Science.gov

Sample records for afm energy dispersive

  1. Investigation of growth rate dispersion in lactose crystallisation by AFM

    NASA Astrophysics Data System (ADS)

    Dincer, T. D.; Ogden, M. I.; Parkinson, G. M.

    2014-09-01

    α-Lactose monohydrate crystals have been reported to exhibit growth rate dispersion (GRD). Variation in surface dislocations has been suggested as the cause of GRD, but this has not been further investigated to date. In this study, growth rate dispersion and the change in morphology were investigated in situ and via bottle roller experiments. The surfaces of the (0 1 0) faces of crystals were examined with Atomic Force Microscopy. Smaller, slow growing crystals tend to have smaller (0 1 0) faces with narrow bases and displayed a single double spiral in the centre of the crystal with 2 nm high steps. Additional double spirals in other crystals resulted in faster growth rates. Large, fast growing crystals were observed to have larger (0 1 0) faces with fast growth in both the a and b directions (giving a broader crystal base) with macro steps parallel to the (c direction). The number and location of spirals or existence of macro steps appears to influence the crystal morphology, growth rates and growth rate dispersion in lactose crystals.

  2. The C-S-H gel of Portland cement mortars: Part I. The interpretation of energy-dispersive X-ray microanalyses from scanning electron microscopy, with some observations on C-S-H, AFm and AFt phase compositions

    SciTech Connect

    Famy, C.; Brough, A.R.; Taylor, H.F.W

    2003-09-01

    Scanning electron microscopy (SEM) microanalyses of the calcium-silicate-hydrate (C-S-H) gel in Portland cement pastes rarely represent single phases. Essential experimental requirements are summarised and new procedures for interpreting the data are described. These include, notably, plots of Si/Ca against other atom ratios, 3D plots to allow three such ratios to be correlated and solution of linear simultaneous equations to test and quantify hypotheses regarding the phases contributing to individual microanalyses. Application of these methods to the C-S-H gel of a 1-day-old mortar identified a phase with Al/Ca=0.67 and S/Ca=0.33, which we consider to be a highly substituted ettringite of probable composition C{sub 6}A{sub 2}S-bar{sub 2}H{sub 34} or {l_brace}Ca{sub 6}[Al(OH){sub 6}]{sub 2}{center_dot}24H{sub 2}O{r_brace}(SO{sub 4}){sub 2}[Al(OH){sub 4}]{sub 2}. If this is true for Portland cements in general, it might explain observed discrepancies between observed and calculated aluminate concentrations in the pore solution. The C-S-H gel of a similar mortar aged 600 days contained unsubstituted ettringite and an AFm phase with S/Ca=0.125.

  3. Measuring the energy landscape of complex bonds using AFM

    NASA Astrophysics Data System (ADS)

    Mayyas, Essa; Hoffmann, Peter; Runyan, Lindsay

    2009-03-01

    We measured rupture force of a complex bond of two interacting proteins with atomic force microscopy. Proteins of interest were active and latent Matrix metalloproteinases (MMPs), type 2 and 9, and their tissue inhibitors TIMP1 and TIMP2. Measurements show that the rupture force depends on the pulling speed; it ranges from 30 pN to 150 pN at pulling speeds 30nm/s to 48000nm/s. Analyzing data using an extended theory enabled us to understand the mechanism of MMP-TIMP interaction; we determined all physical parameters that form the landscape energy of the interaction, in addition to the life time of the bond and its length. Moreover, we used the pulling experiment to study the interaction of TIMP2 with the receptor MT1-MMP on the surface of living cells.

  4. Electromagnetic energy momentum in dispersive media

    SciTech Connect

    Philbin, T. G.

    2011-01-15

    The standard derivations of electromagnetic energy and momentum in media take Maxwell's equations as the starting point. It is well known that for dispersive media this approach does not directly yield exact expressions for the energy and momentum densities. Although Maxwell's equations fully describe electromagnetic fields, the general approach to conserved quantities in field theory is not based on the field equations, but rather on the action. Here an action principle for macroscopic electromagnetism in dispersive, lossless media is used to derive the exact conserved energy-momentum tensor. The time-averaged energy density reduces to Brillouin's simple formula when the fields are monochromatic. The time-averaged momentum density for monochromatic fields corresponds to the familiar Minkowski expression DxB, but for general fields in dispersive media the momentum density does not have the Minkowski value. The results are unaffected by the debate over momentum balance in light-matter interactions.

  5. A new approach to decoupling of bacterial adhesion energies measured by AFM into specific and nonspecific components.

    PubMed

    Eskhan, Asma O; Abu-Lail, Nehal I

    2014-02-01

    A new method to decoupling of bacterial interactions measured by atomic force microscopy (AFM) into specific and nonspecific components is proposed. The new method is based on computing the areas under the approach and retraction curves. To test the efficacy of the new method, AFM was used to probe the repulsion and adhesion energies present between L. monocytogenes cells cultured at five pH values (5, 6, 7, 8 and 9) and silicon nitride (Si3N4). Overall adhesion energy was then decoupled into its specific and nonspecific components using the new method as well as using Poisson statistical approach. Poisson statistical method represents the most commonly used approach to decouple bacterial interactions into their components. For all pH conditions investigated, specific energies dominated the adhesion and a transition in adhesion and repulsion energies for cells cultured at pH 7 was observed. When compared, the differences in the specific and nonspecific energies obtained using Poisson analysis and the new method were on average 2.2% and 6.7%, respectively. The relatively close energies obtained using the two approaches demonstrate the efficacy of the new method as an alternative way to decouple adhesion energies into their specific and nonspecific components. PMID:24563576

  6. A new approach to decoupling of bacterial adhesion energies measured by AFM into specific and nonspecific components

    PubMed Central

    Eskhan, Asma O.; Abu-Lail, Nehal I.

    2013-01-01

    A new method to decoupling of bacterial interactions measured by atomic force microscopy (AFM) into specific and nonspecific components is proposed. The new method is based on computing the areas under the approach and retraction curves. To test the efficacy of the new method, AFM was used to probe the repulsion and adhesion energies present between L. monocytogenes cells cultured at five pH values (5, 6, 7, 8 and 9) and silicon nitride (Si3N4). Overall adhesion energy was then decoupled into its specific and nonspecific components using the new method as well as using Poisson statistical approach. Poisson statistical method represents the most commonly used approach to decouple bacterial interactions into their components. For all pH conditions investigated, specific energies dominated the adhesion and a transition in adhesion and repulsion energies for cells cultured at pH 7 was observed. When compared, the differences in the specific and nonspecific energies obtained using Poisson analysis and the new method were on average 2.2% and 6.7%, respectively. The relatively close energies obtained using the two approaches demonstrate the efficacy of the new method as an alternative way to decouple adhesion energies into their specific and nonspecific components. PMID:24563576

  7. Ecological succession as an energy dispersal process.

    PubMed

    Würtz, Peter; Annila, Arto

    2010-04-01

    Ecological succession is described by the 2nd law of thermodynamics. According to the universal law of the maximal energy dispersal, an ecosystem evolves toward a stationary state in its surroundings by consuming free energy via diverse mechanisms. Species are the mechanisms that conduct energy down along gradients between repositories of energy which consist of populations at various thermodynamic levels. The salient characteristics of succession, growing biomass production, increasing species richness and shifting distributions of species are found as consequences of the universal quest to diminish energy density differences in least time. The analysis reveals that during succession the ecosystem's energy transduction network, i.e., the food web organizes increasingly more effective in the free energy reduction by acquiring new, more effective and abandoning old, less effective species of energy transduction. The number of species does not necessarily peak at the climax state that corresponds to the maximum-entropy partition of species maximizing consumption of free energy. According to the theory of evolution by natural selection founded on statistical physics of open systems, ecological succession is one among many other evolutionary processes. PMID:20097257

  8. Low Energy Lorentz Violation from Modified Dispersion at High Energies.

    PubMed

    Husain, Viqar; Louko, Jorma

    2016-02-12

    Many quantum theories of gravity propose Lorentz-violating dispersion relations of the form ω=|k|f(|k|/M⋆), with recovery of approximate Lorentz invariance at energy scales much below M⋆. We show that a quantum field with this dispersion predicts drastic low energy Lorentz violation in atoms modeled as Unruh-DeWitt detectors, for any f that dips below unity somewhere. As an example, we show that polymer quantization motivated by loop quantum gravity predicts such Lorentz violation below current ion collider rapidities. PMID:26918976

  9. Application of Electron Backscattered Diffraction (EBSD) and Atomic Force Microscopy (AFM) to Determine Texture, Microtexture, and Grain Boundary Energies in Ceramics

    SciTech Connect

    Glass, S.J.; Rohrer, G.S.; Saylor, D.M.; Vedula, V.R.

    1999-05-19

    Crystallographic orientations in alumina (Al203) and magnesium aluminate spinel (MgAl204) were obtained using electron backscattered diffraction (EBSD) patterns. The texture and mesotexture (grain boundary misorientations) were random and no special boundaries were observed. The relative grain boundary energies were determined by thermal groove geometries using atomic force microscopy (AFM) to identify relationships between the grain boundary energies and misorientations.

  10. Steering the Self-Assembly of Octadecylamine Monolayers on Mica by Controlled Mechanical Energy Transfer from the AFM Tip

    SciTech Connect

    Benitez, J.J.; Heredia-Guerrero, J.A.; Salmeron, M.

    2010-06-24

    We have studied the effect of mechanical energy transfer from the tip of an Atomic Force Microscope on the dynamics of self-assembly of monolayer films of octadecylamine on mica. The formation of the self-assembled film proceeds in two successive stages, the first being a fast adsorption from solution that follows a Langmuir isotherm. The second is a slower process of island growth by aggregation of the molecules dispersed on the surface. We found that the dynamics of aggregation can be altered substantially by the addition of mechanical energy into the system through controlled tip-surface interactions. This leads to either the creation of pinholes in existing islands as a consequence of vacancy concentration, and to the assembly of residual molecules into more compact islands.

  11. A continuum solvent model of the multipolar dispersion solvation energy.

    PubMed

    Duignan, Timothy T; Parsons, Drew F; Ninham, Barry W

    2013-08-15

    The dispersion energy is an important contribution to the total solvation energies of ions and neutral molecules. Here, we present a new continuum model calculation of these energies, based on macroscopic quantum electrodynamics. The model uses the frequency dependent multipole polarizabilities of molecules in order to accurately calculate the dispersion interaction of a solute particle with surrounding water molecules. It includes the dipole, quadrupole, and octupole moment contributions. The water is modeled via a bulk dielectric susceptibility with a spherical cavity occupied by the solute. The model invokes damping functions to account for solute-solvent wave function overlap. The assumptions made are very similar to those used in the Born model. This provides consistency and additivity of electrostatic and dispersion (quantum mechanical) interactions. The energy increases in magnitude with cation size, but decreases slightly with size for the highly polarizable anions. The higher order multipole moments are essential, making up more than 50% of the dispersion solvation energy of the fluoride ion. This method provides an accurate and simple way of calculating the notoriously problematic dispersion contribution to the solvation energy. The result establishes the importance of using accurate calculations of the dispersion energy for the modeling of solvation. PMID:23837890

  12. Electromagnetic energy flux vector for a dispersive linear medium.

    PubMed

    Crenshaw, Michael E; Akozbek, Neset

    2006-05-01

    The electromagnetic energy flux vector in a dispersive linear medium is derived from energy conservation and microscopic quantum electrodynamics and is found to be of the Umov form as the product of an electromagnetic energy density and a velocity vector. PMID:16803063

  13. Sub-surface imaging of carbon nanotube-polymer composites using dynamic AFM methods.

    PubMed

    Cadena, Maria J; Misiego, Rocio; Smith, Kyle C; Avila, Alba; Pipes, Byron; Reifenberger, Ron; Raman, Arvind

    2013-04-01

    High-resolution sub-surface imaging of carbon nanotube (CNT) networks within polymer nanocomposites is demonstrated through electrical characterization techniques based on dynamic atomic force microscopy (AFM). We compare three techniques implemented in the single-pass configuration: DC-biased amplitude modulated AFM (AM-AFM), electrostatic force microscopy (EFM) and Kelvin probe force microscopy (KPFM) in terms of the physics of sub-surface image formation and experimental robustness. The methods were applied to study the dispersion of sub-surface networks of single-walled nanotubes (SWNTs) in a polyimide (PI) matrix. We conclude that among these methods, the KPFM channel, which measures the capacitance gradient (∂C/∂d) at the second harmonic of electrical excitation, is the best channel to obtain high-contrast images of the CNT network embedded in the polymer matrix, without the influence of surface conditions. Additionally, we propose an analysis of the ∂C/∂d images as a tool to characterize the dispersion and connectivity of the CNTs. Through the analysis we demonstrate that these AFM-based sub-surface methods probe sufficiently deep within the SWNT composites, to resolve clustered networks that likely play a role in conductivity percolation. This opens up the possibility of dynamic AFM-based characterization of sub-surface dispersion and connectivity in nanostructured composites, two critical parameters for nanocomposite applications in sensors and energy storage devices. PMID:23478510

  14. Single atom identification by energy dispersive x-ray spectroscopy

    SciTech Connect

    Lovejoy, T. C.; Dellby, N.; Krivanek, O. L.; Ramasse, Q. M.; Falke, M.; Kaeppel, A.; Terborg, R.; Zan, R.

    2012-04-09

    Using aberration-corrected scanning transmission electron microscope and energy dispersive x-ray spectroscopy, single, isolated impurity atoms of silicon and platinum in monolayer and multilayer graphene are identified. Simultaneously acquired electron energy loss spectra confirm the elemental identification. Contamination difficulties are overcome by employing near-UHV sample conditions. Signal intensities agree within a factor of two with standardless estimates.

  15. Dispersal

    USGS Publications Warehouse

    2001-01-01

    The ability of species to migrate and disperse is a trait that has interested ecologists for many years. Now that so many species and ecosystems face major environmental threats from habitat fragmentation and global climate change, the ability of species to adapt to these changes by dispersing, migrating, or moving between patches of habitat can be crucial to ensuring their survival. This book provides a timely and wide-ranging overview of the study of dispersal and incorporates much of the latest research. The causes, mechanisms, and consequences of dispersal at the individual, population, species and community levels are considered. The potential of new techniques and models for studying dispersal, drawn from molecular biology and demography, is also explored. Perspectives and insights are offered from the fields of evolution, conservation biology and genetics. Throughout the book, theoretical approaches are combined with empirical data, and care has been taken to include examples from as wide a range of species as possible.

  16. Qplus AFM driven nanostencil.

    PubMed

    Grévin, B; Fakir, M; Hayton, J; Brun, M; Demadrille, R; Faure-Vincent, J

    2011-06-01

    We describe the development of a novel setup, in which large stencils with suspended silicon nitride membranes are combined with atomic force microscopy (AFM) regulation by using tuning forks. This system offers the possibility to perform separate AFM and nanostencil operations, as well as combined modes when using stencil chips with integrated tips. The flexibility and performances are demonstrated through a series of examples, including wide AFM scans in closed loop mode, probe positioning repeatability of a few tens of nanometer, simultaneous evaporation of large (several hundred of micron square) and nanoscopic metals and fullerene patterns in static, multistep, and dynamic modes. This approach paves the way for further developments, as it fully combines the advantages of conventional stenciling with the ones of an AFM driven shadow mask. PMID:21721701

  17. Vacuum field energy and spontaneous emission in anomalously dispersive cavities

    SciTech Connect

    Bradshaw, Douglas H.; Di Rosa, Michael D.

    2011-05-15

    Anomalously dispersive cavities, particularly white-light cavities, may have larger bandwidth to finesse ratios than their normally dispersive counterparts. Partly for this reason, they have been proposed for use in laser interferometer gravitational-wave observatory (LIGO)-like gravity-wave detectors and in ring-laser gyroscopes. In this paper we analyze the quantum noise associated with anomalously dispersive cavity modes. The vacuum field energy associated with a particular cavity mode is proportional to the cavity-averaged group velocity of that mode. For anomalously dispersive cavities with group index values between 1 and 0, this means that the total vacuum field energy associated with a particular cavity mode must exceed ({h_bar}/2{pi}){omega}/2. For white-light cavities in particular, the group index approaches zero and the vacuum field energy of a particular spatial mode may be significantly enhanced. We predict enhanced spontaneous emission rates into anomalously dispersive cavity modes and broadened laser linewidths when the linewidth of intracavity emitters is broader than the cavity linewidth.

  18. Integrated assessment of dispersed energy resources deployment

    SciTech Connect

    Marnay, Chris; Blanco, Raquel; Hamachi, Kristina S.; Kawaan, Cornelia P.; Osborn, Julie G.; Rubio, F. Javier

    2000-06-01

    The goal of this work is to create an integrated framework for forecasting the adoption of distributed energy resources (DER), both by electricity customers and by the various institutions within the industry itself, and for evaluating the effect of this adoption on the power system, particularly on the overall reliability and quality of electrical service to the end user. This effort and follow on contributions are intended to anticipate and explore possible patterns of DER deployment, thereby guiding technical work on microgrids towards the key technical problems. An early example of this process addressed is the question of possible DER adopting customer disconnection. A deployment scenario in which many customers disconnect from their distribution company (disco) entirely leads to a quite different set of technical problems than a scenario in which customers self generate a significant share or all of their on-site electricity requirements and additionally buy and sell energy and ancillary services (AS) locally and/or into wider markets. The exploratory work in this study suggests that the economics under which customers disconnect entirely are unlikely.

  19. Pulsed Magnetic Fields for an XAS Energy Dispersive Beamline

    SciTech Connect

    Linden, Peter van der; Mathon, Olivier; Neisius, Thomas

    2007-01-19

    Pulsed magnetic fields constitute an attractive alternative to superconducting magnets for many x-ray techniques. The ESRF ID24 energy dispersive beamline was used for pulsed magnetic field room temperature XMCD measurements on GdCo3. The signal has been measured up to a magnetic field of 5.5 Tesla without signs of deterioration.

  20. Pulse propagation, dispersion, and energy in magnetic materials.

    PubMed

    Scalora, Michael; D'Aguanno, Giuseppe; Mattiucci, Nadia; Akozbek, Neset; Bloemer, Mark J; Centini, Marco; Sibilia, Concita; Bertolotti, Mario

    2005-12-01

    We discuss pulse propagation effects in generic, electrically and magnetically dispersive media that may display large material discontinuities, such as a surface boundary. Using the known basic constitutive relations between the fields, and an explicit Taylor expansion to describe the dielectric susceptibility and magnetic permeability, we derive expressions for energy density and energy dissipation rates, and equations of motion for the coupled electric and magnetic fields. We then solve the equations of motion in the presence of a single interface, and find that in addition to the now-established negative refraction process an energy exchange occurs between the electric and magnetic fields as the pulse traverses the boundary. PMID:16486072

  1. Surface energy approach and AFM verification of the (CF)n treated surface effect and its correlation with adhesion reduction in microvalves

    NASA Astrophysics Data System (ADS)

    Han, Jeahyeong; Yeom, Junghoon; Mensing, Glennys; Joe, Daniel; Masel, Richard I.; Shannon, Mark A.

    2009-08-01

    The purpose of this paper is to outline an approach that will determine the optimal surface pairs to use in a MEMS device with demonstrated stiction problems. The approach uses the contact angle and atomic force microscopy (AFM) pull-off measurements to predict adhesion at the solid-solid interface. The results are compared to microvalves that have been fabricated with different surfaces at the seat/membrane interface. For microfabricated mechanical devices with surfaces that touch or have a small gap distance, stiction can occur during fabrication or during use. Fabricating multiple devices with different surfaces to determine the lowest stiction can be costly and time consuming. Identifying the surface pair with the least amount of surface adhesion before fabrication can lead to a reduction in device failure due to stiction, and/or time it takes to find the lowest energy surfaces via trial and error. Surface energies are obtained using the van Oss equation based on the contact angle measurements, and surface energy can be used to show the relative adhesions between two surface pairs. An AFM pull-off test is performed using nano- and micro-sized tips to quantify the effect of the different surfaces on adhesion between the solid-solid surface pairs, including SiO2/PI, CFn/PI, CFn/SiO2 and CFn/CFn. The work of adhesion of the surface pairs is obtained using the Derjaguin-Muller-Toporotov (DMT) and Johnson-Kendall-Roberts (JKR) theories. The surfaces treated with a C4F8/Ar plasma to form a CFn coating showed the least amount of surface adhesion. The CFn surface treatment effects on adhesion are quantified and correlated with the reduction in the opening pressure of the microvalve whose interfaces are coated with a CFn film. The AFM pull-off test was more closely related to adhesive forces between the surfaces of the valves as seen in the opening pressure data. The adhesion calculation based on the contact angle measurements predicts the adhesion force with a similar

  2. Intermolecular energy-band dispersion in PTCDA multilayers

    NASA Astrophysics Data System (ADS)

    Yamane, Hiroyuki; Kera, Satoshi; Okudaira, Koji K.; Yoshimura, Daisuke; Seki, Kazuhiko; Ueno, Nobuo

    2003-07-01

    The electronic structure of a well-oriented perylene-3,4,9,10-tetracarboxylic acid-dianhydride multilayer prepared on MoS2 single crystal surface were studied by angle-resolved ultraviolet photoemission spectroscopy using synchrotron radiation. From the photon energy dependence of normal emission spectra, we observed an intermolecular energy-band dispersion of about 0.2 eV for the highest occupied molecular orbital (HOMO) band of single π character. The observed energy-band dispersion showed a cosine curve, which originates from the intermolecular π-π interaction. Analyses using the tight-binding model gave that the transfer integral of about 0.05 eV for the π-π interaction, the effective mass of HOMO hole m*h=5.28m0, and the hole mobility μh>3.8 cm2/V s. This is the first observation of the intermolecular energy-band dispersion of a conventional single-component organic semiconductor only with the weak intermolecular van der Waals interaction.

  3. Inverse energy dispersion of energetic ions observed in the magnetosheath

    NASA Astrophysics Data System (ADS)

    Lee, S. H.; Sibeck, D. G.; Hwang, K.-J.; Wang, Y.; Silveira, M. V. D.; Fok, M.-C.; Mauk, B. H.; Cohen, I. J.; Ruohoniemi, J. M.; Kitamura, N.; Burch, J. L.; Giles, B. L.; Torbert, R. B.; Russell, C. T.; Lester, M.

    2016-07-01

    We present a case study of energetic ions observed by the Energetic Particle Detector (EPD) on the Magnetospheric Multiscale spacecraft in the magnetosheath just outside the subsolar magnetopause that occurred at 1000 UT on 8 December 2015. As the magnetopause receded inward, the EPD observed a burst of energetic (˜50-1000 keV) proton, helium, and oxygen ions that exhibited an inverse dispersion, with the lowest energy ions appearing first. The prolonged interval of fast antisunward flow observed in the magnetosheath and transient increases in the H components of global ground magnetograms demonstrate that the burst appeared at a time when the magnetosphere was rapidly compressed. We attribute the inverse energy dispersion to the leakage along reconnected magnetic field lines of betatron-accelerated energetic ions in the magnetosheath, and a burst of reconnection has an extent of about 1.5 RE using combined Super Dual Auroral Radar Network radar and EPD observations.

  4. Electromagnetic energy dispersion in a 5D universe

    SciTech Connect

    Hartnett, John G.

    2010-06-15

    Electromagnetism is analyzed in a 5D expanding universe. Compared to the usual 4D description of electrodynamics it can be viewed as adding effective charge and current densities to the universe that are static in time. These lead to effective polarization and magnetization of the vacuum, which is most significant at high redshift. Electromagnetic waves propagate but group and phase velocities are dispersive. This introduces a new energy scale to the cosmos. And as a result electromagnetic waves propagate with superluminal speeds but no energy is transmitted faster than the canonical speed of light c.

  5. Electromagnetic energy dispersion in a 5D universe

    NASA Astrophysics Data System (ADS)

    Hartnett, John G.

    2010-06-01

    Electromagnetism is analyzed in a 5D expanding universe. Compared to the usual 4D description of electrodynamics it can be viewed as adding effective charge and current densities to the universe that are static in time. These lead to effective polarization and magnetization of the vacuum, which is most significant at high redshift. Electromagnetic waves propagate but group and phase velocities are dispersive. This introduces a new energy scale to the cosmos. And as a result electromagnetic waves propagate with superluminal speeds but no energy is transmitted faster than the canonical speed of light c.

  6. Energy Dispersive Spectrometry and Quantitative Analysis Short Course. Introduction to X-ray Energy Dispersive Spectrometry and Quantitative Analysis

    NASA Technical Reports Server (NTRS)

    Carpenter, Paul; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    This course will cover practical applications of the energy-dispersive spectrometer (EDS) to x-ray microanalysis. Topics covered will include detector technology, advances in pulse processing, resolution and performance monitoring, detector modeling, peak deconvolution and fitting, qualitative and quantitative analysis, compositional mapping, and standards. An emphasis will be placed on use of the EDS for quantitative analysis, with discussion of typical problems encountered in the analysis of a wide range of materials and sample geometries.

  7. Energy-entropy dispersion relation in DNA sequences

    NASA Astrophysics Data System (ADS)

    Nowak, H.; Haeussler, P.

    2013-10-01

    For a number of virus- and bacterium genomes we use the concept of block entropy from information theory and compare it with the corresponding configurational energy, defined via the ionization energies of the nucleotides and a hopping term for their interactions in the sense of a tight-binding model. Additionally to the four-letter alphabet of the nucleotides we discuss a reduction to a two-letter alphabet. We find a well defined relation between block entropy and block energy for a not too large block length which can be interpreted as a generalized dispersion relation for all genome sequences. The relation can be used to look for enhanced interactions between virus and bacterium genomes. Well known examples for virus-virus and virus-bacterium interactions are analyzed along this line.

  8. Particle deformation induced by AFM tapping under different setpoint voltages

    NASA Astrophysics Data System (ADS)

    Wu, Chung-Lin; Farkas, Natalia; Dagata, John A.; He, Bo-Ching; Fu, Wei-En

    2014-09-01

    The measured height of polystyrene nanoparticles varies with setpoint voltage during atomic force microscopy (AFM) tapping-mode imaging. Nanoparticle height was strongly influenced by the magnitude of the deformation caused by the AFM tapping forces, which was determined by the setpoint voltage. This influence quantity was studied by controlling the operational AFM setpoint voltage. A test sample consisting of well-dispersed 60-nm polystyrene and gold nanoparticles co-adsorbed on poly-l-lysine-coated mica was studied in this research. Gold nanoparticles have not only better mechanical property than polystyrene nanoparticles, but also obvious facets in AFM phase image. By using this sample of mixed nanoparticles, it allows us to confirm that the deformation resulted from the effect of setpoint voltage, not noise. In tapping mode, the deformation of polystyrene nanoparticles increased with decreasing setpoint voltage. Similar behavior was observed with both open loop and closed loop AFM instruments.

  9. Bose gas with generalized dispersion relation plus an energy gap

    NASA Astrophysics Data System (ADS)

    Solis, M. A.; Martinez, J. G.; Garcia, J.

    We report the critical temperature, the condensed fraction, the internal energy and the specific heat for a d-dimensional Bose gas with a generalized dispersion relation plus an energy gap, i.e., ɛ =ɛ0 for k = 0 and ɛ =ɛ0 + Δ +csks , for k > 0 , where ℏk is the particle momentum, ɛ0 the lowest particle energy, cs a constant with dimension of energy multiplied by a length to the power s > 0 . When Δ > 0 , a Bose-Einstein critical temperature Tc ≠ 0 exists for any d / s >= 0 at which the internal energy shows a peak and the specific heat shows a jump. The critical temperature and the specific heat jump increase as functions of the gap but they decrease as functions of d / s . Thermodynamic properties are ɛ0 independent since this is just a reference energy. For Δ = 0 we recover the results reported in Ref. [1]. V. C. Aguilera-Navarro, M. de Llano y M. A. Solís, Eur. J. Phys. 20, 177 (1999). We acknowledge partial support from Grants PAPIIT IN111613 and CONACyT 221030.

  10. Specific Energies for the Collisional Dispersion of Gravitational Aggregates

    NASA Astrophysics Data System (ADS)

    Campo Bagatin, Adriano; Davo, M.; Richardson, D. C.

    2009-09-01

    One of the most interesting problems in planetology is the one concerning the internal structure of asteroids and comets. Despite of the available experimental results about the fragmentation of cohesive bodies the size of a soccer ball, and the theoretical and numerical studies extending these results to larger objects, little is known about the response to collisions by objects that formed by the gravitational re-accumulation following shattering events. We are developing a systematic study of the effects of collisions on rocky and icy gravitational aggregates (GA) between 100 m and 100 km in size, under different conditions (mass and texture of targets and projectiles, impact angle, momentum of collision, rotation of target). The study is based on a numerical model of the N-body problem (PKDGRAV code). We present our results on the dependence of the threshold specific energy for the dispersion of targets (Q*D) as a function of their mass, obtaining the corresponding scaling law. All GA are made up by the same number of particles. We have chosen 7 different targets, scaling a factor of 3 in mass and we performed a number of head-on collisions on each target mass with different projectile masses. In this way, we are able to relate the impact energy with the fraction of mass reaccumulated after impacts (f_R), and derive the threshold specific energy for dispersion, Q*_D, by interpolating the corresponding fitted linear relationship. As the result of every single collision partly depends on impact location, a number of collisions is performed with a same target and projectile, changing the direction of impact (not the impact angle). We take the average and standard deviation of the corresponding mass fraction of each set of collisions. Finally a power law relationship between Q*_D and size is derived. The main results of this study are presented.

  11. Universality of the dispersive spin-resonance mode in superconducting BaFe2As2.

    PubMed

    Lee, C H; Steffens, P; Qureshi, N; Nakajima, M; Kihou, K; Iyo, A; Eisaki, H; Braden, M

    2013-10-18

    Spin fluctuations in superconducting BaFe2(As(1-x)P(x))2 (x=0.34, T(c)=29.5 K) are studied using inelastic neutron scattering. Well-defined commensurate magnetic signals are observed at (π, 0), which is consistent with the nesting vector of the Fermi surface. Antiferromagnetic (AFM) spin fluctuations in the normal state exhibit a three-dimensional character reminiscent of the AFM order in nondoped BaFe2As2. A clear spin gap is observed in the superconducting phase forming a peak whose energy is significantly dispersed along the c axis. The bandwidth of dispersion becomes larger with approaching the AFM ordered phase universally in all superconducting BaFe2As2, indicating that the dispersive feature is attributed to three-dimensional AFM correlations. The results suggest a strong relationship between the magnetism and superconductivity. PMID:24182293

  12. Photon backscattering tissue characterization by energy dispersive spectroscopy evaluations.

    PubMed

    Tartari, A; Casnati, E; Fernandez, J E; Felsteiner, J; Baraldi, C

    1994-02-01

    Techniques for in vivo tissue characterization based on scattered photons have usually been confined to evaluating coherent and Compton peaks. However, information can also be obtained from the energy analysis of the Compton scattered distribution. This paper looks at the extension of a technique validated by the authors for characterizing tissues composed of low-atomic-number elements. To this end, an EDXRS (energy dispersive x-ray spectrometry) computer simulation procedure was performed and applied to test the validity of a figure of merit able to characterize binary compounds. This figure of merit is based on the photon fluence values in a restricted energy interval of the measured distribution of incoherently scattered photons. After careful experimental tests with 59.54 keV incident photons at scattering angles down to 60degrees, the simulation procedure was applied to quasi-monochromatic and polychromatic high-radiance sources. The results show that the characterization by the figure of merit, which operates satisfactorily with monochromatic sources, is unsatisfactory in the latter cases, which seem to favour a different parameter for compound characterization. PMID:15552121

  13. Imaging Dispersive Energy Analyzer (IDEA) for Ionosphere-Thermosphere Measurements

    NASA Astrophysics Data System (ADS)

    Syrstad, E. A.; Fenn, D.; Watson, M.; Schicker, S.; Smith, B.

    2011-12-01

    We present a new instrument concept for in situ satellite-based measurement of ion drifts / neutral winds, temperature, density, and composition. The Imaging Dispersive Energy Analyzer (IDEA) combines high-throughput dispersive energy analysis with 2-D imaging ion detection to provide complete characterization of the velocity distribution of a charged particle stream. The IDEA deflector operates at a small (<15 V) d.c. potential, with no voltage scanning necessary. All ions transmitted through the entrance collimator are deflected according to kinetic energy and detected by a microchannel plate (MCP) / imaging anode system (100% duty cycle). This produces a characteristic detector image from which the critical atmospheric parameters can be retrieved. Major species are separated by their mean kinetic energies according to the spacecraft velocity (e.g., 4.7 eV for O and 8.2 eV for N2). Spatial distributions are fit by maximal-likelihood routines, with centroid positions yielding each component of the neutral wind / ion drift velocity (assuming knowledge of the spacecraft pointing vector), and temperature determined from distribution width. The IDEA deflector consists of resistive glass side plates to propagate a linear potential gradient between copper end plates. The exit plane is a semi-transparent gate with parallel wires, with each wire at a unique voltage according to vertical position and contact point with the resistive glass. This design yields an 'ideal' electrostatic deflector, with no fringing or perturbed fields, in a very compact geometry. Thus, ions follow predictable trajectories, and straightforward data analysis produces highly accurate measurements of the ion velocity distribution function. Two recently proposed instrument suites, the Ion Drifts, Electric Fields, and Temperature (IDEFT) sensor and the Total Thermosphere Sensor (TTS), use orthogonally-oriented IDEA analyzers and a shared imaging detector to characterize the ionosphere and

  14. Measuring Performance of Energy-Dispersive X-ray Systems.

    PubMed

    Statham

    1998-11-01

    : As Si(Li) detector technology has matured, many of the fundamental problems have been addressed in the competition among manufacturers and there is now an expectation, implied by many textbooks, that all energy-dispersive X-ray (EDX) detectors are made and will perform in the same way. Although there has been some convergence in Si(Li) systems and these are still the most common, manufacturing recipes still differ and there are many alternative EDX devices, such as microcalorimeters and room temperature detectors, that have both advantages and disadvantages over Si(Li). Rather than emphasizing differences in technologies, performance measures should reveal benefits relevant to the intended application. The instrument is inevitably going to be a "black box" of integrated components; this article reviews some of the methods that have been applied and introduces some new techniques that can be used to assess performance without resorting to complex software or sophisticated mathematical algorithms. Sensitivity, resolution, artefacts, and stability are discussed with particular application to compositional analysis using electron beam excitation of X-rays in the 100-eV to 10-keV energy region. PMID:10087283

  15. AFM Imaging of Mercaptobenzoic Acid on Au(110): Submolecular Contrast with Metal Tips.

    PubMed

    Hauptmann, Nadine; Robles, Roberto; Abufager, Paula; Lorente, Nicolas; Berndt, Richard

    2016-06-01

    A self-assembled monolayer of mercaptobenzoic acid (MBA) on Au(110) is investigated with scanning tunneling and atomic force microscopy (STM and AFM) and density functional calculations. High-resolution AFM images obtained with metallic tips show clear contrasts between oxygen atoms and phenyl moieties. The contrast above the oxygen atoms is due to attractive covalent interactions, which is different than previously reported high-resolution images, where Pauli repulsion dominated the image contrast. We show that the bonding of MBA to the substrate occurs mainly through dispersion interactions, whereas the thiol-Au bond contributes only a quarter of the adsorption energy. No indication of Au adatoms mediating the thiol-Au interaction was found in contrast to other thiol-bonded systems. However, MBA lifts the Au(110)-(2 × 1) reconstruction. PMID:27183144

  16. AFM Studies of Conformational Changes in Proteins and Peptides

    NASA Astrophysics Data System (ADS)

    Ploscariu, Nicoleta; Sukthankar, Pinakin; Tomich, John; Szoszkiewicz, Robert

    2015-03-01

    Here, we present estimates of molecular stiffness and mechanical energy dissipation factors for some examples of proteins and peptides. The results are obtained from AFM force spectroscopy measurements. To determine molecular stiffness and mechanical energy dissipation factors we developed a model based on measuring several resonance frequencies of an AFM cantilever in contact with either single protein molecule or peptides adsorbed on arbitrary surface. We used compliant AFM cantilevers with a small aspect ratio - a ratio of length to width - in air and in liquid, including biologically relevant phosphate buffered saline medium. Department of Physics.

  17. Energy-scaling characteristics of solitons in strongly dispersion-managed fibers

    NASA Astrophysics Data System (ADS)

    Smith, N. J.; Doran, N. J.; Knox, F. M.; Forysiak, W.

    1996-12-01

    We present an empirical scaling law that models the increased energy required for launching a soliton into an optical system with sections of both normal and anomalous dispersion fiber. It is shown that the inclusion of periodic attenuation and amplification can be handled as separate problems, provided that the interval between optical amplifiers is substantially different from the period of the dispersion map. These concepts are illustrated by reference to an example system comprising dispersion-shifted fiber combined with anomalous standard fiber.

  18. Dispersion-Energy-Driven Wagner–Meerwein Rearrangements in Oligosilanes

    PubMed Central

    2016-01-01

    The installation of structural complex oligosilanes from linear starting materials by Lewis acid induced skeletal rearrangement reactions was studied under stable ion conditions. The produced cations were fully characterized by multinuclear NMR spectroscopy at low temperature, and the reaction course was studied by substitution experiments. The results of density functional theory calculations indicate the decisive role of attractive dispersion forces between neighboring trimethylsilyl groups for product formation in these rearrangement reactions. These attractive dispersion interactions control the course of Wagner–Meerwein rearrangements in oligosilanes, in contrast to the classical rearrangement in hydrocarbon systems, which are dominated by electronic substituent effects such as resonance and hyperconjugation. PMID:27195490

  19. Dispersion-Energy-Driven Wagner-Meerwein Rearrangements in Oligosilanes.

    PubMed

    Albers, Lena; Rathjen, Saskia; Baumgartner, Judith; Marschner, Christoph; Müller, Thomas

    2016-06-01

    The installation of structural complex oligosilanes from linear starting materials by Lewis acid induced skeletal rearrangement reactions was studied under stable ion conditions. The produced cations were fully characterized by multinuclear NMR spectroscopy at low temperature, and the reaction course was studied by substitution experiments. The results of density functional theory calculations indicate the decisive role of attractive dispersion forces between neighboring trimethylsilyl groups for product formation in these rearrangement reactions. These attractive dispersion interactions control the course of Wagner-Meerwein rearrangements in oligosilanes, in contrast to the classical rearrangement in hydrocarbon systems, which are dominated by electronic substituent effects such as resonance and hyperconjugation. PMID:27195490

  20. Correlation energy and dispersion interaction in the ab initio potential energy curve of the neon dimer

    SciTech Connect

    Bytautas, L.; Ruedenberg, K.

    2008-06-06

    A close approximation to the empirical potential energy curve of the neon dimer is obtained by coupled-cluster singles plus doubles plus noniterative triples calculations by using nonaugmented correlation-consistent basis sets without counterpoise corrections and complementing them by three-term extrapolations to the complete basis set limit. The potential energy is resolved into a self-consistent-field Hartree-Fock contribution and a correlation contribution. The latter is shown to decay in the long-range region in accordance with the empirical dispersion expansion.

  1. Correlation energy and dispersion interaction in the ab initio potential energy curve of the neon dimer.

    PubMed

    Bytautas, Laimutis; Ruedenberg, Klaus

    2008-06-01

    A close approximation to the empirical potential energy curve of the neon dimer is obtained by coupled-cluster singles plus doubles plus noniterative triples calculations by using nonaugmented correlation-consistent basis sets without counterpoise corrections and complementing them by three-term extrapolations to the complete basis set limit. The potential energy is resolved into a self-consistent-field Hartree-Fock contribution and a correlation contribution. The latter is shown to decay in the long-range region in accordance with the empirical dispersion expansion. PMID:18537423

  2. Rayleigh-wave dispersive energy imaging using a high-resolution linear radon transform

    USGS Publications Warehouse

    Luo, Y.; Xia, J.; Miller, R.D.; Xu, Y.; Liu, J.; Liu, Q.

    2008-01-01

    Multichannel Analysis of Surface Waves (MASW) analysis is an efficient tool to obtain the vertical shear-wave profile. One of the key steps in the MASW method is to generate an image of dispersive energy in the frequency-velocity domain, so dispersion curves can be determined by picking peaks of dispersion energy. In this paper, we propose to image Rayleigh-wave dispersive energy by high-resolution linear Radon transform (LRT). The shot gather is first transformed along the time direction to the frequency domain and then the Rayleigh-wave dispersive energy can be imaged by high-resolution LRT using a weighted preconditioned conjugate gradient algorithm. Synthetic data with a set of linear events are presented to show the process of generating dispersive energy. Results of synthetic and real-world examples demonstrate that, compared with the slant stacking algorithm, high-resolution LRT can improve the resolution of images of dispersion energy by more than 50%. ?? Birkhaueser 2008.

  3. Two types of ion energy dispersions observed in the nightside auroral regions during geomagnetically disturbed periods

    NASA Astrophysics Data System (ADS)

    Hirahara, M.; Mukai, T.; Nagai, T.; Kaya, N.; Hayakawa, H.; Fukunishi, H.

    1996-04-01

    The Akebono satellite has observed two types of energy dispersion signatures of discrete ion precipitation event in the nightside auroral regions during active geomagnetic conditions. The charged particle experiments and electric and magnetic field detectors on board Akebono provide us with essential clues to characterize the source regions and acceleration and/or injection processes associated with these two types of ion signatures. The magnetic field data obtained simultaneously by the geosynchronous GOES 6 and 7 satellites and the ground magnetograms are useful to examine their relationships with geomagnetic activity. Mass composition data and pitch angle distributions show that different sources and processes should be attributed to two types (Types I and II) of energy dispersion phenomena. Type I consists of multiple bouncing ion clusters constituted by H+. These H+ clusters tend to be detected at the expansion phase of substorms and have characteristic multiple energy-dispersed signatures. Type II consists of O+ energy dispersion(s), which is often observed at the recovery phase. It is reasonable to consider that the H+ clusters of Type I are accelerated by dipolarization at the equator, are injected in the field-aligned direction, and bounce on closed field lines after the substorm onset. We interpret these multiple energy dispersion events as mainly due to the time-of-flight (TOF) effect, although the convection may influence the energy-dispersed traces. Based of the TOF model, we estimate the source distance to be 20-30 RE along the field lines. On the other hand, the O+ energy dispersion of Type II is a consequence of reprecipitation of terrestrial ions ejected as an upward flowing ion (UFI) beam from the upper ionosphere by a parallel electrostatic potential difference. The O+ energy dispersion is induced by the E×B drift during the field-aligned transport from the source region to the observation point.

  4. Momentum and energy dependence of the anomalous high-energy dispersion in the electronic structure of high temperature superconductors.

    PubMed

    Inosov, D S; Fink, J; Kordyuk, A A; Borisenko, S V; Zabolotnyy, V B; Schuster, R; Knupfer, M; Büchner, B; Follath, R; Dürr, H A; Eberhardt, W; Hinkov, V; Keimer, B; Berger, H

    2007-12-01

    Using high-resolution angle-resolved photoemission spectroscopy we have studied the momentum and photon energy dependence of the anomalous high-energy dispersion, termed waterfalls, between the Fermi level and 1 eV binding energy in several high-T_{c} superconductors. We observe strong changes of the dispersion between different Brillouin zones and a strong dependence on the photon energy around 75 eV, which we associate with the resonant photoemission at the Cu3p-->3d_{x;{2}-y;{2}} edge. We conclude that the high-energy "waterfall" dispersion results from a strong suppression of the photoemission intensity at the center of the Brillouin zone due to matrix element effects and is, therefore, not an intrinsic feature of the spectral function. This indicates that the new high-energy scale in the electronic structure of cuprates derived from the waterfall-like dispersion may be incorrect. PMID:18233401

  5. Momentum and Energy Dependence of the Anomalous High-Energy Dispersion in the Electronic Structure of High Temperature Superconductors

    NASA Astrophysics Data System (ADS)

    Inosov, D. S.; Fink, J.; Kordyuk, A. A.; Borisenko, S. V.; Zabolotnyy, V. B.; Schuster, R.; Knupfer, M.; Büchner, B.; Follath, R.; Dürr, H. A.; Eberhardt, W.; Hinkov, V.; Keimer, B.; Berger, H.

    2007-12-01

    Using high-resolution angle-resolved photoemission spectroscopy we have studied the momentum and photon energy dependence of the anomalous high-energy dispersion, termed waterfalls, between the Fermi level and 1 eV binding energy in several high-Tc superconductors. We observe strong changes of the dispersion between different Brillouin zones and a strong dependence on the photon energy around 75 eV, which we associate with the resonant photoemission at the Cu3p→3dx2-y2 edge. We conclude that the high-energy “waterfall” dispersion results from a strong suppression of the photoemission intensity at the center of the Brillouin zone due to matrix element effects and is, therefore, not an intrinsic feature of the spectral function. This indicates that the new high-energy scale in the electronic structure of cuprates derived from the waterfall-like dispersion may be incorrect.

  6. Unusual energy dispersion at the proton isotropy boundary: a statistical study

    NASA Astrophysics Data System (ADS)

    Chernyaeva, Sonya; Angelopoulos, Vassilis; Sergeev, Viktor; Chernyaev, Ivan

    The regular appearance of equatorward boundary of the isotropic proton precipitation (isotropy boundary, IB) is interpreted as a manifestation of the boundary between adiabatic and non-adiabatic particle motion regimes. Accordingly, the energy dependence of IB latitude (energy dispersion, with lower latitude IB observed for higher energy protons in case of normal dispersion) carries the information about the real magnetic field gradients (or, sporadic appearance of other scattering mechanism, in case of anomalous dispersion). In this study we investigate statistically the IB energy dispersion of the >30 and >80 keV energetic protons using data from low-altitude polar satellites NOAA-19 and -18 in September 2009, when two spacecraft follow each other along the same orbit. We found that the events with normal dispersion at proton energies of 30 to 80 keV protons constitute less than 20% of the total number of events (regardless of geomagnetic activity). In other cases (80%) we see either the coincidence of the proton IB at different energies (within 0.2(°) ), or the precipitation pattern is complicated by the presence of isolated precipitation structures equatorward of the IB. In small amount of cases the anomalous (inverse) energy dispersion was also observed, suggesting the presence of different precipitation mechanisms. To help discriminate between current sheet scattering and other mechanisms we also obtained the average relationship between empirical ratios of trapped and precipitated proton fluxes at different energies near the IB for cases of normal dispersion. The near coincidence of the proton IBs can be observed in the case of sharp magnetic field Bz gradients (Bz jumps), whose amplitude should be about 60% of the Bz background value. Their existence is tested by considering magnetic field observations at radial passes of THEMIS spacecraft near the IB observation meridian in the near magnetosphere, supported by adaptive modeling and other relevant

  7. Dispersion of heavy ion deposited energy in nanometric electronic devices: Experimental measurements and simulation possibilities

    NASA Astrophysics Data System (ADS)

    Raine, M.; Gaillardin, M.; Paillet, P.; Duhamel, O.; Martinez, M.; Bernard, H.

    2015-12-01

    The dispersion of heavy ion deposited energy is explored in nanometric electronic devices. Experimental data are reported, in a large thin SOI diode and in a SOI FinFET device, showing larger distributions of collected charge in the nanometric volume device. Geant4 simulations are then presented, using two different modeling approaches. Both of them seem suitable to evaluate the dispersion of deposited energy induced by heavy ion beams in advanced electronic devices with nanometric dimensions.

  8. PREFACE: Non-contact AFM Non-contact AFM

    NASA Astrophysics Data System (ADS)

    Giessibl, Franz J.; Morita, Seizo

    2012-02-01

    This special issue is focussed on high resolution non-contact atomic force microscopy (AFM). Non-contact atomic force microscopy was established approximately 15 years ago as a tool to image conducting and insulating surfaces with atomic resolution. Since 1998, an annual international conference has taken place, and although the proceedings of these conferences are a useful source of information, several key developments warrant devoting a special issue to this subject. In the theoretic field, the possibility of supplementing established techniques such as scanning tunneling microscopy (STM) and Kelvin probe microscopy with atomically resolved force micrsoscopy poses many challenges in the calculation of contrast and contrast reversal. The surface science of insulators, self-assembled monolayers and adsorbates on insulators is a fruitful field for the application of non-contact AFM: several articles in this issue are devoted to these subjects. Atomic imaging and manipulation have been pioneered using STM, but because AFM allows the measurement of forces, AFM has had a profound impact in this field as well. Three-dimensional force spectroscopy has allowed many important insights into surface science. In this issue a combined 3D tunneling and force microscopy is introduced. Non-contact AFM typically uses frequency modulation to measure force gradients and was initially used mainly in a vacuum. As can be seen in this issue, frequency modulation is now also used in ambient conditions, allowing better spatial and force resolution. We thank all of the contributors for their time and efforts in making this special issue possible. We are also very grateful to the staff of IOP Publishing for handling the administrative aspects and for steering the refereeing process. Non-contact AFM contents Relation between the chemical force and the tunnelling current in atomic point contacts: a simple model Pavel Jelínek, Martin Ondrácek and Fernando Flores Theoretical simulation of

  9. Finessing the fracture energy barrier in ballistic seed dispersal.

    PubMed

    Deegan, Robert D

    2012-04-01

    Fracture is a highly dissipative process in which much of the stored elastic energy is consumed in the creation of new surfaces. Surprisingly, many plants use fracture to launch their seeds despite its seemingly prohibitive energy cost. Here we use Impatiens glandulifera as model case to study the impact of fracture on a plant's throwing capacity. I. glandulifera launches its seeds with speeds up to 4 m/s using cracks to trigger an explosive release of stored elastic energy. We find that the seed pod is optimally designed to minimize the cost of fracture. These characteristics may account for its success at invading Europe and North America. PMID:22431608

  10. Finessing the fracture energy barrier in ballistic seed dispersal

    PubMed Central

    Deegan, Robert D.

    2012-01-01

    Fracture is a highly dissipative process in which much of the stored elastic energy is consumed in the creation of new surfaces. Surprisingly, many plants use fracture to launch their seeds despite its seemingly prohibitive energy cost. Here we use Impatiens glandulifera as model case to study the impact of fracture on a plant’s throwing capacity. I. glandulifera launches its seeds with speeds up to 4 m/s using cracks to trigger an explosive release of stored elastic energy. We find that the seed pod is optimally designed to minimize the cost of fracture. These characteristics may account for its success at invading Europe and North America. PMID:22431608

  11. The calculation of surface orbital energies for specific types of active sites on dispersed metal catalysts

    SciTech Connect

    Augustine, R.L.; Lahanas, K.M.; Cole, F.

    1992-11-01

    An angular overlap calculation has been used to determine the s, p, and d orbital energy levels of the different types of surface sites present on dispersed metal catalysts. These data can permit a Frontier Molecular Orbital treatment of specific site activities as long as the surface orbital availability for overlap with adsorbed substrates is considered along with its energy value and symmetry.

  12. The calculation of surface orbital energies for specific types of active sites on dispersed metal catalysts

    SciTech Connect

    Augustine, R.L.; Lahanas, K.M.; Cole, F.

    1992-01-01

    An angular overlap calculation has been used to determine the s, p, and d orbital energy levels of the different types of surface sites present on dispersed metal catalysts. These data can permit a Frontier Molecular Orbital treatment of specific site activities as long as the surface orbital availability for overlap with adsorbed substrates is considered along with its energy value and symmetry.

  13. On an energy-latitude dispersion pattern of ion precipitation potentially associated with magnetospheric EMIC waves

    NASA Astrophysics Data System (ADS)

    Liang, Jun; Donovan, E.; Ni, B.; Yue, C.; Jiang, F.; Angelopoulos, V.

    2014-10-01

    Ion precipitation mechanisms are usually energy dependent and contingent upon magnetospheric/ionospheric locations. Therefore, the pattern of energy-latitude dependence of ion precipitation boundaries seen by low Earth orbit satellites can be implicative of the mechanism(s) underlying the precipitation. The pitch angle scattering of ions led by the field line curvature, a well-recognized mechanism of ion precipitation in the central plasma sheet (CPS), leads to one common pattern of energy-latitude dispersion, in that the ion precipitation flux diminishes at higher (lower) latitudes for protons with lower (higher) energies. In this study, we introduce one other systematically existing pattern of energy-latitude dispersion of ion precipitation, in that the lower energy ion precipitation extends to lower latitude than the higher-energy ion precipitation. Via investigating such a "reversed" energy-latitude dispersion pattern, we explore possible mechanisms of ion precipitation other than the field line curvature scattering. We demonstrate via theories and simulations that the H-band electromagnetic ion cyclotron (EMIC) wave is capable of preferentially scattering keV protons in the CPS and potentially leads to the reversed energy-latitude dispersion of proton precipitation. We then present detailed event analyses and provide support to a linkage between the EMIC waves in the equatorial CPS and ion precipitation events with reversed energy-latitude dispersion. We also discuss the role of ion acceleration in the topside ionosphere which, together with the CPS ion population, may result in a variety of energy-latitude distributions of the overall ion precipitation.

  14. Evaluating Chemical Dispersant Efficacy In An Experimental Wave Tank: 1, Dispersant Effectiveness As A Function Of Energy Dissipation Rate

    EPA Science Inventory

    Numerous laboratory test systems have been developed for the comparison of efficacy between various chemical oil dispersant formulations. However, for the assessment of chemical dispersant effectiveness under realistic sea state, test protocols are required to produce hydrodynam...

  15. Non-pairwise additivity of the leading-order dispersion energy

    SciTech Connect

    Hollett, Joshua W.

    2015-02-28

    The leading-order (i.e., dipole-dipole) dispersion energy is calculated for one-dimensional (1D) and two-dimensional (2D) infinite lattices, and an infinite 1D array of infinitely long lines, of doubly occupied locally harmonic wells. The dispersion energy is decomposed into pairwise and non-pairwise additive components. By varying the force constant and separation of the wells, the non-pairwise additive contribution to the dispersion energy is shown to depend on the overlap of density between neighboring wells. As well separation is increased, the non-pairwise additivity of the dispersion energy decays. The different rates of decay for 1D and 2D lattices of wells is explained in terms of a Jacobian effect that influences the number of nearest neighbors. For an array of infinitely long lines of wells spaced 5 bohrs apart, and an inter-well spacing of 3 bohrs within a line, the non-pairwise additive component of the leading-order dispersion energy is −0.11 kJ mol{sup −1} well{sup −1}, which is 7% of the total. The polarizability of the wells and the density overlap between them are small in comparison to that of the atomic densities that arise from the molecular density partitioning used in post-density-functional theory (DFT) damped dispersion corrections, or DFT-D methods. Therefore, the nonadditivity of the leading-order dispersion observed here is a conservative estimate of that in molecular clusters.

  16. Energy dispersive spectroscopy using synchrotron radiation: Intensity considerations

    NASA Astrophysics Data System (ADS)

    Skelton, E. F.; Elam, W. T.; Qadri, S. B.; Webb, A. W.; Schiferl, D.

    Detailed considerations are given to the reliability of energy dependent integrated intensity data collected from the pressure cavity of a diamond-anvil pressure cell illuminated with heterochromatic radiation from a synchrotron storage ring. It is demonstrated that at least in one run, the electron beam current cannot be used to correct for energy-intensity variations of the incident beam. Rather there appears to be an additional linear relationship between the decay of the synchrotron beam and the magnitude of the background intensity.

  17. Energy dispersive spectroscopy using synchrotron radiation: Intensity considerations

    NASA Astrophysics Data System (ADS)

    Skelton, E. F.; Elam, W. T.; Qadri, S. B.; Webb, A. W.; Schiferl, D.

    1986-05-01

    Detailed considerations are given to the reliability of energy dependent integrated intensity data collected from the pressure cavity of a diamond-anvil pressure cell illuminated with heterochromatic radiation from a synchrotron storage ring. It is demonstrated that, at least in one run, the electron beam current cannot be used to correct for energy-intensity variations of the incident beam. Rather, there appears to be an additional linear relationship between the decay of the synchrotron beam and the magnitude of the background intensity.

  18. Energy dispersive photon counting detectors for breast imaging

    NASA Astrophysics Data System (ADS)

    Barber, William C.; Wessel, Jan C.; Malakhov, Nail; Wawrzyniak, Gregor; Hartsough, Neal E.; Gandhi, Thulasidharan; Nygard, Einar; Iwanczyk, Jan S.

    2013-09-01

    We report on our efforts toward the development of silicon (Si) strip detectors for energy-resolved clinical breast imaging. Typically, x-ray integrating detectors based on scintillating cesium iodide CsI(Tl) or amorphous selenium (a- Se) are used in most commercial systems. Recently, mammography instrumentation has been introduced based on photon counting silicon Si strip detectors. Mammography requires high flux from the x-ray generator, therefore, in order to achieve energy resolved single photon counting, a high output count rate (OCR) for the detector must be achieved at the required spatial resolution and across the required dynamic range for the application. The required performance in terms of the OCR, spatial resolution, and dynamic range must be obtained with sufficient field of view (FOV) for the application thus requiring the tiling of pixel arrays and scanning techniques. Room temperature semiconductors, operating as direct conversion x-ray sensors, can provide the required speed when connected to application specific integrated circuits (ASICs) operating at fast peaking times with multiple fixed thresholds per pixel, provided that the sensors are designed for rapid signal formation across the x-ray energy ranges of the application at the required energy and spatial resolutions. We present our methods and results from the optimization of prototype detectors based on Si strip structures. We describe the detector optimization and the development of ASIC readout electronics that provide the required spatial resolution, low noise, high count rate capabilities and minimal power consumption.

  19. Concepts for design of an energy management system incorporating dispersed storage and generation

    NASA Technical Reports Server (NTRS)

    Kirkham, H.; Koerner, T.; Nightingale, D.

    1981-01-01

    New forms of generation based on renewable resources must be managed as part of existing power systems in order to be utilized with maximum effectiveness. Many of these generators are by their very nature dispersed or small, so that they will be connected to the distribution part of the power system. This situation poses new questions of control and protection, and the intermittent nature of some of the energy sources poses problems of scheduling and dispatch. Under the assumption that the general objectives of energy management will remain unchanged, the impact of dispersed storage and generation on some of the specific functions of power system control and its hardware are discussed.

  20. Glucose Starvation-Induced Dispersal of Pseudomonas aeruginosa Biofilms Is cAMP and Energy Dependent

    PubMed Central

    Huynh, Tran T.; McDougald, Diane; Klebensberger, Janosch; Al Qarni, Budoor; Barraud, Nicolas; Rice, Scott A.; Kjelleberg, Staffan; Schleheck, David

    2012-01-01

    Carbon starvation has been shown to induce a massive dispersal event in biofilms of the opportunistic pathogen Pseudomonas aeruginosa; however, the molecular pathways controlling this dispersal response remain unknown. We quantified changes in the proteome of P. aeruginosa PAO1 biofilm and planktonic cells during glucose starvation by differential peptide-fingerprint mass-spectrometry (iTRAQ). In addition, we monitored dispersal photometrically, as a decrease in turbidity/opacity of biofilms pre-grown and starved in continuous flow-cells, in order to evaluate treatments (e.g. inhibitors CCCP, arsenate, chloramphenicol, L-serine hydroxamate) and key mutants altered in biofilm development and dispersal (e.g. nirS, vfr, bdlA, rpoS, lasRrhlR, Pf4-bacteriophage and cyaA). In wild-type biofilms, dispersal started within five minutes of glucose starvation, was maximal after 2 h, and up to 60% of the original biomass had dispersed after 24 h of starvation. The changes in protein synthesis were generally not more than two fold and indicated that more than 100 proteins belonging to various classes, including carbon and energy metabolism, stress adaptation, and motility, were differentially expressed. For the different treatments, only the proton-ionophore CCCP or arsenate, an inhibitor of ATP synthesis, prevented dispersal of the biofilms. For the different mutants tested, only cyaA, the synthase of the intracellular second messenger cAMP, failed to disperse; complementation of the cyaA mutation restored the wild-type phenotype. Hence, the pathway for carbon starvation-induced biofilm dispersal in P. aeruginosa PAO1 involves ATP production via direct ATP synthesis and proton-motive force dependent step(s) and is mediated through cAMP, which is likely to control the activity of proteins involved in remodeling biofilm cells in preparation for planktonic survival. PMID:22905180

  1. Quantification of surface amorphous content using dispersive surface energy: the concept of effective amorphous surface area.

    PubMed

    Brum, Jeffrey; Burnett, Daniel

    2011-09-01

    We investigate the use of dispersive surface energy in quantifying surface amorphous content, and the concept of effective amorphous surface area is introduced. An equation is introduced employing the linear combination of surface area normalized square root dispersive surface energy terms. This equation is effective in generating calibration curves when crystalline and amorphous references are used. Inverse gas chromatography is used to generate dispersive surface energy values. Two systems are investigated, and in both cases surface energy data collected for physical mixture samples comprised of amorphous and crystalline references fits the predicted response with good accuracy. Surface amorphous content of processed lactose samples is quantified using the calibration curve, and interpreted within the context of effective amorphous surface area. Data for bulk amorphous content is also utilized to generate a thorough picture of how disorder is distributed throughout the particle. An approach to quantifying surface amorphous content using dispersive surface energy is presented. Quantification is achieved by equating results to an effective amorphous surface area based on reference crystalline, and amorphous materials. PMID:21725707

  2. X-ray photo-emission and energy dispersive spectroscopy of HA coated titanium

    SciTech Connect

    Drummond, J.L.; Steinberg, A.D.; Krauss, A.R.

    1997-08-01

    The purpose of this study was to determine the chemical composition changes of hydroxyapatite (HA) coated titanium using surface analysis (x-ray photo-emission) and bulk analysis (energy dispersive spectroscopy). The specimens examined were controls, 30 minutes and 3 hours aged specimens in distilled water or 0.2M sodium phosphate buffer (pH 7.2) at room temperature. Each x-ray photo-emission cycle consisted of 3 scans followed by argon sputtering for 10 minutes for a total of usually 20 cycles, corresponding to a sampling depth of {approximately} 1500 {angstrom}. The energy dispersive spectroscopy analysis was on a 110 by 90 {mu}m area for 500 sec. Scanning electron microscopy examination showed crystal formation (3P{sub 2}O{sub 5}*2CAO*?H{sub 2}O by energy dispersive spectroscopy analysis) on the HA coating for the specimens aged in sodium phosphate buffer. The x-ray photo-emission results indicated the oxidation effect of water on the titanium (as TiO{sub 2}) and the effect of the buffer to increase the surface concentration of phosphorous. No differences in the chemical composition were observed by energy dispersive spectroscopy analysis. The crystal growth was only observed for the sodium phosphate buffer specimens and only on the HA surface.

  3. Rossby wave energy dispersion from tropical cyclone in zonal basic flows

    NASA Astrophysics Data System (ADS)

    Shi, Wenli; Fei, Jianfang; Huang, Xiaogang; Liu, Yudi; Ma, Zhanhong; Yang, Lu

    2016-04-01

    This study investigates tropical cyclone energy dispersion under horizontally sheared flows using a nonlinear barotropic model. In addition to common patterns, unusual features of Rossby wave trains are also found in flows with constant vorticity and vorticity gradients. In terms of the direction of the energy dispersion, the wave train can rotate clockwise and elongate southwestward under anticyclonic circulation (ASH), which contributes to the reenhancement of the tropical cyclone (TC). The wave train even splits into two obvious wavelike trains in flows with a southward vorticity gradient (WSH). Energy dispersed from TCs varies over time, and variations in the intensity of the wave train components typically occur in two stages. Wave-activity flux diagnosis and ray tracing calculations are extended to the frame that moves along with the TC to reveal the concrete progress of wave propagation. The direction of the wave-activity flux is primarily determined by the combination of the basic flow and the TC velocity. Along the flux, the distribution of pseudomomentum effectively illustrates the development of wave trains, particularly the rotation and split of wave propagation. Ray tracing involves the quantitative tracing of wave features along rays, which effectively coincide with the wave train regimes. Flows of a constant shear (parabolic meridional variation) produce linear (nonlinear) wave number variations. For the split wave trains, the real and complex wave number waves move along divergent trajectories and are responsible for different energy dispersion ducts.

  4. Analysis of tincal ore waste by energy dispersive X-ray fluorescence (EDXRF) Technique

    NASA Astrophysics Data System (ADS)

    Kalfa, Orhan Murat; Üstündağ, Zafer; Özkırım, Ilknur; Kagan Kadıoğlu, Yusuf

    2007-01-01

    Etibank Borax Plant is located in Kırka-Eskişehir, Turkey. The borax waste from this plant was analyzed by means of energy dispersive X-ray fluorescence (EDXRF). The standard addition method was used for the determination of the concentration of Al, Fe, Zn, Sn, and Ba. The results are presented and discussed in this paper.

  5. Energy-Dispersive X-Ray Fluorescence Spectrometry: A Long Overdue Addition to the Chemistry Curriculum

    ERIC Educational Resources Information Center

    Palmer, Peter T.

    2011-01-01

    Portable Energy-Dispersive X-Ray Fluorescence (XRF) analyzers have undergone significant improvements over the past decade. Salient advantages of XRF for elemental analysis include minimal sample preparation, multielement analysis capabilities, detection limits in the low parts per million (ppm) range, and analysis times on the order of 1 min.…

  6. The relative effect of behaviour in larval dispersal in a low energy embayment

    NASA Astrophysics Data System (ADS)

    Daigle, Rémi M.; Chassé, Joël; Metaxas, Anna

    2016-05-01

    This study examined the relative importance of tidal phase, larval behaviour, release site, depth layer, and vertical swimming velocity on mean in-sea dispersal distance, retention, distance from shore, and population connectivity. Using a biophysical model, we simulated larval dispersal of marine benthic invertebrates for 6 taxonomic groups representing different combinations of swimming speed, and depth preference in St. George's Bay, NS, Canada, a shallow bay with low energy (e.g. lack of estuarine circulation). The biophysical model was run over a period of 3 months, from Jul to Sep, representing the period when larvae of the targeted species were present, and at each of 3 years. Overall, release site had the strongest effect of all factors on the dispersal metrics. Although less important than release site in our system, vertical distribution and swim speed had a significant effect which would likely be more pronounced in high (i.e. with features such as estuarine circulation or internal waves) than low energy environments. Retention and distance from shore were more responsive to our manipulations than dispersal distance, both in terms of the number of ecologically significant effects and the magnitudes of their effect size. These findings allow for the prioritization of biophysical model parameters and improved simulations of larval dispersal.

  7. The 20 element HgI2 energy dispersive x ray array detector system

    NASA Astrophysics Data System (ADS)

    Iwanczyk, J. A.; Dorri, N.; Wang, M.; Szczebiot, R. W.; Dabrowski, A. J.; Hedman, B.; Hodgson, K. O.; Patt, B. E.

    1991-11-01

    This paper describes recent progress in the development of HgI2 energy dispersive x-ray detector arrays and associated miniaturized processing electronics for synchrotron radiation research applications. The experimental results with a 20 element array detector were obtained under realistic synchrotron beam conditions at SSRL. An energy resolution of 250 eV (FWHM) at 5.9 keV (Mn-K(sub a)) was achieved. Energy resolution and throughput measurements versus input count rate and energy of incoming radiation have been measured. Extended X-ray Absorption Fine Structure (EXAFS) spectra were taken from diluted samples simulating proteins with nickel.

  8. Low-energy phonon dispersion in LaFe4Sb12

    NASA Astrophysics Data System (ADS)

    Leithe-Jasper, Andreas; Boehm, Martin; Mutka, Hannu; Koza, Michael M.

    We studied the vibrational dynamics of a single crystal of LaFe4Sb12 by three-axis inelastic neutron spectroscopy. The dispersion of phonons with wave vectors q along [ xx 0 ] and [ xxx ] directions in the energy range of eigenmodes with high amplitudes of lanthanum vibrations, i.e., at ℏω < 12 meV is identified. Symmetry-avoided anticrossing dispersion of phonons is established in both monitored directions and distinct eigenstates at high-symmetry points and at the Brillouin-zone center are discriminated. The experimentally derived phonon dispersion and intensities are compared with and backed up by ab initio lattice dynamics calculations. results of the computer model match well with the experimental data.

  9. Imaging ultrasonic dispersive guided wave energy in long bones using linear radon transform.

    PubMed

    Tran, Tho N H T; Nguyen, Kim-Cuong T; Sacchi, Mauricio D; Le, Lawrence H

    2014-11-01

    Multichannel analysis of dispersive ultrasonic energy requires a reliable mapping of the data from the time-distance (t-x) domain to the frequency-wavenumber (f-k) or frequency-phase velocity (f-c) domain. The mapping is usually performed with the classic 2-D Fourier transform (FT) with a subsequent substitution and interpolation via c = 2πf/k. The extracted dispersion trajectories of the guided modes lack the resolution in the transformed plane to discriminate wave modes. The resolving power associated with the FT is closely linked to the aperture of the recorded data. Here, we present a linear Radon transform (RT) to image the dispersive energies of the recorded ultrasound wave fields. The RT is posed as an inverse problem, which allows implementation of the regularization strategy to enhance the focusing power. We choose a Cauchy regularization for the high-resolution RT. Three forms of Radon transform: adjoint, damped least-squares, and high-resolution are described, and are compared with respect to robustness using simulated and cervine bone data. The RT also depends on the data aperture, but not as severely as does the FT. With the RT, the resolution of the dispersion panel could be improved up to around 300% over that of the FT. Among the Radon solutions, the high-resolution RT delineated the guided wave energy with much better imaging resolution (at least 110%) than the other two forms. The Radon operator can also accommodate unevenly spaced records. The results of the study suggest that the high-resolution RT is a valuable imaging tool to extract dispersive guided wave energies under limited aperture. PMID:25282483

  10. Diffraction applications using the energy dispersive beamline, X6A, at NSLS

    NASA Astrophysics Data System (ADS)

    Lee, P. L.; Beno, M. A.; Knapp, G. S.; Jennings, G.; Ogata, C. M.

    1994-08-01

    The energy dispersive beamline X6A, at the National Synchrotron Light Source (NSLS) employs a curved crystal monochromator (polychromator) which focuses a range (approximately 1 keV) of x-ray energies into a narrow (100-120 micron) line image. Although this beamline was constructed primarily for time dependent EXAFS experiments, the authors have begun to explore the use of this instrument for energy dispersive diffraction experiments with different types of sample including macromolecular crystals. The tunability (E = 6.5 keV to 21 keV) and flexibility ((Delta)E = 100-1,000 eV) of the instrument makes the beamline ideal as a test bed for the application of polychromatic single crystal diffraction techniques to different chemical or biological materials.

  11. Application of high-resolution linear Radon transform for Rayleigh-wave dispersive energy imaging and mode separating

    USGS Publications Warehouse

    Luo, Y.; Xia, J.; Miller, R.D.; Liu, J.; Xu, Y.; Liu, Q.

    2008-01-01

    Multichannel Analysis of Surface Waves (MASW) analysis is an efficient tool to obtain the vertical shear-wave profile. One of the key steps in the MASW method is to generate an image of dispersive energy in the frequency-velocity domain, so dispersion curves can be determined by picking peaks of dispersion energy. In this paper, we image Rayleigh-wave dispersive energy and separate multimodes from a multichannel record by high-resolution linear Radon transform (LRT). We first introduce Rayleigh-wave dispersive energy imaging by high-resolution LRT. We then show the process of Rayleigh-wave mode separation. Results of synthetic and real-world examples demonstrate that (1) compared with slant stacking algorithm, high-resolution LRT can improve the resolution of images of dispersion energy by more than 50% (2) high-resolution LRT can successfully separate multimode dispersive energy of Rayleigh waves with high resolution; and (3) multimode separation and reconstruction expand frequency ranges of higher mode dispersive energy, which not only increases the investigation depth but also provides a means to accurately determine cut-off frequencies.

