Science.gov

Sample records for afm experimental results

  1. Tip convolution on HOPG surfaces measured in AM-AFM and interpreted using a combined experimental and simulation approach

    NASA Astrophysics Data System (ADS)

    Hu, Xiaoli; Chan, Nicholas; Martini, Ashlie; Egberts, Philip

    2017-01-01

    Amplitude modulated atomic force microscopy (AM-AFM) was used to examine the influence of the size of the AFM tip apex on the measured surface topography of single highly oriented pyrolytic graphite (HOPG) atomic steps. Experimental measurements were complemented by molecular dynamics simulations of AM-AFM and the results from both were evaluated by comparison of the measured or simulated width of the topography at the step to that predicted using simple rigid-body geometry. The results showed that the step width, which is a reflection of the resolution of the measurement, increased with tip size, as expected, but also that the difference between the measured/simulated step width and the geometric calculation was tip size dependent. The simulations suggested that this may be due to the deformation of the bodies and the effect of that deformation on the interaction force and oscillation amplitude. Overall, this study showed that the resolution of AM-AFM measurements of atomic steps can be correlated to tip size and that this relationship is affected by the deformation of the system.

  2. SAA drift: Experimental results

    NASA Astrophysics Data System (ADS)

    Grigoryan, O. R.; Romashova, V. V.; Petrov, A. N.

    According to the paleomagnetic analysis there are variations of Earth’s magnetic field connected with magnetic moment changing. These variations affect on the South Atlantic Anomaly (SAA) location. Indeed different observations approved the existence of the SAA westward drift rate (0.1 1.0 deg/year) and northward drift rate (approximately 0.1 deg/year). In this work, we present the analysis of experimental results obtained in Scobeltsyn Institute of Nuclear Physics, Moscow State University (SINP MSU) onboard different Earth’s artificial satellites (1972 2003). The fluxes of protons with energy >50 MeV, gamma quanta with energy >500 keV and neutrons with energy 0.1 1.0 MeV in the SAA region have been analyzed. The mentioned above experimental data were obtained onboard the orbital stations Salut-6 (1979), MIR (1991, 1998) and ISS (2003) by the similar experimental equipment. The comparison of the data obtained during these two decades of investigations confirms the fact that the SAA drifts westward. Moreover the analysis of fluxes of electrons with energy about hundreds keV (Cosmos-484 (1972) and Active (Interkosmos-24, 1991) satellites) verified not only the SAA westward drift but northward drift also.

  3. Experimental evidence of ultrathin polymer film stratification by AFM force spectroscopy.

    PubMed

    Delorme, Nicolas; Chebil, Mohamed Souheib; Vignaud, Guillaume; Le Houerou, Vincent; Bardeau, Jean-François; Busselez, Rémi; Gibaud, Alain; Grohens, Yves

    2015-06-01

    By performing Atomic Force Microscopy measurements of pull-off force as a function of the temperature, we were able to probe the dynamic of supported thin polystyrene (PS) films. Thermal transitions induce modifications in the surface energy, roughness and surface modulus that are clearly detected by AFM and related to PS chain relaxation mechanisms. We demonstrated the existence of three transition temperatures that can be associated to the relaxation of polymer chains located at different depth regions within the polymer film. Independently of the film thickness, we have confirmed the presence of a region of high mobility for the polymer chains at the free interface. The thickness of this region is estimated to be above 7nm. The detection of a transition only present for film thicker than the gyration radius Rg is linked to the dynamics of polymer chains in a bulk conformation (i.e. not in contact with the free interface). We claim here that our results demonstrate, in agreement with other techniques, the stratification of thin polymer film depth profile in terms of relaxation behavior.

  4. Experimental results on evaporation waves

    NASA Astrophysics Data System (ADS)

    Grana Otero, Jose; Parra Fabian, Ignacio

    2010-11-01

    A liquid contained in a vertical glass tube is suddenly depressurized from a high initial pressure down to one for which the stable state is vapour, so vaporization sets off at the free surface. For large enough evaporation rates, the planar vapour-liquid interface is Darrieus-Landau unstable [1], leading to the interface surface rippling close to the instability threshold. Further increasing the initial to final pressure ratio brings about evaporation waves [2,3], in which a highly corrugated front propagates downwards into the liquid. A new experimental method is presented as well as some experimental results obtained by tracking the evolution of the front with a high speed camera. In addition, a number of new phenomena related to the dynamics of bubbles growth at the walls has been uncovered. In particular, a new mode of propagation of the evaporation front is found. In this mode the front originates from below the interface, so the propagation is upwards against gravity with a curved but smooth front.[4pt] [1] F. J. Higuera, Phys. Fluids, V. 30, 679 (1987).[0pt] [2] J.E.Shepherd and B.Sturtevant, J.Fluid Mech., V.121,379 (1982).[0pt] [3] P.Reinke and G.Yadigaroglu, Int.J.Multiph. Flow, V.27,1487 (2001).

  5. SAA drift:experimental results

    NASA Astrophysics Data System (ADS)

    Grigoryan, O. R.; Kudela, K.; Romashova, V. V.; Drozdov, A. Yu.

    According to the paleomagnetic analysis there are variations of Earth's magnetic field connected with magnetic momentum changing. Besides these variations affects on the trapped belt South Atlantic Anomaly (SAA) location. Indeed different observations including Space Shuttle short-time flights approved the existence SAA westward drift with speed 0.1-1.0 (deg/year) and northward drift with speed approximately 0.1 (deg/year). In this work we present the analysis of experimental results obtained in SINP MSU in 1972-2003 from different satellites. There were analyzed the fluxes of protons with energy > 50 MeV, gamma quanta with energy > 500 keV and neutrons with energy 0.1-1.0 MeV in SAA area and their maxima location. The data about fluxes were obtained onboard the orbital stations ``Salut-6'' (1979), MIR (1991, 1998) and ISS (2003) by the identical experimental equipment. The comparison of the data obtained during these two decades of investigations confirms the fact of the SAA westward drift. Moreover the same analysis of maximum flux location of electrons with hundreds keV energy (satellites ``Kosmos-484'' (1972), ``Interkosmos-17'' (1977) and ``Activny'' (``Interkosmos-24'', 1991)) confirmed not only the SAA westward drift but northward drift also.

  6. Anomalies in nanostructure size measurements by AFM

    NASA Astrophysics Data System (ADS)

    Mechler, Ádám; Kopniczky, Judit; Kokavecz, János; Hoel, Anders; Granqvist, Claes-Göran; Heszler, Peter

    2005-09-01

    Anomalies in atomic force microscopy (AFM) based size determination of nanoparticles were studied via comparative analysis of experiments and numerical calculations. Single tungsten oxide nanoparticles with a mean diameter of 3nm were deposited on mica and graphite substrates and were characterised by AFM. The size (height) of the nanoparticles, measured by tapping mode AFM, was found to be sensitive to the free amplitude of the oscillating tip, thus indicating that the images were not purely topographical. By comparing the experimental results to model calculations, we demonstrate that the dependence of the nanoparticle size on the oscillation amplitude of the tip is an inherent characteristic of the tapping mode AFM; it is also a function of physical properties such as elasticity and surface energy of the nanoparticle and the sample surface, and it depends on the radius of curvature of the tip. We show that good approximation of the real size can easily be obtained from plots of particle height vs free amplitude of the oscillating tip, although errors might persist for individual experiments. The results are valid for size (height) determination of any nanometer-sized objects imaged by tapping mode AFM.

  7. Hydration states of AFm cement phases

    SciTech Connect

    Baquerizo, Luis G.; Matschei, Thomas; Scrivener, Karen L.; Saeidpour, Mahsa; Wadsö, Lars

    2015-07-15

    The AFm phase, one of the main products formed during the hydration of Portland and calcium aluminate cement based systems, belongs to the layered double hydrate (LDH) family having positively charged layers and water plus charge-balancing anions in the interlayer. It is known that these phases present different hydration states (i.e. varying water content) depending on the relative humidity (RH), temperature and anion type, which might be linked to volume changes (swelling and shrinkage). Unfortunately the stability conditions of these phases are insufficiently reported. This paper presents novel experimental results on the different hydration states of the most important AFm phases: monocarboaluminate, hemicarboaluminate, strätlingite, hydroxy-AFm and monosulfoaluminate, and the thermodynamic properties associated with changes in their water content during absorption/desorption. This data opens the possibility to model the response of cementitious systems during drying and wetting and to engineer systems more resistant to harsh external conditions.

  8. Detection of Pathogens Using AFM and SPR

    NASA Astrophysics Data System (ADS)

    Vaseashta, Ashok

    2005-03-01

    A priori detection of pathogens in food and water has become a subject of paramount importance. Several recent incidents have resulted in the government passing stringent regulations for tolerable amounts of contamination of food products. Identification and/or monitoring of bacterial contamination in food are critical. The conventional methods of pathogen detection require time-consuming steps to arrive disembark at meaningful measurement in a timely manner as the detection time exceeds the time in which perishable food recycles through the food chain distribution. The aim of this presentation is to outline surface plasmon resonance (SPR) and atomic force microscopy (AFM) as two methods for fast detect6ion of pathogens. Theoretical basis of SPR and experimental results of SPR and AFM on E. coli O157:H7 and prion are presented.

  9. Experimental Results in DIS from Jefferson Laboratory

    SciTech Connect

    Sebastian Kuhn

    2009-10-01

    We are summarizing the experimental program of Jefferson Lab (Thomas Jefferson National Accelerator Facility in Newport News, VA) in deep inelastic electron scattering. We show recent results and discuss future plans for both the present 6 GeV era and the 12 GeV energy-upgraded facility.

  10. Experimental results from the small isochronous ring

    SciTech Connect

    Eduard Pozdeyev

    2005-05-01

    The Small Isochronous Ring (SIR) is a compact, low-energy storage ring designed to investigate the beam dynamics of high-intensity isochronous cyclotrons and synchrotrons at the transition energy. The ring was developed at Michigan State University (MSU) and has been operational since December 2003. It stores 20 keV hydrogen beams with a peak current of 10-20 microamps for up to 200 turns. The transverse and longitudinal profiles of extracted bunches are measured with an accuracy of approximately 1 mm. The high accuracy of the measurements makes the experimental data attractive for validation of multi-particle space charge codes. The results obtained in the ring show a fast growth of the energy spread induced by the space charge forces. The energy spread growth is accompanied by a breakup of the beam bunches into separated clusters that are involved in the vortex motion specific to the isochronous regime. The experimental results presented in the paper show a remarkable agreement with simulations performed with the code CYCO. In this paper, we discuss specifics of space charge effects in the isochronous regime, present results of experiments in SIR, and conduct a detailed comparison of the experimental data with results of simulations.

  11. Fuel-rich, catalytic reaction experimental results

    NASA Technical Reports Server (NTRS)

    Rollbuhler, R. James

    1991-01-01

    Future aeropropulsion gas turbine combustion requirements call for operating at very high inlet temperatures, pressures, and large temperature rises. At the same time, the combustion process is to have minimum pollution effects on the environment. Aircraft gas turbine engines utilize liquid hydrocarbon fuels which are difficult to uniformly atomize and mix with combustion air. An approach for minimizing fuel related problems is to transform the liquid fuel into gaseous form prior to the completion of the combustion process. Experimentally obtained results are presented for vaporizing and partially oxidizing a liquid hydrocarbon fuel into burnable gaseous components. The presented experimental data show that 1200 to 1300 K reaction product gas, rich in hydrogen, carbon monoxide, and light-end hydrocarbons, is formed when flowing 0.3 to 0.6 fuel to air mixes through a catalyst reactor. The reaction temperatures are kept low enough that nitrogen oxides and carbon particles (soot) do not form. Results are reported for tests using different catalyst types and configurations, mass flowrates, input temperatures, and fuel to air ratios.

  12. New developments at PTB in 3D-AFM with tapping and torsion AFM mode and vector approach probing strategy

    NASA Astrophysics Data System (ADS)

    Dai, G.; Hässler-Grohne, W.; Hüser, D.; Wolff, H.; Fluegge, J.; Bosse, H.

    2011-06-01

    A new 3D-AFM for true 3D measurements of nano structures has been developed at Physikalisch Technische-Bundesanstalt, the national metrology institute of Germany. In its configuration, two piezo actuators are applied to drive the AFM cantilever near its vertical and torsional resonant frequencies. In such a way, the AFM tip can probe the surface with a vertical and/or a lateral oscillation, offering high 3D probing sensitivity. For enhancing measurement flexibility as well as reducing tip wear, a so called "vector approach probing" (VAP) method has been applied. The sample is measured point by point using this method. At each probing point, the tip is approached towards the surface in its normal direction until the desired tip-sample interaction is detected and then immediately withdrawn from the surface. Preliminary experimental results show promising performance of the developed system. The measurement of a line structure of 800 nm height employing a super sharp AFM tip is performed, showing a repeatability of its 3D profiles of better than 1 nm (p-v). A single crystal critical dimension reference material (SCCDRM) having features with almost vertical sidewall is measured using a flared AFM tip. Results show that the feature has averaged left and right sidewall angles of 88.64° and 88.67deg;, respectively. However, the feature width non-uniformity may reach 10 nm within the measurement range of 1 μm. The standard deviation of the averaged middle CD values of 7 repeated measurements reaches 0.35 nm. In addition, an investigation of long term measurement stability is performed on a PTB photomask. The results shows that the 3D-AFM has a drift rate of about 0.00033 nm per line, which confirms the high measurement stability and the very low tip wear.

  13. Testing Numerical Dynamo Models Against Experimental Results

    NASA Astrophysics Data System (ADS)

    Gissinger, C. J.; Fauve, S.; Dormy, E.

    2007-12-01

    Significant progress has been achieved over the past few years in describing the geomagnetic field using computer models for dynamo action. Such models are so far limited to parameter regimes which are very remote from actual values relevant to the Earth core or any liquid metal (the magnetic Prandtl number is always over estimated by a factor at least 104). While existing models successfully reproduce many of the magnetic observations, it is difficult to assert their validity. The recent success of an experimental homogeneous unconstrained dynamo (VKS) provides a new way to investigate dynamo action in turbulent conducting flows, but it also offers a chance to test the validity of exisiting numerical models. We use a code originaly written for the Geodynamo (Parody) and apply it to the experimental configuration. The direct comparison of simulations and experiments is of great interest to test the predictive value of numerical simulations for dynamo action. These turbulent simulations allow us to approach issues which are very relevant for geophysical dynamos, especially the competition between different magnetic modes and the dynamics of reversals.

  14. Experimental rotordynamic coefficient results for honeycomb seals

    NASA Technical Reports Server (NTRS)

    Elrod, David A.; Childs, Dara W.

    1988-01-01

    Test results (leakage and rotordynamic coefficients) are presented for seven honeycomb-stator smooth-rotor seals. Tests were carried out with air at rotor speeds up to 16,000 cpm and supply pressures up to 8.2 bars. Test results for the seven seals are compared, and the most stable configuration is identified based on the whirl frequency ratio. Results from tests of a smooth-rotor/smooth-stator seal, a teeth-on-stator labyrinth seal, and the most stable honeycomb seal are compared.

  15. Adaptive structures - Test hardware and experimental results

    NASA Technical Reports Server (NTRS)

    Wada, Ben K.; Fanson, James L.; Chen, Gun-Shing; Kuo, Chin-Po

    1990-01-01

    The facilities and procedures used at JPL to test adaptive structures such as the large deployable reflector (LDR) are described and preliminary results are reported. The applications of adaptive structures in future NASA missions are outlined, and the techniques which are employed to modify damping, stiffness, and isolation characteristics, as well as geometric changes, are listed. The development of adaptive structures is shown to be effective as a result of new actuators and sensors, and examples are listed for categories such as fiber optics, shape-memory materials, piezoelectrics, and electrorheological fluids. Some ground test results are described for laboratory truss structures and truss test beds, which are shown to be efficient and easy to assemble in space. Adaptive structures are shown to be important for precision space structures such as the LDR, and can alleviate ground test requirements.

  16. The Humanoid Robot LOLA—Experimental Results

    NASA Astrophysics Data System (ADS)

    Favot, V.; Schwienbacher, M.; Buschmann, T.; Lohmeier, S.; Ulbrich, H.

    2010-09-01

    With the experience gathered during the development and construnction of the robot JOHNNIE, a new humanoid robot LOLA was built. Goal of this project is to realize a fast, human-like walking. Different aspects of this complex mechatronic system and the first experiments results are presented. The lightweight construction and the custom build multi-sensory joint drives with high torque brushless motors are introduced. The new decentralized electronic control/sensing network is also discuss as well as the simulation environment, the trajectory planning algorithm and the stabilizing walking control. Finally the first experiments result are presented.

  17. Tracer Developments: Results of Experimental Studies

    SciTech Connect

    Adams, M.C.; Ahn, J.H.; Bentley, H.; Moore, J.N.; Veggeberg, S.

    1986-01-21

    Tracers can be used to monitor the movement of groundwaters and geothermal fluids and they can be used as a reference to quantify changes in fluid chemistry as a result of injection. Despite their potential importance to the geothermal operator, very few tracers are presently available and of those that are, little is known about their stability or behavior at the elevated temperatures that typify resources capable of electric power generation. During the past two years the University of Utah Research Institute has been involved in tracer research and testing, largely through the DOE Injection Research Program. The purpose of this paper is to summarize the results of these laboratory and field investigations.

  18. Numerical taxonomy on data: Experimental results

    SciTech Connect

    Cohen, J.; Farach, M.

    1997-12-01

    The numerical taxonomy problems associated with most of the optimization criteria described above are NP - hard [3, 5, 1, 4]. In, the first positive result for numerical taxonomy was presented. They showed that if e is the distance to the closest tree metric under the L{sub {infinity}} norm. i.e., e = min{sub T} [L{sub {infinity}} (T-D)], then it is possible to construct a tree T such that L{sub {infinity}} (T-D) {le} 3e, that is, they gave a 3-approximation algorithm for this problem. We will refer to this algorithm as the Single Pivot (SP) heuristic.

  19. Experimental results on diffraction at CDF

    SciTech Connect

    Gallinaro, Michele; /Rockefeller U. /Lisbon, LIFEP

    2010-09-01

    Diffractive events are studied by means of identification of one or more rapidity gaps and/or a leading antiproton. Measurements of soft and hard diffractive processes have been performed at the Tevatron p{bar p} collider and presented. We report on the diffractive structure function obtained from dijet production in the range 0 < Q{sup 2} < 10,000 GeV{sup 2}, and on the |t| distribution in the region 0 < |t| < 1 GeV{sup 2} for both soft and hard diffractive events up to Q{sup 2} {approx} 4,500 GeV{sup 2}. Results on single diffractive W/Z production, forward jets, and central exclusive production of both dijets and Z-bosons are also presented.

  20. Ventricular Fibrillation in Mammalian Hearts: Experimental Results

    NASA Astrophysics Data System (ADS)

    Gray, Richard A.

    2002-03-01

    Ventricular fibrillation (VF) is sustained by the continuous “breakup” of rapidly rotating spiral waves. The rate dependence of action potential duration (APD), i.e. APD restitution, plays a role in the induction and breakup of spiral waves. However, the role of conduction velocity (CV) and spatial heterogeneities, in VF induction and maintenance is not clear. We studied restitution, its spatial dispersion, and VF in small (rabbit) and large (pig) hearts using a video imaging system. We studied the effect of two drugs, diacetyl monoxime (DAM) and cytochalasinD (Cyto), in rabbit hearts. Control APDs were shorter than for Cyto but longer than for DAM. CV was greater for Cyto compared to DAM and APD dispersion increased with increasing rate for both drugs. VF was sustained in control, non-sustained with CytoD, and converted to a stable reentry (VT) with DAM. The slight increase of APD with Cyto increased the wavelength and probably prevented VF from being sustained. The DAM results can be explained by the reduction of wavelength and slope of the APD restitution curve. Except for VF, CytoD results were similar to controls. We performed similar studies in larger (pig) hearts with Cyto. APD and restitution slope at rapid rates were smaller for the pig compared to the rabbit. In the pig, APDs recorded during pacing induction protocols, VF and VT demonstrated that during periods of transition, APDs did not fall on the restitution curve. However, the deviations were predictable. During rapid pacing and VT/VF induction, APDs were longer than predicted from the restitution curve, while they were shorter for the conversions of VF to VT and their terminations. Overall, these studies are beginning to elucidate the dynamics and factors involved in the complex spatio-temporal patterns and their transitions that occur at rapid rates such as VT and VF.

  1. Overview of the Initial NSTX Experimental Results

    SciTech Connect

    M. Ono; M. Bell; R. E. Bell; T. Bigelow; M. Bitter; et al

    2000-11-16

    The main aim of the National Spherical Torus Experiment (NSTX) is to establish the fusion physics principles of the spherical torus (ST) concept. The NSTX device began plasma operations in February 1999 and the plasma current Ip was successfully brought up to the design value of 1 million amperes on December 14, 1999. The planned plasma shaping parameters, k = 1.6 {+-} 2.2 and d = 0.2 {+-} 0.4, were achieved in inner limited, single null and double null configurations. The CHI (Coaxial Helicity Injection) and HHFW (High Harmonic Fast Wave) experiments were also initiated. A CHI injected current of 27 kA produced up to 260 kA of toroidal current without using an ohmic solenoid. With an injection of 2.3 MW of HHFW power, using twelve antennas connected to six transmitters, electrons were heated from a central temperature of 400 eV to 900 eV at a centraldensity of 3.5 x 1013 cm-3 increasing the plasma energy to 59 kJ and the toroidal beta, bT to 10 %. Finally, the NBI system commenced operatio n in Sept. 2000. The initial results with two ion sources (PNBI = 2.8 MW) shows good heating, producing a total plasma stored energy of 90 kJ corresponding to bT = 18 % at a plasma current of 1.1 MA

  2. Inviscid Flow Field Effects: Experimental results

    NASA Astrophysics Data System (ADS)

    Otten, L. J., III; Gilbert, K. G.

    1980-04-01

    The aero-optical distortions due to invisid flow effects over airborne laser turrets is investigated. Optical path differences across laser turret apertures are estimated from two data sources. The first is a theoretical study of main flow effects for a spherical turret assembly for a Mach number (M) of 0.6. The second source is an actual wind tunnel density field measurement on a 0.3 scale laser turret/fairing assembly, with M = 0.75. A range of azimuthal angles from 0 to 90 deg was considered, while the elevation angle was always 0 deg (i.e., in the plane of the flow). The calculated optical path differences for these two markedly different geometries are of the same order. Scaling of results to sea level conditions and an aperture diameter of 50 cm indicated up to 0.0007 cm of phase variation across the aperture for certain forward look angles and a focal length of F = -11.1 km. These values are second order for a 10.6 micron system.

  3. Graphene MEMS: AFM probe performance improvement.

    PubMed

    Martin-Olmos, Cristina; Rasool, Haider Imad; Weiller, Bruce H; Gimzewski, James K

    2013-05-28

    We explore the feasibility of growing a continuous layer of graphene in prepatterned substrates, like an engineered silicon wafer, and we apply this as a mold for the fabrication of AFM probes. This fabrication method proves the fabrication of SU-8 devices coated with graphene in a full-wafer parallel technology and with high yield. It also demonstrates that graphene coating enhances the functionality of SU-8 probes, turning them conductive and more resistant to wear. Furthermore, it opens new experimental possibilities such as studying graphene-graphene interaction at the nanoscale with the precision of an AFM or the exploration of properties in nonplanar graphene layers.

  4. Noise in NC-AFM measurements with significant tip–sample interaction

    PubMed Central

    Lübbe, Jannis; Temmen, Matthias

    2016-01-01

    The frequency shift noise in non-contact atomic force microscopy (NC-AFM) imaging and spectroscopy consists of thermal noise and detection system noise with an additional contribution from amplitude noise if there are significant tip–sample interactions. The total noise power spectral density D Δ f(f m) is, however, not just the sum of these noise contributions. Instead its magnitude and spectral characteristics are determined by the strongly non-linear tip–sample interaction, by the coupling between the amplitude and tip–sample distance control loops of the NC-AFM system as well as by the characteristics of the phase locked loop (PLL) detector used for frequency demodulation. Here, we measure D Δ f(f m) for various NC-AFM parameter settings representing realistic measurement conditions and compare experimental data to simulations based on a model of the NC-AFM system that includes the tip–sample interaction. The good agreement between predicted and measured noise spectra confirms that the model covers the relevant noise contributions and interactions. Results yield a general understanding of noise generation and propagation in the NC-AFM and provide a quantitative prediction of noise for given experimental parameters. We derive strategies for noise-optimised imaging and spectroscopy and outline a full optimisation procedure for the instrumentation and control loops. PMID:28144538

  5. Cryogenic AFM-STM for mesoscopic physics

    NASA Astrophysics Data System (ADS)

    Le Sueur, H.

    Electronic spectroscopy based on electron tunneling gives access to the electronic density of states (DOS) in conductive materials, and thus provides detailed information about their electronic properties. During this thesis work, we have developed a microscope in order to perform spatially resolved (10 nm) tunneling spectroscopy, with an unprecedented energy resolution (10 μeV), on individual nanocircuits. This machine combines an Atomic Force Microscope (AFM mode) together with a Scanning Tunneling Spectroscope (STS mode) and functions at very low temperatures (30 mK). In the AFM mode, the sample topography is recorded using a piezoelectric quartz tuning fork, which allows us to locate and image nanocircuits. Tunneling can then be performed on conductive areas of the circuit. With this microscope, we have measured the local DOS in a hybrid Superconductor-Normal metal-Superconductor (S-N-S) structure. In such circuit, the electronic properties of N and S are modified by the superconducting proximity effect. In particular, for short N wires, we have observed a minigap independent of position in the DOS of the N wire, as was previously predicted. Moreover, when varying the superconducting phase difference between the S electrodes, we have measured the modification of the minigap and its disappearance when the phase difference equals π. Our experimental results for the DOS, and its dependences (on phase, position, N length), are quantitatively accounted for by the quasiclassical theory of superconductivity. Some predictions of this theory are observed for the first time. La spectroscopie électronique basée sur l'effet tunnel donne accès à la densité d'états des électrons (DOS) dans les matériaux conducteurs, et renseigne ainsi en détail sur leurs propriétés électroniques. Au cours de cette thèse, nous avons développé un microscope permettant d'effectuer la spectroscopie tunnel résolue spatialement (10 nm) de nanocircuits individuels, avec une r

  6. Development of a 3D-AFM for true 3D measurements of nanostructures

    NASA Astrophysics Data System (ADS)

    Dai, Gaoliang; Häßler-Grohne, Wolfgang; Hüser, Dorothee; Wolff, Helmut; Danzebrink, Hans-Ulrich; Koenders, Ludger; Bosse, Harald

    2011-09-01

    The development of advanced lithography requires highly accurate 3D metrology methods for small line structures of both wafers and photomasks. Development of a new 3D atomic force microscopy (3D-AFM) with vertical and torsional oscillation modes is introduced in this paper. In its configuration, the AFM probe is oscillated using two piezo actuators driven at vertical and torsional resonance frequencies of the cantilever. In such a way, the AFM tip can probe the surface with a vertical and a lateral oscillation, offering high 3D probing sensitivity. In addition, a so-called vector approach probing (VAP) method has been applied. The sample is measured point-by-point using this method. At each probing point, the tip is approached towards the surface until the desired tip-sample interaction is detected and then immediately withdrawn from the surface. Compared to conventional AFMs, where the tip is kept continuously in interaction with the surface, the tip-sample interaction time using the VAP method is greatly reduced and consequently the tip wear is reduced. Preliminary experimental results show promising performance of the developed system. A measurement of a line structure of 800 nm height employing a super sharp AFM tip could be performed with a repeatability of its 3D profiles of better than 1 nm (p-v). A line structure of a Physikalisch-Technische Bundesanstalt photomask with a nominal width of 300 nm has been measured using a flared tip AFM probe. The repeatability of the middle CD values reaches 0.28 nm (1σ). A long-term stability investigation shows that the 3D-AFM has a high stability of better than 1 nm within 197 measurements taken over 30 h, which also confirms the very low tip wear.

  7. Methods of experimentation with models and utilization of results

    NASA Technical Reports Server (NTRS)

    Robert,

    1924-01-01

    The present report treats the subject of testing small models in a wind tunnel and of the methods employed for rendering the results constant, accurate and comparable with one another. Detailed experimental results are given.

  8. AFM-IR: Technology and Applications in Nanoscale Infrared Spectroscopy and Chemical Imaging.

    PubMed

    Dazzi, Alexandre; Prater, Craig B

    2016-12-13

    Atomic force microscopy-based infrared spectroscopy (AFM-IR) is a rapidly emerging technique that provides chemical analysis and compositional mapping with spatial resolution far below conventional optical diffraction limits. AFM-IR works by using the tip of an AFM probe to locally detect thermal expansion in a sample resulting from absorption of infrared radiation. AFM-IR thus can provide the spatial resolution of AFM in combination with the chemical analysis and compositional imaging capabilities of infrared spectroscopy. This article briefly reviews the development and underlying technology of AFM-IR, including recent advances, and then surveys a wide range of applications and investigations using AFM-IR. AFM-IR applications that will be discussed include those in polymers, life sciences, photonics, solar cells, semiconductors, pharmaceuticals, and cultural heritage. In the Supporting Information , the authors provide a theoretical section that reviews the physics underlying the AFM-IR measurement and detection mechanisms.

  9. Summary of recent experimental results on strangeness production

    NASA Astrophysics Data System (ADS)

    Kalweit, Alexander

    2017-01-01

    This article summarises the highlights of the recent experimental findings on strangeness production presented at the 16th edition of the International Conference on Strangeness in Quark Matter in Berkeley. Results obtained by eight large experimental collaborations (ALICE, ATLAS, CMS, HADES, LHCb, NA-61, PHENIX, STAR) spanning a large range in centre-of-mass energy and a variety of collision systems were presented at the conference. The article does not aim at being a complete review, but rather at connecting the experimental highlights of the different collaborations and at pointing towards questions which should be addressed by these experiments in future.

  10. Manufacturing process of nanofluidics using afm probe

    NASA Astrophysics Data System (ADS)

    Karingula, Varun Kumar

    A new process for fabricating a nano fluidic device that can be used in medical application is developed and demonstrated. Nano channels are fabricated using a nano tip in indentation mode on AFM (Atomic Force Microscopy). The nano channels are integrated between the micro channels and act as a filter to separate biomolecules. Nano channels of 4 to7 m in length, 80nm in width, and at varying depths from 100nm to 850 nm allow the resulting device to separate selected groups of lysosomes and other viruses. Sharply developed vertical micro channels are produced from a deep reaction ion etching followed by deposition of different materials, such as gold and polymers, on the top surface, allowing the study of alternative ways of manufacturing a nanofluidic device. PDMS (Polydimethylsiloxane) bonding is performed to close the top surface of the device. An experimental setup is used to test and validate the device by pouring fluid through the channels. A detailed cost evaluation is conducted to compare the economical merits of the proposed process. It is shown that there is a 47:7% manufacturing time savings and a 60:6% manufacturing cost savings.

  11. Microrheology using a custom-made AFM

    NASA Astrophysics Data System (ADS)

    Kosgodagan Acharige, Sebastien; Benzaquen, Michael; Steinberger, Audrey

    In the past few years, a new method was developed to measure local properties of liquids (X. Xiong et al., Phys. Rev. E 80, 2009). This method consists of gluing a micron-sized glass fiber at the tip of an AFM cantilever and probing the liquid with it. In ENS Lyon, this method was perfected (C. Devailly et al., EPL, 106 5, 2014) with the help of an interferometer developped in the same laboratory (L. Bellon et al., Opt. Commun. 207 49, 2002 and P. Paolino et al., Rev. Sci. Instrum. 84, 2013), which background noise can reach 10-14 m /√{ Hz } . This method allows us to measure a wide range of viscosities (1 mPa . s to 500 mPa . s) of transparent and opaque fluids using a small sample volume ( 5 mL). In this presentation, I will briefly describe the interferometer developped in ENS Lyon, then explain precisely the microrheology measurements and then compare the experimental results to a model developped by M. Benzaquen. This work is supported financially by the ANR project NANOFLUIDYN (Grant Number ANR-13-BS10-0009).

  12. Experimental Results for an Annular Aerospike with Differential Throttling

    NASA Technical Reports Server (NTRS)

    Ruf, Joseph H.; McDaniels, David M.

    2003-01-01

    Marshall Space Flight Center funded an internal study on Altitude Compensating Nozzles (ACN) for aerospike engines. The experimental hardware for the engine test is described in this viewgraph presentation, as well as the results of the experiment. The results include spike wall pressures, nozzle efficiency, and side force for four nozzle configurations.

  13. Comparison of calculated and experimental results of fragmenting cylinder experiments

    SciTech Connect

    WILSON,L.T.; REEDAL,D.R.; KIPP,MARLIN E.; MARTINEZ,REINA R.; GRADY,D.E.

    2000-06-02

    The Grady-Kipp fragmentation model provides a physically based method for determining the fracture and breakup of materials under high loading rates. Recently, this model has been implemented into the CTH Shock Physics Code and has been used to simulate several published experiments. Materials studied in this paper are AerMet 100 steel and a 90% tungsten alloy. The experimental geometry consists of a right circular cylinder filled with an explosive main charge that is initiated at its center. The sudden expansion of the resulting detonation products causes fracture of the cylinder. Strain rates seen in the cylinder are on the order of 10{sup 4} s{sup {minus}1}. The average fragment sizes calculated with the Grady-Kipp fragmentation model successfully replicate the mean fragment size obtained from the experimental fragment distribution. When Poisson statistics are applied to the calculated local average fragment sizes, good correlation is also observed with the shape of the experimental cumulative fragment distribution. The experimental fragmentation results, CTH numerical simulations, and correlation of these numerical results with the experimental data are described.

  14. INTERFACE DEFEAT OF LONG RODS IMPACTING BOROSILICATE GLASS EXPERIMENTAL RESULTS

    DTIC Science & Technology

    2009-02-01

    UNCLASSIFIED UNCLASSIFIED Interface Defeat of Long Rods Impacting Borosilicate Glass Experimental Results Charles E. Anderson, Jr. Thilo Behner...6. AUTHOR(S) Charles E. Anderson, Jr.1, Thilo Behner2, Dennis L. Orphal3, Timothy J. Holmquist4, Volker Hohler2, , and Matthias Wickert2 5f. WORK

  15. CSI sensing and control: Analytical and experimental results

    NASA Technical Reports Server (NTRS)

    Junkins, J. L.; Pollock, T. C.; Rahman, Z. H.

    1989-01-01

    Recent work on structural identification and large-angle maneuvers with vibration suppression was presented. The recent work has sought to balance structural and controls analysis activities by involving the analysts directly in the validation and experimental aspects of the research. Some new sensing, actuation, system identification, and control concepts were successfully implemented. An overview of these results is given.

  16. Nanoscale thermal AFM of polymers: transient heat flow effects.

    PubMed

    Duvigneau, Joost; Schönherr, Holger; Vancso, G Julius

    2010-11-23

    Thermal transport around the nanoscale contact area between the heated atomic force microscopy (AFM) probe tip and the specimen under investigation is a central issue in scanning thermal microscopy (SThM). Polarized light microscopy and AFM imaging of the temperature-induced crystallization of poly(ethylene terephthalate) (PET) films in the region near the tip were used in this study to unveil the lateral heat transport. The radius of the observed lateral surface isotherm at 133 °C ranged from 2.2 ± 0.5 to 18.7 ± 0.5 μm for tip-polymer interface temperatures between 200 and 300 °C with contact times varying from 20 to 120 s, respectively. In addition, the heat transport into polymer films was assessed by measurements of the thermal expansion of poly(dimethyl siloxane) (PDMS) films with variable thickness on silicon supports. Our data showed that heat transport in the specimen normal (z) direction occurred to depths exceeding 1000 μm using representative non-steady-state SThM conditions (i.e., heating from 40 to 180 °C at a rate of 10 °C s(-1)). On the basis of the experimental results, a 1D steady-state model for heat transport was developed, which shows the temperature profile close to the tip-polymer contact. The model also indicates that ≤1% of the total power generated in the heater area, which is embedded in the cantilever end, is transported into the polymer through the tip-polymer contact interface. Our results complement recent efforts in the evaluation and improvement of existing theoretical models for thermal AFM, as well as advance further developments of SThM for nanoscale thermal materials characterization and/or manipulation via scanning thermal lithography (SThL).

  17. Design and experimental results for the S809 airfoil

    SciTech Connect

    Somers, D M

    1997-01-01

    A 21-percent-thick, laminar-flow airfoil, the S809, for horizontal-axis wind-turbine applications, has been designed and analyzed theoretically and verified experimentally in the low-turbulence wind tunnel of the Delft University of Technology Low Speed Laboratory, The Netherlands. The two primary objectives of restrained maximum lift, insensitive to roughness, and low profile drag have been achieved. The airfoil also exhibits a docile stall. Comparisons of the theoretical and experimental results show good agreement. Comparisons with other airfoils illustrate the restrained maximum lift coefficient as well as the lower profile-drag coefficients, thus confirming the achievement of the primary objectives.

  18. Design and experimental results for the S805 airfoil

    SciTech Connect

    Somers, D.M.

    1997-01-01

    An airfoil for horizontal-axis wind-turbine applications, the S805, has been designed and analyzed theoretically and verified experimentally in the low-turbulence wind tunnel of the Delft University of Technology Low Speed Laboratory, The Netherlands. The two primary objectives of restrained maximum lift, insensitive to roughness, and low profile drag have been achieved. The airfoil also exhibits a docile stall. Comparisons of the theoretical and experimental results show good agreement. Comparisons with other airfoils illustrate the restrained maximum lift coefficient as well as the lower profile-drag coefficients, thus confirming the achievement of the primary objectives.

  19. Experimental results for a hypersonic nozzle/afterbody flow field

    NASA Technical Reports Server (NTRS)

    Spaid, Frank W.; Keener, Earl R.; Hui, Frank C. L.

    1995-01-01

    This study was conducted to experimentally characterize the flow field created by the interaction of a single-expansion ramp-nozzle (SERN) flow with a hypersonic external stream. Data were obtained from a generic nozzle/afterbody model in the 3.5 Foot Hypersonic Wind Tunnel at the NASA Ames Research Center, in a cooperative experimental program involving Ames and McDonnell Douglas Aerospace. The model design and test planning were performed in close cooperation with members of the Ames computational fluid dynamics (CFD) team for the National Aerospace Plane (NASP) program. This paper presents experimental results consisting of oil-flow and shadow graph flow-visualization photographs, afterbody surface-pressure distributions, rake boundary-layer measurements, Preston-tube skin-friction measurements, and flow field surveys with five-hole and thermocouple probes. The probe data consist of impact pressure, flow direction, and total temperature profiles in the interaction flow field.

  20. Experimental results for correlation-based wavefront sensing

    SciTech Connect

    Poyneer, L A; Palmer, D W; LaFortune, K N; Bauman, B

    2005-07-01

    Correlation wave-front sensing can improve Adaptive Optics (AO) system performance in two keys areas. For point-source-based AO systems, Correlation is more accurate, more robust to changing conditions and provides lower noise than a centroiding algorithm. Experimental results from the Lick AO system and the SSHCL laser AO system confirm this. For remote imaging, Correlation enables the use of extended objects for wave-front sensing. Results from short horizontal-path experiments will show algorithm properties and requirements.

  1. Experimental results of a predictive neural network HVAC controller

    SciTech Connect

    Jeannette, E.; Assawamartbunlue, K.; Kreider, J.F.; Curtiss, P.S.

    1998-12-31

    Proportional, integral, and derivative (PID) control is widely used in many HVAC control processes and requires constant attention for optimal control. Artificial neural networks offer the potential for improved control of processes through predictive techniques. This paper introduces and shows experimental results of a predictive neural network (PNN) controller applied to an unstable hot water system in an air-handling unit. Actual laboratory testing of the PNN and PID controllers show favorable results for the PNN controller.

  2. Graphite, graphene on SiC, and graphene nanoribbons: Calculated images with a numerical FM-AFM

    PubMed Central

    Castanié, Fabien; Nony, Laurent; Gauthier, Sébastien

    2012-01-01

    Summary Background: Characterization at the atomic scale is becoming an achievable task for FM-AFM users equipped, for example, with a qPlus sensor. Nevertheless, calculations are necessary to fully interpret experimental images in some specific cases. In this context, we developed a numerical AFM (n-AFM) able to be used in different modes and under different usage conditions. Results: Here, we tackled FM-AFM image calculations of three types of graphitic structures, namely a graphite surface, a graphene sheet on a silicon carbide substrate with a Si-terminated surface, and finally, a graphene nanoribbon. We compared static structures, meaning that all the tip and sample atoms are kept frozen in their equilibrium position, with dynamic systems, obtained with a molecular dynamics module allowing all the atoms to move freely during the probe oscillations. Conclusion: We found a very good agreement with experimental graphite and graphene images. The imaging process for the deposited nanoribbon demonstrates the stability of our n-AFM to image a non-perfectly planar substrate exhibiting a geometrical step as well as a material step. PMID:22497004

  3. PREFACE: Non-contact AFM Non-contact AFM

    NASA Astrophysics Data System (ADS)

    Giessibl, Franz J.; Morita, Seizo

    2012-02-01

    This special issue is focussed on high resolution non-contact atomic force microscopy (AFM). Non-contact atomic force microscopy was established approximately 15 years ago as a tool to image conducting and insulating surfaces with atomic resolution. Since 1998, an annual international conference has taken place, and although the proceedings of these conferences are a useful source of information, several key developments warrant devoting a special issue to this subject. In the theoretic field, the possibility of supplementing established techniques such as scanning tunneling microscopy (STM) and Kelvin probe microscopy with atomically resolved force micrsoscopy poses many challenges in the calculation of contrast and contrast reversal. The surface science of insulators, self-assembled monolayers and adsorbates on insulators is a fruitful field for the application of non-contact AFM: several articles in this issue are devoted to these subjects. Atomic imaging and manipulation have been pioneered using STM, but because AFM allows the measurement of forces, AFM has had a profound impact in this field as well. Three-dimensional force spectroscopy has allowed many important insights into surface science. In this issue a combined 3D tunneling and force microscopy is introduced. Non-contact AFM typically uses frequency modulation to measure force gradients and was initially used mainly in a vacuum. As can be seen in this issue, frequency modulation is now also used in ambient conditions, allowing better spatial and force resolution. We thank all of the contributors for their time and efforts in making this special issue possible. We are also very grateful to the staff of IOP Publishing for handling the administrative aspects and for steering the refereeing process. Non-contact AFM contents Relation between the chemical force and the tunnelling current in atomic point contacts: a simple model Pavel Jelínek, Martin Ondrácek and Fernando Flores Theoretical simulation of

  4. [Application of atomic force microscopy (AFM) in ophthalmology].

    PubMed

    Milka, Michał; Mróz, Iwona; Jastrzebska, Maria; Wrzalik, Roman; Dobrowolski, Dariusz; Roszkowska, Anna M; Moćko, Lucyna; Wylegała, Edward

    2012-01-01

    Atomic force microscopy (AFM) allows to examine surface of different biological objects in the nearly physiological conditions at the nanoscale. The purpose of this work is to present the history of introduction and the potential applications of the AFM in ophthalmology research and clinical practice. In 1986 Binnig built the AFM as a next generation of the scanning tunnelling microscope (STM). The functional principle of AFM is based on the measurement of the forces between atoms on the sample surface and the probe. As a result, the three-dimensional image of the surface with the resolution on the order of nanometres can be obtained. Yamamoto used as the first the AFM on a wide scale in ophthalmology. The first investigations used the AFM method to study structure of collagen fibres of the cornea and of the sclera. Our research involves the analysis of artificial intraocular lenses (IOLs). According to earlier investigations, e.g. Lombardo et al., the AFM was used to study only native IOLs. Contrary to the earlier investigations, we focused our measurements on lenses explanted from human eyes. The surface of such lenses is exposed to the influence of the intraocular aqueous environment, and to the related impacts of biochemical processes. We hereby present the preliminary results of our work in the form of AFM images depicting IOL surface at the nanoscale. The images allowed us to observe early stages of the dye deposit formation as well as local calcinosis. We believe that AFM is a very promising tool for studying the structure of IOL surface and that further observations will make it possible to explain the pathomechanism of artificial intraocular lens opacity formation.

  5. Raman and AFM study of gamma irradiated plastic bottle sheets

    NASA Astrophysics Data System (ADS)

    Ali, Yasir; Kumar, Vijay; Sonkawade, R. G.; Dhaliwal, A. S.

    2013-02-01

    In this investigation, the effects of gamma irradiation on the structural properties of plastic bottle sheet are studied. The Plastic sheets were exposed with 1.25MeV 60Co gamma rays source at various dose levels within the range from 0-670 kGy. The induced modifications were followed by micro-Raman and atomic force microscopy (AFM). The Raman spectrum shows the decrease in Raman intensity and formation of unsaturated bonds with an increase in the gamma dose. AFM image displays rough surface morphology after irradiation. The detailed Raman analysis of plastic bottle sheets is presented here, and the results are correlated with the AFM observations.

  6. Vibration signature analysis of AFM images

    SciTech Connect

    Joshi, G.A.; Fu, J.; Pandit, S.M.

    1995-12-31

    Vibration signature analysis has been commonly used for the machine condition monitoring and the control of errors. However, it has been rarely employed for the analysis of the precision instruments such as an atomic force microscope (AFM). In this work, an AFM was used to collect vibration data from a sample positioning stage under different suspension and support conditions. Certain structural characteristics of the sample positioning stage show up as a result of the vibration signature analysis of the surface height images measured using an AFM. It is important to understand these vibration characteristics in order to reduce vibrational uncertainty, improve the damping and structural design, and to eliminate the imaging imperfections. The choice of method applied for vibration analysis may affect the results. Two methods, the data dependent systems (DDS) analysis and the Welch`s periodogram averaging method were investigated for application to this problem. Both techniques provide smooth spectrum plots from the data. Welch`s periodogram provides a coarse resolution as limited by the number of samples and requires a choice of window to be decided subjectively by the user. The DDS analysis provides sharper spectral peaks at a much higher resolution and a much lower noise floor. A decomposition of the signal variance in terms of the frequencies is provided as well. The technique is based on an objective model adequacy criterion.

  7. Experimental Results of Pebble Beds Thermal Hydraulic Characteristics

    SciTech Connect

    Rimkevicius, S.; Uspuras, E.

