell, being a complex and heterogeneous object, can be described by the elastic modulus at all. Atomic force microscopy (AFM) is a natural instrument to study properties of cells in their native environments. Here we will demonstrate that quantitative measurements of elastic modulus of cells with AFM are possible. Specifically, we will show that the ``cell body'' (cell without ``brush'' surface layer, a non-elastic layer surrounding cells) typically demonstrates the response of a homogeneous elastic medium up to the deformation of 10-20%, but if and only if a) the cellular brush layer is taken into account, b) rather dull AFM probes are used. This will be justified with the help of the strong condition of elastic behavior of material: the elastic modulus is shown to be independent on the indentation depth. We will also demonstrate that an attempt either to ignore the brush layer or to use sharp AFM probes will result in the violation of the strong condition, which implies impossibility to use the concept of the elastic modulus to describe cell mechanics in such experiments. Examples of quantitative measurements of the Young's modulus of the cell body and the cell brush parameters will be given for various cells. Address when submitting: Clarkson University, Potsdam, NY 13699

  12. Investigation of the Mechanoelectrical Transduction at Single Stereocilia by Afm

    NASA Astrophysics Data System (ADS)

    Langer, M. G.; Fink, S.; Löffler, K.; Koitschev, A.; Zenner, H.-P.

    2003-02-01

    The transduction of sound into an electrical signal in the inner ear is closely related to the mechanical properties of the hair bundles cytoskeleton and cross-linkage. In this study the effect of lateral cross-links on hair bundle mechanics and the transduction current response is demonstrated on the level of individual stereocilia. For experiments stereocilia of outer hair cells of postnatal rats (P3 - P8) were scanned with a sharp AFM tip at nanometerscale. Transduction currents were simultaneously recorded in the whole-cell-recording mode with patch clamp. AFM was used as a nanotool for local mechanical stimulation and force measurement at stereocilia whereas patch clamp serves as a detector for the electrical response of the cell. In a first experiment force transmission between adjacent stereocilia of the V- and W- shaped hair bundles of outer hair cells was investigated. Results showed that a force exerted to a single stereocilium declined to 36 % at the nearest adjacent stereocilium of the same row. This result supposes AFM to be convenient for local displacement of single stereocilia. For control, the local response of transduction channels was measured at single stereocilia of the same hair bundle. Measured transduction current amplitudes ranged from 9 to 49 pA supposing an opening of one to five transduction channels. Both, weak force transmission by lateral cross-links and small transduction current amplitudes indicate a weak mechanical interaction between individual stereocilia of the tallest row of stereocilia of outer hair cells from postnatal rats.

  13. Oxide nanocrystal based nanocomposites for fabricating photoplastic AFM probes.

    PubMed

    Ingrosso, Chiara; Martin-Olmos, Cristina; Llobera, Andreu; Innocenti, Claudia; Sangregorio, Claudio; Striccoli, Marinella; Agostiano, Angela; Voigt, Anja; Gruetzner, Gabi; Brugger, Jürgen; Perez-Murano, Francesc; Curri, Maria Lucia

    2011-11-01

    We report on the synthesis, characterization and application of a novel nanocomposite made of a negative tone epoxy based photoresist modified with organic-capped Fe(2)O(3) nanocrystals (NCs). The mechanical properties of the nanocomposite drastically improve upon incorporation of a suitable concentration of NCs in the polymer, without deteriorating its photolithography performance. High aspect ratio 3D microstructures made of the nanocomposite have been fabricated with a uniform surface morphology and with a resolution down to few micrometres. The embedded organic-capped Fe(2)O(3) NCs drastically increase the stiffness and hardness of the epoxy based photoresist matrix, making the final material extremely interesting for manufacturing miniaturized polymer based mechanical devices and systems. In particular, the nanocomposite has been used as structural material for fabricating photoplastic Atomic Force Microscopy (AFM) probes with integrated tips showing outstanding mechanical response and high resolution imaging performance. The fabricated probes consist of straight cantilevers with low stress-gradient and high quality factors, incorporating sharp polymeric tips. They present considerably improved performance compared to pure epoxy based photoresist AFM probes, and to commercial silicon AFM probes. PMID:21858377

  14. Transcriptome analysis shows differential gene expression in the saprotrophic to parasitic transition of Pochonia chlamydosporia.

    PubMed

    Rosso, Laura C; Finetti-Sialer, Mariella M; Hirsch, Penny R; Ciancio, Aurelio; Kerry, Brian R; Clark, Ian M

    2011-06-01

    Expression profiles were identified in the fungus Pochonia chlamydosporia, a biological control agent of plant parasitic nematodes, through a cDNA-amplified fragment length polymorphism approach. Two isolates with different host ranges, IMI 380407 and IMI 331547, were assayed in conditions of saprotrophic-to-parasitic transition, through in vitro assays. Gene expression profiles from three different nutritional conditions and four sampling times were generated, with eggs of host nematodes Globodera pallida and Meloidogyne incognita. Expression of transcripts changed in RNA fingerprints obtained under different nutritional stresses (starvation in presence/absence of eggs, or rich growth media). Transcript derived fragments (TDFs) obtained from the expression profiles corresponded to 6,800 products. A subset was sequenced and their expression profile confirmed through RT PCR. A total of 57 TDFs were selected for further analysis, based on similarities to translated or annotated sequences. Genes expressed during egg parasitism for both IMI 380407 and IMI 331547 were involved in metabolic functions, cellular signal regulation, cellular transport, regulation of gene expression, DNA repair, and other unknown functions. Multivariate analysis of TDF expression showed three groups for IMI 380407 and one for IMI 331547, each characterized by expression of genes related to eggs parasitism. Common amplification profiles among TDF clusters from both isolates also reflected a pool of constitutive genes, not affected by the nutritional conditions and nematode associations, related to general metabolic functions. The differential expression of parasitism related genes suggest a network of induced/repressed products, playing a role in fungal signaling and infection, with partial overlaps in host infection and parasitism traits. PMID:21541788

  15. Mass cytometry analysis shows that a novel memory phenotype B cell is expanded in multiple myeloma

    PubMed Central

    Hansmann, Leo; Blum, Lisa; Ju, Chia-Hsin; Liedtke, Michaela; Robinson, William H.; Davis, Mark M.

    2015-01-01

    It would be very beneficial if the status of cancers could be determined from a blood specimen. However, peripheral blood leukocytes are very heterogeneous between individuals and thus high resolution technologies are likely required. We used cytometry by time-of-flight (CyTOF) and next generation sequencing to ask whether a plasma cell cancer (multiple myeloma) and related pre-cancerous states had any consistent effect on the peripheral blood mononuclear cell phenotypes of patients. Analysis of peripheral blood samples from 13 cancer patients, 9 pre-cancer patients, and 9 healthy individuals revealed significant differences in the frequencies of the T, B, and natural killer cell compartments. Most strikingly, we identified a novel B-cell population that normally accounts for 4.0±0.7% (mean±SD) of total B cells and is up to 13-fold expanded in multiple myeloma patients with active disease. This population expressed markers previously associated with both memory (CD27+) and naïve (CD24loCD38+) phenotypes. Single-cell immunoglobulin gene sequencing showed polyclonality, indicating that these cells are not precursors to the myeloma, and somatic mutations, a characteristic of memory cells. SYK, ERK, and p38 phosphorylation responses, and the fact that most of these cells expressed isotypes other than IgM or IgD, confirmed the memory character of this population, defining it as a novel type of memory B cells. PMID:25711758

  16. Proteomic analysis of rice leaves shows the different regulations to osmotic stress and stress signals.

    PubMed

    Shu, Lie-Bo; Ding, Wei; Wu, Jin-Hong; Feng, Fang-Jun; Luo, Li-Jun; Mei, Han-Wei

    2010-11-01

    Following the idea of partial root-zone drying (PRD) in crop cultivation, the morphological and physiological responses to partial root osmotic stress (PROS) and whole root osmotic stress (WROS) were investigated in rice. WROS caused stress symptoms like leaf rolling and membrane leakage. PROS stimulated stress signals, but did not cause severe leaf damage. By proteomic analysis, a total of 58 proteins showed differential expression after one or both treatments, and functional classification of these proteins suggests that stress signals regulate photosynthesis, carbohydrate and energy metabolism. Two other proteins (anthranilate synthase and submergence-induced nickel-binding protein) were upregulated only in the PROS plants, indicating their important roles in stress resistance. Additionally, more enzymes were involved in stress defense, redox homeostasis, lignin and ethylene synthesis in WROS leaves, suggesting a more comprehensive regulatory mechanism induced by osmotic stress. This study provides new insights into the complex molecular networks within plant leaves involved in the adaptation to osmotic stress and stress signals. PMID:20977656

  17. Insight into mechanics of AFM tip-based nanomachining: bending of cantilevers and machined grooves.

    PubMed

    Al-Musawi, R S J; Brousseau, E B; Geng, Y; Borodich, F M

    2016-09-23

    Atomic force microscope (AFM) tip-based nanomachining is currently the object of intense research investigations. Values of the load applied to the tip at the free end of the AFM cantilever probe used for nanomachining are always large enough to induce plastic deformation on the specimen surface contrary to the small load values used for the conventional contact mode AFM imaging. This study describes an important phenomenon specific for AFM nanomachining in the forward direction: under certain processing conditions, the deformed shape of the cantilever probe may change from a convex to a concave orientation. The phenomenon can principally change the depth and width of grooves machined, e.g. the grooves machined on a single crystal copper specimen may increase by 50% on average following such a change in the deformed shape of the cantilever. It is argued that this phenomenon can take place even when the AFM-based tool is operated in the so-called force-controlled mode. The study involves the refined theoretical analysis of cantilever probe bending, the analysis of experimental signals monitored during the backward and forward AFM tip-based machining and the inspection of the topography of produced grooves. PMID:27532247

  18. Probing Cytoskeletal Structures by Coupling Optical Superresolution and AFM Techniques for a Correlative Approach

    PubMed Central

    Chacko, Jenu Varghese; Zanacchi, Francesca Cella; Diaspro, Alberto

    2013-01-01

    In this article, we describe and show the application of some of the most advanced fluorescence superresolution techniques, STED AFM and STORM AFM microscopy towards imaging of cytoskeletal structures, such as microtubule filaments. Mechanical and structural properties can play a relevant role in the investigation of cytoskeletal structures of interest, such as microtubules, that provide support to the cell structure. In fact, the mechanical properties, such as the local stiffness and the elasticity, can be investigated by AFM force spectroscopy with tens of nanometers resolution. Force curves can be analyzed in order to obtain the local elasticity (and the Young's modulus calculation by fitting the force curves from every pixel of interest), and the combination with STED/STORM microscopy integrates the measurement with high specificity and yields superresolution structural information. This hybrid modality of superresolution-AFM working is a clear example of correlative multimodal microscopy. PMID:24027190

  19. Fabrication of cone-shaped boron doped diamond and gold nanoelectrodes for AFM-SECM.

    PubMed

    Avdic, A; Lugstein, A; Wu, M; Gollas, B; Pobelov, I; Wandlowski, T; Leonhardt, K; Denuault, G; Bertagnolli, E

    2011-04-01

    We demonstrate a reliable microfabrication process for a combined atomic force microscopy (AFM) and scanning electrochemical microscopy (SECM) measurement tool. Integrated cone-shaped sensors with boron doped diamond (BDD) or gold (Au) electrodes were fabricated from commercially available AFM probes. The sensor formation process is based on mature semiconductor processing techniques, including focused ion beam (FIB) machining, and highly selective reactive ion etching (RIE). The fabrication approach preserves the geometry of the original AFM tips resulting in well reproducible nanoscaled sensors. The feasibility and functionality of the fully featured tips are demonstrated by cyclic voltammetry, showing good agreement between the measured and calculated currents of the cone-shaped AFM-SECM electrodes. PMID:21368355

  20. Fabrication of cone-shaped boron doped diamond and gold nanoelectrodes for AFM-SECM

    NASA Astrophysics Data System (ADS)

    Avdic, A.; Lugstein, A.; Wu, M.; Gollas, B.; Pobelov, I.; Wandlowski, T.; Leonhardt, K.; Denuault, G.; Bertagnolli, E.

    2011-04-01

    We demonstrate a reliable microfabrication process for a combined atomic force microscopy (AFM) and scanning electrochemical microscopy (SECM) measurement tool. Integrated cone-shaped sensors with boron doped diamond (BDD) or gold (Au) electrodes were fabricated from commercially available AFM probes. The sensor formation process is based on mature semiconductor processing techniques, including focused ion beam (FIB) machining, and highly selective reactive ion etching (RIE). The fabrication approach preserves the geometry of the original AFM tips resulting in well reproducible nanoscaled sensors. The feasibility and functionality of the fully featured tips are demonstrated by cyclic voltammetry, showing good agreement between the measured and calculated currents of the cone-shaped AFM-SECM electrodes.

  1. Nanomechanics of new materials — AFM and computer modelling studies of trichoptera silk

    NASA Astrophysics Data System (ADS)

    Strzelecki, Janusz; Strzelecka, Joanna; Mikulska, Karolina; Tszydel, Mariusz; Balter, Aleksander; Nowak, Wiesław

    2011-04-01

    Caddisfly (Trichopera) can glue diverse material underwater with a silk fiber. This makes it a particularly interesting subject for biomimetcs. Better understanding of silk composition and structure could lead to an adhesive capable to close bleeding wounds or to new biomaterials. However, while spiderweb or silkworm secretion is well researched, caddisfly silk is still poorly understood. Here we report a first nanomechanical analysis of H. Angustipennis caddisfly silk fiber. An Atomic Force Microscope (AFM) imaging shows dense 150 nm bumps on silk surface, which can be identified as one of features responsible for its outstanding adhesive properties. AFM force spectroscopy at the fiber surface showed, among others, characteristic saw like pattern. This pattern is attributed to sacrificial bond stretching and enhances energy dissipation in mechanical deformation. Similarities of some force curves observed on Tegenaria domestica spiderweb and caddisfly silk are also discussed. Steered Molecular Dynamics simulations revealed that the strength of short components of Fib-H HA species molecules, abundant in Trichoptera silk is critically dependent on calcium presence.

  2. Detection of Pathogens Using AFM and SPR

    NASA Astrophysics Data System (ADS)

    Vaseashta, Ashok

    2005-03-01

    A priori detection of pathogens in food and water has become a subject of paramount importance. Several recent incidents have resulted in the government passing stringent regulations for tolerable amounts of contamination of food products. Identification and/or monitoring of bacterial contamination in food are critical. The conventional methods of pathogen detection require time-consuming steps to arrive disembark at meaningful measurement in a timely manner as the detection time exceeds the time in which perishable food recycles through the food chain distribution. The aim of this presentation is to outline surface plasmon resonance (SPR) and atomic force microscopy (AFM) as two methods for fast detect6ion of pathogens. Theoretical basis of SPR and experimental results of SPR and AFM on E. coli O157:H7 and prion are presented.

  3. Proteomic analysis of human adipose tissue after rosiglitazone treatment shows coordinated changes to promote glucose uptake.

    PubMed

    Ahmed, Meftun; Neville, Matt J; Edelmann, Mariola J; Kessler, Benedikt M; Karpe, Fredrik

    2010-01-01

    The aim of this study was to identify potential protein targets for insulin sensitization in human adipose tissue using unbiased proteomic approaches. Ten moderately obese, but otherwise healthy, subjects were treated with rosiglitazone 4 mg b.i.d. for 14 days and global protein and gene expression changes were monitored. Proteomic analysis revealed distinct up- or downregulation (greater than twofold) in 187 protein spots on the two-dimensional (2-D) gel images between day 0 and day 1 adipose tissue samples. When comparing the protein spots on the gels from day 0 with that of 14-day-treated samples, 122 spots showed differential expression. There was a striking increase in the expression of proteins involved in glucose transporter-4 (GLUT4) granule transport and fusion (actin, myosin-9, tubulin, vimentin, annexins, moesin, LIM, and SH3 domain protein-1), signaling (calmodulin, guanine nucleotide-binding proteins), redox regulation (superoxide dismutase, catalase, ferritin, transferrin, heat shock proteins), and adipogenesis (collagens, galectin-1, nidogen-1, laminin, lamin A/C). However, there was an intriguing absence of correlated changes in mRNA expression, suggesting adaptation at a post-transcriptional level in response to rosiglitazone. Thus, the major changes observed were among proteins involved in cytoskeletal rearrangement, insulin and calcium signaling, and inflammatory and redox signals that decisively upregulate GLUT4 granule trafficking in human adipose tissue. Such orchestrated changes in expression of multiple proteins provide insights into the mechanism underlying the increased efficiency in glucose uptake and improvement of insulin sensitivity in response to rosiglitazone treatment. PMID:19556978

  4. Microhardness, chemical etching, SEM, AFM and SHG studies of novel nonlinear optical crystal -L-threonine formate

    SciTech Connect

    Hanumantha Rao, Redrothu; Kalainathan, S.

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Microhardness studies of novel LTF crystal reported first time in the literature. Black-Right-Pointing-Pointer Surface studies are done by AFM, chemical etching and SEM. Black-Right-Pointing-Pointer From SHG studies, it is known that LTF is potential NLO crystal. -- Abstract: The crystal L-threonine formate, an organic NLO crystal was synthesized from aqueous solution by slow evaporation technique. The grown crystal surface has been analyzed by scanning electron microscopy (SEM), chemical etching and atomic force microscopy (AFM). SEM analysis reveals pyramidal shaped minute crystallites on the growth surface. The etching study indicates the occurrence of etch pit patterns like striations and step like pattern. The mechanical properties of LTF crystals were evaluated by mechanical testing which reveals certain mechanical characteristics like elastic stiffness constant (C{sub 11}) and young's modulus (E). The Vickers and Knoop microhardness studies have been carried out on LTF crystals over a range of 10-50 g. Hardness anisotropy has been observed in accordance with the orientation of the crystal. AFM image shows major hillock on growth surface. The second harmonic generation (SHG) efficiency has been tested by the Kurtz powder technique using Nd:YAG laser and found to be about 1.21 times in comparison with standard potassium dihydrogen phosphate (KDP) crystals.

  5. Proteomic analysis shows that individual Listeria monocytogenes strains use different strategies in response to gastric stress.

    PubMed

    Melo, Jessie; Schrama, Denise; Andrew, Peter W; Faleiro, M Leonor

    2013-02-01

    Ingestion of contaminated dairy products, in particular soft cheese, is one of the major routes of infection by the human pathogen Listeria monocytogenes. During cheese processing, this foodborne pathogen is exposed to sublethal acid and osmotic stress conditions, which may induce tolerance responses and influence subsequent survival in the gastric tract. The aim of the current study was to evaluate the impact on a L. monocytogenes cheese isolate (serotype 4b) and two cheese dairy isolates (T8, serotype 4b, isolated from vat; and A9, serotype 1/2b or 3b, isolated from shelf stand) of exposure to sublethal conditions of pH and salt (5.5 and 3.5% [w/v] NaCl) in a cheese-simulated medium and further challenge with gastric stress. The bacterial cells exposed to pH 7.0 and no added salt were considered non-adapted. Via two-dimensional gel electrophoresis (2-DE), the proteomes of cheese-simulated medium and gastric challenged Listeria cells were compared. All L. monocytogenes isolates were able to survive the high acidity of gastric fluid (pH 2.5), and no significant differences were observed between adapted and non-adapted cells. However, the analysis of the intracellular proteome profiles revealed a significant intra-strain variation in the protein arsenal used to respond to the adaptation in the cheese-based medium and to the gastric stress. In cheese-based medium, the three strains produced different stress proteins. All three strains showed a higher abundance of carbohydrate proteins, but there was no overlap between them. Exposure to the gastric fluid induced the production of a group of proteins in T8 adapted and non-adapted cells that had not been detected previously in the cheese-based proteome. No such response was shown by A9 and C882 strains. Taken together, this study evidences the proteome tools used by adapted and non-adapted cells to cope with the hostile microenvironment of the stomach. PMID:23441912

  6. Adsorption Studies with AFM of Human Plasma Fibrinogen on Silicon Surfaces

    NASA Astrophysics Data System (ADS)

    Gause, Sheena; Kong, Wendy; Rowe

    2007-11-01

    Fibrinogen (FGN) plays an important role in the clotting of blood. Human plasma fibrinogen (HPF) is a protein that readily adsorbs on biomaterial surfaces. The purpose of this experiment was to use the Atomic Force Microscope to study the adsorption of HPF molecules or FGN onto several silicon surfaces with different orientations and resistivities. The size of the FGN molecules found to be somewhat different of Si(111), (100) and (110) were compared to the size of the FGN molecules in solution (45 nm in length, the end dynodes measures to be 6.5 nm in diameter, and the middle dynode measures to be 5 nm in diameter. For this study, the CPR (Thermo-microscope) Atomic Force Microscope (AFM) was used to observe the amount of fibrinogen molecules adsorbed by Si (111) with a resistance of .0281-.0261 φ cm, Si (111) with a resistance of 1 φ cm, Si (100), and Si (110) surfaces. In finding any single fibrinogen molecules, the appropriate image scans and measurements were taken. After collection and analysis of the data, it was found from AFM that the fibrinogen molecules found on Si (110) mostly resembled fibrinogen molecules found in solution. The other images showed that the fibrinogen molecules adsorbed on Silicon substrates is significantly greater (˜10-20 %) than those in solution.

  7. Adaptive AFM scan speed control for high aspect ratio fast structure tracking

    SciTech Connect

    Ahmad, Ahmad; Schuh, Andreas; Rangelow, Ivo W.

    2014-10-15

    Improved imaging rates in Atomic Force Microscopes (AFM) are of high interest for disciplines such as life sciences and failure analysis of semiconductor wafers, where the sample topology shows high aspect ratios. Also, fast imaging is necessary to cover a large surface under investigation in reasonable times. Since AFMs are composed of mechanical components, they are associated with comparably low resonance frequencies that undermine the effort to increase the acquisition rates. In particular, high and steep structures are difficult to follow, which causes the cantilever to temporarily loose contact to or crash into the sample. Here, we report on a novel approach that does not affect the scanner dynamics, but adapts the lateral scanning speed of the scanner. The controller monitors the control error signal and, only when necessary, decreases the scan speed to allow the z-piezo more time to react to changes in the sample's topography. In this case, the overall imaging rate can be significantly increased, because a general scan speed trade-off decision is not needed and smooth areas are scanned fast. In contrast to methods trying to increase the z-piezo bandwidth, our method is a comparably simple approach that can be easily adapted to standard systems.

  8. Bacteria attachment to surfaces--AFM force spectroscopy and physicochemical analyses.

    PubMed

    Harimawan, Ardiyan; Rajasekar, Aruliah; Ting, Yen-Peng

    2011-12-01

    Understanding bacterial adhesion to surfaces requires knowledge of the forces that govern bacterial-surface interactions. Biofilm formation on stainless steel 316 (SS316) by three bacterial species was investigated by examining surface force interaction between the cells and metal surface using atomic force microscopy (AFM). Bacterial-metal adhesion force was quantified at different surface delay time from 0 to 60s using AFM tip coated with three different bacterial species: Gram-negative Massilia timonae and Pseudomonas aeruginosa, and Gram-positive Bacillus subtilis. The results revealed that bacterial adhesion forces on SS316 surface by Gram-negative bacteria is higher (8.53±1.40 nN and 7.88±0.94 nN) when compared to Gram-positive bacteria (1.44±0.21 nN). Physicochemical analysis on bacterial surface properties also revealed that M. timonae and P. aeruginosa showed higher hydrophobicity and surface charges than B. subtilis along with the capability of producing extracellular polymeric substances (EPS). The higher hydrophobicity, surface charges, and greater propensity to form EPS by M. timonae and P. aeruginosa led to high adhesive force on the metal surface. PMID:21889162

  9. More than Meets the Ear: A Factor Analysis of Student Impressions of Television Talk Show Hosts.

    ERIC Educational Resources Information Center

    Walker, James R.

    To identify the descriptors most frequently associated with four popular television talk show hosts and to isolate the fundamental dimensions of the images of those talk show hosts, a study surveyed 209 students from Memphis State University and the University of Arkansas (Little Rock) about their impressions of Johnny Carson, David Letterman,…

  10. Solvent-mediated repair and patterning of surfaces by AFM

    SciTech Connect

    Elhadj, S; Chernov, A; De Yoreo, J

    2007-10-30

    A tip-based approach to shaping surfaces of soluble materials with nanometer-scale control is reported. The proposed method can be used, for example, to eliminate defects and inhomogeneities in surface shape, repair mechanical or laser-induced damage to surfaces, or perform 3D lithography on the length scale of an AFM tip. The phenomenon that enables smoothing and repair of surfaces is based on the transport of material from regions of high- to low-curvature within the solution meniscus formed in a solvent-containing atmosphere between the surface in question and an AFM tip scanned over the surface. Using in situ AFM measurements of the kinetics of surface remodeling on KDP (KH{sub 2}PO{sub 4}) crystals in humid air, we show that redistribution of solute material during relaxation of grooves and mounds is driven by a reduction in surface free energy as described by the Gibbs-Thomson law. We find that the perturbation from a flat interface evolves according to the diffusion equation where the effective diffusivity is determined by the product of the surface stiffness and the step kinetic coefficient. We also show that, surprisingly, if the tip is instead scanned over or kept stationary above an atomically flat area of the surface, a convex structure is formed with a diameter that is controlled by the dimensions of the meniscus, indicating that the presence of the tip and meniscus reduces the substrate chemical potential beneath that of the free surface. This allows one to create nanometer-scale 3D structures of arbitrary shape without the removal of substrate material or the use of extrinsic masks or chemical compounds. Potential applications of these tip-based phenomena are discussed.

  11. MOLECULAR ANALYSIS OF BOVINE RHINOVIRUS TYPE 2 SHOWS A CLOSE RELATIONSHIP TO THE APHTHOVIRUSES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bovine rhinovirus 2 (BRV-2) the causative agent of respiratory disease in cattle is currently an unclassified species tentatively assigned to the genus Rhinovirus in the family Picornaviridae. However, previous analysis of the sequence from partial amplicons in the 3D and P1 regions of the genome su...

  12. Phylogenomic analysis shows that ‘Bacillus vanillea’ is a later heterotypic synonym of Bacillus siamensis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Bacillus vanillea’ XY18T (=CGMCC 8629 T =NCCB 100507 T) was isolated from cured vanilla beans and involved in the formation of vanilla aroma compounds. A draft genome of this type strain was assembled and yielded a length of 3.72 Mbp and a GC content of 46.3%. Comparative genomic analysis with its ...

  13. Applications of AFM for atomic manipulation and spectroscopy

    NASA Astrophysics Data System (ADS)

    Custance, Oscar

    2009-03-01

    Since the first demonstration of atom-by-atom assembly [1], atomic manipulation with scanning tunneling microscopy has yielded stunning realizations in nanoscience. A new exciting panorama has been recently opened with the possibility of manipulating atoms at surfaces using atomic force microscopy (AFM) [2-5]. In this talk, we will present two different approaches that enable patterning structures at semiconductor surfaces by manipulating individual atoms with AFM and at room temperature [2, 3]. We will discuss the physics behind each protocol through the analysis of the measured forces associated with these manipulations [3-5]. Another challenging issue in scanning probe microscopy is the ability to disclose the local chemical composition of a multi-element system at atomic level. Here, we will introduce a single-atom chemical identification method, which is based on detecting the forces between the outermost atom of the AFM tip and the atoms at a surface [6]. We demonstrate this identification procedure on a particularly challenging system, where any discrimination attempt based solely on topographic measurements would be impossible to achieve. [4pt] References: [0pt] [1] D. M. Eigler and E. K. Schweizer, Nature 344, 524 (1990); [0pt] [2] Y. Sugimoto, M. Abe, S. Hirayama, N. Oyabu, O. Custance and S. Morita, Nature Materials 4, 156 (2005); [0pt] [3] Y. Sugimoto, P. Pou, O. Custance, P. Jelinek, M. Abe, R. Perez and S. Morita, Science 322, 413 (2008); [0pt] [4] Y. Sugimoto, P. Jelinek, P. Pou, M. Abe, S. Morita, R. Perez and O. Custance, Phys. Rev. Lett. 98, 106104 (2007); [0pt] [5] M. Ternes, C. P. Lutz, C. F. Hirjibehedin, F. J. Giessibl and A. J. Heinrich, Science 319, 1066 (2008); [0pt] [6] Y. Sugimoto, P. Pou, M. Abe, P. Jelinek, R. Perez, S. Morita, and O. Custance, Nature 446, 64 (2007)

  14. The Coordination of Verbal and Nonverbal Interaction towards Three Parties: The Analysis of a Talk Show.

    ERIC Educational Resources Information Center

    von Raffler-Engel, Walburga

    A study of randomly selected "Donahue" shows revealed how host Phil Donahue interacts with several parties at one time and how he subordinates various interactions to suit the hierarchy of importance he attributes to each party, with the television viewer being the most important. Donahue organizes his body movement mainly for television viewers.…

  15. BOREAS AFM-6 Surface Meteorological Data

    NASA Technical Reports Server (NTRS)

    Wilczak, James; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-6 team from the National Oceanic and Atmospheric Adminsitration/Environment Technology Laboratory (NOAA/ETL) collected surface meteorological data from 21 May to 20 Sep 1994 near the Southern Study Area-Old Jack Pine (SSA-OJP) tower site. The data are in tabular ASCII files. The surface meteorological data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  16. Social network analysis shows direct evidence for social transmission of tool use in wild chimpanzees.

    PubMed

    Hobaiter, Catherine; Poisot, Timothée; Zuberbühler, Klaus; Hoppitt, William; Gruber, Thibaud

    2014-09-01

    Social network analysis methods have made it possible to test whether novel behaviors in animals spread through individual or social learning. To date, however, social network analysis of wild populations has been limited to static models that cannot precisely reflect the dynamics of learning, for instance, the impact of multiple observations across time. Here, we present a novel dynamic version of network analysis that is capable of capturing temporal aspects of acquisition--that is, how successive observations by an individual influence its acquisition of the novel behavior. We apply this model to studying the spread of two novel tool-use variants, "moss-sponging" and "leaf-sponge re-use," in the Sonso chimpanzee community of Budongo Forest, Uganda. Chimpanzees are widely considered the most "cultural" of all animal species, with 39 behaviors suspected as socially acquired, most of them in the domain of tool-use. The cultural hypothesis is supported by experimental data from captive chimpanzees and a range of observational data. However, for wild groups, there is still no direct experimental evidence for social learning, nor has there been any direct observation of social diffusion of behavioral innovations. Here, we tested both a static and a dynamic network model and found strong evidence that diffusion patterns of moss-sponging, but not leaf-sponge re-use, were significantly better explained by social than individual learning. The most conservative estimate of social transmission accounted for 85% of observed events, with an estimated 15-fold increase in learning rate for each time a novice observed an informed individual moss-sponging. We conclude that group-specific behavioral variants in wild chimpanzees can be socially learned, adding to the evidence that this prerequisite for culture originated in a common ancestor of great apes and humans, long before the advent of modern humans. PMID:25268798

  17. Image analysis shows that variations in actin crossover spacings are random, not compensatory.

    PubMed Central

    Egelman, E H; DeRosier, D J

    1992-01-01

    A recent paper by Bremer et al. (1991. J. Cell Biol. 115:689-703) has argued that the random angular disorder model for actin is wrong, and that the variations in crossover spacing observed in electron micrographs of F-actin filaments can be best explained by a compensatory disorder caused by the lateral slipping of the twin (or two-start) strands which comprise the actin filament. We have analyzed the images of F-actin presented in Bremer et al. and show that their data argues against compensatory disorder and in favor of random disorder, independent of the cause of the disorder. We also revise our estimate of the angular component and show that the magnitude of this disorder is about 5-6 degrees per subunit, which is less than the 10-12 degrees that we originally proposed. PMID:1477281

  18. SR-FTIR Coupled with Principal Component Analysis Shows Evidence for the Cellular Bystander Effect.

    PubMed

    Lipiec, E; Bambery, K R; Lekki, J; Tobin, M J; Vogel, C; Whelan, D R; Wood, B R; Kwiatek, W M

    2015-07-01

    Synchrotron radiation-Fourier transform infrared (SR-FTIR) microscopy coupled with multivariate data analysis was used as an independent modality to monitor the cellular bystander effect. Single, living prostate cancer PC-3 cells were irradiated with various numbers of protons, ranging from 50-2,000, with an energy of either 1 or 2 MeV using a proton microprobe. SR-FTIR spectra of cells, fixed after exposure to protons and nonirradiated neighboring cells (bystander cells), were recorded. Spectral differences were observed in both the directly targeted and bystander cells and included changes in the DNA backbone and nucleic bases, along with changes in the protein secondary structure. Principal component analysis (PCA) was used to investigate the variance in the entire data set. The percentage of bystander cells relative to the applied number of protons with two different energies was calculated. Of all the applied quantities, the dose of 400 protons at 2 MeV was found to be the most effective for causing significant macromolecular perturbation in bystander PC-3 cells. PMID:26121225

  19. A micro-epidemiological analysis of febrile malaria in Coastal Kenya showing hotspots within hotspots

    PubMed Central

    Bejon, Philip; Williams, Thomas N; Nyundo, Christopher; Hay, Simon I; Benz, David; Gething, Peter W; Otiende, Mark; Peshu, Judy; Bashraheil, Mahfudh; Greenhouse, Bryan; Bousema, Teun; Bauni, Evasius; Marsh, Kevin; Smith, David L; Borrmann, Steffen

    2014-01-01

    Malaria transmission is spatially heterogeneous. This reduces the efficacy of control strategies, but focusing control strategies on clusters or ‘hotspots’ of transmission may be highly effective. Among 1500 homesteads in coastal Kenya we calculated (a) the fraction of febrile children with positive malaria smears per homestead, and (b) the mean age of children with malaria per homestead. These two measures were inversely correlated, indicating that children in homesteads at higher transmission acquire immunity more rapidly. This inverse correlation increased gradually with increasing spatial scale of analysis, and hotspots of febrile malaria were identified at every scale. We found hotspots within hotspots, down to the level of an individual homestead. Febrile malaria hotspots were temporally unstable, but 4 km radius hotspots could be targeted for 1 month following 1 month periods of surveillance. DOI: http://dx.doi.org/10.7554/eLife.02130.001 PMID:24843017

  20. Genome-wide microarray analysis of tomato roots showed defined responses to iron deficiency

    PubMed Central

    2012-01-01

    Background Plants react to iron deficiency stress adopting different kind of adaptive responses. Tomato, a Strategy I plant, improves iron uptake through acidification of rhizosphere, reduction of Fe3+ to Fe2+ and transport of Fe2+ into the cells. Large-scale transcriptional analyses of roots under iron deficiency are only available for a very limited number of plant species with particular emphasis for Arabidopsis thaliana. Regarding tomato, an interesting model species for Strategy I plants and an economically important crop, physiological responses to Fe-deficiency have been thoroughly described and molecular analyses have provided evidence for genes involved in iron uptake mechanisms and their regulation. However, no detailed transcriptome analysis has been described so far. Results A genome-wide transcriptional analysis, performed with a chip that allows to monitor the expression of more than 25,000 tomato transcripts, identified 97 differentially expressed transcripts by comparing roots of Fe-deficient and Fe-sufficient tomato plants. These transcripts are related to the physiological responses of tomato roots to the nutrient stress resulting in an improved iron uptake, including regulatory aspects, translocation, root morphological modification and adaptation in primary metabolic pathways, such as glycolysis and TCA cycle. Other genes play a role in flavonoid biosynthesis and hormonal metabolism. Conclusions The transcriptional characterization confirmed the presence of the previously described mechanisms to adapt to iron starvation in tomato, but also allowed to identify other genes potentially playing a role in this process, thus opening new research perspectives to improve the knowledge on the tomato root response to the nutrient deficiency. PMID:22433273

  1. Strength by atomic force microscopy (AFM): Molecular dynamics of water layer squeezing on magnesium oxide

    NASA Astrophysics Data System (ADS)

    Kendall, K.; Dhir, Aman; Yong, Chin W.

    2010-11-01

    Localised strength testing of materials is often carried out in an atomic force microscope (AFM), as foreseen by Kelly in his book Strong Solids (Clarendon Press, Oxford, 1966). During AFM indentation experiments, contamination can strongly influence the observed strength and theoretical interpretation of the results is a major problem. Here, we use molecular dynamics computer modelling to describe the contact of NaCl and MgO crystal probes onto surfaces, comparable to an AFM experiment. Clean NaCl gave elastic, brittle behaviour in contact simulations at 300 K, whereas MgO was more plastic, leading to increased toughness. This paper also considers the strength of an oxide substrate contaminated by water molecules and tested by indentation with a pyramidal probe of oxide crystal. Recent theory on the effect of liquid contaminant layers on surface strength has been mainly focussed on Lennard Jones (LJ) molecules with some studies on alcohols and water, described by molecular dynamics, which allows the molecules to be squeezed out as the crystal lattice is deformed. In this work, we have focused on water by studying the forces between a magnesium oxide (MgO) atomic force microscope (AFM) probe and an MgO slab. Force versus separation has been plotted as the AFM probe was moved towards and away from the substrate. Simulation results showed that the water layers could be removed in steps, giving up to four force peaks. The last monolayer of water could not be squeezed out, even at pressures where MgO deformed plastically. Interestingly, with water present, strength was reduced, but more in tensile than compressive measurements. In conclusion, water contaminating the oxide surface in AFM strength testing is structured. Water layer squeezing removal can be predicted by molecular modelling, which may be verified by AFM experiments to show that water can influence the strength of perfect crystals at the nanometre scale.

  2. Sub-surface imaging of carbon nanotube-polymer composites using dynamic AFM methods.

    PubMed

    Cadena, Maria J; Misiego, Rocio; Smith, Kyle C; Avila, Alba; Pipes, Byron; Reifenberger, Ron; Raman, Arvind

    2013-04-01

    High-resolution sub-surface imaging of carbon nanotube (CNT) networks within polymer nanocomposites is demonstrated through electrical characterization techniques based on dynamic atomic force microscopy (AFM). We compare three techniques implemented in the single-pass configuration: DC-biased amplitude modulated AFM (AM-AFM), electrostatic force microscopy (EFM) and Kelvin probe force microscopy (KPFM) in terms of the physics of sub-surface image formation and experimental robustness. The methods were applied to study the dispersion of sub-surface networks of single-walled nanotubes (SWNTs) in a polyimide (PI) matrix. We conclude that among these methods, the KPFM channel, which measures the capacitance gradient (∂C/∂d) at the second harmonic of electrical excitation, is the best channel to obtain high-contrast images of the CNT network embedded in the polymer matrix, without the influence of surface conditions. Additionally, we propose an analysis of the ∂C/∂d images as a tool to characterize the dispersion and connectivity of the CNTs. Through the analysis we demonstrate that these AFM-based sub-surface methods probe sufficiently deep within the SWNT composites, to resolve clustered networks that likely play a role in conductivity percolation. This opens up the possibility of dynamic AFM-based characterization of sub-surface dispersion and connectivity in nanostructured composites, two critical parameters for nanocomposite applications in sensors and energy storage devices. PMID:23478510

  3. Analysis of Cylinder-pressure-indicator Diagrams Showing Effects of Mixture Strength and Spark Timing

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold C; Voss, Fred

    1940-01-01

    An investigation was made to determine the effect of mixture strength and of normal as well as optimum spark timing on the combustion, on the cylinder temperature, and on the performance characteristics of an engine. A single-cylinder test unit utilizing an air-cooled cylinder and a carburetor and operating with gasoline having an octane rating of 92 was used. The investigation covered a range of fuel-air ratios from 0.053 to 0.118. Indicator diagrams and engine-performance data were taken for each change in engine conditions. Examination of the indicator shows that for fuel-air ratios less than and greater than 0.082 the rate and the amount of effective fuel burned decreased. For a fuel-air ratio of 0.118 the combustion efficiency was only 58 percent. Advancing the spark timing increased the rate of pressure rise. This effect was more pronounced with leaner mixtures.

  4. Pathogen identification using peptide nanotube biosensors and impedance AFM

    NASA Astrophysics Data System (ADS)

    Maccuspie, Robert I.

    Pathogen identification at highly sensitive levels is crucial to meet urgent needs in fighting the spread of disease or detecting bioterrorism events. Toward that end, a new method for biosensing utilizing fluorescent antibody nanotubes is proposed. Fundamental studies on the self-assembly of these peptide nanotubes are performed, as are applications of aligning these nanotubes on surfaces. As biosensors, these nanotubes incorporate recognition units with antibodies at their ends and fluorescent signaling units at their sidewalls. When viral pathogens were mixed with these antibody nanotubes in solution, the nanotubes rapidly aggregated around the viruses. The size of the aggregates increased as the concentration of viruses increased, as detected by flow cytometry on the order of attomolar concentrations by changes in fluorescence and light scattering intensities. This enabled determination of the concentrations of viruses at trace levels (102 to 106 pfu/mL) within 30 minutes from the receipt of samples to the final quantitative data analysis, as demonstrated on Adenovirus, Herpes Simplex Virus, Influenza, and Vaccinia virus. As another separate approach, impedance AFM is used to study the electrical properties of individual viruses and nanoparticles used as model systems. The design, development, and implementation of the impedance AFM for an Asylum Research platform is described, as well as its application towards studying the impedance of individual nanoparticles as a model system for understanding the fundamental science of how the life cycle of a virus affects its electrical properties. In combination, these approaches fill a pressing need to quantify viruses both rapidly and sensitively.

  5. Retrospective analysis showing the water method increased adenoma detection rate - a hypothesis generating observation.

    PubMed

    Leung, Joseph W; Do, Lynne D; Siao-Salera, Rodelei M; Ngo, Catherine; Parikh, Dhavan A; Mann, Surinder K; Leung, Felix W

    2011-01-01

    BACKGROUND: A water method developed to attenuate discomfort during colonoscopy enhanced cecal intubation in unsedated patients. Serendipitously a numerically increased adenoma detection rate (ADR) was noted. OBJECTIVE: To explore databases of sedated patients examined by the air and water methods to identify hypothesis-generating findings. DESIGN: Retrospective analysis. SETTING: VA endoscopy center. PATIENTS: creening colonoscopy. INTERVENTIONS: From 1/2000-6/2006 the air method was used - judicious air insufflation to permit visualization of the lumen to aid colonoscope insertion and water spray for washing mucosal surfaces. From 6/2006-11/2009 the water method was adopted - warm water infusion in lieu of air insufflation and suction removal of residual air to aid colonoscope insertion. During colonoscope withdrawal adequate air was insufflated to distend the colonic lumen for inspection, biopsy and polypectomy in a similar fashion in both periods. Main outcome measurements: ADR. RESULTS: The air (n=683) vs. water (n=495) method comparisons revealed significant differences in overall ADR 26.8% (183 of 683) vs. 34.9% (173 of 495) and ADR of adenomas >9 mm, 7.2% vs. 13.7%, respectively (both P<0.05, Fisher's exact test). LIMITATIONS: Non-randomized data susceptible to bias by unmeasured parameters unrelated to the methods. CONCLUSION: Confirmation of the serendipitous observation of an impact of the water method on ADR provides impetus to call for randomized controlled trials to test hypotheses related to the water method as an approach to improving adenoma detection. Because of recent concerns over missed lesions during colonoscopy, the provocative hypothesis-generating observations warrant presentation. PMID:21686105

  6. Transcriptome analysis of Bifidobacterium longum strains that show a differential response to hydrogen peroxide stress.

    PubMed

    Oberg, Taylor S; Ward, Robert E; Steele, James L; Broadbent, Jeff R

    2015-10-20

    Consumer and commercial interest in foods containing probiotic bifidobacteria is increasing. However, because bifidobacteria are anaerobic, oxidative stress can diminish cell viability during production and storage of bioactive foods. We previously found Bifidobacterium longum strain NCC2705 had significantly greater intrinsic and inducible resistance to hydrogen peroxide (H2O2) than strain D2957. Here, we explored the basis for these differences by examining the transcriptional responses of both strains to sub-lethal H2O2 exposure for 5- or 60-min. Strain NCC2705 had 288 genes that were differentially expressed after the 5-min treatment and 114 differentially expressed genes after the 60-min treatment. In contrast, strain D2957 had only 21 and 90 differentially expressed genes after the 5- and 60-min treatments, respectively. Both strains showed up-regulation of genes coding enzymes implicated in oxidative stress resistance, such as thioredoxin, thioredoxin reductase, peroxiredoxin, ferredoxin, glutaredoxin, and anaerobic ribonucleotide reductase, but induction levels were typically highest in NCC2705. Compared to D2957, NCC2705 also had more up-regulated genes involved in transcriptional regulation and more down-regulated genes involved in sugar transport and metabolism. These results provide a greater understanding of the molecular basis for oxidative stress resistance in B. longum and the factors that contribute to strain-to-strain variability in survival in bioactive food products. PMID:26299205

  7. Computational analysis shows why transcranial alternating current stimulation induces retinal phosphenes

    NASA Astrophysics Data System (ADS)

    Laakso, Ilkka; Hirata, Akimasa

    2013-08-01

    Objective. Transcranial alternating current stimulation (tACS), which is a novel technique for the manipulation of cortical oscillations, can generate subjective visual sensations (phosphenes). In this work, we computationally investigate the current that reaches the eyes from tACS electrodes in order to show that phosphenes induced by tACS are retinal in origin. Approach. The finite-element method is used for modelling the path of the current in an anatomically realistic model of the head for various electrode montages. The computational results are used for analysing previous experimental data to investigate the sensitivity of the eye to electrical stimulation. Main results. Depending on the locations of both the stimulating and reference electrodes, a small portion of the stimulation current chooses a path that goes through the eyes. Due to the sensitivity of the retina to electrical stimulation, even distant electrodes can produce a sufficiently strong current at the eyes for inducing retinal phosphenes. Significance. The interference from retinal phosphenes needs to be considered in the design of tACS experiments. The occurrence of phosphenes can be reduced by optimizing the locations of the electrodes, or potentially increasing the number of reference electrodes to two or more. Computational modelling is an effective tool for guiding the electrode positioning.

  8. Genome-Wide Expression Analysis of Soybean MADS Genes Showing Potential Function in the Seed Development

    PubMed Central

    Hu, Rui-Bo; Zhang, Xiao-Mei; Chen, Jian-Xin; Fu, Yong-Fu

    2013-01-01

    The MADS family is an ancient and best-studied transcription factor and plays fundamental roles in almost every developmental process in plants. In the plant evolutionary history, the whole genome duplication (WGD) events are important not only to the plant species evolution, but to expansion of members of the gene families. Soybean as a model legume crop has experience three rounds of WGD events. Members of some MIKCC subfamilies, such as SOC, AGL6, SQUA, SVP, AGL17 and DEF/GLO, were expanded after soybean three rounds of WGD events. And some MIKCC subfamilies, MIKC* and type I MADS families had experienced faster birth-and-death evolution and their traces before the Glycine WGD event were not found. Transposed duplication played important roles in tandem arrangements among the members of different subfamilies. According to the expression profiles of type I and MIKC paralog pair genes, the fates of MIKC paralog gene pairs were subfunctionalization, and the fates of type I MADS paralog gene pairs were nonfunctionalization. 137 out of 163 MADS genes were close to 186 loci within 2 Mb genomic regions associated with seed-relative QTLs, among which 115 genes expressed during the seed development. Although MIKCC genes kept the important and conserved functions of the flower development, most MIKCC genes showed potentially essential roles in the seed development as well as the type I MADS. PMID:23638026

  9. In-Depth Analysis Shows Synergy between Erlotinib and miR-34a

    PubMed Central

    Zhao, Jane; Kelnar, Kevin; Bader, Andreas G.

    2014-01-01

    Tyrosine kinase inhibitors directed against epidermal growth factor receptor (EGFR-TKI), such as erlotinib, are effective in a limited fraction of non-small cell lung cancer (NSCLC). However, the majority of NSCLC and other cancer types remain resistant. Therapeutic miRNA mimics modeled after endogenous tumor suppressor miRNAs inhibit tumor growth by repressing multiple oncogenes at once and, therefore, may be used to augment drug sensitivity. Here, we investigated the relationship of miR-34a and erlotinib and determined the therapeutic activity of the combination in NSCLC cells with primary and acquired erlotinib resistance. The drug combination was also tested in a panel of hepatocellular carcinoma cells (HCC), a cancer type known to be refractory to erlotinib. Using multiple analytical approaches, drug-induced inhibition of cancer cell proliferation was determined to reveal additive, antagonistic or synergistic effects. Our data show a strong synergistic interaction between erlotinib and miR-34a mimics in all cancer cells tested. Synergy was observed across a range of different dose levels and drug ratios, reducing IC50 dose requirements for erlotinib and miR-34a by up to 46-fold and 13-fold, respectively. Maximal synergy was detected at dosages that provide a high level of cancer cell inhibition beyond the one that is induced by the single agents alone and, thus, is of clinical relevance. The data suggest that a majority of NSCLC and other cancers previously not suited for erlotinib may prove sensitive to the drug when used in combination with a miR-34a-based therapy. PMID:24551227

  10. Diversity of copper(I) complexes showing thermally activated delayed fluorescence: basic photophysical analysis.

    PubMed

    Czerwieniec, Rafał; Yersin, Hartmut

    2015-05-01

    A comparison of three copper(I) compounds [1, Cu(dppb)(pz2Bph2); 2, Cu(pop)(pz2Bph2); 3, Cu(dmp)(phanephos)(+)] that show pronounced thermally activated delayed fluorescence (TADF) at ambient temperature demonstrates a wide diversity of emission behavior. In this study, we focus on compound 1. A computational density functional theory (DFT)/time-dependent DFT approach allows us to predict detailed photophysical properties, while experimental emission studies over a wide temperature range down to T = 1.5 K lead to better insight into the electronic structures even with respect to spin-orbit coupling efficiencies, radiative rates, and zero-field splitting of the triplet state. All three compounds, with emission quantum yields higher than ϕPL = 70%, are potentially well suited as emitters for organic light-emitting diodes (OLEDs) based on the singlet-harvesting mechanism. Interestingly, compound 1 is by far the most attractive one because of a very small energy separation between the lowest excited singlet S1 and triplet T1 state of ΔE(S1-T1) = 370 cm(-1) (46 meV). Such a small value has not been reported so far. It is responsible for the very short decay time of τ(TADF, 300 K) = 3.3 μs. Hence, if focused on the requirements of a short TADF decay time for reduction of the saturation effects in OLEDs, copper(I) complexes are well comparable or even slightly better than the best purely organic TADF emitters. PMID:25894718

  11. SU-8 hollow cantilevers for AFM cell adhesion studies

    NASA Astrophysics Data System (ADS)

    Martinez, Vincent; Behr, Pascal; Drechsler, Ute; Polesel-Maris, Jérôme; Potthoff, Eva; Vörös, Janos; Zambelli, Tomaso

    2016-05-01

    A novel fabrication method was established to produce flexible, transparent, and robust tipless hollow atomic force microscopy (AFM) cantilevers made entirely from SU-8. Channels of 3 μm thickness and several millimeters length were integrated into 12 μm thick and 40 μm wide cantilevers. Connected to a pressure controller, the devices showed high sealing performance with no leakage up to 6 bars. Changing the cantilever lengths from 100 μm to 500 μm among the same wafer allowed the targeting of various spring constants ranging from 0.5 to 80 N m‑1 within a single fabrication run. These hollow polymeric AFM cantilevers were operated in the optical beam deflection configuration. To demonstrate the performance of the device, single-cell force spectroscopy experiments were performed with a single probe detaching in a serial protocol more than 100 Saccharomyces cerevisiae yeast cells from plain glass and glass coated with polydopamine while measuring adhesion forces in the sub-nanoNewton range. SU-8 now offers a new alternative to conventional silicon-based hollow cantilevers with more flexibility in terms of complex geometric design and surface chemistry modification.

  12. Comparison of particle sizes determined with impactor, AFM and SEM

    NASA Astrophysics Data System (ADS)

    Gwaze, Patience; Annegarn, Harold J.; Huth, Joachim; Helas, Günter

    2007-11-01

    Particles size comparisons were made between conventional aerodynamic and mobility sizing techniques and physical geometric sizes measured by high resolution microscopes. Atmospheric particles were collected during the wet and dry seasons in the Amazonian ecosystems. Individual particles deposited on four stages of the MOUDI (Micro-Orifice Uniform Deposition Impactor) were characterised for particle volumes, projected surface diameters and morphologies with an Atomic Force Microscope (AFM) and a Scanning Electron Microscope (SEM). AFM and SEM size distributions were verified against distributions derived from response functions of individual MOUDI stages as specified by Winklmayr et al. [Winklmayr, W., Wang, H.-C., John, W., 1990. Adaptation of the Twomey algorithm to the inversion of cascade impactor data. Aerosol Science and Technology 13, 322-331.]. Particles indicated inherent discrepancies in sizing techniques. Particle volumes were systematically lower than expected by factors of up to 3.6. Differences were attributed to loss of mass, presumably water adsorbed on particles. Losses were high and could not be accounted for by measured humidity growth factors suggesting significant losses of other volatile compounds as well, particularly on particles that were collected during the wet season. Microscopy results showed that for hygroscopic particles, microscopy sizes depend on the relative humidity history of particles before and after sampling. Changes in relative humidity significantly altered particle morphologies. Depending on when changes occur, such losses will bias not only microscopy particle sizes but also impactor mass distributions and number concentrations derived from collected particles.

  13. Nanoscale crystallization of phase change Ge2Sb2Te5 film with AFM lithography.

    PubMed

    Kim, JunHo

    2010-01-01

    We have made nanoindents on Ge(2)Sb(2)Te(5)(GST) films using electric field-assisted atomic force microscope (AFM) lithography. GST shows increase of material density and electric conductivity as it changes from amorphous to crystalline phases. By applying electric field between AFM probe-tip and GST surface, nanoscale crystallization could be induced on tip contact area. As the crystallized GST exhibits increase of material density, that is to say depression of volume, nanoindented surface with crystallization is created on host amorphous GST (a-GST) film. For the AFM lithography, a highly conductive tip, which showed voltage-switching characteristics in current-voltage spectroscopy of GST film, was found to be very suitable for recording and sensing crystallized nanoindents on the GST film. By varying sample bias voltages, we performed nanoscale crystallization, and measured the nanostructured film in AFM conductance-image (C-image) mode and topography-image (T-image) mode, simultaneously. Two types of crystallized wires were fabricated on (a-GST) film. Type-I was sensed in only C-image, whereas Type-II was sensed in both C-image and T-image. These nanowires are discussed in terms of crystallization of GST and sensitivity of current (or topography) sensing. By repeated lithography, larger size of nanoindented wires were also produced, which indicates line-dimension controllability of AFM lithography. PMID:20853405

  14. Elastic modulus, oxidation depth and adhesion force of surface modified polystyrene studied by AFM and XPS

    NASA Astrophysics Data System (ADS)

    Lubarsky, G. V.; Davidson, M. R.; Bradley, R. H.

    2004-06-01

    AFM and XPS have been used to investigate the surface and near-surface properties of polystyrene (PS) substrates which have been subjected to one of three controlled surface modification processes performed in situ in a specially constructed cell. The cell was fitted to a Digital Instruments Nanoscope III AFM measuring head and allowed close control of the gaseous environment and made it possible to UV irradiate the sample during AFM measurements. Treatments were carried out using UV at 184.9 and 253.7 nm wavelengths, in oxygen (UV-ozone), and in nitrogen (UV-only). Polystyrene surfaces were also modified by an exposure to an atmosphere of ozone in the absence of UV (ozone-only). Data show that adhesion force is highest between tip and sample for the UV-ozone exposed surfaces and that the adhesion force increases with sample exposure time. Exposure to UV-only or ozone alone results in lower ultimate adhesion levels with a slower rate of increase with exposure time. Evaluation of Young's modulus for unmodified PS gave a value of 3.37 (±0.52) GPa which agrees well with the textbook value which ranges from 2 to 4 GPa depending on the measurement technique. A 60 s exposure to combined UV-ozone resulted in the formation of a surface layer with a modulus at the surface of 1.25 (±0.19) GPa which increased to 2.5 (±0.37) GPa at a depth of 3.5 nm. The sample exposed for 60 s to UV-only had a Young's modulus of 2.6 (±0.39) GPa but showed no reduced modulus layer at the surface. The modulus of the ozone-only treated material was the least affected with a decrease of around 0.75 GPa with some evidence for a surface layer with a modulus ranging from 2.6 (±0.39) GPa at the surface to 3.2 (±0.48) GPa at a depth of 2 nm. XPS analyses reveal that the oxygen content of the modified surfaces decreased in the order of UV-ozone > UV > ozone with approximate concentrations for a 60 s exposure of 5, 0.7 and 0.05 at.%, respectively. Friction force imaging of patterned surfaces

  15. Enabling accurate gate profile control with inline 3D-AFM

    NASA Astrophysics Data System (ADS)

    Bao, Tianming; Lopez, Andrew; Dawson, Dean

    2009-05-01

    The logic and memory semiconductor device technology strives to follow the aggressive ITRS roadmap. The ITRS calls for increased 3D metrology to meet the demand for tighter process control at 45nm and 32nm nodes. In particular, gate engineering has advanced to a level where conventional metrology by CD-SEM and optical scatterometry (OCD) faces fundamental limitations without involvement of 3D atomic force microscope (3D-AFM or CD-AFM). This paper reports recent progress in 3D-AFM to address the metrology need to control gate dimension in MOSFET transistor formation. 3D-AFM metrology measures the gate electrode at post-etch with the lowest measurement uncertainty for critical gate geometry, including linewidth, sidewall profile, sidewall angle (SWA), line width roughness (LWR), and line edge roughness (LER). 3D-AFM enables accurate gate profile control in three types of metrology applications: reference metrology to validate CD-SEM and OCD, inline depth or 3D monitoring, or replacing TEM for 3D characterization for engineering analysis.

  16. BOREAS AFM-06 Mean Temperature Profile Data

    NASA Technical Reports Server (NTRS)

    Wilczak, James; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-6 team from the National Oceanic and Atmospheric Adminsitration/Environment Technology Laboratory (NOAA/ETL) operated a 915-MHz wind/Radio Acoustic Sounding System (RASS) profiler system in the Southern Study Area (SSA) near the Old Jack Pine (OJP) tower from 21 May 1994 to 20 Sep 1994. The data set provides temperature profiles at 15 heights, containing the variables of virtual temperature, vertical velocity, the speed of sound, and w-bar. The data are stored in tabular ASCII files. The mean temperature profile data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  17. BOREAS AFM-6 Boundary Layer Height Data

    NASA Technical Reports Server (NTRS)

    Wilczak, James; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-6 team from National Oceanic and Atmospheric Adminsitration/Environment Technology Laboratory (NOAA/ETL) operated a 915-MHz wind/Radio Acoustic Sounding System (RASS) profiler system in the Southern Study Area (SSA) near the Old Jack Pine (OJP) site. This data set provides boundary layer height information over the site. The data were collected from 21 May 1994 to 20 Sep 1994 and are stored in tabular ASCII files. The boundary layer height data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  18. BOREAS AFM-06 Mean Wind Profile Data

    NASA Technical Reports Server (NTRS)

    Wilczak, James; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-6 team from the National Oceanic and Atmospheric Administration/Environment Technology Laboratory (NOAA/ETL) operated a 915-MHz wind/Radio Acoustic Sounding System (RASS) profiler system in the Southern Study Area (SSA) near the Old Jack Pine (OJP) tower from 21 May 1994 to 20 Sep 1994. The data set provides wind profiles at 38 heights, containing the variables of wind speed; wind direction; and the u-, v-, and w-components of the total wind. The data are stored in tabular ASCII files. The mean wind profile data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  19. Adhesion forces between AFM tips and superficial dentin surfaces.

    PubMed

    Pelin, I M; Piednoir, A; Machon, D; Farge, P; Pirat, C; Ramos, S M M

    2012-06-15

    In this work, we study the adhesion forces between atomic force microscopy (AFM) tips and superficial dentin etched with phosphoric acid. Initially, we quantitatively analyze the effect of acid etching on the surface heterogeneity and the surface roughness, two parameters that play a key role in the adhesion phenomenon. From a statistical study of the force-distance curves, we determine the average adhesion forces on the processed substrates. Our results show that the average adhesion forces, measured in water, increase linearly with the acid exposure time. The highest values of such forces are ascribed to the high density of collagen fibers on the etched surfaces. The individual contribution of exposed collagen fibrils to the adhesion force is highlighted. We also discuss in this paper the influence of the environmental medium (water/air) in the adhesion measurements. We show that the weak forces involved require working in the aqueous medium. PMID:22472512

  20. Visualization of internal structure of banana starch granule through AFM.

    PubMed

    Peroni-Okita, Fernanda H G; Gunning, A Patrick; Kirby, Andrew; Simão, Renata A; Soares, Claudinéia A; Cordenunsi, Beatriz R

    2015-09-01

    Atomic force microscopy (AFM) is a high resolution technique for studying the external and internal structures of starch granules. For this purpose granules were isolated from bananas and embedded in a non-penetrating resin. To achieve image contrast of the ultrastructure, the face of the cut blocks were wetted in steam and force modulation mode imaging was used. Images of starch from green bananas showed large variation of height across the granule due to a locational specific absorption of water and swelling of amorphous regions; the data reveal that the center of the granules are structurally different and have different viscoelastic properties. Images of starches from ripe bananas showed an even greater different level of organization: absence of growth rings around the hilum; the central region of the granule is richer in amylose; very porous surface with round shaped dark structures; the size of blocklets are larger than the green fruits. PMID:26005137

  1. Multiparametric high-resolution imaging of native proteins by force-distance curve-based AFM.

    PubMed

    Pfreundschuh, Moritz; Martinez-Martin, David; Mulvihill, Estefania; Wegmann, Susanne; Muller, Daniel J

    2014-05-01

    A current challenge in the life sciences is to understand how the properties of individual molecular machines adjust in order to meet the functional requirements of the cell. Recent developments in force-distance (FD) curve-based atomic force microscopy (FD-based AFM) enable researchers to combine sub-nanometer imaging with quantitative mapping of physical, chemical and biological properties. Here we present a protocol to apply FD-based AFM to the multiparametric imaging of native proteins under physiological conditions. We describe procedures for experimental FD-based AFM setup, high-resolution imaging of proteins in the native unperturbed state with simultaneous quantitative mapping of multiple parameters, and data interpretation and analysis. The protocol, which can be completed in 1-3 d, enables researchers to image proteins and protein complexes in the native unperturbed state and to simultaneously map their biophysical and biochemical properties at sub-nanometer resolution. PMID:24743419

  2. AFM and XPA data on structural features and properties of films and powders based on naphthalocyanines

    NASA Astrophysics Data System (ADS)

    Ramonova, A. G.; Nakusov, A. T.; Sozanov, V. G.; Bliev, A. P.; Magkoev, T. T.

    2015-06-01

    The template synthesis is used to produce powders and films based on naphthalocyanines and the corresponding metal complexes (Pc, CuPc, and NiPc). The atomic-force microscopy (AFM) and X-ray phase analysis (XPA) are employed in the study of structure and phase of fine powders and nanostructured films. The AFM data are used to determine the orientation and density of primary particles packed in the film. The XPA method is used to study the chemical composition and crystal structure of the synthesized samples. The regularities related to the structural features that affect the electrophysical properties of the films under study are revealed.