  12. Time-domain electromagnetic energy in a frequency-dispersive left-handed medium

    SciTech Connect

    Cui Tiejun; Kong Jinau

    2004-11-15

    From Maxwell's equations and the Poynting theorem, the time-domain electric and magnetic energy densities are generally defined in the frequency-dispersive media based on the conservation of energy. As a consequence, a general definition of electric and magnetic energy is proposed. Comparing with existing formulations of electric and magnetic energy in frequency-dispersive media, the new definition is more reasonable and is valid in any case. Using the new definition and staring from the equation of motion, we have shown rigorously that the total energy density and the individual electric and magnetic energy densities are always positive in a realistic artificial left-handed medium (LHM) [R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001)], which obeys actually the Lorentz medium model, although such a LHM has negative permittivity and negative permeability simultaneously in a certain frequency range. We have also shown that the conservation of energy is not violated in LHM. The earlier conclusions can be easily extended to the Drude medium model and the cold plasma medium model. Through an exact analysis of a one-dimensional transient current source radiating in LHM, numerical results are given to demonstrate that the work done by source, the power flowing outwards a surface, and the electric and magnetic energy stored in a volume are all positive in the time domain.

  13. Possible enhancements of AFM spin-fluctuations in high-TC cuprates

    NASA Astrophysics Data System (ADS)

    Jarlborg, Thomas

    2009-03-01

    Ab-initio band calculations for high-TC cuprates, together with modelling based of a free electron like band, show a strong interaction between anti-ferromagnetic (AFM) spin waves and periodic lattice distortions as for phonons, even though this type of spin-phonon coupling (SPC) is underestimated in calculations using the local density approximation. The SPC has a direct influence on the properties of the HTC cuprates and it can explain many observations. The strongest effects are seen for modulated waves in the CuO bond direction, and a band gap is formed near the X,Y points, but unusal band dispersion (like ``waterfalls'') might also be induced below the Fermi energy (EF) in the diagonal direction. The band results are used to propose different ways of increasing AFM spin-fluctuations locally, and to have a higher density-of-states (DOS) at EF. Static potential modulations, via periodic distribution of dopants or lattice distortions, can be tuned to increase the DOS. This opens for possibilities to enhance coupling for spin fluctuations (λsf) and superconductivity. The exchange enhancement is in general increased near a surface, which suggests a tendency towards static spin configurations. The sensivity of the band results to corrections of the local density potential are discussed.

  14. Energy Dispersive X-ray Tomography for 3D Elemental Mapping of Individual Nanoparticles.

    PubMed

    Slater, Thomas J A; Lewis, Edward A; Haigh, Sarah J

    2016-01-01

    Energy dispersive X-ray spectroscopy within the scanning transmission electron microscope (STEM) provides accurate elemental analysis with high spatial resolution, and is even capable of providing atomically resolved elemental maps. In this technique, a highly focused electron beam is incident upon a thin sample and the energy of emitted X-rays is measured in order to determine the atomic species of material within the beam path. This elementally sensitive spectroscopy technique can be extended to three dimensional tomographic imaging by acquiring multiple spectrum images with the sample tilted along an axis perpendicular to the electron beam direction. Elemental distributions within single nanoparticles are often important for determining their optical, catalytic and magnetic properties. Techniques such as X-ray tomography and slice and view energy dispersive X-ray mapping in the scanning electron microscope provide elementally sensitive three dimensional imaging but are typically limited to spatial resolutions of > 20 nm. Atom probe tomography provides near atomic resolution but preparing nanoparticle samples for atom probe analysis is often challenging. Thus, elementally sensitive techniques applied within the scanning transmission electron microscope are uniquely placed to study elemental distributions within nanoparticles of dimensions 10-100 nm. Here, energy dispersive X-ray (EDX) spectroscopy within the STEM is applied to investigate the distribution of elements in single AgAu nanoparticles. The surface segregation of both Ag and Au, at different nanoparticle compositions, has been observed. PMID:27403838

  15. Computing dispersive, polarizable, and electrostatic shifts of excitation energy in supramolecular systems: PTCDI crystal.

    PubMed

    Megow, Jörg

    2016-09-01

    The gas-to-crystal-shift denotes the shift of electronic excitation energies, i.e., the difference between ground and excited state energies, for a molecule transferred from the gas to the bulk phase. The contributions to the gas-to-crystal-shift comprise electrostatic as well as inductive polarization and dispersive energy shifts of the molecular excitation energies due to interaction with environmental molecules. For the example of 3,4,9,10-perylene-tetracarboxylic-diimide (PTCDI) bulk, the contributions to the gas-to-crystal shift are investigated. In the present work, electrostatic interaction is calculated via Coulomb interaction of partial charges while inductive and dispersive interactions are obtained using respective sum over states expressions. The coupling of higher transition densities for the first 4500 excited states of PTCDI was computed using transition partial charges based on an atomistic model of PTCDI bulk obtained from molecular dynamics simulations. As a result it is concluded that for the investigated model system of a PTCDI crystal, the gas to crystal shift is dominated by dispersive interaction. PMID:27608991

  16. Single ricin detection by AFM chemomechanical mapping

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This research reports a method of detecting ricin molecules immobilized on chemically modified gold (Au;111) surface by chemomechanically mapping the molecular interactions with a chemically modified Atomic Force Microscope (AFM) tip. AFM images resolved the different fold-up conformations of single...

  17. Opportunities for Time Resolved Studies at the ID24 Energy Dispersive XAS Beamline of the ESRF

    SciTech Connect

    Mathon, O.; Aquilanti, G.; Guilera, G.; Labiche, J.-C.; Linden, P. van der; Newton, M. A.; Ponchut, C.; Trapananti, A.; Pascarelli, S.

    2007-01-19

    ID24 is the energy dispersive beamline of the European Synchrotron Radiation Facility dedicated to X-ray Absorption Spectroscopy (XAS). Thanks to the parallel acquisition mode that allows data in a large energy range to be collected simultaneously, XAS using dispersive optics is particularly suited for the study of time dependent processes. The techniques that can be used to study such systems vary according to the timescale of the phenomena under investigation. They take advantage of the temporal structure of the synchrotron radiation in case of time resolution of the order of the intrinsic duration of the x-ray pulse (100 ps), while for time scales above 100 {mu}s or below 100 ps, the x-ray beam can be considered continuous and the time resolution is determined by the different detection systems.

  18. Imaging the Formation of High-Energy Dispersion Anomalies in the Actinide UCoGa5

    NASA Astrophysics Data System (ADS)

    Das, Tanmoy; Durakiewicz, Tomasz; Zhu, Jian-Xin; Joyce, John J.; Sarrao, John L.; Graf, Matthias J.

    2012-10-01

    We use angle-resolved photoemission spectroscopy to image the emergence of substantial dispersion and spectral-weight anomalies in the electronic renormalization of the actinide compound UCoGa5 that was presumed to belong to a conventional Fermi-liquid family. Kinks or abrupt breaks in the slope of the quasiparticle dispersion are detected both at low (approximately 130 meV) and high (approximately 1 eV) binding energies below the Fermi energy, ruling out any significant contribution of phonons. We perform numerical calculations to demonstrate that the anomalies are adequately described by coupling between itinerant fermions and spin fluctuations arising from the particle-hole continuum of the spin-orbit-split 5f states of uranium. These anomalies resemble the “waterfall” phenomenon of the high-temperature copper-oxide superconductors, suggesting that spin fluctuations are a generic route toward multiform electronic phases in correlated materials as different as high-temperature superconductors and actinides.

  19. Energy-latitude dispersion patterns near the isotropy boundaries of energetic protons

    NASA Astrophysics Data System (ADS)

    Sergeev, V. A.; Chernyaeva, S. A.; Apatenkov, S. V.; Ganushkina, N. Y.; Dubyagin, S. V.

    2015-08-01

    Non-adiabatic motion of plasma sheet protons causes pitch-angle scattering and isotropic precipitation to the ionosphere, which forms the proton auroral oval. This mechanism related to current sheet scattering (CSS) provides a specific energy-latitude dispersion pattern near the equatorward boundary of proton isotropic precipitation (isotropy boundary, IB), with precipitation sharply decreasing at higher (lower) latitude for protons with lower (higher) energy. However, this boundary maps to the inner magnetosphere, where wave-induced scattering may provide different dispersion patterns as recently demonstrated by Liang et al. (2014). Motivated by the potential usage of the IBs for the magnetotail monitoring as well as by the need to better understand the mechanisms forming the proton IB, we investigate statistically the details of particle flux patterns near the proton IB using NOAA-POES polar spacecraft observations made during September 2009. By comparing precipitated-to-trapped flux ratio (J0/J90) at >30 and >80 keV proton energies, we found a relatively small number of simple CSS-type dispersion events (only 31 %). The clear reversed (wave-induced) dispersion patterns were very rare (5 %). The most frequent pattern had nearly coinciding IBs at two energies (63 %). The structured precipitation with multiple IBs was very frequent (60 %), that is, with two or more significant J0/J90 dropouts. The average latitudinal width of multiple IB structures was about 1°. Investigation of dozens of paired auroral zone crossings of POES satellites showed that the IB pattern is stable on a timescale of less than 2 min (a few proton bounce periods) but can evolve on a longer (several minutes) scale, suggesting temporal changes in some mesoscale structures in the equatorial magnetosphere. We discuss the possible role of CSS-related and wave-induced mechanisms and their possible coupling to interpret the emerging complicated patterns of proton isotropy boundaries.

  20. Scanning electron microscope/energy dispersive x ray analysis of impact residues in LDEF tray clamps

    NASA Technical Reports Server (NTRS)

    Bernhard, Ronald P.; Durin, Christian; Zolensky, Michael E.

    1993-01-01

    Detailed optical scanning of tray clamps is being conducted in the Facility for the Optical Inspection of Large Surfaces at JSC to locate and document impacts as small as 40 microns in diameter. Residues from selected impacts are then being characterized by Scanning Electron Microscopy/Energy Dispersive X-ray Analysis at CNES. Results from this analysis will be the initial step to classifying projectile residues into specific sources.

  1. Generating an image of dispersive energy by frequency decomposition and slant stacking

    USGS Publications Warehouse

    Xia, J.; Xu, Y.; Miller, R.D.

    2007-01-01

    We present a new algorithm for calculating an image of dispersive energy in the frequency-velocity (f-v) domain. The frequency decomposition is first applied to a shot gather in the offset-time domain to stretch impulsive data into pseudo-vibroseis data or frequency-swept data. Because there is a deterministic relationship between frequency and time in a sweep used in the frequency decomposition, the first step theoretically completes the transform from time to frequency. The slant stacking is then performed on the frequency-swept data to complete the transform from offset to velocity. This simple two-step algorithm generates an image of dispersive energy in the f-v domain. The straightforward transform only uses offset information of data so that this algorithm can be applied to data acquired with arbitrary geophone-acquisition geometry. Examples of synthetic and real-world data demonstrate that this algorithm generates accurate images of dispersive energy of the fundamental as well as higher modes. ?? Birkha??user Verlag, Basel, 2007.

  2. Morphological and Structural Changes on Human Dental Enamel After Er:YAG Laser Irradiation: AFM, SEM, and EDS Evaluation

    PubMed Central

    Rodríguez-Vilchis, Laura Emma; Olea-Mejìa, Oscar Fernando; Sánchez-Flores, Ignacio; Centeno-Pedraza, Claudia

    2011-01-01

    Abstract Objective: The purpose of this study was to evaluate, using atomic force microscopy (AFM), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS), the morphological and structural changes of the enamel after irradiation with the Er:YAG laser. Background data: A previous study showed that subablative Er:YAG laser irradiation produced undesirable morphological changes on the enamel surface, such as craters and cracks; however, the enamel acid resistance was not increased. Methods: Fifty-two samples of human enamel were divided into four groups (n = 13): Group I was the control (no laser irradiation), whereas Groups II, III, and IV were irradiated with the Er:YAG 100 mJ (12.7 J/cm2), 100 mJ (7.5 J/cm2), and 150 mJ (11 J/cm2), respectively, at 10 Hz with water spray. The morphological changes were observed by AFM and SEM. The weight percentages (wt%) of calcium (Ca), phosphorus (P), oxygen (O) and chlorine (Cl) were determined in the resultant craters and their periphery using EDS. Kruskal–Wallis and Mann–Whitney U tests were performed (p ≤ 0.05) to distinguish significant differences among the groups. Results: The AFM images showed cracks with depths between 250 nm and 750 nm for Groups II and IV, respectively, and the widths of these cracks were 5.37 μm and 2.58 μm. The interior of the cracks showed a rough surface. The SEM micrographs revealed morphological changes. Significant differences were detected in Ca, P, and Cl in the crater and its periphery. Conclusions: AFM observations showed triangular-shaped cracks, whereas craters and cracks were evident by SEM in all irradiated samples. It was not possible to establish a characteristic chemical pattern in the craters. PMID:21417912

  3. The influence of the directional energy distribution on the nonlinear dispersion relation in a random gravity wave field

    NASA Technical Reports Server (NTRS)

    Huang, N. E.; Tung, C.-C.

    1977-01-01

    The influence of the directional distribution of wave energy on the dispersion relation is calculated numerically using various directional wave spectrum models. The results indicate that the dispersion relation varies both as a function of the directional energy distribution and the direction of propagation of the wave component under consideration. Furthermore, both the mean deviation and the random scatter from the linear approximation increase as the energy spreading decreases. Limited observational data are compared with the theoretical results. The agreement is favorable.

  4. Application of decision tree algorithm for identification of rock forming minerals using energy dispersive spectrometry

    NASA Astrophysics Data System (ADS)

    Akkaş, Efe; Çubukçu, H. Evren; Artuner, Harun

    2014-05-01

    Rapid and automated mineral identification is compulsory in certain applications concerning natural rocks. Among all microscopic and spectrometric methods, energy dispersive X-ray spectrometers (EDS) integrated with scanning electron microscopes produce rapid information with reliable chemical data. Although obtaining elemental data with EDS analyses is fast and easy by the help of improving technology, it is rather challenging to perform accurate and rapid identification considering the large quantity of minerals in a rock sample with varying dimensions ranging between nanometer to centimeter. Furthermore, the physical properties of the specimen (roughness, thickness, electrical conductivity, position in the instrument etc.) and the incident electron beam (accelerating voltage, beam current, spot size etc.) control the produced characteristic X-ray, which in turn affect the elemental analyses. In order to minimize the effects of these physical constraints and develop an automated mineral identification system, a rule induction paradigm has been applied to energy dispersive spectral data. Decision tree classifiers divide training data sets into subclasses using generated rules or decisions and thereby it produces classification or recognition associated with these data sets. A number of thinsections prepared from rock samples with suitable mineralogy have been investigated and a preliminary 12 distinct mineral groups (olivine, orthopyroxene, clinopyroxene, apatite, amphibole, plagioclase, K- feldspar, zircon, magnetite, titanomagnetite, biotite, quartz), comprised mostly of silicates and oxides, have been selected. Energy dispersive spectral data for each group, consisting of 240 reference and 200 test analyses, have been acquired under various, non-standard, physical and electrical conditions. The reference X-Ray data have been used to assign the spectral distribution of elements to the specified mineral groups. Consequently, the test data have been analyzed using

  5. Hydrodynamic effects in fast AFM single-molecule force measurements.

    PubMed

    Janovjak, Harald; Struckmeier, Jens; Müller, Daniel J

    2005-02-01

    Atomic force microscopy (AFM) allows the critical forces that unfold single proteins and rupture individual receptor-ligand bonds to be measured. To derive the shape of the energy landscape, the dynamic strength of the system is probed at different force loading rates. This is usually achieved by varying the pulling speed between a few nm/s and a few microm/s, although for a more complete investigation of the kinetic properties higher speeds are desirable. Above 10 microm/s, the hydrodynamic drag force acting on the AFM cantilever reaches the same order of magnitude as the molecular forces. This has limited the maximum pulling speed in AFM single-molecule force spectroscopy experiments. Here, we present an approach for considering these hydrodynamic effects, thereby allowing a correct evaluation of AFM force measurements recorded over an extended range of pulling speeds (and thus loading rates). To support and illustrate our theoretical considerations, we experimentally evaluated the mechanical unfolding of a multi-domain protein recorded at 30 microm/s pulling speed. PMID:15257425

  6. The elastic modulus correction term in creep activation energies Applied to oxide dispersion strengthened superalloy

    NASA Technical Reports Server (NTRS)

    Malu, M.; Tien, J. K.

    1975-01-01

    The effect of elastic modulus and the temperature dependence of elastic modulus on creep activation energies for an oxide dispersion strengthened nickel-base superalloy are investigated. This superalloy is commercially known as Inconel Alloy MA 753, strengthened both by gamma-prime precipitates and by yttria particles. It is shown that at intermediate temperatures, say below 1500 F, where elastic modulus is weakly dependent on temperature, the modulus correction term to creep activation energy is small. Accordingly, modulus corrections are insignificant for the superalloy considered, which shows high apparent creep activation energies at this temperature. On the contrary, at very high temperatures, the elastic modulus correction term can be significant, thus reducing the creep activation energy to that of vacancy self-diffusion. In order to obtain high-temperature creep resistance, a high-value elastic modulus with a weak dependence on temperature is required.

  7. Energy Efficienct Processes for Making Tackifier Dispersions used to make Pressure Sensitive Adhesives

    SciTech Connect

    Rakesh Gupta

    2006-07-26

    The primary objective of this project was to develop an energy efficient, environmentally friendly and low cost process (compared to the current process) for making tackifier dispersions that are used to make pressure-sensitive adhesives. These adhesives are employed in applications such as self-adhesive postage stamps and disposable diapers and are made by combining the tackifier dispersion with a natural or synthetic rubber latex. The current process for tackifier dispersion manufacture begins by melting a (plastic) resin and adding water to it in order to form a water-in-oil emulsion. This is then converted to an oil-in-water emulsion by phase inversion in the presence of continuous stirring. The resulting emulsion is the tackifier dispersion, but it is not concentrated and the remaining excess water has to be transported and removed. The main barrier that has to be overcome in the development of commercial quality tackifier dispersions is the inability to directly emulsify resin in water due to the very low viscosity of water as compared to the viscosity of the molten resin. In the present research, a number of solutions were proposed to overcome this barrier, and these included use of different mixer types to directly form the emulsion from the molten resin but without going through a phase inversion, the idea of forming a solid resin-in-water suspension having the correct size and size distribution but without melting of the resin, and the development of techniques of making a colloidal powder of the resin that could be dispersed in water just prior to use. Progress was made on each of these approaches, and each was found to be feasible. The most appealing solution, though, is the last one, since it does not require melting of the resin. Also, the powder can be shipped in dry form and then mixed with water in any proportion depending on the needs of the process. This research was conducted at Argonne National Laboratory, and it was determined the new process

  8. ezAFM: A low cost Atomic Force Microscope(AFM)

    NASA Astrophysics Data System (ADS)

    Celik, Umit; Celik, Kubra; Aslan, Husnu; Kehribar, Ihsan; Dede, Munir; Ozgur Ozer, H.; Oral, Ahmet

    2012-02-01

    A low cost AFM, ezAFM is developed for educational purposes as well as research. Optical beam deflection method is used to measure the deflection of cantilever. ezAFM scanner is built using voice coil motors (VCM) with ˜50x50x6 μm scan area. The microscope uses alignment free cantilevers, which minimizes setup times. FPGA based AFM feedback Control electronics is developed. FPGA technology allows us to drive all peripherals in parallel. ezAFM Controller is connected to PC by USB 2.0 interface as well as Wi-Fi. We have achieved <5nm lateral and ˜0.01nm vertical resolution. ezAFM can image single atomic steps in HOPG and mica. An optical microscope with <3 μm resolution is also integrated into the system. ezAFM supports different AFM operation modes such as dynamic mode, contact mode, lateral force microscopy. Advanced modes like magnetic force microscopy and electric force microscopy will be implemented later on. The new ezAFM system provides, short learning times for student labs, quick setup and easy to transport for portable applications with the best price/performance ratio. The cost of the system starts from 15,000, with system performance comparable with the traditional AFM systems.

  9. Low-energy neutron direct capture by 12C in a dispersive optical potential

    NASA Astrophysics Data System (ADS)

    Kitazawa, H.; Go, K.; Igashira, M.

    1998-01-01

    A dispersive optical potential for the interaction between low-energy neutrons and 12C nuclei is derived from a dispersion relation based on the Feshbach generalized optical model. The potential reproduces completely neutron total cross sections below 1.0 MeV and substantially reproduces the energy of the 3090 keV(1/2+) level in 13C which is of nearly pure 2s1/2 single-particle character. It is found that direct-capture model calculations with this potential explain quite successfully the observed off-resonance capture transitions to the ground (1/2-), 3090 keV(1/2+), 3685 keV(3/2-), and 3854 keV(5/2+) levels in 13C at neutron energies of 20-600 keV. Special emphasis is laid on the fact that in these model analyses, account should be taken of the spatial nonlocality of the neutron-nucleus interaction potential, in particular for negative energies.

  10. Low-energy neutron direct capture by {sup 12}C in a dispersive optical potential

    SciTech Connect

    Kitazawa, H.; Go, K.; Igashira, M.

    1998-01-01

    A dispersive optical potential for the interaction between low-energy neutrons and {sup 12}C nuclei is derived from a dispersion relation based on the Feshbach generalized optical model. The potential reproduces completely neutron total cross sections below 1.0 MeV and substantially reproduces the energy of the 3090keV(1/2{sup +}) level in {sup 13}C which is of nearly pure 2s{sub 1/2} single-particle character. It is found that direct-capture model calculations with this potential explain quite successfully the observed off-resonance capture transitions to the ground (1/2{sup {minus}}), 3090keV(1/2{sup +}), 3685keV(3/2{sup {minus}}), and 3854keV(5/2{sup +}) levels in {sup 13}C at neutron energies of 20{endash}600 keV. Special emphasis is laid on the fact that in these model analyses, account should be taken of the spatial nonlocality of the neutron-nucleus interaction potential, in particular for negative energies. {copyright} {ital 1998} {ital The American Physical Society}

  11. Determination of selenium in biological samples with an energy-dispersive X-ray fluorescence spectrometer.

    PubMed

    Li, Xiaoli; Yu, Zhaoshui

    2016-05-01

    Selenium is both a nutrient and a toxin. Selenium-especially organic selenium-is a core component of human nutrition. Thus, it is very important to measure selenium in biological samples. The limited sensitivity of conventional XRF hampers its widespread use in biological samples. Here, we describe the use of high-energy (100kV, 600W) linearly polarized beam energy-dispersive X-Ray fluorescence spectroscopy (EDXRF) in tandem with a three-dimensional optics design to determine 0.1-5.1μgg(-1) levels of selenium in biological samples. The effects of various experimental parameters such as applied voltage, acquisition time, secondary target and various filters were thoroughly investigated. The detection limit of selenium in biological samples via high-energy (100kV, 600W) linearly polarized beam energy-dispersive X-ray fluorescence spectroscopy was decreased by one order of magnitude versus conventional XRF (Paltridge et al., 2012) and found to be 0.1μg/g. To the best of our knowledge, this is the first report to describe EDXRF measurements of Se in biological samples with important implications for the nutrition and analytical chemistry communities. PMID:26922394

  12. Low energy x-ray spectra measured with a mercuric iodide energy dispersive spectrometer in a scanning electron microscope

    SciTech Connect

    Iwanczyk, J.S.; Dabrowski, A.J.; Huth, G.C.; Bradley, J.G.; Conley, J.M.; Albee, A.L.

    1985-01-01

    A mercuric iodide energy dispersive x-ray spectrometer, with Peltier cooling provided for the detector and input field effect transistor, has been developed and tested in a scanning electron microscope. X-ray spectra were obtained with the 15 keV electron beam. An energy resolution of 225 eV (FWHM) for Mn-K/sub ..cap alpha../ at 5.9 keV and 195 eV (FWHM) for Mg-K line at 1.25 keV has been measured. Overall system noise level was 175 eV (FWHM). The detector system characterization with a carbon target demonstrated good energy sensitivity at low energies and lack of significant spectral artifacts at higher energies. 16 refs., 5 figs.

  13. Low energy X-ray spectra measured with a mercuric iodide energy dispersive spectrometer in a scanning electron microscope

    NASA Technical Reports Server (NTRS)

    Iwanczyk, J. S.; Dabrowski, A. J.; Huth, G. C.; Bradley, J. G.; Conley, J. M.

    1986-01-01

    A mercuric iodide energy dispersive X-ray spectrometer, with Peltier cooling provided for the detector and input field effect transistor, has been developed and tested in a scanning electron microscope. X-ray spectra were obtained with the 15 keV electron beam. An energy resolution of 225 eV (FWHM) for Mn-K(alpha) at 5.9 keV and 195 eV (FWHM) for the Mg-K line at 1.25 keV has been measured. Overall system noise level was 175 eV (FWHM). The detector system characterization with a carbon target demonstrated good energy sensitivity at low energies and lack of significant spectral artifacts at higher energies.

  14. Decoupling the contribution of dispersive and acid-base components of surface energy on the cohesion of pharmaceutical powders.

    PubMed

    Shah, Umang V; Olusanmi, Dolapo; Narang, Ajit S; Hussain, Munir A; Tobyn, Michael J; Heng, Jerry Y Y

    2014-11-20

    This study reports an experimental approach to determine the contribution from two different components of surface energy on cohesion. A method to tailor the surface chemistry of mefenamic acid via silanization is established and the role of surface energy on cohesion is investigated. Silanization was used as a method to functionalize mefenamic acid surfaces with four different functional end groups resulting in an ascending order of the dispersive component of surface energy. Furthermore, four haloalkane functional end groups were grafted on to the surface of mefenamic acid, resulting in varying levels of acid-base component of surface energy, while maintaining constant dispersive component of surface energy. A proportional increase in cohesion was observed with increases in both dispersive as well as acid-base components of surface energy. Contributions from dispersive and acid-base surface energy on cohesion were determined using an iterative approach. Due to the contribution from acid-base surface energy, cohesion was found to increase ∼11.7× compared to the contribution from dispersive surface energy. Here, we provide an approach to deconvolute the contribution from two different components of surface energy on cohesion, which has the potential of predicting powder flow behavior and ultimately controlling powder cohesion. PMID:25223493

  15. Influence of gravity level and interfacial energies on dispersion-forming tendencies in hypermonotectic Cu-Pb-Al alloys

    NASA Technical Reports Server (NTRS)

    Andrews, J. B.; Curreri, P. A.; Sandlin, A. C.

    1988-01-01

    Results on the nondirectional solidification of several hypermonotectic Cu-Pb-Al alloys were obtained aboard NASA's KC-135 zero-gravity aircraft in order to determine the influence of interfacial energies and gravity levels on dispersion-forming tendencies. The Al content was systematially varied in the alloys. The dispersion-forming ability is correlated with gravity level during solidification, the interfacial energy between the immiscible phases, and the tendency for the minority immiscible phase to wet the walls of the crucible.

  16. Energy Dispersive X-Ray and Electrochemical Impedance Spectroscopies for Performance and Corrosion Analysis of PEMWEs

    NASA Astrophysics Data System (ADS)

    Steen, S. M., Iii; Zhang, F.-Y.

    2014-11-01

    Proton exchange membrane water electrolyzers (PEMWEs) are a promising energy storage technology due to their high efficiency, compact design, and ability to be used in a renewable energy system. Before they are able to make a large commercial impact, there are several hurdles facing the technology today. Two powerful techniques for both in-situ and ex- situ characterizations to improve upon their performance and better understand their corrosion are electrochemical impedance spectroscopy and energy dispersive x-ray spectroscopy, respectively. In this paper, the authors use both methods in order to characterize the anode gas diffusion layer (GDL) in a PEMWE cell and better understand the corrosion that occurs in the oxygen electrode during electrolysis.

  17. High-energy femtosecond Yb-doped dispersion compensation free fiber laser.

    PubMed

    Ortaç, B; Schmidt, O; Schreiber, T; Limpert, J; Tünnermann, A; Hideur, A

    2007-08-20

    We report on a mode-locked high energy fiber laser operating in the dispersion compensation free regime. The sigma cavity is constructed with a saturable absorber mirror and short-length large-mode-area photonic crystal fiber. The laser generates positively-chirped pulses with an energy of 265 nJ at a repetition rate of 10.18 MHz in a stable and self-starting operation. The pulses are compressible down to 400 fs leading to a peak power of 500 kW. Numerical simulations accurately reflect the experimental results and reveal the mechanisms for self consistent intracavity pulse evolution. With this performance mode-locked fiber lasers can compete with state-of-the-art bulk femtosecond oscillators for the first time and pulse energy scaling beyond the muJ-level appears to be feasible. PMID:19547427

  18. New software to model energy dispersive X-ray diffraction in polycrystalline materials

    NASA Astrophysics Data System (ADS)

    Ghammraoui, B.; Tabary, J.; Pouget, S.; Paulus, C.; Moulin, V.; Verger, L.; Duvauchelle, Ph.

    2012-02-01

    Detection of illicit materials, such as explosives or drugs, within mixed samples is a major issue, both for general security and as part of forensic analyses. In this paper, we describe a new code simulating energy dispersive X-ray diffraction patterns in polycrystalline materials. This program, SinFullscat, models diffraction of any object in any diffractometer system taking all physical phenomena, including amorphous background, into account. Many system parameters can be tuned: geometry, collimators (slit and cylindrical), sample properties, X-ray source and detector energy resolution. Good agreement between simulations and experimental data was obtained. Simulations using explosive materials indicated that parameters such as the diffraction angle or the energy resolution of the detector have a significant impact on the diffraction signature of the material inspected. This software will be a convenient tool to test many diffractometer configurations, providing information on the one that best restores the spectral diffraction signature of the materials of interest.

  19. BOREAS AFM-07 SRC Surface Meteorological Data

    NASA Technical Reports Server (NTRS)

    Osborne, Heather; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Young, Kim; Wittrock, Virginia; Shewchuck, Stan; Smith, David E. (Technical Monitor)

    2000-01-01

    The Saskatchewan Research Council (SRC) collected surface meteorological and radiation data from December 1993 until December 1996. The data set comprises Suite A (meteorological and energy balance measurements) and Suite B (diffuse solar and longwave measurements) components. Suite A measurements were taken at each of ten sites, and Suite B measurements were made at five of the Suite A sites. The data cover an approximate area of 500 km (North-South) by 1000 km (East-West) (a large portion of northern Manitoba and northern Saskatchewan). The measurement network was designed to provide researchers with a sufficient record of near-surface meteorological and radiation measurements. The data are provided in tabular ASCII files, and were collected by Aircraft Flux and Meteorology (AFM)-7. The surface meteorological and radiation data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  20. STM and AFM; Which is Better for Surface Structural Analysis? Non- contact AFM Studies on Ge/Si(105) Surface

    NASA Astrophysics Data System (ADS)

    Hasegawa, Yukio

    2006-03-01

    Scanning tunneling microscopy (STM) has been utilized to determine surface atomic structure with its highly resolved images. Probing surface electronic states near the Fermi energy (EF), STM images, however, do not necessarily represent the atomic structure of surfaces. It has been believed that atomic force microscopy (AFM) provides us surface topographic images without being disturbed by the electronic states. In order to prove the surpassing performance, we performed noncontact (nc) AFM on the Ge/Si(105) surface [1], which is a facet plane of the ?hut? clusters formed on Ge-deposited Si(001) surface. It is found that STM images taken on the surface, either filled- or empty-state images, do not show all surface atoms because of the electronic effect; some surface atoms have dangling bond states below EF and other surface atoms have states above EF. [2]. In a nc-AFM image, on the other hand, all surface atoms having a dangling bond are observed [3], directly representing an atomic structure of the surface. Electronic information can also be obtained in AFM by using a Kelvin-probe method. From atomically resolved potential profile we obtained, charge transfer among the dangling bond states is directly demonstrated. These results clearly demonstrate that highly-resolved nc-AFM with a Kelvin-probe method is an ideal tool for analysis of atomic structures and electronic properties of surfaces. This work was done in collaboration with T. Eguchi, K. Akiyama, T. An, and M. Ono, ISSP, Univ. Tokyo and JST, Y. Fujikawa and T. Sakurai, IMR. Tohoku Univ. T. Hashimoto, AIST, Y. Morikawa, ISIR, Osaka Univ. K. Terakura, Hokkaido Univ., and M.G. Lagally, University of Wisconsin-Madison. [1] T. Eguchi et al., Phys. Rev. Lett. 93, 266102 (2004). [2] Y. Fujikawa et al., Phys. Rev. Lett. 88, 176101 (2002). [3] T. Eguchi and Y. Hasegawa, Phys. Rev. Lett. 89, 256105 (2002)

  1. Determination of carrier yields for neutron activation analysis using energy dispersive X-ray spectrometry

    USGS Publications Warehouse

    Johnson, R.G.; Wandless, G.A.

    1984-01-01

    A new method is described for determining carrier yield in the radiochemical neutron activation analysis of rare-earth elements in silicate rocks by group separation. The method involves the determination of the rare-earth elements present in the carrier by means of energy-dispersive X-ray fluorescence analysis, eliminating the need to re-irradiate samples in a nuclear reactor after the gamma ray analysis is complete. Results from the analysis of USGS standards AGV-1 and BCR-1 compare favorably with those obtained using the conventional method. ?? 1984 Akade??miai Kiado??.

  2. Distinction between entrance and exit wounds by energy dispersive X-ray fluorescence spectrometry.

    PubMed

    Tanaka, Naoko; Kinoshita, Hiroshi; Takakura, Ayaka; Jamal, Mostofa; Ito, Asuka; Kumihashi, Mitsuru; Tsutsui, Kunihiko; Kimura, Shoji; Ameno, Kiyoshi

    2016-09-01

    We investigated gunshot wounds in two autopsy cases using energy dispersive X-ray spectrometry (EDX). Lead and copper were detected in the entrance wound of one case and lead, antimony, and copper were detected in that of the other case. In the exit wounds of both cases, lead, antimony, and copper were below detection limits. These findings indicate that the detection of metallic elements, such as lead, antimony, and copper, which are found in bullets, may be useful for differentiating entrance from exit wounds using EDX. PMID:27591531

  3. Continuous energy diffraction spectroscopy: A new d-space matching technique for energy dispersive synchrotron radiation diffraction

    NASA Astrophysics Data System (ADS)

    Lee, P. L.; Beno, M. A.; Knapp, G. S.; Jennings, G.

    1994-07-01

    In this article, a new technique, continuous energy diffraction spectroscopy (CEDS) is described, for diffraction experiments using a synchrotron energy dispersive polychromatic beamline. This type of beamline uses a curved crystal monochromator (polychromator) to focus a range of x-ray energies (bandwidth ˜1 keV) into a narrow (100-120 μm) line image. With a sample at this image point, using an 2D detector, we are able to measure diffracted intensities for the entire energy range of the incident beam simultaneously with limited or no motion of the sample. This method allows the collection of anomalous scattering and diffraction anomalous fine structure (DAFS) data faster and more accurately than with conventional methods. Because of the speed with which these types of diffraction experiments can be done, this method creates new options for time resolved diffraction experiments and provides new data collection strategies.

  4. Energy transfer between rhodamine 3B and oxazine 4 in synthetic-saponite dispersions and films.

    PubMed

    Czímerová, A; Iyi, N; Bujdák, J

    2007-02-15

    The objective of this study was the investigation of energy transfer between the laser dyes rhodamine 3B (R3B) and oxazine 4 (Ox4) adsorbed on the surface of synthetic Sumecton saponite (Sum). The process of energy transfer was studied for both saponite dispersions and oriented solid films. The electronic properties, luminescence, and the energy transfer process were described by UV-vis absorption and fluorescence spectroscopy. For the efficiency of the energy transfer process, the concentrations of energy donor and acceptor components on a clay mineral surface were found to be essential. A side reaction of the molecular assembly formation reduced both the luminescence and energy-transfer yields, mainly due to fluorescence quenching. The quenching was more problematic for the solid film specimens, where an appropriate modification of the inorganic host with hydrophobic alkylammonium cations was used to achieve a higher luminescence. Due to the higher tendency of Ox4 to form nonluminescent aggregates at higher concentrations, the lowering of the Ox4 concentration further improved the luminescent properties of the films. In this case, the energy transfer occurring in the solid film from R3B to Ox4 was clearly proven. PMID:17118384

  5. Nano Mechanical Machining Using AFM Probe

    NASA Astrophysics Data System (ADS)

    Mostofa, Md. Golam

    Complex miniaturized components with high form accuracy will play key roles in the future development of many products, as they provide portability, disposability, lower material consumption in production, low power consumption during operation, lower sample requirements for testing, and higher heat transfer due to their very high surface-to-volume ratio. Given the high market demand for such micro and nano featured components, different manufacturing methods have been developed for their fabrication. Some of the common technologies in micro/nano fabrication are photolithography, electron beam lithography, X-ray lithography and other semiconductor processing techniques. Although these methods are capable of fabricating micro/nano structures with a resolution of less than a few nanometers, some of the shortcomings associated with these methods, such as high production costs for customized products, limited material choices, necessitate the development of other fabricating techniques. Micro/nano mechanical machining, such an atomic force microscope (AFM) probe based nano fabrication, has, therefore, been used to overcome some the major restrictions of the traditional processes. This technique removes material from the workpiece by engaging micro/nano size cutting tool (i.e. AFM probe) and is applicable on a wider range of materials compared to the photolithographic process. In spite of the unique benefits of nano mechanical machining, there are also some challenges with this technique, since the scale is reduced, such as size effects, burr formations, chip adhesions, fragility of tools and tool wear. Moreover, AFM based machining does not have any rotational movement, which makes fabrication of 3D features more difficult. Thus, vibration-assisted machining is introduced into AFM probe based nano mechanical machining to overcome the limitations associated with the conventional AFM probe based scratching method. Vibration-assisted machining reduced the cutting forces

  6. Alternating magnetic field energy absorption in the dispersion of iron oxide nanoparticles in a viscous medium

    NASA Astrophysics Data System (ADS)

    Smolkova, Ilona S.; Kazantseva, Natalia E.; Babayan, Vladimir; Smolka, Petr; Parmar, Harshida; Vilcakova, Jarmila; Schneeweiss, Oldrich; Pizurova, Nadezda

    2015-01-01

    Magnetic iron oxide nanoparticles were obtained by a coprecipitation method in a controlled growth process leading to the formation of uniform highly crystalline nanoparticles with average size of 13 nm, which corresponds to the superparamagnetic state. Nanoparticles obtained are a mixture of single-phase nanoparticles of magnetite and maghemite as well as nanoparticles of non-stoichiometric magnetite. The subsequent annealing of nanoparticles at 300 °C in air during 6 h leads to the full transformation to maghemite. It results in reduced value of the saturation magnetization (from 56 emu g-1 to 48 emu g-1) but does not affect the heating ability of nanoparticles. A 2-7 wt% dispersion of as-prepared and annealed nanoparticles in glycerol provides high heating rate in alternating magnetic fields allowed for application in magnetic hyperthermia; however the value of specific loss power does not exceed 30 W g-1. This feature of heat output is explained by the combined effect of magnetic interparticle interactions and the properties of the carrier medium. Nanoparticles coalesce during the synthesis and form aggregates showing ferromagnetic-like behavior with magnetization hysteresis, distinct sextets on Mössbauer spectrum, blocking temperature well about room temperature, which accounts for the higher energy barrier for magnetization reversal. At the same time, low specific heat capacity of glycerol intensifies heat transfer in the magnetic dispersion. However, high viscosity of glycerol limits the specific loss power value, since predominantly the Neel relaxation accounts for the absorption of AC magnetic field energy.

  7. Quantitative energy-dispersive x-ray diffraction for identification of counterfeit medicines: a preliminary study

    NASA Astrophysics Data System (ADS)

    Crews, Chiaki C. E.; O'Flynn, Daniel; Sidebottom, Aiden; Speller, Robert D.

    2015-06-01

    The prevalence of counterfeit and substandard medicines has been growing rapidly over the past decade, and fast, nondestructive techniques for their detection are urgently needed to counter this trend. In this study, energy-dispersive X-ray diffraction (EDXRD) combined with chemometrics was assessed for its effectiveness in quantitative analysis of compressed powder mixtures. Although EDXRD produces lower-resolution diffraction patterns than angular-dispersive X-ray diffraction (ADXRD), it is of interest for this application as it carries the advantage of allowing the analysis of tablets within their packaging, due to the higher energy X-rays used. A series of caffeine, paracetamol and microcrystalline cellulose mixtures were prepared with compositions between 0 - 100 weight% in 20 weight% steps (22 samples in total, including a centroid mixture), and were pressed into tablets. EDXRD spectra were collected in triplicate, and a principal component analysis (PCA) separated these into their correct positions in the ternary mixture design. A partial least-squares (PLS) regression model calibrated using this training set was validated using both segmented cross-validation, and with a test set of six samples (mixtures in 8:1:1 and 5⅓:2⅓:2⅓ ratios) - the latter giving a root-mean square error of prediction (RMSEP) of 1.30, 2.25 and 2.03 weight% for caffeine, paracetamol and cellulose respectively. These initial results are promising, with RMSEP values on a par with those reported in the ADXRD literature.

  8. Practical applications of energy dispersive X-ray microanalysis in diagnostic oral pathology

    SciTech Connect

    Daley, T.D.; Gibson, D. )

    1990-03-01

    Energy dispersive X-ray microanalysis is a powerful tool that can reveal the presence and relative quantities of elements in minute particles in biologic materials. Although this technique has been used in some aspects of dental research, it has rarely been applied to diagnostic oral pathology. The purpose of this paper is to inform practicing dentists and oral specialists about the diagnostic potential of this procedure by presenting three case reports. The first case involved the identification of flakes of a metallic material claimed by a 14-year-old girl to appear periodically between her mandibular molars. In the second case, a periodontist was spared a lawsuit when a freely mobile mass in the antrum of his patient was found to be a calcium-phosphorus compound not related to the periodontal packing that had been used. The third case involved the differential diagnosis of amalgam tattoo and graphite tattoo in a pigmented lesion of the hard palate mucosa. The results of the analyses were significant and indicate a role for this technique in the assessment of selected cases. Potential for wider use of energy dispersive X-ray microanalysis in diagnostic oral pathology exists as research progresses.

  9. X-ray coherent scattering form factors of tissues, water and plastics using energy dispersion

    NASA Astrophysics Data System (ADS)

    King, B. W.; Landheer, K. A.; Johns, P. C.

    2011-07-01

    A key requirement for the development of the field of medical x-ray scatter imaging is accurate characterization of the differential scattering cross sections of tissues and phantom materials. The coherent x-ray scattering form factors of five tissues (fat, muscle, liver, kidney, and bone) obtained from butcher shops, four plastics (polyethylene, polystyrene, lexan (polycarbonate), nylon), and water have been measured using an energy-dispersive technique. The energy-dispersive technique has several improvements over traditional diffractometer measurements. Most notably, the form factor is measured on an absolute scale with no need for scaling factors. Form factors are reported in terms of the quantity x = λ-1sin (θ/2) over the range 0.363-9.25 nm-1. The coherent form factors of muscle, liver, and kidney resemble those of water, while fat has a narrower peak at lower x, and bone is more structured. The linear attenuation coefficients of the ten materials have also been measured over the range 30-110 keV and parameterized using the dual-material approach with the basis functions being the linear attenuation coefficients of polymethylmethacrylate and aluminum.

  10. Coulomb Interaction Effect in Weyl Fermions with Tilted Energy Dispersion in Two Dimensions.

    PubMed

    Isobe, Hiroki; Nagaosa, Naoto

    2016-03-18

    Weyl fermions with tilted linear dispersions characterized by several different velocities appear in some systems including the quasi-two-dimensional organic semiconductor α-(BEDT-TTF)_{2}I_{3} and three-dimensional WTe_{2}. The Coulomb interaction between electrons modifies the velocities in an essential way in the low-energy limit, where the logarithmic corrections dominate. Taking into account the coupling to both the transverse and longitudinal electromagnetic fields, we derive the renormalization group equations for the velocities of the tilted Weyl fermions in two dimensions, and found that they increase as the energy decreases and eventually hit the speed of light c to result in the Cherenkov radiation. Especially, the system restores the isotropic Weyl cone even when the bare Weyl cone is strongly tilted and the velocity of electrons becomes negative in certain directions. PMID:27035318

  11. Unified dispersive approach to real and virtual photon-photon scattering at low energy

    NASA Astrophysics Data System (ADS)

    Moussallam, B.

    2013-09-01

    Previous representations of pion-pair production amplitudes by two real photons at low energy, which combine dispersion theoretical constraints with elastic unitarity, chiral symmetry and soft-photon constraints are generalised to the case where one photon is virtual. The constructed amplitudes display explicitly the dependence on the ππ phase-shifts, on pion form factors and on pion polarisabilities. They apply both for space-like and time-like virtualities despite the apparent overlap of the left- and right-hand cuts, by implementing a definition of resonance exchange amplitudes complying with analyticity and consistent limiting prescriptions for the energy variables. Applications are made to the pion generalised polarisabilies, to vector-meson radiative decays, and to the σγ electromagnetic form factor. Finally, an evaluation of the contribution of γππ states in the hadronic vacuum polarisation to the muon g-2 is given, which should be less model dependent than previous estimates.

  12. Superconducting Detector System for High-Resolution Energy-Dispersive Soft X-Ray Spectroscopy

    SciTech Connect

    Friedrich, S; Niedermayr, T; Drury, O; Funk, T; Frank, M; Labov, S E; Cramer, S

    2001-02-21

    Synchrotron-based soft x-ray spectroscopy is often limited by detector performance. Grating spectrometers have the resolution, but lack the efficiency for the analysis of dilute samples. Semiconducting Si(Li) or Ge detectors are efficient, but often lack the resolution to separate weak signals from strong nearby lines in multi-element samples. Superconducting tunnel junctions (STJs) operated at temperatures below 1 K can be used as high-resolution high-efficiency x-ray detectors. They combine high energy resolution around 10 eV FWHM with the broad band efficiency of energy-dispersive detectors. We have designed a two-stage adiabatic demagnetization refrigerator (ADR) to operate STJ detectors in x-ray fluorescence measurements at beam line 4 of the ALS. We demonstrate the capabilities of such a detector system for fluorescence analysis of dilute metal sites in proteins and inorganic model compounds.

  13. Coulomb Interaction Effect in Weyl Fermions with Tilted Energy Dispersion in Two Dimensions

    NASA Astrophysics Data System (ADS)

    Isobe, Hiroki; Nagaosa, Naoto

    2016-03-01

    Weyl fermions with tilted linear dispersions characterized by several different velocities appear in some systems including the quasi-two-dimensional organic semiconductor α -(BEDT -TTF )2I3 and three-dimensional WTe2 . The Coulomb interaction between electrons modifies the velocities in an essential way in the low-energy limit, where the logarithmic corrections dominate. Taking into account the coupling to both the transverse and longitudinal electromagnetic fields, we derive the renormalization group equations for the velocities of the tilted Weyl fermions in two dimensions, and found that they increase as the energy decreases and eventually hit the speed of light c to result in the Cherenkov radiation. Especially, the system restores the isotropic Weyl cone even when the bare Weyl cone is strongly tilted and the velocity of electrons becomes negative in certain directions.

  14. Inter-phase heat transfer and energy coupling in turbulent dispersed multiphase flows

    NASA Astrophysics Data System (ADS)

    Ling, Y.; Balachandar, S.; Parmar, M.

    2016-03-01

    The present paper addresses important fundamental issues of inter-phase heat transfer and energy coupling in turbulent dispersed multiphase flows through scaling analysis. In typical point-particle or two-fluid approaches, the fluid motion and convective heat transfer at the particle scale are not resolved and the momentum and energy coupling between fluid and particles are provided by proper closure models. By examining the kinetic energy transfer due to the coupling forces from the macroscale to microscale fluid motion, closure models are obtained for the contributions of the coupling forces to the energy coupling. Due to the inviscid origin of the added-mass force, its contribution to the microscale kinetic energy does not contribute to dissipative transfer to fluid internal energy as was done by the quasi-steady force. Time scale analysis shows that when the particle is larger than a critical diameter, the diffusive-unsteady kernel decays at a time scale that is smaller than the Kolmogorov time scale. As a result, the computationally costly Basset-like integral form of diffusive-unsteady heat transfer can be simplified to a non-integral form. Conventionally, the fluid-to-particle volumetric heat capacity ratio is used to evaluate the relative importance of the unsteady heat transfer to the energy balance of the particles. Therefore, for gas-particle flows, where the fluid-to-particle volumetric heat capacity ratio is small, unsteady heat transfer is usually ignored. However, the present scaling analysis shows that for small fluid-to-particle volumetric heat capacity ratio, the importance of the unsteady heat transfer actually depends on the ratio between the particle size and the Kolmogorov scale. Furthermore, the particle mass loading multiplied by the heat capacity ratio is usually used to estimate the importance of the thermal two-way coupling effect. Through scaling argument, improved estimates are established for the energy coupling parameters of each

  15. Microcalorimeter-type energy dispersive X-ray spectrometer for a transmission electron microscope.

    PubMed

    Hara, Toru; Tanaka, Keiichi; Maehata, Keisuke; Mitsuda, Kazuhisa; Yamasaki, Noriko Y; Ohsaki, Mitsuaki; Watanabe, Katsuaki; Yu, Xiuzhen; Ito, Takuji; Yamanaka, Yoshihiro

    2010-01-01

    A new energy dispersive X-ray spectrometer (EDS) with a microcalorimeter detector equipped with a transmission electron microscope (TEM) has been developed for high- accuracy compositional analysis in the nanoscale. A superconducting transition-edge-sensor-type microcalorimeter is applied as the detector. A cryogen-free cooling system, which consists of a mechanical and a dilution refrigerator, is selected to achieve long-term temperature stability. In order to mount these detector and refrigerators on a TEM, the cooling system is specially designed such that these two refrigerators are separated. Also, the detector position and arrangement are carefully designed to avoid adverse affects between the superconductor detector and the TEM lens system. Using the developed EDS system, at present, an energy resolution of 21.92 eV full-width-at-half maximum has been achieved at the Cr K alpha line. This value is about seven times better than that of the current typical commercial Si(Li) detector, which is usually around 140 eV. The developed microcalorimeter EDS system can measure a wide energy range, 1-20 keV, at one time with this high energy resolution that can resolve peaks from most of the elements. Although several further developments will be needed to enable practical use, highly accurate compositional analysis with high energy resolution will be realized by this microcalorimeter EDS system. PMID:19717388

  16. Hydration states of AFm cement phases

    SciTech Connect

    Baquerizo, Luis G.; Matschei, Thomas; Scrivener, Karen L.; Saeidpour, Mahsa; Wadsö, Lars

    2015-07-15

    The AFm phase, one of the main products formed during the hydration of Portland and calcium aluminate cement based systems, belongs to the layered double hydrate (LDH) family having positively charged layers and water plus charge-balancing anions in the interlayer. It is known that these phases present different hydration states (i.e. varying water content) depending on the relative humidity (RH), temperature and anion type, which might be linked to volume changes (swelling and shrinkage). Unfortunately the stability conditions of these phases are insufficiently reported. This paper presents novel experimental results on the different hydration states of the most important AFm phases: monocarboaluminate, hemicarboaluminate, strätlingite, hydroxy-AFm and monosulfoaluminate, and the thermodynamic properties associated with changes in their water content during absorption/desorption. This data opens the possibility to model the response of cementitious systems during drying and wetting and to engineer systems more resistant to harsh external conditions.

  17. AFM indentation study of breast cancer cells

    SciTech Connect

    Li, Q.S.; Lee, G.Y.H.; Ong, C.N.; Lim, C.T.

    2008-10-03

    Mechanical properties of individual living cells are known to be closely related to the health and function of the human body. Here, atomic force microscopy (AFM) indentation using a micro-sized spherical probe was carried out to characterize the elasticity of benign (MCF-10A) and cancerous (MCF-7) human breast epithelial cells. AFM imaging and confocal fluorescence imaging were also used to investigate their corresponding sub-membrane cytoskeletal structures. Malignant (MCF-7) breast cells were found to have an apparent Young's modulus significantly lower (1.4-1.8 times) than that of their non-malignant (MCF-10A) counterparts at physiological temperature (37 deg. C), and their apparent Young's modulus increase with loading rate. Both confocal and AFM images showed a significant difference in the organization of their sub-membrane actin structures which directly contribute to their difference in cell elasticity. This change may have facilitated easy migration and invasion of malignant cells during metastasis.

  18. The Role of Energy Dispersion in the Genesis and Life Cycle of African Easterly Waves

    NASA Astrophysics Data System (ADS)

    Diaz, Michael

    This dissertation uses energy dispersion and wave packet concepts to provide a better conceptual model of the genesis and life cycle of African Easterly Waves and to better understand the instability of the African Easterly Jet (AEJ). The existence of an upstream (eastward) group velocity for AEWs is shown based on single-point lag regressions using gridded reanalysis data from 1990 to 2010. The eastward energy dispersion is consistent with the direction of ageostrophic geopotential flux vectors. A local eddy kinetic energy (EKE) budget reveals that, early in the life cycle of AEWs, growth rate due to geopotential flux convergence exceeds baroclinic and barotropic growth rates. Later in the life cycle, EKE decay due to geopotential flux divergence cancels or exceeds baroclinic and barotropic growth. A potential vorticity (PV) budget is used to diagnose tendencies related to group propagation. Although both upstream and downstream group speeds are possible because of the reversal in the mean meridional PV gradient, upstream propagation associated with the positive poleward PV gradient dominates wave packet evolution. Analogous to the concept of downstream development of midlatitude baroclinic waves, new AEWs develop preferentially upstream of the older ones, thus providing a mechanism for seeding new waves. The usefulness of upstream development as a genesis mechanism for AEWs is demonstrated by performing a case study of the AEW which ultimately produced hurricane Alberto (2000). The case study uses the ERA-interim reanalysis combined with surface observations and TRMM data. Using a local EKE budget, we attribute its genesis to energy dispersion from a preceding AEW. After genesis, baroclinic and barotropic conversion dominated the energetics of this AEW. Some strengths and weaknesses of upstream development as a paradigm for AEW genesis are discussed with respect to other potential mechanisms. The stability of the AEJ is examined applying the concept of absolute

  19. Surface energy changes and their relationship with the dispersibility of salmeterol xinafoate powders for inhalation after storage at high RH.

    PubMed

    Das, Shyamal; Larson, Ian; Young, Paul; Stewart, Peter

    2009-11-01

    This study investigated the relationship between surface energy of micronized lactose, coarse lactose and salmeterol xinafoate and dispersibility from a mixture after storage at 75% RH. Surface energies, dispersibility, morphology, and the presence of amorphous domains were determined by inverse gas chromatography, twin stage impinger, scanning electron microscope and dynamic vapour sorption, respectively. The fine particle fraction of mixture decreased significantly in 4 weeks (P<0.05), reaching a static level in 3 months. Amorphous content was not detected in the micronized lactose, coarse lactose and salmeterol xinafoate. After conditioning stored samples at 75% RH for 2h, dispersive surface energy of both micronized and coarse lactose significantly decreased (P<0.05), while the polar surface energy of all significantly increased (P<0.05) resulting in significant increase in total surface energy after storage. After conditioning stored samples at 0% RH for 2h, no significant difference was observed in any surface energy parameter. This study concluded that the total surface energy increased during storage at high RH due to the adhered surface moisture. The mechanism of decreased dispersibility was related to increased capillary/solid bridging interactions and to possible increased interaction of contiguous particles due to increased polar surface energy. PMID:19732829

  20. An Overview of High-Resolution, Non-Dispersive, Imaging Spectrometers for High-Energy Photons

    NASA Technical Reports Server (NTRS)

    Kilbourne, Caroline

    2010-01-01

    High-resolution x-ray spectroscopy has become a powerful tool for studying the evolving universe. The grating spectrometers on the XMM and Chandra satellites initiated a new era in x-ray astronomy. Despite their successes, there is still need for instrumentation that can provide higher spectral resolution with high throughput in the Fe-K band and for extended sources. What is needed is a non-dispersive imaging spectrometer - essentially a 14-bit x-ray color camera. And a requirement for a nondispersive spectrometer designed to provide eV-scale spectral resolution is a temperature below 0.1 K. The required spectral resolution and the constraints of thermodynamics and engineering dictate the temperature regime nearly independently of the details of the sensor or the read-out technology. Low-temperature spectrometers can be divided into two classes - - equilibrium and non-equilibrium. In the equilibrium devices, or calorimeters, the energy is deposited in an isolated thermal mass and the resulting increase in temperature is measured. In the non-equilibrium devices, the absorbed energy produces quantized excitations that are counted to determine the energy. The two approaches have different strong points, and within each class a variety of optimizations have been pursued. I will present the basic fundamentals of operation and the details of the most successful device designs to date. I will also discuss how the measurement priorities (resolution, energy band, count rate) influence the optimal choice of detector technology.

  1. Review and perspectives of AFM application on the study of deformable drop/bubble interactions.

    PubMed

    Wang, Wei; Li, Kai; Ma, Mengyu; Jin, Hang; Angeli, Panagiota; Gong, Jing

    2015-11-01

    The applications of Atomic Force Microscopy (AFM) on the study of dynamic interactions and film drainage between deformable bodies dispersed in aqueous solutions are reviewed in this article. Novel experimental designs and recent advances in experimental methodologies are presented, which show the advantage of using AFM as a tool for probing colloidal interactions. The effects of both DLVO and non-DLVO forces on the colloid stabilization mechanism are discussed. Good agreement is found between the force - drop/bubble deformation behaviour revealed by AFM measurements and the theoretical modeling of film drainage process, giving a convincing explanation of the occurrence of certain phenomenon. However, the behaviour and shape of deformable drops as they approach or retract is still not well resolved. In addition, when surfactants are present further research is needed on the absorption of surfactant molecules into the interfaces, their mobility and the effects on interfacial film properties. PMID:26344865

  2. In situ energy dispersive x-ray reflectometry measurements on organic solar cells upon working

    NASA Astrophysics Data System (ADS)

    Paci, B.; Generosi, A.; Albertini, V. Rossi; Perfetti, P.; de Bettignies, R.; Firon, M.; Leroy, J.; Sentein, C.

    2005-11-01

    The change in the morphology of plastic solar cells was studied by means of time-resolved energy dispersive x-ray reflectivity (XRR). This unconventional application of the XRR technique allowed the follow up of in situ morphological evolution of an organic photovoltaic device upon working. The study consisted of three steps: A preliminary set of XRR measurements on various samples representing the intermediate stages of cell construction, which provided accurate data regarding the electronic densities of the different layers; the verification of the morphological stability of the device under ambient condition; a real-time collection of XRR patterns, both in the dark and during 15h in artificial light conditions which allowed the changes in the system morphology at the electrode-active layer interface to be monitored. In this way, a progressive thickening of this interface, responsible for a reduction in the performances of the device, was observed directly.

  3. Energy dispersive-EXAFS of Pd nucleation at a liquid/liquid interface

    NASA Astrophysics Data System (ADS)

    Chang, S.-Y.; Booth, S. G.; Uehara, A.; Mosselmans, J. F. W.; Cibin, G.; Pham, V.-T.; Nataf, L.; Dryfe, R. A. W.; Schroeder, S. L. M.

    2016-05-01

    Energy dispersive extended X-ray absorption fine structure (EDE) has been applied to Pd nanoparticle nucleation at a liquid/liquid interface under control over the interfacial potential and thereby the driving force for nucleation. Preliminary analysis focusing on Pd K edge-step height determination shows that under supersaturated conditions the concentration of Pd near the interface fluctuate over a period of several hours, likely due to the continuous formation and dissolution of sub-critical nuclei. Open circuit potential measurements conducted ex-situ in a liquid/liquid electrochemical cell support this view, showing that the fluctuations in Pd concentration are also visible as variations in potential across the liquid/liquid interface. By decreasing the interfacial potential through inclusion of a common ion (tetraethylammonium, TEA+) the Pd nanoparticle growth rate could be slowed down, resulting in a smooth nucleation process. Eventually, when the TEA+ ions reached an equilibrium potential, Pd nucleation and particle growth were inhibited.

  4. Soil characterization by energy dispersive X-ray fluorescence: sampling strategy for in situ analysis.

    PubMed

    Custo, Graciela; Boeykens, Susana; Dawidowski, L; Fox, L; Gómez, D; Luna, F; Vázquez, Cristina

    2005-07-01

    This work describes a sampling strategy that will allow the use of portable EDXRF (energy dispersive X-ray fluorescence) instruments for "in situ" soil analysis. The methodology covers a general approach to planning field investigations for any type of environmental studies and it was applied for a soil characterization study in the zone of Campana, Argentina, by evaluating data coming from an EDXRF spectrometer with a radioisotope excitation source. Simulating non-treated sampled as "in situ" samples and a soil characterization for Campana area was intended. "In situ" EDXRF methodology is a powerful analytical modality with the advantage of providing data immediately, allowing a fast general screening of the soil composition. PMID:16038489

  5. Energy dispersive x-ray diffraction of charge density waves via chemical filtering

    SciTech Connect

    Feng Yejun; Somayazulu, M. S.; Jaramillo, R.; Rosenbaum, T.F.; Isaacs, E.D.; Hu Jingzhu; Mao Hokwang

    2005-06-15

    Pressure tuning of phase transitions is a powerful tool in condensed matter physics, permitting high-resolution studies while preserving fundamental symmetries. At the highest pressures, energy dispersive x-ray diffraction (EDXD) has been a critical method for geometrically confined diamond anvil cell experiments. We develop a chemical filter technique complementary to EDXD that permits the study of satellite peaks as weak as 10{sup -4} of the crystal Bragg diffraction. In particular, we map out the temperature dependence of the incommensurate charge density wave diffraction from single-crystal, elemental chromium. This technique provides the potential for future GPa pressure studies of many-body effects in a broad range of solid state systems.

  6. Nano-sized Lithium Manganese Oxide Dispersed on Carbon Nanotubes for Energy Storage Applications

    SciTech Connect

    Bak, S.B.

    2009-08-01

    Nano-sized lithium manganese oxide (LMO) dispersed on carbon nanotubes (CNT) has been synthesized successfully via a microwave-assisted hydrothermal reaction at 200 C for 30 min using MnO{sub 2}-coated CNT and an aqueous LiOH solution. The initial specific capacity is 99.4 mAh/g at a 1.6 C-rate, and is maintained at 99.1 mAh/g even at a 16 C-rate. The initial specific capacity is also maintained up to the 50th cycle to give 97% capacity retention. The LMO/CNT nanocomposite shows excellent power performance and good structural reversibility as an electrode material in energy storage systems, such as lithium-ion batteries and electrochemical capacitors. This synthetic strategy opens a new avenue for the effective and facile synthesis of lithium transition metal oxide/CNT nanocomposite.

  7. Characterization of small noble metal electrodes by voltammetry and energy dispersive x ray analysis

    NASA Astrophysics Data System (ADS)

    Strein, Timothy G.; Ewing, Andrew G.

    1993-01-01

    Construction and characterization of platinum and gold electrodes with total structural diameters of 1-2 micrometers is described. These small voltammetric probes have been constructed by direct electroreduction of noble metals onto the tips of etched carbon fiber microdisk electrodes. Voltammetry, electron microscopy, energy-dispersive x-ray analysis, and pulsed amperometric detection have been used to characterize these electrodes. Dopamine concentrations have been determined over a range of 10(exp -4) to 10(exp -3) M in the biological buffer system which contains 25 mM glucose, a compound known to adsorb strongly to electrodes. Amperometric monitoring at a constant potential with these small results in signal decay of 20% to 40% in a ten minute experiment. Pulsed amperometric detection minimizes electrode fouling, resulting in 5% or less signal decay over the same ten minute period.

  8. Evaluation on determination of iodine in coal by energy dispersive X-ray fluorescence

    USGS Publications Warehouse

    Wang, B.; Jackson, J.C.; Palmer, C.; Zheng, B.; Finkelman, R.B.

    2005-01-01

    A quick and inexpensive method of relative high iodine determination from coal samples was evaluated. Energy dispersive X-ray fluorescence (EDXRF) provided a detection limit of about 14 ppm (3 times of standard deviations of the blank sample), without any complex sample preparation. An analytical relative standard deviation of 16% was readily attainable for coal samples. Under optimum conditions, coal samples with iodine concentrations higher than 5 ppm can be determined using this EDXRF method. For the time being, due to the general iodine concentrations of coal samples lower than 5 ppm, except for some high iodine content coal, this method can not effectively been used for iodine determination. More work needed to meet the requirement of determination of iodine from coal samples for this method. Copyright ?? 2005 by The Geochemical Society of Japan.

  9. Compositional analysis of Ceramic Glaze by Laser Induced Breakdown Spectroscopy and Energy Dispersive X-Ray

    NASA Astrophysics Data System (ADS)

    Khedr, A.; Abdel-kareem, O.; Elnabi, S. H.; Harith, M. A.

    2011-09-01

    Laser induced breakdown spectroscopy (LIBS) has been applied for the analysis of Egyptian Islamic glaze ceramic sample. The sample dating back to Fatimid period (969-1169AD), and collected from Al-Fustat excavation store in Cairo. The analysis of contaminated pottery sample has been performed to draw mapping for the elemental compositions by LIBS technique. LIBS measurements have been done by the fundamental wavelength (1064 nm) of Nd: YAG laser for the elemental analysis and performing the cleaning processes of the pottery sample. In addition, complementary analyses were carried out by scanning electron microscopy linked with energy dispersive X-ray microanalysis (SEM/EDX) to obtain verification of chemical results. The morphological surfaces before and after cleaning has been done by Optical Microscopy (OM).

  10. Quantitative atomic resolution elemental mapping via absolute-scale energy dispersive X-ray spectroscopy.

    PubMed

    Chen, Z; Weyland, M; Sang, X; Xu, W; Dycus, J H; LeBeau, J M; D'Alfonso, A J; Allen, L J; Findlay, S D

    2016-09-01

    Quantitative agreement on an absolute scale is demonstrated between experiment and simulation for two-dimensional, atomic-resolution elemental mapping via energy dispersive X-ray spectroscopy. This requires all experimental parameters to be carefully characterized. The agreement is good, but some discrepancies remain. The most likely contributing factors are identified and discussed. Previous predictions that increasing the probe forming aperture helps to suppress the channelling enhancement in the average signal are confirmed experimentally. It is emphasized that simple column-by-column analysis requires a choice of sample thickness that compromises between being thick enough to yield a good signal-to-noise ratio while being thin enough that the overwhelming majority of the EDX signal derives from the column on which the probe is placed, despite strong electron scattering effects. PMID:27258645

  11. Optical constants, dispersion energy parameters and dielectric properties of ultra-smooth nanocrystalline BiVO4 thin films prepared by rf-magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Sarkar, S.; Das, N. S.; Chattopadhyay, K. K.

    2014-07-01

    BiVO4 thin films have been prepared through radio frequency (rf) magnetron sputtering of a pre-fabricated BiVO4 target on ITO coated glass (ITO-glass) substrate and bare glass substrates. BiVO4 target material was prepared through solid-state reaction method by heating Bi2O3 and V2O5 mixture at 800 °C for 8 h. The films were characterized by X-ray diffraction, UV-Vis spectroscopy, LCR meter, field emission scanning electron microscopy, transmission electron microscopy and atomic force microscopy. BiVO4 thin films deposited on the ITO-glass substrate are much smoother compared to the thin films prepared on bare glass substrate. The rms surface roughness calculated from the AFM images comes out to be 0.74 nm and 4.2 nm for the films deposited on the ITO-glass substrate and bare glass substrate for the deposition time 150 min respectively. Optical constants and energy dispersion parameters of these extra-smooth BiVO4 thin films have been investigated in detail. Dielectric properties of the BiVO4 thin films on ITO-glass substrate were also investigated. The frequency dependence of dielectric constant of the BiVO4 thin films has been measured in the frequency range from 20 Hz to 2 MHz. It was found that the dielectric constant increased from 145 to 343 at 20 Hz as the film thickness increased from 90 nm to 145 nm (deposition time increased from 60 min to 150 min). It shows higher dielectric constant compared to the literature value of BiVO4.

  12. Development of an energy dispersive spectrometer for a transmission electron microscope utilizing a TES microcalorimeter array

    NASA Astrophysics Data System (ADS)

    Tanaka, Keiichi; Mitsuda, Kazuhisa; Hara, Tom; Maehata, Keisuke; Yamasaki, Noriko Y.; Odawara, Akikazu; Nagata, Atsushi; Watanabe, Katsuaki; Takei, Yoh

    2009-12-01

    A high-energy-resolution energy dispersive spectrometer (EDS) utilizing a TES (transition edge sensor) microcalorimeter array is developed for a transmission electron microscope (TEM). The goals of the development are (1) an energy range of 0.3-10 keV, (2) an energy resolution of FWHM <10 eV, (3) a maximum counting rate of 3 kcps, and (4) a cryogen-free cooling system. We adopted a dilution refrigerator (DR) pre-cooled by a Gifford-McMahon (GM) refrigerator to cool the TES microcalorimeter to ˜100 mK. In order to avoid micro phonics of GM fridge to propagate to the TEM, pressurized He gas is circulated between the DR and the GM to reject heat from the DR. The GM is mechanically well isolated from the TEM. In oder to obtain 3 kcps counting rate, we utilize a ten pixel TES array and read out the signals in parallel wtih ten analog signal channels from cryogenic to room temperature electronics. One of the pixels can be always irradiated by a radio isotope for energy calibration. As the first step, we have attached a single pixel TES system cooled by the cryogen-free cooling system to the TEM and obtained an energy resolution of 8 eV at 1.8 keV without degrading the spatial resolution of the TEM at a 2 Å level. A ten pixel TES system is also being developed from the front-end detector assembly to the room temperature digital electronics. We describe the signal processing system and packaging of the detector assembly.

  13. Conductance of AFM Deformed Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexei; Maiti, Amitesh; Anatram, M. P.; Biegel, Bryan (Technical Monitor)

    2002-01-01

    This viewgraph presentation provides information on the electrical conductivity of carbon nanotubes upon deformation by atomic force microscopy (AFM). The density of states and conductance were computed using four orbital tight-binding method with various parameterizations. Different chiralities develop bandgap that varies with chirality.

  14. Contact nanomechanical measurements with the AFM

    NASA Astrophysics Data System (ADS)

    Geisse, Nicholas

    2013-03-01

    The atomic force microscope (AFM) has found broad use in the biological sciences largely due to its ability to make measurements on unfixed and unstained samples under liquid. In addition to imaging at multiple spatial scales ranging from micro- to nanometer, AFMs are commonly used as nanomechanical probes. This is pertinent for cell biology, as it has been demonstrated that the geometrical and mechanical properties of the extracellular microenvironment are important in such processes as cancer, cardiovascular disease, muscular dystrophy, and even the control of cell life and death. Indeed, the ability to control and quantify these external geometrical and mechanical parameters arises as a key issue in the field. Because AFM can quantitatively measure the mechanical properties of various biological samples, novel insights to cell function and to cell-substrate interactions are now possible. As the application of AFM to these types of problems is widened, it is important to understand the performance envelope of the technique and its associated data analyses. This talk will discuss the important issues that must be considered when mechanical models are applied to real-world data. Examples of the effect of different model assumptions on our understanding of the measured material properties will be shown. Furthermore, specific examples of the importance of mechanical stimuli and the micromechanical environment to the structure and function of biological materials will be presented.

  15. A Batch Fabricated SECM-AFM Probe

    NASA Astrophysics Data System (ADS)

    Dobson, P. S.; Macpherson, J. V.; Holder, M.; Weaver, J. M. R.

    2003-12-01

    A scheme for the fabrication of combined Scanning Electrochemical Microscopy — Atomic Force Microscopy (SECM-AFM) probes is presented for both silicon nitride and silicon cantilevers. The advantages over exsisting methods used for their production is explained. The process flow is described and initial results from electrodeposition of silver are presented.