    2006-07-01

    The purpose of this paper is to present the results of the experimental investigation of the thermal hydraulic characteristics for two types of test sections - thin annular pebble beds (i.e. spheres dumped in thin annular slots) and pebble beds placed between cylinders. The experimental results of heat transfer from the spheres and from a cylinder, as well as hydraulic drag for both types of test sections are presented in this paper. The results of performed experiments in the case of thin annular pebble beds demonstrated that maximum heat transfer and hydraulic drag is at the relative width of the annular slot K equal to 1.07 and 1.75 of spheres diameter. The heat transfer in internal layers at these values of K is equal to the heat transfer in the internal layers of large (unlimited) rhombic packing. The results of the experimental investigation of pebble beds between cylinders demonstrated that the randomly arranged pebble bed is preferable to the regular rhombic structure from the point of view of design simplicity, heat transfer from the cylinder and drag coefficient. (authors)

  8. Experimental results on chiral magnetic and vortical effects

    DOE PAGES

    Wang, Gang; Wen, Liwen

    2017-01-12

    Various novel transport phenomena in chiral systems result from the interplay of quantum anomalies with magnetic field and vorticity in high-energy heavy-ion collisions and could survive the expansion of the fireball and be detected in experiments. Among them are the chiral magnetic effect, the chiral vortical effect, and the chiral magnetic wave, the experimental searches for which have aroused extensive interest. As a result, the goal of this review is to describe the current status of experimental studies at Relativistic Heavy-Ion Collider at BNL and the Large Hadron Collider at CERN and to outline the future work in experiment neededmore » to eliminate the existing uncertainties in the interpretation of the data.« less

  9. Design and Experimental Results for the S414 Airfoil

    DTIC Science & Technology

    2010-08-01

    of most current general-aviation aircraft, including busi - ness jets , as well as unmanned aerial vehicles and all sailplanes. It does, however...RDECOM TR 10-D-112 U.S. ARMY RESEARCH, DEVELOPMENT AND ENGINEERING COMMAND TITLE: Design and Experimental Results for the S414 Airfoil AUTHOR: Dan M...Somers and Mark D. Maughmer COMPANY NAME: Airfoils , Incorporated COMPANY ADDRESS: 122 Rose Drive Port Matilda PA 16870-7535 DATE: August 2010 FINAL

  10. Experimental overview of COMPASS and CLAS results on TMDs

    NASA Astrophysics Data System (ADS)

    Riedl, Caroline

    2016-03-01

    In the past years, distribution functions depending on the transverse momentum of partons in the nucleon (TMDs) have been intensely studied in spin physics. The TMDs represent one approach to disentangle the multi-dimensional structure of the nucleon. Correlations of the transverse spin of quarks with their transverse momentum can be observed by measuring spin azimuthal asymmetries. Experimental results from the COMPASS (CERN) and CLAS (Jefferson Laboratory) collaborations are presented and an outlook to upcoming measurements at these facilities is given.

  11. Mechanical properties of triaxially braided composites: Experimental and analytical results

    NASA Technical Reports Server (NTRS)

    Masters, John E.; Foye, Raymond L.; Pastore, Christopher M.; Gowayed, Yasser A.

    1992-01-01

    This paper investigates the unnotched tensile properties of two-dimensional triaxial braid reinforced composites from both an experimental and analytical viewpoint. The materials are graphite fibers in an epoxy matrix. Three different reinforcing fiber architectures were considered. Specimens were cut from resin transfer molded (RTM) composite panels made from each braid. There were considerable differences in the observed elastic constants from different size strain gage and extensometer readings. Larger strain gages gave more consistent results and correlated better with the extensometer readings. Experimental strains correlated reasonably well with analytical predictions in the longitudinal, zero degree, fiber direction but not in the transverse direction. Tensile strength results were not always predictable even in reinforcing directions. Minor changes in braid geometry led to disproportionate strength variations. The unit cell structure of the triaxial braid was discussed with the assistence of computer analysis of the microgeometry. Photomicrographs of the braid geometry were used to improve upon the computer graphics representations of unit cells. These unit cells were used to predict the elastic moduli with various degrees of sophistication. The simple and the complex analyses were generally in agreement but none adequately matched the experimental results for all the braids.

  12. Mechanical properties of triaxially braided composites: Experimental and analytical results

    NASA Technical Reports Server (NTRS)

    Masters, John E.; Foye, Raymond L.; Pastore, Christopher M.; Gowayed, Yasser A.

    1992-01-01

    The unnotched tensile properties of 2-D triaxial braid reinforced composites from both an experimental and an analytical viewpoint are studied. The materials are graphite fibers in an epoxy matrix. Three different reinforcing fiber architectures were considered. Specimens were cut from resin transfer molded (RTM) composite panels made from each braid. There were considerable differences in the observed elastic constants from different size strain gage and extensometer reading. Larger strain gages gave more consistent results and correlated better with the extensometer reading. Experimental strains correlated reasonably well with analytical predictions in the longitudinal, 0 degrees, fiber direction but not in the transverse direction. Tensile strength results were not always predictable even in reinforcing directions. Minor changes in braid geometry led to disproportionate strength variations. The unit cell structure of the triaxial braid was discussed with the assistance of computer analysis of the microgeometry. Photomicrographs of braid geometry were used to improve upon the computer graphics representations of unit cells. These unit cells were used to predict the elastic moduli with various degrees of sophistication. The simple and the complex analyses were generally in agreement but none adequately matched the experimental results for all the braids.

  13. Characterizing Cell Mechanics with AFM and Microfluidics

    NASA Astrophysics Data System (ADS)

    Walter, N.; Micoulet, A.; Suresh, S.; Spatz, J. P.

    2007-03-01

    Cell mechanical properties and functionality are mainly determined by the cytoskeleton, besides the cell membrane, the nucleus and the cytosol, and depend on various parameters e.g. surface chemistry and rigidity, surface area and time available for cell spreading, nutrients and drugs provided in the culture medium. Human epithelial pancreatic and mammary cancer cells and their keratin intermediate filaments are the main focus of our work. We use Atomic Force Microscopy (AFM) to study cells adhering to substrates and Microfluidic Channels to probe cells in suspension, respectively. Local and global properties are extracted by varying AFM probe tip size and the available adhesion area for cells. Depth-sensing, instrumented indentation tests with AFM show a clear difference in contact stiffness for cells that are spread of controlled substrates and those that are loosely attached. Microfluidic Channels are utilized in parallel to evaluate cell deformation and ``flow resistance'', which are dependent on channel cross section, flow rate, cell nucleus size and the mechanical properties of cytoskeleton and membrane. The results from the study are used to provide some broad and quantitative assessments of the connections between cellular/subcellular mechanics and biochemical origins of disease states.

  14. Study of relaxation and transport processes by means of AFM based dielectric spectroscopy

    SciTech Connect

    Miccio, Luis A.

    2014-05-15

    Since its birth a few years ago, dielectric spectroscopy studies based on atomic force microscopy (AFM) have gained a growing interest. Not only the frequency and temperature ranges have become broader since then but also the kind of processes that can be studied by means of this approach. In this work we analyze the most adequate experimental setup for the study of several dielectric processes with a spatial resolution of a few nanometers by using force mode AFM based dielectric spectroscopy. Proof of concept experiments were performed on PS/PVAc blends and PMMA homopolymer films, for temperatures ranging from 300 to 400 K. Charge transport processes were also studied by this approach. The obtained results were analyzed in terms of cantilever stray contribution, film thickness and relaxation strength. We found that the method sensitivity is strongly coupled with the film thickness and the relaxation strength, and that it is possible to control it by using an adequate experimental setup.

  15. High-speed AFM for 1x node metrology and inspection: Does it damage the features?

    NASA Astrophysics Data System (ADS)

    Sadeghian, Hamed; van den Dool, Teun C.; Uziel, Yoram; Bar Or, Ron

    2015-03-01

    This paper aims at unraveling the mystery of damage in high speed AFMs for 1X node and below. With the device dimensions moving towards the 1X node and below, the semiconductor industry is rapidly approaching the point where existing metrology, inspection and review tools face huge challenges in terms of resolution, the ability to resolve 3D, and throughput. In this paper, we critically asses the important issue of damage in high speed AFM for metrology and inspection of semiconductor wafers. The issues of damage in four major scanning modes (contact mode, tapping mode, non-contact mode, and peak force tapping mode) are described to show which modes are suitable for which applications and which conditions are damaging. The effects of all important scanning parameters on resulting damage are taken into account for materials such as silicon, photoresists and low K materials. Finally, we recommend appropriate scanning parameters and conditions for several use cases (FinFET, patterned photoresist, HAR structures) that avoid exceeding a critical contact stress such that sample damage is minimized. In conclusion, we show using our theoretical analysis that selecting parameters that exceed the target contact stress, indeed leads to significant damage. This method provides AFM users for metrology with a better understanding of contact stresses and enables selection of AFM cantilevers and experimental parameters that prevent sample damage.

  16. Design and experimental results for the S814 airfoil

    SciTech Connect

    Somers, D.M.

    1997-01-01

    A 24-percent-thick airfoil, the S814, for the root region of a horizontal-axis wind-turbine blade has been designed and analyzed theoretically and verified experimentally in the low-turbulence wind tunnel of the Delft University of Technology Low Speed Laboratory, The Netherlands. The two primary objectives of high maximum lift, insensitive to roughness, and low profile drag have been achieved. The constraints on the pitching moment and the airfoil thickness have been satisfied. Comparisons of the theoretical and experimental results show good agreement with the exception of maximum lift which is overpredicted. Comparisons with other airfoils illustrate the higher maximum lift and the lower profile drag of the S814 airfoil, thus confirming the achievement of the objectives.

  17. On collisional disruption - Experimental results and scaling laws

    NASA Technical Reports Server (NTRS)

    Davis, Donald R.; Ryan, Eileen V.

    1990-01-01

    Both homogeneous and inhomogeneous targets have been addressed by the present experimental consideration of the impact strengths, fragment sizes, and fragment velocities generated by cement mortar targets whose crushing strengths vary by an order of magnitude, upon impact of projectiles in the velocity range of 50-5700 m/sec. When combined with additional published data, dynamic impact strength is found to correlate with quasi-static material strengths for materials ranging in character from basalt to ice; two materials not following this trend, however, are weak mortar and clay targets. Values consistent with experimental results are obtainable with a simple scaling algorithm based on impact energy, material properties, and collisional strain rate.

  18. Experimental Results for Titan Aerobot Thermo-Mechanical Subsystem Development

    NASA Technical Reports Server (NTRS)

    Pauken, Michael T.; Hall, Jeffery L.

    2006-01-01

    This paper presents experimental results on a set of 4 thermo-mechanical research tasks aimed at Titan and Venus aerobots: 1. A cryogenic balloon materials development program culminating in the fabrication and testing of a 4.6 m long blimp prototype at 93K. 2. A combined computational and experimental thermal analysis of the effect of radioisotope power system (RPS) waste heat on the behavior of a helium filled blimp hull. 3. Aerial deployment and inflation testing using a blimp 4. A proof of concept experiment with an aerobot-mounted steerable high gain antenna These tasks were supported with JPL internal R&D funds and executed by JPL engineers with substantial industry collaboration for Task #1, the cryogenic balloon materials

  19. Experimental and simulational result multipactors in 112 MHz QWR injector

    SciTech Connect

    Xin, T.; Ben-Zvi, I.; Belomestnykh, S.; Brutus, J. C.; Skaritka, J.; Wu, Q.; Xiao, B.

    2015-05-03

    The first RF commissioning of 112 MHz QWR superconducting electron gun was done in late 2014. The coaxial Fundamental Power Coupler (FPC) and Cathode Stalk (stalk) were installed and tested for the first time. During this experiment, we observed several multipacting barriers at different gun voltage levels. The simulation work was done within the same range. The comparison between the experimental observation and the simulation results are presented in this paper. The observations during the test are consisted with the simulation predictions. We were able to overcome most of the multipacting barriers and reach 1.8 MV gun voltage under pulsed mode after several round of conditioning processes.

  20. ANOVA parameters influence in LCF experimental data and simulation results

    NASA Astrophysics Data System (ADS)

    Delprete, C.; Sesanaa, R.; Vercelli, A.

    2010-06-01

    The virtual design of components undergoing thermo mechanical fatigue (TMF) and plastic strains is usually run in many phases. The numerical finite element method gives a useful instrument which becomes increasingly effective as the geometrical and numerical modelling gets more accurate. The constitutive model definition plays an important role in the effectiveness of the numerical simulation [1, 2] as, for example, shown in Figure 1. In this picture it is shown how a good cyclic plasticity constitutive model can simulate a cyclic load experiment. The component life estimation is the subsequent phase and it needs complex damage and life estimation models [3-5] which take into account of several parameters and phenomena contributing to damage and life duration. The calibration of these constitutive and damage models requires an accurate testing activity. In the present paper the main topic of the research activity is to investigate whether the parameters, which result to be influent in the experimental activity, influence the numerical simulations, thus defining the effectiveness of the models in taking into account of all the phenomena actually influencing the life of the component. To obtain this aim a procedure to tune the parameters needed to estimate the life of mechanical components undergoing TMF and plastic strains is presented for commercial steel. This procedure aims to be easy and to allow calibrating both material constitutive model (for the numerical structural simulation) and the damage and life model (for life assessment). The procedure has been applied to specimens. The experimental activity has been developed on three sets of tests run at several temperatures: static tests, high cycle fatigue (HCF) tests, low cycle fatigue (LCF) tests. The numerical structural FEM simulations have been run on a commercial non linear solver, ABAQUS®6.8. The simulations replied the experimental tests. The stress, strain, thermal results from the thermo structural FEM

  1. [Experimental Conditions and Reliability Analysis of Results of COD components].

    PubMed

    Li, Zhi-hua; Zhang, Yin; Han, Xing; Yu, Ke; Li, Ru-jia

    2015-10-01

    The present study attempts to use SF( OUR(max)/OUR(en)) instead of S(0)/X(0) as an index of optimal initial conditions for determination of COD components by means of respirometry, thereby simplifying the measuring process and the operation can be automated. Further, the ratio of COD consumed by the growth of biomass can be used for the reliability assessment of results. Experimental results show that, experimental conditions for obtaining good results as follows: (1) for samples that composed of a large amount of easily biodegradable components (e. g., synthetic wastewater made by sodium acetate), SF should be in the range of 2.8 to 5.3, and the ratio of COD consumed by growth of biomass should be less than 30%; (2) for samples that composed of both readily biodegradable and slowly biodegradable components (i. e., typical domestic wastewater), SF should be in the range of 5.8 to 6.4, and the ratio of COD consumed by growth of biomass should be less than 30%; (3) and for samples that composed of a large amount of slowly biodegradable industrial wastewater (i. e., landfill leachate), SF should be 15 or less, and the ratio of COD consumed by growth of biomass should be approximately 40%. Therefore, when respirometry is used for the determination of COD components, the optimal conditions in terms of SF increase with the complexity of carbon source.

  2. Sheet Hydroforming Process Numerical Model Improvement Through Experimental Results Analysis

    NASA Astrophysics Data System (ADS)

    Gabriele, Papadia; Antonio, Del Prete; Alfredo, Anglani

    2010-06-01

    The increasing application of numerical simulation in metal forming field has helped engineers to solve problems one after another to manufacture a qualified formed product reducing the required time [1]. Accurate simulation results are fundamental for the tooling and the product designs. The wide application of numerical simulation is encouraging the development of highly accurate simulation procedures to meet industrial requirements. Many factors can influence the final simulation results and many studies have been carried out about materials [2], yield criteria [3] and plastic deformation [4,5], process parameters [6] and their optimization. In order to develop a reliable hydromechanical deep drawing (HDD) numerical model the authors have been worked out specific activities based on the evaluation of the effective stiffness of the blankholder structure [7]. In this paper after an appropriate tuning phase of the blankholder force distribution, the experimental activity has been taken into account to improve the accuracy of the numerical model. In the first phase, the effective capability of the blankholder structure to transfer the applied load given by hydraulic actuators to the blank has been explored. This phase ended with the definition of an appropriate subdivision of the blankholder active surface in order to take into account the effective pressure map obtained for the given loads configuration. In the second phase the numerical results obtained with the developed subdivision have been compared with the experimental data of the studied model. The numerical model has been then improved, finding the best solution for the blankholder force distribution.

  3. Comparison of Calculated and Experimental Results for a Boiling/Condensing Experimental Facility

    SciTech Connect

    Carbajo, Juan J; McDuffee, Joel Lee; Felde, David K

    2016-01-01

    A new experimental facility for materials irradiation and testing at the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) is being developed. Details of this facility have been presented before [1, 2]. A prototype of this facility, the Thermo-Syphon Test Loop (TSTL) has been built and experimental data have been obtained and analyzed [3, 4]. Pre-test calculations for this facility with the RELAP5-3D code [5] have been presented previously [6] as well as other calculations [7, 8] with the TRACE code [9]. The results of both codes were very different [7]. RELAP5-3D predicted much higher pressures and temperatures than TRACE. This paper compares calculated results with the TSTL experimental data.

  4. Effects of magnetic soil on metal detectors: preliminary experimental results

    NASA Astrophysics Data System (ADS)

    Das, Y.

    2007-04-01

    In a series of previous papers, analytical results dealing with the effects of soil electromagnetic properties on the performance of induction metal detectors were reported. In this paper experimental data are provided to verify some previously reported results. The time-domain response of a magnetic soil half-space and a small metallic sphere situated in air as well as buried in the soil were measured using a purpose-designed system based on a modified Schiebel AN19/2 metal detector. As in the previous work, the sphere is chosen as a simple prototype for the small metal parts in low-metal landmines. The soil used was Cambodian "laterite" with dispersive magnetic susceptibility, which serves as a good model for soils that are known to adversely affect the performance of metal detectors. The metal object used was a sphere of diameter 0.0254 m made of 6061-T6 aluminum. Experimental data are in good agreement with theoretical predictions. Data also show that for the weakly magnetic soil used in the experiments, the total response of the buried sphere is the sum of the response of the soil and that of the sphere placed in air. This finding should simplify the prediction or measurement of response of buried targets as one can separately measure/compute the response of an object in air and that of the host media and simply add the two. This simplification may not be possible for soils that are more strongly magnetic.

  5. Single And Double Pulse Irradiation And Comparison With Experimental Results

    SciTech Connect

    Fornarini, L.; Fantoni, R.; Colao, F.; Santagata, A.; Teghil, R.

    2009-09-27

    A theoretical model of laser ablation has been previously developed and applied to Laser Induced Breakdown Spectroscopy (LIBS) analysis of bronzes with the aim to improve quantitative results and to focus on problems arising in the interpretation of experimental data. The model describes laser-solid matter interaction, plume expansion, plasma formation and laser-plasma interaction. A two temperature approach has been also introduced to take into account the initial temperature dynamics of the alloy surface upon ultra-short laser irradiation. We examined various target compositions, typical of archaeological artworks, and different laser characteristics such as wavelength (355 nm, 530 nm, 1064 nm) and pulse duration (8 ns, 250 fs). In this work, the model has been extended to simulate double pulse LIBS configuration in order to clarify the mechanism involved in the process and for better interpreting the experimental data. Plasma composition, relevant parameters (temperature, electron density) and their kinetic evolutions have been measured. Results have been compared with the simulation obtained using the same irradiation conditions and set of targets.

  6. Characterization of the polycaprolactone melt crystallization: complementary optical microscopy, DSC, and AFM studies.

    PubMed

    Speranza, V; Sorrentino, A; De Santis, F; Pantani, R

    2014-01-01

    The first stages of the crystallization of polycaprolactone (PCL) were studied using several techniques. The crystallization exotherms measured by differential scanning calorimetry (DSC) were analyzed and compared with results obtained by polarized optical microscopy (POM), rheology, and atomic force microscope (AFM). The experimental results suggest a strong influence of the observation scale. In particular, the AFM, even if limited on time scale, appears to be the most sensitive technique to detect the first stages of crystallization. On the contrary, at least in the case analysed in this work, rheology appears to be the least sensitive technique. DSC and POM provide closer results. This suggests that the definition of induction time in the polymer crystallization is a vague concept that, in any case, requires the definition of the technique used for its characterization.

  7. Electrical and thermal behavior of unsaturated soils: experimental results

    NASA Astrophysics Data System (ADS)

    Nouveau, Marie; Grandjean, Gilles; Leroy, Philippe; Philippe, Mickael; Hedri, Estelle; Boukcim, Hassan

    2016-05-01

    When soil is affected by a heat source, some of its properties are modified, and in particular, the electrical resistivity due to changes in water content. As a result, these changes affect the thermal properties of soil, i.e., its thermal conductivity and diffusivity. We experimentally examine the changes in electrical resistivity and thermal conductivity for four soils with different grain size distributions and clay content over a wide range of temperatures, from 20 to 100 °C. This temperature range corresponds to the thermal conditions in the vicinity of a buried high voltage cable or a geothermal system. Experiments were conducted at the field scale, at a geothermal test facility, and in the laboratory using geophysical devices and probing systems. The results show that the electrical resistivity decreases and the thermal conductivity increases with temperature up to a critical temperature depending on soil types. At this critical temperature, the air volume in the pore space increases with temperature, and the resulting electrical resistivity also increases. For higher temperatures , the thermal conductivity increases sharply with temperature up to a second temperature limit. Beyond it, the thermal conductivity drops drastically. This limit corresponds to the temperature at which most of the water evaporates from the soil pore space. Once the evaporation is completed, the thermal conductivity stabilizes. To explain these experimental results, we modeled the electrical resistivity variations with temperature and water content in the temperature range 20 - 100°C, showing that two critical temperatures influence the main processes occurring during heating at temperatures below 100 °C.

  8. Experimental determination of stress variation threshold resulted in earthquake triggering

    NASA Astrophysics Data System (ADS)

    Novikova, Elena; Novikov, Victor; Okunev, Vladimir; Klyuchkin, Vadim

    2014-05-01

    There are many field observations of earthquake triggering by static and dynamic stress variations caused by impact of distant strong earthquakes, underground chemical and nuclear explosions, solar-lunar earth tides, strong variations of atmospheric pressure etc., as well as by electric current injection into the Earth crust. It is supposed that the external impacts on the earthquake source result in exceeding the threshold stress and earthquake triggering. Nevertheless, the mechanisms of the earthquake triggering phenomena is not clear, and the problem of determination of stress variation threshold resulted in initiation of seismic events is very important. At present, based on analysis of field observations of dynamic triggering of earthquakes (by wave train from distant strong earthquakes) performed for various regions, including the USA, Japan, China, Greece, etc. it is considered that the triggering threshold of stress variations is about of 500 kPa. An experimental study at the spring-slider system was carried out for detailed study of behavior of fault area under near-to-failure state and experimental triggering impacts, as well as for determination of the threshold variation of normal stress in the fault gauge resulted in earthquake (slip) triggering. The spring-slider system provides a spring loading rate of 0.001 to 0.02 mm/s. The travelling block of dimensions 250x120x65 mm is connected with electromechanical drive via the spring with 9.5 N/mm spring constant. The normal stress of the travelling block is up to 30 kPa. For determination of the triggering threshold of normal stress variations the electromagnetic system was activated by control system at the level of 0.98-0.99 critical (fault failure) shear stress, which provided reducing the normal stress (by 0.001% to 0.1%) in the form of rectangular pulses of 0.5 to 5.0 s duration generated in time interval of 20 to 40 s. The level of stress variation impact resulted in the slip of travelling block (with

  9. Ultrasonic scattering by blood: theories, experimental results and biomedical applications

    NASA Astrophysics Data System (ADS)

    Shung, K. Kirk

    2002-05-01

    In this paper, theoretical and experimental efforts that have been undertaken to better understand the phenomenon of ultrasonic scattering in blood will be reviewed. This subject is of interest in biology and medicine because the echoes generated by blood are used to extract blood velocity by ultrasonic Doppler flow and imaging devices. In the course of these investigations it became clear that ultrasonic scattering from blood is dependent upon such hematological and hemodynamic properties of blood as hematocrit, plasma protein concentration, flow rate and flow cycle duration. Several aspects of these experimental results have been successfully modeled by recent theoretical developments. An unexpected consequence of these efforts is that ultrasound appears to be a viable tool for blood flow visualization and hemodynamic measurements. Two unique hemodynamic phenomena that have never been reported in the hemodynamic literature have been observed: the black hole, a low echogenic zone in the center stream of whole blood flowing in a blood vessel under steady flow and the collapsing ring, an echogenic ring appearing near the periphery of a vessel at the beginning of a flow cycle, converging toward the center, and eventually collapsing during pulsatile flow. Similar observations have been made during clinical scanning of patients.

  10. Non-shock initiation model for explosive families : experimental results.

    SciTech Connect

    Anderson, Mark U.; Jensen, Charles B.; Todd, Steven N.; Hugh, Chance G.; Caipen, Terry L.

    2010-03-01

    The 'DaMaGe-Initiated-Reaction' (DMGIR) computational model has been developed to predict the response of high explosives to non-shock mechanical insults. The distinguishing feature of this model is the introduction of a damage variable, which relates the evolution of damage to the initiation of a reaction in the explosive, and its growth to detonation. Specifically designed experiments were used to study the initiation process of each explosive family with embedded shock sensors and optical diagnostics. The experimental portion of this model development began with a study of PBXN-5 to develop DMGIR model coefficients for the rigid plastic bonded family, followed by studies of the cast, and bulk-moldable explosive families. The experimental results show an initiation mechanism that is related to input energy and material damage, with well defined initiation thresholds for each explosive family. These initiation details will extend the predictive capability of the DMGIR model from the rigid family into the cast and bulk-moldable families.

  11. Aeolian Simulations: A Comparison of Numerical and Experimental Results

    NASA Astrophysics Data System (ADS)

    Mathews, O.; Burr, D. M.; Bridges, N. T.; Lyne, J. E.; Marshall, J. R.; Greeley, R.; White, B. R.; Hills, J.; Smith, K.; Prissel, T. C.; Aliaga-Caro, J. F.

    2010-12-01

    Aeolian processes are a major geomorphic agent on solid planetary bodies with atmospheres (Earth, Mars, Venus, and Titan). This paper describes preliminary efforts to model aeolian saltation using computational fluid dynamics (CFD) and to compare the results with those obtained in wind tunnel testing conducted in the Planetary Aeolian Laboratory at NASA Ames Research Center at ambient pressure. The end goal of the project is to develop an experimentally validated CFD approach for modeling aeolian sediment transport on Titan and other planetary bodies. The MARSWIT open-circuit tunnel in this work was specifically designed for atmospheric boundary layer studies. It is a variable-speed, continuous flow tunnel with a test section 1.0 m by 1.2 m in size; the tunnel is able to operate at pressures from 10 millibar to one atmosphere. Flow trips near the tunnel inlet ensure a fully developed, turbulent boundary layer in the test section. Wind speed and axial velocity profiles can be measured with a traversing pitot tube. In this study, sieved walnut shell particles (Greeley et al. 1976) with a density of ~1.1 g/cm3 were used to correlate the low gravity conditions and low sediment density on a body of interest to that of Earth. This sediment was placed in the tunnel, and the freestream airspeed raised to 5.4 m/s. A Phantom v12 camera imaged the resulting particle motion at 1000 frames per second, which was analyzed with ImageJ open-source software (Fig. 1). Airflow in the tunnel was modeled with FLUENT, a commercial CFD program. The turbulent scheme used in FLUENT to obtain closed-form solutions to the Navier-Stokes equations was a 1st Order, k-epsilon model. These methods produced computational velocity profiles that agree with experimental data to within 5-10%. Once modeling of the flow field had been achieved, a Euler-Lagrangian scheme was employed, treating the particles as spheres and tracking each particle at its center. The particles are assumed to interact with

  12. Combination STM/AFM and AFM Images of Magnetic Domains

    NASA Astrophysics Data System (ADS)

    Yi, L.; Gallagher, M.; Howells, S.; Chen, T.; Sarid, D.

    1991-12-01

    By employing a cantilevered tip in a scanning tunneling microscope, one obtains images that show an enhancement of features associated with forces whose derivatives vary along the direction of scanning. The theory of this process is described together with experimental results showing magnetic domains on a gold coated floppy disk. Also shown are atomic force microscopy images of a ferrofluid-developed magnetic tape.

  13. Solving and Learning Soft Temporal Constraints: Experimental Setting and Results

    NASA Technical Reports Server (NTRS)

    Rossi, F.; Sperduti, A.; Venable, K. B.; Khatib, L.; Morris, P.; Morris, R.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Soft temporal constraints problems allow to describe in a natural way scenarios where events happen over time and preferences are associated to event distances and durations. However, sometimes such local preferences are difficult to set, and it may be easier instead to associate preferences to some complete solutions of the problem. Machine learning techniques can be useful in this respect. In this paper we describe two solvers (one more general and the other one more efficient) for tractable subclasses of soft temporal problems, and we show some experimental results. The random generator used to build the problems on which tests are performed is also described. We also compare the two solvers highlighting the tradeoff between performance and representational power. Finally, we present a learning module and we show its behavior on randomly-generated examples.

  14. Physical mechanism of comet outbursts - An experimental result

    NASA Technical Reports Server (NTRS)

    Hartmann, William K.

    1993-01-01

    Attention is given to an experimental investigation of the physical mechanism of comet outbursts which is consistent with the general picture of mantle presence on comets and clarifies the relation of mantles to eruptive activity. The experiment and closeup observation of Comet P/Halley suggest a result different from most mathematical models in that the release of gas pressure does not occur only from uniform gas flow out of the entire surface. In some active comets near perihelion within a few AU of the sun, gas production rates and disturbance of the surface may be so high that the outflow is nearly continuous, with the regolith being entirely stripped away, as in many of the models. The present model provides a cyclic eruption and recharge mechanism which is lacking in most other models.

  15. Selected experimental results from heavy-ion collisions at LHC

    DOE PAGES

    Singh, Ranbir; Kumar, Lokesh; Netrakanti, Pawan Kumar; ...

    2013-01-01

    We reviewmore » a subset of experimental results from the heavy-ion collisions at the Large Hadron Collider (LHC) facility at CERN. Excellent consistency is observed across all the experiments at the LHC (at center of mass energysNN=2.76 TeV) for the measurements such as charged particle multiplicity density, azimuthal anisotropy coefficients, and nuclear modification factor of charged hadrons. Comparison to similar measurements from the Relativistic Heavy Ion Collider (RHIC) at lower energy (sNN=200 GeV) suggests that the system formed at LHC has a higher energy density and larger system size and lives for a longer time. These measurements are compared to model calculations to obtain physical insights on the properties of matter created at the RHIC and LHC.« less

  16. Beta decay and the origins of biological chirality - Experimental results

    NASA Technical Reports Server (NTRS)

    Gidley, D. W.; Rich, A.; Van House, J.; Zitzewitz, P. W.

    1982-01-01

    Preliminary experimental results are presented of an investigation of the possible role of preferential radiolysis by electrons emitted in the beta decay of radionuclides, a parity-nonconserving process, in the universal causation of the optical activity of biological compounds. Experiments were designed to measure the asymmetry in the production of triplet positronium upon the bombardment of an amino acid powder target by a collimated beam of positrons as positron helicity or target chirality is reversed. No asymmetry down to a level of 0.0007 is found in experiments on the D and L forms of cystine and tryptophan, indicating an asymmetry in positronium formation cross section of less than 0.01, while an asymmetry of 0.0031 is found for leucine, corresponding to a formation cross section asymmetry of about 0.04

  17. Object impedance control for cooperative manipulation - Theory and experimental results

    NASA Technical Reports Server (NTRS)

    Schneider, Stanley A.; Cannon, Robert H., Jr.

    1989-01-01

    The dynamic control module being developed in the Dynamic and Strategic Control of Cooperative Manipulators (DASCCOM) project at the Stanford University Aerospace Robotics Laboratory is described. First, the cooperative manipulation problem is analyzed from a systems perspective, and the desirable features of a control system for cooperative manipulation are discussed. Next, a control policy is developed that enforces a controlled impedance not of the individual arm endpoints, but of the manipulated object itself. A parallel implementation for a multiprocessor system is presented. The controller fully compensates for the system dynamics and directly controls the object internal forces. Most importantly, it presents a simple, powerful, intuitive interface to the strategic controller. Experimental results for a dual two-link arm robotic system are presented to verify the controllers performance, for both free-motion slews and environmental contact.

  18. Experimental Results of Rover-Based Coring and Caching

    NASA Technical Reports Server (NTRS)

    Backes, Paul G.; Younse, Paulo; DiCicco, Matthew; Hudson, Nicolas; Collins, Curtis; Allwood, Abigail; Paolini, Robert; Male, Cason; Ma, Jeremy; Steele, Andrew; Conrad, Pamela G.

    2011-01-01

    Experimental results are presented for experiments performed using a prototype rover-based sample coring and caching system. The system consists of a rotary percussive coring tool on a five degree-of-freedom manipulator arm mounted on a FIDO-class rover and a sample caching subsystem mounted on the rover. Coring and caching experiments were performed in a laboratory setting and in a field test at Mono Lake, California. Rock abrasion experiments using an abrading bit on the coring tool were also performed. The experiments indicate that the sample acquisition and caching architecture is viable for use in a 2018 timeframe Mars caching mission and that rock abrasion using an abrading bit may be feasible in place of a dedicated rock abrasion tool.

  19. Experimental results on indoor electromagnetic wave absorber using magnetic wood

    NASA Astrophysics Data System (ADS)

    Oka, Hideo; Narita, Koichi; Osada, Hiroshi; Seki, Kyoushirou

    2002-05-01

    The purpose of this paper is to propose a new type of indoor electromagnetic wave absorber using magnetic wood. This magnetic wood has good electromagnetic wave absorbing characteristics, a low specific gravity, a wood texture and other wood characteristics and can be easily processed. Electromagnetic wave absorbing characteristics were measured for four types of magnetic wood. The sandwich-type magnetic wood demonstrated the best wave absorbing characteristics among the four types of magnetic wood that were studied. The experimental results showed that the proposed indoor electromagnetic wave absorber can be used to suppress the transmission and reception of cellular phone and Personal Handy Phone System (PHS) signals and can be used as a cross protection for indoor wireless Local Area Networks (LAN). This wood can be processed for use in furniture, building materials, and other applications.

  20. Object impedance control for cooperative manipulation - Theory and experimental results

    NASA Technical Reports Server (NTRS)

    Schneider, Stanley A.; Cannon, Robert H., Jr.

    1992-01-01

    This paper presents the dynamic control module of the Dynamic and Strategic Control of Cooperating Manipulators (DASCCOM) project at Stanford University's Aerospace Robotics Laboratory. First, the cooperative manipulation problem is analyzed from a systems perspective, and the desirable features of a control system for cooperative manipulation are discussed. Next, a control policy is developed that enforces a controlled impedance not of the individual arm endpoints, but of the manipulated object itself. A parallel implementation for a multiprocessor system is presented. The controller fully compensates for the system dynamics and directly controls the object internal forces. Most importantly, it presents a simple, powerful, intuitive interface to higher level strategic control modules. Experimental results from a dual two-link-arm robotic system are used to compare the object impedance controller with other strategies, both for free-motion slews and environmental contact.

  1. Experimental Results on Shock-Wave Interaction on Compression Ramps

    NASA Astrophysics Data System (ADS)

    Passaro, A.; Fantoni, G.; Biagioni, L.; Cardone, G.

    2005-02-01

    A set of new experimental tests was carried out with intrusive and non-intrusive measurements related to Shock-Wave Boundary-Layer Interaction (SWBLI) on a 15 deg compression ramp model in a Mach 6 flow with total enthalpy of 1.8-2.5 MJ/kg. The facility was the modified High Enthalpy Arc-heated Tunnel at Alta, Pisa, Italy, with improved performance and diagnostics, in order to provide good control on the actual properties of the tunnel flow. The model shape and test conditions were the same of the previous test campaign carried out during the FESTIP programme. The new results confirmed a good agreement between intrusive and non-intrusive measurements and were also compared with success with numerical predictions, eventually explaining the discrepancy on wall heat flux that was found on the previous test campaign.

  2. Robotic follower experimentation results: ready for FCS increment I

    NASA Astrophysics Data System (ADS)

    Jaczkowski, Jeffrey J.

    2003-09-01

    Robotics is a fundamental enabling technology required to meet the U.S. Army's vision to be a strategically responsive force capable of domination across the entire spectrum of conflict. The U. S. Army Research, Development and Engineering Command (RDECOM) Tank Automotive Research, Development & Engineering Center (TARDEC), in partnership with the U.S. Army Research Laboratory, is developing a leader-follower capability for Future Combat Systems. The Robotic Follower Advanced Technology Demonstration (ATD) utilizes a manned leader to provide a highlevel proofing of the follower's path, which operates with minimal user intervention. This paper will give a programmatic overview and discuss both the technical approach and operational experimentation results obtained during testing conducted at Ft. Bliss, New Mexico in February-March 2003.

  3. Registration of multimodal brain images: some experimental results

    NASA Astrophysics Data System (ADS)

    Chen, Hua-mei; Varshney, Pramod K.

    2002-03-01

    Joint histogram of two images is required to uniquely determine the mutual information between the two images. It has been pointed out that, under certain conditions, existing joint histogram estimation algorithms like partial volume interpolation (PVI) and linear interpolation may result in different types of artifact patterns in the MI based registration function by introducing spurious maxima. As a result, the artifacts may hamper the global optimization process and limit registration accuracy. In this paper we present an extensive study of interpolation-induced artifacts using simulated brain images and show that similar artifact patterns also exist when other intensity interpolation algorithms like cubic convolution interpolation and cubic B-spline interpolation are used. A new joint histogram estimation scheme named generalized partial volume estimation (GPVE) is proposed to eliminate the artifacts. A kernel function is involved in the proposed scheme and when the 1st order B-spline is chosen as the kernel function, it is equivalent to the PVI. A clinical brain image database furnished by Vanderbilt University is used to compare the accuracy of our algorithm with that of PVI. Our experimental results show that the use of higher order kernels can effectively remove the artifacts and, in cases when MI based registration result suffers from the artifacts, registration accuracy can be improved significantly.

  4. Implications of the contact radius to line step (CRLS) ratio in AFM for nanotribology measurements.

    PubMed

    Helt, James M; Batteas, James D

    2006-07-04

    Investigating the mechanisms of defect generation and growth at surfaces on the nanometer scale typically requires high-resolution tools such as the atomic force microscope (AFM). To accurately assess the kinetics and activation parameters of defect production over a wide range of loads (F(z)), the AFM data should be properly conditioned. Generally, AFM wear trials are performed over an area defined by the length of the slow (L(sscan)) and fast scan axes. The ratio of L(sscan) to image resolution (res, lines per image) becomes an important experimental parameter in AFM wear trials because it defines the magnitude of the line step (LS = L(sscan)/res), the distance the AFM tip steps along the slow scan axis. Comparing the contact radius (a) to the line step (LS) indicates that the overlap of successive scans will result unless the contact radius-line step ratio (CRLS) is < or =(1)/(2). If this relationship is not considered, then the scan history (e.g., contact frequency) associated with a single scan is not equivalent at different loads owing to the scaling of contact radius with load (a proportional variant F(z)(1/3)). Here, we present a model in conjunction with empirical wear tests on muscovite mica to evaluate the effects of scan overlap on surface wear. Using the Hertz contact mechanics definition of a, the CRLS model shows that scan overlap pervades AFM wear trials even under low loads. Such findings indicate that simply counting the number of scans (N(scans)) in an experiment underestimates the full history conveyed to the surface by the tip and translates into an error in the actual extent to which a region on the surface is contacted. Utilizing the CRLS method described here provides an approach to account for image scan history accurately and to predict the extent of surface wear. This general model also has implications for any AFM measurement where one wishes to correlate scan-dependent history to image properties as well as feature resolution in scanned

  5. Experimental Results for Titan Aerobot Thermo-Mechanical Subsystem Development

    NASA Technical Reports Server (NTRS)

    Hall, Jeffrey L.; Jones, J. A.; Kerzhanovich, V. V.; Lachenmeier, T.; Mahr, P.; Pauken, M.; Plett, G. A.; Smith, L.; VanLuvender, M. L.; Yavrouian, A. H.

    2006-01-01

    This paper describes experimental results from a development program focused in maturing Titan aerobot technology in the areas of mechanical and thermal subsystems. Results from four key activities are described: first, a cryogenic balloon materials development program involving coupon and cylinder tests and culminating in the fabrication and testing of an inflated 4.6 m long prototype blimp at 93 K; second, a combined lab experiment and numerical simulation effort to assess potential problems resulting from radioisotope thermal generator waste heat generation near an inflated blimp; third, an aerial deployment and inflation development program consisting of laboratory and helicopter drop tests on a near full scale (11 m long) prototype blimp; and fourth, a proof of concept experiment demonstrating the viability of using a mechanically steerable high gain antenna on a floating blimp to perform direct to Earth telecommunications from Titan. The paper provides details on all of these successful activities and discusses their impact on the overall effort to produce mature systems technology for future Titan aerobot missions.

  6. Internal wave emission from baroclinic jets: experimental results

    NASA Astrophysics Data System (ADS)

    Borcia, Ion D.; Rodda, Costanza; Harlander, Uwe

    2016-04-01

    Large-scale balanced flows can spontaneously radiate meso-scale inertia-gravity waves (IGWs) and are thus in fact unbalanced. While flow-dependent parameterizations for the radiation of IGWs from orographic and convective sources do exist, the situation is less developed for spontaneously emitted IGWs. Observations identify increased IGW activity in the vicinity of jet exit regions. A direct interpretation of those based on geostrophic adjustment might be tempting. However, directly applying this concept to the parameterization of spontaneous imbalance is difficult since the dynamics itself is continuously re-establishing an unbalanced flow which then sheds imbalances by GW radiation. Examining spontaneous IGW emission in the atmosphere and validating parameterization schemes confronts the scientist with particular challenges. Due to its extreme complexity, GW emission will always be embedded in the interaction of a multitude of interdependent processes, many of which are hardly detectable from analysis or campaign data. The benefits of repeated and more detailed measurements, while representing the only source of information about the real atmosphere, are limited by the non-repeatability of an atmospheric situation. The same event never occurs twice. This argues for complementary laboratory experiments, which can provide a more focused dialogue between experiment and theory. Indeed, life cycles are also examined in rotating-annulus laboratory experiments. Thus, these experiments might form a useful empirical benchmark for theoretical and modeling work that is also independent of any sort of subgrid model. In addition, the more direct correspondence between experimental and model data and the data reproducibility makes lab experiments a powerful testbed for parameterizations. Here we show first results from a small rotating annulus experiments and we will further present our new experimental facility to study wave emission from jets and fronts.

  7. Reinforcement learning accounts for moody conditional cooperation behavior: experimental results

    PubMed Central

    Horita, Yutaka; Takezawa, Masanori; Inukai, Keigo; Kita, Toshimasa; Masuda, Naoki

    2017-01-01

    In social dilemma games, human participants often show conditional cooperation (CC) behavior or its variant called moody conditional cooperation (MCC), with which they basically tend to cooperate when many other peers have previously cooperated. Recent computational studies showed that CC and MCC behavioral patterns could be explained by reinforcement learning. In the present study, we use a repeated multiplayer prisoner’s dilemma game and the repeated public goods game played by human participants to examine whether MCC is observed across different types of game and the possibility that reinforcement learning explains observed behavior. We observed MCC behavior in both games, but the MCC that we observed was different from that observed in the past experiments. In the present study, whether or not a focal participant cooperated previously affected the overall level of cooperation, instead of changing the tendency of cooperation in response to cooperation of other participants in the previous time step. We found that, across different conditions, reinforcement learning models were approximately as accurate as a MCC model in describing the experimental results. Consistent with the previous computational studies, the present results suggest that reinforcement learning may be a major proximate mechanism governing MCC behavior. PMID:28071646

  8. Reinforcement learning accounts for moody conditional cooperation behavior: experimental results.

    PubMed

    Horita, Yutaka; Takezawa, Masanori; Inukai, Keigo; Kita, Toshimasa; Masuda, Naoki

    2017-01-10

    In social dilemma games, human participants often show conditional cooperation (CC) behavior or its variant called moody conditional cooperation (MCC), with which they basically tend to cooperate when many other peers have previously cooperated. Recent computational studies showed that CC and MCC behavioral patterns could be explained by reinforcement learning. In the present study, we use a repeated multiplayer prisoner's dilemma game and the repeated public goods game played by human participants to examine whether MCC is observed across different types of game and the possibility that reinforcement learning explains observed behavior. We observed MCC behavior in both games, but the MCC that we observed was different from that observed in the past experiments. In the present study, whether or not a focal participant cooperated previously affected the overall level of cooperation, instead of changing the tendency of cooperation in response to cooperation of other participants in the previous time step. We found that, across different conditions, reinforcement learning models were approximately as accurate as a MCC model in describing the experimental results. Consistent with the previous computational studies, the present results suggest that reinforcement learning may be a major proximate mechanism governing MCC behavior.

  9. Recent experimental results of KSTAR RF heating and current drive

    SciTech Connect

    Wang, S. J. Kim, J.; Jeong, J. H.; Kim, H. J.; Joung, M.; Bae, Y. S.; Kwak, J. G.

    2015-12-10

    The overview of KSTAR activities on ICRH, LHCD and ECH/CD including the last experimental results and future plan aiming for long-pulse high-beta plasma will be presented. Recently we achieved reasonable coupling of ICRF power to H-mode plasma through several efforts to increase system reliability. Power balance will be discussed on this experiment. LHCD is still struggling in the low power regime. Review of antenna spectrum for the higher coupling in H-mode plasma will be tried. ECH/CD provides 41 sec, 0.8 MW of heating power to support high-performance long-pulse discharge. Also, 170 GHz ECH system is integrated with the Plasma Control System (PCS) for the feedback controlling of NTM. Status and plan of ECH/CD will be discussed. Finally, helicon current drive is being prepared for the next stage of KSTAR operation. The hardware preparation and the calculation results of helicon current drive in KSTAR plasma will be discussed.

  10. Theoretical and Experimental Results Regarding LENR/CF

    SciTech Connect

    Robert W. Bass; Wm. Stan Gleeson

    2000-11-12

    We challenge the predominant view that low-energy nuclear reactions (LENRs) are prohibited by standard quantum mechanics (QM). This view, supposedly based on standard nuclear theory, need not apply in condensed-matter environments. These considerations indicate that seemingly novel experimental evidence of rapid aneutronic bulk-process transmutation, at extraordinarily low-energy levels, in a simple electrochemical reactor, can occur. This explains: (a) induced rapid decay of radioactive thorium into stable nuclides, e.g., Cu and (b) resulting, anomalous distribution of Cu isotopes. We reexamine arguments of Peebles cited as evidence that standard QM 'forbids' cold fusion (CF). We note oversimplifications in those and present an alternative, more sophisticated calculation (see Bass, Refs. 3 through 8) demonstrating that conventional wisdom about impenetrability of the 'Coulomb barrier' fails as a result of periodic-order-induced resonance. We also examine empirical evidence. In three independent tests of an LENR electrolysis cell, using different I-V-T (current/voltage/time) protocols, the percentage of radiation reduction (RR) transmutation achieved {eta}=[23{percent}, 50{percent}, 83{percent}] versus expended energy E=[0.6535, 32.5, 74.6] (Watt-hours), obtained by numerical integration of recorded product I{center_dot}V for processing time T, provides near-perfect straight-line correlation: {eta}={alpha}{center_dot}E + {eta}{sub 0}, {alpha}=0.8105, {eta}{sub 0}=22.888, (0.65 < E < 0.75).