  3. Aflatoxin M1 Concentration in Various Dairy Products: Evidence for Biologically Reduced Amount of AFM1 in Yoghurt

    PubMed Central

    RAHIMIRAD, Amir; MAALEKINEJAD, Hassan; OSTADI, Araz; YEGANEH, Samal; FAHIMI, Samira

    2014-01-01

    Abstract Background Aflatoxin M1 (AFM1), a carcinogenic substance is found in milk and dairy products. The effect of season and type of dairy products on AFMi level in northern Iran was investigated in this study. Methods Three hundred samples (each season 75 samples) including raw and pasteurized milk, yoghurt, cheese, and cream samples were collected from three distinct milk producing farms. The samples were subjected to chemical and solid phase extractions and were analyzed by using HPLC technique. Recovery percentages, limit of detection and limit of quantification values were determined. Results Seventy percent and 98% were the minimum and maximum recoveries for cheese and raw milk, respectively and 0.021 and 0.063 ppb were the limit of detection and limit of quantification values for AFM1. We found that in autumn and winter the highest level (0.121 ppb) of AFM1 in cheese and cream samples and failed to detect any AFM1 in spring samples. Interestingly, our data showed that the yoghurt samples had the lowest level of AFM1 in all seasons. Conclusion There are significant differences between the AFM1 levels in dairy products in various seasons and also various types of products, suggesting spring and summer yoghurt samples as the safest products from AFM1 level point of view. PMID:25927044

  4. AFM-assisted fabrication of thiol SAM pattern with alternating quantified surface potential

    PubMed Central

    2011-01-01

    Thiol self-assembled monolayers (SAMs) are widely used in many nano- and bio-technology applications. We report a new approach to create and characterize a thiol SAMs micropattern with alternating charges on a flat gold-coated substrate using atomic force microscopy (AFM) and Kelvin probe force microscopy (KPFM). We produced SAMs-patterns made of alternating positively charged, negatively charged, and hydrophobic-terminated thiols by an automated AFM-assisted manipulation, or nanografting. We show that these thiol patterns possess only small topographical differences as revealed by AFM, and distinguished differences in surface potential (20-50 mV), revealed by KPFM. The pattern can be helpful in the development of biosensor technologies, specifically for selective binding of biomolecules based on charge and hydrophobicity, and serve as a model for creating surfaces with quantified alternating surface potential distribution. PMID:21711703

  5. A sub-50 nm three-step height sample for AFM calibration

    NASA Astrophysics Data System (ADS)

    Yang, Shuming; Li, Changsheng; Wang, Chenying; Jiang, Zhuangde

    2014-12-01

    In this paper, a sub-50 nm three-step height sample was made for vertical calibration of atomic force microscopy (AFM) and a new step height evaluation algorithm based on polynomial fitting is discussed. The influences of AFM artefacts such as particles, image bow and high-order errors on step height were studied. The experimental results showed that the polynomial order p2 and threshold t were not critical factors. However, the increment Δh and the polynomial order p used in the calculation of optimal shifting distance were important and must be carefully considered. Δh = 0.1 nm and p ≥ 4 were determined to get a stable step height. The sample had small roughness and good uniformity. It has the potential to serve as a high quality step height standard sample for AFM calibration.

  6. Review and perspectives of AFM application on the study of deformable drop/bubble interactions.

    PubMed

    Wang, Wei; Li, Kai; Ma, Mengyu; Jin, Hang; Angeli, Panagiota; Gong, Jing

    2015-11-01

    The applications of Atomic Force Microscopy (AFM) on the study of dynamic interactions and film drainage between deformable bodies dispersed in aqueous solutions are reviewed in this article. Novel experimental designs and recent advances in experimental methodologies are presented, which show the advantage of using AFM as a tool for probing colloidal interactions. The effects of both DLVO and non-DLVO forces on the colloid stabilization mechanism are discussed. Good agreement is found between the force - drop/bubble deformation behaviour revealed by AFM measurements and the theoretical modeling of film drainage process, giving a convincing explanation of the occurrence of certain phenomenon. However, the behaviour and shape of deformable drops as they approach or retract is still not well resolved. In addition, when surfactants are present further research is needed on the absorption of surfactant molecules into the interfaces, their mobility and the effects on interfacial film properties. PMID:26344865

  7. Mapping site-specific endonuclease binding to DNA by direct imaging with AFM

    SciTech Connect

    Allison, D.P.; Thundat, T.; Doktycz, M.J.; Kerper, P.S.; Warmack, R.J.; Modrich, P.; Isfort, R.J.

    1995-12-31

    Physical mapping of DNA can be accomplished by direct AFM imaging of site specific proteins bound to DNA molecules. Using Gln-111, a mutant of EcoRI endonuclease with a specific affinity for EcoRI sites 1,000 times greater than wild type enzyme but with cleavage rate constants reduced by a factor of 10{sup 4}, the authors demonstrate site-specific mapping by direct AFM imaging. Images are presented showing specific-site binding of Gln-111 to plasmids having either one (pBS{sup +}) or two (pMP{sup 32}) EcoRI sites. Identification of the Gln-111/DNA complex is greatly enhanced by biotinylation of the complex followed by reaction with streptavidin gold prior to imaging. Image enhancement coupled with improvements in the preparation techniques for imaging large DNA molecules, such as lambda DNA (47 kb), has the potential to contribute to direct AFM restriction mapping of cosmid-sized genomic DNAs.

  8. AFM CHARACTERIZATION OF RAMAN LASER INDUCED DAMAGE ON CDZNTECRYSTAL SURFACES

    SciTech Connect

    Teague, L.; Duff, M.

    2008-10-07

    High quality CdZnTe (or CZT) crystals have the potential for use in room temperature gamma-ray and X-ray spectrometers. Over the last decade, the methods for growing high quality CZT have improved the quality of the produced crystals however there are material features that can influence the performance of these materials as radiation detectors. The presence of structural heterogeneities within the crystals, such as twinning, pipes, grain boundaries (polycrystallinity), and secondary phases (SPs) can have an impact on the detector performance. There is considerable need for reliable and reproducible characterization methods for the measurement of crystal quality. With improvements in material characterization and synthesis, these crystals may become suitable for widespread use in gamma radiation detection. Characterization techniques currently utilized to test for quality and/or to predict performance of the crystal as a gamma-ray detector include infrared (IR) transmission imaging, synchrotron X-ray topography, photoluminescence spectroscopy, transmission electron microscopy (TEM), atomic force microscopy (AFM) and Raman spectroscopy. In some cases, damage caused by characterization methods can have deleterious effects on the crystal performance. The availability of non-destructive analysis techniques is essential to validate a crystal's quality and its ability to be used for either qualitative or quantitative gamma-ray or X-ray detection. The work presented herein discusses the damage that occurs during characterization of the CZT surface by a laser during Raman spectroscopy, even at minimal laser powers. Previous Raman studies have shown that the localized annealing from tightly focused, low powered lasers results in areas of higher Te concentration on the CZT surface. This type of laser damage on the surface resulted in decreased detector performance which was most likely due to increased leakage current caused by areas of higher Te concentration. In this study

  9. Atomic Force Microscopy for Soil Analysis

    NASA Astrophysics Data System (ADS)

    gazze, andrea; doerr, stefan; dudley, ed; hallin, ingrid; matthews, peter; quinn, gerry; van keulen, geertje; francis, lewis

    2016-04-01

    Atomic Force Microscopy (AFM) is a high-resolution surface-sensitive technique, which provides 3-dimensional topographical information and material properties of both stiff and soft samples in their natural environments. Traditionally AFM has been applied to samples with low roughness: hence its use for soil analysis has been very limited so far. Here we report the optimization settings required for a standardization of high-resolution and artefact-free analysis of natural soil with AFM: soil immobilization, AFM probe selection, artefact recognition and minimization. Beyond topography, AFM can be used in a spectroscopic mode to evaluate nanomechanical properties, such as soil viscosity, stiffness, and deformation. In this regards, Bruker PeakForce-Quantitative NanoMechanical (QNM) AFM provides a fast and convenient way to extract physical properties from AFM force curves in real-time to obtain soil nanomechanical properties. Here we show for the first time the ability of AFM to describe the topography of natural soil at nanometre resolution, with observation of micro-components, such as clays, and of nano-structures, possibly of biotic origin, the visualization of which would prove difficult with other instrumentations. Finally, nanomechanical profiling has been applied to different wettability states in soil and the respective physical patterns are discussed.

  10. Particle deformation induced by AFM tapping under different setpoint voltages

    NASA Astrophysics Data System (ADS)

    Wu, Chung-Lin; Farkas, Natalia; Dagata, John A.; He, Bo-Ching; Fu, Wei-En

    2014-09-01

    The measured height of polystyrene nanoparticles varies with setpoint voltage during atomic force microscopy (AFM) tapping-mode imaging. Nanoparticle height was strongly influenced by the magnitude of the deformation caused by the AFM tapping forces, which was determined by the setpoint voltage. This influence quantity was studied by controlling the operational AFM setpoint voltage. A test sample consisting of well-dispersed 60-nm polystyrene and gold nanoparticles co-adsorbed on poly-l-lysine-coated mica was studied in this research. Gold nanoparticles have not only better mechanical property than polystyrene nanoparticles, but also obvious facets in AFM phase image. By using this sample of mixed nanoparticles, it allows us to confirm that the deformation resulted from the effect of setpoint voltage, not noise. In tapping mode, the deformation of polystyrene nanoparticles increased with decreasing setpoint voltage. Similar behavior was observed with both open loop and closed loop AFM instruments.

  11. Study of the sensitivity and resonant frequency of the torsional modes of an AFM cantilever with a sidewall probe based on a nonlocal elasticity theory.

    PubMed

    Abbasi, Mohammad; Karami Mohammadi, Ardeshir

    2015-05-01

    A relationship based on a nonlocal elasticity theory is developed to investigate the torsional sensitivity and resonant frequency of an atomic force microscope (AFM) with assembled cantilever probe (ACP). This ACP comprises a horizontal cantilever and a vertical extension, and a tip located at the free end of the extension, which makes the AFM capable of topography at sidewalls of microstructures. First, the governing differential equations of motion and boundary conditions for dynamic analysis are obtained by a combination of the basic equations of nonlocal elasticity theory and Hamilton's principle. Afterward, a closed-form expression for the sensitivity of vibration modes has been obtained using the relationship between the resonant frequency and contact stiffness of cantilever and sample. These analysis accounts for a better representation of the torsional behavior of an AFM with sidewall probe where the small-scale effect are significant. The results of the proposed model are compared with those of classical beam theory. The results show that the sensitivities and resonant frequencies of ACP predicted by the nonlocal elasticity theory are smaller than those obtained by the classical beam theory. PMID:25755027

  12. Contrast inversion in nc-AFM on Si(111)7×7 due to short-range electrostatic interactions

    NASA Astrophysics Data System (ADS)

    Guggisberg, M.; Pfeiffer, O.; Schär, S.; Barwich, V.; Bammerlin, M.; Loppacher, C.; Bennewitz, R.; Baratoff, A.; Meyer, E.

    Contrast inversion in nc-AFM on Si(111)7×7 is observed at positive sample bias. Corner holes appear as protrusions and adatoms as holes. The application of negative bias voltages causes drastic changes in the atomic constrast. Frequency shift vs distance curves show evidence of short-range, voltage-dependent forces. These observations indicate that short-range electrostatic forces are important for atomic-scale contrast in nc-AFM.

  13. Localized electrografting of vinylic monomers on a conducting substrate by means of an integrated electrochemical AFM probe.

    PubMed

    Ghorbal, Achraf; Grisotto, Federico; Charlier, Julienne; Palacin, Serge; Goyer, Cédric; Demaille, Christophe

    2009-05-11

    Combinations of scanning electrochemical microscopy (SECM) with other scanning probe microscopy techniques, such as atomic force microscopy (AFM), show great promise for directing localized modification, which is of great interest for chemical, biochemical and technical applications. Herein, an atomic force scanning electrochemical microscope is used as a new electrochemical lithographic tool (L-AFM-SECM) to locally electrograft, with submicrometer resolution, a non-conducting organic coating on a conducting substrate. PMID:19308970

  14. Microrheology using a custom-made AFM

    NASA Astrophysics Data System (ADS)

    Kosgodagan Acharige, Sebastien; Benzaquen, Michael; Steinberger, Audrey

    In the past few years, a new method was developed to measure local properties of liquids (X. Xiong et al., Phys. Rev. E 80, 2009). This method consists of gluing a micron-sized glass fiber at the tip of an AFM cantilever and probing the liquid with it. In ENS Lyon, this method was perfected (C. Devailly et al., EPL, 106 5, 2014) with the help of an interferometer developped in the same laboratory (L. Bellon et al., Opt. Commun. 207 49, 2002 and P. Paolino et al., Rev. Sci. Instrum. 84, 2013), which background noise can reach 10-14 m /√{ Hz } . This method allows us to measure a wide range of viscosities (1 mPa . s to 500 mPa . s) of transparent and opaque fluids using a small sample volume ( 5 mL). In this presentation, I will briefly describe the interferometer developped in ENS Lyon, then explain precisely the microrheology measurements and then compare the experimental results to a model developped by M. Benzaquen. This work is supported financially by the ANR project NANOFLUIDYN (Grant Number ANR-13-BS10-0009).

  15. Manufacturing process of nanofluidics using afm probe

    NASA Astrophysics Data System (ADS)

    Karingula, Varun Kumar

    A new process for fabricating a nano fluidic device that can be used in medical application is developed and demonstrated. Nano channels are fabricated using a nano tip in indentation mode on AFM (Atomic Force Microscopy). The nano channels are integrated between the micro channels and act as a filter to separate biomolecules. Nano channels of 4 to7 m in length, 80nm in width, and at varying depths from 100nm to 850 nm allow the resulting device to separate selected groups of lysosomes and other viruses. Sharply developed vertical micro channels are produced from a deep reaction ion etching followed by deposition of different materials, such as gold and polymers, on the top surface, allowing the study of alternative ways of manufacturing a nanofluidic device. PDMS (Polydimethylsiloxane) bonding is performed to close the top surface of the device. An experimental setup is used to test and validate the device by pouring fluid through the channels. A detailed cost evaluation is conducted to compare the economical merits of the proposed process. It is shown that there is a 47:7% manufacturing time savings and a 60:6% manufacturing cost savings.

  16. BOREAS AFM-07 SRC Surface Meteorological Data

    NASA Technical Reports Server (NTRS)

    Osborne, Heather; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Young, Kim; Wittrock, Virginia; Shewchuck, Stan; Smith, David E. (Technical Monitor)

    2000-01-01

    The Saskatchewan Research Council (SRC) collected surface meteorological and radiation data from December 1993 until December 1996. The data set comprises Suite A (meteorological and energy balance measurements) and Suite B (diffuse solar and longwave measurements) components. Suite A measurements were taken at each of ten sites, and Suite B measurements were made at five of the Suite A sites. The data cover an approximate area of 500 km (North-South) by 1000 km (East-West) (a large portion of northern Manitoba and northern Saskatchewan). The measurement network was designed to provide researchers with a sufficient record of near-surface meteorological and radiation measurements. The data are provided in tabular ASCII files, and were collected by Aircraft Flux and Meteorology (AFM)-7. The surface meteorological and radiation data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  17. Structure and Dynamics of Four-way DNA Junctions Dynamics Revealed by Single-Molecule AFM

    NASA Astrophysics Data System (ADS)

    Lyubchenko, Yuri

    2004-03-01

    For-way DNA junctions (Holliday junctions) are critical intermediates for homologous, site-specific recombination, DNA repair and replication. A wealth of structural information is available for immobile four-way junctions. However, these data cannot give the answer on the mechanism of branch migration, the major property of the Holliday junction. Two models for the mechanism of branch migration were suggested. According to the early model of Alberts-Meselson-Sigal, exchanging DNA strands around the junction remain parallel during branch migration. Kinetic studies of branch migration suggest an alternative model in which the junction adopts an extended conformation. We tested these models using a Holliday junction undergoing branch migration. Note that it was the first time when the dynamics of the four-way DNA junction capable of branch migration had been analyzed. We applied time-lapse atomic force microscopy (single molecule dynamics AFM) to image directly loosely bound DNA at liquid-surface interface. These experiments show that mobile Holliday junctions adopt an unfolded conformation during branch migration. This conformation of the junction remains unchanged until strand separation. The data obtained support the model for branch migration having the extended conformation of the Holliday junction. The analysis of the Holliday junctions dynamics at conditions limiting branch migration revealed a broad movement of the arms suggesting that the range of mobility of these junctions is much wider than detected before. Further applications of the time-lapse AFM approach in attempt to resolve the subpopulations of the junctions conformers and the prospects for analyses of dynamics of complex biological systems will be discussed.

  18. Probing of miniPEGγ-PNA-DNA Hybrid Duplex Stability with AFM Force Spectroscopy

    PubMed Central

    Dutta, Samrat; Armitage, Bruce A.; Lyubchenko, Yuri L.

    2016-01-01

    Peptide nucleic acids (PNA) are synthetic polymers, the neutral peptide backbone of which provides elevated stability to PNA-PNA and PNA-DNA hybrid duplex. It was demonstrated that incorporation of diethylene glycol (miniPEG) at the γ position of the peptide backbone increased the thermal stability of the hybrid duplexes (Sahu, B. et al. (2011) Journal of Organic Chemistry 76, 5614-5627). Here, we applied atomic force microscopy (AFM) based single molecule force spectroscopy (SMFS) and dynamic force spectroscopy (DFS) to test the strength and stability of the hybrid 10 bp duplex. This hybrid duplex consisted of miniPEGγ-PNA and DNA of the same length (γMPPNA-DNA), which we compared to a DNA duplex with a homologous sequence. AFM force spectroscopy data obtained at the same conditions showed that γMPPNA-DNA hybrid is more stable than the DNA counterpart, 65 ± 15 pN vs 47 ± 15 pN, respectively. The DFS measurements performed in a range of pulling speeds analyzed in the framework of the Bell-Evans approach yielded a dissociation constant, koff ∼ 0.030 ± 0.01 sec-1 for γMPPNA-DNA hybrid duplex vs. 0.375 ± 0.18 sec-1 for the DNA-DNA duplex suggesting that the hybrid duplex is much more stable. Correlating the high affinity of γMPPNA-DNA to slow dissociation kinetics is consistent with prior bulk characterization by surface plasmon resonance. Given the growing interest in γMPPNA as well as other synthetic DNA analogues, the use of single molecule experiments along with computational analysis of force spectroscopy data will provide direct characterization of various modifications as well as higher order structures such as triplexes and quadruplexes. PMID:26898903

  19. Probing of miniPEGγ-PNA-DNA Hybrid Duplex Stability with AFM Force Spectroscopy.

    PubMed

    Dutta, Samrat; Armitage, Bruce A; Lyubchenko, Yuri L

    2016-03-15

    Peptide nucleic acids (PNA) are synthetic polymers, the neutral peptide backbone of which provides elevated stability to PNA-PNA and PNA-DNA hybrid duplexes. It was demonstrated that incorporation of diethylene glycol (miniPEG) at the γ position of the peptide backbone increased the thermal stability of the hybrid duplexes (Sahu, B. et al. J. Org. Chem. 2011, 76, 5614-5627). Here, we applied atomic force microscopy (AFM) based single molecule force spectroscopy and dynamic force spectroscopy (DFS) to test the strength and stability of the hybrid 10 bp duplex. This hybrid duplex consisted of miniPEGγ-PNA and DNA of the same length (γ(MP)PNA-DNA), which we compared to a DNA duplex with a homologous sequence. AFM force spectroscopy data obtained at the same conditions showed that the γ(MP)PNA-DNA hybrid is more stable than the DNA counterpart, 65 ± 15 pN vs 47 ± 15 pN, respectively. The DFS measurements performed in a range of pulling speeds analyzed in the framework of the Bell-Evans approach yielded a dissociation constant, koff ≈ 0.030 ± 0.01 s⁻¹ for γ(MP)PNA-DNA hybrid duplex vs 0.375 ± 0.18 s⁻¹ for the DNA-DNA duplex suggesting that the hybrid duplex is much more stable. Correlating the high affinity of γ(MP)PNA-DNA to slow dissociation kinetics is consistent with prior bulk characterization by surface plasmon resonance. Given the growing interest in γ(MP)PNA as well as other synthetic DNA analogues, the use of single molecule experiments along with computational analysis of force spectroscopy data will provide direct characterization of various modifications as well as higher order structures such as triplexes and quadruplexes. PMID:26898903

  20. "The Show"

    ERIC Educational Resources Information Center

    Gehring, John

    2004-01-01

    For the past 16 years, the blue-collar city of Huntington, West Virginia, has rolled out the red carpet to welcome young wrestlers and their families as old friends. They have come to town chasing the same dream for a spot in what many of them call "The Show". For three days, under the lights of an arena packed with 5,000 fans, the state's best…

  1. Segmental calibration for commercial AFM in vertical direction

    NASA Astrophysics Data System (ADS)

    Shi, Yushu; Gao, Sitian; Lu, Mingzhen; Li, Wei; Xu, Xuefang

    2013-01-01

    Atomic force microscopy (AFM) is most widely applied in scientific research and industrial production. AFM is a scanning probe imaging and measuring device, useful for physical and chemical studies. Depends on its basic structure, microscopic surface pattern can be measured and captured by mechanically scanning. Its vertical and horizon resolution can reach to 0.01nm and 0.1nm. Commonly the measurement values of commercial AFM are directly from scanning piezoelectric tube, so that it not a traceable value. In order to solve the problem of commercial AFM's traceability, step height standard references are applied to calibrate the piezoelectric ceramic housing in scanning tube. All of the serial of step height standard references, covering the commercial AFM vertical scale, are calibrated by Metrology AFM developed by National Institute of Metrology (NIM), China. Three interferometers have been assembled in its XYZ axis, therefore the measurement value can directly trace to laser wavelength. Because of nonlinear characteristic of PZT, the method of segmental calibration is proposed. The measurement scale can be divided into several subsections corresponding to the calibrated values of the series of step height standards references. By this method the accuracy of measurements can be ensured in each segment measurement scale and the calibration level of the whole instrument can be promoted. In order to get a standard step shape by commercial AFM, substrate removal method is applied to deal with the bow shape problem.

  2. Nanomechanical probing of soft matter through hydrophobic AFM tips fabricated by two-photon polymerization

    NASA Astrophysics Data System (ADS)

    Suriano, Raffaella; Zandrini, Tommaso; De Marco, Carmela; Osellame, Roberto; Turri, Stefano; Bragheri, Francesca

    2016-04-01

    Atomic force microscopy (AFM) nanoindentation of soft materials is a powerful tool for probing mechanical properties of biomaterials. Though many results have been reported in this field over the last decade, adhesion forces between the tip and the sample hinder the elastic modulus measurement when hydrophilic soft samples are investigated. Here, two-photon polymerization (2PP) technology was used to fabricate hydrophobic perfluoropolyether-based AFM tips. The hydrophobic 2PP tips allowed us to overcome the limitations of commercial and functionalized tips as well as to successfully measure the elastic modulus of medically relevant soft materials in air. Our results obtained in the characterization of poly(dimethyl siloxane) and polyethylene glycol hydrogels showed lower adhesion forces over a larger measurement range when compared to measurements performed with commercial tips. The elastic moduli measured by means of hydrophobic 2PP AFM tips were also found to be comparable to those obtained using conventional techniques for macroscopic samples. We successfully showed that the hydrophobic AFM tips developed by this highly versatile technology enable the study of mechanical properties of soft matter, benefiting from reduced sample-tip interactions, and a custom-made shape and dimension of the tips.

  3. Nanomechanical probing of soft matter through hydrophobic AFM tips fabricated by two-photon polymerization.

    PubMed

    Suriano, Raffaella; Zandrini, Tommaso; De Marco, Carmela; Osellame, Roberto; Turri, Stefano; Bragheri, Francesca

    2016-04-15

    Atomic force microscopy (AFM) nanoindentation of soft materials is a powerful tool for probing mechanical properties of biomaterials. Though many results have been reported in this field over the last decade, adhesion forces between the tip and the sample hinder the elastic modulus measurement when hydrophilic soft samples are investigated. Here, two-photon polymerization (2PP) technology was used to fabricate hydrophobic perfluoropolyether-based AFM tips. The hydrophobic 2PP tips allowed us to overcome the limitations of commercial and functionalized tips as well as to successfully measure the elastic modulus of medically relevant soft materials in air. Our results obtained in the characterization of poly(dimethyl siloxane) and polyethylene glycol hydrogels showed lower adhesion forces over a larger measurement range when compared to measurements performed with commercial tips. The elastic moduli measured by means of hydrophobic 2PP AFM tips were also found to be comparable to those obtained using conventional techniques for macroscopic samples. We successfully showed that the hydrophobic AFM tips developed by this highly versatile technology enable the study of mechanical properties of soft matter, benefiting from reduced sample-tip interactions, and a custom-made shape and dimension of the tips. PMID:26926558

  4. Nucleotide sequence analysis of Aleutian mink disease parvovirus shows that multiple virus types are present in infected mink.

    PubMed Central

    Gottschalck, E; Alexandersen, S; Cohn, A; Poulsen, L A; Bloom, M E; Aasted, B

    1991-01-01

    Different isolates of Aleutian mink disease parvovirus (ADV) were cloned and nucleotide sequenced. Analysis of individual clones from two in vivo-derived isolates of high virulence indicated that more than one type of ADV DNA were present in each of these isolates. Analysis of several clones from two preparations of a cell culture-adapted isolate of low virulence showed the presence of only one type of ADV DNA. We also describe the nucleotide sequence from map units 44 to 88 of a new type of ADV DNA. The new type of ADV DNA is compared with the previously published ADV sequences, to which it shows 95% homology. These findings indicate that ADV, a single-stranded DNA virus, has a considerable degree of variability and that several virus types can be present simultaneously in an infected animal. PMID:1649336

  5. Dynamics of the nanoneedle probe in trolling mode AFM.

    PubMed

    Abdi, Ahmad; Pishkenari, Hossein Nejat; Keramati, Ramtin; Minary-Jolandan, Majid

    2015-05-22

    Atomic force microscopy (AFM), as an indispensable tool for nanoscale characterization, presents major drawbacks for operation in a liquid environment arising from the large hydrodynamic drag on the vibrating cantilever. The newly introduced 'Trolling mode' (TR-mode) AFM resolves this complication by using a specialized nanoneedle cantilever that keeps the cantilever outside of the liquid. Herein, a mechanical model with a lumped mass was developed to capture the dynamics of such a cantilever with a nanoneedle tip. This new developed model was applied to investigate the effects of the needle-liquid interface on the performance of the AFM, including the imaging capability in liquid. PMID:25915451

  6. AFM Studies of Conformational Changes in Proteins and Peptides

    NASA Astrophysics Data System (ADS)

    Ploscariu, Nicoleta; Sukthankar, Pinakin; Tomich, John; Szoszkiewicz, Robert

    2015-03-01

    Here, we present estimates of molecular stiffness and mechanical energy dissipation factors for some examples of proteins and peptides. The results are obtained from AFM force spectroscopy measurements. To determine molecular stiffness and mechanical energy dissipation factors we developed a model based on measuring several resonance frequencies of an AFM cantilever in contact with either single protein molecule or peptides adsorbed on arbitrary surface. We used compliant AFM cantilevers with a small aspect ratio - a ratio of length to width - in air and in liquid, including biologically relevant phosphate buffered saline medium. Department of Physics.

  7. Combined strategies for optimal detection of the contact point in AFM force-indentation curves obtained on thin samples and adherent cells.

    PubMed

    Gavara, Núria

    2016-01-01

    Atomic Force Microscopy (AFM) is a widely used tool to study cell mechanics. Current AFM setups perform high-throughput probing of living cells, generating large amounts of force-indentations curves that are subsequently analysed using a contact-mechanics model. Here we present several algorithms to detect the contact point in force-indentation curves, a crucial step to achieve fully-automated analysis of AFM-generated data. We quantify and rank the performance of our algorithms by analysing a thousand force-indentation curves obtained on thin soft homogeneous hydrogels, which mimic the stiffness and topographical profile of adherent cells. We take advantage of the fact that all the proposed algorithms are based on sequential search strategies, and show that a combination of them yields the most accurate and unbiased results. Finally, we also observe improved performance when force-indentation curves obtained on adherent cells are analysed using our combined strategy, as compared to the classical algorithm used in the majority of previous cell mechanics studies. PMID:26891762

  8. Combined strategies for optimal detection of the contact point in AFM force-indentation curves obtained on thin samples and adherent cells

    PubMed Central

    Gavara, Núria

    2016-01-01

    Atomic Force Microscopy (AFM) is a widely used tool to study cell mechanics. Current AFM setups perform high-throughput probing of living cells, generating large amounts of force-indentations curves that are subsequently analysed using a contact-mechanics model. Here we present several algorithms to detect the contact point in force-indentation curves, a crucial step to achieve fully-automated analysis of AFM-generated data. We quantify and rank the performance of our algorithms by analysing a thousand force-indentation curves obtained on thin soft homogeneous hydrogels, which mimic the stiffness and topographical profile of adherent cells. We take advantage of the fact that all the proposed algorithms are based on sequential search strategies, and show that a combination of them yields the most accurate and unbiased results. Finally, we also observe improved performance when force-indentation curves obtained on adherent cells are analysed using our combined strategy, as compared to the classical algorithm used in the majority of previous cell mechanics studies. PMID:26891762

  9. Combined strategies for optimal detection of the contact point in AFM force-indentation curves obtained on thin samples and adherent cells

    NASA Astrophysics Data System (ADS)

    Gavara, Núria

    2016-02-01

    Atomic Force Microscopy (AFM) is a widely used tool to study cell mechanics. Current AFM setups perform high-throughput probing of living cells, generating large amounts of force-indentations curves that are subsequently analysed using a contact-mechanics model. Here we present several algorithms to detect the contact point in force-indentation curves, a crucial step to achieve fully-automated analysis of AFM-generated data. We quantify and rank the performance of our algorithms by analysing a thousand force-indentation curves obtained on thin soft homogeneous hydrogels, which mimic the stiffness and topographical profile of adherent cells. We take advantage of the fact that all the proposed algorithms are based on sequential search strategies, and show that a combination of them yields the most accurate and unbiased results. Finally, we also observe improved performance when force-indentation curves obtained on adherent cells are analysed using our combined strategy, as compared to the classical algorithm used in the majority of previous cell mechanics studies.

  10. Static and Dynamic Aspects of Surfactant Surface Aggregates studied by AFM

    NASA Astrophysics Data System (ADS)

    Schniepp, Hannes; Saville, Dudley; Aksay, Ilhan

    2006-03-01

    Using AFM, we show that surfactants form micellar aggregates of varying morphology, depending on the surface structure. While all previous studies were limited to atomically flat substrates, we achieve imaging the micelles on rough gold. By gradually annealing these surfaces, we show the influence of roughness on the aggregate structures. For crystalline gold (111), aligned, hemi-cylindrical micelles that recognize the symmetry axes of the gold lattice are found. With increasing roughness, the degree of organization of the aggregates decreases. We also show that the micellar pattern on HOPG and gold(111) surfaces changes with time and responds to perturbations in a self-healing way. Our results suggest that this organization happens at the molecular scale. Theoretical analysis for HOPG, however, show that the micelle orientation cannot be explained on the molecular level, but the anisotropic van der Waals interaction between micelles and HOPG has to be considered as well [1]. [1] Saville, D. A.; Chun, J.; Li, J.-L.; Schniepp, H. C.; Car, R.; Aksay, I. A., accepted by Physical Review Letters.

  11. Accurate Calibration and Uncertainty Estimation of the Normal Spring Constant of Various AFM Cantilevers

    PubMed Central

    Song, Yunpeng; Wu, Sen; Xu, Linyan; Fu, Xing

    2015-01-01

    Measurement of force on a micro- or nano-Newton scale is important when exploring the mechanical properties of materials in the biophysics and nanomechanical fields. The atomic force microscope (AFM) is widely used in microforce measurement. The cantilever probe works as an AFM force sensor, and the spring constant of the cantilever is of great significance to the accuracy of the measurement results. This paper presents a normal spring constant calibration method with the combined use of an electromagnetic balance and a homemade AFM head. When the cantilever presses the balance, its deflection is detected through an optical lever integrated in the AFM head. Meanwhile, the corresponding bending force is recorded by the balance. Then the spring constant can be simply calculated using Hooke’s law. During the calibration, a feedback loop is applied to control the deflection of the cantilever. Errors that may affect the stability of the cantilever could be compensated rapidly. Five types of commercial cantilevers with different shapes, stiffness, and operating modes were chosen to evaluate the performance of our system. Based on the uncertainty analysis, the expanded relative standard uncertainties of the normal spring constant of most measured cantilevers are believed to be better than 2%. PMID:25763650

  12. Single cell adhesion force measurement for cell viability identification using an AFM cantilever-based micro putter

    NASA Astrophysics Data System (ADS)

    Shen, Yajing; Nakajima, Masahiro; Kojima, Seiji; Homma, Michio; Kojima, Masaru; Fukuda, Toshio

    2011-11-01

    Fast and sensitive cell viability identification is a key point for single cell analysis. To address this issue, this paper reports a novel single cell viability identification method based on the measurement of single cell shear adhesion force using an atomic force microscopy (AFM) cantilever-based micro putter. Viable and nonviable yeast cells are prepared and put onto three kinds of substrate surfaces, i.e. tungsten probe, gold and ITO substrate surfaces. A micro putter is fabricated from the AFM cantilever by focused ion beam etching technique. The spring constant of the micro putter is calibrated using the nanomanipulation approach. The shear adhesion force between the single viable or nonviable cell and each substrate is measured using the micro putter based on the nanorobotic manipulation system inside an environmental scanning electron microscope. The adhesion force is calculated based on the deflection of the micro putter beam. The results show that the adhesion force of the viable cell to the substrate is much larger than that of the nonviable cell. This identification method is label free, fast, sensitive and can give quantitative results at the single cell level.

  13. Charge Measurement of Atoms and Atomic Resolution of Molecules with Noncontact AFM

    NASA Astrophysics Data System (ADS)

    Gross, Leo

    2010-03-01

    Individual gold and silver adatoms [1] and pentacene molecules [2] on ultrathin NaCl films on Cu(111) were investigated using a qPlus tuning fork atomic force microscope (AFM) operated at 5 Kelvin with oscillation amplitudes in the sub-ångstrom regime. Charging a gold adatom by one electron charge increased the force on the AFM tip by a few piconewtons. Employing Kelvin probe force microscopy (KPFM) we also measured the local contact potential difference (LCPD). We observed that the LCPD is shifted depending on the sign of the charge and allows the discrimination of positively charged, neutral, and negatively charged atoms. To image pentacene molecules we modified AFM tips by means of vertical manipulation techniques, i.e. deliberately picking up known atoms and molecules, such as Au, Ag, Cl, CO, and pentacene. Using a CO terminated tip we resolved all individual atoms and bonds within a pentacene molecule. Three dimensional force maps showing the site specific distance dependence above the molecule were extracted. We compared our experimental results with density functional theory (DFT) calculations to gain insight on the physical origin of AFM contrast formation. We found that atomic resolution is only obtained due to repulsive force contributions originating from the Pauli exclusion principle. [4pt] [1] L. Gross, F. Mohn, P. Liljeroth, J. Repp, F. J. Giessibl, G. Meyer, Science 324, 1428 (2009). [0pt] [2] L. Gross, F. Mohn, N. Moll, P. Liljeroth, G. Meyer, Science 325, 1110 (2009).

  14. Controlled AFM detachments and movement of nanoparticles: gold clusters on HOPG at different temperatures

    NASA Astrophysics Data System (ADS)

    Tripathi, Manoj; Paolicelli, Guido; D'Addato, Sergio; Valeri, Sergio

    2012-06-01

    The effect of temperature on the onset of movement of gold nanoclusters (diameter 27 nm) deposited on highly oriented pyrolytic graphite (HOPG) has been studied by atomic force microscopy (AFM) techniques. Using the AFM with amplitude modulation (tapping mode AFM) we have stimulated and controlled the movement of individual clusters. We show how, at room temperature, controlled detachments and smooth movements can be obtained for clusters having dimensions comparable to or smaller than the tip radius. Displacement is practically visible in real time and it can be started and stopped easily by adjusting only one parameter, the tip amplitude oscillation. Analysing the energy dissipation signal at the onset of nanocluster sliding we evaluated a detachment threshold energy as a function of temperature in the range 300-413 K. We also analysed single cluster thermal induced displacement and combining this delicate procedure with AFM forced movement behaviour we conclude that detachment threshold energy is directly related to the activation energy of nanocluster diffusion and it scales linearly with temperature as expected for a single-particle thermally activated process.

  15. Effective AFM cantilever tip size: methods for in-situ determination

    NASA Astrophysics Data System (ADS)

    Maragliano, Carlo; Glia, Ayoub; Stefancich, Marco; Chiesa, Matteo

    2015-01-01

    In atomic force microscopy (AFM) investigations, knowledge of the cantilever tip radius R is essential for the quantitative interpretation of experimental observables. Here we propose two techniques to rapidly quantify in-situ the effective tip radius of AFM probes. The first method is based on the strong dependency of the minimum value of the free amplitude required to observe a sharp transition from attractive to repulsive force regimes on the AFM probe radius. Specifically, the sharper the tip, the smaller the value of free amplitude required to observe such a transition. The key trait of the second method is to treat the tip-sample system as a capacitor. Provided with an analytical model that takes into account the geometry of the tip-sample’s capacitance, one can quantify the effective size of the tip apex fitting the experimental capacitance versus distance curve. Flowchart-like algorithms, easily implementable on any hardware, are provided for both methods, giving a guideline to AFM practitioners. The methods’ robustness is assessed over a wide range of probes of different tip radii R (i.e. 4 < R < 50 nm) and geometries. Results obtained from both methods are compared with the nominal values given by manufacturers and verified by acquiring scanning electron microscopy images. Our observations show that while both methods are reliable and robust over the range of tip sizes tested, the critical amplitude method is more accurate for relatively sharp tips (4 nm < R < 10 nm).

  16. Atomic force microscopy combined with optical tweezers (AFM/OT)

    NASA Astrophysics Data System (ADS)

    Pierini, F.; Zembrzycki, K.; Nakielski, P.; Pawłowska, S.; Kowalewski, T. A.

    2016-02-01

    The role of mechanical properties is essential to understand molecular, biological materials, and nanostructures dynamics and interaction processes. Atomic force microscopy (AFM) is the most commonly used method of direct force evaluation, but due to its technical limitations this single probe technique is unable to detect forces with femtonewton resolution. In this paper we present the development of a combined atomic force microscopy and optical tweezers (AFM/OT) instrument. The focused laser beam, on which optical tweezers are based, provides us with the ability to manipulate small dielectric objects and to use it as a high spatial and temporal resolution displacement and force sensor in the same AFM scanning zone. We demonstrate the possibility to develop a combined instrument with high potential in nanomechanics, molecules manipulation and biological studies. AFM/OT equipment is described and characterized by studying the ability to trap dielectric objects and quantifying the detectable and applicable forces. Finally, optical tweezers calibration methods and instrument applications are given.

  17. Recruitment Methods and Show Rates to a Prostate Cancer Early Detection Program for High-Risk Men: A Comprehensive Analysis

    PubMed Central

    Giri, Veda N.; Coups, Elliot J.; Ruth, Karen; Goplerud, Julia; Raysor, Susan; Kim, Taylor Y.; Bagden, Loretta; Mastalski, Kathleen; Zakrzewski, Debra; Leimkuhler, Suzanne; Watkins-Bruner, Deborah

    2009-01-01

    Purpose Men with a family history (FH) of prostate cancer (PCA) and African American (AA) men are at higher risk for PCA. Recruitment and retention of these high-risk men into early detection programs has been challenging. We report a comprehensive analysis on recruitment methods, show rates, and participant factors from the Prostate Cancer Risk Assessment Program (PRAP), which is a prospective, longitudinal PCA screening study. Materials and Methods Men 35–69 years are eligible if they have a FH of PCA, are AA, or have a BRCA1/2 mutation. Recruitment methods were analyzed with respect to participant demographics and show to the first PRAP appointment using standard statistical methods Results Out of 707 men recruited, 64.9% showed to the initial PRAP appointment. More individuals were recruited via radio than from referral or other methods (χ2 = 298.13, p < .0001). Men recruited via radio were more likely to be AA (p<0.001), less educated (p=0.003), not married or partnered (p=0.007), and have no FH of PCA (p<0.001). Men recruited via referrals had higher incomes (p=0.007). Men recruited via referral were more likely to attend their initial PRAP visit than those recruited by radio or other methods (χ2 = 27.08, p < .0001). Conclusions This comprehensive analysis finds that radio leads to higher recruitment of AA men with lower socioeconomic status. However, these are the high-risk men that have lower show rates for PCA screening. Targeted motivational measures need to be studied to improve show rates for PCA risk assessment for these high-risk men. PMID:19758657

  18. BOREAS AFM-12 1-km AVHRR Seasonal Land Cover Classification

    NASA Technical Reports Server (NTRS)

    Steyaert, Lou; Hall, Forrest G.; Newcomer, Jeffrey A. (Editor); Knapp, David E. (Editor); Loveland, Thomas R.; Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-12 team's efforts focused on regional scale Surface Vegetation and Atmosphere (SVAT) modeling to improve parameterization of the heterogeneous BOREAS landscape for use in larger scale Global Circulation Models (GCMs). This regional land cover data set was developed as part of a multitemporal one-kilometer Advanced Very High Resolution Radiometer (AVHRR) land cover analysis approach that was used as the basis for regional land cover mapping, fire disturbance-regeneration, and multiresolution land cover scaling studies in the boreal forest ecosystem of central Canada. This land cover classification was derived by using regional field observations from ground and low-level aircraft transits to analyze spectral-temporal clusters that were derived from an unsupervised cluster analysis of monthly Normalized Difference Vegetation Index (NDVI) image composites (April-September 1992). This regional data set was developed for use by BOREAS investigators, especially those involved in simulation modeling, remote sensing algorithm development, and aircraft flux studies. Based on regional field data verification, this multitemporal one-kilometer AVHRR land cover mapping approach was effective in characterizing the biome-level land cover structure, embedded spatially heterogeneous landscape patterns, and other types of key land cover information of interest to BOREAS modelers.The land cover mosaics in this classification include: (1) wet conifer mosaic (low, medium, and high tree stand density), (2) mixed coniferous-deciduous forest (80% coniferous, codominant, and 80% deciduous), (3) recent visible bum, vegetation regeneration, or rock outcrops-bare ground-sparsely vegetated slow regeneration bum (four classes), (4) open water and grassland marshes, and (5) general agricultural land use/ grasslands (three classes). This land cover mapping approach did not detect small subpixel-scale landscape

  19. The Conductance of Nanotubes Deformed by the AFM Tip

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexei; Maiti, Amitesh; Anantram, M. P.

    2003-01-01

    The conductance drop under AFM-tip deformation can be explained by stretching of the tube length. NT sensors can be built utilizing uniform stretching. Single sp3 bond cross section cannot block electrons, because another conducting path may exist. AFM tip which forms sp3 bonds with the tube will decrease conductance. In the "table experiment" a conductance drop of 2 orders of magnitude happened only after some bonds were broken.

  20. Calibration of AFM cantilever stiffness: a microfabricated array of reflective springs.

    PubMed

    Cumpson, P J Peter J; Zhdan, Peter; Hedley, John

    2004-08-01

    Calibration of the spring constant of atomic force microscope (AFM) cantilevers is necessary for the measurement of nanonewton and piconewton forces, which are critical to analytical applications of AFM in the analysis of polymer surfaces, biological structures and organic molecules. We have developed a compact and easy-to-use reference standard for this calibration. The new artifact consists of an array of 12 dual spiral-cantilever springs, each supporting a mirrored polycrystalline silicon disc of 160 microm in diameter. These devices were fabricated by a three-layer polysilicon surface micromachining method, including a reflective layer of gold on chromium. We call such an array a Microfabricated Array of Reference Springs (MARS). These devices have a number of advantages. Cantilever calibration using this device is straightforward and rapid. The devices have very small inertia, and are therefore resistant to shock and vibration. This means they need no careful treatment except reasonably clean laboratory conditions. The array spans the range of spring constant from around 0.16 to 11 N/m important in AFM, allowing almost all contact-mode AFM cantilevers to be calibrated easily and rapidly. Each device incorporates its own discrete gold mirror to improve reflectivity. The incorporation of a gold mirror both simplifies calibration of the devices themselves (via Doppler velocimetry) and allows interferometric calibration of the AFM z-axis using the apparent periodicity in the force-distance curve before contact. Therefore, from a single force-distance curve, taking about one second to acquire, one can calibrate the cantilever spring constant and, optionally, the z-axis scale. These are all the data one needs to make accurate and reliable force measurements. PMID:15231316

  1. Quantitative Analysis of Estrogen Receptor Expression Shows SP1 antibody is more sensitive than 1D5

    PubMed Central

    Welsh, Allison W.; Harigopal, Malini; Wimberly, Hallie; Prasad, Manju; Rimm, David L.

    2012-01-01

    Studies comparing rabbit monoclonal SP1 antibody to 1D5 for ER immunohistochemical (IHC) testing show conflicting results. Here we use a standardized quantitative immunofluorescent (QIF) ER assay to determine the level and significance of discordance between antibodies. Both antibodies are assessed by QIF on our Index TMA of cell lines and case controls, followed by QIF and IHC on two retrospective cohorts from Yale. On the Index TMA, SP1 displayed stronger signal-to-noise than 1D5. On the patient cohorts, the range of discrepancy between the two antibodies is 8% to 16.9%, with the majority of discrepant cases being SP1-positive/1D5-negative. Kaplan Meier analysis of the discrepant cases shows outcome comparable to double positive cases, suggesting that SP1 is more sensitive than 1D5. A series of cases with high levels of ER-beta shows that neither antibody cross-reacts, suggesting equivalent specificity. Future efforts are needed to determine if response to endocrine therapies show superiority of either antibody as a companion diagnostic test. PMID:22820659

  2. Implications of the contact radius to line step (CRLS) ratio in AFM for nanotribology measurements.

    PubMed

    Helt, James M; Batteas, James D

    2006-07-01

    Investigating the mechanisms of defect generation and growth at surfaces on the nanometer scale typically requires high-resolution tools such as the atomic force microscope (AFM). To accurately assess the kinetics and activation parameters of defect production over a wide range of loads (F(z)), the AFM data should be properly conditioned. Generally, AFM wear trials are performed over an area defined by the length of the slow (L(sscan)) and fast scan axes. The ratio of L(sscan) to image resolution (res, lines per image) becomes an important experimental parameter in AFM wear trials because it defines the magnitude of the line step (LS = L(sscan)/res), the distance the AFM tip steps along the slow scan axis. Comparing the contact radius (a) to the line step (LS) indicates that the overlap of successive scans will result unless the contact radius-line step ratio (CRLS) is < or =(1)/(2). If this relationship is not considered, then the scan history (e.g., contact frequency) associated with a single scan is not equivalent at different loads owing to the scaling of contact radius with load (a proportional variant F(z)(1/3)). Here, we present a model in conjunction with empirical wear tests on muscovite mica to evaluate the effects of scan overlap on surface wear. Using the Hertz contact mechanics definition of a, the CRLS model shows that scan overlap pervades AFM wear trials even under low loads. Such findings indicate that simply counting the number of scans (N(scans)) in an experiment underestimates the full history conveyed to the surface by the tip and translates into an error in the actual extent to which a region on the surface is contacted. Utilizing the CRLS method described here provides an approach to account for image scan history accurately and to predict the extent of surface wear. This general model also has implications for any AFM measurement where one wishes to correlate scan-dependent history to image properties as well as feature resolution in scanned

  3. AFM method to detect differences in adhesion of silica bids to cancer and normal epithelial cells

    NASA Astrophysics Data System (ADS)

    Sokolov, Igor; Iyer, Swaminathan; Gaikwad, Ravi; Woodworth, Craig

    2009-03-01

    To date, the methods of detection of cancer cells have been mostly based on traditional techniques used in biology, such as visual identification of malignant changes, cell growth analysis, specific ligand-receptor labeling, or genetic tests. Despite being well developed, these methods are either insufficiently accurate or require a lengthy complicated analysis. A search for alternative methods for the detection of cancer cells may be a fruitful approach. Here we describe an AFM study that may result in a new method for detection of cancer cells in vitro. Here we use atomic force microscopy (AFM) to study adhesion of single silica beads to malignant and normal cells cultured from human cervix. We found that adhesion depends on the time of contact, and can be statistically different for malignant and normal cells. Using these data, one could develop an optical method of cancer detection based on adhesion of various silica beads.

  4. Combination of ToF-SIMS imaging and AFM to study the early stages of corrosion in Al-Cu thin films

    SciTech Connect

    Seyeux, A.; Missert, Nancy; Frankel, Gerald; Unocic, Kinga A; Klein, L. H.; Galtayries, A.; Marcus, P

    2011-01-01

    The pitting corrosion of Al-Cu thin film alloys was investigated using samples that were heat treated in air to form through-thickness Al2Cu particles within an Al-0.5%Cu matrix. Time-of-Flight SIMS (ToF-SIMS) analysis revealed Cu-rich regions 250 - 800 nm in lateral extent near the metal/oxide interface. Following exposure that generated pitting corrosion, secondary electron, secondary ion, and AFM images showed pits with size and density similar to those of the Cu-rich regions. The role of the Cu-rich regions is addressed.

  5. Liquid solution delivery through the pulled nanopipette combined with QTF-AFM system

    NASA Astrophysics Data System (ADS)

    An, Sangmin; Stambaugh, Corey; Kim, Gunn; Lee, Manhee; Kim, Yonghee; Lee, Kunyoung; Jhe, Wonho

    2012-02-01

    Nanopipette is a versatile fluidic tool for biochemical analysis, controlled liquid delivery in bio-nanotechnology. However, most of the researches have been performed in solution based system, thus it is challenge to study nanofluidic properties of the liquid solution delivery through the nanopipette in ambient conditions. In this work, we demonstrated the liquid ejection, dispersion, and subsequent deposition of the nanoparticles via a 30 nm aperture pipette based on the quartz tuning fork -- atomic force microscope (QTF-AFM) combined nanopipette system.

  6. Linkage analysis in a Dutch population isolate shows no major gene for left-handedness or atypical language lateralization.

    PubMed

    Somers, Metten; Ophoff, Roel A; Aukes, Maartje F; Cantor, Rita M; Boks, Marco P; Dauwan, Meenakshi; de Visser, Kees L; Kahn, René S; Sommer, Iris E

    2015-06-10

    Cerebral dominance of language function and hand preference are suggested to be heritable traits with possible shared genetic background. However, joined genetic studies of these traits have never been conducted. We performed a genetic linkage study in 37 multigenerational human pedigrees of both sexes (consisting of 355 subjects) enriched with left-handedness in which we also measured language lateralization. Hand preference was measured with the Edinburgh Handedness Inventory, and language lateralization was measured with functional transcranial Doppler during language production. The estimated heritability of left-handedness and language lateralization in these pedigrees is 0.24 and 0.31, respectively. A parametric major gene model was tested for left-handedness. Nonparametric analyses were performed for left-handedness, atypical lateralization, and degree of language lateralization. We did not observe genome-wide evidence for linkage in the parametric or nonparametric analyses for any of the phenotypes tested. However, multiple regions showed suggestive evidence of linkage. The parametric model showed suggestive linkage for left-handedness in the 22q13 region [heterogeneity logarithm of odds (HLOD) = 2.18]. Nonparametric multipoint analysis of left-handedness showed suggestive linkage in the same region [logarithm of odds (LOD) = 2.80]. Atypical language lateralization showed suggestive linkage in the 7q34 region (LODMax = 2.35). For strength of language lateralization, we observed suggestive linkage in the 6p22 (LODMax = 2.54), 7q32 (LODMax = 1.93), and 9q33 (LODMax = 2.10) regions. We did not observe any overlap of suggestive genetic signal between handedness and the extent of language lateralization. The absence of significant linkage argues against the presence of a major gene coding for both traits; rather, our results are suggestive of these traits being two independent polygenic complex traits. PMID:26063907

  7. Linkage Analysis in a Dutch Population Isolate Shows No Major Gene for Left-Handedness or Atypical Language Lateralization

    PubMed Central

    Ophoff, Roel A.; Aukes, Maartje F.; Cantor, Rita M.; Boks, Marco P.; Dauwan, Meenakshi; de Visser, Kees L.; Kahn, René S.; Sommer, Iris E.

    2015-01-01

    Cerebral dominance of language function and hand preference are suggested to be heritable traits with possible shared genetic background. However, joined genetic studies of these traits have never been conducted. We performed a genetic linkage study in 37 multigenerational human pedigrees of both sexes (consisting of 355 subjects) enriched with left-handedness in which we also measured language lateralization. Hand preference was measured with the Edinburgh Handedness Inventory, and language lateralization was measured with functional transcranial Doppler during language production. The estimated heritability of left-handedness and language lateralization in these pedigrees is 0.24 and 0.31, respectively. A parametric major gene model was tested for left-handedness. Nonparametric analyses were performed for left-handedness, atypical lateralization, and degree of language lateralization. We did not observe genome-wide evidence for linkage in the parametric or nonparametric analyses for any of the phenotypes tested. However, multiple regions showed suggestive evidence of linkage. The parametric model showed suggestive linkage for left-handedness in the 22q13 region [heterogeneity logarithm of odds (HLOD) = 2.18]. Nonparametric multipoint analysis of left-handedness showed suggestive linkage in the same region [logarithm of odds (LOD) = 2.80]. Atypical language lateralization showed suggestive linkage in the 7q34 region (LODMax = 2.35). For strength of language lateralization, we observed suggestive linkage in the 6p22 (LODMax = 2.54), 7q32 (LODMax = 1.93), and 9q33 (LODMax = 2.10) regions. We did not observe any overlap of suggestive genetic signal between handedness and the extent of language lateralization. The absence of significant linkage argues against the presence of a major gene coding for both traits; rather, our results are suggestive of these traits being two independent polygenic complex traits. PMID:26063907

  8. Nano-scale Topographical Studies on the Growth Cones of Nerve Cells using AFM

    NASA Astrophysics Data System (ADS)

    Durkaya, Goksel; Zhong, Lei; Rehder, Vincent; Dietz, Nikolaus

    2009-11-01

    Nerve cells are the fundamental units which are responsible for intercommunication within the nervous system. The neurites, fibrous cable-like extensions for information delivery, of nerve cells are tipped by highly motile sensory structures known as the growth cones which execute important functions; neural construction, decision making and navigation during development and regeneration of the nervous system. The highly dynamic subcomponents of the growth cones are important in neural activity. Atomic Force Microscopy (AFM) is the most powerful microscopy technique which is capable of imaging without conductivity constraint and in liquid media. AFM providing nano-scale topographical information on biological structures is also informative on the physical properties such as: elasticity, adhesion, and softness. This contribution focuses on AFM analysis of the growth cones of the nerve cells removed from the buccal ganglion of Helisoma trivolvis. The results of nano-scale topography and softness analysis on growth cone central domain, filopodia and overlying lamellopodium (veil) are presented. The subcomponents of the growth cones of different nerve cells are compared to each other. The results of the analysis are linked to the mechanical properties and internal molecular density distribution of the growth cones.

  9. AFM Investigation of Liquid-Filled Polymer Microcapsules Elasticity.

    PubMed

    Sarrazin, Baptiste; Tsapis, Nicolas; Mousnier, Ludivine; Taulier, Nicolas; Urbach, Wladimir; Guenoun, Patrick

    2016-05-10

    Elasticity of polymer microcapsules (MCs) filled with a liquid fluorinated core is studied by atomic force microscopy (AFM). Accurately characterized spherical tips are employed to obtain the Young's moduli of MCs having four different shell thicknesses. We show that those moduli are effective ones because the samples are composites. The strong decrease of the effective MC elasticity (from 3.0 to 0.1 GPa) as the shell thickness decreases (from 200 to 10 nm) is analyzed using a novel numerical approach. This model describes the evolution of the elasticity of a coated half-space according to the contact radius, the thickness of the film, and the elastic moduli of bulk materials. This numerical model is consistent with the experimental data and allows simulating the elastic behavior of MCs at high frequencies (5 MHz). While the quasi-static elasticity of the MCs is found to be very dependent on the shell thickness, the high frequency (5 MHz) elastic behavior of the core leads to a stable behavior of the MCs (from 2.5 to 3 GPa according to the shell thickness). Finally, the effect of thermal annealing on the MCs elasticity is investigated. The Young's modulus is found to decrease because of the reduction of the shell thickness due to the loss of the polymer. PMID:27058449

  10. Analysis of a large dataset of mycorrhiza inoculation field trials on potato shows highly significant increases in yield.

    PubMed

    Hijri, Mohamed

    2016-04-01

    An increasing human population requires more food production in nutrient-efficient systems in order to simultaneously meet global food needs while reducing the environmental footprint of agriculture. Arbuscular mycorrhizal fungi (AMF) have the potential to enhance crop yield, but their efficiency has yet to be demonstrated in large-scale crop production systems. This study reports an analysis of a dataset consisting of 231 field trials in which the same AMF inoculant (Rhizophagus irregularis DAOM 197198) was applied to potato over a 4-year period in North America and Europe under authentic field conditions. The inoculation was performed using a liquid suspension of AMF spores that was sprayed onto potato seed pieces, yielding a calculated 71 spores per seed piece. Statistical analysis showed a highly significant increase in marketable potato yield (ANOVA, P < 0.0001) for inoculated fields (42.2 tons/ha) compared with non-inoculated controls (38.3 tons/ha), irrespective of trial year. The average yield increase was 3.9 tons/ha, representing 9.5 % of total crop yield. Inoculation was profitable with a 0.67-tons/ha increase in yield, a threshold reached in almost 79 % of all trials. This finding clearly demonstrates the benefits of mycorrhizal-based inoculation on crop yield, using potato as a case study. Further improvements of these beneficial inoculants will help compensate for crop production deficits, both now and in the future. PMID:26403242

  11. AFM Imaging of Mercaptobenzoic Acid on Au(110): Submolecular Contrast with Metal Tips.

    PubMed

    Hauptmann, Nadine; Robles, Roberto; Abufager, Paula; Lorente, Nicolas; Berndt, Richard

    2016-06-01

    A self-assembled monolayer of mercaptobenzoic acid (MBA) on Au(110) is investigated with scanning tunneling and atomic force microscopy (STM and AFM) and density functional calculations. High-resolution AFM images obtained with metallic tips show clear contrasts between oxygen atoms and phenyl moieties. The contrast above the oxygen atoms is due to attractive covalent interactions, which is different than previously reported high-resolution images, where Pauli repulsion dominated the image contrast. We show that the bonding of MBA to the substrate occurs mainly through dispersion interactions, whereas the thiol-Au bond contributes only a quarter of the adsorption energy. No indication of Au adatoms mediating the thiol-Au interaction was found in contrast to other thiol-bonded systems. However, MBA lifts the Au(110)-(2 × 1) reconstruction. PMID:27183144

  12. Geochemical analysis of potash mine seep oils, collapsed breccia pipe oil shows and selected crude oils, Eddy County, New Mexico

    USGS Publications Warehouse

    Palacas, J.G.; Snyder, R.P.; Baysinger, J.P.; Threlkeld, C.N.

    1982-01-01

    Oil shows, in the form of oil stains and bleeding oil, in core samples from two breccia pipes, Hills A and C, Eddy County, New Mexico, and seepage oils in a potash mine near Hill C breccia pipe are geochemically similar. The geochemical similarities strongly suggest that they belong to the same family of oils and were derived from similar sources. The oils are relatively high in sulfur (0.89 to 1.23 percent), rich in hydrocarbons (average 82 percent), relatively high in saturated hydrocarbon/aromatic hydrocarbon ratios (average 2.9), and based on analysis of seep oils alone, have a low API gravity (average 19.4?). The oils are for the most part severely biodegraded as attested by the loss of n-paraffin molecules. Geochemical comparison of seven crude oils collected in the vicinity of the breccia pipes indicates that the Yates oils are the likely source of the above family of oils. Six barrels of crude oil that were dumped into a potash exploration borehole near Hill C breccia pipe, to release stuck casing, are considered an unlikely source of the breccia pipe and mine seep oils. Volumetric and hydrodynamic constraints make it highly improbable that such a small volume of 'dumped' oil could migrate over distances ranging from about 600 feet to 2.5 miles to the sites of the oil shows.

  13. Global morphological analysis of marine viruses shows minimal regional variation and dominance of non-tailed viruses

    PubMed Central

    Brum, Jennifer R; Schenck, Ryan O; Sullivan, Matthew B

    2013-01-01

    Viruses influence oceanic ecosystems by causing mortality of microorganisms, altering nutrient and organic matter flux via lysis and auxiliary metabolic gene expression and changing the trajectory of microbial evolution through horizontal gene transfer. Limited host range and differing genetic potential of individual virus types mean that investigations into the types of viruses that exist in the ocean and their spatial distribution throughout the world's oceans are critical to understanding the global impacts of marine viruses. Here we evaluate viral morphological characteristics (morphotype, capsid diameter and tail length) using a quantitative transmission electron microscopy (qTEM) method across six of the world's oceans and seas sampled through the Tara Oceans Expedition. Extensive experimental validation of the qTEM method shows that neither sample preservation nor preparation significantly alters natural viral morphological characteristics. The global sampling analysis demonstrated that morphological characteristics did not vary consistently with depth (surface versus deep chlorophyll maximum waters) or oceanic region. Instead, temperature, salinity and oxygen concentration, but not chlorophyll a concentration, were more explanatory in evaluating differences in viral assemblage morphological characteristics. Surprisingly, given that the majority of cultivated bacterial viruses are tailed, non-tailed viruses appear to numerically dominate the upper oceans as they comprised 51–92% of the viral particles observed. Together, these results document global marine viral morphological characteristics, show that their minimal variability is more explained by environmental conditions than geography and suggest that non-tailed viruses might represent the most ecologically important targets for future research. PMID:23635867

  14. Immunohistochemical Analysis of Brainstem Lesions in the Autopsy Cases with Severe Motor and Intellectual Disabilities Showing Sudden Unexplained Death

    PubMed Central

    Hayashi, Masaharu; Sakuma, Hiroshi

    2016-01-01

    It is known that patients with severe motor and intellectual disabilities (SMID) showed sudden unexplained death (SUD), in which autopsy failed to identify causes of death. Although the involvement of brainstem dysfunction is speculated, the detailed neuropathological analysis still remains to be performed. In order to clarify pathogenesis, we investigated the brainstem functions in autopsy cases of SMID showing SUD. We immunohistochemically examined expressions of tyrosine hydroxylase, tryptophan hydroxylase, substance P, methionine-enkephalin, and c-fos in the serial sections of the midbrain, pons, and medulla oblongata in eight SUD cases and seven controls, having neither unexplained death nor pathological changes in the brain. Expressions of tyrosine hydroxylase and tryptophan hydroxylase were reduced in two of eight cases, and those of substance P and/or methionine-enkephalin were augmented in the pons and medulla oblongata in seven of eight cases, including the aforementioned two cases, when compared with those in controls. The hypoglossal nucleus and/or the dorsal vagal nucleus demonstrated increased neuronal immunoreactivity for c-fos in seven of eight cases, although there was no neuronal loss or gliosis in both the nuclei. Controls rarely showed immunoreactivity for c-fos in the medulla oblongata. These data suggest the possible involvement of brainstem dysfunction in SUD in patients with SMID, and consecutive neurophysiological evaluation of brainstem functions, such as all-night polysomnography and blink reflex, may be useful for the prevention of SUD, because some parameters in the neurophysiological examination are known to be related to the brainstem catecholamine neurons and the spinal tract nucleus of trigeminal nerve. PMID:27445960

  15. AFM investigation of Martian soil simulants on micromachined Si substrates.

    PubMed

    Vijendran, S; Sykulska, H; Pike, W T

    2007-09-01

    The micro and nanostructures of Martian soil simulants with particles in the micrometre-size range have been studied using a combination of optical and atomic force microscopy (AFM) in preparation for the 2007 NASA Phoenix Mars Lander mission. The operation of an atomic force microscope on samples of micrometre-sized soil particles is a poorly investigated area where the unwanted interaction between the scanning tip and loose particles results in poor image quality and tip contamination by the sample. In order to mitigate these effects, etched silicon substrates with a variety of features have been used to facilitate the sorting and gripping of particles. From these experiments, a number of patterns were identified that were particularly good at isolating and immobilizing particles for AFM imaging. This data was used to guide the design of micromachined substrates for the Phoenix AFM. Both individual particles as well as aggregates were successfully imaged, and information on sizes, shapes and surface morphologies were obtained. This study highlights both the strengths and weaknesses of AFM for the potential in situ investigation of Martian soil and dust. Also presented are more general findings of the limiting operational constraints that exist when attempting the AFM of high aspect ratio particles with current technology. The performance of the final designs of the substrates incorporated on Phoenix will be described in a later paper. PMID:17760618

  16. Temperature Dependence Study of Noncontact Afm Images Using Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Nejat Pishkenari, Hossein; Meghdari, Ali

    The effect of temperature on the noncontact atomic force microscopy (NC-AFM) surface imaging is investigated with the aid of molecular dynamics (MD) analysis based on the Sutton-Chen (SC) interatomic potential. Particular attention is devoted to the tip and sample flexibility at different temperatures. When a gold coated probe is brought close to the Au (001) surface at high temperatures, the tip and surface atoms are pulled together and their distance becomes smaller. The tip and sample atoms displacement varies in the different environment temperatures and this leads to the different interaction forces. Along this line, to study the effect of temperature on the resulting images, we have employed the well-known NC-AFM model and carried out realistic non-equilibrium MD 3D simulations of atomic scale imaging at different close approach positions to the surface.