  16. UV-curable low surface energy fluorinated polycarbonate-based polyurethane dispersion.

    PubMed

    Hwang, Hyeon-Deuk; Kim, Hyun-Joong

    2011-10-15

    UV-curable low surface energy fluorinated polycarbonate-based polyurethane dispersions were synthesized by incorporating a hydroxy-terminated perfluoropolyether (PFPE) into the soft segment of polyurethane. The effects of the PFPE content on the UV-curing behavior, physical, surface, thermal properties and refractive index were investigated. The UV-curing behavior was analyzed by photo-differential scanning calorimetry. The surface free energy of the UV-cured film, which is related to the water or oil repellency, was calculated from contact angle measurements using the Lewis acid-base three liquids method. The surface free energy decreased significantly with increasing fluorine concentration because PFPE in the soft segment was tailored to the surface and produced a UV-cured film with a hydrophobic fluorine enriched surface, as confirmed by X-ray photoelectron spectroscopy. With increasing the fluorine content, the refractive indices of UV-cured films decreased. However, the UV-curing rate and final conversion was decreased with increasing contents of PFPE, which resulted in the decrease of the glass transition temperature (T(g)), crosslink density, tensile strength and surface hardness. PMID:21788027

  17. Lattice vibrations in the Frenkel-Kontorova model. I. Phonon dispersion, number density, and energy

    DOE PAGESBeta

    Meng, Qingping; Wu, Lijun; Welch, David O.; Zhu, Yimei

    2015-06-17

    We studied the lattice vibrations of two inter-penetrating atomic sublattices via the Frenkel-Kontorova (FK) model of a linear chain of harmonically interacting atoms subjected to an on-site potential, using the technique of thermodynamic Green's functions based on quantum field-theoretical methods. General expressions were deduced for the phonon frequency-wave-vector dispersion relations, number density, and energy of the FK model system. In addition, as the application of the theory, we investigated in detail cases of linear chains with various periods of the on-site potential of the FK model. Some unusual but interesting features for different amplitudes of the on-site potential of themore » FK model are discussed. In the commensurate structure, the phonon spectrum always starts at a finite frequency, and the gaps of the spectrum are true ones with a zero density of modes. In the incommensurate structure, the phonon spectrum starts from zero frequency, but at a non-zero wave vector; there are some modes inside these gap regions, but their density is very low. In our approximation, the energy of a higher-order commensurate state of the one-dimensional system at a finite temperature may become indefinitely close to the energy of an incommensurate state. This finding implies that the higher-order incommensurate-commensurate transitions are continuous ones and that the phase transition may exhibit a “devil's staircase” behavior at a finite temperature.« less

  18. Lattice vibrations in the Frenkel-Kontorova model. I. Phonon dispersion, number density, and energy

    NASA Astrophysics Data System (ADS)

    Meng, Qingping; Wu, Lijun; Welch, David O.; Zhu, Yimei

    2015-06-01

    We studied the lattice vibrations of two interpenetrating atomic sublattices via the Frenkel-Kontorova (FK) model of a linear chain of harmonically interacting atoms subjected to an on-site potential using the technique of thermodynamic Green's functions based on quantum field-theoretical methods. General expressions were deduced for the phonon frequency-wave-vector dispersion relations, number density, and energy of the FK model system. As the application of the theory, we investigated in detail cases of linear chains with various periods of the on-site potential of the FK model. Some unusual but interesting features for different amplitudes of the on-site potential of the FK model are discussed. In the commensurate structure, the phonon spectrum always starts at a finite frequency, and the gaps of the spectrum are true ones with a zero density of modes. In the incommensurate structure, the phonon spectrum starts from zero frequency, but at a nonzero wave vector; there are some modes inside these gap regions, but their density is very low. In our approximation, the energy of a higher-order commensurate state of the one-dimensional system at a finite temperature may become indefinitely close to the energy of an incommensurate state. This finding implies that the higher-order incommensurate-commensurate transitions are continuous ones and that the phase transition may exhibit a "devil's staircase" behavior at a finite temperature.

  19. Lattice vibrations in the Frenkel-Kontorova model. I. Phonon dispersion, number density, and energy

    SciTech Connect

    Meng, Qingping; Wu, Lijun; Welch, David O.; Zhu, Yimei

    2015-06-17

    We studied the lattice vibrations of two inter-penetrating atomic sublattices via the Frenkel-Kontorova (FK) model of a linear chain of harmonically interacting atoms subjected to an on-site potential, using the technique of thermodynamic Green's functions based on quantum field-theoretical methods. General expressions were deduced for the phonon frequency-wave-vector dispersion relations, number density, and energy of the FK model system. In addition, as the application of the theory, we investigated in detail cases of linear chains with various periods of the on-site potential of the FK model. Some unusual but interesting features for different amplitudes of the on-site potential of the FK model are discussed. In the commensurate structure, the phonon spectrum always starts at a finite frequency, and the gaps of the spectrum are true ones with a zero density of modes. In the incommensurate structure, the phonon spectrum starts from zero frequency, but at a non-zero wave vector; there are some modes inside these gap regions, but their density is very low. In our approximation, the energy of a higher-order commensurate state of the one-dimensional system at a finite temperature may become indefinitely close to the energy of an incommensurate state. This finding implies that the higher-order incommensurate-commensurate transitions are continuous ones and that the phase transition may exhibit a “devil's staircase” behavior at a finite temperature.

  20. Towards hybrid pixel detectors for energy-dispersive or soft X-ray photon science.

    PubMed

    Jungmann-Smith, J H; Bergamaschi, A; Brückner, M; Cartier, S; Dinapoli, R; Greiffenberg, D; Huthwelker, T; Maliakal, D; Mayilyan, D; Medjoubi, K; Mezza, D; Mozzanica, A; Ramilli, M; Ruder, Ch; Schädler, L; Schmitt, B; Shi, X; Tinti, G

    2016-03-01

    JUNGFRAU (adJUstiNg Gain detector FoR the Aramis User station) is a two-dimensional hybrid pixel detector for photon science applications at free-electron lasers and synchrotron light sources. The JUNGFRAU 0.4 prototype presented here is specifically geared towards low-noise performance and hence soft X-ray detection. The design, geometry and readout architecture of JUNGFRAU 0.4 correspond to those of other JUNGFRAU pixel detectors, which are charge-integrating detectors with 75 µm × 75 µm pixels. Main characteristics of JUNGFRAU 0.4 are its fixed gain and r.m.s. noise of as low as 27 e(-) electronic noise charge (<100 eV) with no active cooling. The 48 × 48 pixels JUNGFRAU 0.4 prototype can be combined with a charge-sharing suppression mask directly placed on the sensor, which keeps photons from hitting the charge-sharing regions of the pixels. The mask consists of a 150 µm tungsten sheet, in which 28 µm-diameter holes are laser-drilled. The mask is aligned with the pixels. The noise and gain characterization, and single-photon detection as low as 1.2 keV are shown. The performance of JUNGFRAU 0.4 without the mask and also in the charge-sharing suppression configuration (with the mask, with a `software mask' or a `cluster finding' algorithm) is tested, compared and evaluated, in particular with respect to the removal of the charge-sharing contribution in the spectra, the detection efficiency and the photon rate capability. Energy-dispersive and imaging experiments with fluorescence X-ray irradiation from an X-ray tube and a synchrotron light source are successfully demonstrated with an r.m.s. energy resolution of 20% (no mask) and 14% (with the mask) at 1.2 keV and of 5% at 13.3 keV. The performance evaluation of the JUNGFRAU 0.4 prototype suggests that this detection system could be the starting point for a future detector development effort for either applications in the soft X-ray energy regime or for an energy-dispersive

  1. Fast GPU-based absolute intensity determination for energy-dispersive X-ray Laue diffraction

    NASA Astrophysics Data System (ADS)

    Alghabi, F.; Send, S.; Schipper, U.; Abboud, A.; Pietsch, U.; Kolb, A.

    2016-01-01

    This paper presents a novel method for fast determination of absolute intensities in the sites of Laue spots generated by a tetragonal hen egg-white lysozyme crystal after exposure to white synchrotron radiation during an energy-dispersive X-ray Laue diffraction experiment. The Laue spots are taken by means of an energy-dispersive X-ray 2D pnCCD detector. Current pnCCD detectors have a spatial resolution of 384 × 384 pixels of size 75 × 75 μm2 each and operate at a maximum of 400 Hz. Future devices are going to have higher spatial resolution and frame rates. The proposed method runs on a computer equipped with multiple Graphics Processing Units (GPUs) which provide fast and parallel processing capabilities. Accordingly, our GPU-based algorithm exploits these capabilities to further analyse the Laue spots of the sample. The main contribution of the paper is therefore an alternative algorithm for determining absolute intensities of Laue spots which are themselves computed from a sequence of pnCCD frames. Moreover, a new method for integrating spectral peak intensities and improved background correction, a different way of calculating mean count rate of the background signal and also a new method for n-dimensional Poisson fitting are presented.We present a comparison of the quality of results from the GPU-based algorithm with the quality of results from a prior (base) algorithm running on CPU. This comparison shows that our algorithm is able to produce results with at least the same quality as the base algorithm. Furthermore, the GPU-based algorithm is able to speed up one of the most time-consuming parts of the base algorithm, which is n-dimensional Poisson fitting, by a factor of more than 3. Also, the entire procedure of extracting Laue spots' positions, energies and absolute intensities from a raw dataset of pnCCD frames is accelerated by a factor of more than 3.

  2. Phase evolution in carbide dispersion strengthened nanostructured copper composite by high energy ball milling

    SciTech Connect

    Hussain, Zuhailawati; Nur Hawadah, M. S.

    2012-09-06

    In this study, high-energy ball milling was applied to synthesis in situ nanostructured copper based composite reinforced with metal carbides. Cu, M (M=W or Ti) and graphite powder mixture were mechanically alloyed for various milling time in a planetary ball mill with composition of Cu-20vol%WC and Cu-20vol%TiC. Then the as-milled powder were compacted at 200 to 400 MPa and sintered in a vacuum furnace at 900 Degree-Sign C. The results of X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy analysis showed that formation of tungsten carbides (W{sub 2}C and WC phases) was observed after sintering of Cu-W-C mixture while TiC precipitated in as-milled powder of Cu-Ti-C composite after 5 h and become amorphous with longer milling. Mechanism of MA explained the cold welding and fracturing event during milling. Cu-W-C system shows fracturing event is more dominant at early stage of milling and W particle still existed after milling up to 60 h. While in Cu-Ti-C system, cold welding is more dominant and all Ti particles dissolved into Cu matrix.

  3. The SLcam: a full-field energy dispersive X-ray camera

    NASA Astrophysics Data System (ADS)

    Bjeoumikhov, A.; Buzanich, G.; Langhoff, N.; Ordavo, I.; Radtke, M.; Reinholz, U.; Riesemeier, H.; Scharf, O.; Soltau, H.; Wedell, R.

    2012-11-01

    The color X-ray camera (SLcam®) is a full-field single photon imager. As stand-alone camera, it is applicable for energy and space-resolved X-ray detection measurements. The exchangeable poly-capillary optics in front of a beryllium entrance window conducts X-ray photons from the probe to distinguished energy dispersive pixels on a pnCCD. The dedicated software enables the acquisition and the online processing of the spectral data for all 69696 pixels, leading to a real-time visualization of the element distribution in a sample. No scanning system is employed. A first elemental composition image of the sample is visible within minutes while statistics is improving in the course of time. Straight poly-capillary optics allows for 1:1 imaging with a space resolution of 50 μm and no limited depth of sharpness, ideal to map uneven objects. Using conically shaped optics, a magnification of 6 times was achieved with a space resolution of 10 μm. We present a measurement with a laboratory source showing the camera capability to perform fast full-field X-ray Fluorescence (FF-XRF) imaging with an easy, portable and modular setup.

  4. Phase evolution in carbide dispersion strengthened nanostructured copper composite by high energy ball milling

    NASA Astrophysics Data System (ADS)

    Hussain, Zuhailawati; Nur Hawadah, M. S.

    2012-09-01

    In this study, high-energy ball milling was applied to synthesis in situ nanostructured copper based composite reinforced with metal carbides. Cu, M (M=W or Ti) and graphite powder mixture were mechanically alloyed for various milling time in a planetary ball mill with composition of Cu-20vol%WC and Cu-20vol%TiC. Then the as-milled powder were compacted at 200 to 400 MPa and sintered in a vacuum furnace at 900°C. The results of X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy analysis showed that formation of tungsten carbides (W2C and WC phases) was observed after sintering of Cu-W-C mixture while TiC precipitated in as-milled powder of Cu-Ti-C composite after 5 h and become amorphous with longer milling. Mechanism of MA explained the cold welding and fracturing event during milling. Cu-W-C system shows fracturing event is more dominant at early stage of milling and W particle still existed after milling up to 60 h. While in Cu-Ti-C system, cold welding is more dominant and all Ti particles dissolved into Cu matrix.

  5. Novel tip shape reconstruction method for restoration of AFM topography images using nano-structures with given shapes.

    PubMed

    Onishi, Keiko; Fujita, Daisuke

    2011-01-01

    The establishment of more accurate imaging of surface microstructures is needed. The most significant distortion in atomic force microscopy (AFM) imaging is induced by the probe tip shape, whenever the sample surface contains features whose dimensions are comparable to the probe tip size. The acquired AFM image is the dilation between the tip shape and the sample topography. To restore the original topographical profile, a numerical erosion procedure using a precise probe shape function is required. Here, a new technique for reconstruction of probe shape function using a well-defined nanostructure is proposed. First, AFM topography images of the given-shape nanostructure dispersed on flat substrates are taken. Then, a probe shape function is determined by a numerical calculation procedure. By using the experimentally determined probe shape function, the most probable surface morphologies from the observed AFM topography images of unknown samples can be extracted. PMID:21321438

  6. Detection of Pathogens Using AFM and SPR

    NASA Astrophysics Data System (ADS)

    Vaseashta, Ashok

    2005-03-01

    A priori detection of pathogens in food and water has become a subject of paramount importance. Several recent incidents have resulted in the government passing stringent regulations for tolerable amounts of contamination of food products. Identification and/or monitoring of bacterial contamination in food are critical. The conventional methods of pathogen detection require time-consuming steps to arrive disembark at meaningful measurement in a timely manner as the detection time exceeds the time in which perishable food recycles through the food chain distribution. The aim of this presentation is to outline surface plasmon resonance (SPR) and atomic force microscopy (AFM) as two methods for fast detect6ion of pathogens. Theoretical basis of SPR and experimental results of SPR and AFM on E. coli O157:H7 and prion are presented.

  7. Liquid solution delivery through the pulled nanopipette combined with QTF-AFM system

    NASA Astrophysics Data System (ADS)

    An, Sangmin; Stambaugh, Corey; Kim, Gunn; Lee, Manhee; Kim, Yonghee; Lee, Kunyoung; Jhe, Wonho

    2012-02-01

    Nanopipette is a versatile fluidic tool for biochemical analysis, controlled liquid delivery in bio-nanotechnology. However, most of the researches have been performed in solution based system, thus it is challenge to study nanofluidic properties of the liquid solution delivery through the nanopipette in ambient conditions. In this work, we demonstrated the liquid ejection, dispersion, and subsequent deposition of the nanoparticles via a 30 nm aperture pipette based on the quartz tuning fork -- atomic force microscope (QTF-AFM) combined nanopipette system.

  8. Characterizing Cell Mechanics with AFM and Microfluidics

    NASA Astrophysics Data System (ADS)

    Walter, N.; Micoulet, A.; Suresh, S.; Spatz, J. P.

    2007-03-01

    Cell mechanical properties and functionality are mainly determined by the cytoskeleton, besides the cell membrane, the nucleus and the cytosol, and depend on various parameters e.g. surface chemistry and rigidity, surface area and time available for cell spreading, nutrients and drugs provided in the culture medium. Human epithelial pancreatic and mammary cancer cells and their keratin intermediate filaments are the main focus of our work. We use Atomic Force Microscopy (AFM) to study cells adhering to substrates and Microfluidic Channels to probe cells in suspension, respectively. Local and global properties are extracted by varying AFM probe tip size and the available adhesion area for cells. Depth-sensing, instrumented indentation tests with AFM show a clear difference in contact stiffness for cells that are spread of controlled substrates and those that are loosely attached. Microfluidic Channels are utilized in parallel to evaluate cell deformation and ``flow resistance'', which are dependent on channel cross section, flow rate, cell nucleus size and the mechanical properties of cytoskeleton and membrane. The results from the study are used to provide some broad and quantitative assessments of the connections between cellular/subcellular mechanics and biochemical origins of disease states.

  9. EVALUATION OF MIXING ENERGY IN FLASKS USED FOR DISPERSANT EFFECTIVENESS TESTING

    EPA Science Inventory

    A U.S. Environmental Protection Agency (EPA) laboratory screening protocol for dispersant effectiveness consists of placing water, oil, and a dispersant in a flask and mixing the contents on an orbital shaker. Two flasks are being investigated, a simple Erlenmeyer (used in EPA's...

  10. Analysis of nuclear materials by energy dispersive x-ray fluorescence and spectral effects of alpha decay

    SciTech Connect

    Worley, Christopher G

    2009-01-01

    Energy dispersive X-ray fluorescence (EDXRF) spectra collected from alpha emitters are complicated by artifacts inherent to the alpha decay process, particularly when using portable instruments. For example, {sup 239}Pu EDXRF spectra exhibit a prominent uranium L X-ray emission peak series due to sample alpha decay rather than source-induced X-ray fluorescence. A portable EDXRF instrument was used to collect spectra from plutonium, americium, and a Pu-contaminated steel sample. The plutonium sample was also analyzed by wavelength dispersive XRF to demonstrate spectral differences observed when using these very different instruments.

  11. Elemental analysis of mining wastes by energy dispersive X-ray fluorescence (EDXRF)

    NASA Astrophysics Data System (ADS)

    Gonzalez-Fernandez, O.; Queralt, I.; Carvalho, M. L.; Garcia, G.

    2007-08-01

    An energy dispersive X-ray fluorescence (EDXRF) tri-axial geometry experimental spectrometer has been employed to determine the concentrations of 13 different elements (K, Ca, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rb, Sr and Pb) in mine wastes from different depths of two mine tailings from the Cartagena-La Union (Spain) mining district. The elements were determined and quantified using the fundamental parameters method. The concentrations of Cr, Ni, Cu, Zn and Pb were compared to the values from the European and Spanish legislation to evaluate the environmental risk and to classify the wastes as inert wastes or as wastes that have to be control land-filled. The results obtained demonstrate that these wastes can be considered as inert for the considered elements, apart from the concentration levels of Zn and Pb. Whilst Zn slightly overpasses the regulatory levels, Pb mean value exceeds three to six times the value to be considered as Class I potential land-filling material.

  12. An energy dispersive x-ray scattering and molecular dynamics study of liquid dimethyl carbonate

    NASA Astrophysics Data System (ADS)

    Gontrani, Lorenzo; Russina, Olga; Marincola, Flaminia Cesare; Caminiti, Ruggero

    2009-12-01

    In this work, we report on the first x-ray diffraction study on liquid dimethyl carbonate. Diffraction spectra were collected with an energy-dispersive instrument, whose wide Q-range allows the structure determination of weakly ordered systems (such as liquids). The structural correlation in this liquid ranges up to about 20 Å. The observed patterns are interpreted with a structural model derived from classical molecular dynamics simulations. The simulations were run using OPLS force field, only slightly modified to restrain bond distances to the experimental values. The model structure function and radial distribution functions, averaged among the productive trajectory frames, are in very good agreement with the corresponding experimental ones. Molecular dynamics results show that the deviations from C2v cis-cis structure, predicted by ab initio calculations and observed by electron diffraction in the gas phase, are small. By analyzing the intra- and intermolecular pair distribution functions, it was possible to assign the peaks of the experimental radial distribution function to specific structural correlations, and to compute the different average intermolecular coordination numbers. The intermolecular methyl-carbonyl oxygen distance is thoroughly discussed to assess the presence of weak C-H⋯ṡO hydrogen bonds.

  13. Energy Dispersive XAFS: Characterization of Electronically Excited States of Copper(I) Complexes

    PubMed Central

    2013-01-01

    Energy dispersive X-ray absorption spectroscopy (ED-XAS), in which the whole XAS spectrum is acquired simultaneously, has been applied to reduce the real-time for acquisition of spectra of photoinduced excited states by using a germanium microstrip detector gated around one X-ray bunch of the ESRF (100 ps). Cu K-edge XAS was used to investigate the MLCT states of [Cu(dmp)2]+ (dmp =2,9-dimethyl-1,10-phenanthroline) and [Cu(dbtmp)2]+ (dbtmp =2,9-di-n-butyl-3,4,7,8-tetramethyl-1,10-phenanthroline) with the excited states created by excitation at 450 nm (10 Hz). The decay of the longer lived complex with bulky ligands, was monitored for up to 100 ns. DFT calculations of the longer lived MLCT excited state of [Cu(dbp)2]+ (dbp =2,9-di-n-butyl-1,10-phenanthroline) with the bulkier diimine ligands, indicated that the excited state behaves as a Jahn–Teller distorted Cu(II) site, with the interligand dihedral angle changing from 83 to 60° as the tetrahedral coordination geometry flattens and a reduction in the Cu–N distance of 0.03 Å. PMID:23718738

  14. Micro-molding with ultrasonic vibration energy: new method to disperse nanoclays in polymer matrices.

    PubMed

    Planellas, Marc; Sacristán, Matías; Rey, Lorena; Olmo, Cristian; Aymamí, Joan; Casas, María T; del Valle, Luis J; Franco, Lourdes; Puiggalí, Jordi

    2014-07-01

    Ultrasound technology was proved as an efficient processing technique to obtain micro-molded specimens of polylactide (PLA) and polybutylene succinate (PBS), which were selected as examples of biodegradable polyesters widely employed in commodity and specialty applications. Operational parameters such as amplitude, molding force and processing time were successfully optimized to prepare samples with a decrease in the number average molecular weight lower than 6%. Ultrasonic waves also seemed an ideal energy source to provide effective disaggregation of clay silicate layers, and therefore exfoliated nanocomposites. X-ray diffraction patterns of nanocomposites prepared by direct micro-molding of PLA or PBS powder mixtures with natural montmorillonite or different organo-modified clays showed the disappearance of the 001 silicate reflection for specimens having up to 6 wt.% clay content. All electron micrographs revealed relatively homogeneous dispersion and sheet nanostructures oriented in the direction of the melt flow. Incorporation of clay particles during processing had practically no influence on PLA characteristics but enhanced PBS degradation when an organo-modifier was employed. This was in agreement with thermal stability data deduced from thermogravimetric analysis. Cold crystallization experiments directly performed on micro-molded PLA specimens pointed to a complex influence of clay particles reflected by the increase or decrease of the overall non-isothermal crystallization rate when compared to the neat polymer. In all cases, the addition of clay led to a clear decrease in the Avrami exponent. PMID:24457002

  15. High temperature monitoring of silicon carbide ceramics by confocal energy dispersive X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Li, Fangzuo; Liu, Zhiguo; Sun, Tianxi

    2016-04-01

    In the present work, we presented an alternative method for monitoring of the oxidation situation of silicon carbide (SiC) ceramics at various high temperatures in air by measuring the Compton-to-Rayleigh intensity ratios (ICo/IRa) and effective atomic numbers (Zeff) of SiC ceramics with the confocal energy dispersive X-ray fluorescence (EDXRF) spectrometer. A calibration curve of the relationship between ICo/IRa and Zeff was established by using a set of 8 SiC calibration samples. The sensitivity of this approach is so high that it can be easily distinguished samples of Zeff differing from each other by only 0.01. The linear relationship between the variation of Zeff and the variations of contents of C, Si and O of SiC ceramics were found, and the corresponding calculation model of the relationship between the ΔZ and the ΔCC, ΔCSi, and ΔCO were established. The variation of contents of components of the tested SiC ceramics after oxidation at high temperature was quantitatively calculated based on the model. It was shown that the results of contents of carbon, silicon and oxygen obtained by this method were in good agreement with the results obtained by XPS, giving values of relative deviation less than 1%. It was concluded that the practicality of this proposed method for monitoring of the oxidation situation of SiC ceramics at high temperatures was acceptable.

  16. Micro energy-dispersive x-ray fluorescence spectrometry study of dentin coating with nanobiomaterials

    NASA Astrophysics Data System (ADS)

    Soares, Luís. Eduardo Silva; Nahorny, Sídnei; Marciano, Fernanda Roberta; Zanin, Hudson; Lobo, Anderson de Oliveira

    2015-06-01

    New biomaterials such as multi-walled carbon nanotubes oxide/graphene oxide (MWCNTO/GO), nanohydroxyapatite (nHAp) and combination of them together or not to acidulated phosphate fluoride gel (F) have been tested as protective coating before root dentin erosion. Fourteen bovine teeth were cleaned, polished, divided into two parts (n=28) and assigned to seven groups: (Control) - without previous surface treatment; F treatment; nHAp; MWCNTO/GO; F+nHAp; F+MWCNTO/GO and F+MWCNTO/GO/nHAp composites. Each sample had two sites of pre-treatments: acid etched area and an area without treatment. After the biomaterials application, the samples were submitted to six cycles (demineralization: orange juice, 10 min; remineralization: artificial saliva, 1 h). Micro energy-dispersive X-ray fluorescence spectrometry (μ-EDXRF) mapping area analyses were performed after erosive cycling on both sites (n=84). μ-EDXRF mappings showed that artificial saliva and MWCNTO/GO/nHAp/F composite treatments produced lower dentin demineralization than in the other groups. Exposed dentin tubules allowed better interaction of nanobiomaterials than in smear layer covered dentin. Association of fluoride with other biomaterials had a positive influence on acid etched dentin. MWCNTO/GO/nHAp/F composite treatment resulted in levels of demineralization similar to the control group.

  17. Dispersed, decentralized and renewable energy sources: alternatives to national vulnerability and war. Final report, July 1979-December 1980

    SciTech Connect

    McCasker, J.; Clark, W.

    1980-12-01

    Section 1 and 2 of this report contain background information on centralized energy systems and the relationship between vulnerability of these systems, energy planning, and existing civil defense programs. Section 3 and 4 contain an extensive investigation, review and categorization of alternative approaches to centralized, vulnerable energy systems; a review of dispersed and renewable technologies which can be appropriately implemented at the local level; and matrices for evaluation of these technologies for emergency and crisis planning. Specific recommendations to FEMA are included on the use of localized energy approaches for emergency response and recovery situations.

  18. Förster resonance energy transfer rate in any dielectric nanophotonic medium with weak dispersion

    NASA Astrophysics Data System (ADS)

    Wubs, Martijn; Vos, Willem L.

    2016-05-01

    Motivated by the ongoing debate about nanophotonic control of Förster resonance energy transfer (FRET), notably by the local density of optical states (LDOS), we study FRET and spontaneous emission in arbitrary nanophotonic media with weak dispersion and weak absorption in the frequency overlap range of donor and acceptor. This system allows us to obtain the following two new insights. Firstly, we derive that the FRET rate only depends on the static part of the Green function. Hence, the FRET rate is independent of frequency, in contrast to spontaneous-emission rates and LDOS that are strongly frequency dependent in nanophotonic media. Therefore, the position-dependent FRET rate and the LDOS at the donor transition frequency are completely uncorrelated for any nondispersive medium. Secondly, we derive an exact expression for the FRET rate as a frequency integral of the imaginary part of the Green function. This leads to very accurate approximation for the FRET rate that features the LDOS that is integrated over a huge bandwidth ranging from zero frequency to far into the UV. We illustrate these general results for the analytic model system of a pair of ideal dipole emitters—donor and acceptor—in the vicinity of an ideal mirror. We find that the FRET rate is independent of the LDOS at the donor emission frequency. Moreover, we observe that the FRET rate hardly depends on the frequency-integrated LDOS. Nevertheless, the FRET is controlled between inhibition and 4×enhancement at distances close to the mirror, typically a few nm. Finally, we discuss the consequences of our results to applications of Förster resonance energy transfer, for instance in quantum information processing.

  19. Solvent-mediated repair and patterning of surfaces by AFM

    SciTech Connect

    Elhadj, S; Chernov, A; De Yoreo, J

    2007-10-30

    A tip-based approach to shaping surfaces of soluble materials with nanometer-scale control is reported. The proposed method can be used, for example, to eliminate defects and inhomogeneities in surface shape, repair mechanical or laser-induced damage to surfaces, or perform 3D lithography on the length scale of an AFM tip. The phenomenon that enables smoothing and repair of surfaces is based on the transport of material from regions of high- to low-curvature within the solution meniscus formed in a solvent-containing atmosphere between the surface in question and an AFM tip scanned over the surface. Using in situ AFM measurements of the kinetics of surface remodeling on KDP (KH{sub 2}PO{sub 4}) crystals in humid air, we show that redistribution of solute material during relaxation of grooves and mounds is driven by a reduction in surface free energy as described by the Gibbs-Thomson law. We find that the perturbation from a flat interface evolves according to the diffusion equation where the effective diffusivity is determined by the product of the surface stiffness and the step kinetic coefficient. We also show that, surprisingly, if the tip is instead scanned over or kept stationary above an atomically flat area of the surface, a convex structure is formed with a diameter that is controlled by the dimensions of the meniscus, indicating that the presence of the tip and meniscus reduces the substrate chemical potential beneath that of the free surface. This allows one to create nanometer-scale 3D structures of arbitrary shape without the removal of substrate material or the use of extrinsic masks or chemical compounds. Potential applications of these tip-based phenomena are discussed.

  20. Optical constants and dispersion energy parameters of NiO thin films prepared by radio frequency magnetron sputtering technique

    NASA Astrophysics Data System (ADS)

    Usha, K. S.; Sivakumar, R.; Sanjeeviraja, C.

    2013-09-01

    In this paper, we report on rf power induced change in the structural and optical properties of nickel oxide (NiO) thin films deposited onto glass substrates by rf magnetron sputtering technique. The crystallinity of the film was found to increase with increasing rf power and the deposited film belong to cubic phase. The maximum optical transmittance of 95% was observed for the film deposited at 100 W. The slight shift in transmission threshold towards higher wavelength region with increasing rf power revealed the systematic reduction in optical energy band gap (3.93 to 3.12 eV) of the films. The dispersion curve of the refractive index shows an anomalous dispersion in the absorption region and a normal dispersion in the transparent region. It was observed that the dispersion data obeyed the single oscillator of the Wemple-Didomenico model, from which the dispersion parameters, dielectric constants, relaxation time, and optical non-linear susceptibility were evaluated. We have made an attempt to discuss and correlate these results with the light of possible mechanisms underlying the phenomena.

  1. Analysis of energy dispersive x-ray diffraction profiles for material identification, imaging and system control

    NASA Astrophysics Data System (ADS)

    Cook, Emily Jane

    2008-12-01

    This thesis presents the analysis of low angle X-ray scatter measurements taken with an energy dispersive system for substance identification, imaging and system control. Diffraction measurements were made on illicit drugs, which have pseudo- crystalline structures and thus produce diffraction patterns comprising a se ries of sharp peaks. Though the diffraction profiles of each drug are visually characteristic, automated detection systems require a substance identification algorithm, and multivariate analysis was selected as suitable. The software was trained with measured diffraction data from 60 samples covering 7 illicit drugs and 5 common cutting agents, collected with a range of statistical qual ities and used to predict the content of 7 unknown samples. In all cases the constituents were identified correctly and the contents predicted to within 15%. Soft tissues exhibit broad peaks in their diffraction patterns. Diffraction data were collected from formalin fixed breast tissue samples and used to gen erate images. Maximum contrast between healthy and suspicious regions was achieved using momentum transfer windows 1.04-1.10 and 1.84-1.90 nm_1. The resulting images had an average contrast of 24.6% and 38.9% compared to the corresponding transmission X-ray images (18.3%). The data was used to simulate the feedback for an adaptive imaging system and the ratio of the aforementioned momentum transfer regions found to be an excellent pa rameter. Investigation into the effects of formalin fixation on human breast tissue and animal tissue equivalents indicated that fixation in standard 10% buffered formalin does not alter the diffraction profiles of tissue in the mo mentum transfer regions examined, though 100% unbuffered formalin affects the profile of porcine muscle tissue (a substitute for glandular and tumourous tissue), though fat is unaffected.

  2. Scanning electron microscope/energy dispersive x ray analysis of impact residues on LDEF tray clamps

    NASA Technical Reports Server (NTRS)

    Bernhard, Ronald P.; Durin, Christian; Zolensky, Michael E.

    1992-01-01

    To better understand the nature of particulates in low-Earth orbit (LEO), and their effects on spacecraft hardware, we are analyzing residues found in impacts on the Long Duration Exposure Facility (LDEF) tray clamps. LDEF experiment trays were held in place by 6 to 8 chromic-anodized aluminum (6061-T6) clamps that were fastened to the spacecraft frame using three stainless steel hex bolts. Each clamp exposed an area of approximately 58 sq cm (4.8 cm x 12.7 cm x .45 cm, minus the bolt coverage). Some 337 out of 774 LDEF tray clamps were archived at JSC and are available through the Meteoroid & Debris Special Investigation Group (M&D SIG). Optical scanning of clamps, starting with Bay/Row A01 and working toward H25, is being conducted at JSC to locate and document impacts as small as 40 microns. These impacts are then inspected by Scanning Electron Microscopy/Energy Dispersive X-ray Analysis (SEM/EDXA) to select those features which contain appreciable impact residue material. Based upon the composition of projectile remnants, and using criteria developed at JSC, we have made a preliminary discrimination between micrometeoroid and space debris residue-containing impact features. Presently, 13 impacts containing significant amounts of unmelted and semi-melted micrometeoritic residues were forwarded to Centre National d'Etudes Spatiales (CNES) in France. At the CNES facilities, the upgraded impacts were analyzed using a JEOL T330A SEM equipped with a NORAN Instruments, Voyager X-ray Analyzer. All residues were quantitatively characterized by composition (including oxygen and carbon) to help understand interplanetary dust as possibly being derived from comets and asteroids.

  3. Micro energy dispersive X-ray fluorescence analysis of polychrome lead-glazed Portuguese faiences

    NASA Astrophysics Data System (ADS)

    Guilherme, A.; Pessanha, S.; Carvalho, M. L.; dos Santos, J. M. F.; Coroado, J.

    2010-04-01

    Several glazed ceramic pieces, originally produced in Coimbra (Portugal), were submitted to elemental analysis, having as premise the pigment manufacture production recognition. Although having been produced in Coimbra, their location changed as time passed due to historical reasons. A recent exhibition in Coimbra brought together a great number of these pieces and in situ micro Energy Dispersive X-ray Fluorescence (µ-EDXRF) analyses were performed in order to achieve some chemical and physical data on the manufacture of faiences in Coimbra. A non-commercial µ-EDXRF equipment for in situ analysis was employed in this work, carrying some important improvements when compared to the conventional ones, namely, analyzing spot sizes of about 100 µm diameter. The combination of a capillary X-ray lens with a new generation of low power microfocus X-ray tube and a drift chamber detector enabled a portable unit for micro-XRF with a few tens of µm lateral resolution. The advantages in using a portable system emphasized with polycapillary optics enabled to distinguish proximal different pigmented areas, as well as the glaze itself. These first scientific results on the pigment analysis of the collection of faiences seem to point to a unique production center with own techniques and raw materials. This conclusion arose with identification of the blue pigments having in its constitution Mn, Fe Co and As and the yellows as a result of the combination between Pb and Sb. A statistical treatment was used to reveal groups of similarities on the pigments elemental profile.

  4. BOREAS AFM-6 Surface Meteorological Data

    NASA Technical Reports Server (NTRS)

    Wilczak, James; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-6 team from the National Oceanic and Atmospheric Adminsitration/Environment Technology Laboratory (NOAA/ETL) collected surface meteorological data from 21 May to 20 Sep 1994 near the Southern Study Area-Old Jack Pine (SSA-OJP) tower site. The data are in tabular ASCII files. The surface meteorological data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  5. Backscattered electron imaging and windowless energy dispersive x-ray microanalysis: a new technique for gallstone analysis

    SciTech Connect

    Kaufman, H.S.; Lillemoe, K.D.; Magnuson, T.H.; Frasca, P.; Pitt, H.A. )

    1990-12-01

    Scanning electron microscopy with or without conventional energy dispersive x-ray microanalysis is currently used to identify gallstone microstructure and inorganic composition. Organic calcium salts are among many biliary constituents thought to have a role in gallstone nidation and growth. However, current analytical techniques which identify these salts are destructive and compromise gallstone microstructural data. We have developed a new technique for gallstone analysis which provides simultaneous structural and compositional identification of calcium salts within gallstones. Backscattered electron imaging is used to localize calcium within cholesterol at minimum concentrations of 0.01%. Windowless energy dispersive x-ray microanalysis produces elemental spectra of gallstone calcium salts which are qualitatively and quantitatively different. These combined techniques provide simultaneous structural and compositional information obtained from intact gallstone cross-sections and have been used to identify calcium salts in gallstones obtained at cholecystectomy from 106 patients.

  6. Clinical applications of scanning electron microscopy and energy dispersive X-ray analysis in dermatology--an up-date

    SciTech Connect

    Forslind, B.

    1988-06-01

    Dermatological papers comprising scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis data published 1983 through 1986 in international journals are reviewed, as an update to our 1984 paper on Clinical applications of scanning electron microscopy and X-ray microanalysis in dermatology. The present paper not only deals with a review of recent publications in this area but also presents the application of microincineration to hair and cryosectioned freeze-dried skin specimens. Examples of the increased contrast obtained in hair cross sections are presented and a discussion on the feasibility of microincineration at analysis of hair and skin cross sections is given. Particle probe analysis (EDX: energy dispersive X-ray analysis and PMP: proton microprobe analysis) as applied to hair and skin samples are presented with stress put on the proton probe analysis. The complementarity of EDX and PMP is demonstrated and future applications are suggested. 75 references.

  7. Coexistence of orbital and CE-AFM orders in colossal magnetoresistance manganites: A symmetry perspective

    NASA Astrophysics Data System (ADS)

    Ribeiro, J. L.

    2016-07-01

    The complex interplay between order parameters of different nature that dominates the physics of colossal magnetoresistance manganites is analysed from a symmetry based perspective. Phenomenological energies are given for the different competing phases. It is shown that the general trends observed in different systems, such as the mutual exclusion of orbital order and A-AFM order and the related stabilization of the CE-AFM order, stem to large extend from the symmetry of the parameters involved. The possible stabilization of complex phases where charge and orbital order coexist with magnetic and ferroelectric states is also anticipated.

  8. Electron-probe quantitative energy-dispersive analysis of trace magnesium concentrations in Ag-Mg alloys

    SciTech Connect

    Marinenko, R.B.

    1996-12-31

    Internally oxidized Ag-Mg alloys are used as sheaths for high Tc superconductor wires because of their superior mechanical properties. The preparation and characteristics of these materials have been reported. Performance of the sheaths depends on the concentration of the magnesium which generally is less than 0.5 wt. percent. The purpose of this work was to determine whether electron probe microanalysis using energy dispersive spectrometry (EDS) could be used to quantitate three different Ag-Mg alloys. Quantitative EDS analysis can be difficult because the AgL escape peak occurs at the same energy (1.25 keV) as the Mg K{alpha} peak.

  9. Controlled AFM detachments and movement of nanoparticles: gold clusters on HOPG at different temperatures

    NASA Astrophysics Data System (ADS)

    Tripathi, Manoj; Paolicelli, Guido; D'Addato, Sergio; Valeri, Sergio

    2012-06-01

    The effect of temperature on the onset of movement of gold nanoclusters (diameter 27 nm) deposited on highly oriented pyrolytic graphite (HOPG) has been studied by atomic force microscopy (AFM) techniques. Using the AFM with amplitude modulation (tapping mode AFM) we have stimulated and controlled the movement of individual clusters. We show how, at room temperature, controlled detachments and smooth movements can be obtained for clusters having dimensions comparable to or smaller than the tip radius. Displacement is practically visible in real time and it can be started and stopped easily by adjusting only one parameter, the tip amplitude oscillation. Analysing the energy dissipation signal at the onset of nanocluster sliding we evaluated a detachment threshold energy as a function of temperature in the range 300-413 K. We also analysed single cluster thermal induced displacement and combining this delicate procedure with AFM forced movement behaviour we conclude that detachment threshold energy is directly related to the activation energy of nanocluster diffusion and it scales linearly with temperature as expected for a single-particle thermally activated process.

  10. [AFM fishing of proteins under impulse electric field].

    PubMed

    Ivanov, Yu D; Pleshakova, T O; Malsagova, K A; Kaysheva, A L; Kopylov, A T; Izotov, A A; Tatur, V Yu; Vesnin, S G; Ivanova, N D; Ziborov, V S; Archakov, A I

    2016-05-01

    A combination of (atomic force microscopy)-based fishing (AFM-fishing) and mass spectrometry allows to capture protein molecules from solutions, concentrate and visualize them on an atomically flat surface of the AFM chip and identify by subsequent mass spectrometric analysis. In order to increase the AFM-fishing efficiency we have applied pulsed voltage with the rise time of the front of about 1 ns to the AFM chip. The AFM-chip was made using a conductive material, highly oriented pyrolytic graphite (HOPG). The increased efficiency of AFM-fishing has been demonstrated using detection of cytochrome b5 protein. Selection of the stimulating pulse with a rise time of 1 ns, corresponding to the GHz frequency range, by the effect of intrinsic emission from water observed in this frequency range during water injection into the cell. PMID:27562998

  11. EVALUATION OF MIXING ENERGY IN LABORATORY FLASKS USED FOR DISPERSANT EFFECTIVENESS TESTING

    EPA Science Inventory

    The evaluation of dispersant effectiveness used for oil spills is commonly done using tests conducted in laboratory flasks. The success of a test relies on replication of the conditions at sea. We used a hot wire anemometer to characterize the turbulence characteristics in the s...

  12. AFM surface investigation of polyethylene modified by ion bombardment

    NASA Astrophysics Data System (ADS)

    Švorčík, V.; Arenholz, E.; Hnatowicz, V.; Rybka, V.; Öchsner, R.; Ryssel, H.

    1998-07-01

    Polyethylene (PE) was irradiated with 63 keV Ar + and 155 keV Xe + ions to fluences of 1 × 10 13 to 3 × 10 15 cm -2 with ion energies being chosen in order to achieve approximately the same penetration depth for both species. The PE surface morphology was examined by means of atomic force microscopy (AFM), whereas the concentration of free radicals and conjugated double bonds, both created by the ion irradiation, were determined using electron paramagnetic resonance (EPR) and UV-VIS spectroscopy, respectively. As expected, the degradation of PE was higher after irradiation with heavier Xe + ions but the changes in the PE surface morphology were more pronounced for Ar + ions. This newly observed effect can be explained by stronger compaction of the PE surface layer in the case of the Xe + irradiation, connected with a reduction of free volume available.

  13. BOREAS AFM-06 Mean Temperature Profile Data

    NASA Technical Reports Server (NTRS)

    Wilczak, James; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-6 team from the National Oceanic and Atmospheric Adminsitration/Environment Technology Laboratory (NOAA/ETL) operated a 915-MHz wind/Radio Acoustic Sounding System (RASS) profiler system in the Southern Study Area (SSA) near the Old Jack Pine (OJP) tower from 21 May 1994 to 20 Sep 1994. The data set provides temperature profiles at 15 heights, containing the variables of virtual temperature, vertical velocity, the speed of sound, and w-bar. The data are stored in tabular ASCII files. The mean temperature profile data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  14. BOREAS AFM-6 Boundary Layer Height Data

    NASA Technical Reports Server (NTRS)

    Wilczak, James; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-6 team from National Oceanic and Atmospheric Adminsitration/Environment Technology Laboratory (NOAA/ETL) operated a 915-MHz wind/Radio Acoustic Sounding System (RASS) profiler system in the Southern Study Area (SSA) near the Old Jack Pine (OJP) site. This data set provides boundary layer height information over the site. The data were collected from 21 May 1994 to 20 Sep 1994 and are stored in tabular ASCII files. The boundary layer height data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  15. BOREAS AFM-06 Mean Wind Profile Data

    NASA Technical Reports Server (NTRS)

    Wilczak, James; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-6 team from the National Oceanic and Atmospheric Administration/Environment Technology Laboratory (NOAA/ETL) operated a 915-MHz wind/Radio Acoustic Sounding System (RASS) profiler system in the Southern Study Area (SSA) near the Old Jack Pine (OJP) tower from 21 May 1994 to 20 Sep 1994. The data set provides wind profiles at 38 heights, containing the variables of wind speed; wind direction; and the u-, v-, and w-components of the total wind. The data are stored in tabular ASCII files. The mean wind profile data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  16. Rayleigh-wave dispersive energy imaging and mode separating by high-resolution linear Radon transform

    USGS Publications Warehouse

    Luo, Y.; Xu, Y.; Liu, Q.; Xia, J.

    2008-01-01

    In recent years, multichannel analysis of surface waves (MASW) has been increasingly used for obtaining vertical shear-wave velocity profiles within near-surface materials. MASW uses a multichannel recording approach to capture the time-variant, full-seismic wavefield where dispersive surface waves can be used to estimate near-surface S-wave velocity. The technique consists of (1) acquisition of broadband, high-frequency ground roll using a multichannel recording system; (2) efficient and accurate algorithms that allow the extraction and analysis of 1D Rayleigh-wave dispersion curves; (3) stable and efficient inversion algorithms for estimating S-wave velocity profiles; and (4) construction of the 2D S-wave velocity field map.

  17. A discussion of the dispersion curve of energy excitations in liquid 4He

    NASA Astrophysics Data System (ADS)

    Bogoyavlenskii, I. V.; Puchkov, A. V.; Skomorokhov, A. N.; Karnatsevich, L. V.

    2004-10-01

    An investigation of the dispersion of excitations in a quantum liquid, superfluid 4He, is carried out. An attempt is made to systematize the published experimental data that indicate a substantially different nature of excitations with wave vectors corresponding to different parts of the dispersion curve of liquid 4He. Neutron spectroscopy data are analyzed in relation to a certain physical hypothesis concerning the formation of such a spectrum, and it is found that the majority of the known experimental facts can be explained in framework of that hypothesis. Particular attention is paid to a comparison of the experimental data obtained on the DIN-2PI time-of-flight spectrometer (at the IBR-2 Reactor, Dubna) with the results obtained at foreign research centers.

  18. Influence of ultrasonic energy on dispersion of aggregates and released amounts of organic matter and polyvalent cations

    NASA Astrophysics Data System (ADS)

    Kaiser, M.; Kleber, M.; Berhe, A. A.

    2010-12-01

    Aggregates play important roles in soil carbon storage and stabilization. Identification of scale-dependent mechanisms of soil aggregate formation and stability is necessary to predict and eventually manage the flow of carbon through terrestrial ecosystems. Application of ultrasonic energy is a common tool to disperse soil aggregates. In this study, we used ultra sonic energy (100 to 2000 J cm-3) to determine the amount of polyvalent cations and organic matter involved in aggregation processes in three arable and three forest soils that varied in soil mineral composition. To determine the amount of organic matter and cations released after application of different amount of ultrasonic energy, we removed the coarse fraction (>250 µm). The remaining residue (<250 µm) was mixed with water and ultrasonically dispersed by application of 100, 200, 400, 500, 1000, 1500 and 2000 J cm-3 energy. After centrifugation the supernatant was filtered and the solid residue freeze dried before we analyzed the amounts of water-extracted organic carbon (OC), Fe, Al, Ca, Mn, and Mg in the filtrates. The extracted OM and solid residues were further characterized by Fourier Transformed Infra Red spectroscopy and Scanning Electron Microscopy. Our results show a linear increase in amount of dissolved OC with increasing amounts of ultra sonic energy up to 1500 J cm-3 indicating maximum dispersion of soil aggregates at this energy level independent from soil type or land use. In contrast to Mn, and Mg, the amounts of dissolved Ca, Fe, and Al increase with increasing ultra sonic energy up to 1500 J cm-3. At 1500 J cm-3, the absolute amounts of OC, Ca, Fe, and Al released were specific for each soil type, likely indicating differences in type of OM-mineral interactions involved in micro-scaled aggregation processes. The amounts of dissolved Fe, and Al released after an application of 1500 J cm-3 are not related to oxalate- and dithionite- extractable, or total Al content indicating less

  19. The effect of 5% sodium hypochlorite, 17% EDTA and triphala on two different rotary Ni-Ti instruments: An AFM and EDS analysis

    PubMed Central

    Prasad, Pramod Siva; Sam, Jonathan Emi; Kumar, Arvind; Kannan

    2014-01-01

    Aim: To use Atomic Force Microscope and Energy Dispersive X-ray Spectroscopy to evaluate the effect of 5% NaOCl, 17% EDTA and triphala on ProTaper and iRaCe rotary Ni-Ti instruments. Methodology: A total of eight Ni-Ti rotary files, four files each of ProTaper - S2 (Dentsply) and iRaCe - R3 (FKG DENTAIRE) were used. Three out of four files each from ProTaper and iRaCe were immersed in 5% NaOCl, 17% EDTA and Triphala separately for five minutes. The Roughness average (Ra), Root Mean Square (RMS) and Mean Height of Roughness Profile Elements (Rc) of the scanned profiles were then recorded using AFM and the elemental composition was evaluated with EDS. Data were analyzed by Student's t test, One Way ANOVA and Duncan's Multiple Range Test. Results: Topographic irregularities at the nanometric scale were observed for all files. Files immersed in EDTA and NaOCl showed highly significant surface roughness than untreated files. Conclusion: Short-term contact with 17% EDTA and 5% NaOCl can cause significant surface deterioration of ProTaper and iRaCe rotary NiTi files. AFM proves to be a suitable method for evaluating the instrument surface. PMID:25298649

  20. First-principles AFM image simulation with frozen density embedding theory

    NASA Astrophysics Data System (ADS)

    Sakai, Yuki; Lee, Alex J.; Chelikowsky, James R.

    We present efficient first-principles method of non-contact atomic force microscopy (nc-AFM). Ordinary nc-AFM simulations based on density functional theory (DFT) require exhaustive computational cost because it involves thousands of total energy calculations. Regarding the sample as a fixed external potential can reduce the computational cost, and we adopt frozen density embedding theory (FDET) for this purpose. Simulated nc-AFM images with FDET using a carbon monoxide tip well reproduces the full DFT images of benzene, pentacene, and graphene, although optimized tip-sample distances and interaction energies in FDET are underestimated and overestimated, respectively. The FDET-based simulation method is promising for AFM image simulation of surfaces and two-dimensional materials. This work was supported by U.S. DOE under Grant No. DE-FG02-06ER46286 and Award No. DE-SC0008877, and by Welch Foundation under Grant F-1837. Computational resources are provided by NERSC and TACC.

  1. Probing Heterogeneous Chemistry of Individual Atmospheric Particles Using Scanning Electron Microscopy and Energy-Dispersive X-ray Analysis

    SciTech Connect

    Krueger, Brenda J.; Grassian, Vicki H.; Iedema, Martin J.; Cowin, James P.; Laskin, Alexander

    2003-10-01

    In this paper, we demonstrate the utility of single-particle analysis to investigate the chemistry of isolated, individual particles of atmospheric relevance such as NaCl, sea salt, CaCO3, and SiO2. A variety of state-of-th-art scanning electron microscopy techniques, including environmental scanning electon microscopy and computer-controlled scanning electron microscopy/energy-dispersive X-ray analysis, were utilized for monitoring and quantifying phase transitions of individual particles, morphology, and compositional changes of individual particles as they react with nitric acid.

  2. In situ multi-element analyses by energy-dispersive X-ray fluorescence on varnishes of historical violins

    NASA Astrophysics Data System (ADS)

    Echard, Jean-Philippe

    2004-10-01

    Varnishes of Italian violins and other historical stringed instruments have been analyzed by energy-dispersive X-ray fluorescence (EDXRF). The instruments whose varnishes were to be analyzed were chosen from the collection kept in Musée de la Musique in Paris. Direct analyses were performed on instrument varnishes, without any sampling and non-destructively, showing inorganic elements such as lead, mercury and iron that could be related to siccatives or pigments. Analytical results and their comparison with old formulae or traditional recipes of violin varnishes, as with the few previous analytical results, will be discussed.

  3. Determining the cohesive energy of coronene by dispersion-corrected DFT methods: Periodic boundary conditions vs. molecular pairs

    NASA Astrophysics Data System (ADS)

    Sancho-García, J. C.; Pérez-Jiménez, A. J.; Olivier, Y.

    2015-02-01

    We investigate the cohesive energy of crystalline coronene by the dispersion-corrected methods DFT-D2, DFT-D3, and DFT-NL. For that purpose, we first employ bulk periodic boundary conditions and carefully analyze next all the interacting pairs of molecules within the crystalline structure. Our calculations reveal the nature and importance of the binding forces in every molecular pair tackled and provide revised estimates of the effects of two- and three-body terms, leading to accurate results in close agreement with experimental (sublimation enthalpies) reference values.

  4. Multi-element analysis of pyrite ores using polarized energy-dispersive X-ray fluorescence spectrometry.

    PubMed

    Ustündağ, Zafer; Ustündağ, Ilknur; Kağan Kadioğlu, Yusuf

    2007-07-01

    X-ray fluorescence (XRF) spectrometry is used worldwide in geological material analysis. This study, applies polarized energy-dispersive X-ray fluorescence (PEDXRF) Spectrometer and compares in the samples of Rize-Cayeli and Mardin pyrite ores. The samples of pyrite ore were collected from the Rize and Mardin in Turkey. The prepared samples were analyzed using a PEDXRF spectrometer. The result of the analysis shows the presence of many elements including rare-earth elements (from Na to Th). The accuracy and precision of the technique for chemical analysis is demonstrated by analyzing USGS standards, GEOL, GBW 7109 and GBW-7309 sediment. PMID:17459714

  5. A new background subtraction method for energy dispersive X-ray fluorescence spectra using a cubic spline interpolation

    NASA Astrophysics Data System (ADS)

    Yi, Longtao; Liu, Zhiguo; Wang, Kai; Chen, Man; Peng, Shiqi; Zhao, Weigang; He, Jialin; Zhao, Guangcui

    2015-03-01

    A new method is presented to subtract the background from the energy dispersive X-ray fluorescence (EDXRF) spectrum using a cubic spline interpolation. To accurately obtain interpolation nodes, a smooth fitting and a set of discriminant formulations were adopted. From these interpolation nodes, the background is estimated by a calculated cubic spline function. The method has been tested on spectra measured from a coin and an oil painting using a confocal MXRF setup. In addition, the method has been tested on an existing sample spectrum. The result confirms that the method can properly subtract the background.

  6. Benzyne-functionalized graphene and graphite characterized by Raman spectroscopy and energy dispersive X-ray analysis

    PubMed Central

    Magedov, Igor V.; Frolova, Lilia V.; Ovezmyradov, Mekan; Bethke, Donald; Shaner, Eric A.; Kalugin, Nikolai G.

    2012-01-01

    The benzyne functionalization of chemical vapor deposition grown large area graphene and graphite was performed using a mixture of o-trimethylsilylphenyl triflate and cesium fluoride that react with the carbon surface. The reaction requires at least 2 days of treatment before the appearance of Raman and energy-dispersive X-ray spectral signatures that verify modification. Raman spectra of modified graphene and graphite show a rich structure of lines corresponding to C=C-C, C-H, and low frequency modes of surface-attached benzyne rings. PMID:23505324

  7. Dose-rate controlled energy dispersive x-ray spectroscopic mapping of the metallic components in a biohybrid nanosystem

    NASA Astrophysics Data System (ADS)

    Zhu, Yuanyuan; Munro, Catherine J.; Olszta, Matthew J.; Edwards, Danny J.; Braunschweig, Adam B.; Knecht, Marc R.; Browning, Nigel D.

    2016-08-01

    In this work, we showcase that through precise control of the electron dose rate, state-of-the-art large solid angle energy dispersive x-ray spectroscopy mapping in aberration-corrected scanning transmission electron microscope is capable of faithful and unambiguous chemical characterization of the Pt and Pd distribution in a peptide-mediated nanosystem. This low-dose-rate recording scheme adds another dimension of flexibility to the design of elemental mapping experiments, and holds significant potential for extending its application to a wide variety of beam sensitive hybrid nanostructures.

  8. Calibration and energy resolution study of a high dispersive power Thomson Parabola Spectrometer with monochromatic proton beams

    NASA Astrophysics Data System (ADS)

    Schillaci, F.; Maggiore, M.; Velyhan, A.; Cirrone, G. A. P.; Cuttone, G.; Margarone, D.; Parasiliti Palumbo, G.; Pisciotta, P.; Rifuggiato, D.; Romano, F.; Russo, G.; Scuderi, V.; Stancampiano, C.; Tramontana, A.; Amato, A.; Caruso, G. F.; Salamone, S.

    2014-10-01

    A high energy resolution, high dispersive power Thomson Parabola Spectrometer has been developed at INFN-LNS in order to characterize laser-driven beams up to 30- 40 MeV for protons. This device has parallel electric and magnetic field to deflect particles of a certain charge-to-mass ratio onto parabolic traces on the detection plane. Calibration of the deflection sector is crucial for data analysis, namely energy determination of analysed beam, and to evaluate the effective energy limit and resolution. This work reports the study of monochromatic proton beams delivered by the TANDEM accelerator at LNS (Catania) in the energy range between 6 and 12.5 MeV analysed with our spectrometer which allows a precise characterization of the electric and magnetic deflections. Also the energy and the Q/A resolutions and the energy limits have been evaluated proposing a mathematical model that can be used for data analysis, for the experimental set up and for the device scalability for higher energy.

  9. Microrheology using a custom-made AFM

    NASA Astrophysics Data System (ADS)

    Kosgodagan Acharige, Sebastien; Benzaquen, Michael; Steinberger, Audrey

    In the past few years, a new method was developed to measure local properties of liquids (X. Xiong et al., Phys. Rev. E 80, 2009). This method consists of gluing a micron-sized glass fiber at the tip of an AFM cantilever and probing the liquid with it. In ENS Lyon, this method was perfected (C. Devailly et al., EPL, 106 5, 2014) with the help of an interferometer developped in the same laboratory (L. Bellon et al., Opt. Commun. 207 49, 2002 and P. Paolino et al., Rev. Sci. Instrum. 84, 2013), which background noise can reach 10-14 m /√{ Hz } . This method allows us to measure a wide range of viscosities (1 mPa . s to 500 mPa . s) of transparent and opaque fluids using a small sample volume ( 5 mL). In this presentation, I will briefly describe the interferometer developped in ENS Lyon, then explain precisely the microrheology measurements and then compare the experimental results to a model developped by M. Benzaquen. This work is supported financially by the ANR project NANOFLUIDYN (Grant Number ANR-13-BS10-0009).

  10. Manufacturing process of nanofluidics using afm probe

    NASA Astrophysics Data System (ADS)

    Karingula, Varun Kumar

    A new process for fabricating a nano fluidic device that can be used in medical application is developed and demonstrated. Nano channels are fabricated using a nano tip in indentation mode on AFM (Atomic Force Microscopy). The nano channels are integrated between the micro channels and act as a filter to separate biomolecules. Nano channels of 4 to7 m in length, 80nm in width, and at varying depths from 100nm to 850 nm allow the resulting device to separate selected groups of lysosomes and other viruses. Sharply developed vertical micro channels are produced from a deep reaction ion etching followed by deposition of different materials, such as gold and polymers, on the top surface, allowing the study of alternative ways of manufacturing a nanofluidic device. PDMS (Polydimethylsiloxane) bonding is performed to close the top surface of the device. An experimental setup is used to test and validate the device by pouring fluid through the channels. A detailed cost evaluation is conducted to compare the economical merits of the proposed process. It is shown that there is a 47:7% manufacturing time savings and a 60:6% manufacturing cost savings.

  11. Engineering Strategies and Methods for Avoiding Air-Quality Externalities: Dispersion Modeling, Home Energy Conservation, and Scenario Planning

    NASA Astrophysics Data System (ADS)

    Knox, Andrew James

    Energy conservation can improve air quality by reducing emissions from fuel combustion. The human health value retained through better air quality can then offset the cost of energy conservation. Through this thesis' innovative yet widely-accessible combination of air pollution dispersion modeling and atmospheric chemistry, it is estimated that the health value retained by avoiding emissions from Ontario's former coal-fired generating stations is 5.74/MWh (using an upper-bound value of 265,000 per year of life lost). This value is combined with energy modeling of homes in the first-ever assessment of the air-quality health benefits of low-energy buildings. It is shown that avoided health damages can equal 7% of additional construction costs of energy efficient buildings in Ontario. At 7%, health savings are a significant item in the cost analysis of efficient buildings. Looking to energy efficiency in the context of likely future low-resource natural gas scenarios, building efficient buildings today is shown to be more economically efficient than any building retrofit option. Considering future natural gas scarcity in the context of Ontario's Long-Term Energy Plan reveals that Ontario may be forced to return to coal-fired electricity. Projected coal use would result in externalities greater than $600 million/year; 80% more than air-quality externalities from Ontario's electricity in 1985. Radically aggressive investment in electricity conservation (75% reduction per capita by 2075) is one promising path forward that keeps air-quality externalities below 1985 levels. Non-health externalities are an additional concern, the quantification, and ultimately monetization, of which could be practical using emerging air pollution monitoring technologies. Energy, conservation, energy planning, and energy's externalities form a complex situation in which today's decisions are critical to a successful future. It is clear that reducing the demand for energy is essential and

  12. Investigation of the dispersion and the effective masses of excitons in bulk 2 H -MoS2 using transition electron energy-loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Habenicht, Carsten; Knupfer, Martin; Büchner, Bernd

    2015-06-01

    We have investigated the electronic excitations in bulk 2 H -MoS2 using electron energy-loss spectroscopy. The electron energy-loss spectra in the Γ M and Γ K directions were measured for various momentum transfer values. The results allow the identification of the A1 and B1 exciton peaks and in particular their energy-momentum dispersion. The dispersions exhibit approximately quadratic upward trends and slight anisotropies in the Γ M and Γ K directions. The fitted energy-momentum transfer functions allow the estimation of the effective masses of the excitons which are in close proximity to predicted values.

  13. Oil dispersants

    SciTech Connect

    Flaherty, L.M.

    1989-01-01

    This book contains papers presented at a symposium of the American Society for Testing and Materials. The topics covered include: The effect of elastomers on the efficiency of oil spill dispersants; planning for dispersant use; field experience with dispersants for oil spills on land; and measurements on natural dispersion.

  14. Design and Performance of a TES X-ray Microcalorimeter Array for Energy Dispersive Spectroscopy on Scanning Transmission Electron Microscope

    NASA Astrophysics Data System (ADS)

    Muramatsu, Haruka; Nagayoshi, K.; Hayashi, T.; Sakai, K.; Yamamoto, R.; Mitsuda, K.; Yamasaki, N. Y.; Maehata, K.; Hara, T.

    2016-07-01

    We discuss the design and performance of a transition edge sensor (TES) X-ray microcalorimeter array for scanning transmission electron microscope (STEM)-energy dispersive X-ray spectroscopy (EDS). The TES X-ray microcalorimeter has better energy resolution compared to conventional silicon drift detector and STEM-EDS utilizing a TES detector makes it possible to map the distribution of elements on a specimen in addition to analyze the composition. The requirement for a TES detector is a high counting rate (>20 kcps), wide energy band (0.5-15 keV) and good energy resolution (<10 eV) full width at half maximum. The major improvement of this development is to increase the maximum counting rate. In order to accommodate the high counting rate, we adopted an 8 × 8 format, 64-pixel array and common biasing scheme for the readout method. We did all design and fabrication of the device in house. With the device we have fabricated most recently, the pulse decay time is 40 \\upmu s which is expected to achieve 50 kcps. For a single pixel, the measured energy resolution was 7.8 eV at 5.9 keV. This device satisfies the requirements of counting rate and energy resolution, although several issues remain where the performance must be confirmed.

  15. Design and Performance of a TES X-ray Microcalorimeter Array for Energy Dispersive Spectroscopy on Scanning Transmission Electron Microscope

    NASA Astrophysics Data System (ADS)

    Muramatsu, Haruka; Nagayoshi, K.; Hayashi, T.; Sakai, K.; Yamamoto, R.; Mitsuda, K.; Yamasaki, N. Y.; Maehata, K.; Hara, T.

    2016-02-01

    We discuss the design and performance of a transition edge sensor (TES) X-ray microcalorimeter array for scanning transmission electron microscope (STEM)-energy dispersive X-ray spectroscopy (EDS). The TES X-ray microcalorimeter has better energy resolution compared to conventional silicon drift detector and STEM-EDS utilizing a TES detector makes it possible to map the distribution of elements on a specimen in addition to analyze the composition. The requirement for a TES detector is a high counting rate (> 20 kcps), wide energy band (0.5-15 keV) and good energy resolution (< 10 eV) full width at half maximum. The major improvement of this development is to increase the maximum counting rate. In order to accommodate the high counting rate, we adopted an 8 × 8 format, 64-pixel array and common biasing scheme for the readout method. We did all design and fabrication of the device in house. With the device we have fabricated most recently, the pulse decay time is 40 \\upmu s which is expected to achieve 50 kcps. For a single pixel, the measured energy resolution was 7.8 eV at 5.9 keV. This device satisfies the requirements of counting rate and energy resolution, although several issues remain where the performance must be confirmed.

  16. Study of soil aggregate breakdown dynamics under low dispersive ultrasonic energies with sedimentation and X-ray attenuation**

    PubMed Central

    Schomakers, Jasmin; Zehetner, Franz; Mentler, Axel; Ottner, Franz; Mayer, Herwig

    2016-01-01

    It has been increasingly recognized that soil organic matter stabilization is strongly controlled by physical binding within soil aggregates. It is therefore essential to measure soil aggregate stability reliably over a wide range of disruptive energies and different aggregate sizes. To this end, we tested high-accuracy ultrasonic dispersion in combination with subsequent sedimentation and X-ray attenuation. Three arable topsoils (notillage) from Central Europe were subjected to ultrasound at four different specific energy levels: 0.5, 6.7, 100 and 500 J cm−3, and the resulting suspensions were analyzed for aggregate size distribution by wet sieving (2 000-63 μm) and sedimentation/X-ray attenuation (63-2 μm). The combination of wet sieving and sedimentation technique allowed for a continuous analysis, at high resolution, of soil aggregate breakdown dynamics after defined energy inputs. Our results show that aggregate size distribution strongly varied with sonication energy input and soil type. The strongest effects were observed in the range of low specific energies (< 10 J cm−3), which previous studies have largely neglected. This shows that low ultrasonic energies are required to capture the full range of aggregate stability and release of soil organic matter upon aggregate breakdown. PMID:27099408

  17. Design and Performance of a TES X-ray Microcalorimeter Array for Energy Dispersive Spectroscopy on Scanning Transmission Electron Microscope

    NASA Astrophysics Data System (ADS)

    Muramatsu, Haruka; Nagayoshi, K.; Hayashi, T.; Sakai, K.; Yamamoto, R.; Mitsuda, K.; Yamasaki, N. Y.; Maehata, K.; Hara, T.

    2016-07-01

    We discuss the design and performance of a transition edge sensor (TES) X-ray microcalorimeter array for scanning transmission electron microscope (STEM)-energy dispersive X-ray spectroscopy (EDS). The TES X-ray microcalorimeter has better energy resolution compared to conventional silicon drift detector and STEM-EDS utilizing a TES detector makes it possible to map the distribution of elements on a specimen in addition to analyze the composition. The requirement for a TES detector is a high counting rate (>20 kcps), wide energy band (0.5-15 keV) and good energy resolution (<10 eV) full width at half maximum. The major improvement of this development is to increase the maximum counting rate. In order to accommodate the high counting rate, we adopted an 8 × 8 format, 64-pixel array and common biasing scheme for the readout method. We did all design and fabrication of the device in house. With the device we have fabricated most recently, the pulse decay time is 40 μs which is expected to achieve 50 kcps. For a single pixel, the measured energy resolution was 7.8 eV at 5.9 keV. This device satisfies the requirements of counting rate and energy resolution, although several issues remain where the performance must be confirmed.

  18. Portable energy dispersive X-ray fluorescence and X-ray diffraction and radiography system for archaeometry

    NASA Astrophysics Data System (ADS)

    Mendoza Cuevas, Ariadna; Perez Gravie, Homero

    2011-03-01

    Starting on a laboratory developed portable X-ray fluorescence (PXRF) spectrometer; three different analytical results can be performed: analysis of chemical elements, analysis of major chemical crystalline phase and structural analysis, which represents a contribution to a new, low cost development of portable X-ray analyzer; since these results are respectively obtained with independent equipments for X-ray fluorescence, X-ray diffraction and radiography. Detection limits of PXRF were characterized using standard reference materials for ceramics, glass, bronze and bones, which are the main materials requiring quantitative analysis in art and archeological objects. A setup for simultaneous energy dispersive X-ray fluorescence and diffraction (ED (XRF-XRD)) in the reflection mode has been tested for in situ and non-destructive analysis according to the requirements of art objects inspection. The system uses a single low power X-ray tube and an X-ray energy dispersive detector to measure X-ray diffraction spectrum at a fixed angle. Application to the identification of jadeite-jade mineral in archeological objects by XRD is presented. A local high resolution radiography image obtained with the same low power X-ray tube allows for studies in painting and archeological bones.

  19. Methodology toward 3D micro X-ray fluorescence imaging using an energy dispersive charge-coupled device detector.

    PubMed

    Garrevoet, Jan; Vekemans, Bart; Tack, Pieter; De Samber, Björn; Schmitz, Sylvia; Brenker, Frank E; Falkenberg, Gerald; Vincze, Laszlo

    2014-12-01

    A new three-dimensional (3D) micro X-ray fluorescence (μXRF) methodology based on a novel 2D energy dispersive CCD detector has been developed and evaluated at the P06 beamline of the Petra-III storage ring (DESY) in Hamburg, Germany. This method is based on the illumination of the investigated sample cross-section by a horizontally focused beam (vertical sheet beam) while fluorescent X-rays are detected perpendicularly to the sheet beam by a 2D energy dispersive (ED) CCD detector allowing the collection of 2D cross-sectional elemental images of a certain depth within the sample, limited only by signal self-absorption effects. 3D elemental information is obtained by a linear scan of the sample in the horizontal direction across the vertically oriented sheet beam and combining the detected cross-sectional images into a 3D elemental distribution data set. Results of the 3D μXRF analysis of mineral inclusions in natural deep Earth diamonds are presented to illustrate this new methodology. PMID:25346101

  20. One-loop omega-potential of quantum fields with ellipsoid constant-energy surface dispersion law

    NASA Astrophysics Data System (ADS)

    Kazinski, P. O.; Shipulya, M. A.

    2011-10-01

    Rapidly convergent expansions of a one-loop contribution to the partition function of quantum fields with ellipsoid constant-energy surface dispersion law are derived. The omega-potential is naturally decomposed into three parts: the quasiclassical contribution, the contribution from the branch cut of the dispersion law, and the oscillating part. The low- and high-temperature expansions of the quasiclassical part are obtained. An explicit expression and a relation of the contribution from the cut with the Casimir term and vacuum energy are established. The oscillating part is represented in the form of the Chowla-Selberg expansion of the Epstein zeta function. Various resummations of this expansion are considered. The general procedure developed is then applied to two models: massless particles in a box both at zero and nonzero chemical potential, and electrons in a thin metal film. Rapidly convergent expansions of the partition function and average particle number are obtained for these models. In particular, the oscillations of the chemical potential of conduction electrons in graphene and a thin metal film due to a variation of size of the crystal are described.