  11. Experimental Results of a Single Emittance Compensation Solenoidal Magnet

    NASA Astrophysics Data System (ADS)

    Palmer, D. T.; Wang, X. J.; Ben-Zvi, I.; Miller, R. H.; Skaritka, J.

    1997-05-01

    A new iron dominated single emittance compensation solenoidal magnet was designed to be integrated with the BNL/SLAC/UCLA 1.6 cell S-Band Photocathode RF Gun. This emittance compensated photoinjector is now in operation at the Brookhaven Accelerator Test Facility. It has produced a 300 pC electron bunches with a normalized rms transverse emittance of ɛ_n,rms = 0.7 π mm mrad. POISSON field maps were used with PARMELA to optimize the emittance compensation solenoidal magnet design. Magnetic field measurements show that at the cathode plane Bz <= 10 gauss for a peak magnetic field of B_z,max = 3 KG. Which is in agreement with POISSON simulation. A single emittance compensation solenoidal magnet will produces a initial angular momentum of the electron bunch that manifests itself in a initial magnetic emittance term that cannot be eliminated. This magnetic emittance ɛ_mag,n,rms scales as 0.01 π mm mrad per gauss at the cathode. Which is in agreement with PARMELA simulations. Experimental beam dynamics results are presented that show spot size and emittance as a function of cathode magnetic field. These results are compared to theory and simulations.

  12. Experimental results of an iodine plasma in PEGASES gridded thruster

    NASA Astrophysics Data System (ADS)

    Grondein, Pascaline; Aanesland, Ane

    2015-09-01

    In the electric gridded thruster PEGASES, both positive and negative ions are expelled after extraction from an ion-ion plasma. This ion-ion plasma is formed downstream a localized magnetic field placed a few centimeters from the ionization region, trapping and cooling down the electron to allow a better attachment to an electronegative gas. For this thruster concept, iodine has emerged as the most attractive option. Heavy, under diatomic form and therefore good for high thrust, its low ionization threshold and high electronegativity lead to high ion-ion densities and low RF power. After the proof-of-concept of PEGASES using SF6 as propellant, we present here experimental results of an iodine plasma studied inside PEGASES thruster. At solid state at standard temperature and pressure, iodine is heated to sublimate, then injected inside the chamber where the neutral gas is heated and ionized. The whole injection system is heated to avoid deposition on surfaces and a mass flow controller allows a fine control on the neutral gas mass flow. A 3D translation stage inside the vacuum chamber allows volumetric plasma studies using electrostatic probes. The results are also compared with the global model dedicated to iodine as propellant for electric gridded thrusters. This work has been done within the LABEX Plas@par project, and received financial state aid managed by the Agence Nationale de la Recherche, as part of the programme ``Investissements d'avenir.''

  13. Growth of lithium triborate crystals. II. Experimental results

    NASA Astrophysics Data System (ADS)

    Parfeniuk, C.; Samarasekera, I. V.; Weinberg, F.; Edel, J.; Fjeldsted, K.; Lent, B.

    1996-02-01

    In Part I [C. Parfeniuk, I.V. Samarasekera and F. Weinberg, J. Crystal Growth 158 (1996) 514], a mathematical model of the flux growth of lithium triborate (LBO) crystals was used to calculate the temperature distribution and fluid flow in the melt during growth. In this report the model results are related to experimental observations. Temperature measurements in the melt, for different crucible rotation rates, are compared to the corresponding temperatures determined from the model. Direct observations of fluid flow in the melt, using a transparent glycerol/water solution as a physical model, are related to the calculated flow paths and velocities. As the LBO crystal grows, the rejected MoO 3 flux concentrates ahead of the interface leading to the formation of eutectic phases. The factors leading to the formation of these phases are examined, using flow velocity values determined from the model. A number of LBO crystals were grown, first using convenient growth parameters, and then using parameters determined from the model results. The size and quality of the crystals obtained are discussed and related to the growth conditions.

  14. Experimental Analysis of Team Performance: Methodological Developments and Research Results.

    DTIC Science & Technology

    1982-07-06

    The effects of a cooperation contingency on behavior in a continuous three-person environment. Journal of the Experimental Analysis of Behavior , 25...J.V. Effects of a pairing contingency on behavior in a three-person programmed environment. Journal of the Experimental Analysis of Behavior , 1978

  15. Experimental Results of Hydrate Reservoir Destabilization Through Heating

    NASA Astrophysics Data System (ADS)

    Leeman, J.; Hornbach, M. J.; Elwood-Madden, M.; Phelps, T. J.; Rawn, C. J.

    2011-12-01

    Gas clathrate reservoirs have been considered as possible sources of energy, as hazards to deep water drilling operations, and as contributors to global climate change. Clathrate destabilization may occur through depressurization of the reservoir, addition of chemical inhibitors, or heating the reservoir. Meso-scale heat conduction experiments were conducted in the Seafloor Process Simulator (SPS) at Oak Ridge National Laboratory in an attempt to apply experimental constraints to purely numerical models of heat transfer within a nearly isobaric reservoir. A column of saturated sediment was place inside the pressure vessel and pressurized to conditions sufficient to form methane clathrate at seafloor temperatures, while the system remained at room temperature (298K). Once pressurized, the temperature of the vessel was then lowered to approximately 275K, forming pore filling clathrate in the sediment column. Following hydrate formation, heat was supplied to the center of the clathrate reservoir through a hot fluid heat exchanger embedded in the sediment column to dissociate the methane hydrate. Relative changes in temperature within the hydrate-sediment column were monitored with a fiber optic quasi-distributed sensing system (DSS), along with temperature and pressure within the vessel headspace. Using the DSS Plotter analysis software, it was determined that an axis-symmetric section of clathrate was dissociated around the heat exchanger. Clathrate dissociation was accompanied by a small rise in vessel headspace pressure in addition to the expected thermal expansion of the headspace gas. The quantity of heat input to the system was calculated from the drop in fluid temperature as it flowed through the heat exchanger. Increased heat input resulted in an increase in the volume of hydrate dissociated. Clathrate rapidly reformed immediately upon the removal of the heat energy. A simple numerical model has been developed to simulate the heat flow in the system. Early

  16. Endothelin in cerebral vasospasm. Clinical and experimental results.

    PubMed

    Zimmermann, M

    1997-06-01

    Since their discovery in 1988, endothelins have attracted scientific interest because of their extremely potent and long lasting vasoconstrictive effects. In the clinical part of the study plasma and cerebrospinal fluid (CSF) concentrations of big endothelin-1, endothelin-1 and endothelin-3 in patients with aneurysmal subarachnoid hemorrhage (SAH) were measured serially for 2 weeks after the onset of SAH. Big endothelin-1 was the predominant peptide present in CSF. The CSF concentrations of big ET-1, ET-1 and ET-3 were significantly higher in older than in younger patients. In patients with cerebral vasospasm postoperative concentrations of endothelins in the CSF remained at or were increased above levels measured before surgery. The volume of hematoma in the basal cisterns was predictive of the concentrations of endothelins in CSF. In the experimental study the efficacy of the orally active endothelin-receptor-antagonist RO 47-0203 for the prevention of cerebral vasospasm after experimental SAH, using the canine two-hemorrhage model, was investigated. Twenty-eight beagle dogs were used in this laboratory experiment. Fourteen animals each were assigned to the treatment and to the control group. In the treatment group each dog received two single doses of 30 mg/kg RO 47-0203 orally per day. The diameter of the basilar artery decreased from 1.36 +/- 0.17 mm at day 1 to 1.19 +/- 0.23 mm at day 8 in the treatment group while in the control group the vessel diameter decreased from 1.48 +/- 0.19 mm at day 1 to 1.02 +/- 0.22 mm at day 8. These results corresponded to a decrease of vessel diameter of 13.1% +/- 11.2% in the treatment group and a decrease of vessel diameter of 30.7% +/- 12.4% in the control group (p < 0.001). Concentrations of endothelin-1 in CSF significantly increased with time after SAH. These results underline the important role of endothelin in the development of cerebral vasospasm, and gives for the first time evidence that prevention of cerebral

  17. AFM-Based Mechanical Nanomanipulation

    NASA Astrophysics Data System (ADS)

    Landolsi, Fakhreddine

    2011-12-01

    Advances in several research areas increase the need for more sophisticated fabrication techniques and better performing materials. Tackling this problem from a bottom-up perspective is currently an active field of research. The bottom-up fabrication procedure offers sub-nanometer accurate manipulation. At this time, candidates to achieve nanomanipulation include chemical (self-assembly), biotechnology methods (DNA-based), or using controllable physical forces (e.g. electrokinetic forces, mechanical forces). In this thesis, new methods and techniques for mechanical nanomanipulation using probe force interaction are developed. The considered probes are commonly used in Atomic Force Microscopes (AFMs) for high resolution imaging. AFM-based mechanical nanomanipulation will enable arranging nanoscale entities such as nanotubes and molecules in a precise and controlled manner to assemble and produce novel devices and systems at the nanoscale. The novelty of this research stems from the development of new modeling of the physics and mechanics of the tip interaction with nanoscale entities, coupled with the development of new smart cantilevers with multiple degrees of freedom. The gained knowledge from the conducted simulations and analysis is expected to enable true precision and repeatability of nanomanipulation tasks which is not feasible with existing methods and technologies.

  18. Experimentally increasing sedentary behavior results in decreased life satisfaction

    PubMed Central

    Edwards, Meghan K.; Loprinzi, Paul D.

    2017-01-01

    Background: No study has experimentally manipulated sedentary behavior and evaluated its effect on life satisfaction. Thus, the purpose of this study was to evaluate the effects of a free-living, sedentary behavior-inducing randomized controlled intervention on life satisfaction. Methods: Active, young adults between the ages of 18-35 were recruited and randomly assigned into a sedentary behavior intervention group (n = 26) or a control group (n = 13). The intervention group participants were instructed to eliminate all exercise and restrict daily steps (as measured via pedometry) to 5000 or less per day for one week. The control group was instructed to maintain regular levels of exercise and other physical activity for one week. Both groups completed the Satisfaction with Life Scale (SWLS) pre-intervention and immediately post-intervention. Results: There was a significant group x time interaction (F = 32.75, P < 0.001), with post-hoc contrast tests indicating decreased SWLS score (indicating lower levels of life satisfaction) in the intervention group during Visit 2 (post-intervention) compared with Visit 1 (pre-intervention); this corresponded with a mean absolute (Visit 2 minus Visit 1) change of -8.58 (95% CI: -5.91, -11.24) for SWLS scores in the intervention group (31.1% reduction). Conclusion: A one-week sedentary behavior-inducing intervention may negatively impact life satisfaction in an active, young adult population. Regular physical activity may be imperative in avoiding negative life satisfaction-related consequences. PMID:28326289

  19. Experimental results on atomic oxygen corrosion of silver

    NASA Technical Reports Server (NTRS)

    Fromhold, Albert T.

    1988-01-01

    The results of an experimental study of the reaction kinetics of silver with atomic oxygen in 10 degree increments over the temperature range of 0 to 70 C is reported. The silver specimens, of the order of 10,000 A in thickness, were prepared by thermal evaporation onto 3 inch diameter polished silicon wafers. There were later sliced into pieces having surface areas of the order of 1/4 to 1/2 square inch. Atomic oxygen was generated by a gas discharge in a commercial plasmod asher operating in the megahertz frequency range. The sample temperature within the chamber was controlled by means of a thermoelectric unit. Exposure of the silver specimens to atomic oxygen was incremental, with oxide film thickness measurements being carried out between exposures by means of an automated ellipsometer. For the early growth phase, the data can be described satisfactorily by a logarithmic growth law: the oxide film thickness increases as the logarithm of the exposure time. Furthermore, the oxidation process is thermally activated, the rate increasing with increasing temperature. However, the empirical activation energy parameter deduced from Arrhenius plots is quite low, being of the order of 0.1 eV.

  20. Experimental results of ITER cold circulators towards the performance demonstration

    NASA Astrophysics Data System (ADS)

    Bhattacharya, R.; Vaghela, H.; Sarkar, B.; Patel, P.; Das, J.; Srinivasa, M.; Isono, T.; Kawano, K.

    2017-02-01

    The cold circulators, the most challenging component of ITER cryo-distribution system, have been designed, manufactured and tested successfully at factory. The design point for the cold circulator has been specified as 2.21 kg/s at 4.3 K inlet temperature having 0.155 MPa pressure head, dedicated for the nominal operation of toroidal field (TF) superconducting magnet of ITER. The expected isentropic efficiency has been defined as 70 % or more suitable to cater the demands of the cryo-distribution system. Two cold circulators for TF superconducting magnet have been installed in the Test Auxiliary Cold Box (TACB) followed by the integration of TACB system with the 5.0 kW at 4.5 K class cryogenic test facility at Japan. Final cold acceptance test of the complete system has been performed in order to validate the design conditions of TACB and cold circulators. Qualification tests of two cold circulators have been executed at closed loop operating condition. The cool-down of cold circulators down to 4.6 K temperature level and normal operating results as well as the experimental validation of performance along with the obtained isentropic efficiencies at the operating conditions have been demonstrated meeting the system level requirements of ITER cryo-distribution.

  1. Shuttle Upper Atmosphere Mass Spectrometer Experimental Flight Results

    NASA Technical Reports Server (NTRS)

    Blanchard, R. C.; Ozoroski, Thomas A.; Nicholson, John Y.

    1994-01-01

    Calibrated pressure measurements for species with mass-to-charge ratios up to 50 amu/e(-) were obtained trom the shuttle upper atmosphere mass spectrometer experiment during re-entry on the STS-35 mission. The principal experimental objective is to obtain measurements of freestream density in the hypersonic rarefied flow flight regime. Data were collected from 180 to about 87 km. However, data above 115 km were contaminated from a source of gas emanating from pressure transdueers connected in parallel to the mass spectrometer. At lower altitudes, the pressure transducer data are compared to the mass spectrometer total pressure with excellent agreement. Near the orifice entrance, a significant amount of CO2 was generated from chemical reactions. The freestream density in the rarefied flow flight regime is calculated using an orifice pressure coefficient model based upon direct simulation Monte Carlo results. This density, when compared with the 1976 U.S. Standard Atmosphere model, exhibits the wavelike nature seen on previous flights using accelerometry. Selected spectra are presented at higher altitudes (320 km) showing the effects of the ingestion of gases from a forward fuselage fuel dump.

  2. Acoustic analysis in Mudejar-Gothic churches: Experimental results

    NASA Astrophysics Data System (ADS)

    Galindo, Miguel; Zamarreño, Teófilo; Girón, Sara

    2005-05-01

    This paper describes the preliminary results of research work in acoustics, conducted in a set of 12 Mudejar-Gothic churches in the city of Seville in the south of Spain. Despite common architectural style, the churches feature individual characteristics and have volumes ranging from 3947 to 10 708 m3. Acoustic parameters were measured in unoccupied churches according to the ISO-3382 standard. An extensive experimental study was carried out using impulse response analysis through a maximum length sequence measurement system in each church. It covered aspects such as reverberation (reverberation times, early decay times), distribution of sound levels (sound strength); early to late sound energy parameters derived from the impulse responses (center time, clarity for speech, clarity, definition, lateral energy fraction), and speech intelligibility (rapid speech transmission index), which all take both spectral and spatial distribution into account. Background noise was also measured to obtain the NR indices. The study describes the acoustic field inside each temple and establishes a discussion for each one of the acoustic descriptors mentioned by using the theoretical models available and the principles of architectural acoustics. Analysis of the quality of the spaces for music and speech is carried out according to the most widespread criteria for auditoria. .

  3. Acoustic analysis in Mudejar-Gothic churches: experimental results.

    PubMed

    Galindo, Miguel; Zamarreño, Teófilo; Girón, Sara

    2005-05-01

    This paper describes the preliminary results of research work in acoustics, conducted in a set of 12 Mudejar-Gothic churches in the city of Seville in the south of Spain. Despite common architectural style, the churches feature individual characteristics and have volumes ranging from 3947 to 10 708 m3. Acoustic parameters were measured in unoccupied churches according to the ISO-3382 standard. An extensive experimental study was carried out using impulse response analysis through a maximum length sequence measurement system in each church. It covered aspects such as reverberation (reverberation times, early decay times), distribution of sound levels (sound strength); early to late sound energy parameters derived from the impulse responses (center time, clarity for speech, clarity, definition, lateral energy fraction), and speech intelligibility (rapid speech transmission index), which all take both spectral and spatial distribution into account. Background noise was also measured to obtain the NR indices. The study describes the acoustic field inside each temple and establishes a discussion for each one of the acoustic descriptors mentioned by using the theoretical models available and the principles of architectural acoustics. Analysis of the quality of the spaces for music and speech is carried out according to the most widespread criteria for auditoria.

  4. Ground coupled heat-pump-system experimental results

    NASA Astrophysics Data System (ADS)

    Metz, P. D.

    1983-06-01

    Since October 1980, a small house in Upton, Long Island, New York has been heated and cooled by a liquid source heat pump using a shallow serpentine earth coil as a heat source/sink. After a brief introduction and system description, system performance data are presented, for the winter of 1981-82 and the summer of 1982, followed by a discussion of these results. The experimental test house is a 104 m(2) (1120 ft(2)) 3 bedroom ranch of energy saving construction with a heating load of 7.8 x 10 to the 6th power J/0C-day (4.1 x 10 to the 3rd power Btu/0F-day). The heat pump used during most of the period reported on here is a commercially available water to air unit sized to just meet the building design heating load with no auxiliary heat. The earth coil contains 155 m (507 ft) of nominal 1-1/2 in. medium density polyethylene pipe, and is approximately 25% ethylene glycol in water, is employed to permit subfreezing earth coil operation. Two independent data acquisition systems, a datalogger microcomputer system backed up by a Btu meter, monitor the space conditioning system performance.

  5. Experimental results of a 30 m, 3-core HTSC cable

    NASA Astrophysics Data System (ADS)

    Masuda, Takato; Kato, Takeshi; Yumura, Hiroyasu; Hirose, Masayuki; Isojima, Shigeki; Honjo, Shoichi; Matsuo, Kimiyoshi; Mimura, Tomoo; Takahashi, Yoshihisa

    2002-08-01

    A high temperature superconducting (HTSC) cable is expected to transport large electric power with a compact size because of its high critical current density. We have been developing a 3-core 66 kV class HTSC cable, which is applied to the ∅150 mm duct, and is composed of a conductor and a shield wound with Ag-Mn sheathed Bi-2223 tapes, electrical insulation with polypropylene laminated paper impregnated with liquid nitrogen and thermal insulation with co-axial corrugated pipes. A 30 m, 3-core cable system has been constructed to verify the 3-core performance after its production, laying and cooling. The cable had good performance to mechanical stress in the factory process. The critical current of the cable was more than 2.4 kA at 77 K. The AC loss of the conductor part was 0.5 W/m/phase at 1 kA rms, which agreed well with the calculated value of the spiral pitch adjustment technique. A 130 kV rms AC was successfully applied without any change in tan δ and capacitance. As a next step, a 100 m HTSC cable has been designed and developed based on these experimental results.

  6. Energy-resolved computed tomography: first experimental results

    NASA Astrophysics Data System (ADS)

    Shikhaliev, Polad M.

    2008-10-01

    First experimental results with energy-resolved computed tomography (CT) are reported. The contrast-to-noise ratio (CNR) in CT has been improved with x-ray energy weighting for the first time. Further, x-ray energy weighting improved the CNR in material decomposition CT when applied to CT projections prior to dual-energy subtraction. The existing CT systems use an energy (charge) integrating x-ray detector that provides a signal proportional to the energy of the x-ray photon. Thus, the x-ray photons with lower energies are scored less than those with higher energies. This underestimates contribution of lower energy photons that would provide higher contrast. The highest CNR can be achieved if the x-ray photons are scored by a factor that would increase as the x-ray energy decreases. This could be performed by detecting each x-ray photon separately and measuring its energy. The energy selective CT data could then be saved, and any weighting factor could be applied digitally to a detected x-ray photon. The CT system includes a photon counting detector with linear arrays of pixels made from cadmium zinc telluride (CZT) semiconductor. A cylindrical phantom with 10.2 cm diameter made from tissue-equivalent material was used for CT imaging. The phantom included contrast elements representing calcifications, iodine, adipose and glandular tissue. The x-ray tube voltage was 120 kVp. The energy selective CT data were acquired, and used to generate energy-weighted and material-selective CT images. The energy-weighted and material decomposition CT images were generated using a single CT scan at a fixed x-ray tube voltage. For material decomposition the x-ray spectrum was digitally spilt into low- and high-energy parts and dual-energy subtraction was applied. The x-ray energy weighting resulted in CNR improvement of calcifications and iodine by a factor of 1.40 and 1.63, respectively, as compared to conventional charge integrating CT. The x-ray energy weighting was also applied

  7. Experimental Results on Jets in pA

    NASA Astrophysics Data System (ADS)

    Appelt, Eric

    2015-04-01

    The experimentally observed reduction of jet yields in ultrarelativistic heavy ion (AA) collisions relative to proton-proton (pp) collisions is widely interpreted in terms of energy loss of a hard scattered parton traversing a quark-gluon plasma (QGP) before fragmenting into a jet of hadrons. In order to constrain proposed mechanisms of energy loss, a variety of measurements are needed that quantify both how the jet yields and jet structure are modified in the medium. However, jets may also be modified by differences in the initial state of the nucleus relative to that of the proton. The precise determination of the QGP properties relies on disentangling these additional modifications, collectively termed ``cold nuclear matter'' effects, from energy loss in the QGP. Collisions between heavy ions and protons (pA) provide a potential control environment where cold nuclear matter effects should be present, but QGP formation is generally not expected to occur. In this talk, an overview of recent jet results from proton-lead collisions produced at the LHC will be given. The yield of inclusive jets and distributions of dijet pairs are shown to be compatible with generally accepted theoretical expectations, although significant modification is observed when yields are measured from specific centrality classes of pA collision events. Some measurements of high-pT charged hadron yields suggest a larger modification in pA collisions relative to pp collisions than for inclusive jet yields. The potential implications of this difference along with other measurements relating to jet structure will be discussed.

  8. Bolus-tracking arterial spin labelling: theoretical and experimental results

    NASA Astrophysics Data System (ADS)

    Kelly, M. E.; Blau, C. W.; Kerskens, C. M.

    2009-03-01

    Arterial spin labelling (ASL) is a magnetic resonance imaging (MRI) technique that can be used to provide a quantitative assessment of cerebral perfusion. Despite the development of a number of theoretical models to facilitate quantitative ASL, some key challenges still remain. The purpose of this study is to develop a novel quantitative ASL method based on a macroscopic model that reduces the number of variables required to describe the physiological processes involved. To this end, a novel Fokker-Planck equation consisting of stochastically varying macroscopic variables was derived from a general Langevin equation. ASL data from the rat brain was acquired using a bolus-tracking ASL protocol where a bolus of labelled spins flowing from an inversion plane in the neck into an imaging plane in the brain can be observed. Bolus durations of 1.5 s, 2.0 s and 3.0 s were used and the solution to the Fokker-Planck equation for the boundary conditions of bolus-tracking ASL was fitted to the experimental data using a least-squares fit. The mean transit time (MTT) and capillary transit time (CTT) were calculated from the first and second moments of the resultant curve respectively and the arterial transit time (ATT) was calculated by subtracting the CTT from the MTT. The average MTT, CTT and ATT values were 1.75 ± 0.22 s, 1.43 ± 0.12 s and 0.32 ± 0.04 s respectively. In conclusion, a new ASL protocol has been developed by combining the theoretical model with ASL experiments. The technique has the unique ability to provide solutions for varying bolus volumes and the generality of the new model is demonstrated by the derivation of additional solutions for the continuous and pulsed ASL (CASL and PASL) techniques.

  9. New experimental results on neutrino mixing and decay.

    NASA Astrophysics Data System (ADS)

    Oberauer, L.; von Feilitzsch, F.; Hagner, C.; Kempf, G.; Mößbauer, R. L.; Declais, Y.; Kajfasz, E.

    The search for neutrino decay is a sensitive method to look for very small neutrino mixing parameter. The authors report about the status of an decay experiment performed at a reactor in Bugey and present preliminary new experimental limits on the coupling of a heavy neutrino to the electron state. Additionally new experimental lifetime bounds on the radiative decay mode are given. Rigid laboratory limits on this decay mode for the hypothetical 17 keV neutrino are presented. Limits on the radiative decay of a 17 keV neutrino obtained from the supernova SN 1987A are discussed.

  10. Alkali Metal Backup Cooling for Stirling Systems - Experimental Results

    NASA Technical Reports Server (NTRS)

    Schwendeman, Carl; Tarau, Calin; Anderson, William G.; Cornell, Peggy A.

    2013-01-01

    In a Stirling Radioisotope Power System (RPS), heat must be continuously removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling convertor normally provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS at the cost of an early termination of the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) can be used to passively allow multiple stops and restarts of the Stirling convertor. In a previous NASA SBIR Program, Advanced Cooling Technologies, Inc. (ACT) developed a series of sodium VCHPs as backup cooling systems for Stirling RPS. The operation of these VCHPs was demonstrated using Stirling heater head simulators and GPHS simulators. In the most recent effort, a sodium VCHP with a stainless steel envelope was designed, fabricated and tested at NASA Glenn Research Center (GRC) with a Stirling convertor for two concepts; one for the Advanced Stirling Radioisotope Generator (ASRG) back up cooling system and one for the Long-lived Venus Lander thermal management system. The VCHP is designed to activate and remove heat from the stopped convertor at a 19 degC temperature increase from the nominal vapor temperature. The 19 degC temperature increase from nominal is low enough to avoid risking standard ASRG operation and spoiling of the Multi-Layer Insulation (MLI). In addition, the same backup cooling system can be applied to the Stirling convertor used for the refrigeration system of the Long-lived Venus Lander. The VCHP will allow the refrigeration system to: 1) rest during transit at a lower temperature than nominal; 2) pre-cool the modules to an even lower temperature before the entry in Venus atmosphere; 3) work at nominal temperature on Venus surface; 4) briefly stop multiple times on the Venus surface to allow scientific measurements. This paper presents the experimental

  11. Alkali Metal Backup Cooling for Stirling Systems - Experimental Results

    NASA Technical Reports Server (NTRS)

    Schwendeman, Carl; Tarau, Calin; Anderson, William G.; Cornell, Peggy A.

    2013-01-01

    In a Stirling Radioisotope Power System (RPS), heat must be continuously removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling convertor normally provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS at the cost of an early termination of the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) can be used to passively allow multiple stops and restarts of the Stirling convertor. In a previous NASA SBIR Program, Advanced Cooling Technologies, Inc. (ACT) developed a series of sodium VCHPs as backup cooling systems for Stirling RPS. The operation of these VCHPs was demonstrated using Stirling heater head simulators and GPHS simulators. In the most recent effort, a sodium VCHP with a stainless steel envelope was designed, fabricated and tested at NASA Glenn Research Center (GRC) with a Stirling convertor for two concepts; one for the Advanced Stirling Radioisotope Generator (ASRG) back up cooling system and one for the Long-lived Venus Lander thermal management system. The VCHP is designed to activate and remove heat from the stopped convertor at a 19 C temperature increase from the nominal vapor temperature. The 19 C temperature increase from nominal is low enough to avoid risking standard ASRG operation and spoiling of the Multi-Layer Insulation (MLI). In addition, the same backup cooling system can be applied to the Stirling convertor used for the refrigeration system of the Long-lived Venus Lander. The VCHP will allow the refrigeration system to: 1) rest during transit at a lower temperature than nominal; 2) pre-cool the modules to an even lower temperature before the entry in Venus atmosphere; 3) work at nominal temperature on Venus surface; 4) briefly stop multiple times on the Venus surface to allow scientific measurements. This paper presents the experimental

  12. Low tip damage AFM technique development for nano structures characterization

    NASA Astrophysics Data System (ADS)

    Liu, Biao; Wang, Charles C.; Huang, Po-Fu; Uritsky, Yuri

    2010-06-01

    Ambient dynamic mode (tapping mode or intermittent-contact mode) AFM imaging has been used extensively for the characterization of the topography of nano structures. However, the results are beset with artifacts, because hard tapping of the AFM tip on sample surface usually causes premature tip damage. Through careful study of the cantilever amplitude and phase signals as functions of tip-to-sample distance, principle of non-contact AFM operation was discovered to enable high resolution and low tip damage AFM image acquisition [1, 2]. However, current study discovers that the conventional way of acquiring amplitude and phase versus distance curves gives erroneous non-contact operating range, because the tip gets damaged during the data acquisition process. A new technique is developed to reliably map the operating parameters of an intact tip that ensures the AFM be operated with the correct non-contact settings. Two examples are given to illustrate the successful applications of this new technique. The first example involves the size characterization of polystyrene latex (PSL) nano particles used for light scattering tool calibration. The second example is the development of robust recipes for the measurement of the depth of phase-shift mask trenches.

  13. Experimental Results for an Annular Aerospike with Differential Throttling

    NASA Technical Reports Server (NTRS)

    Ruf, Joseph H.; McDaniels, David M.

    2005-01-01

    A) MSFC funded an internal study on Altitude Compensating Nozzles: 1) Develop an ACN design and performance prediction tool. 2) Design, build and test cold flow ACN nozzles. 3) An annular aerospike nozzle was designed and tested. 4) Incorporated differential throttling to assess Thrust Vector Control. B) Objective of the test hardware: 1) Provide design tool verification. 2) Provide benchmark data for CFD calculations. 3) Experimentally measure side force, or TVC, for a differentially throttled annular aerospike.

  14. CP Violation in B Meson Decays: Experimental Results

    SciTech Connect

    Lanceri, Livio; /Trieste U. /INFN, Trieste

    2005-08-30

    CP violation is intimately connected with the puzzle of matter-antimatter asymmetry and baryogenesis. In the Standard Model of particle physics, the observed CP violation phenomena are accounted for by the Cabibbo-Kobayashi-Maskawa mechanism involving a phase in the quark mixing matrix. This paper is devoted to a review of the experimental status of CP violation in the decays of B mesons.

  15. Optimal active vibration absorber: Design and experimental results

    NASA Technical Reports Server (NTRS)

    Lee-Glauser, Gina; Juang, Jer-Nan; Sulla, Jeffrey L.

    1992-01-01

    An optimal active vibration absorber can provide guaranteed closed-loop stability and control for large flexible space structures with collocated sensors/actuators. The active vibration absorber is a second-order dynamic system which is designed to suppress any unwanted structural vibration. This can be designed with minimum knowledge of the controlled system. Two methods for optimizing the active vibration absorber parameters are illustrated: minimum resonant amplitude and frequency matched active controllers. The Controls-Structures Interaction Phase-1 Evolutionary Model at NASA LaRC is used to demonstrate the effectiveness of the active vibration absorber for vibration suppression. Performance is compared numerically and experimentally using acceleration feedback.

  16. Experimental Studies of Ion Beam Neutralization: Preliminary Results

    SciTech Connect

    Ding, N.; Polansky, J.; Downey, R.; Wang, J.

    2011-05-20

    A testing platform is designed to study ion beam neutralization in the mesothermal, collisionless region. In the experimental setup, argon neutrals were ionized in a microwave cavity and accelerated by a plasma lens system which was biased to 2500 V above the system ground. Electrons were boiled off from two hot tungsten filaments to neutralize the ion beam. The plasma is diagnosed using Langmuir probe and Faraday probe. A 3-D traversing system and a complete data acquisition loop were developed to efficiently measure 3-D beam profile. Preliminary measurements of beam profiles are presented for different operating conditions.

  17. Mounting of Escherichia coli spheroplasts for AFM imaging.

    SciTech Connect

    Sullivan, Claretta J; Morrell-Falvey, Jennifer L; Allison, David P; Doktycz, Mitchel John

    2005-11-01

    The cytoplasmic membrane of Escherichia coli (E. coli) is the location of numerous, chemically specific transporters and recognition elements. Investigation of this membrane in vivo by atomic force microscopy (AFM) requires removal of the cell wall and stable immobilization of the spheroplast. AFM images demonstrate that spheroplasts can be secured with warm gelatin applied to the mica substrate just before the addition of a spheroplast suspension. The resulting preparation can be repeatedly imaged by AFM over the course of several hours. Confocal fluorescence imaging confirms the association of the spheroplasts with the gelatin layer. Gelatin molecules are known to reorder into a network after heating. Entrapment within this gelatin network is believed to be responsible for the immobilization of spheroplasts on mica.

  18. Mapping individual cosmid DNAs by direct AFM imaging.

    PubMed

    Allison, D P; Kerper, P S; Doktycz, M J; Thundat, T; Modrich, P; Larimer, F W; Johnson, D K; Hoyt, P R; Mucenski, M L; Warmack, R J

    1997-05-01

    Individual cosmid clones have been restriction mapped by directly imaging, with the atomic force microscope (AFM), a mutant EcoRI endonuclease site-specifically bound to DNA. Images and data are presented that locate six restriction sites, predicted from gel electrophoresis, on a 35-kb cosmid isolated from mouse chromosome 7. Measured distances between endonuclease molecules bound to lambda DNA, when compared to known values, demonstrate the accuracy of AFM mapping to better than 1%. These results may be extended to identify other important site-specific protein-DNA interactions, such as transcription factor and mismatch repair enzyme binding, difficult to resolve by current techniques.

  19. Determining surface properties with bimodal and multimodal AFM.

    PubMed

    Forchheimer, D; Borysov, Stanislav S; Platz, D; Haviland, David B

    2014-12-05

    Conventional dynamic atomic force microscopy (AFM) can be extended to bimodal and multimodal AFM in which the cantilever is simultaneously excited at two or more resonance frequencies. Such excitation schemes result in one additional amplitude and phase images for each driven resonance, and potentially convey more information about the surface under investigation. Here we present a theoretical basis for using this information to approximate the parameters of a tip-surface interaction model. The theory is verified by simulations with added noise corresponding to room-temperature measurements.

  20. GPIM AF-M315E Propulsion System

    NASA Technical Reports Server (NTRS)

    Spores, Ronald A.; Masse, Robert; Kimbrel, Scott; McLean, Chris

    2014-01-01

    The NASA Space Technology mission Directorate's (STMD) Green Propellant Infusion Mission (GPIM) Technology Demonstration Mission (TDM) will demonstrate an operational AF-M315E green propellant propulsion system. Aerojet-Rocketdyne is responsible for the development of the propulsion system payload. This paper statuses the propulsion system module development, including thruster design and system design; Initial test results for the 1N engineering model thruster are presented. The culmination of this program will be high-performance, green AF-M315E propulsion system technology at TRL 7+, with components demonstrated to TRL 9, ready for direct infusion to a wide range of applications for the space user community.

  1. CSI Flight Computer System and experimental test results

    NASA Technical Reports Server (NTRS)

    Sparks, Dean W., Jr.; Peri, F., Jr.; Schuler, P.

    1993-01-01

    This paper describes the CSI Computer System (CCS) and the experimental tests performed to validate its functionality. This system is comprised of two major components: the space flight qualified Excitation and Damping Subsystem (EDS) which performs controls calculations; and the Remote Interface Unit (RIU) which is used for data acquisition, transmission, and filtering. The flight-like RIU is the interface between the EDS and the sensors and actuators positioned on the particular structure under control. The EDS and RIU communicate over the MIL-STD-1553B, a space flight qualified bus. To test the CCS under realistic conditions, it was connected to the Phase-0 CSI Evolutionary Model (CEM) at NASA Langley Research Center. The following schematic shows how the CCS is connected to the CEM. Various tests were performed which validated the ability of the system to perform control/structures experiments.

  2. Geoacoustic and source tracking using particle filtering: experimental results.

    PubMed

    Yardim, Caglar; Gerstoft, Peter; Hodgkiss, William S

    2010-07-01

    A particle filtering (PF) approach is presented for performing sequential geoacoustic inversion of a complex ocean acoustic environment using a moving acoustic source. This approach treats both the environmental parameters [e.g., water column sound speed profile (SSP), water depth, sediment and bottom parameters] at the source location and the source parameters (e.g., source depth, range and speed) as unknown random variables that evolve as the source moves. This allows real-time updating of the environment and accurate tracking of the moving source. As a sequential Monte Carlo technique that operates on nonlinear systems with non-Gaussian probability densities, the PF is an ideal algorithm to perform tracking of environmental and source parameters, and their uncertainties via the evolving posterior probability densities. The approach is demonstrated on both simulated data in a shallow water environment with a sloping bottom and experimental data collected during the SWellEx-96 experiment.

  3. Guided wave modes in porous cylinders: experimental results.

    PubMed

    Wisse, C J; Smeulders, D M J; van Dongen, M E H; Chao, G

    2002-09-01

    In this paper guided wave modes in porous media are investigated. A water-saturated porous cylinder is mounted in the test section of a shock tube. Between the porous sample and the wall of the shock tube a water-filled annulus exists. For very small annulus width, bulk waves are generated and one-dimensional modeling is sufficient. Otherwise two-dimensional effects become important and multiple guided wave modes occur. Using a newly developed traversable positioning system in the shock tube, the frequency-dependent phase velocities and damping coefficients in the 1-120 kHz frequency range were measured. Prony's method was used for data processing. Agreement was found between the experimental data and the two-dimensional modeling of the shock tube which was based on Biot's theory.

  4. Formation of sensor array on the AFM chip surface by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Shumov, I. D.; Kanashenko, S. L.; Ziborov, V. S.; Ivanov, Yu D.; Archakov, A. I.; Pleshakova, T. O.

    2017-01-01

    Development of atomic force microscopy (AFM)-based nanotechnological approaches to highly sensitive detection of proteins is a perspective direction in biomedical research. These approaches use AFM chips to concentrate the target proteins from the test solution volume (buffer solution, diluted biological fluid) onto the chip surface for their subsequent registration on the chip surface by AFM. Atomic force microscope is a molecular detector that enables protein detection at ultra-low (subfemtomolar) concentrations in single-molecule counting mode. Due to extremely high sensitivity of AFM, its application for multiplexed protein detection is of great interest for use in proteomics and diagnostic applications. In this study, AFM chips containing an array of sensor areas have been fabricated. Magnetron sputtering of chromium and tungsten nanolayers has been used to form optically visible metallic marks on the AFM chip surface to provide necessary precision of AFM probe positioning against each sensor area for scanning. It has been demonstrated that the marks formed by magnetron sputtering of Cr and W are stable on the surface of the AFM chips during the following activation and intensive washing of this surface. The results obtained in our present study allow application of the developed chips for multiplexed protein analysis by AFM.

  5. Recent Experimental Results in the VX-10 Device

    NASA Astrophysics Data System (ADS)

    Squire, J. P.; Díaz, F. R. Chang; Jacobson, V. T.; McCaskill, G. E.; McCoy, J. E.; Petro, A. J.; Baity, F. W.; Bengtson, R. D.; Bering, E. A.; Garret, J. A.; Glover, T. W.

    2000-10-01

    In the VASIMR engine, neutral gas is ionized using a helicon type source and the ions are subsequently accelerated via ICRF power injection. The experimental device in the ASPL is targeting a total RF power level of 10 kW and is called VX-10. RF power is available with 3 kW at 25 MHz for the helicon source and 100 kW at 3 MHz for ICRF. Experiments with light gasses (hydrogen, deuterium, and helium) are performed. The VX-10 3-magnet system is capable of a maximum B field of 2 T and has flexible axial profile shaping capability. Diagnostics in the plasma exhaust include an RF compensated Langmuir probe, a Mach probe, Retarding Potential Analyzer (RPA), newly installed density interferometer and an ion gauge neutral pressure measurement. Parametric (e.g. magnetic field, gas flow, and RF power) studies are presented. Data indicate ion heating to more than 1 eV and acceleration by the magnetic exhaust with the helicon alone. ICRF experiments are beginning and initial data are presented.

  6. Experimental results with hydrogen fueled internal combustion engines

    NASA Technical Reports Server (NTRS)

    De Boer, P. C. T.; Mclean, W. J.; Homan, H. S.

    1975-01-01

    The paper focuses on the most important experimental findings for hydrogen-fueled internal combustion engines, with particular reference to the application of these findings to the assessment of the potential of hydrogen engines. Emphasis is on the various tradeoffs that can be made, such as between maximum efficiency, maximum power, and minimum NO emissions. The various possibilities for induction and ignition are described. Some projections are made about areas in which hydrogen engines may find their initial application and about optimum ways to design such engines. It is shown that hydrogen-fueled reciprocal internal combustion engines offer important advantages with respect to thermal efficiency and exhaust emissions. Problems arising from preignition can suitably be avoided by restricting the fuel-air equivalence ratio to values below about 0.5. The direct cylinder injection appears to be a very attractive way to operate the engine, because it combines a wide range of possible power outputs with a high thermal efficiency and very low NO emissions at part loads.

  7. Waste glass corrosion modeling: Comparison with experimental results

    SciTech Connect

    Bourcier, W.L.

    1993-11-01

    A chemical model of glass corrosion will be used to predict the rates of release of radionuclides from borosilicate glass waste forms in high-level waste repositories. The model will be used both to calculate the rate of degradation of the glass, and also to predict the effects of chemical interactions between the glass and repository materials such as spent fuel, canister and container materials, backfill, cements, grouts, and others. Coupling between the degradation processes affecting all these materials is expected. Models for borosilicate glass dissolution must account for the processes of (1) kinetically-controlled network dissolution, (2) precipitation of secondary phases, (3) ion exchange, (4) rate-limiting diffusive transport of silica through a hydrous surface reaction layer, and (5) specific glass surface interactions with dissolved cations and anions. Current long-term corrosion models for borosilicate glass employ a rate equation consistent with transition state theory embodied in a geochemical reaction-path modeling program that calculates aqueous phase speciation and mineral precipitation/dissolution. These models are currently under development. Future experimental and modeling work to better quantify the rate-controlling processes and validate these models are necessary before the models can be used in repository performance assessment calculations.

  8. Main experimental results of the Phebus Severe Fuel Damage Program

    SciTech Connect

    Gonnier, C. )

    1993-01-01

    The main objective of this program is to improve our knowledge about the early phase of a pressurized water reactor in-vessel core melt degradation in a temperature range up to 2800 K. The experimental program performed from December 1986 to June 1989 consists of six in-pile experiments with 21 fresh fuel rod bundles of 0.8 m active length. It is divided into two series of tests: (1) The first one (B9, B9R, B9+) is mainly devoted to the oxidation phenomenon and its consequences for fuel degradation. This series is characterized by high oxidation rates. (2) The second series [C3, C3+, Ag-In-CD (AIC)] is characterized by low oxidation rates of the cladding in order to study the interaction between the remaining Zircaloy and the other materials: interactions with Inconel and UO[sub 2] for C3 and C3+ tests and interactions with the Ag-In-Cd alloy and stainless steel of the control rod for the AIC test.

  9. EXPERIMENTAL RESULTS FROM A MICROWAVE CAVITY BEAM POSITION MONITOR.

    SciTech Connect

    BALAKIN,V.; BAZHAN,A.; LUNEV,P.; SOLYAK,N.; VOGEL,V.; ZHOGOLEV,P.; LISITSYN,A.; YAKIMENKO,V.

    1999-03-29

    Future Linear Colliders have hard requirements for the beam transverse position stability in the accelerator. A beam Position Monitor (BPM) with the resolution better than 0.1 micron in the single bunch regime is needed to control the stability of the beam position along the linac. Proposed BPM is based on the measurement of the asymmetrical mode excited by single bunch in the cavity. Four stages of signal processing (space-, time-, frequency- and phase-filtering providing the required signal-to-noise ratio) are used to obtain extremely high resolution. The measurement set-up was designed by BINP and installed at ATF/BNL to test experimentally this concept. The set-up includes three two-coordinates BPM's at the frequency of 13.566 GHz, and reference intensity/phase cavity. BPM's were mounted on support table. The two-coordinates movers allow to move and align BPM's along the straight line, using the signals from the beam. The position of each monitor is controlled by the sensors with the accuracy 0.03 micron. The information from three monitors allows to exclude angle and position jitter of the beam and measure BPM resolution. In the experiments the resolution of about 0.15 micron for 0.25 nC beam intensity was obtained, that is close to the value required.

  10. Construction of a WMR for Trajectory Tracking Control: Experimental Results

    PubMed Central

    Silva-Ortigoza, R.; Márquez-Sánchez, C.; Marcelino-Aranda, M.; Marciano-Melchor, M.; Silva-Ortigoza, G.; Bautista-Quintero, R.; Ramos-Silvestre, E. R.; Rivera-Díaz, J. C.; Muñoz-Carrillo, D.

    2013-01-01

    This paper reports a solution for trajectory tracking control of a differential drive wheeled mobile robot (WMR) based on a hierarchical approach. The general design and construction of the WMR are described. The hierarchical controller proposed has two components: a high-level control and a low-level control. The high-level control law is based on an input-output linearization scheme for the robot kinematic model, which provides the desired angular velocity profiles that the WMR has to track in order to achieve the desired position (x∗, y∗) and orientation (φ∗). Then, a low-level control law, based on a proportional integral (PI) approach, is designed to control the velocity of the WMR wheels to ensure those tracking features. Regarding the trajectories, this paper provides the solution or the following cases: (1) time-varying parametric trajectories such as straight lines and parabolas and (2) smooth curves fitted by cubic splines which are generated by the desired data points {(x1∗, y1∗),..., (xn∗, yn∗)}. A straightforward algorithm is developed for constructing the cubic splines. Finally, this paper includes an experimental validation of the proposed technique by employing a DS1104 dSPACE electronic board along with MATLAB/Simulink software. PMID:23997679

  11. Construction of a WMR for trajectory tracking control: experimental results.

    PubMed

    Silva-Ortigoza, R; Márquez-Sánchez, C; Marcelino-Aranda, M; Marciano-Melchor, M; Silva-Ortigoza, G; Bautista-Quintero, R; Ramos-Silvestre, E R; Rivera-Díaz, J C; Muñoz-Carrillo, D

    2013-01-01

    This paper reports a solution for trajectory tracking control of a differential drive wheeled mobile robot (WMR) based on a hierarchical approach. The general design and construction of the WMR are described. The hierarchical controller proposed has two components: a high-level control and a low-level control. The high-level control law is based on an input-output linearization scheme for the robot kinematic model, which provides the desired angular velocity profiles that the WMR has to track in order to achieve the desired position (x∗, y∗) and orientation (φ∗). Then, a low-level control law, based on a proportional integral (PI) approach, is designed to control the velocity of the WMR wheels to ensure those tracking features. Regarding the trajectories, this paper provides the solution or the following cases: (1) time-varying parametric trajectories such as straight lines and parabolas and (2) smooth curves fitted by cubic splines which are generated by the desired data points {(x₁∗, y₁∗),..., (x(n)∗, y(n)∗)}. A straightforward algorithm is developed for constructing the cubic splines. Finally, this paper includes an experimental validation of the proposed technique by employing a DS1104 dSPACE electronic board along with MATLAB/Simulink software.