  17. MOST light-curve analysis of the γ Doradus pulsator HR 8799, showing resonances and amplitude variations

    NASA Astrophysics Data System (ADS)

    Sódor, Á.; Chené, A.-N.; De Cat, P.; Bognár, Zs.; Wright, D. J.; Marois, C.; Walker, G. A. H.; Matthews, J. M.; Kallinger, T.; Rowe, J. F.; Kuschnig, R.; Guenther, D. B.; Moffat, A. F. J.; Rucinski, S. M.; Sasselov, D.; Weiss, W. W.

    2014-08-01

    Context. The central star of the HR 8799 system is a γ Doradus-type pulsator. The system harbours four planetary-mass companions detected by direct imaging, and is a good solar system analogue. The masses of the companions are not accurately known because the estimation depends greatly on the age of the system, which is also not known with sufficient accuracy. Asteroseismic studies of the star might help to better constrain the age of HR 8799. We organized an extensive photometric and multi-site spectroscopic observing campaign to study the pulsations of the central star. Aims: The aim of the present study is to investigate the pulsation properties of HR 8799 in detail via the ultra-precise 47 d nearly continuous photometry obtained with the Microvariability and Oscillations in STars (MOST) space telescope, and to find as many independent pulsation modes as possible, which is the prerequisite for an asteroseismic age determination. Methods: We carried out Fourier analysis of the wide-band photometric time series. Results: We find that resonance and sudden amplitude changes characterize the pulsation of HR 8799. The dominant frequency is always at f1 = 1.978 d-1.Many multiples of one-ninth of the dominant frequency appear in the Fourier spectrum of the MOST data: n/9 f1, where n = {1,2,3,4,5,6,7,8,9,10,13,14,17,18}. Our analysis also reveals that many of these peaks show strong amplitude decrease and phase variations even on the 47 d time scale. The dependencies between the pulsation frequencies of HR 8799 make the planned subsequent asteroseismic analysis rather difficult. We point out some resemblance between the light curve of HR 8799 and the modulated pulsation light curves of Blazhko RR Lyrae stars. Based on data from the MOST satellite, a Canadian Space Agency mission, jointly operated by Dynacon Inc., the University of Toronto Institute for Aerospace Studies and the University of British Columbia, with the assistance of the University of Vienna.

  18. Liquid contact resonance AFM: analytical models, experiments, and limitations

    NASA Astrophysics Data System (ADS)

    Parlak, Zehra; Tu, Qing; Zauscher, Stefan

    2014-11-01

    Contact resonance AFM (CR-AFM) is a scanning probe microscopy technique that utilizes the contact resonances of the AFM cantilever for concurrent imaging of topography and surface stiffness. The technique has not been used in liquid until recently due to analytical and experimental difficulties, associated with viscous damping of cantilever vibrations and fluid loading effects. To address these difficulties, (i) an analytical approach for contact resonances in liquid is developed, and (ii) direct excitation of the contact resonances is demonstrated by actuating the cantilever directly in a magnetic field. By implementing the analytical approach and the direct actuation through magnetic particles, quantitative stiffness imaging on surfaces with a wide range of stiffness can be achieved in liquid with soft cantilevers and low contact forces.

  19. AFM of biological complexes: what can we learn?

    PubMed Central

    Gaczynska, Maria; Osmulski, Pawel A.

    2009-01-01

    The term “biological complexes” broadly encompasses particles as diverse as multisubunit enzymes, viral capsids, transport cages, molecular nets, ribosomes, nucleosomes, biological membrane components and amyloids. The complexes represent a broad range of stability and composition. Atomic force microscopy offers a wealth of structural and functional data about such assemblies. For this review, we choose to comment on the significance of AFM to study various aspects of biology of selected nonmembrane protein assemblies. Such particles are large enough to reveal many structural details under the AFM probe. Importantly, the specific advantages of the method allow for gathering dynamic information about their formation, stability or allosteric structural changes critical for their function. Some of them have already found their way to nanomedical or nanotechnological applications. Here we present examples of studies where the AFM provided pioneering information about the biology of complexes, and examples of studies where the simplicity of the method is used toward the development of potential diagnostic applications. PMID:19802337

  20. Improvement in metrology on new 3D-AFM platform

    NASA Astrophysics Data System (ADS)

    Schmitz, Ingo; Osborn, Marc; Hand, Sean; Chen, Qi

    2008-10-01

    According to the 2007 edition of the ITRS roadmap, the requirement for CD uniformity of isolated lines on a binary or attenuated phase shift mask is 2.1nm (3σ) in 2008 and requires improvement to1.3 nm (3σ) in 2010. In order to meet the increasing demand for CD uniformity on photo masks, improved CD metrology is required. A next generation AFM, InSightTM 3DAFM, has been developed to meet these increased requirements for advanced photo mask metrology. The new system achieves 2X improvement in CD and depth precision on advanced photo masks features over the previous generation 3D-AFM. This paper provides measurement data including depth, CD, and sidewall angle metrology. In addition the unique capabilities of damage-free defect inspection and Nanoimprint characterization by 3D AFM are presented.

  1. Mounting of Escherichia coli spheroplasts for AFM imaging.

    SciTech Connect

    Sullivan, Claretta J; Morrell-Falvey, Jennifer L; Allison, David P; Doktycz, Mitchel John

    2005-11-01

    The cytoplasmic membrane of Escherichia coli (E. coli) is the location of numerous, chemically specific transporters and recognition elements. Investigation of this membrane in vivo by atomic force microscopy (AFM) requires removal of the cell wall and stable immobilization of the spheroplast. AFM images demonstrate that spheroplasts can be secured with warm gelatin applied to the mica substrate just before the addition of a spheroplast suspension. The resulting preparation can be repeatedly imaged by AFM over the course of several hours. Confocal fluorescence imaging confirms the association of the spheroplasts with the gelatin layer. Gelatin molecules are known to reorder into a network after heating. Entrapment within this gelatin network is believed to be responsible for the immobilization of spheroplasts on mica.

  2. Surface Morphological Studies on Nerve Cells by AFM

    NASA Astrophysics Data System (ADS)

    Durkaya, Goksel; Zhong, Lei; Rehder, Vincent; Dietz, Nikolaus

    2009-03-01

    Surface morphological properties of fixed and living nerve cells removed from the buccal ganglion of Helisoma trivolvis have been studied by using Atomic Force Microscopy (AFM). Identified, individual neurons were removed from the buccal ganglion of Helisoma trivolvis and plated into poly-L-lysine coated glass cover-slips. The growth of the nerve cells was stopped and fixed with 0.1% Glutaraldehyde and 4% Formaldehyde solution after extension of growth cones at the tip of the axons. Topography and softness of growth cone filopodia and overlying lamellopodium (veil) were probed by AFM. Information obtained from AFM's amplitude and phase channels have been used for determination of softness of the region probed. The results of structural studies on the cells are linked to their mechanical properties and internal molecular density distribution.

  3. Genotypic analysis of β-tubulin in Onchocerca volvulus from communities and individuals showing poor parasitological response to ivermectin treatment.

    PubMed

    Osei-Atweneboana, Mike Y; Boakye, Daniel A; Awadzi, Kwablah; Gyapong, John O; Prichard, Roger K

    2012-12-01

    Ivermectin (IVM) has been in operational use for the control of onchocerciasis for two decades and remains the only drug of choice. To investigate the parasitological responses and genetic profile of Onchocerca volvulus, we carried out a 21 month epidemiological study to determine the response of the parasite to IVM in 10 Ghanaian endemic communities. Onchocerca nodules were surgically removed from patients in three IVM response categories (good, intermediate and poor) and one IVM naïve community. DNA from adult worms was analyzed to determine any association between genotype and IVM response phenotypic. Embryogramme analysis showed significantly higher reproductive activity in worms from poor response communities, which had up to 41% of females with live stretched microfilaria (mf) in utero, despite IVM treatment, compared with good response communities, which had no intra-uterine stretched mf. β-tubulin isotype 1 gene has been shown to be linked to IVM selection in O. volvulus and also known to be associated with IVM resistance in veterinary nematodes. We have genotyped the full length genomic DNA sequence of the β-tubulin gene from 127 adult worms obtained from the four community categories. We found SNPs at 24 sites over the entire 3696 bp. Eight of the SNPs occurred at significantly higher (p < 0.05) frequencies in the poor response communities compared with the good response communities and the IVM naïve community. Phenotypic and genotypic analyses show that IVM resistance has been selected and the genotype (1183GG/1188CC/1308TT/1545GG) was strongly associated with the resistance phenotype. Since the region in the β-tubulin gene where these four SNPs occur is within 362 bp, it is feasible to develop a genetic marker for the early detection of IVM resistance. PMID:24533268

  4. Genotypic analysis of β-tubulin in Onchocerca volvulus from communities and individuals showing poor parasitological response to ivermectin treatment

    PubMed Central

    Osei-Atweneboana, Mike Y.; Boakye, Daniel A.; Awadzi, Kwablah; Gyapong, John O.; Prichard, Roger K.

    2012-01-01

    Ivermectin (IVM) has been in operational use for the control of onchocerciasis for two decades and remains the only drug of choice. To investigate the parasitological responses and genetic profile of Onchocerca volvulus, we carried out a 21 month epidemiological study to determine the response of the parasite to IVM in 10 Ghanaian endemic communities. Onchocerca nodules were surgically removed from patients in three IVM response categories (good, intermediate and poor) and one IVM naïve community. DNA from adult worms was analyzed to determine any association between genotype and IVM response phenotypic. Embryogramme analysis showed significantly higher reproductive activity in worms from poor response communities, which had up to 41% of females with live stretched microfilaria (mf) in utero, despite IVM treatment, compared with good response communities, which had no intra-uterine stretched mf. β-tubulin isotype 1 gene has been shown to be linked to IVM selection in O. volvulus and also known to be associated with IVM resistance in veterinary nematodes. We have genotyped the full length genomic DNA sequence of the β-tubulin gene from 127 adult worms obtained from the four community categories. We found SNPs at 24 sites over the entire 3696 bp. Eight of the SNPs occurred at significantly higher (p < 0.05) frequencies in the poor response communities compared with the good response communities and the IVM naïve community. Phenotypic and genotypic analyses show that IVM resistance has been selected and the genotype (1183GG/1188CC/1308TT/1545GG) was strongly associated with the resistance phenotype. Since the region in the β-tubulin gene where these four SNPs occur is within 362 bp, it is feasible to develop a genetic marker for the early detection of IVM resistance. PMID:24533268

  5. The influence of aminophylline on the nanostructure and nanomechanics of T lymphocytes: an AFM study

    NASA Astrophysics Data System (ADS)

    Huang, Xun; He, Jiexiang; Liu, Mingxian; Zhou, Changren

    2014-09-01

    Although much progress has been made in the illustration of the mechanism of aminophylline (AM) treating asthma, there is no data about its effect on the nanostructure and nanomechanics of T lymphocytes. Here, we presented atomic force spectroscopy (AFM)-based investigations at the nanoscale level to address the above fundamental biophysical questions. As increasing AM treatment time, T lymphocytes' volume nearly double increased and then decreased. The changes of nanostructural features of the cell membrane, i.e., mean height of particles, root-mean-square roughness (Rq), crack and fragment appearance, increased with AM treatment time. T lymphocytes were completely destroyed with 96-h treatment, and they existed in the form of small fragments. Analysis of force-distance curves showed that the adhesion force of cell surface decreased significantly with the increase of AM treatment time, while the cell stiffness increased firstly and then decreased. These changes were closely correlated to the characteristics and process of cell oncosis. In total, these quantitative and qualitative changes of T lymphocytes' structure and nanomechanical properties suggested that AM could induce T lymphocyte oncosis to exert anti-inflammatory effects for treating asthma. These findings provide new insights into the T lymphocyte oncosis and the anti-inflammatory mechanism and immune regulation actions of AM.

  6. Gallotannin-Capped Gold Nanoparticles: Green Synthesis and Enhanced Morphology of AFM Images.

    PubMed

    Kim, Jaehyung; Yhim, Won Been; Park, Jong-Won; Lee, Sang-Hyeon; Kim, Tae Yoon; Cha, Song-Hyun; Kim, Hyun-Seok; Jang, Hong-Lae; Cho, Miyeon; Park, Youmie; Cho, Seonho

    2016-06-01

    Gold nanoparticles (AuNPs) were synthesized by a green method using a plant secondary metabolite, gallotannin. Gallotannin was used as a reducing and capping agent to convert gold ions into AuNPs for the generation of gallotannin-capped AuNPs (GT-AuNPs). This synthetic route is ecofriendly and eliminates the use of toxic chemical reducing agents. The characteristic surface plasmon resonance of the GT-AuNPs was observed at 536 nm in the UV-visible spectra. The face-centered cubic structure of GT-AuNPs was verified by X-ray diffraction analysis. The majority of the GT-AuNPs had a spherical shape with an average diameter of 15.93 ± 8.60 nm. Fourier transform infrared spectra suggested that the hydroxyl functional groups of gallotannin were involved in the synthesis of GT-AuNPs. The size and shape of nanoparticles can have a crucial impact on their biological, mechanical, and structural properties. Herein, we developed a modified anisotropic diffusion equation to selectively remove nanoscale experimental noise while preserving nanoscale intrinsic geometry information. To demonstrate the performance of the developed method, the ridge and valley lines were plotted by utilizing the principle curvatures. Compared to the original anisotropic diffusion and raw atomic force microscopy (AFM) experimental data, the developed modified anisotropic diffusion shows excellent performance in nanoscale noise removal while preserving the intrinsic aeometry of the nanoparticles. PMID:27427661

  7. The influence of aminophylline on the nanostructure and nanomechanics of T lymphocytes: an AFM study

    PubMed Central

    2014-01-01

    Although much progress has been made in the illustration of the mechanism of aminophylline (AM) treating asthma, there is no data about its effect on the nanostructure and nanomechanics of T lymphocytes. Here, we presented atomic force spectroscopy (AFM)-based investigations at the nanoscale level to address the above fundamental biophysical questions. As increasing AM treatment time, T lymphocytes' volume nearly double increased and then decreased. The changes of nanostructural features of the cell membrane, i.e., mean height of particles, root-mean-square roughness (Rq), crack and fragment appearance, increased with AM treatment time. T lymphocytes were completely destroyed with 96-h treatment, and they existed in the form of small fragments. Analysis of force-distance curves showed that the adhesion force of cell surface decreased significantly with the increase of AM treatment time, while the cell stiffness increased firstly and then decreased. These changes were closely correlated to the characteristics and process of cell oncosis. In total, these quantitative and qualitative changes of T lymphocytes' structure and nanomechanical properties suggested that AM could induce T lymphocyte oncosis to exert anti-inflammatory effects for treating asthma. These findings provide new insights into the T lymphocyte oncosis and the anti-inflammatory mechanism and immune regulation actions of AM. PMID:25258618

  8. Cellular mechanoadaptation to substrate mechanical properties: contributions of substrate stiffness and thickness to cell stiffness measurements using AFM.

    PubMed

    Vichare, Shirish; Sen, Shamik; Inamdar, Mandar M

    2014-02-28

    Mechanosensing by adherent cells is usually studied by quantifying cell responses on hydrogels that are covalently linked to a rigid substrate. Atomic force microscopy (AFM) represents a convenient way of characterizing the mechanoadaptation response of adherent cells on hydrogels of varying stiffness and thickness. Since AFM measurements reflect the effective cell stiffness, therefore, in addition to measuring real cytoskeletal alterations across different conditions, these measurements might also be influenced by the geometry and physical properties of the substrate itself. To better understand how the physical attributes of the gel influence AFM stiffness measurements of cells, we have used finite element analysis to simulate the indentation of cells of various spreads resting on hydrogels of varying stiffness and thickness. Consistent with experimental results, our simulation results indicate that for well spread cells, stiffness values are significantly over-estimated when experiments are performed on cells cultured on soft and thin gels. Using parametric studies, we have developed scaling relationships between the effective stiffness probed by AFM and the bulk cell stiffness, taking cell and tip geometry, hydrogel properties, nuclear stiffness and cell contractility into account. Finally, using simulated mechanoadaptation responses, we have demonstrated that a cell stiffening response may arise purely due to the substrate properties. Collectively, our results demonstrate the need to take hydrogel properties into account while estimating cell stiffness using AFM indentation. PMID:24651595

  9. BOREAS AFM-04 Twin Otter Aircraft Flux Data

    NASA Technical Reports Server (NTRS)

    MacPherson, J. Ian; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Desjardins, Raymond L.; Smith, David E. (Technical Monitor)

    2000-01-01

    The BOREAS AFM-5 team collected and processed data from the numerous radiosonde flights during the project. The goals of the AFM-05 team were to provide large-scale definition of the atmosphere by supplementing the existing AES aerological network, both temporally and spatially. This data set includes basic upper-air parameters collected from the network of upper-air stations during the 1993, 1994, and 1996 field campaigns over the entire study region. The data are contained in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884) or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  10. GPIM AF-M315E Propulsion System

    NASA Technical Reports Server (NTRS)

    Spores, Ronald A.; Masse, Robert; Kimbrel, Scott; McLean, Chris

    2014-01-01

    The NASA Space Technology mission Directorate's (STMD) Green Propellant Infusion Mission (GPIM) Technology Demonstration Mission (TDM) will demonstrate an operational AF-M315E green propellant propulsion system. Aerojet-Rocketdyne is responsible for the development of the propulsion system payload. This paper statuses the propulsion system module development, including thruster design and system design; Initial test results for the 1N engineering model thruster are presented. The culmination of this program will be high-performance, green AF-M315E propulsion system technology at TRL 7+, with components demonstrated to TRL 9, ready for direct infusion to a wide range of applications for the space user community.

  11. Atom probe, AFM, and STM studies on vacuum-fired stainless steels.

    PubMed

    Stupnik, A; Frank, P; Leisch, M

    2009-04-01

    The surface morphology of grades 304L and 316LN stainless steels, after low-temperature bake-out process and vacuum annealing, has been studied by atomic force microscopy (AFM) and scanning tunnelling microscopy (STM). The local elemental composition on the surface before and after thermal treatment has been investigated by atom probe (AP) depth profiling measurements. After vacuum annealing, AFM and STM show significant changes in the surface structure and topology. Recrystallization and surface reconstruction is less pronounced on the 316LN stainless steel. AP depth profiling analyses result in noticeable nickel enrichment on the surface of grade 304L samples. Since hydrogen recombination is almost controlled by surface structure and composition, a strong influence on the outgassing behaviour by the particular surface microstructure can be deduced. PMID:19167824

  12. Mapping real-time images of high-speed AFM using multitouch control

    NASA Astrophysics Data System (ADS)

    Carberry, D. M.; Picco, L.; Dunton, P. G.; Miles, M. J.

    2009-10-01

    Conventional AFM is highly restricted by its scan rate, a problem that has been overcome by the development of high-speed AFM systems. As the technology to produce higher scan rates has developed it has pushed forward the design of control software. However, the user interface has not evolved at the same rate, limiting the user to sequential control steps. In this paper we demonstrate the integration of HSAFM with a multitouch interface to produce a highly intuitive and responsive control environment. This enables nanometre resolution to be maintained whilst scanning the sample over tens of microns, and arbitrary paths to be traversed. We illustrate this by scanning around two chromosomes in water, before scanning on top of the chromosome, showing the surface structure.

  13. Mode coupling in a hanging-fiber AFM used as a rheological probe

    NASA Astrophysics Data System (ADS)

    Devailly, C.; Laurent, J.; Steinberger, A.; Bellon, L.; Ciliberto, S.

    2014-06-01

    We analyze the advantages and drawbacks of a method which measures the viscosity of liquids at microscales, using a thin glass fiber fixed on the tip of a cantilever of an ultra-low-noise Atomic Force Microscope (AFM). When the fiber is dipped into a liquid, the dissipation of the cantilever-fiber system, which is linked to the liquid viscosity, can be computed from the power spectral density of the thermal fluctuations of the cantilever deflection. The high sensitivity of the AFM allows us to show the existence and to develop a model of the coupling between the dynamics of the fiber and that of the cantilever. This model, which accurately fits the experimental data, gives also more insights into the dynamics of coupled microdevices in a viscous environment.

  14. Development of a novel nanoindentation technique by utilizing a dual-probe AFM system

    PubMed Central

    Sahin, Ferat; Yablon, Dalia

    2015-01-01

    Summary A novel instrumentation approach to nanoindentation is described that exhibits improved resolution and depth sensing. The approach is based on a multi-probe scanning probe microscopy (SPM) tool that utilizes tuning-fork based probes for both indentation and depth sensing. Unlike nanoindentation experiments performed with conventional AFM systems using beam-bounce technology, this technique incorporates a second probe system with an ultra-high resolution for depth sensing. The additional second probe measures only the vertical movement of the straight indenter attached to a tuning-fork probe with a high spring constant and it can also be used for AFM scanning to obtain an accurate profiling. Nanoindentation results are demonstrated on silicon, fused silica, and Corning Eagle Glass. The results show that this new approach is viable in terms of accurately characterizing mechanical properties of materials through nanoindentation with high accuracy, and it opens doors to many other exciting applications in the field of nanomechanical characterization. PMID:26665072

  15. Surface morphology changes of lignin filled natural rubber latex films investigated using AFM in relation to tensile strengths

    NASA Astrophysics Data System (ADS)

    Asrul, M.; Othman, M.; Zakaria, M.

    2015-07-01

    The paper describes the preparation of lignin filled natural rubber latex composite and the consequential changes in tensile strength observed with varying lignin loading. The changes in tensile strength were shown to be associated with the changes in surface morphology as investigated via AFM. From the AFM analysis it can be inferred that lignin filled rubber latex film which exhibited an increase in tensile strength also demonstrated better phase homogeneity with lowest surface roughness value in comparison to the rest of the lignin filled rubber latex films analysed.

  16. Measuring protein isoelectric points by AFM-based force spectroscopy using trace amounts of sample.

    PubMed

    Guo, Shifeng; Zhu, Xiaoying; Jańczewski, Dominik; Lee, Serina Siew Chen; He, Tao; Teo, Serena Lay Ming; Vancso, G Julius

    2016-09-01

    Protein charge at various pH and isoelectric point (pI) values is important in understanding protein function. However, often only trace amounts of unknown proteins are available and pI measurements cannot be obtained using conventional methods. Here, we show a method based on the atomic force microscope (AFM) to determine pI using minute quantities of proteins. The protein of interest is immobilized on AFM colloidal probes and the adhesion force of the protein is measured against a positively and a negatively charged substrate made by layer-by-layer deposition of polyelectrolytes. From the AFM force-distance curves, pI values with an estimated accuracy of ±0.25 were obtained for bovine serum albumin, myoglobin, fibrinogen and ribonuclease A over a range of 4.7-9.8. Using this method, we show that the pI of the 'footprint' of the temporary adhesive proteins secreted by the barnacle cyprid larvae of Amphibalanus amphitrite is in the range 9.6-9.7. PMID:27454881

  17. Immunophenotypic and gene expression analysis of monoclonal B-cell lymphocytosis shows biologic characteristics associated with good prognosis CLL.

    PubMed

    Lanasa, M C; Allgood, S D; Slager, S L; Dave, S S; Love, C; Marti, G E; Kay, N E; Hanson, C A; Rabe, K G; Achenbach, S J; Goldin, L R; Camp, N J; Goodman, B K; Vachon, C M; Spector, L G; Rassenti, L Z; Leis, J F; Gockerman, J P; Strom, S S; Call, T G; Glenn, M; Cerhan, J R; Levesque, M C; Weinberg, J B; Caporaso, N E

    2011-09-01

    Monoclonal B-cell lymphocytosis (MBL) is a hematologic condition wherein small B-cell clones can be detected in the blood of asymptomatic individuals. Most MBL have an immunophenotype similar to chronic lymphocytic leukemia (CLL), and 'CLL-like' MBL is a precursor to CLL. We used flow cytometry to identify MBL from unaffected members of CLL kindreds. We identified 101 MBL cases from 622 study subjects; of these, 82 individuals with MBL were further characterized. In all, 91 unique MBL clones were detected: 73 CLL-like MBL (CD5(+)CD20(dim)sIg(dim)), 11 atypical MBL (CD5(+)CD20(+)sIg(+)) and 7 CD5(neg) MBL (CD5(neg)CD20(+)sIg(neg)). Extended immunophenotypic characterization of these MBL subtypes was performed, and significant differences in cell surface expression of CD23, CD49d, CD79b and FMC-7 were observed among the groups. Markers of risk in CLL such as CD38, ZAP70 and CD49d were infrequently expressed in CLL-like MBL, but were expressed in the majority of atypical MBL. Interphase cytogenetics was performed in 35 MBL cases, and del 13q14 was most common (22/30 CLL-like MBL cases). Gene expression analysis using oligonucleotide arrays was performed on seven CLL-like MBL, and showed activation of B-cell receptor associated pathways. Our findings underscore the diversity of MBL subtypes and further clarify the relationship between MBL and other lymphoproliferative disorders. PMID:21617698

  18. Structure and permeability of ion-channels by integrated AFM and waveguide TIRF microscopy.

    PubMed

    Ramachandran, Srinivasan; Arce, Fernando Teran; Patel, Nirav R; Quist, Arjan P; Cohen, Daniel A; Lal, Ratnesh

    2014-01-01

    Membrane ion channels regulate key cellular functions and their activity is dependent on their 3D structure. Atomic force microscopy (AFM) images 3D structure of membrane channels placed on a solid substrate. Solid substrate prevents molecular transport through ion channels thus hindering any direct structure-function relationship analysis. Here we designed a ~70 nm nanopore to suspend a membrane, allowing fluidic access to both sides. We used these nanopores with AFM and total internal reflection fluorescence microscopy (TIRFM) for high resolution imaging and molecular transport measurement. Significantly, membranes over the nanopore were stable for repeated AFM imaging. We studied structure-activity relationship of gap junction hemichannels reconstituted in lipid bilayers. Individual hemichannels in the membrane overlying the nanopore were resolved and transport of hemichannel-permeant LY dye was visualized when the hemichannel was opened by lowering calcium in the medium. This integrated technique will allow direct structure-permeability relationship of many ion channels and receptors. PMID:24651823

  19. A study of water droplet between an AFM tip and a substrate using dissipative particle dynamics

    NASA Astrophysics Data System (ADS)

    Pal, Souvik; Lan, Chuanjin; Li, Zhen; Hirleman, E. Daniel; Ma, Yanbao

    2014-11-01

    Formation of a water droplet between a sharp AFM tip and a substrate due to capillary condensation affects the tip-substrate interaction. As a consequence, AFM measurements lose precision and often produce incorrect sample topology. Understanding the physics of liquid bridges is also important in the field of Dip-pen nanolithography (DPN). Significant research is being carried out to understand the mechanics of the formation of the liquid bridge and its dependence of surface properties, ambient conditions etc. The in-between length scale, i.e., mesoscale (~100 nm) associated with this phenomenon presents a steep challenge for experimental measurements. In addition, molecular dynamics (MD) can be computationally prohibitive to model the entire system, especially over microseconds to seconds. Theoretical analysis using Young Laplace equation has so far provided some qualitative insights only. We study this system using Dissipative Particle Dynamics (DPD) which is a simulation technique suitable for describing mesoscopic hydrodynamic behavior of fluids. In this work, we carry out simulations to improve understanding of the process of formation of the meniscus, the mechanics of manipulation and control of its shape, and better estimation of capillary forces. The knowledge gained through our study will help in correcting the AFM measurements affected by capillary condensation. Moreover, it will improve understanding of more accurate droplet manipulation in DPN.

  20. Introduction to Atomic Force Microscopy (AFM) in Biology.

    PubMed

    Kreplak, Laurent

    2016-01-01

    The atomic force microscope (AFM) has the unique capability of imaging biological samples with molecular resolution in buffer solution over a wide range of time scales from milliseconds to hours. In addition to providing topographical images of surfaces with nanometer- to angstrom-scale resolution, forces between single molecules and mechanical properties of biological samples can be investigated from the nano-scale to the micro-scale. Importantly, the measurements are made in buffer solutions, allowing biological samples to "stay alive" within a physiological-like environment while temporal changes in structure are measured-e.g., before and after addition of chemical reagents. These qualities distinguish AFM from conventional imaging techniques of comparable resolution, e.g., electron microscopy (EM). This unit provides an introduction to AFM on biological systems and describes specific examples of AFM on proteins, cells, and tissues. The physical principles of the technique and methodological aspects of its practical use and applications are also described. © 2016 by John Wiley & Sons, Inc. PMID:27479503

  1. Hydrodynamic effects in fast AFM single-molecule force measurements.

    PubMed

    Janovjak, Harald; Struckmeier, Jens; Müller, Daniel J

    2005-02-01

    Atomic force microscopy (AFM) allows the critical forces that unfold single proteins and rupture individual receptor-ligand bonds to be measured. To derive the shape of the energy landscape, the dynamic strength of the system is probed at different force loading rates. This is usually achieved by varying the pulling speed between a few nm/s and a few microm/s, although for a more complete investigation of the kinetic properties higher speeds are desirable. Above 10 microm/s, the hydrodynamic drag force acting on the AFM cantilever reaches the same order of magnitude as the molecular forces. This has limited the maximum pulling speed in AFM single-molecule force spectroscopy experiments. Here, we present an approach for considering these hydrodynamic effects, thereby allowing a correct evaluation of AFM force measurements recorded over an extended range of pulling speeds (and thus loading rates). To support and illustrate our theoretical considerations, we experimentally evaluated the mechanical unfolding of a multi-domain protein recorded at 30 microm/s pulling speed. PMID:15257425

  2. AFM Structural Characterization of Drinking Water Biofilm under Physiological Conditions

    EPA Science Inventory

    Due to the complexity of mixed culture drinking water biofilm, direct visual observation under in situ conditions has been challenging. In this study, atomic force microscopy (AFM) revealed the three dimensional morphology and arrangement of drinking water relevant biofilm in air...

  3. XPS and AFM Study of GaAs Surface Treatment

    SciTech Connect

    Contreras-Guerrero, R.; Wallace, R. M.; Aguirre-Francisco, S.; Herrera-Gomez, A.; Lopez-Lopez, M.

    2008-11-13

    Obtaining smooth and atomically clean surfaces is an important step in the preparation of a surface for device manufacturing. In this work different processes are evaluated for cleaning a GaAs surface. A good surface cleaning treatment is that which provides a high level of uniformity and controllability of the surface. Different techniques are useful as cleaning treatments depending on the growth process to be used. The goal is to remove the oxygen and carbon contaminants and then form a thin oxide film to protect the surface, which is easy to remove later with thermal desorption mechanism like molecular beam epitaxy (MBE) with minimal impact to the surface. In this study, atomic force microscopy (AFM), x-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS) were used to characterize the structure of the surface, the composition, as well as detect oxygen and carbon contaminant on the GaAs surface. This study consists in two parts. The first part the surface was subjected to different chemical treatments. The chemical solutions were: (a)H{sub 2}SO{sub 4}:H{sub 2}O{sub 2}:H{sub 2}O(4:1:100), (b) HCl: H{sub 2}O(1:3), (c)NH{sub 4}OH 29%. The treatments (a) and (b) reduced the oxygen on the surface. Treatment (c) reduces carbon contamination. In the second part we made MOS devices on the surfaces treated. They were characterized by CV and IV electrical measurements. They show frequency dispersion.

  4. Time-dependent surface adhesive force and morphology of RBC measured by AFM.

    PubMed

    Wu, Yangzhe; Hu, Yi; Cai, Jiye; Ma, Shuyuan; Wang, Xiaoping; Chen, Yong; Pan, Yunlong

    2009-04-01

    Atomic force microscopy (AFM) is a rapidly developing tool recently introduced into the evaluation of the age of bloodstains, potentially providing legal medical experts useful information for forensic investigation. In this study, the time-dependent, morphological changes of red blood cells (RBC) under three different conditions (including controlled, room-temperature condition, uncontrolled, outdoor-environmental condition, and controlled, low-temperature condition) were observed by AFM, as well as the cellular viscoelasticity via force-vs-distance curve measurements. Firstly, the data indicate that substrate types have different effects on cellular morphology of RBC. RBC presented the typical biconcave shape on mica, whereas either the biconcave shape or flattened shape was evident on glass. The mean volume of RBCs on mica was significantly larger than that of cells on glass. Surprisingly, the adhesive property of RBC membrane surfaces was substrate type-independent (the adhesive forces were statistically similar on glass and mica). With time lapse, the changes in cell volume and adhesive force of RBC under the controlled room-temperature condition were similar to those under the uncontrolled outdoor-environmental condition. Under the controlled low-temperature condition, however, the changes in cell volume occurred mainly due to the collapse of RBCs, and the curves of adhesive force showed the dramatic alternations in viscoelasticity of RBC. Taken together, the AFM detections on the time-dependent, substrate type-dependent, environment (temperature/humidity)-dependent changes in morphology and surface viscoelasticity of RBC imply a potential application of AFM in forensic medicine or investigations, e.g., estimating age of bloodstain or death time. PMID:19019689

  5. Recent CD AFM probe developments for sub-45 nm technology nodes

    NASA Astrophysics Data System (ADS)

    Liu, Hao-Chih; Osborne, Jason R.; Dahlen, Gregory A.; Greschner, Johann; Bayer, Thomas; Kalt, Samuel; Fritz, Georg

    2008-03-01

    This paper reports on new developments of advanced CD AFM probes after the prior introduction of "trident probes" in SPIE Advanced Lithography 2007 [1]. Trident probes, having sharpened extensions in the tip apex region, make possible bottom CD measurements within a few nanometers of the feature bottom corner; an area where other CD probes have difficulties due to tip shape limitations. Moreover, new metrology applications of trident probes have been developed for novel devices such as FinFET and vertical read/write hard disk heads. For ever smaller technology nodes, new probes evolved from the design of the trident probe. For example, the number of sharpened tip flares was reduced from three (trident) to two (bi-pod) to prevent possible interference of the third leg in the slow scan direction, as shown in Figure 3. Maintaining tip lateral stiffness as the tip size shrinks to less than 30 nm is vital for successful scanning. Consequently, a significant recent improvement is the change of probe shank cross-sectional geometry in order to maintain tip vertical aspect ratio of 1:5 (and lateral stiffness > 1 N/m). Finally, modifications of probe substrate are proposed and evaluated for current and new CD AFM systems. Hydrophobic, self-assembled monolayer (SAM) coatings were applied on CD probes to reduced tip "pull-away" distance1 during CD AFM scanning. Test results show that the pull away distance can be reduced more than 5 times on average (in some cases, by a factor of 15). Consequently, use of hydrophobic SAM coatings on CD probes mitigates pull-away distance thus allowing narrow trench CD measurements. We discuss limitations of prior CD AFM probes and design considerations of new CD probes. The characterization of first prototypes and evaluation of scan performance are presented in this work.

  6. Rational fabrication of a gold-coated AFM TERS tip by pulsed electrodeposition.

    PubMed

    Yang, Li-Kun; Huang, Teng-Xiang; Zeng, Zhi-Cong; Li, Mao-Hua; Wang, Xiang; Yang, Fang-Zu; Ren, Bin

    2015-11-21

    Reproducible fabrication of sharp gold- or silver-coated tips has become the bottleneck issue in tip-enhanced Raman spectroscopy, especially for atomic force microscopy (AFM)-based TERS. Herein, we developed a novel method based on pulsed electrodeposition to coat a thin gold layer over atomic force microscopy (AFM) tips to produce plasmonic TERS tips with high reproducibility. We systematically investigated the influence of the deposition potential and step time on the surface roughness and sharpness. This method allows the rational control of the radii of gold-coated TERS tips from a few to hundreds of nanometers, which allows us to systematically study the dependence of the TERS enhancement on the radius of the gold-coated AFM tip. The maximum TERS enhancement was achieved for the tip radius in the range of 60-75 nm in the gap mode. The coated gold layer has a strong adhesion with the silicon tip surface, which is highly stable in water, showing the great potential for application in the aqueous environment. PMID:26482226

  7. A low-cost AFM setup with an interferometer for undergraduates and secondary-school students

    NASA Astrophysics Data System (ADS)

    Bergmann, Antje; Feigl, Daniela; Kuhn, David; Schaupp, Manuel; Quast, Günter; Busch, Kurt; Eichner, Ludwig; Schumacher, Jens

    2013-07-01

    Atomic force microscopy (AFM) is an important tool in nanotechnology. This method makes it possible to observe nanoscopic surfaces beyond the resolution of light microscopy. In order to provide undergraduate and secondary-school students with insights into this world, we have developed a very robust low-cost AFM setup with a Fabry-Perot interferometer as a detecting device. This setup is designed to be operated almost completely manually and its simplicity gives access to a profound understanding of the working principle. Our AFM is operated in a constant height mode, i.e. the topography of the sample surface is represented directly by the deflection of the cantilever. Thus, the measuring procedure can be understood even by secondary-school students; furthermore, it is the method with the lowest cost, totalling not more than 10-15 k Euros. Nevertheless, we are able to examine a large variety of sample topographies such as CD and DVD surfaces, IC structures, blood cells, butterfly wings or moth eyes. Furthermore, force-distance curves can be recorded and the tensile moduli of some materials can be evaluated. We present our setup in detail and describe its working principles. In addition, we show various experiments which have already been performed by students.

  8. Fabrication of nanochannels with ladder nanostructure at the bottom using AFM nanoscratching method.

    PubMed

    Yan, Yongda; Geng, Yanquan; Hu, Zhenjiang; Zhao, Xuesen; Yu, Bowen; Zhang, Qi

    2014-01-01

    This letter presents a novel atomic force microscopy (AFM)-based nanomanufacturing method combining the tip scanning with the high-precision stage movement to fabricate nanochannels with ladder nanostructure at the bottom by continuous scanning with a fixed scan size. Different structures can be obtained according to the matching relation of the tip feeding velocity and the precision stage moving velocity. This relationship was first studied in detail to achieve nanochannels with different ladder nanostructures at the bottom. Machining experiments were then performed to fabricate nanochannels on an aluminum alloy surface to demonstrate the capability of this AFM-based fabrication method presented in this study. Results show that the feed value and the tip orientation in the removing action play important roles in this method which has a significant effect on the machined surfaces. Finally, the capacity of this method to fabricate a large-scale nanochannel was also demonstrated. This method has the potential to advance the existing AFM tip-based nanomanufacturing technique of the formation these complex structures by increasing the removal speed, simplifying the processing procedure and achieving the large-scale nanofabrication. PMID:24940171

  9. AFM volumetric methods for the characterization of proteins and nucleic acids.

    PubMed

    Fuentes-Perez, Maria Eugenia; Dillingham, Mark S; Moreno-Herrero, Fernando

    2013-04-01

    The atomic force microscope overestimates lateral dimensions and underestimates heights of nanometer size objects such as proteins and nucleic acids. This has made researchers cautious of AFM measurements, even though there is no other technique capable of measuring topography with sub-nanometer precision. Nevertheless, several approaches for determining the stoichiometry of protein and protein-DNA complexes have been developed which show that, although the absolute values may be incorrect, the AFM volume is essentially proportional to the mass. This has allowed the determination of the mass of protein complexes with the help of a calibration curve. Here we review the main techniques for AFM volume measurements and detail a methodology that significantly reduces the associated errors. This method uses a fragment of DNA as a fiducial marker by which the volume of a protein is normalized. The use of fiducial markers co-adsorbed together with the protein of interest minimizes the contribution of tip-induced artifacts as they affect both the object of interest and the marker. Finally, we apply this method to the measurement of the length of single-stranded DNA. A linear relationship between length and volume was obtained, opening the door to studies of ssDNA intermediates formed during complex DNA transactions such as replication, recombination and repair. PMID:23454289

  10. Fabrication of nanochannels with ladder nanostructure at the bottom using AFM nanoscratching method

    PubMed Central

    2014-01-01

    This letter presents a novel atomic force microscopy (AFM)-based nanomanufacturing method combining the tip scanning with the high-precision stage movement to fabricate nanochannels with ladder nanostructure at the bottom by continuous scanning with a fixed scan size. Different structures can be obtained according to the matching relation of the tip feeding velocity and the precision stage moving velocity. This relationship was first studied in detail to achieve nanochannels with different ladder nanostructures at the bottom. Machining experiments were then performed to fabricate nanochannels on an aluminum alloy surface to demonstrate the capability of this AFM-based fabrication method presented in this study. Results show that the feed value and the tip orientation in the removing action play important roles in this method which has a significant effect on the machined surfaces. Finally, the capacity of this method to fabricate a large-scale nanochannel was also demonstrated. This method has the potential to advance the existing AFM tip-based nanomanufacturing technique of the formation these complex structures by increasing the removal speed, simplifying the processing procedure and achieving the large-scale nanofabrication. PMID:24940171

  11. Rational fabrication of a gold-coated AFM TERS tip by pulsed electrodeposition

    NASA Astrophysics Data System (ADS)

    Yang, Li-Kun; Huang, Teng-Xiang; Zeng, Zhi-Cong; Li, Mao-Hua; Wang, Xiang; Yang, Fang-Zu; Ren, Bin

    2015-10-01

    Reproducible fabrication of sharp gold- or silver-coated tips has become the bottleneck issue in tip-enhanced Raman spectroscopy, especially for atomic force microscopy (AFM)-based TERS. Herein, we developed a novel method based on pulsed electrodeposition to coat a thin gold layer over atomic force microscopy (AFM) tips to produce plasmonic TERS tips with high reproducibility. We systematically investigated the influence of the deposition potential and step time on the surface roughness and sharpness. This method allows the rational control of the radii of gold-coated TERS tips from a few to hundreds of nanometers, which allows us to systematically study the dependence of the TERS enhancement on the radius of the gold-coated AFM tip. The maximum TERS enhancement was achieved for the tip radius in the range of 60-75 nm in the gap mode. The coated gold layer has a strong adhesion with the silicon tip surface, which is highly stable in water, showing the great potential for application in the aqueous environment.

  12. MOS-based nanocapacitor using C-AFM

    NASA Astrophysics Data System (ADS)

    Hill, Daniel; Sadewasser, Sascha; Aymerich, Xavier

    2003-04-01

    This report details the attempts made to realise nanocapacitors for nanoscale MOS based integrated circuits by AFM anodic oxidation, and therefore isolation, of nano-sized squares of poly-silicon, titanium and aluminium on Si/SiO2. Conductive AFM (C-AFM) was used to perform topographical and electrical characterisation. The experiments were performed with contact mode C-AFM, in ambient air, using Pt-Ir, Co-Cr and Ti coated (20nm) n-type silicon cantilevers. Each sample consisted of a 3-5nm thick conductor deposited on 6nm of SiO2, which was thermally grown on Phosphorus doped (1019 cm-3) n-type Si(100) substrates. Standard cleaning and passivation processes were used. Poly-silicon was immediately found to be too rough to oxidise. Initial current-voltage measurements inside of the titanium-oxide squares suggest initial isolation followed by degradation through Fowler-Nordheim tunnelling. Measurement inconsistencies seen suggest charge storage on the surface or tip with the barrier height of the native titanium oxide thought to be responsible. Al has a thicker natural oxide. To overcome this we designed a series of structures consisting of a Ti finger on SiO2, that is connected to a Ti bond pad, allowing direct probing by a semiconductor parameter analyser. AFM anodic oxidation was performed upon these Ti fingers to reduce their in-plane dimensions towards the nanoscale. To confirm the existence of a nanocapacitor topographical and electrical measurements were then done on and around them.

  13. Elastic modulus of polypyrrole nanotubes: AFM measurement

    NASA Astrophysics Data System (ADS)

    Cuenot, Stéphane; Demoustier-Champagne, Sophie; Nysten, Bernard

    2001-03-01

    Polypyrrole nanotubes were electrochemically synthesized within the pores of nanoporous track-etched membranes. After dissolution of the template membrane, they were dispersed on PET membranes. Their tensile elastic modulus was measured by probing them in three points bending using an atomic force microscope. The elastic modulus was deduced from force-curve measurements. In this communication, the effect of the synthesis temperature and of the nanotube diameter will be presented. Especially it will be shown that the elastic modulus strongly increases when the nanotube outer diameter is reduced from 160 nm down to 35 nm. These results are in good agreement with previous results showing that the electrical conductivity of polypyrrole nanotubes increases by more than one order of magnitude when the diameter decreases in the same range. These behaviors could be explained by a larger ratio of well-oriented defect-free polymer chains in smaller tubes.

  14. Absorption Spectroscopy and Imaging from the Visible through Mid-IR with 20 nm Resolution Using AFM probes

    NASA Astrophysics Data System (ADS)

    Centrone, Andrea

    2015-03-01

    Correlated nanoscale composition and optical property maps are important to engineer nanomaterials in applications ranging from photovoltaics to sensing and therapeutics. Wavelengths (λs) from the visible to near-IR probe electronic transitions in materials, providing information regarding band gap and defects while light in mid-IR probes vibrational transitions and provide chemical composition. However, light diffraction limits the lateral resolution of conventional micro-spectroscopic techniques to approximately λ/2, which is insufficient to image nanomaterials. Additionally, the λ-dependent resolution impedes direct comparison of spectral maps from different spectral ranges. Photo Thermal Induced Resonance (PTIR) is a novel technique that circumvents light diffraction by employing an AFM tip as a local detector for measuring light absorption with λ-independent nanoscale resolution. Our PTIR setup combines an AFM microscope with three lasers providing λ-tunability from 500 nm to 16000 nm continuously. The AFM tip transduces locally the sample thermal expansion induced by light absorption into large cantilever oscillations. Local absorption spectra (electronic or vibrational) and maps are obtained recording the amplitude of the tip deflection as a function of λ and position, respectively. The working principles of the PTIR technique will be described first, and nano-patterned polymer samples will be used to evaluate its lateral resolution, sensitivity and linearity. Results show that the PTIR signal intensity is proportional to the local absorbed energy suggesting applicability of this technique for quantitative chemical analysis at nanoscale, at least for thin (less than 1000 nm thick) samples. Additionally, a λ-independent resolution as high as 20 nm is demonstrated across the whole spectral range. In the second part of the talk, PTIR will be applied to image the dark plasmonic resonance of gold Asymmetric Split Ring Resonators (A-SRRs) in the mid

  15. Nanotechnology for forensic sciences: analysis of PDMS replica of the case head of spent cartridges by optical microscopy, SEM and AFM for the ballistic identification of individual characteristic features of firearms.

    PubMed

    Valle, Francesco; Bianchi, Michele; Tortorella, Silvia; Pierini, Giovanni; Biscarini, Fabio; D'Elia, Marcello

    2012-10-10

    A novel application of replica molding to a forensic problem, viz. the accurate reproduction of the case head of gun and rifle cartridges, prior and after been shot, is presented. The fabrication of an arbitrary number of identical copies of the region hit by the firing pin and by the breech face is described. The replicas can be (i) handled without damaging the original evidence, (ii) distributed to different law enforcement agencies for comparison against other evidences found on crime scenes or ballistic tests of seized firearms, (iii) maintained on a file by the laboratories. A detailed analysis of the morphological features of the replicas has been carried out by standard microscopy techniques as well as by advanced microscopy such as scanning probe and scanning electron leading to a quantitative morphological characterization of the case heads down to the nanometer scale. The assignment of the cartridge replicas to the shooting weapon is demonstrated to hold below the micron scale, while it is hindered at the nanometer level both by the manufacturing differences and by eventual modifications occurring on the firing pin. PMID:22840283

  16. Kinetic analysis shows that vitamin A disposal rate in humans is positively correlated with vitamin A stores

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vitamin A (VA) kinetics, storage, and utilization were determined in well-nourished Chinese and American (US) adults using model-based compartmental analysis. [2H8]Retinyl acetate was orally administered to US (n = 12; 59 +/- 9 y; mean +/- SD) and Chinese adults (n = 14; 54 +/- 4 y), and serum trace...

  17. The use of colloid probe microscopy to predict aerosolization performance in dry powder inhalers: AFM and in vitro correlation.

    PubMed

    Young, Paul M; Tobyn, Michael J; Price, Robert; Buttrum, Mark; Dey, Fiona

    2006-08-01

    The atomic force microscope (AFM) colloid probe technique was utilized to measure cohesion forces (separation energy) between three drug systems as a function of relative humidity (RH). The subsequent data was correlated with in vitro aerosolization data collected over the same RH range. Three drug-only systems were chosen for study; salbutamol sulphate (SS), triamcinolone acetonide (TAA), and di-sodium cromoglycate (DSCG). Analysis of the AFM and in vitro data suggested good correlations, with the separation energy being related inversely to the aerosolization performance (measured as fine particle fraction, FPF(LD)). In addition, the relationship between, cohesion, RH, and aerosolization performance was drug specific. For example, an increase in RH between 15% and 75% resulted in increased cohesion and decreased FPF(LD) for SS and DSCG. In comparison, for TAA, a decrease in cohesion and increased FPF(LD) was observed when RH was increased (15-75%). Linear regression analysis comparing AFM with in vitro data indicated R(2) values > 0.80, for all data sets, suggesting the AFM could be used to indicate in vitro aerosolization performance. PMID:16795018

  18. Sharp high-aspect-ratio AFM tips fabricated by a combination of deep reactive ion etching and focused ion beam techniques.

    PubMed

    Caballero, David; Villanueva, Guillermo; Plaza, Jose Antonio; Mills, Christopher A; Samitier, Josep; Errachid, Abdelhamid

    2010-01-01

    The shape and dimensions of an atomic force microscope tip are crucial factors to obtain high resolution images at the nanoscale. When measuring samples with narrow trenches, inclined sidewalls near 90 degrees or nanoscaled structures, standard silicon atomic force microscopy (AFM) tips do not provide satisfactory results. We have combined deep reactive ion etching (DRIE) and focused ion beam (FIB) lithography techniques in order to produce probes with sharp rocket-shaped silicon AFM tips for high resolution imaging. The cantilevers were shaped and the bulk micromachining was performed using the same DRIE equipment. To improve the tip aspect ratio we used FIB nanolithography technique. The tips were tested on narrow silicon trenches and over biological samples showing a better resolution when compared with standard AFM tips, which enables nanocharacterization and nanometrology of high-aspect-ratio structures and nanoscaled biological elements to be completed, and provides an alternative to commercial high aspect ratio AFM tips. PMID:20352882

  19. Linking of sensor molecules with amino groups to amino-functionalized AFM tips.

    PubMed

    Wildling, Linda; Unterauer, Barbara; Zhu, Rong; Rupprecht, Anne; Haselgrübler, Thomas; Rankl, Christian; Ebner, Andreas; Vater, Doris; Pollheimer, Philipp; Pohl, Elena E; Hinterdorfer, Peter; Gruber, Hermann J

    2011-06-15

    The measuring tip of an atomic force microscope (AFM) can be upgraded to a specific biosensor by attaching one or a few biomolecules to the apex of the tip. The biofunctionalized tip is then used to map cognate target molecules on a sample surface or to study biophysical parameters of interaction with the target molecules. The functionality of tip-bound sensor molecules is greatly enhanced if they are linked via a thin, flexible polymer chain. In a typical scheme of tip functionalization, reactive groups are first generated on the tip surface, a bifunctional cross-linker is then attached with one of its two reactive ends, and finally the probe molecule of interest is coupled to the free end of the cross-linker. Unfortunately, the most popular functional group generated on the tip surface is the amino group, while at the same time, the only useful coupling functions of many biomolecules (such as antibodies) are also NH(2) groups. In the past, various tricks or detours were applied to minimize the undesired bivalent reaction of bifunctional linkers with adjacent NH(2) groups on the tip surface. In the present study, an uncompromising solution to this problem was found with the help of a new cross-linker ("acetal-PEG-NHS") which possesses one activated carboxyl group and one acetal-protected benzaldehyde function. The activated carboxyl ensures rapid unilateral attachment to the amino-functionalized tip, and only then is the terminal acetal group converted into the amino-reactive benzaldehyde function by mild treatment (1% citric acid, 1-10 min) which does not harm the AFM tip. As an exception, AFM tips with magnetic coating become demagnetized in 1% citric acid. This problem was solved by deprotecting the acetal group before coupling the PEG linker to the AFM tip. Bivalent binding of the corresponding linker ("aldehyde-PEG-NHS") to adjacent NH(2) groups on the tip was largely suppressed by high linker concentrations. In this way, magnetic AFM tips could be

  20. AFM-based mechanical characterization of single nanofibres.

    PubMed

    Neugirg, Benedikt R; Koebley, Sean R; Schniepp, Hannes C; Fery, Andreas

    2016-04-28

    Nanofibres are found in a broad variety of hierarchical biological systems as fundamental structural units, and nanofibrillar components are playing an increasing role in the development of advanced functional materials. Accurate determination of the mechanical properties of single nanofibres is thus of great interest, yet measurement of these properties is challenging due to the intricate specimen handling and the exceptional force and deformation resolution that is required. The atomic force microscope (AFM) has emerged as an effective, reliable tool in the investigation of nanofibrillar mechanics, with the three most popular approaches-AFM-based tensile testing, three-point deformation testing, and nanoindentation-proving preferable to conventional tensile testing in many (but not all) cases. Here, we review the capabilities and limitations of each of these methods and give a comprehensive overview of the recent advances in this field. PMID:27055900

  1. Insights into Epoxy Network Nanostructural Heterogeneity Using AFM-IR.

    PubMed

    Morsch, Suzanne; Liu, Yanwen; Lyon, Stuart B; Gibbon, Simon R

    2016-01-13

    The first direct observation of a chemically heterogeneous nanostructure within an epoxy resin is reported. Epoxy resins comprise the matrix component of many high performance composites, coatings and adhesives, yet the molecular network structure that underpins the performance of these industrially essential materials is not well understood. Internal nodular morphologies have repeatedly been reported for epoxy resins analyzed using SEM or AFM, yet the origin of these features remains a contentious subject, and epoxies are still commonly assumed to be chemically homogeneous. Uniquely, in this contribution we use the recently developed AFM-IR technique to eliminate previous differences in interpretation, and establish that nodule features correspond to heterogeneous network connectivity within an epoxy phenolic formulation. PMID:26694687

  2. Nano-Bio-Mechanics of Neuroblastoma Cells Using AFM

    NASA Astrophysics Data System (ADS)

    Bastatas, Lyndon; Matthews, James; Kang, Min; Park, Soyeun

    2011-10-01

    We have conducted an in vitro study to determine the elastic moduli of neurobalstoma cell lines using atomic force microscopy. Using a panel of cell lines established from neuroblastoma patients at different stages of disease progress and treatment, we have investigated the differences in elastic moduli during a course of cancer progression and chemotherapy. The cells were grown on the hard substrates that are chemically functionalized to enhance adhesion. We have performed the AFM indentation experiments with different applied forces from the AFM probe. For the purpose of the comparison between cell lines, the indentations were performed only on cell centers. The obtained force-distance curves were analyzed using the Hertz model in order to extract the elastic moduli. We have found that the elastic moduli of human neuroblastoma cells significantly varied during the disease progression. We postulate that the observed difference might be affected by the treatment and chemotherapy.

  3. AFM-based mechanical characterization of single nanofibres

    NASA Astrophysics Data System (ADS)

    Neugirg, Benedikt R.; Koebley, Sean R.; Schniepp, Hannes C.; Fery, Andreas

    2016-04-01

    Nanofibres are found in a broad variety of hierarchical biological systems as fundamental structural units, and nanofibrillar components are playing an increasing role in the development of advanced functional materials. Accurate determination of the mechanical properties of single nanofibres is thus of great interest, yet measurement of these properties is challenging due to the intricate specimen handling and the exceptional force and deformation resolution that is required. The atomic force microscope (AFM) has emerged as an effective, reliable tool in the investigation of nanofibrillar mechanics, with the three most popular approaches--AFM-based tensile testing, three-point deformation testing, and nanoindentation--proving preferable to conventional tensile testing in many (but not all) cases. Here, we review the capabilities and limitations of each of these methods and give a comprehensive overview of the recent advances in this field.

  4. Molecular modeling of enzyme attachment on AFM probes.

    PubMed

    Oliveira, Guedmiller S; Leite, Fabio L; Amarante, Adriano M; Franca, Eduardo F; Cunha, Richard A; Briggs, James M; Freitas, Luiz C G

    2013-09-01

    The immobilization of enzymes on atomic force microscope tip (AFM tip) surface is a crucial step in the development of nanobiosensors to be used in detection process. In this work, an atomistic modeling of the attachment of the acetyl coenzyme A carboxylase (ACC enzyme) on a functionalized AFM tip surface is proposed. Using electrostatic considerations, suitable enzyme-surface orientations with the active sites of the ACC enzyme available for interactions with bulk molecules were found. A 50 ns molecular dynamics trajectory in aqueous solution was obtained and surface contact area, hydrogen bonding and protein stability were analyzed. The enzyme-surface model proposed here with minor adjustment can be applied to study antigen-antibody interactions as well as enzyme immobilization on silica for chromatography applications. PMID:24029365

  5. BOREAS AFM-5 Level-1 Upper Air Network Data

    NASA Technical Reports Server (NTRS)

    Barr, Alan; Hrynkiw, Charmaine; Newcomer, Jeffrey A. (Editor); Hall, Forrest G. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-5 team collected and processed data from the numerous radiosonde flights during the project. The goals of the AFM-05 team were to provide large-scale definition of the atmosphere by supplementing the existing Atmospheric Environment Service (AES) aerological network, both temporally and spatially. This data set includes basic upper-air parameters collected from the network of upper-air stations during the 1993, 1994, and 1996 field campaigns over the entire study region. The data are contained in tabular ASCII files. The level-1 upper-air network data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files also are available on a CD-ROM (see document number 20010000884).

  6. AFM and SThM Characterization of Graphene

    NASA Astrophysics Data System (ADS)

    Foy, Christopher; Sidorov, Anton; Chen, Xunchi; Ruan, Ming; Berger, Claire; de Heer, Walter; Jiang, Zhigang

    2012-03-01

    We report on detailed characterization of epitaxial grown graphene on SiC and chemical vapor deposition grown graphene on Cu foil using atomic force microscopy (AFM) and scanning thermal microscopy (SThM). We focus on the electronic and thermal properties of graphene grain boundaries, and thus providing valuable feedback to materials growth. Specifically, we perform thermal conductivity contrast mapping and surface potential mapping of graphene, and compare with that obtained on the Au electrodes and the substrate.

  7. Investigation of biopolymer networks by means of AFM

    NASA Astrophysics Data System (ADS)

    Keresztes, Z.; Rigó, T.; Telegdi, J.; Kálmán, E.

    Natural hydrogel alginate was investigated by means of atomic force microscopy (AFM) to gain microscale information on the morphological and rheological properties of the biopolymer network cross-linked by various cations. Local rheological properties of the gels measured by force spectroscopy gave correlation between increasing ion selectivity and increasing polymer elasticity. Adhesive forces acting between the surface of the gel and the probe, and also the intrinsic rheological properties of bulk polymers affect the microscopical image formation.

  8. Near-Field Spectroscopy with Nanoparticles Deposited by AFM

    NASA Technical Reports Server (NTRS)

    Anderson, Mark S.

    2008-01-01

    An alternative approach to apertureless near-field optical spectroscopy involving an atomic-force microscope (AFM) entails less complexity of equipment than does a prior approach. The alternative approach has been demonstrated to be applicable to apertureless near-field optical spectroscopy of the type using an AFM and surface enhanced Raman scattering (SERS), and is expected to be equally applicable in cases in which infrared or fluorescence spectroscopy is used. Apertureless near-field optical spectroscopy is a means of performing spatially resolved analyses of chemical compositions of surface regions of nanostructured materials. In apertureless near-field spectroscopy, it is common practice to utilize nanostructured probe tips or nanoparticles (usually of gold) having shapes and dimensions chosen to exploit plasmon resonances so as to increase spectroscopic-signal strengths. To implement the particular prior approach to which the present approach is an alternative, it is necessary to integrate a Raman spectrometer with an AFM and to utilize a special SERS-active probe tip. The resulting instrumentation system is complex, and the tasks of designing and constructing the system and using the system to acquire spectro-chemical information from nanometer-scale regions on a surface are correspondingly demanding.

  9. Tissue section AFM: In situ ultrastructural imaging of native biomolecules

    PubMed Central

    Graham, Helen K.; Hodson, Nigel W.; Hoyland, Judith A.; Millward-Sadler, Sarah J.; Garrod, David; Scothern, Anthea; Griffiths, Christopher E.M.; Watson, Rachel E.B.; Cox, Thomas R.; Erler, Janine T.; Trafford, Andrew W.; Sherratt, Michael J.

    2010-01-01

    Conventional approaches for ultrastructural high-resolution imaging of biological specimens induce profound changes in bio-molecular structures. By combining tissue cryo-sectioning with non-destructive atomic force microscopy (AFM) imaging we have developed a methodology that may be applied by the non-specialist to both preserve and visualize bio-molecular structures (in particular extracellular matrix assemblies) in situ. This tissue section AFM technique is capable of: i) resolving nm–µm scale features of intra- and extracellular structures in tissue cryo-sections; ii) imaging the same tissue region before and after experimental interventions; iii) combining ultrastructural imaging with complimentary microscopical and micromechanical methods. Here, we employ this technique to: i) visualize the macro-molecular structures of unstained and unfixed fibrillar collagens (in skin, cartilage and intervertebral disc), elastic fibres (in aorta and lung), desmosomes (in nasal epithelium) and mitochondria (in heart); ii) quantify the ultrastructural effects of sequential collagenase digestion on a single elastic fibre; iii) correlate optical (auto fluorescent) with ultrastructural (AFM) images of aortic elastic lamellae. PMID:20144712

  10. Nanoscale rippling on polymer surfaces induced by AFM manipulation

    PubMed Central

    2015-01-01

    Summary Nanoscale rippling induced by an atomic force microscope (AFM) tip can be observed after performing one or many scans over the same area on a range of materials, namely ionic salts, metals, and semiconductors. However, it is for the case of polymer films that this phenomenon has been widely explored and studied. Due to the possibility of varying and controlling various parameters, this phenomenon has recently gained a great interest for some technological applications. The advent of AFM cantilevers with integrated heaters has promoted further advances in the field. An alternative method to heating up the tip is based on solvent-assisted viscoplastic deformations, where the ripples develop upon the application of a relatively low force to a solvent-rich film. An ensemble of AFM-based procedures can thus produce nanoripples on polymeric surfaces quickly, efficiently, and with an unprecedented order and control. However, even if nanorippling has been observed in various distinct modes and many theoretical models have been since proposed, a full understanding of this phenomenon is still far from being achieved. This review aims at summarizing the current state of the art in the perspective of achieving control over the rippling process on polymers at a nanoscale level. PMID:26733086

  11. AFM imaging of functionalized carbon nanotubes on biological membranes

    NASA Astrophysics Data System (ADS)

    Lamprecht, C.; Liashkovich, I.; Neves, V.; Danzberger, J.; Heister, E.; Rangl, M.; Coley, H. M.; McFadden, J.; Flahaut, E.; Gruber, H. J.; Hinterdorfer, P.; Kienberger, F.; Ebner, A.