  1. Focal construct geometry for high intensity energy dispersive x-ray diffraction based on x-ray capillary optics.

    PubMed

    Li, Fangzuo; Liu, Zhiguo; Sun, Tianxi; Jiang, Bowen; Zhu, Yu

    2016-03-14

    We presented a focal construct geometry (FCG) method for high intensity energy dispersive X-ray diffraction by utilizing a home-made ellipsoidal single-bounce capillary (ESBC) and a polycapillary parallel X-ray lens (PPXRL). The ESBC was employed to focus the X-rays from a conventional laboratory source into a small focal spot and to produce an annular X-ray beam in the far-field. Additionally, diffracted polychromatic X-rays were confocally collected by the PPXRL attached to a stationary energy-resolved detector. Our FCG method based on ESBC and PPXRL had achieved relatively high intensity diffraction peaks and effectively narrowed the diffraction peak width which was helpful in improving the potential d-spacing resolution for material phase analysis. PMID:26979685

  2. Focal construct geometry for high intensity energy dispersive x-ray diffraction based on x-ray capillary optics

    NASA Astrophysics Data System (ADS)

    Li, Fangzuo; Liu, Zhiguo; Sun, Tianxi; Jiang, Bowen; Zhu, Yu

    2016-03-01

    We presented a focal construct geometry (FCG) method for high intensity energy dispersive X-ray diffraction by utilizing a home-made ellipsoidal single-bounce capillary (ESBC) and a polycapillary parallel X-ray lens (PPXRL). The ESBC was employed to focus the X-rays from a conventional laboratory source into a small focal spot and to produce an annular X-ray beam in the far-field. Additionally, diffracted polychromatic X-rays were confocally collected by the PPXRL attached to a stationary energy-resolved detector. Our FCG method based on ESBC and PPXRL had achieved relatively high intensity diffraction peaks and effectively narrowed the diffraction peak width which was helpful in improving the potential d-spacing resolution for material phase analysis.

  3. Defining the contributions of permanent electrostatics, Pauli repulsion, and dispersion in density functional theory calculations of intermolecular interaction energies.

    PubMed

    Horn, Paul R; Mao, Yuezhi; Head-Gordon, Martin

    2016-03-21

    In energy decomposition analysis of Kohn-Sham density functional theory calculations, the so-called frozen (or pre-polarization) interaction energy contains contributions from permanent electrostatics, dispersion, and Pauli repulsion. The standard classical approach to separate them suffers from several well-known limitations. We introduce an alternative scheme that employs valid antisymmetric electronic wavefunctions throughout and is based on the identification of individual fragment contributions to the initial supersystem wavefunction as determined by an energetic optimality criterion. The density deformations identified with individual fragments upon formation of the initial supersystem wavefunction are analyzed along with the distance dependence of the new and classical terms for test cases that include the neon dimer, ammonia borane, water-Na(+), water-Cl(-), and the naphthalene dimer. PMID:27004862

  4. Energy partitioning and impulse dispersion in the decorated, tapered, strongly nonlinear granular alignment: A system with many potential applications

    NASA Astrophysics Data System (ADS)

    Doney, Robert L.; Agui, Juan H.; Sen, Surajit

    2009-09-01

    Rapid absorption of impulses using light-weight, small, reusable systems is a challenging problem. An axially aligned set of progressively shrinking elastic spheres, a "tapered chain," has been shown to be a versatile and scalable shock absorber in earlier simulational, theoretical, and experimental works by several authors. We have recently shown (see R. L. Doney and S. Sen, Phys. Rev. Lett. 97, 155502 (2006)) that the shock absorption ability of a tapered chain can be dramatically enhanced by placing small interstitial grains between the regular grains in the tapered chain systems. Here we focus on a detailed study of the problem introduced in the above mentioned letter, present extensive dynamical simulations using parameters for a titanium-aluminum-vanadium alloy Ti6Al4V, derive attendant hard-sphere analyses based formulae to describe energy dispersion, and finally discuss some preliminary experimental results using systems with chrome spheres and small Nitinol interstitial grains to present the underlying nonlinear dynamics of this so-called decorated tapered granular alignment. We are specifically interested in small systems, comprised of several grains. This is because in real applications, mass and volume occupied must inevitably be minimized. Our conclusion is that the decorated tapered chain offers enhanced energy dispersion by locking in much of the input energy in the grains of the tapered chain rather than in the small interstitial grains. Thus, the present study offers insights into how the shock absorption capabilities of these systems can be pushed even further by improving energy absorption capabilities of the larger grains in the tapered chains. We envision that these scalable, decorated tapered chains may be used as shock absorbing components in body armor, armored vehicles, building applications and in perhaps even in applications in rehabilitation science.

  5. XPS and AFM Study of GaAs Surface Treatment

    SciTech Connect

    Contreras-Guerrero, R.; Wallace, R. M.; Aguirre-Francisco, S.; Herrera-Gomez, A.; Lopez-Lopez, M.

    2008-11-13

    Obtaining smooth and atomically clean surfaces is an important step in the preparation of a surface for device manufacturing. In this work different processes are evaluated for cleaning a GaAs surface. A good surface cleaning treatment is that which provides a high level of uniformity and controllability of the surface. Different techniques are useful as cleaning treatments depending on the growth process to be used. The goal is to remove the oxygen and carbon contaminants and then form a thin oxide film to protect the surface, which is easy to remove later with thermal desorption mechanism like molecular beam epitaxy (MBE) with minimal impact to the surface. In this study, atomic force microscopy (AFM), x-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS) were used to characterize the structure of the surface, the composition, as well as detect oxygen and carbon contaminant on the GaAs surface. This study consists in two parts. The first part the surface was subjected to different chemical treatments. The chemical solutions were: (a)H{sub 2}SO{sub 4}:H{sub 2}O{sub 2}:H{sub 2}O(4:1:100), (b) HCl: H{sub 2}O(1:3), (c)NH{sub 4}OH 29%. The treatments (a) and (b) reduced the oxygen on the surface. Treatment (c) reduces carbon contamination. In the second part we made MOS devices on the surfaces treated. They were characterized by CV and IV electrical measurements. They show frequency dispersion.

  6. Segmental calibration for commercial AFM in vertical direction

    NASA Astrophysics Data System (ADS)

    Shi, Yushu; Gao, Sitian; Lu, Mingzhen; Li, Wei; Xu, Xuefang

    2013-01-01

    Atomic force microscopy (AFM) is most widely applied in scientific research and industrial production. AFM is a scanning probe imaging and measuring device, useful for physical and chemical studies. Depends on its basic structure, microscopic surface pattern can be measured and captured by mechanically scanning. Its vertical and horizon resolution can reach to 0.01nm and 0.1nm. Commonly the measurement values of commercial AFM are directly from scanning piezoelectric tube, so that it not a traceable value. In order to solve the problem of commercial AFM's traceability, step height standard references are applied to calibrate the piezoelectric ceramic housing in scanning tube. All of the serial of step height standard references, covering the commercial AFM vertical scale, are calibrated by Metrology AFM developed by National Institute of Metrology (NIM), China. Three interferometers have been assembled in its XYZ axis, therefore the measurement value can directly trace to laser wavelength. Because of nonlinear characteristic of PZT, the method of segmental calibration is proposed. The measurement scale can be divided into several subsections corresponding to the calibrated values of the series of step height standards references. By this method the accuracy of measurements can be ensured in each segment measurement scale and the calibration level of the whole instrument can be promoted. In order to get a standard step shape by commercial AFM, substrate removal method is applied to deal with the bow shape problem.

  7. Crystallization of Probucol in Nanoparticles Revealed by AFM Analysis in Aqueous Solution.

    PubMed

    Egami, Kiichi; Higashi, Kenjirou; Yamamoto, Keiji; Moribe, Kunikazu

    2015-08-01

    The crystallization behavior of a pharmaceutical drug in nanoparticles was directly evaluated by atomic force microscopy (AFM) force curve measurements in aqueous solution. A ternary spray-dried sample (SPD) was prepared by spray drying the organic solvent containing probucol (PBC), hypromellose (HPMC), and sodium dodecyl sulfate (SDS). The amorphization of PBC in the ternary SPD was confirmed by powder X-ray diffraction (PXRD) and solid-state 13C NMR measurements. A nanosuspension containing quite small particles of 25 nm in size was successfully prepared immediately after dispersion of the ternary SPD into water. Furthermore, solution-state 1H NMR measurements revealed that a portion of HPMC coexisted with PBC as a mixed state in the freshly prepared nanosuspension particles. After storing the nanosuspension at 25 °C, a gradual increase in the size of the nanoparticles was observed, and the particle size changed to 93.9 nm after 7 days. AFM enabled the direct observation of the morphology and agglomeration behavior of the nanoparticles in water. Moreover, AFM force-distance curves were changed from (I) to (IV), depending on the storage period, as follows: (I) complete indentation within an applied force of 1 nN, (II) complete indentation with an applied force of 1-5 nN, (III) partial indentation with an applied force of 5 nN, and (IV) nearly no indentation with an applied force of 5 nN. This stiffness increase of the nanoparticles was attributed to gradual changes in the molecular state of PBC from the amorphous to the crystal state. Solid-state 13C NMR measurements of the freeze-dried samples demonstrated the presence of metastable PBC Form II crystals in the stored nanosuspension, strongly supporting the AFM results. PMID:26106951

  8. Raman and AFM study of gamma irradiated plastic bottle sheets

    SciTech Connect

    Ali, Yasir; Kumar, Vijay; Dhaliwal, A. S.; Sonkawade, R. G.

    2013-02-05

    In this investigation, the effects of gamma irradiation on the structural properties of plastic bottle sheet are studied. The Plastic sheets were exposed with 1.25MeV {sup 60}Co gamma rays source at various dose levels within the range from 0-670 kGy. The induced modifications were followed by micro-Raman and atomic force microscopy (AFM). The Raman spectrum shows the decrease in Raman intensity and formation of unsaturated bonds with an increase in the gamma dose. AFM image displays rough surface morphology after irradiation. The detailed Raman analysis of plastic bottle sheets is presented here, and the results are correlated with the AFM observations.

  9. Dynamics of the nanoneedle probe in trolling mode AFM.

    PubMed

    Abdi, Ahmad; Pishkenari, Hossein Nejat; Keramati, Ramtin; Minary-Jolandan, Majid

    2015-05-22

    Atomic force microscopy (AFM), as an indispensable tool for nanoscale characterization, presents major drawbacks for operation in a liquid environment arising from the large hydrodynamic drag on the vibrating cantilever. The newly introduced 'Trolling mode' (TR-mode) AFM resolves this complication by using a specialized nanoneedle cantilever that keeps the cantilever outside of the liquid. Herein, a mechanical model with a lumped mass was developed to capture the dynamics of such a cantilever with a nanoneedle tip. This new developed model was applied to investigate the effects of the needle-liquid interface on the performance of the AFM, including the imaging capability in liquid. PMID:25915451

  10. Complete description of ionization energy and electron affinity in organic solids: Determining contributions from electronic polarization, energy band dispersion, and molecular orientation

    NASA Astrophysics Data System (ADS)

    Yoshida, Hiroyuki; Yamada, Kazuto; Tsutsumi, Jun'ya; Sato, Naoki

    2015-08-01

    Ionization energy and electron affinity in organic solids are understood in terms of a single molecule perturbed by solid-state effects such as polarization energy, band dispersion, and molecular orientation as primary factors. However, no work has been done to determine the individual contributions experimentally. In this work, the electron affinities of thin films of pentacene and perfluoropentacene with different molecular orientations are determined to a precision of 0.1 eV using low-energy inverse photoemission spectroscopy. Based on the precisely determined electron affinities in the solid state together with the corresponding data of the ionization energies and other energy parameters, we quantitatively evaluate the contribution of these effects. It turns out that the bandwidth as well as the polarization energy contributes to the ionization energy and electron affinity in the solid state while the effect of the surface dipole is at most a few eV and does not vary with the molecular orientation. As a result, we conclude that the molecular orientation dependence of the ionization energy and electron affinity of organic solids originates from the orientation-dependent polarization energy in the film.

  11. Effect of x-ray energy dispersion in digital subtraction imaging at the iodine K-edge--A Monte Carlo study

    SciTech Connect

    Prino, F.; Ceballos, C.; Cabal, A.; Sarnelli, A.; Gambaccini, M.; Ramello, L.

    2008-01-15

    The effect of the energy dispersion of a quasi-monochromatic x-ray beam on the performance of a dual-energy x-ray imaging system is studied by means of Monte Carlo simulations using MCNPX (Monte Carlo N-Particle eXtended) version 2.6.0. In particular, the case of subtraction imaging at the iodine K-edge, suitable for angiographic imaging application, is investigated. The average energies of the two beams bracketing the iodine K-edge are set to the values of 31.2 and 35.6 keV corresponding to the ones obtained with a compact source based on a conventional x-ray tube and a mosaic crystal monochromator. The energy dispersion of the two beams is varied between 0 and 10 keV of full width at half-maximum (FWHM). The signal and signal-to-noise ratio produced in the simulated images by iodine-filled cavities (simulating patient vessels) drilled in a PMMA phantom are studied as a function of the x-ray energy dispersion. The obtained results show that, for the considered energy separation of 4.4 keV, no dramatic deterioration of the image quality is observed with increasing x-ray energy dispersion up to a FWHM of about 2.35 keV. The case of different beam energies is also investigated by means of fast simulations of the phantom absorption.

  12. High time resolution measurement of multiple electron precipitations with energy-time dispersion in high-latitude part of the cusp region

    NASA Astrophysics Data System (ADS)

    Tanaka, H.; Saito, Y.; Asamura, K.; Ishii, S.; Mukai, T.

    2005-07-01

    The SS-520-2 sounding rocket skimmed over the high-latitude part of the cusp region and observed fine-scale field-aligned electron precipitations in the vicinity of the inverted-V structures with the Low Energy Particle-Electron Spectrum Analyzer (LEP-ESA). There are at least two types of fine-scale electron precipitations, namely "edge-type electron bursts" and "multiple energy-time dispersions." Edge-type electron bursts were observed only at the edge of the inverted-V region, whereas multiple energy-time dispersions were observed separately from the inverted-V region as well as within or overlapping it. The latter was characterized by field-aligned precipitations with falling energies from ˜200 eV down to ˜20 eV at a repetition rate of 1-2 Hz. Source altitudes were estimated using the energy-time and pitch angle-time dispersions. As a result, we found that the source altitudes were distributed along the geomagnetic field at altitudes of several thousand kilometers, depending on the accelerated energies of electrons. Higher-energy electrons are generated at higher altitudes. The source temperature of the energy-time dispersion was much higher than that of ionospheric cold electrons. We suggest that electrons injected from the magnetosheath were accelerated by inertial Alfvén waves at altitudes of several thousands of kilometers.

  13. The complexity of protein energy landscapes studied by solution NMR relaxation dispersion experiments

    PubMed Central

    Khirich, Gennady; Loria, J. Patrick

    2016-01-01

    The millisecond timescale motions in ribonuclease A (RNase A) were studied by solution NMR CPMG and off-resonance R1ρ relaxation dispersion experiments over a wide pH and temperature range. These experiments identify three separate protein regions termed Cluster 1, Cluster 2, and R33 whose motions are governed by distinct thermodynamic parameters. Moreover each of these regions has motions with different pH dependencies. Cluster 1 shows an increase in activation enthalpy and activation entropy as the pH is lowered, whereas Cluster two exhibits the opposite behavior. In contrast the activation enthalpy and entropy of R33 show no pH dependence. Compounding the differences, Δω values for Cluster 2 are characteristic of two-site conformational exchange yet similar analysis for Cluster 1 indicates that this region of the enzyme exhibits conformational fluctuations between a major conformer and a pH-dependent average of protonated and de-protonated minor conformers. PMID:25680027

  14. Influence of Dispersoids on Corrosion Behavior of Oxide Dispersion-Strengthened 18Cr Steels made by High-Energy Milling

    NASA Astrophysics Data System (ADS)

    Nagini, M.; Jyothirmayi, A.; Vijay, R.; Rao, Tata N.; Reddy, A. V.; Rajulapati, Koteswararao V.; Sundararajan, G.

    2016-02-01

    Corrosion behavior of 18Cr ferritic steel with and without yttria produced by high-energy milling followed by hot extrusion was studied in 3.5% NaCl solution using electrochemical and immersion techniques. The cyclic polarization study showed that pitting corrosion is predominant in all the materials. The pitting rate is higher in yttria dispersed steels and also increases with milling time. Impedance analysis revealed the formation of better corrosion resistance film on the surface of the steel without yttria. Potentiodynamic polarization studies indicated that the corrosion rate decreased up to 48 h of exposure time and increased beyond 48 h. The increase in corrosion rate beyond 48 h is due to the porous passive film. The corrosion behavior of all the materials in immersion studies followed the same trend as observed in electrochemical studies. Even though the corrosion rate of yttria dispersed 18Cr ferritic steel is less than that of the base material, the difference is marginal. The presence of dispersoids appears to promote nucleation of pits when compared to the steel without the dispersoids.

  15. Ability of Lactobacillus rhamnosus GAF01 to remove AFM1 in vitro and to counteract AFM1 immunotoxicity in vivo.

    PubMed

    Abbès, Samir; Salah-Abbès, Jalila Ben; Sharafi, Hakimeh; Jebali, Rania; Noghabi, Kambiz Akbari; Oueslati, Ridha

    2013-01-01

    Aflatoxin M1 (AFM1) has been detected in many parts of the world both in raw milk and many dairy products, causing great economic losses and human disease. Unfortunately, there are few studies dealing with AFM1 immunotoxicity/interactions with lactic acid bacteria for potential application as a natural preventive agent. The aim of this study was to isolate (from dairy products) food-grade probiotic bacteria able to degrade/bind AFM1 in vitro and evaluate whether the same organism(s) could impart a protective role against AFM1-induced immunotoxicity in exposed Balb/c mice. Bacteria (Lactobacillus plantarum MON03 and L. rhamnosus GAF01) were isolated from Tunisian artisanal butter and then tested for abilities to eliminate AFM1 from phosphate-buffered saline (PBS) and reconstituted milk (containing 0.05, 0.10, and 0.20 µg AFM1/ml) after 0, 6, and 24 h at 37°C. Results showed that the selected bacteria could 'remove' AFM1 both in PBS and skimmed milk. The binding abilities of AFM1 by L. plantarum MON03 and L. rhamnosus GAF01 strains (at 10(8) CFU/ml) in PBS and reconstituted milk ranged, respectively, from 16.1-78.6% and 15.3-95.1%; overall, L. rhamnosus showed a better potential for removal than L. plantarum. 'Removal' appeared to be by simple binding; the bacteria/AFM1 complex was stable and only a very small proportion of mycotoxin was released back into the solution. L. rhamnosus GAF01 had the highest binding capacity and was selected for use in the in vivo study. Those results indicated that use of the organism prevented AFM1-induced effects on total white and red blood cells, and lymphocyte subtypes, after 15 days of host treatment. These studies clearly indicated that L. rhamnosus GAF01 was able to bind AFM1 in vitro and-by mechanisms that might also be related to a binding effect-counteract AFM1-induced immunotoxicity. Moreover, by itself, this bacterium was not toxic and could potentially be used as an additive in dairy products and in biotechnology for

  16. Atomic force microscopy combined with optical tweezers (AFM/OT)

    NASA Astrophysics Data System (ADS)

    Pierini, F.; Zembrzycki, K.; Nakielski, P.; Pawłowska, S.; Kowalewski, T. A.

    2016-02-01

    The role of mechanical properties is essential to understand molecular, biological materials, and nanostructures dynamics and interaction processes. Atomic force microscopy (AFM) is the most commonly used method of direct force evaluation, but due to its technical limitations this single probe technique is unable to detect forces with femtonewton resolution. In this paper we present the development of a combined atomic force microscopy and optical tweezers (AFM/OT) instrument. The focused laser beam, on which optical tweezers are based, provides us with the ability to manipulate small dielectric objects and to use it as a high spatial and temporal resolution displacement and force sensor in the same AFM scanning zone. We demonstrate the possibility to develop a combined instrument with high potential in nanomechanics, molecules manipulation and biological studies. AFM/OT equipment is described and characterized by studying the ability to trap dielectric objects and quantifying the detectable and applicable forces. Finally, optical tweezers calibration methods and instrument applications are given.

  17. Nanoscale structural features determined by AFM for single virus particles.

    PubMed

    Chen, Shu-wen W; Odorico, Michael; Meillan, Matthieu; Vellutini, Luc; Teulon, Jean-Marie; Parot, Pierre; Bennetau, Bernard; Pellequer, Jean-Luc

    2013-11-21

    In this work, we propose "single-image analysis", as opposed to multi-image averaging, for extracting valuable information from AFM images of single bio-particles. This approach allows us to study molecular systems imaged by AFM under general circumstances without restrictions on their structural forms. As feature exhibition is a resolution correlation, we have performed AFM imaging on surfaces of tobacco mosaic virus (TMV) to demonstrate variations of structural patterns with probing resolution. Two AFM images were acquired with the same tip at different probing resolutions in terms of pixel width, i.e., 1.95 and 0.49 nm per pixel. For assessment, we have constructed an in silico topograph based on the three-dimensional crystal structure of TMV as a reference. The prominent artifacts observed in the AFM-determined shape of TMV were attributed to tip convolutions. The width of TMV rod was systematically overestimated by ~10 nm at both probing resolutions of AFM. Nevertheless, the effects of tip convolution were less severe in vertical orientation so that the estimated height of TMV by AFM imaging was in close agreement with the in silico X-ray topograph. Using dedicated image processing algorithms, we found that at low resolution (i.e., 1.95 nm per pixel), the extracted surface features of TMV can be interpreted as a partial or full helical repeat (three complete turns with ~7.0 nm in length), while individual protein subunits (~2.5 nm) were perceivable only at high resolution. The present study shows that the scales of revealed structural features in AFM images are subject to both probing resolution and processing algorithms for image analysis. PMID:24056758

  18. The Conductance of Nanotubes Deformed by the AFM Tip

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexei; Maiti, Amitesh; Anantram, M. P.

    2003-01-01

    The conductance drop under AFM-tip deformation can be explained by stretching of the tube length. NT sensors can be built utilizing uniform stretching. Single sp3 bond cross section cannot block electrons, because another conducting path may exist. AFM tip which forms sp3 bonds with the tube will decrease conductance. In the "table experiment" a conductance drop of 2 orders of magnitude happened only after some bonds were broken.

  19. Characterization of the interaction between AFM tips and surface nanobubbles.

    PubMed

    Walczyk, Wiktoria; Schönherr, Holger

    2014-06-24

    While the presence of gaseous enclosures observed at various solid-water interfaces, the so-called "surface nanobubles", has been confirmed by many groups in recent years, their formation, properties, and stability have not been convincingly and exhaustively explained. Here we report on an atomic force microscopy (AFM) study of argon nanobubbles on highly oriented pyrolitic graphite (HOPG) in water to elucidate the properties of nanobubble surfaces and the mechanism of AFM tip-nanobubble interaction. In particular, the deformation of the nanobubble-water interface by the AFM tip and the question whether the AFM tip penetrates the nanobubble during scanning were addressed by this combined intermittent contact (tapping) mode and force volume AFM study. We found that the stiffness of nanobubbles was smaller than the cantilever spring constant and comparable with the surface tension of water. The interaction with the AFM tip resulted in severe quasi-linear deformation of the bubbles; however, in the case of tip-bubble attraction, the interface deformed toward the tip. We tested two models of tip-bubble interaction, namely, the capillary force and the dynamic interaction model, and found, depending on the tip properties, good agreement with experimental data. The results showed that the tip-bubble interaction strength and the magnitude of the bubble deformation depend strongly on tip and bubble geometry and on tip and substrate material, and are very sensitive to the presence of contaminations that alter the interfacial tension. In particular, nanobubbles interacted differently with hydrophilic and hydrophobic AFM tips, which resulted in qualitatively and quantitatively different force curves measured on the bubbles in the experiments. To minimize bubble deformation and obtain reliable AFM results, nanobubbles must be measured with a sharp hydrophilic tip and with a cantilever having a very low spring constant in a contamination-free system. PMID:24856074

  20. Electron probe energy dispersive X-ray microanalysis (EDXA) in the investigation of fossil bone: the case of Java man.

    PubMed

    Bartsiokas, A; Day, M H

    1993-05-22

    Doubts about the attribution of the Trinil femur to Homo erectus on anatomical grounds have a long history. Here, for the first time, published stratigraphic information and chemical evidence based on the Ca/P ratios confirm that the anatomical doubts are justified. The Trinil femur apparently belongs to a more recent stratum above the 'fossil layer' (Hauptknochenschicht, HK) in which the Trinil calotte was found. It is concluded that the Trinil Femur I belongs to Homo sapiens, whereas the Trinil Femora II-V and the calotte belong to H. erectus. The chemical evidence derives from the use of electron probe energy dispersive X-ray microanalysis (EDXA), a technique that can be virtually non-destructive and therefore may be used on scarce fossil evidence. PMID:8391701

  1. Energy dispersive x-ray analysis of the cornea. Application to paraffin sections of normal and diseased corneas

    SciTech Connect

    Robinson, M.R.; Streeten, B.W.

    1984-11-01

    The distribution of chemical elements in the normal human cornea was studied by energy dispersive x-ray analysis and scanning electron microscopy of routinely prepared paraffin sections. Calcium, phosphorus, and sulfur were consistently present in quantities above background and varied in concentration regionally. Analysis of fresh-frozen tissue, an approximation of the in vivo state, gave a similar elemental profile to paraffin sections, except for the loss of diffusable electrolytes in the latter. After fixation, S was the most abundant element and was highest in Descemet's membrane. Corneas with granular, lattice, macular, and Fuchs endothelial dystrophies, band keratopathy, and spheroidal degeneration were also examined. Characteristic patterns of abnormal S and Ca distribution were found in each of the dystrophies. The relative proportions of Ca, P, and S gave diagnostic profiles for distinguishing band keratopathy and spheroidal degeneration.

  2. Energy dispersive X-ray spectroscopy analysis of Si sidewall surface etched by deep-reactive ion etching

    NASA Astrophysics Data System (ADS)

    Matsutani, Akihiro; Nishioka, Kunio; Sato, Mina

    2016-06-01

    We investigated the composition of a passivation film on a sidewall etched by deep-reactive ion etching (RIE) using SF6/O2 and C4F8 plasma, by energy-dispersive X-ray (EDX) spectroscopy. It was found that the compositions of carbon and fluorine in the passivation film on the etched sidewall depend on the width and depth of the etched trench. It is important to understand both the plasma behavior and the passivation film composition to carry out fabrication by deep-RIE. We consider that these results of the EDX analysis of an etched sidewall will be useful for understanding plasma behavior in order to optimize the process conditions of deep-RIE.

  3. Standardless Quantitative Electron-Excited X-ray Microanalysis by Energy-Dispersive Spectrometry: What Is Its Proper Role?

    PubMed

    Newbury

    1998-11-01

    : Electron beam X-ray microanalysis with semiconductor energy-dispersive spectrometry (EDS) performed with standards and calculated matrix corrections can yield quantitative results with a distribution such that 95% of analyses fall within +/-5% relative for major and minor constituents. Standardless methods substitute calculations for the standard intensities, based either on physical models of X-ray generation and propagation (first principles) or on mathematical fits to remotely measured standards (fitted standards). Error distributions have been measured for three different standardless analysis procedures with a suite of microanalysis standards including metal alloys, glasses, minerals, ceramics, and stoichiometric compounds. For the first-principles standardless procedure, the error distribution placed 95% of analyses within +/-50% relative, whereas for two commercial fitted standards procedures, the error distributions placed 95% of analyses within +/-25% relative. The implication of these error distributions for the accuracy of analytical results is considered, and recommendations for the use of standardless analysis are given. PMID:10087281

  4. Standardless Quantitative Electron-Excited X-ray Microanalysis by Energy-Dispersive Spectrometry: What Is Its Proper Role?

    NASA Astrophysics Data System (ADS)

    Newbury, Dale E.

    1998-11-01

    : Electron beam X-ray microanalysis with semiconductor energy-dispersive spectrometry (EDS) performed with standards and calculated matrix corrections can yield quantitative results with a distribution such that 95% of analyses fall within ±5% relative for major and minor constituents. Standardless methods substitute calculations for the standard intensities, based either on physical models of X-ray generation and propagation (first principles) or on mathematical fits to remotely measured standards (fitted standards). Error distributions have been measured for three different standardless analysis procedures with a suite of microanalysis standards including metal alloys, glasses, minerals, ceramics, and stoichiometric compounds. For the first-principles standardless procedure, the error distribution placed 95% of analyses within ±50% relative, whereas for two commercial fitted standards procedures, the error distributions placed 95% of analyses within ±25% relative. The implication of these error distributions for the accuracy of analytical results is considered, and recommendations for the use of standardless analysis are given.

  5. Sodium lauryl sulfate enhances nickel penetration through guinea-pig skin. Studies with energy dispersive X-ray microanalysis

    SciTech Connect

    Lindberg, M.; Sagstroem, S.R.; Roomans, G.M.; Forslind, B.

    1989-03-01

    The effect of sodium lauryl sulphate (SLS), a common ingredient of detergents, on the penetration of nickel through the stratum corneum in the guinea-pig skin model was studied with energy dispersive X-ray microanalysis (EDX) to evaluate the barrier-damaging properties of this common detergent. The EDX technique allows a simultaneous determination of physiologically important elements, e.g., Na, Mg, P, Cl, K, Ca and S in addition to Ni at each point of measurement in epidermal cell strata. Our results show that SLS reduces the barrier function to Ni-ion penetration of the stratum corneum. In addition we have shown that EDX allows analysis of the influence of different factors involved in nickel penetration through the skin by giving data on the physiological effects on the epidermal cells caused by the applied substances.

  6. Trace elemental analysis of school chalk using energy dispersive X-ray florescence spectroscopy (ED-XRF)

    SciTech Connect

    Maruthi, Y. A.; Das, N. Lakshmana; Ramprasad, S.; Ram, S. S.; Sudarshan, M.

    2015-08-28

    The present studies focus the quantitative analysis of elements in school chalk to ensure the safety of its use. The elements like Calcium (Ca), Aluminum (Al), Iron (Fe), Silicon (Si) and Chromium (Cr) were analyzed from settled chalk dust samples collected from five classrooms (CD-1) and also from another set of unused chalk samples collected from local market (CD-2) using Energy Dispersive X-Ray florescence(ED-XRF) spectroscopy. Presence of these elements in significant concentrations in school chalk confirmed that, it is an irritant and occupational hazard. It is suggested to use protective equipments like filtered mask for mouth, nose and chalk holders. This study also suggested using the advanced mode of techniques like Digital boards, marker boards and power point presentations to mitigate the occupational hazard for classroom chalk.

  7. Trace elemental analysis of school chalk using energy dispersive X-ray florescence spectroscopy (ED-XRF)

    NASA Astrophysics Data System (ADS)

    Maruthi, Y. A.; Das, N. Lakshmana; Ramprasad, S.; Ram, S. S.; Sudarshan, M.

    2015-08-01

    The present studies focus the quantitative analysis of elements in school chalk to ensure the safety of its use. The elements like Calcium (Ca), Aluminum (Al), Iron (Fe), Silicon (Si) and Chromium (Cr) were analyzed from settled chalk dust samples collected from five classrooms (CD-1) and also from another set of unused chalk samples collected from local market (CD-2) using Energy Dispersive X-Ray florescence(ED-XRF) spectroscopy. Presence of these elements in significant concentrations in school chalk confirmed that, it is an irritant and occupational hazard. It is suggested to use protective equipments like filtered mask for mouth, nose and chalk holders. This study also suggested using the advanced mode of techniques like Digital boards, marker boards and power point presentations to mitigate the occupational hazard for classroom chalk

  8. Dendrochemical patterns of calcium, zinc, and potassium related to internal factors detected by energy dispersive X-ray fluorescence (EDXRF)

    USGS Publications Warehouse

    Smith, Kevin T.; Balouet, Jean Christophe; Shortle, Walter C.; Chalot, Michel; Beaujard, François; Grudd, Håkan; Vroblesky, Don A.; Burkem, Joel G.

    2014-01-01

    Energy dispersive X-ray fluorescence (EDXRF) provides highly sensitive and precise spatial resolution of cation content in individual annual growth rings in trees. The sensitivity and precision have prompted successful applications to forensic dendrochemistry and the timing of environmental releases of contaminants. These applications have highlighted the need to distinguish dendrochemical effects of internal processes from environmental contamination. Calcium, potassium, and zinc are three marker cations that illustrate the influence of these processes. We found changes in cation chemistry in tree rings potentially due to biomineralization, development of cracks or checks, heartwood/sapwood differentiation, intra-annual processes, and compartmentalization of infection. Distinguishing internal from external processes that affect dendrochemistry will enhance the value of EDXRF for both physiological and forensic investigations.

  9. Non-destructive analysis of didymium and praseodymium molybdate crystals using energy dispersive X-ray fluorescence technique

    NASA Astrophysics Data System (ADS)

    Bhat, C. K.; Joseph, Daisy; Pandita, Sanjay; Kotru, P. N.

    2016-08-01

    Analysis of didymium (Di) and praseodymium molybdate crystals were carried out using energy dispersive X-ray fluorescence (EDXRF). The assigned empirical chemical formulae of the composites were tested and verified by the EDXRF technique by estimating experimental major elemental concentration ratios. On the Basis of these ratios, the established formulae for some of the composite materials have been verified and suggestions made for their refinement. Non-destructive technique used in this analysis enables to retain the original crystal samples and makes rapid simultaneous scan of major elements such as La, Pr, Ned and Mo as well as impurities such as Ce. Absence of samarium(Sm) in the spectrum during analysis of didymium molybdate crystals indicated an incomplete growth of mixed rare earth single crystal. These crystals (e.g.,Di) are shown to be of modified stoichiometry with Ce as trace impurity.

  10. Dendrochemical patterns of calcium, zinc, and potassium related to internal factors detected by energy dispersive X-ray fluorescence (EDXRF).

    PubMed

    Smith, Kevin T; Balouet, Jean Christophe; Shortle, Walter C; Chalot, Michel; Beaujard, François; Grudd, Håkan; Vroblesky, Don A; Burken, Joel G

    2014-01-01

    Energy dispersive X-ray fluorescence (EDXRF) provides highly sensitive and precise spatial resolution of cation content in individual annual growth rings in trees. The sensitivity and precision have prompted successful applications to forensic dendrochemistry and the timing of environmental releases of contaminants. These applications have highlighted the need to distinguish dendrochemical effects of internal processes from environmental contamination. Calcium, potassium, and zinc are three marker cations that illustrate the influence of these processes. We found changes in cation chemistry in tree rings potentially due to biomineralization, development of cracks or checks, heartwood/sapwood differentiation, intra-annual processes, and compartmentalization of infection. Distinguishing internal from external processes that affect dendrochemistry will enhance the value of EDXRF for both physiological and forensic investigations. PMID:24034830

  11. Measurement of Trace Constituents by Electron-Excited X-Ray Microanalysis with Energy-Dispersive Spectrometry.

    PubMed

    Newbury, Dale E; Ritchie, Nicholas W M

    2016-06-01

    Electron-excited X-ray microanalysis performed with scanning electron microscopy and energy-dispersive spectrometry (EDS) has been used to measure trace elemental constituents of complex multielement materials, where "trace" refers to constituents present at concentrations below 0.01 (mass fraction). High count spectra measured with silicon drift detector EDS were quantified using the standards/matrix correction protocol embedded in the NIST DTSA-II software engine. Robust quantitative analytical results for trace constituents were obtained from concentrations as low as 0.000500 (mass fraction), even in the presence of significant peak interferences from minor (concentration 0.01≤C≤0.1) and major (C>0.1) constituents. Limits of detection as low as 0.000200 were achieved in the absence of peak interference. PMID:27329308

  12. Time-resolved and energy-dispersed spin excitation in ferromagnets and clusters under influence of femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Hartenstein, T.; Lefkidis, G.; Hübner, W.; Zhang, G. P.; Bai, Y.

    2009-04-01

    When an ultrafast laser impinges a magnetic material, it excites charge and then, via spin-orbit-coupling, spin. This holds great promise for the future magnetic storage. However, the coupling of the two dynamics is far from clear, which hampers the experimental effort in femtosecond magnetism. Since not every excitation induces the same spin excitation, a clear understanding of the correlation between charge and spin is crucial. In this paper we investigate in a complete first-principles manner the energy dispersion of the spin-moment change in ferromagnetic Ni and the effect of the distance between the magnetic centers upon the spin localization and local-spin-flip times in metallic chains. Thus we establish the missing link between the spin-momentum change and the density-of-states change, and derive rules-of-thumb for localized spin manipulation.

  13. Modeling the Interaction between AFM Tips and Pinned Surface Nanobubbles.

    PubMed

    Guo, Zhenjiang; Liu, Yawei; Xiao, Qianxiang; Schönherr, Holger; Zhang, Xianren

    2016-01-26

    Although the morphology of surface nanobubbles has been studied widely with different AFM modes, AFM images may not reflect the real shapes of the nanobubbles due to AFM tip-nanobubble interactions. In addition, the interplay between surface nanobubble deformation and induced capillary force has not been well understood in this context. In our work we used constraint lattice density functional theory to investigate the interaction between AFM tips and pinned surface nanobubbles systematically, especially concentrating on the effects of tip hydrophilicity and shape. For a hydrophilic tip contacting a nanobubble, its hydrophilic nature facilitates its departure from the bubble surface, displaying a weak and intermediate-range attraction. However, when the tip squeezes the nanobubble during the approach process, the nanobubble shows an elastic effect that prevents the tip from penetrating the bubble, leading to a strong nanobubble deformation and repulsive interactions. On the contrary, a hydrophobic tip can easily pierce the vapor-liquid interface of the nanobubble during the approach process, leading to the disappearance of the repulsive force. In the retraction process, however, the adhesion between the tip and the nanobubble leads to a much stronger lengthening effect on nanobubble deformation and a strong long-range attractive force. The trends of force evolution from our simulations agree qualitatively well with recent experimental AFM observations. This favorable agreement demonstrates that our model catches the main intergradient of tip-nanobubble interactions for pinned surface nanobubbles and may therefore provide important insight into how to design minimally invasive AFM experiments. PMID:26751634

  14. Energy dispersive X-ray analysis of titanium dioxide nanoparticle distribution after intravenous and subcutaneous injection in mice.

    PubMed

    Patri, Anil; Umbreit, Thomas; Zheng, J; Nagashima, K; Goering, Peter; Francke-Carroll, Sabine; Gordon, Edward; Weaver, James; Miller, Terry; Sadrieh, Nakissa; McNeil, Scott; Stratmeyer, Mel

    2009-11-01

    In an effort to understand the disposition and toxicokinetics of nanoscale materials, we used EDS (energy dispersive X-ray spectroscopy) to detect and map the distribution of titanium dioxide (TiO2) in tissue sections from mice following either subcutaneous (s.c.) or intravenous (i.v.) injection. TiO2 nanoparticles were administered at a dose of 560 mg/kg (i.v.) or 5600 mg/kg (s.c.) to Balb/c female mice on two consecutive days. Tissues (liver, kidney, lung, heart, spleen, and brain) were examined by light microscopy, TEM (transmission electron microscopy), SEM (scanning electron microscopy), and EDS following necropsy one day after treatment. Particle agglomerates were detected by light microscopy in all tissues examined, EDS microanalysis was used to confirm that these tissues contained elemental titanium and oxygen. The TEM micrographs and EDS spectra of the aggregates were compared with in vitro measurements of TiO2 nanoparticle injection solution (i.e., in water). The nanoparticles were also characterized using dynamic light scattering in water, 10 mM NaCl, and phosphate buffered saline (PBS). In low ionic strength solvents (water and 10 mM NaCl), the TiO2 particles had average hydrodynamic diameters ranging from 114-122 nm. In PBS, however, the average diameter increases to 1-2 microm, likely due to aggregation analogous to that observed in tissue by TEM and EDS. This investigation demonstrates the suitability of energy dispersive X-ray spectroscopy (EDS) for detection of nanoparticle aggregates in tissues and shows that disposition of TiO2 nanoparticles depends on the route of administration (i.v. or s.c.). PMID:19626582

  15. Energy dispersive X-ray microanalysis, fluoride release, and antimicrobial properties of glass ionomer cements indicated for atraumatic restorative treatment

    PubMed Central

    Saxena, Sudhanshu; Tiwari, Sonia

    2016-01-01

    Aim: The aim of this study was to compare constituents of glass powder, fluoride release, and antimicrobial properties of new atraumatic restorative treatment material with zirconia fillers and conventional glass ionomer cement (GIC) type IX. Materials and Methods: Thisin vitro study comparing Zirconomer and Fuji IX was executed in three parts: (1) energy dispersive X-ray microanalysis of glass powders (2) analysis of fluoride release at 1st, 3rd, 7th, 15th, and 30th day, and (3) antimicrobial activity against Streptococcus mutans, Lactobacillus casei, and Candida albicans at 48 hours. Data was analyzed using unpaired t-test and two way analysis of variance followed by least significant difference post hoc test. A P value of < 0.05 was considered statistically significant. Results: Energy dispersive X-ray microanalysis revealed that, in both Zirconomer and Fuji IX glass powders, mean atomic percentage of oxygen was more than 50%. According to the weight percentage, zirconium in Zirconomer and silica in Fuji IX were the second main elements. Calcium, zinc, and zirconium were observed only in Zirconomer. At all the time intervals, statistically significant higher amount of fluoride release was observed with Zirconomer than Fuji IX. At 48 hours, mean ± standard deviation (SD) of zone of inhibition against Streptococcus mutans was 11.14 ± 0.77 mm and 8.51 ± 0.43 mm for Zirconomer and Fuji IX, respectively. Against Lactobacillus casei, it was 14.06 ± 0.71 mm for Zirconomer and 11.70 ± 0.39 mm for Fuji IX. No antifungal activity was observed against Candida albicans by Zirconomer and Fuji IX. Conclusion: Zirconomer had higher antibacterial activity against Streptococcus mutans and Lactobacillus casei, which may be attributed to its composition and higher fluoride release. However, it failed to show antifungal effect againstCandida albicans. PMID:27583226

  16. ENERGY-DISPERSIVE, X-RAY REFLECTIVITY DENSITY MEASUREMENTS OF POROUS SIO2 XEROGELS

    EPA Science Inventory

    X-ray reflectivity has been used to nondestructively measure the density of thin, porous, SiO2-based xerogels. Critical angle, defined by total external reflection, was measured for multiple x-ray energies to correct for sample misalignment error in me determination of the densit...

  17. Position sensitive and energy dispersive x-ray detector based on silicon strip detector technology

    NASA Astrophysics Data System (ADS)

    Wiącek, P.; Dąbrowski, W.; Fink, J.; Fiutowski, T.; Krane, H.-G.; Loyer, F.; Schwamberger, A.; Świentek, K.; Venanzi, C.

    2015-04-01

    A new position sensitive detector with a global energy resolution for the entire detector of about 380 eV FWHM for 8.04 keV line at ambient temperature is presented. The measured global energy resolution is defined by the energy spectra summed over all strips of the detector, and thus it includes electronic noise of the front-end electronics, charge sharing effects, matching of parameters across the channels and other system noise sources. The target energy resolution has been achieved by segmentation of the strips to reduce their capacitance and by careful optimization of the front-end electronics. The key design aspects and parameters of the detector are discussed briefly in the paper. Excellent noise and matching performance of the readout ASIC and negligible system noise allow us to operate the detector with a discrimination threshold as low as 1 keV and to measure fluorescence radiation lines of light elements, down to Al Kα of 1.49 keV, simultaneously with measurements of the diffraction patterns. The measurement results that demonstrate the spectrometric and count rate performance of the developed detector are presented and discussed in the paper.

  18. The effect of solar irradiation on the fading of nylon and polyester fabrics dyed with selected disperse dyestuffs on radiant energy basis.

    PubMed

    Imaizumi, A; Yoshizumi, K; Fujita, T

    2004-04-01

    Solar total, UVA and UVB irradiances were measured separately using three kinds of wavelength band detectors in Tokyo, Japan in November 1999. Characteristics of diurnal variations were examined: Total irradiance reached a maximum value of about 600 W m(-2) at around noon. The variation pattern of UVA irradiance was observed to be similar to the total irradiance. The energy level was about 4.65% of total irradiance. Diurnal variation of UVB was in the form of a steeper bell curve due to the absorption in the air mass. UVB energy to solar total irradiance was about 0.07%. Photodegradation characteristics of two disperse dyestuffs were investigated on the basis of solar radiant energy. A UVA fluorescent lamp was applied to examine the fading characteristics to find the wavelength dependency. As a result, nylon dyeings were less lightfast by a factor of about 6 and 13 for C I Disperse Blue 27 and C I Disperse Blue 165, respectively, compared with polyester on the radiant energy basis. Visible light, as well as UVA, radiation contribute to fading of C I Disperse Blue 165 whereas UVA mostly cause the fading of C I Disperse Blue 27. PMID:15214450

  19. Energy-dependent crossover from anisotropic to isotropic magnetic dispersion in lightly-doped La1.96Sr0.04CuO4

    SciTech Connect

    Matsuda, Masaaki; Granroth, Garrett E; Fujita, M.; Yamada, K.; Tranquada, John M.

    2013-01-01

    Inelastic neutron scattering experiments have been performed on lightly-doped La$_{1.96}$Sr$_{0.04}$CuO$_{4}$, which shows diagonal incommensurate spin correlations at low temperatures. We previously reported that this crystal, with a single orthorhombic domain, exhibits the ``hourglass" dispersion at low energies [Phys. Rev. Lett. 101, 197001 (2008)]. In this paper, we investigate in detail the energy evolution of the magnetic excitations up to 65 meV. It is found that the anisotropic excitations at low energies, dispersing only along the spin modulation direction, crossover to an isotropic, conical dispersion that resembles spin waves in the parent compound La$_2$CuO$_{4}$. The change from two-fold to full symmetry on crossing the waist of the hourglass reproduces behavior first identified in studies of underdoped YBa$_2$Cu$_3$O$_{6+x}$. We discuss the significance of these results.

  20. Elastic modulus of polypyrrole nanotubes: AFM measurement

    NASA Astrophysics Data System (ADS)

    Cuenot, Stéphane; Demoustier-Champagne, Sophie; Nysten, Bernard

    2001-03-01

    Polypyrrole nanotubes were electrochemically synthesized within the pores of nanoporous track-etched membranes. After dissolution of the template membrane, they were dispersed on PET membranes. Their tensile elastic modulus was measured by probing them in three points bending using an atomic force microscope. The elastic modulus was deduced from force-curve measurements. In this communication, the effect of the synthesis temperature and of the nanotube diameter will be presented. Especially it will be shown that the elastic modulus strongly increases when the nanotube outer diameter is reduced from 160 nm down to 35 nm. These results are in good agreement with previous results showing that the electrical conductivity of polypyrrole nanotubes increases by more than one order of magnitude when the diameter decreases in the same range. These behaviors could be explained by a larger ratio of well-oriented defect-free polymer chains in smaller tubes.

  1. A Transition Edge Sensor Microcalorimeter System for the Energy Dispersive Spectroscopy Performed on a Scanning-Transmission Electron Microscope

    NASA Astrophysics Data System (ADS)

    Maehata, K.; Hara, T.; Mitsuda, K.; Hidaka, M.; Tanaka, K.; Yamanaka, Y.

    2015-11-01

    We are conducting the development of a transition edge sensor (TES) microcalorimeter system for energy-dispersive X-ray spectroscopy (EDS), performed using a scanning-transmission electron microscope (STEM). The operating temperature of the TES microcalorimeter was maintained using a compact dry 3 He-4 He dilution refrigerator. This was pre-cooled by a remote helium cooling loop system and a Gifford-McMahon cooler. These conditions allowed for high-resolution STEM imaging to be achieved. A single-pixel TES microcalorimeter with a polycapillary optic was selected to demonstrate the analytical operation of the EDS system in the STEM. For a Ti-It-Pt sample, an X-ray energy resolution of 8.6 eV full-width at half maximum (FWHM) was obtained at Ir M_{α 1} , Pt M_{α 1} , and Ir M_{β } . Using an electron device sample, element distribution maps of Si, Ti, and W were obtained using a Si K_{α 1} X-ray energy resolution of 9.7 eV FWHM.

  2. A Transition Edge Sensor Microcalorimeter System for the Energy Dispersive Spectroscopy Performed on a Scanning-Transmission Electron Microscope

    NASA Astrophysics Data System (ADS)

    Maehata, K.; Hara, T.; Mitsuda, K.; Hidaka, M.; Tanaka, K.; Yamanaka, Y.

    2016-07-01

    We are conducting the development of a transition edge sensor (TES) microcalorimeter system for energy-dispersive X-ray spectroscopy (EDS), performed using a scanning-transmission electron microscope (STEM). The operating temperature of the TES microcalorimeter was maintained using a compact dry 3He-4He dilution refrigerator. This was pre-cooled by a remote helium cooling loop system and a Gifford-McMahon cooler. These conditions allowed for high-resolution STEM imaging to be achieved. A single-pixel TES microcalorimeter with a polycapillary optic was selected to demonstrate the analytical operation of the EDS system in the STEM. For a Ti-It-Pt sample, an X-ray energy resolution of 8.6 eV full-width at half maximum (FWHM) was obtained at Ir M_{α 1}, Pt M_{α 1}, and Ir M_{β }. Using an electron device sample, element distribution maps of Si, Ti, and W were obtained using a Si K_{α 1} X-ray energy resolution of 9.7 eV FWHM.

  3. Mass and energy dispersive recoil spectrometry of MOCVD grown Al xGa 1- xAs

    NASA Astrophysics Data System (ADS)

    Walker, S. R.; Johnston, P. N.; Bubb, I. F.; Stannard, W. B.; Cohen, D. D.; Dytlewski, N.; Hult, M.; Whitlow, H. J.; Zaring, C.; Östling, M.; Andersson, M.

    1994-12-01

    Mass and energy dispersive Recoil Spectrometry (RS) has been employed to study stoichiometric variations in Al xGa 1- xAs layers. Quantitative determination of x is an important problem in the production of device materials which is not easily solved with standard techniques. Rutherford Backscattering Spectrometry (RBS) has been used extensively in semiconductor research but overlap of signals in the backscattered ion spectrum is an important limitation in the analysis of materials such as Al xGa 1- xAs which contain elements of low and similar masses. Particle Induced X-ray Emission (PIXE) analysis has good elemental resolution for this class of materials but provides little depth resolution. RS enables the determination of separate energy spectra for individual or small groups of isotopes. This allows it to be used in many situations where RBS is inappropriate. It employs a heavy ion beam to cause constituent nuclei to recoil from the target, and a Time of Flight and Energy (ToF- E) detector to detect these recoiling nuclei. Appropriate mass selection of the ToF- E data allows the determination of depth distributions for each element.

  4. Modified dispersion relations lead to a finite zero point gravitational energy

    SciTech Connect

    Garattini, Remo; Mandanici, Gianluca

    2011-04-15

    We compute the zero point energy in a spherically symmetric background distorted at high energy as predicted by Gravity's Rainbow. In this context we setup a Sturm-Liouville problem with the cosmological constant considered as the associated eigenvalue. The eigenvalue equation is a reformulation of the Wheeler-DeWitt equation. With the help of a canonical decomposition, we find that the relevant contribution to one loop is given by the graviton quantum fluctuations around the given background. By means of a variational approach based on Gaussian trial functionals, we find that the ordinary divergences can here be handled by an appropriate choice of the rainbow's functions, in contrast to what happens in other conventional approaches. A final discussion on the connection of our result with the observed cosmological constant is also reported.

  5. Free energy landscapes and volumes of coexisting phases for a colloidal dispersion

    NASA Astrophysics Data System (ADS)

    Lang, Trinh Hoa; Wang, G. F.; Lai, S. K.

    2010-01-01

    Treating the repulsive part of a pairwise potential by the hard-sphere form and its attractive part by the effective depletion potential form, we calculate using this model potential the colloidal domains of phase separation. Differing from the usual recipe of applying the thermodynamic conditions of equal pressure and equal chemical potential where the branches of coexisting phases are the ultimate target, we employ the free energy density minimization approach [G. F. Wang and S. K. Lai, Phys. Rev. E 70, 051402 (2004)] to crosshatch the domains of equilibrium phases, which consist of the gas, liquid, and solid homogeneous phases as well as the coexistence of these phases. This numerical procedure is attractive since it yields naturally the colloidal volume of space occupied by each of the coexisting phases. In this work, we first examine the change in structures of the fluid and solid free energy density landscapes with the effective polymer concentration. We show by explicit illustration the link between the free energy density landscapes and the development of both the metastable and stable coexisting phases. Then, attention is paid to the spatial volumes predicted at the triple point. It is found here that the volumes of spaces of the three coexisting phases at the triple point vary one dimensionally, whereas for the two coexisting phases, they are uniquely determined.

  6. Energy hyperspace for stacking interaction in AU/AU dinucleotide step: Dispersion-corrected density functional theory study.

    PubMed

    Mukherjee, Sanchita; Kailasam, Senthilkumar; Bansal, Manju; Bhattacharyya, Dhananjay

    2014-01-01

    Double helical structures of DNA and RNA are mostly determined by base pair stacking interactions, which give them the base sequence-directed features, such as small roll values for the purine-pyrimidine steps. Earlier attempts to characterize stacking interactions were mostly restricted to calculations on fiber diffraction geometries or optimized structure using ab initio calculations lacking variation in geometry to comment on rather unusual large roll values observed in AU/AU base pair step in crystal structures of RNA double helices. We have generated stacking energy hyperspace by modeling geometries with variations along the important degrees of freedom, roll, and slide, which were chosen via statistical analysis as maximally sequence dependent. Corresponding energy contours were constructed by several quantum chemical methods including dispersion corrections. This analysis established the most suitable methods for stacked base pair systems despite the limitation imparted by number of atom in a base pair step to employ very high level of theory. All the methods predict negative roll value and near-zero slide to be most favorable for the purine-pyrimidine steps, in agreement with Calladine's steric clash based rule. Successive base pairs in RNA are always linked by sugar-phosphate backbone with C3'-endo sugars and this demands C1'-C1' distance of about 5.4 Å along the chains. Consideration of an energy penalty term for deviation of C1'-C1' distance from the mean value, to the recent DFT-D functionals, specifically ωB97X-D appears to predict reliable energy contour for AU/AU step. Such distance-based penalty improves energy contours for the other purine-pyrimidine sequences also. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 107-120, 2014. PMID:23722519

  7. Experimental and Theoretical Determination of Dissociation Energies of Dispersion-Dominated Aromatic Molecular Complexes.

    PubMed

    Frey, Jann A; Holzer, Christof; Klopper, Wim; Leutwyler, Samuel

    2016-05-11

    The dissociation energy (D0) of an isolated and cold molecular complex in the gas-phase is a fundamental measure of the strength of the intermolecular interactions between its constituent moieties. Accurate D0 values are important for the understanding of intermolecular bonding, for benchmarking high-level theoretical calculations, and for the parametrization of force-field models used in fields ranging from crystallography to biochemistry. We review experimental and theoretical methods for determining gas-phase D0 values of M·S complexes, where M is a (hetero)aromatic molecule and S is a closed-shell "solvent" atom or molecule. The experimental methods discussed involve M-centered (S0 → S1) electronic excitation, which is often followed by ionization to the M(+)·S ion. The D0 is measured by depositing a defined amount of vibrational energy in the neutral ground state, giving M(‡)·S, the neutral S1 excited state, giving M*·S, or the M(+)·S ion ground state. The experimental methods and their relative advantages and disadvantages are discussed. Based on the electronic structure of M and S, we classify the M·S complexes as Type I, II, or III, and discuss characteristic properties of their respective potential energy surfaces that affect or hinder the determination of D0. Current theoretical approaches are reviewed, which comprise methods based on a Kohn-Sham reference determinant as well as wave function-based methods based on coupled-cluster theory. PMID:27055105

  8. Characterizing the Use of Ultrasonic Energy in Promoting Uniform Microstructural Dispersions in Immiscible Mixtures

    NASA Technical Reports Server (NTRS)

    Grugel, R. N.; Fedoseyev, A. I.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Gravity driven separation and preferential wetting precludes uniform microstructural distributions during solidification processing of immiscible, liquid-liquid mixtures. Historically, it is, however, established that liquid/liquid suspensions can be established and maintained by utilizing ultrasound. Following a brief introduction the results of experiments on immiscible mixtures subjected to ultrasonic energy during solidification processing will be compared and evaluated in view of a recently developed mathematical model. The presentation continues by discussion of scaling the model to commercial viability and concludes with the implications of such processing in a microgravity environment.

  9. Characterizing the Use of Ultrasonic Energy in Promoting Uniform Microstructural Dispersions in Immiscible Mixtures

    NASA Technical Reports Server (NTRS)

    Grugel, R. N.; Fedoseyev, A. I.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Gravity driven separation and preferential wetting precludes uniform microstructural distributions during solidification processing of immiscible, liquid-liquid mixtures. Historically, it is, however, established that liquid/liquid suspensions can be established and maintained by utilizing ultrasound. Following a brief introduction the results of experiments on immiscible mixtures subjected to ultrasonic energy during solidification processing will be compared and evaluated in view of a recently developed mathematical model. The presentation continues by discussion of scaling the model to commercial viability and concludes with the implications of such processing in a microgravity environment.

  10. High-Energy Magnon Dispersion and Multimagnon Continuum in La2CuO4

    NASA Astrophysics Data System (ADS)

    Headings, Neil; Hayden, Stephen; Coldea, Radu; Perring, Toby

    2009-03-01

    We report high-energy neutron scattering measurements of the magnetic excitations in the S=1/2 antiferromagnet La2CuO4. Measurements were made using the MAPS time-of-flight spectrometer at the ISIS spallation source. Previous measurements found evidence for higher order (cyclic) exchange couplings. We find evidence for significant corrections to linear spin-wave (SW) theory including these higher-order exchange constants. In particular, the intensity of the spin wave pole deviates strongly from that predicted by SW theory near the Q=(1/2,0) position. We also find evidence for a multi-magnon continuum.

  11. Modeling complex dispersed energy and clean water systems for the United States/Mexico border

    NASA Astrophysics Data System (ADS)

    Herrera, Hugo Francisco Lopez

    As world population grows, and its technology evolves, the demand for electricity inexorably increases. Until now most of this electricity has been produced via fossil fuels, non-renewable energy resources that are irreversibly deteriorating our environment. On the economical aspect it does not get any better. Let's not forget market rules, the higher the demand and lower the offer, the higher the price we will have to pay. Oil is an excellent example. Some countries try to solve this situation with Pharaohnic projects, i.e. investing absurd amounts of money in 'green electricity' building monstrous dams to power equally monstrous hydroelectric power plants. The only problem with this is that it is not green at all---it does have an enormous environmental impact---it is extremely complicated and expensive to implement. It is important to point out, that this research project does not try to solve world's thirst for electricity. It is rather aimed to help solve this problematic at a much lower scale---it should be considered as an extremely small step in the right direction. It focuses on satisfying the local electricity needs with renewable, non-contaminating and locally available resources. More concisely, this project focuses on the attainment and use of hydrogen as an alternate energy source in El Paso/Juarez region. Clean technology is nowadays available to produce hydrogen and oxygen, i.e. the photoelectrolysis process. Photovoltaic cells coupled with electrolytic devices can be used to produce hydrogen and oxygen in a sustainable manner. In this research, simulation models of hybrid systems were designed and developed. They were capable to compare, predict and evaluate different options for hydrogen generation. On the other hand, with the produced hydrogen from the electrolysis process it was possible to generate electricity through fuel cells. The main objectives of the proposed research were to define how to use the resources for the attainment of hydrogen

  12. [Influence of the Experiment Energy Dispersive X-Ray Fluorescence Measurement of Uranium by Different Excitation Source].

    PubMed

    Xiong, Chao; Ge, Liang-quan; Liu, Duan; Zhang, Qing-xian; Gu, Yi; Luo, Yao-yao; Zhao, Jian-kun

    2016-03-01

    Aiming at the self-excitation effect on the interference of measurements which exist in the process of Energy dispersive X-ray fluorescence method for uranium measurement. To solve the problem of radioactive isotopes only used as excitation source in determination of uranium. Utilizing the micro X-ray tube to test Self-excitation effect to get a comparison of the results obtained by three different uranium ore samples--109 Cd, 241 Am and Mirco X-ray tube. The results showed that self-excitation effect produced the area measure of characteristic X-ray peak is less than 1% of active condition, also the interference of measurements can be negligible. Photoelectric effect cross-section excited by 109 Cd is higher, corresponding fluorescence yield is higher than excited by 241 Am as well due to characteristics X-ray energy of 109 Cd, 22.11 & 24.95 KeV adjacent to absorption edge energy of L(α), 21.75 KeV, based on the above, excitation efficiency by 109 Cd is higher than 241 Am; The fact that measurement error excited by 241 Am is significantly greater than by 109 Cd is mainly due to peak region overlap between L energy peaks of uranium and Scattering peak of 241 Am, 26.35 keV, These factors above caused the background of measured Spectrum higher; The error between the uranium content in ore samples which the X-ray tube as the excitation source and the chemical analysis results is within 10%. Conclusion: This paper come to the conclusion that the technical quality of uranium measurement used X-ray tube as excitation source is superior to that in radioactive source excitation mode. PMID:27400534

  13. Energy-dispersive X-ray diffraction using an annular beam.

    PubMed

    Dicken, A J; Evans, J P O; Rogers, K D; Greenwood, C; Godber, S X; Prokopiou, D; Stone, N; Clement, J G; Lyburn, I; Martin, R M; Zioupos, P

    2015-05-18

    We demonstrate material phase identification by measuring polychromatic diffraction spots from samples at least 20 mm in diameter and up to 10 mm thick with an energy resolving point detector. Within our method an annular X-ray beam in the form of a conical shell is incident with its symmetry axis normal to an extended polycrystalline sample. The detector is configured to receive diffracted flux transmitted through the sample and is positioned on the symmetry axis of the annular beam. We present the experiment data from a range of different materials and demonstrate the acquisition of useful data with sub-second collection times of 0.5 s; equating to 0.15 mAs. Our technique should be highly relevant in fields that demand rapid analytical methods such as medicine, security screening and non-destructive testing. PMID:26074592

  14. In situ energy-dispersive x-ray diffraction system for time-resolved thin-film growth studies

    NASA Astrophysics Data System (ADS)

    Ellmer, K.; Mientus, R.; Weiß, V.; Rossner, H.

    2003-03-01

    Energy-dispersive x-ray diffraction (EDXRD) with synchrotron light can be used for in situ-structural analysis during polycrystalline thin-film growth, due to its fast data collection and the fixed diffraction angle. An in situ deposition and analysis set-up for the investigation of nucleation and growth of thin films during magnetron sputtering was constructed and installed at the synchrotron radiation source Hamburger Synchrotronstrahlungs Labor (Hamburg). The polychromatic synchrotron beam passes the sputtering chamber through Kapton windows and hits the substrate with the growing film. The diffracted beam, observed under a fixed diffraction angle of between 1° and 10° was energy-analysed by a high-purity germanium detector. The measurement time for a single XRD spectrum can be as short as 10 s for a beam line at a bending magnet, which allows a time-resolved monitoring of film growth. The performance of the in situ EDXRD set-up is demonstrated for the growth of zinc oxide and tin-doped indium oxide films prepared by reactive magnetron sputtering from ceramic and metallic targets. From the position and the width of the diffraction lines the internal mechanical strain and the grain size of the growing films can be derived. The prospects for thin-film growth investigations using such an instrument are assessed.

  15. AFM investigation of Martian soil simulants on micromachined Si substrates.

    PubMed

    Vijendran, S; Sykulska, H; Pike, W T

    2007-09-01

    The micro and nanostructures of Martian soil simulants with particles in the micrometre-size range have been studied using a combination of optical and atomic force microscopy (AFM) in preparation for the 2007 NASA Phoenix Mars Lander mission. The operation of an atomic force microscope on samples of micrometre-sized soil particles is a poorly investigated area where the unwanted interaction between the scanning tip and loose particles results in poor image quality and tip contamination by the sample. In order to mitigate these effects, etched silicon substrates with a variety of features have been used to facilitate the sorting and gripping of particles. From these experiments, a number of patterns were identified that were particularly good at isolating and immobilizing particles for AFM imaging. This data was used to guide the design of micromachined substrates for the Phoenix AFM. Both individual particles as well as aggregates were successfully imaged, and information on sizes, shapes and surface morphologies were obtained. This study highlights both the strengths and weaknesses of AFM for the potential in situ investigation of Martian soil and dust. Also presented are more general findings of the limiting operational constraints that exist when attempting the AFM of high aspect ratio particles with current technology. The performance of the final designs of the substrates incorporated on Phoenix will be described in a later paper. PMID:17760618

  16. Molecular dispersion energy parameters for alkali and halide ions in aqueous solution.

    PubMed

    Reiser, S; Deublein, S; Vrabec, J; Hasse, H

    2014-01-28

    Thermodynamic properties of aqueous solutions containing alkali and halide ions are determined by molecular simulation. The following ions are studied: Li(+), Na(+), K(+), Rb(+), Cs(+), F(-), Cl(-), Br(-), and I(-). The employed ion force fields consist of one Lennard-Jones (LJ) site and one concentric point charge with a magnitude of ±1 e. The SPC/E model is used for water. The LJ size parameter of the ion models is taken from Deublein et al. [J. Chem. Phys. 136, 084501 (2012)], while the LJ energy parameter is determined in the present study based on experimental self-diffusion coefficient data of the alkali cations and the halide anions in aqueous solutions as well as the position of the first maximum of the radial distribution function of water around the ions. On the basis of these force field parameters, the electric conductivity, the hydration dynamics of water molecules around the ions, and the enthalpy of hydration is predicted. Considering a wide range of salinity, this study is conducted at temperatures of 293.15 and 298.15 K and a pressure of 1 bar. PMID:25669552

  17. Molecular dispersion energy parameters for alkali and halide ions in aqueous solution

    SciTech Connect

    Reiser, S.; Deublein, S.; Hasse, H.; Vrabec, J.

    2014-01-28

    Thermodynamic properties of aqueous solutions containing alkali and halide ions are determined by molecular simulation. The following ions are studied: Li{sup +}, Na{sup +}, K{sup +}, Rb{sup +}, Cs{sup +}, F{sup −}, Cl{sup −}, Br{sup −}, and I{sup −}. The employed ion force fields consist of one Lennard-Jones (LJ) site and one concentric point charge with a magnitude of ±1 e. The SPC/E model is used for water. The LJ size parameter of the ion models is taken from Deublein et al. [J. Chem. Phys. 136, 084501 (2012)], while the LJ energy parameter is determined in the present study based on experimental self-diffusion coefficient data of the alkali cations and the halide anions in aqueous solutions as well as the position of the first maximum of the radial distribution function of water around the ions. On the basis of these force field parameters, the electric conductivity, the hydration dynamics of water molecules around the ions, and the enthalpy of hydration is predicted. Considering a wide range of salinity, this study is conducted at temperatures of 293.15 and 298.15 K and a pressure of 1 bar.

  18. Energy dispersive CdTe and CdZnTe detectors for spectral clinical CT and NDT applications

    PubMed Central

    Barber, W. C.; Wessel, J. C.; Nygard, E.; Iwanczyk, J. S.

    2014-01-01

    We are developing room temperature compound semiconductor detectors for applications in energy-resolved high-flux single x-ray photon-counting spectral computed tomography (CT), including functional imaging with nanoparticle contrast agents for medical applications and non destructive testing (NDT) for security applications. Energy-resolved photon-counting can provide reduced patient dose through optimal energy weighting for a particular imaging task in CT, functional contrast enhancement through spectroscopic imaging of metal nanoparticles in CT, and compositional analysis through multiple basis function material decomposition in CT and NDT. These applications produce high input count rates from an x-ray generator delivered to the detector. Therefore, in order to achieve energy-resolved single photon counting in these applications, a high output count rate (OCR) for an energy-dispersive detector must be achieved at the required spatial resolution and across the required dynamic range for the application. The required performance in terms of the OCR, spatial resolution, and dynamic range must be obtained with sufficient field of view (FOV) for the application thus requiring the tiling of pixel arrays and scanning techniques. Room temperature cadmium telluride (CdTe) and cadmium zinc telluride (CdZnTe) compound semiconductors, operating as direct conversion x-ray sensors, can provide the required speed when connected to application specific integrated circuits (ASICs) operating at fast peaking times with multiple fixed thresholds per pixel provided the sensors are designed for rapid signal formation across the x-ray energy ranges of the application at the required energy and spatial resolutions, and at a sufficiently high detective quantum efficiency (DQE). We have developed high-flux energy-resolved photon-counting x-ray imaging array sensors using pixellated CdTe and CdZnTe semiconductors optimized for clinical CT and security NDT. We have also fabricated high

  19. Energy dispersive CdTe and CdZnTe detectors for spectral clinical CT and NDT applications

    NASA Astrophysics Data System (ADS)

    Barber, W. C.; Wessel, J. C.; Nygard, E.; Iwanczyk, J. S.

    2015-06-01

    We are developing room temperature compound semiconductor detectors for applications in energy-resolved high-flux single x-ray photon-counting spectral computed tomography (CT), including functional imaging with nanoparticle contrast agents for medical applications and non-destructive testing (NDT) for security applications. Energy-resolved photon-counting can provide reduced patient dose through optimal energy weighting for a particular imaging task in CT, functional contrast enhancement through spectroscopic imaging of metal nanoparticles in CT, and compositional analysis through multiple basis function material decomposition in CT and NDT. These applications produce high input count rates from an x-ray generator delivered to the detector. Therefore, in order to achieve energy-resolved single photon counting in these applications, a high output count rate (OCR) for an energy-dispersive detector must be achieved at the required spatial resolution and across the required dynamic range for the application. The required performance in terms of the OCR, spatial resolution, and dynamic range must be obtained with sufficient field of view (FOV) for the application thus requiring the tiling of pixel arrays and scanning techniques. Room temperature cadmium telluride (CdTe) and cadmium zinc telluride (CdZnTe) compound semiconductors, operating as direct conversion x-ray sensors, can provide the required speed when connected to application specific integrated circuits (ASICs) operating at fast peaking times with multiple fixed thresholds per pixel provided the sensors are designed for rapid signal formation across the x-ray energy ranges of the application at the required energy and spatial resolutions, and at a sufficiently high detective quantum efficiency (DQE). We have developed high-flux energy-resolved photon-counting x-ray imaging array sensors using pixellated CdTe and CdZnTe semiconductors optimized for clinical CT and security NDT. We have also fabricated high

  20. DIBENZYLAMMONIUM AND SODIUM DIBENZYLDITHIOCARBAMATES AS PRECIPITANTS FOR PRECONCENTRATION OF TRACE ELEMENTS IN WATER FOR ANALYSIS BY ENERGY DISPERSIVE X-RAY FLUORESCENCE

    EPA Science Inventory

    Precipitation with combined dibenzylammonium dibenzyldithiocarbamate and sodium dibenzyldithiocarbamate at pH 5.0 can be used to separate 22 trace elements from water. Membrane filtration on the precipitate yielded a thin sample, suitable for analysis by energy dispersive X-ray f...