  12. Modeling of rock friction 1. Experimental results and constitutive equations

    USGS Publications Warehouse

    Dieterich, J.H.

    1979-01-01

    Direct shear experiments on ground surfaces of a granodiorite from Raymond, California, at normal stresses of ??6 MPa demonstrate that competing time, displacement, and velocity effects control rock friction. It is proposed that the strength of the population of points of contacts between sliding surfaces determines frictional strength and that the population of contacts changes continuously with displacements. Previous experiments demonstrate that the strength of the contacts increases with the age of the contacts. The present experiments establish that a characteristic displacement, proportional to surface roughness, is required to change the population of contacts. Hence during slip the average age of the points of contact and therefore frictional strength decrease as slip velocity increases. Displacement weakening and consequently the potential for unstable slip occur whenever displacement reduces the average age of the contacts. In addition to this velocity dependency, which arises from displacement dependency and time dependency, the experiments also show a competing but transient increase in friction whenever slip velocity increases. Creep of the sliding surface at stresses below that for steady state slip is also observed. Constitutive relationships are developed that permit quantitative simulation of the friction versus displacement data as a function of surface roughness and for different time and velocity histories. Unstable slip in experiments is controlled by these constitutive effects and by the stiffness of the experimental system. It is argued that analogous properties control earthquake instability. Copyright ?? 1979 by the American Geophysical Union.

  13. High-fidelity AFM scanning stage based on multilayer ceramic capacitors.

    PubMed

    Chen, Jian; Zhang, Lian Sheng; Feng, Zhi Hua

    2016-05-01

    A kind of multilayer ceramic capacitors (MLCCs) has been verified to have good micro-actuating properties, thus making them good candidates for nano-positioning. In this paper, we successfully employed the MLCCs as lateral scanners for a tripod scanning stage. The MLCC-based lateral scanners display hysteresis under 1.5% and a nonlinearity less than 2% even with the simplest open-loop voltage drive. The developed scanning stage was integrated into a commercial AFM to evaluate its imaging performance. Experimental results showed that sample images with high fidelities were obtained. SCANNING 38:184-190, 2016. © 2015 Wiley Periodicals, Inc.

  14. Experimental results from a network-assisted PID controller

    SciTech Connect

    Curtiss, P.S.

    1996-11-01

    The results presented here are a continuation of studies on a neural-network-based controller. Part 1 is a summary of the previous studies, and Part 2 presents new results and offers some novel techniques used for training the network and making the entire package easier to use. The two major additions are (1) efficient use of training data for dramatically reducing memory requirements and (2) incorporation of a PID algorithm for performing control during training periods.

  15. Cantilever's behavior in the AC mode of an AFM

    SciTech Connect

    Nunes, V.B.; Zanette, S.I.; Caride, A.O.; Prioli, R.; Rivas, A.M.F

    2003-03-15

    In this paper, a model with a small number of parameters is used to simulate the motion of a cantilever in the AC mode of an atomic force microscope (AFM). The results elucidate the transition dependence-from noncontact to tapping operating mode-on the height of the contamination layer and on the stiffness of the sample.

  16. Pegasus liner stability experiments: Diagnostics and experimental results

    SciTech Connect

    Clark, D.A.; Morgan, D.V.; Rodriguez, G.

    1998-12-31

    A series of experiments to compare imploding cylindrical liner performance with Magneto-HydroDynamic (MHD) modeling has been performed at the Los Alamos National Laboratory Pegasus capacitor bank. Several configurations of aluminum liners have been used; some with initial perturbations and some smooth. Instability growth resulting from the perturbations has been observed with high resolution. Load diagnostics included radial x-rays, fiber optic impact pins, and VISAR (Velocity Interferometer for a Surface of Any Reflector). Diagnostic results and comparisons for several liner stability (LS) experiments are presented.

  17. Dense nonaqueous phase liquid tracer tests: experimental results.

    PubMed

    Burt, R A; Christians, G L; Williams, S P; Wilson, D J

    2001-12-01

    Two dense nonaqueous phase liquid (DNAPL) tracer tests were carried out in a shallow aquifer north of Fort Worth, TX. i-Propanol was used as the nonpartitioning tracer: n-hexanol and n-octanol were the partitioning tracers. Field data, mathematical modeling, the results of column tests, and field tracer tests with NaCl were used in designing the DNAPL tracer tests. The results indicated the presence of DNAPL at both sites tested; semi-quantitative estimates of the amounts of DNAPL present were obtained by mathematical modeling. Interpretation was complicated by heterogeneity of the aquifer and mass transport effects.

  18. Predictions for diffraction at the LHC compared to experimental results

    NASA Astrophysics Data System (ADS)

    Goulianos, Konstantin

    2014-04-01

    Diffractive proton-proton cross sections at the LHC, as well as the total and total-inelastic proton-proton cross sections, are predicted in a simple model obeying all unitarity constraints. The model has been implemented in the PYTHIA8-MBR event generator for single diffraction, double diffraction, and central diffraction processes. Predictions of the model are compared to recent LHC results.

  19. Joint Soviet-American experiment on hypokinesia: Experimental results

    NASA Technical Reports Server (NTRS)

    Burovskiy, N. N.

    1979-01-01

    Comprehensive results are reported from the Soviet portion of a joint Soviet-American experiment involving hypokinesia. The main emphases are on chemical analyses of blood and urine, functional tests, and examination of the cardiovascular system by electrocardiography, echocardiography, and plethysmography.

  20. Comments on experimental results of energy confinement of tokamak plasmas

    SciTech Connect

    Chu, T.K.

    1989-04-01

    The results of energy-confinement experiments on steady-state tokamak plasmas are examined. For plasmas with auxiliary heating, an analysis based on the heat diffusion equation is used to define heat confinement time (the incremental energy confinement time). For ohmically sustained plasmas, experiments show that the onset of the saturation regime of energy confinement, marfeing, detachment, and disruption are marked by distinct values of the parameter /bar n//sub e///bar j/. The confinement results of the two types of experiments can be described by a single surface in 3-dimensional space spanned by the plasma energy, the heating power, and the plasma density: the incremental energy confinement time /tau//sub inc/ = ..delta..W/..delta..P is the correct concept for describing results of heat confinement in a heating experiment; the commonly used energy confinement time defined by /tau//sub E/ = W/P is not. A further examination shows that the change of edge parameters, as characterized by the change of the effective collision frequency ..nu../sub e/*, governs the change of confinement properties. The totality of the results of tokamak experiments on energy confinement appears to support a hypothesis that energy transport is determined by the preservation of the pressure gradient scale length. 70 refs., 6 figs., 1 tab.

  1. Qualitative versus Quantitative Results: An Experimental Introduction to Data Interpretation.

    ERIC Educational Resources Information Center

    Johnson, Eric R.; Alter, Paula

    1989-01-01

    Described is an experiment in which the student can ascertain the meaning of a negative result from a qualitative test by performing a more sensitive quantitative test on the same sample. Methodology for testing urinary glucose with a spectrophotometer at 630 nm and with commercial assaying glucose strips is presented. (MVL)

  2. Hydrodynamic effects of the tip movement on surface nanobubbles: a combined tapping mode, lift mode and force volume mode AFM study.

    PubMed

    Walczyk, Wiktoria; Hain, Nicole; Schönherr, Holger

    2014-08-28

    We report on an Atomic Force Microscopy (AFM) study of AFM tip-nanobubble interactions in experiments conducted on argon surface nanobubbles on HOPG (highly oriented pyrolytic graphite) in water in tapping mode, lift mode and Force Volume (FV) mode AFM. By subsequent data acquisition on the same nanobubbles in these three different AFM modes, we could directly compare the effect of different tip-sample interactions. The tip-bubble interaction strength was found to depend on the vertical and horizontal position of the tip on the bubble with respect to the bubble center. The interaction forces measured experimentally were in good agreement with the forces calculated using the dynamic interaction model. The strength of the hydrodynamic effect was also found to depend on the direction of the tip movement. It was more pronounced in the FV mode, in which the tip approaches the bubble from the top, than in the lift mode, in which the tip approaches the bubble from the side. This result suggests that the direction of tip movement influences the bubble deformation. The effect should be taken into account when nanobubbles are analysed by AFM in various scanning modes.

  3. The behavior of delaminations in composite materials - experimental results

    NASA Astrophysics Data System (ADS)

    Chermoshentseva, A. S.; Pokrovskiy, A. M.; Bokhoeva, L. A.

    2016-02-01

    Delamination is one of the most common failure modes of composite materials. It may occur as a consequence of imperfections in the production process or the effects of external factors during the operational life of the composite laminates, such as the impact by foreign objects. This paper presents the results of mechanical tests and the optimum degrees of filling the composite materials (CM) with hydrophobic powder (Tarkosil T-20) depending on the latter mass concentration. The results present test samples of the CM with the underlying interlayer defects. The samples were fabricated of twenty-ply pre-preg (fiberglass or carbon fiber). The industrial grade glass is T-25 (VM) specification 6-11-380-76. The composite materials have nanosized additives in structure. The volume concentration of nanopowders is varying from 0.1% to 0.5%. This kind of research has been done for the first time.

  4. Design and Experimental Results for the S407 Airfoil

    DTIC Science & Technology

    2010-08-01

    the drag coefficient within the laminar bucket is nearly constant. (See, for example, ref. 7.) This characteristic is related to the elimination of...with increasing (or decreasing) lift coefficient. This feature results in a leading edge that produces a suction peak at higher lift coefficients, which...distribution should look like sketch 3. Sketch 3 No suction spike exists at the leading edge. Instead, a rounded peak occurs aft of the leading edge, which

  5. Delaminations in composite plates under transverse static loads - Experimental results

    NASA Technical Reports Server (NTRS)

    Finn, Scott R.; He, Yi-Fei; Springer, George S.

    1992-01-01

    Tests were performed measuring the damage initiation loads and the locations, shapes, and sizes of delaminations in Fiberite T300/976 graphite/epoxy, Fiberite IM7/977-2 graphite-toughened epoxy, and ICI APC-2 graphite-PEEK plates subjected to transverse static loads. The data were compared to the results of the Finn-Springer model, and good agreements were found between the measured and calculated delamination lengths and widths.

  6. Experimental results on the atmospheric muon charge ratio

    NASA Astrophysics Data System (ADS)

    Mauri, N.

    2016-07-01

    The atmospheric muon charge ratio, defined as the number of positive over negative charged muons, is a highly informative observable both for cosmic rays and particle physics. It allows studying the features of high-energy hadronic interactions in the forward region and the composition of primary cosmic rays. In this review results from underground experiments measuring the charge ratio around 1 TeV are discussed. The measurements in the TeV energy region constrain the associated kaon production, which is particularly important e.g. for the calculation of the atmospheric neutrino flux.

  7. Quark gluon plasma: Overview and experimental results from E-735

    SciTech Connect

    Turkot, F.; Alexopoulos, T.; Allen, C.; Anderson, E.W.; Areti, H.; Banerjee, S.; Beery, P.D.; Biswas, N.N.; Bujak, A.; Carmony, D.D.

    1988-12-14

    A brief review of the phenomenology associated with the effort to produce and observe quark-gluon plasma in particle collisions is presented. E-735 has taken data during the 1987 Tevatron-Collider run at /square root/s = 1.8 TeV in pursuit of this goal. Results in the correlation of < p/sub t/ > with multiplicity for charged particles and p/sub t/ distributions for ..lambda../sup o/ and /bar Lambda//sup o/ are presented. 32 refs., 10 figs., 2 tabs.

  8. Experimental results of a propeller/wing interaction study

    NASA Technical Reports Server (NTRS)

    Johnson, Robert T.; Sullivan, John P.; Witkowski, David P.

    1991-01-01

    Steady state measurements have been performed on a propellar and a wing in a tractor configuration, to investigate the consequences of mutual interference on overall performance. For certain geometries wing lift is found to be enhanced, and wing drag to be decreased. The unsteady nature of the propeller-wing aerodynamic interaction has been studied using flow visualization. Results obtained indicate that the tip vortex is severed at the wing leading edge, the severed tip vortex filaments shear in a spanwise direction relative to one another, and these displaced filaments deform to reconnect at the trailing edge.

  9. Delaminations in composite plates under transverse impact loads - Experimental results

    NASA Technical Reports Server (NTRS)

    Finn, Scott R.; He, Ye-Fei; Springer, George S.

    1993-01-01

    Tests were performed measuring the locations and geometries of delaminations in Fiberite T300/976 graphite/epoxy, Fiberite IM7/977-2 graphite-toughened epoxy, and ICI APC-2 graphite/PEEK plates subjected to transverse impact loads. The data provide specific information on the effects of impactor velocity, impactor mass, material, thickness of back ply group, difference in fiber orientation between adjacent ply groups, plate thickness, and impactor nose radius. The data were compared to the results of the Finn-Springer model. The model was found to describe the data with reasonable accuracy.

  10. Parallel and Distributed Computational Fluid Dynamics: Experimental Results and Challenges

    NASA Technical Reports Server (NTRS)

    Djomehri, Mohammad Jahed; Biswas, R.; VanderWijngaart, R.; Yarrow, M.

    2000-01-01

    This paper describes several results of parallel and distributed computing using a large scale production flow solver program. A coarse grained parallelization based on clustering of discretization grids combined with partitioning of large grids for load balancing is presented. An assessment is given of its performance on distributed and distributed-shared memory platforms using large scale scientific problems. An experiment with this solver, adapted to a Wide Area Network execution environment is presented. We also give a comparative performance assessment of computation and communication times on both the tightly and loosely-coupled machines.

  11. Experimental test accelerator: description and results of initial experiments

    SciTech Connect

    Fessenden, T.; Birx, D.; Briggs, R.

    1980-06-02

    The ETA is a high current (10,000 Amp) linear induction accelerator that produces short (30 ns) pulses of electrons at 5 MeV twice per second or in bursts of 5 pulses separated by as little as one millisecond. At this time the machine has operated at 65% of its design current and 90% of the design voltage. This report contains a description of the accelerator and its diagnostics; the results of the initial year of operation; a comparison of design codes with experiments on beam transport; and a discussion of some of the special problems and their status.

  12. Space Launch System Base Heating Test: Experimental Operations & Results

    NASA Technical Reports Server (NTRS)

    Dufrene, Aaron; Mehta, Manish; MacLean, Matthew; Seaford, Mark; Holden, Michael

    2016-01-01

    NASA's Space Launch System (SLS) uses four clustered liquid rocket engines along with two solid rocket boosters. The interaction between all six rocket exhaust plumes will produce a complex and severe thermal environment in the base of the vehicle. This work focuses on a recent 2% scale, hot-fire SLS base heating test. These base heating tests are short-duration tests executed with chamber pressures near the full-scale values with gaseous hydrogen/oxygen engines and RSRMV analogous solid propellant motors. The LENS II shock tunnel/Ludwieg tube tunnel was used at or near flight duplicated conditions up to Mach 5. Model development was based on the Space Shuttle base heating tests with several improvements including doubling of the maximum chamber pressures and duplication of freestream conditions. Test methodology and conditions are presented, and base heating results from 76 runs are reported in non-dimensional form. Regions of high heating are identified and comparisons of various configuration and conditions are highlighted. Base pressure and radiometer results are also reported.

  13. Microgravity Fluid Separation Physics: Experimental and Analytical Results

    NASA Technical Reports Server (NTRS)

    Shoemaker, J. Michael; Schrage, Dean S.

    1997-01-01

    Effective, low power, two-phase separation systems are vital for the cost-effective study and utilization of two-phase flow systems and flow physics of two-phase flows. The study of microgravity flows have the potential to reveal significant insight into the controlling mechanisms for the behavior of flows in both normal and reduced gravity environments. The microgravity environment results in a reduction in gravity induced buoyancy forces acting on the discrete phases. Thus, surface tension, viscous, and inertial forces exert an increased influence on the behavior of the flow as demonstrated by the axisymmetric flow patterns. Several space technology and operations groups have studied the flow behavior in reduced gravity since gas-liquid flows are encountered in several systems such as cabin humidity control, wastewater treatment, thermal management, and Rankine power systems.

  14. M-I-S solar cell - Theory and experimental results

    NASA Technical Reports Server (NTRS)

    Childs, R.; Fortuna, J.; Geneczko, J.; Fonash, S. J.

    1976-01-01

    The paper presents an operating-mode analysis of an MIS solar cell and discusses the advantages which can arise as a result of the use of transport control, field shaping (increased n factor), and zero bias barrier height modification. It is noted that for an n-type semiconductor, it is relatively easy to obtain an enhanced n factor using acceptor-like states without an increase in diode saturation current, the converse being true for p-type semiconductors. Several MIS configurations are examined: an acceptor-like, localized state configuration producing field shaping and no change in diode saturation current, and acceptor-like localized configurations producing field shaping, with a decrease of diode saturation current, in one case, and an increase in the other.

  15. Numerical Simulation of Micronozzles with Comparison to Experimental Results

    NASA Astrophysics Data System (ADS)

    Thornber, B.; Chesta, E.; Gloth, O.; Brandt, R.; Schwane, R.; Perigo, D.; Smith, P.

    2004-10-01

    A numerical analysis of conical micronozzle flows has been conducted using the commercial software package CFD-RC FASTRAN [13]. The numerical results have been validated by comparison with direct thrust and mass flow measurements recently performed in ESTEC Propulsion Laboratory on Polyflex Space Ltd. 10mN Cold-Gas thrusters in the frame of ESA CryoSat mission. The flow is viscous dominated, with a throat Reynolds number of 5000, and the relatively large length of the nozzle causes boundary layer effects larger than usual for nozzles of this size. This paper discusses in detail the flow physics such as boundary layer growth and structure, and the effects of rarefaction. Furthermore a number of different domain sizes and exit boundary conditions are used to determine the optimum combination of computational time and accuracy.

  16. Silicon drift detector with reduced lateral diffusion:. experimental results

    NASA Astrophysics Data System (ADS)

    Šonský, J.; Valk, H.; Huizenga, J.; Hollander, R. W.; van Eijk, C. W. E.; Sarro, P. M.

    2000-01-01

    In a standard multi-anode silicon drift detector electron cloud broadening during the drifting towards the anode pixels deteriorates the energy and position resolution. This makes the detector less applicable for detection of low-energy X-rays. The signal charge sharing between several anodes can be eliminated by introducing sawtooth-shaped p + field strips. The sawtooth structure results in small electric fields directed parallel to the sensor surface and perpendicular to the drift direction which produce gutters. The drifting electrons are confined in these gutters of one saw tooth period wide. For a detector with a sawtooth period of 500 μm, we have measured the maximum number of fully confined electrons as a function of the potential gutter depth induced by different sawtooth angles.

  17. New experimental results in atlas-based brain morphometry

    NASA Astrophysics Data System (ADS)

    Gee, James C.; Fabella, Brian A.; Fernandes, Siddharth E.; Turetsky, Bruce I.; Gur, Ruben C.; Gur, Raquel E.

    1999-05-01

    In a previous meeting, we described a computational approach to MRI morphometry, in which a spatial warp mapping a reference or atlas image into anatomic alignment with the subject is first inferred. Shape differences with respect to the atlas are then studied by calculating the pointwise Jacobian determinant for the warp, which provides a measure of the change in differential volume about a point in the reference as it transforms to its corresponding position in the subject. In this paper, the method is used to analyze sex differences in the shape and size of the corpus callosum in an ongoing study of a large population of normal controls. The preliminary results of the current analysis support findings in the literature that have observed the splenium to be larger in females than in males.

  18. Experimental Results in DIS, SIDIS and DES from Jefferson Lab

    SciTech Connect

    Sebastian Kuhn

    2011-07-01

    Jefferson Lab's electron accelerator in its present incarnation, with a maximum beam energy slightly above 6 GeV, has already enabled a large number of experiments expanding our knowledge of nucleon and nuclear structure (especially in Deep Inelastic Scattering—DIS—at moderately high x, and in the resonance region). Several pioneering experiments have yielded first results on Deeply Virtual Compton Scattering (DVCS) and other Deep Exclusive Processes (DES), and the exploration of the rich landscape of transverse momentum-dependent (TMD) structure functions using Semi-Inclusive electron scattering (SIDIS) has begun. With the upgrade of CEBAF to 12 GeV now underway, a significantly larger kinematic space will become available. The 12 GeV program taking shape will complete a detailed mapping of inclusive, TMD and generalized distribution functions for quarks, antiquarks and gluons in the valence region and beyond.

  19. Experimental Results in DIS, SIDIS and DES from Jefferson Lab

    SciTech Connect

    Kuhn, Sebastian E.

    2011-07-15

    Jefferson Lab's electron accelerator in its present incarnation, with a maximum beam energy slightly above 6 GeV, has already enabled a large number of experiments expanding our knowledge of nucleon and nuclear structure (especially in Deep Inelastic Scattering--DIS--at moderately high x, and in the resonance region). Several pioneering experiments have yielded first results on Deeply Virtual Compton Scattering (DVCS) and other Deep Exclusive Processes (DES), and the exploration of the rich landscape of transverse momentum-dependent (TMD) structure functions using Semi-Inclusive electron scattering (SIDIS) has begun. With the upgrade of CEBAF to 12 GeV now underway, a significantly larger kinematic space will become available. The 12 GeV program taking shape will complete a detailed mapping of inclusive, TMD and generalized distribution functions for quarks, antiquarks and gluons in the valence region and beyond.

  20. Shear Faulting and Adiabatic Heating: Experimental Results from Ice

    NASA Astrophysics Data System (ADS)

    Golding, N.; Schulson, E. M.; Renshaw, C. E.

    2011-12-01

    Ice exhibits two distinct modes of shear faulting (Golding et al. Acta Materialia, 2010;58:5043), namely frictional or Coulombic (C) faulting under moderate levels of confinement and non-frictional or plastic (P) faulting under high levels of confinement. The mechanisms governing C-faulting have previously been discussed in connection with the comb-crack model (Renshaw & Schulson Nature, 2001;412:897). Here we examine the physical process[es] that trigger P-faulting. Systematic experiments on laboratory grown granular and columnar polycrystalline ice loaded triaxially under a high degree of confinement at -10 oC to -40 oC at applied strain rates 10-5 s-1 to 10-1 s-1 trace the micro-mechanical evolution of P-faulting. Terminal failure is characterized by a sudden brittle-like loss in load bearing capacity, the development of a narrow shear band, comprised of recrystallized grains and oriented on a plane of maximum shear, and localized heating. Possible mechanisms considered to account for the localization include: 1) adiabatic heating, 2) localized material softening through a reduction in dislocation density caused by dynamic recrystallization and 3) a transition from power-law creep to grain-size-dependent diffusional creep as a result of grain refinement caused by dynamic recrystallization. Our results indicate that, although recrystallization develops dynamically during loading, microstructural development does not significantly affect shear localization in ice. Nor does it affect the character of the fault. The minimum levels of deformation required to generate faulting are found to be consistent with those predicted for adiabatic shear instability. The present observations suggest that under specific conditions adiabatic heating, rather than dynamic recrystallization, may lead to material instability and shear faulting.

  1. Experimental results: Pilot plant calcine dissolution and liquid feed stability

    SciTech Connect

    Herbst, R.S.; Fryer, D.S.; Brewer, K.N.; Johnson, C.K.; Todd, T.A.

    1995-02-01

    The dissolution of simulated Idaho Chemical Processing Plant pilot plant calcines, containing none of the radioactive actinides, lanthanides or fission products, was examined to evaluate the solubility of calcine matrix materials in acidic media. This study was a necessary precursor to dissolution and optimization experiments with actual radionuclide-containing calcines. The importance of temperature, nitric acid concentration, ratio of acid volume to calcine mass, and time on the amount, as a weight percentage of calcine dissolved, was evaluated. These parameters were studied for several representative pilot plant calcine types: (1) Run No. 74 Zirconia calcine; (2) Run No. 17 Zirconia/Sodium calcine; (3) Run No. 64 Zirconia/Sodium calcine; (3) Run No. 1027 Alumina calcine; and (4) Run No. 20 Alumina/Zirconia/Sodium calcine. Statistically designed experiments with the different pilot plant calcines indicated the effect of the studied process variables on the amount of calcine dissolved decreases in the order: Acid/Calcine Ratio > Temperature > HNO{sub 3} Concentration > Dissolution Time. The following conditions are suitable to achieve greater than 90 wt. % dissolution of most Zr, Al, or Na blend calcines: (1) Maximum nitric acid concentration of 5M; (2) Minimum acid/calcine ratio of 10 mL acid/1 gram calcine; (3) Minimum dissolution temperature of 90{degrees}C; and (4) Minimum dissolution time of 30 minutes. The formation of calcium sulphate (CaSO{sub 4}) precipitates was observed in certain dissolved calcine solutions during the dissolution experiments. Consequently, a study was initiated to evaluate if and under what conditions the resulting dissolved calcine solutions would be unstable with regards to precipitate formation. The results indicate that precipitate formation in the calcine solutions prepared under the above proposed dissolution conditions are not anticipated.

  2. Longitudinal variation of the equatorial ionosphere: Modeling and experimental results

    NASA Astrophysics Data System (ADS)

    Souza, J. R.; Asevedo, W. D.; dos Santos, P. C. P.; Petry, A.; Bailey, G. J.; Batista, I. S.; Abdu, M. A.

    2013-02-01

    We describe a new version of the Parameterized Regional Ionospheric Model (PARIM) which has been modified to include the longitudinal dependences. This model has been reconstructed using multidimensional Fourier series. To validate PARIM results, the South America maps of critical frequencies for the E (foE) and F (foF2) regions were compared with the values calculated by Sheffield Plasmasphere-Ionosphere Model (SUPIM) and IRI representations. PARIM presents very good results, the general characteristics of both regions, mainly the presence of the equatorial ionization anomaly, were well reproduced for equinoctial conditions of solar minimum and maximum. The values of foF2 and hmF2 recorded over Jicamarca (12°S; 77°W; dip lat. 1°N; mag. declination 0.3°) and sites of the conjugate point equatorial experiment (COPEX) campaign Boa Vista (2.8°N; 60.7°W; dip lat. 11.4°; mag. declination -13.1°), Cachimbo (9.5°S; 54.8°W; dip lat. -1.8°; mag. declination -15.5°), and Campo Grande (20.4°S; 54.6°W; dip lat. -11.1°; mag. declination -14.0°) have been used in this work. foF2 calculated by PARIM show good agreement with the observations, except during morning over Boa Vista and midnight-morning over Campo Grande. Some discrepancies were also found for the F-region peak height (hmF2) near the geomagnetic equator during times of F3 layer occurrences. IRI has underestimated both foF2 and hmF2 over equatorial and low latitude sectors during evening-nighttimes, except for Jicamarca where foF2 values were overestimated.

  3. Epidural application of ionomeric cement implants. Experimental and clinical results.

    PubMed

    Geyer, G; Baier, G; Helms, J

    1998-04-01

    During setting and hardening, the hybrid bone substitute ionomeric cement (Ionocem) achieves a stable and durable bond with the apatite of the adjacent bone without interpository soft tissue. Fluid contact during setting results in the release of aluminium ions which may reach critical levels as high as 3000 micrograms/l. On epidural application it is, therefore, essential to prevent cement constituents from gaining access to the intradural space. After the cement has hardened, the presence of aluminium is demonstrable in the adjacent bone to a maximum depth of 20 microns (EDX microanalysis). In rabbits, epidural placement of freshly mixed cement causes slight thickening of the dura. There is reason to believe that human dura, with a thickness 10 times greater, is impermeable to components of the cement. After epidural application of the freshly mixed cement in the frontobasal and laterobasal regions and at the skull cap and petrous apex, 76 patients in all have been followed for up to 6.5 years. During this period no complications have arisen and functional (and cosmetic) results are promising. The availability of preformed implants (Ionoroc, Ionocast) permitted the peridural placement of minimal quantities of freshly mixed cement. These implants were fixed to localized sites on the adjacent calvarial bone by use of Ionocem. Notwithstanding the stringent manufacturer guidelines, there have been reports in the literature that during the vulnerable stage of setting neurotoxic aluminium ions were released into the dural space with a fatal outcome in two cases. In view of potential intradural complications, such as may occur in case of dural leaks, it was considered that further application of the material adjacent to the dura was no longer warranted. The production of Ionocem was discontinued in May 1995.

  4. [Restoring fertility with frozen ovarian tissue; experimental results].

    PubMed

    Salle, Runo; Lornage, Jacqueline

    2013-01-01

    In recent decades, reproductive surgery and medicine have entered a new era of prevention. Oocyte freezing is at the heart of this new era, along with the preservation offemale fertility. Several options are being evaluated, and time will tell which one will prove most suitable for routine use. Currently, only the freezing and transplantation of ovarian tissue seems to have entered clinical practice. Animal studies demonstrated its effectiveness, with pregnancies and births in several species. These studies showed that both slow and rapid freezing (vitrification) allows the survival of more than 80 % of primordial follicles after thawing. Similar results have since been obtained in humans. Freezing allows satisfactory follicular survival Reimplantation of frozen ovarian tissue has helped to restore menstrual cycling and, more importantly, to obtain pregnancies and births, either spontaneously or by IVF This restoration of fertility offers great hopefor female patients having to confront not only their disease but also the prospect of permanent infertility. Related research has led to major advances in biology and reproductive medicine.

  5. Impact ejecta dynamics in an atmosphere - Experimental results and extrapolations

    NASA Technical Reports Server (NTRS)

    Schultz, P. H.; Gault, D. E.

    1982-01-01

    It is noted that the impacts of 0.635-cm aluminum projectiles at 6 km/sec into fine pumice dust, at 1 atm, generate a ball of ionized gas behind an expanding curtain of upward moving ejecta. The gas ball forms a toroid which dissolves as it is driven along the interior of the ejecta curtain, by contrast to near-surface explosions in which a fireball envelops early-time crater growth. High frame rate Schlieren photographs show that the atmosphere at the base of the ejecta curtain is initially turbulent, but later forms a vortex. These experiments suggest that although small size ejecta may be decelerated by air drag, they are not simply lofted and suspended but become incorporated in an ejecta cloud that is controlled by air flow which is produced by the response of the atmosphere to the impact. The extrapolation of these results to large body impacts on the earth suggests such contrasts with laboratory experiments as a large quantity of impact-generated vapor, the supersonic advance of the ejecta curtain, the lessened effect of air drag due to the tenuous upper atmosphere, and the role of secondary cratering.

  6. Bridge Testing With Ground-Based Interferometric Radar: Experimental Results

    SciTech Connect

    Chiara, P.; Morelli, A.

    2010-05-28

    The research of innovative non-contact techniques aimed at the vibration measurement of civil engineering structures (also for damage detection and structural health monitoring) is continuously directed to the optimization of measures and methods. Ground-Based Radar Interferometry (GBRI) represents the more recent technique available for static and dynamic control of structures and ground movements.Dynamic testing of bridges and buildings in operational conditions are currently performed: (a) to assess the conformity of the structure to the project design at the end of construction; (b) to identify the modal parameters (i.e. natural frequencies, mode shapes and damping ratios) and to check the variation of any modal parameters over the years; (c) to evaluate the amplitude of the structural response to special load conditions (i.e. strong winds, earthquakes, heavy railway or roadway loads). If such tests are carried out by using a non-contact technique (like GBRI), the classical issues of contact sensors (like accelerometers) are easily overtaken.This paper presents and discusses the results of various tests carried out on full-scale bridges by using a Stepped Frequency-Continuous Wave radar system.

  7. Overview of experimental results on the HL-2A tokamak

    NASA Astrophysics Data System (ADS)

    Yan, L. W.; Duan, X. R.; Ding, X. T.; Dong, J. Q.; Yang, Q. W.; Liu, Yi; Zou, X. L.; Liu, D. Q.; Xuan, W. M.; Chen, L. Y.; Rao, J.; Song, X. M.; Huang, Y.; Mao, W. C.; Wang, Q. M.; Li, Q.; Cao, Z.; Li, B.; Cao, J. Y.; Lei, G. J.; Zhang, J. H.; Li, X. D.; Chen, W.; Cheng, J.; Cui, C. H.; Cui, Z. Y.; Deng, Z. C.; Dong, Y. B.; Feng, B. B.; Gao, Q. D.; Han, X. Y.; Hong, W. Y.; Huang, M.; Ji, X. Q.; Kang, Z. H.; Kong, D. F.; Lan, T.; Li, G. S.; Li, H. J.; Li, Qing; Li, W.; Li, Y. G.; Liu, A. D.; Liu, Z. T.; Luo, C. W.; Mao, X. H.; Pan, Y. D.; Peng, J. F.; Shi, Z. B.; Song, S. D.; Song, X. Y.; Sun, H. J.; Wang, A. K.; Wang, M. X.; Wang, Y. Q.; Xiao, W. W.; Xie, Y. F.; Yao, L. H.; Yao, L. Y.; Yu, D. L.; Yuan, B. S.; Zhao, K. J.; Zhong, G. W.; Zhou, J.; Zhou, Y.; Yan, J. C.; Yu, C. X.; Pan, C. H.; Liu, Yong; HL-2A Team

    2011-09-01

    The physics experiments on the HL-2A tokamak have been focused on confinement improvement, particle and thermal transport, zonal flow and turbulence, filament characteristics, energetic particle induced modes and plasma fuelling efficiency since 2008. ELMy H-mode discharges are achieved in a lower density regime using a combination of NBI heating with ECRH. The power threshold is found to increase with a decrease in density, almost independent of the launching order of the ECRH and NBI heating power. The pedestal density profiles in the H-mode discharges are measured. The particle outward convection is observed during the pump-out transient phase with ECRH. The negative density perturbation (pump-out) is observed to propagate much faster than the positive one caused by out-gassing. The core electron thermal transport reduction triggered by far off-axis ECRH switch-off is investigated. The coexistence of low frequency zonal flow (LFZF) and geodesic acoustic mode (GAM) is observed. The dependence of the intensities of LFZFs and GAMs on the safety factor and ECRH power is identified. The 3D spatial structures of plasma filaments are measured in the boundary plasma and large-scale structures along a magnetic field line analysed for the first time. The beta-induced Alfvén eigenmodes (BAEs), excited by large magnetic islands (m-BAE) and by energetic electrons (e-BAE), are observed. The results for the study of fuelling efficiency and penetration characteristics of supersonic molecular beam injection (SMBI) are described.

  8. The experimental results and analysis of a borehole radar prototype

    NASA Astrophysics Data System (ADS)

    Liu, Sixin; Wu, Junjun; Dong, Hang; Fu, Lei; Wang, Fei

    2012-04-01

    A prototype of borehole radar has been successfully tested in three sites for different purposes under a field condition. The objective of the prototype is providing an effective down-hole tool for detecting targets in deep boreholes situated in a relatively high conductivity area such as the metal ores. The first testing site is at a geothermal field. The fractures extending more than 20 m from the borehole are delineated by the borehole radar in the single-hole reflection mode. The second testing site is located in a jade mine for basement evaluation. The cross-hole measurement mode was used to detect the cavities made by previous unorganized mining activities. Several high-velocity anomalies were found in the velocity profile and presumably the targets of the mine shafts and tunnels. The third test site is located in a mineralized belt characterized by low resistivity less than 1000 Ohm m, the surface-borehole measurement was carried out and the data were processed with velocity tomography. The low-velocity zone corresponds to a mineralized zone from geological records. The three testing results proved the readiness of this borehole radar prototype for further deployment in more complicated and realistic field situations.

  9. First experimental results on the IShTAR testbed

    SciTech Connect

    D’Inca, R.; Jacquot, J.; Ochoukov, R.; Morgal, I.; Fünfgelder, H.; Faugel, H.; Crombe, K.; Louche, F.; Van Eester, D.; Heuraux, S.; Devaux, S.; Moritz, J.; Faudot, E.; Noterdaeme, J.-M.

    2015-12-10

    IShTAR (Ion cyclotron Sheath Test ARrangement) is a linear magnetized plasma test facility dedicated to the investigation of RF wave/plasma interaction [1] in the Ion Cyclotron Range of Frequencies (ICRF). It provides a better accessibility for the instrumentation than tokamaks while being representative of the neighboring region of the wave emitter. It is equipped with a magnetized plasma source (1 m long, 0.4 m diameter) powered by a helical antenna up to 3 kW at 11 MHz. We present the results of the first analysis of the plasma characteristics (plasma density, electron temperature) in function of the operating parameters (injected power, neutral pressure and magnetic field) as measured with fixed and movable Langmuir probes, spectrometer and cameras. The plasma is presently produced only by the helical antenna (no ICRF). We show that the plasma exists in three regime depending on the power level: the first two ones are stable and separated by a jump in density; a first spatial profile of the plasma density has been established for these modes; The third mode is unstable, characterized by strong oscillations of the plasma tube position.

  10. Infrared thermography for CFRP inspection: computational model and experimental results

    NASA Astrophysics Data System (ADS)

    Fernandes, Henrique C.; Zhang, Hai; Morioka, Karen; Ibarra-Castanedo, Clemente; López, Fernando; Maldague, Xavier P. V.; Tarpani, José R.

    2016-05-01

    Infrared Thermography (IRT) is a well-known Non-destructive Testing (NDT) technique. In the last decades, it has been widely applied in several fields including inspection of composite materials (CM), specially the fiber-reinforced polymer matrix ones. Consequently, it is important to develop and improve efficient NDT techniques to inspect and assess the quality of CM parts in order to warranty airworthiness and, at the same time, reduce costs of airline companies. In this paper, active IRT is used to inspect carbon fiber-reinforced polymer (CFRP) at laminate with artificial inserts (built-in sample) placed on different layers prior to the manufacture. Two optical active IRT are used. The first is pulsed thermography (PT) which is the most widely utilized IRT technique. The second is a line-scan thermography (LST) technique: a dynamic technique, which can be employed for the inspection of materials by heating a component, line-by-line, while acquiring a series of thermograms with an infrared camera. It is especially suitable for inspection of large parts as well as complex shaped parts. A computational model developed using COMSOL Multiphysics® was used in order to simulate the inspections. Sequences obtained from PT and LST were processed using principal component thermography (PCT) for comparison. Results showed that it is possible to detect insertions of different sizes at different depths using both PT and LST IRT techniques.

  11. Experimental Results of Integrated Refrigeration and Storage System Testing

    NASA Technical Reports Server (NTRS)

    Notardonato, W. U.; Johnson, W. L.; Jumper, K.

    2009-01-01

    Launch operations engineers at the Kennedy Space Center have identified an Integrated Refrigeration and Storage system as a promising technology to reduce launch costs and enable advanced cryogenic operations. This system uses a close cycle Brayton refrigerator to remove energy from the stored cryogenic propellant. This allows for the potential of a zero loss storage and transfer system, as well and control of the state of the propellant through densification or re-liquefaction. However, the behavior of the fluid in this type of system is different than typical cryogenic behavior, and there will be a learning curve associated with its use. A 400 liter research cryostat has been designed, fabricated and delivered to KSC to test the thermo fluid behavior of liquid oxygen as energy is removed from the cryogen by a simulated DC cycle cryocooler. Results of the initial testing phase focusing on heat exchanger characterization and zero loss storage operations using liquid oxygen are presented in this paper. Future plans for testing of oxygen densification tests and oxygen liquefaction tests will also be discussed. KEYWORDS: Liquid Oxygen, Refrigeration, Storage

  12. EXPERIMENTAL RESULTS OF THE NEPHELINE PHASE III STUDY

    SciTech Connect

    Fox, K.; Edwards, T.

    2009-11-09

    This study is the third phase in a series of experiments designed to reduce conservatism in the model that predicts the formation of nepheline, a crystalline phase that can reduce the durability of high level waste glass. A Phase I study developed a series of glass compositions that were very durable while their nepheline discriminator values were well below the current nepheline discriminator limit of 0.62, where nepheline is predicted to crystallize upon slow cooling. A Phase II study selected glass compositions to identify any linear effects of composition on nepheline crystallization and that were restricted to regions that fell within the validation ranges of the Defense Waste Processing Facility (DWPF) Product Composition Control System (PCCS) models. However, it was not possible to identify any linear effects of composition on chemical durability performance for this set of study glasses. The results of the Phase II study alone were not sufficient to recommend modification of the current nepheline discriminator. It was recommended that the next series of experiments continue to focus not only on compositional regions where the PCCS models are considered applicable (i.e., the model validation ranges), but also be restricted to compositional regions where the only constraint limiting processing is the current nepheline discriminator. Two methods were used in selecting glasses for this Phase III nepheline study. The first was based on the relationship of the current nepheline discriminator model to the other DWPF PCCS models, and the second was based on theory of crystallization in mineral and glass melts. A series of 29 test glass compositions was selected for this study using a combination of the two approaches. The glasses were fabricated and characterized in the laboratory. After reviewing the data, the study glasses generally met the target compositions with little issue. Product Consistency Test results correlated well with the crystallization analyses in

  13. OPERA and MINOS Experimental Result Prove Big Bang Theory Invalid

    NASA Astrophysics Data System (ADS)

    Pressler, David E.

    2012-03-01

    The greatest error in the history of science is the misinterpretation of the Michelson-Morley Experiment. The speed of light was measured to travel at the same speed in all three directions (x, y, z axis) in ones own inertial reference system; however, c will always be measured as having an absolute different speed in all other inertial frames at different energy levels. Time slows down due to motion or a gravity field. Time is the rate of physical process. Speed = Distance/Time. If the time changes the distance must change. Therefore, BOTH mirrors must move towards the center of the interferometer and space must contract in all-three-directions; C-Space. Gravity is a C-Space condition, and is the cause of redshift in our universe-not motion. The universe is not expanding. OPERA results are directly indicated; at the surface of earth, the strength of the gravity field is at maximum-below the earth's surface, time and space is less distorted, C-Space; therefore, c is faster. Newtonian mechanics dictate that a spherical shell of matter at greater radii, with uniform density, produces no net force on an observer located centrally. An observer located on the sphere's surface, like our Earth's or a large sphere, like one located in a remote galaxy, will construct a picture centered on himself to be identical to the one centered inside the spherical shell of mass. Both observers will view the incoming radiation, emitted by the other observer, as redshifted, because they lay on each others radial line. The Universe is static and very old.

  14. Measurement of a CD and sidewall angle artifact with two-dimensional CD AFM metrology

    NASA Astrophysics Data System (ADS)

    Dixson, Ronald G.; Sullivan, Neal T.; Schneir, Jason; McWaid, Thomas H.; Tsai, Vincent W.; Prochazka, Jerry; Young, Michael

    1996-05-01

    Despite the widespread acceptance of SEM metrology in semiconductor manufacturing, there is no SEM CD standard currently available. Producing such a standard is challenging because SEM CD measurements are not only a function of the linewidth, but also dependent on the line material, sidewall roughness, sidewall angle, line height, substrate material, and the proximity of other objects. As the presence of AFM metrology in semiconductor manufacturing increases, the history of SEM CD metrology raises a number of questions about the prospect of AFM CD artifacts. Is an AFM CD artifact possible? What role would it play in the manufacturing environment? Although AFM has some important advantages over SEM, such as relative insensitivity to material differences, the throughput and reliability of most AFM instruments is not yet at the level necessary to support in-line CD metrology requirements. What, then, is the most useful relationship between AFM and SEM metrology? As a means of addressing some of these questions, we have measured the CD and sidewall angle of 1.2 micrometer oxy-nitride line on Si using three different techniques: optical microscopy (with modeling), AFM, and cross sectional TEM. Systematic errors in the AFM angle measurements were reduced by using a rotational averaging technique that we describe. We found good agreement with uncertainties below 30 nm (2 sigma) for the CD measurement and 1.0 degrees (2 sigma) for the sidewall angles. Based upon these results we suggest a measurement procedure which will yield useful AFM CD artifacts. We consider the possibility that AFMs, especially when used with suitable CD artifacts, can effectively support SEM CD metrology. This synergistic relationship between the AFM and SEM represents an emerging paradigm that has also been suggested by a number of others.

  15. Nano Mechanical Machining Using AFM Probe

    NASA Astrophysics Data System (ADS)

    Mostofa, Md. Golam

    Complex miniaturized components with high form accuracy will play key roles in the future development of many products, as they provide portability, disposability, lower material consumption in production, low power consumption during operation, lower sample requirements for testing, and higher heat transfer due to their very high surface-to-volume ratio. Given the high market demand for such micro and nano featured components, different manufacturing methods have been developed for their fabrication. Some of the common technologies in micro/nano fabrication are photolithography, electron beam lithography, X-ray lithography and other semiconductor processing techniques. Although these methods are capable of fabricating micro/nano structures with a resolution of less than a few nanometers, some of the shortcomings associated with these methods, such as high production costs for customized products, limited material choices, necessitate the development of other fabricating techniques. Micro/nano mechanical machining, such an atomic force microscope (AFM) probe based nano fabrication, has, therefore, been used to overcome some the major restrictions of the traditional processes. This technique removes material from the workpiece by engaging micro/nano size cutting tool (i.e. AFM probe) and is applicable on a wider range of materials compared to the photolithographic process. In spite of the unique benefits of nano mechanical machining, there are also some challenges with this technique, since the scale is reduced, such as size effects, burr formations, chip adhesions, fragility of tools and tool wear. Moreover, AFM based machining does not have any rotational movement, which makes fabrication of 3D features more difficult. Thus, vibration-assisted machining is introduced into AFM probe based nano mechanical machining to overcome the limitations associated with the conventional AFM probe based scratching method. Vibration-assisted machining reduced the cutting forces

  16. Contrast mechanisms on nanoscale subsurface imaging in ultrasonic AFM: scattering of ultrasonic waves and contact stiffness of the tip-sample.

    PubMed

    Sharahi, Hossein Jiryaei; Shekhawat, Gajendra; Dravid, Vinayak; Park, Simon; Egberts, Philip; Kim, Seonghwan

    2017-02-09

    Ultrasonic atomic force microscopy (AFM) and its associated derivatives are nondestructive techniques that can elucidate subsurface nanoscale structures and properties. Despite the usefulness of these techniques, the physical contrast mechanisms responsible for the reported subsurface features observed in ultrasonic AFM are not well defined. In this study, we present a comprehensive model combining ultrasonic wave scattering and tip-sample contact stiffness to better reproduce the experimentally measured phase variations over subsurface features in two model systems. These model systems represent the two extreme sample types typically imaged by ultrasonic AFM, one being a hard material and the other a soft polymeric material. The theoretical analysis presented and associated comparisons with experimental results suggest that the image contrast depends on the combination of two contrast mechanisms: the perturbation of the scattered ultrasonic waves and the local variation of the contact stiffness at the tip-sample contact. The results of this study open up a new door for the depth estimation of buried nanoscale features into hard (engineering structures) and soft (polymers and biological structures) materials, and eventually lead to non-invasive, high-resolution 3D nano-tomography by ultrasonic AFM.