    2009-10-01

    Multifunctional carbon nanotubes are promising for biomedical applications as their nano-size, together with their physical stability, gives access into the cell and various cellular compartments including the nucleus. However, the direct and label-free detection of carbon nanotube uptake into cells is a challenging task. The atomic force microscope (AFM) is capable of resolving details of cellular surfaces at the nanometer scale and thus allows following of the docking of carbon nanotubes to biological membranes. Here we present topographical AFM images of non-covalently functionalized single walled (SWNT) and double walled carbon nanotubes (DWNT) immobilized on different biological membranes, such as plasma membranes and nuclear envelopes, as well as on a monolayer of avidin molecules. We were able to visualize DWNT on the nuclear membrane while at the same time resolving individual nuclear pore complexes. Furthermore, we succeeded in localizing individual SWNT at the border of incubated cells and in identifying bundles of DWNT on cell surfaces by AFM imaging.

  12. Photosynthetic metabolism of C3 plants shows highly cooperative regulation under changing environments: A systems biological analysis

    PubMed Central

    Luo, Ruoyu; Wei, Haibin; Ye, Lin; Wang, Kankan; Chen, Fan; Luo, Lijun; Liu, Lei; Li, Yuanyuan; Crabbe, M. James C.; Jin, Li; Li, Yixue; Zhong, Yang

    2009-01-01

    We studied the robustness of photosynthetic metabolism in the chloroplasts of C3 plants under drought stress and at high CO2 concentration conditions by using a method called Minimization of Metabolic Adjustment Dynamic Flux Balance Analysis (M_DFBA). Photosynthetic metabolism in the chloroplasts of C3 plants applies highly cooperative regulation to minimize the fluctuation of metabolite concentration profiles in the face of transient perturbations. Our work suggests that highly cooperative regulation assures the robustness of the biological system and that there is closer cooperation under perturbation conditions than under normal conditions. This results in minimizing fluctuations in the profiles of metabolite concentrations, which is the key to maintaining a system's function. Our methods help in understanding such phenomena and the mechanisms of robustness for complex metabolic networks in dynamic processes. PMID:19129487

  13. Transcriptomic and metabolomic analysis of Yukon Thellungiella plants grown in cabinets and their natural habitat show phenotypic plasticity

    PubMed Central

    2012-01-01

    Background Thellungiella salsuginea is an important model plant due to its natural tolerance to abiotic stresses including salt, cold, and water deficits. Microarray and metabolite profiling have shown that Thellungiella undergoes stress-responsive changes in transcript and organic solute abundance when grown under controlled environmental conditions. However, few reports assess the capacity of plants to display stress-responsive traits in natural habitats where concurrent stresses are the norm. Results To determine whether stress-responsive changes observed in cabinet-grown plants are recapitulated in the field, we analyzed leaf transcript and metabolic profiles of Thellungiella growing in its native Yukon habitat during two years of contrasting meteorological conditions. We found 673 genes showing differential expression between field and unstressed, chamber-grown plants. There were comparatively few overlaps between genes expressed under field and cabinet treatment-specific conditions. Only 20 of 99 drought-responsive genes were expressed both in the field during a year of low precipitation and in plants subjected to drought treatments in cabinets. There was also a general pattern of lower abundance among metabolites found in field plants relative to control or stress-treated plants in growth cabinets. Nutrient availability may explain some of the observed differences. For example, proline accumulated to high levels in cold and salt-stressed cabinet-grown plants but proline content was, by comparison, negligible in plants at a saline Yukon field site. We show that proline accumulated in a stress-responsive manner in Thellungiella plants salinized in growth cabinets and in salt-stressed seedlings when nitrogen was provided at 1.0 mM. In seedlings grown on 0.1 mM nitrogen medium, the proline content was low while carbohydrates increased. The relatively higher content of sugar-like compounds in field plants and seedlings on low nitrogen media suggests that

  14. Analysis of diverse regulatory networks in a hierarchical context shows consistent tendencies for collaboration in the middle levels.

    PubMed

    Bhardwaj, Nitin; Yan, Koon-Kiu; Gerstein, Mark B

    2010-04-13

    Gene regulatory networks have been shown to share some common aspects with commonplace social governance structures. Thus, we can get some intuition into their organization by arranging them into well-known hierarchical layouts. These hierarchies, in turn, can be placed between the extremes of autocracies, with well-defined levels and clear chains of command, and democracies, without such defined levels and with more co-regulatory partnerships between regulators. In general, the presence of partnerships decreases the variation in information flow amongst nodes within a level, more evenly distributing stress. Here we study various regulatory networks (transcriptional, modification, and phosphorylation) for five diverse species, Escherichia coli to human. We specify three levels of regulators--top, middle, and bottom--which collectively govern the non-regulator targets lying in the lowest fourth level. We define quantities for nodes, levels, and entire networks that measure their degree of collaboration and autocratic vs. democratic character. We show individual regulators have a range of partnership tendencies: Some regulate their targets in combination with other regulators in local instantiations of democratic structure, whereas others regulate mostly in isolation, in more autocratic fashion. Overall, we show that in all networks studied the middle level has the highest collaborative propensity and coregulatory partnerships occur most frequently amongst midlevel regulators, an observation that has parallels in corporate settings where middle managers must interact most to ensure organizational effectiveness. There is, however, one notable difference between networks in different species: The amount of collaborative regulation and democratic character increases markedly with overall genomic complexity. PMID:20351254

  15. Mutational analysis of sclerostin shows importance of the flexible loop and the cystine-knot for Wnt-signaling inhibition.

    PubMed

    Boschert, Verena; van Dinther, Maarten; Weidauer, Stella; van Pee, Katharina; Muth, Eva-Maria; Ten Dijke, Peter; Mueller, Thomas D

    2013-01-01

    The cystine-knot containing protein Sclerostin is an important negative regulator of bone growth and therefore represents a promising therapeutic target. It exerts its biological task by inhibiting the Wnt (wingless and int1) signaling pathway, which participates in bone formation by promoting the differentiation of mesenchymal stem cells to osteoblasts. The core structure of Sclerostin consists of three loops with the first and third loop (Finger 1 and Finger 2) forming a structured β-sheet and the second loop being unstructured and highly flexible. Biochemical data showed that the flexible loop is important for binding of Sclerostin to Wnt co-receptors of the low-density lipoprotein related-protein family (LRP), by interacting with the Wnt co-receptors LRP5 or -6 it inhibits Wnt signaling. To further examine the structural requirements for Wnt inhibition, we performed an extensive mutational study within all three loops of the Sclerostin core domain involving single and multiple mutations as well as truncation of important regions. By this approach we could confirm the importance of the second loop and especially of amino acids Asn92 and Ile94 for binding to LRP6. Based on a Sclerostin variant found in a Turkish family suffering from Sclerosteosis we generated a Sclerostin mutant with cysteines 84 and 142 exchanged thereby removing the third disulfide bond of the cystine-knot. This mutant binds to LRP6 with reduced binding affinity and also exhibits a strongly reduced inhibitory activity against Wnt1 thereby showing that also elements outside the flexible loop are important for inhibition of Wnt by Sclerostin. Additionally, we examined the effect of the mutations on the inhibition of two different Wnt proteins, Wnt3a and Wnt1. We could detect clear differences in the inhibition of these proteins, suggesting that the mechanism by which Sclerostin antagonizes Wnt1 and Wnt3a is fundamentally different. PMID:24312339

  16. Factor analysis shows that female rat behaviour is characterized primarily by activity, male rats are driven by sex and anxiety.

    PubMed

    Fernandes, C; González, M I; Wilson, C A; File, S E

    1999-12-01

    This experiment explored sex differences in behaviour using factor analysis to describe the relationship between different behavioral variables. A principal component solution with an orthogonal rotation of the factor matrix was used, ensuring that the extracted factors are independent of one another, and thus reflect separate processes. In the elevated plus-maze test of anxiety, in male rats factor 1 accounted for 75% of the variance and reflected anxiety, factor 2 represented activity, and accounted for 24% of the variance. This contrasted with the finding in female rats in which factor 1 was activity, accounting for 57% of the variance, with the anxiety factor accounting for only 34% of the variance. When behaviour in both the plus-maze and holeboard were analysed, a similar sex difference was found with anxiety emerging as factor 1 in males and holeboard activity as factor 1 in females. Locomotor activity in the inner portion of the holeboard loaded on the anxiety factor for males, but on activity for females. When behaviours in the plus-maze and sexual orientation tests were analysed, anxiety emerged as factor 1 in males, sexual preferences factor 2, and activity factor 3. In females, activity was factor 1, sexual preference factor 2, anxiety factor 3, and social interest factor 4. These results suggest caution should be exercised in interpreting the results from female rats in tests validated on males because the primary controlling factor may be different. PMID:10593196

  17. Anatomical Network Analysis Shows Decoupling of Modular Lability and Complexity in the Evolution of the Primate Skull

    PubMed Central

    Esteve-Altava, Borja; Boughner, Julia C.; Diogo, Rui; Villmoare, Brian A.; Rasskin-Gutman, Diego

    2015-01-01

    Modularity and complexity go hand in hand in the evolution of the skull of primates. Because analyses of these two parameters often use different approaches, we do not know yet how modularity evolves within, or as a consequence of, an also-evolving complex organization. Here we use a novel network theory-based approach (Anatomical Network Analysis) to assess how the organization of skull bones constrains the co-evolution of modularity and complexity among primates. We used the pattern of bone contacts modeled as networks to identify connectivity modules and quantify morphological complexity. We analyzed whether modularity and complexity evolved coordinately in the skull of primates. Specifically, we tested Herbert Simon’s general theory of near-decomposability, which states that modularity promotes the evolution of complexity. We found that the skulls of extant primates divide into one conserved cranial module and up to three labile facial modules, whose composition varies among primates. Despite changes in modularity, statistical analyses reject a positive feedback between modularity and complexity. Our results suggest a decoupling of complexity and modularity that translates to varying levels of constraint on the morphological evolvability of the primate skull. This study has methodological and conceptual implications for grasping the constraints that underlie the developmental and functional integration of the skull of humans and other primates. PMID:25992690

  18. Phylogenetic Analysis Shows That Neolithic Slate Plaques from the Southwestern Iberian Peninsula Are Not Genealogical Recording Systems

    PubMed Central

    García Rivero, Daniel; O'Brien, Michael J.

    2014-01-01

    Prehistoric material culture proposed to be symbolic in nature has been the object of considerable archaeological work from diverse theoretical perspectives, yet rarely are methodological tools used to test the interpretations. The lack of testing is often justified by invoking the opinion that the slippery nature of past human symbolism cannot easily be tackled by the scientific method. One such case, from the southwestern Iberian Peninsula, involves engraved stone plaques from megalithic funerary monuments dating ca. 3,500–2,750 B.C. (calibrated age). One widely accepted proposal is that the plaques are ancient mnemonic devices that record genealogies. The analysis reported here demonstrates that this is not the case, even when the most supportive data and techniques are used. Rather, we suspect there was a common ideological background to the use of plaques that overlay the southwestern Iberian Peninsula, with little or no geographic patterning. This would entail a cultural system in which plaque design was based on a fundamental core idea, with a number of mutable and variable elements surrounding it. PMID:24558384

  19. Phylogenetic analysis shows that Neolithic slate plaques from the southwestern Iberian Peninsula are not genealogical recording systems.

    PubMed

    García Rivero, Daniel; O'Brien, Michael J

    2014-01-01

    Prehistoric material culture proposed to be symbolic in nature has been the object of considerable archaeological work from diverse theoretical perspectives, yet rarely are methodological tools used to test the interpretations. The lack of testing is often justified by invoking the opinion that the slippery nature of past human symbolism cannot easily be tackled by the scientific method. One such case, from the southwestern Iberian Peninsula, involves engraved stone plaques from megalithic funerary monuments dating ca. 3,500-2,750 B.C. (calibrated age). One widely accepted proposal is that the plaques are ancient mnemonic devices that record genealogies. The analysis reported here demonstrates that this is not the case, even when the most supportive data and techniques are used. Rather, we suspect there was a common ideological background to the use of plaques that overlay the southwestern Iberian Peninsula, with little or no geographic patterning. This would entail a cultural system in which plaque design was based on a fundamental core idea, with a number of mutable and variable elements surrounding it. PMID:24558384

  20. Analysis of beta-globin mutations shows stable mixed chimerism in patients with thalassemia after bone marrow transplantation.

    PubMed

    Kapelushnik, J; Or, R; Filon, D; Nagler, A; Cividalli, G; Aker, M; Naparstek, E; Slavin, S; Oppenheim, A

    1995-10-15

    Beta-thalassemia major (TM) is caused by any of approximately 150 mutations within the beta-globin gene. To establish the degree of chimerism after bone marrow transplantation (BMT), we have performed molecular analysis of beta-globin mutations in 14 patients with TM over a period of 10 years. All patients underwent T cell-depleted allogeneic BMT from HLA-identical related donors, using either in vitro T-cell depletion with CAMPATH 1M and complement or in vivo depletion using CAMPATH 1G in the bone marrow collection bag. To date, at different time periods after BMT, seven patients have some degree of chimerism; six of these patients, all blood transfusion-independent, have donor cells in the range of 70% to 95%, with stable mixed chimerism (MC). The seventh patient has less than 10% donor cells with, surprisingly, only minimal transfusion requirements. The detection of beta-globin gene point mutation, as used here, is a highly specific and sensitive marker for engraftment and MC in patients with thalassemia. In light of its specificity, the method is applicable in all cases of TM, as it is independent of sex and other non-globin-related DNA markers. The high incidence of MC found in our patients may be a consequence of the pre-BMT T-cell depletion. Because MC was associated with transfusion independence, complete eradication of residual host cells for effective treatment of TM and possibly other genetic diseases may prove not to be essential. PMID:7579421

  1. Comprehensive analysis of oculocutaneous albinism among non-Hispanic caucasians shows that OCA1 is the most prevalent OCA type.

    PubMed

    Hutton, Saunie M; Spritz, Richard A

    2008-10-01

    Oculocutaneous albinism (OCA) is a genetically heterogeneous group of disorders characterized by absent or reduced pigmentation of the skin, hair, and eyes. In humans, four genes have been associated with "classical" OCA and another 12 genes with syndromic forms of OCA. To assess the prevalence of different forms of OCA and different gene mutations among non-Hispanic Caucasian patients, we performed DNA sequence analysis of the four genes associated with "classical" OCA (TYR, OCA2, TYRP1, SLC45A2), the two principal genes associated with syndromic OCA (HPS1, HPS4), and a candidate OCA gene (SILV), in 121 unrelated, unselected non-Hispanic/Latino Caucasian patients carrying the clinical diagnosis of OCA. We identified apparent pathologic TYR gene mutations in 69% of patients, OCA2 mutations in 18%, SLC45A2 mutations in 6%, and no apparent pathological mutations in 7% of patients. We found no mutations of TYRP1, HPS1, HPS4, or SILV in any patients. Although we observed a diversity of mutations for each gene, a relatively small number of different mutant alleles account for a majority of the total. This study demonstrates that, contrary to long-held clinical lore, OCA1, not OCA2, is by far the most frequent cause of OCA among Caucasian patients. PMID:18463683

  2. Design-around biotechnology patents: an analysis of US Federal Circuit decisions shows the possibility of designing around biotechnology patents.

    PubMed

    Wang, Shyh-Jen

    2011-01-01

    In order to demonstrate the possibility of design-around for patents, we reviewed 40 no-infringement cases out of all 4,760 Federal Circuit Court of Appeals (CAFC) cases decided from 2001 to 2009. Based on this analysis, designing around a biotechnology patent first requires a thorough reading of the patent specification and prosecution history. These written descriptions offer explicit directions about claim meanings or the scope being disclaimed. By statute, claims recite and define the structure or acts of an invention, and serve as tools to determine whether or not a patent is infringed. The next procedure would include omitting a part or property from the claim, reversing the action used in the claim, or changing the claim's structure or range to prevent the new design from falling within the scope of the claim. However, cases where patent infringement was found demonstrated that changing the structure or range not recited in the claim, such as enlarging the diameter, reducing concentration or alerting the shape, still falls within the scope of the patent. Although the 40 cases analyzed in this study were not related to vaccines, the thought process can serve as a guideline for patents related to vaccine development. PMID:21263222

  3. Morphometric analysis of molars in a Middle Pleistocene population shows a mosaic of 'modern' and Neanderthal features.

    PubMed

    Martinón-Torres, María; Spěváčková, Petra; Gracia-Téllez, Ana; Martínez, Ignacio; Bruner, Emiliano; Arsuaga, Juan Luis; Bermúdez de Castro, José María

    2013-10-01

    Previous studies of upper first molar (M1) crown shape have shown significant differences between Homo sapiens and Homo neanderthalensis that were already present in the European Middle Pleistocene populations, including the large dental sample from Atapuerca-Sima de los Huesos (SH). Analysis of other M1 features such as the total crown base area, cusp proportions, cusp angles and occlusal polygon have confirmed the differences between both lineages, becoming a useful tool for the taxonomic assignment of isolated teeth from Late Pleistocene sites. However, until now the pattern of expression of these variables has not been known for the SH sample. This fossil sample, the largest collection from the European Middle Pleistocene, is generally interpreted as being from the direct ancestors of Neanderthals, and thus is a reference sample for assessing the origin of the Neanderthal morphologies. Surprisingly, our study reveals that SH M(1) s present a unique mosaic of H. neanderthalensis and H. sapiens features. Regarding the cusp angles and the relative occlusal polygon area, SH matches the H. neanderthalensis pattern. However, regarding the total crown base area and relative cusps size, SH M(1) s are similar to H. sapiens, with a small crown area, a strong hypocone reduction and a protocone enlargement, although the protocone expansion in SH is significantly larger than in any other group studied. The SH dental sample calls into question the uniqueness of some so-called modern traits. Our study also sounds a note of caution on the use of M(1) occlusal morphology for the alpha taxonomy of isolated M(1) s. PMID:23914934

  4. Mitochondrial DNA analysis shows a Near Eastern Neolithic origin for domestic cattle and no indication of domestication of European aurochs

    PubMed Central

    Edwards, Ceiridwen J; Bollongino, Ruth; Scheu, Amelie; Chamberlain, Andrew; Tresset, Anne; Vigne, Jean-Denis; Baird, Jillian F; Larson, Greger; Ho, Simon Y.W; Heupink, Tim H; Shapiro, Beth; Freeman, Abigail R; Thomas, Mark G; Arbogast, Rose-Marie; Arndt, Betty; Bartosiewicz, László; Benecke, Norbert; Budja, Mihael; Chaix, Louis; Choyke, Alice M; Coqueugniot, Eric; Döhle, Hans-Jürgen; Göldner, Holger; Hartz, Sönke; Helmer, Daniel; Herzig, Barabara; Hongo, Hitomi; Mashkour, Marjan; Özdogan, Mehmet; Pucher, Erich; Roth, Georg; Schade-Lindig, Sabine; Schmölcke, Ulrich; Schulting, Rick J; Stephan, Elisabeth; Uerpmann, Hans-Peter; Vörös, István; Voytek, Barbara; Bradley, Daniel G; Burger, Joachim

    2007-01-01

    The extinct aurochs (Bos primigenius primigenius) was a large type of cattle that ranged over almost the whole Eurasian continent. The aurochs is the wild progenitor of modern cattle, but it is unclear whether European aurochs contributed to this process. To provide new insights into the demographic history of aurochs and domestic cattle, we have generated high-confidence mitochondrial DNA sequences from 59 archaeological skeletal finds, which were attributed to wild European cattle populations based on their chronological date and/or morphology. All pre-Neolithic aurochs belonged to the previously designated P haplogroup, indicating that this represents the Late Glacial Central European signature. We also report one new and highly divergent haplotype in a Neolithic aurochs sample from Germany, which points to greater variability during the Pleistocene. Furthermore, the Neolithic and Bronze Age samples that were classified with confidence as European aurochs using morphological criteria all carry P haplotype mitochondrial DNA, suggesting continuity of Late Glacial and Early Holocene aurochs populations in Europe. Bayesian analysis indicates that recent population growth gives a significantly better fit to our data than a constant-sized population, an observation consistent with a postglacial expansion scenario, possibly from a single European refugial population. Previous work has shown that most ancient and modern European domestic cattle carry haplotypes previously designated T. This, in combination with our new finding of a T haplotype in a very Early Neolithic site in Syria, lends persuasive support to a scenario whereby gracile Near Eastern domestic populations, carrying predominantly T haplotypes, replaced P haplotype-carrying robust autochthonous aurochs populations in Europe, from the Early Neolithic onward. During the period of coexistence, it appears that domestic cattle were kept separate from wild aurochs and introgression was extremely rare. PMID

  5. Selection Indices and Multivariate Analysis Show Similar Results in the Evaluation of Growth and Carcass Traits in Beef Cattle

    PubMed Central

    Brito Lopes, Fernando; da Silva, Marcelo Corrêa; Magnabosco, Cláudio Ulhôa; Goncalves Narciso, Marcelo; Sainz, Roberto Daniel

    2016-01-01

    This research evaluated a multivariate approach as an alternative tool for the purpose of selection regarding expected progeny differences (EPDs). Data were fitted using a multi-trait model and consisted of growth traits (birth weight and weights at 120, 210, 365 and 450 days of age) and carcass traits (longissimus muscle area (LMA), back-fat thickness (BF), and rump fat thickness (RF)), registered over 21 years in extensive breeding systems of Polled Nellore cattle in Brazil. Multivariate analyses were performed using standardized (zero mean and unit variance) EPDs. The k mean method revealed that the best fit of data occurred using three clusters (k = 3) (P < 0.001). Estimates of genetic correlation among growth and carcass traits and the estimates of heritability were moderate to high, suggesting that a correlated response approach is suitable for practical decision making. Estimates of correlation between selection indices and the multivariate index (LD1) were moderate to high, ranging from 0.48 to 0.97. This reveals that both types of indices give similar results and that the multivariate approach is reliable for the purpose of selection. The alternative tool seems very handy when economic weights are not available or in cases where more rapid identification of the best animals is desired. Interestingly, multivariate analysis allowed forecasting information based on the relationships among breeding values (EPDs). Also, it enabled fine discrimination, rapid data summarization after genetic evaluation, and permitted accounting for maternal ability and the genetic direct potential of the animals. In addition, we recommend the use of longissimus muscle area and subcutaneous fat thickness as selection criteria, to allow estimation of breeding values before the first mating season in order to accelerate the response to individual selection. PMID:26789008

  6. Selection Indices and Multivariate Analysis Show Similar Results in the Evaluation of Growth and Carcass Traits in Beef Cattle.

    PubMed

    Brito Lopes, Fernando; da Silva, Marcelo Corrêa; Magnabosco, Cláudio Ulhôa; Goncalves Narciso, Marcelo; Sainz, Roberto Daniel

    2016-01-01

    This research evaluated a multivariate approach as an alternative tool for the purpose of selection regarding expected progeny differences (EPDs). Data were fitted using a multi-trait model and consisted of growth traits (birth weight and weights at 120, 210, 365 and 450 days of age) and carcass traits (longissimus muscle area (LMA), back-fat thickness (BF), and rump fat thickness (RF)), registered over 21 years in extensive breeding systems of Polled Nellore cattle in Brazil. Multivariate analyses were performed using standardized (zero mean and unit variance) EPDs. The k mean method revealed that the best fit of data occurred using three clusters (k = 3) (P < 0.001). Estimates of genetic correlation among growth and carcass traits and the estimates of heritability were moderate to high, suggesting that a correlated response approach is suitable for practical decision making. Estimates of correlation between selection indices and the multivariate index (LD1) were moderate to high, ranging from 0.48 to 0.97. This reveals that both types of indices give similar results and that the multivariate approach is reliable for the purpose of selection. The alternative tool seems very handy when economic weights are not available or in cases where more rapid identification of the best animals is desired. Interestingly, multivariate analysis allowed forecasting information based on the relationships among breeding values (EPDs). Also, it enabled fine discrimination, rapid data summarization after genetic evaluation, and permitted accounting for maternal ability and the genetic direct potential of the animals. In addition, we recommend the use of longissimus muscle area and subcutaneous fat thickness as selection criteria, to allow estimation of breeding values before the first mating season in order to accelerate the response to individual selection. PMID:26789008

  7. Morphometric analysis of molars in a Middle Pleistocene population shows a mosaic of ‘modern’ and Neanderthal features

    PubMed Central

    Martinón-Torres, María; Spěváčková, Petra; Gracia-Téllez, Ana; Martínez, Ignacio; Bruner, Emiliano; Arsuaga, Juan Luis; Bermúdez de Castro, José María

    2013-01-01

    Previous studies of upper first molar (M1) crown shape have shown significant differences between Homo sapiens and Homo neanderthalensis that were already present in the European Middle Pleistocene populations, including the large dental sample from Atapuerca-Sima de los Huesos (SH). Analysis of other M1 features such as the total crown base area, cusp proportions, cusp angles and occlusal polygon have confirmed the differences between both lineages, becoming a useful tool for the taxonomic assignment of isolated teeth from Late Pleistocene sites. However, until now the pattern of expression of these variables has not been known for the SH sample. This fossil sample, the largest collection from the European Middle Pleistocene, is generally interpreted as being from the direct ancestors of Neanderthals, and thus is a reference sample for assessing the origin of the Neanderthal morphologies. Surprisingly, our study reveals that SH M1s present a unique mosaic of H. neanderthalensis and H. sapiens features. Regarding the cusp angles and the relative occlusal polygon area, SH matches the H. neanderthalensis pattern. However, regarding the total crown base area and relative cusps size, SH M1s are similar to H. sapiens, with a small crown area, a strong hypocone reduction and a protocone enlargement, although the protocone expansion in SH is significantly larger than in any other group studied. The SH dental sample calls into question the uniqueness of some so-called modern traits. Our study also sounds a note of caution on the use of M1 occlusal morphology for the alpha taxonomy of isolated M1s. PMID:23914934

  8. Comparative analysis of zygotic developmental genes in Rhodnius prolixus genome shows conserved features on the tracheal developmental pathway.

    PubMed

    Lavore, A; Pascual, A; Salinas, F M; Esponda-Behrens, N; Martinez-Barnetche, J; Rodriguez, M; Rivera-Pomar, R

    2015-09-01

    Most of the in-depth studies on insect developmental genetic have been carried out in the fruit fly Drosophila melanogaster, an holometabolous insect, so much more still remains to be studied in hemimetabolous insects. Having Rhodnius prolixus sequenced genome available, we search for orthologue genes of zygotic signaling pathways, segmentation, and tracheogenesis in the R. prolixus genome and in three species of Triatoma genus transcriptomes, concluding that there is a high level of gene conservation. We also study the function of two genes required for tracheal system development in D. melanogaster - R. prolixus orthologues: trachealess (Rp-trh) and empty spiracles (Rp-ems). From that we see that Rp-trh is required for early tracheal development since Rp-trh RNAi shows that the primary tracheal branches fail to form. On the other hand, Rp-ems is implied in the proper formation of the posterior tracheal branches, in a similar way to D. melanogaster. These results represent the initial characterization of the genes involved in the tracheal development of an hemimetabolous insect building a bridge between the current genomic era and V. Wigglesworth's classical studies on insects' respiratory system physiology. PMID:26187251

  9. X-ray survival characteristics and genetic analysis for nine saccharomyces deletion mutants that show altered radiation sensitivity

    SciTech Connect

    Game, John C.; Williamson, Marsha S.; Baccari, Clelia

    2004-01-07

    The availability of a genome-wide set of Saccharomyces deletion mutants provides a chance to identify all the yeast genes involved in DNA repair. Using X-rays, we are screening these mutants to identify additional genes that show increased sensitivity to the lethal effects of ionizing radiation. For each mutant identified as sensitive, we are confirming that the sensitivity phenotype co-segregates with the deletion allele and are obtaining multipoint survival-versus-dose assays in at least two haploid and one homozygous diploid strains. We present data for deletion mutants involving the genes DOT1, MDM20, NAT3, SPT7, SPT20, GCN5, HFI1, DCC1 and VID21/EAF1, and discuss their potential roles in repair. Eight of these genes have a clear radiation-sensitive phenotype when deleted, but the ninth, GCN5, has at most a borderline phenotype. None of the deletions confer substantial sensitivity to ultra-violet radiation, although one or two may confer marginal sensitivity. The DOT1 gene is of interest because its only known function is to methylate one lysine residue in the core of the histone H3 protein. We find that histone H3 mutants (supplied by K. Struhl) in which this residue is replaced by other amino-acids are also X-ray sensitive, seeming to confirm that methylation of the lysine-79 residue is required for effective repair of radiation damage.

  10. Comparative analysis of extractable proteins from Clostridium perfringens type A and type C strains showing varying degree of virulence.

    PubMed

    Dwivedi, Pratistha; Alam, Syed Imteyaz; Kumar, Om; Kumar, Ravi Bhushan

    2015-10-01

    The prevailing scenario of bioterrorism warrants development of medical countermeasures with expanded coverage of select agents. Clostridium perfringens is a pathogen of medical, veterinary and military importance, and has been listed as Validated Biological Agent. We employed 2DE-MS approach to identify a total of 134 unique proteins (529 protein spot features) from the extractable proteome of four type A and type C strains. Proteins showing altered expression under host-simulated conditions from virulent type A strain (ATCC13124) were also elucidated. Significant among the differentially expressed proteins were elongation factor, molecular chaperones, ribosomal proteins, carbamoyl phosphate synthase, clpB protein, choloylglycine hydrolase, phosphopyruvate hydratase, and trigger factor. Predictive elucidation, of putative virulence associated proteins and sequence conservation pattern of selected candidates, was carried out using homologous proteins from other bacterial select agents to screen for the commonality of putative antigenic determinants. Pathogens (17 select agents) were observed to form three discrete clusters; composition of I and II being consistent in most of the phylogenetic reconstructions. This work provides a basis for further validation of putative candidate proteins as prophylactic agents and for their ability to provide protection against clusters of pathogenic select bacterial agents; aimed at mitigating the shadows of biothreat. PMID:26238688

  11. High-fidelity AFM scanning stage based on multilayer ceramic capacitors.

    PubMed

    Chen, Jian; Zhang, Lian Sheng; Feng, Zhi Hua

    2016-05-01

    A kind of multilayer ceramic capacitors (MLCCs) has been verified to have good micro-actuating properties, thus making them good candidates for nano-positioning. In this paper, we successfully employed the MLCCs as lateral scanners for a tripod scanning stage. The MLCC-based lateral scanners display hysteresis under 1.5% and a nonlinearity less than 2% even with the simplest open-loop voltage drive. The developed scanning stage was integrated into a commercial AFM to evaluate its imaging performance. Experimental results showed that sample images with high fidelities were obtained. SCANNING 38:184-190, 2016. © 2015 Wiley Periodicals, Inc. PMID:26367125

  12. Transcriptome Analysis of Enterococcus faecalis during Mammalian Infection Shows Cells Undergo Adaptation and Exist in a Stringent Response State

    PubMed Central

    Frank, Kristi L.; Colomer-Winter, Cristina; Grindle, Suzanne M.; Lemos, José A.; Schlievert, Patrick M.; Dunny, Gary M.

    2014-01-01

    As both a commensal and a major cause of healthcare-associated infections in humans, Enterococcus faecalis is a remarkably adaptable organism. We investigated how E. faecalis adapts in a mammalian host as a pathogen by characterizing changes in the transcriptome during infection in a rabbit model of subdermal abscess formation using transcriptional microarrays. The microarray experiments detected 222 and 291 differentially regulated genes in E. faecalis OG1RF at two and eight hours after subdermal chamber inoculation, respectively. The profile of significantly regulated genes at two hours post-inoculation included genes involved in stress response, metabolism, nutrient acquisition, and cell surface components, suggesting genome-wide adaptation to growth in an altered environment. At eight hours post-inoculation, 88% of the differentially expressed genes were down-regulated and matched a transcriptional profile consistent with a (p)ppGpp-mediated stringent response. Subsequent subdermal abscess infections with E. faecalis mutants lacking the (p)ppGpp synthetase/hydrolase RSH, the small synthetase RelQ, or both enzymes, suggest that intracellular (p)ppGpp levels, but not stringent response activation, influence persistence in the model. The ability of cells to synthesize (p)ppGpp was also found to be important for growth in human serum and whole blood. The data presented in this report provide the first genome-wide insights on E. faecalis in vivo gene expression and regulation measured by transcriptional profiling during infection in a mammalian host and show that (p)ppGpp levels affect viability of E. faecalis in multiple conditions relevant to mammalian infection. The subdermal abscess model can serve as a novel experimental system for studying the E. faecalis stringent response in the context of the mammalian immune system. PMID:25545155

  13. A Nationwide Analysis of Outcomes of Weekend Admissions for Intracerebral Hemorrhage Shows Disparities Based on Hospital Teaching Status

    PubMed Central

    Patel, Achint A.; Benjo, Alexandre; Pathak, Ambarish; Kar, Jitesh; Jani, Vishal B.; Annapureddy, Narender; Agarwal, Shiv Kumar; Sabharwal, Manpreet S.; Simoes, Priya K.; Konstantinidis, Ioannis; Yacoub, Rabi; Javed, Fahad; El Hayek, Georges; Menon, Madhav C.; Nadkarni, Girish N.

    2015-01-01

    Background and Purpose: With the “weekend effect” being well described, the Brain Attack Coalition released a set of “best practice” guidelines in 2005, with the goal to uniformly provide standard of care to patients with stroke. We attempted to define a “weekend effect” in outcomes among patients with intracranial hemorrhage (ICH) over the last decade, utilizing the Nationwide Inpatient Sample (NIS) data. We also attempted to analyze the trend of such an effect. Materials and Methods: We determined the association of ICH weekend admissions with hospital outcomes including mortality, adverse discharge, length of stay, and cost compared to weekday admissions using multivariable logistic regression. We extracted our study cohort from the NIS, the largest all-payer data set in the United States. Results: Of 485 329 ICH admissions from 2002 to 2011, 27.5% were weekend admissions. Overall, weekend admissions were associated with 11% higher odds of in-hospital mortality. When analyzed in 3-year groups, excess mortality of weekend admissions showed temporal decline. There was higher mortality with weekend admissions in nonteaching hospitals persisted (odds ratios 1.16, 1.13, and 1.09, respectively, for 3-year subgroups). Patients admitted during weekends were also 9% more likely to have an adverse discharge (odds ratio 1.09; 95% confidence interval: 1.07-1.11; P < .001) with no variation by hospital status. There was no effect of a weekend admission on either length of stay or cost of care. Conclusion: Nontraumatic ICH admissions on weekends have higher in-hospital mortality and adverse discharge. This demonstrates need for in-depth review for elucidating this discrepancy and stricter adherence to standard-of-care guidelines to ensure uniform care. PMID:27053981

  14. Assembly of live micro-organisms on microstructured PDMS stamps by convective/capillary deposition for AFM bio-experiments

    NASA Astrophysics Data System (ADS)

    Dague, E.; Jauvert, E.; Laplatine, L.; Viallet, B.; Thibault, C.; Ressier, L.

    2011-09-01

    Immobilization of live micro-organisms on solid substrates is an important prerequisite for atomic force microscopy (AFM) bio-experiments. The method employed must immobilize the cells firmly enough to enable them to withstand the lateral friction forces exerted by the tip during scanning but without denaturing the cell interface. In this work, a generic method for the assembly of living cells on specific areas of substrates is proposed. It consists in assembling the living cells within the patterns of microstructured, functionalized poly-dimethylsiloxane (PDMS) stamps using convective/capillary deposition. This versatile approach is validated by applying it to two systems of foremost importance in biotechnology and medicine: Saccharomyces cerevisiae yeasts and Aspergillus fumigatus fungal spores. We show that this method allows multiplexing AFM nanomechanical measurements by force spectroscopy on S. cerevisiae yeasts and high-resolution AFM imaging of germinated Aspergillus conidia in buffer medium. These two examples clearly demonstrate the immense potential of micro-organism assembly on functionalized, microstructured PDMS stamps by convective/capillary deposition for performing rigorous AFM bio-experiments on living cells.

  15. Simultaneous noncontact AFM and STM of Ag:Si(111)-(3×3)R30∘

    NASA Astrophysics Data System (ADS)

    Sweetman, Adam; Stannard, Andrew; Sugimoto, Yoshiaki; Abe, Masayuki; Morita, Seizo; Moriarty, Philip

    2013-02-01

    The Ag:Si(111)-(3×3)R30∘ surface structure has attracted considerable debate concerning interpretation of scanning tunneling microscope (STM) and noncontact atomic force microscope (NC-AFM) images. In particular, the accepted interpretation of atomic resolution images in NC-AFM has been questioned by theoretical and STM studies. In this paper, we use combined NC-AFM and STM to conclusively show that the inequivalent trimer (IET) configuration best describes the surface ground state. Thermal-averaging effects result in a honeycomb-chained-trimer (HCT) appearance at room temperature, in contrast to studies suggesting that the IET configuration remains stable at higher temperatures [Zhang, Gustafsson, and Johansson, Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.74.201304 74, 201304(R) (2006) and J. Phys.: Conf. Ser.1742-658810.1088/1742-6596/61/1/264 61, 1336 (2007)]. We also comment on results obtained at an intermediate temperature that suggest an intriguing difference between the imaging mechanisms of NC-AFM and STM on structurally fluctuating samples.

  16. Does Cognitive Behavior Therapy for psychosis (CBTp) show a sustainable effect on delusions? A meta-analysis

    PubMed Central

    Mehl, Stephanie; Werner, Dirk; Lincoln, Tania M.

    2015-01-01

    Cognitive Behavior Therapy for psychosis (CBTp) is an effective treatment resulting in small to medium effect sizes with regard to changes in positive symptoms and psychopathology. As a consequence, CBTp is recommended by national guidelines for all patients with schizophrenia. However, although CBTp was originally developed as a means to improve delusions, meta-analyses have generally integrated effects for positive symptoms rather than for delusions. Thus, it is still an open question whether CBTp is more effective with regard to change in delusions compared to treatment as usual (TAU) and to other interventions, and whether this effect remains stable over a follow-up period. Moreover, it would be interesting to explore whether newer studies that focus on specific factors involved in the formation and maintenance of delusions (causal-interventionist approach) are more effective than the first generation of CBTp studies. A systematic search of the trial literature identified 19 RCTs that compared CBTp with TAU and/or other interventions and reported delusions as an outcome measure. Meta-analytic integration resulted in a significant small to medium effect size for CBTp in comparison to TAU at end-of-therapy (k = 13; d¯= 0.27) and after an average follow-up period of 47 weeks (k = 12; d¯= 0.25). When compared with other interventions, there was no significant effect of CBTp at end-of-therapy (k = 8; d¯= 0.16) and after a follow-up period (k = 5; d¯=-0.04). Comparison between newer studies taking a causal-interventionist approach (k = 4) and first-generation studies showed a difference of 0.33 in mean effect sizes in favor of newer studies at end-of-therapy. The findings suggest that CBTp is superior to TAU, but is not superior to other interventions, in bringing about a change in delusions, and that this superiority is maintained over the follow-up period. Moreover, interventions that focus on causal factors of delusions seem to be a promising approach to

  17. Whole genome association analysis shows that ACE is a risk factor for Alzheimer's disease and fails to replicate most candidates from Meta-analysis.

    PubMed

    Webster, Jennifer; Reiman, Eric M; Zismann, Victoria L; Joshipura, Keta D; Pearson, John V; Hu-Lince, Diane; Huentelman, Matthew J; Craig, David W; Coon, Keith D; Beach, Thomas; Rohrer, Kristen C; Zhao, Alice S; Leung, Doris; Bryden, Leslie; Marlowe, Lauren; Kaleem, Mona; Mastroeni, Diego; Grover, Andrew; Rogers, Joseph; Heun, Reinhard; Jessen, Frank; Kölsch, Heike; Heward, Christopher B; Ravid, Rivka; Hutton, Michael L; Melquist, Stacey; Petersen, Ron C; Caselli, Richard J; Papassotiropoulos, Andreas; Stephan, Dietrich A; Hardy, John; Myers, Amanda

    2010-01-01

    For late onset Alzheimer's disease (LOAD), the only confirmed, genetic association is with the apolipoprotein E (APOE) locus on chromosome 19. Meta-analysis is often employed to sort the true associations from the false positives. LOAD research has the advantage of a continuously updated meta-analysis of candidate gene association studies in the web-based AlzGene database. The top 30 AlzGene loci on May 1(st), 2007 were investigated in our whole genome association data set consisting of 1411 LOAD cases and neuropathoiogicaiiy verified controls genotyped at 312,316 SNPs using the Affymetrix 500K Mapping Platform. Of the 30 "top AlzGenes", 32 SNPs in 24 genes had odds ratios (OR) whose 95% confidence intervals that did not include 1. Of these 32 SNPs, six were part of the Affymetrix 500K Mapping panel and another ten had proxies on the Affymetrix array that had >80% power to detect an association with α=0.001. Two of these 16 SNPs showed significant association with LOAD in our sample series. One was rs4420638 at the APOE locus (uncorrected p-value=4.58E-37) and the other was rs4293, located in the angiotensin converting enzyme (ACE) locus (uncorrected p-value=0.014). Since this result was nominally significant, but did not survive multiple testing correction for 16 independent tests, this association at rs4293 was verified in a geographically distinct German cohort (p-value=0.03). We present the results of our ACE replication aiongwith a discussion of the statistical limitations of multiple test corrections in whole genome studies. PMID:21537449

  18. Cell visco-elasticity measured with AFM and optical trapping at sub-micrometer deformations.

    PubMed

    Nawaz, Schanila; Sánchez, Paula; Bodensiek, Kai; Li, Sai; Simons, Mikael; Schaap, Iwan A T

    2012-01-01

    The measurement of the elastic properties of cells is widely used as an indicator for cellular changes during differentiation, upon drug treatment, or resulting from the interaction with the supporting matrix. Elasticity is routinely quantified by indenting the cell with a probe of an AFM while applying nano-Newton forces. Because the resulting deformations are in the micrometer range, the measurements will be affected by the finite thickness of the cell, viscous effects and even cell damage induced by the experiment itself. Here, we have analyzed the response of single 3T3 fibroblasts that were indented with a micrometer-sized bead attached to an AFM cantilever at forces from 30-600 pN, resulting in indentations ranging from 0.2 to 1.2 micrometer. To investigate the cellular response at lower forces up to 10 pN, we developed an optical trap to indent the cell in vertical direction, normal to the plane of the coverslip. Deformations of up to two hundred nanometers achieved at forces of up to 30 pN showed a reversible, thus truly elastic response that was independent on the rate of deformation. We found that at such small deformations, the elastic modulus of 100 Pa is largely determined by the presence of the actin cortex. At higher indentations, viscous effects led to an increase of the apparent elastic modulus. This viscous contribution that followed a weak power law, increased at larger cell indentations. Both AFM and optical trapping indentation experiments give consistent results for the cell elasticity. Optical trapping has the benefit of a lower force noise, which allows a more accurate determination of the absolute indentation. The combination of both techniques allows the investigation of single cells at small and large indentations and enables the separation of their viscous and elastic components. PMID:23028915

  19. An approach towards 3D sensitive AFM cantilevers

    NASA Astrophysics Data System (ADS)

    Koops, Richard; Fokkema, Vincent

    2014-04-01

    The atomic force microscope (AFM) tapping mode is a highly sensitive local probing technique that is very useful to study and measure surface properties down to the atomic scale. The tapping mode is mostly implemented using the resonance of the first bending mode of the cantilever and therefore provides sensitivity mainly along the direction of this oscillation. Driven by the semiconductor industry, there is an increasing need for accurate measurements of nanoscale structures for side wall characterization by AFM that requires additional sensitivity in the lateral direction. The conventional tapping mode has been augmented by various authors, for example by tilting the cantilever system (Cho et al 2011 Rev. Sci. Instrum. 82 023707) to access the sidewall or using a torsion mode (Dai et al 2011 Meas. Sci. Technol. 22 094009) of the cantilever to provide additional lateral sensitivity. These approaches however trade lateral sensitivity for vertical sensitivity or still lack sensitivity in the remaining lateral direction. We present an approach towards true 3D sensitivity for AFM cantilevers based on simultaneous excitation and optical detection of multiple cantilever resonance modes along three axes. Tuning the excitation of the cantilever to specific frequencies provides a mechanism to select only those cantilever modes that have the desired characteristics. Additionally, cantilever engineering has been used to design and create a substructure within the cantilever that has been optimized for specific resonance behavior around 4 MHz. In contrast to the conventional approach of using a piezo to actuate the cantilever modulation, we present results on photo-thermal excitation using an intensity modulated low-power laser source. By tightly focusing the excitation spot on the cantilever we were able to attain a deflection efficiency of 0.7 nm µW-1 for the first bending mode. The presented approach results in an efficient all optical excitation and deflection detection

  20. The Advancing State of AF-M315E Technology

    NASA Technical Reports Server (NTRS)

    Masse, Robert; Spores, Ronald A.; McLean, Chris

    2014-01-01

    The culmination of twenty years of applied research in hydroxyl ammonium nitrate (HAN)-based monopropellants, the NASA Space Technology mission Directorate's (STMD) Green Propellant Infusion Mission (GPIM) will achieve the first on-orbit demonstration of an operational AF-M315E green propellant propulsion system by the end of 2015. Following an contextual overview of the completed flight design of the GPIM propellant storage and feed system, results of first operation of a flight-representative heavyweight 20-N engineering model thruster (to be conducted in mid-2014) are presented with performance comparisons to prior lab model (heavyweight) test articles.

  1. Comparison of dynamic lever STM and noncontact AFM

    NASA Astrophysics Data System (ADS)

    Guggisberg, M.; Bammerlin, M.; Lüthi, R.; Loppacher, C.; Battiston, F.; Lü, J.; Baratoff, A.; Meyer, E.; Güntherodt, H.-J.

    We investigate interaction effects which occur in scanning tunneling microscopy (STM) by performing local force spectroscopy with an oscillating tip while imaging Si(111)7×7 terraces in the dynamic lever STM mode (constant time-averaged current). It is found that true atomic resolution is achieved close to the minimum of the resonance frequency vs. distance curve and even closer to the sample. On the other hand true atomic resolution in noncontact AFM (constant frequency shift) is expected several nm away from this minimum, in the range where the frequency shift becomes more negative with decreasing distance.

  2. Piezoresistive AFM cantilevers surpassing standard optical beam deflection in low noise topography imaging.

    PubMed

    Dukic, Maja; Adams, Jonathan D; Fantner, Georg E

    2015-01-01

    Optical beam deflection (OBD) is the most prevalent method for measuring cantilever deflections in atomic force microscopy (AFM), mainly due to its excellent noise performance. In contrast, piezoresistive strain-sensing techniques provide benefits over OBD in readout size and the ability to image in light-sensitive or opaque environments, but traditionally have worse noise performance. Miniaturisation of cantilevers, however, brings much greater benefit to the noise performance of piezoresistive sensing than to OBD. In this paper, we show both theoretically and experimentally that by using small-sized piezoresistive cantilevers, the AFM imaging noise equal or lower than the OBD readout noise is feasible, at standard scanning speeds and power dissipation. We demonstrate that with both readouts we achieve a system noise of ≈0.3 Å at 20 kHz measurement bandwidth. Finally, we show that small-sized piezoresistive cantilevers are well suited for piezoresistive nanoscale imaging of biological and solid state samples in air. PMID:26574164

  3. Piezoresistive AFM cantilevers surpassing standard optical beam deflection in low noise topography imaging

    PubMed Central

    Dukic, Maja; Adams, Jonathan D.; Fantner, Georg E.

    2015-01-01

    Optical beam deflection (OBD) is the most prevalent method for measuring cantilever deflections in atomic force microscopy (AFM), mainly due to its excellent noise performance. In contrast, piezoresistive strain-sensing techniques provide benefits over OBD in readout size and the ability to image in light-sensitive or opaque environments, but traditionally have worse noise performance. Miniaturisation of cantilevers, however, brings much greater benefit to the noise performance of piezoresistive sensing than to OBD. In this paper, we show both theoretically and experimentally that by using small-sized piezoresistive cantilevers, the AFM imaging noise equal or lower than the OBD readout noise is feasible, at standard scanning speeds and power dissipation. We demonstrate that with both readouts we achieve a system noise of ≈0.3 Å at 20 kHz measurement bandwidth. Finally, we show that small-sized piezoresistive cantilevers are well suited for piezoresistive nanoscale imaging of biological and solid state samples in air. PMID:26574164

  4. Piezoresistive AFM cantilevers surpassing standard optical beam deflection in low noise topography imaging

    NASA Astrophysics Data System (ADS)

    Dukic, Maja; Adams, Jonathan D.; Fantner, Georg E.

    2015-11-01

    Optical beam deflection (OBD) is the most prevalent method for measuring cantilever deflections in atomic force microscopy (AFM), mainly due to its excellent noise performance. In contrast, piezoresistive strain-sensing techniques provide benefits over OBD in readout size and the ability to image in light-sensitive or opaque environments, but traditionally have worse noise performance. Miniaturisation of cantilevers, however, brings much greater benefit to the noise performance of piezoresistive sensing than to OBD. In this paper, we show both theoretically and experimentally that by using small-sized piezoresistive cantilevers, the AFM imaging noise equal or lower than the OBD readout noise is feasible, at standard scanning speeds and power dissipation. We demonstrate that with both readouts we achieve a system noise of ≈0.3 Å at 20 kHz measurement bandwidth. Finally, we show that small-sized piezoresistive cantilevers are well suited for piezoresistive nanoscale imaging of biological and solid state samples in air.

  5. Nano-scale temperature dependent visco-elastic properties of polyethylene terephthalate (PET) using atomic force microscope (AFM).

    PubMed

    Grant, Colin A; Alfouzan, Abdulrahman; Gough, Tim; Twigg, Peter C; Coates, Phil D

    2013-01-01

    Visco-elastic behaviour at the nano-level of a commonly used polymer (PET) is characterised using atomic force microscopy (AFM) at a range of temperatures. The modulus, indentation creep and relaxation time of the PET film (thickness=100 μm) is highly sensitive to temperature over an experimental temperature range of 22-175°C. The analysis showed a 40-fold increase in the amount of indentation creep on raising the temperature from 22°C to 100°C, with the most rapid rise occurring above the glass-to-rubber transition temperature (T(g)=77.1°C). At higher temperatures, close to the crystallisation temperature (T(c)=134.7°C), the indentation creep reduced to levels similar to those at temperatures below T(g). The calculated relaxation time showed a similar temperature dependence, rising from 0.6s below T(g) to 1.2s between T(g) and T(c) and falling back to 0.6s above T(c). Whereas, the recorded modulus of the thick polymer film decreases above T(g), subsequently increasing near T(c). These visco-elastic parameters are obtained via mechanical modelling of the creep curves and are correlated to the thermal phase changes that occur in PET, as revealed by differential scanning calorimetry (DSC). PMID:22750040

  6. Physical properties of polyacrylamide gels probed by AFM and rheology

    NASA Astrophysics Data System (ADS)

    Abidine, Yara; Laurent, Valérie M.; Michel, Richard; Duperray, Alain; Iulian Palade, Liviu; Verdier, Claude

    2015-02-01

    Polymer gels have been shown to behave as viscoelastic materials but only a small amount of data is usually provided in the glass transition. In this paper, the dynamic moduli G\\prime and G\\prime\\prime of polyacrylamide hydrogels are investigated using both an AFM in contact force modulation mode and a classical rheometer. The validity is shown by the matching of the two techniques. Measurements are carried out on gels of increasing polymer concentration in a wide frequency range. A model based on fractional derivatives is successfully used, covering the whole frequency range. G\\text{N}0 , the plateau modulus, as well as several other parameters are obtained at low frequencies. The model also predicts the slope a of both moduli in the glass transition, and a transition frequency f\\text{T} is introduced to separate the gel-like behavior with the glassy state. Its variation with polymer content c gives a dependence f\\text{T}∼ c1.6 , in good agreement with previous theories. Therefore, the AFM data provides new information on the physics of polymer gels.

  7. Dual AFM probes alignment based on vision guidance

    NASA Astrophysics Data System (ADS)

    Zhang, Hua-kun; Gao, Si-tian; Lu, Ming-zhen; Wang, Long-long

    2013-10-01

    Atomic force microscope (AFM) with dual probes that operate together can measure both side walls excellently at the same time, which virtually eliminates the prevalent effect of probe width that contributes a large component of uncertainty in measurement results and finally obtains the critical dimension (CD)(e.g. the linewidth) through data synthesis. In calibration process, the dual probes must contact each other in advance, which realizes the alignment in the three dimensions, to establish a zero reference point and ensure the accuracy of measurement. Because nowadays the optical resolution of advanced lens have exceeded micrometer range, and the size of probes is within micro level, it is possible to acquire dual probes images in both horizontal and vertical directions, through which the movement of the probes can be controlled in time. In order to further enhance the alignment precision, sub-pixel edge detection method based on Zernike orthogonal moment is used to obtain relative position between these two probes, which helps the tips alignment attains sub-micron range. Piezoelectric nanopositioning stages calibrated by laser interferometer are used to implement fine movement of the probes to verify the accuracy of the experimental results. To simplify the system, novel self-sensing and self-actuating probe based on a quartz tuning fork combined with a micromachined cantilever is used for dynamic mode AFM. In this case, an external optical detection system is not needed, so the system is simple and small.

  8. Iron oxide mineral-water interface reactions studied by AFM

    SciTech Connect

    Hawley, M.E.; Rogers, P.S.Z.

    1994-07-01

    Natural iron mineral surfaces have been examined in air by atomic force (AFM) and scanning tunneling (STM) microscopies. A number of different surface features were found to be characteristic of the native surface. Even surfaces freshly exposed by crushing larger crystals were found to have a pebbly surface texture caused by the presence of thin coatings of what might be surface precipitates. This finding is interpreted as evidence for previous exposure to water, probably through an extensive network of microfractures. Surface reactions on the goethite crystals were studied by AFM at size resolutions ranging from microns to atomic resolution before, during, and after reaction with distilled water and 0.lN HCl. Immediate and extensive surface reconfiguration occurred on contact with water. In one case, after equilibration with water for 3 days, surface reprecipitation, etching and pitting were observed. Atomic resolution images taken under water were found to be disordered. The result of surface reaction was generally to increase the surface area substantially through the extension of surface platelet arrays, present prior to reaction. This work is being done in support of the site characterization project at Yucca Mountain.

  9. Structure of crystal defects in damaged RDX as revealed by an AFM

    SciTech Connect

    Sharma, J.; Hoover, S. M.; Coffey, C. S.; Tompa, A. S.; Sandusky, H. W.; Armstrong, R. W.; Elban, W. L.

    1998-07-10

    An atomic force microscope (AFM) was employed to reveal the structure of defects produced in single crystals of cyclotrimethylenetrinitramine (RDX), damaged either by indentation, heat or underwater shock. In general, all of these stimuli produced dislocation pits, cracks, fissures and mosaics, however, the details were different. Indentation generated a large number of triangular dislocation pits, which in their turn produced fissures, cracks and holes by coalescing. Heat produced fine parallel cracks. Slivers as thin as sixty molecules across were observed. Shock caused the crystal to become a three-dimensional mosaic structure, 100-500 nm in size, produced by intensive cleavage and delamination. In all cases very fine particles, 20-500 nm in size, were ejected onto the surface as debris from the formation of defects. The AFM has revealed for the first time un-etched dislocation pits in their pristine condition, so that their internal structure could be investigated. A dislocation density of 10{sup 6} cm{sup -2} has been observed. RDX is found to behave like a very fragile crystal in which numerous imperfections show up at a level of the stimuli, far below that necessary for the start of chemical reaction.

  10. Charge Content In Nanometer Rings from Atomic Force Microscope (AFM) Traces

    NASA Astrophysics Data System (ADS)

    Zypman, F.; Eppell, S.; Feinstein, M.; Fried, Y.; Lazarev, D.; Metzger, C.

    The last few years have seen a growing interest in identifying charge content in small structures such as graphene ribbons and aromatic biorings. More generally it is believed that charge content in proteins holds the key to the ultimate understanding of biological self-assembly. Here we describe a model system, a charged ring inside liquid probed by an AFM tip, and show how the charge content and the relative size of the ring with respect to the tip affect the measured force. More importantly, we explain how to measure the charge from the AFM experimental data. The process involves the modeling of the dynamics of the tip-cantilever sensor under the influence of the charged sample, but also of ambient hydrodynamic forces, electrostatic interactions that appear due to charge induction in the tip and electrolytic screening. Of particular relevance is the possibility of our approach to treat analytically the size of ions. This is relevant when the tip-sample distance becomes sub-nanometric, and the more common description via Poisson-Boltzmann equation breaks down. Funding for this research ``Instrument Development: Charge Sensing In Fluids With Nanometer Precision'' is provided by Chemical Measurement & Imaging, National Science Foundation, Grant Number 1508085.

  11. AFM Studies on Liquid Superlubricity between Silica Surfaces Achieved with Surfactant Micelles.

    PubMed

    Li, Jinjin; Zhang, Chenhui; Cheng, Peng; Chen, Xinchun; Wang, Weiqi; Luo, Jianbin

    2016-06-01

    By using atomic force microscopy (AFM), we showed that the liquid superlubricity with a superlow friction coefficient of 0.0007 can be achieved between two silica surfaces lubricated by hexadecyltrimethylammonium bromide (C16TAB) solution. There exists a critical load that the lubrication state translates from superlow friction to high friction reversibly. To analyze the superlow friction mechanism and the factors influencing the critical load, we used AFM to measure the structure of adsorbed C16TAB molecules and the normal force between two silica surfaces. Experimental results indicate that the C16TAB molecules are firmly adsorbed on the two silica surfaces by electrostatic interaction, forming cylinder-like micelles. Meanwhile, the positively charged headgroups exposed to solution produce the hydration and double layer repulsion to bear the applied load. By controlling the concentration of C16TAB solution, it is confirmed that the critical load of superlow friction is determined by the maximal normal force produced by the hydration layer. Finally, the superlow friction mechanism was proposed that the adsorbed micellar layer forms the hydration layer, making the two friction surfaces be in the repulsive region and meanwhile providing excellent fluidity without adhesion between micelles. PMID:27192019

  12. XRD and AFM characterization of epitaxial Nb films before and after hydrogen exposure

    NASA Astrophysics Data System (ADS)

    Allain, Monica; Heuser, Brent; Durfee, Curtis

    2001-03-01

    Epitaxial Nb films have been characterized with x-ray diffraction (XRD) and atomic force microscopy (AFM) before and after hydrogenation at 100 C and 760 Torr. Two 1000 Angstrom epitaxial Nb films were grown on a-plane sapphire with two different miscut angles, 0.08 and 1.4 degrees. Both Nb films were capped with a 100 Angstrom thick Pd layer to facilitate molecular hydrogen dissociation. While the as-grow film mosaic did not depend on miscut angle, the surface morphology was significantly different. In particular, the high miscut film exhibited a fingered topography that was absent in the low miscut film. Hydrogen absorption under the conditions stated above induce a complete conversion of Nb to the alpha prime hydride phase. The Nb hydride phase transformation process is known to create dislocations as incoherent phase boundaries pass through the lattice. The surface morphology and lattice mosaic from post-hydrogen AFM and XRD measurements, respectively, show the extreme effect of the phase transformation process. Discussion will focus on the lattice mosaic broadening, residual strain, and surface features after hydrogen exposure.

  13. Possible enhancements of AFM spin-fluctuations in high-TC cuprates

    NASA Astrophysics Data System (ADS)

    Jarlborg, Thomas

    2009-03-01

    Ab-initio band calculations for high-TC cuprates, together with modelling based of a free electron like band, show a strong interaction between anti-ferromagnetic (AFM) spin waves and periodic lattice distortions as for phonons, even though this type of spin-phonon coupling (SPC) is underestimated in calculations using the local density approximation. The SPC has a direct influence on the properties of the HTC cuprates and it can explain many observations. The strongest effects are seen for modulated waves in the CuO bond direction, and a band gap is formed near the X,Y points, but unusal band dispersion (like ``waterfalls'') might also be induced below the Fermi energy (EF) in the diagonal direction. The band results are used to propose different ways of increasing AFM spin-fluctuations locally, and to have a higher density-of-states (DOS) at EF. Static potential modulations, via periodic distribution of dopants or lattice distortions, can be tuned to increase the DOS. This opens for possibilities to enhance coupling for spin fluctuations (λsf) and superconductivity. The exchange enhancement is in general increased near a surface, which suggests a tendency towards static spin configurations. The sensivity of the band results to corrections of the local density potential are discussed.

  14. Imaging and manipulation of nanoscale materials with coaxial and triaxial AFM probes

    NASA Astrophysics Data System (ADS)

    Brown, Keith A.; Westervelt, R. M.

    2011-03-01

    We present coaxial and triaxial Atomic Force Microscope (AFM) probes and demonstrate their applications to imaging and manipulating nanoscale materials. A coaxial probe with concentric electrodes at its tip creates a highly confined electric field that decays as a dipole field, making the coaxial probe useful for near field imaging of electrical properties. We show nearly an order of magnitude improvement in the step resolution of Kelvin probe force microscopy with coaxial probes. We further demonstrate that coaxial probes can image dielectric materials with the dielectrophoretic force. In addition to imaging, the capacitive structure that makes up the cantilever of a coaxial probe is used to locally mechanically drive the probe, making them self-driving probes. Finally, coaxial probes can create strong forces with dielectrophoresis (DEP) which we combine with the nanometer precision of the AFM to create a nanometer scale pick-and-place tool. We demonstrate 3D assembly of micrometer scale objects with coaxial probes using positive DEP and discuss the assembly of nanometer scale objects with triaxial probes using negative DEP.