  1. Charging C60 islands with the AFM tip.

    PubMed

    Hoff, Brice; Henry, Claude R; Barth, Clemens

    2016-01-01

    We show that electrons can be transferred on demand from an AFM tip into single bulk-like C60 islands, which are supported on the insulating NaCl(001) surface. We exemplify this by controlled charge-manipulation experiments conducted in ultrahigh vacuum by noncontact AFM (nc-AFM), electrostatic force microscopy (EFM) and Kelvin probe force microscopy (KPFM). KPFM shows a homogeneous contrast at the islands, which is a signature for an equal distribution of the electrons in the T1u band. The charge dissipates during half a day due to an interaction of the charged C60 islands with defects in the near surface region of NaCl. Our results open the perspective in photo-voltaics to study charge attachment, stability and charge exchange with the environment of any C60 bulk-like system. PMID:26617348

  2. Liquid contact resonance AFM: analytical models, experiments, and limitations

    NASA Astrophysics Data System (ADS)

    Parlak, Zehra; Tu, Qing; Zauscher, Stefan

    2014-11-01

    Contact resonance AFM (CR-AFM) is a scanning probe microscopy technique that utilizes the contact resonances of the AFM cantilever for concurrent imaging of topography and surface stiffness. The technique has not been used in liquid until recently due to analytical and experimental difficulties, associated with viscous damping of cantilever vibrations and fluid loading effects. To address these difficulties, (i) an analytical approach for contact resonances in liquid is developed, and (ii) direct excitation of the contact resonances is demonstrated by actuating the cantilever directly in a magnetic field. By implementing the analytical approach and the direct actuation through magnetic particles, quantitative stiffness imaging on surfaces with a wide range of stiffness can be achieved in liquid with soft cantilevers and low contact forces.

  3. Imaging resolution of AFM with probes modified with FIB.

    PubMed

    Skibinski, J; Rebis, J; Wejrzanowski, T; Rozniatowski, K; Pressard, K; Kurzydlowski, K J

    2014-11-01

    This study concerns imaging of the structure of materials using AFM tapping (TM) and phase imaging (PI) mode, using probes modified with focused ion beam (FIB). Three kinds of modifications were applied - thinning of the cantilever, sharpening of the tip and combination of these two modifications. Probes shaped in that way were used for AFM investigations with Bruker AFM Nanoscope 8. As a testing material, titanium roughness standard supplied by Bruker was used. The results show that performed modifications influence the oscillation of the probes. In particular thinning of the cantilever enables one to acquire higher self-resonant frequencies, which can be advantageous for improving the quality of imaging in PI mode. It was found that sharpening the tip improves imaging resolution in tapping mode, which is consistent with existing knowledge, but lowered the quality of high frequency topography images. In this paper the Finite Element Method (FEM) was used to explain the results obtained experimentally. PMID:25080273

  4. AFM of biological complexes: what can we learn?

    PubMed Central

    Gaczynska, Maria; Osmulski, Pawel A.

    2009-01-01

    The term “biological complexes” broadly encompasses particles as diverse as multisubunit enzymes, viral capsids, transport cages, molecular nets, ribosomes, nucleosomes, biological membrane components and amyloids. The complexes represent a broad range of stability and composition. Atomic force microscopy offers a wealth of structural and functional data about such assemblies. For this review, we choose to comment on the significance of AFM to study various aspects of biology of selected nonmembrane protein assemblies. Such particles are large enough to reveal many structural details under the AFM probe. Importantly, the specific advantages of the method allow for gathering dynamic information about their formation, stability or allosteric structural changes critical for their function. Some of them have already found their way to nanomedical or nanotechnological applications. Here we present examples of studies where the AFM provided pioneering information about the biology of complexes, and examples of studies where the simplicity of the method is used toward the development of potential diagnostic applications. PMID:19802337

  5. Improvement in metrology on new 3D-AFM platform

    NASA Astrophysics Data System (ADS)

    Schmitz, Ingo; Osborn, Marc; Hand, Sean; Chen, Qi

    2008-10-01

    According to the 2007 edition of the ITRS roadmap, the requirement for CD uniformity of isolated lines on a binary or attenuated phase shift mask is 2.1nm (3σ) in 2008 and requires improvement to1.3 nm (3σ) in 2010. In order to meet the increasing demand for CD uniformity on photo masks, improved CD metrology is required. A next generation AFM, InSightTM 3DAFM, has been developed to meet these increased requirements for advanced photo mask metrology. The new system achieves 2X improvement in CD and depth precision on advanced photo masks features over the previous generation 3D-AFM. This paper provides measurement data including depth, CD, and sidewall angle metrology. In addition the unique capabilities of damage-free defect inspection and Nanoimprint characterization by 3D AFM are presented.

  6. Mounting of Escherichia coli spheroplasts for AFM imaging.

    SciTech Connect

    Sullivan, Claretta J; Morrell-Falvey, Jennifer L; Allison, David P; Doktycz, Mitchel John

    2005-11-01

    The cytoplasmic membrane of Escherichia coli (E. coli) is the location of numerous, chemically specific transporters and recognition elements. Investigation of this membrane in vivo by atomic force microscopy (AFM) requires removal of the cell wall and stable immobilization of the spheroplast. AFM images demonstrate that spheroplasts can be secured with warm gelatin applied to the mica substrate just before the addition of a spheroplast suspension. The resulting preparation can be repeatedly imaged by AFM over the course of several hours. Confocal fluorescence imaging confirms the association of the spheroplasts with the gelatin layer. Gelatin molecules are known to reorder into a network after heating. Entrapment within this gelatin network is believed to be responsible for the immobilization of spheroplasts on mica.

  7. Surface Morphological Studies on Nerve Cells by AFM

    NASA Astrophysics Data System (ADS)

    Durkaya, Goksel; Zhong, Lei; Rehder, Vincent; Dietz, Nikolaus

    2009-03-01

    Surface morphological properties of fixed and living nerve cells removed from the buccal ganglion of Helisoma trivolvis have been studied by using Atomic Force Microscopy (AFM). Identified, individual neurons were removed from the buccal ganglion of Helisoma trivolvis and plated into poly-L-lysine coated glass cover-slips. The growth of the nerve cells was stopped and fixed with 0.1% Glutaraldehyde and 4% Formaldehyde solution after extension of growth cones at the tip of the axons. Topography and softness of growth cone filopodia and overlying lamellopodium (veil) were probed by AFM. Information obtained from AFM's amplitude and phase channels have been used for determination of softness of the region probed. The results of structural studies on the cells are linked to their mechanical properties and internal molecular density distribution.

  8. Charging C60 islands with the AFM tip

    NASA Astrophysics Data System (ADS)

    Hoff, Brice; Henry, Claude R.; Barth, Clemens

    2015-12-01

    We show that electrons can be transferred on demand from an AFM tip into single bulk-like C60 islands, which are supported on the insulating NaCl(001) surface. We exemplify this by controlled charge-manipulation experiments conducted in ultrahigh vacuum by noncontact AFM (nc-AFM), electrostatic force microscopy (EFM) and Kelvin probe force microscopy (KPFM). KPFM shows a homogeneous contrast at the islands, which is a signature for an equal distribution of the electrons in the T1u band. The charge dissipates during half a day due to an interaction of the charged C60 islands with defects in the near surface region of NaCl. Our results open the perspective in photo-voltaics to study charge attachment, stability and charge exchange with the environment of any C60 bulk-like system.We show that electrons can be transferred on demand from an AFM tip into single bulk-like C60 islands, which are supported on the insulating NaCl(001) surface. We exemplify this by controlled charge-manipulation experiments conducted in ultrahigh vacuum by noncontact AFM (nc-AFM), electrostatic force microscopy (EFM) and Kelvin probe force microscopy (KPFM). KPFM shows a homogeneous contrast at the islands, which is a signature for an equal distribution of the electrons in the T1u band. The charge dissipates during half a day due to an interaction of the charged C60 islands with defects in the near surface region of NaCl. Our results open the perspective in photo-voltaics to study charge attachment, stability and charge exchange with the environment of any C60 bulk-like system. Electronic supplementary information (ESI) available. See DOI: 10.1039/C5NR04541J

  9. In-situ and operando characterization of batteries with energy-dispersive synchrotron x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Paxton, William Arthur

    Batteries play a pivotal role in the low-carbon society that is required to thwart the effects of climate change. Alternative low-carbon energy sources, such as wind and solar, are often intermittent and unreliable. Batteries are able capture their energy and deliver it later when it is needed. The implementation of battery systems in grid-level and transportation sectors is essential for efficient use of alternative energy sources. Scientists and engineers need better tools to analyze and measure the performance characteristics of batteries. One of the main hindrances in the progress of battery research is that the constituent electrode materials are inaccessible once an electrochemical cell is constructed. This leaves the researcher with a limited number of available feedback mechanisms to assess the cell's performance, e.g., current, voltage, and impedance. These data are limited in their ability to reveal the more-localized smaller-scale structural mechanisms on which the batteries' performance is so dependent. Energy-dispersive x-ray diffraction (EDXRD) is one of the few techniques that can internally probe a sealed battery. By analyzing the structural behavior of battery electrodes, one is able to gain insight to the physical properties on which the battery's performance is dependent. In this dissertation, EDXRD with ultrahigh energy synchrotron radiation is used to probe the electrodes of manufactured primary and secondary lithium batteries under in-situ and operando conditions. The technique is then applied to solve specific challenges facing lithium ion batteries. Diffraction spectra are collected from within a battery at 40 micrometer resolution. Peak-fitting is used to quantitatively estimate the abundance of lithiated and non-lithiated phases. Through mapping the distribution of phases within, structural changes are linked to the battery's galvanic response. A three-dimensional spatial analysis of lithium iron phosphate batteries suggests that evolution

  10. Ocular dispersion

    NASA Astrophysics Data System (ADS)

    Hammer, Daniel X.; Noojin, Gary D.; Thomas, Robert J.; Stolarski, David J.; Rockwell, Benjamin A.; Welch, Ashley J.

    1999-06-01

    Spectrally resolved white-light interferometry (SRWLI) was used to measure the wavelength dependence of refractive index (i.e., dispersion) for various ocular components. The accuracy of the technique was assessed by measurement of fused silica and water, the refractive indices of which have been measured at several different wavelengths. The dispersion of bovine and rabbit aqueous and vitreous humor was measured from 400 to 1100 nm. Also, the dispersion was measured from 400 to 700 nm for aqueous and vitreous humor extracted from goat and rhesus monkey eyes. For the humors, the dispersion did not deviate significantly from water. In an additional experiment, the dispersion of aqueous and vitreous humor that had aged up to a month was compared to freshly harvested material. No difference was found between the fresh and aged media. An unsuccessful attempt was also made to use the technique for dispersion measurement of bovine cornea and lens. Future refinement may allow measurement of the dispersion of cornea and lens across the entire visible and near-infrared wavelength band. The principles of white- light interferometry including image analysis, measurement accuracy, and limitations of the technique, are discussed. In addition, alternate techniques and previous measurements of ocular dispersion are reviewed.

  11. BOREAS AFM-04 Twin Otter Aircraft Flux Data

    NASA Technical Reports Server (NTRS)

    MacPherson, J. Ian; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Desjardins, Raymond L.; Smith, David E. (Technical Monitor)

    2000-01-01

    The BOREAS AFM-5 team collected and processed data from the numerous radiosonde flights during the project. The goals of the AFM-05 team were to provide large-scale definition of the atmosphere by supplementing the existing AES aerological network, both temporally and spatially. This data set includes basic upper-air parameters collected from the network of upper-air stations during the 1993, 1994, and 1996 field campaigns over the entire study region. The data are contained in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884) or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  12. GPIM AF-M315E Propulsion System

    NASA Technical Reports Server (NTRS)

    Spores, Ronald A.; Masse, Robert; Kimbrel, Scott; McLean, Chris

    2014-01-01

    The NASA Space Technology mission Directorate's (STMD) Green Propellant Infusion Mission (GPIM) Technology Demonstration Mission (TDM) will demonstrate an operational AF-M315E green propellant propulsion system. Aerojet-Rocketdyne is responsible for the development of the propulsion system payload. This paper statuses the propulsion system module development, including thruster design and system design; Initial test results for the 1N engineering model thruster are presented. The culmination of this program will be high-performance, green AF-M315E propulsion system technology at TRL 7+, with components demonstrated to TRL 9, ready for direct infusion to a wide range of applications for the space user community.

  13. Bulk substrate porosity verification by applying Monte Carlo modeling and Castaing's formula using energy-dispersive x-rays

    NASA Astrophysics Data System (ADS)

    Yung, Lai Chin; Fei, Cheong Choke; Mandeep, Jit Singh; Amin, Nowshad; Lai, Khin Wee

    2015-11-01

    The leadframe fabrication process normally involves additional thin-metal layer plating on the bulk copper substrate surface for wire bonding purposes. Silver, tin, and copper flakes are commonly adopted as plating materials. It is critical to assess the density of the plated metal layer, and in particular to look for porosity or voids underneath the layer, which may reduce the reliability during high-temperature stress. A fast, reliable inspection technique is needed to assess the porosity or void weakness. To this end, the characteristics of x-rays generated from bulk samples were examined using an energy-dispersive x-ray (EDX) detector to examine the porosity percentage. Monte Carlo modeling was integrated with Castaing's formula to verify the integrity of the experimental data. Samples with different porosity percentages were considered to test the correlation between the intensity of the collected x-ray signal and the material density. To further verify the integrity of the model, conventional cross-sectional samples were also taken to observe the porosity percentage using Image J software measurement. A breakthrough in bulk substrate assessment was achieved by applying EDX for the first time to nonelemental analysis. The experimental data showed that the EDX features were not only useful for elemental analysis, but also applicable to thin-film metal layer thickness measurement and bulk material density determination. A detailed experiment was conducted using EDX to assess the plating metal layer and bulk material porosity.

  14. Distribution of toxic elements in teeth treated with amalgam using μ-energy dispersive X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Guerra, M.; Ferreira, C.; Carvalho, M. L.; Santos, J. P.; Pessanha, S.

    2016-08-01

    Over the years, the presence of mercury in amalgam fillings has raised some safety concerns. Amalgam is one of the most commonly used tooth fillings and contains approximately 50% of elemental mercury and 50% of other metals, mostly silver, tin and copper. Amalgam can release small amounts of mercury vapor over time, and patients can absorb these vapors by inhaling or ingesting them. In this study, 10 human teeth treated with dental amalgam were analyzed using energy dispersive X-ray fluorescence (EDXRF) to study the diffusion of its constituents, Ag, Cu, Sn and Hg. The used EDXRF setup, makes use of a polycapillary lens to focus radiation up to 25 μm allowing the mapping of the elemental distribution in the samples. Quantification was performed using the inbuilt software based on the Fundamental Parameters method for bulk samples, considering a hydroxyapatite matrix. The teeth were longitudinally cut and each slice was scanned from the surface enamel to the inner region (dentin and pulp cavity). Mercury concentration profiles show strong levels of this element close to the amalgam region, decreasing significantly in the dentin, and increasing again up to 40,000 μg·g- 1 in the cavity were the pulp used to exist when the tooth was vital.

  15. Atomic-scale Chemical Imaging and Quantification of Metallic Alloy Structures by Energy-Dispersive X-ray Spectroscopy

    PubMed Central

    Lu, Ping; Zhou, Lin; Kramer, M. J.; Smith, David J.

    2014-01-01

    Determination of atomic-scale crystal structure for nanostructured intermetallic alloys, such as magnetic alloys containing Al, Ni, Co (alnico) and Fe, is crucial for understanding physical properties such as magnetism, but technically challenging due to the small interatomic distances and the similar atomic numbers. By applying energy-dispersive X-ray spectroscopy (EDS) mapping to the study of two intermetallic phases of an alnico alloy resulting from spinodal decomposition, we have determined atomic-scale chemical composition at individual lattice sites for the two phases: one is the B2 phase with Fe0.76Co0.24 -Fe0.40Co0.60 ordering and the other is the L21 phase with Ni0.48Co0.52 at A-sites, Al at BΙ-sites and Fe0.20Ti0.80 at BΙΙ-sites, respectively. The technique developed through this study represents a powerful real-space approach to investigate structure chemically at the atomic scale for a wide range of materials systems. PMID:24492747

  16. Determination of selenium at trace levels in geologic materials by energy-dispersive X-ray fluorescence spectrometry

    USGS Publications Warehouse

    Wahlberg, J.S.

    1981-01-01

    Low levels of selenium (0.1-500 ppm) in both organic and inorganic geologic materials can be semiquantitatively measured by isolating Se as a thin film for presentation to an energy-dispersive X-ray fluorescence spectrometer. Suitably pulverized samples are first digested by fusing with a mixture of Na2CO3 and Na2O2. The fusion cake is dissolved in distilled water, buffered with NH4Cl, and filtered to remove Si and the R2O3 group. A carrier solution of Na2TeO4, plus solid KI, hydrazine sulfate and Na2SO3, is added to the filtrate. The solution is then vacuum-filtered through a 0.45-??m pore-size filter disc. The filter, with the thin film of precipitate, is supported between two sheets of Mylar?? film for analysis. Good agreement is shown between data reported in this study and literature values reported by epithermal neutron-activation analysis and spectrofluorimetry. The method can be made quantitative by utilizing a secondary precipitation to assure complete recovery of the Se. The X-ray method offers fast turn-around time and a reasonably high production rate. ?? 1981.

  17. Scanning Electron Microscopy Findings With Energy-Dispersive X-ray Investigations of Cosmetically Tinted Contact Lenses

    PubMed Central

    Hotta, Fumika; Imai, Shoji; Miyamoto, Tatsuro; Mitamura-Aizawa, Sayaka; Mitamura, Yoshinori

    2015-01-01

    Objective: To investigate the surfaces and principal elements of the colorants of cosmetically tinted contact lenses (Cos-CLs). Methods: We analyzed the surfaces and principal elements of the colorants of five commercially available Cos-CLs using scanning electron microscopy with energy-dispersive x-ray analysis. Results: In two Cos-CLs, the anterior and posterior surfaces were smooth, and colorants were found inside the lens. One lens showed colorants located to a depth of 8 to 14 μm from the anterior side of the lens. In the other lens, colorants were found in the most superficial layer on the posterior surface, although a coated layer was observed. The colorants in the other three lenses were deposited on either lens surface. Although a print pattern was uniform in embedded type lenses, uneven patterns were apparent in dot-matrix design lenses. Colorants used in all lenses contained chlorine, iron, and titanium. In the magnified scanning electron microscopy images of a certain lens, chlorine is exuded and spread. Conclusions: Cosmetically tinted contact lenses have a wide variety of lens surfaces and colorants. Colorants may be deposited on the lens surface and consist of an element that has tissue toxicity. PMID:25799458

  18. Atomic-scale chemical imaging and quantification of metallic alloy structures by energy-dispersive X-ray spectroscopy.

    PubMed

    Lu, Ping; Zhou, Lin; Kramer, M J; Smith, David J

    2014-01-01

    Determination of atomic-scale crystal structure for nanostructured intermetallic alloys, such as magnetic alloys containing Al, Ni, Co (alnico) and Fe, is crucial for understanding physical properties such as magnetism, but technically challenging due to the small interatomic distances and the similar atomic numbers. By applying energy-dispersive X-ray spectroscopy (EDS) mapping to the study of two intermetallic phases of an alnico alloy resulting from spinodal decomposition, we have determined atomic-scale chemical composition at individual lattice sites for the two phases: one is the B2 phase with Fe0.76Co0.24 -Fe0.40Co0.60 ordering and the other is the L2(1) phase with Ni0.48Co0.52 at A-sites, Al at B(Ι)-sites and Fe0.20Ti0.80 at B(ΙΙ)-sites, respectively. The technique developed through this study represents a powerful real-space approach to investigate structure chemically at the atomic scale for a wide range of materials systems. PMID:24492747

  19. NASA Li/CF(x) cell problem analysis: Scanning electron microscopy with energy dispersive x ray spectrometry

    NASA Technical Reports Server (NTRS)

    Baker, John

    1991-01-01

    An analysis was made of Lithium/carbon fluoride cell parts for possible chloride contamination induced by exposure to thionyl chloride (SOCl2); various samples were submitted for analysis. Only a portion of the analysis which has been conducted is covered, herein, namely analysis by scanning electron microscopy with energy dispersive x ray spectrometry (SEM/EDS). A strip of nickel was exposed to SOCl2 vapors to observe variations in surface concentrations of sulfur and chlorine with time. By detecting chlorine one can not infer contamination by SOCl2 only that contamination is present. Six samples of stainless steel foil were analyzed for chlorine using EDS. Chlorine was not detected on background samples but was detected on the samples which had been handled including those which had been cleaned. Cell covers suspected of being contaminated while in storage and covers which were not exposed to the same storage conditions were analyzed for chlorine. Although no chlorine was found on the covers from cells, it was found on all stored covers. Results are presented with techniques shown for analysis and identification. Relevant photomicrographs are presented.

  20. Spontaneous aggregation of humic acid observed with AFM at different pH.

    PubMed

    Colombo, Claudio; Palumbo, Giuseppe; Angelico, Ruggero; Cho, Hyen Goo; Francioso, Ornella; Ertani, Andrea; Nardi, Serenella

    2015-11-01

    Atomic force microscopy in contact (AFM-C) mode was used to investigate the molecular dynamics of leonardite humic acid (HA) aggregate formed at different pH values. HA nanoparticles dispersed at pH values ranging from 2 to 12 were observed on a mica surface under dry conditions. The most clearly resolved and well-resulted AFM images of single particle were obtained at pH 5, where HA appeared as supramolecular particles with a conic shape and a hole in the centre. Those observations suggested that HA formed under these conditions exhibited a pseudo-amphiphilic nature, with secluded hydrophobic domains and polar subunits in direct contact with hydrophilic mica surface. Based on molecular simulation methods, a lignin-carbohydrate complex (LCC) model was proposed to explain the HA ring-like morphology. The LCC model optimized the parameters of β-O-4 linkages between 14 units of 1-4 phenyl propanoid, and resulted in an optimized structure comprising 45-50 linear helical molecules looped spirally around a central cavity. Those results added new insights on the adsorption mechanism of HA on polar surfaces as a function of pH, which was relevant from the point of view of natural aggregation in soil environment. PMID:26295541

  1. Long cavity and low repetition rate passively mode-locked fiber laser with high-energy right angle trapezoid shaped soliton in anomalous dispersion regime

    NASA Astrophysics Data System (ADS)

    Luo, Wenfeng; Lv, Shuyuan; Zhao, Xiaoxia; Qiao, Dun

    2015-05-01

    A long cavity passively mode locked fiber laser in the anomalous dispersion regime is reported. Nonlinear polarization rotation technique is employed to achieve the mode locking in our experiments. The output pulse from the fiber laser has the Gaussian profile spectrum and right angle trapezoid shape. Stable mode locking is achieved without using any dispersion-compensation components. The single pulse with an energy of 652 nJ and a repetition rate of 836 kHz at the pump power of approximately 500 mW is obtained and the duration of the output pulse increases linearly with the pump power. Different from the conventional low-energy soliton pulse, experimental results demonstrate that the passively mode locked fiber laser operating in the anomalous regime can also realize high energy pulse.

  2. Studies on the formation of polymeric nano-emulsions obtained via low-energy emulsification and their use as templates for drug delivery nanoparticle dispersions.

    PubMed

    Calderó, G; Montes, R; Llinàs, M; García-Celma, M J; Porras, M; Solans, C

    2016-09-01

    Ethylcellulose nanoparticles have been obtained from O/W nano-emulsions of the water/polyoxyethylene 10 oleyl ether/[ethyl acetate+4wt% ethylcellulose] system by low energy-energy emulsification at 25°C. Nano-emulsions with droplet sizes below 200nm and high kinetic stability were chosen for solubilising dexamethasone (DXM). Phase behaviour, conductivity and optical analysis studies of the system have evidenced for the first time that both, the polymer and the drug play a role on the structure of the aggregates formed along the emulsification path. Nano-emulsion formation may take place by both, phase inversion and self-emulsification. Spherical polymeric nanoparticles containing surfactant, showing sizes below 160nm have been obtained from the nano-emulsions by organic solvent evaporation. DXM loading in the nanoparticles was high (>90%). The release kinetics of nanoparticle dispersions with similar particle size and encapsulated DXM but different polymer to surfactant ratio were studied and compared to an aqueous DXM solution. Drug release from the nanoparticle dispersions was slower than from the aqueous solution. While the DXM solution showed a Fickian release pattern, the release behaviour from the nanoparticle dispersions was faster than that expected from a pure Fickian release. A coupled diffusion/relaxation model fitted the results very well, suggesting that polymer chains undergo conformational changes enhancing drug release. The contribution of diffusion and relaxation to drug transport in the nanoparticle dispersions depended on their composition and release time. Surfactant micelles present in the nanoparticle dispersion may exert a mild reservoir effect. The small particle size and the prolonged DXM release provided by the ethylcellulose nanoparticle dispersions make them suitable vehicles for controlled drug delivery applications. PMID:27341306

  3. AFM CHARACTERIZATION OF LASER INDUCED DAMAGE ON CDZNTE CRYSTAL SURFACES

    SciTech Connect

    Hawkins, S; Lucile Teague, L; Martine Duff, M; Eliel Villa-Aleman, E

    2008-06-10

    Semi-conducting CdZnTe (or CZT) crystals can be used in a variety of detector-type applications. CZT shows great promise for use as a gamma radiation spectrometer. However, its performance is adversely affected by point defects, structural and compositional heterogeneities within the crystals, such as twinning, pipes, grain boundaries (polycrystallinity), secondary phases and in some cases, damage caused by external forces. One example is damage that occurs during characterization of the surface by a laser during Raman spectroscopy. Even minimal laser power can cause Te enriched areas on the surface to appear. The Raman spectra resulting from measurements at moderate intensity laser power show large increases in peak intensity that is attributed to Te. Atomic Force Microscopy (AFM) was used to characterize the extent of damage to the CZT crystal surface following exposure to the Raman laser. AFM data reveal localized surface damage in the areas exposed to the Raman laser beam. The degree of surface damage to the crystal is dependent on the laser power, with the most observable damage occurring at high laser power. Moreover, intensity increases in the Te peaks of the Raman spectra are observed even at low laser power with little to no visible damage observed by AFM. AFM results also suggest that exposure to the same amount of laser power yields different amounts of surface damage depending on whether the exposed surface is the Te terminating face or the Cd terminating face of CZT.

  4. 3D Color Digital Elevation Map of AFM Sample

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This color image is a three dimensional (3D) view of a digital elevation map of a sample collected by NASA's Phoenix Mars Lander's Atomic Force Microscope (AFM).

    The image shows four round pits, only 5 microns in depth, that were micromachined into the silicon substrate, which is the background plane shown in red. This image has been processed to reflect the levelness of the substrate.

    A Martian particle only one micrometer, or one millionth of a meter, across is held in the upper left pit.

    The rounded particle shown at the highest magnification ever seen from another world is a particle of the dust that cloaks Mars. Such dust particles color the Martian sky pink, feed storms that regularly envelop the planet and produce Mars' distinctive red soil.

    The particle was part of a sample informally called 'Sorceress' delivered to the AFM on the 38th Martian day, or sol, of the mission (July 2, 2008). The AFM is part of Phoenix's microscopic station called MECA, or the Microscopy, Electrochemistry, and Conductivity Analyzer.

    The AFM was developed by a Swiss-led consortium, with Imperial College London producing the silicon substrate that holds sampled particles.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  5. Structural investigations on native collagen type I fibrils using AFM

    SciTech Connect

    Strasser, Stefan; Zink, Albert; Janko, Marek; Heckl, Wolfgang M.; Thalhammer, Stefan . E-mail: stefan.thalhammer@gsf.de

    2007-03-02

    This study was carried out to determine the elastic properties of single collagen type I fibrils with the use of atomic force microscopy (AFM). Native collagen fibrils were formed by self-assembly in vitro characterized with the AFM. To confirm the inner assembly of the collagen fibrils, the AFM was used as a microdissection tool. Native collagen type I fibrils were dissected and the inner core uncovered. To determine the elastic properties of collagen fibrils the tip of the AFM was used as a nanoindentor by recording force-displacement curves. Measurements were done on the outer shell and in the core of the fibril. The structural investigations revealed the banding of the shell also in the core of native collagen fibrils. Nanoindentation experiments showed the same Young's modulus on the shell as well as in the core of the investigated native collagen fibrils. In addition, the measurements indicate a higher adhesion in the core of the collagen fibrils compared to the shell.

  6. Introduction to Atomic Force Microscopy (AFM) in Biology.

    PubMed

    Kreplak, Laurent

    2016-01-01

    The atomic force microscope (AFM) has the unique capability of imaging biological samples with molecular resolution in buffer solution over a wide range of time scales from milliseconds to hours. In addition to providing topographical images of surfaces with nanometer- to angstrom-scale resolution, forces between single molecules and mechanical properties of biological samples can be investigated from the nano-scale to the micro-scale. Importantly, the measurements are made in buffer solutions, allowing biological samples to "stay alive" within a physiological-like environment while temporal changes in structure are measured-e.g., before and after addition of chemical reagents. These qualities distinguish AFM from conventional imaging techniques of comparable resolution, e.g., electron microscopy (EM). This unit provides an introduction to AFM on biological systems and describes specific examples of AFM on proteins, cells, and tissues. The physical principles of the technique and methodological aspects of its practical use and applications are also described. © 2016 by John Wiley & Sons, Inc. PMID:27479503

  7. AFM Structural Characterization of Drinking Water Biofilm under Physiological Conditions

    EPA Science Inventory

    Due to the complexity of mixed culture drinking water biofilm, direct visual observation under in situ conditions has been challenging. In this study, atomic force microscopy (AFM) revealed the three dimensional morphology and arrangement of drinking water relevant biofilm in air...

  8. Conductive supports for combined AFM SECM on biological membranes

    NASA Astrophysics Data System (ADS)

    Frederix, Patrick L. T. M.; Bosshart, Patrick D.; Akiyama, Terunobu; Chami, Mohamed; Gullo, Maurizio R.; Blackstock, Jason J.; Dooleweerdt, Karin; de Rooij, Nico F.; Staufer, Urs; Engel, Andreas

    2008-09-01

    Four different conductive supports are analysed regarding their suitability for combined atomic force and scanning electrochemical microscopy (AFM-SECM) on biological membranes. Highly oriented pyrolytic graphite (HOPG), MoS2, template stripped gold, and template stripped platinum are compared as supports for high resolution imaging of reconstituted membrane proteins or native membranes, and as electrodes for transferring electrons from or to a redox molecule. We demonstrate that high resolution topographs of the bacterial outer membrane protein F can be recorded by contact mode AFM on all four supports. Electrochemical feedback experiments with conductive cantilevers that feature nanometre-scale electrodes showed fast re-oxidation of the redox couple Ru(NH3)63+/2+ with the two metal supports after prolonged immersion in electrolyte. In contrast, the re-oxidation rates decayed quickly to unpractical levels with HOPG or MoS2 under physiological conditions. On HOPG we observed heterogeneity in the re-oxidation rate of the redox molecules with higher feedback currents at step edges. The latter results demonstrate the capability of conductive cantilevers with small electrodes to measure minor variations in an SECM signal and to relate them to nanometre-scale features in a simultaneously recorded AFM topography. Rapid decay of re-oxidation rate and surface heterogeneity make HOPG or MoS2 less attractive for combined AFM-SECM experiments on biological membranes than template stripped gold or platinum supports.

  9. ACOUSTIC RECTIFICATION IN DISPERSIVE MEDIA

    SciTech Connect

    Cantrell, John H.

    2009-03-03

    It is shown that the shapes of acoustic radiation-induced static strain and displacement pulses (rectified acoustic pulses) are defined locally by the energy density of the generating waveform. Dispersive properties are introduced analytically by assuming that the rectified pulses are functionally dependent on a phase factor that includes both dispersive and nonlinear terms. The dispersion causes an evolutionary change in the shape of the energy density profile that leads to the generation of solitons experimentally observed in fused silica.

  10. Acoustic Rectification in Dispersive Media

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.

    2008-01-01

    It is shown that the shapes of acoustic radiation-induced static strain and displacement pulses (rectified acoustic pulses) are defined locally by the energy density of the generating waveform. Dispersive properties are introduced analytically by assuming that the rectified pulses are functionally dependent on a phase factor that includes both dispersive and nonlinear terms. The dispersion causes an evolutionary change in the shape of the energy density profile that leads to the generation of solitons experimentally observed in fused silica.

  11. Novel Polymer Linkers for Single Molecule AFM Force Spectroscopy

    PubMed Central

    Tong, Zenghan; Mikheikin, Andrey; Krasnoslobodtsev, Alexey; Lv, Zhengjian; Lyubchenko, Yuri L.

    2013-01-01

    Flexible polymer linkers play an important role in various imaging and probing techniques that require surface immobilization, including atomic force microscopy (AFM). In AFM force spectroscopy, polymer linkers are necessary for the covalent attachment of molecules of interest to the AFM tip and the surface. The polymer linkers tether the molecules and provide their proper orientation in probing experiments. Additionally, the linkers separate specific interactions from nonspecific short-range adhesion and serve as a reference point for the quantitative analysis of single molecule probing events. In this report, we present our results on the synthesis and testing of a novel polymer linker and the identification of a number of potential applications for its use in AFM force spectroscopy experiments. The synthesis of the linker is based on the well-developed phosphoramidate (PA) chemistry that allows the routine synthesis of linkers with predetermined lengths and PA composition. These linkers are homogeneous in length and can be terminated with various functional groups. PA linkers with different functional groups were synthesized and tested in experimental systems utilizing different immobilization chemistries. We probed interactions between complementary DNA oligonucleotides; DNA and protein complexes formed by the site-specific binding protein SfiI; and interactions between amyloid peptide (Aβ42). The results of the AFM force spectroscopy experiments validated the feasibility of the proposed approach for the linker design and synthesis. Furthermore, the properties of the tether (length, functional groups) can be adjusted to meet the specific requirements for different force spectroscopy experiments and system characteristics, suggesting that it could be used for a large number of various applications. PMID:23624104

  12. MOS-based nanocapacitor using C-AFM

    NASA Astrophysics Data System (ADS)

    Hill, Daniel; Sadewasser, Sascha; Aymerich, Xavier

    2003-04-01

    This report details the attempts made to realise nanocapacitors for nanoscale MOS based integrated circuits by AFM anodic oxidation, and therefore isolation, of nano-sized squares of poly-silicon, titanium and aluminium on Si/SiO2. Conductive AFM (C-AFM) was used to perform topographical and electrical characterisation. The experiments were performed with contact mode C-AFM, in ambient air, using Pt-Ir, Co-Cr and Ti coated (20nm) n-type silicon cantilevers. Each sample consisted of a 3-5nm thick conductor deposited on 6nm of SiO2, which was thermally grown on Phosphorus doped (1019 cm-3) n-type Si(100) substrates. Standard cleaning and passivation processes were used. Poly-silicon was immediately found to be too rough to oxidise. Initial current-voltage measurements inside of the titanium-oxide squares suggest initial isolation followed by degradation through Fowler-Nordheim tunnelling. Measurement inconsistencies seen suggest charge storage on the surface or tip with the barrier height of the native titanium oxide thought to be responsible. Al has a thicker natural oxide. To overcome this we designed a series of structures consisting of a Ti finger on SiO2, that is connected to a Ti bond pad, allowing direct probing by a semiconductor parameter analyser. AFM anodic oxidation was performed upon these Ti fingers to reduce their in-plane dimensions towards the nanoscale. To confirm the existence of a nanocapacitor topographical and electrical measurements were then done on and around them.

  13. The use of colloid probe microscopy to predict aerosolization performance in dry powder inhalers: AFM and in vitro correlation.

    PubMed

    Young, Paul M; Tobyn, Michael J; Price, Robert; Buttrum, Mark; Dey, Fiona

    2006-08-01

    The atomic force microscope (AFM) colloid probe technique was utilized to measure cohesion forces (separation energy) between three drug systems as a function of relative humidity (RH). The subsequent data was correlated with in vitro aerosolization data collected over the same RH range. Three drug-only systems were chosen for study; salbutamol sulphate (SS), triamcinolone acetonide (TAA), and di-sodium cromoglycate (DSCG). Analysis of the AFM and in vitro data suggested good correlations, with the separation energy being related inversely to the aerosolization performance (measured as fine particle fraction, FPF(LD)). In addition, the relationship between, cohesion, RH, and aerosolization performance was drug specific. For example, an increase in RH between 15% and 75% resulted in increased cohesion and decreased FPF(LD) for SS and DSCG. In comparison, for TAA, a decrease in cohesion and increased FPF(LD) was observed when RH was increased (15-75%). Linear regression analysis comparing AFM with in vitro data indicated R(2) values > 0.80, for all data sets, suggesting the AFM could be used to indicate in vitro aerosolization performance. PMID:16795018

  14. A comparison of ab initio quantum-mechanical and experimental D0 binding energies of eleven H-bonded and eleven dispersion-bound complexes.

    PubMed

    Haldar, Susanta; Gnanasekaran, Ramachandran; Hobza, Pavel

    2015-10-28

    Dissociation energies (D0) of 11 H-bonded and 11 dispersion-bound complexes were calculated as the sum of interaction energies and the change of zero-point vibrational energies (ΔZPVE). The structures of H-bonded complexes were optimized at the RI-MP2/cc-pVTZ level, at which deformation and harmonic ΔZPVE energies were also calculated. The structures of dispersion-bound complexes were optimized at the DFT-D3 level, and harmonic ΔZPVE energies were determined at the same level as well. For comparison, CCSD(T)/CBS D0 energies were also evaluated for both types of complexes. The CCSD(T)/CBS interaction energy was constructed as the sum of MP2/CBS interaction energy, extrapolated from aug-cc-pVTZ and aug-cc-pVQZ basis sets, and ΔCCSD(T) correction, determined with the aug-cc-pVDZ basis set. The ΔZPVE energies were determined for all complexes at the harmonic level and for selected complexes, these energies were also calculated using second-order vibration perturbation (VPT2) theory. For H-bonded complexes, the harmonic CCSD(T)/CBS D0 energies were in better agreement with the experimental values (with a mean relative error (MRE) of 6.2%) than the RI-MP2/cc-pVTZ D0 (a MRE of 12.3%). The same trend was found for dispersion-bound complexes (6.2% (MRE) at CCSD(T)/CBS and 7.7% (MRE) at the DFT-D3 level). When the anharmonic ΔZPVE term was included instead of harmonic one, the agreement between theoretical and experimental D0 deteriorated for H-bonded as well as dispersion-bound complexes. Finally, the applicability of "diagonal approximation" for determining the anharmonic ΔZPVE was shown. For the phenolH2O complex, the ΔZPVE energy calculated at the VPT2 level and on the basis of "diagonal approximation" differed by less than 0.1 kcal mol(-1). PMID:26392236

  15. Energy-dispersive spectroscopy and electron backscatter diffraction analysis of isothermally aged SAF 2507 type superduplex stainless steel

    NASA Astrophysics Data System (ADS)

    Dobranszky, J.; Szabo, P. J.; Berecz, T.; Hrotko, V.; Portko, M.

    2004-10-01

    Due to thermal effects, several precipitation and segregation processes are known in duplex stainless steels. These microstructural changes influence both of the original phases, but in different ways. Isothermal ageing in a large range of temperature was performed on SAF 2507 type steel. The temperature range was 300-1000 °C, the ageing time was between 100 s and 24 h. This paper discusses the results of ageing at 900 °C. Microstructural changes were investigated by electron microscopy, energy-dispersive spectroscopy and electron backscattered diffraction analysis. This technique allowed the determination of the microstructure of the secondary austenite and sigma phase and their mutual orientation properties. Beside this, thermoelectric power measurements were also performed, which gave information about the kinetics of the precipitation process. Results showed that sigma-phase precipitation started right after 200 s in the case of annealed steel, and faster than 100 s in the cold-rolled state. After 5000 s, the delta-ferrite disappeared. Chemical composition of sigma phase was independent on the ageing time. A small decrease in nickel content was observed with a slight increase of Cr content. Small amount of chi phase had also been observed on the ferrite-ferrite boundaries, but later they changed into sigma phase. Similarly to sigma phase, chi phase showed significant phosphorus enrichment. During ageing, small chrome nitride precipitates developed, which amount increased in time, and some vanadium could be measured in them. The orientation relationship between austenite and sigma phase deviated from Nenno-orientationship with about 24°, and seems to form a [110]‖[310] relationship, which was characteristic right from the beginning of the process, and remains more or less constant.

  16. Characterization of the interfacial geomechanics in gas shales via integrated Raman spectroscopy, nanoindentation and energy dispersive X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Ferralis, N.; Abedi, S.; Grossman, J. C.; Ulm, F.

    2012-12-01

    The geomechanical characterization of gas shales at the microscale is currently enabled by the use of grid-based nanoindentation techniques. However, the inability to probe the chemical and mineral heterogeneity of gas shales limits the identification of the geomechanical properties of individual components and phases within the probed region. The development of an integrated multiphysics approach that combines geomechanical and chemical information is crucial for the characterization of interfaces between phases, leading to the identification of regions with low yield strain. Here we present a comprehensive investigation where a spatially aligned coupled multiphysics analysis of gas shales is used to identify relevant the geomechanics of mineral and organic phases and their interfaces. This method uses grid-based nanondentation to extract the geomechanical information. Raman spectroscopy is used to identify the majority of inorganic components (calcite, quartz, anatase, pyrite, clay) as well as to characterize the diversity and maturity in the organic component (kerogen). Energy dispersive X-ray is used in combination with Raman to identify clay. With the use of clustering analysis statistical tools a correlation analysis over the full range of data (geomechanics and chemical data), we identify several mineral phases, and we clearly associate the mechanical properties (defined in terms of hardness, modulus and yield strain) with each phase. With this innovative multiphysics analysis we were able to identify interfacial phases between inorganic phases, with distinct hardness and yield strain. We find that regions between calcite-rich or quartz rich phases and clay-rich phases showed a lower than of that of the corresponding boundary phases. Hence this approach provides a viable method for the identification of the "weakest links" in gas shales with the highest probability of fracture.

  17. Effects of industrial noise on circumpulpar dentin - a field emission scanning electron microscopy and energy dispersive spectroscopy analysis

    PubMed Central

    Cavacas, Maria Alzira; Tavares, Vitor; Oliveira, Maria João; Oliveira, Pedro; Sezinando, Ana; Martins dos Santos, José

    2013-01-01

    Chronic exposure to Industrial Noise (IN), rich in Low Frequency Noise (LFN), causes systemic fibrotic transformation and sustained stress. Dental wear, significantly increased with exposure to LFN, affects the teeth particularly through the circumpulpar dentin. Our goal is to understand the consequences of IN exposure on the circumpulpar dentin of Wistar rats. 10 Wistar rats were exposed to IN for 4 months, according to an occupationally simulated time schedule and 10 animals were used as age-matched controls. The first and the second upper and lower molars of each animal were processed for observation by Field Emission Scanning Electron Microscopy (FESEM) and Energy Dispersive Spectroscopy (EDS) analysis was performed. In exposed animals FESEM showed a 2.0 to 6.0 μm-dense mineral band between dentin and the pulp with no regular continuity with the tubules. This structure had a few tubules where the odontoblasts processes could be observed embedded within the band and collagen fibers were trapped inside. EDS analysis revealed that it was hydroxyapatite similar to dentin, with a higher carbon content. FESEM results show that the band may be tertiary reparative dentin formed by odontoblast-like cells, but the increased amount of carbon (EDS) could mean that it is sclerotic dentin. IN should be acknowledge as a strong stimulus, able to cause an injury to odontoblasts and to the formation of reparative tertiary dentin, in a process that may accelerate the aging of the teeth, either by direct impact of acoustic pressure pulsations or by increased stress and dental wear. PMID:24294356

  18. A semianalytic model to extract differential linear scattering coefficients of breast tissue from energy dispersive x-ray diffraction measurements

    SciTech Connect

    LeClair, Robert J.; Boileau, Michel M.; Wang Yinkun

    2006-04-15

    The goal of this work is to develop a technique to measure the x-ray diffraction signals of breast biopsy specimens. A biomedical x-ray diffraction technology capable of measuring such signals may prove to be of diagnostic use to the medical field. Energy dispersive x-ray diffraction measurements coupled with a semianalytical model were used to extract the differential linear scattering coefficients [{mu}{sub s}(x)] of breast tissues on absolute scales. The coefficients describe the probabilities of scatter events occurring per unit length of tissue per unit solid angle of detection. They are a function of the momentum transfer argument, x=sin({theta}/2)/{lambda}, where {theta}=scatter angle and {lambda}=incident wavelength. The technique was validated by using a 3 mm diameter 50 kV polychromatic x-ray beam incident on a 5 mm diameter 5 mm thick sample of water. Water was used because good x-ray diffraction data are available in the literature. The scatter profiles from 6 deg. to 15 deg. in increments of 1 deg. were measured with a 3 mmx3 mmx2 mm thick cadmium zinc telluride detector. A 2 mm diameter Pb aperture was placed on top of the detector. The target to detector distance was 29 cm and the duration of each measurement was 10 min. Ensemble averages of the results compare well with the gold standard data of A. H. Narten [''X-ray diffraction data on liquid water in the temperature range 4 deg. C-200 deg. C, ORNL Report No. 4578 (1970)]. An average 7.68% difference for which most of the discrepancies can be attributed to the background noise at low angles was obtained. The preliminary measurements of breast tissue are also encouraging.

  19. Gunshot residue testing in suicides: Part I: Analysis by scanning electron microscopy with energy-dispersive X-ray.

    PubMed

    Molina, D Kimberley; Martinez, Michael; Garcia, James; DiMaio, Vincent J M

    2007-09-01

    Several different methods can be employed to test for gunshot residue (GSR) on a deceased person's hands, including scanning electron microscopy with energy-dispersive x-ray spectroscopy (SEM-EDX) and inductively coupled plasma-atomic emission spectrometry (ICP-AES). Each of these techniques has been extensively studied, especially on living individuals. The current studies (Part I and Part II) were designed to compare the use and utility of the different GSR testing techniques in a medical examiner setting. In Part I, the hands of deceased persons who died from undisputed suicidal handgun wounds were tested for GSR by SEM-EDX over a 4-year period. A total of 116 cases were studied and analyzed for caliber of weapon, proximity of wound, and results of GSR testing, including spatial deposition upon the hands. It was found that in only 50% of cases with a known self-inflicted gunshot wound was SEM-EDX positive for at least 1 specific particle for GSR. In 18% of the cases there was a discernible pattern (spatial distribution) of the particles on the hand such that the manner in which the weapon was held could be determined. Since only 50% of cases where the person is known to have fired a weapon immediately prior to death were positive for GSR by SEM-EDX, this test should not be relied upon to determine whether a deceased individual has discharged a firearm. Furthermore, in only 18% of cases was a discernible pattern present indicating how the firearm was held. The low sensitivity, along with the low percentage of cases with a discernible pattern, limits the usefulness of GSR test results by SEM-EDX in differentiating self-inflicted from non-self-inflicted wounds. PMID:17721163

  20. Energy dispersive X-ray fluorescence analysis of ancient coins: The case of Greek silver drachmae from the Emporion site in Spain

    NASA Astrophysics Data System (ADS)

    Pitarch, A.; Queralt, I.

    2010-05-01

    Greek colonizers arrived at the Iberian Peninsula at the beginning of the sixth century B.C. and founded a small colony known as Emporion in north-east Spain. By the fifth century B.C., this colony became a small polis with a well-organized administrative structure. In this context, the necessity of coinage was a fact and the first coins were minted [1]. Some of these coins were characterized by using energy dispersive X-ray fluorescence equipment. The analytical study focused on the elemental characterization of the coins minted from the fourth century to the first century B.C. and their compositional evolution during this period. The investigation has pointed out a very high fineness of the alloys throughout the time, with an average silver content around 98.32%, and the feasibility of energy dispersive X-ray fluorescence as a screening tool for the characterization of the alloys.

  1. High energy pulses generation with giant spectrum bandwidth and submegahertz repetition rate from a passively mode-locked Yb-doped fiber laser in all normal dispersion cavity

    NASA Astrophysics Data System (ADS)

    Lin, J.-H.; Wang, D.; Lin, K.-H.

    2011-01-01

    Robust passively mode-locked pulse generation with low pulse repetition rate and giant spectrum bandwidth in an all-fiber, all-normal-dispersion ytterbium-doped fiber laser has been experimentally demonstrated using nonlinear polarization evolution technique. The highest pulse energy over 20 nJ with spectrum bandwidth over 50 nm can be experimentally obtained at 175 mW pump power. The mode-locked pulses reveal broadened 3-dB pulsewidth about several nanosecond and widened pedestal in time trace that is resulted from enormous dispersion in laser cavity and gain dynamics. At certain mode-locking state, a spectrum gap around 1056 nm are observed between the three and four energy levels of Yb-doped fiber laser. By properly rotating the polarization controller, the gap can be eliminated due to four-wave mixing to produce more flattened spectrum output.

  2. Dispersive liquid-liquid microextraction using diethyldithiocarbamate as a chelating agent and the dried-spot technique for the determination of Fe, Co, Ni, Cu, Zn, Se and Pb by energy-dispersive X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Kocot, Karina; Zawisza, Beata; Sitko, Rafal

    2012-07-01

    Dispersive liquid-liquid microextraction (DLLME) using sodium diethyldithiocarbamate (DDTC) as a chelating agent was investigated for the simultaneous determination of iron, cobalt, nickel, copper, zinc, selenium and lead ions in water samples. The procedure was performed using 5 mL of the sample, 100 μL of a 0.5% solution of DDTC, 30 μL of carbon tetrachloride (extraction phase) and 500 μL of methanol (disperser solvent). The experiments showed that Fe, Co, Ni, Cu, Zn and Pb can be simultaneously extracted at a pH of 5 and that Se can be extracted at a pH of 2-3. The results were compared with those obtained using ammonium pyrrolidine dithiocarbamate as a chelating agent. For all analytes, a linear range was observed up to 0.4 μg mL- 1. If Fe and Zn are present in concentrations 10 times higher than those of the other analytes, then the linearity is observed up to 0.2 μg mL- 1. In the present study, the organic phase that contained preconcentrated elements was deposited onto a Millipore filter and measured using energy-dispersive X-ray fluorescence spectrometry. The obtained detection limits were 2.9, 1.5, 2.0, 2.3, 2.5, 2.0 and 3.9 ng mL- 1 for Fe, Co, Ni, Cu, Zn, Se and Pb, respectively. This combination of DLLME and the dried-spot technique is promising for multielement analyses using other spectroscopy techniques, such as laser ablation-inductively coupled plasma-mass spectrometry, laser-induced breakdown spectroscopy or total-reflection X-ray fluorescence spectrometry.

  3. Determination and speciation of trace and ultratrace selenium ions by energy-dispersive X-ray fluorescence spectrometry using graphene as solid adsorbent in dispersive micro-solid phase extraction.

    PubMed

    Kocot, Karina; Leardi, Riccardo; Walczak, Beata; Sitko, Rafal

    2015-03-01

    A dispersive micro-solid phase extraction (DMSPE) with graphene as a solid adsorbent and ammonium pyrrolidinedithiocarbamate (APDC) as a chelating agent was proposed for speciation and detemination of inorganic selenium by the energy-dispersive X-ray fluorescence spectrometry (EDXRF). In developed DMSPE, graphene particles are dispersed throughout the analyzed solution, therefore reaction between Se(IV)-APDC complexes and graphene nanoparticles occurs immediately. The concentration of Se(VI) is calculated as the difference between the concentration of selenite after and before prereduction of selenate. A central composite face-centered design with 3 center points was performed in order to optimize conditions and to study the effect of four variables (pH of the sample, concentration of APDC, concentration of Triton-X-100, and sample volume). The best results were obtained when suspension consisting of 200 µg of graphene nanosheets, 1.2 mg of APDC and 0.06 mg of Triton-X-100 was rapidly injected to the 50 mL of the analyzed solution. Under optimized conditions Se ions can be determined with a very good recovery (97.7±5.0% and 99.2±6.6% for Se(IV) and Se(VI), respectively) and precision (RSD=5.1-6.6%). Proposed DMSPE/EDXRF procedure allowed to obtain low detection limits (0.032 ng mL(-1)) and high enrichment factor (1013±15). The proposed methodology was successfully applied for the determination of Se in mineral, tap, lake and sea water samples as well as in biological materials (Lobster Hepatopancreas and Pig Kidney). PMID:25618680

  4. Amalgam tattoo: report of an unusual clinical presentation and the use of energy dispersive X-ray analysis as an aid to diagnosis

    SciTech Connect

    McGinnis, J.P. Jr.; Greer, J.L.; Daniels, D.S.

    1985-01-01

    An unusual appearing gingival amalgam pigmentation (amalgam tattoo) that completely surrounded the maxillary right first premolar in a 13-year-old boy is presented. Because of the wide distribution and apparent clinical progression of the discoloration, an excisional biopsy was performed. The histopathologic diagnosis of amalgam pigmentation was confirmed in paraffin sections by energy dispersive X-ray microanalysis. Silver, tin, and mercury were detected in the specimen.

  5. Low-energy dispersion of dynamic charge stripes in La1.75Sr0.25NiO4 observed with inelastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Zhong, Ruidan; Tranquada, John; Gu, Genda; Reznik, Dmitry; Winn, Barry

    The dynamic stripe correlations have been the subject of intense research, owing to the possible links with high-Tc superconductivity. In light of a recently published, direct observation of charge-stripe fluctuations in La2-xSrxNiO4 using inelastic neutron scattering, we did a follow-up neutron experiment on a x=0.25 sample to characterize the low-energy dispersion of these dynamic charge stripes using the HYSPEC instrument at the Spallation Neutron Source. The scattering signals are collected in the vicinity of a charge-order peak with a large wave vector (4.4, 3, 0), where dynamic spin-stripe correlations are negligible. Mapping the low-energy charge-stripe fluctuations in a wide temperature range, we observe a finite dispersion along the stripe-modulation direction at T >=160K where the charge stripes become disordered, while the steep dispersion in the orthogonal direction is not resolved. Work at BNL supported by Office of Basic Energy Sciences, US DOE, under Contract No. DE-SC00112704.

  6. Wedged AFM-cantilevers for parallel plate cell mechanics.

    PubMed

    Stewart, Martin P; Hodel, Adrian W; Spielhofer, Andreas; Cattin, Cedric J; Müller, Daniel J; Helenius, Jonne

    2013-04-01

    The combination of atomic force microscopy (AFM) and optical microscopy has gained popularity for mechanical analysis of living cells. In particular, recent AFM-based assays featuring tipless cantilevers and whole-cell deformation have yielded insights into cellular function, structure, and dynamics. However, in these assays the standard ≈10° tilt of the cantilever prevents uniaxial loading, which complicates assessment of cellular geometry and can cause cell sliding or loss of loosely adherent cells. Here, we describe an approach to modify tipless cantilevers with wedges and, thereby, achieve proper parallel plate mechanics. We provide guidance on material selection, the wedge production process, property and geometry assessment, and the calibration of wedged cantilevers. Furthermore, we demonstrate their ability to simplify the assessment of cell shape, prevent lateral displacement of round cells during compression, and improve the assessment of cell mechanical properties. PMID:23473778

  7. AFM-based mechanical characterization of single nanofibres.

    PubMed

    Neugirg, Benedikt R; Koebley, Sean R; Schniepp, Hannes C; Fery, Andreas

    2016-04-28

    Nanofibres are found in a broad variety of hierarchical biological systems as fundamental structural units, and nanofibrillar components are playing an increasing role in the development of advanced functional materials. Accurate determination of the mechanical properties of single nanofibres is thus of great interest, yet measurement of these properties is challenging due to the intricate specimen handling and the exceptional force and deformation resolution that is required. The atomic force microscope (AFM) has emerged as an effective, reliable tool in the investigation of nanofibrillar mechanics, with the three most popular approaches-AFM-based tensile testing, three-point deformation testing, and nanoindentation-proving preferable to conventional tensile testing in many (but not all) cases. Here, we review the capabilities and limitations of each of these methods and give a comprehensive overview of the recent advances in this field. PMID:27055900

  8. Insights into Epoxy Network Nanostructural Heterogeneity Using AFM-IR.

    PubMed

    Morsch, Suzanne; Liu, Yanwen; Lyon, Stuart B; Gibbon, Simon R

    2016-01-13

    The first direct observation of a chemically heterogeneous nanostructure within an epoxy resin is reported. Epoxy resins comprise the matrix component of many high performance composites, coatings and adhesives, yet the molecular network structure that underpins the performance of these industrially essential materials is not well understood. Internal nodular morphologies have repeatedly been reported for epoxy resins analyzed using SEM or AFM, yet the origin of these features remains a contentious subject, and epoxies are still commonly assumed to be chemically homogeneous. Uniquely, in this contribution we use the recently developed AFM-IR technique to eliminate previous differences in interpretation, and establish that nodule features correspond to heterogeneous network connectivity within an epoxy phenolic formulation. PMID:26694687

  9. Nano-Bio-Mechanics of Neuroblastoma Cells Using AFM

    NASA Astrophysics Data System (ADS)

    Bastatas, Lyndon; Matthews, James; Kang, Min; Park, Soyeun

    2011-10-01

    We have conducted an in vitro study to determine the elastic moduli of neurobalstoma cell lines using atomic force microscopy. Using a panel of cell lines established from neuroblastoma patients at different stages of disease progress and treatment, we have investigated the differences in elastic moduli during a course of cancer progression and chemotherapy. The cells were grown on the hard substrates that are chemically functionalized to enhance adhesion. We have performed the AFM indentation experiments with different applied forces from the AFM probe. For the purpose of the comparison between cell lines, the indentations were performed only on cell centers. The obtained force-distance curves were analyzed using the Hertz model in order to extract the elastic moduli. We have found that the elastic moduli of human neuroblastoma cells significantly varied during the disease progression. We postulate that the observed difference might be affected by the treatment and chemotherapy.

  10. AFM-based mechanical characterization of single nanofibres

    NASA Astrophysics Data System (ADS)

    Neugirg, Benedikt R.; Koebley, Sean R.; Schniepp, Hannes C.; Fery, Andreas

    2016-04-01

    Nanofibres are found in a broad variety of hierarchical biological systems as fundamental structural units, and nanofibrillar components are playing an increasing role in the development of advanced functional materials. Accurate determination of the mechanical properties of single nanofibres is thus of great interest, yet measurement of these properties is challenging due to the intricate specimen handling and the exceptional force and deformation resolution that is required. The atomic force microscope (AFM) has emerged as an effective, reliable tool in the investigation of nanofibrillar mechanics, with the three most popular approaches--AFM-based tensile testing, three-point deformation testing, and nanoindentation--proving preferable to conventional tensile testing in many (but not all) cases. Here, we review the capabilities and limitations of each of these methods and give a comprehensive overview of the recent advances in this field.

  11. Molecular modeling of enzyme attachment on AFM probes.

    PubMed

    Oliveira, Guedmiller S; Leite, Fabio L; Amarante, Adriano M; Franca, Eduardo F; Cunha, Richard A; Briggs, James M; Freitas, Luiz C G

    2013-09-01

    The immobilization of enzymes on atomic force microscope tip (AFM tip) surface is a crucial step in the development of nanobiosensors to be used in detection process. In this work, an atomistic modeling of the attachment of the acetyl coenzyme A carboxylase (ACC enzyme) on a functionalized AFM tip surface is proposed. Using electrostatic considerations, suitable enzyme-surface orientations with the active sites of the ACC enzyme available for interactions with bulk molecules were found. A 50 ns molecular dynamics trajectory in aqueous solution was obtained and surface contact area, hydrogen bonding and protein stability were analyzed. The enzyme-surface model proposed here with minor adjustment can be applied to study antigen-antibody interactions as well as enzyme immobilization on silica for chromatography applications. PMID:24029365

  12. AFM study of polymer lubricants on hard disk surfaces

    NASA Astrophysics Data System (ADS)

    Bao, G. W.; Troemel, M.; Li, S. F. Y.

    Thin liquid films of PFPE (perfluoropolyether) lubricants dip-coated on hard disk surfaces were imaged with non-contact mode AFM. Demnum lubricants with phosphazene additives exhibited strong interactions with a silicon tip due to the formation of liquid bridges between the lubricants and the tip, as indicated by a remarkable hysteresis loop between approach and retraction curves in force vs. distance measurements. Features resulting from capillary forces due to tip tapping to the lubricants were revealed, which demonstrated that the capillary forces could be used to lock the non-contacting tip at a certain separation from the substrate surface to obtain AFM images. Force vs. distance curves for Fomblin Z-dol lubricants showed negligible hysteresis effects and features corresponding to lateral distortion of the tip by the lubricants only were observed. In both cases, only when the tip was positioned far above the surfaces could the natural distributions of the lubricants be imaged.

  13. BOREAS AFM-5 Level-1 Upper Air Network Data

    NASA Technical Reports Server (NTRS)

    Barr, Alan; Hrynkiw, Charmaine; Newcomer, Jeffrey A. (Editor); Hall, Forrest G. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-5 team collected and processed data from the numerous radiosonde flights during the project. The goals of the AFM-05 team were to provide large-scale definition of the atmosphere by supplementing the existing Atmospheric Environment Service (AES) aerological network, both temporally and spatially. This data set includes basic upper-air parameters collected from the network of upper-air stations during the 1993, 1994, and 1996 field campaigns over the entire study region. The data are contained in tabular ASCII files. The level-1 upper-air network data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files also are available on a CD-ROM (see document number 20010000884).

  14. Adjustable rheology of fumed silica dispersion in urethane prepolymers: Composition-dependent sol and gel behaviors and energy-mediated shear responses

    SciTech Connect

    Zheng, Zhong Song, Yihu Wang, Xiang Zheng, Qiang

    2015-07-15

    Variation of colloidal and interfacial interactions leads to a microstructural diversity in fumed silica dispersions exhibiting absolutely different sol- or gel-like rheological responses. In this study, fumed silicas with different surface areas (200–400 m{sup 2}/g) and surface characteristics (hydrophilic or hydrophobic) are dispersed into moisture-cured polyurethane. The microstructures investigated using transmission electron microscope are associated perfectly with three different rheological behaviors: (i) Sols with well-dispersed silica aggregates, (ii) weak gels with agglomerate-linked networks, and (iii) strong gels with concentrated networks of large agglomerates. Though sols and gels are well distinguished by shear thickening or sustained thinning response through steady shear flow test, it is interesting that the sols and weak gels exhibit a uniform modulus plateau-softening-hardening-softening response with increasing dynamic strain at frequency 10 rad s{sup −1} while the strong gels show a sustained softening beyond the linear regime. Furthermore, the onset of softening and hardening can be normalized: The two softening are isoenergetic at mechanical energies of 0.3 J m{sup −3} and 10 kJ m{sup −3}. On the other hand, the hardening is initiated by a critical strain of 60%. The mechanisms involved in the generation of the sol- and the gel-like dispersions and their structural evolutions during shear are thoroughly clarified in relation to the polyols, the characteristic and content of silica and the curing catalysts.

  15. Departures from the Energy-Biodiversity Relationship in South African Passerines: Are the Legacies of Past Climates Mediated by Behavioral Constraints on Dispersal?

    PubMed Central

    Péron, Guillaume; Altwegg, Res

    2015-01-01

    Legacies of paleoclimates in contemporary biodiversity patterns have mostly been investigated with global datasets, or with weakly dispersive organisms, and as a consequence been interpreted in terms of geographical or physical constraints. If paleoclimatic legacies also occurred at the regional scale in the distributions of vagile organisms within biomes, they would rather suggest behavioral constraints on dispersal, i.e., philopatric syndromes. We examined 1) the residuals of the regression between contemporary energy and passerine species richness in South African biomes and 2) phylogenetic dispersion of passerine assemblages, using occupancy models and quarter-degree resolution citizen science data. We found a northeast to southwest gradient within mesic biomes congruent with the location of Quaternary mesic refugia, overall suggesting that as distance from refugia increased, more clades were lacking from local assemblages. A similar but weaker pattern was detected in the arid Karoo Biomes. In mobile organisms such as birds, behavioral constraints on dispersal appear strong enough to influence species distributions thousands of years after historical range contractions. PMID:26208300

  16. Adhesion forces in AFM of redox responsive polymer grafts: Effects of tip hydrophilicity

    NASA Astrophysics Data System (ADS)

    Feng, Xueling; Kieviet, Bernard D.; Song, Jing; Schön, Peter M.; Vancso, G. Julius

    2014-02-01

    The adherence between silicon nitride AFM tips and redox-active poly(ferrocenylsilanes) (PFS) grafts on gold was investigated by electrochemical AFM force spectroscopy. Before the adhesion measurements silicon nitride AFM probes were cleaned with organic solvents (acetone and ethanol) or piranha solution. Interestingly, these different AFM tip cleaning procedures drastically affected the observed adhesion forces. Water contact angle measurements on the corresponding AFM probe chips showed that piranha treatment resulted in a significant increase of AFM probe chip surface hydrophilicity compared to the organic solvent treatment. Obviously this hydrophilicity change caused drastic, even opposite changes in the tip-PFS adhesive force measurement upon electrode potential change to reversibly oxidize and reduce the PFS grafts. Our findings are of pivotal importance for AFM tip adhesion measurements utilizing standard silicon nitride AFM tips. Probe hydrophilicity must be carefully taken into consideration and controlled.

  17. Dynamic force microscopy simulator (dForce): A tool for planning and understanding tapping and bimodal AFM experiments.

    PubMed

    Guzman, Horacio V; Garcia, Pablo D; Garcia, Ricardo

    2015-01-01

    We present a simulation environment, dForce, which can be used for a better understanding of dynamic force microscopy experiments. The simulator presents the cantilever-tip dynamics for two dynamic AFM methods, tapping mode AFM and bimodal AFM. It can be applied for a wide variety of experimental situations in air or liquid. The code provides all the variables and parameters relevant in those modes, for example, the instantaneous deflection and tip-surface force, velocity, virial, dissipated energy, sample deformation and peak force as a function of time or distance. The simulator includes a variety of interactions and contact mechanics models to describe AFM experiments including: van der Waals, Hertz, DMT, JKR, bottom effect cone correction, linear viscoelastic forces or the standard linear solid viscoelastic model. We have compared two numerical integration methods to select the one that offers optimal accuracy and speed. The graphical user interface has been designed to facilitate the navigation of non-experts in simulations. Finally, the accuracy of dForce has been tested against numerical simulations performed during the last 18 years. PMID:25821676

  18. Dynamic force microscopy simulator (dForce): A tool for planning and understanding tapping and bimodal AFM experiments

    PubMed Central

    Guzman, Horacio V; Garcia, Pablo D

    2015-01-01

    Summary We present a simulation environment, dForce, which can be used for a better understanding of dynamic force microscopy experiments. The simulator presents the cantilever–tip dynamics for two dynamic AFM methods, tapping mode AFM and bimodal AFM. It can be applied for a wide variety of experimental situations in air or liquid. The code provides all the variables and parameters relevant in those modes, for example, the instantaneous deflection and tip–surface force, velocity, virial, dissipated energy, sample deformation and peak force as a function of time or distance. The simulator includes a variety of interactions and contact mechanics models to describe AFM experiments including: van der Waals, Hertz, DMT, JKR, bottom effect cone correction, linear viscoelastic forces or the standard linear solid viscoelastic model. We have compared two numerical integration methods to select the one that offers optimal accuracy and speed. The graphical user interface has been designed to facilitate the navigation of non-experts in simulations. Finally, the accuracy of dForce has been tested against numerical simulations performed during the last 18 years. PMID:25821676

  19. LET Spectrum Measurements In CR-39 PNTD With AFM

    NASA Astrophysics Data System (ADS)

    Johnson, C. E.; DeWitt, J. M.; Benton, E. R.; Yasuda, N.; Benton, E. V.

    2011-06-01

    Energetic protons, neutrons, and heavy ions undergoing collisions with target nuclei of varying Z can produce residual heavy recoil fragments via intra-nuclear cascade/evaporation reactions. The particles produced in these non-elastic collisions generally have such extremely short range (˜<10 μm) that they cannot be directly observed by conventional detection methods including CR-39 plastic nuclear track detector (PNTD) that has been chemically etched for analysis by standard visible light microscopy. However, high-LET recoil fragments having range on the order of several cell diameters can be produced in tissue during radiotherapy using proton and carbon beams. We have developed a method to analyze short-range, high-LET tracks in CR-39 plastic nuclear track detector (PNTD) using short duration chemical etching (˜<1 μm) following by automated atomic force microscope (AFM) scanning. The post-scan data processing used in this work was based on semi-automated matrix analysis opposed to traditional grey-scale image analysis. This method takes advantage of the 3-D data obtained via AFM to achieve robust discrimination of nuclear tracks from other features inherently present in the post-etch detector surface. Through automation of AFM scanning, sufficient AFM scan frames were obtained to attain an LET spectrum spanning the LET range from 200-1500 keV/μm. In addition to our experiments, simulations were carried out with the Monte Carlo transport code, FLUKA. To demonstrate this method, CR-39 PNTD was exposed to the proton therapy beam at Loma Linda University Medical Center (LLUMC) at 60 and 230 MeV. Additionally, detectors were exposed to 1 GeV protons at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL). For these exposures CR-39 PNTD, Al and Cu target foils were used between detector layers.

  20. AFM and SThM Characterization of Graphene

    NASA Astrophysics Data System (ADS)

    Foy, Christopher; Sidorov, Anton; Chen, Xunchi; Ruan, Ming; Berger, Claire; de Heer, Walter; Jiang, Zhigang

    2012-03-01

    We report on detailed characterization of epitaxial grown graphene on SiC and chemical vapor deposition grown graphene on Cu foil using atomic force microscopy (AFM) and scanning thermal microscopy (SThM). We focus on the electronic and thermal properties of graphene grain boundaries, and thus providing valuable feedback to materials growth. Specifically, we perform thermal conductivity contrast mapping and surface potential mapping of graphene, and compare with that obtained on the Au electrodes and the substrate.

  1. Investigation of biopolymer networks by means of AFM

    NASA Astrophysics Data System (ADS)

    Keresztes, Z.; Rigó, T.; Telegdi, J.; Kálmán, E.

    Natural hydrogel alginate was investigated by means of atomic force microscopy (AFM) to gain microscale information on the morphological and rheological properties of the biopolymer network cross-linked by various cations. Local rheological properties of the gels measured by force spectroscopy gave correlation between increasing ion selectivity and increasing polymer elasticity. Adhesive forces acting between the surface of the gel and the probe, and also the intrinsic rheological properties of bulk polymers affect the microscopical image formation.

  2. LET Spectrum Measurements In CR-39 PNTD With AFM

    SciTech Connect

    Johnson, C. E.; DeWitt, J. M.; Benton, E. R.; Yasuda, N.; Benton, E. V.

    2011-06-01

    Energetic protons, neutrons, and heavy ions undergoing collisions with target nuclei of varying Z can produce residual heavy recoil fragments via intra-nuclear cascade/evaporation reactions. The particles produced in these non-elastic collisions generally have such extremely short range ({approx}<10 {mu}m) that they cannot be directly observed by conventional detection methods including CR-39 plastic nuclear track detector (PNTD) that has been chemically etched for analysis by standard visible light microscopy. However, high-LET recoil fragments having range on the order of several cell diameters can be produced in tissue during radiotherapy using proton and carbon beams. We have developed a method to analyze short-range, high-LET tracks in CR-39 plastic nuclear track detector (PNTD) using short duration chemical etching ({approx}<1 {mu}m) following by automated atomic force microscope (AFM) scanning. The post-scan data processing used in this work was based on semi-automated matrix analysis opposed to traditional grey-scale image analysis. This method takes advantage of the 3-D data obtained via AFM to achieve robust discrimination of nuclear tracks from other features inherently present in the post-etch detector surface. Through automation of AFM scanning, sufficient AFM scan frames were obtained to attain an LET spectrum spanning the LET range from 200-1500 keV/{mu}m. In addition to our experiments, simulations were carried out with the Monte Carlo transport code, FLUKA. To demonstrate this method, CR-39 PNTD was exposed to the proton therapy beam at Loma Linda University Medical Center (LLUMC) at 60 and 230 MeV. Additionally, detectors were exposed to 1 GeV protons at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL). For these exposures CR-39 PNTD, Al and Cu target foils were used between detector layers.