  17. 3D simulation of AFM non-uniform piezoelectric micro-cantilever with various geometries subjected to the tip-sample forces

    NASA Astrophysics Data System (ADS)

    Korayem, Alireza Habibnejad; Abdi, Moein

    2017-03-01

    Atomic force microscope (AFM) is a powerful instrument for investigation of surface topography at different workspaces. It is important to understand the dynamic behavior of AFM to improve its performance. 3D numerical method is suitable in order to simulate experimental conditions. This paper has investigated modeling and dynamic simulation of rectangular, Dagger and V-shaped geometries of AFM piezoelectric micro-cantilever (MC) with two electrode layers in the air environment. For a better understanding of the system dynamic, multi-layer MC dynamic equation has been derived. Euler-Bernoulli beam theory has been used for modeling the AFM cantilever. Hamilton's principle has been used for the MC modeling and the finite element method (FEM) has been applied for its discretization. In 3D, with respect to the tip-sample forces piezoelectric MC has been simulated via the COMSOL software. The frequency and time responses have been also investigated. The topographies have been performed on different surfaces with various roughness's types in the tapping and non-contact mode. The results of these two methods have been compared with experimental results. Moreover, the effects of MC geometrical parameters on surfaces topography and frequency responses have been studied and optimal dimensions of topographies have been obtained for each of the beam geometries. Simulations of various tip geometries have been performed in order to examine the effects of tip dimensions on the frequency and time responses. Furthermore, the effect of tip displacement on the frequency response has been investigated for different MC lengths.

  18. Tissue section AFM: In situ ultrastructural imaging of native biomolecules

    PubMed Central

    Graham, Helen K.; Hodson, Nigel W.; Hoyland, Judith A.; Millward-Sadler, Sarah J.; Garrod, David; Scothern, Anthea; Griffiths, Christopher E.M.; Watson, Rachel E.B.; Cox, Thomas R.; Erler, Janine T.; Trafford, Andrew W.; Sherratt, Michael J.

    2010-01-01

    Conventional approaches for ultrastructural high-resolution imaging of biological specimens induce profound changes in bio-molecular structures. By combining tissue cryo-sectioning with non-destructive atomic force microscopy (AFM) imaging we have developed a methodology that may be applied by the non-specialist to both preserve and visualize bio-molecular structures (in particular extracellular matrix assemblies) in situ. This tissue section AFM technique is capable of: i) resolving nm–µm scale features of intra- and extracellular structures in tissue cryo-sections; ii) imaging the same tissue region before and after experimental interventions; iii) combining ultrastructural imaging with complimentary microscopical and micromechanical methods. Here, we employ this technique to: i) visualize the macro-molecular structures of unstained and unfixed fibrillar collagens (in skin, cartilage and intervertebral disc), elastic fibres (in aorta and lung), desmosomes (in nasal epithelium) and mitochondria (in heart); ii) quantify the ultrastructural effects of sequential collagenase digestion on a single elastic fibre; iii) correlate optical (auto fluorescent) with ultrastructural (AFM) images of aortic elastic lamellae. PMID:20144712

  19. Cantilever energy effects on bimodal AFM: phase and amplitude contrast of multicomponent samples

    NASA Astrophysics Data System (ADS)

    Chakraborty, Ishita; Yablon, Dalia G.

    2013-11-01

    Bimodal atomic force microscopy (AFM) is a recently developed technique of dynamic AFM where a higher eigenmode of the cantilever is simultaneously excited along with the fundamental eigenmode. The effects of different operating parameters while imaging an impact copolymer blend of polypropylene (PP) and ethylene-propylene (E-P) rubber in bimodal mode are explored through experiments and numerical simulations. The higher mode amplitude and phase contrasts between the two components of the sample reverse at different points as the free amplitude of the higher eigenmode is increased. Three different regimes are identified experimentally depending on the relative contrast between the PP and the E-P rubber. It is observed that the kinetic energy and free air drive input energy of the two cantilever eigenmodes play a role in determining the regimes of operation. Numerical simulations conducted with appropriate tip-sample interaction forces support the experimental results. An understanding of these regimes and the associated cantilever dynamics will guide a rational approach towards selecting appropriate operating parameters.

  20. Cantilever energy effects on bimodal AFM: phase and amplitude contrast of multicomponent samples.

    PubMed

    Chakraborty, Ishita; Yablon, Dalia G

    2013-11-29

    Bimodal atomic force microscopy (AFM) is a recently developed technique of dynamic AFM where a higher eigenmode of the cantilever is simultaneously excited along with the fundamental eigenmode. The effects of different operating parameters while imaging an impact copolymer blend of polypropylene (PP) and ethylene-propylene (E-P) rubber in bimodal mode are explored through experiments and numerical simulations. The higher mode amplitude and phase contrasts between the two components of the sample reverse at different points as the free amplitude of the higher eigenmode is increased. Three different regimes are identified experimentally depending on the relative contrast between the PP and the E-P rubber. It is observed that the kinetic energy and free air drive input energy of the two cantilever eigenmodes play a role in determining the regimes of operation. Numerical simulations conducted with appropriate tip-sample interaction forces support the experimental results. An understanding of these regimes and the associated cantilever dynamics will guide a rational approach towards selecting appropriate operating parameters.

  1. Solid Electrolyte/Electrode Interfaces: Atomistic Behavior Analyzed Via UHV-AFM, Surface Spectroscopies, and Computer Simulations Computational and Experimental Studies of the Cathode/Electrolyte Interface in Oxide Thin Film Batteries

    SciTech Connect

    Garofalini, Stephen H

    2012-03-21

    The goals of the research were to understand the structural, dynamic, and chemical properties of solid electrolyte surfaces and the cathode/electrolyte interface at an atomistic and nanometer level using both computational and experimental techniques.

  2. [IR/UV spectroscopic analysis of gangliosides and their microstructures of polymeric aggregates observed by AFM technique].

    PubMed

    Wang, Hai-long; Sun, Run-guang; Zhang, Jing; Hao, Chang-chun

    2009-04-01

    Gangliosides, a kind of acid glycosphingolipid containing sialic acid, plays a very important physiological role in biomembrane as one of the important components of neurocyte membrane. They were extracted from bovine brain by the Folch method and purified by silica gel and DEAE-Sephadex A-25 column chromatograph. Their molecular functional groups and microstructures of polymeric aggregates were studied by infrared spectrum (IR), ultraviolet spectrum (UV) and atomic force microscope (AFM). The experimental results indicate that: 55.2 mg of Gls from 100 g of wet bovine brain had a certain purity, 62.84%. And their UV absorption spectra appeared at 195 nm, near to the results reported by other peoples. Compared with the IR spectra of sialic acid, the experimental results showed that the structures of the products had the units of sialic acid. In order to investigate the aggregate structures of ganglioside. AFM technique was applied in water, and the results showed that gangliosides can form spherical or ellipsoidal structures in water. It was determined that the size of polymeric aggregates of gangliosides varies between 55 and 380 nm, the average size is (148.9+/-66.7) nm; the height is between 1.0 and 5.0 nm, and the average height is (3.25+/-1.01) nm. The experimental results provide a theoretical and experimental basis for investigating biological activity and the exploitation and utilization of neural drugs.

  3. AFM Manipulation of Viruses: Substrate Interactions and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Falvo, M. R.; Superfine, R.; Washburn, S.; Finch, M.; Taylor, R. M.; Chi, V.; Brooks, F. P.; Ferrari, F.; Samulski, R.

    1996-03-01

    Using an AFM tip as a manipulation tool, we have translated, rotated, and dissected individual Tobacco Mosaic Virus (TMV) and Adenovirus particles. We have implemented a teleoperation system which allows manual control of the relative tip-sample position while also allowing conventional AFM operation for imaging resulting structure. Using simple tip trajectories to bend the rod-shaped TMV, we observed a variety of resulting structures and mechanical failures. The distributed adhesive interaction between the virus and the sample surface, as well as the local tip-virus interaction affect the distortion in the shape of the virus. Experiments were performed in air as well as in liquid on graphite and Si substrates. The in-liquid experiments allow tuning of the environmental conditions, including osmolarity and pH, which are known to profoundly affect the virus structure. A continuum mechanical model relating mechanical properties to observations provides insight into the constraints for successful nondestructive manipulation.

  4. Tip Characterization Method using Multi-feature Characterizer for CD-AFM

    PubMed Central

    Orji, Ndubuisi G.; Itoh, Hiroshi; Wang, Chumei; Dixson, Ronald G.; Walecki, Peter S.; Schmidt, Sebastian W.; Irmer, Bernd

    2016-01-01

    In atomic force microscopy (AFM) metrology, the tip is a key source of uncertainty. Images taken with an AFM show a change in feature width and shape that depends on tip geometry. This geometric dilation is more pronounced when measuring features with high aspect ratios, and makes it difficult to obtain absolute dimensions. In order to accurately measure nanoscale features using an AFM, the tip dimensions should be known with a high degree of precision. We evaluate a new AFM tip characterizer, and apply it to critical dimension AFM (CD-AFM) tips used for high aspect ratio features. The characterizer is made up of comb-shaped lines and spaces, and includes a series of gratings that could be used as an integrated nanoscale length reference. We also demonstrate a simulation method that could be used to specify what range of tip sizes and shapes the characterizer can measure. Our experiments show that for non re-entrant features, the results obtained with this characterizer are consistent to 1 nm with the results obtained by using widely accepted but slower methods that are common practice in CD-AFM metrology. A validation of the integrated length standard using displacement interferometry indicates a uniformity of better than 0.75%, suggesting that the sample could be used as highly accurate and SI traceable lateral scale for the whole evaluation process. PMID:26720439

  5. Inter-species extrapolation of skin heating resulting from millimeter wave irradiation: modeling and experimental results.

    PubMed

    Nelson, D A; Walters, T J; Ryan, K L; Emerton, K B; Hurt, W D; Ziriax, J M; Johnson, L R; Mason, P A

    2003-05-01

    This study reports measurements of the skin surface temperature elevations during localized irradiation (94 GHz) of three species: rat (irradiated on lower abdomen), rhesus monkey (posterior forelimb), and human (posterior forearm). Two exposure conditions were examined: prolonged, low power density microwaves (LPM) and short-term, high power density microwaves (HPM). Temperature histories were compared with calculations from a bio-heat transfer model. The mean peak surface temperature increase was approximately 7.0 degrees C for the short-term HPM exposures for all three species/locations, and 8.5 degrees C (monkey, human) to 10.5 degrees C (rat) for the longer-duration LPM exposures. The HPM temperature histories are in close agreement with a one-dimensional conduction heat transfer model with negligible blood flow. The LPM temperature histories were compared with calculations from the bio-heat model, evaluated for various (constant) blood flow rates. Results suggest a variable blood flow model, reflecting a dynamic thermoregulatory response, may be more suited to describing skin surface temperature response under long-duration MMW irradiation.

  6. Conductance of AFM Deformed Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexei; Maiti, Amitesh; Anatram, M. P.; Biegel, Bryan (Technical Monitor)

    2002-01-01

    This viewgraph presentation provides information on the electrical conductivity of carbon nanotubes upon deformation by atomic force microscopy (AFM). The density of states and conductance were computed using four orbital tight-binding method with various parameterizations. Different chiralities develop bandgap that varies with chirality.

  7. Contact nanomechanical measurements with the AFM

    NASA Astrophysics Data System (ADS)

    Geisse, Nicholas

    2013-03-01

    The atomic force microscope (AFM) has found broad use in the biological sciences largely due to its ability to make measurements on unfixed and unstained samples under liquid. In addition to imaging at multiple spatial scales ranging from micro- to nanometer, AFMs are commonly used as nanomechanical probes. This is pertinent for cell biology, as it has been demonstrated that the geometrical and mechanical properties of the extracellular microenvironment are important in such processes as cancer, cardiovascular disease, muscular dystrophy, and even the control of cell life and death. Indeed, the ability to control and quantify these external geometrical and mechanical parameters arises as a key issue in the field. Because AFM can quantitatively measure the mechanical properties of various biological samples, novel insights to cell function and to cell-substrate interactions are now possible. As the application of AFM to these types of problems is widened, it is important to understand the performance envelope of the technique and its associated data analyses. This talk will discuss the important issues that must be considered when mechanical models are applied to real-world data. Examples of the effect of different model assumptions on our understanding of the measured material properties will be shown. Furthermore, specific examples of the importance of mechanical stimuli and the micromechanical environment to the structure and function of biological materials will be presented.

  8. AFM nanoscale indentation in air of polymeric and hybrid materials with highly different stiffness

    NASA Astrophysics Data System (ADS)

    Suriano, Raffaella; Credi, Caterina; Levi, Marinella; Turri, Stefano

    2014-08-01

    In this study, nanomechanical properties of a variety of polymeric materials was investigated by means of AFM. In particular, selecting different AFM probes, poly(methyl methacrylate) (PMMA), polydimethylsiloxane (PDMS) bulk samples, sol-gel hybrid thin films and hydrated hyaluronic acid hydrogels were indented in air to determine the elastic modulus. The force-distance curves and the indentation data were found to be greatly affected by the cantilever stiffness and by tip geometry. AFM indentation tests show that the choice of the cantilever spring constant and of tip shape is crucially influenced by elastic properties of samples. When adhesion-dominated interactions occur between the tip and the surface of samples, force-displacement curves reveal that a suitable functionalization of AFM probes allows the control of such interactions and the extraction of Young' modulus from AFM curves that would be otherwise unfeasible. By applying different mathematical models depending on AFM probes and materials under investigation, the values of Young's modulus were obtained and compared to those measured by rheological and dynamic mechanical analysis or to literature data. Our results show that a wide range of elastic moduli (10 kPa-10 GPa) can be determined by AFM in good agreement with those measured by conventional macroscopic measurements.

  9. Wetting properties of AFM probes by means of contact angle measurement

    NASA Astrophysics Data System (ADS)

    Tao, Zhenhua; Bhushan, Bharat

    2006-09-01

    An atomic force microscopy (AFM) based technique was developed to measure the wetting properties of probe tips. By advancing and receding the AFM tip across the water surface, the meniscus force between the tip and the liquid was measured at the tip-water separation. The water contact angle was determined from the meniscus force. The obtained contact angle results were compared with that by the sessile drop method. It was found that the AFM based technique provided higher contact angle values than the sessile drop method. The mechanisms responsible for the difference are discussed.

  10. Quantitative nano-mechanics of biological cells with AFM

    NASA Astrophysics Data System (ADS)

    Sokolov, Igor

    2013-03-01

    The importance of study of living cells is hard to overestimate. Cell mechanics is a relatively young, yet not a well-developed area. Besides just a fundamental interest, large practical need has emerged to measure cell mechanics quantitatively. Recent studies revealed a significant correlation between stiffness of biological cells and various human diseases, such as cancer, malaria, arthritis, and even aging. However, really quantitative studies of mechanics of biological cells are virtually absent. It is not even clear if the cell, being a complex and heterogeneous object, can be described by the elastic modulus at all. Atomic force microscopy (AFM) is a natural instrument to study properties of cells in their native environments. Here we will demonstrate that quantitative measurements of elastic modulus of cells with AFM are possible. Specifically, we will show that the ``cell body'' (cell without ``brush'' surface layer, a non-elastic layer surrounding cells) typically demonstrates the response of a homogeneous elastic medium up to the deformation of 10-20%, but if and only if a) the cellular brush layer is taken into account, b) rather dull AFM probes are used. This will be justified with the help of the strong condition of elastic behavior of material: the elastic modulus is shown to be independent on the indentation depth. We will also demonstrate that an attempt either to ignore the brush layer or to use sharp AFM probes will result in the violation of the strong condition, which implies impossibility to use the concept of the elastic modulus to describe cell mechanics in such experiments. Examples of quantitative measurements of the Young's modulus of the cell body and the cell brush parameters will be given for various cells. Address when submitting: Clarkson University, Potsdam, NY 13699

  11. Surface Microstructure of Mo(C)N Coatings Investigated by AFM

    NASA Astrophysics Data System (ADS)

    Kuznetsova, T.; Zubar, T.; Chizhik, S.; Gilewicz, A.; Lupicka, O.; Warcholinski, B.

    2016-12-01

    MoCN coatings have been formed by cathodic arc evaporation using the mixture of acetylene and nitrogen and pure molybdenum target. The surface structure, in conjunction with x-ray data, was analyzed by atomic force microscopy (AFM). The AFM results show differently shaped grain forms on the surface of coatings investigated. The increase in carbon in chemical coatings composition results in the reduction in surface grain size and the increase in roughness of the coatings.

  12. Using XAFS, EDAX and AFM in comparative study of various natural and synthetic emeralds

    NASA Astrophysics Data System (ADS)

    Parikh, P.; Saini, N. L.; Dalela, S.; Bhardwaj, D. M.; Fernandes, S.; Gupta, R. P.; Garg, K. B.

    2003-01-01

    We have performed XAFS, EDAX and AFM studies on some natural and synthetic emeralds. While the XAFS results yield information on changes in the valence of the Cr ion and the n-n distance the AFM is used to determine the areal atomic density on surface of the crystals. It is a pilot study to explore if the three techniques can offer a possible way of distinguishing between the natural and synthetic emeralds and the results are promising.

  13. Near-Field Spectroscopy with Nanoparticles Deposited by AFM

    NASA Technical Reports Server (NTRS)

    Anderson, Mark S.

    2008-01-01

    An alternative approach to apertureless near-field optical spectroscopy involving an atomic-force microscope (AFM) entails less complexity of equipment than does a prior approach. The alternative approach has been demonstrated to be applicable to apertureless near-field optical spectroscopy of the type using an AFM and surface enhanced Raman scattering (SERS), and is expected to be equally applicable in cases in which infrared or fluorescence spectroscopy is used. Apertureless near-field optical spectroscopy is a means of performing spatially resolved analyses of chemical compositions of surface regions of nanostructured materials. In apertureless near-field spectroscopy, it is common practice to utilize nanostructured probe tips or nanoparticles (usually of gold) having shapes and dimensions chosen to exploit plasmon resonances so as to increase spectroscopic-signal strengths. To implement the particular prior approach to which the present approach is an alternative, it is necessary to integrate a Raman spectrometer with an AFM and to utilize a special SERS-active probe tip. The resulting instrumentation system is complex, and the tasks of designing and constructing the system and using the system to acquire spectro-chemical information from nanometer-scale regions on a surface are correspondingly demanding.

  14. Nanoscale Nucleosome Dynamics Assessed with Time-lapse AFM

    PubMed Central

    Lyubchenko, Yuri L.

    2013-01-01

    A fundamental challenge associated with chromosomal gene regulation is accessibility of DNA within nucleosomes. Recent studies performed by various techniques, including single-molecule approaches, led to the realization that nucleosomes are dynamic structures rather than static systems, as it was once believed. Direct data is required in order to understand the dynamics of nucleosomes more clearly and answer fundamental questions, including: What is the range of nucleosome dynamics? Does a non-ATP dependent unwrapping process of nucleosomes exist? What are the factors facilitating the large scale opening and unwrapping of nucleosomes? This review summarizes the results of nucleosome dynamics obtained with time-lapse AFM, including a high-speed version (HS-AFM) capable of visualizing molecular dynamics on the millisecond time scale. With HS-AFM, the dynamics of nucleosomes at a sub-second time scale was observed allowing one to visualize various pathways of nucleosome dynamics, such as sliding and unwrapping, including complete dissociation. Overall, these findings reveal new insights into the dynamics of nucleosomes and the novel mechanisms controlling spontaneous chromatin dynamics. PMID:24839467

  15. AFM Studies on Liquid Superlubricity between Silica Surfaces Achieved with Surfactant Micelles.

    PubMed

    Li, Jinjin; Zhang, Chenhui; Cheng, Peng; Chen, Xinchun; Wang, Weiqi; Luo, Jianbin

    2016-06-07

    By using atomic force microscopy (AFM), we showed that the liquid superlubricity with a superlow friction coefficient of 0.0007 can be achieved between two silica surfaces lubricated by hexadecyltrimethylammonium bromide (C16TAB) solution. There exists a critical load that the lubrication state translates from superlow friction to high friction reversibly. To analyze the superlow friction mechanism and the factors influencing the critical load, we used AFM to measure the structure of adsorbed C16TAB molecules and the normal force between two silica surfaces. Experimental results indicate that the C16TAB molecules are firmly adsorbed on the two silica surfaces by electrostatic interaction, forming cylinder-like micelles. Meanwhile, the positively charged headgroups exposed to solution produce the hydration and double layer repulsion to bear the applied load. By controlling the concentration of C16TAB solution, it is confirmed that the critical load of superlow friction is determined by the maximal normal force produced by the hydration layer. Finally, the superlow friction mechanism was proposed that the adsorbed micellar layer forms the hydration layer, making the two friction surfaces be in the repulsive region and meanwhile providing excellent fluidity without adhesion between micelles.

  16. Nanogap based graphene coated AFM tips with high spatial resolution, conductivity and durability.

    PubMed

    Lanza, Mario; Gao, Teng; Yin, Zixuan; Zhang, Yanfeng; Liu, Zhongfan; Tong, Yuzhen; Shen, Ziyong; Duan, Huiling

    2013-11-21

    After one decade of analyzing the intrinsic properties of graphene, interest into the development of graphene-based devices and micro electromechanical systems is increasing. Here, we fabricate graphene-coated atomic force microscope tips by growing the graphene on copper foil and transferring it onto the apex of a commercially available AFM tip. The resulting tip exhibits surprising enhanced resolution in nanoscale electrical measurements. By means of topographic AFM maps and statistical analyses we determine that this superior performance may be related to the presence of a nanogap between the graphene and the tip apex, which reduces the tip radius and tip-sample contact area. In addition, the graphene-coated tips show a low tip-sample interaction, high conductivity and long life times. The novel fabrication-friendly tip could improve the quality and reliability of AFM experiments, while reducing the cost of AFM-based research.

  17. Quantitative Measurements of Elastic Properties with Ultrasonic-Based AFM and Conventional Techniques

    NASA Astrophysics Data System (ADS)

    Hurley, D. C.

    A prime motivation for the original development of ultrasonic-based AFM methods was to enable measurements of elastic properties with nanoscale spatial resolution. In this chapter, we discuss the quantitative measurement of elastic modulus with ultrasonic-based AFM methods and compare it to measurement by more conventional or established techniques. First, we present the basic principles of modulus measurement with methods that involve contact resonance spectroscopy, such as atomic force acoustic microscopy (AFAM) and ultrasonic AFM (U-AFM). Fundamental concepts of modulus measurement with more established approaches, especially instrumented (nano-) indentation (NI) and surface acoustic wave spectroscopy (SAWS), are then discussed. We consider the relative strengths and limitations of various approaches, for example measurement accuracy, spatial resolution, and applicability to different materials. Example results for specific material systems are given with an emphasis on studies involving direct intercomparison of different techniques. Finally, current research in this area and opportunities for future work are described.

  18. Nanomechanics of Yeast Surfaces Revealed by AFM

    NASA Astrophysics Data System (ADS)

    Dague, Etienne; Beaussart, Audrey; Alsteens, David

    Despite the large and well-documented characterization of the microbial cell wall in terms of chemical composition, the determination of the mechanical properties of surface molecules in relation to their function remains a key challenge in cell biology.The emergence of powerful tools allowing molecular manipulations has already revolutionized our understanding of the surface properties of fungal cells. At the frontier between nanophysics and molecular biology, atomic force microscopy (AFM), and more specifically single-molecule force spectroscopy (SMFS), has strongly contributed to our current knowledge of the cell wall organization and nanomechanical properties. However, due to the complexity of the technique, measurements on live cells are still at their infancy.In this chapter, we describe the cell wall composition and recapitulate the principles of AFM as well as the main current methodologies used to perform AFM measurements on live cells, including sample immobilization and tip functionalization.The current status of the progress in probing nanomechanics of the yeast surface is illustrated through three recent breakthrough studies. Determination of the cell wall nanostructure and elasticity is presented through two examples: the mechanical response of mannoproteins from brewing yeasts and elasticity measurements on lacking polysaccharide mutant strains. Additionally, an elegant study on force-induced unfolding and clustering of adhesion proteins located at the cell surface is also presented.

  19. Experimental results from CERN on reaction mechanisms in high energy heavy ion collisions

    SciTech Connect

    Sorensen, S.P. Tennessee Univ., Knoxville, TN . Dept. of Physics)

    1990-01-01

    Three main experimental results from CERN concerning reaction mechanisms in high energy heavy ion collisions are discussed: (1) the striking validity of the single particle picture, (2) the nuclear stopping power and (3) the attained energy densities.

  20. Effect of AFM probe geometry on visco-hyperelastic characterization of soft materials

    NASA Astrophysics Data System (ADS)

    Boccaccio, Antonio; Lamberti, Luciano; Papi, Massimiliano; De Spirito, Marco; Pappalettere, Carmine

    2015-08-01

    Atomic force microscopy (AFM) nanoindentation is very suited for nano- and microscale mechanical characterization of soft materials. Although the structural response of polymeric networks that form soft matter depends on viscous effects caused by the relative slippage of polymeric chains, the usual assumption made in the AFM-based characterization is that the specimen behaves as a purely elastic material and viscous forces are negligible. However, for each geometric configuration of the AFM tip, there will be a limit indentation rate above which viscous effects must be taken into account to correctly determine mechanical properties. A parametric finite element study conducted on 12 geometric configurations of a blunt cone AFM tip (overall, the study included about 200 finite element analyses) allowed us to determine the limit indentation rate for each configuration. The selected tip dimensions cover commercially available products and account for changes in tip geometry caused by serial measurements. Nanoindentation rates cover typical experimental conditions set in AFM bio-measurements on soft matter. Viscous effects appear to be more significant in the case of sharper tips. This implies that, if quantitative data on sample viscosity are not available, using a rounded indenter and carrying out experiments below the limit indentation rate will allow errors in the determination of mechanical properties to be minimized.

  1. Multiparametric high-resolution imaging of native proteins by force-distance curve-based AFM.

    PubMed

    Pfreundschuh, Moritz; Martinez-Martin, David; Mulvihill, Estefania; Wegmann, Susanne; Muller, Daniel J

    2014-05-01

    A current challenge in the life sciences is to understand how the properties of individual molecular machines adjust in order to meet the functional requirements of the cell. Recent developments in force-distance (FD) curve-based atomic force microscopy (FD-based AFM) enable researchers to combine sub-nanometer imaging with quantitative mapping of physical, chemical and biological properties. Here we present a protocol to apply FD-based AFM to the multiparametric imaging of native proteins under physiological conditions. We describe procedures for experimental FD-based AFM setup, high-resolution imaging of proteins in the native unperturbed state with simultaneous quantitative mapping of multiple parameters, and data interpretation and analysis. The protocol, which can be completed in 1-3 d, enables researchers to image proteins and protein complexes in the native unperturbed state and to simultaneously map their biophysical and biochemical properties at sub-nanometer resolution.

  2. Experimental and computational results from a large low-speed centrifugal impeller

    NASA Technical Reports Server (NTRS)

    Hathaway, M. D.; Chriss, R. M.; Wood, J. R.; Strazisar, A. J.

    1993-01-01

    An experimental and computational investigation of the NASA Low-Speed Centrifugal Compressor (LSCC) flow field has been conducted using laser anemometry and Dawes' 3D viscous code. The experimental configuration consists of a backswept impeller followed by a vaneless diffuser. Measurements of the three-dimensional velocity field were acquired at several measurement planes through the compressor. The measurements describe both the throughflow and secondary velocity field along each measurement plane and in several cases provide details of the flow within the blade boundary layers. The experimental and computational results provide a clear understanding of the development of the throughflow momentum wake which is characteristic of centrifugal compressors.

  3. Experimental study of tilting-pad journal bearings - Comparison with theoretical thermoelastohydrodynamic results

    NASA Astrophysics Data System (ADS)

    Fillon, Michel; Bligoud, Jean-Claude; Frene, Jean

    1992-07-01

    Operating characteristics of four-shoe tilting-pad journal bearings of 100 mm diameter and 70 mm length are determined on an experimental device. The load, between pad configuration, varies from 0 to 10,000 N and the rotational speed is up to 4000 rpm. Forty thermocouples are used in order to measure bearing element temperatures (babbitt, shaft, housing and oil baths). The influence of operating conditions and preload ratio on bearing performances are studied. Comparison between theoretical and experimental results is presented. The theoretical model is also performed on a large tilting-pad journal bearing which was investigated experimentally by other authors.

  4. The Advancing State of AF-M315E Technology

    NASA Technical Reports Server (NTRS)

    Masse, Robert; Spores, Ronald A.; McLean, Chris

    2014-01-01

    The culmination of twenty years of applied research in hydroxyl ammonium nitrate (HAN)-based monopropellants, the NASA Space Technology mission Directorate's (STMD) Green Propellant Infusion Mission (GPIM) will achieve the first on-orbit demonstration of an operational AF-M315E green propellant propulsion system by the end of 2015. Following an contextual overview of the completed flight design of the GPIM propellant storage and feed system, results of first operation of a flight-representative heavyweight 20-N engineering model thruster (to be conducted in mid-2014) are presented with performance comparisons to prior lab model (heavyweight) test articles.

  5. BOREAS AFM-6 Surface Meteorological Data

    NASA Technical Reports Server (NTRS)

    Wilczak, James; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-6 team from the National Oceanic and Atmospheric Adminsitration/Environment Technology Laboratory (NOAA/ETL) collected surface meteorological data from 21 May to 20 Sep 1994 near the Southern Study Area-Old Jack Pine (SSA-OJP) tower site. The data are in tabular ASCII files. The surface meteorological data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  6. Psychoneuroimmunology: an interpretation of experimental and case study evidence towards a paradigm for predictable results.

    PubMed

    Kalt, H W

    2000-07-01

    This paper surveys a number of key experiments and case studies relating to psychoneuroimmunology. It finds that most techniques to influence or even direct the immune system via the mind fall into a series of theoretical categories called passive, active and targeted effects. By examining the results of experiments and studies in the light of these categories a number of important conclusions are drawn. These conclusions explain differences in experimental results, describe those variables that appear to be central to obtaining results, and describe in detail where experimentation should be concentrated to further knowledge of psychoneuroimmunology.

  7. DoSSiER: Database of scientific simulation and experimental results

    SciTech Connect

    Wenzel, Hans; Yarba, Julia; Genser, Krzystof; Elvira, Daniel; Pokorski, Witold; Carminati, Federico; Konstantinov, Dmitri; Ribon, Alberto; Folger, Gunter; Dotti, Andrea

    2016-08-01

    The Geant4, GeantV and GENIE collaborations regularly perform validation and regression tests for simulation results. DoSSiER (Database of Scientific Simulation and Experimental Results) is being developed as a central repository to store the simulation results as well as the experimental data used for validation. DoSSiER can be easily accessed via a web application. In addition, a web service allows for programmatic access to the repository to extract records in json or xml exchange formats. In this paper, we describe the functionality and the current status of various components of DoSSiER as well as the technology choices we made.

  8. Bubble colloidal AFM probes formed from ultrasonically generated bubbles.

    PubMed

    Vakarelski, Ivan U; Lee, Judy; Dagastine, Raymond R; Chan, Derek Y C; Stevens, Geoffrey W; Grieser, Franz

    2008-02-05

    Here we introduce a simple and effective experimental approach to measuring the interaction forces between two small bubbles (approximately 80-140 microm) in aqueous solution during controlled collisions on the scale of micrometers to nanometers. The colloidal probe technique using atomic force microscopy (AFM) was extended to measure interaction forces between a cantilever-attached bubble and surface-attached bubbles of various sizes. By using an ultrasonic source, we generated numerous small bubbles on a mildly hydrophobic surface of a glass slide. A single bubble picked up with a strongly hydrophobized V-shaped cantilever was used as the colloidal probe. Sample force measurements were used to evaluate the pure water bubble cleanliness and the general consistency of the measurements.

  9. Experimental Results with Airfoils Tested in the High-speed Tunnel at Guidonia

    NASA Technical Reports Server (NTRS)

    Ferri, Antonio

    1940-01-01

    The results are presented of a triple series of tests using force measurements, pressure-distribution measurements, and air flow photographs on airfoil sections suitably selected so that comparison could be made between the experimental and theoretical results. The comparison with existing theory is followed by a discussion of the divergences found, and an attempt is made to find their explanation.

  10. AFM Structural Characterization of Drinking Water Biofilm ...

    EPA Pesticide Factsheets

    Due to the complexity of mixed culture drinking water biofilm, direct visual observation under in situ conditions has been challenging. In this study, atomic force microscopy (AFM) revealed the three dimensional morphology and arrangement of drinking water relevant biofilm in air and aqueous solution. Operating parameters were optimized to improve imaging of structural details for a mature biofilm in liquid. By using a soft cantilever (0.03 N/m) and slow scan rate (0.5 Hz), biofilm and individual bacterial cell’s structural topography were resolved and continuously imaged in liquid without loss of spatial resolution or sample damage. The developed methodology will allow future in situ investigations to temporally monitor mixed culture drinking water biofilm structural changes during disinfection treatments. Due to the complexity of mixed culture drinking water biofilm, direct visual observation under in situ conditions has been challenging. In this study, atomic force microscopy (AFM) revealed the three dimensional morphology and arrangement of drinking water relevant biofilm in air and aqueous solution. Operating parameters were optimized to improve imaging of structural details for a mature biofilm in liquid. By using a soft cantilever (0.03 N/m) and slow scan rate (0.5 Hz), biofilm and individual bacterial cell’s structural topography were resolved and continuously imaged in liquid without loss of spatial resolution or sample damage. The developed methodo

  11. Parametric Evaluation of Absorption Losses and Comparison of Numerical Results to Boeing 707 Aircraft Experimental HIRF Results

    NASA Astrophysics Data System (ADS)

    Kitaygorsky, J.; Amburgey, C.; Elliott, J. R.; Fisher, R.; Perala, R. A.

    A broadband (100 MHz-1.2 GHz) plane wave electric field source was used to evaluate electric field penetration inside a simplified Boeing 707 aircraft model with a finite-difference time-domain (FDTD) method using EMA3D. The role of absorption losses inside the simplified aircraft was investigated. It was found that, in this frequency range, none of the cavities inside the Boeing 707 model are truly reverberant when frequency stirring is applied, and a purely statistical electromagnetics approach cannot be used to predict or analyze the field penetration or shielding effectiveness (SE). Thus it was our goal to attempt to understand the nature of losses in such a quasi-statistical environment by adding various numbers of absorbing objects inside the simplified aircraft and evaluating the SE, decay-time constant τ, and quality factor Q. We then compare our numerical results with experimental results obtained by D. Mark Johnson et al. on a decommissioned Boeing 707 aircraft.

  12. Preliminary Experimental Results on Controlled Cardiac Computed Tomography: A Phantom Study

    PubMed Central

    Lu, Yang; Cai, Zhijun; Wang, Ge; Zhao, Jun; Bai, Er-Wei

    2010-01-01

    In this paper, we present the preliminary experimental results on controlled cardiac computed tomography (CT), which aims to reduce the motion artifacts by means of controlling the x-ray source rotation speed. An innovative cardiac phantom enables us to perform this experiment without modifying the scanner. It is the first experiment on the cardiac CT with speed controlled x-ray source. Experimental results demonstrate that the proposed method successfully separates the phantom images at different phases (improve the temporal resolution) though controlling the x-ray speed. PMID:19696470

  13. Negative refraction and lensing at visible wavelength: experimental results using a waveguide array.

    PubMed

    Ferrari, José A; Frins, Erna

    2011-07-04

    Experimental results showing "negative refraction" and some kind of "lensing" -in the microwave-infrared range- are often presented in the literature as undisputable evidence of the existence of composite left-handed materials. The purpose of this paper is to present experimental results on "negative refraction" and "lensing" at visible wavelengths involving a waveguide array formed by a tight-packed bundle of glass fibers. We will demonstrate that the observed phenomena are not necessarily evidence of the existence of left-handed materials and that they can be fully explained by classical optic concepts, e.g. light propagation in waveguides.

  14. Laser induced deflection technique for absolute thin film absorption measurement: optimized concepts and experimental results

    SciTech Connect

    Muehlig, Christian; Kufert, Siegfried; Bublitz, Simon; Speck, Uwe

    2011-03-20

    Using experimental results and numerical simulations, two measuring concepts of the laser induced deflection (LID) technique are introduced and optimized for absolute thin film absorption measurements from deep ultraviolet to IR wavelengths. For transparent optical coatings, a particular probe beam deflection direction allows the absorption measurement with virtually no influence of the substrate absorption, yielding improved accuracy compared to the common techniques of separating bulk and coating absorption. For high-reflection coatings, where substrate absorption contributions are negligible, a different probe beam deflection is chosen to achieve a better signal-to-noise ratio. Various experimental results for the two different measurement concepts are presented.

  15. Charge injection in thin dielectric layers by atomic force microscopy: influence of geometry and material work function of the AFM tip on the injection process

    NASA Astrophysics Data System (ADS)

    Villeneuve-Faure, C.; Makasheva, K.; Boudou, L.; Teyssedre, G.

    2016-06-01

    Charge injection and retention in thin dielectric layers remain critical issues for the reliability of many electronic devices because of their association with a large number of failure mechanisms. To overcome this drawback, a deep understanding of the mechanisms leading to charge injection close to the injection area is needed. Even though the charge injection is extensively studied and reported in the literature to characterize the charge storage capability of dielectric materials, questions about charge injection mechanisms when using atomic force microscopy (AFM) remain open. In this paper, a thorough study of charge injection by using AFM in thin plasma-processed amorphous silicon oxynitride layers with properties close to that of thermal silica layers is presented. The study considers the impact of applied voltage polarity, work function of the AFM tip coating and tip curvature radius. A simple theoretical model was developed and used to analyze the obtained experimental results. The electric field distribution is computed as a function of tip geometry. The obtained experimental results highlight that after injection in the dielectric layer the charge lateral spreading is mainly controlled by the radial electric field component independently of the carrier polarity. The injected charge density is influenced by the nature of electrode metal coating (work function) and its geometry (tip curvature radius). The electron injection is mainly ruled by the Schottky injection barrier through the field electron emission mechanism enhanced by thermionic electron emission. The hole injection mechanism seems to differ from the electron one depending on the work function of the metal coating. Based on the performed analysis, it is suggested that for hole injection by AFM, pinning of the metal Fermi level with the metal-induced gap states in the studied silicon oxynitride layers starts playing a role in the injection mechanisms.

  16. Application of an Unstructured Grid Navier-Stokes Solver to a Generic Helicopter Boby: Comparison of Unstructured Grid Results with Structured Grid Results and Experimental Results

    NASA Technical Reports Server (NTRS)

    Mineck, Raymond E.

    1999-01-01

    An unstructured-grid Navier-Stokes solver was used to predict the surface pressure distribution, the off-body flow field, the surface flow pattern, and integrated lift and drag coefficients on the ROBIN configuration (a generic helicopter) without a rotor at four angles of attack. The results are compared to those predicted by two structured- grid Navier-Stokes solvers and to experimental surface pressure distributions. The surface pressure distributions from the unstructured-grid Navier-Stokes solver are in good agreement with the results from the structured-grid Navier-Stokes solvers. Agreement with the experimental pressure coefficients is good over the forward portion of the body. However, agreement is poor on the lower portion of the mid-section of the body. Comparison of the predicted surface flow patterns showed similar regions of separated flow. Predicted lift and drag coefficients were in fair agreement with each other.

  17. Electromagnetic Vortex-Based Radar Imaging Using a Single Receiving Antenna: Theory and Experimental Results.

    PubMed

    Yuan, Tiezhu; Wang, Hongqiang; Cheng, Yongqiang; Qin, Yuliang

    2017-03-19

    Radar imaging based on electromagnetic vortex can achieve azimuth resolution without relative motion. The present paper investigates this imaging technique with the use of a single receiving antenna through theoretical analysis and experimental results. Compared with the use of multiple receiving antennas, the echoes from a single receiver cannot be used directly for image reconstruction using Fourier method. The reason is revealed by using the point spread function. An additional phase is compensated for each mode before imaging process based on the array parameters and the elevation of the targets. A proof-of-concept imaging system based on a circular phased array is created, and imaging experiments of corner-reflector targets are performed in an anechoic chamber. The azimuthal image is reconstructed by the use of Fourier transform and spectral estimation methods. The azimuth resolution of the two methods is analyzed and compared through experimental data. The experimental results verify the principle of azimuth resolution and the proposed phase compensation method.

  18. Single-Molecule Studies of Integrins by AFM-Based Force Spectroscopy on Living Cells

    NASA Astrophysics Data System (ADS)

    Eibl, Robert H.

    The characterization of cell adhesion between two living cells at the single-molecule level, i.e., between one adhesion receptor and its counter-receptor, appears to be an experimental challenge. Atomic force microscopy (AFM) can be used in its force spectroscopy mode to determine unbinding forces of a single pair of adhesion receptors, even with a living cell as a probe. This chapter provides an overview of AFM force measurements of the integrin family of cell adhesion receptors and their ligands. A focus is given to major integrins expressed on leukocytes, such as lymphocyte function-associated antigen 1 (LFA-1) and very late antigen 4 (VLA-4). These receptors are crucial for leukocyte trafficking in health and disease. LFA-1 and VLA-1 can be activated within the bloodstream from a low-affinity to a high-affinity receptor by chemokines in order to adhere strongly to the vessel wall before the receptor-bearing leukocytes extravasate. The experimental considerations needed to provide near-physiological conditions for a living cell and to be able to measure adequate forces at the single-molecule level are discussed in detail. AFM technology has been developed into a modern and extremely sensitive tool in biomedical research. It appears now that AFM force spectroscopy could enter, within a few years, medical applications in diagnosis and therapy of cancer and autoimmune diseases.

  19. Photon Detection with Cooled Avalanche Photodiodes: Theory and Preliminary Experimental Results

    NASA Technical Reports Server (NTRS)

    Robinson, D. L.; Hays, D. A.

    1985-01-01

    Avalanche photodiodes (APDs) can be operated in a geiger-tube mode so that they can respond to single electron events and thus be used as photon counting detectors. Operational characteristics and theory of APDs while used in this mode are analyzed and assessed. Preliminary experimental investigation of several commercially available APDs has commenced, and initial results for dark count statistics are presented.

  20. At Odds: Reconciling Experimental and Theoretical Results in High School Physics

    ERIC Educational Resources Information Center

    Gates, Joshua

    2009-01-01

    For this experiment, students are divided into 2 groups and presented with a static equilibrium force-balance problem to solve. One group works entirely experimentally and the other group theoretically, using Newton's laws. The groups present their seemingly dissimilar results and must reconcile them through discussion. (Contains 3 figures.)

  1. Experimental results on time-resolved reflectance diffuse optical tomography with fast-gated SPADs

    NASA Astrophysics Data System (ADS)

    Puszka, Agathe; Di Sieno, Laura; Dalla Mora, Alberto; Pifferi, Antonio; Contini, Davide; Boso, Gianluca; Tosi, Alberto; Planat-Chrétien, Anne; Hervé, Lionel; Koenig, Anne; Dinten, Jean-Marc

    2013-06-01

    We present experimental results of time-resolved reflectance diffuse optical tomography performed with fast-gated single-photon avalanche diodes (SPADs) and show an increased imaged depth range for a given acquisition time compared to the non gated mode.

  2. Iron oxide mineral-water interface reactions studied by AFM

    SciTech Connect

    Hawley, M.E.; Rogers, P.S.Z.

    1994-07-01

    Natural iron mineral surfaces have been examined in air by atomic force (AFM) and scanning tunneling (STM) microscopies. A number of different surface features were found to be characteristic of the native surface. Even surfaces freshly exposed by crushing larger crystals were found to have a pebbly surface texture caused by the presence of thin coatings of what might be surface precipitates. This finding is interpreted as evidence for previous exposure to water, probably through an extensive network of microfractures. Surface reactions on the goethite crystals were studied by AFM at size resolutions ranging from microns to atomic resolution before, during, and after reaction with distilled water and 0.lN HCl. Immediate and extensive surface reconfiguration occurred on contact with water. In one case, after equilibration with water for 3 days, surface reprecipitation, etching and pitting were observed. Atomic resolution images taken under water were found to be disordered. The result of surface reaction was generally to increase the surface area substantially through the extension of surface platelet arrays, present prior to reaction. This work is being done in support of the site characterization project at Yucca Mountain.

  3. AFM analysis of bleaching effects on dental enamel microtopography

    NASA Astrophysics Data System (ADS)

    Pedreira de Freitas, Ana Carolina; Espejo, Luciana Cardoso; Botta, Sergio Brossi; Teixeira, Fernanda de Sa; Luz, Maria Aparecida A. Cerqueira; Garone-Netto, Narciso; Matos, Adriana Bona; Salvadori, Maria Cecilia Barbosa da Silveira

    2010-02-01

    The purpose of this in vitro study was to test a new methodology to evaluate the effects of 35% hydrogen peroxide agent on the microtopography of sound enamel using an atomic force microscope (AFM). The buccal sound surfaces of three extracted human lower incisors were used, without polishing the surfaces to maintain them with natural morphology. These unpolished surfaces were subjected to bleaching procedure with 35% hydrogen peroxide that consisted of 4 applications of the bleaching agent on enamel surfaces for 10 min each application. Surface images were obtained in a 15 μm × 15 μm area using an AFM. The roughness (Ra and RMS) and the power spectral density (PSD) were obtained before and after the bleaching treatment. As results we could inquire that the PSD analyses were very suitable to identifying the morphological changes on the surfaces, while the Ra and RMS parameters were insufficient to represent the morphological alterations promoted by bleaching procedure on enamel. The morphological wavelength in the range of visible light spectrum (380-750 nm) was analyzed, showing a considerable increase of the PSD with the bleaching treatment.

  4. Design and experimental results for a flapped natural-laminar-flow airfoil for general aviation applications

    NASA Technical Reports Server (NTRS)

    Somers, D. M.

    1981-01-01

    A flapped natural laminar flow airfoil for general aviation applications, the NLF(1)-0215F, has been designed and analyzed theoretically and verified experimentally in the Langley Low Turbulence Pressure Tunnel. The basic objective of combining the high maximum lift of the NASA low speed airfoils with the low cruise drag of the NACA 6 series airfoils has been achieved. The safety requirement that the maximum lift coefficient not be significantly affected with transition fixed near the leading edge has also been met. Comparisons of the theoretical and experimental results show generally good agreement.

  5. Design and Experimental Results for a Natural-Laminar-Flow Airfoil for General Aviation Applications

    NASA Technical Reports Server (NTRS)

    Somers, D. M.