  15. Surface characterization and AFM imaging of mixed fibrinogen-surfactant films.

    PubMed

    Hassan, Natalia; Maldonado-Valderrama, Julia; Gunning, A Patrick; Morris, Victor J; Ruso, Juan M

    2011-05-19

    This study describes the adsorption behavior of mixed protein/surfactant systems at the air-water interface: specifically fibrinogen and the fluorinated and hydrogenated surfactants (C(8)FONa, C(8)HONa, and C(12)HONa). Surface tension techniques and atomic force microscopy (AFM) have been combined to investigate the adsorption behavior of these mixed systems. Interfacial rheology showed that fibrinogen has a low dilatational modulus at the air-water interface when compared to other proteins, suggesting the formation of a weak surface network. Fluorinated and hydrogenated surfactants severely decreased the dilatational modulus of the adsorbed fibrinogen film at the air-water interface. These measurements suggest the progressive displacement of fibrinogen from the air-water interface by both types of surfactants. However, in the case of fibrinogen/fluorinated surfactant systems, surface tension and dilatational rheology measurements suggest the formation of complexes with improved surface activity. AFM imaging of fibrinogen in the presence and absence of surfactants provided new information on the structure of mixed surface films, and revealed new features of the interaction of fibrinogen with hydrogenated and fluorinated surfactants. These studies suggest complexes formed between fibrinogen and fluorinated surfactants which are more surface active than fibrinogen, while the absence of interaction between fibrinogen and hydrogenated surfactants (C(8)HONa and C(12)HONa) results in compaction of the surface layer. PMID:21491854

  16. AFM nano-plough planar YBCO micro-bridges: critical currents and magnetic field effects.

    PubMed

    Elkaseh, A A O; Perold, W J; Srinivasu, V V

    2010-10-01

    The critical current (Ic) of YBa2Cu3O7-x (YBCO) AFM plough micro-constrictions is measured as a function of temperature, width and the magnetic flux density (B), which was applied perpendicular to the YBCO ab-plane and surface of the bridges. C-axis oriented thin films of YBa2Cu3O7-x were deposited on MgO substrates using an inverted cylindrical magnetron (ICM) sputtering technique. The films were then patterned into 8-10 micron size strips, using standard photolithography and dry etching processes. Micro-bridges with widths between 1.9 microm to 4.1 microm were fabricated by using atomic force microscope (AFM) nanolithography techniques. Critical current versus temperature data shows a straight-line behavior, which is typical of constriction type Josephson junctions. The Ic versus B characteristics exhibited a modulation, and a suppression of the critical current of up to 84%. It was also found that the critical current increases with increasing constriction width. PMID:21137754

  17. Morphological and Structural Changes on Human Dental Enamel After Er:YAG Laser Irradiation: AFM, SEM, and EDS Evaluation

    PubMed Central

    Rodríguez-Vilchis, Laura Emma; Olea-Mejìa, Oscar Fernando; Sánchez-Flores, Ignacio; Centeno-Pedraza, Claudia

    2011-01-01

    Abstract Objective: The purpose of this study was to evaluate, using atomic force microscopy (AFM), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS), the morphological and structural changes of the enamel after irradiation with the Er:YAG laser. Background data: A previous study showed that subablative Er:YAG laser irradiation produced undesirable morphological changes on the enamel surface, such as craters and cracks; however, the enamel acid resistance was not increased. Methods: Fifty-two samples of human enamel were divided into four groups (n = 13): Group I was the control (no laser irradiation), whereas Groups II, III, and IV were irradiated with the Er:YAG 100 mJ (12.7 J/cm2), 100 mJ (7.5 J/cm2), and 150 mJ (11 J/cm2), respectively, at 10 Hz with water spray. The morphological changes were observed by AFM and SEM. The weight percentages (wt%) of calcium (Ca), phosphorus (P), oxygen (O) and chlorine (Cl) were determined in the resultant craters and their periphery using EDS. Kruskal–Wallis and Mann–Whitney U tests were performed (p ≤ 0.05) to distinguish significant differences among the groups. Results: The AFM images showed cracks with depths between 250 nm and 750 nm for Groups II and IV, respectively, and the widths of these cracks were 5.37 μm and 2.58 μm. The interior of the cracks showed a rough surface. The SEM micrographs revealed morphological changes. Significant differences were detected in Ca, P, and Cl in the crater and its periphery. Conclusions: AFM observations showed triangular-shaped cracks, whereas craters and cracks were evident by SEM in all irradiated samples. It was not possible to establish a characteristic chemical pattern in the craters. PMID:21417912

  18. Device level 3D characterization using PeakForce AFM

    NASA Astrophysics Data System (ADS)

    Timoney, Padraig; Zhang, Xiaoxiao; Vaid, Alok; Hand, Sean; Osborne, Jason; Milligan, Eric; Feinstein, Adam

    2016-03-01

    Traditional metrology solutions face a range of challenges at the 1X node such as three dimensional (3D) measurement capabilities, shrinking overlay and critical dimension (CD) error budgets driven by multi-patterning and via in trench CD measurements. With advent of advanced technology nodes and 3D processing, an increasing need is emerging for in-die metrology including across-structure and structure-to-structure characterization. A myriad of work has emerged in the past few years intending to address these challenges from various aspects; in-die OCD with reduced spot size and tilt beam on traditional critical dimension scanning electron microscopy (CDSEM) for height measurements. This paper explores the latest capability offered by PeakForceTM Tapping Atomic Force Microscopy (PFT-AFM). The use of traditional harmonic tapping mode for scanning high aspect ratio, and complex "3D" wafer structures, results in limited depth probing capability as well as excessive tip wear. These limitations arise due to the large tip-sample interaction volume in such confined spaces. PeakForce Tapping eliminates these limitations through direct real time control of the tip-sample interaction contact force. The ability of PeakForce to measure, and respond directly to tip- sample interaction forces results in more detailed feature resolution, reduced tip wear, and improved depth capability. In this work, the PFT-AFM tool was applied for multiple applications, including the 14nm fin and replacement metal gate (RMG) applications outlined below. Results from DOE wafers, detailed measurement precision studies and correlation to reference metrology are presented for validation of this methodology. With the fin application, precision of 0.3nm is demonstrated by measuring 5 dies with 10 consecutive runs. Capability to resolve within-die and localized within-macro height variation is also demonstrated. Results obtained from the fin measurements support the increasing trend that measurements

  19. In situ Electrochemical-AFM Study of LiFePO4 Thin Film in Aqueous Electrolyte.

    PubMed

    Wu, Jiaxiong; Cai, Wei; Shang, Guangyi

    2016-12-01

    Lithium-ion (Li-ion) batteries have been widely used in various kinds of electronic devices in our daily life. The use of aqueous electrolyte in Li-ion battery would be an alternative way to develop low cost and environmentally friendly batteries. In this paper, the lithium iron phosphate (LiFePO4) thin film cathode for the aqueous rechargeable Li-ion battery is prepared by radio frequency magnetron sputtering deposition method. The XRD, SEM, and AFM results show that the film is composed of LiFePO4 grains with olivine structure and the average size of 100 nm. Charge-discharge measurements at current density of 10 μAh cm(-2) between 0 and 1 V show that the LiFePO4 thin film electrode is able to deliver an initial discharge capacity of 113 mAh g(-1). Specially, the morphological changes of the LiFePO4 film electrode during charge and discharge processes were investigated in aqueous environment by in situ EC-AFM, which is combined AFM with chronopotentiometry method. The changes in grain area are measured, and the results show that the size of the grains decreases and increases during the charge and discharge, respectively; the relevant mechanism is discussed. PMID:27117633

  20. In situ Electrochemical-AFM Study of LiFePO4 Thin Film in Aqueous Electrolyte

    NASA Astrophysics Data System (ADS)

    Wu, Jiaxiong; Cai, Wei; Shang, Guangyi

    2016-04-01

    Lithium-ion (Li-ion) batteries have been widely used in various kinds of electronic devices in our daily life. The use of aqueous electrolyte in Li-ion battery would be an alternative way to develop low cost and environmentally friendly batteries. In this paper, the lithium iron phosphate (LiFePO4) thin film cathode for the aqueous rechargeable Li-ion battery is prepared by radio frequency magnetron sputtering deposition method. The XRD, SEM, and AFM results show that the film is composed of LiFePO4 grains with olivine structure and the average size of 100 nm. Charge-discharge measurements at current density of 10 μAh cm-2 between 0 and 1 V show that the LiFePO4 thin film electrode is able to deliver an initial discharge capacity of 113 mAh g-1. Specially, the morphological changes of the LiFePO4 film electrode during charge and discharge processes were investigated in aqueous environment by in situ EC-AFM, which is combined AFM with chronopotentiometry method. The changes in grain area are measured, and the results show that the size of the grains decreases and increases during the charge and discharge, respectively; the relevant mechanism is discussed.

  1. Towards quantitative molecular mapping of cells by Raman microscopy: using AFM for decoupling molecular concentration and cell topography.

    PubMed

    Boitor, Radu; Sinjab, Faris; Strohbuecker, Stephanie; Sottile, Virginie; Notingher, Ioan

    2016-06-23

    Raman micro-spectroscopy (RMS) is a non-invasive technique for imaging live cells in vitro. However, obtaining quantitative molecular information from Raman spectra is difficult because the intensity of a Raman band is proportional to the number of molecules in the sampled volume, which depends on the local molecular concentration and the thickness of the cell. In order to understand these effects, we combined RMS with atomic force microscopy (AFM), a technique that can measure accurately the thickness profile of the cells. Solution-based calibration models for RNA and albumin were developed to create quantitative maps of RNA and proteins in individual fixed cells. The maps were built by applying the solution-based calibration models, based on partial least squares fitting (PLS), on raster-scan Raman maps, after accounting for the local cell height obtained from the AFM. We found that concentrations of RNA in the cytoplasm of mouse neuroprogenitor stem cells (NSCs) were as high as 25 ± 6 mg ml(-1), while proteins were distributed more uniformly and reached concentrations as high as ∼50 ± 12 mg ml(-1). The combined AFM-Raman datasets from fixed cells were also used to investigate potential improvements for normalization of Raman spectral maps. For all Raman maps of fixed cells (n = 10), we found a linear relationship between the scores corresponding to the first component (PC1) and the cell height profile obtained by AFM. We used PC1 scores to reconstruct the relative height profiles of independent cells (n = 10), and obtained correlation coefficients with AFM maps higher than 0.99. Using this normalization method, qualitative maps of RNA and protein were used to obtain concentrations for live NSCs. While this study demonstrates the potential of using AFM and RMS for measuring concentration maps for individual NSCs in vitro, further studies are required to establish the robustness of the normalization method based on principal component analysis when comparing

  2. AFM surface investigation of polyethylene modified by ion bombardment

    NASA Astrophysics Data System (ADS)

    Švorčík, V.; Arenholz, E.; Hnatowicz, V.; Rybka, V.; Öchsner, R.; Ryssel, H.

    1998-07-01

    Polyethylene (PE) was irradiated with 63 keV Ar + and 155 keV Xe + ions to fluences of 1 × 10 13 to 3 × 10 15 cm -2 with ion energies being chosen in order to achieve approximately the same penetration depth for both species. The PE surface morphology was examined by means of atomic force microscopy (AFM), whereas the concentration of free radicals and conjugated double bonds, both created by the ion irradiation, were determined using electron paramagnetic resonance (EPR) and UV-VIS spectroscopy, respectively. As expected, the degradation of PE was higher after irradiation with heavier Xe + ions but the changes in the PE surface morphology were more pronounced for Ar + ions. This newly observed effect can be explained by stronger compaction of the PE surface layer in the case of the Xe + irradiation, connected with a reduction of free volume available.

  3. FM-AFM crossover in vanadium oxide nanomaterials

    NASA Astrophysics Data System (ADS)

    Demishev, S. V.; Chernobrovkin, A. L.; Glushkov, V. V.; Grigorieva, A. V.; Goodilin, E. A.; Sluchanko, N. E.; Samarin, N. A.; Semeno, A. V.

    2010-01-01

    The magnetic properties of nanomaterials based on vanadium oxide (multiwall nanotubes, nanorods, and nanolayers) have been investigated in the temperature range of 1.8-220 K by high-frequency (60-GHz) EPR. A transition from a ferromagnetic temperature dependence to an antiferromagnetic temperature dependence has been observed in nanorods and nanotubes with a decrease in the temperature. The FM-AFM crossover observed near T C ˜ 110 K is accompanied by a low-temperature increase in the Curie constant by a factor of 2.7-7. The comparison of the experimental data for various VO x nanoparticles indicates that the most probable cause of the change in the type of magnetic interaction is a change in the concentration of V4+ magnetic ions.

  4. BOREAS AFM-04 Twin Otter Aircraft Sounding Data

    NASA Technical Reports Server (NTRS)

    MacPherson, J. Ian; Desjardins, Raymond L.; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-4 team used the National Research Council, Canada (NRC) Twin Otter aircraft to make sounding measurements through the boundary layer. These measurements included concentrations of carbon dioxide and ozone, atmospheric pressure, dry bulb temperature, potential temperature, dewpoint temperature, calculated mixing ratio, and wind speed and direction. Aircraft position, heading, and altitude were also recorded. Data were collected at both the Northern Study Area (NSA) and the Southern Study Area (SSA) in 1994 and 1996. These data are stored in tabular ASCII files. The Twin Otter aircraft sounding data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files also are available on a CD-ROM (see document number 20010000884).

  5. AFM of self-assembled lambda DNA-histone networks.

    PubMed

    Liu, YuYing; Guthold, Martin; Snyder, Matthew J; Lu, HongFeng

    2015-10-01

    Atomic force microscopy (AFM) was used to investigate the self-assembly behavior of λ-DNA and histones at varying histone:DNA ratios. Without histones and at the lowest histone:DNA ratio (less than one histone per 1000 base pairs of DNA), the DNA appeared as individual (uncomplexed), double-stranded DNA molecules. At increasing histone concentrations (one histone per 500, 250 and 167 base pairs of DNA), the DNA molecules started to form extensive polygonal networks of mostly pentagons and hexagons. The observed networks might be one of the naturally occurring, stable DNA-histone structures. The condensing effects of the divalent cations Mg(2+) and Ca(2+) on the DNA-histone complexes were also investigated. The networks persisted at high Mg(2+) concentration (20mM) and the highest histone concentration. At high Ca(2+) concentration and the highest histone concentration, the polygonal network disappeared and, instead, individual, tightly condensed aggregates were formed. PMID:26141439

  6. Mechanical Characterization of Photo-crosslinkable Hydrogels with AFM

    NASA Astrophysics Data System (ADS)

    McKenna, Alyssa; Byun, Myunghwan; Hayward, Ryan; Aidala, Katherine

    2012-02-01

    Stimuli-responsive hydrogel films formed from photo-crosslinkable polymers are versatile materials for controlled drug delivery devices, three-dimensional micro-assemblies, and components in microfluidic systems. For such applications, it is important to understand both the mechanical properties and the dynamics responses of these materials. We describe the use of atomic force microscope (AFM) based indentation experiments to characterize the properties of poly(N-isopropylacrylamide) copolymer films, crosslinked by activation of pendent benzophenone units using ultraviolet light. In particular, we study how the elastic modulus of the material, determined using the Johnson, Kendall, and Roberts model, depends on UV dose, and simultaneously investigate stress relaxation in these materials in the context of viscoelastic and poroelastic relaxation models.

  7. AFM study of the effects of laser surface remelting on the morphology of Al-Fe aerospace alloys

    SciTech Connect

    Pariona, Moises Meza; Teleginski, Viviane; Santos, Kelly dos; Leandro Ribeiro dos Santos, Everton; Aparecida de Oliveira Camargo de Lima, Angela; Riva, Rudimar

    2012-12-15

    Laser beam welding has recently been incorporated into the fabrication process of aircraft and automobile structures. Surface roughness is an important parameter of product quality that strongly affects the performance of mechanical parts, as well as production costs. This parameter influences the mechanical properties such as fatigue behavior, corrosion resistance, creep life, etc., and other functional characteristics such as friction, wear, light reflection, heat transmission, lubrification, electrical conductivity, etc. The effects of laser surface remelting (LSR) on the morphology of Al-Fe aerospace alloys were examined before and after surface treatments, using optical microscopy (OM), scanning electron microscopy (SEM), low-angle X-ray diffraction (LA-XRD), atomic force microscopy (AFM), microhardness measurements (Vickers hardness), and cyclic voltammetry. This analysis was performed on both laser-treated and untreated sanded surfaces, revealing significant differences. The LA-XRD analysis revealed the presence of alumina, simple metals and metastable intermetallic phases, which considerably improved the microhardness of laser-remelted surfaces. The morphology produced by laser surface remelting enhanced the microstructure of the Al-Fe alloys by reducing their roughness and increasing their hardness. The treated surfaces showed passivity and stability characteristics in the electrolytic medium employed in this study. - Highlights: Black-Right-Pointing-Pointer The samples laser-treated and untreated showed significant differences. Black-Right-Pointing-Pointer The La-XRD revealed the presence of alumina in Al-1.5 wt.% Fe. Black-Right-Pointing-Pointer The laser-treated reducing the roughness and increasing the hardness. Black-Right-Pointing-Pointer The laser-treated surfaces showed characteristic passive in the electrolytic medium. Black-Right-Pointing-Pointer The laser-treated is a promising technique for applications technological.

  8. Recent advances in exchange bias of layered magnetic FM/AFM systems

    NASA Astrophysics Data System (ADS)

    Liu, ZhongYuan

    2013-01-01

    The exchange bias (EB) has been investigated in magnetic materials with the ferromagnetic (FM)/antiferromagnetic (AFM) contacting interfaces for more than half a century. To date, the significant progress has been made in the layered magnetic FM/AFM thin film systems. EB mechanisms have shown substantive research advances. Here some of the new advances are introduced and discussed with the emphasis on the influence of AFM layer, the interlayer EB coupling across nonmagnetic spacer, and the interlayer coupling across AFM layer, as well as EB related to multiferrioc materials and electrical control.

  9. Multiparametric AFM reveals turgor-responsive net-like peptidoglycan architecture in live streptococci

    NASA Astrophysics Data System (ADS)

    Saar Dover, Ron; Bitler, Arkady; Shimoni, Eyal; Trieu-Cuot, Patrick; Shai, Yechiel

    2015-05-01

    Cell-wall peptidoglycan (PG) of Gram-positive bacteria is a strong and elastic multi-layer designed to resist turgor pressure and determine the cell shape and growth. Despite its crucial role, its architecture remains largely unknown. Here using high-resolution multiparametric atomic force microscopy (AFM), we studied how the structure and elasticity of PG change when subjected to increasing turgor pressure in live Group B Streptococcus. We show a new net-like arrangement of PG, which stretches and stiffens following osmotic challenge. The same structure also exists in isogenic mutants lacking surface appendages. Cell aging does not alter the elasticity of the cell wall, yet destroys the net architecture and exposes single segmented strands with the same circumferential orientation as predicted for intact glycans. Together, we show a new functional PG architecture in live Gram-positive bacteria.

  10. Investigation of Oxidation Profile in PMR-15 Polyimide using Atomic Microscope (AFM)

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Johnson, Lili L.; Eby, R. K.

    2002-01-01

    Nanoindentation measurements are made on thermosetting materials using cantiever deflection vs. piezoelectric scanner position behavior determined by AFM. The spring model is used to determine mechanical properties of materials. The generalized Sneddon's equation is utilized to calculate Young's moduli for thermosetting materials at ambient conditions. Our investigations show that the force-penetration depth curves during unloading in these materials can be described accurately by a power law relationship. The results show that the accuracy of the measurements can be controlled within 7%. The above method is used to study oxidation profiles in Pl\\1R-15 polyimide. The thermo-mechanical profiles ofPNIR-15 indicate that the elastic modulus at the surface portion of the specimen is different from that at the interior of the material. It is also shown that there are two zones within the oxidized portion of the samples. Results confirm that the surface layer and the core material have substantially different properties.

  11. Probing fibronectin–antibody interactions using AFM force spectroscopy and lateral force microscopy

    PubMed Central

    Kulik, Andrzej J; Lee, Kyumin; Pyka-Fościak, Grazyna; Nowak, Wieslaw

    2015-01-01

    Summary The first experiment showing the effects of specific interaction forces using lateral force microscopy (LFM) was demonstrated for lectin–carbohydrate interactions some years ago. Such measurements are possible under the assumption that specific forces strongly dominate over the non-specific ones. However, obtaining quantitative results requires the complex and tedious calibration of a torsional force. Here, a new and relatively simple method for the calibration of the torsional force is presented. The proposed calibration method is validated through the measurement of the interaction forces between human fibronectin and its monoclonal antibody. The results obtained using LFM and AFM-based classical force spectroscopies showed similar unbinding forces recorded at similar loading rates. Our studies verify that the proposed lateral force calibration method can be applied to study single molecule interactions. PMID:26114080

  12. Implementation of a four quadrant optic fibre bundle as a deflection sensor to get rid of heat sources in an AFM head

    NASA Astrophysics Data System (ADS)

    Boukellal, Younes; Ducourtieux, Sebastien

    2015-09-01

    In the frame of developing a thermally passive atomic force microscope head, a new kind of 2D displacement sensor based on a four quadrant optic fibre bundle has been implemented. The aim is to replace the quad cell photodiode used in the optical beam deflection method to detect cantilever deflection. The use of the bundle as a position sensor has already been modelled and experimentally evaluated in a previous work. This article reports on the implementation of the bundle as a deflection sensor for atomic force microscopy. The main motivation for such a development was to reduce the heat sources in the instrument. To reach this goal the photodiode and its conditioning circuit used for the measurement of cantilever deflection has been externalized from the AFM head. For the same reason, the laser diode and its electronic driver have been deported using optic fibre. To test the AFM head prototype in real conditions, approach curves and AFM images have been performed. The results show that the bundle is very well suited for AFM applications that require very low heat sources such as metrological AFM where each error source has to be managed.

  13. Examination of Humidity Effects on Measured Thickness and Interfacial Phenomena of Exfoliated Graphene on SiO2 via AC-AFM

    NASA Astrophysics Data System (ADS)

    Jinkins, Katherine; Camacho, Jorge; Farina, Lee; Wu, Yan

    2015-03-01

    Tapping (AC) mode Atomic Force Microscopy (AFM) is commonly used to determine the thickness of graphene samples. However, AFM measurements have been shown to be sensitive to environmental conditions such as adsorbed water, in turn dependent on relative humidity (RH). In the present study, AC-AFM is used to measure the thickness and loss tangent of exfoliated graphene on silicon dioxide (SiO2) as RH is increased from 10% to 80%. We show that the measured thickness of graphene is dependent on RH. Loss tangent is an AFM imaging technique that interprets the phase information as a relationship between the stored and dissipated energy in the tip-sample interaction. This study demonstrates the loss tangent of the graphene and oxide regions are both affected by humidity, with generally higher loss tangent for graphene than SiO2. As RH increases, we observe the loss tangent of both materials approaches the same value. We hypothesize that there is a layer of water trapped between the graphene and SiO2 substrate to explain this observation. Using this interpretation, the loss tangent images also indicate movement and change in this trapped water layer as RH increases, which impacts the measured thickness of graphene using AC-AFM.

  14. AFM and SEM study of the effects of etching on IPS-Empress 2 TM dental ceramic

    NASA Astrophysics Data System (ADS)

    Luo, X.-P.; Silikas, N.; Allaf, M.; Wilson, N. H. F.; Watts, D. C.

    2001-10-01

    The aim of this study was to investigate the effects of increasing etching time on the surface of the new dental material, IPS-Empress 2 TM glass ceramic. Twenty one IPS-Empress 2 TM glass ceramic samples were made from IPS-Empress 2 TM ingots through lost-wax, hot-pressed ceramic fabrication technology. All samples were highly polished and cleaned ultrasonically for 5 min in acetone before and after etching with 9.6% hydrofluoric acid gel. The etching times were 0, 10, 20, 30, 60, 90 and 120 s respectively. Microstructure was analysed by scanning electron microscopy (SEM) and atomic force microscopy (AFM) was used to evaluate the surface roughness and topography. Observations with SEM showed that etching with hydrofluoric acid resulted in preferential dissolution of glass matrix, and that partially supported crystals within the glass matrix were lost with increasing etching time. AFM measurements indicated that etching increased the surface roughness of the glass-ceramic. A simple least-squares linear regression was used to establish a relationship between surface roughness parameters ( Ra, RMS), and etching time, for which r2>0.94. This study demonstrates the benefits of combining two microscopic methods for a better understanding of the surface. SEM showed the mode of action of hydrofluoric acid on the ceramic and AFM provided valuable data regarding the extent of surface degradation relative to etching time.

  15. Data fusion for CD metrology: heterogeneous hybridization of scatterometry, CDSEM, and AFM data

    NASA Astrophysics Data System (ADS)

    Hazart, J.; Chesneau, N.; Evin, G.; Largent, A.; Derville, A.; Thérèse, R.; Bos, S.; Bouyssou, R.; Dezauzier, C.; Foucher, J.

    2014-04-01

    The manufacturing of next generation semiconductor devices forces metrology tool providers for an exceptional effort in order to meet the requirements for precision, accuracy and throughput stated in the ITRS. In the past years hybrid metrology (based on data fusion theories) has been investigated as a new methodology for advanced metrology [1][2][3]. This paper provides a new point of view of data fusion for metrology through some experiments and simulations. The techniques are presented concretely in terms of equations to be solved. The first point of view is High Level Fusion which is the use of simple numbers with their associated uncertainty postprocessed by tools. In this paper, it is divided into two stages: one for calibration to reach accuracy, the second to reach precision thanks to Bayesian Fusion. From our perspective, the first stage is mandatory before applying the second stage which is commonly presented [1]. However a reference metrology system is necessary for this fusion. So, precision can be improved if and only if the tools to be fused are perfectly matched at least for some parameters. We provide a methodology similar to a multidimensional TMU able to perform this matching exercise. It is demonstrated on a 28 nm node backend lithography case. The second point of view is Deep Level Fusion which works on the contrary with raw data and their combination. In the approach presented here, the analysis of each raw data is based on a parametric model and connections between the parameters of each tool. In order to allow OCD/SEM Deep Level Fusion, a SEM Compact Model derived from [4] has been developed and compared to AFM. As far as we know, this is the first time such techniques have been coupled at Deep Level. A numerical study on the case of a simple stack for lithography is performed. We show strict equivalence of Deep Level Fusion and High Level Fusion when tools are sensitive and models are perfect. When one of the tools can be considered as a

  16. Single molecule force spectroscopy by AFM indicates helical structure of poly(ethylene-glycol) in water

    NASA Astrophysics Data System (ADS)

    Oesterhelt, F.; Rief, M.; Gaub, H. E.

    1999-03-01

    We elongated individual poly(ethylene-glycol) (PEG) molecules tethered at one end to an AFM cantilever. We observed the resistive force as a function of elongation in different solvents. In all cases the molecular response was found to be fully reversible and thus in thermodynamic equilibrium. In hexadecane the stretched PEG acts like an ideal entropy spring and can be well described as a freely jointed chain. In water we observed marked deviations in the transition region from entropic to enthalpic elasticity, indicating the deformation of a supra-structure within the polymer. An analysis based on elastically coupled Markovian two-level systems agrees well with recent ab initio calculations predicting that PEG in water forms a non-planar supra-structure which is stabilized by water bridges. We obtained a binding free energy of 3.0+/-0.3 kT.

  17. Solid State Microstructure of Poly(L-lactide-co-meso-lactide) Copolymers by AFM

    NASA Astrophysics Data System (ADS)

    Kanchanasopa, M.; Manias, E.; Runt, J.

    2002-03-01

    The focus in the present study is on characterization of the lamellar morphology of poly(L-lactide) and two L-lactide/meso-lactide random copolymers containing 3 and 6 the same (Mn = 65,000, PDI = 2) and crystallization behavior is therefore controlled by comonomer content. Degrees of crystallinity and crystallization rates decrease substantially with increasing meso-lactide content in the copolymers. Tapping mode AFM experiments on the surfaces of films, previously isothermally crystallized at selected temperatures, were conducted. Similar experiments were also performed on cross-sections, microtomed from the crystallized films. Tapping force plays an important role in all experiments, particularly for low crystallinity samples. Mean lamellar thicknesses derived from analysis of height images agree well with those determined previously from small-angle x-ray scattering experiments.

  18. Mechanical properties of in situ demineralised human enamel measured by AFM nanoindentation

    NASA Astrophysics Data System (ADS)

    Finke, Manuela; Hughes, Julie A.; Parker, David M.; Jandt, Klaus D.

    2001-10-01

    Diet-induced demineralisation is one of the key factors in surface changes of tooth enamel, with soft drinks being a significant etiological agent. The first step in this dissolution process is characterised by a change in the mechanical properties of the enamel and a roughening of the surface. The objective of this pilot study was to measure early stages of in situ induced hardness changes of polished human enamel surfaces with high accuracy using a nanoindenter attached to an atomic force microscope (AFM). Human unerupted third molars were cleaned, sterilised with sodium hypochlorite, sectioned and embedded in epoxy resin. The outer enamel surface was polished and the samples partly covered with a tape, allowing a 2-mm-wide zone to be exposed to the oral environment. Samples were fitted in an intra-oral appliance, which was worn from 9 a.m. to 5 p.m. for one day. During this time the volunteer sipped 250 ml of a drink over 10 min periods at 9.00, 11.00, 13.00 and 15.00 h. Three different drinks, mineral water, orange juice and the prototype of a blackcurrant drink with low demineralisation potential were used in this study. At the end of the experiment the samples were detached from the appliance, the tape removed and the surfaces chemically cleaned. The surface hardness and reduced Young's modulus of the exposed and unexposed areas of each sample were determined. In addition, high resolution topographical AFM images were obtained. This study shows that by determining the hardness and reduced Young's modulus, the difference in demineralisation caused by the drinks can be detected and quantified before statistically significant changes in surface topography could be observed with the AFM. The maximum decrease in surface hardness and Young's modulus occurred in the samples exposed to orange juice, followed by those exposed to the blackcurrant drink, while exposure to water led to the same values as unexposed areas. A one-way ANOVA showed a statistically significant

  19. Microbiologically influenced corrosion of 304 stainless steel by aerobic Pseudomonas NCIMB 2021 bacteria: AFM and XPS study.

    PubMed

    Yuan, S J; Pehkonen, S O

    2007-09-01

    Microbiologically influenced corrosion (MIC) of stainless steel 304 by a marine aerobic Pseudomonas bacterium in a seawater-based medium was investigated by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). AFM was used to observe in situ the proliferation of a sessile Pseudomonas cell by binary fission. The development of a biofilm on the coupon surface and the extent of corrosion damage beneath the biofilm after various exposure times were also characterized by AFM. Results showed that the biofilm formed on the coupon surface increased in thickness and heterogeneity with time, and thus resulting in the occurrence of extensive micro-pitting corrosion; whilst the depth of pits increased linearly with time. The XPS results confirmed that the colonization of Pseudomonas bacteria on the coupon surface induced subtle changes in the alloy elemental composition in the outermost layer of surface films. The most significant feature resulting from microbial colonization on the coupon surface was the depletion of iron (Fe) and the enrichment of chromium (Cr) content as compared to a control coupon exposed to the sterile medium, and the enrichment of Cr increased with time. These compositional changes in the main alloying elements may be correlated with the occurrence of extensive micropitting corrosion on the surface. PMID:17582747

  20. Performance improvement of a large range metrological AFM through parasitic interference feedback artifacts removing by using laser multimode modulation method

    NASA Astrophysics Data System (ADS)

    Li, Qi; Gao, Sitian; Li, Wei; Lu, Mingzhen; Shi, Yushu

    2013-05-01

    A large range multi-functional metrological atomic force microscope based on optical beam deflection method has been set up at NIM one year ago. Being designed intended to make a traceable measurement of standard samples, the machine uses three axes stacked piezoceramic actuators, each axis with a pair of push-pull piezo operated at opposite phases to make orthogonal scanning with maximized dimensional up to 50×50×2mm3. The stage displacement is measured by homodyne interferometer framework in x,y,z direction, from which beams are aligned to intersect at cantilever tip to avoid Abbe error, an eight times optical path multiplier interferometer mirror is researched to enhance fringe resolution. There is also a new compact AFM head integrated with LD, quadrant PD, cantilever, optical path and microscope, the head uses special track lens group to guarantee laser spot focused and static on the back of the cantilever, no matter whether or not the cantilever have lateral movements; similarly, reflect beam also focused and static in the center of quadrant detector through convergence lens group, assumed no cantilever bending on vertical direction. Attribute to above design, the AFM have a resolution up to 0.5nm. In the paper, further improvement is described to reduce the influence of parasitic interference caused by reflection from sample surface using laser multimode modulation, the results shows metrological AFM have a better performance in measuring step, lateral pitch, line width, nanoroughness and other nanoscale structures.

  1. Hot-Fire Testing of a 1N AF-M315E Thruster

    NASA Technical Reports Server (NTRS)

    Burnside, Christopher G.; Pedersen, Kevin; Pierce, Charles W.

    2015-01-01

    This hot-fire test continues NASA investigation of green propellant technologies for future missions. To show the potential for green propellants to replace some hydrazine systems in future spacecraft, NASA Marshall Space Flight Center (MSFC) is continuing to embark on hot-fire test campaigns with various green propellant blends. NASA completed a hot-fire test of a 1N AF-M315E monopropellant thruster at the Marshall Space Flight Center in the small altitude test stand located in building 4205. The thruster is a ground test article used for basic performance determination and catalyst studies. The purpose of the hot-fire testing was for performance determination of a 1N size thruster and form a baseline from which to study catalyst performance and life with follow-on testing to be conducted at a later date. The thruster performed as expected. The result of the hot-fire testing are presented in this paper and presentation.

  2. Role of Capsular Polysaccharides in Biofilm Formation: An AFM Nanomechanics Study.

    PubMed

    Wang, Huabin; Wilksch, Jonathan J; Strugnell, Richard A; Gee, Michelle L

    2015-06-17

    Bacteria form biofilms to facilitate colonization of biotic and abiotic surfaces, and biofilm formation on indwelling medical devices is a common cause of hospital-acquired infection. Although it is well-recognized that the exopolysaccharide capsule is one of the key bacterial components for biofilm formation, the underlying biophysical mechanism is poorly understood. In the present study, nanomechanical measurements of wild type and specific mutants of the pathogen, Klebsiella pneumoniae, were performed in situ using atomic force microscopy (AFM). Theoretical modeling of the mechanical data and static microtiter plate biofilm assays show that the organization of the capsule can influence bacterial adhesion, and thereby biofilm formation. The capsular organization is affected by the presence of type 3 fimbriae. Understanding the biophysical mechanisms for the impact of the structural organization of the bacterial polysaccharide capsule on biofilm formation will aid the development of strategies to prevent biofilm formation. PMID:26034816

  3. BOREAS AFM-6 NOAA/ETL 35 GHz Cloud/Turbulence Radar GIF Images

    NASA Technical Reports Server (NTRS)

    Martner, Brooks E.; Newcomer, Jeffrey A. (Editor); Hall, Forrest G.; Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-6 team from the National Oceanic and Atmospheric Administration/Environment Technology Laboratory (NOAA/ETL) operated a 35-GHz cloud-sensing radar in the Northern Study Area (NSA) near the Old Jack Pine (OJP) tower from 16 Jul 1994 to 08 Aug 1994. This data set contains a time series of GIF images that show the structure of the lower atmosphere. The NOAA/ETL 35-GHz cloud/turbulence radar GIF images are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  4. Conductive-probe AFM characterization of graphene sheets bonded to gold surfaces

    NASA Astrophysics Data System (ADS)

    Hauquier, Fanny; Alamarguy, David; Viel, Pascal; Noël, Sophie; Filoramo, Arianna; Huc, Vincent; Houzé, Frédéric; Palacin, Serge

    2012-01-01

    Conducting probe atomic force microscopy (CP-AFM) has been used to perform mechanical and electrical experiments on graphene layers bonded to polyaminophenylene (PAP) films grafted on gold substrates. This technique is a new approach for the characterization of graphene sheets and represents a complementary tool to Raman spectroscopy. The combination of friction and electrical imaging reveals that different stacked graphene sheets have been successfully distinguished from each other and from the underlying PAP films. Lateral force microscopy has shown that the friction is greatly reduced on graphene sheets in comparison with the organic coating. The electrical resistance images show very different local conduction properties which can be linked to the number of underlying graphene sheets. The resistance decreases very slowly when the normal load increases. Current-voltage curves display characteristics of metal-molecule-metal junctions.

  5. Nano-Wilhelmy investigation of dynamic wetting properties of AFM tips through tip-nanobubble interaction.

    PubMed

    Wang, Yuliang; Wang, Huimin; Bi, Shusheng; Guo, Bin

    2016-01-01

    The dynamic wetting properties of atomic force microscopy (AFM) tips are of much concern in many AFM-related measurement, fabrication, and manipulation applications. In this study, the wetting properties of silicon and silicon nitride AFM tips are investigated through dynamic contact angle measurement using a nano-Wilhelmy balance based method. This is done by capillary force measurement during extension and retraction motion of AFM tips relative to interfacial nanobubbles. The working principle of the proposed method and mathematic models for dynamic contact angle measurement are presented. Geometric models of AFM tips were constructed using scanning electronic microscopy (SEM) images taken from different view directions. The detailed process of tip-nanobubble interaction was investigated using force-distance curves of AFM on nanobubbles. Several parameters including nanobubble height, adhesion and capillary force between tip and nanobubbles are extracted. The variation of these parameters was studied over nanobubble surfaces. The dynamic contact angles of the AFM tips were calculated from the capillary force measurements. The proposed method provides direct measurement of dynamic contact angles for AFM tips and can also be taken as a general approach for nanoscale dynamic wetting property investigation. PMID:27452115

  6. Nano-Wilhelmy investigation of dynamic wetting properties of AFM tips through tip-nanobubble interaction

    PubMed Central

    Wang, Yuliang; Wang, Huimin; Bi, Shusheng; Guo, Bin

    2016-01-01

    The dynamic wetting properties of atomic force microscopy (AFM) tips are of much concern in many AFM-related measurement, fabrication, and manipulation applications. In this study, the wetting properties of silicon and silicon nitride AFM tips are investigated through dynamic contact angle measurement using a nano-Wilhelmy balance based method. This is done by capillary force measurement during extension and retraction motion of AFM tips relative to interfacial nanobubbles. The working principle of the proposed method and mathematic models for dynamic contact angle measurement are presented. Geometric models of AFM tips were constructed using scanning electronic microscopy (SEM) images taken from different view directions. The detailed process of tip-nanobubble interaction was investigated using force-distance curves of AFM on nanobubbles. Several parameters including nanobubble height, adhesion and capillary force between tip and nanobubbles are extracted. The variation of these parameters was studied over nanobubble surfaces. The dynamic contact angles of the AFM tips were calculated from the capillary force measurements. The proposed method provides direct measurement of dynamic contact angles for AFM tips and can also be taken as a general approach for nanoscale dynamic wetting property investigation. PMID:27452115

  7. Beyond topography - enhanced imaging of cometary dust with the MIDAS AFM

    NASA Astrophysics Data System (ADS)

    Bentley, M. S.; Torkar, K.; Jeszenszky, H.; Romstedt, J.

    2013-09-01

    The MIDAS atomic force microscope (AFM) onboard the Rosetta spacecraft is primarily designed to return the 3D shape and structure of cometary dust particles collected at comet 67P/Churyumov-Gerasimenko [1]. Commercial AFMs have, however, been further developed to measure many other sample properties. The possibilities to make such measurements with MIDAS are explored here.

  8. Nano-Wilhelmy investigation of dynamic wetting properties of AFM tips through tip-nanobubble interaction

    NASA Astrophysics Data System (ADS)

    Wang, Yuliang; Wang, Huimin; Bi, Shusheng; Guo, Bin

    2016-07-01

    The dynamic wetting properties of atomic force microscopy (AFM) tips are of much concern in many AFM-related measurement, fabrication, and manipulation applications. In this study, the wetting properties of silicon and silicon nitride AFM tips are investigated through dynamic contact angle measurement using a nano-Wilhelmy balance based method. This is done by capillary force measurement during extension and retraction motion of AFM tips relative to interfacial nanobubbles. The working principle of the proposed method and mathematic models for dynamic contact angle measurement are presented. Geometric models of AFM tips were constructed using scanning electronic microscopy (SEM) images taken from different view directions. The detailed process of tip-nanobubble interaction was investigated using force-distance curves of AFM on nanobubbles. Several parameters including nanobubble height, adhesion and capillary force between tip and nanobubbles are extracted. The variation of these parameters was studied over nanobubble surfaces. The dynamic contact angles of the AFM tips were calculated from the capillary force measurements. The proposed method provides direct measurement of dynamic contact angles for AFM tips and can also be taken as a general approach for nanoscale dynamic wetting property investigation.

  9. Sensitivity analysis of rectangular atomic force microscope cantilevers immersed in liquids based on the modified couple stress theory.

    PubMed

    Lee, Haw-Long; Chang, Win-Jin

    2016-01-01

    The modified couple stress theory is adopted to study the sensitivity of a rectangular atomic force microscope (AFM) cantilever immersed in acetone, water, carbon tetrachloride (CCl4), and 1-butanol. The theory contains a material length scale parameter and considers the size effect in the analysis. However, this parameter is difficult to obtain via experimental measurements. In this study, a conjugate gradient method for the parameter estimation of the frequency equation is presented. The optimal method provides a quantitative approach for estimating the material length scale parameter based on the modified couple stress theory. The results show that the material length scale parameter of the AFM cantilever immersed in acetone, CCl4, water, and 1-butanol is 0, 25, 116.3, and 471 nm, respectively. In addition, the vibration sensitivities of the AFM cantilever immersed in these liquids are investigated. The results are useful for the design of AFM cantilevers immersed in liquids. PMID:26402914

  10. BOREAS AFM-2 Wyoming King Air 1994 Aircraft Sounding Data

    NASA Technical Reports Server (NTRS)

    Kelly, Robert D.; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The BOREAS AFM-2 team used the University of Wyoming King Air aircraft during IFCs 1, 2, and 3 in 1994 to collected pass-by-pass fluxes (and many other statistics) for the large number of level (constant altitude), straight-line passes used in a variety of flight patterns over the SSA and NSA and areas along the transect between these study areas. The data described here form a second set, namely soundings that were incorporated into nearly every research flight by the King Air in 1994. These soundings generally went from near the surface to above the inversion layer. Most were flown immediately after takeoff or immediately after finishing the last flux pattern of that particular day's flights. The parameters that were measured include wind direction, wind speed, west wind component (u), south wind component (v), static pressure, air dry bulb temperature, potential temperature, dewpoint, temperature, water vapor mixing ratio, and CO2 concentration. Data on the aircraft's location, attitude, and altitude during data collection are also provided. These data are stored in tabular ASCH files. The data files are available on a CD-ROM (see document number 20010000884) or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  11. BOREAS AFM-03-NCAR Electra 1994 Aircraft Sounding Data

    NASA Technical Reports Server (NTRS)

    Lenschow, Donald H.; Oncley, Steven P.; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-3 team used the National Center for Atmospheric Research's (NCAR) Electra aircraft to make sounding measurements to study the planetary boundary layer using in situ and remote-sensing measurements. Measurements were made of wind speed and direction, air pressure and temperature, potential temperature, dewpoint, mixing ratio of H, O, CO, concentration, and ozone concentration. Twenty-five research missions were flown over the Northern Study Area (NSA), Southern Study Area (SSA), and the transect during BOREAS Intensive Field Campaigns (IFCs) 1, 2, and 3 during 1994. All missions had from four to ten soundings through the top of the planetary boundary layer. This sounding data set contains all of the in situ vertical profiles through the boundary layer top that were made (with the exception of 'porpoise' maneuvers). Data were recorded in one-second time intervals. These data are stored in tabular ASCII files. The NCAR Electra 1994 aircraft sounding data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  12. AFM-based force microsensor for a microrobot

    NASA Astrophysics Data System (ADS)

    Fatikow, Sergej; Fahlbusch, Stephan

    2001-10-01

    Microrobots are the result of increasing research activities at the border between microsystem technology and robotics. Today already, robots with dimensions of a few cubic- centimeters can be developed. Like conventional robots, microrobots represent a complex system that usually contains several different types of actuators and sensors. The measurement of gripping forces is the most important sensor application in micromanipulation besides visual servoing to protect the parts from too high surface pressures and thereby damage during the assembly process. Very small forces in the range of 200 (mu) N down to 0.1 (mu) N or even less have to be sensed. Thus, the aim of our current research activities is the development of a high-resolution integrated force microsensor for measuring gripping forces in a microhandling robot. On the one hand, the sensor should be a device for teleoperated manipulation tasks in a flexible microhandling station. On the other hand, typical microhandling operations should to a large extend be automated with the aid of computer-based signal processing of sensor information. The user should be provided with an interface for teleoperated manipulation and an interface for partially automated manipulation of microobjects. In this paper, a concept for the measurement of gripping forces in microrobotics using piezoresistive AFM (atomic force microscope) cantilevers is introduced. Further on, the concept of a microrobot-based SEM station and its applications are presented.

  13. Characterization of mineral-associated organic matter: a combined approach of AFM and NanoSIMS

    NASA Astrophysics Data System (ADS)

    Pohl, Lydia; Schurig, Christian; Eusterhues, Karin; Mueller, Carsten W.; Höschen, Carmen; Totsche, Kai-Uwe; Kögel-Knabner, Ingrid

    2016-04-01

    The heterogeneous spatial distribution and amount of organic matter (OM) in soils, especially at the micro- or submicron-scale, has major consequences for the soil microstructure and for the accessibility of OM to decomposing microbial communities. Processes occurring at the microscale control soil properties and processes at larger scales, such as macro-aggregation and carbon turnover. Since OM acts as substrate and most important driver for biogeochemical processes, particular attention should be paid to its spatial interaction with soil minerals. In contrast to bulk analysis, Nanoscale Secondary Ion Mass Spectrometry (NanoSIMS) offers the possibility to examine the composition and spatial distribution of OM within the intact organo-mineral matrix. Nevertheless, the yield of secondary electrons is influenced by the individual topography of the analysed particles, which aggravated the quantitative interpretation of the data. A combination of NanoSIMS and Atomic Force Microscopy (AFM), enabled us to visualize and quantify the topographical features of individual particles and correct the NanoSIMS data for this effect. We performed adsorption experiments with water-soluble soil OM in 6 concentration steps, which was extracted from forest floor layer of a Podzol, and adsorbed to illite. Upon the end of the sorption experiments the liquid phase and the solid phase were separated and the carbon content was analysed with TOC- and C/N-measurement, respectively. For the spatially resolved analyses, the samples were applied as thin layers onto silicon wafers and individual particles were chosen by means of the AFM. Subsequently, the identical particles were analysed with NanoSIMS to investigate the distribution of C, N, O, Si, P and Al. The recorded data were analysed for differences in elemental distribution between the different concentration steps. Additionally, we performed a correlation of the detectable counts with the topography of the particle within one

  14. Chemometric analysis of chromatographic fingerprints shows potential of Cyclopia maculata (Andrews) Kies for production of standardized extracts with high xanthone content.

    PubMed

    Schulze, Alexandra E; de Beer, Dalene; de Villiers, André; Manley, Marena; Joubert, Elizabeth

    2014-10-29

    Cyclopia species are used for the production of honeybush tea and food ingredient extracts associated with many health benefits. A species-specific high-performance liquid chromatography (HPLC) method for Cyclopia maculata, developed and validated, allowed quantification of the major compounds in extracts from "unfermented" and fermented C. maculata. Two xanthones were tentatively identified for the first time in a Cyclopia species, whereas an additional four compounds were tentatively identified for the first time in C. maculata. "Fermentation" (oxidation) decreased the content of all compounds, with the exception of vicenin-2. Similarity analysis of the chromatographic fingerprints of unfermented C. maculata aqueous extracts showed extremely low variation (r ≥ 0.97) between samples. Some differences between wild-harvested and cultivated seedling plants were, however, demonstrated using principal component analysis. Quantitative data of selected compounds confirmed the low level of variation, making this Cyclopia species ideal for the production of standardized food ingredient extracts. PMID:25329526

  15. The use of fatty acid methyl ester analysis (FAME) for the identification of heterotrophic bacteria present on three mural paintings showing severe damage by microorganisms.

    PubMed

    Heyrman, J; Mergaert, J; Denys, R; Swings, J

    1999-12-01

    Mural paintings in Carmona (Spain), Herberstein (Austria) and Greene (Germany), showing visible deterioration by microorganisms, were sampled to investigate the biodiversity of the heterotrophic bacteria present. Four hundred twenty-eight bacterial strains were isolated from which 385 were characterized by fatty acid methyl ester analysis (FAME). The isolates were grouped into 41 clusters on the basis of their FAME profiles, 20 isolates remained ungrouped. The majority (94%) of the isolates comprised the gram-positive bacteria and the main clusters were identified as Bacillus sp., Paenibacillus sp., Micrococcus sp., Arthrobacter sp. and Staphylococcus sp. Other clusters contain nocardioform actinomycetes and gram-negative bacteria, respectively. A cluster of the latter contained extreme halotolerant bacteria isolated in Herberstein. The FAME profiles of this cluster showed a high similarity with Halomonas. PMID:10564789

  16. Analysis of blood leukocytes in a naturally occurring immunodeficiency of pigs shows the defect is localized to B and T cells.

    PubMed

    Ewen, C L; Cino-Ozuna, A G; He, H; Kerrigan, M A; Dekkers, J C M; Tuggle, C K; Rowland, R R R; Wyatt, C R

    2014-12-15

    Severe combined immunodeficiency (SCID) is the result of a set of inherited genetic defects which render components of the immune response nonfunctional. In Arabian horses, Jack Russell terriers, and mice, the disorder is a consequence of the absence of T and B lymphocytes, while natural killer (NK) cell and other leukocyte populations remain intact. Preliminary analysis of a naturally acquired form of inherited SCID in a line of pigs showed several defects in the architecture and composition of secondary lymphoid organs. In this study, a quantitative assessment of lymphocyte populations in affected and normal littermates showed depleted T or B lymphocyte populations in affected pigs; however, NK cells and neutrophils were present in numbers comparable to unaffected littermates. The results indicate that the immune defect in pigs shares the same features as other SCID-affected species. PMID:25454085

  17. PREFACE: NC-AFM 2005: Proceedings of the 8th International Conference on Non-Contact Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Reichling, M.; Mikosch, W.

    2006-04-01

    The 8th International Conference on Non-Contact Atomic Force Microscopy, held in Bad Essen, Germany, from 15 18th August 2005, attracted a record breaking number of participants presenting excellent contributions from a variety of scientific fields. This clearly demonstrated the high level of activity and innovation present in the community of NC-AFM researchers and the continuous growth of the field. The strongest ever participation of companies for a NC-AFM meeting is a sign for the emergence of new markets for the growing NC-AFM community; and the high standard of the products presented at the exhibition, many of them brand-new developments, reflected the unbroken progress in technology. The development of novel technologies and the sophistication of known techniques in research laboratories and their subsequent commercialization is still a major driving force for progress in this area of nanoscience. The conference was a perfect demonstration of how progress in the development of enabling technologies can readily be transcribed into basic research yielding fundamental insight with an impact across disciplines. The NC-AFM 2005 scientific programme was based on five cornerstones, each representing an area of vivid research and scientific progress. Atomic resolution imaging on oxide surfaces, which has long been a vision for the catalysis community, appears to be routine in several laboratories and after a period of demonstrative experiments NC-AFM now makes unique contributions to the understanding of processes in surface chemistry. These capabilities also open up new routes for the analysis of clusters and molecules deposited on dielectric surfaces where resolution limits are pushed towards the single atom level. Atomic precision manipulation with the dynamic AFM left the cradle of its infancy and flourishes in the family of bottom-up fabrication nanotechnologies. The systematic development of established and the introduction of new concepts of contrast

  18. Effect of the molecular weight on deformation states of the polystyrene film by AFM single scanning.

    PubMed

    Sun, Yang; Yan, Yongda; Liang, Yingchun; Hu, Zhenjiang; Zhao, Xuesen; Sun, Tao; Dong, Shen

    2013-01-01

    Nanobundles patterns can be formed on the surface of most thermoplastic polymers when the atomic force microscope (AFM)-based nanomechanical machining method is employed to scratch their surfaces. Such patterns are reviewed as three-dimensional sine-wave structures. In the present study, the single-line scratch test is used firstly to study different removal states of the polystyrene (PS) polymer with different molecular weights (MWs). Effects of the scratching direction and the scratching velocity on deformation of the PS film and the state of the removed materials are also investigated. Single-wear box test is then employed to study the possibility of forming bundle structures on PS films with different MWs. The experimental results show that the state between the tip and the sample plays a key role in the nano machining process. If the contact radius between the AFM tip and the polymer surface is larger than the chain end-to-end distance, it is designated as the "cutting" state that means the area of both side ridges is less than the area of the groove and materials are removed. If the contact radius is less than the chain end-to-end distance, it is designated as the "plowing" state that means the area of both side ridges is larger than the area of the groove and no materials are removed at all. For the perfect bundles formation on the PS film, the plowing state is ideal condition for the larger MW polymers because of the chains' entanglement. PMID:23229843

  19. An AFM study of the chlorite-fluid interface. [Atomic Force Microscopy

    SciTech Connect

    Vrdoljak, G.A.; Henderson, G.S.; Fawcett, J.J. . Dept. of Geology)

    1992-01-01

    Chlorite is a ubiquitous mineral in many geologic environments and plays an important role in elemental adsorption and retention in soils. Chlorite has a 2:1 layer structure consisting of two tetrahedral sheets with an octahedral sheet between them (talc-like layer). The 2:1 layer is charge balanced and hydrogen-bonded by an interlayer of MgOH[sub 6] octahedra (brucite-like layer). The nature of chlorite's structure, its ease of imaging, and perfect 001 cleavage, make this mineral an ideal substrate for use in elemental adsorption studies in solution, with the AFM. The 001 cleavage plane of a 2b polytype with composition (Mg[sub 4.4]Fe[sub 0.6]Al[sub 1.0])[(Si[sub 2.9]Al[sub 1.1])]O[sub 10](OH)[sub g] has been imaged in air, water, and oil by atomic force microscopy. Dissolution features are observed in water, showing sub-micron features dissolving in real-time. Atomic resolution of both the talc-like and brucite-like layers has been obtained in air. However, only the tetrahedral sheet of the talc-like layer has been imaged at atomic resolution in oil and water, which may indicate a structural instability of the brucite-like surface in solution. Measurements of the unit-cell dimensions (a and b) for the talc-like layer in the three different media indicate a structural expansion of the mineral surface in solution. The a unit cell dimension expands by 7.4 [+-] 0.1% when in water; conversely, the b dimension varies greatly when in oil ([minus]10% to +20%), relative to air. The effects of these solution media on the structure of chlorite are revealed by characterization with the AFM. This information should prove useful in future studies of adsorption onto layer silicates.

  20. Analysis of Two-Component Systems in Group B Streptococcus Shows That RgfAC and the Novel FspSR Modulate Virulence and Bacterial Fitness

    PubMed Central

    Faralla, Cristina; Metruccio, Matteo M.; De Chiara, Matteo; Mu, Rong; Patras, Kathryn A.; Muzzi, Alessandro; Grandi, Guido; Margarit, Immaculada; Doran, Kelly S.

    2014-01-01

    ABSTRACT Group B Streptococcus (GBS), in the transition from commensal organisms to pathogens, will encounter diverse host environments and, thus, require coordinated control of the transcriptional responses to these changes. This work was aimed at better understanding the role of two-component signal transduction systems (TCS) in GBS pathophysiology through a systematic screening procedure. We first performed a complete inventory and sensory mechanism classification of all putative GBS TCS by genomic analysis. Five TCS were further investigated by the generation of knockout strains, and in vitro transcriptome analysis identified genes regulated by these systems, ranging from 0.1% to 3% of the genome. Interestingly, two sugar phosphotransferase systems appeared to be differentially regulated in the TCS-16 knockout strain (TCS loci were numbered in order of their appearance on the chromosome), suggesting an involvement in monitoring carbon source availability. High-throughput analysis of bacterial growth on different carbon sources showed that TCS-16 was necessary for the growth of GBS on fructose-6-phosphate. Additional transcriptional analysis provided further evidence for a stimulus-response circuit where extracellular fructose-6-phosphate leads to autoinduction of TCS-16, with concomitant dramatic upregulation of the adjacent operon, which encodes a phosphotransferase system. The TCS-16-deficient strain exhibited decreased persistence in a model of vaginal colonization. All mutant strains were also characterized in a murine model of systemic infection, and inactivation of TCS-17 (also known as RgfAC) resulted in hypervirulence. Our data suggest a role for the previously unknown TCS-16, here named FspSR, in bacterial fitness and carbon metabolism during host colonization, and the data also provide experimental evidence for TCS-17/RgfAC involvement in virulence. PMID:24846378

  1. PREFACE: NC-AFM 2006: Proceedings of the 9th International Conference on Non-contact Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Tomitori, Masahiko; Onishi, Hiroshi

    2007-02-01

    The advent of scanning probe microscopy (SPM) in the 1980s has significantly promoted nanoscience and nanotechnology. In particular, non-contact atomic force microscopy (NC-AFM), one of the SPM family, has unique capabilities with high spatial resolution for nanoscale measurements in vacuum, air and liquids. In the last decade we have witnessed the rapid progress of NC-AFM with improved performance and increasing applications. A series of NC-AFM international conferences have greatly contributed to this field. Initiated in Osaka in 1998, the NC-AFM meeting has been followed by annual conferences at Pontresina, Hamburg, Kyoto, Montreal, Dingle, Seattle and Bad Essen. The 9th conference was held in Kobe, Japan, 16-20 July 2006. This special issue of Nanotechnology contains the outstanding contributions of the conference. During the meeting delegates learnt about a number of significant advances. Topics covered atomic resolution imaging of metals, semiconductors, insulators, ionic crystals, oxides, molecular systems, imaging of biological materials in various environments and novel instrumentation. Work also included the characterization of electronic and magnetic properties, tip and cantilever fabrication and characterization, atomic distinction based on analysis of tip-sample interaction, atomic scale manipulation, fabrication of nanostructures using NC-AFM, and related theories and simulations. We are greatly impressed by the increasing number of applications, and convinced that NC-AFM and related techniques are building a bridge to a future nano world, where quantum phenomena will dominate and nano devices will be realized. In addition, a special session on SPM road maps was held as a first trial in the field, where the future prospects of SPM were discussed enthusiastically. The overall success of the NC-AFM 2006 conference was due to the efforts of many individuals and groups with respect to scientific and technological progress, as well as the international

  2. In Situ AFM Imaging of Solid Electrolyte Interfaces on HOPG with Ethylene Carbonate and Fluoroethylene Carbonate-Based Electrolytes.

    PubMed

    Shen, Cai; Wang, Shuwei; Jin, Yan; Han, Wei-Qiang

    2015-11-18

    Chemical and morphological structure of solid electrolyte interphase (SEI) plays a vital role in lithium-ion battery (LIB), especially for its cyclability and safety. To date, research on SEI is quite limited because of the complexity of SEI and lack of effective in situ characterization techniques. Here, we present real-time views of SEI morphological evolution using electrochemical atomic force microscopy (EC-AFM). Complemented by an ex situ XPS analysis, fundamental differences of SEI formation from ethylene carbonate (EC) and fluoroethylene carbonate (FEC)-based electrolytes during first lithiation/delithiation cycle on HOPG electrode surface were revealed. PMID:26502161

  3. Spatial dependence of polycrystalline FTO’s conductance analyzed by conductive atomic force microscope (C-AFM)

    SciTech Connect

    Peixoto, Alexandre Pessoa; Costa, J. C. da

    2014-05-15

    Fluorine-doped Tin oxide (FTO) is a highly transparent, electrically conductive polycrystalline material frequently used as an electrode in organic solar cells and optical-electronic devices [1–2]. In this work a spatial analysis of the conductive behavior of FTO was carried out by Conductive-mode Atomic Force Microscopy (C-AFM). Rare highly oriented grains sample give us an opportunity to analyze the top portion of polycrystalline FTO and compare with the border one. It is shown that the current flow essentially takes place through the polycrystalline edge at grain boundaries.

  4. Tuning the resonance of a photonic crystal microcavity with an AFM probe.

    PubMed

    Märki, Iwan; Salt, Martin; Herzig, Hans Peter

    2006-04-01

    We present theoretical and experimental results on switching and tuning of a two-dimensional photonic crystal resonant microcavity by means of a silicon AFM tip, probing the highly localized optical field in the vicinity of the cavity. On-off switching and modulation of the transmission signal in the kHz range is achieved by bringing an AFM tip onto the center of the microcavity, inducing a damping effect on the transmission resonance. Tuning of the resonant wavelength in the order of several nanometers becomes possible by inserting the AFM tip into one of the holes of the Bragg mirror forming the microcavity in the propagation direction. PMID:19516436

  5. Development of portable experimental set-up for AFM to work at cryogenic temperature

    NASA Astrophysics Data System (ADS)

    Agarwal, D. H.; Bhatt, P. M.; Pathan, A. M.; Patel, Hitarthi; Joshi, U. S.

    2012-06-01

    We report on the designing aspects and fabrication of low temperature atomic force microscope (AFM) to study the surface structures of nanomaterials. Several key features of design including liquid nitrogen reservoir, vacuum chamber, vibration isolation table etc. have been presented. The whole set up was assembled in-house at a fairly low cost to be used with any commercial AFM system. The surface morphology of important oxide (In0.94Sn0.04)2O3 (ITO) thin film nanostructures has been investigated using the cryogenic AFM set up.

  6. The formation of liquid bridge in different operating modes of AFM

    NASA Astrophysics Data System (ADS)

    Wei, Zheng; Sun, Yan; Ding, WenXuan; Wang, ZaiRan

    2016-09-01

    The liquid bridge is one of the principal factors that cause artifacts in ambient-pressure atomic force microscope (AFM) images. Additionally, it is the main component of the adhesion force in ambient conditions. To understand the AFM imaging mechanism and the sample characteristics, it is essential to study the liquid bridge. This study interprets the physical mechanism involved in liquid bridge formation, which is composed of three different physical processes: the squeezing process, capillary condensation, and liquid film flow. We discuss the contributions of these three mechanisms to the volume and the capillary force of the liquid bridge in different AFM operation modes.

  7. Direct electrochemical and AFM detection of amyloid-β peptide aggregation on basal plane HOPG

    NASA Astrophysics Data System (ADS)

    Lopes, Paula; Xu, Meng; Zhang, Min; Zhou, Ting; Yang, Yanlian; Wang, Chen; Ferapontova, Elena E.

    2014-06-01

    Amyloidogenesis is associated with more than 30 human diseases, including Alzheimer's which is related to aggregation of β-amyloid peptide (Aβ). Here, consecutive stages of Aβ42 aggregation and amyloid fibril formation were followed electrochemically via oxidation of tyrosines in Aβ42 adsorbed on the basal plane graphite electrode and directly correlated with Aβ42 morphological changes observed by atomic force microscopy of the same substrate. The results offer new tools for analysis of mechanisms of Aβ aggregation.Amyloidogenesis is associated with more than 30 human diseases, including Alzheimer's which is related to aggregation of β-amyloid peptide (Aβ). Here, consecutive stages of Aβ42 aggregation and amyloid fibril formation were followed electrochemically via oxidation of tyrosines in Aβ42 adsorbed on the basal plane graphite electrode and directly correlated with Aβ42 morphological changes observed by atomic force microscopy of the same substrate. The results offer new tools for analysis of mechanisms of Aβ aggregation. Electronic supplementary information (ESI) available: Experimental details: procedures for Aβ42 aggregation and electrode modification, DPV/AFM measurements and analysis. See DOI: 10.1039/c4nr02413c

  8. MetaRep, an extended CMAS 3D program to visualize mafic (CMAS, ACF-S, ACF-N) and pelitic (AFM-K, AFM-S, AKF-S) projections

    NASA Astrophysics Data System (ADS)

    France, Lydéric; Nicollet, Christian

    2010-06-01

    MetaRep is a program based on our earlier program CMAS 3D. It is developed in MATLAB ® script. MetaRep objectives are to visualize and project major element compositions of mafic and pelitic rocks and their minerals in the pseudo-quaternary projections of the ACF-S, ACF-N, CMAS, AFM-K, AFM-S and AKF-S systems. These six systems are commonly used to describe metamorphic mineral assemblages and magmatic evolutions. Each system, made of four apices, can be represented in a tetrahedron that can be visualized in three dimensions with MetaRep; the four tetrahedron apices represent oxides or combination of oxides that define the composition of the projected rock or mineral. The three-dimensional representation allows one to obtain a better understanding of the topology of the relationships between the rocks and minerals and relations. From these systems, MetaRep can also project data in ternary plots (for example, the ACF, AFM and AKF ternary projections can be generated). A functional interface makes it easy to use and does not require any knowledge of MATLAB ® programming. To facilitate the use, MetaRep loads, from the main interface, data compiled in a Microsoft Excel ™ spreadsheet. Although useful for scientific research, the program is also a powerful tool for teaching. We propose an application example that, by using two combined systems (ACF-S and ACF-N), provides strong confirmation in the petrological interpretation.

  9. Immunochemical Analysis of the Electronegative LDL Subfraction Shows That Abnormal N-terminal Apolipoprotein B Conformation Is Involved in Increased Binding to Proteoglycans*

    PubMed Central

    Bancells, Cristina; Benítez, Sònia; Ordóñez-Llanos, Jordi; Öörni, Katariina; Kovanen, Petri T.; Milne, Ross W.; Sánchez-Quesada, José L.