  3. Quantitative nano-mechanics of biological cells with AFM

    NASA Astrophysics Data System (ADS)

    Sokolov, Igor

    2013-03-01

    The importance of study of living cells is hard to overestimate. Cell mechanics is a relatively young, yet not a well-developed area. Besides just a fundamental interest, large practical need has emerged to measure cell mechanics quantitatively. Recent studies revealed a significant correlation between stiffness of biological cells and various human diseases, such as cancer, malaria, arthritis, and even aging. However, really quantitative studies of mechanics of biological cells are virtually absent. It is not even clear if the cell, being a complex and heterogeneous object, can be described by the elastic modulus at all. Atomic force microscopy (AFM) is a natural instrument to study properties of cells in their native environments. Here we will demonstrate that quantitative measurements of elastic modulus of cells with AFM are possible. Specifically, we will show that the ``cell body'' (cell without ``brush'' surface layer, a non-elastic layer surrounding cells) typically demonstrates the response of a homogeneous elastic medium up to the deformation of 10-20%, but if and only if a) the cellular brush layer is taken into account, b) rather dull AFM probes are used. This will be justified with the help of the strong condition of elastic behavior of material: the elastic modulus is shown to be independent on the indentation depth. We will also demonstrate that an attempt either to ignore the brush layer or to use sharp AFM probes will result in the violation of the strong condition, which implies impossibility to use the concept of the elastic modulus to describe cell mechanics in such experiments. Examples of quantitative measurements of the Young's modulus of the cell body and the cell brush parameters will be given for various cells. Address when submitting: Clarkson University, Potsdam, NY 13699

  4. LET spectrum measurements in Cr-39 PNTD with AFM

    SciTech Connect

    Johnson, Carl Edward; De Witt, Joel M; Benton, Eric R; Yasuda, Nakahiro; Benton, Eugene V

    2010-01-01

    Energetic protons, neutrons, and heavy ions undergoing collisions with target nuclei of varying Z can produce residual heavy recoil fragments via intra-nuclear cascade/evaporation reactions. The particles produced in these non-elastic collisions generally have such extremely short range ({approx}< 10 {mu}m) that they cannot be directly observed by conventional detection methods including CR-39 plastic nuclear track detector (PNTD) that has been chemically etched for analysis by standard visible light microscopy. However, high-LET recoil fragments having range on the order of several cell diameters can be produced in tissue during radiotherapy using proton and carbon beams. We have developed a method to analyze short-range, high-LET tracks in CR-39 plastic nuclear track detector (PNTD) using short duration chemical etching ({approx}< 1 {mu}m) followed by automated atomic force microscope (AFM) scanning. The post-scan data processing used in this work was based on semi-automated matrix analysis opposed to traditional grey-scale image analysis. This method takes advantage of the 3-D data obtained via AFM to achieve robust discrimination of nuclear tracks from other features. Through automation of AFM scanning, sufficient AFM scan frames were obtained to attain an LET spectrum spanning the LET range from 200-1500 keV/{mu}m. In addition to our experiments, simulations were carried out with the Monte Carlo transport code, FLUKA. To demonstrate this method, CR-39 PNTD was exposed to the proton therapy beam at Loma Linda University Medical Center (LLUMC) at 60 and 230 MeV. Additionally, detectors were exposed to I GeV protons at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL). For these exposures CR-39 PNTD, Al and Cu target foils were used between detector layers.

  5. [Energy-dispersive x-ray fluorescence spectrometry--a forensic chemistry method for determination of shooting distance].

    PubMed

    Havel, J

    2003-10-01

    The article follows up the experiences Energo-dispersive X-ray fluorescence spectrometry (EDXRF) as the forensic necrochemical method as the tool for detection of metals (gunshot residues--GSR) in connection with gunshot-wounds of persons--authors: dipl. Ing. J. Havel and dipl. Ing. K. Zelenka and Energo-dispersive X-ray fluorescence spectrometry (EDXRF) as the forensic method as the tool for identification of inlets (gunshot--entries) and outlets (gunshot--exits)--author: dipl. Ing. J. Havel. PMID:14661530

  6. Elemental analysis of sunflower cataract in Wilson's disease: a study using scanning transmission electron microscopy and energy dispersive spectroscopy.

    PubMed

    Jang, Hyo Ju; Kim, Joon Mo; Choi, Chul Young

    2014-04-01

    Signature ophthalmic characteristics of Wilson's disease (WD) are regarded as diagnostically important manifestations of the disease. Previous studies have proved the common occurrence of copper accumulation in the liver of patients with WD. However, in the case of sunflower cataracts, one of the rare diagnostic signs of WD, no study has demonstrated copper accumulation in the lens capsules of sunflower cataracts in WD patients. To investigate the nanostructure and elemental composition of sunflower cataracts in WD, transmission electron microscopy (TEM) was done on the capsulorhexised anterior lens capsule of sunflower cataracts in WD in order to evaluate anatomical variation and elemental changes. We utilized energy dispersive X-ray spectroscopy (EDS) to investigate the elemental composition of the lens capsule using both point and mapping spectroscopy. Quantitative analysis was performed for relative comparison of the elements. TEM showed the presence of granular deposits of varying size (20-350 nm), appearing mainly in the posterior one third of the anterior capsule. The deposits appeared in linear patterns with scattered dots. There were no electron-dense particles in the epithelial cell layer of the lens. Copper and sulfur peaks were consistently revealed in electron-dense granular deposits. In contrast, copper and sulfur peaks were absent in other tissues, including granule-free lens capsules and epithelial tissue. Most copper was exclusively located in clusters of electron-dense particles, and the copper distribution overlapped with sulfur on mapping spectroscopy. Quantitative analysis presented inconsistent ratios of copper to sulfur in each electron-dense granule. The mean ratio of copper to sulfur was about 3.25 (with a range of 2.39-3.78). This is the first elemental analysis of single electron particles in sunflower cataracts using EDS in the ophthalmic area. Sunflower cataracts with WD are assumed to be the result of accumulation of heterogeneous

  7. Near-Field Spectroscopy with Nanoparticles Deposited by AFM

    NASA Technical Reports Server (NTRS)

    Anderson, Mark S.

    2008-01-01

    An alternative approach to apertureless near-field optical spectroscopy involving an atomic-force microscope (AFM) entails less complexity of equipment than does a prior approach. The alternative approach has been demonstrated to be applicable to apertureless near-field optical spectroscopy of the type using an AFM and surface enhanced Raman scattering (SERS), and is expected to be equally applicable in cases in which infrared or fluorescence spectroscopy is used. Apertureless near-field optical spectroscopy is a means of performing spatially resolved analyses of chemical compositions of surface regions of nanostructured materials. In apertureless near-field spectroscopy, it is common practice to utilize nanostructured probe tips or nanoparticles (usually of gold) having shapes and dimensions chosen to exploit plasmon resonances so as to increase spectroscopic-signal strengths. To implement the particular prior approach to which the present approach is an alternative, it is necessary to integrate a Raman spectrometer with an AFM and to utilize a special SERS-active probe tip. The resulting instrumentation system is complex, and the tasks of designing and constructing the system and using the system to acquire spectro-chemical information from nanometer-scale regions on a surface are correspondingly demanding.

  8. Tissue section AFM: In situ ultrastructural imaging of native biomolecules

    PubMed Central

    Graham, Helen K.; Hodson, Nigel W.; Hoyland, Judith A.; Millward-Sadler, Sarah J.; Garrod, David; Scothern, Anthea; Griffiths, Christopher E.M.; Watson, Rachel E.B.; Cox, Thomas R.; Erler, Janine T.; Trafford, Andrew W.; Sherratt, Michael J.

    2010-01-01

    Conventional approaches for ultrastructural high-resolution imaging of biological specimens induce profound changes in bio-molecular structures. By combining tissue cryo-sectioning with non-destructive atomic force microscopy (AFM) imaging we have developed a methodology that may be applied by the non-specialist to both preserve and visualize bio-molecular structures (in particular extracellular matrix assemblies) in situ. This tissue section AFM technique is capable of: i) resolving nm–µm scale features of intra- and extracellular structures in tissue cryo-sections; ii) imaging the same tissue region before and after experimental interventions; iii) combining ultrastructural imaging with complimentary microscopical and micromechanical methods. Here, we employ this technique to: i) visualize the macro-molecular structures of unstained and unfixed fibrillar collagens (in skin, cartilage and intervertebral disc), elastic fibres (in aorta and lung), desmosomes (in nasal epithelium) and mitochondria (in heart); ii) quantify the ultrastructural effects of sequential collagenase digestion on a single elastic fibre; iii) correlate optical (auto fluorescent) with ultrastructural (AFM) images of aortic elastic lamellae. PMID:20144712

  9. Nanoscale rippling on polymer surfaces induced by AFM manipulation

    PubMed Central

    2015-01-01

    Summary Nanoscale rippling induced by an atomic force microscope (AFM) tip can be observed after performing one or many scans over the same area on a range of materials, namely ionic salts, metals, and semiconductors. However, it is for the case of polymer films that this phenomenon has been widely explored and studied. Due to the possibility of varying and controlling various parameters, this phenomenon has recently gained a great interest for some technological applications. The advent of AFM cantilevers with integrated heaters has promoted further advances in the field. An alternative method to heating up the tip is based on solvent-assisted viscoplastic deformations, where the ripples develop upon the application of a relatively low force to a solvent-rich film. An ensemble of AFM-based procedures can thus produce nanoripples on polymeric surfaces quickly, efficiently, and with an unprecedented order and control. However, even if nanorippling has been observed in various distinct modes and many theoretical models have been since proposed, a full understanding of this phenomenon is still far from being achieved. This review aims at summarizing the current state of the art in the perspective of achieving control over the rippling process on polymers at a nanoscale level. PMID:26733086

  10. AFM imaging of functionalized carbon nanotubes on biological membranes

    NASA Astrophysics Data System (ADS)

    Lamprecht, C.; Liashkovich, I.; Neves, V.; Danzberger, J.; Heister, E.; Rangl, M.; Coley, H. M.; McFadden, J.; Flahaut, E.; Gruber, H. J.; Hinterdorfer, P.; Kienberger, F.; Ebner, A.

    2009-10-01

    Multifunctional carbon nanotubes are promising for biomedical applications as their nano-size, together with their physical stability, gives access into the cell and various cellular compartments including the nucleus. However, the direct and label-free detection of carbon nanotube uptake into cells is a challenging task. The atomic force microscope (AFM) is capable of resolving details of cellular surfaces at the nanometer scale and thus allows following of the docking of carbon nanotubes to biological membranes. Here we present topographical AFM images of non-covalently functionalized single walled (SWNT) and double walled carbon nanotubes (DWNT) immobilized on different biological membranes, such as plasma membranes and nuclear envelopes, as well as on a monolayer of avidin molecules. We were able to visualize DWNT on the nuclear membrane while at the same time resolving individual nuclear pore complexes. Furthermore, we succeeded in localizing individual SWNT at the border of incubated cells and in identifying bundles of DWNT on cell surfaces by AFM imaging.

  11. Investigation of the Mechanoelectrical Transduction at Single Stereocilia by Afm

    NASA Astrophysics Data System (ADS)

    Langer, M. G.; Fink, S.; Löffler, K.; Koitschev, A.; Zenner, H.-P.

    2003-02-01

    The transduction of sound into an electrical signal in the inner ear is closely related to the mechanical properties of the hair bundles cytoskeleton and cross-linkage. In this study the effect of lateral cross-links on hair bundle mechanics and the transduction current response is demonstrated on the level of individual stereocilia. For experiments stereocilia of outer hair cells of postnatal rats (P3 - P8) were scanned with a sharp AFM tip at nanometerscale. Transduction currents were simultaneously recorded in the whole-cell-recording mode with patch clamp. AFM was used as a nanotool for local mechanical stimulation and force measurement at stereocilia whereas patch clamp serves as a detector for the electrical response of the cell. In a first experiment force transmission between adjacent stereocilia of the V- and W- shaped hair bundles of outer hair cells was investigated. Results showed that a force exerted to a single stereocilium declined to 36 % at the nearest adjacent stereocilium of the same row. This result supposes AFM to be convenient for local displacement of single stereocilia. For control, the local response of transduction channels was measured at single stereocilia of the same hair bundle. Measured transduction current amplitudes ranged from 9 to 49 pA supposing an opening of one to five transduction channels. Both, weak force transmission by lateral cross-links and small transduction current amplitudes indicate a weak mechanical interaction between individual stereocilia of the tallest row of stereocilia of outer hair cells from postnatal rats.

  12. Oxide nanocrystal based nanocomposites for fabricating photoplastic AFM probes.

    PubMed

    Ingrosso, Chiara; Martin-Olmos, Cristina; Llobera, Andreu; Innocenti, Claudia; Sangregorio, Claudio; Striccoli, Marinella; Agostiano, Angela; Voigt, Anja; Gruetzner, Gabi; Brugger, Jürgen; Perez-Murano, Francesc; Curri, Maria Lucia

    2011-11-01

    We report on the synthesis, characterization and application of a novel nanocomposite made of a negative tone epoxy based photoresist modified with organic-capped Fe(2)O(3) nanocrystals (NCs). The mechanical properties of the nanocomposite drastically improve upon incorporation of a suitable concentration of NCs in the polymer, without deteriorating its photolithography performance. High aspect ratio 3D microstructures made of the nanocomposite have been fabricated with a uniform surface morphology and with a resolution down to few micrometres. The embedded organic-capped Fe(2)O(3) NCs drastically increase the stiffness and hardness of the epoxy based photoresist matrix, making the final material extremely interesting for manufacturing miniaturized polymer based mechanical devices and systems. In particular, the nanocomposite has been used as structural material for fabricating photoplastic Atomic Force Microscopy (AFM) probes with integrated tips showing outstanding mechanical response and high resolution imaging performance. The fabricated probes consist of straight cantilevers with low stress-gradient and high quality factors, incorporating sharp polymeric tips. They present considerably improved performance compared to pure epoxy based photoresist AFM probes, and to commercial silicon AFM probes. PMID:21858377

  13. Combination of electron energy-loss spectroscopy and energy dispersive x-ray spectroscopy to determine indium concentration in InGaN thin film structures

    NASA Astrophysics Data System (ADS)

    Wang, X.; Chauvat, M. P.; Ruterana, P.; Walther, T.

    2015-11-01

    We demonstrate a method to determine the indium concentration, x, of In x Ga1-x N thin films by combining plasmon excitation studies in electron energy-loss spectroscopy (EELS) with a novel way of quantification of the intensity of x-ray lines in energy-dispersive x-ray spectroscopy (EDXS). The plasmon peak in EELS of InGaN is relatively broad. We fitted a Lorentz function to the main plasmon peak to suppress noise and the influence from the neighboring Ga 3d transition in the spectrum, which improves the precision in the evaluation of the plasmon peak position. As the indium concentration of InGaN is difficult to control during high temperature growth due to partial In desorption, the nominal indium concentrations provided by the growers were not considered reliable. The indium concentration obtained from EDXS quantification using Oxford Instrument ISIS 300 x-ray standard quantification software often did not agree with the nominal indium concentration, and quantification using K and L lines was inconsistent. We therefore developed a self-consistent iterative procedure to determine the In content from thickness-dependent k-factors, as described in recent work submitted to Journal of Microscopy. When the plasmon peak position is plotted versus the indium concentration from EDXS we obtain a linear relationship over the whole compositional range, and the standard error from linear least-squares fitting shows that the indium concentration can be determined from the plasmon peak position to within Δx = ± 0.037 standard deviation.

  14. Dispersion Modeling.

    ERIC Educational Resources Information Center

    Budiansky, Stephen

    1980-01-01

    This article discusses the need for more accurate and complete input data and field verification of the various models of air pollutant dispension. Consideration should be given to changing the form of air quality standards based on enhanced dispersion modeling techniques. (Author/RE)

  15. Electron-excited energy dispersive X-ray spectrometry at high speed and at high resolution: silicon drift detectors and microcalorimeters.

    PubMed

    Newbury, Dale E

    2006-12-01

    Two recent developments in X-ray spectrometer technology provide dramatic improvements in analytical capabilities that impact the frontiers of electron microscopy. Silicon drift detectors (SDD) use the same physics as silicon (lithium) energy dispersive spectrometers [Si(Li) EDS] but differ in design: only 10% of the thickness of the Si(Li) EDS with an anode area below 0.1 mm2 and a complex rear surface electrode pattern that creates a lateral internal charge collection field. The SDD equals or betters the Si(Li) EDS in most measures of performance. For output versus input count rate, the SDD exceeds the Si(Li) EDS by a factor of 5 to 10 for the same resolution. This high throughput can benefit analytical measurements that are count limited, such as X-ray mapping and trace measurements. The microcalorimeter EDS determines the X-ray energy by measuring the temperature rise in a metal absorber. Operating at 100 mK, the microcalorimeter EDS achieves resolution of 2-5 eV over a photon energy range of 200 eV to 10 keV in energy dispersive operation, eliminating most peak interference situations and providing high peak-to-background to detect low fluorescence yield peaks. Chemical bonding effects on low energy (< 2 keV) peak shapes can be measured. PMID:19830945

  16. Characterization of Pebax angioplasty balloon surfaces with AFM, SEM, TEM, and SAXS.

    PubMed

    Warner, Jacob A; Forsyth, Bruce; Zhou, Fang; Myers, Jason; Frethem, Chris; Haugstad, Greg

    2016-04-01

    In the medical device industry, angioplasty balloons have been widely used in the less invasive treatment of heart disease by expanding and relieving clogged structures in various arterial segments. However, new applications using thin coatings on the balloon surface have been explored to enhance therapeutic value in the delivery of pharmaceuticals (drug-elution) or control thermal energy output (RF ablation). In this study, angioplasty balloon materials comprised of poly(ether-block-amide) (Pebax) were investigated via atomic force microscopy (AFM), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and small-angle X-ray scattering (SAXS) to characterize physical properties at the balloon surface that may affect coating adhesion. The soft segment of this Pebax 1074 material is polyethylene oxide (PEO) and the hard segment is nylon-12. The morphology of the hard segments of this block co-polymer are found via AFM stiffness measurements to be (40 ± 20) nm by (300 ± 150) nm and are oriented parallel to the surface of the balloon. SAXS measurements found the lamellar spacing to be (18.5 ± 0.5) nm, and demonstrate a preferential orientation in agreement with TEM and AFM measurements. Fixation of this balloon in resin, followed by cryo-sectioning is shown to provide a novel manner in which to investigate surface characteristics on the balloon such as material or coating thickness as well as uniformity in comparison to the bulk structure. These outputs were deemed critical to improve overall balloon processing such as molding and surface treatment options for robust designs toward better procedural outcomes targeting new therapeutic areas. PMID:25891789

  17. Generation of high energy square-wave pulses in all anomalous dispersion Er:Yb passive mode locked fiber ring laser.

    PubMed

    Semaan, Georges; Ben Braham, Fatma; Salhi, Mohamed; Meng, Yichang; Bahloul, Faouzi; Sanchez, François

    2016-04-18

    We have experimentally demonstrated square pulses emission from a co-doped Er:Yb double-clad fiber laser operating in anomalous dispersion DSR regime using the nonlinear polarization evolution technique. Stable mode-locked pulses have a repetition rate of 373 kHz with 2.27 µJ energy per pulse under a pumping power of 30 W in cavity. With the increase of pump power, both the duration and the energy of the output square pulses broaden. The experimental results demonstrate that the passively mode-locked fiber laser operating in the anomalous regime can also realize a high-energy pulse, which is different from the conventional low-energy soliton pulse. PMID:27137277

  18. Synthesis of polymer nano-brushes by self-seeding method and study of various morphologies by AFM

    NASA Astrophysics Data System (ADS)

    Agbolaghi, S.; Abbaspoor, S.; Abbasi, F.

    2016-11-01

    Polymer brushes due to their high sensitivity to environmental changes are the best and newest means for developing the responsive materials. Polymer nano-brushes consisting various surface morphologies and uniformly distributed amorphous grafted chains were synthesized via single-crystal growth procedure. Poly(ethylene glycol)- b-polystyrene (PEG- b-PS) and poly(ethylene glycol)- b-poly(methyl methacrylate) (PEG- b-PMMA) block copolymers were prepared by atom transfer radical polymerization (ATRP). On the basis of various height differences, phase regions were detectable through atomic force microscopy (AFM NanoscopeIII). The novelty of this work is developing and characterizing the random and intermediate single-co-crystals. Besides, some other sorts of brush-covered single crystals like homo-brush and matrix-dispersed mixed-brushes were involved just for comparing the distinct morphologies. The intermediate (neither matrix-dispersed nor random) single-co-crystals were detectable through their thickness fluctuations in AFM height profiles. On the contrary, the random single-co-crystals were verified through comparing with their corresponding homopolymer and homo-brush single crystals. The growth fronts of (120), (240), (200) and (040) were detected by electron diffraction of transmission electron microscope.

  19. Fog dispersion

    NASA Technical Reports Server (NTRS)

    Frost, W.; Christensen, L. S.; Collins, F. G.; Camp, D. W.

    1980-01-01

    A study of economically viable techniques for dispersing warm fog at commercial airports is presented. Five fog dispersion techniques are examined: evaporation suppression, downwash, mixing, seeding with hygroscopic material, thermal techniques, and charged particle techniques. Thermal techniques, although effective, were found to be too expensive for routine airport operations, and detrimental to the environment. Seeding or helicopter downwash are practical for small-scale or temporary fog clearing, but are probably not useful for airport operations on a routine basis. Considerable disagreement exists on the capability of charged particle techniques, which stems from the fact that different assumptions and parameter values are used in the analytical models. Recommendations resulting from the review of this technique are listed, and include: experimental measurements of the parameters in question; a study to ascertain possible safety hazards, such as increased electrical activity or fuel ignition during refueling operations which could render charged particle techniques impractical; and a study of a single charged particle generator.

  20. History of Resistance Welding Oxide Dispersion Strengthened Cladding and other High Temperature Materials at Center for Advanced Energy Studies

    SciTech Connect

    Larry Zirker; Nathan Jerred; Dr. Indrajit Charit; James Cole

    2012-03-01

    Research proposal 08-1079, 'A Comparative Study of Welded ODS Cladding Materials for AFCI/GNEP,' was funded in 2008 under an Advanced Fuel Cycle Initiative (AFCI) Research and Development Funding Opportunity, number DE-PS07-08ID14906. Th proposal sought to conduct research on joining oxide dispersion strengthen (ODS) tubing material to a solid end plug. This document summarizes the scientific and technical progress achieved during the project, which ran from 2008 to 2011.

  1. Applications of AFM for atomic manipulation and spectroscopy

    NASA Astrophysics Data System (ADS)

    Custance, Oscar

    2009-03-01

    Since the first demonstration of atom-by-atom assembly [1], atomic manipulation with scanning tunneling microscopy has yielded stunning realizations in nanoscience. A new exciting panorama has been recently opened with the possibility of manipulating atoms at surfaces using atomic force microscopy (AFM) [2-5]. In this talk, we will present two different approaches that enable patterning structures at semiconductor surfaces by manipulating individual atoms with AFM and at room temperature [2, 3]. We will discuss the physics behind each protocol through the analysis of the measured forces associated with these manipulations [3-5]. Another challenging issue in scanning probe microscopy is the ability to disclose the local chemical composition of a multi-element system at atomic level. Here, we will introduce a single-atom chemical identification method, which is based on detecting the forces between the outermost atom of the AFM tip and the atoms at a surface [6]. We demonstrate this identification procedure on a particularly challenging system, where any discrimination attempt based solely on topographic measurements would be impossible to achieve. [4pt] References: [0pt] [1] D. M. Eigler and E. K. Schweizer, Nature 344, 524 (1990); [0pt] [2] Y. Sugimoto, M. Abe, S. Hirayama, N. Oyabu, O. Custance and S. Morita, Nature Materials 4, 156 (2005); [0pt] [3] Y. Sugimoto, P. Pou, O. Custance, P. Jelinek, M. Abe, R. Perez and S. Morita, Science 322, 413 (2008); [0pt] [4] Y. Sugimoto, P. Jelinek, P. Pou, M. Abe, S. Morita, R. Perez and O. Custance, Phys. Rev. Lett. 98, 106104 (2007); [0pt] [5] M. Ternes, C. P. Lutz, C. F. Hirjibehedin, F. J. Giessibl and A. J. Heinrich, Science 319, 1066 (2008); [0pt] [6] Y. Sugimoto, P. Pou, M. Abe, P. Jelinek, R. Perez, S. Morita, and O. Custance, Nature 446, 64 (2007)

  2. Method for the determination of Pd-catalyst residues in active pharmaceutical ingredients by means of high-energy polarized-beam energy dispersive X-ray fluorescence.

    PubMed

    Marguí, E; Van Meel, K; Van Grieken, R; Buendía, A; Fontàs, C; Hidalgo, M; Queralt, I

    2009-02-15

    In medicinal chemistry, Pd is perhaps the most-widely utilized precious metal, as catalyst in reactions which represent key transformations toward the synthesis of new active pharmaceutical ingredients (APIs). The disadvantage of this metal-catalyzed chemistry is that expensive and toxic metal residues are invariably left bound to the desired product. Thus, stringent regulatory guidelines exist for the amount of residual Pd that a drug candidate is allowed to contain. In this work, a rapid and simple method for the determination of Pd in API samples by high-energy polarized-beam energy dispersive X-ray fluorescence spectrometry has been developed and validated according to the specification limits of current legislation (10 mg kg(-1) Pd) and the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH guidelines). Sample and calibration standards preparation includes a first step of homogenization and then, in a second step, the pressing of the powdered material into pellets without any chemical treatment. The use of several synthetic calibration standards made of cellulose to simulate the API matrix appears to be an effective means to obtain reliable calibration curves with a good spread of data points over the working range. With the use of the best measuring conditions, the limit of detection (0.11 mg kg(-1) Pd) as well as the limit of quantitation (0.37 mg kg(-1) Pd) achieved meet rigorous requirements. The repeatability of the XRF measurement appeared to be less than 2%, while the precision of the whole method was around 7%. Trueness was evaluated by analyzing spiked API samples at the level of the specification limit and calculating the recovery factor, which was better than 95%. To study the applicability of the developed methodology for the intended purpose, three batches of the studied API were analyzed for their Pd content, and the attained results were comparable to those obtained by the

  3. KISMET tungsten dispersal experiment

    SciTech Connect

    Wohletz, K.; Kunkle, T.; Hawkins, W.

    1996-12-01

    Results of the KISMET tungsten dispersal experiment indicate a relatively small degree of wall-rock contamination caused by this underground explosive experiment. Designed as an add-on to the KISMET test, which was performed in the U-1a.02 drift of the LYNER facility at Nevada Test Site on 1 March 1995, this experiment involved recovery and analysis of wall-rock samples affected by the high- explosive test. The chemical, high-explosive blast drove tungsten powder, placed around the test package as a plutonium analog, into the surrounding wall- rock alluvium. Sample analyses by an analytical digital electron microscope (ADEM) show tungsten dispersed in the rock as tiny (<10 {mu}m) particles, agglomerates, and coatings on alluvial clasts. Tungsten concentrations, measured by energy dispersive spectral analysis on the ADEM, indicate penetration depths less than 0.1 m and maximum concentrations of 1.5 wt % in the alluvium.

  4. An approach towards 3D sensitive AFM cantilevers

    NASA Astrophysics Data System (ADS)

    Koops, Richard; Fokkema, Vincent

    2014-04-01

    The atomic force microscope (AFM) tapping mode is a highly sensitive local probing technique that is very useful to study and measure surface properties down to the atomic scale. The tapping mode is mostly implemented using the resonance of the first bending mode of the cantilever and therefore provides sensitivity mainly along the direction of this oscillation. Driven by the semiconductor industry, there is an increasing need for accurate measurements of nanoscale structures for side wall characterization by AFM that requires additional sensitivity in the lateral direction. The conventional tapping mode has been augmented by various authors, for example by tilting the cantilever system (Cho et al 2011 Rev. Sci. Instrum. 82 023707) to access the sidewall or using a torsion mode (Dai et al 2011 Meas. Sci. Technol. 22 094009) of the cantilever to provide additional lateral sensitivity. These approaches however trade lateral sensitivity for vertical sensitivity or still lack sensitivity in the remaining lateral direction. We present an approach towards true 3D sensitivity for AFM cantilevers based on simultaneous excitation and optical detection of multiple cantilever resonance modes along three axes. Tuning the excitation of the cantilever to specific frequencies provides a mechanism to select only those cantilever modes that have the desired characteristics. Additionally, cantilever engineering has been used to design and create a substructure within the cantilever that has been optimized for specific resonance behavior around 4 MHz. In contrast to the conventional approach of using a piezo to actuate the cantilever modulation, we present results on photo-thermal excitation using an intensity modulated low-power laser source. By tightly focusing the excitation spot on the cantilever we were able to attain a deflection efficiency of 0.7 nm µW-1 for the first bending mode. The presented approach results in an efficient all optical excitation and deflection detection

  5. The Advancing State of AF-M315E Technology

    NASA Technical Reports Server (NTRS)

    Masse, Robert; Spores, Ronald A.; McLean, Chris

    2014-01-01

    The culmination of twenty years of applied research in hydroxyl ammonium nitrate (HAN)-based monopropellants, the NASA Space Technology mission Directorate's (STMD) Green Propellant Infusion Mission (GPIM) will achieve the first on-orbit demonstration of an operational AF-M315E green propellant propulsion system by the end of 2015. Following an contextual overview of the completed flight design of the GPIM propellant storage and feed system, results of first operation of a flight-representative heavyweight 20-N engineering model thruster (to be conducted in mid-2014) are presented with performance comparisons to prior lab model (heavyweight) test articles.

  6. Comparison of dynamic lever STM and noncontact AFM

    NASA Astrophysics Data System (ADS)

    Guggisberg, M.; Bammerlin, M.; Lüthi, R.; Loppacher, C.; Battiston, F.; Lü, J.; Baratoff, A.; Meyer, E.; Güntherodt, H.-J.

    We investigate interaction effects which occur in scanning tunneling microscopy (STM) by performing local force spectroscopy with an oscillating tip while imaging Si(111)7×7 terraces in the dynamic lever STM mode (constant time-averaged current). It is found that true atomic resolution is achieved close to the minimum of the resonance frequency vs. distance curve and even closer to the sample. On the other hand true atomic resolution in noncontact AFM (constant frequency shift) is expected several nm away from this minimum, in the range where the frequency shift becomes more negative with decreasing distance.

  7. Dispersive optical potential from an analysis of neutron single-particle energies in the Ti, Cr, and Fe isotopes featuring 20 to 50 neutrons

    SciTech Connect

    Bespalova, O. V. Ermakova, T. A.; Klimochkina, A. A.; Romanovsky, E. A.; Spasskaya, T. I.

    2012-11-15

    Neutron single-particle energies in unstable Ti, Cr, and Fe isotopes containing 20 to 26 neutrons were evaluated on the basis of experimental proton energies in the mirror-symmetric nuclei. The neutron single-particle energies in the 20 Less-Than-Or-Slanted-Equal-To N Less-Than-Or-Slanted-Equal-To 50 Ti, Cr, and Fe isotopes were calculated on the basis of the mean-field model with a dispersive optical potential, and the results were compared with available experimental data and with the results of estimations and calculations based on the relativistic mean-field model and on the multiparticle shell model with the GXPF1 interaction.

  8. The ground states of iron(III) porphines: role of entropy-enthalpy compensation, Fermi correlation, dispersion, and zero-point energies.

    PubMed

    Kepp, Kasper P

    2011-10-01

    Porphyrins are much studied due to their biochemical relevance and many applications. The density functional TPSSh has previously accurately described the energy of close-lying electronic states of transition metal systems such as porphyrins. However, a recent study questioned this conclusion based on calculations of five iron(III) porphines. Here, we compute the geometries of 80 different electronic configurations and the free energies of the most stable configurations with the functionals TPSSh, TPSS, and B3LYP. Zero-point energies and entropy favor high-spin by ~4kJ/mol and 0-10kJ/mol, respectively. When these effects are included, and all electronic configurations are evaluated, TPSSh correctly predicts the spin of all the four difficult phenylporphine cases and is within the lower bound of uncertainty of any known theoretical method for the fifth, iron(III) chloroporphine. Dispersion computed with DFT-D3 favors low-spin by 3-53kJ/mol (TPSSh) or 4-15kJ/mol (B3LYP) due to the attractive r(-6) term and the shorter distances in low-spin. The very large and diverse corrections from TPSS and TPSSh seem less consistent with the similarity of the systems than when calculated from B3LYP. If the functional-specific corrections are used, B3LYP and TPSSh are of equal accuracy, and TPSS is much worse, whereas if the physically reasonable B3LYP-computed dispersion effect is used for all functionals, TPSSh is accurate for all systems. B3LYP is significantly more accurate when dispersion is added, confirming previous results. PMID:21855825

  9. An innovative method and experiment for fabricating bulgy shape nanochannel using AFM

    NASA Astrophysics Data System (ADS)

    Lin, Zone-Ching; Jheng, Hao-Yuan; Ding, Hao-Yang

    2015-08-01

    The paper proposes using atomic force microscopy (AFM) and the concept of specific down force energy (SDFE) to establish an innovative offset cycle cutting method for fabricating a bulgy shape nanochannel on a single-crystal silicon substrate. In the offset cycle cutting method, cutting is performed at a constant down force in all cutting passes. After the first cutting pass, the AFM probe is offset rightward for the second pass and subsequently offset leftward to the middle (i.e., between the positions of the first two cutting passes) for the third cutting pass. Applying a step-by-step method to modify the offset distance and approach the defined SDFE value, this study determined the depth of the middle cutting pass and smaller values of upward bulginess and downward indentation at the bottom of the nanochannel. The nanochannel width can be increased by increasing the number of offset cycle cutting passes. In addition, by applying the proposed method, this study involved a simulation and experiment concerning the cutting path plan of bulgy shape nanochannels. Furthermore, using a small down force along the burr path is proposed for reducing burr height. The results of the simulation and experiment were compared to verify the feasibility of the method.

  10. Nanomechanics of new materials — AFM and computer modelling studies of trichoptera silk

    NASA Astrophysics Data System (ADS)

    Strzelecki, Janusz; Strzelecka, Joanna; Mikulska, Karolina; Tszydel, Mariusz; Balter, Aleksander; Nowak, Wiesław

    2011-04-01

    Caddisfly (Trichopera) can glue diverse material underwater with a silk fiber. This makes it a particularly interesting subject for biomimetcs. Better understanding of silk composition and structure could lead to an adhesive capable to close bleeding wounds or to new biomaterials. However, while spiderweb or silkworm secretion is well researched, caddisfly silk is still poorly understood. Here we report a first nanomechanical analysis of H. Angustipennis caddisfly silk fiber. An Atomic Force Microscope (AFM) imaging shows dense 150 nm bumps on silk surface, which can be identified as one of features responsible for its outstanding adhesive properties. AFM force spectroscopy at the fiber surface showed, among others, characteristic saw like pattern. This pattern is attributed to sacrificial bond stretching and enhances energy dissipation in mechanical deformation. Similarities of some force curves observed on Tegenaria domestica spiderweb and caddisfly silk are also discussed. Steered Molecular Dynamics simulations revealed that the strength of short components of Fib-H HA species molecules, abundant in Trichoptera silk is critically dependent on calcium presence.

  11. Insulated Conducting Cantilevered Nanotips and Two-Chamber Recording System for High Resolution Ion Sensing AFM

    PubMed Central

    Meckes, Brian; Arce, Fernando Teran; Connelly, Laura S.; Lal, Ratnesh

    2014-01-01

    Biological membranes contain ion channels, which are nanoscale pores allowing controlled ionic transport and mediating key biological functions underlying normal/abnormal living. Synthetic membranes with defined pores are being developed to control various processes, including filtration of pollutants, charge transport for energy storage, and separation of fluids and molecules. Although ionic transport (currents) can be measured with single channel resolution, imaging their structure and ionic currents simultaneously is difficult. Atomic force microscopy enables high resolution imaging of nanoscale structures and can be modified to measure ionic currents simultaneously. Moreover, the ionic currents can also be used to image structures. A simple method for fabricating conducting AFM cantilevers to image pore structures at high resolution is reported. Tungsten microwires with nanoscale tips are insulated except at the apex. This allows simultaneous imaging via cantilever deflections in normal AFM force feedback mode as well as measuring localized ionic currents. These novel probes measure ionic currents as small as picoampere while providing nanoscale spatial resolution surface topography and is suitable for measuring ionic currents and conductance of biological ion channels. PMID:24663394

  12. Relationship between dislocations and residual stresses in cold-drawn pearlitic steel analyzed by energy-dispersive X-ray diffraction

    SciTech Connect

    Sato, Shigeo; Wagatsuma, Kazuaki; Suzuki, Shigeru; Kumagai, Masayoshi; Imafuku, Muneyuki; Tashiro, Hitoshi; Kajiwara, Kentaro; Shobu, Takahiasa

    2013-09-15

    We analyzed the dislocation distribution of cold-drawn pearlitic-steel wire by using the line-profile analysis based on the energy dispersive X-ray diffraction (EDXD). Although this line-profile analysis requires a high resolution in reciprocal space, the resolution for EDXD is generally poor due to the energy resolution of the detector. Our analysis demonstrated that the resolution in the reciprocal space can be maximized at small scattering angles. Using the line-profile analysis based on the EDXD, the microstructural parameters such as the crystallite size and the dislocation density of the ferrite phase in the pearlitic steel were successfully analyzed. In addition, the distribution of the residual stress of the ferrite phase of a pearlitic steel wire was also analyzed using the EDXD measurement. - Highlights: • Energy dispersive X-ray diffraction is applied to the line-profile analysis. • Distribution of dislocations in ferrite in the pearlitic steel wire is analyzed. • Relationship between dislocations and residual stress is discussed.

  13. Higher-order electric multipole contributions to retarded non-additive three-body dispersion interaction energies between atoms: Equilateral triangle and collinear configurations

    SciTech Connect

    Salam, A.

    2013-12-28

    The theory of molecular quantum electrodynamics (QED) is used to calculate higher electric multipole contributions to the dispersion energy shift between three atoms or molecules arranged in a straight line or in an equilateral triangle configuration. As in two-body potentials, three-body dispersion interactions are viewed in the QED formalism to arise from exchange of virtual photons between coupled pairs of particles. By employing an interaction Hamiltonian that is quadratic in the electric displacement field means that third-order perturbation theory can be used to yield the energy shift for a particular combination of electric multipole polarizable species, with only six time-ordered diagrams needing to be summed over. Specific potentials evaluated include dipole-dipole-quadrupole (DDQ), dipole-quadrupole-quadrupole (DQQ), and dipole-dipole-octupole (DDO) terms. For the geometries of interest, near-zone limiting forms are found to exhibit an R{sup −11} dependence on separation distance for the DDQ interaction, and an R{sup −13} behaviour for DQQ and DDO shifts, agreeing with an earlier semi-classical computation. Retardation weakens the potential in each case by R{sup −1} in the far-zone. It is found that by decomposing the octupole moment into its irreducible components of weights-1 and -3 that the former contribution to the DDO potential may be taken to be a higher-order correction to the leading triple dipole energy shift.

  14. Matrix effects in the energy dispersive X-ray analysis of CaO-Al(2)O(3)-MgO inclusions in steel.

    PubMed

    Pistorius, Petrus Christiaan; Verma, Neerav

    2011-12-01

    Energy dispersive X-ray microanalysis of micron-sized inclusions in steel is of considerable industrial importance. Measured spectra and Monte Carlo simulations show a significant effect of the steel matrix on analysis of CaO-Al(2)O(3)-MgO inclusions: the steel matrix filters the softer (Al and Mg) characteristic X-rays, increasing the relative height of the Ca peak. Bulk matrix correction methods would not result in correct inclusion compositions, but operating at a lower acceleration voltage shifts the effect to smaller inclusion sizes. PMID:22051086

  15. A correlative approach to segmenting phases and ferrite morphologies in transformation-induced plasticity steel using electron back-scattering diffraction and energy dispersive X-ray spectroscopy.

    PubMed

    Gazder, Azdiar A; Al-Harbi, Fayez; Spanke, Hendrik Th; Mitchell, David R G; Pereloma, Elena V

    2014-12-01

    Using a combination of electron back-scattering diffraction and energy dispersive X-ray spectroscopy data, a segmentation procedure was developed to comprehensively distinguish austenite, martensite, polygonal ferrite, ferrite in granular bainite and bainitic ferrite laths in a thermo-mechanically processed low-Si, high-Al transformation-induced plasticity steel. The efficacy of the ferrite morphologies segmentation procedure was verified by transmission electron microscopy. The variation in carbon content between the ferrite in granular bainite and bainitic ferrite laths was explained on the basis of carbon partitioning during their growth. PMID:25126753

  16. Study of dispersion of mass distribution of ultra-high energy cosmic rays using a surface array of muon and electromagnetic detectors

    NASA Astrophysics Data System (ADS)

    Vícha, Jakub; Trávníček, Petr; Nosek, Dalibor; Ebr, Jan

    2015-09-01

    We consider a hypothetical observatory of ultra-high energy cosmic rays consisting of two surface detector arrays that measure independently electromagnetic and muon signals induced by air showers. Using the constant intensity cut method, sets of events ordered according to each of both signal sizes are compared giving the number of matched events. Based on its dependence on the zenith angle, a parameter sensitive to the dispersion of the distribution of the logarithmic mass of cosmic rays is introduced. The results obtained using two post-LHC models of hadronic interactions are very similar and indicate a weak dependence on details of these interactions.

  17. Combination of Raman, Infrared, and X-Ray Energy-Dispersion Spectroscopies and X-Ray Diffraction to Study a Fossilization Process

    NASA Astrophysics Data System (ADS)

    de Sousa Filho, Francisco Eduardo; da Silva, João Hermínio; Feitosa Saraiva, Antônio Álamo; Brito, Deyvid Dennys S.; Viana, Bartolomeu Cruz; de Oliveira Abagaro, Bruno Tavares; de Tarso Cavalcante Freire, Paulo

    2011-12-01

    X-ray diffraction was combined with X-ray energy-dispersion, Fourier-transform infrared, and Raman spectroscopies to study the fossilization of a Cretaceous specimen of the plant Brachyphyllum castilhoi, a fossil from the Ipubi Formation, in the Araripe Sedimentary Basin, Northeastern Brazil. Among the possible fossilization processes, which could involve pyrite, silicon oxide, calcium oxide, or other minerals, we were able to single out pyritization as the central mechanism producing the fossil, more than 100 million years ago. In addition to expanding the knowledge of the Ipubi Formation, this study shows that, when combined with other experimental techniques, Raman spectroscopy is a valuable tool at the paleontologist's disposal.

  18. A CdZnTe array for the detection of explosives in baggage by energy-dispersive X-ray diffraction signatures at multiple scatter angles

    NASA Astrophysics Data System (ADS)

    Malden, Catharine H.; Speller, Robert. D.

    2000-07-01

    CdZnTe detectors were used to collect energy-dispersive diffraction spectra at a range of scatter angles, from sheets of explosives hidden in baggage. It is shown that the combined information from these `signatures' can be used to determine whether an explosive sample is present or not. The geometrical configuration of the collimation and the position of the baggage within the scanner must be taken into careful consideration when optimising the capabilities of such a system. The CdZnTe array lends itself well to the detection of explosives in baggage since multiple signals may be collected simultaneously providing more rapid detection than achieved using a single detector.

  19. Energy dispersive X-ray diffraction in the diamond anvil, high-pressure apparatus - Comparison of synchrotron and conventional X-ray sources

    NASA Technical Reports Server (NTRS)

    Spain, I. L.; Black, D. R.

    1985-01-01

    The use of both conventional fixed-anode X-ray sources and synchrotron radiation to carry out energy-dispersive X-ray diffraction experiments at high pressure in a diamond anvil cell, is discussed. The photon flux at the sample and at the detector for the two cases are compared and the results are presented in graphs. It is shown that synchrotron radiation experiments can be performed with nearly two orders of magnitude increase in data rate if superior detectors and detector electronics are available.

  20. Physical properties of polyacrylamide gels probed by AFM and rheology

    NASA Astrophysics Data System (ADS)

    Abidine, Yara; Laurent, Valérie M.; Michel, Richard; Duperray, Alain; Iulian Palade, Liviu; Verdier, Claude

    2015-02-01

    Polymer gels have been shown to behave as viscoelastic materials but only a small amount of data is usually provided in the glass transition. In this paper, the dynamic moduli G\\prime and G\\prime\\prime of polyacrylamide hydrogels are investigated using both an AFM in contact force modulation mode and a classical rheometer. The validity is shown by the matching of the two techniques. Measurements are carried out on gels of increasing polymer concentration in a wide frequency range. A model based on fractional derivatives is successfully used, covering the whole frequency range. G\\text{N}0 , the plateau modulus, as well as several other parameters are obtained at low frequencies. The model also predicts the slope a of both moduli in the glass transition, and a transition frequency f\\text{T} is introduced to separate the gel-like behavior with the glassy state. Its variation with polymer content c gives a dependence f\\text{T}∼ c1.6 , in good agreement with previous theories. Therefore, the AFM data provides new information on the physics of polymer gels.

  1. Dual AFM probes alignment based on vision guidance

    NASA Astrophysics Data System (ADS)

    Zhang, Hua-kun; Gao, Si-tian; Lu, Ming-zhen; Wang, Long-long

    2013-10-01

    Atomic force microscope (AFM) with dual probes that operate together can measure both side walls excellently at the same time, which virtually eliminates the prevalent effect of probe width that contributes a large component of uncertainty in measurement results and finally obtains the critical dimension (CD)(e.g. the linewidth) through data synthesis. In calibration process, the dual probes must contact each other in advance, which realizes the alignment in the three dimensions, to establish a zero reference point and ensure the accuracy of measurement. Because nowadays the optical resolution of advanced lens have exceeded micrometer range, and the size of probes is within micro level, it is possible to acquire dual probes images in both horizontal and vertical directions, through which the movement of the probes can be controlled in time. In order to further enhance the alignment precision, sub-pixel edge detection method based on Zernike orthogonal moment is used to obtain relative position between these two probes, which helps the tips alignment attains sub-micron range. Piezoelectric nanopositioning stages calibrated by laser interferometer are used to implement fine movement of the probes to verify the accuracy of the experimental results. To simplify the system, novel self-sensing and self-actuating probe based on a quartz tuning fork combined with a micromachined cantilever is used for dynamic mode AFM. In this case, an external optical detection system is not needed, so the system is simple and small.

  2. Viscoelasticity of gelatin surfaces probed by AFM noise analysis.

    PubMed

    Benmouna, Farida; Johannsmann, Diethelm

    2004-01-01

    The viscoelastic properties of surfaces of swollen gelatin were investigated by analyzing the Brownian motion of an atomic force microscopy (AFM) cantilever in contact with the gel surface. A micron-sized glass sphere attached to the AFM cantilever is used as the dynamic probe. When the sphere approaches the gelatin surface, there is a static repulsive force without a jump into contact. The cantilever's Brownian movement is monitored in parallel, providing access to the dynamic sphere-surface interaction as quantified by the dynamic spring constant, kappa, and the drag coefficient, xi. Gelatin is used as a model substance for a variety of other soft surfaces, where the stiffness of the gel can be varied via the solvent quality, the bloom number, and the pH. The modulus derived from the static force-distance curve is in the kPa range, consistent with the literature. However, the dynamic spring constant as derived from the Brownian motion is much larger than the static differential spring constant dF/dz. On retraction, one observes a rather strong adhesion hysteresis. The strength of the bridge (as given by the dynamic spring constant and the drag coefficient) is very small. PMID:15745019

  3. Analysis of AFM cantilever dynamics close to sample surface

    NASA Astrophysics Data System (ADS)

    Habibnejad Korayem, A.; Habibnejad Korayem, Moharam; Ghaderi, Reza

    2013-07-01

    For imaging and manipulation of biological specimens application of atomic force microscopy (AFM) in liquid is necessary. In this paper, tapping-mode AFM cantilever dynamics in liquid close to sample surface is modeled and simulated by well defining the contact forces. The effect of cantilever tilting angle has been accounted carefully. Contact forces have some differences in liquid in comparison to air or vacuum in magnitude or formulation. Hydrodynamic forces are also applied on the cantilever due to the motion in liquid. A continuous beam model is used with its first mode and forward-time simulation method for simulation of its hybrid dynamics and the frequency response and amplitude versus separation diagrams are extracted. The simulation results show a good agreement with experimental results. The resonance frequency in liquid is so small in comparison to air due to additional mass and also additional damping due to the viscosity of the liquid around. The results show that the effect of separation on free vibration amplitude is great. Its effect on resonance frequency is considerable too.

  4. Iron oxide mineral-water interface reactions studied by AFM

    SciTech Connect

    Hawley, M.E.; Rogers, P.S.Z.

    1994-07-01

    Natural iron mineral surfaces have been examined in air by atomic force (AFM) and scanning tunneling (STM) microscopies. A number of different surface features were found to be characteristic of the native surface. Even surfaces freshly exposed by crushing larger crystals were found to have a pebbly surface texture caused by the presence of thin coatings of what might be surface precipitates. This finding is interpreted as evidence for previous exposure to water, probably through an extensive network of microfractures. Surface reactions on the goethite crystals were studied by AFM at size resolutions ranging from microns to atomic resolution before, during, and after reaction with distilled water and 0.lN HCl. Immediate and extensive surface reconfiguration occurred on contact with water. In one case, after equilibration with water for 3 days, surface reprecipitation, etching and pitting were observed. Atomic resolution images taken under water were found to be disordered. The result of surface reaction was generally to increase the surface area substantially through the extension of surface platelet arrays, present prior to reaction. This work is being done in support of the site characterization project at Yucca Mountain.

  5. Pathogen identification using peptide nanotube biosensors and impedance AFM

    NASA Astrophysics Data System (ADS)

    Maccuspie, Robert I.

    Pathogen identification at highly sensitive levels is crucial to meet urgent needs in fighting the spread of disease or detecting bioterrorism events. Toward that end, a new method for biosensing utilizing fluorescent antibody nanotubes is proposed. Fundamental studies on the self-assembly of these peptide nanotubes are performed, as are applications of aligning these nanotubes on surfaces. As biosensors, these nanotubes incorporate recognition units with antibodies at their ends and fluorescent signaling units at their sidewalls. When viral pathogens were mixed with these antibody nanotubes in solution, the nanotubes rapidly aggregated around the viruses. The size of the aggregates increased as the concentration of viruses increased, as detected by flow cytometry on the order of attomolar concentrations by changes in fluorescence and light scattering intensities. This enabled determination of the concentrations of viruses at trace levels (102 to 106 pfu/mL) within 30 minutes from the receipt of samples to the final quantitative data analysis, as demonstrated on Adenovirus, Herpes Simplex Virus, Influenza, and Vaccinia virus. As another separate approach, impedance AFM is used to study the electrical properties of individual viruses and nanoparticles used as model systems. The design, development, and implementation of the impedance AFM for an Asylum Research platform is described, as well as its application towards studying the impedance of individual nanoparticles as a model system for understanding the fundamental science of how the life cycle of a virus affects its electrical properties. In combination, these approaches fill a pressing need to quantify viruses both rapidly and sensitively.

  6. SU-8 hollow cantilevers for AFM cell adhesion studies

    NASA Astrophysics Data System (ADS)

    Martinez, Vincent; Behr, Pascal; Drechsler, Ute; Polesel-Maris, Jérôme; Potthoff, Eva; Vörös, Janos; Zambelli, Tomaso

    2016-05-01

    A novel fabrication method was established to produce flexible, transparent, and robust tipless hollow atomic force microscopy (AFM) cantilevers made entirely from SU-8. Channels of 3 μm thickness and several millimeters length were integrated into 12 μm thick and 40 μm wide cantilevers. Connected to a pressure controller, the devices showed high sealing performance with no leakage up to 6 bars. Changing the cantilever lengths from 100 μm to 500 μm among the same wafer allowed the targeting of various spring constants ranging from 0.5 to 80 N m‑1 within a single fabrication run. These hollow polymeric AFM cantilevers were operated in the optical beam deflection configuration. To demonstrate the performance of the device, single-cell force spectroscopy experiments were performed with a single probe detaching in a serial protocol more than 100 Saccharomyces cerevisiae yeast cells from plain glass and glass coated with polydopamine while measuring adhesion forces in the sub-nanoNewton range. SU-8 now offers a new alternative to conventional silicon-based hollow cantilevers with more flexibility in terms of complex geometric design and surface chemistry modification.

  7. Comparison of particle sizes determined with impactor, AFM and SEM

    NASA Astrophysics Data System (ADS)

    Gwaze, Patience; Annegarn, Harold J.; Huth, Joachim; Helas, Günter

    2007-11-01

    Particles size comparisons were made between conventional aerodynamic and mobility sizing techniques and physical geometric sizes measured by high resolution microscopes. Atmospheric particles were collected during the wet and dry seasons in the Amazonian ecosystems. Individual particles deposited on four stages of the MOUDI (Micro-Orifice Uniform Deposition Impactor) were characterised for particle volumes, projected surface diameters and morphologies with an Atomic Force Microscope (AFM) and a Scanning Electron Microscope (SEM). AFM and SEM size distributions were verified against distributions derived from response functions of individual MOUDI stages as specified by Winklmayr et al. [Winklmayr, W., Wang, H.-C., John, W., 1990. Adaptation of the Twomey algorithm to the inversion of cascade impactor data. Aerosol Science and Technology 13, 322-331.]. Particles indicated inherent discrepancies in sizing techniques. Particle volumes were systematically lower than expected by factors of up to 3.6. Differences were attributed to loss of mass, presumably water adsorbed on particles. Losses were high and could not be accounted for by measured humidity growth factors suggesting significant losses of other volatile compounds as well, particularly on particles that were collected during the wet season. Microscopy results showed that for hygroscopic particles, microscopy sizes depend on the relative humidity history of particles before and after sampling. Changes in relative humidity significantly altered particle morphologies. Depending on when changes occur, such losses will bias not only microscopy particle sizes but also impactor mass distributions and number concentrations derived from collected particles.

  8. AFM analysis of bleaching effects on dental enamel microtopography

    NASA Astrophysics Data System (ADS)

    Pedreira de Freitas, Ana Carolina; Espejo, Luciana Cardoso; Botta, Sergio Brossi; Teixeira, Fernanda de Sa; Luz, Maria Aparecida A. Cerqueira; Garone-Netto, Narciso; Matos, Adriana Bona; Salvadori, Maria Cecilia Barbosa da Silveira

    2010-02-01

    The purpose of this in vitro study was to test a new methodology to evaluate the effects of 35% hydrogen peroxide agent on the microtopography of sound enamel using an atomic force microscope (AFM). The buccal sound surfaces of three extracted human lower incisors were used, without polishing the surfaces to maintain them with natural morphology. These unpolished surfaces were subjected to bleaching procedure with 35% hydrogen peroxide that consisted of 4 applications of the bleaching agent on enamel surfaces for 10 min each application. Surface images were obtained in a 15 μm × 15 μm area using an AFM. The roughness (Ra and RMS) and the power spectral density (PSD) were obtained before and after the bleaching treatment. As results we could inquire that the PSD analyses were very suitable to identifying the morphological changes on the surfaces, while the Ra and RMS parameters were insufficient to represent the morphological alterations promoted by bleaching procedure on enamel. The morphological wavelength in the range of visible light spectrum (380-750 nm) was analyzed, showing a considerable increase of the PSD with the bleaching treatment.

  9. Dispersion of carbon nanotubes in polyurethane matrix

    NASA Astrophysics Data System (ADS)

    Ryszkowska, Joanna; Jurczyk-Kowalska, Magdalena; Szymborski, Tomasz; Kurzydłowski, Krzysztof J.

    2007-07-01

    A high intensity ultrasound has been applied to fabricate polyurethanes/carbon nanotubes (MWCNT) composites. Mixtures of MWCNTs and poly(ethylene adipate) (PEA) were prepared in a two-step process. In the first step, MWCNTs were dispersed with acetone, in the second PEA and acetone. The mixture of PEA and MWCNTs was used to produce polyurethane (PUR) nanocomposites under the agitation of ultrasounds. The effect of ultrasound intensity has been studied by HRSEM and AFM investigation of the microstructure. The mechanical properties of polyurethane nanocomposites were also evaluated.

  10. Examination of Humidity Effects on Measured Thickness and Interfacial Phenomena of Exfoliated Graphene on SiO2 via AC-AFM

    NASA Astrophysics Data System (ADS)

    Jinkins, Katherine; Camacho, Jorge; Farina, Lee; Wu, Yan

    2015-03-01

    Tapping (AC) mode Atomic Force Microscopy (AFM) is commonly used to determine the thickness of graphene samples. However, AFM measurements have been shown to be sensitive to environmental conditions such as adsorbed water, in turn dependent on relative humidity (RH). In the present study, AC-AFM is used to measure the thickness and loss tangent of exfoliated graphene on silicon dioxide (SiO2) as RH is increased from 10% to 80%. We show that the measured thickness of graphene is dependent on RH. Loss tangent is an AFM imaging technique that interprets the phase information as a relationship between the stored and dissipated energy in the tip-sample interaction. This study demonstrates the loss tangent of the graphene and oxide regions are both affected by humidity, with generally higher loss tangent for graphene than SiO2. As RH increases, we observe the loss tangent of both materials approaches the same value. We hypothesize that there is a layer of water trapped between the graphene and SiO2 substrate to explain this observation. Using this interpretation, the loss tangent images also indicate movement and change in this trapped water layer as RH increases, which impacts the measured thickness of graphene using AC-AFM.

  11. Gelatin/graphene systems for low cost energy storage

    SciTech Connect

    Landi, Giovanni; Fedi, Filippo; Sorrentino, Andrea; Iannace, Salvatore; Neitzert, Heinz C.

    2014-05-15

    In this work, we introduce the possibility to use a low cost, biodegradable material for temporary energy storage devices. Here, we report the use of biologically derived organic electrodes composed of gelatin ad graphene. The graphene was obtained by mild sonication in a mixture of volatile solvents of natural graphite flakes and subsequent centrifugation. The presence of exfoliated graphene sheets was detected by atomic force microscopy (AFM) and Raman spectroscopy. The homogeneous dispersion in gelatin demonstrates a good compatibility between the gelatin molecules and the graphene particles. The electrical characterization of the resulting nanocomposites suggests the possible applications as materials for transient, low cost energy storage device.

  12. Relative dispersion in the atmosphere

    NASA Astrophysics Data System (ADS)

    LaCasce, Joe; Graff, Lise; Guttu, Sigmund

    2014-05-01

    The relative dispersion of pairs of particles in flows is of central importance when describing environmental dispersion, for example of volcanic ash. Atmospheric relative dispersion was examined previously in two balloon experiments in the Southern Hemisphere (the EOLE and TWERLE experiments). In both cases, the dispersion at scales below 1000 km grew exponentially in time, indicating the kinetic energy spectrum is steep. Subsequent analyses suggested though that the dispersion had a power law dependence on time, implying a shallower kinetic energy spectrum. The results from studies employing synthetic particles advected by reanalysis winds are similarly inconsistent, with indications of exponential growth in some cases and power law growth in others. Here we use a different statistic---the probability density function (PDF) of pair displacements---to study dispersion the dispersion of large numbers of synthetic particles, advected by ERA-Interim reanalysis winds. The particles were deployed in the troposphere and stratosphere, both in the tropics and the extra-tropics. We examine the PDFs for the different deployments and compare them to analytical expressions derived for different turbulent inertial ranges. In line with the earlier balloon experiments, the results indicate exponential growth at the sub-deformation (1000 km) scales. At larger scales, the dispersion is anisotropic (predominantly zonal) and pair motion becomes decorrelated. Structure functions calculated from the wind data are in line with these conclusions.

  13. The importance of correcting for variable probe-sample interactions in AFM-IR spectroscopy: AFM-IR of dried bacteria on a polyurethane film.

    PubMed

    Barlow, Daniel E; Biffinger, Justin C; Cockrell-Zugell, Allison L; Lo, Michael; Kjoller, Kevin; Cook, Debra; Lee, Woo Kyung; Pehrsson, Pehr E; Crookes-Goodson, Wendy J; Hung, Chia-Suei; Nadeau, Lloyd J; Russell, John N

    2016-08-01

    AFM-IR is a combined atomic force microscopy-infrared spectroscopy method that shows promise for nanoscale chemical characterization of biological-materials interactions. In an effort to apply this method to quantitatively probe mechanisms of microbiologically induced polyurethane degradation, we have investigated monolayer clusters of ∼200 nm thick Pseudomonas protegens Pf-5 bacteria (Pf) on a 300 nm thick polyether-polyurethane (PU) film. Here, the impact of the different biological and polymer mechanical properties on the thermomechanical AFM-IR detection mechanism was first assessed without the additional complication of polymer degradation. AFM-IR spectra of Pf and PU were compared with FTIR and showed good agreement. Local AFM-IR spectra of Pf on PU (Pf-PU) exhibited bands from both constituents, showing that AFM-IR is sensitive to chemical composition both at and below the surface. One distinct difference in local AFM-IR spectra on Pf-PU was an anomalous ∼4× increase in IR peak intensities for the probe in contact with Pf versus PU. This was attributed to differences in probe-sample interactions. In particular, significantly higher cantilever damping was observed for probe contact with PU, with a ∼10× smaller Q factor. AFM-IR chemical mapping at single wavelengths was also affected. We demonstrate ratioing of mapping data for chemical analysis as a simple method to cancel the extreme effects of the variable probe-sample interactions. PMID:27403761

  14. AFM CHARACTERIZATION OF RAMAN LASER INDUCED DAMAGE ON CDZNTECRYSTAL SURFACES

    SciTech Connect

    Teague, L.; Duff, M.

    2008-10-07

    High quality CdZnTe (or CZT) crystals have the potential for use in room temperature gamma-ray and X-ray spectrometers. Over the last decade, the methods for growing high quality CZT have improved the quality of the produced crystals however there are material features that can influence the performance of these materials as radiation detectors. The presence of structural heterogeneities within the crystals, such as twinning, pipes, grain boundaries (polycrystallinity), and secondary phases (SPs) can have an impact on the detector performance. There is considerable need for reliable and reproducible characterization methods for the measurement of crystal quality. With improvements in material characterization and synthesis, these crystals may become suitable for widespread use in gamma radiation detection. Characterization techniques currently utilized to test for quality and/or to predict performance of the crystal as a gamma-ray detector include infrared (IR) transmission imaging, synchrotron X-ray topography, photoluminescence spectroscopy, transmission electron microscopy (TEM), atomic force microscopy (AFM) and Raman spectroscopy. In some cases, damage caused by characterization methods can have deleterious effects on the crystal performance. The availability of non-destructive analysis techniques is essential to validate a crystal's quality and its ability to be used for either qualitative or quantitative gamma-ray or X-ray detection. The work presented herein discusses the damage that occurs during characterization of the CZT surface by a laser during Raman spectroscopy, even at minimal laser powers. Previous Raman studies have shown that the localized annealing from tightly focused, low powered lasers results in areas of higher Te concentration on the CZT surface. This type of laser damage on the surface resulted in decreased detector performance which was most likely due to increased leakage current caused by areas of higher Te concentration. In this study

  15. Device level 3D characterization using PeakForce AFM

    NASA Astrophysics Data System (ADS)

    Timoney, Padraig; Zhang, Xiaoxiao; Vaid, Alok; Hand, Sean; Osborne, Jason; Milligan, Eric; Feinstein, Adam

    2016-03-01

    Traditional metrology solutions face a range of challenges at the 1X node such as three dimensional (3D) measurement capabilities, shrinking overlay and critical dimension (CD) error budgets driven by multi-patterning and via in trench CD measurements. With advent of advanced technology nodes and 3D processing, an increasing need is emerging for in-die metrology including across-structure and structure-to-structure characterization. A myriad of work has emerged in the past few years intending to address these challenges from various aspects; in-die OCD with reduced spot size and tilt beam on traditional critical dimension scanning electron microscopy (CDSEM) for height measurements. This paper explores the latest capability offered by PeakForceTM Tapping Atomic Force Microscopy (PFT-AFM). The use of traditional harmonic tapping mode for scanning high aspect ratio, and complex "3D" wafer structures, results in limited depth probing capability as well as excessive tip wear. These limitations arise due to the large tip-sample interaction volume in such confined spaces. PeakForce Tapping eliminates these limitations through direct real time control of the tip-sample interaction contact force. The ability of PeakForce to measure, and respond directly to tip- sample interaction forces results in more detailed feature resolution, reduced tip wear, and improved depth capability. In this work, the PFT-AFM tool was applied for multiple applications, including the 14nm fin and replacement metal gate (RMG) applications outlined below. Results from DOE wafers, detailed measurement precision studies and correlation to reference metrology are presented for validation of this methodology. With the fin application, precision of 0.3nm is demonstrated by measuring 5 dies with 10 consecutive runs. Capability to resolve within-die and localized within-macro height variation is also demonstrated. Results obtained from the fin measurements support the increasing trend that measurements

  16. Dispersion-correcting potentials can significantly improve the bond dissociation enthalpies and noncovalent binding energies predicted by density-functional theory

    SciTech Connect

    DiLabio, Gino A.; Koleini, Mohammad

    2014-05-14

    Dispersion-correcting potentials (DCPs) are atom-centered Gaussian functions that are applied in a manner that is similar to effective core potentials. Previous work on DCPs has focussed on their use as a simple means of improving the ability of conventional density-functional theory methods to predict the binding energies of noncovalently bonded molecular dimers. We show in this work that DCPs developed for use with the LC-ωPBE functional along with 6-31+G(2d,2p) basis sets are capable of simultaneously improving predicted noncovalent binding energies of van der Waals dimer complexes and covalent bond dissociation enthalpies in molecules. Specifically, the DCPs developed herein for the C, H, N, and O atoms provide binding energies for a set of 66 noncovalently bonded molecular dimers (the “S66” set) with a mean absolute error (MAE) of 0.21 kcal/mol, which represents an improvement of more than a factor of 10 over unadorned LC-ωPBE/6-31+G(2d,2p) and almost a factor of two improvement over LC-ωPBE/6-31+G(2d,2p) used in conjunction with the “D3” pairwise dispersion energy corrections. In addition, the DCPs reduce the MAE of calculated X-H and X-Y (X,Y = C, H, N, O) bond dissociation enthalpies for a set of 40 species from 3.2 kcal/mol obtained with unadorned LC-ωPBE/6-31+G(2d,2p) to 1.6 kcal/mol. Our findings demonstrate that broad improvements to the performance of DFT methods may be achievable through the use of DCPs.

  17. Effect of tip mass on frequency response and sensitivity of AFM cantilever in liquid.

    PubMed

    Farokh Payam, Amir; Fathipour, Morteza

    2015-03-01

    The effect of tip mass on the frequency response and sensitivity of atomic force microscope (AFM) cantilever in the liquid environment is investigated. For this purpose, using Euler-Bernoulli beam theory and considering tip mass and hydrodynamic functions in a liquid environment, an expression for the resonance frequencies of AFM cantilever in liquid is derived. Then, based on this expression, the effect of the surface contact stiffness on the flexural mode of a rectangular AFM cantilever in fluid is investigated and compared with the case where the AFM cantilever operates in the air. The results show that in contrast with an air environment, the tip mass has no significant impact on the resonance frequency and sensitivity of the AFM cantilever in the liquid. Hence, analysis of AFM behaviour in liquid environment by neglecting the tip mass is logical. PMID:25562584

  18. A new method for polychromatic X-ray μLaue diffraction on a Cu pillar using an energy-dispersive pn-junction charge-coupled device

    SciTech Connect

    Abboud, A.; Send, S.; Pashniak, N.; Pietsch, U.; Kirchlechner, C.; Micha, J. S.; Ulrich, O.; Keckes, J.

    2014-11-15

    μLaue diffraction with a polychromatic X-ray beam can be used to measure strain fields and crystal orientations of micro crystals. The hydrostatic strain tensor can be obtained once the energy profile of the reflections is measured. However, this remains a challenge both on the time scale and reproducibility of the beam position on the sample. In this review, we present a new approach to obtain the spatial and energy profiles of Laue spots by using a pn-junction charge-coupled device, an energy-dispersive area detector providing 3D resolution of incident X-rays. The morphology and energetic structure of various Bragg peaks from a single crystalline Cu micro-cantilever used as a test system were simultaneously acquired. The method facilitates the determination of the Laue spots’ energy spectra without filtering the white X-ray beam. The synchrotron experiment was performed at the BM32 beamline of ESRF using polychromatic X-rays in the energy range between 5 and 25 keV and a beam size of 0.5 μm × 0.5 μm. The feasibility test on the well known system demonstrates the capabilities of the approach and introduces the “3D detector method” as a promising tool for material investigations to separate bending and strain for technical materials.

  19. A new method for polychromatic X-ray μLaue diffraction on a Cu pillar using an energy-dispersive pn-junction charge-coupled device.

    PubMed

    Abboud, A; Kirchlechner, C; Send, S; Micha, J S; Ulrich, O; Pashniak, N; Strüder, L; Keckes, J; Pietsch, U

    2014-11-01

    μLaue diffraction with a polychromatic X-ray beam can be used to measure strain fields and crystal orientations of micro crystals. The hydrostatic strain tensor can be obtained once the energy profile of the reflections is measured. However, this remains a challenge both on the time scale and reproducibility of the beam position on the sample. In this review, we present a new approach to obtain the spatial and energy profiles of Laue spots by using a pn-junction charge-coupled device, an energy-dispersive area detector providing 3D resolution of incident X-rays. The morphology and energetic structure of various Bragg peaks from a single crystalline Cu micro-cantilever used as a test system were simultaneously acquired. The method facilitates the determination of the Laue spots' energy spectra without filtering the white X-ray beam. The synchrotron experiment was performed at the BM32 beamline of ESRF using polychromatic X-rays in the energy range between 5 and 25 keV and a beam size of 0.5 μm × 0.5 μm. The feasibility test on the well known system demonstrates the capabilities of the approach and introduces the "3D detector method" as a promising tool for material investigations to separate bending and strain for technical materials. PMID:25430118

  20. Single molecule force spectroscopy by AFM indicates helical structure of poly(ethylene-glycol) in water

    NASA Astrophysics Data System (ADS)

    Oesterhelt, F.; Rief, M.; Gaub, H. E.

    1999-03-01

    We elongated individual poly(ethylene-glycol) (PEG) molecules tethered at one end to an AFM cantilever. We observed the resistive force as a function of elongation in different solvents. In all cases the molecular response was found to be fully reversible and thus in thermodynamic equilibrium. In hexadecane the stretched PEG acts like an ideal entropy spring and can be well described as a freely jointed chain. In water we observed marked deviations in the transition region from entropic to enthalpic elasticity, indicating the deformation of a supra-structure within the polymer. An analysis based on elastically coupled Markovian two-level systems agrees well with recent ab initio calculations predicting that PEG in water forms a non-planar supra-structure which is stabilized by water bridges. We obtained a binding free energy of 3.0+/-0.3 kT.

  1. AFM characterization of spin coated carboxylated polystyrene nanospheres/xyloglucan layers on mica and silicon.

    PubMed

    Lubambo, Adriana F; Lucyszyn, Neoli; Petzhold, Cesar L; Sierakowski, Maria-R; Schreiner, Wido H; Saul, Cyro K

    2013-03-01

    Self-assembled nano-arrays have a potential application as solid-phase diagnostics in many biomedical devices. The easiness of its production is directly connected to manufacture cost reduction. In this work, we present self-assembled structures starting from spin coated thin films of carboxylated polystyrene (PSC) and xyloglucan (XG) mixtures on both mica and silicon substrates. AFM images showed PSC nanospheres on top of a homogeneous layer of XG, for both substrates. The average nanosphere diameter fluctuated for a constant speed and it was likely to be independent of the component proportions on the mixture within a range of 30-50% (v/v) PSC. It was also observed that the largest diameters were found at the center of the sample and the smallest at the border. The detected nanospheres were also more numerous at the border. This behavior presents a similarity to spin coated colloidal dispersions. We observed that the average nanosphere diameter on mica substrates was bigger than the nanosphere diameters obtained on top of silicon substrates, under the same conditions. This result seems to be possibly connected to different mixture-surface interactions. PMID:23465925

  2. FM-AFM crossover in vanadium oxide nanomaterials

    NASA Astrophysics Data System (ADS)

    Demishev, S. V.; Chernobrovkin, A. L.; Glushkov, V. V.; Grigorieva, A. V.; Goodilin, E. A.; Sluchanko, N. E.; Samarin, N. A.; Semeno, A. V.