    1981-01-01

    A natural-laminar-flow airfoil for general aviation applications, the NLF(1)-0416, was designed and analyzed theoretically and verified experimentally in the Langley Low-Turbulence Pressure Tunnel. The basic objective of combining the high maximum lift of the NASA low-speed airfoils with the low cruise drag of the NACA 6-series airfoils was achieved. The safety requirement that the maximum lift coefficient not be significantly affected with transition fixed near the leading edge was also met. Comparisons of the theoretical and experimental results show excellent agreement. Comparisons with other airfoils, both laminar flow and turbulent flow, confirm the achievement of the basic objective.

  6. BOREAS AFM-6 Boundary Layer Height Data

    NASA Technical Reports Server (NTRS)

    Wilczak, James; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-6 team from National Oceanic and Atmospheric Adminsitration/Environment Technology Laboratory (NOAA/ETL) operated a 915-MHz wind/Radio Acoustic Sounding System (RASS) profiler system in the Southern Study Area (SSA) near the Old Jack Pine (OJP) site. This data set provides boundary layer height information over the site. The data were collected from 21 May 1994 to 20 Sep 1994 and are stored in tabular ASCII files. The boundary layer height data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  7. BOREAS AFM-06 Mean Wind Profile Data

    NASA Technical Reports Server (NTRS)

    Wilczak, James; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-6 team from the National Oceanic and Atmospheric Administration/Environment Technology Laboratory (NOAA/ETL) operated a 915-MHz wind/Radio Acoustic Sounding System (RASS) profiler system in the Southern Study Area (SSA) near the Old Jack Pine (OJP) tower from 21 May 1994 to 20 Sep 1994. The data set provides wind profiles at 38 heights, containing the variables of wind speed; wind direction; and the u-, v-, and w-components of the total wind. The data are stored in tabular ASCII files. The mean wind profile data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  8. BOREAS AFM-06 Mean Temperature Profile Data

    NASA Technical Reports Server (NTRS)

    Wilczak, James; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-6 team from the National Oceanic and Atmospheric Adminsitration/Environment Technology Laboratory (NOAA/ETL) operated a 915-MHz wind/Radio Acoustic Sounding System (RASS) profiler system in the Southern Study Area (SSA) near the Old Jack Pine (OJP) tower from 21 May 1994 to 20 Sep 1994. The data set provides temperature profiles at 15 heights, containing the variables of virtual temperature, vertical velocity, the speed of sound, and w-bar. The data are stored in tabular ASCII files. The mean temperature profile data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  9. Laminar counterflow spray diffusion flames: A comparison between experimental results and complex chemistry calculations

    SciTech Connect

    Darabiha, N.; Lacas, F.; Rolon, J.C.; Candel, S. . Lab. EM2C)

    1993-11-01

    Experimental and numerical studies of laminar flames formed by the counterflow of a monodisperse fuel spray with an air stream are reported in this article. In this simple configuration it is possible to analyze the influence of the phase transfer terms on the flame structure. The experimental setup used to produce such laminar spray diffusion flames is first described. A set of experiments are carried with liquid heptane fuel sprays. The flame is characterized with a laser sheet imaging system and with a particle sizing apparatus based on laser light diffraction. Results of a numerical study are then presented. The two phase-reacting flow equations are solved through Newton iterations and adaptive gridding using detailed transport and complex chemistry. An iterative procedure is devised to solve the gas- and liquid-phase balance equations. Comparison between experimental and numerical values of the diameter are found to be in good agreement.

  10. Mutant AFM 2 of Alcaligenes faecalis for phenol biodegradation using He-Ne laser irradiation.

    PubMed

    Jiang, Yan; Wen, Jianping; Caiyin, Qinggele; Lin, Liangcai; Hu, Zongding

    2006-11-01

    He-Ne laser technology was utilized in this study to investigate the response of Alcaligenes faecalis to laser stimulation. The irradiation experiments were conducted by the adjustment of the output power from 5 to 25 mW and the exposure time from 5 to 25 min. The results showed that the survival rate changed regularly with the variety of irradiation dose, and high positive mutation frequency was determined by both the energy density and the output power. The mutant strain AFM 2 was obtained. Phenol biodegradation assay demonstrated that AFM 2 possessed a more prominent phenol-degrading potential than its parent strain, which presumably attributed to the improvements of phenol hydroxylase and catechol 1,2-dioxygenase activities. The phenol of 2000 mgl(-1) was completely degraded by AFM 2 within 85.5h at 30 degrees C. In addition, the cell growth and phenol degradation kinetics of the mutant strain AFM 2 and its parent strain in batch cultures were also investigated at the wide initial phenol concentration ranging from 0 to 2000 mgl(-1) by Haldane model. The results of these experiments further demonstrated that the mutant strain AFM 2 possessed a higher capacity to resist phenol.

  11. Accelerated design and quality control of impact modifiers for plastics through atomic force microscopy (AFM) analysis

    NASA Astrophysics Data System (ADS)

    Moeller, Gunter

    2011-03-01

    Standard polymer resins are often too brittle or do not meet other mechanical property requirements for typical polymer applications. To achieve desired properties it is common to disperse so called ``impact modifiers'', which are spherical latex particles with diameters of much less than one micrometer, into the pure resin. Understanding and control of the entire process from latex particle formation to subsequent dispersion into polymer resins are necessary to accelerate the development of new materials that meet specific application requirements. In this work AFM imaging and nanoindentation techniques in combination with AFM-based spectroscopic techniques were applied to assess latex formation and dispersion. The size and size distribution of the latex particles can be measured based on AFM amplitude modulation images. AFM phase images provide information about the chemical homogeneity of individual particles. Nanoindentation may be used to estimate their elastic and viscoelastic properties. Proprietary creep and nanoscale Dynamic Mechanical Analysis (DMA) tests that we have developed were used to measure these mechanical properties. The small size of dispersed latex inclusions requires local mechanical and spectroscopic analysis techniques with high lateral and spatial resolution. We applied the CRAVE AFM method, developed at NIST, to perform mechanical analysis of individual latex inclusions and compared results with those obtained using nanoscale DMA. NanoIR, developed by Anasys Inc., and principal component confocal Raman were used for spectroscopic analysis and results from both techniques compared.

  12. Quantitating membrane bleb stiffness using AFM force spectroscopy and an optical sideview setup.

    PubMed

    Gonnermann, Carina; Huang, Chaolie; Becker, Sarah F; Stamov, Dimitar R; Wedlich, Doris; Kashef, Jubin; Franz, Clemens M

    2015-03-01

    AFM-based force spectroscopy in combination with optical microscopy is a powerful tool for investigating cell mechanics and adhesion on the single cell level. However, standard setups featuring an AFM mounted on an inverted light microscope only provide a bottom view of cell and AFM cantilever but cannot visualize vertical cell shape changes, for instance occurring during motile membrane blebbing. Here, we have integrated a mirror-based sideview system to monitor cell shape changes resulting from motile bleb behavior of Xenopus cranial neural crest (CNC) cells during AFM elasticity and adhesion measurements. Using the sideview setup, we quantitatively investigate mechanical changes associated with bleb formation and compared cell elasticity values recorded during membrane bleb and non-bleb events. Bleb protrusions displayed significantly lower stiffness compared to the non-blebbing membrane in the same cell. Bleb stiffness values were comparable to values obtained from blebbistatin-treated cells, consistent with the absence of a functional actomyosin network in bleb protrusions. Furthermore, we show that membrane blebs forming within the cell-cell contact zone have a detrimental effect on cell-cell adhesion forces, suggesting that mechanical changes associated with bleb protrusions promote cell-cell detachment or prevent adhesion reinforcement. Incorporating a sideview setup into an AFM platform therefore provides a new tool to correlate changes in cell morphology with results from force spectroscopy experiments.

  13. Automated detection of discourse segment and experimental types from the text of cancer pathway results sections

    PubMed Central

    Burns, Gully A.P.C.; Dasigi, Pradeep; de Waard, Anita; Hovy, Eduard H.

    2016-01-01

    Automated machine-reading biocuration systems typically use sentence-by-sentence information extraction to construct meaning representations for use by curators. This does not directly reflect the typical discourse structure used by scientists to construct an argument from the experimental data available within a article, and is therefore less likely to correspond to representations typically used in biomedical informatics systems (let alone to the mental models that scientists have). In this study, we develop Natural Language Processing methods to locate, extract, and classify the individual passages of text from articles’ Results sections that refer to experimental data. In our domain of interest (molecular biology studies of cancer signal transduction pathways), individual articles may contain as many as 30 small-scale individual experiments describing a variety of findings, upon which authors base their overall research conclusions. Our system automatically classifies discourse segments in these texts into seven categories (fact, hypothesis, problem, goal, method, result, implication) with an F-score of 0.68. These segments describe the essential building blocks of scientific discourse to (i) provide context for each experiment, (ii) report experimental details and (iii) explain the data’s meaning in context. We evaluate our system on text passages from articles that were curated in molecular biology databases (the Pathway Logic Datum repository, the Molecular Interaction MINT and INTACT databases) linking individual experiments in articles to the type of assay used (coprecipitation, phosphorylation, translocation etc.). We use supervised machine learning techniques on text passages containing unambiguous references to experiments to obtain baseline F1 scores of 0.59 for MINT, 0.71 for INTACT and 0.63 for Pathway Logic. Although preliminary, these results support the notion that targeting information extraction methods to experimental results could provide

  14. Propagation effects for land mobile satellite systems: Overview of experimental and modeling results

    NASA Technical Reports Server (NTRS)

    Goldhirsh, Julius; Vogel, Wolfhard J.

    1992-01-01

    Models developed and experiments performed to characterize the propagation environment associated with land mobile communication using satellites are discussed. Experiments were carried out with transmitters on stratospheric balloons, remotely piloted aircraft, helicopters, and geostationary satellites. This text is comprised of compiled experimental results for the expressed use of communications engineers, designers of planned Land Mobile Satellite Systems (LMSS), and modelers of propagation effects. The results presented here are mostly derived from systematic studies of propagation effects for LMSS geometries in the United States associated with rural and suburban regions. Where applicable, the authors also draw liberally from the results of other related investigations in Canada, Europe, and Australia. Frequencies near 1500 MHz are emphasized to coincide with frequency bands allocated for LMSS by the International Telecommunication Union, although earlier experimental work at 870 MHz is also included.

  15. Propagation effects for land mobile satellite systems: Overview of experimental and modeling results

    NASA Astrophysics Data System (ADS)

    Goldhirsh, Julius; Vogel, Wolfhard J.

    1992-02-01

    Models developed and experiments performed to characterize the propagation environment associated with land mobile communication using satellites are discussed. Experiments were carried out with transmitters on stratospheric balloons, remotely piloted aircraft, helicopters, and geostationary satellites. This text is comprised of compiled experimental results for the expressed use of communications engineers, designers of planned Land Mobile Satellite Systems (LMSS), and modelers of propagation effects. The results presented here are mostly derived from systematic studies of propagation effects for LMSS geometries in the United States associated with rural and suburban regions. Where applicable, the authors also draw liberally from the results of other related investigations in Canada, Europe, and Australia. Frequencies near 1500 MHz are emphasized to coincide with frequency bands allocated for LMSS by the International Telecommunication Union, although earlier experimental work at 870 MHz is also included.

  16. Predictions of the equation of state of cerium yield interesting insights into experimental results

    SciTech Connect

    Cherne, Frank J; Jensen, Brian J; Rigg, Paulo A; Elkin, Vyacheslav M

    2009-01-01

    There has been much interest in the past in understanding the dynamic properties of phase changing materials. In this paper we begin to explore the dynamic properties of the complex material of cerium. Cerium metal is a good candidate material to explore capabilities in determining a dynamic phase diagram on account of its low dynamic phase boundaries, namely, the {gamma}-{alpha}, and {alpha}-liquid phase boundaries. Here we present a combination of experimental results with calculated results to try to understand the dynamic behavior of the material. Using the front surface impact technique, we performed a series of experiments which displayed a rarefaction shock upon release. These experiments show that the reversion shock stresses occur at different magnitudes, allowing us to plot out the {gamma}-{alpha} phase boundary. Applying a multiphase equation of state a broader understanding of the experimental results will be discussed.

  17. Numerical predictions and experimental results of a dry bay fire environment.

    SciTech Connect

    Suo-Anttila, Jill Marie; Gill, Walter; Black, Amalia Rebecca

    2003-11-01

    The primary objective of the Safety and Survivability of Aircraft Initiative is to improve the safety and survivability of systems by using validated computational models to predict the hazard posed by a fire. To meet this need, computational model predictions and experimental data have been obtained to provide insight into the thermal environment inside an aircraft dry bay. The calculations were performed using the Vulcan fire code, and the experiments were completed using a specially designed full-scale fixture. The focus of this report is to present comparisons of the Vulcan results with experimental data for a selected test scenario and to assess the capability of the Vulcan fire field model to accurately predict dry bay fire scenarios. Also included is an assessment of the sensitivity of the fire model predictions to boundary condition distribution and grid resolution. To facilitate the comparison with experimental results, a brief description of the dry bay fire test fixture and a detailed specification of the geometry and boundary conditions are included. Overall, the Vulcan fire field model has shown the capability to predict the thermal hazard posed by a sustained pool fire within a dry bay compartment of an aircraft; although, more extensive experimental data and rigorous comparison are required for model validation.

  18. AFM as an analysis tool for high-capacity sulfur cathodes for Li–S batteries

    PubMed Central

    Sörgel, Seniz; Costa, Rémi; Carlé, Linus; Galm, Ines; Cañas, Natalia; Pascucci, Brigitta; Friedrich, K Andreas

    2013-01-01

    Summary In this work, material-sensitive atomic force microscopy (AFM) techniques were used to analyse the cathodes of lithium–sulfur batteries. A comparison of their nanoscale electrical, electrochemical, and morphological properties was performed with samples prepared by either suspension-spraying or doctor-blade coating with different binders. Morphological studies of the cathodes before and after the electrochemical tests were performed by using AFM and scanning electron microscopy (SEM). The cathodes that contained polyvinylidene fluoride (PVDF) and were prepared by spray-coating exhibited a superior stability of the morphology and the electric network associated with the capacity and cycling stability of these batteries. A reduction of the conductive area determined by conductive AFM was found to correlate to the battery capacity loss for all cathodes. X-ray diffraction (XRD) measurements of Li2S exposed to ambient air showed that insulating Li2S hydrolyses to insulating LiOH. This validates the significance of electrical ex-situ AFM analysis after cycling. Conductive tapping mode AFM indicated the existence of large carbon-coated sulfur particles. Based on the analytical findings, the first results of an optimized cathode showed a much improved discharge capacity of 800 mA·g(sulfur)−1 after 43 cycles. PMID:24205455

  19. Combined force spectroscopy, AFM and calorimetric studies to reveal the nanostructural organization of biomimetic membranes.

    PubMed

    Suárez-Germà, C; Morros, A; Montero, M T; Hernández-Borrell, J; Domènech, Ò

    2014-10-01

    In this work we studied a binary lipid matrix of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG), a composition that mimics the inner membrane of Escherichia coli. More specifically, liposomes with varying fractions of POPG were analysed by differential scanning calorimetry (DSC) and a binary phase diagram of the system was created. Additionally, we performed atomic force microscopy (AFM) imaging of supported lipid bilayers (SLBs) of similar compositions at different temperatures, in order to create a pseudo-binary phase diagram specific to this membrane model. AFM study of SLBs is of particular interest, as it is conceived as the most adequate technique not only for studying lipid bilayer systems but also for imaging and even nanomanipulating inserted membrane proteins. The construction of the above-mentioned phase diagram enabled us to grasp better the thermodynamics of the thermal lipid transition from a gel-like POPE:POPG phase system to a more fluid phase system. Finally, AFM force spectroscopy (FS) was used to determine the nanomechanics of these two lipid phases at 27°C and at different POPG fractions. The resulting data correlated with the specific composition of each phase was calculated from the AFM phase diagram obtained. All the experiments were done in the presence of 10 mM of Ca(2+), as this ion is commonly used when performing AFM with negatively charged phospholipids.

  20. Fractal analysis of AFM images of the surface of Bowman's membrane of the human cornea.

    PubMed

    Ţălu, Ştefan; Stach, Sebastian; Sueiras, Vivian; Ziebarth, Noël Marysa

    2015-04-01

    The objective of this study is to further investigate the ultrastructural details of the surface of Bowman's membrane of the human cornea, using atomic force microscopy (AFM) images. One representative image acquired of Bowman's membrane of a human cornea was investigated. The three-dimensional (3-D) surface of the sample was imaged using AFM in contact mode, while the sample was completely submerged in optisol solution. Height and deflection images were acquired at multiple scan lengths using the MFP-3D AFM system software (Asylum Research, Santa Barbara, CA), based in IGOR Pro (WaveMetrics, Lake Oswego, OR). A novel approach, based on computational algorithms for fractal analysis of surfaces applied for AFM data, was utilized to analyze the surface structure. The surfaces revealed a fractal structure at the nanometer scale. The fractal dimension, D, provided quantitative values that characterize the scale properties of surface geometry. Detailed characterization of the surface topography was obtained using statistical parameters, in accordance with ISO 25178-2: 2012. Results obtained by fractal analysis confirm the relationship between the value of the fractal dimension and the statistical surface roughness parameters. The surface structure of Bowman's membrane of the human cornea is complex. The analyzed AFM images confirm a fractal nature of the surface, which is not taken into account by classical surface statistical parameters. Surface fractal dimension could be useful in ophthalmology to quantify corneal architectural changes associated with different disease states to further our understanding of disease evolution.

  1. IFNAR signaling directly modulates T lymphocyte activity, resulting in milder experimental autoimmune encephalomyelitis development

    PubMed Central

    Kavrochorianou, Nadia; Evangelidou, Maria; Markogiannaki, Melina; Tovey, Michael; Thyphronitis, George; Haralambous, Sylva

    2016-01-01

    Although interferon-β is used as first-line therapy for multiple sclerosis, the cell type-specific activity of type I interferons in multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis, remains obscure. In this study, we have elucidated the in vivo immunomodulatory role of type I interferon signaling in T cells during experimental autoimmune encephalomyelitis by use of a novel transgenic mouse, carrying a cd2–ifnar1 transgene on a interferon-α/β receptor 1 null genetic background, thus allowing expression of the interferon-α/β receptor 1 and hence, a functional type I interferon receptor exclusively on T cells. These transgenic mice exhibited milder experimental autoimmune encephalomyelitis with reduced T cell infiltration, demyelination, and axonal damage in the central nervous system. It is noteworthy that interferon-β administration in transgenic mice generated a more pronounced, protective effect against experimental autoimmune encephalomyelitis compared with untreated littermates. In vivo studies demonstrated that before experimental autoimmune encephalomyelitis onset, endogenous type I interferon receptor signaling in T cells led to impaired T-helper 17 responses, with a reduced fraction of CCR6+ CD4+ T cells in the periphery. At the acute phase, an increased proportion of interleukin-10- and interferon-γ-producing CD4+ T cells was detected in the periphery of the transgenic mice, accompanied by up-regulation of the interferon-γ-induced gene Irgm1 in peripheral T cells. Together, these results reveal a hitherto unknown T cell-associated protective role of type I interferon in experimental autoimmune encephalomyelitis that may provide valuable clues for designing novel therapeutic strategies for multiple sclerosis. PMID:26232452

  2. AFM study of forces between silica, silicon nitride and polyurethane pads.

    PubMed

    Sokolov, Igor; Ong, Quy K; Shodiev, Hasan; Chechik, Nina; James, David; Oliver, Mike

    2006-08-15

    Interaction of silica and silicon nitride with polyurethane surfaces is rather poorly studied despite being of great interest for modern semiconductor industry, e.g., for chemical-mechanical planarization (CMP) processes. Here we show the results from the application of the atomic force microscopy (AFM) technique to study the forces between silica or silicon nitride (AFM tips) and polyurethane surfaces in aqueous solutions of different acidity. The polyurethane surface potentials are derived from the measured AFM data. The obtained potentials are in rather good agreement with measurements of zeta-potentials using the streaming-potentials method. Another important parameter, adhesion, is also measured. While the surface potentials of silica are well known, there are ambiguous results on the potentials of silicon nitride that is naturally oxidized. Deriving the surface potential of the naturally oxidized silicon nitride from our measurements, we show that it is not oxidized to silica despite some earlier published expectations.

  3. Experimental results on finite-beta limits and transport in the ISX-B tokamak

    SciTech Connect

    Bates, S.C.; Bush, C.E.; Carreras, B.A.; Cooper, W.A.; Dunlap, J.L.; Edmonds, P.H.; Eldridge, O.C.; England, A.C.; Gardner, W.L.; Hogan, J.T.

    1983-10-01

    A summary of experimental results pertaining to plasma energy and particle transport in the Impurity Study Experiment (ISX-B) tokamak is presented. Emphasis is placed on results with neutral beam heating, usually in the co- direction (aligned with the plasma current), and the relative roles of various energy loss mechanisms are discussed. The derived electron thermal diffusivity and the predictions of various models have been compared. The measured values are within a factor of 2 of the values expected to result from resistive pressure-driven modes. Evidence for the presence of these modes is discussed. Values of ion thermal diffusivity are compared with the predictions of neoclassical theory. Anomaly factors (the ratio of experimental value to theoretical value) between 1 and 5 are found. Comparisons between experimental results and theoretical predictions are also made for cases with increased toroidal field ripple, produced by using only 9 of the 18 toroidal field coils. Convection is shown to play a small role in energy transport, except at the plasma periphery. The behavior of both plasma and impurity particles is discussed and shown to be strongly dependent on the direction of the plasma current relative to the neutral beam (coinjection and counterinjection). Beta limits are discussed. The maximum values obtained for both ..beta../sub I/ (approx. 2) and <..beta..> (approx. 2.5%) are not thought to be limited except by the restricted power available for heating.

  4. Device level 3D characterization using PeakForce AFM

    NASA Astrophysics Data System (ADS)

    Timoney, Padraig; Zhang, Xiaoxiao; Vaid, Alok; Hand, Sean; Osborne, Jason; Milligan, Eric; Feinstein, Adam

    2016-03-01

    Traditional metrology solutions face a range of challenges at the 1X node such as three dimensional (3D) measurement capabilities, shrinking overlay and critical dimension (CD) error budgets driven by multi-patterning and via in trench CD measurements. With advent of advanced technology nodes and 3D processing, an increasing need is emerging for in-die metrology including across-structure and structure-to-structure characterization. A myriad of work has emerged in the past few years intending to address these challenges from various aspects; in-die OCD with reduced spot size and tilt beam on traditional critical dimension scanning electron microscopy (CDSEM) for height measurements. This paper explores the latest capability offered by PeakForceTM Tapping Atomic Force Microscopy (PFT-AFM). The use of traditional harmonic tapping mode for scanning high aspect ratio, and complex "3D" wafer structures, results in limited depth probing capability as well as excessive tip wear. These limitations arise due to the large tip-sample interaction volume in such confined spaces. PeakForce Tapping eliminates these limitations through direct real time control of the tip-sample interaction contact force. The ability of PeakForce to measure, and respond directly to tip- sample interaction forces results in more detailed feature resolution, reduced tip wear, and improved depth capability. In this work, the PFT-AFM tool was applied for multiple applications, including the 14nm fin and replacement metal gate (RMG) applications outlined below. Results from DOE wafers, detailed measurement precision studies and correlation to reference metrology are presented for validation of this methodology. With the fin application, precision of 0.3nm is demonstrated by measuring 5 dies with 10 consecutive runs. Capability to resolve within-die and localized within-macro height variation is also demonstrated. Results obtained from the fin measurements support the increasing trend that measurements

  5. Controls-structures interaction guest investigator program: Overview and phase 1 experimental results and future plans

    NASA Technical Reports Server (NTRS)

    Smith-Taylor, Rudeen; Tanner, Sharon E.

    1993-01-01

    The NASA Controls-Structures Interaction (CSI) Guest Investigator program is described in terms of its support of the development of CSI technologies. The program is based on the introduction of CSI researchers from industry and academia to available test facilities for experimental validation of technologies and methods. Phase 1 experimental results are reviewed with attention given to their use of the Mini-MAST test facility and the facility for the Advance Control Evaluation of Structures. Experiments were conducted regarding the following topics: collocated/noncollocated controllers, nonlinear math modeling, controller design, passive/active suspension systems design, and system identification and fault isolation. The results demonstrate that significantly enhanced performance from the control techniques can be achieved by integrating knowledge of the structural dynamics under consideration into the approaches.

  6. Gradual ordering in mollusk shell nacre: theoretical modeling and experimental results

    NASA Astrophysics Data System (ADS)

    Coppersmith, Susan N.

    2013-03-01

    Biominerals have attracted the attention of materials scientists, biologists, and mineralogists as well as physicists because of their remarkable mechanical properties and incompletely elucidated formation mechanisms. Nacre, or mother-of-pearl, is a layered biomineral composite that is widely studied because of its self-assembled, efficient and accurately ordered architecture results in remarkable resistance to fracture. New experimental tools enable us to obtain new information about the organization and structure of the mineral tablets in nacre. Our experimental and theoretical investigations yield strong evidence that orientational ordering of these tablets is the result of dynamical self-organization. This work was supported by NSF award CHE&DMR-0613972, DOE award DE-FG02-07ER15899, UW-Graduate School Vilas Award to P.U.P.A. Gilbert, and NSF awards DMR-0209630 and DMR-0906951 to SNC.

  7. REFLECTIONS ON MY CONTRIBUTIONS TO PARTICLE PHYSICS AND RECENT EXPERIMENTAL RESULTS FROM RHIC.

    SciTech Connect

    SAMIOS,N.P.

    2002-01-18

    My talk today will be composed of two parts. The first part will consist of a summary of some of my experimental contributions over the years. It will not be exhaustive but will highlight the findings that had relevance to the progress of our understanding of particle physics as it has evolved over the years. This section will be divided into three periods: Early, Intermediate and Late, with an in depth discussion of a few of the more significant results. The second part will consist of a discussion of the recently completed Relativistic Heavy Ion Collider (RHIC) machine at Brookhaven National Laboratory (BNL). This will encompass the parameters of the accelerator and some of the interesting and exciting early experimental results emanating from this machine.

  8. Experimental results of the variable speed, direct drive multipole synchronous wind turbine TWT1650

    NASA Astrophysics Data System (ADS)

    Torres, Eduardo; Garcia-Sanz, Mario

    2004-04-01

    This article presents details of the new variable speed multipole large wind turbine TWT1650 designed by the M. Torres group and summarizes some experimental results of the control system. After several years of multidisciplinary research the first prototype TWT1650 began to work at Cabanillas Wind Farm (Spain) in August 2001. Since then a large number of operational data have been collected and used to improve the behaviour of the machine. The design and controller tuning have been accomplished using advanced QFT (quantitative feedback theory) robust control strategies and have been optimized based on analysis of that information. This article introduces the main advantages of the multipole system and shows and evaluates some of the most representative experimental results under extreme wind conditions. Copyright

  9. Immune Responses: Getting Close to Experimental Results with Cellular Automata Models

    NASA Astrophysics Data System (ADS)

    Dos Santos, Rita Maria Zorzenon

    Cellular automata approaches are powerful tools to model local and nonlocal interactions generating cooperative behavior. In the last decade, the question of whether cellular automata could embed realistic assumptions about the interactions among cells and molecules of the immune system was quite controversial. Recent results have shown that it is possible to use cellular automata approaches to describe realistically the interactions between the elements of the immune system. The first models using cellular automata approaches, boolean and threshold or window automata, were based on experimental evidence and were mainly used to understand the logic of global immune responses like immunization, tolerance, paralysis, etc. Recently, new classes of cellular automata models which include time delay, stochasticity or adaptation have lead to results that can be compared with in vivo experimental data.

  10. Aflatoxin M1 Concentration in Various Dairy Products: Evidence for Biologically Reduced Amount of AFM1 in Yoghurt

    PubMed Central

    RAHIMIRAD, Amir; MAALEKINEJAD, Hassan; OSTADI, Araz; YEGANEH, Samal; FAHIMI, Samira

    2014-01-01

    Abstract Background Aflatoxin M1 (AFM1), a carcinogenic substance is found in milk and dairy products. The effect of season and type of dairy products on AFMi level in northern Iran was investigated in this study. Methods Three hundred samples (each season 75 samples) including raw and pasteurized milk, yoghurt, cheese, and cream samples were collected from three distinct milk producing farms. The samples were subjected to chemical and solid phase extractions and were analyzed by using HPLC technique. Recovery percentages, limit of detection and limit of quantification values were determined. Results Seventy percent and 98% were the minimum and maximum recoveries for cheese and raw milk, respectively and 0.021 and 0.063 ppb were the limit of detection and limit of quantification values for AFM1. We found that in autumn and winter the highest level (0.121 ppb) of AFM1 in cheese and cream samples and failed to detect any AFM1 in spring samples. Interestingly, our data showed that the yoghurt samples had the lowest level of AFM1 in all seasons. Conclusion There are significant differences between the AFM1 levels in dairy products in various seasons and also various types of products, suggesting spring and summer yoghurt samples as the safest products from AFM1 level point of view. PMID:25927044

  11. A digital computer propulsion control facility: Description of capabilities and summary of experimental program results

    NASA Technical Reports Server (NTRS)

    Zeller, J. R.; Arpasi, D. J.; Lehtinen, B.

    1976-01-01

    Flight weight digital computers are being used today to carry out many of the propulsion system control functions previously delegated exclusively to hydromechanical controllers. An operational digital computer facility for propulsion control mode studies has been used successfully in several experimental programs. This paper describes the system and some of the results concerned with engine control, inlet control, and inlet engine integrated control. Analytical designs for the digital propulsion control modes include both classical and modern/optimal techniques.

  12. Experimental results on combined ultraviolet-proton excitation of moon rock luminescence.

    NASA Technical Reports Server (NTRS)

    Nash, D. B.

    1973-01-01

    The experimental results reported indicate that a small synergistic effect may exist between near-UV radiation and solar-wind-energy protons in solar radiation that could slightly enhance luminescence generation on the moon's surface. The magnitude of the effect, however, is far too small to account for the apparent orders-of-magnitude discrepancy between reported telescope measurements of lunar luminescence and the limitation of lunar luminescence intensity based on lab studies of moon rocks.

  13. Kinematic Viscosities for Ether + Alkane Mixtures: Experimental Results and UNIFAC-VISCO Parameters

    NASA Astrophysics Data System (ADS)

    Bandrés, I.; Lahuerta, C.; Villares, A.; Martín, S.; Lafuente, Carlos

    2008-04-01

    Kinematic viscosities for the binary mixtures of diisopropylether, dibutylether or methyl ter-butyl ether with 3-methylpentane, hexane or heptane have been measured at 283.15 K, 298.15 K, and 313.15 K. The experimental values have been correlated by the McAllister equation. Using these results, new UNIFAC-VISCO parameters, Oether-CH2 and Oether-CH3, have been calculated.

  14. Columbus meteoroid/debris protection study - Experimental simulation techniques and results

    NASA Astrophysics Data System (ADS)

    Schneider, E.; Kitta, K.; Stilp, A.; Lambert, M.; Reimerdes, H. G.

    1992-08-01

    The methods and measurement techniques used in experimental simulations of micrometeoroid and space debris impacts with the ESA's laboratory module Columbus are described. Experiments were carried out at the two-stage light gas gun acceleration facilities of the Ernst-Mach Institute. Results are presented on simulations of normal impacts on bumper systems, oblique impacts on dual bumper systems, impacts into cooled targets, impacts into pressurized targets, and planar impacts of low-density projectiles.

  15. Versatile method for AFM-tip functionalization with biomolecules: fishing a ligand by means of an in situ click reaction

    NASA Astrophysics Data System (ADS)

    Kumar, Rakesh; Ramakrishna, Shivaprakash N.; Naik, Vikrant V.; Chu, Zonglin; Drew, Michael E.; Spencer, Nicholas D.; Yamakoshi, Yoko

    2015-04-01

    A facile and universal method for the functionalization of an AFM tip has been developed for chemical force spectroscopy (CFS) studies of intermolecular interactions of biomolecules. A click reaction between tripod-acetylene and an azide-linker-ligand molecule was successfully carried out on the AFM tip surface and used for the CFS study of ligand-receptor interactions.A facile and universal method for the functionalization of an AFM tip has been developed for chemical force spectroscopy (CFS) studies of intermolecular interactions of biomolecules. A click reaction between tripod-acetylene and an azide-linker-ligand molecule was successfully carried out on the AFM tip surface and used for the CFS study of ligand-receptor interactions. Electronic supplementary information (ESI) available: Experimental details with synthesis and characterization of compounds. Procedures for modifications of Au surfaces and AFM tips. AFM images and full PM-IRRAS spectra of modified surfaces. Detailed procedure for QCM measurement. A table showing ligand-receptor interaction probability. NMR, IR and MS charts. See DOI: 10.1039/c5nr01495f

  16. SPR and AFM study of engineered biomolecule immobilisation techniques.

    PubMed

    Craig, Ian; McLaughlin, James A

    2006-01-01

    A comparative study into two novel and diverse schemes designed to improve immobilization of biomolecules for biosensing purposes is presented. In the first method a silicon rich matrix is created using PECVD. The second method involves creating nano-patterns on the sensor surface to create a large number of surface discontinuities to which the proteins will bind preferentially. The basic theory of SPR is provided to show the importance of the surface sensitive nature of this optical transduction technique. The present work suggests that both may prove both for SPR and other biosensing applications. Of the two schemes proposed, the results for nano-patterning seem to suggest that it is promoting better surface attachment of biomolecules. The results of SPR and AFM studies are presented that have shown that each of these schemes promotes improved binding of various proteins.

  17. DNA-duplex linker for AFM-SELEX of DNA aptamer against human serum albumin.

    PubMed

    Takenaka, Musashi; Okumura, Yuzo; Amino, Tomokazu; Miyachi, Yusuke; Ogino, Chiaki; Kondo, Akihiko

    2017-02-15

    DNA-duplex interactions in thymines and adenins are used as a linker for the novel methodology of Atomic Force Microscope-Systematic Evolution of Ligands by EXpotential enrichment (AFM-SELEX). This study used the hydrogen bonds in 10 mer of both thymines (T10) and adenines (A10). Initially, the interactive force in T10-A10 was measured by AFM, which returned an average interactive force of approximately 350pN. Based on this result, DNA aptamers against human serum albumin could be selected in the 4th round, and 15 different clones could be sequenced. The lowest dissociation constant of the selected aptamer was identified via surface plasmon resonance, and it proved to be identical to that of the commercial aptamer. Therefore, specific hydrogen bonds in DNA can be useful linkers for AFM-SELEX.

  18. In situ nanomanipulators as a tool to separate individual tobermorite crystals for AFM studies.

    PubMed

    Yang, Tianhe; Holzer, Lorenz; Kägi, Ralf; Winnefeld, Frank; Keller, Bruno

    2007-10-01

    Atomic force microscopy (AFM) studies of cementitious materials are limited, mainly due to the lack of appropriate sample preparation techniques. In porous autoclaved aerated concrete (AAC), calcium silicate hydrate (C-S-H) is produced in its crystalline form, tobermorite. The crystals are lath-like with a length of several micrometers. In this work, we demonstrate the application of nanomanipulators to separate an individual tobermorite crystal from the bulk AAC for subsequent AFM investigations. The nanomanipulators are operated directly in an environmental scanning electron microscope (ESEM). We studied the interaction between moisture and the tobermorite surface under controlled relative humidity (RH). The results of topography and adhesion force measurements with AFM suggest that the surface of tobermorite is hydrophobic, which contrasts the macroscopic material properties (e.g. moisture transport in capillary pores).

  19. Preparation of DNA and nucleoprotein samples for AFM imaging

    PubMed Central

    Lyubchenko, Yuri L.

    2010-01-01

    Sample preparation techniques allowing reliable and reproducible imaging of DNA with various structures, topologies and complexes with proteins are reviewed. The major emphasis is given to methods utilizing chemical functionalization of mica, enabling preparation of the surfaces with required characteristics. The methods are illustrated by examples of imaging of different DNA structures. Special attention is given to the possibility of AFM to image the dynamics of DNA at the nanoscale. The capabilities of time-lapse AFM in aqueous solutions are illustrated by imaging of dynamic processes as transitions of local alternative structures (transition of DNA between H and B forms). The application of AFM to studies of protein-DNA complexes is illustrated by a few examples of imaging site-specific complexes, as well as such systems as chromatin. The time-lapse AFM studies of protein-DNA complexes including very recent advances with the use of high-speed AFM are reviewed. PMID:20864349

  20. An AFM study of calcite dissolution in concentrated electrolyte solutions

    NASA Astrophysics Data System (ADS)

    Ruiz Agudo, E.; Putnis, C. V.; Putnis, A.; Rodriguez-Navarro, C.

    2009-04-01

    Calcite-solution interactions are of a paramount importance in a range of processes such as the removal of heavy metals, carbon dioxide sequestration, landscape modeling, weathering of building stone and biomineralization. Water in contact with minerals often carries significant amounts of solutes; additionally, their concentration may vary due to evaporation and condensation. It is well known that calcite dissolution is affected dramatically by the presence of such solutes. Here we present investigations on the dissolution of calcite in the presence of different electrolytes. Both bulk (batch reactors) experiments and nanoscale (in situ AFM) techniques are used to study the dissolution of calcite in a range of solutions containing alkaly cations balanced by halide anions. Previous works have indicated that the ionic strength has little influence in calcite dissolution rates measured from bulk experiments (Pokrovsky et al. 2005; Glendhill and Morse, 2004). Contrary to these results, our quantitative analyses of AFM observations show an enhancement of the calcite dissolution rate with increasing electrolyte concentration. Such an effect is concentration-dependent and it is most evident in concentrated solutions. AFM experiments have been carried out in a fluid cell using calcite cleavage surfaces in contact with solutions of simple salts of the alkaly metals and halides at different undersaturations with respect to calcite to try to specify the effect of the ionic strength on etch pit spreading rate and calcite dissolution rate. These results show that the presence of soluble salts may critically affect the weathering of carbonate rocks in nature as well as the decay of carbonate stone in built cultural heritage. References: Pokrosky, O.S.; Golubev, S.V.; Schott, J. Dissolution kinetics of calcite, dolomite and magnesite at 25°C and 0 to 50 atm pCO2. Chemical Geology, 2005, 217 (3-4) 239-255. Glendhill, D.K.; Morse, J.W. Dissolution kinetics of calcite in Na

  1. Femtosecond pulse laser ablation of chromium: experimental results and two-temperature model simulations

    NASA Astrophysics Data System (ADS)

    Saghebfar, M.; Tehrani, M. K.; Darbani, S. M. R.; Majd, A. E.

    2017-01-01

    In this work, the results of experimental and computational single- and multi-shot ablation threshold and the incubation effect of chromium metal sample, irradiated by ultrashort laser pulses, are presented. The experimental value of the ablation threshold is determined based on D2 method by measuring the outer ablation crater diameters as a function of incident laser pulse energy using 800 nm, 30 fs, laser pulses. The value of 0.19 ± 0.04 (J/cm2 ), is obtained for the single-shot ablation threshold fluence. The experimental results are compared with time-dependent heat flow calculations based on the two-temperature model and the effect of number and separation time of two consecutive laser pulses with the same total fluence is studied for the Cr target. Moreover, the role of pulse width and absorbed fluence in thermal equilibrium time between electrons and lattice is investigated in two-temperature model. The thermal equilibrium between electron and lattice is established after a few picoseconds for low fluences and after a few tens of picoseconds at higher fluences.

  2. Respiratory rate detection algorithm based on RGB-D camera: theoretical background and experimental results.

    PubMed

    Benetazzo, Flavia; Freddi, Alessandro; Monteriù, Andrea; Longhi, Sauro

    2014-09-01

    Both the theoretical background and the experimental results of an algorithm developed to perform human respiratory rate measurements without any physical contact are presented. Based on depth image sensing techniques, the respiratory rate is derived by measuring morphological changes of the chest wall. The algorithm identifies the human chest, computes its distance from the camera and compares this value with the instantaneous distance, discerning if it is due to the respiratory act or due to a limited movement of the person being monitored. To experimentally validate the proposed algorithm, the respiratory rate measurements coming from a spirometer were taken as a benchmark and compared with those estimated by the algorithm. Five tests were performed, with five different persons sat in front of the camera. The first test aimed to choose the suitable sampling frequency. The second test was conducted to compare the performances of the proposed system with respect to the gold standard in ideal conditions of light, orientation and clothing. The third, fourth and fifth tests evaluated the algorithm performances under different operating conditions. The experimental results showed that the system can correctly measure the respiratory rate, and it is a viable alternative to monitor the respiratory activity of a person without using invasive sensors.

  3. Respiratory rate detection algorithm based on RGB-D camera: theoretical background and experimental results

    PubMed Central

    Freddi, Alessandro; Monteriù, Andrea; Longhi, Sauro

    2014-01-01

    Both the theoretical background and the experimental results of an algorithm developed to perform human respiratory rate measurements without any physical contact are presented. Based on depth image sensing techniques, the respiratory rate is derived by measuring morphological changes of the chest wall. The algorithm identifies the human chest, computes its distance from the camera and compares this value with the instantaneous distance, discerning if it is due to the respiratory act or due to a limited movement of the person being monitored. To experimentally validate the proposed algorithm, the respiratory rate measurements coming from a spirometer were taken as a benchmark and compared with those estimated by the algorithm. Five tests were performed, with five different persons sat in front of the camera. The first test aimed to choose the suitable sampling frequency. The second test was conducted to compare the performances of the proposed system with respect to the gold standard in ideal conditions of light, orientation and clothing. The third, fourth and fifth tests evaluated the algorithm performances under different operating conditions. The experimental results showed that the system can correctly measure the respiratory rate, and it is a viable alternative to monitor the respiratory activity of a person without using invasive sensors. PMID:26609383

  4. Wind Code Application to External Forebody Flowfields with Comparisons to Experimental Results

    NASA Technical Reports Server (NTRS)

    Frate, F. C.; Kim, H. D.

    2001-01-01

    The WIND Code, a general purpose Navier-Stokes solver, has been utilized to obtain supersonic external flowfield Computational Fluid Dynamics (CFD) solutions over an axisymmetric, parabolic forebody with comparisons made to wind tunnel experimental results. Various cases have been investigated at supersonic freestream conditions ranging from Mach 2.0 to 3.5, at 0 deg and 3 deg angles-of-attack, and with either a sharp-nose or blunt-nose forebody configuration. Both a turbulent (Baldwin-Lomax algebraic turbulence model) and a laminar model have been implemented in the CFD. Obtaining the solutions involved utilizing either the parabolized- or full-Navier-Stokes analyses supplied in WIND. Comparisons have been made with static pressure measurements, with boundary-layer rake and flowfield rake pitot pressure measurements, and with temperature sensitive paint experimental results. Using WIND's parabolized Navier-Stokes capability, grid sequencing, and the Baldwin-Lomax algebraic turbulence model allowed for significant reductions in computational time while still providing good agreement with experiment. Given that CFD and experiment compare well, WIND is found to be a good computational platform for solving this type of forebody problem, and the grids developed in conjunction with it will be used in the future to investigate varying freestream conditions not tested experimentally.

  5. Experimental laser anastomosis of the large bowel: conclusive results and future prospect

    NASA Astrophysics Data System (ADS)

    Kawahara, Masaki; Kuramoto, Shu; Ryan, Peter

    2003-06-01

    Completely sutureless end-to-end large bowel anastomoses were successfully performed in New Zealand white rabbits by using 1064 nm, 0.4-W power pulsating Nd:YAG laser to produce welding. Purpose: The aim of this study was to assess the results of our whole experimental data and summarize our experimental work on laser colon anastomosis. Methods: This experimental study investigated integrity of anastomosis, degree of narrowing, macroscopic appearance, microscopic findings, animal body weight change, and collagen concentration of laser colon anastomoses, compared with those of conventional sutured anastomoses up to ninety postoperative days. Results: Bursting pressures of laser anastomoses were at first low and came to be equivalent at seven days, but the laser group exhibited a consistent narrowing tendency. However, laser anastomoses demonstrated fewer and milder adhesions, and animals showed a better recovery of body weight. Histologically, laser anastomoses showed better layer-to-layer reconstitution without foreign body response and with less fibrosis. Difference in collagen concentration did not reach statistical significance. Conclusion: The technique of laser anastomosis presents a promising alternative to suturing in reconstitution of the large bowel.

  6. Electromagnetic Vortex-Based Radar Imaging Using a Single Receiving Antenna: Theory and Experimental Results

    PubMed Central

    Yuan, Tiezhu; Wang, Hongqiang; Cheng, Yongqiang; Qin, Yuliang

    2017-01-01

    Radar imaging based on electromagnetic vortex can achieve azimuth resolution without relative motion. The present paper investigates this imaging technique with the use of a single receiving antenna through theoretical analysis and experimental results. Compared with the use of multiple receiving antennas, the echoes from a single receiver cannot be used directly for image reconstruction using Fourier method. The reason is revealed by using the point spread function. An additional phase is compensated for each mode before imaging process based on the array parameters and the elevation of the targets. A proof-of-concept imaging system based on a circular phased array is created, and imaging experiments of corner-reflector targets are performed in an anechoic chamber. The azimuthal image is reconstructed by the use of Fourier transform and spectral estimation methods. The azimuth resolution of the two methods is analyzed and compared through experimental data. The experimental results verify the principle of azimuth resolution and the proposed phase compensation method. PMID:28335487

  7. Some experimental results on Coanda effect with application to a flying vehicle

    NASA Astrophysics Data System (ADS)

    Crivoi, O.; Doroftei, I.

    2016-08-01

    In this paper some experimental results related to the Coanda effect are presented. The idea is to use them to build and control a flying vehicle. Our experiments have been done on an laboratory testing device. From the first obtained results we have seen some advantages and disadvantages to applying Coanda effect to a flying vehicle. The advantages are: reducing the pressure near the of the convex surface, protected screw, vertical takeoff and landing. The main disadvantage is the cost of the fuselage and the extra weight that he has. Our conclusion at this time is that this technical solution can bring some benefits through a suited sizing and geometry with vehicle mass.

  8. Preliminary results of the large experimental wind turbine phase of the national wind energy program

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.; Sholes, T.; Sholes, J. E.

    1975-01-01

    The preliminary results of two projects in the development phase of reliable wind turbines designed to supply cost-competitive electrical energy were discussed. An experimental 100 kW wind turbine design and its status are first reviewed. The results of two parallel design studies for determining the configurations and power levels for wind turbines with minimum energy costs are also discussed. These studies predict wind energy costs of 1.5 to 7 cents per kW-h for wind turbines produced in quantities of 100 to 1000 per year and located at sites having average winds of 12 to 18 mph.

  9. Studies of Multipactor in Dielectric-Loaded Accelerator Structures: Comparison of Simulation Results with Experimental Data

    SciTech Connect

    Sinitsyn, Oleksandr; Nusinovich, Gregory; Antonsen, Thomas Jr.