    2011-01-01

    Electronegative LDL (LDL(−)) is a minor subfraction of modified LDL present in plasma. Among its atherogenic characteristics, low affinity to the LDL receptor and high binding to arterial proteoglycans (PGs) could be related to abnormalities in the conformation of its main protein, apolipoprotein B-100 (apoB-100). In the current study, we have performed an immunochemical analysis using monoclonal antibody (mAb) probes to analyze the conformation of apoB-100 in LDL(−). The study, performed with 28 anti-apoB-100 mAbs, showed that major differences of apoB-100 immunoreactivity between native LDL and LDL(−) concentrate in both terminal extremes. The mAbs Bsol 10, Bsol 14 (which recognize the amino-terminal region), Bsol 2, and Bsol 7 (carboxyl-terminal region) showed increased immunoreactivity in LDL(−), suggesting that both terminal extremes are more accessible in LDL(−) than in native LDL. The analysis of in vitro-modified LDLs, including LDL lipolyzed with sphingomyelinase (SMase-LDL) or phospholipase A2 (PLA2-LDL) and oxidized LDL (oxLDL), suggested that increased amino-terminal immunoreactivity was related to altered conformation due to aggregation. This was confirmed when the aggregated subfractions of LDL(−) (agLDL(−)) and oxLDL (ag-oxLDL) were isolated and analyzed. Thus, Bsol 10 and Bsol 14 immunoreactivity was high in SMase-LDL, ag-oxLDL, and agLDL(−). The altered amino-terminal apoB-100 conformation was involved in the increased PG binding affinity of agLDL(−) because Bsol 10 and Bsol 14 blocked its high PG-binding. These observations suggest that an abnormal conformation of the amino-terminal region of apoB-100 is responsible for the increased PG binding affinity of agLDL(−). PMID:21078674

  10. In silico analysis of SIGMAR1 variant (rs4879809) segregating in a consanguineous Pakistani family showing amyotrophic lateral sclerosis without frontotemporal lobar dementia.

    PubMed

    Ullah, Muhammad Ikram; Ahmad, Arsalan; Raza, Syed Irfan; Amar, Ali; Ali, Amjad; Bhatti, Attya; John, Peter; Mohyuddin, Aisha; Ahmad, Wasim; Hassan, Muhammad Jawad

    2015-10-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder affecting upper motor neurons in the brain and lower motor neurons in the brain stem and spinal cord, resulting in fatal paralysis. It has been found to be associated with frontotemporal lobar degeneration (FTLD). In the present study, we have described homozygosity mapping and gene sequencing in a consanguineous autosomal recessive Pakistani family showing non-juvenile ALS without signs of FTLD. Gene mapping was carried out in all recruited family members using microsatellite markers, and linkage was established with sigma non-opioid intracellular receptor 1 (SIGMAR1) gene at chromosome 9p13.2. Gene sequencing of SIGMAR1 revealed a novel 3'-UTR nucleotide variation c.672*31A>G (rs4879809) segregating with disease in this family. The C9ORF72 repeat region in intron 1, previously implicated in a related phenotype, was excluded through linkage, and further confirmation of exclusion was obtained by amplifying intron 1 of C9ORF72 with multiple primers in affected individuals and controls. In silico analysis was carried out to explore the possible role of 3'-UTR variant of SIGMAR1 in ALS. The Regulatory RNA motif and Element Finder program revealed disturbance in miRNA (hsa-miR-1205) binding site due to this variation. ESEFinder analysis showed new SRSF1 and SRSF1-IgM-BRCA1 binding sites with significant scores due to this variation. Our results indicate that the 3'-UTR SIGMAR1 variant c.672*31A>G may have a role in the pathogenesis of ALS in this family. PMID:26205306

  11. A Propensity Score Analysis Shows that Empirical Treatment with Linezolid Does Not Increase the Thirty-Day Mortality Rate in Patients with Gram-Negative Bacteremia

    PubMed Central

    Ternavasio-de la Vega, Hugo-Guillermo; Mateos-Díaz, Ana-María; Martinez, Jose-Antonio; Almela, Manel; Cobos-Trigueros, Nazaret; Morata, Laura; De-la-Calle, Cristina; Sala, Marta; Mensa, Josep; Soriano, Alex

    2014-01-01

    The role of linezolid in empirical therapy of suspected bacteremia remains unclear. The aim of this study was to evaluate the influence of empirical use of linezolid or glycopeptides in addition to other antibiotics on the 30-day mortality rates in patients with Gram-negative bacteremia. For this purpose, 1,126 patients with Gram-negative bacteremia in the Hospital Clinic of Barcelona from 2000 to 2012 were included in this study. In order to compare the mortality rates between patients who received linezolid or glycopeptides, the propensity scores on baseline variables were used to balance the treatment groups, and both propensity score matching and propensity-adjusted logistic regression were used to compare the 30-day mortality rates between the groups. The overall 30-day mortality rate was 16.0% during the study period. Sixty-eight patients received empirical treatment with linezolid, and 1,058 received glycopeptides. The propensity score matching included 64 patients in each treatment group. After matching, the mortality rates were 14.1% (9/64) in patients who received glycopeptides and 21.9% (14/64) in those who received linezolid, and a nonsignificant association between empirical linezolid treatment and mortality rate (odds ratio [OR], 1.63; 95% confidence interval [CI], 0.69 to 3.82; P = 0.275, McNemar's test) was found. This association remained nonsignificant when variables that remained unbalanced after matching were included in a conditional logistic regression model. Further, the stratified propensity score analysis did not show any significant relationship between empirical linezolid treatment and the mortality rate after adjustment by propensity score quintiles or other variables potentially associated with mortality. In conclusion, the propensity score analysis showed that empirical treatment with linezolid compared with that with glycopeptides was not associated with 30-day mortality rates in patients with Gram-negative bacteremia. PMID:25199780

  12. Analysis of conservative tracer measurement results using the Frechet distribution at planted horizontal subsurface flow constructed wetlands filled with coarse gravel and showing the effect of clogging processes.

    PubMed

    Dittrich, Ernő; Klincsik, Mihály

    2015-11-01

    A mathematical process, developed in Maple environment, has been successful in decreasing the error of measurement results and in the precise calculation of the moments of corrected tracer functions. It was proved that with this process, the measured tracer results of horizontal subsurface flow constructed wetlands filled with coarse gravel (HSFCW-C) can be fitted more accurately than with the conventionally used distribution functions (Gaussian, Lognormal, Fick (Inverse Gaussian) and Gamma). This statement is true only for the planted HSFCW-Cs. The analysis of unplanted HSFCW-Cs needs more research. The result of the analysis shows that the conventional solutions (completely stirred series tank reactor (CSTR) model and convection-dispersion transport (CDT) model) cannot describe these types of transport processes with sufficient accuracy. These outcomes can help in developing better process descriptions of very difficult transport processes in HSFCW-Cs. Furthermore, a new mathematical process can be developed for the calculation of real hydraulic residence time (HRT) and dispersion coefficient values. The presented method can be generalized to other kinds of hydraulic environments. PMID:26126688

  13. Transcriptome analysis of human ageing in male skin shows mid-life period of variability and central role of NF-κB.

    PubMed

    Haustead, Daniel J; Stevenson, Andrew; Saxena, Vishal; Marriage, Fiona; Firth, Martin; Silla, Robyn; Martin, Lisa; Adcroft, Katharine F; Rea, Suzanne; Day, Philip J; Melton, Phillip; Wood, Fiona M; Fear, Mark W

    2016-01-01

    Age is well-known to be a significant factor in both disease pathology and response to treatment, yet the molecular changes that occur with age in humans remain ill-defined. Here, using transcriptome profiling of healthy human male skin, we demonstrate that there is a period of significantly elevated, transcriptome-wide expression changes occurring predominantly in middle age. Both pre and post this period, the transcriptome appears to undergo much smaller, linear changes with increasing age. Functional analysis of the transient changes in middle age suggest a period of heightened metabolic activity and cellular damage associated with NF-kappa-B and TNF signaling pathways. Through meta-analysis we also show the presence of global, tissue independent linear transcriptome changes with age which appear to be regulated by NF-kappa-B. These results suggest that aging in human skin is associated with a critical mid-life period with widespread transcriptome changes, both preceded and proceeded by a relatively steady rate of linear change in the transcriptome. The data provides insight into molecular changes associated with normal aging and will help to better understand the increasingly important pathological changes associated with aging. PMID:27229172

  14. Transcriptome analysis of human ageing in male skin shows mid-life period of variability and central role of NF-κB

    PubMed Central

    Haustead, Daniel J.; Stevenson, Andrew; Saxena, Vishal; Marriage, Fiona; Firth, Martin; Silla, Robyn; Martin, Lisa; Adcroft, Katharine F.; Rea, Suzanne; Day, Philip J.; Melton, Phillip; Wood, Fiona M.; Fear, Mark W.

    2016-01-01

    Age is well-known to be a significant factor in both disease pathology and response to treatment, yet the molecular changes that occur with age in humans remain ill-defined. Here, using transcriptome profiling of healthy human male skin, we demonstrate that there is a period of significantly elevated, transcriptome-wide expression changes occurring predominantly in middle age. Both pre and post this period, the transcriptome appears to undergo much smaller, linear changes with increasing age. Functional analysis of the transient changes in middle age suggest a period of heightened metabolic activity and cellular damage associated with NF-kappa-B and TNF signaling pathways. Through meta-analysis we also show the presence of global, tissue independent linear transcriptome changes with age which appear to be regulated by NF-kappa-B. These results suggest that aging in human skin is associated with a critical mid-life period with widespread transcriptome changes, both preceded and proceeded by a relatively steady rate of linear change in the transcriptome. The data provides insight into molecular changes associated with normal aging and will help to better understand the increasingly important pathological changes associated with aging. PMID:27229172

  15. Analysis of large new South African dataset using two host-specificity indices shows generalism in both adult and larval ticks of mammals.

    PubMed

    Espinaze, Marcela P A; Hellard, Eléonore; Horak, Ivan G; Cumming, Graeme S

    2016-03-01

    Ticks and tick-borne pathogens can have considerable impacts on the health of livestock, wildlife and people. Knowledge of tick-host preferences is necessary for both tick and pathogen control. Ticks were historically considered as specialist parasites, but the range of sampled host species has been limited, infestation intensity has not been included in prior analyses, and phylogenetic distances between hosts have not been previously considered. We used a large dataset of 35 604 individual collections and two host-specificity indices to assess the specificity of 61 South African tick species, as well as distinctions between adult and juvenile ticks, for 95 mammalian hosts. When accounting for host phylogeny, most adult and juvenile ticks behaved as generalists, with juveniles being significantly more generalist than adults. When we included the intensity of tick infestation, ticks exhibited a wider diversity of specificity in all life stages. Our results show that ticks of mammals in South Africa tend to behave largely as generalists and that adult ticks are more host-specific. More generally, our analysis shows that the incorporation of life-stage differences, infestation intensity and phylogenetic distances between hosts, as well as the use of more than one specificity index, can all contribute to a deeper understanding of host-parasite interactions. PMID:26690251

  16. Improving AFLP analysis of large-scale patterns of genetic variation--a case study with the Central African lianas Haumania spp (Marantaceae) showing interspecific gene flow.

    PubMed

    Ley, A C; Hardy, O J

    2013-04-01

    AFLP markers are often used to study patterns of population genetic variation and gene flow because they offer a good coverage of the nuclear genome, but the reliability of AFLP scoring is critical. To assess interspecific gene flow in two African rainforest liana species (Haumania danckelmaniana, H. liebrechtsiana) where previous evidence of chloroplast captures questioned the importance of hybridization and species boundaries, we developed new AFLP markers and a novel approach to select reliable bands from their degree of reproducibility. The latter is based on the estimation of the broad-sense heritability of AFLP phenotypes, an improvement over classical scoring error rates, which showed that the polymorphism of most AFLP bands was affected by a substantial nongenetic component. Therefore, using a quantitative genetics framework, we also modified an existing estimator of pairwise kinship coefficient between individuals correcting for the limited heritability of markers. Bayesian clustering confirms the recognition of the two Haumania species. Nevertheless, the decay of the relatedness between individuals of distinct species with geographic distance demonstrates that hybridization affects the nuclear genome. In conclusion, although we showed that AFLP markers might be substantially affected by nongenetic factors, their analysis using the new methods developed considerably advanced our understanding of the pattern of gene flow in our model species. PMID:23398575

  17. Analysis of the mouse mutant Cloth-ears shows a role for the voltage-gated sodium channel Scn8a in peripheral neural hearing loss.

    PubMed

    Mackenzie, F E; Parker, A; Parkinson, N J; Oliver, P L; Brooker, D; Underhill, P; Lukashkina, V A; Lukashkin, A N; Holmes, C; Brown, S D M

    2009-10-01

    Deafness is the most common sensory disorder in humans and the aetiology of genetic deafness is complex. Mouse mutants have been crucial in identifying genes involved in hearing. However, many deafness genes remain unidentified. Using N-ethyl N-nitrosourea (ENU) mutagenesis to generate new mouse models of deafness, we identified a novel semi-dominant mouse mutant, Cloth-ears (Clth). Cloth-ears mice show reduced acoustic startle response and mild hearing loss from approximately 30 days old. Auditory-evoked brainstem response (ABR) and distortion product otoacoustic emission (DPOAE) analyses indicate that the peripheral neural auditory pathway is impaired in Cloth-ears mice, but that cochlear function is normal. In addition, both Clth/Clth and Clth/+ mice display paroxysmal tremor episodes with behavioural arrest. Clth/Clth mice also show a milder continuous tremor during movement and rest. Longitudinal phenotypic analysis showed that Clth/+ and Clth/Clth mice also have complex defects in behaviour, growth, neurological and motor function. Positional cloning of Cloth-ears identified a point mutation in the neuronal voltage-gated sodium channel alpha-subunit gene, Scn8a, causing an aspartic acid to valine (D981V) change six amino acids downstream of the sixth transmembrane segment of the second domain (D2S6). Complementation testing with a known Scn8a mouse mutant confirmed that this mutation is responsible for the Cloth-ears phenotype. Our findings suggest a novel role for Scn8a in peripheral neural hearing loss and paroxysmal motor dysfunction. PMID:19737145

  18. Television Quiz Show Simulation

    ERIC Educational Resources Information Center

    Hill, Jonnie Lynn

    2007-01-01

    This article explores the simulation of four television quiz shows for students in China studying English as a foreign language (EFL). It discusses the adaptation and implementation of television quiz shows and how the students reacted to them.

  19. Reconciling measurements in AFM reference metrology when using different probing techniques

    NASA Astrophysics Data System (ADS)

    Rana, Narender; Archie, Charles; Foucher, Johann

    2011-03-01

    CD-AFM can report CD measurements to several nanometer differences when different probing techniques including probe types, scan methods, or data analyses are employed on the same sample despite using standard calibration techniques. This potentially weakens the assertion that this instrument is inherently accurate. It is particularly important to resolve these discrepancies given the measurement challenges where multiple probing techniques need to be employed to get complete CD information. Probe type refers to tip construction methods that can significantly affect geometrical aspects of probe such as effective length, width, and edge height as well as material composition and coating. Scan code refers to CD or DT mode of tool operation. Analysis includes probe geometry deconvolution and measurement algorithms. These challenges in measurement accuracy are especially significant for the foot or bottom CD metrology of 3D structures. This paper explores the impact of these different probing techniques on the measurement accuracy. In one series of experiments, measurements for different probing techniques are compared when the test and the referencing structures are composed of similar material and possess smooth vertical profiles. The investigation is then extended to explore the accuracy of bottom CD measurement of non vertical profiles encountered in actual process development. A hybrid method using CD and DT modes has been tested to measure the bottom CD of challenging pitch structures. The limited space for the probe is particularly problematic for CD mode but the accuracy of DT mode for CD measurement is a concern. Other challenges will also be discussed along with possible solutions. CD-AFM has increased uncertainty when it comes to measuring within 15 nm of the bottom of a structure. In this regime details of the shape of the probe and the method by which this shape is extracted from the raw data become important. Measured CDs can vary by a few nanometers

  20. Using XAFS, EDAX and AFM in comparative study of various natural and synthetic emeralds

    NASA Astrophysics Data System (ADS)

    Parikh, P.; Saini, N. L.; Dalela, S.; Bhardwaj, D. M.; Fernandes, S.; Gupta, R. P.; Garg, K. B.

    2003-01-01

    We have performed XAFS, EDAX and AFM studies on some natural and synthetic emeralds. While the XAFS results yield information on changes in the valence of the Cr ion and the n-n distance the AFM is used to determine the areal atomic density on surface of the crystals. It is a pilot study to explore if the three techniques can offer a possible way of distinguishing between the natural and synthetic emeralds and the results are promising.

  1. A Multifunctional Frontloading Approach for Repeated Recycling of a Pressure-Controlled AFM Micropipette.

    PubMed

    Roder, Phillip; Hille, Carsten

    2015-01-01

    Fluid force microscopy combines the positional accuracy and force sensitivity of an atomic force microscope (AFM) with nanofluidics via a microchanneled cantilever. However, adequate loading and cleaning procedures for such AFM micropipettes are required for various application situations. Here, a new frontloading procedure is described for an AFM micropipette functioning as a force- and pressure-controlled microscale liquid dispenser. This frontloading procedure seems especially attractive when using target substances featuring high costs or low available amounts. Here, the AFM micropipette could be filled from the tip side with liquid from a previously applied droplet with a volume of only a few μL using a short low-pressure pulse. The liquid-loaded AFM micropipettes could be then applied for experiments in air or liquid environments. AFM micropipette frontloading was evaluated with the well-known organic fluorescent dye rhodamine 6G and the AlexaFluor647-labeled antibody goat anti-rat IgG as an example of a larger biological compound. After micropipette usage, specific cleaning procedures were tested. Furthermore, a storage method is described, at which the AFM micropipettes could be stored for a few hours up to several days without drying out or clogging of the microchannel. In summary, the rapid, versatile and cost-efficient frontloading and cleaning procedure for the repeated usage of a single AFM micropipette is beneficial for various application situations from specific surface modifications through to local manipulation of living cells, and provides a simplified and faster handling for already known experiments with fluid force microscopy. PMID:26636981

  2. A Multifunctional Frontloading Approach for Repeated Recycling of a Pressure-Controlled AFM Micropipette

    PubMed Central

    Roder, Phillip; Hille, Carsten

    2015-01-01

    Fluid force microscopy combines the positional accuracy and force sensitivity of an atomic force microscope (AFM) with nanofluidics via a microchanneled cantilever. However, adequate loading and cleaning procedures for such AFM micropipettes are required for various application situations. Here, a new frontloading procedure is described for an AFM micropipette functioning as a force- and pressure-controlled microscale liquid dispenser. This frontloading procedure seems especially attractive when using target substances featuring high costs or low available amounts. Here, the AFM micropipette could be filled from the tip side with liquid from a previously applied droplet with a volume of only a few μL using a short low-pressure pulse. The liquid-loaded AFM micropipettes could be then applied for experiments in air or liquid environments. AFM micropipette frontloading was evaluated with the well-known organic fluorescent dye rhodamine 6G and the AlexaFluor647-labeled antibody goat anti-rat IgG as an example of a larger biological compound. After micropipette usage, specific cleaning procedures were tested. Furthermore, a storage method is described, at which the AFM micropipettes could be stored for a few hours up to several days without drying out or clogging of the microchannel. In summary, the rapid, versatile and cost-efficient frontloading and cleaning procedure for the repeated usage of a single AFM micropipette is beneficial for various application situations from specific surface modifications through to local manipulation of living cells, and provides a simplified and faster handling for already known experiments with fluid force microscopy. PMID:26636981

  3. AFM/CLSM data visualization and comparison using an open-source toolkit.

    PubMed

    Rajwa, Bartek; McNally, Helen A; Varadharajan, Padma; Sturgis, Jennifer; Robinson, J Paul

    2004-06-01

    There is a vast difference in the traditional presentation of AFM data and confocal data. AFM data are presented as surface contours while confocal data are usually visualized using either surface- or volume-rendering techniques. Finding a common meaningful visualization platform is not an easy task. AFM and CLSM technologies are complementary and are more frequently being used to image common biological systems. In order to provide a presentation method that would assist us in evaluating cellular morphology, we propose a simple visualization strategy that is comparative, intuitive, and operates within an open-source environment of ImageJ, SurfaceJ, and VolumeJ applications. In order to find some common ground for AFM-CLSM image comparison, we have developed a plug-in for ImageJ, which allows us to import proprietary image data sets into this application. We propose to represent both AFM and CLSM image data sets as shaded elevation maps with color-coded height. This simple technique utilizes the open source VolumeJ and SurfaceJ plug-ins. To provide an example of this visualization technique, we evaluated the three-dimensional architecture of living chick dorsal root ganglia and sympathetic ganglia measured independently with AFM and CLSM. PMID:15352089

  4. Probing ternary solvent effect in high Voc polymer solar cells using advanced AFM techniques

    DOE PAGESBeta

    Li, Chao; Soleman, Mikhael; Lorenzo, Josie; Dhasmana, Nitesh; Chantharasupawong, Panit; Ievlev, Anton; Gesquiere, Andre; Tetard, Laurene; Thomas, Jayan

    2016-01-25

    This work describes a simple method to develop a high Voc low band gap PSCs. In addition, two new atomic force microscopy (AFM)-based nanoscale characterization techniques to study the surface morphology and physical properties of the structured active layer are introduced. With the help of ternary solvent processing of the active layer and C60 buffer layer, a bulk heterojunction PSC with Voc more than 0.9 V and conversion efficiency 7.5% is developed. In order to understand the fundamental properties of the materials ruling the performance of the PSCs tested, AFM-based nanoscale characterization techniques including Pulsed-Force-Mode AFM (PFM-AFM) and Mode-Synthesizing AFMmore » (MSAFM) are introduced. Interestingly, MSAFM exhibits high sensitivity for direct visualization of the donor–acceptor phases in the active layer of the PSCs. Lastly, conductive-AFM (cAFM) studies reveal local variations in conductivity in the donor and acceptor phases as well as a significant increase in photocurrent in the PTB7:ICBA sample obtained with the ternary solvent processing.« less

  5. Membrane-based actuation for high-speed single molecule force spectroscopy studies using AFM.

    PubMed

    Sarangapani, Krishna; Torun, Hamdi; Finkler, Ofer; Zhu, Cheng; Degertekin, Levent

    2010-07-01

    Atomic force microscopy (AFM)-based dynamic force spectroscopy of single molecular interactions involves characterizing unbinding/unfolding force distributions over a range of pulling speeds. Owing to their size and stiffness, AFM cantilevers are adversely affected by hydrodynamic forces, especially at pulling speeds >10 microm/s, when the viscous drag becomes comparable to the unbinding/unfolding forces. To circumvent these adverse effects, we have fabricated polymer-based membranes capable of actuating commercial AFM cantilevers at speeds >or=100 microm/s with minimal viscous drag effects. We have used FLUENT, a computational fluid dynamics (CFD) software, to simulate high-speed pulling and fast actuation of AFM cantilevers and membranes in different experimental configurations. The simulation results support the experimental findings on a variety of commercial AFM cantilevers and predict significant reduction in drag forces when membrane actuators are used. Unbinding force experiments involving human antibodies using these membranes demonstrate that it is possible to achieve bond loading rates >or=10(6) pN/s, an order of magnitude greater than that reported with commercial AFM cantilevers and systems. PMID:20054686

  6. Genome-wide analysis of AP2/ERF family genes from Lotus corniculatus shows LcERF054 enhances salt tolerance.

    PubMed

    Sun, Zhan-Min; Zhou, Mei-Liang; Xiao, Xing-Guo; Tang, Yi-Xiong; Wu, Yan-Min

    2014-09-01

    Lotus corniculatus is used in agriculture as a main forage plant. Members of the Apetala2/ethylene response factor (AP2/ERF) family play important roles in regulating gene expression in response to many forms of stress, including drought and salt. Here, starting from database of the L. corniculatus var. japonicus genome, we identified 127 AP2/ERF genes by insilico cloning method. The phylogeny, gene structures, and putative conserved motifs in L. corniculatus var. japonicus ERF proteins were analyzed. Based on the number of AP2/ERF domains and the function of the genes, 127 AP2/ERF genes from L. corniculatus var. japonicus were classified into five subfamilies named the AP2, dehydration-responsive element binding factor (DREB), ERF, RAV, and a soloist. Outside the AP2/ERF domain, many L. corniculatus var. japonicus-specific conserved motifs were detected. Expression profile analysis of AP2/ERF genes by quantitative real-time PCR revealed that 19 LcERF genes, including LcERF054 (KJ004728), were significantly induced by salt stress. The results showed that the LcERF054 gene encodes a nuclear transcription activator. Overexpression of LcERF054 in Arabidopsis enhanced the tolerances to salt stress, showed higher germination ratio of seeds, and had elevated levels of relative moisture contents, soluble sugars, proline, and lower levels of malondialdehyde under stress conditions compared to wild-type plants. The expression of hyperosmotic salinity response genes COR15A, LEA4-5, P5CS1, and RD29A was found to be elevated in the LcERF054-overexpressing Arabidopsis plants compared to wild type. These results revealed that the LcERF genes play important roles in L. corniculatus cv Leo under salt stress and that LcERFs are attractive engineering targets in applied efforts to improve abiotic stress tolerances in L. corniculatus cv Leo or other crops. PMID:24777608

  7. Genome-wide methylation analysis in vestibular schwannomas shows putative mechanisms of gene expression modulation and global hypomethylation at the HOX gene cluster.

    PubMed

    Torres-Martín, Miguel; Lassaletta, Luis; de Campos, Jose M; Isla, Alberto; Pinto, Giovanny R; Burbano, Rommel R; Melendez, Bárbara; Castresana, Javier S; Rey, Juan A

    2015-04-01

    Schwannomas are tumors that develop from Schwann cells in the peripheral nerves and commonly arise from the vestibular nerve. Vestibular schwannomas can present unilaterally and sporadically or bilaterally when the tumor is associated with neurofibromatosis Type 2 (NF2) syndrome. The molecular hallmark of the disease is biallelic inactivation of the NF2 gene. The epigenetic signature of schwannomas remains poorly understood and is mostly limited to DNA methylation of the NF2 gene, whose altered expression due to epigenetic factors in this tumor is controversial. In this study, we tested the genomewide DNA methylation pattern of schwannomas to shed light on this epigenetic alteration in these particular tumors. The methodology used includes Infinium Human Methylation 450K BeadChip microarrays in a series of 36 vestibular schwannomas, 4 nonvestibular schwannomas, and 5 healthy nerves. Our results show a trend toward hypomethylation in schwannomas. Furthermore, homeobox (HOX) genes, located at four clusters in the genome, displayed hypomethylation in several CpG sites in the vestibular schwannomas but not in the nonvestibular schwannomas. Several microRNA (miRNA) and protein-coding genes were also found to be hypomethylated at promoter regions and were confirmed as upregulated by expression analysis; including miRNA-21, Met Proto-Oncogene (MET), and PMEPA1. We also detected methylation patterns that might be involved in alternative transcripts of several genes such as NRXN1 or MBP, which would increase the complexity of the methylation and expression patterns. Overall, our results show specific epigenetic signatures in several coding genes and miRNAs that could potentially be used as therapeutic targets. PMID:25533176

  8. Eco-genomic analysis of the poleward range expansion of the wasp spider Argiope bruennichi shows rapid adaptation and genomic admixture.

    PubMed

    Krehenwinkel, Henrik; Rödder, Dennis; Tautz, Diethard

    2015-12-01

    Poleward range expansions are commonly attributed to global change, but could alternatively be driven by rapid evolutionary adaptation. A well-documented example of a range expansion during the past decades is provided by the European wasp spider Argiope bruennichi. Using ecological niche modeling, thermal tolerance experiments and a genome-wide analysis of gene expression divergence, we show that invasive populations have adapted to novel climatic conditions in the course of their expansion. Their climatic niche shift is mirrored in an increased cold tolerance and a population-specific and functionally differentiated gene expression response. We generated an Argiope reference genome sequence and used population genome resequencing to assess genomic changes associated with the new climatic adaptations. We find clear genetic differentiation and a significant admixture with alleles from East Asian populations in the invasive Northern European populations. Population genetic modeling suggests that at least some of these introgressing alleles have contributed to the new adaptations during the expansion. Our results thus confirm the notion that range expansions are not a simple consequence of climate change, but are accompanied by fast genetic changes and adaptations that may be fuelled through admixture between long separated lineages. PMID:26183328

  9. Linking concepts in the ecology and evolution of invasive plants: network analysis shows what has been most studied and identifies knowledge gaps

    PubMed Central

    Vanderhoeven, Sonia; Brown, Cynthia S; Tepolt, Carolyn K; Tsutsui, Neil D; Vanparys, Valérie; Atkinson, Sheryl; Mahy, Grégory; Monty, Arnaud

    2010-01-01

    In recent decades, a growing number of studies have addressed connections between ecological and evolutionary concepts in biologic invasions. These connections may be crucial for understanding the processes underlying invaders’ success. However, the extent to which scientists have worked on the integration of the ecology and evolution of invasive plants is poorly documented, as few attempts have been made to evaluate these efforts in invasion biology research. Such analysis can facilitate recognize well-documented relationships and identify gaps in our knowledge. In this study, we used a network-based method for visualizing the connections between major aspects of ecology and evolution in the primary research literature. Using the family Poaceae as an example, we show that ecological concepts were more studied and better interconnected than were evolutionary concepts. Several possible connections were not documented at all, representing knowledge gaps between ecology and evolution of invaders. Among knowledge gaps, the concepts of plasticity, gene flow, epigenetics and human influence were particularly under-connected. We discuss five possible research avenues to better understand the relationships between ecology and evolution in the success of Poaceae, and of alien plants in general. PMID:25567919

  10. Analysis of two P-element enhancer-trap insertion lines that show expression in the giant fibre neuron of Drosophila melanogaster.

    PubMed

    Allen, M J; Drummond, J A; Sweetman, D J; Moffat, K G

    2007-06-01

    The giant fibre system (GFS) of Drosophila is a simple neural circuit that mediates escape responses in adult flies. Here we report the initial characterization of two genes that are preferentially expressed in the GFS. Two P-element insertion lines, carrying the GAL4 transcriptional activator, were identified that exhibited pronounced expression in elements of the GFS and relatively low levels elsewhere within the adult central nervous system. Genomic DNA flanking the P-element insertion site was recovered from each of these lines, sequenced, and nearby transcripts identified and confirmed to exhibit GFS expression by in situ hybridization. This analysis revealed that these P-elements were in previously characterized genes. Line P[GAL4]-A307 has an insert in the gene short stop for which we have identified a novel transcript, while line P[GAL4]-141 has an insert in the transcription factor ken and barbie. Here we show that ken and barbie mutants have defects in escape behaviour, behavioural responses to visual stimuli and synaptic functions in the GFS. We have therefore revealed a neural role for a transcription factor that previously had no implicated neural function. PMID:16879616

  11. Surface-enhanced spectroscopy on plasmonic oligomers assembled by AFM nanoxerography

    NASA Astrophysics Data System (ADS)

    Moutet, Pierre; Sangeetha, Neralagatta M.; Ressier, Laurence; Vilar-Vidal, Noelia; Comesaña-Hermo, Miguel; Ravaine, Serge; Vallée, Renaud A. L.; Gabudean, Ana Maria; Astilean, Simion; Farcau, Cosmin

    2015-01-01

    Surface-enhanced Raman scattering (SERS) and surface-enhanced fluorescence (SEF) from individual plasmonic oligomers are investigated by confocal Raman micro-spectroscopy and time-resolved fluorescence microscopy coupled to steady state micro-spectroscopy. The nanoparticle (NP) oligomers are made of either ligand protected Au or Au@SiO2 core-shell colloidal NPs, which were assembled into ordered arrays by atomic force microscopy (AFM) nanoxerography. A strong dependence of the SERS emission on the polarization of incident light relative to the specific geometry of the plasmonic oligomer was observed. The SEF studies, performed on a large collection of NP oligomers of various known configurations showed interesting fluorophore decay rate modification and red-shift of the emission spectra. The experimental results are analyzed theoretically by employing finite-difference time-domain (FDTD) simulations on equivalent realistic structures, within the local density of optical states (LDOS) framework. The presented results, together with the proven potential of the LDOS approach as a useful common tool for analyzing both SERS and SEF effects further the general understanding of plasmon-related phenomena in nanoparticle oligomers.Surface-enhanced Raman scattering (SERS) and surface-enhanced fluorescence (SEF) from individual plasmonic oligomers are investigated by confocal Raman micro-spectroscopy and time-resolved fluorescence microscopy coupled to steady state micro-spectroscopy. The nanoparticle (NP) oligomers are made of either ligand protected Au or Au@SiO2 core-shell colloidal NPs, which were assembled into ordered arrays by atomic force microscopy (AFM) nanoxerography. A strong dependence of the SERS emission on the polarization of incident light relative to the specific geometry of the plasmonic oligomer was observed. The SEF studies, performed on a large collection of NP oligomers of various known configurations showed interesting fluorophore decay rate

  12. The Wordpath Show.

    ERIC Educational Resources Information Center

    Anderton, Alice

    The Intertribal Wordpath Society is a nonprofit educational corporation formed to promote the teaching, status, awareness, and use of Oklahoma Indian languages. The Society produces "Wordpath," a weekly 30-minute public access television show about Oklahoma Indian languages and the people who are teaching and preserving them. The show aims to…

  13. AFM Imaging Reveals Topographic Diversity of Wild Type and Z Variant Polymers of Human α1-Proteinase Inhibitor

    DOE PAGESBeta

    Gaczynska, Maria; Karpowicz, Przemyslaw; Stuart, Christine E.; Norton, Malgorzata G.; Teckman, Jeffrey H.; Marszal, Ewa; Osmulski, Pawel A.

    2016-03-23

    α1-Proteinase inhibitor (antitrypsin) is a canonical example of the serpin family member that binds and inhibits serine proteases. The natural metastability of serpins is crucial to carry out structural rearrangements necessary for biological activity. However, the enhanced metastability of the mutant Z variant of antitrypsin, in addition to folding defect, may substantially contribute to its polymerization, a process leading to incurable serpinopathy. The metastability also impedes structural studies on the polymers. There are no crystal structures of Z monomer or any kind of polymers larger than engineered wild type (WT) trimer. Our understanding of polymerization mechanisms is based on biochemicalmore » data using in vitro generated WT oligomers and molecular simulations. Here we applied atomic force microscopy (AFM) to compare topography of monomers, in vitro formed WT oligomers, and Z type polymers isolated from transgenic mouse liver. We found the AFM images of monomers closely resembled an antitrypsin outer shell modeled after the crystal structure. We confirmed that the Z variant demonstrated higher spontaneous propensity to dimerize than WT monomers. We also detected an unexpectedly broad range of different types of polymers with periodicity and topography depending on the applied method of polymerization. Short linear oligomers of unit arrangement similar to the Z polymers were especially abundant in heat-treated WT preparations. Long linear polymers were a prominent and unique component of liver extracts. However, the liver preparations contained also multiple types of oligomers of topographies undistinguishable from those found inWT samples polymerized with heat, low pH or guanidine hydrochloride treatments. In conclusion, we established that AFM is an excellent technique to assess morphological diversity of antitrypsin polymers, which is important for etiology of serpinopathies. These data also support previous, but controversial models of in vivo

  14. AFM Imaging Reveals Topographic Diversity of Wild Type and Z Variant Polymers of Human α1-Proteinase Inhibitor

    PubMed Central

    Gaczynska, Maria; Karpowicz, Przemyslaw; Stuart, Christine E.; Norton, Malgorzata G.; Teckman, Jeffrey H.; Marszal, Ewa; Osmulski, Pawel A.

    2016-01-01

    α1-Proteinase inhibitor (antitrypsin) is a canonical example of the serpin family member that binds and inhibits serine proteases. The natural metastability of serpins is crucial to carry out structural rearrangements necessary for biological activity. However, the enhanced metastability of the mutant Z variant of antitrypsin, in addition to folding defect, may substantially contribute to its polymerization, a process leading to incurable serpinopathy. The metastability also impedes structural studies on the polymers. There are no crystal structures of Z monomer or any kind of polymers larger than engineered wild type (WT) trimer. Our understanding of polymerization mechanisms is based on biochemical data using in vitro generated WT oligomers and molecular simulations. Here we applied atomic force microscopy (AFM) to compare topography of monomers, in vitro formed WT oligomers, and Z type polymers isolated from transgenic mouse liver. We found the AFM images of monomers closely resembled an antitrypsin outer shell modeled after the crystal structure. We confirmed that the Z variant demonstrated higher spontaneous propensity to dimerize than WT monomers. We also detected an unexpectedly broad range of different types of polymers with periodicity and topography depending on the applied method of polymerization. Short linear oligomers of unit arrangement similar to the Z polymers were especially abundant in heat-treated WT preparations. Long linear polymers were a prominent and unique component of liver extracts. However, the liver preparations contained also multiple types of oligomers of topographies undistinguishable from those found in WT samples polymerized with heat, low pH or guanidine hydrochloride treatments. In conclusion, we established that AFM is an excellent technique to assess morphological diversity of antitrypsin polymers, which is important for etiology of serpinopathies. These data also support previous, but controversial models of in vivo

  15. Electrical characterization of FIB processed metal layers for reliable conductive-AFM on ZnO microstructures

    NASA Astrophysics Data System (ADS)

    Pea, M.; Maiolo, L.; Giovine, E.; Rinaldi, A.; Araneo, R.; Notargiacomo, A.

    2016-05-01

    We report on the conductive-atomic force microscopy (C-AFM) study of metallic layers in order to find the most suitable configuration for electrical characterization of individual ZnO micro-pillars fabricated by focused ion beam (FIB). The electrical resistance between the probe tip and both as deposited and FIB processed metal layers (namely, Cr, Ti, Au and Al) has been investigated. Both chromium and titanium evidenced a non homogenous and non ohmic behaviour, non negligible scanning probe induced anodic oxidation associated to electrical measurements, and after FIB milling they exhibited significantly higher tip-sample resistance. Aluminium had generally a more apparent non conductive behaviour. Conversely, gold films showed very good tip-sample conduction properties being less sensitive to FIB processing than the other investigated metals. We found that a reliable C-AFM electrical characterization of ZnO microstructures obtained by FIB machining is feasible by using a combination of metal films as top contact layer. An Au/Ti bilayer on top of ZnO was capable to sustain the FIB fabrication process and to form a suitable ohmic contact to the semiconductor, allowing for reliable C-AFM measurement. To validate the consistency of this approach, we measured the resistance of ZnO micropillars finding a linear dependence on the pillar height, as expected for an ohmic conductor, and evaluated the resistivity of the material. This procedure has the potential to be downscaled to nanometer size structures by a proper choice of metal films type and thickness.

  16. In situ QCM and TM-AFM investigations of the early stages of degradation of silver and copper surfaces

    NASA Astrophysics Data System (ADS)

    Kleber, Ch.; Hilfrich, U.; Schreiner, M.

    2007-01-01

    The early stages of atmospheric corrosion of pure copper and pure silver specimens were investigated performing in situ tapping mode atomic force microscopy (TM-AFM), in situ quartz crystal microbalance (QCM) and X-ray photoelectron spectroscopy (XPS). The information obtained by TM-AFM is the change of the topography of the sample surfaces with emphasis on the shape and lateral distribution of the corrosion products grown within the first hours of weathering. The simultaneously performed in situ QCM measurements are indicating the mass changes due to possibly occurring corrosive processes on the surface during weathering and are therefore a valuable tool for the determination of corrosion rates. Investigations were carried out in synthetic air at different levels of relative humidity (RH) with and without addition of 250 ppb SO 2 as acidifying agent. On a polished copper surface the growth of corrosion products could be observed by TM-AFM analysis at 60% RH without any addition of acidifying gases [M. Wadsak, M. Schreiner, T. Aastrup, C. Leygraf, Surf. Sci. 454-456 (2000) 246-250]. On a weathered copper surface the addition of SO 2 to the moist air stream leads to the formation of additional features as already described in the literature [M. Wadsak, M. Schreiner, T. Aastrup, C. Leygraf, Surf. Sci. 454-456 (2000) 246-250; Ch. Kleber, J. Weissenrieder, M. Schreiner, C. Leygraf, Appl. Surf. Sci. 193 (2002) 245-253]. Exposing a silver specimen to humidity leads to the degradation of the surface structure as well as to a formation of corrosion products, which could be detected by in situ QCM measurements. After addition of 250 ppb SO 2 to the moist gas stream an increase of the formed feature's volume on the silver surface could be observed by TM-AFM measurements. The results obtained additionally from the in situ QCM measurements confirm the influence of SO 2 due to a further increase of the mass of the formed corrosion layer (and therefore an increase of the

  17. Characterization and Genetic Analysis of a Novel Light-Dependent Lesion Mimic Mutant, lm3, Showing Adult-Plant Resistance to Powdery Mildew in Common Wheat

    PubMed Central

    Wang, Fang; Wu, Wenying; Wang, Dongzhi; Yang, Wenlong; Sun, Jiazhu; Liu, Dongcheng; Zhang, Aimin

    2016-01-01

    Lesion mimics (LMs) that exhibit spontaneous disease-like lesions in the absence of pathogen attack might confer enhanced plant disease resistance to a wide range of pathogens. The LM mutant, lm3 was derived from a single naturally mutated individual in the F1 population of a 3-1/Jing411 cross, backcrossed six times with 3–1 as the recurrent parent and subsequently self-pollinated twice. The leaves of young seedlings of the lm3 mutant exhibited small, discrete white lesions under natural field conditions. The lesions first appeared at the leaf tips and subsequently expanded throughout the entire leaf blade to the leaf sheath. The lesions were initiated through light intensity and day length. Histochemical staining revealed that lesion formation might reflect programmed cell death (PCD) and abnormal accumulation of reactive oxygen species (ROS). The chlorophyll content in the mutant was significantly lower than that in wildtype, and the ratio of chlorophyll a/b was increased significantly in the mutant compared with wildtype, indicating that lm3 showed impairment of the biosynthesis or degradation of chlorophyll, and that Chlorophyll b was prone to damage during lesion formation. The lm3 mutant exhibited enhanced resistance to wheat powdery mildew fungus (Blumeria graminis f. sp. tritici; Bgt) infection, which was consistent with the increased expression of seven pathogenesis-related (PR) and two wheat chemically induced (WCI) genes involved in the defense-related reaction. Genetic analysis showed that the mutation was controlled through a single partially dominant gene, which was closely linked to Xbarc203 on chromosome 3BL; this gene was delimited to a 40 Mb region between SSR3B450.37 and SSR3B492.6 using a large derived segregating population and the available Chinese Spring chromosome 3B genome sequence. Taken together, our results provide information regarding the identification of a novel wheat LM gene, which will facilitate the additional fine-mapping and

  18. Characterization and Genetic Analysis of a Novel Light-Dependent Lesion Mimic Mutant, lm3, Showing Adult-Plant Resistance to Powdery Mildew in Common Wheat.

    PubMed

    Wang, Fang; Wu, Wenying; Wang, Dongzhi; Yang, Wenlong; Sun, Jiazhu; Liu, Dongcheng; Zhang, Aimin

    2016-01-01

    Lesion mimics (LMs) that exhibit spontaneous disease-like lesions in the absence of pathogen attack might confer enhanced plant disease resistance to a wide range of pathogens. The LM mutant, lm3 was derived from a single naturally mutated individual in the F1 population of a 3-1/Jing411 cross, backcrossed six times with 3-1 as the recurrent parent and subsequently self-pollinated twice. The leaves of young seedlings of the lm3 mutant exhibited small, discrete white lesions under natural field conditions. The lesions first appeared at the leaf tips and subsequently expanded throughout the entire leaf blade to the leaf sheath. The lesions were initiated through light intensity and day length. Histochemical staining revealed that lesion formation might reflect programmed cell death (PCD) and abnormal accumulation of reactive oxygen species (ROS). The chlorophyll content in the mutant was significantly lower than that in wildtype, and the ratio of chlorophyll a/b was increased significantly in the mutant compared with wildtype, indicating that lm3 showed impairment of the biosynthesis or degradation of chlorophyll, and that Chlorophyll b was prone to damage during lesion formation. The lm3 mutant exhibited enhanced resistance to wheat powdery mildew fungus (Blumeria graminis f. sp. tritici; Bgt) infection, which was consistent with the increased expression of seven pathogenesis-related (PR) and two wheat chemically induced (WCI) genes involved in the defense-related reaction. Genetic analysis showed that the mutation was controlled through a single partially dominant gene, which was closely linked to Xbarc203 on chromosome 3BL; this gene was delimited to a 40 Mb region between SSR3B450.37 and SSR3B492.6 using a large derived segregating population and the available Chinese Spring chromosome 3B genome sequence. Taken together, our results provide information regarding the identification of a novel wheat LM gene, which will facilitate the additional fine-mapping and

  19. A Holographic Road Show.

    ERIC Educational Resources Information Center

    Kirkpatrick, Larry D.; Rugheimer, Mac

    1979-01-01

    Describes the viewing sessions and the holograms of a holographic road show. The traveling exhibits, believed to stimulate interest in physics, include a wide variety of holograms and demonstrate several physical principles. (GA)

  20. Post-hoc analysis showing better clinical response with the loading dose of certolizumab pegol in Japanese patients with active rheumatoid arthritis

    PubMed Central

    Takeuchi, Tsutomu; Yamamoto, Kazuhiko; Yamanaka, Hisashi; Ishiguro, Naoki; Tanaka, Yoshiya; Eguchi, Katsumi; Watanabe, Akira; Origasa, Hideki; Kobayashi, Mariko; Shoji, Toshiharu; Togo, Osamu; Miyasaka, Nobuyuki; Koike, Takao

    2016-01-01

    Abstract Objectives: To compare the efficacy and safety of certolizumab pegol (CZP) with and without loading dose (LD) in a post-hoc analysis of two Japanese clinical studies. Methods: Data from the double-blind trials (DBT) J-RAPID and HIKARI, and their open-label extension (OLE) studies, were used. Patients randomized to CZP 200 mg every 2 weeks (Q2W) groups starting with LD (400 mg Weeks 0/2/4; LD group; J-RAPID: n = 82, HIKARI: n = 116) and patients randomized to placebo groups who subsequently started CZP Q2W without LD in the OLEs (No-LD group; J-RAPID: n = 61, HIKARI: n = 99) were analyzed. Efficacy and pharmacokinetics were assessed during 24 weeks. Adverse events were reported from all studies. Results: In both trials, the LD groups showed more rapid initial ACR20/50/70 kinetics, and maintained higher ACR50/70 responses until 24 weeks, compared with the No-LD groups. Anti-CZP antibody development was less frequent in the LD groups (J-RAPID: 1.2% versus 4.9%; HIKARI: 17.2% versus 27.3%). Similar safety profiles were reported between LD and No-LD groups (any AEs: 281.8 versus 315.7 [J-RAPID], 282.6 versus 321.3 [HIKARI] [incidence rate/100 patient-years]). Conclusions: Despite limitations, including comparing DBT and OLE studies, these results suggest that a CZP LD improves clinical response in active rheumatoid arthritis without altering the safety profile. PMID:26472043

  1. Transcriptomic analysis of the interaction between Helianthus annuus and its obligate parasite Plasmopara halstedii shows single nucleotide polymorphisms in CRN sequences

    PubMed Central

    2011-01-01

    Background Downy mildew in sunflowers (Helianthus annuus L.) is caused by the oomycete Plasmopara halstedii (Farl.) Berlese et de Toni. Despite efforts by the international community to breed mildew-resistant varieties, downy mildew remains a major threat to the sunflower crop. Very few genomic, genetic and molecular resources are currently available to study this pathogen. Using a 454 sequencing method, expressed sequence tags (EST) during the interaction between H. annuus and P. halstedii have been generated and a search was performed for sites in putative effectors to show polymorphisms between the different races of P. halstedii. Results A 454 pyrosequencing run of two infected sunflower samples (inbred lines XRQ and PSC8 infected with race 710 of P. halstedii, which exhibit incompatible and compatible interactions, respectively) generated 113,720 and 172,107 useable reads. From these reads, 44,948 contigs and singletons have been produced. A bioinformatic portal, HP, was specifically created for in-depth analysis of these clusters. Using in silico filtering, 405 clusters were defined as being specific to oomycetes, and 172 were defined as non-specific oomycete clusters. A subset of these two categories was checked using PCR amplification, and 86% of the tested clusters were validated. Twenty putative RXLR and CRN effectors were detected using PSI-BLAST. Using corresponding sequences from four races (100, 304, 703 and 710), 22 SNPs were detected, providing new information on pathogen polymorphisms. Conclusions This study identified a large number of genes that are expressed during H. annuus/P. halstedii compatible or incompatible interactions. It also reveals, for the first time, that an infection mechanism exists in P. halstedii similar to that in other oomycetes associated with the presence of putative RXLR and CRN effectors. SNPs discovered in CRN effector sequences were used to determine the genetic distances between the four races of P. halstedii. This

  2. Analysis of Proteome Profile in Germinating Soybean Seed, and Its Comparison with Rice Showing the Styles of Reserves Mobilization in Different Crops

    PubMed Central

    Han, Chao; Yin, Xiaojian; He, Dongli; Yang, Pingfang

    2013-01-01

    Background Seed germination is a complex physiological process during which mobilization of nutrient reserves happens. In different crops, this event might be mediated by different regulatory and metabolic pathways. Proteome profiling has been proved to be an efficient way that can help us to construct these pathways. However, no such studies have been performed in soybean germinating seeds up to date. Results Proteome profiling was conducted through one-dimensional gel electrophoresis followed by liquid chromatography and tandem mass spectrometry strategy in the germinating seeds of soybean (glycine max). Comprehensive comparisons were also carried out between rice and soybean germinating seeds. 764 proteins belonging to 14 functional groups were identified and metabolism related proteins were the largest group. Deep analyses of the proteins and pathways showed that lipids were degraded through lipoxygenase dependent pathway and proteins were degraded through both protease and 26S proteosome system, and the lipoxygenase could also help to remove the reactive oxygen species during the rapid mobilization of reserves of soybean germinating seeds. The differences between rice and soybean germinating seeds proteome profiles indicate that each crop species has distinct mechanism for reserves mobilization during germination. Different reserves could be converted into starches before they are totally utilized during the germination in different crops seeds. Conclusions This study is the first comprehensive analysis of proteome profile in germinating soybean seeds to date. The data presented in this paper will improve our understanding of the physiological and biochemical status in the imbibed soybean seeds just prior to germination. Comparison of the protein profile with that of germinating rice seeds gives us new insights on mobilization of nutrient reserves during the germination of crops seeds. PMID:23460823

  3. Control analysis of lipid biosynthesis in tissue cultures from oil crops shows that flux control is shared between fatty acid synthesis and lipid assembly.

    PubMed Central

    Ramli, Umi S; Baker, Darren S; Quant, Patti A; Harwood, John L

    2002-01-01

    Top-Down (Metabolic) Control Analysis (TDCA) was used to examine, quantitatively, lipid biosynthesis in tissue cultures from two commercially important oil crops, olive (Olea europaea L.) and oil palm (Elaeis guineensis Jacq.). A conceptually simplified system was defined comprising two blocks of reactions: fatty acid synthesis (Block A) and lipid assembly (Block B), which produced and consumed, respectively, a common and unique system intermediate, cytosolic acyl-CoA. We manipulated the steady-state levels of the system intermediate by adding exogenous oleic acid and, using two independent assays, measured the effect of the addition on the system fluxes (J(A) and J(B)). These were the rate of incorporation of radioactivity: (i) through Block A from [1-(14)C]acetate into fatty acids and (ii) via Block B from [U-(14)C]glycerol into complex lipids respectively. The data showed that fatty acid formation (Block A) exerted higher control than lipid assembly (Block B) in both tissues with the following group flux control coefficients (C):(i) Oil palm: *C(J(TL))(BlkA)=0.64+/-0.05 and *C(J(TL))(BlkB)=0.36+/-0.05(ii) Olive: *C(J(TL))(BlkA)=0.57+/-0.10 and *C(J(TL))(BlkB)=0.43+/-0.10where *C indicates the group flux control coefficient over the lipid biosynthesis flux (J(TL)) and the subscripts BlkA and BlkB refer to defined blocks of the system, Block A and Block B. Nevertheless, because both parts of the lipid biosynthetic pathway exert significant flux control, we suggest strongly that manipulation of single enzyme steps will not affect product yield appreciably. The present study represents the first use of TDCA to examine the overall lipid biosynthetic pathway in any tissue, and its findings are of immediate academic and economic relevance to the yield and nutritional quality of oil crops. PMID:12023882

  4. Fine Resolution Analysis of Lake Malawi Sediment Record Shows No Significant Climatic Impacts from the Mount Toba Super-Eruption of ~75ky

    NASA Astrophysics Data System (ADS)

    Jackson, L. J.; Stone, J.; Cohen, A. S.

    2014-12-01

    Debate over long, and short-term climatic impacts of the Mt. Toba super-eruption circa 75ky is often focused on East Africa. A severe drop in anatomically modern human populations has been hypothesized to be synchronous with a volcanic winter caused by the Toba super-eruption. If the Toba eruption caused a volcanic winter in East Africa, climatologically-sensitive ecosystems, such as Lake Malawi and its immediate watershed should show a direct and observable response in the sediment record. Cooler temperatures would cause a reduction of density contrast between epilimnion and hypolimnion waters, allowing for increased mixing and oxygenation of normally anoxic bottom waters. Enhanced mixing would cause noticeable changes in lake fly and algal communities. Cooler temperatures might also affect precipitation and the fire regime in the surrounding watershed. We analyzed two Lake Malawi cores at the finest practical resolution. Core 2A-10H-2 was analyzed in less than 6-year intervals and core 1C-8H-1 in 7-year intervals surrounding the Youngest Toba Tephra (YTT) for microfaunal abundance and variability, sediment composition, and evidence of changes in the occurrence of fires or watershed precipitation. Our analysis included point counts of diatoms and other algae, lake flies, charcoal, and siliciclastics. Changes in microfossil assemblage, variability, and abundance, as well as sediment composition around the YTT in Core 2A and 1C do not indicate that increased mixing or cooler temperatures occurred in either the central or northern basins of Lake Malawi. Similarly, charcoal counts do not suggest a change in fire regime. Our results indicate that at a subdecadal scale there was no substantial response in Lake Malawi or its immediate watershed to the Mt. Toba super-eruption, in contrast to predictions from the volcanic winter hypothesis.

  5. AFM investigation on surface evolution of amorphous carbon during ion-beam-assisted deposition

    NASA Astrophysics Data System (ADS)

    Zhu, X. D.; Ding, F.; Naramoto, H.; Narumi, K.

    2006-11-01

    Hydrogen-free amorphous carbons (a-C) have been prepared on mirror-polished Si(1 1 1) wafers through thermally evaporated C 60 with simultaneous bombardments of Ne + ions. The time evolution of film surfaces has been characterized by atomic force microscopy (AFM) at two temperatures of 400 and 700 °C, respectively. Based on the topography images and the root-mean-square (rms) roughness analysis, it is found that the a-C surfaces present roughening growth at the initial stage. With increasing growth time, the cooperative nucleation of the islands and pits appears on the surfaces, suggesting three-dimensional growth, and then they continue to evolve to irregular mounds at 400 °C, and elongated mounds at 700 °C. At the steady growth stage, these surfaces further develop to the structures of bamboo joints and ripples corresponding to these two temperatures, respectively. It is believed that besides ion sputtering effect, the chemical bonding configurations in the amorphous carbon films should be taken into considerations for elucidating the surface evolutions.

  6. A software tool for STED-AFM correlative super-resolution microscopy

    NASA Astrophysics Data System (ADS)

    Koho, Sami; Deguchi, Takahiro; Löhmus, Madis; Näreoja, Tuomas; Hänninen, Pekka E.

    2015-03-01

    Multi-modal correlative microscopy allows combining the strengths of several imaging techniques to provide unique contrast. However it is not always straightforward to setup instruments for such customized experiments, as most microscope manufacturers use their own proprietary software, with limited or no capability to interface with other instruments - this makes correlation of the multi-modal data extremely challenging. We introduce a new software tool for simultaneous use of a STimulated Emission Depletion (STED) microscope with an Atomic Force Microscope (AFM). In our experiments, a Leica TCS STED commercial super-resolution microscope, together with an Agilent 5500ilm AFM microscope was used. With our software, it is possible to synchronize the data acquisition between the STED and AFM instruments, as well as to perform automatic registration of the AFM images with the super-resolution STED images. The software was realized in LabVIEW; the registration part was also implemented as an ImageJ script. The synchronization was realized by controlling simple trigger signals, also available in the commercial STED microscope, with a low-cost National Instruments USB-6501 digital I/O card. The registration was based on detecting the positions of the AFM tip inside the STED fieldof-view, which were then used as registration landmarks. The registration should work on any STED and tip-scanning AFM microscope combination, at nanometer-scale precision. Our STED-AFM correlation method has been tested with a variety of nanoparticle and fixed cell samples. The software will be released under BSD open-source license.

  7. A rapid and automated relocation method of an AFM probe for high-resolution imaging.

    PubMed

    Zhou, Peilin; Yu, Haibo; Shi, Jialin; Jiao, Niandong; Wang, Zhidong; Wang, Yuechao; Liu, Lianqing

    2016-09-30

    The atomic force microscope (AFM) is one of the most powerful tools for high-resolution imaging and high-precision positioning for nanomanipulation. The selection of the scanning area of the AFM depends on the use of the optical microscope. However, the resolution of an optical microscope is generally no larger than 200 nm owing to wavelength limitations of visible light. Taking into consideration the two determinants of relocation-relative angular rotation and positional offset between the AFM probe and nano target-it is therefore extremely challenging to precisely relocate the AFM probe to the initial scan/manipulation area for the same nano target after the AFM probe has been replaced, or after the sample has been moved. In this paper, we investigate a rapid automated relocation method for the nano target of an AFM using a coordinate transformation. The relocation process is both simple and rapid; moreover, multiple nano targets can be relocated by only identifying a pair of reference points. It possesses a centimeter-scale location range and nano-scale precision. The main advantages of this method are that it overcomes the limitations associated with the resolution of optical microscopes, and that it is label-free on the target areas, which means that it does not require the use of special artificial markers on the target sample areas. Relocation experiments using nanospheres, DNA, SWCNTs, and nano patterns amply demonstrate the practicality and efficiency of the proposed method, which provides technical support for mass nanomanipulation and detection based on AFM for multiple nano targets that are widely distributed in a large area. PMID:27559679

  8. Show What You Know

    ERIC Educational Resources Information Center

    Eccleston, Jeff

    2007-01-01

    Big things come in small packages. This saying came to the mind of the author after he created a simple math review activity for his fourth grade students. Though simple, it has proven to be extremely advantageous in reinforcing math concepts. He uses this activity, which he calls "Show What You Know," often. This activity provides the perfect…

  9. The Ozone Show.

    ERIC Educational Resources Information Center

    Mathieu, Aaron

    2000-01-01

    Uses a talk show activity for a final assessment tool for students to debate about the ozone hole. Students are assessed on five areas: (1) cooperative learning; (2) the written component; (3) content; (4) self-evaluation; and (5) peer evaluation. (SAH)

  10. Honored Teacher Shows Commitment.

    ERIC Educational Resources Information Center

    Ratte, Kathy

    1987-01-01

    Part of the acceptance speech of the 1985 National Council for the Social Studies Teacher of the Year, this article describes the censorship experience of this honored social studies teacher. The incident involved the showing of a videotape version of the feature film entitled "The Seduction of Joe Tynan." (JDH)

  11. Talk Show Science.

    ERIC Educational Resources Information Center

    Moore, Mitzi Ruth

    1992-01-01

    Proposes having students perform skits in which they play the roles of the science concepts they are trying to understand. Provides the dialog for a skit in which hot and cold gas molecules are interviewed on a talk show to study how these properties affect wind, rain, and other weather phenomena. (MDH)

  12. Stage a Water Show

    ERIC Educational Resources Information Center

    Frasier, Debra

    2008-01-01

    In the author's book titled "The Incredible Water Show," the characters from "Miss Alaineus: A Vocabulary Disaster" used an ocean of information to stage an inventive performance about the water cycle. In this article, the author relates how she turned the story into hands-on science teaching for real-life fifth-grade students. The author also…

  13. Showing What They Know

    ERIC Educational Resources Information Center

    Cech, Scott J.

    2008-01-01

    Having students show their skills in three dimensions, known as performance-based assessment, dates back at least to Socrates. Individual schools such as Barrington High School--located just outside of Providence--have been requiring students to actively demonstrate their knowledge for years. The Rhode Island's high school graduating class became…

  14. A new approach to decoupling of bacterial adhesion energies measured by AFM into specific and nonspecific components.

    PubMed

    Eskhan, Asma O; Abu-Lail, Nehal I

    2014-02-01

    A new method to decoupling of bacterial interactions measured by atomic force microscopy (AFM) into specific and nonspecific components is proposed. The new method is based on computing the areas under the approach and retraction curves. To test the efficacy of the new method, AFM was used to probe the repulsion and adhesion energies present between L. monocytogenes cells cultured at five pH values (5, 6, 7, 8 and 9) and silicon nitride (Si3N4). Overall adhesion energy was then decoupled into its specific and nonspecific components using the new method as well as using Poisson statistical approach. Poisson statistical method represents the most commonly used approach to decouple bacterial interactions into their components. For all pH conditions investigated, specific energies dominated the adhesion and a transition in adhesion and repulsion energies for cells cultured at pH 7 was observed. When compared, the differences in the specific and nonspecific energies obtained using Poisson analysis and the new method were on average 2.2% and 6.7%, respectively. The relatively close energies obtained using the two approaches demonstrate the efficacy of the new method as an alternative way to decouple adhesion energies into their specific and nonspecific components. PMID:24563576

  15. A new approach to decoupling of bacterial adhesion energies measured by AFM into specific and nonspecific components

    PubMed Central

    Eskhan, Asma O.; Abu-Lail, Nehal I.

    2013-01-01

    A new method to decoupling of bacterial interactions measured by atomic force microscopy (AFM) into specific and nonspecific components is proposed. The new method is based on computing the areas under the approach and retraction curves. To test the efficacy of the new method, AFM was used to probe the repulsion and adhesion energies present between L. monocytogenes cells cultured at five pH values (5, 6, 7, 8 and 9) and silicon nitride (Si3N4). Overall adhesion energy was then decoupled into its specific and nonspecific components using the new method as well as using Poisson statistical approach. Poisson statistical method represents the most commonly used approach to decouple bacterial interactions into their components. For all pH conditions investigated, specific energies dominated the adhesion and a transition in adhesion and repulsion energies for cells cultured at pH 7 was observed. When compared, the differences in the specific and nonspecific energies obtained using Poisson analysis and the new method were on average 2.2% and 6.7%, respectively. The relatively close energies obtained using the two approaches demonstrate the efficacy of the new method as an alternative way to decouple adhesion energies into their specific and nonspecific components. PMID:24563576

  16. AFM and uni-axial testing of pericardium exposed to radiotherapy doses

    NASA Astrophysics Data System (ADS)

    Daar, Eman; Kaabar, W.; Lei, C.; Keddie, J. L.; Nisbet, A.; Bradley, D. A.

    2011-10-01

    The pericardium, a double-layered sac that encloses the heart, is made up of collagen and elastin fibres embedded in an amorphous matrix (forming the extracellular matrix). Collagen fibres are aligned in multidirectional orientation layers. This free arrangement of fibres gives the pericardium its viscoelastic properties and the ability to deform in all directions. This is an important mechanical property for the heart to perform its physiological functions, acknowledging the fact that the heart is attached to different ligaments and muscles in all directions. The present study aims to investigate the effect of penetrating photon ionising radiation on bovine pericardium tissue. This links to an interest in seeking to understand possible mechanisms underlying cardiac complications following treatment of the left breast in radiotherapy regimes. Pericardium samples were subjected to doses in the range 0-80 Gy. Atomic force microscopy (AFM) has been applied in characterising changes in the infrastructural and mechanical properties of the tissues. Preliminary data for doses of 80 Gy shows there was no significant change in the D-spacing period of the banded structure collagen type I but a significant increase is observed in the FWHM of the fibril widths (by between 25% and 27%) over that of unirradiated pericardium tissue.