    2010-01-01

    The magnetic properties of nanomaterials based on vanadium oxide (multiwall nanotubes, nanorods, and nanolayers) have been investigated in the temperature range of 1.8-220 K by high-frequency (60-GHz) EPR. A transition from a ferromagnetic temperature dependence to an antiferromagnetic temperature dependence has been observed in nanorods and nanotubes with a decrease in the temperature. The FM-AFM crossover observed near T C ˜ 110 K is accompanied by a low-temperature increase in the Curie constant by a factor of 2.7-7. The comparison of the experimental data for various VO x nanoparticles indicates that the most probable cause of the change in the type of magnetic interaction is a change in the concentration of V4+ magnetic ions.

  3. Adhesion forces between AFM tips and superficial dentin surfaces.

    PubMed

    Pelin, I M; Piednoir, A; Machon, D; Farge, P; Pirat, C; Ramos, S M M

    2012-06-15

    In this work, we study the adhesion forces between atomic force microscopy (AFM) tips and superficial dentin etched with phosphoric acid. Initially, we quantitatively analyze the effect of acid etching on the surface heterogeneity and the surface roughness, two parameters that play a key role in the adhesion phenomenon. From a statistical study of the force-distance curves, we determine the average adhesion forces on the processed substrates. Our results show that the average adhesion forces, measured in water, increase linearly with the acid exposure time. The highest values of such forces are ascribed to the high density of collagen fibers on the etched surfaces. The individual contribution of exposed collagen fibrils to the adhesion force is highlighted. We also discuss in this paper the influence of the environmental medium (water/air) in the adhesion measurements. We show that the weak forces involved require working in the aqueous medium. PMID:22472512

  4. BOREAS AFM-04 Twin Otter Aircraft Sounding Data

    NASA Technical Reports Server (NTRS)

    MacPherson, J. Ian; Desjardins, Raymond L.; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-4 team used the National Research Council, Canada (NRC) Twin Otter aircraft to make sounding measurements through the boundary layer. These measurements included concentrations of carbon dioxide and ozone, atmospheric pressure, dry bulb temperature, potential temperature, dewpoint temperature, calculated mixing ratio, and wind speed and direction. Aircraft position, heading, and altitude were also recorded. Data were collected at both the Northern Study Area (NSA) and the Southern Study Area (SSA) in 1994 and 1996. These data are stored in tabular ASCII files. The Twin Otter aircraft sounding data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files also are available on a CD-ROM (see document number 20010000884).

  5. Visualization of internal structure of banana starch granule through AFM.

    PubMed

    Peroni-Okita, Fernanda H G; Gunning, A Patrick; Kirby, Andrew; Simão, Renata A; Soares, Claudinéia A; Cordenunsi, Beatriz R

    2015-09-01

    Atomic force microscopy (AFM) is a high resolution technique for studying the external and internal structures of starch granules. For this purpose granules were isolated from bananas and embedded in a non-penetrating resin. To achieve image contrast of the ultrastructure, the face of the cut blocks were wetted in steam and force modulation mode imaging was used. Images of starch from green bananas showed large variation of height across the granule due to a locational specific absorption of water and swelling of amorphous regions; the data reveal that the center of the granules are structurally different and have different viscoelastic properties. Images of starches from ripe bananas showed an even greater different level of organization: absence of growth rings around the hilum; the central region of the granule is richer in amylose; very porous surface with round shaped dark structures; the size of blocklets are larger than the green fruits. PMID:26005137

  6. AFM of self-assembled lambda DNA-histone networks.

    PubMed

    Liu, YuYing; Guthold, Martin; Snyder, Matthew J; Lu, HongFeng

    2015-10-01

    Atomic force microscopy (AFM) was used to investigate the self-assembly behavior of λ-DNA and histones at varying histone:DNA ratios. Without histones and at the lowest histone:DNA ratio (less than one histone per 1000 base pairs of DNA), the DNA appeared as individual (uncomplexed), double-stranded DNA molecules. At increasing histone concentrations (one histone per 500, 250 and 167 base pairs of DNA), the DNA molecules started to form extensive polygonal networks of mostly pentagons and hexagons. The observed networks might be one of the naturally occurring, stable DNA-histone structures. The condensing effects of the divalent cations Mg(2+) and Ca(2+) on the DNA-histone complexes were also investigated. The networks persisted at high Mg(2+) concentration (20mM) and the highest histone concentration. At high Ca(2+) concentration and the highest histone concentration, the polygonal network disappeared and, instead, individual, tightly condensed aggregates were formed. PMID:26141439

  7. Mechanical Characterization of Photo-crosslinkable Hydrogels with AFM

    NASA Astrophysics Data System (ADS)

    McKenna, Alyssa; Byun, Myunghwan; Hayward, Ryan; Aidala, Katherine

    2012-02-01

    Stimuli-responsive hydrogel films formed from photo-crosslinkable polymers are versatile materials for controlled drug delivery devices, three-dimensional micro-assemblies, and components in microfluidic systems. For such applications, it is important to understand both the mechanical properties and the dynamics responses of these materials. We describe the use of atomic force microscope (AFM) based indentation experiments to characterize the properties of poly(N-isopropylacrylamide) copolymer films, crosslinked by activation of pendent benzophenone units using ultraviolet light. In particular, we study how the elastic modulus of the material, determined using the Johnson, Kendall, and Roberts model, depends on UV dose, and simultaneously investigate stress relaxation in these materials in the context of viscoelastic and poroelastic relaxation models.

  8. AFM characterization of model nuclear fuel oxide multilayer structures modified by heavy ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Hawley, M. E.; Devlin, D. J.; Reichhardt, C. J.; Sickafus, K. E.; Usov, I. O.; Valdez, J. A.; Wang, Y. Q.

    2010-10-01

    This work explored a potential new model dispersion fuel form consisting of an actinide material embedded in a radiation tolerant matrix that captures fission products (FPs) and is easily separated chemically as waste from the fuel material. To understand the stability of this proposed dispersion fuel form design, an idealized model system composed of a multilayer film was studied. This system consisted of a tri-layer structure of an MgO layer sandwiched between two HfO 2 layers. HfO 2 served as a surrogate fissile material for UO 2 while MgO represented a stable, fissile product (FP) getter that is easily separated from the fissile material. This type of multilayer film structure allowed us to control the size of and spacing between each layer. The films were grown at room temperature by e-beam deposition on a Si(1 1 1) substrate and post-annealed annealing at a range of temperatures to crystallize the HfO 2 layers. The 550 °C annealed sample was subsequently irradiated with 10 MeV Au 3+ ions at a range of fluences from 5 × 10 13 to 3.74 × 10 16 ions/cm 2. Separate single layer constituent films and the substrate were also irradiated at 5 × 10 15 and 8 × 10 14 and 2 × 10 16, respectively. After annealing and irradiation, the samples were characterized using atomic force imaging techniques to determine local changes in microstructure and mechanical properties. All samples annealed above 550 °C cracked. From the AFM results we observed both crack healing and significant modification of the surface at higher fluences.

  9. Recent advances in exchange bias of layered magnetic FM/AFM systems

    NASA Astrophysics Data System (ADS)

    Liu, ZhongYuan

    2013-01-01

    The exchange bias (EB) has been investigated in magnetic materials with the ferromagnetic (FM)/antiferromagnetic (AFM) contacting interfaces for more than half a century. To date, the significant progress has been made in the layered magnetic FM/AFM thin film systems. EB mechanisms have shown substantive research advances. Here some of the new advances are introduced and discussed with the emphasis on the influence of AFM layer, the interlayer EB coupling across nonmagnetic spacer, and the interlayer coupling across AFM layer, as well as EB related to multiferrioc materials and electrical control.

  10. Adhesion of B. subtilis spores and vegetative cells onto stainless steel--DLVO theories and AFM spectroscopy.

    PubMed

    Harimawan, Ardiyan; Zhong, Shaoping; Lim, Chwee-Teck; Ting, Yen-Peng

    2013-09-01

    Interactions between the bacterium Bacillus subtilis (either as vegetative cells or as spores) and stainless steel 316 (SS-316) surfaces were quantified using the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory and extended DLVO (xDLVO) approach in conjunction with live force spectroscopy using an Atomic Force Microscope (AFM). The xDLVO approach accounts for acid-base (polar) interactions that are not considered in the classical DLVO theory. AFM results revealed that spores manifested stronger attraction interactions to stainless steel compared to their vegetative cells counterparts due to lower energy barrier as predicted by both the theoretical approaches as well as the higher hydrophobicity on the spore surfaces. Both DLVO and xDLVO theories predict that vegetative cells manifest weaker attachment on the surfaces compared to spores. Results of AFM force measurement corroborate these findings; spores recorded significantly higher adhesion force (2.92±0.4 nN) compared to vegetative cells (0.65±0.2 nN). The adhesion of spores presents greater challenges in biofilm control owing to its stronger attachment and persistence when the spores are formed under adverse environmental conditions. PMID:23777862

  11. Effects of density functionals and dispersion interactions on geometries, bond energies and harmonic frequencies of Etbnd UX3 (E = N, P, CH; X = H, F, Cl)

    NASA Astrophysics Data System (ADS)

    Pandey, Krishna Kumar; Patidar, Pankaj; Patidar, Sunil Kumar; Vishwakarma, Ravi

    2014-12-01

    Quantum-chemical calculations have been performed to evaluate the geometries, bonding nature and harmonic frequencies of the compounds [Etbnd UX3] at DFT, DFT-D3, DFT-D3(BJ) and DFT-dDSc levels using different density functionals BP86, BLYP, PBE, revPBE, PW91, TPSS and M06-L. The stretching frequency of Utbnd N bond in [Ntbnd UF3] calculated with DFT/BLYP closely resembles with the experimental value. The performance of different density functionals for accurate Utbnd N vibrational frequencies follows the order BLYP > revPBE > BP86 > PW91 > TPSS > PBE > M06-L. The BLYP functional gives accurate value of the Utbnd E bond distances. The uranium atom in the studied compounds [Etbnd UX3] is positively charged. Upon going from [Etbnd UF3] to [Etbnd UCl3], the partial Hirshfeld charge on uranium atom decreases because of the lower electronegativity of chlorine compared to flourine. The Gopinathan-Jug bond order for Utbnd E bonds ranges from 2.90 to 3.29. The Utbnd E bond dissociation energies vary with different density functionals as M06-L < TPSS < BLYP < revPBE < BP86 < PBE ≈ PW91. The orbital interactions ΔEorb, in all studied compounds [Etbnd UX3] are larger than the electrostatic interaction ΔEelstat, which means the Utbnd N bonds in these compound have greater degree of covalent character (in the range 63.8-77.2%). The Usbnd E σ-bonding interaction is the dominant bonding interaction in the nitride and methylidyne complexes while it is weaker in [Ptbnd UX3]. The dispersion energy contributions to the total bond dissociation energies are rather small. Compared to the Grimme's D3(BJ) corrections, the Corminboeuf's dispersion corrections are larger with metaGGA functionals (TPSS, M06-L) while smaller with GGA functionals.

  12. Pulsing frequency induced change in optical constants and dispersion energy parameters of WO3 films grown by pulsed direct current magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Punitha, K.; Sivakumar, R.; Sanjeeviraja, C.

    2014-03-01

    In this work, we present the pulsing frequency induced change in the structural, optical, vibrational, and luminescence properties of tungsten oxide (WO3) thin films deposited on microscopic glass and fluorine doped tin oxide (SnO2:F) coated glass substrates by pulsed dc magnetron sputtering technique. The WO3 films deposited on SnO2:F substrate belongs to monoclinic phase. The pulsing frequency has a significant influence on the preferred orientation and crystallinity of WO3 film. The maximum optical transmittance of 85% was observed for the film and the slight shift in transmission threshold towards higher wavelength region with increasing pulsing frequency revealed the systematic reduction in optical energy band gap (3.78 to 3.13 eV) of the films. The refractive index (n) of films are found to decrease (1.832 to 1.333 at 550 nm) with increasing pulsing frequency and the average value of extinction coefficient (k) is in the order of 10-3. It was observed that the dispersion data obeyed the single oscillator of the Wemple-Didomenico model, from which the dispersion energy (Ed) parameters, dielectric constants, plasma frequency, oscillator strength, and oscillator energy (Eo) of WO3 films were calculated and reported for the first time due to variation in pulsing frequency during deposition by pulsed dc magnetron sputtering. The Eo is change between 6.30 and 3.88 eV, while the Ed varies from 25.81 to 7.88 eV, with pulsing frequency. The Raman peak observed at 1095 cm-1 attributes the presence of W-O symmetric stretching vibration. The slight shift in photoluminescence band is attributed to the difference in excitons transition. We have made an attempt to discuss and correlate these results with the light of possible mechanisms underlying the phenomena.

  13. Fabrication of electric papers of graphene nanosheet shelled cellulose fibres by dispersion and infiltration as flexible electrodes for energy storage

    NASA Astrophysics Data System (ADS)

    Kang, Yan-Ru; Li, Ya-Li; Hou, Feng; Wen, Yang-Yang; Su, Dong

    2012-05-01

    An electrically conductive and electrochemically active composite paper of graphene nanosheet (GNS) coated cellulose fibres was fabricated via a simple paper-making process of dispersing chemically synthesized GNS into a cellulose pulp, followed by infiltration. The GNS nanosheet was deposited onto the cellulose fibers, forming a coating, during infiltration. It forms a continuous network through a bridge of interconnected cellulose fibres at small GNS loadings (3.2 wt%). The GNS/cellulose paper is as flexible and mechanically tough as the pure cellulose paper. The electrical measurements show the composite paper has a sheet resistance of 1063 Ω □-1 and a conductivity of 11.6 S m-1. The application of the composite paper as a flexible double layer supercapacitor in an organic electrolyte (LiPF6) displays a high capacity of 252 F g-1 at a current density of 1 A g-1 with respect to GNS. Moreover, the paper can be used as the anode in a lithium battery, showing distinct charge and discharge performances. The simple process for synthesising the GNS functionalized cellulose papers is attractive for the development of high performance papers for electrical, electrochemical and multifunctional applications.An electrically conductive and electrochemically active composite paper of graphene nanosheet (GNS) coated cellulose fibres was fabricated via a simple paper-making process of dispersing chemically synthesized GNS into a cellulose pulp, followed by infiltration. The GNS nanosheet was deposited onto the cellulose fibers, forming a coating, during infiltration. It forms a continuous network through a bridge of interconnected cellulose fibres at small GNS loadings (3.2 wt%). The GNS/cellulose paper is as flexible and mechanically tough as the pure cellulose paper. The electrical measurements show the composite paper has a sheet resistance of 1063 Ω □-1 and a conductivity of 11.6 S m-1. The application of the composite paper as a flexible double layer supercapacitor

  14. SURFACE-MODIFIED COALS FOR ENHANCED CATALYST DISPERSION AND LIQUEFACTION

    SciTech Connect

    Dr. Yaw D. Yeboah

    1999-09-01

    This is the final report of the Department of Energy Sponsored project DE-FGF22-95PC95229 entitled, surface modified coals for enhanced catalyst dispersion and liquefaction. The aims of the study were to enhance catalyst loading and dispersion in coal for improved liquefaction by preadsorption of surfactants and catalysts on the coal and to train and educate minority scientists in catalysts and separation science. Illinois No. 6 Coal (DEC-24) was selected for the study. The surfactants investigated included dodecyl dimethyl ethyl ammonium bromide (DDAB), a cationic surfactant, sodium dodecyl sulfate, an anionic surfactant, and Triton x-100, a neutral surfactant. Ammonium molybdate tetrahydrate was used as the molybdenum catalyst precursor. Zeta potential, BET, FTIR, AFM, UV-Vis and luminescence intensity measurements were undertaken to assess the surface properties and the liquefaction activities of the coal. The parent coal had a net negative surface charge over the pH range 2-12. However, in the presence of DDAB the negativity of the surface charge decreased. At higher concentrations of DDAB, a positive surface charge resulted. In contrast to the effect of DDAB, the zeta potential of the coal became more negative than the parent coal in the presence of SDS. Adsorption of Triton reduced the net negative charge density of the coal samples. The measured surface area of the coal surface was about 30 m{sup 2}/g compared to 77m{sup 2}/g after being washed with deionized water. Addition of the surfactants decreased the surface area of the samples. Adsorption of the molybdenum catalyst increased the surface area of the coal sample. The adsorption of molybdenum on the coal was significantly promoted by preadsorption of DDAB and SDS. Molybdenum adsorption showed that, over a wide range of concentrations and pH values, the DDAB treated coal adsorbed a higher amount of molybdenum than the samples treated with SDS. The infrared spectroscopy (FTIR) and the atomic force

  15. Colloidal Dispersions

    NASA Astrophysics Data System (ADS)

    Russel, W. B.; Saville, D. A.; Schowalter, W. R.

    1992-03-01

    The book covers the physical side of colloid science from the individual forces acting between submicron particles suspended in a liquid through the resulting equilibrium and dynamic properties. The relevant forces include Brownian motion, electrostatic repulsion, dispersion attraction, both attraction and repulsion due to soluble polymer, and viscous forces due to relative motion between the particles and the liquid. The balance among Brownian motion and the interparticle forces decides the questions of stability and phase behavior. Imposition of external fields produces complex effects, i.e. electrokinetic phenomena (electric field), sedimentation (gravitational field), diffusion (concentration/chemical potential gradient), and non-Newtonian rheology (shear field). The treatment aims to impart a sound, quantitative understanding based on fundamental theory and experiments with well-characterized model systems. This broad grasp of the fundamentals lends insight and helps to develop the intuitive sense needed to isolate essential features of technological problems and design critical experiments. Some exposure to fluid mechanics, statistical mechanics, and electricity and magnetism is assumed, but each subject is reintroduced in a self-contained manner.

  16. Fabrication of electric papers of graphene nanosheet shelled cellulose fibres by dispersion and infiltration as flexible electrodes for energy storage.

    PubMed

    Kang, Yan-Ru; Li, Ya-Li; Hou, Feng; Wen, Yang-Yang; Su, Dong

    2012-05-21

    An electrically conductive and electrochemically active composite paper of graphene nanosheet (GNS) coated cellulose fibres was fabricated via a simple paper-making process of dispersing chemically synthesized GNS into a cellulose pulp, followed by infiltration. The GNS nanosheet was deposited onto the cellulose fibers, forming a coating, during infiltration. It forms a continuous network through a bridge of interconnected cellulose fibres at small GNS loadings (3.2 wt%). The GNS/cellulose paper is as flexible and mechanically tough as the pure cellulose paper. The electrical measurements show the composite paper has a sheet resistance of 1063 Ω□(-1) and a conductivity of 11.6 S m(-1). The application of the composite paper as a flexible double layer supercapacitor in an organic electrolyte (LiPF(6)) displays a high capacity of 252 F g(-1) at a current density of 1 A g(-1) with respect to GNS. Moreover, the paper can be used as the anode in a lithium battery, showing distinct charge and discharge performances. The simple process for synthesising the GNS functionalized cellulose papers is attractive for the development of high performance papers for electrical, electrochemical and multifunctional applications. PMID:22535335

  17. Rigorous quantitative elemental microanalysis by scanning electron microscopy/energy dispersive x-ray spectrometry (SEM/EDS) with spectrum processing by NIST DTSA-II

    NASA Astrophysics Data System (ADS)

    Newbury, Dale E.; Ritchie, Nicholas W. M.

    2014-09-01

    Quantitative electron-excited x-ray microanalysis by scanning electron microscopy/silicon drift detector energy dispersive x-ray spectrometry (SEM/SDD-EDS) is capable of achieving high accuracy and high precision equivalent to that of the high spectral resolution wavelength dispersive x-ray spectrometer even when severe peak interference occurs. The throughput of the SDD-EDS enables high count spectra to be measured that are stable in calibration and resolution (peak shape) across the full deadtime range. With this high spectral stability, multiple linear least squares peak fitting is successful for separating overlapping peaks and spectral background. Careful specimen preparation is necessary to remove topography on unknowns and standards. The standards-based matrix correction procedure embedded in the NIST DTSA-II software engine returns quantitative results supported by a complete error budget, including estimates of the uncertainties from measurement statistics and from the physical basis of the matrix corrections. NIST DTSA-II is available free for Java-platforms at: http://www.cstl.nist.gov/div837/837.02/epq/dtsa2/index.html).

  18. Fast elemental screening of soil and sediment profiles using small-spot energy-dispersive X-ray fluorescence: application to mining sediments geochemistry.

    PubMed

    Gonzalez-Fernandez, Oscar; Queralt, Ignacio

    2010-09-01

    Elemental analysis of different sediment cores originating from the Cartagena-La Union mining district in Spain was carried out by means of a programmable small-spot energy-dispersive X-ray fluorescence (EDXRF) spectrometer to study the distribution of heavy metals along soil profiles. Cores were obtained from upstream sediments of a mining creek, from the lowland sedimentation plain, and from a mining landfill dump (tailings pile). A programmable two-dimensional (2D) stage and a focal spot resolution of 600 μm allow us to obtain complete core mapping. Geochemical results were verified using a more powerful wavelength-dispersion X-ray fluorescence (WDXRF) technique. The data obtained was processed in order to study the statistical correlations within the elemental compositions. The results obtained allow us to observe the differential in-depth distribution of heavy metals among the sampled zones. Dump site cores exhibit a homogeneous distribution of heavy metals, whereas the alluvial plain core shows accumulation of heavy metals in the upper part. This approach can be useful for the fast screening of heavy metals in depositional environments around mining sites. PMID:20828442

  19. X-ray energy dispersive spectroscopy of uranium ore using a TES microcalorimeter mounted on a field-emission scanning electron microscope

    NASA Astrophysics Data System (ADS)

    Maehata, Keisuke; Idemitsu, Kazuya; Tanaka, Keiichi

    2011-08-01

    Energy dispersive spectroscopic measurements of uranium ore were conducted using a superconducting phase transition-edge-thermosensor (TES) microcalorimeter mounted on a field-emission scanning electron microscope (SEM) to demonstrate its potential for high-precision microanalysis. The effective solid angle for X-ray detection is found to be larger than 2 msr by precise adjustments in the X-ray polycapillary alignment. The observed detection signal pulses with decay time constant of 50 μs enable maximum count rates larger than 300 counts per second. The energy resolution was determined to be 14.6 eV FWHM at Al Kα X-ray energies of 1487 eV. Distinct peaks appear in the resulting X-ra y energy spectrum associated with U-Mα, U-Mβ and U-Mγ X-rays emitted by the uranium ore specimens. This spectrum includes weaker peaks corresponding to C-Kα, Fe-Lα, Cu-L and Sr L α1 X rays.

  20. PREFACE: NC-AFM 2004: Proceedings of the 7th International Conference on Non-contact Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Schwarz, Udo

    2005-03-01

    atomic resolution, the investigation of near-surface electronic states, the quantification of adhesion forces, and the lateral mapping of surface potentials. The origin of energy dissipation, which is closely related to an in-depth understanding of tip-surface interactions and imaging mechanisms, was the subject of an ongoing discussion and addressed by various theoretical, computational, and experimental contributions. A characteristic of the NC-AFM conference series is the lively and friendly atmosphere, which year after year stimulates scientific discussions between the participants. This time, the programme included 5 invited talks, 84 contributed presentations, and 113 participants; furthermore, three educational lectures were given as part of a pre-conference workshop targeted at NC-AFM newcomers, which was attended by 30 participants. I would like to thank the members of the international steering committee and the programme committee for their continued effort in organizing the meeting. Special thanks go to the chair of the programme and local organizing committees S Fain and the conference manager J Kvamme for making the meeting a success. Financial support is acknowledged from the corporate sponsors MikroMasch USA, Nanonis GmbH, Nanosurf AG, Omicron Nanotechnology, PSIA, Inc., and RHK Technology, as well as from the institutional sponsors National Science Foundation and PNNL/UW Joint Institute for Nanoscience. Finally, I would like to express my gratitude to everyone who participated in assembling this special issue including the authors, the reviewers, and, in particular, the excellent and experienced journal team from the Institute of Physics Publishing headed by Nina Couzin, for devoting their time and efforts so that we could make this issue a useful representation of the progress in NC-AFM while maintaining our tight publication schedule. In conclusion, I would like to mention that the Seattle conference was the first one of the NC-AFM series that took

  1. Ionic Liquids as a Reference Material Candidate for the Quick Performance Check of Energy Dispersive X-ray Spectrometers for the Low Energy Range below 1 keV

    PubMed Central

    2016-01-01

    Ionic liquids (ILs) are proposed as simple and efficient test materials to evaluate the performance of energy dispersive X-ray spectrometers (EDS) in the low energy range below 1 keV. By only one measurement, C Kα, N Kα, O Kα, and F Kα X-ray lines can be excited. Additionally, the S Kα line at 2.3 keV and, particularly, the S L series at 149 eV complete the picture with X-ray lines offered by the selected ILs. The well-known (certifiable) elemental composition of the ILs selected in the present study can be used to check the accuracy of results produced with the available EDS quantification routines in the low energy range, simultaneously, for several low atomic number elements. A comparison with other reference materials in use for testing the performance of EDS in the low energy range is included. PMID:27336962

  2. Thickness measurement of semiconductor thin films by energy dispersive X-ray fluorescence benchtop instrumentation: Application to GaN epilayers grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Queralt, I.; Ibañez, J.; Marguí, E.; Pujol, J.

    2010-07-01

    The importance of thin films in modern high technology products, such as semiconductors, requires fast and non-destructive analysis. A methodology to determine the thickness of single layers with benchtop energy dispersive X-ray fluorescence (EDXRF) instrumentation is described and tested following analytical validation criteria. The experimental work was carried out on gallium nitride thin films epitaxially grown on sapphire substrate. The results of samples with layers in the range from 400 to 1000 nm exhibit a good correlation with the layer thickness determined by optical reflectance. Spectral data obtained using thin layered samples indicate the possibility to precisely evaluate layer thickness from 5 nm, with a low relative standard deviation (RSD < 2%) of the results. In view of the limits of optical reflectance for very thin layer determination, EDXRF analysis offers the potential for the thickness determination of such kind of samples.

  3. Characterization of Japanese color sticks by energy dispersive X-ray fluorescence, X-ray diffraction and Fourier transform infrared analysis

    NASA Astrophysics Data System (ADS)

    Manso, M.; Valadas, S.; Pessanha, S.; Guilherme, A.; Queralt, I.; Candeias, A. E.; Carvalho, M. L.

    2010-04-01

    This work comprises the use of energy dispersive X-ray fluorescence (EDXRF), X-ray diffraction (XRD) and Fourier transformed infrared (FTIR) techniques for the study of the composition of twentieth century traditional Japanese color sticks. By using the combination of analytical techniques it was possible to obtain information on inorganic and organic pigments, binders and fillers present in the sticks. The colorant materials identified in the sticks were zinc and titanium white, chrome yellow, yellow and red ochre, vermillion, alizarin, indigo, Prussian and synthetic ultramarine blue. The results also showed that calcite and barite were used as inorganic mineral fillers while Arabic gum was the medium used. EDXRF offered great potential for such investigations since it allowed the identification of the elements present in the sample preserving its integrity. However, this information alone was not enough to clearly identify some of the materials in study and therefore it was necessary to use XRD and FTIR techniques.

  4. Effects of Pamidronate on Dental Enamel Formation Assessed by Light Microscopy, Energy-Dispersive X-Ray Analysis, Scanning Electron Microscopy, and Microhardness Testing.

    PubMed

    Soares, Ana P; do Espírito Santo, Renan F; Line, Sérgio R P; Pinto, Maria das G F; Santos, Pablo de M; Toralles, Maria Betania P; do Espírito Santo, Alexandre R

    2016-06-01

    The aim of the present work was to investigate birefringence and morphology of the secretory-stage enamel organic extracellular matrix (EOECM), and structural and mechanical properties of mature enamel of upper incisors from adult rats that had been treated with pamidronate disodium (0.5 mg/kg/week for 56 days), using transmitted polarizing and bright-field light microscopies (TPLM and BFLM), energy-dispersive X-ray (EDX) analysis, scanning electron microscopy (SEM) and microhardness testing. BFLM showed no morphological changes of the EOECM in pamidronate and control groups, but TPLM revealed a statistically significant reduction in optical retardation values of birefringence brightness of pamidronate-treated rats when compared with control animals (p0.05). The present study indicates that pamidronate can affect birefringence of the secretory-stage EOECM, which does not seem to be associated with significant changes in morphological and/or mechanical properties of mature enamel. PMID:27212049

  5. Analysis of Catalonian silver coins from the Spanish War of Independence period (1808-1814) by Energy Dispersive X-ray Fluorescence

    NASA Astrophysics Data System (ADS)

    Pitarch, A.; Queralt, I.; Alvarez-Perez, A.

    2011-02-01

    Between the years 1808 and 1814, the Spanish War of Independence took place. This period, locally known as "Guerra del Francès", generated the need for money and consequently five mints were opened around the Catalan territory. To mark the 200th anniversary of the beginning of the war, an extensive campaign of Energy Dispersive X-ray Fluorescence measurements of some of these "emergency coins" was carried out. Apart from the silver (major constituent of all the studied coins) it has been possible to recognize copper as main metal alloying element. Likewise, the presence of zinc, tin, lead, gold, platinum, antimony, nickel and iron has been also identified. The obtained results have been useful not only for the characterization of the alloys, but also to determine the differences and analogies between the emissions and for historical explanations.

  6. An in situ synchrotron energy-dispersive diffraction study of the hydration of oilwell cement systems under high temperature/autoclave conditions up to 130 deg. C

    SciTech Connect

    Colston, Sally L.; Barnes, Paul . E-mail: p.barnes@bbk.ac.uk; Jupe, Andrew C.; Jacques, Simon D.M.; Hall, Christopher; Livesey, Paul; Dransfield, John; Meller, Nicola; Maitland, Geoffrey C.

    2005-12-15

    The technique of synchrotron energy dispersive diffraction has been developed for in situ studies of cement hydration under autoclave conditions. This has been applied to oilwell cements hydrating at typical oilwell temperatures up to 130 deg. C. The results show clearly the detailed interplay between 11 detectable phases, from which a phase transformation scheme has been derived; this illustrates the progression of hydration up to 130 deg. C for two extreme cases, with and without conservation of water content and autoclave pressure. The monosulphate hydrate phases are found to exhibit different stability bounds, with a surprising sequence of the 14-water, 10-water then 12-water monosulphate as temperature/time increases; the latter form is particularly associated with conditions of water/pressure loss. The effect of retarders on C{sub 3}S dissolution and CH formation is negligible above 70 deg. C, whereas the effect on the calcium sulphoaluminate hydrates is more complex, and possible reasons for this are discussed.

  7. Atomic-Resolution X-ray Energy-Dispersive Spectroscopy Chemical Mapping of Substitutional Dy Atoms in a High-Coercivity Neodymium Magnet

    NASA Astrophysics Data System (ADS)

    Itakura, Masaru; Watanabe, Natsuki; Nishida, Minoru; Daio, Takeshi; Matsumura, Syo

    2013-05-01

    We have investigated local element distributions in a Dy-doped Nd2Fe14B hot-deformed magnet by atomic-column resolution chemical mapping using an X-ray energy-dispersive spectrometer (XEDS) attached to an aberration-corrected scanning transmission electron microscope (Cs-corrected STEM). The positions of the Nd and Dy atomic columns were visualized in the XEDS maps. The substitution of Dy was limited to a surface layer 2-3 unit cells thick in the Nd2Fe14B grains, and the Dy atoms preferentially occupied the 4f-Nd sites of Nd2Fe14B. These results provide further insights into the principal mechanism governing the coercivity enhancement due to Dy doping.

  8. Peritoneal "melanosis" associated with a ruptured ovarian dermoid cyst: report of a case with electron-probe energy dispersive X-ray analysis.

    PubMed

    Jaworski, R C; Boadle, R; Greg, J; Cocks, P

    2001-10-01

    A case of peritoneal "melanosis" due to a ruptured left ovarian dermoid cyst is described. Histology showed that the dermoid contained gastric mucosa associated with ulceration, necrosis, and hemorrhage. The areas of pigmentation within the dermoid, omentum, and peritoneal cavity were due to collections of heavily pigment-laden macrophages. The pigment lacked the histochemical features of either melanin or hemosiderin, but electron-probe energy dispersive x-ray analysis showed that the pigment contained a high concentration of iron. It is postulated that peptic ulceration with hemorrhage is the most likely source of the pigment and that the peritoneal pigmentation is secondary to spillage of the contents of the dermoid cyst. PMID:11603224

  9. Spatially resolved energy dispersive x-ray spectroscopic method for in-situ evaluation of mechanical properties during the growth of a C - Pt composite nanowire

    NASA Astrophysics Data System (ADS)

    Banerjee, Amit; Banerjee, S. S.

    2014-05-01

    A core-shell type C-Pt composite nanowire is fabricated using focused ion and electron beam induced chemical vapor deposition techniques. Using information from spatially resolved energy dispersive x-ray spectra, we detect the resonance vibration in the C-Pt composite nanowire. We use this method to measure the Young's moduli of the constituents (C, Pt) of the composite nanowire and also estimate the density of the FEB CVD grown Pt shell surrounding the C core. By measuring the resonance characteristics of the composite nanowire we estimate a Pt shell growth rate of ˜0.9 nms-1. The study is analyzed to suggest that the Pt shell growth mechanism is primarily governed by the sticking coefficient of the organometallic vapor on the C nanowire core.

  10. Remineralization of demineralized enamel by toothpastes: a scanning electron microscopy, energy dispersive X-ray analysis, and three-dimensional stereo-micrographic study.

    PubMed

    Gjorgievska, Elizabeta S; Nicholson, John W; Slipper, Ian J; Stevanovic, Marija M

    2013-06-01

    Remineralization of hard dental tissues is thought to be a tool that could close the gap between prevention and surgical procedures in clinical dentistry. The purpose of this study was to examine the remineralizing potential of different toothpaste formulations: toothpastes containing bioactive glass, hydroxyapatite, or strontium acetate with fluoride, when applied to demineralized enamel. Results obtained by scanning electron microscopy (SEM) and SEM/energy dispersive X-ray analyses proved that the hydroxyapatite and bioactive glass-containing toothpastes were highly efficient in promoting enamel remineralization by formation of deposits and a protective layer on the surface of the demineralized enamel, whereas the toothpaste containing 8% strontium acetate and 1040 ppm fluoride as NaF had little, if any, remineralization potential. In conclusion, the treatment of demineralized teeth with toothpastes containing hydroxyapatite or bioactive glass resulted in repair of the damaged tissue. PMID:23659606

  11. Investigation of x-ray photon counting using a silicon-PIN diode and its application to energy-dispersive computed tomography

    NASA Astrophysics Data System (ADS)

    Kodama, Hajime; Sato, Eiichi; Sagae, Michiaki; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya; Sato, Shigehiro; Ogawa, Akira

    2013-09-01

    X-ray photon counting was performed using a readymade silicon-PIN photodiode (Si-PIN-PD) at tube voltages ranging from 42 to 60 kV, and X-ray photons are directly detected using the 100 MHz Si-PIN-PD without a scintillator. Photocurrent from the diode is amplified using charge-sensitive and shaping amplifiers. Using a multichannel analyzer, X-ray spectra at a tube voltage of 60 kV could easily be measured. The photon-counting computed tomography (PCCT) is accomplished by repeated linear scans and rotations of an object, and projection curves of the object are obtained by the linear scan. In the PC-CT, we confirmed the energy-dispersive effect with changes in lower-level voltage of the event pulse using a comparator.

  12. Origin of energy dispersion in AlxGa1-xN/GaN nanowire quantum discs with low Al content

    NASA Astrophysics Data System (ADS)

    Rigutti, L.; Teubert, J.; Jacopin, G.; Fortuna, F.; Tchernycheva, M.; de Luna Bugallo, A.; Julien, F. H.; Furtmayr, F.; Stutzmann, M.; Eickhoff, M.

    2010-12-01

    Individual GaN nanowires containing AlxGa1-xN/GaN quantum discs (QDiscs) with Al content x≤16% have been investigated by microphotoluminescence, transmission electron microscopy, and theoretical modeling. Single quantum discs show narrow emission lines with a linewidth as low as 3 meV at energies above the GaN band gap while the emission of nanowires containing multiple quantum discs shows multiple peaks with total spectral broadening that depends on the Al content in the barrier. As assessed by simulations of the quantum confinement based on a three-dimensional effective-mass model, the main factors influencing the spectral dispersion are: (i) strain relaxation in the QDiscs, strongly affected by the presence of a lateral AlGaN shell with a progressively changing thickness formed during the barrier growth; (ii) monolayer fluctuations in the QDisc thickness.

  13. Spatially resolved energy dispersive x-ray spectroscopic method for in-situ evaluation of mechanical properties during the growth of a C - Pt composite nanowire

    SciTech Connect

    Banerjee, Amit; Banerjee, S. S.

    2014-05-15

    A core-shell type C-Pt composite nanowire is fabricated using focused ion and electron beam induced chemical vapor deposition techniques. Using information from spatially resolved energy dispersive x-ray spectra, we detect the resonance vibration in the C-Pt composite nanowire. We use this method to measure the Young's moduli of the constituents (C, Pt) of the composite nanowire and also estimate the density of the FEB CVD grown Pt shell surrounding the C core. By measuring the resonance characteristics of the composite nanowire we estimate a Pt shell growth rate of ∼0.9 nms{sup −1}. The study is analyzed to suggest that the Pt shell growth mechanism is primarily governed by the sticking coefficient of the organometallic vapor on the C nanowire core.

  14. On the authenticity of eight Reales 1730 Mexican silver coins by X-ray diffraction and by energy dispersion spectroscopy techniques

    NASA Astrophysics Data System (ADS)

    Rojas-Rodriguez, I.; Herrera, A.; Vázquez-López, C.; Apolo, R.; González-Hernández, J.; Hernández-Landaverde, M. A.; Rodriguez, M. E.

    2004-02-01

    Ancient silver Mexican coins made during the years 1730-1734, were analyzed non-destructively by energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and by optical microscopy. Nine coins of denomination eight Reales were studied. These coins belong to the numismatic private collection in Mexico. Six elements (copper, aluminum, magnesium, silicon, chromium and silver) were determined quantitatively. The coins reveal a uniform Ag concentration. Some of the items are covered with patina. A strong positive correlation between Al and Cu content and also a strong negative correlation between S and Ag were determined. The weight of the coins varied between 26.1344 and 26.9913 g, which is a good indicator of the authenticity of the items. The purpose of this work is to investigate by precise means if some of the coins were falsified or if really all of them are authentic.

  15. Determination of heavy metals in suspended waste water collected from Oued El Harrach Algiers River by Energy Dispersive X-Ray Fluorescence

    NASA Astrophysics Data System (ADS)

    Ouziane, S.; Amokrane, A.; Toumert, I.

    2013-12-01

    A preliminary study of the atmospheric pollution in the centre of Algiers is one of the important fields of applications in the environmental science. Nowadays, we need to evaluate the level of the contamination which has an unfavourable effect on physicochemical properties of soils and plants and namely also on human health. In the present work, water samples collected from Oued El-Harrach Algiers River, have been filtered in 0.45 μm Millipore filters to be analysed by Energy Dispersive X-Ray Fluorescence technique using 109Cd radioisotope source. Concentrations of the toxic elements like heavy metals are determined and compared with the published ones values by Yoshida [1] and those obtained using PIXE and NAA techniques [6].

  16. Liver concentrations of copper, zinc, iron and molybdenum in sheep and goats from northern Greece, determined by energy-dispersive X-ray fluorescence spectrometry.

    PubMed

    Papachristodoulou, Christina; Stamoulis, Konstantinos; Tsakos, Panagiotis; Vougidou, Christina; Vozikis, Vasileios; Papadopoulou, Chrissanthy; Ioannides, Konstantinos

    2015-04-01

    Energy-dispersive X-Ray fluorescence spectrometry was used to determine the concentrations of copper (Cu), zinc, iron and molybdenum in the liver of 76 sheep and goats from the regions of Macedonia-Thrace, northern Greece. In general, metal concentrations were in the adequate range, with one main exception of Cu-deficiency observed in all of the examined goat liver samples and Cu-toxicity found in 4 % of the sheep liver samples. One-way analysis of variance was carried out to determine significant differences among means depending on animal species, sex and age. Pearson correlation analysis was used to explore correlations between metal concentrations. The results obtained in the present study are discussed in the framework of diagnostic ranges, suggested for classifying the metal status of sheep and goats, and are compared with liver metal concentrations reported world-wide. PMID:25694162

  17. Strong Energy-momentum Dispersion of Phonon Dressed Carriers in the Lightly Doped Band Insulator SrTiO3

    SciTech Connect

    Meevasana, Warawat

    2010-05-26

    Much progress has been made recently in the study of the effects of electron-phonon (el-ph) coupling in doped insulators using angle resolved photoemission (ARPES), yielding evidence for the dominant role of el-ph interactions in underdoped cuprates. As these studies have been limited to doped Mott insulators, the important question arises how this compares with doped band insulators where similar el-ph couplings should be at work. The archetypical case is the perovskite SrTiO{sub 3} (STO), well known for its giant dielectric constant of 10000 at low temperature, exceeding that of La{sub 2}CuO{sub 4} by a factor of 500. Based on this fact, it has been suggested that doped STO should be the archetypical bipolaron superconductor. Here we report an ARPES study from high-quality surfaces of lightly doped SrTiO{sub 3}. Comparing to lightly doped Mott insulators, we find the signatures of only moderate electron-phonon coupling: a dispersion anomaly associated with the low frequency optical phonon with a {lambda}{prime} {approx} 0.3 and an overall bandwidth renormalization suggesting an overall {lambda}{prime} {approx} 0.7 coming from the higher frequency phonons. Further, we find no clear signatures of the large pseudogap or small polaron phenomena. These findings demonstrate that a large dielectric constant itself is not a good indicator of el-ph coupling and highlight the unusually strong effects of the el-ph coupling in doped Mott insulators.

  18. Electrostatic Dispersion and Evaporation of Dense and Dilute Clusters of Drops of High-Energy Fuel For Soot Control

    NASA Technical Reports Server (NTRS)

    Bellan, J.; Harstad, K.

    1997-01-01

    The high-energy-density (HED) fuels developed under U.S. Navy sponsorship as a replacement for conventional liquid fuels, in its missile propulsion systems have the drawback of high soot propensity: this makes misiles visible and thus strategically unacceptabel.

  19. High-Energy-Density Fuel Blending Strategies and Drop Dispersion for Fuel Cost Reduction and Soot Propensity Control

    NASA Technical Reports Server (NTRS)

    Bellan, J.; Harstad, K.

    1998-01-01

    The idea that low soot propensity of high-energy-density (HED) liquid sooting fuels and cost reduction of a multicomponent energetic fuel can be achieved by doping a less expensive, less sooting liquid fuel with HED is tested through numerical simulations.

  20. CHARACTERISTICS OF SPILLED OILS, FUELS, AND PETROLEUM PRODUCTS: 2A. DISPERSANT EFFECTIVENESS DATA FOR A SUITE OF ENVIRONMENTAL CONDITIONS - THE EFFECTS OF TEMPERATURE, VOLATILIZATION, AND ENERGY

    EPA Science Inventory

    Chemical dispersants are used in oil spill response operations to enhance the dispersion of oil slicks at sea as small oil droplets in the water column. To assess the impacts of dispersant usage on oil spills, US EPA is developing a simulation model called the EPA Research Object...

  1. BOREAS AFM-12 1-km AVHRR Seasonal Land Cover Classification

    NASA Technical Reports Server (NTRS)

    Steyaert, Lou; Hall, Forrest G.; Newcomer, Jeffrey A. (Editor); Knapp, David E. (Editor); Loveland, Thomas R.; Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-12 team's efforts focused on regional scale Surface Vegetation and Atmosphere (SVAT) modeling to improve parameterization of the heterogeneous BOREAS landscape for use in larger scale Global Circulation Models (GCMs). This regional land cover data set was developed as part of a multitemporal one-kilometer Advanced Very High Resolution Radiometer (AVHRR) land cover analysis approach that was used as the basis for regional land cover mapping, fire disturbance-regeneration, and multiresolution land cover scaling studies in the boreal forest ecosystem of central Canada. This land cover classification was derived by using regional field observations from ground and low-level aircraft transits to analyze spectral-temporal clusters that were derived from an unsupervised cluster analysis of monthly Normalized Difference Vegetation Index (NDVI) image composites (April-September 1992). This regional data set was developed for use by BOREAS investigators, especially those involved in simulation modeling, remote sensing algorithm development, and aircraft flux studies. Based on regional field data verification, this multitemporal one-kilometer AVHRR land cover mapping approach was effective in characterizing the biome-level land cover structure, embedded spatially heterogeneous landscape patterns, and other types of key land cover information of interest to BOREAS modelers.The land cover mosaics in this classification include: (1) wet conifer mosaic (low, medium, and high tree stand density), (2) mixed coniferous-deciduous forest (80% coniferous, codominant, and 80% deciduous), (3) recent visible bum, vegetation regeneration, or rock outcrops-bare ground-sparsely vegetated slow regeneration bum (four classes), (4) open water and grassland marshes, and (5) general agricultural land use/ grasslands (three classes). This land cover mapping approach did not detect small subpixel-scale landscape

  2. Nano-Wilhelmy investigation of dynamic wetting properties of AFM tips through tip-nanobubble interaction.

    PubMed

    Wang, Yuliang; Wang, Huimin; Bi, Shusheng; Guo, Bin

    2016-01-01

    The dynamic wetting properties of atomic force microscopy (AFM) tips are of much concern in many AFM-related measurement, fabrication, and manipulation applications. In this study, the wetting properties of silicon and silicon nitride AFM tips are investigated through dynamic contact angle measurement using a nano-Wilhelmy balance based method. This is done by capillary force measurement during extension and retraction motion of AFM tips relative to interfacial nanobubbles. The working principle of the proposed method and mathematic models for dynamic contact angle measurement are presented. Geometric models of AFM tips were constructed using scanning electronic microscopy (SEM) images taken from different view directions. The detailed process of tip-nanobubble interaction was investigated using force-distance curves of AFM on nanobubbles. Several parameters including nanobubble height, adhesion and capillary force between tip and nanobubbles are extracted. The variation of these parameters was studied over nanobubble surfaces. The dynamic contact angles of the AFM tips were calculated from the capillary force measurements. The proposed method provides direct measurement of dynamic contact angles for AFM tips and can also be taken as a general approach for nanoscale dynamic wetting property investigation. PMID:27452115

  3. Nano-Wilhelmy investigation of dynamic wetting properties of AFM tips through tip-nanobubble interaction

    PubMed Central

    Wang, Yuliang; Wang, Huimin; Bi, Shusheng; Guo, Bin

    2016-01-01

    The dynamic wetting properties of atomic force microscopy (AFM) tips are of much concern in many AFM-related measurement, fabrication, and manipulation applications. In this study, the wetting properties of silicon and silicon nitride AFM tips are investigated through dynamic contact angle measurement using a nano-Wilhelmy balance based method. This is done by capillary force measurement during extension and retraction motion of AFM tips relative to interfacial nanobubbles. The working principle of the proposed method and mathematic models for dynamic contact angle measurement are presented. Geometric models of AFM tips were constructed using scanning electronic microscopy (SEM) images taken from different view directions. The detailed process of tip-nanobubble interaction was investigated using force-distance curves of AFM on nanobubbles. Several parameters including nanobubble height, adhesion and capillary force between tip and nanobubbles are extracted. The variation of these parameters was studied over nanobubble surfaces. The dynamic contact angles of the AFM tips were calculated from the capillary force measurements. The proposed method provides direct measurement of dynamic contact angles for AFM tips and can also be taken as a general approach for nanoscale dynamic wetting property investigation. PMID:27452115

  4. Beyond topography - enhanced imaging of cometary dust with the MIDAS AFM

    NASA Astrophysics Data System (ADS)

    Bentley, M. S.; Torkar, K.; Jeszenszky, H.; Romstedt, J.

    2013-09-01

    The MIDAS atomic force microscope (AFM) onboard the Rosetta spacecraft is primarily designed to return the 3D shape and structure of cometary dust particles collected at comet 67P/Churyumov-Gerasimenko [1]. Commercial AFMs have, however, been further developed to measure many other sample properties. The possibilities to make such measurements with MIDAS are explored here.

  5. Nano-Wilhelmy investigation of dynamic wetting properties of AFM tips through tip-nanobubble interaction

    NASA Astrophysics Data System (ADS)

    Wang, Yuliang; Wang, Huimin; Bi, Shusheng; Guo, Bin

    2016-07-01

    The dynamic wetting properties of atomic force microscopy (AFM) tips are of much concern in many AFM-related measurement, fabrication, and manipulation applications. In this study, the wetting properties of silicon and silicon nitride AFM tips are investigated through dynamic contact angle measurement using a nano-Wilhelmy balance based method. This is done by capillary force measurement during extension and retraction motion of AFM tips relative to interfacial nanobubbles. The working principle of the proposed method and mathematic models for dynamic contact angle measurement are presented. Geometric models of AFM tips were constructed using scanning electronic microscopy (SEM) images taken from different view directions. The detailed process of tip-nanobubble interaction was investigated using force-distance curves of AFM on nanobubbles. Several parameters including nanobubble height, adhesion and capillary force between tip and nanobubbles are extracted. The variation of these parameters was studied over nanobubble surfaces. The dynamic contact angles of the AFM tips were calculated from the capillary force measurements. The proposed method provides direct measurement of dynamic contact angles for AFM tips and can also be taken as a general approach for nanoscale dynamic wetting property investigation.

  6. The Analysis of Particles at Low Accelerating Voltages (≤ 10 kV) With Energy Dispersive X-Ray Spectroscopy (EDS)

    PubMed Central

    Small, J. A.

    2002-01-01

    In recent years, there have been a series of advancements in electron beam instruments and x-ray detectors which may make it possible to improve significantly the quality of results from the quantitative electron-probe analysis of individual particles. These advances include: (1) field-emission gun electron beam instruments such as scanning electron microscopes (FEG-SEMs) that have high brightness electron guns with excellent performance at low beam energies, E0 ≤ 10 keV and (2) high-resolution energy-dispersive x-ray spectrometers, like the microcalorimeter detector, that provide high-resolution (< 10 eV) parallel x-ray collection. These devices make it possible to separate low energy (< 4 keV) x-ray lines including the K lines of carbon, nitrogen and oxygen and the L and M lines for elements with atomic numbers in the range of 25 to 83. In light of these advances, this paper investigates the possibility of using accelerating voltages ≤ 10 kV, as a method to improve the accuracy of elemental analysis for micrometer-sized particles.

  7. Misidentification of major constituents by automatic qualitative energy dispersive X-ray microanalysis: a problem that threatens the credibility of the analytical community.

    PubMed

    Newbury, Dale E

    2005-12-01

    Automatic qualitative analysis for peak identification is a standard feature of virtually all modern computer-aided analysis software for energy dispersive X-ray spectrometry with electron excitation. Testing of recently installed systems from four different manufacturers has revealed the occasional occurrence of misidentification of peaks of major constituents whose concentrations exceeded 0.1 mass fraction (10 wt%). Test materials where peak identification failures were observed included ZnS, KBr, FeS2, tantalum-niobium alloy, NIST Standard Reference Material 482 (copper-gold alloy), Bi2Te3, uranium-rhodium alloys, platinum-chromium alloy, GaAs, and GaP. These misidentifications of major constituents were exacerbated when the incident beam energy was 10 keV or lower, which restricted or excluded the excitation of the high photon energy K- and L-shell X-rays where multiple peaks, for example, Kalpha (K-L2,3)-Kbeta (K-M2,3); Lalpha (L3-M4,5)-Lbeta (L2-M4)-Lgamma (L2-N4), are well resolved and amenable to identification with high confidence. These misidentifications are so severe as to properly qualify as blunders that present a serious challenge to the credibility of this critical analytical technique. Systematic testing of a peak identification system with a suite of diverse materials can reveal the specific elements and X-ray peaks where failures are likely to occur. PMID:17481333

  8. Misidentification of Major Constituents by Automatic Qualitative Energy Dispersive X-ray Microanalysis: A Problem that Threatens the Credibility of the Analytical Community

    NASA Astrophysics Data System (ADS)

    Newbury*, Dale E.

    2005-12-01

    Automatic qualitative analysis for peak identification is a standard feature of virtually all modern computer-aided analysis software for energy dispersive X-ray spectrometry with electron excitation. Testing of recently installed systems from four different manufacturers has revealed the occasional occurrence of misidentification of peaks of major constituents whose concentrations exceeded 0.1 mass fraction (10 wt%). Test materials where peak identification failures were observed included ZnS, KBr, FeS2, tantalum-niobium alloy, NIST Standard Reference Material 482 (copper gold alloy), Bi2Te3, uranium rhodium alloys, platinum chromium alloy, GaAs, and GaP. These misidentifications of major constituents were exacerbated when the incident beam energy was 10 keV or lower, which restricted or excluded the excitation of the high photon energy K- and L-shell X-rays where multiple peaks, for example, K[alpha] (K-L2,3) K[beta] (K-M2,3); L[alpha] (L3-M4,5) L[beta] (L2-M4) L[gamma] (L2-N4), are well resolved and amenable to identification with high confidence. These misidentifications are so severe as to properly qualify as blunders that present a serious challenge to the credibility of this critical analytical technique. Systematic testing of a peak identification system with a suite of diverse materials can reveal the specific elements and X-ray peaks where failures are likely to occur.

  9. High speed AFM studies of 193 nm immersion photoresists during TMAH development

    NASA Astrophysics Data System (ADS)

    Ngunjiri, Johnpeter; Meyers, Greg; Cameron, Jim; Suzuki, Yasuhiro; Jeon, Hyun; Lee, Dave; Choi, Kwang Mo; Kim, Jung Woo; Im, Kwang-Hwyi; Lim, Hae-Jin

    2016-03-01

    In this paper we report on our studies of the dynamic process of resist development in real time. Using High Speed - Atomic Force Microscopy (HS-AFM) in dilute developer solution, changes in morphology and nanomechanical properties of patterned resist were monitored. The Bruker Dimension FastScan AFMTM was applied to analyze 193 nm acrylic-based immersion resists in developer. HS-AFM operated in Peak Force mapping mode allowed for concurrent measurements of image topography resist stiffness, adhesion to AFM probe and deformation during development. In our studies we focused on HS-AFM topography data as it readily revealed detailed information about initial resist morphology, followed by a resist swelling process and eventual dissolution of the exposed resist areas. HS-AFM showed potential for tracking and understanding development of patterned resist films and can be useful in evaluating the dissolution properties of different resist designs.

  10. The role of growth temperature in the adhesion and mechanics of pathogenic L. monocytogenes: an AFM study.

    PubMed

    Gordesli, Fatma Pinar; Abu-Lail, Nehal I

    2012-01-17

    The adhesion strengths of pathogenic L. monocytogenes EGDe to a model surface of silicon nitride were quantified using atomic force microscopy (AFM) in water for cells grown under five different temperatures (10, 20, 30, 37, and 40 °C). The temperature range investigated was chosen to bracket the thermal conditions in which L. monocytogenes survive in the environment. Our results indicated that adhesion force and energy quantified were at their maximum when the bacteria were grown at 30 °C. The higher adhesion observed at 30 °C compared to the adhesion quantified for bacterial cells grown at 37, 40, 20, and 10 °C was associated with longer and denser bacterial surface biopolymer brushes as predicted from fitting a model of steric repulsion to the approach distance-force data as well from the results of protein colorimetric assays. Theoretically predicted adhesion energies based on soft-particle DLVO theory agreed well with the adhesion energies computed from AFM force-distance retraction data (r(2) = 0.94); showing a minimum energy barrier to adhesion at 30 °C. PMID:22133148

  11. BOREAS AFM-2 Wyoming King Air 1994 Aircraft Sounding Data

    NASA Technical Reports Server (NTRS)

    Kelly, Robert D.; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The BOREAS AFM-2 team used the University of Wyoming King Air aircraft during IFCs 1, 2, and 3 in 1994 to collected pass-by-pass fluxes (and many other statistics) for the large number of level (constant altitude), straight-line passes used in a variety of flight patterns over the SSA and NSA and areas along the transect between these study areas. The data described here form a second set, namely soundings that were incorporated into nearly every research flight by the King Air in 1994. These soundings generally went from near the surface to above the inversion layer. Most were flown immediately after takeoff or immediately after finishing the last flux pattern of that particular day's flights. The parameters that were measured include wind direction, wind speed, west wind component (u), south wind component (v), static pressure, air dry bulb temperature, potential temperature, dewpoint, temperature, water vapor mixing ratio, and CO2 concentration. Data on the aircraft's location, attitude, and altitude during data collection are also provided. These data are stored in tabular ASCH files. The data files are available on a CD-ROM (see document number 20010000884) or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  12. BOREAS AFM-03-NCAR Electra 1994 Aircraft Sounding Data

    NASA Technical Reports Server (NTRS)

    Lenschow, Donald H.; Oncley, Steven P.; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-3 team used the National Center for Atmospheric Research's (NCAR) Electra aircraft to make sounding measurements to study the planetary boundary layer using in situ and remote-sensing measurements. Measurements were made of wind speed and direction, air pressure and temperature, potential temperature, dewpoint, mixing ratio of H, O, CO, concentration, and ozone concentration. Twenty-five research missions were flown over the Northern Study Area (NSA), Southern Study Area (SSA), and the transect during BOREAS Intensive Field Campaigns (IFCs) 1, 2, and 3 during 1994. All missions had from four to ten soundings through the top of the planetary boundary layer. This sounding data set contains all of the in situ vertical profiles through the boundary layer top that were made (with the exception of 'porpoise' maneuvers). Data were recorded in one-second time intervals. These data are stored in tabular ASCII files. The NCAR Electra 1994 aircraft sounding data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  13. AFM-based force microsensor for a microrobot

    NASA Astrophysics Data System (ADS)

    Fatikow, Sergej; Fahlbusch, Stephan

    2001-10-01

    Microrobots are the result of increasing research activities at the border between microsystem technology and robotics. Today already, robots with dimensions of a few cubic- centimeters can be developed. Like conventional robots, microrobots represent a complex system that usually contains several different types of actuators and sensors. The measurement of gripping forces is the most important sensor application in micromanipulation besides visual servoing to protect the parts from too high surface pressures and thereby damage during the assembly process. Very small forces in the range of 200 (mu) N down to 0.1 (mu) N or even less have to be sensed. Thus, the aim of our current research activities is the development of a high-resolution integrated force microsensor for measuring gripping forces in a microhandling robot. On the one hand, the sensor should be a device for teleoperated manipulation tasks in a flexible microhandling station. On the other hand, typical microhandling operations should to a large extend be automated with the aid of computer-based signal processing of sensor information. The user should be provided with an interface for teleoperated manipulation and an interface for partially automated manipulation of microobjects. In this paper, a concept for the measurement of gripping forces in microrobotics using piezoresistive AFM (atomic force microscope) cantilevers is introduced. Further on, the concept of a microrobot-based SEM station and its applications are presented.

  14. AFM Investigation of Liquid-Filled Polymer Microcapsules Elasticity.

    PubMed

    Sarrazin, Baptiste; Tsapis, Nicolas; Mousnier, Ludivine; Taulier, Nicolas; Urbach, Wladimir; Guenoun, Patrick

    2016-05-10

    Elasticity of polymer microcapsules (MCs) filled with a liquid fluorinated core is studied by atomic force microscopy (AFM). Accurately characterized spherical tips are employed to obtain the Young's moduli of MCs having four different shell thicknesses. We show that those moduli are effective ones because the samples are composites. The strong decrease of the effective MC elasticity (from 3.0 to 0.1 GPa) as the shell thickness decreases (from 200 to 10 nm) is analyzed using a novel numerical approach. This model describes the evolution of the elasticity of a coated half-space according to the contact radius, the thickness of the film, and the elastic moduli of bulk materials. This numerical model is consistent with the experimental data and allows simulating the elastic behavior of MCs at high frequencies (5 MHz). While the quasi-static elasticity of the MCs is found to be very dependent on the shell thickness, the high frequency (5 MHz) elastic behavior of the core leads to a stable behavior of the MCs (from 2.5 to 3 GPa according to the shell thickness). Finally, the effect of thermal annealing on the MCs elasticity is investigated. The Young's modulus is found to decrease because of the reduction of the shell thickness due to the loss of the polymer. PMID:27058449

  15. Sonochemical degradation of N-methylpyrrolidone and its influence on single walled carbon nanotube dispersion.

    PubMed

    Yau, Hin Chun; Bayazit, Mustafa K; Steinke, Joachim H G; Shaffer, Milo S P

    2015-12-01

    Sonicating pure N-methyl pyrrolidone (NMP) rapidly produces contaminating organic nanoparticles, at increasing concentration with time, as investigated by AFM, as well as UV-vis, IR and NMR spectroscopies. The contamination issue affects carbon nanotube, and likely other nanomaterial, dispersions processed by sonication in organic solvents. PMID:26403587

  16. Porous titania films fabricated via sol gel rout - Optical and AFM characterization

    NASA Astrophysics Data System (ADS)

    Karasiński, Paweł; Gondek, Ewa; Drewniak, Sabina; Kajzer, Anita; Waczyńska-Niemiec, Natalia; Basiaga, Marcin; Izydorczyk, Weronika; Kouari, Youssef E. L.

    2016-06-01

    Mesoporous titania films of low refractive index ∼1.72 and thickness within the range of 57-96 nm were fabricated via sol-gel rout and dip-coating technique on a soda-lime glass substrate. Tetrabutylorthotitanate Ti(OBu)4 was used as a titania precursor. High porosity and consequently low refractive index were achieved using the polyethylene glycol (PEG 1100) as a template. Based on transmittance, using Tauc's relations, the optical energy band gaps and the Urbach energy were determined. The research shows that in the fabricated titania films there are two types of optical energy band gaps, connected with direct and indirect electron transitions and brought about by the presence of amorphous and crystalline phase respectively. Based on the quantum size effect, the diameters of nanocrystals versus film thickness were determined. AFM studies of the titania films have demonstrated that there are changes of surface morphology taking place with the change of thickness. We have demonstrated that the surface morphology of titania films has influence on wettability.

  17. Two facets of the x-ray microanalysis at low voltage: The secondary fluorescence x-rays emission and the microcalorimeter energy-dispersive spectrometer

    NASA Astrophysics Data System (ADS)

    Demers, Hendrix

    The best spatial resolution, for a microanalysis with a scanning electron microscope (SEND, is achieved by using a low voltage electron beam. But the x-ray microanalysis was developed for high electron beam energy (greater than 10 keV). Also, the specimen will often contain light and medium elements and the analyst will have to use a mixture of K, L, and sometime M x-ray peaks for the x-ray microanalysis. With a mixture of family lines, it will be common to have secondary fluorescence x-rays emission by K--L and L--K interactions. The accuracy of the fluorescence correction models presently used by the analyst are not well known for these interactions. This work shows that the modified secondary fluorescence x-rays emission correction models can improve the accuracy of the microanalysis for K--L and L--K interactions. The general equation derived in this work allows the identification of three factors which influence the secondary fluorescence x-rays emission. The fluorescence production factor epsilonƒ can be used to predict the importance of the secondary fluorescence x-rays emission. A large value of epsilonƒ indicates that a fluorescence correction is needed. Another disadvantage of using a low voltage is that there are more frequent occurrences of x-ray peaks overlap. A new microanalysis instruments that combines the high-spatial resolution and high-energy resolution for x-ray detection is needed. The microcalorimeter energy-dispersive spectrometer (muEDS) should improve the low voltage microanalysis, but the maturity of this technology has to be evaluated first. One of the first commercial muEDS for x-ray microanalysis in a SEM is studied and analyzed in this work. This commercial muEDS has an excellent energy resolution (˜ 15 eV) and can detect x-rays of low energy. This x-ray detector can be used as a high-spatial resolution and high-energy resolution microanalysis instrument. There are still hurdles that this technology must overcome before its

  18. TECHNIQUES FOR MIXING DISPERSANTS WITH SPILLED OIL

    EPA Science Inventory

    The effective use of some oil spill dispersants requires the addition of mixing energy to the dispersant-treated slick. Various methods of energy application have included the use of fire hose streams directed to the water surface, outboard motors mounted on work boats, and the f...

  19. An analytic model for the response of a CZT detector in diagnostic energy dispersive x-ray spectroscopy

    SciTech Connect

    LeClair, Robert J.; Wang Yinkun; Zhao Peiying; Boileau, Michel; Wang, Lilie; Fleurot, Fabrice

    2006-05-15

    A CdZnTe detector (CZTD) can be very useful for measuring diagnostic x-ray spectra. The semiconductor detector does, however, exhibit poor hole transport properties and fluorescence generation upon atomic de-excitations. This article describes an analytic model to characterize these two phenomena that occur when a CZTD is exposed to diagnostic x rays. The analytical detector response functions compare well with those obtained via Monte Carlo calculations. The response functions were applied to 50, 80, and 110 kV x-ray spectra. Two 50 kV spectra were measured; one with no filtration and the other with 1.35 mm Al filtration. The unfiltered spectrum was numerically filtered with 1.35 mm of Al in order to see whether the recovered spectrum resembled the filtered spectrum actually measured. A deviation curve was obtained by subtracting one curve from the other on an energy bin by bin basis. The deviation pattern fluctuated around the zero line when corrections were applied to both spectra. Significant deviations from zero towards the lower energies were observed when the uncorrected spectra were used. Beside visual observations, the exposure obtained using the numerically attenuated unfiltered beam was compared to the exposure calculated with the actual filtered beam. The percent differences were 0.8% when corrections were applied and 25% for no corrections. The model can be used to correct diagnostic x-ray spectra measured with a CdZnTe detector.

  20. Migration of dispersive GPR data

    USGS Publications Warehouse

    Powers, M.H.; Oden, C.P.

    2004-01-01

    Electrical conductivity and dielectric and magnetic relaxation phenomena cause electromagnetic propagation to be dispersive in earth materials. Both velocity and attenuation may vary with frequency, depending on the frequency content of the propagating energy and the nature of the relaxation phenomena. A minor amount of velocity dispersion is associated with high attenuation. For this reason, measuring effects of velocity dispersion in ground penetrating radar (GPR) data is difficult. With a dispersive forward model, GPR responses to propagation through materials with known frequency-dependent properties have been created. These responses are used as test data for migration algorithms that have been modified to handle specific aspects of dispersive media. When either Stolt or Gazdag migration methods are modified to correct for just velocity dispersion, the results are little changed from standard migration. For nondispersive propagating wavefield data, like deep seismic, ensuring correct phase summation in a migration algorithm is more important than correctly handling amplitude. However, the results of migrating model responses to dispersive media with modified algorithms indicate that, in this case, correcting for frequency-dependent amplitude loss has a much greater effect on the result than correcting for proper phase summation. A modified migration is only effective when it includes attenuation recovery, performing deconvolution and migration simultaneously.

  1. Light dispersion in space

    NASA Astrophysics Data System (ADS)

    Barbosa, L. C.

    2015-09-01

    Considering an idea of F. Arago in 1853 regarding light dispersion through the light ether in the interstellar space, this paper presents a new idea on an alternative interpretation of the cosmological red shift of the galaxies in the universe. The model is based on an analogy with the temporal material dispersion that occurs with light in the optical fiber core. Since intergalactic space is transparent, according to the model, this phenomenon is related to the gravitational potential existing in the whole space. Thus, it is possible to find a new interpretation to Hubble's constant. In space, light undergoes a dispersion process in its path, which is interpreted by a red shift equation of the type Δz = HL, since H = (d2n/dλ2 Δv Δλ), where H means the Hubble constant, n is the refractive index of the intergalactic space, Δλ is the spectral width of the extragalactic source, and Δv is the variation of the speed of light caused by the gravitational potential. We observe that this "constant" is governed by three new parameters. Light traveling the intergalactic space undergoes red shift due to this mechanism, while light amplitude decreases with time, and the wavelength always increases, thus producing the same type of behavior given by Hubble's Law. It can be demonstrated that the dark matter phenomenon is produced by the apparent speed of light of the stars on the periphery of the galaxies, without the existence of dark energy. Based on this new idea, the model of the universe is static, lacking expansion. Other phenomena may be interpreted based on this new model of the universe. We have what we call temporal gravitational dispersion of light in space produced by the variations of the speed of light, due to the presence of the gravitational potential in the whole space.

  2. Quantifying Energy-Time Dispersion of Relativistic Electron Microbursts to Constrain Their Generation Mechanism: Coordinated Studies Using FIREBIRD, Van Allen Probes, and BARREL

    NASA Astrophysics Data System (ADS)

    Spence, H. E.; Blake, J. B.; Crew, A. B.; Fennell, J. F.; Klumpar, D. M.; Larsen, B.; Millan, R. M.; Miyoshi, Y.; O'Brien, T. P., III; Reeves, G. D.; Smith, S. S.

    2015-12-01

    In this paper, we quantify properties of relativistic electron precipitation at low altitudes in order to constrain the mechanism(s) for microburst loss occurring in Earth's radiation belt. Though studied for decades, the physical mechanism(s) responsible for the loss of radiation belt particles through microburst precipitation to the atmosphere remains uncertain, and, unquantified in a global sense. Accordingly, we appeal to new measurements from the NSF FIREBIRD (Focused Investigation of Relativistic Electron Burst Intensity Range and Dynamics) mission. FIREBIRD comprises two 1.5U CubeSats launched in early 2015 into identical coplanar polar low altitude orbits; a small spring imparted a slow separation between the two spacecraft upon orbit insertion. Over the course of the mission, the orbits of the two identically-instrumented spacecraft slowly evolve, sampling spatial scales of electron precipitation measured simultaneously at separations of 10's to 1000's of kilometers. FIREBIRD provides electron energy spectra from ~250 keV to > 1MeV, with both high spectral resolution (6 to 12 energy channels) and high temporal resolution (principally operated at ~18 millisecond sampling). To do so, FIREBIRD employs two solid-state detectors on each CubeSat, one an uncollimated detector with a large geometric factor (optimized for weak events) and the other a collimated detector (optimized for intense events). While the primary goal of FIREBIRD is to establish the spatial/temporal coherence of microburst precipitation, it also provides the capability of quantifying on each spacecraft the dispersive properties of microbursts. In this work, we report on the energy-time dispersive qualities of individual bursts, which in turn provide a means for testing models and constraining where and how the bursts are generated. To test these models, we use measurements made near the magnetic equator by the Van Allen Probes mission during times when the two FIREBIRD and two Van Allen

  3. Pulsing frequency induced change in optical constants and dispersion energy parameters of WO{sub 3} films grown by pulsed direct current magnetron sputtering

    SciTech Connect

    Punitha, K.; Sivakumar, R.; Sanjeeviraja, C.