    2010-11-04

    In this paper new results of numerical studies of multipactor in dielectric-loaded accelerator structures are presented. The results are compared with experimental data obtained during recent studies of such structures performed by Argonne National Laboratory, the Naval Research Laboratory, SLAC National Accelerator Laboratory and Euclid TechLabs, LLC. Good agreement between the theory and experiment was observed for the structures with larger inner diameter, however the structures with smaller inner diameter demonstrated a discrepancy between the two. Possible reasons for such discrepancy are discussed.

  10. Shuttle Return To Flight Experimental Results: Cavity Effects on Boundary Layer Transition

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.; Horvath, Thomas J.; Berry, Scott A.

    2006-01-01

    The effect of an isolated rectangular cavity on hypersonic boundary layer transition of the windward surface of the Shuttle Orbiter has been experimentally examined in the Langley Aerothermodynamics Laboratory in support of an agency-wide effort to prepare the Shuttle Orbiter for return to flight. This experimental study was initiated to provide a cavity effects database for developing hypersonic transition criteria to support on-orbit decisions to repair a damaged thermal protection system. Boundary layer transition results were obtained using 0.0075-scale Orbiter models with simulated tile damage (rectangular cavities) of varying length, width, and depth. The database contained within this report will be used to formulate cavity-induced transition correlations using predicted boundary layer edge parameters.

  11. LBE water interaction in sub-critical reactors: First experimental and modelling results

    NASA Astrophysics Data System (ADS)

    Ciampichetti, A.; Agostini, P.; Benamati, G.; Bandini, G.; Pellini, D.; Forgione, N.; Oriolo, F.; Ambrosini, W.

    2008-06-01

    This paper concerns the study of the phenomena involved in the interaction between LBE and pressurised water which could occur in some hypothetical accidents in accelerator driven system type reactors. The LIFUS 5 facility was designed and built at ENEA-Brasimone to reproduce this kind of interaction in a wide range of conditions. The first test of the experimental program was carried out injecting water at 70 bar and 235 °C in a reaction vessel containing LBE at 1 bar and 350 °C. A pressurisation up to 80 bar was observed in the test section during the considered transient. The SIMMER III code was used to simulate the performed test. The calculated data agree in a satisfactory way with the experimental results giving confidence in the possibility to use this code for safety analyses of heavy liquid metal cooled reactors.

  12. Acoustic time delay estimation and sensor network self-localization: Experimental results

    NASA Astrophysics Data System (ADS)

    Ash, Joshua N.; Moses, Randolph L.

    2005-08-01

    Experimental results are presented on propagation, coherence, and time-delay estimation (TDE) from a microphone array in an outdoor aeroacoustic environment. The primary goal is to understand the achievable accuracy of acoustic TDE using low-cost, commercial off-the-shelf (COTS) speakers and microphones. In addition, through the use of modulated pseudo-noise sequences, the experiment seeks to provide an empirical understanding of the effects of center frequency, bandwidth, and signal duration on TDE effectiveness and compares this to the theoretical expectations established by the Weiss-Weinstein lower bound. Finally, sensor network self-localization is performed using a maximum likelihood estimator and the time-delay estimates. Experimental network localization error is presented as a function of the acoustic calibration signal parameters.

  13. Supersonic Retropropulsion Experimental Results from the NASA Ames 9- x 7-Foot Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; Rhode, Matthew N.; Edquist, Karl T.

    2012-01-01

    Supersonic retropropulsion was experimentally examined in the Ames Research Center 9x7-Foot Supersonic Wind Tunnel at Mach 1.8 and 2.4. The experimental model, previously designed for and tested in the Langley Research Center Unitary Plan Wind Tunnel at Mach 2.4, 3.5 and 4.6, was a 5-in diameter 70-deg sphere-cone forebody with a 9.55-in long cylindrical aftbody. The forebody was designed to accommodate up to four 4:1 area ratio nozzles, one on the model centerline and the other three on the half radius spaced 120-deg apart. Surface pressure and flow visualization were the primary measurements, including high-speed data to investigate the dynamics of the interactions between the bow and nozzle shocks. Three blowing configurations were tested with thrust coefficients up to 10 and angles of attack up to 20-deg. Preliminary results and observations from the test are provided

  14. Circular Samples as Objects for Magnetic Resonance Imaging - Mathematical Simulation, Experimental Results

    NASA Astrophysics Data System (ADS)

    Frollo, Ivan; Krafčík, Andrej; Andris, Peter; Přibil, Jiří; Dermek, Tomáš

    2015-12-01

    Circular samples are the frequent objects of "in-vitro" investigation using imaging method based on magnetic resonance principles. The goal of our investigation is imaging of thin planar layers without using the slide selection procedure, thus only 2D imaging or imaging of selected layers of samples in circular vessels, eppendorf tubes,.. compulsorily using procedure "slide selection". In spite of that the standard imaging methods was used, some specificity arise when mathematical modeling of these procedure is introduced. In the paper several mathematical models were presented that were compared with real experimental results. Circular magnetic samples were placed into the homogenous magnetic field of a low field imager based on nuclear magnetic resonance. For experimental verification an MRI 0.178 Tesla ESAOTE Opera imager was used.

  15. Shuttle Return To Flight Experimental Results: Protuberance Effects on Boundary Layer Transition

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.; Berry, Scott A.; Horvath, Thomas J.

    2006-01-01

    The effect of isolated roughness elements on the windward boundary layer of the Shuttle Orbiter has been experimentally examined in the Langley Aerothermodynamic Laboratory in support of an agency-wide effort to prepare the Shuttle Orbiter for return to flight. This experimental effort was initiated to provide a roughness effects database for developing transition criteria to support on-orbit decisions to repair damage to the thermal protection system. Boundary layer transition results were obtained using trips of varying heights and locations along the centerline and attachment lines of 0.0075-scale models. Global heat transfer images using phosphor thermography of the Orbiter windward surface and the corresponding heating distributions were used to infer the state of the boundary layer (laminar, transitional, or turbulent). The database contained within this report will be used to formulate protuberance-induced transition correlations using predicted boundary layer edge parameters.

  16. First experimental results from DC/DC and AC/DC plasma-based power transformers

    NASA Astrophysics Data System (ADS)

    McEvoy, Aaron; Gibson, William; Nebel, Richard

    2016-10-01

    A plasma-based power transformer has been built and operated in both DC/DC and AC/DC mode. The proprietary Tibbar Plasma Technologies, Inc. transformer design consists of two cylindrically symmetric helical primary electrodes surrounding a low temperature plasma within which a secondary axial current is generated. Initial experimental results have compared well with simulations and moderate conversion efficiencies have been observed. A new proprietary device is currently being constructed that will utilize 3-phase 480 VAC input to achieve higher conversion efficiency and output power. A description of the apparatus and several potential applications will be presented along with preliminary experimental data demonstrating the DC/DC and AC/DC conversion processes. Work performed under ARPA-E contract DE-AR0000677.

  17. Artificial cochlea and acoustic black hole travelling waves observation: Model and experimental results

    NASA Astrophysics Data System (ADS)

    Foucaud, Simon; Michon, Guilhem; Gourinat, Yves; Pelat, Adrien; Gautier, François

    2014-07-01

    An inhomogeneous fluid structure waveguide reproducing passive behaviour of the inner ear is modelled with the help of the Wentzel-Kramers-Brillouin method. A physical setup is designed and built. Experimental results are compared with a good correlation to theoretical ones. The experimental setup is a varying width plate immersed in fluid and terminated with an acoustic black hole. The varying width plate provides a spatial repartition of the vibration depending on the excitation frequency. The acoustic black hole is made by decreasing the plate's thickness with a quadratic profile and by covering this region with a thin film of viscoelastic material. Such a termination attenuates the flexural wave reflection at the end of the waveguide, turning standing waves into travelling waves.

  18. Stimulating Contributions to Public Goods through Information Feedback: Some Experimental Results

    PubMed Central

    Janssen, Marco A.; Lee, Allen; Sundaram, Hari

    2016-01-01

    In traditional public good experiments participants receive an endowment from the experimenter that can be invested in a public good or kept in a private account. In this paper we present an experimental environment where participants can invest time during five days to contribute to a public good. Participants can make contributions to a linear public good by logging into a web application and performing virtual actions. We compared four treatments, with different group sizes and information of (relative) performance of other groups. We find that information feedback about performance of other groups has a small positive effect if we control for various attributes of the groups. Moreover, we find a significant effect of the contributions of others in the group in the previous day on the number of points earned in the current day. Our results confirm that people participate more when participants in their group participate more, and are influenced by information about the relative performance of other groups. PMID:27459070

  19. Design and Experimental Results for the S825 Airfoil; Period of Performance: 1998-1999

    SciTech Connect

    Somers, D. M.

    2005-01-01

    A 17%-thick, natural-laminar-flow airfoil, the S825, for the 75% blade radial station of 20- to 40-meter, variable-speed and variable-pitch (toward feather), horizontal-axis wind turbines has been designed and analyzed theoretically and verified experimentally in the NASA Langley Low-Turbulence Pressure Tunnel. The two primary objectives of high maximum lift, relatively insensitive to roughness and low-profile drag have been achieved. The airfoil exhibits a rapid, trailing-edge stall, which does not meet the design goal of a docile stall. The constraints on the pitching moment and the airfoil thickness have been satisfied. Comparisons of the theoretical and experimental results generally show good agreement.

  20. FRAME (Force Review Automation Environment): MATLAB-based AFM data processor.

    PubMed

    Partola, Kostyantyn R; Lykotrafitis, George

    2016-05-03

    Data processing of force-displacement curves generated by atomic force microscopes (AFMs) for elastic moduli and unbinding event measurements is very time consuming and susceptible to user error or bias. There is an evident need for consistent, dependable, and easy-to-use AFM data processing software. We have developed an open-source software application, the force review automation environment (or FRAME), that provides users with an intuitive graphical user interface, automating data processing, and tools for expediting manual processing. We did not observe a significant difference between manually processed and automatically processed results from the same data sets.

  1. Vibration Based Crack Detection in a Rotating Disk. Part 2; Experimental Results

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, Andrew L.; Sawicki, Jerzy T.; Martin, Richard E.; Haase, Wayne C.; Baaklini, George

    2005-01-01

    This paper describes the experimental results concerning the detection of a crack in a rotating disk. The goal was to utilize blade tip clearance and shaft vibration measurements to monitor changes in the system's center of mass and/or blade deformation behaviors. The concept of the approach is based on the fact that the development of a disk crack results in a distorted strain field within the component. As a result, a minute deformation in the disk's geometry as well as a change in the system's center of mass occurs. Here, a notch was used to simulate an actual crack. The vibration based experimental results failed to identify the existence of a notch when utilizing the approach described above, even with a rather large, circumferential notch (l.2 in.) located approximately mid-span on the disk (disk radius = 4.63 in. with notch at r = 2.12 in.). This was somewhat expected, since the finite element based results in Part 1 of this study predicted changes in blade tip clearance as well as center of mass shifts due to a notch to be less than 0.001 in. Therefore, the small changes incurred by the notch could not be differentiated from the mechanical and electrical noise of the rotor system. Although the crack detection technique of interest failed to identify the existence ofthe notch, the vibration data produced and captured here will be utilized in upcoming studies that will focus on different data mining techniques concerning damage detection in a disk.

  2. Laboratory simulations of lidar returns from clouds - Experimental and numerical results

    NASA Astrophysics Data System (ADS)

    Zaccanti, Giovanni; Bruscaglioni, Piero; Gurioli, Massimo; Sansoni, Paola

    1993-03-01

    The experimental results of laboratory simulations of lidar returns from clouds are presented. Measurements were carried out on laboratory-scaled cloud models by using a picosecond laser and a streak-camera system. The turbid structures simulating clouds were suspensions of polystyrene spheres in water. The geometrical situation was similar to that of an actual lidar sounding a cloud 1000 m distant and with a thickness of 300 m. Measurements were repeated for different concentrations and different sizes of spheres. The results show how the effect of multiple scattering depends on the scattering coefficient and on the phase function of the diffusers. The depolarization introduced by multiple scattering was also investigated. The results were also compared with numerical results obtained by Monte Carlo simulations. Substantially good agreement between numerical and experimental results was found. The measurements showed the adequacy of modern electro-optical systems to study the features of multiple-scattering effects on lidar echoes from atmosphere or ocean by means of experiments on well-controlled laboratory-scaled models. This adequacy provides the possibility of studying the influence of different effects in the laboratory in well-controlled situations.

  3. Laboratory simulations of lidar returns from clouds: experimental and numerical results.

    PubMed

    Zaccanti, G; Bruscaglioni, P; Gurioli, M; Sansoni, P

    1993-03-20

    The experimental results of laboratory simulations of lidar returns from clouds are presented. Measurements were carried out on laboratory-scaled cloud models by using a picosecond laser and a streak-camera system. The turbid structures simulating clouds were suspensions of polystyrene spheres in water. The geometrical situation was similar to that of an actual lidar sounding a cloud 1000 m distant and with a thickness of 300 m. Measurements were repeated for different concentrations and different sizes of spheres. The results show how the effect of multiple scattering depends on the scattering coefficient and on the phase function of the diffusers. The depolarization introduced by multiple scattering was also investigated. The results were also compared with numerical results obtained by Monte Carlo simulations. Substantially good agreement between numerical and experimental results was found. The measurements showed the adequacy of modern electro-optical systems to study the features of multiple-scattering effects on lidar echoes from atmosphere or ocean by means of experiments on well-controlled laboratory-scaled models. This adequacy provides the possibility of studying the influence of different effects in the laboratory in well-controlled situations.

  4. BOREAS AFM-07 SRC Surface Meteorological Data

    NASA Technical Reports Server (NTRS)

    Osborne, Heather; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Young, Kim; Wittrock, Virginia; Shewchuck, Stan; Smith, David E. (Technical Monitor)

    2000-01-01

    The Saskatchewan Research Council (SRC) collected surface meteorological and radiation data from December 1993 until December 1996. The data set comprises Suite A (meteorological and energy balance measurements) and Suite B (diffuse solar and longwave measurements) components. Suite A measurements were taken at each of ten sites, and Suite B measurements were made at five of the Suite A sites. The data cover an approximate area of 500 km (North-South) by 1000 km (East-West) (a large portion of northern Manitoba and northern Saskatchewan). The measurement network was designed to provide researchers with a sufficient record of near-surface meteorological and radiation measurements. The data are provided in tabular ASCII files, and were collected by Aircraft Flux and Meteorology (AFM)-7. The surface meteorological and radiation data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  5. The co-design of interface sensing and tailoring of ultra-thin film with ultrasonic vibration-assisted AFM system.

    PubMed

    Shi, Jialin; Liu, Lianqing; Li, Guangyong

    2016-06-10

    Ultra-thin films (e.g., graphene, MoS2, and black phosphorus) have shown amazing performance in a variety of applications. The tailoring or machining of these ultra-thin films is often the preliminary step to manufacturing them into functional devices. Atomic force microscopy (AFM) is a flexible, high-efficiency and low-cost tailoring or machining tool with the advantages of high resolution and precision. However, the current AFM-based tailoring methods are often set up as an open loop regarding the machined depth and state. Thus, because of a lack of real-time feedback, an inappropriate applied force leads to over-cutting or under-cutting, which limits the performance of the manufactured devices. In this study, we propose a real-time tailoring and sensing method based on an ultrasonic vibration-assisted (USV-assisted) AFM system to solve the above problems. With the proposed method, the machined depth and state can be sensed in real time by detecting the phase value of the vibrating cantilever. To characterize and gain insight into the phase responses of the cantilever to the machined depth and sample material, a theoretical dynamic model of a cantilever-film vibrating system is introduced to model the machining process, and a sensing theory of machined depth and state is developed based on a USV-assisted AFM system. The experimental results verify the feasibility and effectiveness of the proposed method, which in turn lay the foundation for a closed-loop tailoring control strategy for ultra-thin films.

  6. Free space optical communication flight mission: simulations and experimental results on ground level demonstrator

    NASA Astrophysics Data System (ADS)

    Mata Calvo, Ramon; Ferrero, Valter; Camatel, Stefano; Catalano, Valeria; Bonino, Luciana; Toselli, Italo

    2009-05-01

    In the context of the increasing demand in high-speed data link for scientific, planetary exploration and earth observation missions, the Italian Space Agency (ASI), involving Thales Alenia Space as prime, the Polytechnic of Turin and other Italian partners, is developing a program for feasibility demonstration of optical communication system with the goal of a prototype flight mission in the next future. We have designed and analyzed a ground level bidirectional Free Space Optical Communication (FSOC) Breadboard at 2.5Gbit/s working at 1550nm as an emulator of slant path link. The breadboard is full-working and we tested it back-toback, at 500m and 2.3km during one month. The distances were chosen in order to get an equivalent slant path cumulative turbulence in a ground level link. The measurements campaign was done during the day and the night time and under several weather conditions, from sunny, rainy or windy. So we could work under very different turbulence conditions from weak to strong turbulence. We measured the scintillation both, on-axis and off-axis by introducing known misalignments at the terminals, transmission losses at both path lengths and BER at both receivers. We present simulations results considering slant and ground level links, where we took into account the atmospheric effects; scintillation, beam spread, beam wander and fade probability, and comparing them with the ground level experimental results, we find a good agreement between them. Finally we discuss the results obtained in the experimentation and in the flight mission simulations in order to apply our experimental results in the next project phases.

  7. Universe Clinopyroxene barometer -recalibrations on the results of the orthopyroxene thermobarometry and experimental results and applications to the clinopyroxene geotherms

    NASA Astrophysics Data System (ADS)

    Ashchepkov, I. V.

    2009-04-01

    The internal exchange of Jd-Di components on clinopyroxene allow to calibrate the universal clinopyroxene thermobarometer (Ashchepkov, 2001; 2002; 2003) based on experimental data for different systems including peridotitic, eclogitic and igneous which are represented by the augite cumulates as well as salites from the basic granulates from low crust. The equation to the peridotitic system was calibrated on the results of the othopyroxene thermobarometry (Brey. Kohler,1990- McGregor,1974). Modifications allow receiving the better agreement with the orthopyroxene estimates and results of polymineral thermobarometry (Brey, Kohler, 1990) as well as the clinopyroxene thermobarometry (Nimis, Taylor, 2000). The following equation allows working with the peridotite of the mantle lithosphere beneath cratons (30-80) kbar. P(Ash2009)=0.32 (1-0.2*Na/Al+0.012*Fe/Na)*Kd^(3/4)*ToK/(1+Fe)-35*ln(1273/ToK)*(Al+Ti+2.5Na+1.5Fe3+)+(0.9-CaO)*10+Na20/Al2O3*ToK /200 with the second iteration P=(0.0000002* P4 +0.000002+P^3-0.0027*P^2+1.2241*P) Checking of the HP experiments (Brey et al 2008, Walter, 1998; Falloon, Green, 1989; Dasgupta et al., 2007 etc.) it show the precision close to those of the best barometers (McGregor, 1974) ~5-7 but much more wider compositional range including metasomatic associations and The equation for the Al - rich assemblages allow to obtain the pressure estimates fro the megacrystalls and Al - rich peridotitic clinopyroxenes from the mantle xenoliths carried by alkaline basalts: P(Ash2009)=0.035*Kd*ToK(1+2.44Fe)-50.2 ln(1273/ToK) (Al+Ti+Na) Together with the clinopyroxene thermometer (Nimis, Taylor, 2000) it produces the TP estimates very close to those obtained with (Brey, Kohler, 1990) and values of experiments for the melting of basalts. The meagacrystalls show the polybaric origin and their range of estimated pressure corresponds well to determined for mantle peridotites and pyroxenites. The clinopyroxene geotherms for S. Africa (Boyd, Nixon, 1974

  8. Oscillatory enhancement of the squeezing flow of yield stress fluids: a novel experimental result

    NASA Astrophysics Data System (ADS)

    Zwick, K. J.; Ayyaswamy, P. S.; Cohen, I. M.

    1997-05-01

    The extrusion of a yield stress fluid from the space between two parallel plates is investigated experimentally. Oscillating the magnitude of the squeezing force about a mean value (F=f[1+[alpha]cos([omega]t)]) was observed to significantly enhance the flow rate of yield stress fluids, while having no effect on the flow rate of Newtonian fluids. This is a novel result. The enhancement depends on the magnitude of the force, the oscillatory frequency and amplitude, the fluid being squeezed, and the thickness of the fluid layer. Non-dimensional results for the various flow quantities have been presented by using the flow predicted for the constant-force squeezing of a Herschel Bulkley yield stress fluid as the reference. In the limit of constant-force squeezing, the present experimental results compare very well with those of our earlier theoretical model for this situation (Zwick, Ayyaswamy & Cohen 1996). The results presented in this paper have significance, among many applications, for injection moulding, in the adhesive bonding of microelectronic chips, and in surgical procedures employed in health care.

  9. Photovoltaic Grid-Connected Modeling and Characterization Based on Experimental Results

    PubMed Central

    Humada, Ali M.; Hojabri, Mojgan; Sulaiman, Mohd Herwan Bin; Hamada, Hussein M.; Ahmed, Mushtaq N.

    2016-01-01

    A grid-connected photovoltaic (PV) system operates under fluctuated weather condition has been modeled and characterized based on specific test bed. A mathematical model of a small-scale PV system has been developed mainly for residential usage, and the potential results have been simulated. The proposed PV model based on three PV parameters, which are the photocurrent, IL, the reverse diode saturation current, Io, the ideality factor of diode, n. Accuracy of the proposed model and its parameters evaluated based on different benchmarks. The results showed that the proposed model fitting the experimental results with high accuracy compare to the other models, as well as the I-V characteristic curve. The results of this study can be considered valuable in terms of the installation of a grid-connected PV system in fluctuated climatic conditions. PMID:27035575

  10. Photovoltaic Grid-Connected Modeling and Characterization Based on Experimental Results.

    PubMed

    Humada, Ali M; Hojabri, Mojgan; Sulaiman, Mohd Herwan Bin; Hamada, Hussein M; Ahmed, Mushtaq N

    2016-01-01

    A grid-connected photovoltaic (PV) system operates under fluctuated weather condition has been modeled and characterized based on specific test bed. A mathematical model of a small-scale PV system has been developed mainly for residential usage, and the potential results have been simulated. The proposed PV model based on three PV parameters, which are the photocurrent, IL, the reverse diode saturation current, Io, the ideality factor of diode, n. Accuracy of the proposed model and its parameters evaluated based on different benchmarks. The results showed that the proposed model fitting the experimental results with high accuracy compare to the other models, as well as the I-V characteristic curve. The results of this study can be considered valuable in terms of the installation of a grid-connected PV system in fluctuated climatic conditions.

  11. Comparison of Computational and Experimental Microphone Array Results for an 18%-Scale Aircraft Model

    NASA Technical Reports Server (NTRS)

    Lockard, David P.; Humphreys, William M.; Khorrami, Mehdi R.; Fares, Ehab; Casalino, Damiano; Ravetta, Patricio A.

    2015-01-01

    An 18%-scale, semi-span model is used as a platform for examining the efficacy of microphone array processing using synthetic data from numerical simulations. Two hybrid RANS/LES codes coupled with Ffowcs Williams-Hawkings solvers are used to calculate 97 microphone signals at the locations of an array employed in the NASA LaRC 14x22 tunnel. Conventional, DAMAS, and CLEAN-SC array processing is applied in an identical fashion to the experimental and computational results for three different configurations involving deploying and retracting the main landing gear and a part span flap. Despite the short time records of the numerical signals, the beamform maps are able to isolate the noise sources, and the appearance of the DAMAS synthetic array maps is generally better than those from the experimental data. The experimental CLEAN-SC maps are similar in quality to those from the simulations indicating that CLEAN-SC may have less sensitivity to background noise. The spectrum obtained from DAMAS processing of synthetic array data is nearly identical to the spectrum of the center microphone of the array, indicating that for this problem array processing of synthetic data does not improve spectral comparisons with experiment. However, the beamform maps do provide an additional means of comparison that can reveal differences that cannot be ascertained from spectra alone.

  12. Transdermal flux predictions for selected selective oestrogen receptor modulators (SERMs): comparison with experimental results.

    PubMed

    Güngör, Sevgi; Delgado-Charro, M Begoña; Masini-Etévé, Valérie; Potts, Russell O; Guy, Richard H

    2013-12-28

    The aim of this work was to evaluate the feasibility of delivering transdermally a series of highly lipophilic compounds (log P ~4-7), comprising several selective oestrogen receptor modulators and a modified testosterone (danazol). The maximum fluxes of the drugs were predicted theoretically using the modified Potts & Guy algorithm (to determine the permeability coefficient (kp) from water) and the calculated aqueous solubilities. The correction provided by Cleek & Bunge took into account the contribution of the viable epidermal barrier to the skin permeation of highly lipophilic compounds. Experimental measurements of drug fluxes from saturated hydroalcoholic solutions were determined in vitro through excised pig skin. Overall, the predicted fluxes were in good general agreement (within a factor of 10) with the experimental results. Most of the experimental fluxes were greater than those predicted theoretically suggesting that the 70:30 v/v ethanol-water vehicle employed may have had a modest skin penetration enhancement effect. This investigation shows that the transdermal fluxes of highly lipophilic compounds can be reasonably predicted from first principles provided that the viable epidermis, underlying the stratum corneum, is included as a potentially important contributor to the skin's overall barrier function. Furthermore, the absolute values of the measured fluxes, when considered in parallel with previous clinical studies, indicate that it might be feasible to topically deliver a therapeutically useful amount of some of the compounds considered to treat cancerous breast tissue.

  13. LNG fires: a review of experimental results, models and hazard prediction challenges.

    PubMed

    Raj, Phani K

    2007-02-20

    A number of experimental investigations of LNG fires (of sizes 35 m diameter and smaller) were undertaken, world wide, during the 1970s and 1980s to study their physical and radiative characteristics. This paper reviews the published data from several of these tests including from the largest test to date, the 35 m, Montoir tests. Also reviewed in this paper is the state of the art in modeling LNG pool and vapor fires, including thermal radiation hazard modeling. The review is limited to considering the integral and semi-empirical models (solid flame and point source); CFD models are not reviewed. Several aspects of modeling LNG fires are reviewed including, the physical characteristics, such as the (visible) fire size and shape, tilt and drag in windy conditions, smoke production, radiant thermal output, etc., and the consideration of experimental data in the models. Comparisons of model results with experimental data are indicated and current deficiencies in modeling are discussed. The requirements in the US and European regulations related to LNG fire hazard assessment are reviewed, in brief, in the light of model inaccuracies, criteria for hazards to people and structures, and the effects of mitigating circumstances. The paper identifies: (i) critical parameters for which there exist no data, (ii) uncertainties and unknowns in modeling and (iii) deficiencies and gaps in current regulatory recipes for predicting hazards.

  14. Theoretical modelling and experimental results of electromechanical actuation of an elastomer

    NASA Astrophysics Data System (ADS)

    Díaz-Calleja, Ricardo; Llovera-Segovia, Pedro; Dominguez, José Jorge; Carsí Rosique, Marta; Quijano Lopez, Alfredo

    2013-06-01

    Electromechanical actuation is a growing field of research today both for applications or theoretical modelling. The interaction between electric and mechanical constraints has been used for electromechanic actuators or generators based on elastomers. From a theoretical point of view, many recent works have been focused on uniaxial or biaxial stretching of elastomer plates with compliant electrodes. Free stretching or pre-strained samples have been theoretically modelled, mainly by neo-Hookean equations. In this work, we present theoretical and experimental results of electromechanic actuation of an elastomer (the widely used 3M VHB4910, an acrylic foam) in a pre-strained case and a free case. Experimental characterization of the material shows that the Ogden model gives the best accurate fitting of mechanical properties. Thus, a theoretical development based on this model is carried out in order to obtain the curves describing the electromechanical behaviour of the material. The mechanical instability related to wrinkling of the material is theoretically calculated and experimentally verified.

  15. Recovery of yttrium from cathode ray tubes and lamps' fluorescent powders: experimental results and economic simulation.

    PubMed

    Innocenzi, V; De Michelis, I; Ferella, F; Vegliò, F

    2013-11-01

    In this paper, yttrium recovery from fluorescent powder of lamps and cathode ray tubes (CRTs) is described. The process for treating these materials includes the following: (a) acid leaching, (b) purification of the leach liquors using sodium hydroxide and sodium sulfide, (c) precipitation of yttrium using oxalic acid, and (d) calcinations of oxalates for production of yttrium oxides. Experimental results have shown that process conditions necessary to purify the solutions and recover yttrium strongly depend on composition of the leach liquor, in other words, whether the powder comes from treatment of CRTs or lamp. In the optimal experimental conditions, the recoveries of yttrium oxide are about 95%, 55%, and 65% for CRT, lamps, and CRT/lamp mixture (called MIX) powders, respectively. The lower yields obtained during treatments of MIX and lamp powders are probably due to the co-precipitation of yttrium together with other metals contained in the lamps powder only. Yttrium loss can be reduced to minimum changing the experimental conditions with respect to the case of the CRT process. In any case, the purity of final products from CRT, lamps, and MIX is greater than 95%. Moreover, the possibility to treat simultaneously both CRT and lamp powders is very important and interesting from an industrial point of view since it could be possible to run a single plant treating fluorescent powder coming from two different electronic wastes.

  16. Blind deconvolution applied to acoustical systems identification with supporting experimental results

    NASA Astrophysics Data System (ADS)

    Roan, Michael J.; Gramann, Mark R.; Erling, Josh G.; Sibul, Leon H.

    2003-10-01

    Many acoustical applications require the analysis of a signal that is corrupted by an unknown filtering function. Examples arise in the areas of noise or vibration control, room acoustics, structural vibration analysis, and speech processing. Here, the observed signal can be modeled as the convolution of the desired signal with an unknown system impulse response. Blind deconvolution refers to the process of learning the inverse of this unknown impulse response and applying it to the observed signal to remove the filtering effects. Unlike classical deconvolution, which requires prior knowledge of the impulse response, blind deconvolution requires only reasonable prior estimates of the input signal's statistics. The significant contribution of this work lies in experimental verification of a blind deconvolution algorithm in the context of acoustical system identification. Previous experimental work concerning blind deconvolution in acoustics has been minimal, as previous literature concerning blind deconvolution uses computer simulated data. This paper examines experiments involving three classical acoustic systems: driven pipe, driven pipe with open side branch, and driven pipe with Helmholtz resonator side branch. Experimental results confirm that the deconvolution algorithm learns these systems' inverse impulse responses, and that application of these learned inverses removes the effects of the filters.

  17. Supersonic Retropropulsion Experimental Results from the NASA Langley Unitary Plan Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; Rhode, Matthew N.; Edquist, Karl T.; Player, Charles J.

    2011-01-01

    A new supersonic retropropulsion experimental effort, intended to provide code validation data, was recently completed in the Langley Research Center Unitary Plan Wind Tunnel Test Section 2 over the Mach number range from 2.4 to 4.6. The experimental model was designed using insights gained from pre-test computations, which were instrumental for sizing and refining the model to minimize tunnel wall interference and internal flow separation concerns. A 5-in diameter 70-deg sphere-cone forebody with a roughly 10-in long cylindrical aftbody was the baseline configuration selected for this study. The forebody was designed to accommodate up to four 4:1 area ratio supersonic nozzles. Primary measurements for this model were a large number of surface pressures on the forebody and aftbody. Supplemental data included high-speed Schlieren video and internal pressures and temperatures. The run matrix was developed to allow for the quantification of various sources of experimental uncertainty, such as random errors due to run-to-run variations and bias errors due to flow field or model misalignments. Preliminary results and observations from the test are presented, while detailed data and uncertainty analyses are ongoing.

  18. AFM tip effect on a thin liquid film.

    PubMed

    Ledesma-Alonso, R; Legendre, D; Tordjeman, Ph

    2013-06-25

    We study the interaction between an AFM probe and a liquid film deposited over a flat substrate. We investigate the effects of the physical and geometrical parameters, with a special focus on the film thickness E, the probe radius R, and the distance D between the probe and the free surface. Deformation profiles have been calculated from the numerical simulations of the Young-Laplace equation by taking into account the probe/liquid and the liquid/substrate interactions, characterized by the Hamaker constants, Hpl and Hls. We demonstrate that the deformation of a shallow film is determined by a particular characteristic length λF = (2πγE(4)/Hls)(1/2), resulting from the balance between the capillary force (γ is the surface tension) and the van der Waals liquid/substrate attraction. For the case of a bulk liquid, the extent of the interface deformation is simply controlled by the capillary length λC = (γ/Δρg)(1/2). These trends point out two asymptotic regimes, which in turn are bounded by two characteristic film thicknesses Eg = (Hls/2πΔρg)(1/4) and Eγ = (R(2)Hls/2πγ)(1/4). For E > Eg, the bulk behavior is recovered, and for E < Eγ, we show the existence of a particular shallow film regime in which a localized tip effect is observed. This tip effect is characterized by the small magnitude of the deformation and an important restriction of its radial extent λF localized below the probe. In addition, we have found that the film thickness has a significant effect on the threshold separation distance Dmin below which the irreversible jump-to-contact process occurs: Dmin is probe radius-dependent for the bulk whereas it is film-thickness-dependent for shallow films. These results have an important impact on the optimal AFM scanning conditions.

  19. Comparison of experimental data with results of some drying models for regularly shaped products

    NASA Astrophysics Data System (ADS)

    Kaya, Ahmet; Aydın, Orhan; Dincer, Ibrahim

    2010-05-01

    This paper presents an experimental and theoretical investigation of drying of moist slab, cylinder and spherical products to study dimensionless moisture content distributions and their comparisons. Experimental study includes the measurement of the moisture content distributions of slab and cylindrical carrot, slab and cylindrical pumpkin and spherical blueberry during drying at various temperatures (e.g., 30, 40, 50 and 60°C) at specific constant velocity ( U = 1 m/s) and the relative humidity φ = 30%. In theoretical analysis, two moisture transfer models are used to determine drying process parameters (e.g., drying coefficient and lag factor) and moisture transfer parameters (e.g., moisture diffusivity and moisture transfer coefficient), and to calculate the dimensionless moisture content distributions. The calculated results are then compared with the experimental moisture data. A considerably high agreement is obtained between the calculations and experimental measurements for the cases considered. The effective diffusivity values were evaluated between 0.741 × 10-5 and 5.981 × 10-5 m2/h for slab products, 0.818 × 10-5 and 6.287 × 10-5 m2/h for cylindrical products and 1.213 × 10-7 and 7.589 × 10-7 m2/h spherical products using the Model-I and 0.316 × 10-5-5.072 × 10-5 m2/h for slab products, 0.580 × 10-5-9.587 × 10-5 m2/h for cylindrical products and 1.408 × 10-7-13.913 × 10-7 m2/h spherical products using the Model-II.

  20. Results from computational and experimental modeling of runaway electron damage on plasma facing components

    SciTech Connect

    Niemer, K.A.; Gilligan, J.G.; Croessmann, C.D.

    1994-11-01

    The purpose of this research was to extend the theoretical and experimental knowledge of runaway electron damage-impact-bombardment on plasma facing components and materials in magnetic fusion devices. The emphasis of this work involved computational modeling and experimental studies to investigate runaway electron energy deposition and thermal response in plasma facing materials. The goals were: (1) to develop a computational model to study and analyze runaway electron damage; (2) to characterize runaway electron parameters; and (3) to perform experiments to analyze runaway electron damage. These goals were accomplished by first assembling the PTA code package. PTA is a unique application of PATRAN, the Integrated TIGER Series (ITS), and ABAQUS for modeling high energy electron impact on magnetic fusion materials and components. The PTA code package provides a three-dimensional, time dependent, computational code package which predicts material response from runaway bombardment under most runaway conditions (i.e., electron energy, incident angle, energy density, and deposition time). As part of this research, PTA was used to study energy deposition and material response in several design applications, to analyze damaged material, and to analyze several experiments. Runaway electron characterization was determined through parametric studies, analysis of damaged materials, and analysis of experimental results. Characterization provided information on electron energy, incident angle, current, deposition time, and volume of material impacted by runaway electrons. Finally an experiment was performed on the Advanced Toroidal Facility (ATF) at Oak Ridge National Laboratory to study runaway electron damage. The experiment provided information on the runaway electron energy and current in ATF, as well as supplemented the existing experimental knowledge of runaway electron damage.

  1. Heat transfer from earth-coupled heat exchangers-Experimental and analytical results

    SciTech Connect

    Edwards, J.A.; Vitta, P.K.

    1985-01-01

    Experimental heat transfer results obtained with tubular heat transfer coils buried in soil are presented along with a finite difference simulation model that predicts the heat transfer to or from the buried pipes and the temperature distribution in the soil surrounding the buried pipes. The results were obtained with two different earth-coupled coils. Each coil was fabricated from 2.2 in. (5.6 cm) ID nominal 2 in. diameter cast iron pipe. The length of the heat exchanger for each earth-coupled system was 90 ft. (27.4 m). The earth-coupled coils were buried at a depth of 2.75 ft. (0.84 m) below the surface of the earth. The experimental data cover a time span of seven months and represent operation of the earth-coupled coils at various heat rates. Some of the prime quantities measured on a continuous basis are the earth's temperature at several locations in the vicinity of the buried coils, the far earth temperature, the solar insolation, moisture content of the soil, and the heat transferred to or from the buried coils to the surrounding soil. The finite difference model tracks the temperature distribution in the earth surrounding the coils on a continuous basis and predicts the earth's temperature at many locations adjacent to the earth-coupled coil with a maximum error of 4/sup 0/F (2.2/sup 0/C) during the seven month test. As parameters, the finite difference model included the moisture content of the soil, convection at the surface of the earth, emissivity of the soil, radiation exchange at the air-soil interface, as well as all of the pertinent parameters related to the flow of the heat transfer fluid through the buried pipes. The results presented, both experimental and simulated, have direct application in the design of earth-coupled water-source heat pump systems.

  2. Sizing colloidal particles from their contribution to the effective refractive index: Experimental results

    NASA Astrophysics Data System (ADS)

    Sánchez-Pérez, C.; García-Valenzuela, A.; Sato-Berrú, R. Y.; Flores-Flores, J. O.; Barrera, R. G.

    2011-01-01

    In this work we assess experimentally a new methodology for sizing non-absorbing colloidal particles in situ. It requires measuring the real and imaginary part of the effective refractive index per unit volume fraction occupied by the particles. The mean size and refractive e index of the particles are determined from a suitable model for the effective refractive index of dilute colloids. We present results of experiments made with polystyrene and silica nano-particles and compare them with dynamic light scattering and electron microscopy measurements.

  3. Recent experimental results from a long-pulse J-band relativistic klystron amplifier developmental effort

    SciTech Connect

    Kato, K.G.; Crouch, D.D.; Sar, D.R.; Speciale, R.A.; Carlsten, B.E.; Fazio, M.V.; Haynes, W.B.; Stringfield, R.M.

    1994-12-31

    Recent experimental results, supporting simulations, and design modeling are presented from a developmental effort to a produce a long pulse ({approximately}1{mu}s) J-band (5.85-8.2 GHz) relativistic klystron amplifier (RKA) of the high current NRL genealogy. This RKA is designed to operate at approximately 6.6 GHz, with a desired RF output {approximately}700 MW. Conversion of electron beam energy to microwave energy is obtained by a mock magnetically insulated coaxial converter which, in various incarnations, can be made to be either a cavity gap extractor or an inverse cathode.

  4. Active vibration absorber for the CSI evolutionary model - Design and experimental results. [Controls Structures Interaction

    NASA Technical Reports Server (NTRS)

    Bruner, Anne M.; Belvin, W. Keith; Horta, Lucas G.; Juang, Jer-Nan

    1991-01-01

    The development of control of large flexible structures technology must include practical demonstrations to aid in the understanding and characterization of controlled structures in space. To support this effort, a testbed facility has been developed to study practical implementation of new control technologies under realistic conditions. The paper discusses the design of a second order, acceleration feedback controller which acts as an active vibration absorber. This controller provides guaranteed stability margins for collocated sensor/actuator pairs in the absence of sensor/actuator dynamics and computational time delay. Experimental results in the presence of these factors are presented and discussed. The robustness of this design under model uncertainty is demonstrated.

  5. Seeded free electron laser operating with two colors: Comments on experimental results

    NASA Astrophysics Data System (ADS)

    Carpanese, M.; Ciocci, F.; Dattoli, G.; Petralia, A.; Petrillo, V.; Torre, A.

    2016-05-01

    Free electron lasers operating with two colors are promising devices for applications. The relevant modelization has provided a good understanding of the underlying physics. In this paper we present an analysis of the experimental results obtained at SPARC_LAB concerning seeded two-colors free electron laser (FEL) operation. The use of an ad hoc developed semi-analytical model based on the small-signal FEL integral equation reproduces most of the observed phenomenology. The paper discusses the reliability of the proposed method, the range of validity and its possible improvement.

  6. Preliminary Results on the Experimental Investigation of the Structure Functions of Bound Nucleons

    SciTech Connect

    Bodek, Arie

    2016-08-01

    We present preliminary results on an experimental study of the nuclear modification of the longitudinal ($\\sigma_L$) and transverse ($\\sigma_T$) structure functions of nucleons bound in nuclear targets. The origin of these modifications (commonly referred as as the EMC effect) is not fully understood. Our measurements of R= $\\sigma_L / \\sigma_T$ for nuclei ($R_A$) and for deuterium ($R_D$) indicate that nuclear modifications of the structure functions of bound nucleons are different for the longitudinal and transverse structure functions, and that contrary to expectation from several theoretical models, $R_A< R_D$.

  7. Comparison of Theoretical Stresses and Deflections of Multicell Wings with Experimental Results Obtained from Plastic Models

    NASA Technical Reports Server (NTRS)

    Zender, George W

    1956-01-01

    The experimental deflections and stresses of six plastic multicell-wing models of unswept, delta, and swept plan form are presented and compared with previously published theoretical results obtained by the electrical analog method. The comparisons indicate that the theory is reliable except for the evaluation of stresses in the vicinity of the leading edge of delta wings and the leading and trailing edges of swept wings. The stresses in these regions are questionable, apparently because of simplifications employed in idealizing the actual structure for theoretical purposes and because of local effects of concentrated loads.

  8. Experimental Results From the Thermal Energy Storage-1 (TES-1) Flight Experiment

    NASA Technical Reports Server (NTRS)

    Jacqmin, David

    1995-01-01

    The Thermal Energy Storage (TES) experiments are designed to provide data to help researchers understand the long-duration microgravity behavior of thermal energy storage fluoride salts that undergo repeated melting and freezing. Such data, which have never been obtained before, have direct application to space-based solar dynamic power systems. These power systems will store solar energy in a thermal energy salt, such as lithium fluoride (LiF) or a eutectic of lithium fluoride/calcium difluoride (LiF-CaF2) (which melts at a lower temperature). The energy will be stored as the latent heat of fusion when the salt is melted by absorbing solar thermal energy. The stored energy will then be extracted during the shade portion of the orbit, enabling the solar dynamic power system to provide constant electrical power over the entire orbit. Analytical computer codes have been developed to predict the performance of a spacebased solar dynamic power system. However, the analytical predictions must be verified experimentally before the analytical results can be used for future space power design applications. Four TES flight experiments will be used to obtain the needed experimental data. This article focuses on the flight results from the first experiment, TES-1, in comparison to the predicted results from the Thermal Energy Storage Simulation (TESSIM) analytical computer code.

  9. Crystal structure and band gap studies of sodalite: experimental and calculated results

    NASA Astrophysics Data System (ADS)

    Pan, Lijun; Liu, Wanchao; Chen, Weiguang; Yan, Kun; Yang, Huizhi; Yu, Jia

    2016-02-01

    In this paper, we investigated the crystal structural properties of sodalite sample by X-ray diffraction and the band gap studies by means of UV-Vis absorption spectroscopy, and compared with the calculated results using density functional theory. The results of X-ray diffraction suggests that the chemical formula should be Na8(AlSiO6)4(OH)2·2(H2O). The optimized lattice parameter is found to be larger 0.45% than experimental value and the calculations demonstrated the structural details of the hydrogen bond located in sodalite cage. The hydrogen bond formed by water molecule and hydroxyl is implied from charge distribution analysis. As the rotation angle of O-O lines in hydrogen bond is 51.8°, the structure should be of the lowest energy. The optical band gap is measured to be 4.5-4.7 eV experimentally, while, the calculated value is 4.16 eV which is attributed to the localized state below Fermi level formed by the hydrogen bonds. Our results are favorable for the understanding the role of sodalite in silicate mud and contribute to further disposals and treatments.

  10. Impulsivity in Multiplayer Online Battle Arena Gamers: Preliminary Results on Experimental and Self-Report Measures.

    PubMed

    Nuyens, Filip; Deleuze, Jory; Maurage, Pierre; Griffiths, Mark D; Kuss, Daria J; Billieux, Joël

    2016-06-01

    Background and aims Multiplayer Online Battle Arena (MOBA) games have become the most popular type of video games played worldwide, superseding the playing of Massively Multiplayer Online Role-Playing Games and First-Person Shooter games. However, empirical studies focusing on the use and abuse of MOBA games are still very limited, particularly regarding impulsivity, which is an indicator of addictive states but has not yet been explored in MOBA games. In this context, the objective of the present study is to explore the associations between impulsivity and symptoms of addictive use of MOBA games in a sample of highly involved League of Legends (LoL, currently the most popular MOBA game) gamers. Methods Thirty-six LoL gamers were recruited and completed both experimental (Single Key Impulsivity Paradigm) and self-reported impulsivity assessments (s-UPPS-P Impulsive Behavior Scale, Barratt Impulsiveness Scale), in addition to an assessment of problematic video game use (Problematic Online Gaming Questionnaire). Results Results showed links between impulsivity-related constructs and signs of excessive MOBA game involvement. Findings indicated that impaired ability to postpone rewards in an experimental laboratory task was strongly related to problematic patterns of MOBA game involvement. Although less consistent, several associations were also found between self-reported impulsivity traits and signs of excessive MOBA game involvement. Conclusions Despite these results are preliminary and based upon a small (self-selected) sample, the present study highlights potential psychological factors related to the addictive use of MOBA games.

  11. Investigation of sonar transponders for offshore wind farms: modeling approach, experimental setup, and results.

    PubMed

    Fricke, Moritz B; Rolfes, Raimund

    2013-11-01

    The installation of offshore wind farms in the German Exclusive Economic Zone requires the deployment of sonar transponders to prevent collisions with submarines. The general requirements for these systems have been previously worked out by the Research Department for Underwater Acoustics and Marine Geophysics of the Bundeswehr. In this article, the major results of the research project "Investigation of Sonar Transponders for Offshore Wind Farms" are presented. For theoretical investigations a hybrid approach was implemented using the boundary element method to calculate the source directivity and a three-dimensional ray-tracing algorithm to estimate the transmission loss. The angle-dependence of the sound field as well as the weather-dependence of the transmission loss are compared to experimental results gathered at the offshore wind farm alpha ventus, located 45 km north of the island Borkum. While theoretical and experimental results are in general agreement, the implemented model slightly underestimates scattering at the rough sea surface. It is found that the source level of 200 dB re 1 μPa at 1 m is adequate to satisfy the detectability of the warning sequence at distances up to 2 NM (≈3.7 km) within a horizontal sector of ±60° if realistic assumptions about signal-processing and noise are made. An arrangement to enlarge the angular coverage is discussed.