  17. Optimization of Q-factor of AFM cantilevers using genetic algorithms.

    PubMed

    Perez-Cruz, Angel; Dominguez-Gonzalez, Aurelio; Stiharu, Ion; Osornio-Rios, Roque A

    2012-04-01

    Micro cantilever beams have been intensively used in sensing applications including to scanning profiles and surfaces where there resolution and imaging speed are critical. Force resolution is related to the Q-factor. When the micro-cantilever operates in air with small separation gaps, the Q-factor is even more reduced due to the squeeze-film damping effect. Thus, the optimization of the configuration of an AFM micro-cantilever is presented in this work with the objective of improving its Q-factor. To accomplish this task, we propose the inclusion of holes as breathing chimneys in the initial design to reduce the squeeze-film damping effect. The evaluation of the Q-factor was carried out using finite element model, which is implemented to work together with the squeeze-film damping model. The methodology applied in the optimization process was genetic algorithms, which considers as constraints the maximum allowable stress, fundamental frequency and spring constant with respect to the initial design. The results show that the optimum design, which includes holes with an optimal location, increases the Q-factor almost five times compared to the initial design. PMID:22459119

  18. Assembly of {alpha}-synuclein fibrils in nanoscale studied by peptide truncation and AFM

    SciTech Connect

    Zhang Feng; Lin Xiaojing; Ji Lina; Du Haining; Tang Lin; He Jianhua; Hu Jun; Hu Hongyu

    2008-04-04

    {alpha}-Synuclein ({alpha}-Syn) fibrils are the major component of Lewy bodies that are closely associated with the pathogenesis of Parkinson's disease, but the mechanism for the fibril assembly remains poorly understood. Here we report using a combination of peptide truncation and atomic force microscopy (AFM) to elucidate the self-assembly and morphology of the {alpha}-Syn fibrils. The results show that protease K significantly slims the fibrils from the mean height of {approx}6.6 to {approx}4.7 nm, whereas chaotropic denaturant urea completely breaks down the fibrils into small particles. The in situ enzymatic digestion also results in thinning of the fibrils, giving rise to some nicks on the fibrils. Moreover, N- or C-terminally truncated {alpha}-Syn fragments assemble into thinner filaments with the heights depending on the peptide lengths. A nine-residue peptide corresponding to the homologous GAV-motif sequence can form very thin ({approx}2.2 nm) but long (>1 {mu}m) filaments. Thus, the central sequence of {alpha}-Syn forms a fibrillar core by cross-{beta}-structure that is flanked by two flexible termini, and the orientation of the fibril growth is perpendicular to the {beta}-sheet structures.

  19. Surface-enhanced spectroscopy on plasmonic oligomers assembled by AFM nanoxerography.

    PubMed

    Moutet, Pierre; Sangeetha, Neralagatta M; Ressier, Laurence; Vilar-Vidal, Noelia; Comesaña-Hermo, Miguel; Ravaine, Serge; Vallée, Renaud A L; Gabudean, Ana Maria; Astilean, Simion; Farcau, Cosmin

    2015-02-01

    Surface-enhanced Raman scattering (SERS) and surface-enhanced fluorescence (SEF) from individual plasmonic oligomers are investigated by confocal Raman micro-spectroscopy and time-resolved fluorescence microscopy coupled to steady state micro-spectroscopy. The nanoparticle (NP) oligomers are made of either ligand protected Au or Au@SiO2 core-shell colloidal NPs, which were assembled into ordered arrays by atomic force microscopy (AFM) nanoxerography. A strong dependence of the SERS emission on the polarization of incident light relative to the specific geometry of the plasmonic oligomer was observed. The SEF studies, performed on a large collection of NP oligomers of various known configurations showed interesting fluorophore decay rate modification and red-shift of the emission spectra. The experimental results are analyzed theoretically by employing finite-difference time-domain (FDTD) simulations on equivalent realistic structures, within the local density of optical states (LDOS) framework. The presented results, together with the proven potential of the LDOS approach as a useful common tool for analyzing both SERS and SEF effects further the general understanding of plasmon-related phenomena in nanoparticle oligomers. PMID:25553777

  20. Combined quantitative ultrasonic and time-resolved interaction force AFM imaging

    SciTech Connect

    Parlak, Z.; Degertekin, F. L.

    2011-01-15

    The authors describe a method where quantitative ultrasonic atomic force microscopy (UAFM) is achieved during time-resolved interaction force (TRIF) imaging in intermittent contact mode. The method uses a calibration procedure for quantitative UAFM. It improves elasticity measurements of stiff regions of surfaces while retaining the capabilities of the TRIF mode for topography, adhesion, dissipation, and elasticity measurements on soft regions of sample surfaces. This combination is especially advantageous when measuring and imaging samples with broad stiffness range in a nondestructive manner. The experiments utilize an active AFM probe with high bandwidth and the UAFM calibration is performed by measuring the magnitude of the time-resolved UAFM signal at a judiciously chosen frequency for different contact stiffness values during individual taps. Improved sensitivity to stiff surface elasticity is demonstrated on a special sample. The results show that combining UAFM with TRIF provides 2.5 GPa (5%) standard deviation on the silicon surface reduced Young's modulus, representing 5x improvement over using only TRIF mode imaging.

  1. Relaxation of ultralarge VWF bundles in a microfluidic-AFM hybrid reactor

    SciTech Connect

    Steppich, D.M.; Angerer, J.I.; Sritharan, K.; Schneider, S.W.; Thalhammer, S.; Wixforth, A.; Alexander-Katz, A.; Schneider, M.F.

    2008-05-02

    The crucial role of the biopolymer 'Von Willebrand factor' (VWF) in blood platelet binding is tightly regulated by the shear forces to which the protein is exposed in the blood flow. Under high-shear conditions, VWFs ability to immobilize blood platelets is strongly increased due to a change in conformation which at sufficient concentration is accompanied by the formation of ultra large VWF bundles (ULVWF). However, little is known about the dynamic and mechanical properties of such bundles. Combining a surface acoustic wave (SAW) based microfluidic reactor with an atomic force microscope (AFM) we were able to study the relaxation of stretched VWF bundles formed by hydrodynamic stress. We found that the dynamical response of the network is well characterized by stretched exponentials, indicating that the relaxation process proceeds through hopping events between a multitude of minima. This finding is in accordance with current ideas of VWF self-association. The longest relaxation time does not show a clear dependence on the length of the bundle, and is dominated by the internal conformations and effective friction within the bundle.

  2. Porous titania films fabricated via sol gel rout - Optical and AFM characterization

    NASA Astrophysics Data System (ADS)

    Karasiński, Paweł; Gondek, Ewa; Drewniak, Sabina; Kajzer, Anita; Waczyńska-Niemiec, Natalia; Basiaga, Marcin; Izydorczyk, Weronika; Kouari, Youssef E. L.

    2016-06-01

    Mesoporous titania films of low refractive index ∼1.72 and thickness within the range of 57-96 nm were fabricated via sol-gel rout and dip-coating technique on a soda-lime glass substrate. Tetrabutylorthotitanate Ti(OBu)4 was used as a titania precursor. High porosity and consequently low refractive index were achieved using the polyethylene glycol (PEG 1100) as a template. Based on transmittance, using Tauc's relations, the optical energy band gaps and the Urbach energy were determined. The research shows that in the fabricated titania films there are two types of optical energy band gaps, connected with direct and indirect electron transitions and brought about by the presence of amorphous and crystalline phase respectively. Based on the quantum size effect, the diameters of nanocrystals versus film thickness were determined. AFM studies of the titania films have demonstrated that there are changes of surface morphology taking place with the change of thickness. We have demonstrated that the surface morphology of titania films has influence on wettability.

  3. AFM characterization of spin coated carboxylated polystyrene nanospheres/xyloglucan layers on mica and silicon.

    PubMed

    Lubambo, Adriana F; Lucyszyn, Neoli; Petzhold, Cesar L; Sierakowski, Maria-R; Schreiner, Wido H; Saul, Cyro K

    2013-03-01

    Self-assembled nano-arrays have a potential application as solid-phase diagnostics in many biomedical devices. The easiness of its production is directly connected to manufacture cost reduction. In this work, we present self-assembled structures starting from spin coated thin films of carboxylated polystyrene (PSC) and xyloglucan (XG) mixtures on both mica and silicon substrates. AFM images showed PSC nanospheres on top of a homogeneous layer of XG, for both substrates. The average nanosphere diameter fluctuated for a constant speed and it was likely to be independent of the component proportions on the mixture within a range of 30-50% (v/v) PSC. It was also observed that the largest diameters were found at the center of the sample and the smallest at the border. The detected nanospheres were also more numerous at the border. This behavior presents a similarity to spin coated colloidal dispersions. We observed that the average nanosphere diameter on mica substrates was bigger than the nanosphere diameters obtained on top of silicon substrates, under the same conditions. This result seems to be possibly connected to different mixture-surface interactions. PMID:23465925

  4. Interaction force measurement between E. coli cells and nanoparticles immobilized surfaces by using AFM.

    PubMed

    Zhang, Wen; Stack, Andrew G; Chen, Yongsheng

    2011-02-01

    To better understand environmental behaviors of nanoparticles (NPs), we used the atomic force microscopy (AFM) to measure interaction forces between E. coli cells and NPs immobilized on surfaces in an aqueous environment. The results showed that adhesion force strength was significantly influenced by particle size for both hematite (α-Fe(2)O(3)) and corundum (α-Al(2)O(3)) NPs whereas the effect on the repulsive force was not observed. The adhesion force decreased from 6.3±0.7nN to 0.8±0.4nN as hematite NPs increased from 26nm to 98nm in diameter. Corundum NPs exhibited a similar dependence of adhesion force on particle size. The Johnson-Kendall-Roberts (JKR) model was employed to estimate the contact area between E. coli cells and NPs, and based on the JKR model a new model that considers local effective contact area was developed. The prediction of the new model matched the size dependence of adhesion force in experimental results. Size effects on adhesion forces may originate from the difference in local effective contact areas as supported by our model. These findings provide fundamental information for interpreting the environmental behaviors and biological interactions of NPs, which barely have been addressed. PMID:20932723

  5. Forced Unfolding of the Coiled-Coils of Fibrinogen by Single-Molecule AFM

    NASA Astrophysics Data System (ADS)

    Brown, Andre; Litvinov, Rustem; Discher, Dennis; Weisel, John

    2007-03-01

    A blood clot needs to have the right degree of stiffness and plasticity for hemostasis, but the origin of these mechanical properties is unknown. Here we report the first measurements using single molecule atomic force microscopy (AFM) to study the forced unfolding of fibrinogen to begin addressing this problem. To generate longer reproducible curves than are possible using monomer, factor XIIIa cross-linked, single chain fibrinogen oligomers were used. When extended under force, these oligomers showed sawtooth shaped force-extension patterns characteristic of unfolding proteins with a peak-to-peak separation of approximately 26 nm, consistent with the independent unfolding of the coiled-coils. These results were then reproduced using a Monte Carlo simulation with parameters in the same range as those previously used for unfolding globular domains. In particular, we found that the refolding time was negligible on experimental time and force scales in contrast to previous work on simpler coiled-coils. We suggest that this difference may be due to fibrinogen's structurally and topologically more complex coiled-coils and that an interaction between the alpha C and central domains may be involved. These results suggest a new functional property of fibrinogen and that the coiled-coil is more than a passive structural element of this molecule.

  6. Interaction force measurement between E. coli cells and nanoparticles immobilized surfaces by using AFM

    SciTech Connect

    Zhang, Wen; Chen, Yongsheng

    2011-01-01

    To better understand environmental behaviors of nanoparticles (NPs), we used the atomic force microscopy (AFM) to measure interaction forces between E. coli cells and NPs immobilized on surfaces in an aqueous environment. The results showed that adhesion force strength was significantly influenced by particle size for both hematite ( -Fe2 O3 ) and corundum ( -Al2 O3 ) NPs whereas the effect on the repulsive force was not observed. The adhesion force decreased from 6.3 0.7 nN to 0.8 0.4 nN as hematite NPs increased from 26 nm to 98 nm in diameter. Corundum NPs exhibited a similar dependence of adhesion force on particle size. The Johnson Kendall Roberts (JKR) model was employed to estimate the contact area between E. coli cells and NPs, and based on the JKR model a new model that considers local effective contact area was developed. The prediction of the new model matched the size dependence of adhesion force in experimental results. Size effects on adhesion forces may originate from the difference in local effective contact areas as supported by our model. These findings provide fundamental information for interpreting the environmental behaviors and biological interactions of NPs, which barely have been addressed.

  7. Transcriptomic analysis of Clostridium thermocellum Populus hydrolysate-tolerant mutant strain shows increased cellular efficiency in response to Populus hydrolysate compared to the wild type strain

    PubMed Central

    2014-01-01

    Background The thermophilic, anaerobic bacterium, Clostridium thermocellum is a model organism for consolidated processing due to its efficient fermentation of cellulose. Constituents of dilute acid pretreatment hydrolysate are known to inhibit C. thermocellum and other microorganisms. To evaluate the biological impact of this type of hydrolysate, a transcriptomic analysis of growth in hydrolysate-containing medium was conducted on 17.5% v/v Populus hydrolysate-tolerant mutant (PM) and wild type (WT) strains of C. thermocellum. Results In two levels of Populus hydrolysate medium (0% and 10% v/v), the PM showed both gene specific increases and decreases of gene expression compared to the wild-type strain. The PM had increased expression of genes in energy production and conversion, and amino acid transport and metabolism in both standard and 10% v/v Populus hydrolysate media. In particular, expression of the histidine metabolism increased up to 100 fold. In contrast, the PM decreased gene expression in cell division and sporulation (standard medium only), cell defense mechanisms, cell envelope, cell motility, and cellulosome in both media. The PM downregulated inorganic ion transport and metabolism in standard medium but upregulated it in the hydrolysate media when compared to the WT. The WT differentially expressed 1072 genes in response to the hydrolysate medium which included increased transcription of cell defense mechanisms, cell motility, and cellulosome, and decreased expression in cell envelope, amino acid transport and metabolism, inorganic ion transport and metabolism, and lipid metabolism, while the PM only differentially expressed 92 genes. The PM tolerates up to 17.5% v/v Populus hydrolysate and growth in it elicited 489 genes with differential expression, which included increased expression in energy production and conversion, cellulosome production, and inorganic ion transport and metabolism and decreased expression in transcription and cell

  8. Proteome Analysis of the Effect of Mucoid Conversion on Global Protein Expression in Pseudomonas aeruginosa Strain PAO1 Shows Induction of the Disulfide Bond Isomerase, DsbA

    PubMed Central

    Malhotra, Sonal; Silo-Suh, Laura A.; Mathee, Kalai; Ohman, Dennis E.

    2000-01-01

    Pseudomonas aeruginosa strains that cause chronic pulmonary infections in cystic fibrosis patients typically undergo mucoid conversion. The mucoid phenotype indicates alginate overproduction and is often due to defects in MucA, an antisigma factor that controls the activity of sigma-22 (AlgT [also called AlgU]), which is required for the activation of genes for alginate biosynthesis. In this study we hypothesized that mucoid conversion may be part of a larger response that activates genes other than those for alginate synthesis. To address this, a two-dimensional (2-D) gel analysis was employed to compare total proteins in strain PAO1 to those of its mucA22 derivative, PDO300, in order to identify protein levels enhanced by mucoid conversion. Six proteins that were clearly more abundant in the mucoid strain were observed. The amino termini of such proteins were determined and used to identify the gene products in the genomic database. Proteins involved in alginate biosynthesis were expected among these, and two (AlgA and AlgD) were identified. This result verified that the 2-D gel approach could identify gene products under sigma-22 control and upregulated by mucA mutation. Two other protein spots were also clearly upregulated in the mucA22 background, and these were identified as porin F (an outer membrane protein) and a homologue of DsbA (a disulfide bond isomerase). Single-copy gene fusions were constructed to test whether these proteins were enhanced in the mucoid strain due to increased transcription. The oprF-lacZ fusion showed little difference in levels of expression in the two strains. However, the dsbA-lacZ fusion showed two- to threefold higher expression in PDO300 than in PAO1, suggesting that its promoter was upregulated by the deregulation of sigma-22 activity. A dsbA-null mutant was constructed in PAO1 and shown to have defects predicted for a cell with reduced disulfide bond isomerase activity, namely, reduction in periplasmic alkaline phosphatase

  9. Ultra-small oscillation amplitude nc-AFM/STM imaging, force and dissipation spectroscopy of Si(100)(2×1)

    NASA Astrophysics Data System (ADS)

    Özgür Özer, H.; Atabak, Mehrdad; Oral, Ahmet

    2002-12-01

    Si(100)(2×1) surface is imaged using a new nc-AFM (non-contact atomic force microscopy)/STM with sub-Ångstrom oscillation amplitudes using stiff hand-made tungsten levers. Simultaneous force gradient and scanning tunneling microscopy images of individual dimers and atomic scale defects are obtained. We measured force-distance and dissipation-distance curves with different tips. Some of the tips show long-range force interactions, whereas some others resolve short-range interatomic force interactions. We observed that the tips showing short-range force interaction give atomic resolution in force gradient scans. This result suggests that short-range force interactions are responsible for atomic resolution in nc-AFM. We also observed an increase in the dissipation as the tip is approached closer to the surface, followed by an unexpected decrease as we pass the inflection point in the energy-distance curve.

  10. Simultaneous non-contact atomic force microscopy (nc-AFM)/STM imaging and force spectroscopy of Si(1 0 0)(2×1) with small oscillation amplitudes

    NASA Astrophysics Data System (ADS)

    Özer, H. Özgür; Atabak, Mehrdad; Ellialtıoğlu, Recai M.; Oral, Ahmet

    2002-03-01

    Si(1 0 0)(2×1) surface is imaged using a new non-contact atomic force microscopy (nc-AFM)/STM with sub-Ångström oscillation amplitudes using stiff tungsten levers. Simultaneous force gradient and STM images of individual dimers and atomic scale defects are obtained. We measured force-distance ( f- d) curves with different tips. Some of the tips show long force interactions, whereas some others resolve short-range interatomic force interactions. We observed that the tips showing short-range force interaction give atomic resolution in force gradient scans. This result suggests that short-range force interactions are responsible for atomic resolution in nc-AFM.

  11. The influenza virus variant A/FM/1/47-MA possesses single amino acid replacements in the hemagglutinin, controlling virulence, and in the matrix protein, controlling virulence as well as growth.

    PubMed Central

    Smeenk, C A; Brown, E G

    1994-01-01

    Genetic analysis of mouse-adapted influenza virus variant A/FM/1/47 (FM) MA has previously identified four genome segments, 4, 5, 7, and 8, that are statistically associated with virulence. On sequencing these genome segments, we found single amino acid replacements at amino acid 47 of the HA2 subunit of the hemagglutinin and at amino acid 139 of the matrix protein. Mutation was not detected in segments 5 and 8, obviating a role for these genes in FM-MA virulence. FM-MA replicates to higher titer than FM in MDCK cells and in mouse lung. FM X FM-MA reassortants were used to show that the M1 gene controlled replication in MDCK cells as well as in mouse lung. PMID:8254767

  12. Development of a new generation of active AFM tools for applications in liquids

    NASA Astrophysics Data System (ADS)

    Rollier, A.-S.; Jenkins, D.; Dogheche, E.; Legrand, B.; Faucher, M.; Buchaillot, L.

    2010-08-01

    Atomic force microscopy (AFM) is a powerful imaging tool with high-resolution imaging capability. AFM probes consist of a very sharp tip at the end of a silicon cantilever that can respond to surface artefacts to produce an image of the topography or surface features. They are intrinsically passive devices. For imaging soft biological samples, and also for samples in liquid, it is essential to control the AFM tip position, both statically and dynamically, and this is not possible using external actuators mounted on the AFM chip. AFM cantilevers have been fabricated using silicon micromachining to incorporate a piezoelectric thin film actuator for precise control. The piezoelectric thin films have been fully characterized to determine their actuation performance and to characterize the operation of the integrated device. Examples of the spatial and vertical response are presented to illustrate their imaging capability. For operation in a liquid environment, the dynamic behaviour has been modelled and verified experimentally. The optimal drive conditions for the cantilever, along with their dynamic response, including frequency and phase in air and water, are presented.

  13. Effect of AFM probe geometry on visco-hyperelastic characterization of soft materials.

    PubMed

    Boccaccio, Antonio; Lamberti, Luciano; Papi, Massimiliano; De Spirito, Marco; Pappalettere, Carmine

    2015-08-14

    Atomic force microscopy (AFM) nanoindentation is very suited for nano- and microscale mechanical characterization of soft materials. Although the structural response of polymeric networks that form soft matter depends on viscous effects caused by the relative slippage of polymeric chains, the usual assumption made in the AFM-based characterization is that the specimen behaves as a purely elastic material and viscous forces are negligible. However, for each geometric configuration of the AFM tip, there will be a limit indentation rate above which viscous effects must be taken into account to correctly determine mechanical properties. A parametric finite element study conducted on 12 geometric configurations of a blunt cone AFM tip (overall, the study included about 200 finite element analyses) allowed us to determine the limit indentation rate for each configuration. The selected tip dimensions cover commercially available products and account for changes in tip geometry caused by serial measurements. Nanoindentation rates cover typical experimental conditions set in AFM bio-measurements on soft matter. Viscous effects appear to be more significant in the case of sharper tips. This implies that, if quantitative data on sample viscosity are not available, using a rounded indenter and carrying out experiments below the limit indentation rate will allow errors in the determination of mechanical properties to be minimized. PMID:26201503

  14. AFM1 in Milk: Physical, Biological, and Prophylactic Methods to Mitigate Contamination

    PubMed Central

    Giovati, Laura; Magliani, Walter; Ciociola, Tecla; Santinoli, Claudia; Conti, Stefania; Polonelli, Luciano

    2015-01-01

    Aflatoxins (AFs) are toxic, carcinogenic, immunosuppressive secondary metabolites produced by some Aspergillus species which colonize crops, including many dietary staple foods and feed components. AFB1 is the prevalent and most toxic among AFs. In the liver, it is biotransformed into AFM1, which is then excreted into the milk of lactating mammals, including dairy animals. AFM1 has been shown to be cause of both acute and chronic toxicoses. The presence of AFM1 in milk and dairy products represents a worldwide concern since even small amounts of this metabolite may be of importance as long-term exposure is concerned. Contamination of milk may be mitigated either directly, decreasing the AFM1 content in contaminated milk, or indirectly, decreasing AFB1 contamination in the feed of dairy animals. Current strategies for AFM1 mitigation include good agricultural practices in pre-harvest and post-harvest management of feed crops (including storage) and physical or chemical decontamination of feed and milk. However, no single strategy offers a complete solution to the issue. PMID:26512694

  15. The role of growth temperature in the adhesion and mechanics of pathogenic L. monocytogenes: an AFM study.

    PubMed

    Gordesli, Fatma Pinar; Abu-Lail, Nehal I

    2012-01-17

    The adhesion strengths of pathogenic L. monocytogenes EGDe to a model surface of silicon nitride were quantified using atomic force microscopy (AFM) in water for cells grown under five different temperatures (10, 20, 30, 37, and 40 °C). The temperature range investigated was chosen to bracket the thermal conditions in which L. monocytogenes survive in the environment. Our results indicated that adhesion force and energy quantified were at their maximum when the bacteria were grown at 30 °C. The higher adhesion observed at 30 °C compared to the adhesion quantified for bacterial cells grown at 37, 40, 20, and 10 °C was associated with longer and denser bacterial surface biopolymer brushes as predicted from fitting a model of steric repulsion to the approach distance-force data as well from the results of protein colorimetric assays. Theoretically predicted adhesion energies based on soft-particle DLVO theory agreed well with the adhesion energies computed from AFM force-distance retraction data (r(2) = 0.94); showing a minimum energy barrier to adhesion at 30 °C. PMID:22133148

  16. Bi-stability of amplitude modulation AFM in air: deterministic and stochastic outcomes for imaging biomolecular systems.

    PubMed

    Santos, Sergio; Barcons, Victor; Font, Josep; Thomson, Neil H

    2010-06-01

    The dynamics of the oscillating microcantilever for amplitude modulation atomic force microscopy (AM AFM) operating in air is well understood theoretically but the experimental outcomes are still emerging. We use double-stranded DNA on mica as a model biomolecular system for investigating the connection between theory and experiment. A demonstration that the switching between the two cantilever oscillation states is stochastic in nature is achieved, and it can be induced by means of topographical anomalies on the surface. Whether one or the other attractor basin is accessed depends on the tip-sample separation history used to achieve the imaging conditions, and we show that the behaviour is reproducible when the tip is stable and well characterized. Emergence of background noise occurs in certain regions of parameter space regardless of whether two cantilever oscillation states coexist. The low state has been explored in detail and we note that at low to intermediate values of the free amplitude, noise-free imaging is achieved. The outcomes shown here are general and demonstrate that a thorough and systematic experimental approach in conjunction with standard modelling gives insight into the mechanisms behind image contrast formation in AM AFM in air. PMID:20453275

  17. In-Situ AFM Investigation of Solid Electrolyte Interphase Formation and Failure Mechanisms in Lithium -Ion Batteries

    NASA Astrophysics Data System (ADS)

    Mueller, Thomas; Kumar, Ravi; Tokranov, Anton; Huang, Teddy; Li, Chunzeng; Xiao, Xingcheng; Sheldon, Brian

    The formation and evolution of the solid electrolyte interphase (SEI) is critical for lifetime and performance of lithium-ion batteries (LIBs), particularly for LIBs with high energy density materials such as silicon. Si has almost ten time theoretical specific capacity vs graphite, but its volume changes during cycling (up to 400%) put enormous strains on the SEI layer, resulting in continuous capacity loss. In this study we report in situ atomic force microscopy (AFM) investigation on the formation and failure mechanisms of SEI layer using patterned Si island structures. Due to the shear lag effect, patterned Si islands go through lateral expansion and Contraction, putting the SEI layer in tension and compression during lithiation and delithiation, respectively. Experimentally, we performed the studies in a glovebox with <1 ppm O2 and H2O, using PeakForce Tapping to image the extremely fragile SEI layer. We show for the first time the in operando cracking of SEI layer. To understand the mechanics of the SEI layer, the critical strain for cracking was derived from a progression of the AFM images. Our studies provide new insight into SEI formation, evolution and its mechanical response, and offer guidance to tailor passivation layers for optimal performance.

  18. Evaluating interaction forces between BSA and rabbit anti-BSA in sulphathiazole sodium, tylosin and levofloxacin solution by AFM

    NASA Astrophysics Data System (ADS)

    Wang, Congzhou; Wang, Jianhua; Deng, Linhong

    2011-11-01

    Protein-protein interactions play crucial roles in numerous biological processes. However, it is still challenging to evaluate the protein-protein interactions, such as antigen and antibody, in the presence of drug molecules in physiological liquid. In this study, the interaction between bovine serum albumin (BSA) and rabbit anti-BSA was investigated using atomic force microscopy (AFM) in the presence of various antimicrobial drugs (sulphathiazole sodium, tylosin and levofloxacin) under physiological condition. The results show that increasing the concentration of tylosin decreased the single-molecule-specific force between BSA and rabbit anti-BSA. As for sulphathiazole sodium, it dramatically decreased the specific force at a certain critical concentration, but increased the nonspecific force as its concentration increasing. In addition, the presence of levofloxacin did not greatly influence either the specific or nonspecific force. Collectively, these results suggest that these three drugs may adopt different mechanisms to affect the interaction force between BSA and rabbit anti-BSA. These findings may enhance our understanding of antigen/antibody binding processes in the presence of drug molecules, and hence indicate that AFM could be helpful in the design and screening of drugs-modulating protein-protein interaction processes.

  19. Following the Formation of Supported Lipid Bilayers on Mica: A Study Combining AFM, QCM-D, and Ellipsometry

    PubMed Central

    Richter, Ralf P.; Brisson, Alain R.

    2005-01-01

    Supported lipid bilayers (SLBs) are popular models of cell membranes with potential biotechnological applications and an understanding of the mechanisms of SLB formation is now emerging. Here we characterize, by combining atomic force microscopy, quartz crystal microbalance with dissipation monitoring, and ellipsometry, the formation of SLBs on mica from sonicated unilamellar vesicles using mixtures of zwitterionic, negatively and positively charged lipids. The results are compared with those we reported previously on silica. As on silica, electrostatic interactions were found to determine the pathway of lipid deposition. However, fundamental differences in the stability of surface-bound vesicles and the mobility of SLB patches were observed, and point out the determining role of the solid support in the SLB-formation process. The presence of calcium was found to have a much more pronounced influence on the lipid deposition process on mica than on silica. Our results indicate a specific calcium-mediated interaction between dioleoylphosphatidylserine molecules and mica. In addition, we show that the use of PLL-g-PEG modified tips considerably improves the AFM imaging of surface-bound vesicles and bilayer patches and evaluate the effects of the AFM tip on the apparent size and shape of these soft structures. PMID:15731391

  20. Characterization of microscale wear in a ploysilicon-based MEMS device using AFM and PEEM-NEXAFS spectromicroscopy.

    SciTech Connect

    Grierson, D. S.; Konicek, A. R.; Wabiszewski, G. E.; Sumant, A. V.; de Boer, M. P.; Corwin, A. D.; Carpick, R. W.

    2009-12-01

    Mechanisms of microscale wear in silicon-based microelectromechanical systems (MEMS) are elucidated by studying a polysilicon nanotractor, a device specifically designed to conduct friction and wear tests under controlled conditions. Photoelectron emission microscopy (PEEM) was combined with near-edge X-ray absorption fine structure (NEXAFS) spectroscopy and atomic force microscopy (AFM) to quantitatively probe chemical changes and structural modification, respectively, in the wear track of the nanotractor. The ability of PEEM-NEXAFS to spatially map chemical variations in the near-surface region of samples at high lateral spatial resolution is unparalleled and therefore ideally suited for this study. The results show that it is possible to detect microscopic chemical changes using PEEM-NEXAFS, specifically, oxidation at the sliding interface of a MEMS device. We observe that wear induces oxidation of the polysilicon at the immediate contact interface, and the spectra are consistent with those from amorphous SiO{sub 2}. The oxidation is correlated with gouging and debris build-up in the wear track, as measured by AFM and scanning electron microscopy (SEM).

  1. Bioactive compounds immobilized on Ti and TiNbHf: AFM-based investigations of biofunctionalization efficiency and cell adhesion.

    PubMed

    Herranz-Diez, C; Li, Q; Lamprecht, C; Mas-Moruno, C; Neubauer, S; Kessler, H; Manero, J M; Guillem-Martí, J; Selhuber-Unkel, C

    2015-12-01

    Implant materials require optimal biointegration, including strong and stable cell-material interactions from the early stages of implantation. Ti-based alloys with low elastic modulus are attracting a lot of interest for avoiding stress shielding, but their osseointegration potential is still very low. In this study, we report on how cell adhesion is influenced by linear RGD, cyclic RGD, and recombinant fibronectin fragment III8-10 coated on titanium versus a novel low-modulus TiNbHf alloy. The bioactive molecules were either physisorbed or covalently coupled to the substrates and their conformation on the surfaces was investigated with atomic force microscopy (AFM). The influence of the different bioactive coatings on the adhesion of rat mesenchymal stem cells was evaluated using cell culture assays and quantitatively analyzed at the single cell level by AFM-based single-cell force spectroscopy. Our results show that bioactive moieties, particularly fibronectin fragment III8-10, improve cell adhesion on titanium and TiNbHf and that the covalent tethering of such molecules provides the most promising strategy to biofunctionalize these materials. Therefore, the use of recombinant protein fragments is of high importance for improving the osseointegration potential of implant materials. PMID:26513753

  2. Anomalous current-voltage characteristics along the c-axis in YBaCuO thin films prepared by MOCVD and AFM lithography

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shuu'ichirou; Kawaguchi, Atsushi; Oda, Shunri

    1997-12-01

    We have proposed a fabrication process of intrinsic Josephson junctions (IJJs) using AFM lithography and successfully obtained IJJs in YBaCuO thin films deposited by MOCVD. A sample shows clear hysteresis and 23 voltage steps related to IJJs in the I- V curve. The maximum width of a step is about 2 mV at 5 K. We discuss the I- V characteristics and estimate the order of the parameters for the IJJ.

  3. Taking in a Show.

    PubMed

    Boden, Timothy W

    2016-01-01

    Many medical practices have cut back on education and staff development expenses, especially those costs associated with conventions and conferences. But there are hard-to-value returns on your investment in these live events--beyond the obvious benefits of acquired knowledge and skills. Major vendors still exhibit their services and wares at many events, and the exhibit hall is a treasure-house of information and resources for the savvy physician or administrator. Make and stick to a purposeful plan to exploit the trade show. You can compare products, gain new insights and ideas, and even negotiate better deals with representatives anxious to realize returns on their exhibition investments. PMID:27249887

  4. Biomechanical analysis of a new carbon fiber/flax/epoxy bone fracture plate shows less stress shielding compared to a standard clinical metal plate.

    PubMed

    Bagheri, Zahra S; Tavakkoli Avval, Pouria; Bougherara, Habiba; Aziz, Mina S R; Schemitsch, Emil H; Zdero, Radovan

    2014-09-01

    Femur fracture at the tip of a total hip replacement (THR), commonly known as Vancouver B1 fracture, is mainly treated using rigid metallic bone plates which may result in "stress shielding" leading to bone resorption and implant loosening. To minimize stress shielding, a new carbon fiber (CF)/Flax/Epoxy composite plate has been developed and biomechanically compared to a standard clinical metal plate. For fatigue tests, experiments were done using six artificial femurs cyclically loaded through the femoral head in axial compression for four stages: Stage 1 (intact), stage 2 (after THR insertion), stage 3 (after plate fixation of a simulated Vancouver B1 femoral midshaft fracture gap), and stage 4 (after fracture gap healing). For fracture fixation, one group was fitted with the new CF/Flax/Epoxy plate (n = 3), whereas another group was repaired with a standard clinical metal plate (Zimmer, Warsaw, IN) (n = 3). In addition to axial stiffness measurements, infrared thermography technique was used to capture the femur and plate surface stresses during the testing. Moreover, finite element analysis (FEA) was performed to evaluate the composite plate's axial stiffness and surface stress field. Experimental results showed that the CF/Flax/Epoxy plated femur had comparable axial stiffness (fractured = 645 ± 67 N/mm; healed = 1731 ± 109 N/mm) to the metal-plated femur (fractured = 658 ± 69 N/mm; healed = 1751 ± 39 N/mm) (p = 1.00). However, the bone beneath the CF/Flax/Epoxy plate was the only area that had a significantly higher average surface stress (fractured = 2.10 ± 0.66 MPa; healed = 1.89 ± 0.39 MPa) compared to bone beneath the metal plate (fractured = 1.18 ± 0.93 MPa; healed = 0.71 ± 0.24 MPa) (p < 0.05). FEA bone surface stresses yielded peak of 13 MPa at distal epiphysis (stage 1), 16 MPa at distal epiphysis (stage 2), 85 MPa for composite and 129

  5. Nanospot soldering polystyrene nanoparticles with an optical fiber probe laser irradiating a metallic AFM probe based on the near-field enhancement effect.

    PubMed

    Cui, Jianlei; Yang, Lijun; Wang, Yang; Mei, Xuesong; Wang, Wenjun; Hou, Chaojian

    2015-02-01

    With the development of nanoscience and nanotechnology for the bottom-up nanofabrication of nanostructures formed from polystyrene nanoparticles, joining technology is an essential step in the manufacturing and assembly of nanodevices and nanostructures in order to provide mechanical integration and connection. To study the nanospot welding of polystyrene nanoparticles, we propose a new nanospot-soldering method using the near-field enhancement effect of a metallic atomic force microscope (AFM) probe tip that is irradiated by an optical fiber probe laser. On the basis of our theoretical analysis of the near-field enhancement effect, we set up an experimental system for nanospot soldering; this approach is carried out by using an optical fiber probe laser to irradiate the AFM probe tip to sinter the nanoparticles, providing a promising technical approach for the application of nanosoldering in nanoscience and nanotechnology. PMID:25582678

  6. Not a "reality" show.

    PubMed

    Wrong, Terence; Baumgart, Erica

    2013-01-01

    The authors of the preceding articles raise legitimate questions about patient and staff rights and the unintended consequences of allowing ABC News to film inside teaching hospitals. We explain why we regard their fears as baseless and not supported by what we heard from individuals portrayed in the filming, our decade-long experience making medical documentaries, and the full un-aired context of the scenes shown in the broadcast. The authors don't and can't know what conversations we had, what documents we reviewed, and what protections we put in place in each televised scene. Finally, we hope to correct several misleading examples cited by the authors as well as their offhand mischaracterization of our program as a "reality" show. PMID:23631336

  7. AFM-based force spectroscopy measurements of mature amyloid fibrils of the peptide glucagon

    NASA Astrophysics Data System (ADS)

    Dong, Mingdong; Bruun Hovgaard, Mads; Mamdouh, Wael; Xu, Sailong; Otzen, Daniel Erik; Besenbacher, Flemming

    2008-09-01

    We report on the mechanical characterization of individual mature amyloid fibrils by atomic force microscopy (AFM) and AFM-based single-molecule force spectroscopy (SMFS). These self-assembling materials, formed from the 29-residue amphiphatic peptide hormone glucagon, were found to display a reversible elastic behaviour. Based on AFM morphology and SMFS studies, we suggest that the observed elasticity is due to a force-induced conformational transition which is reversible due to the β-helical conformation of protofibrils, allowing a high degree of extension. The elastic properties of such mature fibrils contribute to their high stability, suggesting that the internal hydrophobic interactions of amyloid fibrils are likely to be of fundamental importance in the assembly of amyloid fibrils and therefore for the understanding of the progression of their associated pathogenic disorders. In addition, such biological amyloid fibril structures with highly stable mechanical properties can potentially be used to produce nanofibres (nanowires) that may be suitable for nanotechnological applications.

  8. Imaging and force measurement of LDL and HDL by AFM in air and liquid

    PubMed Central

    Gan, Chaoye; Ao, Meiying; Liu, Zhanghua; Chen, Yong

    2015-01-01

    The size and biomechanical properties of lipoproteins are tightly correlated with their structures/functions. While atomic force microscopy (AFM) has been used to image lipoproteins the force measurement of these nano-sized particles is missing. We detected that the sizes of LDL and HDL in liquid are close to the commonly known values. The Young’s modulus of LDL or HDL is ∼0.4 GPa which is similar to that of some viral capsids or nanovesicles but greatly larger than that of various liposomes. The adhesive force of LDL or HDL is small (∼200 pN). The comparison of AFM detection in air and liquid was also performed which is currently lacking. Our data may provide useful information for better understanding and AFM detection of lipoproteins. PMID:25893163

  9. AFM characterization of nonwoven material functionalized by ZnO sputter coating

    SciTech Connect

    Deng Bingyao; Yan Xiong; Wei Qufu Gao Weidong

    2007-10-15

    Sputter coatings provide new approaches to the surface functionalization of textile materials. In this study, polyethylene terephthalate (PET) nonwoven material was used as a substrate for creating functional nanostructures on the fiber surfaces. A magnetron sputter coating was used to deposit functional zinc oxide (ZnO) nanostructures onto the nonwoven substrate. The evolution of the surface morphology of the fibers in the nonwoven web was examined using atomic force microscopy (AFM). The AFM observations revealed a significant difference in the morphology of the fibers before and after the sputter coating. The AFM images also indicated the effect of the sputtering conditions on the surface morphology of the fibers. The increase in the sputtering time led to the growth of the ZnO grains on the fiber surfaces. The higher pressure in the sputtering chamber could cause the formation of larger grains on the fiber surfaces. The higher power used also generated larger grains on the fiber surfaces.

  10. High precision attachment of silver nanoparticles on AFM tips by dielectrophoresis.

    PubMed

    Leiterer, Christian; Wünsche, Erik; Singh, Prabha; Albert, Jens; Köhler, Johann M; Deckert, Volker; Fritzsche, Wolfgang

    2016-05-01

    AFM tips are modified with silver nanoparticles using an AC electrical field. The used technique works with sub-micron precision and also does not require chemical modification of the tip. Based on the electrical parameters applied in the process, particle density and particle position on the apex of the tip can be adjusted. The feasibility of the method is proven by subsequent tip-enhanced Raman spectroscopy (TERS) measurements using the fabricated tips as a measurement probe. Since this modification process itself does not require any lithographic processing, the technique can be easily adapted to modify AFM tips with a variety of nanostructures with pre-defined properties, while being parallelizable for a potential commercial application. Graphical abstract Silver nanoparticles attached to AFM tips using dielectrophoresis. Comparing nanoparticles attached using 1 kHz (left) to 1 MHz (right), SEM and optical (inset) images. PMID:26968565

  11. The Standards We Need: A Comparative Analysis of Performance Standards Shows Us What Is Essential for Principals to Know and Be Able to Do to Improve Achievement

    ERIC Educational Resources Information Center

    Waters, Tim; Kingston, Sally

    2005-01-01

    This paper describes the findings from Mid-continent Research for Education and Learning's (McREL) comparative analysis of the Balanced Leadership Framework and the Interstate School Leaders Licensure Consortium (ISLLC) standards and provides insights about what future standards for school-level leaders should encompass. McREL conducted a…

  12. Public medical shows.

    PubMed

    Walusinski, Olivier

    2014-01-01

    In the second half of the 19th century, Jean-Martin Charcot (1825-1893) became famous for the quality of his teaching and his innovative neurological discoveries, bringing many French and foreign students to Paris. A hunger for recognition, together with progressive and anticlerical ideals, led Charcot to invite writers, journalists, and politicians to his lessons, during which he presented the results of his work on hysteria. These events became public performances, for which physicians and patients were transformed into actors. Major newspapers ran accounts of these consultations, more like theatrical shows in some respects. The resultant enthusiasm prompted other physicians in Paris and throughout France to try and imitate them. We will compare the form and substance of Charcot's lessons with those given by Jules-Bernard Luys (1828-1897), Victor Dumontpallier (1826-1899), Ambroise-Auguste Liébault (1823-1904), Hippolyte Bernheim (1840-1919), Joseph Grasset (1849-1918), and Albert Pitres (1848-1928). We will also note their impact on contemporary cinema and theatre. PMID:25273491

  13. The Great Cometary Show

    NASA Astrophysics Data System (ADS)

    2007-01-01

    its high spatial and spectral resolution, it was possible to zoom into the very heart of this very massive star. In this innermost region, the observations are dominated by the extremely dense stellar wind that totally obscures the underlying central star. The AMBER observations show that this dense stellar wind is not spherically symmetric, but exhibits a clearly elongated structure. Overall, the AMBER observations confirm that the extremely high mass loss of Eta Carinae's massive central star is non-spherical and much stronger along the poles than in the equatorial plane. This is in agreement with theoretical models that predict such an enhanced polar mass-loss in the case of rapidly rotating stars. ESO PR Photo 06c/07 ESO PR Photo 06c/07 RS Ophiuchi in Outburst Several papers from this special feature focus on the later stages in a star's life. One looks at the binary system Gamma 2 Velorum, which contains the closest example of a star known as a Wolf-Rayet. A single AMBER observation allowed the astronomers to separate the spectra of the two components, offering new insights in the modeling of Wolf-Rayet stars, but made it also possible to measure the separation between the two stars. This led to a new determination of the distance of the system, showing that previous estimates were incorrect. The observations also revealed information on the region where the winds from the two stars collide. The famous binary system RS Ophiuchi, an example of a recurrent nova, was observed just 5 days after it was discovered to be in outburst on 12 February 2006, an event that has been expected for 21 years. AMBER was able to detect the extension of the expanding nova emission. These observations show a complex geometry and kinematics, far from the simple interpretation of a spherical fireball in extension. AMBER has detected a high velocity jet probably perpendicular to the orbital plane of the binary system, and allowed a precise and careful study of the wind and the shockwave

  14. An advanced AFM sensor for high-aspect ratio pattern profile in-line measurement

    NASA Astrophysics Data System (ADS)

    Watanabe, Masahiro; Baba, Shuichi; Nakata, Toshihiko; Kurenuma, Toru; Kuroda, Hiroshi; Hiroki, Takenori

    2006-03-01

    Design rule shrinkage and the wider adoption of new device structures such as STI, copper damascene interconnects, and deep trench structures have increased the necessity of in-line process monitoring of step heights and profiles of device structures. For monitoring active device patterns, not test patterns as in OCD, AFM is the only non-destructive 3D monitoring tool. The barriers to using AFM in-line monitoring are its slow throughput and the accuracy degradation associated with probe tip wear and spike noise caused by unwanted oscillation on the steep slopes of high-aspect-ratio patterns. Our proprietary AFM scanning method, Step in mode®, is the method best suited to measuring high-aspect-ratio pattern profiles. Because the probe is not dragged on the sample surface as in conventional AFM, the profile trace fidelity across steep slopes is excellent. Because the probe does not oscillate and hit the sample at a high frequency as in AC scanning mode, this mode is free from unwanted spurious noises on steep sample slopes and incurs extremely little probe tip wear. To fully take advantage of the above properties, we have developed an AFM sensor optimized for in-line use, which produces accurate profile data at high speeds. The control scheme we have developed for the AFM sensor, which we call "Smart Step-in", elaborately analyses the contact force signal, enabling efficient probe tip scanning and a low and stable contact force. The mechanism of the AFM sensor has been optimized for the higher scanning rate and has improved the accuracy, such as the scanning planarity, position and height accuracy, and slope angle accuracy. Our prototype AFM sensor can scan high-aspect-ratio patterns while stabilizing the contact force at 3 nN. The step height measurement repeatability was 0.8 nm (3σ). A STI-like test pattern was scanned, and the steep sidewalls with angles of 84° were measured with high fidelity and without spurious noises.

  15. MEMS piezoresistive ring resonator for AFM imaging with pico-Newton force resolution

    NASA Astrophysics Data System (ADS)

    Xiong, Z.; Walter, B.; Mairiaux, E.; Faucher, M.; Buchaillot, L.; Legrand, B.

    2013-03-01

    A new concept of atomic force microscope (AFM) oscillating probes using electrostatic excitation and piezoresistive detection is presented. The probe is characterized by electrical methods in vacuum and by mechanical methods in air. A frequency-mixing measurement technique is developed to reduce the parasitic signal floor. The probe resonance frequencies are in the 1 MHz range and the quality factor is measured about 53 000 in vacuum and 3000 in air. The ring probe is mounted onto a commercial AFM set-up and topographic images of patterned sample surfaces are obtained. The force resolution deduced from the measurements is about 10 pN Hz-0.5.

  16. Studying post-etching silicon crystal defects on 300mm wafer by automatic defect review AFM

    NASA Astrophysics Data System (ADS)

    Zandiatashbar, Ardavan; Taylor, Patrick A.; Kim, Byong; Yoo, Young-kook; Lee, Keibock; Jo, Ahjin; Lee, Ju Suk; Cho, Sang-Joon; Park, Sang-il

    2016-03-01

    Single crystal silicon wafers are the fundamental elements of semiconductor manufacturing industry. The wafers produced by Czochralski (CZ) process are very high quality single crystalline materials with known defects that are formed during the crystal growth or modified by further processing. While defects can be unfavorable for yield for some manufactured electrical devices, a group of defects like oxide precipitates can have both positive and negative impacts on the final device. The spatial distribution of these defects may be found by scattering techniques. However, due to limitations of scattering (i.e. light wavelength), many crystal defects are either poorly classified or not detected. Therefore a high throughput and accurate characterization of their shape and dimension is essential for reviewing the defects and proper classification. While scanning electron microscopy (SEM) can provide high resolution twodimensional images, atomic force microscopy (AFM) is essential for obtaining three-dimensional information of the defects of interest (DOI) as it is known to provide the highest vertical resolution among all techniques [1]. However AFM's low throughput, limited tip life, and laborious efforts for locating the DOI have been the limitations of this technique for defect review for 300 mm wafers. To address these limitations of AFM, automatic defect review AFM has been introduced recently [2], and is utilized in this work for studying DOI on 300 mm silicon wafer. In this work, we carefully etched a 300 mm silicon wafer with a gaseous acid in a reducing atmosphere at a temperature and for a sufficient duration to decorate and grow the crystal defects to a size capable of being detected as light scattering defects [3]. The etched defects form a shallow structure and their distribution and relative size are inspected by laser light scattering (LLS). However, several groups of defects couldn't be properly sized by the LLS due to the very shallow depth and low

  17. Coexistence of orbital and CE-AFM orders in colossal magnetoresistance manganites: A symmetry perspective

    NASA Astrophysics Data System (ADS)

    Ribeiro, J. L.

    2016-07-01

    The complex interplay between order parameters of different nature that dominates the physics of colossal magnetoresistance manganites is analysed from a symmetry based perspective. Phenomenological energies are given for the different competing phases. It is shown that the general trends observed in different systems, such as the mutual exclusion of orbital order and A-AFM order and the related stabilization of the CE-AFM order, stem to large extend from the symmetry of the parameters involved. The possible stabilization of complex phases where charge and orbital order coexist with magnetic and ferroelectric states is also anticipated.

  18. FRAME (Force Review Automation Environment): MATLAB-based AFM data processor.

    PubMed

    Partola, Kostyantyn R; Lykotrafitis, George

    2016-05-01

    Data processing of force-displacement curves generated by atomic force microscopes (AFMs) for elastic moduli and unbinding event measurements is very time consuming and susceptible to user error or bias. There is an evident need for consistent, dependable, and easy-to-use AFM data processing software. We have developed an open-source software application, the force review automation environment (or FRAME), that provides users with an intuitive graphical user interface, automating data processing, and tools for expediting manual processing. We did not observe a significant difference between manually processed and automatically processed results from the same data sets. PMID:26972765

  19. Direct visualization of the trimeric structure of the ASIC1a channel, using AFM imaging

    SciTech Connect

    Carnally, Stewart M.; Dev, Harveer S.; Stewart, Andrew P.; Barrera, Nelson P.; Van Bemmelen, Miguel X.; Schild, Laurent; Henderson, Robert M.; Edwardson, J.Michael

    2008-08-08

    There has been confusion about the subunit stoichiometry of the degenerin family of ion channels. Recently, a crystal structure of acid-sensing ion channel (ASIC) 1a revealed that it assembles as a trimer. Here, we used atomic force microscopy (AFM) to image unprocessed ASIC1a bound to mica. We detected a mixture of subunit monomers, dimers and trimers. In some cases, triple-subunit clusters were clearly visible, confirming the trimeric structure of the channel, and indicating that the trimer sometimes disaggregated after adhesion to the mica surface. This AFM-based technique will now enable us to determine the subunit arrangement within heteromeric ASICs.

  20. Multiparametric imaging of biological systems by force-distance curve-based AFM.

    PubMed

    Dufrêne, Yves F; Martínez-Martín, David; Medalsy, Izhar; Alsteens, David; Müller, Daniel J

    2013-09-01

    A current challenge in the life sciences is to understand how biological systems change their structural, biophysical and chemical properties to adjust functionality. Addressing this issue has been severely hampered by the lack of methods capable of imaging biosystems at high resolution while simultaneously mapping their multiple properties. Recent developments in force-distance (FD) curve-based atomic force microscopy (AFM) now enable researchers to combine (sub)molecular imaging with quantitative mapping of physical, chemical and biological interactions. Here we discuss the principles and applications of advanced FD-based AFM tools for the quantitative multiparametric characterization of complex cellular and biomolecular systems under physiological conditions. PMID:23985731

  1. Probing the PEDOT:PSS/cell interface with conductive colloidal probe AFM-SECM

    NASA Astrophysics Data System (ADS)

    Knittel, P.; Zhang, H.; Kranz, C.; Wallace, G. G.; Higgins, M. J.

    2016-02-01

    Conductive colloidal probe Atomic Force-Scanning Electrochemical Microscopy (AFM-SECM) is a new approach, which employs electrically insulated AFM probes except for a gold-coated colloid located at the end of the cantilever. Hence, force measurements can be performed while biasing the conductive colloid under physiological conditions. Moreover, such colloids can be modified by electrochemical polymerization resulting, e.g. in conductive polymer-coated spheres, which in addition may be loaded with specific dopants. In contrast to other AFM-based single cell force spectroscopy measurements, these probes allow adhesion measurements at the cell-biomaterial interface on multiple cells in a rapid manner while the properties of the polymer can be changed by applying a bias. In addition, spatially resolved electrochemical information e.g., oxygen reduction can be obtained simultaneously. Conductive colloid AFM-SECM probes modified with poly(3,4-ethylenedioxythiophene) doped with polystyrene sulfonate (PEDOT:PSS) are used for single cell force measurements in mouse fibroblasts and single cell interactions are investigated as a function of the applied potential.Conductive colloidal probe Atomic Force-Scanning Electrochemical Microscopy (AFM-SECM) is a new approach, which employs electrically insulated AFM probes except for a gold-coated colloid located at the end of the cantilever. Hence, force measurements can be performed while biasing the conductive colloid under physiological conditions. Moreover, such colloids can be modified by electrochemical polymerization resulting, e.g. in conductive polymer-coated spheres, which in addition may be loaded with specific dopants. In contrast to other AFM-based single cell force spectroscopy measurements, these probes allow adhesion measurements at the cell-biomaterial interface on multiple cells in a rapid manner while the properties of the polymer can be changed by applying a bias. In addition, spatially resolved electrochemical

  2. Mass and momentum interface equilibrium by molecular modeling. Simulating AFM adhesion between (120) gypsum faces in a saturated solution and consequences on gypsum cohesion

    SciTech Connect

    Jouanna, Paul Pedesseau, Laurent; Pepe, Gerard; Mainprice, David

    2008-03-15

    Properties of composite materials depend on interatomic phenomena occurring between binder crystals. Experimental information of Atomic Force Microscopy (A.F.M.) is of prime importance; however understanding is helped by molecular modeling. As underlined in Section 1, the present study is able to simulate crystal interfaces in presence of a solution within apertures less than 1 Nanometer at a full atomic scale. Section 2 presents the case study of a gypsum solution between (120) gypsum faces, with related boundary conditions and atomic interactions. Section 3 deals with the mass equilibrium of the solution within interfaces < 5 A, using the original Semi Analytical Stochastic Perturbations (SASP) approach. This information becomes in Section 4 the key for explaining the peak of adhesion obtained in A.F.M. around an aperture of 3 A and gives enlightenments on gypsum cohesion. In conclusion, this illustration shows the potentialities of full atomic modeling which could not be attained by any numerical approach at a mesoscopic scale.

  3. Morphological and biochemical analysis by atomic force microscopy and scanning near-field optical microscopy techniques of human keratinocytes (HaCaT) exposed to extremely low frequency 50 Hz magnetic field

    NASA Astrophysics Data System (ADS)

    Rieti, Sabrina; Manni, Vanessa; Lisi, Antonella; Grimaldi, Settimio; Generosi, Renato; Luce, Marco; Perfetti, Paolo; Cricenti, Antonio; Pozzi, Deleana; Giuliani, Livio

    2002-10-01

    We studied the effect of the interaction of electromagnetic radiation with human keratinocytes (HaCaT), at low (50 Hz, 1 mT) frequency using both atomic force microscopy (AFM) and scanning near-field optical microscopy (SNOM) techniques. AFM analysis showed modifications in shape and morphology in exposed cells, while SNOM indirect immunofluorescence analysis revealed an increase of segregation of β4 integrin (an adhesion marker) in the cell membrane of the same cells, suggesting that a higher percentage of the exposed cells shows a modified pattern of this adhesion marker.

  4. Short of the mark. A Modern Healthcare analysis of Form 990s shows some very profitable hospitals offering little subsidized care.

    PubMed

    Carlson, Joe; Evans, Melanie

    2011-03-21

    A Modern Healthcare analysis finds a widely uneven distribution in the levels of charity care given to the poor by various hospitals. Many of the charitable healthcare providers even acknowledge billing patients who, in retrospect, probably should have qualified for free care. "Hospitals, if they're not-for-profits, should act like a charity," says Sen. Chuck Grassley, left. "I expect nonprofit hospitals to fulfill their not-for-profit status by providing whatever charity care is needed". PMID:21516617

  5. Single-Cell Analysis and Next-Generation Immuno-Sequencing Show That Multiple Clones Persist in Patients with Chronic Lymphocytic Leukemia

    PubMed Central

    Kriangkum, Jitra; Motz, Sarah N.; Mack, Tanner; Beiggi, Sara; Baigorri, Eva; Kuppusamy, Hemalatha; Belch, Andrew R.; Johnston, James B.; Pilarski, Linda M.

    2015-01-01

    The immunoglobulin heavy chain (IGH) gene rearrangement in chronic lymphocytic leukemia (CLL) provides a unique molecular signature; however, we demonstrate that 26/198 CLL patients (13%) had more than one IGH rearrangement, indicating the power of molecular technology over phenotypic analysis. Single-cell PCR analysis and next-generation immuno-sequencing identified IGH-defined clones. In 23% (18/79) of cases whose clones carried unmutated immunoglobulin heavy chain variable (IGHV) genes (U-CLL), IGH rearrangements were bialleic with one productive (P) and one non-productive (NP) allele. Two U-CLL were biclonal, each clone being monoallelic (P). In 119 IGHV-mutated (M-CLL) cases, one had biallelic rearrangements in their CLL (P/NP) and five had 2–4 distinct clones. Allelic exclusion was maintained in all B-clones analyzed. Based on single-cell PCR analysis, 5/11 partner clones (45%) reached levels of >5x109 cells/L, suggesting second CLL clones. Partner clones persisted over years. Conventional IGH characterization and next-generation sequencing of 13 CLL, 3 multiple myeloma, 2 Waldenstrom’s macroglobulinemia and 3 age-matched healthy donors consistently identified the same rearranged IGH sequences. Most multiple clones occurred in M-CLL, perhaps indicative of weak clonal dominance, thereby associating with a good prognosis. In contrast, biallelic CLL occurred primarily in U-CLL thus being associated with poor prognosis. Extending beyond intra-clonal diversity, molecular analysis of clonal evolution and apparent subclones in CLL may also reflect inter-clonal diversity. PMID:26353109

  6. Waardenburg syndrome (WS): the analysis of a single family with a WS1 mutation showing linkage to RFLP markers on human chromosome 2q.

    PubMed Central

    Asher, J H; Morell, R; Friedman, T B

    1991-01-01

    Waardenburg syndrome type I (WS1; MIM 19350) is caused by a pleiotropic, autosomal dominant mutation with variable penetrance and expressivity. Of individuals with this mutation, 20%-25% are hearing impaired. A multilocus linkage analysis of RFLP data from a single WS1 family with 11 affected individuals indicates that the WS1 mutation in this family is linked to the following four marker loci located on the long arm of chromosome 2: ALPP (alkaline phosphatase, placental), FN1 (fibronectin 1), D2S3 (a unique-copy DNA segment), and COL6A3 (collagen VI, alpha 3). For the RFLP marker loci, a multilocus linkage analysis using MLINK produced a peak lod (Z) of 3.23 for the following linkage relationships and recombination fractions (theta i): (ALPP----.000----FN1)----.122----D2S3----.267----CO L6A3. A similar analysis produced a Z of 6.67 for the following linkage relationships and theta i values among the markers and WS1: (FN1----.000----WS1----.000----ALPP)----.123----D2S 3----.246----COL6A3. The data confirm the conclusion of Foy et al. that at least some WS1 mutations map to chromosome 2q. Images Figure 2 PMID:1670751

  7. Pathbreaking CBO Study Shows Dramatic Increases in Income Disparities in 1980s and 1990s: An Analysis of the CBO Data. Revised.

    ERIC Educational Resources Information Center

    Shapiro, Isaac; Greenstein, Robert; Primus, Wendell

    A study by the Congressional Budget Office of income and tax trends since 1979 showed dramatic increases in income disparities, especially between the wealthiest one percent of Americans and the rest of society, in the 1980s and 1990s. The percentage of income Americans paid in federal taxes declined for every income group between 1979-97. The…

  8. Maps showing interpretation, using R-mode factor analysis, of trace-element abundances in heavy-mineral concentrate samples, Delta 1° x 2° Quadrangle, Utah

    USGS Publications Warehouse

    Zimbelman, David R.

    1994-01-01

    A set of heavy-mineral concentrate data for the Delta 1° x 2° quadrangle, Utah Conterminous U.S. Mineral Assessment Program (CUSMAP) project was compiled from results of analyses of samples collected during the National Uranium Resource Evaluation Program (SURE), as well as results obtained from samples collected more recently by the USGS. Data results, sampling methods, and analytical methods are provided in Abrogast and others, 1993; 1990; 1988a; 1988b). A similar report, discussing results obtained from stream-sediment samples, is presented in Zimbelman (1993a). The Delta 1° x 2° quadrangle, Utah (figure 1) contains a variety of hydrothermal mineral deposit types, including porphyry-, vein-, replacement-, and Carlin-type deposits. These deposit types have been worked for commodities including gold, silver, beryllium, uranium, lead, zinc, copper, manganese, and cadmium (Lindsey, 1977; Morris and Mogensen, 1978; Zimbelman and others, 1990; Zimbelman and others, 1988). Heavy-mineral concentrate and stream-sediment samples derived from these hydrothermally altered rocks typically contain many geochemical anomalies (for example, see Zimbelman 1993b, c, d). Element associations characterizing lithology and hydrothermal mineral deposits can be distinguished using R-mode factor analysis. This tool often is useful in reconnaissance-scale surveys where sample anomalies are often weak. and single-element distributions may not help to delineate targets. R-mode factors analysis can help identify geologic trends and areas most likely to contain the mineral deposits. R-mode factor analysis was performed on a data set of results of analyses for 19 elements in 643 samples and produced a six-factor model. These six factors represent the geochemical contributions to the data set provided by lithologic and mineralization processes, The distribution of samples that contain high scores for mineralization-related factors is widespread in the Delta quadrangle. These sample sites

  9. Charge injection in thin dielectric layers by atomic force microscopy: influence of geometry and material work function of the AFM tip on the injection process

    NASA Astrophysics Data System (ADS)

    Villeneuve-Faure, C.; Makasheva, K.; Boudou, L.; Teyssedre, G.

    2016-06-01

    Charge injection and retention in thin dielectric layers remain critical issues for the reliability of many electronic devices because of their association with a large number of failure mechanisms. To overcome this drawback, a deep understanding of the mechanisms leading to charge injection close to the injection area is needed. Even though the charge injection is extensively studied and reported in the literature to characterize the charge storage capability of dielectric materials, questions about charge injection mechanisms when using atomic force microscopy (AFM) remain open. In this paper, a thorough study of charge injection by using AFM in thin plasma-processed amorphous silicon oxynitride layers with properties close to that of thermal silica layers is presented. The study considers the impact of applied voltage polarity, work function of the AFM tip coating and tip curvature radius. A simple theoretical model was developed and used to analyze the obtained experimental results. The electric field distribution is computed as a function of tip geometry. The obtained experimental results highlight that after injection in the dielectric layer the charge lateral spreading is mainly controlled by the radial electric field component independently of the carrier polarity. The injected charge density is influenced by the nature of electrode metal coating (work function) and its geometry (tip curvature radius). The electron injection is mainly ruled by the Schottky injection barrier through the field electron emission mechanism enhanced by thermionic electron emission. The hole injection mechanism seems to differ from the electron one depending on the work function of the metal coating. Based on the performed analysis, it is suggested that for hole injection by AFM, pinning of the metal Fermi level with the metal-induced gap states in the studied silicon oxynitride layers starts playing a role in the injection mechanisms.

  10. Charge injection in thin dielectric layers by atomic force microscopy: influence of geometry and material work function of the AFM tip on the injection process.