    2014-03-21

    In this work, we present the pulsing frequency induced change in the structural, optical, vibrational, and luminescence properties of tungsten oxide (WO{sub 3}) thin films deposited on microscopic glass and fluorine doped tin oxide (SnO{sub 2}:F) coated glass substrates by pulsed dc magnetron sputtering technique. The WO{sub 3} films deposited on SnO{sub 2}:F substrate belongs to monoclinic phase. The pulsing frequency has a significant influence on the preferred orientation and crystallinity of WO{sub 3} film. The maximum optical transmittance of 85% was observed for the film and the slight shift in transmission threshold towards higher wavelength region with increasing pulsing frequency revealed the systematic reduction in optical energy band gap (3.78 to 3.13 eV) of the films. The refractive index (n) of films are found to decrease (1.832 to 1.333 at 550 nm) with increasing pulsing frequency and the average value of extinction coefficient (k) is in the order of 10{sup −3}. It was observed that the dispersion data obeyed the single oscillator of the Wemple-Didomenico model, from which the dispersion energy (E{sub d}) parameters, dielectric constants, plasma frequency, oscillator strength, and oscillator energy (E{sub o}) of WO{sub 3} films were calculated and reported for the first time due to variation in pulsing frequency during deposition by pulsed dc magnetron sputtering. The E{sub o} is change between 6.30 and 3.88 eV, while the E{sub d} varies from 25.81 to 7.88 eV, with pulsing frequency. The Raman peak observed at 1095 cm{sup −1} attributes the presence of W-O symmetric stretching vibration. The slight shift in photoluminescence band is attributed to the difference in excitons transition. We have made an attempt to discuss and correlate these results with the light of possible mechanisms underlying the phenomena.

  4. In situ measurement of the deuterium (hydrogen) charging of a palladium electrode during electrolysis by energy dispersive x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Felici, R.; Bertalot, L.; DeNinno, A.; LaBarbera, A.; Violante, V.

    1995-05-01

    A method to determine the concentration of deuterium inside a palladium cathode during the electrolysis of LiOD-heavy water solution is described. This method is based on the measurement of the host metal lattice parameter which is linearly related to the concentration in a wide range. A hard-x-ray beam which is able to cross two glass walls and few centimeters of water solutions without suffering a strong attenuation has been used. The measurement of the lattice parameter is performed in situ, during the electrolysis, by using energy dispersive x-ray diffraction. The sample volume illuminated by the x-ray beam is limited to a small region close to the surface and depends on the incident photon energy. In principle, this allows one to study the dynamics of the charging process and to determine the concentration profile in the range from few up to tens of micrometers. The deuterium concentration, determined by this method, was then checked by degassing the cathode in a known volume and was always found in a very good agreement, showing that the charging was uniform for the whole sample.

  5. Dipole oscillator strength distributions with improved high-energy behavior: Dipole sum rules and dispersion coefficients for Ne, Ar, Kr, and Xe revisited

    NASA Astrophysics Data System (ADS)

    Kumar, Ashok; Thakkar, Ajit J.

    2010-02-01

    The construction of the dipole oscillator strength distribution (DOSD) from theoretical and experimental photoabsorption cross sections combined with constraints provided by the Kuhn-Reiche-Thomas sum rule and molar refractivity data is a well-established technique that has been successfully applied to more than 50 species. Such DOSDs are insufficiently accurate at large photon energies. A novel iterative procedure is developed that rectifies this deficiency by using the high-energy asymptotic behavior of the dipole oscillator strength density as an additional constraint. Pilot applications are made for the neon, argon, krypton, and xenon atoms. The resulting DOSDs improve the agreement of the predicted S2 and S1 sum rules with ab initio calculations while preserving the accuracy of the remainder of the moments. Our DOSDs exploit new and more accurate experimental data. Improved estimates of dipole properties for these four atoms and of dipole-dipole C6 and triple-dipole C9 dispersion coefficients for the interactions among them are reported.

  6. Performance of a gaseous detector based energy dispersive X-ray fluorescence imaging system: Analysis of human teeth treated with dental amalgam

    NASA Astrophysics Data System (ADS)

    Silva, A. L. M.; Figueroa, R.; Jaramillo, A.; Carvalho, M. L.; Veloso, J. F. C. A.

    2013-08-01

    Energy dispersive X-ray fluorescence (EDXRF) imaging systems are of great interest in many applications of different areas, once they allow us to get images of the spatial elemental distribution in the samples. The detector system used in this study is based on a micro patterned gas detector, named Micro-Hole and Strip Plate. The full field of view system, with an active area of 28 × 28 mm2 presents some important features for EDXRF imaging applications, such as a position resolution below 125 μm, an intrinsic energy resolution of about 14% full width at half maximum for 5.9 keV X-rays, and a counting rate capability of 0.5 MHz. In this work, analysis of human teeth treated by dental amalgam was performed by using the EDXRF imaging system mentioned above. The goal of the analysis is to evaluate the system capabilities in the biomedical field by measuring the drift of the major constituents of a dental amalgam, Zn and Hg, throughout the tooth structures. The elemental distribution pattern of these elements obtained during the analysis suggests diffusion of these elements from the amalgam to teeth tissues.

  7. Effects of Er:YAG laser irradiation and manipulation treatments on dentin components, part 2: energy-dispersive X-ray fluorescence spectrometry study

    NASA Astrophysics Data System (ADS)

    Silva Soares, Luís Eduardo; Do Espírito Santo, Ana Maria; Brugnera, Aldo; Zanin, Fátima Antônia Aparecida; Martin, Airton Abraha~O.

    2009-03-01

    The effects of laser etching, decontamination, and storage treatments on dentin components were studied by energy-dispersive X-ray fluorescence spectrometry (EDXRF). Thirty bovine incisors were prepared to expose the dentin surface and then divided into two main groups based upon the decontamination process and storage procedure: autoclaved (group A, n=15) or stored in aqueous thymol solution (group B, n=15). The surfaces of the dentin slices were schematically divided into four areas, with each one corresponding to a treatment subgroup. The specimens were either etched with phosphoric acid (control subgroup) or irradiated with erbium-doped yttrium-aluminum-garnet (Er:YAG) laser (subgroups: I-80 mJ, II-120 mJ, and III-180 mJ). Samples were analyzed by micro-EDXRF, yielding three spectra for each area (before and after treatment). Surface mappings covering an area of 80×60 points with steps of 20 μm were also performed on selected specimens. The amount of Ca and P in group A specimens decreased significantly (P<0.05) after the acid etching and the Ca/P ratio increased (P<0.001). Er:YAG laser-etching using lower laser energies did not produce significant changes in dentin components. The mapping data support the hypothesis that acid etching on dentin produced a more chemically homogeneous surface and thus a more favorable surface for the diffusion of adhesive monomers.

  8. Dipole oscillator strength distributions with improved high-energy behavior: Dipole sum rules and dispersion coefficients for Ne, Ar, Kr, and Xe revisited

    SciTech Connect

    Kumar, Ashok; Thakkar, Ajit J.

    2010-02-21

    The construction of the dipole oscillator strength distribution (DOSD) from theoretical and experimental photoabsorption cross sections combined with constraints provided by the Kuhn-Reiche-Thomas sum rule and molar refractivity data is a well-established technique that has been successfully applied to more than 50 species. Such DOSDs are insufficiently accurate at large photon energies. A novel iterative procedure is developed that rectifies this deficiency by using the high-energy asymptotic behavior of the dipole oscillator strength density as an additional constraint. Pilot applications are made for the neon, argon, krypton, and xenon atoms. The resulting DOSDs improve the agreement of the predicted S{sub 2} and S{sub 1} sum rules with ab initio calculations while preserving the accuracy of the remainder of the moments. Our DOSDs exploit new and more accurate experimental data. Improved estimates of dipole properties for these four atoms and of dipole-dipole C{sub 6} and triple-dipole C{sub 9} dispersion coefficients for the interactions among them are reported.

  9. The NET effect of dispersants - a critical review of testing and modelling of surface oil dispersion.

    PubMed

    Zeinstra-Helfrich, Marieke; Koops, Wierd; Murk, Albertinka J

    2015-11-15

    Application of chemical dispersants or mechanical dispersion on surface oil is a trade-off between surface effects (impact of floating oil) and sub-surface effects (impact of suspended oil). Making an informed decision regarding such response, requires insight in the induced change in fate and transport of the oil. We aim to identify how natural, chemical and mechanical dispersion could be quantified in oil spill models. For each step in the dispersion process, we review available experimental data in order to identify overall trends and propose an algorithm or calculation method. Additionally, the conditions for successful mechanical and chemical dispersion are defined. Two commonly identified key parameters in surface oil dispersion are: oil properties (viscosity and presence of dispersants) and mixing energy (often wind speed). Strikingly, these parameters play a different role in several of the dispersion sub-processes. This may explain difficulties in simply relating overall dispersion effectiveness to the individual parameters. PMID:26412415

  10. AFM nanoscale indentation in air of polymeric and hybrid materials with highly different stiffness

    NASA Astrophysics Data System (ADS)

    Suriano, Raffaella; Credi, Caterina; Levi, Marinella; Turri, Stefano

    2014-08-01

    In this study, nanomechanical properties of a variety of polymeric materials was investigated by means of AFM. In particular, selecting different AFM probes, poly(methyl methacrylate) (PMMA), polydimethylsiloxane (PDMS) bulk samples, sol-gel hybrid thin films and hydrated hyaluronic acid hydrogels were indented in air to determine the elastic modulus. The force-distance curves and the indentation data were found to be greatly affected by the cantilever stiffness and by tip geometry. AFM indentation tests show that the choice of the cantilever spring constant and of tip shape is crucially influenced by elastic properties of samples. When adhesion-dominated interactions occur between the tip and the surface of samples, force-displacement curves reveal that a suitable functionalization of AFM probes allows the control of such interactions and the extraction of Young' modulus from AFM curves that would be otherwise unfeasible. By applying different mathematical models depending on AFM probes and materials under investigation, the values of Young's modulus were obtained and compared to those measured by rheological and dynamic mechanical analysis or to literature data. Our results show that a wide range of elastic moduli (10 kPa-10 GPa) can be determined by AFM in good agreement with those measured by conventional macroscopic measurements.

  11. Magnetohydrodynamic oscillation of a gas jet of zero inertia dispersed in a resistive liquid with energy conservation

    NASA Astrophysics Data System (ADS)

    Radwan, Ahmed E.

    1992-01-01

    The dynamical oscillation and instability of a gas cylinder of zero inertia immersed in a resistive liquid is developed for symmetric perturbations. In the absence of the magnetic field the conservation of energy is employed to study the problem for all symmetric and asymmetric perturbations. In the latter it is found that the temporal amplification is much lower than that of the full fluid jet. The model is capillary stable for all short and long wavelengths in the asymmetric perturbation while in the symmetric disturbances it is stabilizing or not according to whether the perturbed wavelength is shorter than the gas-cylinder circumference or not. The resistivity is stabilizing or destabilizing according to restrictions. The electromagnetic body force is stabilizing for all wavelengths in the rotationally-symmetric disturbances. The Lorentz body force for high magnetic-field intensity could be suppressing the destabilizing character of the present model. This may be due to the fact that the acting magnetic field is uniform and that the fluid is considered to be incompressible.

  12. Cryogenic thermoelectric (QVD) detectors: Emerging technique for fast single-photon counting and non-dispersive energy characterization

    NASA Astrophysics Data System (ADS)

    Gulian, A.; Wood, K.; van Vechten, D.; Fritz, G.

    2004-09-01

    ''QVD'' detectors are based on thermoelectric heat-to-voltage (Q → V) conversion and digital (V → D) readout. We have devised and analyzed the performance of QVD detectors with several different sensor designs that enable use of high thermoelectric figure of merit samples, be they of thin film, bulk crystal, or whisker form. Our first QVD devices had the well-studied material Au-Fe as thin film sensors. More recently, we have confirmed the literature reports of substantially higher Seebeck coefficient at cryogenic temperatures in lanthanum (cerium) hexaborides. We have also investigated the kinetic properties of La(Ce)B6 crystals with different La-Ce ratios. Currently we are exploring prototype devices based on bulk single-crystalline sensors. These include a successfully tested candidate with a sharp-end hexaboride sensor and small-size bismuth absorber - a whisker prototype. In theory, QVD sensors are competitive with superconducting tunnel junction (STJ) and transition edge sensor (TES) devices in energy resolution ability. However, QVD sensors ought to be able to respond at very much faster rates than these competitors; the lanthanum-cerium hexaboride sensors are expected to reach rates of 100 MHz counting rates for UV/optical photons. In addition to traditional astrophysical applications, these detectors can be applied to the tasks of quantum computing and communication.

  13. Low-Energy Bead-Mill Dispersion of Agglomerated Core-Shell α-Fe/Al₂O₃ and α″-Fe₁₆N₂/Al₂O₃ Ferromagnetic Nanoparticles in Toluene.

    PubMed

    Zulhijah, Rizka; Suhendi, Asep; Yoshimi, Kazuki; Kartikowati, Christina Wahyu; Ogi, Takashi; Iwaki, Toru; Okuyama, Kikuo

    2015-06-01

    Magnetic materials such as α″-Fe16N2 and α-Fe, which have the largest magnetic moment as hard and soft magnetic materials, are difficult to produce as single domain magnetic nanoparticles (MNPs) because of quasistable state and high reactivity, respectively. The present work reports dispersion of agglomerated plasma-synthesized core-shell α″-Fe16N2/Al2O3 and α-Fe/Al2O3 in toluene by a new bead-mill with very fine beads to prepare single domain MNPs. As a result, optimization of the experimental conditions (bead size, rotation speed, and dispersion time) enables the break-up of agglomerated particles into primary particles without destroying the particle structure. Slight deviation from the optimum conditions, i.e., lower or higher dispersion energy, gives undispersed or broken particles due to fragile core-shell structure against stress or impact force of beads. The dispersibility of α″-Fe16N2/Al2O3 is more restricted than that of α-Fe/Al2O3, because of the preparation conditions. Especially for α″-Fe16N2/Al2O3, no change on crystallinity (98% α″-Fe16N2) or magnetization saturation after dispersion was observed, showing that this method is appropriate to disperse α″-Fe16N2/Al2O3 MNPs. A different magnetic hysteresis behavior is observed for well-dispersed α″-Fe16N2/Al2O3 MNPs, and the magnetic coercivity of these NPs is constricted when the magnetic field close to zero due to magnetic dipole coupling among dispersed α″-Fe16N2 MNPs. PMID:25984828

  14. Tuning the resonance of a photonic crystal microcavity with an AFM probe.

    PubMed

    Märki, Iwan; Salt, Martin; Herzig, Hans Peter

    2006-04-01

    We present theoretical and experimental results on switching and tuning of a two-dimensional photonic crystal resonant microcavity by means of a silicon AFM tip, probing the highly localized optical field in the vicinity of the cavity. On-off switching and modulation of the transmission signal in the kHz range is achieved by bringing an AFM tip onto the center of the microcavity, inducing a damping effect on the transmission resonance. Tuning of the resonant wavelength in the order of several nanometers becomes possible by inserting the AFM tip into one of the holes of the Bragg mirror forming the microcavity in the propagation direction. PMID:19516436

  15. Development of portable experimental set-up for AFM to work at cryogenic temperature

    NASA Astrophysics Data System (ADS)

    Agarwal, D. H.; Bhatt, P. M.; Pathan, A. M.; Patel, Hitarthi; Joshi, U. S.

    2012-06-01

    We report on the designing aspects and fabrication of low temperature atomic force microscope (AFM) to study the surface structures of nanomaterials. Several key features of design including liquid nitrogen reservoir, vacuum chamber, vibration isolation table etc. have been presented. The whole set up was assembled in-house at a fairly low cost to be used with any commercial AFM system. The surface morphology of important oxide (In0.94Sn0.04)2O3 (ITO) thin film nanostructures has been investigated using the cryogenic AFM set up.

  16. The formation of liquid bridge in different operating modes of AFM

    NASA Astrophysics Data System (ADS)

    Wei, Zheng; Sun, Yan; Ding, WenXuan; Wang, ZaiRan

    2016-09-01

    The liquid bridge is one of the principal factors that cause artifacts in ambient-pressure atomic force microscope (AFM) images. Additionally, it is the main component of the adhesion force in ambient conditions. To understand the AFM imaging mechanism and the sample characteristics, it is essential to study the liquid bridge. This study interprets the physical mechanism involved in liquid bridge formation, which is composed of three different physical processes: the squeezing process, capillary condensation, and liquid film flow. We discuss the contributions of these three mechanisms to the volume and the capillary force of the liquid bridge in different AFM operation modes.

  17. Photoresponse from single upright-standing ZnO nanorods explored by photoconductive AFM

    PubMed Central

    Beinik, Igor; Kratzer, Markus; Wachauer, Astrid; Wang, Lin; Piryatinski, Yuri P; Brauer, Gerhard; Chen, Xin Yi; Hsu, Yuk Fan; Djurišić, Aleksandra B

    2013-01-01

    Summary Background: ZnO nanostructures are promising candidates for the development of novel electronic devices due to their unique electrical and optical properties. Here, photoconductive atomic force microscopy (PC-AFM) has been applied to investigate transient photoconductivity and photocurrent spectra of upright-standing ZnO nanorods (NRs). With a view to evaluate the electronic properties of the NRs and to get information on recombination kinetics, we have also performed time-resolved photoluminescence measurements macroscopically. Results: Persistent photoconductivity from single ZnO NRs was observed for about 1800 s and was studied with the help of photocurrent spectroscopy, which was recorded locally. The photocurrent spectra recorded from single ZnO NRs revealed that the minimum photon energy sufficient for photocurrent excitation is 3.1 eV. This value is at least 100 meV lower than the band-gap energy determined from the photoluminescence experiments. Conclusion: The obtained results suggest that the photoresponse in ZnO NRs under ambient conditions originates preferentially from photoexcitation of charge carriers localized at defect states and dominates over the oxygen photodesorption mechanism. Our findings are in agreement with previous theoretical predictions based on density functional theory calculations as well as with earlier experiments carried out at variable oxygen pressure. PMID:23616940

  18. AFM measurements of the topography and the roughness of ECR plasma treated polypropylene

    NASA Astrophysics Data System (ADS)

    Collaud Coen, M.; Dietler, G.; Kasas, S.; Gröning, P.

    1996-09-01

    Polypropylene (PP) samples have been treated in an ECR-rf plasma with several gases and at different treatment times and rf-potentials. Modifications of the surface topography have been analyzed by AFM and the results were correlated with previous XPS measurements of the surface chemistry. Plasma treatments with reactive gases (N 2, O 2) lead to the incorporation of new chemical species in the PP surface, whereas plasma treatments with noble gases (He, Ar, Xe) induce a desorption of hydrogen and a graphitization. The untreated PP sample has a rough surface with a granular structure. Plasma treatments with reactive gases induce weak morphology changes, but no new defined structures. Moreover, the modifications of the surface roughness are very sensitive to the treatment conditions. Noble gas plasma treatments, on the contrary, create a completely new surface morphology, which consists of a network of chains of 40-100 nm in diameter oriented in a random way. The size and the shape of these structures are very sensitive to the nature of the gas and to the treatment conditions (ion energy and dose, total energy deposition).

  19. MetaRep, an extended CMAS 3D program to visualize mafic (CMAS, ACF-S, ACF-N) and pelitic (AFM-K, AFM-S, AKF-S) projections

    NASA Astrophysics Data System (ADS)

    France, Lydéric; Nicollet, Christian

    2010-06-01

    MetaRep is a program based on our earlier program CMAS 3D. It is developed in MATLAB ® script. MetaRep objectives are to visualize and project major element compositions of mafic and pelitic rocks and their minerals in the pseudo-quaternary projections of the ACF-S, ACF-N, CMAS, AFM-K, AFM-S and AKF-S systems. These six systems are commonly used to describe metamorphic mineral assemblages and magmatic evolutions. Each system, made of four apices, can be represented in a tetrahedron that can be visualized in three dimensions with MetaRep; the four tetrahedron apices represent oxides or combination of oxides that define the composition of the projected rock or mineral. The three-dimensional representation allows one to obtain a better understanding of the topology of the relationships between the rocks and minerals and relations. From these systems, MetaRep can also project data in ternary plots (for example, the ACF, AFM and AKF ternary projections can be generated). A functional interface makes it easy to use and does not require any knowledge of MATLAB ® programming. To facilitate the use, MetaRep loads, from the main interface, data compiled in a Microsoft Excel ™ spreadsheet. Although useful for scientific research, the program is also a powerful tool for teaching. We propose an application example that, by using two combined systems (ACF-S and ACF-N), provides strong confirmation in the petrological interpretation.

  20. Investigation of Sn surface segregation during GeSn epitaxial growth by Auger electron spectroscopy and energy dispersive x-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Takahiro; Hirose, Nobumitsu; Kasamatsu, Akifumi; Mimura, Takashi; Matsui, Toshiaki; Suda, Yoshiyuki

    2015-02-01

    The mechanism of Sn surface segregation during the epitaxial growth of GeSn on Si (001) substrates was investigated by Auger electron spectroscopy and energy dispersive X-ray spectroscopy. Sn surface segregation depends on the growth temperature and Sn content of GeSn layers. During Sn surface segregation, Sn-rich nanoparticles form and move on the surface during the deposition, which results in a rough surface owing to facet formation. The Sn-rich nanoparticles moving on the surface during the deposition absorb Sn from the periphery and yield a lower Sn content, not on the surface but within the layer, because the Sn surface segregation and the GeSn deposition occur simultaneously. Sn surface segregation can occur at a lower temperature during the deposition compared with that during postannealing. This suggests that the Sn surface segregation during the deposition is strongly promoted by the migration of deposited Ge and Sn adatoms on the surface originating from the thermal effect of substrate temperature, which also suggests that limiting the migration of deposited Ge and Sn adatoms can reduce the Sn surface segregation and improve the crystallinity of GeSn layers.

  1. Exposure and analysis of microparticles embedded in silica aerogel keystones using NF3-mediated electron beam-induced etching and energy-dispersive X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Martin, Aiden A.; Lin, Ting; Toth, Milos; Westphal, Andrew J.; Vicenzi, Edward P.; Beeman, Jeffrey; Silver, Eric H.

    2016-07-01

    In 2006, NASA's Stardust spacecraft delivered to Earth dust particles collected from the coma of comet 81P/Wild 2, with the goal of furthering the understanding of solar system formation. Stardust cometary samples were collected in a low-density, nanoporous silica aerogel making their study technically challenging. This article demonstrates the identification, exposure, and elemental composition analysis of particles analogous to those collected by NASA's Stardust mission using in-situ SEM techniques. Backscattered electron imaging is shown by experimental observation and Monte Carlo simulation to be suitable for locating particles of a range of sizes relevant to Stardust (down to submicron diameters) embedded within silica aerogel. Selective removal of the silica aerogel encapsulating an embedded particle is performed by cryogenic NF3-mediated electron beam-induced etching. The porous, low-density nature of the aerogel results in an enhanced etch rate compared with solid material, making it an effective, nonmechanical method for the exposure of particles. After exposure, elemental composition of the particle was analyzed by energy-dispersive X-ray spectroscopy using a high spectral resolution microcalorimeter. Signals from fluorine contamination are shown to correspond to nonremoved silica aerogel and only in residual concentrations.

  2. Chemometric classification of gunshot residues based on energy dispersive X-ray microanalysis and inductively coupled plasma analysis with mass-spectrometric detection

    NASA Astrophysics Data System (ADS)

    Steffen, S.; Otto, M.; Niewoehner, L.; Barth, M.; Bro¿żek-Mucha, Z.; Biegstraaten, J.; Horváth, R.

    2007-09-01

    A gunshot residue sample that was collected from an object or a suspected person is automatically searched for gunshot residue relevant particles. Particle data (such as size, morphology, position on the sample for manual relocation, etc.) as well as the corresponding X-ray spectra and images are stored. According to these data, particles are classified by the analysis-software into different groups: 'gunshot residue characteristic', 'consistent with gunshot residue' and environmental particles, respectively. Potential gunshot residue particles are manually checked and - if necessary - confirmed by the operating forensic scientist. As there are continuing developments on the ammunition market worldwide, it becomes more and more difficult to assign a detected particle to a particular ammunition brand. As well, the differentiation towards environmental particles similar to gunshot residue is getting more complex. To keep external conditions unchanged, gunshot residue particles were collected using a specially designed shooting device for the test shots revealing defined shooting distances between the weapon's muzzle and the target. The data obtained as X-ray spectra of a number of particles (3000 per ammunition brand) were reduced by Fast Fourier Transformation and subjected to a chemometric evaluation by means of regularized discriminant analysis. In addition to the scanning electron microscopy in combination with energy dispersive X-ray microanalysis results, isotope ratio measurements based on inductively coupled plasma analysis with mass-spectrometric detection were carried out to provide a supplementary feature for an even lower risk of misclassification.

  3. Chemical and morphological study of gunshot residue persisting on the shooter by means of scanning electron microscopy and energy dispersive X-ray spectrometry.

    PubMed

    Brożek-Mucha, Zuzanna

    2011-12-01

    Persistence of gunshot residue (GSR) simultaneously collected from hands, face and hair, and clothing of the shooting person was examined. Samples were collected from five shooters in nine time intervals after a single shoot with a Luger 9 mm pistol, in the range of 0-4 h and examined with scanning electron microscopy and energy dispersive X-ray spectrometry. Numbers of particles, frequencies of occurrence of certain compositions of particles, and their sizes in function of the time intervals were inspected. The greatest numbers of particles were observed in samples collected from hands right after shooting, but they decrease quickly with time. In samples collected from the face smaller initial numbers of particles were found, but they lasted at a similar level longer. The estimated half-life times of particles were less than 1 h for samples taken from the hands, over 1 h for clothing and about 2-3 h for the face. In samples collected at longer intervals after shooting, there were particles present of small sizes and irregular shapes. The results demonstrate that including evidence collected from the suspect's face and hair may increase the probability of detection of GSR in cases when the suspect has not been apprehended immediately after the investigated incident. PMID:22051052

  4. Analysis of trace elements during different developmental stages of somatic embryogenesis in Plantago ovata Forssk using energy dispersive X-ray fluorescence.

    PubMed

    Saha, Priyanka; Raychaudhuri, Sarmistha Sen; Sudarshan, Mathummal; Chakraborty, Anindita

    2010-06-01

    Energy dispersive X-ray fluorescence (ED-XRF) technique has been used for the determination of trace element profile during different developmental stages of somatic embryogenic callus of an economically important medicinal plant, Plantago ovata Forssk. Somatic embryogenesis is a plant tissue culture-based technique, which is used for plant regeneration and crop improvement. In the present investigation, elemental content was analysed using ED-XRF technique during different developmental stages and also determine the effect of additives--casein hydrolysate and coconut water on the trace elemental profile of embryogenic callus tissue of P. ovata. Subsequent experiments showed significant alteration in the concentration of K, Ca, Mn, Fe, Zn, Cu, Br, and Sr in both the embryogenic and non-embryogenic callus. Higher K, Ca, Fe, Cu, and Zn accumulation was in embryogenic tissue stage compared to other stages, suggesting these elements are crucial for successful embryogenesis. The results suggest that this information could be useful for formulating a media for in vitro embryo induction of P. ovata. PMID:19696971

  5. Role of trace elements (Zn, Sr, Fe) in bone development: energy dispersive X-ray fluorescence study of rat bone and tooth tissue.

    PubMed

    Maciejewska, Karina; Drzazga, Zofia; Kaszuba, Michał

    2014-01-01

    Osteoporosis is one of the most common debilitating disease around the world and it is more and more established among young people. There are well known recommendations for nutrition of newborns and children concerning adequate calcium and vitamin D intake in order to maintain proper bone density. Nevertheless, important role in structure and function of a healthy bone tissue is played by an integration between all constituents including elements other than Ca, like trace elements, which control vital processes in bone tissue. It is important from scientific point of view as well as prevention of bone diseases, to monitor the mineralization process considering changes of the concentration of minerals during first stage of bone formation. This work presents studies of trace element (zinc, strontium, and iron) concentration in bones and teeth of Wistar rats at the age of 7, 14, and 28 days. Energy dispersive X-ray fluorescence (EDXRF) was used to examine mandibles, skulls, femurs, tibiae, and incisors. The quantitative analysis was performed using fundamental parameters method (FP). Zn and Sr concentrations were highest for the youngest individuals and decreased with age of rats, while Fe content was stable in bone matrix for most studied bones. Our results reveal the necessity of monitoring concentration of not only major, but also minor elements, because the trace elements play special role in the first period of bone development. PMID:24615876

  6. Generation of high-quality parabolic pulses with optimized duration and energy by use of dispersive frequency-to-time mapping.

    PubMed

    Huh, Jeonghyun; Azaña, José

    2015-10-19

    We propose and demonstrate a novel linear-optics method for high-fidelity parabolic pulse generation with durations ranging from the picosecond to the sub-nanosecond range. This method is based on dispersion-induced frequency-to-time mapping combined with spectral shaping in order to overcome constraints of previous linear shaping approaches. Temporal waveform distortions associated with the need to satisfy a far-field condition are eliminated by use of a virtual time-lens process, which is directly implemented in the linear spectral shaping stage. Using this approach, the generated parabolic pulses are able to maintain most energy spectrum available from the input pulse frequency bandwidth, regardless of the target pulse duration, which is not anymore limited by the finest spectral resolution of the optical pulse spectrum shaper. High-quality parabolic pulses, with durations from 25ps to 400ps and output powers exceeding 4dBm before amplification, have been experimentally synthesized from a picosecond mode-locked optical source using a commercial optical pulse shaper with a frequency resolution >10GHz. In particular, we report the synthesis of full-duty cycle parabolic pulses that match up almost exactly with an ideal fitting over the entire pulse period. PMID:26480437

  7. Post-mortem interval estimation of human skeletal remains by micro-computed tomography, mid-infrared microscopic imaging and energy dispersive X-ray mapping

    PubMed Central

    Hatzer-Grubwieser, P.; Bauer, C.; Parson, W.; Unterberger, S. H.; Kuhn, V.; Pemberger, N.; Pallua, Anton K.; Recheis, W.; Lackner, R.; Stalder, R.; Pallua, J. D.

    2015-01-01

    In this study different state-of-the-art visualization methods such as micro-computed tomography (micro-CT), mid-infrared (MIR) microscopic imaging and energy dispersive X-ray (EDS) mapping were evaluated to study human skeletal remains for the determination of the post-mortem interval (PMI). PMI specific features were identified and visualized by overlaying molecular imaging data and morphological tissue structures generated by radiological techniques and microscopic images gained from confocal microscopy (Infinite Focus (IFM)). In this way, a more distinct picture concerning processes during the PMI as well as a more realistic approximation of the PMI were achieved. It could be demonstrated that the gained result in combination with multivariate data analysis can be used to predict the Ca/C ratio and bone volume (BV) over total volume (TV) for PMI estimation. Statistical limitation of this study is the small sample size, and future work will be based on more specimens to develop a screening tool for PMI based on the outcome of this multidimensional approach. PMID:25878731

  8. Total reflection X-ray fluorescence and energy-dispersive X-ray fluorescence analysis of runoff water and vegetation from abandoned mining of Pb Zn ores

    NASA Astrophysics Data System (ADS)

    Marques, A. F.; Queralt, I.; Carvalho, M. L.; Bordalo, M.

    2003-12-01

    The present work reports on the heavy metal content: Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Cd and Pb in running waters and vegetation around abandoned mining areas. Two species of mosses ( Dicranum sp. and Pleurocarpus sp.) and three different species of wild grass ( Bromus sp., Rumex sp. and Pseudoavena sp.) growing on the surrounding areas of old lead-zinc mines (Aran Valley, Pyrenees, NE Spain) have been analyzed. Both water and vegetation were collected in two different sampling places: (a) near the mine gallery water outlets and (b) on the landfill close to the abandoned mineral concentration factories. For the heavy metal content determination, two different techniques were used: total reflection X-ray fluorescence for water analysis and energy-dispersive X-ray fluorescence for vegetation study. Surface waters around mine outlets exhibit anomalous content of Co, Ni, Zn, Cd. Stream waters running on mining landfills exhibit higher Cu, Zn, Cd and Pb than those of the waters at the mine gallery outlets. The results allow us to assess the extent of the environmental impact of the mining activities on the water quality. The intake of these elements by vegetation was related with the sampling place, reflecting the metal water content and the substrate chemistry. Accumulation of metals in mosses is higher than those exhibited in wild grasses. Furthermore, different levels of accumulation were found in different wild grass. Rumex sp. presented the lowest metal concentrations, while Pseudoavena sp. reported the highest metal content.

  9. [The evaluation of uncertainty in the results for elements rubidium, strontium, yttrium and zirconium in silicate geological samples by polarized energy dispersive X-ray fluorescence spectrometry].

    PubMed

    Wang, Yi-Ya; Zhan, Xiu-Chun; Yuan, Ji-Hai; Fan, Xing-Tao

    2011-06-01

    A method for evaluation of uncertainty was established with standard deviation of relative error. Utilizing a polarized energy dispersive X ray fluorescence spectrometer (P-EDXRF)X-lab 2000 with pressed polyethylene-backed pellets, 76 national reference materials and 89 geological examination samples were analyzed, the results indicated that the relative errors consist with the normal distribution with confidence level 95%. The section standard deviations of relative errors acted as method global relative uncertainty and expanded factor was 2. The section relative uncertainty caused by precision was analyzed and relative uncertainty caused by accuracy based on the error transfer formula was isolated. The ratio of relative uncertainty caused by accuracy to the global relative uncertainty was different with different levels and elements. Two methods validated that the evaluation of global uncertainty is reasonable, with the first method being the formula of audited results in laboratory, and the second being the comparison of standard value with expanded uncertainty and a revised value with expanded uncertainty. PMID:21847963

  10. Application of Scanning Electron Microscopy/Energy-Dispersive X-Ray Spectroscopy for Characterization of Detrital Minerals in Karst Cave Speleothems.

    PubMed

    Zupančič, Nina; Miler, Miloš; Šebela, Stanka; Jarc, Simona

    2016-02-01

    Micro-scale observations in karst caves help to identify different processes that shaped local morphology. Scanning electron microscopy/energy-dispersive X-ray spectroscopy inspection of speleothems from two karst caves in Slovenia, Predjama and Črna Jama, confirmed the presence of sub-angular to sub-rounded detrital fragments of clay minerals, feldspars, quartz, Fe-oxides/hydroxides, rutile and Nb-rutile, xenotime, kassite, allanite, fluorapatite, epidote, ilmenite, monazite, sphene, and zircon, between 2 and 50 μm across. These occur in porous layers separating calcite laminae in the clayey coating on the layer below the surface of the speleothems, and are also incorporated within actual crystals. It is likely that they are derived from the weathered rocks of the Eocene flysch. Probably they were first transported into the caves by floodwaters forming cave sediments. Later, depending upon the climate conditions, they were moved by air currents or by water to the surface of active speleothems. They might also be redeposited from overlying soils enriched with wind-transported minerals from the flysch, or from higher passages filled with weathered flysch sediment, by drip water percolating through the fissured limestone. As some of the identified minerals are carriers of rare earth elements, Ti and Zr, their presence could affect any palaeoclimatic interpretations that are based upon the geochemical composition of the speleothems. PMID:26914996

  11. A standards-based method for compositional analysis by energy dispersive X-ray spectrometry using multivariate statistical analysis: application to multicomponent alloys.

    PubMed

    Rathi, Monika; Ahrenkiel, S P; Carapella, J J; Wanlass, M W

    2013-02-01

    Given an unknown multicomponent alloy, and a set of standard compounds or alloys of known composition, can one improve upon popular standards-based methods for energy dispersive X-ray (EDX) spectrometry to quantify the elemental composition of the unknown specimen? A method is presented here for determining elemental composition of alloys using transmission electron microscopy-based EDX with appropriate standards. The method begins with a discrete set of related reference standards of known composition, applies multivariate statistical analysis to those spectra, and evaluates the compositions with a linear matrix algebra method to relate the spectra to elemental composition. By using associated standards, only limited assumptions about the physical origins of the EDX spectra are needed. Spectral absorption corrections can be performed by providing an estimate of the foil thickness of one or more reference standards. The technique was applied to III-V multicomponent alloy thin films: composition and foil thickness were determined for various III-V alloys. The results were then validated by comparing with X-ray diffraction and photoluminescence analysis, demonstrating accuracy of approximately 1% in atomic fraction. PMID:23298470

  12. Microsecond time-resolved energy-dispersive EXAFS measurement and its application to film the thermolysis of (NH4)2[PtCl6

    NASA Astrophysics Data System (ADS)

    Kong, Qingyu; Baudelet, Francois; Han, Jun; Chagnot, Sebastien; Barthe, Laurent; Headspith, Jon; Goldsbrough, Roger; Picca, Frederic E.; Spalla, Olivier

    2012-12-01

    Microsecond (μs) time-resolved extended X-ray absorption fine structure spectroscopy (EXAFS) has been developed using an energy-dispersive EXAFS (EDE) setup equipped with a silicon Quantum Detector ULTRA. The feasibility was investigated with a prototypical thermally driven redox reaction, the thermal decomposition of (NH4)2[PtCl6]. EXAFS data were collected with snapshots every 60 μs during the course of the thermolysis reaction, then averaged for 100 times along the reaction to get better signal to noise ratio which reduces the time resolution to 6 millisecond (ms). Our results provide direct structural evidence of cis-PtCl2(NH3)2 as the intermediate, together with continuous electronic and geometric structure dynamics of the reactant, intermediate and final product during the course of the thermolysis of (NH4)2[PtCl6]. The thermal effect on EXAFS signals at high temperatures is considered in the data analysis, which is essential to follow the reaction process correctly. This method could also be applied to other reaction dynamics.

  13. A case of hut lung: scanning electron microscopy with energy dispersive x-ray spectroscopy analysis of a domestically acquired form of pneumoconiosis.

    PubMed

    Mukhopadhyay, Sanjay; Gujral, Manmeet; Abraham, Jerrold L; Scalzetti, Ernest M; Iannuzzi, Michael C

    2013-07-01

    Hut lung is a pneumoconiosis caused by exposure to smoke derived from biomass fuels used for cooking in poorly ventilated huts. We report, to our knowledge, the first analysis of the dust deposited in the lungs in hut lung by scanning electron microscopy with energy dispersive x-ray spectroscopy (SEM/EDS). A Bhutanese woman presented with shortness of breath and an abnormal chest radiograph. Chest CT scan showed innumerable tiny bilateral upper lobe centrilobular nodules. Transbronchial biopsy revealed mild interstitial fibrosis with heavy interstitial deposition of black dust. SEM/EDS showed that the dust was carbonaceous, with smaller yet substantial numbers of silica and silicate particles. Additional history revealed use of a wood/coal-fueled stove in a small, poorly ventilated hut for 45 years. The possibility of hut lung should be considered in women from countries where use of biomass-fueled stoves for cooking is common. Our findings support the classification of this condition as a mixed-dust pneumoconiosis. PMID:23880681

  14. Energy-dispersive x-Ray Analysis of Phosphorus, Potassium, Magnesium, and Calcium in Globoid Crystals in Protein Bodies from Different Regions of Cucurbita maxima Embryos 1

    PubMed Central

    Lott, John N. A.; Greenwood, John S.; Vollmer, Catherine M.; Buttrose, Mark S.

    1978-01-01

    The seeds of Cucurbita maxima contain protein bodies with electrondense globoid crystals. Because of their density globoid crystals are ideal material for energy-dispersive x-ray (EDX) analysis studies of elemental composition. Fixation trials were carried out to test globoid crystal extraction during glutaraldehyde fixation, water washing, and ethanol dehydration. Glutaraldehyde fixation without subsequent washing or dehydration alone produced no significant changes in elemental composition of cotyledon globoid crystals. If glutaraldehyde fixation was followed by water washes or ethanol dehydration there was some loss of the major globoid crystal elements but the relative percentages of the elements P, K, Ca, and Mg remained relatively unchanged. In this paper results of a study of the P, K, Mg, and Ca content of globoid crystals in different tissues of squash embryos are presented. The globoid crystals in the radicle were found to be the least dense in the embryo. Globoid crystals from all embryo regions contained P, K, and Mg. In the various embryo regions P and Mg maintained relatively constant proportions of the globoid crystal composition while K and Ca varied. Of particular significance is the distribution of Ca which is generally an immobile element. Calcium was found in highest amounts in the globoid crystals of the radicle and stem regions while globoid crystals in much of the cotyledon contained little, if any, Ca. The Ca storage thus seems to be spatially arranged in a manner that would aid early growth of the root-shoot axis. PMID:16660439

  15. Evaluation of the Forensic Utility of Scanning Electron Microscopy-Energy Dispersive Spectroscopy and Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry for Printing Ink Examinations.

    PubMed

    Corzo, Ruthmara; Subedi, Kiran; Trejos, Tatiana; Almirall, José R

    2016-05-01

    Improvements in printing technology have exacerbated the problem of document counterfeiting, prompting the need for analytical techniques that better characterize inks for forensic analysis and comparisons. In this study, 319 printing inks (toner, inkjet, offset, and Intaglio) were analyzed directly on the paper substrate using scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) and Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS). As anticipated, the high sensitivity of LA-ICP-MS pairwise comparisons resulted in excellent discrimination (average of ~ 99.6%) between different ink samples from each of the four ink types and almost 100% correct associations between ink samples known to originate from the same source. SEM-EDS analysis also resulted in very good discrimination for different toner and intaglio inks (>97%) and 100% correct association for samples from the same source. SEM-EDS provided complementary information to LA-ICP-MS for certain ink types but showed limited utility for the discrimination of inkjet and offset inks. PMID:27122412

  16. Scanning electron microscopy coupled with energy-dispersive X-ray spectrometry for quick detection of sulfur-oxidizing bacteria in environmental water samples

    NASA Astrophysics Data System (ADS)

    Sun, Chengjun; Jiang, Fenghua; Gao, Wei; Li, Xiaoyun; Yu, Yanzhen; Yin, Xiaofei; Wang, Yong; Ding, Haibing

    2016-03-01

    Detection of sulfur-oxidizing bacteria has largely been dependent on targeted gene sequencing technology or traditional cell cultivation, which usually takes from days to months to carry out. This clearly does not meet the requirements of analysis for time-sensitive samples and/or complicated environmental samples. Since energy-dispersive X-ray spectrometry (EDS) can be used to simultaneously detect multiple elements in a sample, including sulfur, with minimal sample treatment, this technology was applied to detect sulfur-oxidizing bacteria using their high sulfur content within the cell. This article describes the application of scanning electron microscopy imaging coupled with EDS mapping for quick detection of sulfur oxidizers in contaminated environmental water samples, with minimal sample handling. Scanning electron microscopy imaging revealed the existence of dense granules within the bacterial cells, while EDS identified large amounts of sulfur within them. EDS mapping localized the sulfur to these granules. Subsequent 16S rRNA gene sequencing showed that the bacteria detected in our samples belonged to the genus Chromatium, which are sulfur oxidizers. Thus, EDS mapping made it possible to identify sulfur oxidizers in environmental samples based on localized sulfur within their cells, within a short time (within 24 h of sampling). This technique has wide ranging applications for detection of sulfur bacteria in environmental water samples.

  17. Microsecond time-resolved energy-dispersive EXAFS measurement and its application to film the thermolysis of (NH4)2[PtCl6

    PubMed Central

    Kong, Qingyu; Baudelet, Francois; Han, Jun; Chagnot, Sebastien; Barthe, Laurent; Headspith, Jon; Goldsbrough, Roger; Picca, Frederic E.; Spalla, Olivier

    2012-01-01

    Microsecond (μs) time-resolved extended X-ray absorption fine structure spectroscopy (EXAFS) has been developed using an energy-dispersive EXAFS (EDE) setup equipped with a silicon Quantum Detector ULTRA. The feasibility was investigated with a prototypical thermally driven redox reaction, the thermal decomposition of (NH4)2[PtCl6]. EXAFS data were collected with snapshots every 60 μs during the course of the thermolysis reaction, then averaged for 100 times along the reaction to get better signal to noise ratio which reduces the time resolution to 6 millisecond (ms). Our results provide direct structural evidence of cis-PtCl2(NH3)2 as the intermediate, together with continuous electronic and geometric structure dynamics of the reactant, intermediate and final product during the course of the thermolysis of (NH4)2[PtCl6]. The thermal effect on EXAFS signals at high temperatures is considered in the data analysis, which is essential to follow the reaction process correctly. This method could also be applied to other reaction dynamics. PMID:23264880

  18. In situ strain profiling of elastoplastic bending in Ti-6Al-4V alloy by synchrotron energy dispersive x-ray diffraction

    SciTech Connect

    Croft, M.; Shukla, V.; Akdogan, E. K.; Sadangi, R.; Ignatov, A.; Balarinni, L.; Tsakalakos, T.; Jisrawi, N.; Zhong, Z.; Horvath, K.

    2009-05-01

    Elastic and plastic strain evolution under four-point bending has been studied by synchrotron energy dispersive x-ray diffraction. Measured strain profiles across the specimen thickness showed an increasing linear elastic strain gradient under increasing four-point bending load up to approx2 kN. The bulk elastic modulus of Ti-6Al-4V was determined as 118 GPa. The onset of plastic deformation was found to set in at a total in-plane strain of approx0.008, both under tension and compression. Plastic deformation under bending is initiated in the vicinity of the surface and at a stress of 1100 MPa, and propagates inward, while a finite core region remains elastically deformed up to 3.67 kN loading. The onset of the plastic regime and the plastic regime itself has been verified by monitoring the line broadening of the (100) peak of alpha-Ti. The effective compression/tension stress-strain curve has been obtained from the scaling collapse of strain profile data taken at seven external load levels. A similar multiple load scaling collapse of the plastic strain variation has also been obtained. The level of precision in strain measurement reported herein was evaluated and found to be 1.5x10{sup -5} or better.

  19. Scanning Electron Microscopy and Energy Dispersive X-ray Spectroscopy Studies on Processed Tooth Graft Material by Vacuum-ultrasonic Acceleration

    PubMed Central

    Lee, Eun-Young; Kim, Eun-Suk; Kim, Kyung-Won

    2014-01-01

    Purpose: The current gold standard for clinical jawbone formation involves autogenous bone as a graft material. In addition, demineralized dentin can be an effective graft material. Although demineralized dentin readily induces heterotopic bone formation, conventional decalcification takes three to five days, so, immediate bone grafting after extraction is impossible. This study evaluated the effect of vacuum ultrasonic power on the demineralization and processing of autogenous tooth material and documented the clinical results of rapidly processed autogenous demineralized dentin (ADD) in an alveolar defects patient. Methods: The method involves the demineralization of extracted teeth with detached soft tissues and pulp in 0.6 N HCl for 90 minutes using a heat controlled vacuum-ultrasonic accelerator. The characteristics of processed teeth were evaluated by scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS). Bone grafting using ADD was performed for narrow ridges augmentation in the mandibular area. Results: The new processing method was completed within two hours regardless of form (powder or block). EDS and SEM uniformly demineralized autotooth biomaterial. After six months, bone remodeling was observed in augmented sites and histological examination showed that ADD particles were well united with new bone. No unusual complications were encountered. Conclusion: This study demonstrates the possibility of preparing autogenous tooth graft materials within two hours, allowing immediate one-day grafting after extraction. PMID:27489819

  20. Design of exceptionally strong and conductive Cu alloys beyond the conventional speculation via the interfacial energy-controlled dispersion of γ-Al2O3 nanoparticles

    PubMed Central

    Zeon Han, Seung; Kim, Kwang Ho; Kang, Joonhee; Joh, Hongrae; Kim, Sang Min; Ahn, Jee Hyuk; Lee, Jehyun; Lim, Sung Hwan; Han, Byungchan

    2015-01-01

    The development of Cu-based alloys with high-mechanical properties (strength, ductility) and electrical conductivity plays a key role over a wide range of industrial applications. Successful design of the materials, however, has been rare due to the improvement of mutually exclusive properties as conventionally speculated. In this paper, we demonstrate that these contradictory material properties can be improved simultaneously if the interfacial energies of heterogeneous interfaces are carefully controlled. We uniformly disperse γ-Al2O3 nanoparticles over Cu matrix, and then we controlled atomic level morphology of the interface γ-Al2O3//Cu by adding Ti solutes. It is shown that the Ti dramatically drives the interfacial phase transformation from very irregular to homogeneous spherical morphologies resulting in substantial enhancement of the mechanical property of Cu matrix. Furthermore, the Ti removes impurities (O and Al) in the Cu matrix by forming oxides leading to recovery of the electrical conductivity of pure Cu. We validate experimental results using TEM and EDX combined with first-principles density functional theory (DFT) calculations, which all consistently poise that our materials are suitable for industrial applications. PMID:26616045

  1. Alterations of the intracellular water and ion concentrations in brain and liver cells during aging as revealed by energy dispersive X-ray microanalysis of bulk specimens

    SciTech Connect

    Lustyik, G.; Nagy, I.

    1985-01-01

    Age dependence of the intracellular concentrations of monovalent ions (Na+, K+ and Cl-) was examined in 1, 11 and 25-month-old rat brain and liver cells by using energy dispersive X-ray microanalysis. The in vivo concentrations of Na+, K+ and Cl- ions were calculated from two different measurements: The elemental concentrations were measured in freeze-dried tissue pieces, and the intracellular water content was determined by means of a recently developed X-ray microanalytic method, using frozen-hydrated and fractured bulk specimens as well as subsequent freeze-drying. All the single monovalent ion concentrations and consequently, also the total monovalent ion content showed statistically significant increases during aging in brain cortical neurons. A 3-6% loss of the intracellular water content was accompanied by a 25-45% increase of the monovalent ionic strengths by the age of 25 months. A membrane protective OH radical scavenger (centrophenoxine) reversed the dehydration in the nerve cells of old animals, resulting in a decrease of the intracellular ion concentrations. Aging has a less prominent effect on the water and ion contents of the hepatocytes. The degree of water loss of cytoplasm exceeds that of the nuclei in the liver, suggesting that dominantly the translational steps can be involved in the general age altered slowing down of the protein synthetic machinery, predicted by the membrane hypothesis of aging.

  2. Morphological and chemical changes in dentin after using endodontic agents: Fourier transform Raman spectroscopy, energy-dispersive x-ray fluorescence spectrometry, and scanning electron microscopy study

    NASA Astrophysics Data System (ADS)

    Pascon, Fernanda Miori; Kantovitz, Kamila Rosamilia; Soares, Luís Eduardo Silva; Santo, Ana Maria do Espírito; Martin, Airton Abraha~o.; Puppin-Rontani, Regina Maria

    2012-07-01

    We examine the morphological and chemical changes in the pulp chamber dentin after using endodontic agents by scanning electron microscopy (SEM), Fourier transform Raman spectroscopy (FT-Raman), and micro energy-dispersive x-ray fluorescence spectrometry (μEDXRF). Thirty teeth were sectioned exposing the pulp chamber and divided by six groups (n=5): NT-no treatment; CHX-2% chlorhexidine; CHXE-2% chlorhexidine+17% EDTA E-17% EDTA; SH5-5.25% NaOCl; SH5E-5.25% NaOCl+17% EDTA. The inorganic and organic content was analyzed by FT-Raman. μEDXRF examined calcium (Ca) and phosphorus (P) content as well as Ca/P ratio. Impressions of specimens were evaluated by SEM. Data were submitted to Kruskal-Wallis and Dunn tests (p<0.05). Differences were observed among groups for the 960 cm-1 peak. Ca and P content differences were significant (SH5>NT=SH5E>CHX>E>CHXE). CHXE and E presented the highest Ca/P ratio values compared to the other groups (p<0.05). The SEM images in the EDTA-treated groups had the highest number of open tubules. Erosion in the tubules was observed in CHX and SH5E groups. Endodontic agents change the inorganic and organic content of pulp chamber dentin. NaOCl used alone, or in association with EDTA, was the most effective agent considering chemical and morphological approaches.

  3. Energy-dispersive x-Ray Analysis of Phosphorus, Potassium, Magnesium, and Calcium in Globoid Crystals in Protein Bodies from Different Regions of Cucurbita maxima Embryos.

    PubMed

    Lott, J N; Greenwood, J S; Vollmer, C M

    1978-06-01

    The seeds of Cucurbita maxima contain protein bodies with electrondense globoid crystals. Because of their density globoid crystals are ideal material for energy-dispersive x-ray (EDX) analysis studies of elemental composition. Fixation trials were carried out to test globoid crystal extraction during glutaraldehyde fixation, water washing, and ethanol dehydration. Glutaraldehyde fixation without subsequent washing or dehydration alone produced no significant changes in elemental composition of cotyledon globoid crystals. If glutaraldehyde fixation was followed by water washes or ethanol dehydration there was some loss of the major globoid crystal elements but the relative percentages of the elements P, K, Ca, and Mg remained relatively unchanged. In this paper results of a study of the P, K, Mg, and Ca content of globoid crystals in different tissues of squash embryos are presented. The globoid crystals in the radicle were found to be the least dense in the embryo. Globoid crystals from all embryo regions contained P, K, and Mg. In the various embryo regions P and Mg maintained relatively constant proportions of the globoid crystal composition while K and Ca varied. Of particular significance is the distribution of Ca which is generally an immobile element. Calcium was found in highest amounts in the globoid crystals of the radicle and stem regions while globoid crystals in much of the cotyledon contained little, if any, Ca. The Ca storage thus seems to be spatially arranged in a manner that would aid early growth of the root-shoot axis. PMID:16660439

  4. Elemental concentration analysis in soil contaminated with recyclable urban garbage by tube-excited energy-dispersive X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Anjos, M. J.; Lopes, R. T.; Jesus, E. F. O.; Assis, J. T.; Cesareo, R.; Barroso, R. C.; Barradas, C. A. A.

    2002-11-01

    Soil and radish (Raphanus Sp) samples from areas treated with organic compost of recyclable urban garbage were quantitatively analyzed by using tube-excited energy-dispersive X-ray fluorescence analysis. Soils treated with 10, 20 and 30 t/ha of recyclable urban garbage and control soil were analyzed. The layer soils were collected at 0-5, 5-10, 10-20, 20-40, 40-60 cm depth. It was possible simultaneously to determine the elemental concentration of various elements: K, Ca, Ti, Mn, Fe, Cu, Zn, Br, Rb, Sr, Zr and Pb in recyclable urban garbage, soil treated with organic compost of recyclable urban garbage and radish plants cultivated in these soils. The elemental concentration of K, Ca, Ti and Fe were determined at percent level (macro-elements) and the other elements at ppm level (micro-elements). It was also possible to observe a significant increase in the contents of K, Ca, Zn, Rb, Sr, Zr and Pb in the soil treated in comparison with the control soil and it was also verified whether the transport of these elements to radish plants cultivated in these soils occurred.

  5. Exposure and analysis of microparticles embedded in silica aerogel keystones using NF3-mediated electron beam-induced etching and energy-dispersive X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Martin, Aiden A.; Lin, Ting; Toth, Milos; Westphal, Andrew J.; Vicenzi, Edward P.; Beeman, Jeffrey; Silver, Eric H.

    2016-04-01

    In 2006, NASA's Stardust spacecraft delivered to Earth dust particles collected from the coma of comet 81P/Wild 2, with the goal of furthering the understanding of solar system formation. Stardust cometary samples were collected in a low-density, nanoporous silica aerogel making their study technically challenging. This article demonstrates the identification, exposure, and elemental composition analysis of particles analogous to those collected by NASA's Stardust mission using in-situ SEM techniques. Backscattered electron imaging is shown by experimental observation and Monte Carlo simulation to be suitable for locating particles of a range of sizes relevant to Stardust (down to submicron diameters) embedded within silica aerogel. Selective removal of the silica aerogel encapsulating an embedded particle is performed by cryogenic NF3-mediated electron beam-induced etching. The porous, low-density nature of the aerogel results in an enhanced etch rate compared with solid material, making it an effective, nonmechanical method for the exposure of particles. After exposure, elemental composition of the particle was analyzed by energy-dispersive X-ray spectroscopy using a high spectral resolution microcalorimeter. Signals from fluorine contamination are shown to correspond to nonremoved silica aerogel and only in residual concentrations.

  6. [Chemical composition analysis of early neolithic pottery unearthed from Xiaohuangshang site, Zhejiang Province and Jiahu site, Henan Province by energy disperse X-ray fluorescence].

    PubMed

    Chen, Qian-Qian; Yang, Yu-Zhang; Zhang, Ju-Zhong; Cui, Wei

    2011-11-01

    The major elements in the early neolithic potteries unearthed from Xiaohuangshan site, Zhejiang Province and Jiahu site, Henan Province were determined by energy disperse X-ray fluorescence (EDXRF). The results show that the chemical compositions of the potteries from these two sites possess obvious regional features respectively. Compared with the specimen from Jiahu site, the potteries from Xiaohuangshan site have the common feature of ancient Chinese southern ceramics with high silicon and low aluminum contents. Simultaneously, the chemical composition of Xiaohuangshan pottery samples nearly unchanged from its early stage to the last stage. This phenomenon indicates that the source of the ceramic raw materials of Xiaohuangshan site was stable, and the continuous improvement of its pottery quality was mainly due to the progress in sintering techniques. However, the chemical composition of Jiahu potteries changed a lot in its three different periods. This change occurred because a large number of admixtures were added to the pottery bodies to improve their operating performances. These results also show that the improvements of pottery making techniques in different Chinese areas may have their own evolution directions respectively for the different geographical environments. PMID:22242535

  7. Probing Cytoskeletal Structures by Coupling Optical Superresolution and AFM Techniques for a Correlative Approach

    PubMed Central

    Chacko, Jenu Varghese; Zanacchi, Francesca Cella; Diaspro, Alberto

    2013-01-01

    In this article, we describe and show the application of some of the most advanced fluorescence superresolution techniques, STED AFM and STORM AFM microscopy towards imaging of cytoskeletal structures, such as microtubule filaments. Mechanical and structural properties can play a relevant role in the investigation of cytoskeletal structures of interest, such as microtubules, that provide support to the cell structure. In fact, the mechanical properties, such as the local stiffness and the elasticity, can be investigated by AFM force spectroscopy with tens of nanometers resolution. Force curves can be analyzed in order to obtain the local elasticity (and the Young's modulus calculation by fitting the force curves from every pixel of interest), and the combination with STED/STORM microscopy integrates the measurement with high specificity and yields superresolution structural information. This hybrid modality of superresolution-AFM working is a clear example of correlative multimodal microscopy. PMID:24027190

  8. Fabrication of cone-shaped boron doped diamond and gold nanoelectrodes for AFM-SECM.

    PubMed

    Avdic, A; Lugstein, A; Wu, M; Gollas, B; Pobelov, I; Wandlowski, T; Leonhardt, K; Denuault, G; Bertagnolli, E

    2011-04-01

    We demonstrate a reliable microfabrication process for a combined atomic force microscopy (AFM) and scanning electrochemical microscopy (SECM) measurement tool. Integrated cone-shaped sensors with boron doped diamond (BDD) or gold (Au) electrodes were fabricated from commercially available AFM probes. The sensor formation process is based on mature semiconductor processing techniques, including focused ion beam (FIB) machining, and highly selective reactive ion etching (RIE). The fabrication approach preserves the geometry of the original AFM tips resulting in well reproducible nanoscaled sensors. The feasibility and functionality of the fully featured tips are demonstrated by cyclic voltammetry, showing good agreement between the measured and calculated currents of the cone-shaped AFM-SECM electrodes. PMID:21368355

  9. Fabrication of cone-shaped boron doped diamond and gold nanoelectrodes for AFM-SECM

    NASA Astrophysics Data System (ADS)

    Avdic, A.; Lugstein, A.; Wu, M.; Gollas, B.; Pobelov, I.; Wandlowski, T.; Leonhardt, K.; Denuault, G.; Bertagnolli, E.

    2011-04-01

    We demonstrate a reliable microfabrication process for a combined atomic force microscopy (AFM) and scanning electrochemical microscopy (SECM) measurement tool. Integrated cone-shaped sensors with boron doped diamond (BDD) or gold (Au) electrodes were fabricated from commercially available AFM probes. The sensor formation process is based on mature semiconductor processing techniques, including focused ion beam (FIB) machining, and highly selective reactive ion etching (RIE). The fabrication approach preserves the geometry of the original AFM tips resulting in well reproducible nanoscaled sensors. The feasibility and functionality of the fully featured tips are demonstrated by cyclic voltammetry, showing good agreement between the measured and calculated currents of the cone-shaped AFM-SECM electrodes.

  10. Structural, optical and dispersion properties of 5,10,15,20-tetraphenyl-21H,23H-porphyrin zinc thin films

    NASA Astrophysics Data System (ADS)

    Zeyada, Hamdy M.; Makhlouf, Mohamed M.; Ali, Mohamed A.

    2016-02-01

    The thin films of 5,10,15,20-tetraphenyl-21H,23H-porphyrin zinc, ZnTPP, were successfully prepared by the thermal evaporation technique. The structure formation and optical properties of ZnTPP thin films were studied. The surface morphology and structural characteristics of ZnTPP thin films were analyzed by atomic force microscopy (AFM) and X-ray diffraction (XRD) techniques, respectively. The optical constants of ZnTPP films were measured by spectrophotometer measurements of the transmittance and reflectance at a normal incidence of light in the spectral wavelength range from 200 to 2500 nm. The absorption spectrum of ZnTPP films showed four absorption bands, namely, the Q, B, N, and M bands. Anomalous dispersion was observed in the absorption region and normal dispersion occurred in the transparent region of the spectrum. We adopted the multi-oscillator and the single-oscillator models to interpret the results of anomalous and normal dispersion characteristics, respectively. The energy band gap of ZnTPP films was measured and the type of electron transition was determined to be the indirect allowed transition. The annealing process had an obvious effect on the morphology, structure, optical constants, and spectral dispersion parameters of ZnTPP thin films.

  11. Using XAFS, EDAX and AFM in comparative study of various natural and synthetic emeralds

    NASA Astrophysics Data System (ADS)

    Parikh, P.; Saini, N. L.; Dalela, S.; Bhardwaj, D. M.; Fernandes, S.; Gupta, R. P.; Garg, K. B.

    2003-01-01

    We have performed XAFS, EDAX and AFM studies on some natural and synthetic emeralds. While the XAFS results yield information on changes in the valence of the Cr ion and the n-n distance the AFM is used to determine the areal atomic density on surface of the crystals. It is a pilot study to explore if the three techniques can offer a possible way of distinguishing between the natural and synthetic emeralds and the results are promising.

  12. A Multifunctional Frontloading Approach for Repeated Recycling of a Pressure-Controlled AFM Micropipette.

    PubMed

    Roder, Phillip; Hille, Carsten

    2015-01-01

    Fluid force microscopy combines the positional accuracy and force sensitivity of an atomic force microscope (AFM) with nanofluidics via a microchanneled cantilever. However, adequate loading and cleaning procedures for such AFM micropipettes are required for various application situations. Here, a new frontloading procedure is described for an AFM micropipette functioning as a force- and pressure-controlled microscale liquid dispenser. This frontloading procedure seems especially attractive when using target substances featuring high costs or low available amounts. Here, the AFM micropipette could be filled from the tip side with liquid from a previously applied droplet with a volume of only a few μL using a short low-pressure pulse. The liquid-loaded AFM micropipettes could be then applied for experiments in air or liquid environments. AFM micropipette frontloading was evaluated with the well-known organic fluorescent dye rhodamine 6G and the AlexaFluor647-labeled antibody goat anti-rat IgG as an example of a larger biological compound. After micropipette usage, specific cleaning procedures were tested. Furthermore, a storage method is described, at which the AFM micropipettes could be stored for a few hours up to several days without drying out or clogging of the microchannel. In summary, the rapid, versatile and cost-efficient frontloading and cleaning procedure for the repeated usage of a single AFM micropipette is beneficial for various application situations from specific surface modifications through to local manipulation of living cells, and provides a simplified and faster handling for already known experiments with fluid force microscopy. PMID:26636981

  13. A Multifunctional Frontloading Approach for Repeated Recycling of a Pressure-Controlled AFM Micropipette

    PubMed Central

    Roder, Phillip; Hille, Carsten

    2015-01-01

    Fluid force microscopy combines the positional accuracy and force sensitivity of an atomic force microscope (AFM) with nanofluidics via a microchanneled cantilever. However, adequate loading and cleaning procedures for such AFM micropipettes are required for various application situations. Here, a new frontloading procedure is described for an AFM micropipette functioning as a force- and pressure-controlled microscale liquid dispenser. This frontloading procedure seems especially attractive when using target substances featuring high costs or low available amounts. Here, the AFM micropipette could be filled from the tip side with liquid from a previously applied droplet with a volume of only a few μL using a short low-pressure pulse. The liquid-loaded AFM micropipettes could be then applied for experiments in air or liquid environments. AFM micropipette frontloading was evaluated with the well-known organic fluorescent dye rhodamine 6G and the AlexaFluor647-labeled antibody goat anti-rat IgG as an example of a larger biological compound. After micropipette usage, specific cleaning procedures were tested. Furthermore, a storage method is described, at which the AFM micropipettes could be stored for a few hours up to several days without drying out or clogging of the microchannel. In summary, the rapid, versatile and cost-efficient frontloading and cleaning procedure for the repeated usage of a single AFM micropipette is beneficial for various application situations from specific surface modifications through to local manipulation of living cells, and provides a simplified and faster handling for already known experiments with fluid force microscopy. PMID:26636981

  14. Insight into mechanics of AFM tip-based nanomachining: bending of cantilevers and machined grooves.

    PubMed

    Al-Musawi, R S J; Brousseau, E B; Geng, Y; Borodich, F M

    2016-09-23

    Atomic force microscope (AFM) tip-based nanomachining is currently the object of intense research investigations. Values of the load applied to the tip at the free end of the AFM cantilever probe used for nanomachining are always large enough to induce plastic deformation on the specimen surface contrary to the small load values used for the conventional contact mode AFM imaging. This study describes an important phenomenon specific for AFM nanomachining in the forward direction: under certain processing conditions, the deformed shape of the cantilever probe may change from a convex to a concave orientation. The phenomenon can principally change the depth and width of grooves machined, e.g. the grooves machined on a single crystal copper specimen may increase by 50% on average following such a change in the deformed shape of the cantilever. It is argued that this phenomenon can take place even when the AFM-based tool is operated in the so-called force-controlled mode. The study involves the refined theoretical analysis of cantilever probe bending, the analysis of experimental signals monitored during the backward and forward AFM tip-based machining and the inspection of the topography of produced grooves. PMID:27532247

  15. AFM/CLSM data visualization and comparison using an open-source toolkit.

    PubMed

    Rajwa, Bartek; McNally, Helen A; Varadharajan, Padma; Sturgis, Jennifer; Robinson, J Paul

    2004-06-01

    There is a vast difference in the traditional presentation of AFM data and confocal data. AFM data are presented as surface contours while confocal data are usually visualized using either surface- or volume-rendering techniques. Finding a common meaningful visualization platform is not an easy task. AFM and CLSM technologies are complementary and are more frequently being used to image common biological systems. In order to provide a presentation method that would assist us in evaluating cellular morphology, we propose a simple visualization strategy that is comparative, intuitive, and operates within an open-source environment of ImageJ, SurfaceJ, and VolumeJ applications. In order to find some common ground for AFM-CLSM image comparison, we have developed a plug-in for ImageJ, which allows us to import proprietary image data sets into this application. We propose to represent both AFM and CLSM image data sets as shaded elevation maps with color-coded height. This simple technique utilizes the open source VolumeJ and SurfaceJ plug-ins. To provide an example of this visualization technique, we evaluated the three-dimensional architecture of living chick dorsal root ganglia and sympathetic ganglia measured independently with AFM and CLSM. PMID:15352089

  16. Probing ternary solvent effect in high Voc polymer solar cells using advanced AFM techniques

    DOE PAGESBeta

    Li, Chao; Soleman, Mikhael; Lorenzo, Josie; Dhasmana, Nitesh; Chantharasupawong, Panit; Ievlev, Anton; Gesquiere, Andre; Tetard, Laurene; Thomas, Jayan

    2016-01-25

    This work describes a simple method to develop a high Voc low band gap PSCs. In addition, two new atomic force microscopy (AFM)-based nanoscale characterization techniques to study the surface morphology and physical properties of the structured active layer are introduced. With the help of ternary solvent processing of the active layer and C60 buffer layer, a bulk heterojunction PSC with Voc more than 0.9 V and conversion efficiency 7.5% is developed. In order to understand the fundamental properties of the materials ruling the performance of the PSCs tested, AFM-based nanoscale characterization techniques including Pulsed-Force-Mode AFM (PFM-AFM) and Mode-Synthesizing AFMmore » (MSAFM) are introduced. Interestingly, MSAFM exhibits high sensitivity for direct visualization of the donor–acceptor phases in the active layer of the PSCs. Lastly, conductive-AFM (cAFM) studies reveal local variations in conductivity in the donor and acceptor phases as well as a significant increase in photocurrent in the PTB7:ICBA sample obtained with the ternary solvent processing.« less

  17. Membrane-based actuation for high-speed single molecule force spectroscopy studies using AFM.

    PubMed

    Sarangapani, Krishna; Torun, Hamdi; Finkler, Ofer; Zhu, Cheng; Degertekin, Levent

    2010-07-01

    Atomic force microscopy (AFM)-based dynamic force spectroscopy of single molecular interactions involves characterizing unbinding/unfolding force distributions over a range of pulling speeds. Owing to their size and stiffness, AFM cantilevers are adversely affected by hydrodynamic forces, especially at pulling speeds >10 microm/s, when the viscous drag becomes comparable to the unbinding/unfolding forces. To circumvent these adverse effects, we have fabricated polymer-based membranes capable of actuating commercial AFM cantilevers at speeds >or=100 microm/s with minimal viscous drag effects. We have used FLUENT, a computational fluid dynamics (CFD) software, to simulate high-speed pulling and fast actuation of AFM cantilevers and membranes in different experimental configurations. The simulation results support the experimental findings on a variety of commercial AFM cantilevers and predict significant reduction in drag forces when membrane actuators are used. Unbinding force experiments involving human antibodies using these membranes demonstrate that it is possible to achieve bond loading rates >or=10(6) pN/s, an order of magnitude greater than that reported with commercial AFM cantilevers and systems. PMID:20054686

  18. Experimental evidence of ultrathin polymer film stratification by AFM force spectroscopy.

    PubMed

    Delorme, Nicolas; Chebil, Mohamed Souheib; Vignaud, Guillaume; Le Houerou, Vincent; Bardeau, Jean-François; Busselez, Rémi; Gibaud, Alain; Grohens, Yves

    2015-06-01

    By performing Atomic Force Microscopy measurements of pull-off force as a function of the temperature, we were able to probe the dynamic of supported thin polystyrene (PS) films. Thermal transitions induce modifications in the surface energy, roughness and surface modulus that are clearly detected by AFM and related to PS chain relaxation mechanisms. We demonstrated the existence of three transition temperatures that can be associated to the relaxation of polymer chains located at different depth regions within the polymer film. Independently of the film thickness, we have confirmed the presence of a region of high mobility for the polymer chains at the free interface. The thickness of this region is estimated to be above 7nm. The detection of a transition only present for film thicker than the gyration radius Rg is linked to the dynamics of polymer chains in a bulk conformation (i.e. not in contact with the free interface). We claim here that our results demonstrate, in agreement with other techniques, the stratification of thin polymer film depth profile in terms of relaxation behavior. PMID:26087914

  19. Soliton dispersion management in nonlinear optical fibers

    NASA Astrophysics Data System (ADS)

    Ganapathy, R.

    2012-12-01

    We consider the concept of quasisoliton propagation in a dispersion management fiber and study the soliton dynamics for soliton dispersion management case, soliton energy control case and guiding center soliton case. We also study the interaction scenario in detail for all the cases.

  20. DISPERSANT EFFECTIVENESS ON OIL SPILLS - EMPIRICAL CORRELATIONS

    EPA Science Inventory

    When a dispersant is applied to an oil slick, its effectiveness in dispersing the spilled oil depends on various factors such as oil properties, wave mixing energy, temperature of both oil and water, and salinity of the water. Estuaries represent water with varying salinities. In...