    PubMed

    Villeneuve-Faure, C; Makasheva, K; Boudou, L; Teyssedre, G

    2016-06-17

    Charge injection and retention in thin dielectric layers remain critical issues for the reliability of many electronic devices because of their association with a large number of failure mechanisms. To overcome this drawback, a deep understanding of the mechanisms leading to charge injection close to the injection area is needed. Even though the charge injection is extensively studied and reported in the literature to characterize the charge storage capability of dielectric materials, questions about charge injection mechanisms when using atomic force microscopy (AFM) remain open. In this paper, a thorough study of charge injection by using AFM in thin plasma-processed amorphous silicon oxynitride layers with properties close to that of thermal silica layers is presented. The study considers the impact of applied voltage polarity, work function of the AFM tip coating and tip curvature radius. A simple theoretical model was developed and used to analyze the obtained experimental results. The electric field distribution is computed as a function of tip geometry. The obtained experimental results highlight that after injection in the dielectric layer the charge lateral spreading is mainly controlled by the radial electric field component independently of the carrier polarity. The injected charge density is influenced by the nature of electrode metal coating (work function) and its geometry (tip curvature radius). The electron injection is mainly ruled by the Schottky injection barrier through the field electron emission mechanism enhanced by thermionic electron emission. The hole injection mechanism seems to differ from the electron one depending on the work function of the metal coating. Based on the performed analysis, it is suggested that for hole injection by AFM, pinning of the metal Fermi level with the metal-induced gap states in the studied silicon oxynitride layers starts playing a role in the injection mechanisms. PMID:27158768

  11. Simulated structure and imaging of NTCDI on Si(1 1 1)-7 × 7 : a combined STM, NC-AFM and DFT study.

    PubMed

    Jarvis, S P; Sweetman, A M; Lekkas, I; Champness, N R; Kantorovich, L; Moriarty, P

    2015-02-11

    The adsorption of naphthalene tetracarboxylic diimide (NTCDI) on Si(1 1 1)-7 × 7 is investigated through a combination of scanning tunnelling microscopy (STM), noncontact atomic force microscopy (NC-AFM) and density functional theory (DFT) calculations. We show that NTCDI adopts multiple planar adsorption geometries on the Si(1 1 1)-7 × 7 surface which can be imaged with intramolecular bond resolution using NC-AFM. DFT calculations reveal adsorption is dominated by covalent bond formation between the molecular oxygen atoms and the surface silicon adatoms. The chemisorption of the molecule is found to induce subtle distortions to the molecular structure, which are observed in NC-AFM images. PMID:25414147

  12. Open channel current noise analysis of S6 peptides from KvAP channel on bilayer lipid membrane shows bimodal power law scaling

    NASA Astrophysics Data System (ADS)

    Shrivastava, Rajan; Malik, Chetan; Ghosh, Subhendu

    2016-06-01

    Open channel current noise in synthetic peptide S6 of KvAP channel was investigated in a voltage clamp experiment on bilayer lipid membrane (BLM). It was observed that the power spectral density (PSD) of the component frequencies follows power law with different slopes in different frequency ranges. In order to know the origin of the slopes PSD analysis was done with signal filtering. It was found that the first slope in the noise profile follows 1 / f pattern which exists at lower frequencies and has high amplitude current noise, while the second slope corresponds to 1 /f 2 - 3 pattern which exists at higher frequencies with low amplitude current noise. In addition, white noise was observed at very large frequencies. It was concluded that the plausible reason for the multiple power-law scaling is the existence of different modes of non-equilibrium ion transport through the S6 channel.

  13. Genome analysis shows Bacillus axarquiensis is not a later heterotypic synonym of Bacillus mojavensis; reclassification of Bacillus malacitensis and Brevibacterium halotolerans as heterotypic synonyms of Bacillus axarquiensis.

    PubMed

    Dunlap, Christopher A; Bowman, Michael J; Schisler, David A; Rooney, Alejandro P

    2016-06-01

    Bacillus axarquiensis and Bacillus malacitensis were previously reported to be later heterotypic synonyms of Bacillus mojavensis, based primarily on DNA-DNA relatedness values. We have sequenced draft genomes of Bacillus axarquiensis NRRL B-41617T and Bacillus malacitensis NRRL B-41618T. Comparative genomics and DNA-DNA relatedness calculations showed that while Bacillus axarquiensis and Bacillus malacitensis are synonymous with each other, they are not synonymous with Bacillus mojavensis. In addition, a draft genome was completed for Brevibacterium halotolerans, a strain long suspected of being a Bacillus subtilis group member based on 16S rRNA similarities (99.8 % with Bacillus mojavensis). Comparative genomics and DNA-DNA relatedness calculations showed that Brevibacterium halotolerans is synonymous with Bacillus axarquiensis and Bacillus malacitensis. The pairwise in silico DNA-DNA hybridization values calculated in comparisons between the three conspecific strains were all greater than 92 %, which is well above the standard species threshold of 70 %. While the pairwise in silico DNA-DNA hybridization values calculated in comparisons of the three conspecific strains with Bacillus mojavensis were all less than 65 %. The combined results of our genotype and phenotype studies showed that Bacillus axarquiensis, Bacillus malacitensis and Brevibacterium halotolerans are conspecific and distinct from Bacillus mojavensis. Because the valid publication of the name Bacillus axarquiensis predates the publication of the name Bacillus malacitensis, we propose that Bacillus malacitensis be reclassified as a synonym of Bacillus axarquiensis. In addition, we propose to reclassify Brevibacterium halotolerans as a synonym of Bacillus axarquiensis. An amended description of Bacillus axarquiensis is provided. PMID:27030978

  14. A systematic review and meta-analysis of 130,000 individuals shows smoking does not modify the association of APOE genotype on risk of coronary heart disease

    PubMed Central

    Holmes, Michael V.; Frikke-Schmidt, Ruth; Melis, Daniela; Luben, Robert; Asselbergs, Folkert W.; Boer, Jolanda M.A.; Cooper, Jackie; Palmen, Jutta; Horvat, Pia; Engmann, Jorgen; Li, Ka-Wah; Onland-Moret, N. Charlotte; Hofker, Marten H.; Kumari, Meena; Keating, Brendan J.; Hubacek, Jaroslav A.; Adamkova, Vera; Kubinova, Ruzena; Bobak, Martin; Khaw, Kay-Tee; Nordestgaard, Børge G.; Wareham, Nick; Humphries, Steve E.; Langenberg, Claudia; Tybjaerg-Hansen, Anne; Talmud, Philippa J.

    2014-01-01

    Background Conflicting evidence exists on whether smoking acts as an effect modifier of the association between APOE genotype and risk of coronary heart disease (CHD). Methods and results We searched PubMed and EMBASE to June 11, 2013 for published studies reporting APOE genotype, smoking status and CHD events and added unpublished data from population cohorts. We tested for presence of effect modification by smoking status in the relationship between APOE genotype and risk of CHD using likelihood ratio test. In total 13 studies (including unpublished data from eight cohorts) with 10,134 CHD events in 130,004 individuals of European descent were identified. The odds ratio (OR) for CHD risk from APOE genotype (ε4 carriers versus non-carriers) was 1.06 (95% confidence interval (CI): 1.01, 1.12) and for smoking (present vs. past/never smokers) was OR 2.05 (95%CI: 1.95, 2.14). When the association between APOE genotype and CHD was stratified by smoking status, compared to non-ε4 carriers, ε4 carriers had an OR of 1.11 (95%CI: 1.02, 1.21) in 28,789 present smokers and an OR of 1.04 (95%CI 0.98, 1.10) in 101,215 previous/never smokers, with no evidence of effect modification (P-value for heterogeneity = 0.19). Analysis of pack years in individual participant data of >60,000 with adjustment for cardiovascular traits also failed to identify evidence of effect modification. Conclusions In the largest analysis to date, we identified no evidence for effect modification by smoking status in the association between APOE genotype and risk of CHD. PMID:25173947

  15. Genome-wide analysis of primary CD4+ and CD8+ T cell transcriptomes shows evidence for a network of enriched pathways associated with HIV disease

    PubMed Central

    2011-01-01

    Background HIV preferentially infects CD4+ T cells, and the functional impairment and numerical decline of CD4+ and CD8+ T cells characterize HIV disease. The numerical decline of CD4+ and CD8+ T cells affects the optimal ratio between the two cell types necessary for immune regulation. Therefore, this work aimed to define the genomic basis of HIV interactions with the cellular transcriptome of both CD4+ and CD8+ T cells. Results Genome-wide transcriptomes of primary CD4+ and CD8+ T cells from HIV+ patients were analyzed at different stages of HIV disease using Illumina microarray. For each cell subset, pairwise comparisons were performed and differentially expressed (DE) genes were identified (fold change >2 and B-statistic >0) followed by quantitative PCR validation. Gene ontology (GO) analysis of DE genes revealed enriched categories of complement activation, actin filament, proteasome core and proton-transporting ATPase complex. By gene set enrichment analysis (GSEA), a network of enriched pathways functionally connected by mitochondria was identified in both T cell subsets as a transcriptional signature of HIV disease progression. These pathways ranged from metabolism and energy production (TCA cycle and OXPHOS) to mitochondria meditated cell apoptosis and cell cycle dysregulation. The most unique and significant feature of our work was that the non-progressing status in HIV+ long-term non-progressors was associated with MAPK, WNT, and AKT pathways contributing to cell survival and anti-viral responses. Conclusions These data offer new comparative insights into HIV disease progression from the aspect of HIV-host interactions at the transcriptomic level, which will facilitate the understanding of the genetic basis of transcriptomic interaction of HIV in vivo and how HIV subverts the human gene machinery at the individual cell type level. PMID:21410942

  16. Quantitative analysis of free and bonded forms of volatile sulfur compouds in wine. Basic methodologies and evidences showing the existence of reversible cation-complexed forms.

    PubMed

    Franco-Luesma, Ernesto; Ferreira, Vicente

    2014-09-12

    This paper examines first some basic aspects critical to the analysis of Volatile Sulfur Compounds (VSCs), such as the analytical characteristics of the GC-pFPD system and the stability of the different standard solutions required for a proper calibration. Following, a direct static headspace analytical method for the determination of exclusively free forms of VSCs has been developed. Method repeatability is better than 4%, detection limits for main analytes are below 0.5μgL(-1), and the method dynamic linear range (r(2)>0.99) is expanded by controlling the split ratio in the chromatographic inlet to cover the natural range of occurrence of these compounds in wines. The method gives reliable estimates of headspace concentrations but, as expected, suffers from strong matrix effects with recoveries ranging from 0 to 100% or from 60 to 100 in the cases of H2S and the other mercaptans, respectively. This demonstrates the existence of strong interactions of these compounds with different matrix components. The complexing ability of Cu(2+) and to a lower extent Fe(2+) and Zn(2+) has been experimentally checked. A previously developed method in which the wine is strongly diluted with brine and the volatiles are preconcentrated by HS-SPME, was found to give a reliable estimation of the total amount (free+complexed) of mercaptans, demonstrating that metal-mercaptan complexes are reversible. The comparative analysis of different wines by the two procedures reveals that in normal wines H2S and methanethiol can be complexed at levels above 99%, with averages around 97% for H2S and 75% for methanethiol, while thioethers such as dimethyl sulfide (DMS) are not complexed. Overall, the proposed strategy may be generalized to understand problems caused by VSCs in different matrices. PMID:25064535

  17. The structure of high-methoxyl sugar acid gels of citrus pectin as determined by AFM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Images of native high methoxyl sugar acid gels (HMSAG) were obtained by atomic force microscopy (AFM) in the Tapping ModeTM. Electronic thinning of the pectin strands to one pixel wide allowed the pectin network to be viewed in the absence of variable strand widths related to preferentially solvate...

  18. AFM tip characterization by using FFT filtered images of step structures.

    PubMed

    Yan, Yongda; Xue, Bo; Hu, Zhenjiang; Zhao, Xuesen

    2016-01-01

    The measurement resolution of an atomic force microscope (AFM) is largely dependent on the radius of the tip. Meanwhile, when using AFM to study nanoscale surface properties, the value of the tip radius is needed in calculations. As such, estimation of the tip radius is important for analyzing results taken using an AFM. In this study, a geometrical model created by scanning a step structure with an AFM tip was developed. The tip was assumed to have a hemispherical cone shape. Profiles simulated by tips with different scanning radii were calculated by fast Fourier transform (FFT). By analyzing the influence of tip radius variation on the spectra of simulated profiles, it was found that low-frequency harmonics were more susceptible, and that the relationship between the tip radius and the low-frequency harmonic amplitude of the step structure varied monotonically. Based on this regularity, we developed a new method to characterize the radius of the hemispherical tip. The tip radii estimated with this approach were comparable to the results obtained using scanning electron microscope imaging and blind reconstruction methods. PMID:26517548

  19. Tapping and contact mode imaging of native chromosomes and extraction of genomic DNA using AFM tips

    NASA Astrophysics Data System (ADS)

    Sun, Yingchun; Arakawa, Hideo; Osada, Toshiya; Ikai, Atsushi

    2002-03-01

    It is very important both in medicine and biology to clarify the chromosomal structure to understand its functions. In a standard cytogenetic procedure, chromosomes are often fixed in a mixture of acetic acid and methanol. This process most likely changes the mechanical property of chromosomes. We adopted a method to prepare native and unfixed chromosomes from mouse 3T3 cells and used tapping and contact mode atomic force microscopy (AFM) to image and manipulate them. Modified AFM tips were used to image chromosomes in contact mode in air, and then the chromosome samples were immobilized on a substrate and placed in a buffer solution to pull out DNA-histone complexes from them after they were optimally treated with trypsin. From the AFM images, we could see several bands and granular structures on chromosomes. We obtained force curves indicating long fiber extensions from native chromosomes both with low (in high concentration of NaCl) and high forces (physiological conditions). The result suggested that the degree of chromosome condensation decreased in high concentration of salt. It agrees with the known fact of histone H1 dissociation in a high concentration of salt. We intend to pull out DNA-histone complexes from chromosomes for later molecular operations on them using an AFM.

  20. Relationship between model bacterial peptidoglycan network structures and AFM force-distance curves

    NASA Astrophysics Data System (ADS)

    Brown, Aidan; Wickham, Robert; Touhami, Ahmed; Dutcher, John

    2010-03-01

    Recent atomic force microscopy (AFM) measurements have involved pulling on Gram-negative bacterial sacculi with the AFM tip as a means of distinguishing between different proposed structures of the peptidoglycan network. The goal of the present study is to provide the theoretical connection between a given network structure and its response to the pulling force. We model the glycan strands as hinged rods, and the peptide cross-links as wormlike chains. Using Monte Carlo simulation to equilibrate the three-dimensional network, subject to a fixed AFM tip-to-substrate distance, we can compute the force exerted by the network on the AFM tip. The effects of adhesion of the sacculi to the substrate and enzymatic action on the network are included. We have modeled both the layered and the scaffold model for the peptidoglycan network structure. We have compared our theoretical force-distance curves for each network structure with experimental curves to determine which structure provides the best agreement with experiment.

  1. [AFM-based technologies as the way towards the reverse Avogadro number].

    PubMed

    Pleshakova, T O; Shumov, I D; Ivanov, Yu D; Malsagova, K A; Kaysheva, A L; Archakov, A I

    2015-01-01

    Achievement of the concentration detection limit for proteins at the level of the reverse Avogadro number determines the modern development of proteomics. In this review, the possibility of approximating the reverse Avogadro number by using nanotechnological methods (AFM-based fishing with mechanical and electrical stimulation, nanowire detectors, and other methods) are discussed. The ability of AFM to detect, count, visualize and characterize physico-chemical properties of proteins at concentrations up to 10(-17)-10(-18) M is demonstrated. The combination of AFM-fishing with mass-spectrometry allows the identification of proteins not only in pure solutions, but also in multi-component biological fluids (serum). The possibilities to improve the biospecific fishing efficiency by use of SOMAmers in both AFM and nanowire systems are discussed. The paper also provides criteria for evaluation of the sensitivity of fishing-based detection systems. The fishing efficiency depending on the detection system parameters is estimated. The practical implementation of protein fishing depending on the ratio of the sample solution volume and the surface of the detection system is discussed. The advantages and disadvantages of today's promising nanotechnological protein detection methods implemented on the basis of these schemes. PMID:25978390

  2. Afm Measrurements of Martian Soil Particles Using Mems Technology - Results from the PHOENIX Mission

    NASA Astrophysics Data System (ADS)

    Gautsch, S.; Parrat, D.; de Rooij, N. F.; Staufer, U.; Morookian, J. M.; Hecht, M. H.; Vijendran, S.; Sykulska, H.; Pike, W. T.

    2011-12-01

    Light scattering experiments conducted on Mars indicated that soil particles have dimensions around 1 μm. Particles in that range play an important role in the gas exchange between sub-surface water ice and the atmosphere. Their shape can help tracing the geological history and may indicate past presence of liquid water. NASA's Phoenix mission therefore decided to analyze soil and dust particles in the sub-micrometer to a few micrometer range using an atomic force microscope (AFM) for the first time on another planet. The co-axially mounted AFM was capable of resolving particles with 10nm lateral resolution. A MEMS approach combined with mechatronic concepts for the scanner was selected for implementing the AFM. For redundancy, the sensor chip featured eight silicon cantilevers each with a 7 to 8 μm high tip. The cantilevers could be cleaved off if contaminated. During NASA's Phoenix Mission, which operated on the red planet from May to October 2008, we could demonstrate successful AFM operations. The instrument has executed 85 experiments of which 26 were needed for calibration. Of the remaining experiments about half (28) returned images where signatures of particles could be discerned.

  3. Single-Molecule Studies of Integrins by AFM-Based Force Spectroscopy on Living Cells

    NASA Astrophysics Data System (ADS)

    Eibl, Robert H.

    The characterization of cell adhesion between two living cells at the single-molecule level, i.e., between one adhesion receptor and its counter-receptor, appears to be an experimental challenge. Atomic force microscopy (AFM) can be used in its force spectroscopy mode to determine unbinding forces of a single pair of adhesion receptors, even with a living cell as a probe. This chapter provides an overview of AFM force measurements of the integrin family of cell adhesion receptors and their ligands. A focus is given to major integrins expressed on leukocytes, such as lymphocyte function-associated antigen 1 (LFA-1) and very late antigen 4 (VLA-4). These receptors are crucial for leukocyte trafficking in health and disease. LFA-1 and VLA-1 can be activated within the bloodstream from a low-affinity to a high-affinity receptor by chemokines in order to adhere strongly to the vessel wall before the receptor-bearing leukocytes extravasate. The experimental considerations needed to provide near-physiological conditions for a living cell and to be able to measure adequate forces at the single-molecule level are discussed in detail. AFM technology has been developed into a modern and extremely sensitive tool in biomedical research. It appears now that AFM force spectroscopy could enter, within a few years, medical applications in diagnosis and therapy of cancer and autoimmune diseases.

  4. First-principles AFM image simulation with frozen density embedding theory

    NASA Astrophysics Data System (ADS)

    Sakai, Yuki; Lee, Alex J.; Chelikowsky, James R.

    We present efficient first-principles method of non-contact atomic force microscopy (nc-AFM). Ordinary nc-AFM simulations based on density functional theory (DFT) require exhaustive computational cost because it involves thousands of total energy calculations. Regarding the sample as a fixed external potential can reduce the computational cost, and we adopt frozen density embedding theory (FDET) for this purpose. Simulated nc-AFM images with FDET using a carbon monoxide tip well reproduces the full DFT images of benzene, pentacene, and graphene, although optimized tip-sample distances and interaction energies in FDET are underestimated and overestimated, respectively. The FDET-based simulation method is promising for AFM image simulation of surfaces and two-dimensional materials. This work was supported by U.S. DOE under Grant No. DE-FG02-06ER46286 and Award No. DE-SC0008877, and by Welch Foundation under Grant F-1837. Computational resources are provided by NERSC and TACC.

  5. CDSEM AFM hybrid metrology for the characterization of gate-all-around silicon nano wires

    NASA Astrophysics Data System (ADS)

    Levi, Shimon; Schwarzband, Ishai; Weinberg, Yakov; Cornell, Roger; Adan, Ofer; Cohen, Guy M.; Gignac, Lynne; Bangsaruntip, Sarunya; Hand, Sean; Osborne, Jason; Feinstein, Adam

    2014-04-01

    In an ongoing study of the physical characterization of Gate-All-Around Silicon Nano Wires (GAASiNW), we found that the thin, suspended wires are prone to buckling as a function of their length and diameter. This buckling takes place between the fixed source and drain regions of the suspended wire, and can affect the device performance and therefore must be studied and controlled. For cylindrical SiNW, theory predicts that buckling has no directional preference. However, 3D CDSEM measurement results indicated that cylindrical wires prefer to buckle towards the wafer. To validate these results and to determine if the electron beam or charging is affecting our observations, we used 3D-AFM measurements to evaluate the buckling. To assure that the CDSEM and 3D-AFM measure the exact same locations, we developed a design based recipe generation approach to match the 3D-AFM and CDSEM coordinate systems. Measuring the exact same sites enables us to compare results and use 3D-AFM data to optimize CDSEM models. In this paper we will present a hybrid metrology approach to the characterization of GAASiNW for sub-nanometer variations, validating experimental results, and proposing methods to improve metrology capabilities.

  6. Amyloid-β peptides time-dependent structural modifications: AFM and voltammetric characterization.

    PubMed

    Enache, Teodor Adrian; Chiorcea-Paquim, Ana-Maria; Oliveira-Brett, Ana Maria

    2016-07-01

    The human amyloid beta (Aβ) peptides, Aβ1-40 and Aβ1-42, structural modifications, from soluble monomers to fully formed fibrils through intermediate structures, were investigated, and the results were compared with those obtained for the inverse Aβ40-1 and Aβ42-1, mutant Aβ1-40Phe(10) and Aβ1-40Nle(35), and rat Aβ1-40Rat peptide sequences. The aggregation was followed at a slow rate, in chloride free media and room temperature, and revealed to be a sequence-structure process, dependent on the physicochemical properties of each Aβ peptide isoforms, and occurring at different rates and by different pathways. The fibrilization process was investigated by atomic force microscopy (AFM), via changes in the adsorption morphology from: (i) initially random coiled structures of ∼0.6 nm height, corresponding to the Aβ peptide monomers in random coil or in α-helix conformations, to (ii) aggregates and protofibrils of 1.5-6.0 nm height and (iii) two types of fibrils, corresponding to the Aβ peptide in a β-sheet configuration. The reactivity of the carbon electrode surface was considered. The hydrophobic surface induced rapid changes of the Aβ peptide conformations, and differences between the adsorbed fibrils, formed at the carbon surface (beaded, thin, <2.0 nm height) or in solution (long, smooth, thick, >2.0 nm height), were detected. Differential pulse voltammetry showed that, according to their primary structure, the Aβ peptides undergo oxidation in one or two steps, the first step corresponding to the tyrosine amino acids oxidation, and the second one to the histidine and methionine amino acids oxidation. The fibrilization process was electrochemically detected via the decrease of the Aβ peptide oxidation peak currents that occurred in a time dependent manner. PMID:27216391

  7. Inhibition of Hepatitis C Virus in Chimeric Mice by Short Synthetic Hairpin RNAs: Sequence Analysis of Surviving Virus Shows Added Selective Pressure of Combination Therapy

    PubMed Central

    Dallas, Anne; Ilves, Heini; Ma, Han; Chin, Daniel J.; MacLachlan, Ian; Klumpp, Klaus

    2014-01-01

    ABSTRACT We have recently shown that a cocktail of two short synthetic hairpin RNAs (sshRNAs), targeting the internal ribosome entry site of hepatitis C virus (HCV) formulated with lipid nanoparticles, was able to suppress viral replication in chimeric mice infected with HCV GT1a by up to 2.5 log10 (H. Ma et al., Gastroenterology 146:63–66.e5, http://dx.doi.org/10.1053/j.gastro.2013.09.049) Viral load remained about 1 log10 below pretreatment levels 21 days after the end of dosing. We have now sequenced the HCV viral RNA amplified from serum of treated mice after the 21-day follow-up period. Viral RNA from the HCV sshRNA-treated groups was altered in sequences complementary to the sshRNAs and nowhere else in the 500-nucleotide sequenced region, while the viruses from the control group that received an irrelevant sshRNA had no mutations in that region. The ability of the most commonly selected mutations to confer resistance to the sshRNAs was confirmed in vitro by introducing those mutations into HCV-luciferase reporters. The mutations most frequently selected by sshRNA treatment within the sshRNA target sequence occurred at the most polymorphic residues, as identified from an analysis of available clinical isolates. These results demonstrate a direct antiviral activity with effective HCV suppression, demonstrate the added selective pressure of combination therapy, and confirm an RNA interference (RNAi) mechanism of action. IMPORTANCE This study presents a detailed analysis of the impact of treating a hepatitis C virus (HCV)-infected animal with synthetic hairpin-shaped RNAs that can degrade the virus's RNA genome. These RNAs can reduce the viral load in these animals by over 99% after 1 to 2 injections. The study results confirm that the viral rebound that often occurred a few weeks after treatment is due to emergence of a virus whose genome is mutated in the sequences targeted by the RNAs. The use of two RNA inhibitors, which is more effective than use of either

  8. Characterization of Local Mechanical Properties of Polymer Thin Films and Polymer Nanocomposites via AFM indentations

    NASA Astrophysics Data System (ADS)

    Cheng, Xu

    AFM indentation has become a tool with great potential in the characterization of nano-mechanical properties of materials. Thanks to the nanometer sized probes, AFM indentation is capable of capturing the changes of multiple properties within the range of tens of nanometers, such task would otherwise be difficult by using other experiment instruments. Despite the great potentials of AFM indentation, it operates based on a simple mechanism: driving the delicate AFM probe to indent the sample surface, and recording the force-displacement response. With limited information provided by AFM indentation, efforts are still required for any practice to successfully extract the desired nano-scale properties from specific materials. In this thesis, we focus on the mechanical properties of interphase between polymer and inorganic materials. It is known that in nanocomposites, a region of polymer exist around nanoparticles with altered molecular structures and improved properties, which is named as interphase polymer. The system with polymer thin films and inorganic material substrates is widely used to simulate the interphase effect in nanocomposites. In this thesis, we developed an efficient and reliable method to process film/substrate samples and characterize the changes of local mechanical properties inside the interphase region with ultra-high resolution AFM mechanical mapping technique. Applying this newly developed method, the interphase of several film/substrate pairs were examined and compared. The local mechanical properties on the other side of the polymer thin film, the free surface side, was also investigated using AFM indentation equipped with surface modified probes. In order to extract the full spectrum of local elastic modulus inside the surface region in the range of only tens of nanometers, the different contact mechanics models were studied and compared, and a Finite Element model was also established. Though the film/substrate system has been wide used as

  9. Analysis of congenital disorder of glycosylation-Id in a yeast model system shows diverse site-specific under-glycosylation of glycoproteins.

    PubMed

    Bailey, Ulla-Maja; Jamaluddin, Muhammad Fairuz; Schulz, Benjamin L

    2012-11-01

    Asparagine-linked glycosylation is a common post-translational modification of proteins in eukaryotes. Mutations in the human ALG3 gene cause changed levels and altered glycan structures on mature glycoproteins and are the cause of a severe congenital disorder of glycosylation (CDG-Id). Diverse glycoproteins are also under-glycosylated in Saccharomyces cerevisae alg3 mutants. Here we analyzed site-specific glycosylation occupancy in this yeast model system using peptide-N-glycosidase F to label glycosylation sites with an asparagine-aspartate conversion that creates a new endoproteinase AspN cleavage site, followed by proteolytic digestion, and detection of peptides and glycopeptides by LC-ESI-MS/MS. We used this analytical method to identify and measure site-specific glycosylation occupancy in alg3 mutant and wild type yeast strains. We found decreased site-specific N-glycosylation occupancy in the alg3 knockout strain preferentially at Asn-Xaa-Ser sequences located in secondary structural elements, features previously associated with poor glycosylation efficiency. Furthermore, we identified 26 previously experimentally unverified glycosylation sites. Our results provide insights into the underlying mechanisms of disease in CDG-Id, and our methodology will be useful in site-specific glycosylation analysis in many model systems and clinical applications. PMID:23038983

  10. Investigation of mussel adhesive protein adsorption on polystyrene and poly(octadecyl methacrylate) using angle dependent XPS, ATR-FTIR, and AFM

    SciTech Connect

    Baty, A.M.; Suci, P.A.; Tyler, B.J.; Geesey, G.G.

    1996-02-10

    Despite many years of research effort, the molecular interactions that are responsible for microbial adhesion and fouling of surfaces remain obscure. An understanding of these interactions would contribute to the development of surfaces that resist colonization of microorganisms. The irreversible adsorption of mussel adhesive proteins (MAP) from the marine mussel Mytilus edulis has been investigated on polystyrene (PS) and poly(octadecyl methacrylate) (POMA) surfaces using angle resolved X-ray photoelectron spectroscopy (XPS), attenuated total reflection Fourier transform infrared (ATR-FTIR) spectrometry, and atomic force microscopy (AFM). Angle resolved XPS was used to quantify the elemental composition with depth of the upper 90 {angstrom} of the surface, and AFM was used to obtain the surface topography. The adsorption pattern of MAP, revealed by AFM images, is distinctly different on the two polymer surfaces and suggests that the substratum influences protein adhesion. The depth profiles of MAP, obtained from angle resolved XPS, show differences in nitrogen composition with depth for MAP adsorbed to PS and POMA. Infrared spectra of hydrated adsorbed MAP revealed significant differences in the amide III region and in two bands which may originate from residues in the tandemly repeated sequences of MAP. This data demonstrates that the chemistry of the polymer film that is present at the protein-polymer interface can influence protein-protein and protein-surface interactions.

  11. Spectral and AFM characterization of trimethylammoniophenylporphyrin and concanavalin A associate in solution and monolithic SiO 2 gels obtained by the sol-gel method

    NASA Astrophysics Data System (ADS)

    Polska, Katarzyna; Radzki, Stanisław

    2008-06-01

    The associate between water-soluble cationic tetrakis[4-(trimethylammonio)phenyl] porphyrin (H2TTMePP) and concanavalin A (Con A) has been studied in the tris-buffer solution by absorption and emission electron spectroscopy. The porphyrin and porphyrin concanavalin associate has been incorporated into the monolithic pure silica gels obtained by polycondensation of tetraethoxysilane. The optically transparent dried gels were studied using absorption and fluorescence spectroscopic techniques and also by the tapping mode of atomic force microscopy (AFM). Complex formation between porphyrin and concanavalin takes place in both solution and gel. In these media porphyrin and its lectin associate exhibit luminescence emission in the vis-ir range when excited with visible light. Upon binding to concanavalin A the increase in porphyrin fluorescence intensity and the red-shift in the absorption and emission maxima have been observed. AFM visualisation of porphyrin and the porphyrin-concanavalin conjugate shows significant differences between nanostructures of the pure porphyrin and complex doped gels. It has been found that the ''smooth'' surfaces of silica gels prepared by the sol-gel technique are an excellent medium for the AFM visualisation of biomolecules.

  12. Polymer coatings on conductive polypyrroles surface characterization by XPS, ToFSIMS, inverse gas chromatography and AFM

    SciTech Connect

    Chehimi, M.M.; Abel, M.; Delamar, M.; Watts, J.F.; Zhdan, P.A.

    1996-01-01

    The study of PMMA adsorption on some conducting polypyrroles (PPys) using a variety of surface analytical techniques is reported. PMMA adsorption was monitored by X-ray photoelectron spectroscopy (XPS), time of flight secondary ion mass spectroscopy (ToF-SIMS) and inverse gas chromatography (IGC). XPS and ToF-SIMS permit to determine the surface composition of PMMA-coated PPy surfaces vs the solvent nature, temperature and the PPy dopant anion. Both techniques show that acid-base interactions may govern PMMA adsorption. IGC was used to determine the coating morphology by monitoring the surface energy of the coated PPy powders. It is suggested that homogeneity of PMMA coatings increases with decreasing solvent power. Preliminary atomic force microscopy (AFM) results on PMMA films cast on flat PPy surfaces confirm the IGC observation. {copyright} {ital 1996 American Institute of Physics.}

  13. STM/AFM investigations of β-MoTe 2, α-MoTe 2 and WTe 2

    NASA Astrophysics Data System (ADS)

    Hla, S. W.; Marinković, V.; Prodan, A.; Muševič, I.

    1996-05-01

    There is controversy in the literature concerning the correspondence of STM images to the atomic positions on some transition metal layered dichalcogenide surfaces. Although it is difficult to differentiate between metal and chalcogen atoms in these crystals with hexagonal symmetry, like α-MoTe 2, this can be done in cases of β-MoTe 2 and WTe 2 with changed metal-Te distances. Contrary to published STM images of WTe 2 our STM images of β-MoTe 2 show details which resemble the structure of both corrugated topmost Te and metal layers. The d z 2 orbitals of metal atoms protruding vertically upward may provide the tunneling current in this case. The detection of surface or sub-surface atoms depends on the tip electronic condition. The STM results are compared with those from AFM.

  14. Interaction of Nano-Sized Materials With Polymer Chains in Polymer-Nanocomposite Thin Films-An AFM Perspective

    SciTech Connect

    Verma, Gaurav; Kaushik, Anupama; Ghosh, Anup K.

    2011-12-12

    Nanocomposite thin films were prepared with polyurethane as a matrix and organically modified clay as a filler. The interfacial interaction between the exfoliated clay nanoplatelets and the polymeric chains has been investigated by using Atomic Force Microscopy (AFM). The nanoclay platelets show a preferential association with the hard domains of polyurethane matrix on the surface of the thin films. The pendant hydroxyl group on the nanoplatelets attract the isocyanate of the polyisocyanate and a urethane group is formed. This leads to the 'clouding' and 'entwining' of the nanoplatelets by the hard segmental chains. This is the first visual evidence of nanomaterial filler and polymer matrix interaction and it could open up a spectrum of novel property achievements in nanocomposite thin films. Also the understanding of this interaction can lead to more controlled architecture of nanocomposites.

  15. Nanodimentional Aggregates In Organic Monolayers Studied With Atomic Force Microscopy (AFM) And Fluorescence Lifetime Imaging Microscopy (FLIM)

    NASA Astrophysics Data System (ADS)

    Ivanov, George R.; Burov, Julian

    2007-04-01

    Organic monolayers from a fluorescently labeled phospholipid (DPPE-NBD) were deposited on solid supports under special conditions that form stable nanometer wide bilayers cylinders that protrude from the monolayer. This molecule was frequently used in sensor applications due to its sensitivity to environment changes. The proposed configuration should provide both fast response times (ultra thin film) and increased sensitivity (greatly increased surface area). AFM can clearly distinguish between the different phases. The height difference between the solid-expanded and the liquid-expanded phase was measured to be 1.4 nm while the bilayer thickness was 5.6 nm. The solid domains show a 20 % decrease in fluorescence lifetime in comparison to the monolayer as measured by FLIM. This difference in lifetimes is explained in the model of fluorescence self quenching in the solid phase due to the molecules being closer to each other.

  16. Measuring the energy landscape of complex bonds using AFM

    NASA Astrophysics Data System (ADS)

    Mayyas, Essa; Hoffmann, Peter; Runyan, Lindsay

    2009-03-01

    We measured rupture force of a complex bond of two interacting proteins with atomic force microscopy. Proteins of interest were active and latent Matrix metalloproteinases (MMPs), type 2 and 9, and their tissue inhibitors TIMP1 and TIMP2. Measurements show that the rupture force depends on the pulling speed; it ranges from 30 pN to 150 pN at pulling speeds 30nm/s to 48000nm/s. Analyzing data using an extended theory enabled us to understand the mechanism of MMP-TIMP interaction; we determined all physical parameters that form the landscape energy of the interaction, in addition to the life time of the bond and its length. Moreover, we used the pulling experiment to study the interaction of TIMP2 with the receptor MT1-MMP on the surface of living cells.

  17. MEG-measured auditory steady-state oscillations show high test-retest reliability: A sensor and source-space analysis.

    PubMed

    Tan, H-R M; Gross, J; Uhlhaas, P J

    2015-11-15

    Stability of oscillatory signatures across magnetoencephalography (MEG) measurements is an important prerequisite for basic and clinical research that has been insufficiently addressed. Here, we evaluated the test-retest reliability of auditory steady-state responses (ASSRs) over two MEG sessions. The study required participants (N=13) to detect the rare occurrence of pure tones interspersed within a stream of 5 Hz or 40 Hz amplitude-modulated (AM) tones. Intraclass correlations (ICC; Shrout and Fleiss, 1979) were derived to assess stability of spectral power changes and the inter-trial phase coherence (ITPC) of task-elicited neural responses. ASSRs source activity was estimated using eLORETA beamforming from bilateral auditory cortex. ASSRs to 40 Hz AM stimuli evoked stronger power modulation and phase-locking than 5 Hz stimulation. Overall, spectral power and ITPC values at both sensor- and source-level showed robust ICC values. Notably, ITPC measures yielded higher ICCs (~0.86-0.96) between sessions compared to the assessment of spectral power change (~0.61-0.82). Our data indicate that spectral modulations and phase consistency of ASSRs in MEG data are highly reproducible, providing support for MEG-measured oscillatory parameters in basic and clinical research. PMID:26216274

  18. Comprehensive Behavioral Analysis of Male Ox1r−/− Mice Showed Implication of Orexin Receptor-1 in Mood, Anxiety, and Social Behavior

    PubMed Central

    Abbas, Md. G.; Shoji, Hirotaka; Soya, Shingo; Hondo, Mari; Miyakawa, Tsuyoshi; Sakurai, Takeshi

    2015-01-01

    Neuropeptides orexin A and orexin B, which are exclusively produced by neurons in the lateral hypothalamic area, play an important role in the regulation of a wide range of behaviors and homeostatic processes, including regulation of sleep/wakefulness states and energy homeostasis. The orexin system has close anatomical and functional relationships with systems that regulate the autonomic nervous system, emotion, mood, the reward system, and sleep/wakefulness states. Recent pharmacological studies using selective antagonists have suggested that orexin receptor-1 (OX1R) is involved in physiological processes that regulate emotion, the reward system, and autonomic nervous system. Here, we examined Ox1r−/− mice with a comprehensive behavioral test battery to screen additional OX1R functions. Ox1r−/− mice showed increased anxiety-like behavior, altered depression-like behavior, slightly decreased spontaneous locomotor activity, reduced social interaction, increased startle response, and decreased prepulse inhibition. These results suggest that OX1R plays roles in social behavior and sensory motor gating in addition to roles in mood and anxiety. PMID:26696848

  19. Psychometric analysis in children with mental retardation due to perinatal hypoxia treated with fibroblast growth factor (FGF) and showing improvement in mental development.

    PubMed

    Aguilar, L C; Islas, A; Rosique, P; Hernandez, B; Portillo, E; Herrera, J M; Cortes, R; Cruz, S; Alfaro, F; Martin, R

    1993-12-01

    Basic fibroblast growth factor (bFGF) has shown a neurotrophic effect in the neurons of several CNS areas. In vivo, it contributes to restore neurochemical and morphological deficits in different rodent models of brain damage, including rats with brain damage induced by hypoxia/ischemia when FGF was intramuscularly (i.m.) administered. Toxicological and immunological studies performed in rats, mice and volunteers showed no evidence of side-effects. Bovine FGF was i.m. administered in children with mental retardation caused by perinatal hypoxia, aged 1-15 years, at dosages of 0.4 or 0.28 microgram kg-1, once or twice a month, over 7-12 months. Group A [n = 12; 6 treated (T), 6 controls (Ct)], group B (n = 16; 8 T, 8 Ct) and group C (n = 67; 45 T, 22 Ct) were evaluated with the P. A. R. scale, the WISC-RM and the Gesell scale, respectively. Development increased significantly in treated children from groups A (P < 0.02) and C (P < 0.001), and IQ rose by more than 10 points (P < 0.001) in group B patients. PMID:8123997

  20. Individual voxel-based analysis of brain magnetization transfer maps shows great variability of gray matter injury in the first stage of multiple sclerosis.

    PubMed

    Jure, Lorena; Zaaraoui, Wafaa; Rousseau, Celia; Reuter, Françoise; Rico, Audrey; Malikova, Irina; Confort-Gouny, Sylviane; Cozzone, Patrick J; Pelletier, Jean; Ranjeva, Jean-Philippe; Audoin, Bertrand

    2010-08-01

    In multiple sclerosis (MS), it seems likely that the variability of the long-term disability might be partly due to the variability of the early gray matter (GM) injury. In the present study, we assessed the variability of GM injury in early MS, using a method designed to determine individual pathological GM patterns. Eighteen patients presenting with a clinically isolated syndrome and 24 healthy matched control subjects were included in this study. Patients were explored using a 1.5 Tesla MR scanner (Magnetom Vision Plus; Siemens). Brain MR protocol included magnetization transfer ratio imaging (MTR). Statistical mapping analyses were performed to compare each subject's GM MTR maps with those of the whole group of control subjects (SPM5). The statistical threshold was taken to be the maximum P value showing no significant cluster when any control individual was compared with the whole control population. GM abnormalities were observed in 83% of the patients, ranging in size from 0.3 to 125 cm(3). Among the patients with GM abnormalities, 87% had abnormalities located in the temporal cortex, 80% in the frontal cortex, 80% in the limbic cortex, 73% in the posterior fossa, 53% in the deep GM, 47% in the parietal cortex, and 47% in the occipital cortex. Individual statistical mapping of MTR data, which gives a quantitative assessment of individual GM lesions, demonstrates great variability of grey matter injury in the first stage of multiple sclerosis. PMID:20677272

  1. Coating of AFM probes with aquatic humic and non-humic NOM to study their adhesion properties.

    PubMed

    Aubry, Cyril; Gutierrez, Leonardo; Croue, Jean Philippe

    2013-06-01

    Atomic force microscopy (AFM) was used to study interaction forces between four Natural Organic Matter (NOM) samples of different physicochemical characteristics and origins and mica surface at a wide range of ionic strength. All NOM samples were strongly adsorbed on positively charged iron oxide-coated silica colloidal probe. Cross-sectioning by focused ion beam milling technique and elemental mapping by energy-filtered transmission electron microscopy indicated coating completeness of the NOM-coated colloidal probes. AFM-generated force-distance curves were analyzed to elucidate the nature and mechanisms of these interacting forces. Electrostatics and steric interactions were important contributors to repulsive forces during approach, although the latter became more influential with increasing ionic strength. Retracting force profiles showed a NOM adhesion behavior on mica consistent with its physicochemical characteristics. Humic-like substances, referred as the least hydrophilic NOM fraction, i.e., so called hydrophobic NOM, poorly adsorbed on hydrophilic mica due to their high content of ionized carboxyl groups and aromatic/hydrophobic character. However, adhesion force increased with increasing ionic strength, suggesting double layer compression. Conversely, polysaccharide-like substances showed high adhesion to mica. Hydrogen-bonding between hydroxyl groups on polysaccharide-like substances and highly electronegative elements on mica was suggested as the main adsorption mechanism, where the adhesion force decreased with increasing ionic strength. Results from this investigation indicated that all NOM samples retained their characteristics after the coating procedure. The experimental approach followed in this study can potentially be extended to investigate interactions between NOM and clean or fouled membranes as a function of NOM physicochemical characteristics and solution chemistry. PMID:23587263

  2. The gene expression profiling of hepatocellular carcinoma by a network analysis approach shows a dominance of intrinsically disordered proteins (IDPs) between hub nodes.

    PubMed

    Singh, Sakshi; Colonna, Giovanni; Di Bernardo, Giovanni; Bergantino, Francesca; Cammarota, Marcella; Castello, Giuseppe; Costantini, Susan

    2015-11-01

    We have analyzed the transcriptomic data from patients with hepatocellular carcinoma (HCC) after viral HCV infection at the various stages of the disease by means of a networking analysis using the publicly available E-MTAB-950 dataset. The data was compared with those obtained in our group from HepG2 cells, a cancer cell line that lacks the viral infection. By sequential pruning of data, and also taking into account the data from cells of healthy patients as blanks, we were able to obtain a distribution of hub genes for the various stages that characterize the disease and finally, we isolated a metabolic sub-net specific to HCC alone. The general picture is that the basic organization to energetically and metabolically sustain the cells in both the normal and diseased conditions is the same, but a complex cluster of sub-networks controlled by hub genes drives the HCC progression with high metabolic flexibility and plasticity. In particular, we have extracted a sub-net of genes strictly correlated to other hub genes of the network from HepG2 cells, but specific for the HCC and mainly devoted to: (i) control at chromatin levels of cell division; (ii) control of ergastoplasmatic stress through protein degradation and misfolding; (iii) control of the immune response also through an increase of mature T-cells in the thymus. This sub-net is characterized by 26 hub genes coding for intrinsically disordered proteins with a high ability to interact with numerous molecular partners. Moreover, we have also noted that periphery molecules, that is, with one or very few interactions (e.g., cytokines or post-translational enzymes), which do not have a central role in the clusters that make up the global metabolic network, essentially have roles as information transporters. The results evidence a strong presence of intrinsically disordered proteins with key roles as hubs in the sub-networks that characterize the various stages of the disease, conferring a structural plasticity to

  3. Genetic analysis shows low levels of hybridization between African wildcats (Felis silvestris lybica) and domestic cats (F. s. catus) in South Africa

    PubMed Central

    Le Roux, Johannes J; Foxcroft, Llewellyn C; Herbst, Marna; MacFadyen, Sandra

    2015-01-01

    Hybridization between domestic and wild animals is a major concern for biodiversity conservation, and as habitats become increasingly fragmented, conserving biodiversity at all levels, including genetic, becomes increasingly important. Except for tropical forests and true deserts, African wildcats occur across the African continent; however, almost no work has been carried out to assess its genetic status and extent of hybridization with domestic cats. For example, in South Africa it has been argued that the long-term viability of maintaining pure wildcat populations lies in large protected areas only, isolated from human populations. Two of the largest protected areas in Africa, the Kgalagadi Transfrontier and Kruger National Parks, as well as the size of South Africa and range of landscape uses, provide a model situation to assess how habitat fragmentation and heterogeneity influences the genetic purity of African wildcats. Using population genetic and home range data, we examined the genetic purity of African wildcats and their suspected hybrids across South Africa, including areas within and outside of protected areas. Overall, we found African wildcat populations to be genetically relatively pure, but instances of hybridization and a significant relationship between the genetic distinctiveness (purity) of wildcats and human population pressure were evident. The genetically purest African wildcats were found in the Kgalagadi Transfrontier Park, while samples from around Kruger National Park showed cause for concern, especially combined with the substantial human population density along the park's boundary. While African wildcat populations in South Africa generally appear to be genetically pure, with low levels of hybridization, our genetic data do suggest that protected areas may play an important role in maintaining genetic purity by reducing the likelihood of contact with domestic cats. We suggest that approaches such as corridors between protected areas

  4. Genetic analysis shows low levels of hybridization between African wildcats (Felis silvestris lybica) and domestic cats (F. s. catus) in South Africa.

    PubMed

    Le Roux, Johannes J; Foxcroft, Llewellyn C; Herbst, Marna; MacFadyen, Sandra

    2015-01-01

    Hybridization between domestic and wild animals is a major concern for biodiversity conservation, and as habitats become increasingly fragmented, conserving biodiversity at all levels, including genetic, becomes increasingly important. Except for tropical forests and true deserts, African wildcats occur across the African continent; however, almost no work has been carried out to assess its genetic status and extent of hybridization with domestic cats. For example, in South Africa it has been argued that the long-term viability of maintaining pure wildcat populations lies in large protected areas only, isolated from human populations. Two of the largest protected areas in Africa, the Kgalagadi Transfrontier and Kruger National Parks, as well as the size of South Africa and range of landscape uses, provide a model situation to assess how habitat fragmentation and heterogeneity influences the genetic purity of African wildcats. Using population genetic and home range data, we examined the genetic purity of African wildcats and their suspected hybrids across South Africa, including areas within and outside of protected areas. Overall, we found African wildcat populations to be genetically relatively pure, but instances of hybridization and a significant relationship between the genetic distinctiveness (purity) of wildcats and human population pressure were evident. The genetically purest African wildcats were found in the Kgalagadi Transfrontier Park, while samples from around Kruger National Park showed cause for concern, especially combined with the substantial human population density along the park's boundary. While African wildcat populations in South Africa generally appear to be genetically pure, with low levels of hybridization, our genetic data do suggest that protected areas may play an important role in maintaining genetic purity by reducing the likelihood of contact with domestic cats. We suggest that approaches such as corridors between protected areas

  5. High throughput nanofabrication of silicon nanowire and carbon nanotube tips on AFM probes by stencil-deposited catalysts.

    PubMed

    Engstrom, Daniel S; Savu, Veronica; Zhu, Xueni; Bu, Ian Y Y; Milne, William I; Brugger, Juergen; Boggild, Peter

    2011-04-13

    A new and versatile technique for the wafer scale nanofabrication of silicon nanowire (SiNW) and multiwalled carbon nanotube (MWNT) tips on atomic force microscope (AFM) probes is presented. Catalyst material for the SiNW and MWNT growth was deposited on prefabricated AFM probes using aligned wafer scale nanostencil lithography. Individual vertical SiNWs were grown epitaxially by a catalytic vapor-liquid-solid (VLS) process and MWNTs were grown by a plasma-enhanced chemical vapor (PECVD) process on the AFM probes. The AFM probes were tested for imaging micrometers-deep trenches, where they demonstrated a significantly better performance than commercial high aspect ratio tips. Our method demonstrates a reliable and cost-efficient route toward wafer scale manufacturing of SiNW and MWNT AFM probes. PMID:21446752

  6. Characterization of single 1.8-nm Au nanoparticle attachments on AFM tips for single sub-4-nm object pickup

    PubMed Central

    2013-01-01

    This paper presents a novel method for the attachment of a 1.8-nm Au nanoparticle (Au-NP) to the tip of an atomic force microscopy (AFM) probe through the application of a current-limited bias voltage. The resulting probe is capable of picking up individual objects at the sub-4-nm scale. We also discuss the mechanisms involved in the attachment of the Au-NP to the very apex of an AFM probe tip. The Au-NP-modified AFM tips were used to pick up individual 4-nm quantum dots (QDs) using a chemically functionalized method. Single QD blinking was reduced considerably on the Au-NP-modified AFM tip. The resulting AFM tips present an excellent platform for the manipulation of single protein molecules in the study of single protein-protein interactions. PMID:24237663

  7. Nanoscopic polypyrrole AFM-SECM probes enabling force measurements under potential control

    NASA Astrophysics Data System (ADS)

    Knittel, P.; Higgins, M. J.; Kranz, C.

    2014-01-01

    Conductive polymers, and in particular polypyrrole, are frequently used as biomimetic interfaces facilitating growth and/or differentiation of cells and tissues. Hence, studying forces and local interactions between such polymer interfaces and cells at the nanoscale is of particular interest. Frequently, such force interactions are not directly accessible with high spatial resolution. Consequently, we have developed nanoscopic polypyrrole electrodes, which are integrated in AFM-SECM probes. Bifunctional AFM-SECM probes were modified via ion beam-induced deposition resulting in pyramidal conductive Pt-C composite electrodes. These nanoscopic electrodes then enabled localized polypyrrole deposition, thus resulting in polymer-modified AFM probes with a well-defined geometry. Furthermore, such probes may be reversibly switched from an insulating to a conductive state. In addition, the hydrophilicity of such polymer tips is dependent on the dopant, and hence, on the oxidation state. Force studies applying different tip potentials were performed at plasma-treated glass surfaces providing localized information on the associated force interactions, which are dependent on the applied potential and the dopant.Conductive polymers, and in particular polypyrrole, are frequently used as biomimetic interfaces facilitating growth and/or differentiation of cells and tissues. Hence, studying forces and local interactions between such polymer interfaces and cells at the nanoscale is of particular interest. Frequently, such force interactions are not directly accessible with high spatial resolution. Consequently, we have developed nanoscopic polypyrrole electrodes, which are integrated in AFM-SECM probes. Bifunctional AFM-SECM probes were modified via ion beam-induced deposition resulting in pyramidal conductive Pt-C composite electrodes. These nanoscopic electrodes then enabled localized polypyrrole deposition, thus resulting in polymer-modified AFM probes with a well

  8. Showing "F = BIL" Using Video Analysis

    ERIC Educational Resources Information Center

    Smith, Leon; Parker, David; Brown, Carl; Ireson, Gren

    2011-01-01

    The force on a current-carrying conductor in a magnetic field is a common aspect of post-16 physics courses. Many textbooks approach this topic via a current balance, e.g. Hutchins (1990) through to Duncan (2000), with websites such as "Practical Physics" giving a qualitative version. This article takes the approach of equating "F = BIL"sin[theta]…

  9. Study of galactomannose interaction with solids using AFM, IR and allied techniques.

    PubMed

    Wang, Jing; Somasundaran, Ponisseril

    2007-05-15

    Guar gum (GG) and locust bean gum (LBG) are two galactomannose polysaccharides with different mannose/galactose ratio which is widely used in many industrial sectors including food, textiles, paper, adhesive, paint, pharmaceuticals, cosmetics and mineral processing. They are natural nonionic polymers that are non-toxic and biodegradable. These properties make them ideal for industrial applications. However, a general lack of understanding of the interactions between the polysaccharides and solid surfaces has hindered wider application of these polymers. In this work, adsorption of locust bean gum and guar gum at the solid-liquid interface was investigated using adsorption tests, electrophoretic mobility measurements, FTIR, fluorescence spectroscopy, AFM and molecular modeling. Electrokinetic studies showed that the adsorption of GG and LBG on talc do not change its isoelectric point. In addition, GG and LBG adsorption on talc was found not to be affected by changes in solution conditions such as pH and ionic strength, which suggests a minor role of electrostatic force in adsorption. On the other hand, fluorescence spectroscopy studies conducted to investigate the role of hydrophobic bonding using pyrene probe showed no evidence of the formation of hydrophobic domains at talc-aqueous interface. Moreover, urea, a hydrogen bond breaker, markedly reduced the adsorption of LBG and GG on talc, supporting hydrogen bonding as an important role. In FTIR study, the changes in the infrared bands, associated with the CO stretch coupled to the CC stretch and OH deformation, were significant and therefore also supporting hydrogen bonding of GG and LBG to the solid surface. In addition, Langmuir modeling of adsorption isotherm further suggested that hydrogen bonding is the dominant force for polysaccharide adsorption since the adsorption free energy of these polymers is close to that for hydrogen bond formation. From molecular modeling, different helical structures are observed

  10. Pattern formation and control in polymeric systems: From Minkowski measures to in situ AFM imaging

    NASA Astrophysics Data System (ADS)

    Jacobs, Karin

    2014-03-01

    Thin liquid polymer films are not only of great technical importance, they also exhibit a variety of dynamical instabilities. Some of them may be desired, some rather not. To analyze and finally control pattern formation, modern thin film theories are as vital as techniques to characterize the morphologies and structures in and on the films. Examples for the latter are atomic force microscopy (AFM) as well as scattering techniques. The talk will introduce into the practical applications of Minkowski measures to characterize patterns and explain what thin film properties (e.g. capillary number, solid/liquid boundary condition, glass transition temperature, chain mobility) can further be extracted including new technical possibilities by AFM and scattering techniques.

  11. Carbon nanotube/carbon nanotube composite AFM probes prepared using ion flux molding

    NASA Astrophysics Data System (ADS)

    Chesmore, Grace; Roque, Carrollyn; Barber, Richard

    The performance of carbon nanotube-carbon nanotube composite (CNT/CNT composite) atomic force microscopy (AFM) probes is compared to that of conventional Si probes in AFM tapping mode. The ion flux molding (IFM) process, aiming an ion beam at the CNT probe, aligns the tip to a desired angle. The result is a relatively rigid tip that is oriented to offset the cantilever angle. Scans using these probes reveal an improvement in image accuracy over conventional tips, while allowing higher aspect ratio imaging of 3D surface features. Furthermore, the lifetimes of CNT-CNT composite tips are observed to be longer than both conventional tips and those claimed for other CNT technologies. Novel applications include the imaging of embiid silk. Supported by the Clare Boothe Luce Research Scholars Award and Carbon Design Innovations.

  12. Cell mechanics as a marker for diseases: Biomedical applications of AFM

    NASA Astrophysics Data System (ADS)

    Rianna, Carmela; Radmacher, Manfred

    2016-08-01

    Many diseases are related to changes in cell mechanics. Atomic Force Microscopy (AFM) is one of the most suitable techniques allowing the investigation of both topography and mechanical properties of adherent cells with high spatial resolution under physiological conditions. Over the years the use of this technique in medical and clinical applications has largely increased, resulting in the notion of cell mechanics as a biomarker to discriminate between different physiological and pathological states of cells. Cell mechanics has proven to be a biophysical fingerprint able discerning between cell phenotypes, unraveling processes in aging or diseases, or even detecting and diagnosing cellular pathologies. We will review in this report some of the works on cell mechanics investigated by AFM with clinical and medical relevance in order to clarify the state of research in this field and to highlight the role of cell mechanics in the study of pathologies, focusing on cancer, blood and cardiovascular diseases.

  13. Study of relaxation and transport processes by means of AFM based dielectric spectroscopy

    SciTech Connect

    Miccio, Luis A.

    2014-05-15

    Since its birth a few years ago, dielectric spectroscopy studies based on atomic force microscopy (AFM) have gained a growing interest. Not only the frequency and temperature ranges have become broader since then but also the kind of processes that can be studied by means of this approach. In this work we analyze the most adequate experimental setup for the study of several dielectric processes with a spatial resolution of a few nanometers by using force mode AFM based dielectric spectroscopy. Proof of concept experiments were performed on PS/PVAc blends and PMMA homopolymer films, for temperatures ranging from 300 to 400 K. Charge transport processes were also studied by this approach. The obtained results were analyzed in terms of cantilever stray contribution, film thickness and relaxation strength. We found that the method sensitivity is strongly coupled with the film thickness and the relaxation strength, and that it is possible to control it by using an adequate experimental setup.

  14. AFM imaging reveals the tetrameric structure of the TRPM8 channel

    SciTech Connect

    Stewart, Andrew P.; Egressy, Kinga; Lim, Annabel; Edwardson, J. Michael

    2010-04-02

    Several members of the transient receptor potential (TRP) channel superfamily have been shown to assemble as tetramers. Here we have determined the subunit stoichiometry of the transient receptor potential M8 (TRPM8) channel using atomic force microscopy (AFM). TRPM8 channels were isolated from transfected cells, and complexes were formed between the channels and antibodies against a V5 epitope tag present on each subunit. The complexes were then subjected to AFM imaging. A frequency distribution of the molecular volumes of antibody decorated channels had a peak at 1305 nm{sup 3}, close to the expected size of a TRPM8 tetramer. The frequency distribution of angles between pairs of bound antibodies had two peaks, at 93{sup o} and 172{sup o}, confirming that the channel assembles as a tetramer. We suggest that this assembly pattern is common to all members of the TRP channel superfamily.

  15. Controlled nanodot fabrication by rippling polycarbonate surface using an AFM diamond tip

    PubMed Central

    2014-01-01

    The single scratching test of polymer polycarbonate (PC) sample surface using an atomic force microscope (AFM) diamond tip for fabricating ripple patterns has been studied with the focus on the evaluation of the effect of the tip scratching angle on the pattern formation. The experimental results indicated that the different oriented ripples can be easily machined by controlling the scratching angles of the AFM. And, the effects of the normal load and the feed on the ripples formation and their periods were also studied. Based on the ripple pattern formation, we firstly proposed a two-step scratching method to fabricate controllable and oriented complex three-dimensional (3D) nanodot arrays. These typical ripple formations can be described via a stick-slip and crack formation process. PMID:25114660

  16. Molecular Dynamic Simulations of Interaction of an AFM Probe with the Surface of an SCN Sample

    NASA Technical Reports Server (NTRS)

    Bune, Adris; Kaukler, William; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Molecular dynamic (MD) simulations is conducted in order to estimate forces of probe-substrate interaction in the Atomic Force Microscope (AFM). First a review of available molecular dynamic techniques is given. Implementation of MD simulation is based on an object-oriented code developed at the University of Delft. Modeling of the sample material - succinonitrile (SCN) - is based on the Lennard-Jones potentials. For the polystyrene probe an atomic interaction potential is used. Due to object-oriented structure of the code modification of an atomic interaction potential is straight forward. Calculation of melting temperature is used for validation of the code and of the interaction potentials. Various fitting parameters of the probe-substrate interaction potentials are considered, as potentials fitted to certain properties and temperature ranges may not be reliable for the others. This research provides theoretical foundation for an interpretation of actual measurements of an interaction forces using AFM.

  17. Conservative and dissipative tip-sample interaction forces probed with dynamic AFM

    NASA Astrophysics Data System (ADS)

    Gotsmann, B.; Seidel, C.; Anczykowski, B.; Fuchs, H.

    1999-10-01

    The conservative and dissipative forces between tip and sample of a dynamic atomic force microscopy (AFM) were investigated using a combination of computer simulations and experimental AFM data obtained by the frequency modulation technique. In this way it became possible to reconstruct complete force versus distance curves and damping coefficient versus distance curves from experimental data without using fit parameters for the interaction force and without using analytical interaction models. A comparison with analytical approaches is given and a way to determine a damping coefficient curve from experimental data is proposed. The results include the determination of the first point of repulsive contact of a vibrating tip when approaching a sample. The capability of quantifying the tip-sample interaction is demonstrated using experimental data obtained with a silicon tip and a mica sample in UHV.

  18. Force-controlled manipulation of single cells: from AFM to FluidFM.

    PubMed

    Guillaume-Gentil, Orane; Potthoff, Eva; Ossola, Dario; Franz, Clemens M; Zambelli, Tomaso; Vorholt, Julia A

    2014-07-01

    The ability to perturb individual cells and to obtain information at the single-cell level is of central importance for addressing numerous biological questions. Atomic force microscopy (AFM) offers great potential for this prospering field. Traditionally used as an imaging tool, more recent developments have extended the variety of cell-manipulation protocols. Fluidic force microscopy (FluidFM) combines AFM with microfluidics via microchanneled cantilevers with nano-sized apertures. The crucial element of the technology is the connection of the hollow cantilevers to a pressure controller, allowing their operation in liquid as force-controlled nanopipettes under optical control. Proof-of-concept studies demonstrated a broad spectrum of single-cell applications including isolation, deposition, adhesion and injection in a range of biological systems. PMID:24856959

  19. BOREAS AFM-5 Level-2 Upper Air Network Standard Pressure Level Data

    NASA Technical Reports Server (NTRS)

    Barr, Alan; Hrynkiw, Charmaine; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The BOREAS AFM-5 team collected and processed data from the numerous radiosonde flights during the project. The goals of the AFM-05 team were to provide large-scale definition of the atmosphere by supplementing the existing AES aerological network, both temporally and spatially. This data set includes basic upper-air parameters interpolated at 0.5 kiloPascal increments of atmospheric pressure from data collected from the network of upper-air stations during the 1993, 1994, and 1996 field campaigns over the entire study region. The data are contained in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884) or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  20. Probing of local dissolution of Al-alloys in chloride solutions by AFM and SECM

    NASA Astrophysics Data System (ADS)

    Davoodi, A.; Pan, J.; Leygraf, C.; Norgren, S.

    2006-05-01

    Local dissolution of Al alloys was probed in situ in chloride solutions by using atomic force microscopy (AFM) and scanning electrochemical microscopy (SECM). Preferential dissolution in the boundary region between some intermetallic particles (IMPs) and alloy matrix, and trench formation around large IMPs during free immersion and under electrochemical anodic polarization were observed, which indicate different dissolution behavior associated to different types of IMPs. Moreover, by using an integrated AFM/SECM system with a dual mode cantilever/microelectrode probe, simultaneous probing of electrochemical active sites and topographic changes over the same area was performed with sub-micron resolution. This allowed the ongoing localized corrosion processes related to the IMP to be revealed.