  12. Impulsivity in Multiplayer Online Battle Arena Gamers: Preliminary Results on Experimental and Self-Report Measures

    PubMed Central

    Nuyens, Filip; Deleuze, Jory; Maurage, Pierre; Griffiths, Mark D.; Kuss, Daria J.; Billieux, Joël

    2016-01-01

    Background and aims Multiplayer Online Battle Arena (MOBA) games have become the most popular type of video games played worldwide, superseding the playing of Massively Multiplayer Online Role-Playing Games and First-Person Shooter games. However, empirical studies focusing on the use and abuse of MOBA games are still very limited, particularly regarding impulsivity, which is an indicator of addictive states but has not yet been explored in MOBA games. In this context, the objective of the present study is to explore the associations between impulsivity and symptoms of addictive use of MOBA games in a sample of highly involved League of Legends (LoL, currently the most popular MOBA game) gamers. Methods Thirty-six LoL gamers were recruited and completed both experimental (Single Key Impulsivity Paradigm) and self-reported impulsivity assessments (s-UPPS-P Impulsive Behavior Scale, Barratt Impulsiveness Scale), in addition to an assessment of problematic video game use (Problematic Online Gaming Questionnaire). Results Results showed links between impulsivity-related constructs and signs of excessive MOBA game involvement. Findings indicated that impaired ability to postpone rewards in an experimental laboratory task was strongly related to problematic patterns of MOBA game involvement. Although less consistent, several associations were also found between self-reported impulsivity traits and signs of excessive MOBA game involvement. Conclusions Despite these results are preliminary and based upon a small (self-selected) sample, the present study highlights potential psychological factors related to the addictive use of MOBA games. PMID:27156376

  13. A Comparison of Experimental and Theoretical Results for Labyrinth Gas Seals. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Scharrer, Joseph Kirk

    1987-01-01

    The basic equations are derived for a two control volume model for compressible flow in a labyrinth seal. The flow is assumed to be completely turbulent and isoenergetic. The wall friction factors are determined using the Blasius formula. Jet flow theory is used for the calculation of the recirculation velocity in the cavity. Linearized zeroth and first order perturbation equations are developed for small motion about a centered position by an expansion in the eccentricity ratio. The zeroth order pressure distribution is found by satisfying the leakage equation. The circumferential velocity distribution is determined by satisfying the momentum equations. The first order equations are solved by a separation of variable solution. Integration of the resultant pressure distribution along and around the seal defines the reaction force developed by the seal and the corresponding dynamic coefficients. The results of this analysis are compared to experimental test results.

  14. Swinging Atwood Machine: Experimental and numerical results, and a theoretical study

    NASA Astrophysics Data System (ADS)

    Pujol, O.; Pérez, J. P.; Ramis, J. P.; Simó, C.; Simon, S.; Weil, J. A.

    2010-06-01

    A Swinging Atwood Machine ( SAM) is built and some experimental results concerning its dynamic behaviour are presented. Experiments clearly show that pulleys play a role in the motion of the pendulum, since they can rotate and have non-negligible radii and masses. Equations of motion must therefore take into account the moment of inertia of the pulleys, as well as the winding of the rope around them. Their influence is compared to previous studies. A preliminary discussion of the role of dissipation is included. The theoretical behaviour of the system with pulleys is illustrated numerically, and the relevance of different parameters is highlighted. Finally, the integrability of the dynamic system is studied, the main result being that the machine with pulleys is non-integrable. The status of the results on integrability of the pulley-less machine is also recalled.

  15. The EM/MPM algorithm for segmentation of textured images: analysis and further experimental results.

    PubMed

    Comer, M L; Delp, E J

    2000-01-01

    In this paper we present new results relative to the "expectation-maximization/maximization of the posterior marginals" (EM/MPM) algorithm for simultaneous parameter estimation and segmentation of textured images. The EM/MPM algorithm uses a Markov random field model for the pixel class labels and alternately approximates the MPM estimate of the pixel class labels and estimates parameters of the observed image model. The goal of the EM/MPM algorithm is to minimize the expected value of the number of misclassified pixels. We present new theoretical results in this paper which show that the algorithm can be expected to achieve this goal, to the extent that the EM estimates of the model parameters are close to the true values of the model parameters. We also present new experimental results demonstrating the performance of the EM/MPM algorithm.

  16. An improved measurement of dsDNA elasticity using AFM

    NASA Astrophysics Data System (ADS)

    Nguyen, Thi-Huong; Lee, Sang-Myung; Na, Kyounghwan; Yang, Sungwook; Kim, Jinseok; Yoon, Eui-Sung

    2010-02-01

    The mechanical properties of a small fragment (30 bp) of an individual double-stranded deoxyribonucleic acid (dsDNA) in water have been investigated by atomic force microscopy (AFM). We have stretched three systems including ssDNA, double-fixed dsDNA (one strand of the dsDNA molecules was biotinylated at the 3'-end and thiolated at the 5'-end, this was reversed for the other complementary strand) and single-fixed dsDNA (one strand of the dsDNA molecules was biotinylated at the 3'-end and thiolated at the 5'-end, whereas the other complementary strand was biotinylated at only the 5'-end). The achieved thiolation and biotinylation were to bind ds- or ssDNA to the gold surface and streptavidin-coated AFM tip, respectively. Analysis of the force versus displacement (F-D) curves from tip-DNA-substrate systems shows that the pull-off length (Lo) and stretch length (δ) from the double-fixed system were shorter than those observed in the ssDNA and the single-fixed system. The obtained stretch force (Fst) from the single-fixed dsDNA was much greater than that from the ssDNA even though it was about 10 pN greater than the one obtained in the double-fixed system. As a result, the Young's modulus of the double-fixed dsDNA was greater than that of the single-fixed dsDNA and the ssDNA. A more reliable stiffness of the dsDNA was observed via the double-fixed system, since there is no effect of the unpaired molecules during stretching, which always occurred in the single-fixed system. The unpaired molecules were also observed by comparing the stiffness of ssDNA and single-fixed dsDNA in which the end of one strand was left free.

  17. VX hydrolysis by human serum paraoxonase 1: a comparison of experimental and computational results.

    PubMed

    Peterson, Matthew W; Fairchild, Steven Z; Otto, Tamara C; Mohtashemi, Mojdeh; Cerasoli, Douglas M; Chang, Wenling E

    2011-01-01

    Human Serum paraoxonase 1 (HuPON1) is an enzyme that has been shown to hydrolyze a variety of chemicals including the nerve agent VX. While wildtype HuPON1 does not exhibit sufficient activity against VX to be used as an in vivo countermeasure, it has been suggested that increasing HuPON1's organophosphorous hydrolase activity by one or two orders of magnitude would make the enzyme suitable for this purpose. The binding interaction between HuPON1 and VX has recently been modeled, but the mechanism for VX hydrolysis is still unknown. In this study, we created a transition state model for VX hydrolysis (VX(ts)) in water using quantum mechanical/molecular mechanical simulations, and docked the transition state model to 22 experimentally characterized HuPON1 variants using AutoDock Vina. The HuPON1-VX(ts) complexes were grouped by reaction mechanism using a novel clustering procedure. The average Vina interaction energies for different clusters were compared to the experimentally determined activities of HuPON1 variants to determine which computational procedures best predict how well HuPON1 variants will hydrolyze VX. The analysis showed that only conformations which have the attacking hydroxyl group of VX(ts) coordinated by the sidechain oxygen of D269 have a significant correlation with experimental results. The results from this study can be used for further characterization of how HuPON1 hydrolyzes VX and design of HuPON1 variants with increased activity against VX.

  18. AFM imaging of fenestrated liver sinusoidal endothelial cells.

    PubMed

    Braet, F; Wisse, E

    2012-12-01

    Each microscope with its dedicated sample preparation technique provides the investigator with a specific set of data giving an instrument-determined (or restricted) insight into the structure and function of a tissue, a cell or parts thereof. Stepwise improvements in existing techniques, both instrumental and preparative, can sometimes cross barriers in resolution and image quality. Of course, investigators get really excited when completely new principles of microscopy and imaging are offered in promising new instruments, such as the AFM. The present paper summarizes a first phase of studies on the thin endothelial cells of the liver. It describes the preparation-dependent differences in AFM imaging of these cells after isolation. Special point of interest concerned the dynamics of the fenestrae, thought to filter lipid-carrying particles during their transport from the blood to the liver cells. It also describes the attempts to image the details of these cells when alive in cell cultures. It explains what physical conditions, mainly contributed to the scanning stylus, are thought to play a part in the limitations in imaging these cells. The AFM also offers promising specifications to those interested in cell surface details, such as membrane-associated structures, receptors, coated pits, cellular junctions and molecular aggregations or domains. The AFM also offers nano-manipulation possibilities, strengths and elasticity measurements, force interactions, affinity measurements, stiffness and other physical aspects of membranes and cytoskeleton. The potential for molecular approaches is there. New developments in cantilever construction and computer software promise to bring real time video imaging to the AFM. Home made accessories for the first generation of AFM are now commodities in commercial instruments and make the life of the AFM microscopist easier. Also, the combination of different microscopies, such as AFM and TEM, or AFM and SEM find their way to the

  19. Comparison of experimental and analytical results for free vibration of laminated composite plates

    SciTech Connect

    Maryuama, Koichi; Narita, Yoshihiro; Ichinomiya, Osamu

    1995-11-01

    Fibrous composite materials are being increasingly employed in high performance structures, including pressured vessel and piping applications. These materials are usually used in the form of laminated flat or curved plates, and the understanding of natural frequencies and the corresponding mode shapes is essential to a reliable structural design. Although many references have been published on analytical study of laminated composite plates, a limited number of experimental studies have appeared for dealing with vibration characteristics of the plates. This paper presents both experimental and analytical results for the problems. In the experiment, the holographic interferometry is used to measure the resonant frequencies and corresponding mode shapes of six-layered CFRP (carbon fiber reinforced plastic) composite plates. The material constants of a lamina are calculated from fiber and matrix material constants by using some different composite rules. With the calculated constants, the natural frequencies of the laminated CFRP plates are theoretically determined by the Ritz method. From the comparison of two sets of the results, the effect of choosing different composite rules is discussed in the vibration study of laminated composite plates.

  20. Natural frequencies of two bubbles in a compliant tube: Analytical, simulation, and experimental results

    PubMed Central

    Jang, Neo W.; Zakrzewski, Aaron; Rossi, Christina; Dalecki, Diane; Gracewski, Sheryl

    2011-01-01

    Motivated by various clinical applications of ultrasound contrast agents within blood vessels, the natural frequencies of two bubbles in a compliant tube are studied analytically, numerically, and experimentally. A lumped parameter model for a five degree of freedom system was developed, accounting for the compliance of the tube and coupled response of the two bubbles. The results were compared to those produced by two different simulation methods: (1) an axisymmetric coupled boundary element and finite element code previously used to investigate the response of a single bubble in a compliant tube and (2) finite element models developed in comsol Multiphysics. For the simplified case of two bubbles in a rigid tube, the lumped parameter model predicts two frequencies for in- and out-of-phase oscillations, in good agreement with both numerical simulation and experimental results. For two bubbles in a compliant tube, the lumped parameter model predicts four nonzero frequencies, each asymptotically converging to expected values in the rigid and compliant limits of the tube material. PMID:22088008

  1. Influence of a stationary magnetic field on water relations in lettuce seeds. Part II: experimental results.

    PubMed

    Reina, F G; Pascual, L A; Fundora, I A

    2001-12-01

    An experimental study on water absorption by lettuce seeds previously treated in a stationary magnetic field of 0-10 mT is presented. A significant increase in the rate with which the seeds absorb water is observed in the interval 0-10 mT of magnetic treatment. An increment in the total mass of absorbed water in this interval is also observed. These results are consistent with the reports on the increase of germination rate of the seeds, and the theoretical calculation of the variations induced by magnetic fields in the ionic currents across the cellular membrane. The fields originate in changes in the ionic concentration and thus in the osmotic pressure which regulates the entrance of water to the seeds. The good correlation between the theoretical approach and experimental results provides strong evidence that the magnetic field alters the water relations in seeds, and this effect may be the explanation of the reported alterations in germination rate of seeds by the magnetic field.

  2. Tilted wheel satellite attitude control with air-bearing table experimental results

    NASA Astrophysics Data System (ADS)

    Inumoh, Lawrence O.; Forshaw, Jason L.; Horri, Nadjim M.

    2015-12-01

    Gyroscopic actuators for satellite control have attracted significant research interest over the years, but their viability for the control of small satellites has only recently started to become clear. Research on variable speed gyroscopic actuators has long been focused on single gimbal actuators; double gimbal actuators typically operate at constant wheel spin rate and allow tilt angle ranges far larger than the ranges needed to operate most satellite missions. This research examines a tilted wheel, a newly proposed type of inertial actuator that can generate torques in all three principal axes of a rigid satellite using a spinning wheel and a double tilt mechanism. The tilt mechanism tilts the angular momentum vector about two axes providing two degree of freedom control, while variation of the wheel speed provides the third. The equations of motion of the system lead to a singularity-free system during nominal operation avoiding the need for complex steering logic. This paper describes the hardware design of the tilted wheel and the experimental setup behind both standalone and spherical air-bearing tables used to test it. Experimental results from the air bearing table are provided with the results depicting the high performance capabilities of the proposed actuator in torque generation.

  3. Thermal conductivity of silicic tuffs: predictive formalism and comparison with preliminary experimental results

    SciTech Connect

    Lappin, A. R.

    1980-07-01

    Performance of both near- and far-field thermomechanical calculations to assess the feasibility of waste disposal in silicic tuffs requires a formalism for predicting thermal conductivity of a broad range of tuffs. This report summarizes the available thermal conductivity data for silicate phases that occur in tuffs and describes several grain-density and conductivity trends which may be expected to result from post-emplacement alteration. A bounding curve is drawn that predicts the minimum theoretical matrix (zero-porosity) conductivity for most tuffs as a function of grain density. Comparison of experimental results with this curve shows that experimental conductivities are consistently lower at any given grain density. Use of the lowered bounding curve and an effective gas conductivity of 0.12 W/m{sup 0}C allows conservative prediction of conductivity for a broad range of tuff types. For the samples measured here, use of the predictive curve allows estimation of conductivity to within 15% or better, with one exception. Application and possible improvement of the formalism are also discussed.

  4. Experimental Impeller Fragmentation of Iliocaval Thrombosis Under Tulip Filter Protection: Preliminary Results

    SciTech Connect

    Schmitz-Rode, Thomas; Vorwerk, Dierk; Schuermann, Karl; Guenther, Rolf W.

    1996-04-15

    Purpose: To assess the efficacy of catheter fragmentation of massive caval thrombosis and of filter protection against procedure-related pulmonary embolism. Methods: In 10 sheep, a self-expanding tulip-shaped filter made from Wallstent mesh (diameter 25 mm) was introduced from the right jugular approach into the proximal inferior vena cava. Experimentally induced massive iliocaval thrombosis was fragmented by an impeller catheter (expanded diameter 14 mm), which was advanced coaxially through the sheath of the expanded filter. Post-procedural cavography and pulmonary angiography were performed to document the extent of caval recanalization and pulmonary embolism. Results: In all cases, impeller fragmentation cleared the inferior vena cava and the iliac veins of thrombi completely. Fragments washed downstream were trapped in the filter. In two of the first cases, parts of the clots caused pulmonary embolism before the filter was in place. Further events were avoided by a modification of the experimental setup. Except for some small peripheral perfusion defects in two cases, pulmonary angiograms did not show any incidence of pulmonary embolism. Conclusion: Our preliminary results suggest that impeller fragmentation of iliocaval thrombi under tulip filter protection is effective and does not cause significant pulmonary embolism.

  5. Natural frequencies of two bubbles in a compliant tube: analytical, simulation, and experimental results.

    PubMed

    Jang, Neo W; Zakrzewski, Aaron; Rossi, Christina; Dalecki, Diane; Gracewski, Sheryl

    2011-11-01

    Motivated by various clinical applications of ultrasound contrast agents within blood vessels, the natural frequencies of two bubbles in a compliant tube are studied analytically, numerically, and experimentally. A lumped parameter model for a five degree of freedom system was developed, accounting for the compliance of the tube and coupled response of the two bubbles. The results were compared to those produced by two different simulation methods: (1) an axisymmetric coupled boundary element and finite element code previously used to investigate the response of a single bubble in a compliant tube and (2) finite element models developed in comsol Multiphysics. For the simplified case of two bubbles in a rigid tube, the lumped parameter model predicts two frequencies for in- and out-of-phase oscillations, in good agreement with both numerical simulation and experimental results. For two bubbles in a compliant tube, the lumped parameter model predicts four nonzero frequencies, each asymptotically converging to expected values in the rigid and compliant limits of the tube material.

  6. Fuel-rich, catalytic reaction experimental results. [fuel development for high-speed civil transport aircraft

    NASA Technical Reports Server (NTRS)

    Rollbuhler, Jim

    1991-01-01

    Future aeropropulsion gas turbine combustion requirements call for operating at very high inlet temperatures, pressures, and large temperature rises. At the same time, the combustion process is to have minimum pollution effects on the environment. Aircraft gas turbine engines utilize liquid hydrocarbon fuels which are difficult to uniformly atomize and mix with combustion air. An approach for minimizing fuel related problems is to transform the liquid fuel into gaseous form prior to the completion of the combustion process. Experimentally obtained results are presented for vaporizing and partially oxidizing a liquid hydrocarbon fuel into burnable gaseous components. The presented experimental data show that 1200 to 1300 K reaction product gas, rich in hydrogen, carbon monoxide, and light-end hydrocarbons, is formed when flowing 0.3 to 0.6 fuel to air mixes through a catalyst reactor. The reaction temperatures are kept low enough that nitrogen oxides and carbon particles (soot) do not form. Results are reported for tests using different catalyst types and configurations, mass flowrates, input temperatures, and fuel to air ratios.

  7. Transport of fluorobenzoate tracers in a vegetated hydrologic control volume: 1. Experimental results

    NASA Astrophysics Data System (ADS)

    Queloz, Pierre; Bertuzzo, Enrico; Carraro, Luca; Botter, Gianluca; Miglietta, Franco; Rao, P. S. C.; Rinaldo, Andrea

    2015-04-01

    This paper reports about the experimental evidence collected on the transport of five fluorobenzoate tracers injected under controlled conditions in a vegetated hydrologic volume, a large lysimeter (fitted with load cells, sampling ports, and an underground chamber) where two willows prompting large evapotranspiration fluxes had been grown. The relevance of the study lies in the direct and indirect measures of the ways in which hydrologic fluxes, in this case, evapotranspiration from the upper surface and discharge from the bottom drainage, sample water and solutes in storage at different times under variable hydrologic forcings. Methods involve the accurate control of hydrologic inputs and outputs and a large number of suitable chemical analyses of water samples in discharge waters. Mass extraction from biomass has also been performed ex post. The results of the 2 year long experiment established that our initial premises on the tracers' behavior, known to be sorption-free under saturated conditions which we verified in column leaching tests, were unsuitable as large differences in mass recovery appeared. Issues on reactivity thus arose and were addressed in the paper, in this case attributed to microbial degradation and solute plant uptake. Our results suggest previously unknown features of fluorobenzoate compounds as hydrologic tracers, potentially interesting for catchment studies owing to their suitability for distinguishable multiple injections, and an outlook on direct experimental closures of mass balance in hydrologic transport volumes involving fluxes that are likely to sample differently stored water and solutes.

  8. Analysis and comparison of experimental and simulated results for an omnidirectional free space optical receiver architecture

    NASA Astrophysics Data System (ADS)

    Murshid, Syed H.; Lovell, Gregory L.; Finch, Michael F.

    2014-09-01

    Lasercomm or Free Space Optical (FSO) communication has the potential to provide fiber optic data rates without the need for wired physical connectivity. This paper investigates the feasibility of an Omnidirectional FSO (O-FSO) communications link that utilizes fiber bundles for improved omni-directionality and compares experimental data with modeled results. Current state of the art O-FSO link ranges are limited to 100 meters or so, with data rates of only a few100 kbits/sec. The proposed architecture is formed from commercially available fiber bundle that collects omnidirectional light due to the hemispheric nature of the fiber bundle by exploiting the acceptance cones of the individual fiber exposed to the optical radiation. The experimental transmitter is composed of an LED source that is driven by an On-Off-Keying signal. This paper presents the received optical power while varying the range between the transmitter and receiver. The omni-directionality of this architecture is also verified. The measured results are then compared to the model predictions for omni-directionality and range.

  9. High-speed AFM of human chromosomes in liquid

    NASA Astrophysics Data System (ADS)

    Picco, L. M.; Dunton, P. G.; Ulcinas, A.; Engledew, D. J.; Hoshi, O.; Ushiki, T.; Miles, M. J.

    2008-09-01

    Further developments of the previously reported high-speed contact-mode AFM are described. The technique is applied to the imaging of human chromosomes at video rate both in air and in water. These are the largest structures to have been imaged with high-speed AFM and the first imaging in liquid to be reported. A possible mechanism that allows such high-speed contact-mode imaging without significant damage to the sample is discussed in the context of the velocity dependence of the measured lateral force on the AFM tip.

  10. Experimental results on the design for the APS PID global orbit control system.

    SciTech Connect

    Chung, Y.; Kirchman, J. A.

    1997-12-05

    The Advanced Photon Source third generation synchrotrons light source needs a stabilized particle beam position to produce high brightness and low emittance radiation. Global orbit correction control is introduced and is utilized to satisfy the demanding needs of the accelerator. This paper presents the experimental results for determining an effective and optimal controller to meet the global orbit correction requirements. These requirements include frequency/time domain demands consisting of vibrational noise attenuation, limiting of controller gains for stability and improving the system time response. Experiments were conducted with a digital signal processor implementing various PID sets to make comparisons between simulations and experiments. Measurements at these PID sets supported the results of software simulation.

  11. Synthetic aperture LADAR at 1550 nm: system demonstration, imaging processing and experimental result

    NASA Astrophysics Data System (ADS)

    Li, Guangzuo; Wang, Ran; Wang, Peisi; Zhang, Keshu; Wu, Yirong

    2016-10-01

    In this manuscript, we propose and experimentally demonstrate our synthetic aperture LADAR (SAL) system. The system could obtain imageries in a few milliseconds with resolution of 5 cm from a long distance. Fine resolution in the range dimension was obtained by transmitting LADAR signal with large bandwidth. While in the cross-range dimension, the large synthetic aperture diameter provided fine resolution. By employing continuous translational motion of SAL system, a large aperture diameter was obtained through synthetic aperture processing. So the diffraction limit of real aperture diameter was overcome and finer resolution was achieved. Indoor and outdoor experiments were both performed and the corresponding results were showed. Results validated the feasibility of our system and processing algorithm.

  12. Comparison of results of experimental research with numerical calculations of a model one-sided seal

    NASA Astrophysics Data System (ADS)

    Joachimiak, Damian; Krzyślak, Piotr

    2015-06-01

    Paper presents the results of experimental and numerical research of a model segment of a labyrinth seal for a different wear level. The analysis covers the extent of leakage and distribution of static pressure in the seal chambers and the planes upstream and downstream of the segment. The measurement data have been compared with the results of numerical calculations obtained using commercial software. Based on the flow conditions occurring in the area subjected to calculations, the size of the mesh defined by parameter y+ has been analyzed and the selection of the turbulence model has been described. The numerical calculations were based on the measurable thermodynamic parameters in the seal segments of steam turbines. The work contains a comparison of the mass flow and distribution of static pressure in the seal chambers obtained during the measurement and calculated numerically in a model segment of the seal of different level of wear.

  13. Experimental results for improving the matrix condition using a hybrid optical system.

    PubMed

    Klapp, Iftach; Mendlovic, David

    2012-03-01

    We present preliminary experimental results for implementing the "blurred trajectories" method on three parallel optics (PO) systems. The "main" system and "auxiliary" optics were simple laboratory graded lenses attached to an iris diaphragm. When applying the blurred trajectories method we first show an improvement in the matrix condition, as the matrix condition number decreased in a range of factors of 3 to 418 relative to the main system. Following that, image restoration by weak regularization was performed so that the system matrix condition dominated the restoration process. It was shown that the restoration results of the PO are better than those of the main system and the auxiliary optics separately. In addition, the quality of the restoration follows the system's matrix condition. The improvement in the matrix condition achieved by the PO system improved the immunity to detection noise. Finally, a comparison to Wiener filtering restoration shows that it is also generally inferior to the proposed method.

  14. The Langley Research Center CSI phase-0 evolutionary model testbed-design and experimental results

    NASA Technical Reports Server (NTRS)

    Belvin, W. K.; Horta, Lucas G.; Elliott, K. B.

    1991-01-01

    A testbed for the development of Controls Structures Interaction (CSI) technology is described. The design philosophy, capabilities, and early experimental results are presented to introduce some of the ongoing CSI research at NASA-Langley. The testbed, referred to as the Phase 0 version of the CSI Evolutionary model (CEM), is the first stage of model complexity designed to show the benefits of CSI technology and to identify weaknesses in current capabilities. Early closed loop test results have shown non-model based controllers can provide an order of magnitude increase in damping in the first few flexible vibration modes. Model based controllers for higher performance will need to be robust to model uncertainty as verified by System ID tests. Data are presented that show finite element model predictions of frequency differ from those obtained from tests. Plans are also presented for evolution of the CEM to study integrated controller and structure design as well as multiple payload dynamics.

  15. Carbon fiber composites inspection and defect characterization using active infrared thermography: numerical simulations and experimental results.

    PubMed

    Fernandes, Henrique; Zhang, Hai; Figueiredo, Alisson; Ibarra-Castanedo, Clemente; Guimarares, Gilmar; Maldague, Xavier

    2016-12-01

    Composite materials are widely used in the aeronautic industry. One of the reasons is because they have strength and stiffness comparable to metals, with the added advantage of significant weight reduction. Infrared thermography (IT) is a safe nondestructive testing technique that has a fast inspection rate. In active IT, an external heat source is used to stimulate the material being inspected in order to generate a thermal contrast between the feature of interest and the background. In this paper, carbon-fiber-reinforced polymers are inspected using IT. More specifically, carbon/PEEK (polyether ether ketone) laminates with square Kapton inserts of different sizes and at different depths are tested with three different IT techniques: pulsed thermography, vibrothermography, and line scan thermography. The finite element method is used to simulate the pulsed thermography experiment. Numerical results displayed a very good agreement with experimental results.

  16. Preliminary results of the large experimental wind turbine phase of the national wind energy program

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.; Sholes, J. E.

    1975-01-01

    A major phase of the wind energy program is the development of reliable wind turbines for supplying cost-competitive electrical energy. This paper discusses the preliminary results of two projects in this phase of the program. First an experimental 100 kW wind turbine design and its status are reviewed. Also discussed are the results of two parallel design studies for determining the configurations and power levels for wind turbines with minimum energy costs. These studies show wind energy costs of 7 to 1.5 c/kWH for wind turbines produced in quantities of 100 to 1000 a year and located at sites having average winds of 12 to 18 mph.

  17. Experimental Results for the Applicability of Multifractal Scaling in Turbulent Flows

    NASA Astrophysics Data System (ADS)

    Frederiksen, Richard D.; Dahm, Werner J. A.; Dowling, David R.

    1996-11-01

    Results are presented from an assessment of the applicability of multifractal scale similarity to the structure of conserved scalar fields ζ( x,t ) and scalar energy dissipation rate fields nabla ζ \\cdot nabla ζ ( x,t ) in turbulent flows. Two different types of experimental data are considered: fully resolved four-dimensional measurements of a Sc >> 1 conserved scalar field, and (2) long duration single point time series measurements of a Sc ≈ 1 conserved scalar field. Rigorous statistical criteria are developed to assess multifractal scale similarity and to discriminate between scale similar and random sets. Results show that the scalar energy dissipation rate field exhibits multifractal scaling at scales larger than the scalar diffusion length scale, λ_D. The multifractal scaling observed is consistent with that produced by a random multiplicative cascade process with a bilinear multiplier distribution. Similar analyses of the conserved scalar field find no evidence to support multifractal scaling over any range of scales.

  18. Survey of Experimental Results in High-Contrast Imaging for Future Exoplanet Missions

    NASA Technical Reports Server (NTRS)

    Lawson, P. R.; Belikov, R.; Cash, W.; Clampin, M.; Glassman, T.; Guyon, O.; Kasdin, N. J.; Kern, B. D.; Lyon, R.; Mawet, D.; Moody, D.; Samuele, R.; Serabyn, E.; Sirbu, D.; Trauger, J.

    2013-01-01

    We present and compare experimental results in high contrast imaging representing the state of the art in coronagraph and starshade technology. These experiments have been undertaken with the goal of demonstrating the capability of detecting Earth-like planets around nearby Sun-like stars. The contrast of an Earth seen in reflected light around a Sun-like star would be about 1.2 x 10(exp -10). Several of the current candidate technologies now yield raw contrasts of 1.0 x 10(exp -9) or better, and so should enable the detection of Earths, assuming a gain in sensitivity in post-processing of a factor of 10. We present results of coronagraph and starshade experiments conducted at visible and infrared wavelengths. Cross-sections of dark fields are directly compared as a function of field angle and bandwidth. The strength and differences of the techniques are compared.

  19. Beam-waveguide antenna performance predictions with comparisons to experimental results

    NASA Technical Reports Server (NTRS)

    Bathker, Dan A.; Veruttipong, Watt; Otoshi, Tom Y.; Cramer, Paul W., Jr.

    1992-01-01

    An overview of a NASA/JPL antenna project is presented, with specific focus on the methodology used to predict the microwave performance of a 34-m-diameter beam-waveguide (BWG) reflector antenna, designated DSS 13 (Deep Space Station 13). DSS 13 is the R&D facility serving the NASA/JPL Deep Space Network. Microwave performance predictions as well as a summary of test results for the antenna are given. The antenna has Cassegrain and centerline BWG operating modes at X-band (8.450-GHz) and Ka-band (32-GHz) frequencies. The performance predictions regarding antenna area efficiencies, corresponding beampeak gains, and for several (but not all) operating noise temperatures are found to agree reasonably well with the corresponding experimental results.

  20. Fault detection, isolation and reconfiguration in FTMP Methods and experimental results. [fault tolerant multiprocessor

    NASA Technical Reports Server (NTRS)

    Lala, J. H.

    1983-01-01

    The Fault-Tolerant Multiprocessor (FTMP) is a highly reliable computer designed to meet a goal of 10 to the -10th failures per hour and built with the objective of flying an active-control transport aircraft. Fault detection, identification, and recovery software is described, and experimental results obtained by injecting faults in the pin level in the FTMP are presented. Over 21,000 faults were injected in the CPU, memory, bus interface circuits, and error detection, masking, and error reporting circuits of one LRU of the multiprocessor. Detection, isolation, and reconfiguration times were recorded for each fault, and the results were found to agree well with earlier assumptions made in reliability modeling.

  1. Heat Transfer Enhancement for Finned-Tube Heat Exchangers with Vortex Generators: Experimental and Numerical Results

    SciTech Connect

    O'Brien, James Edward; Sohal, Manohar Singh; Huff, George Albert

    2002-08-01

    A combined experimental and numerical investigation is under way to investigate heat transfer enhancement techniques that may be applicable to large-scale air-cooled condensers such as those used in geothermal power applications. The research is focused on whether air-side heat transfer can be improved through the use of finsurface vortex generators (winglets,) while maintaining low heat exchanger pressure drop. A transient heat transfer visualization and measurement technique has been employed in order to obtain detailed distributions of local heat transfer coefficients on model fin surfaces. Pressure drop measurements have also been acquired in a separate multiple-tube row apparatus. In addition, numerical modeling techniques have been developed to allow prediction of local and average heat transfer for these low-Reynolds-number flows with and without winglets. Representative experimental and numerical results presented in this paper reveal quantitative details of local fin-surface heat transfer in the vicinity of a circular tube with a single delta winglet pair downstream of the cylinder. The winglets were triangular (delta) with a 1:2 height/length aspect ratio and a height equal to 90% of the channel height. Overall mean fin-surface Nusselt-number results indicate a significant level of heat transfer enhancement (average enhancement ratio 35%) associated with the deployment of the winglets with oval tubes. Pressure drop measurements have also been obtained for a variety of tube and winglet configurations using a single-channel flow apparatus that includes four tube rows in a staggered array. Comparisons of heat transfer and pressure drop results for the elliptical tube versus a circular tube with and without winglets are provided. Heat transfer and pressure-drop results have been obtained for flow Reynolds numbers based on channel height and mean flow velocity ranging from 700 to 6500.

  2. Neuronal and glial changes in the brain resulting from explosive blast in an experimental model.

    PubMed

    Goodrich, James A; Kim, Jung H; Situ, Robert; Taylor, Wesley; Westmoreland, Ted; Du, Fu; Parks, Steven; Ling, Geoffrey; Hwang, Jung Y; Rapuano, Amedeo; Bandak, Faris A; de Lanerolle, Nihal C

    2016-11-24

    Mild traumatic brain injury (mTBI) is the signature injury in warfighters exposed to explosive blasts. The pathology underlying mTBI is poorly understood, as this condition is rarely fatal and thus postmortem brains are difficult to obtain for neuropathological studies. Here we report on studies of an experimental model with a gyrencephalic brain that is exposed to single and multiple explosive blast pressure waves. To determine injuries to the brain resulting from the primary blast, experimental conditions were controlled to eliminate any secondary or tertiary injury from blasts. We found small but significant levels of neuronal loss in the hippocampus, a brain area that is important for cognitive functions. Furthermore, neuronal loss increased with multiple blasts and the degree of neuronal injury worsened with time post-blast. This is consistent with our findings in the blast-exposed human brain based on magnetic resonance spectroscopic imaging. The studies on this experimental model thus confirm what has been presumed to be the case with the warfighter, namely that exposure to multiple blasts causes increased brain injury. Additionally, as in other studies of both explosive blast as well as closed head mTBI, we found astrocyte activation. Activated microglia were also prominent in white matter tracts, particularly in animals exposed to multiple blasts and at long post-blast intervals, even though injured axons (i.e. β-APP positive) were not found in these areas. Microglial activation appears to be a delayed response, though whether they may contribute to inflammation related injury mechanism at even longer post-blast times than we tested here, remains to be explored. Petechial hemorrhages or other gross signs of vascular injury were not observed in our study. These findings confirm the development of neuropathological changes due to blast exposure. The activation of astrocytes and microglia, cell types potentially involved in inflammatory processes, suggest an

  3. Recovery of yttrium from cathode ray tubes and lamps’ fluorescent powders: experimental results and economic simulation

    SciTech Connect

    Innocenzi, V. De Michelis, I.; Ferella, F.; Vegliò, F.

    2013-11-15

    Highlights: • Fluorescent powder of lamps. • Fluorescent powder of cathode ray rubes. • Recovery of yttrium from fluorescent powders. • Economic simulation for the processes to recover yttrium from WEEE. - Abstract: In this paper, yttrium recovery from fluorescent powder of lamps and cathode ray tubes (CRTs) is described. The process for treating these materials includes the following: (a) acid leaching, (b) purification of the leach liquors using sodium hydroxide and sodium sulfide, (c) precipitation of yttrium using oxalic acid, and (d) calcinations of oxalates for production of yttrium oxides. Experimental results have shown that process conditions necessary to purify the solutions and recover yttrium strongly depend on composition of the leach liquor, in other words, whether the powder comes from treatment of CRTs or lamp. In the optimal experimental conditions, the recoveries of yttrium oxide are about 95%, 55%, and 65% for CRT, lamps, and CRT/lamp mixture (called MIX) powders, respectively. The lower yields obtained during treatments of MIX and lamp powders are probably due to the co-precipitation of yttrium together with other metals contained in the lamps powder only. Yttrium loss can be reduced to minimum changing the experimental conditions with respect to the case of the CRT process. In any case, the purity of final products from CRT, lamps, and MIX is greater than 95%. Moreover, the possibility to treat simultaneously both CRT and lamp powders is very important and interesting from an industrial point of view since it could be possible to run a single plant treating fluorescent powder coming from two different electronic wastes.

  4. EASE (Experimental Assembly of Structures in EVA) overview of selected results

    NASA Technical Reports Server (NTRS)

    Akin, David L.

    1987-01-01

    Experimental Assembly of Structures in EVA (EASE) objectives, experimental protocol, neutral buoyancy simulation, task time distribution, assembly task performance, metabolic rate/biomedical readouts are summarized. This presentation is shown in charts, figures, and graphs.

  5. Comparison between Theoretical Calculation and Experimental Results of Excitation Functions for Production of Relevant Biomedical Radionuclides

    SciTech Connect

    Menapace, E.; Birattari, C.; Bonardi, M.L.; Groppi, F.; Morzenti, S.; Zona, C.

    2005-05-24

    The radionuclide production for biomedical applications has been brought up in the years, as a special nuclear application, at INFN LASA Laboratory, particularly in co-operation with the JRC-Ispra of EC. Mainly scientific aspects concerning radiation detection and the relevant instruments, the measurements of excitation functions of the involved nuclear reactions, the requested radiochemistry studies and further applications have been investigated. On the side of the nuclear data evaluations, based on nuclear model calculations and critically selected experimental data, the appropriate competence has been developed at ENEA Division for Advanced Physics Technologies. A series of high specific activity accelerator-produced radionuclides in no-carrier-added (NCA) form, for uses in metabolic radiotherapy and for PET radiodiagnostics, are investigated. In this work, last revised measurements and model calculations are reviewed for excitation functions of natZn(d,X)64Cu, 66Ga reactions, referring to irradiation experiments at K=38 variable energy Cyclotron of JRC-Ispra. Concerning the reaction data for producing 186gRe and 211At/211gPo (including significant emission spectra) and 210At, most recent and critically selected experimental results are considered and discussed in comparison with model calculations paying special care to pre-equilibrium effects estimate and to the appropriate overall parameterization. Model calculations are presented for 226Ra(p,2n)225Ac reaction, according to the working program of the ongoing IAEA CRP on the matter.

  6. Non-linear spacecraft component parameters identification based on experimental results and finite element modelling

    NASA Astrophysics Data System (ADS)

    Vismara, S. O.; Ricci, S.; Bellini, M.; Trittoni, L.

    2016-06-01

    The objective of the present paper is to describe a procedure to identify and model the non-linear behaviour of structural elements. The procedure herein applied can be divided into two main steps: the system identification and the finite element model updating. The application of the restoring force surface method as a strategy to characterize and identify localized non-linearities has been investigated. This method, which works in the time domain, has been chosen because it has `built-in' characterization capabilities, it allows a direct non-parametric identification of non-linear single-degree-of-freedom systems and it can easily deal with sine-sweep excitations. Two different application examples are reported. At first, a numerical test case has been carried out to investigate the modelling techniques in the case of non-linear behaviour based on the presence of a free-play in the model. The second example concerns the flap of the Intermediate eXperimental Vehicle that successfully completed its 100-min mission on 11 February 2015. The flap was developed under the responsibility of Thales Alenia Space Italia, the prime contractor, which provided the experimental data needed to accomplish the investigation. The procedure here presented has been applied to the results of modal testing performed on the article. Once the non-linear parameters were identified, they were used to update the finite element model in order to prove its capability of predicting the flap behaviour for different load levels.

  7. Preliminary results of the LLNL airborne experimental test-bed SAR system

    SciTech Connect

    Miller, M.G.; Mullenhoff, C.J.; Kiefer, R.D.; Brase, J.M.; Wieting, M.G.; Berry, G.L.; Jones, H.E.

    1996-01-16

    The Imaging and Detection Program (IDP) within Laser Programs at Lawrence Livermore National Laboratory (LLNL) in cooperation with the Hughes Aircraft Company has developed a versatile, high performance, airborne experimental test-bed (AETB) capability. The test-bed has been developed for a wide range of research and development experimental applications including radar and radiometry plus, with additional aircraft modifications, optical systems. The airborne test-bed capability has been developed within a Douglas EA-3B Skywarrior jet aircraft provided and flown by Hughes Aircraft Company. The current test-bed payload consists of an X-band radar system, a high-speed data acquisition, and a real-time processing capability. The medium power radar system is configured to operate in a high resolution, synthetic aperture radar (SAR) mode and is highly configurable in terms of waveforrns, PRF, bandwidth, etc. Antennas are mounted on a 2-axis gimbal in the belly radome of the aircraft which provides pointing and stabilization. Aircraft position and antenna attitude are derived from a dedicated navigational system and provided to the real-time SAR image processor for instant image reconstruction and analysis. This paper presents a further description of the test-bed and payload subsystems plus preliminary results of SAR imagery.

  8. Experimental Results from the Thermal Energy Storage-1 (TES-1) Flight Experiment

    NASA Technical Reports Server (NTRS)

    Wald, Lawrence W.; Tolbert, Carol; Jacqmin, David

    1995-01-01

    The Thermal Energy Storage-1 (TES-1) is a flight experiment that flew on the Space Shuttle Columbia (STS-62), in March 1994, as part of the OAST-2 mission. TES-1 is the first experiment in a four experiment suite designed to provide data for understanding the long duration microgravity behavior of thermal energy storage fluoride salts that undergo repeated melting and freezing. Such data have never been obtained before and have direct application for the development of space-based solar dynamic (SD) power systems. These power systems will store solar energy in a thermal energy salt such as lithium fluoride or calcium fluoride. The stored energy is extracted during the shade portion of the orbit. This enables the solar dynamic power system to provide constant electrical power over the entire orbit. Analytical computer codes have been developed for predicting performance of a spaced-based solar dynamic power system. Experimental verification of the analytical predictions is needed prior to using the analytical results for future space power design applications. The four TES flight experiments will be used to obtain the needed experimental data. This paper will focus on the flight results from the first experiment, TES-1, in comparison to the predicted results from the Thermal Energy Storage Simulation (TESSIM) analytical computer code. The TES-1 conceptual development, hardware design, final development, and system verification testing were accomplished at the NASA lewis Research Center (LeRC). TES-1 was developed under the In-Space Technology Experiment Program (IN-STEP), which sponsors NASA, industry, and university flight experiments designed to enable and enhance space flight technology. The IN-STEP Program is sponsored by the Office of Space Access and Technology (OSAT).

  9. Drying in porous media with gravity-stabilized fronts: Experimental results

    NASA Astrophysics Data System (ADS)

    Yiotis, A. G.; Salin, D.; Tajer, E. S.; Yortsos, Y. C.

    2012-08-01

    In a recent paper [Yiotis , Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.85.046308 85, 046308 (2012)] we developed a model for the drying of porous media in the presence of gravity. It incorporated effects of corner film flow, internal and external mass transfer, and the effect of gravity. Analytical results were derived when gravity opposes drying and hence leads to a stable percolation drying front. In this paper, we test the theory using laboratory experiments. A series of isothermal drying experiments in glass bead packings saturated with volatile hydrocarbons is conducted. The transparent glass cells containing the packing allow for the visual monitoring of the phase distribution patterns below the surface, including the formation of liquid films, as the gaseous phase invades the pore space, and for the control of the thickness of the diffusive mass boundary layer over the packing. The experimental results agree very well with theory, provided that the latter is generalized to account for the effects of corner roundness in the film region (which was neglected in the theoretical part). We demonstrate the existence of an early constant rate period (CRP), which lasts as long as the films saturate the surface of the packing, and of a subsequent falling rate period (FRP), which begins practically after the detachment of the film tips from the external surface. During the CRP, the process is controlled by diffusion within the stagnant gaseous phase in the upper part of the cells, yielding a Stefan tube problem solution. During the FRP, the process is controlled by diffusion within the packing, with a drying rate inversely proportional to the observed position of the film tips in the cell. Theoretical and experimental results compare favorably for a specific value of the roundness of the films, which is found to be constant and equal to 0.2 for various conditions, and verify the theoretical dependence on the capillary Caf, Bond Bo, and Sherwood Sh numbers.

  10. Drying in porous media with gravity-stabilized fronts: experimental results.

    PubMed

    Yiotis, A G; Salin, D; Tajer, E S; Yortsos, Y C

    2012-08-01

    In a recent paper [Yiotis et al., Phys. Rev. E 85, 046308 (2012)] we developed a model for the drying of porous media in the presence of gravity. It incorporated effects of corner film flow, internal and external mass transfer, and the effect of gravity. Analytical results were derived when gravity opposes drying and hence leads to a stable percolation drying front. In this paper, we test the theory using laboratory experiments. A series of isothermal drying experiments in glass bead packings saturated with volatile hydrocarbons is conducted. The transparent glass cells containing the packing allow for the visual monitoring of the phase distribution patterns below the surface, including the formation of liquid films, as the gaseous phase invades the pore space, and for the control of the thickness of the diffusive mass boundary layer over the packing. The experimental results agree very well with theory, provided that the latter is generalized to account for the effects of corner roundness in the film region (which was neglected in the theoretical part). We demonstrate the existence of an early constant rate period (CRP), which lasts as long as the films saturate the surface of the packing, and of a subsequent falling rate period (FRP), which begins practically after the detachment of the film tips from the external surface. During the CRP, the process is controlled by diffusion within the stagnant gaseous phase in the upper part of the cells, yielding a Stefan tube problem solution. During the FRP, the process is controlled by diffusion within the packing, with a drying rate inversely proportional to the observed position of the film tips in the cell. Theoretical and experimental results compare favorably for a specific value of the roundness of the films, which is found to be constant and equal to 0.2 for various conditions, and verify the theoretical dependence on the capillary Ca(f), Bond Bo, and Sherwood Sh numbers.

  11. Smectite clays in Mars soil - Evidence for their presence and role in Viking biology experimental results

    NASA Technical Reports Server (NTRS)

    Banin, A.; Rishpon, J.

    1979-01-01

    Evidence for the presence of smectite clays in Martian soils is reviewed and results of experiments with certain active clays simulating the Viking biology experiments are reported. Analyses of Martian soil composition by means of X-ray fluorescence spectrometry and dust storm spectroscopy and Martian geological history strongly suggest the presence of a mixture of weathered ferro-silicate minerals, mainly nontronite and montmorillonite, accompanied by soluble sulphate salts, as major constituents. Samples of montmorillonite and nontronite incubated with (C-14)-formate or the radioactive nutrient medium solution used in the Viking Labeled Release experiment, were found to produce patterns of release of radioactive gas very similar to those observed in the Viking experiments, indicating the iron-catalyzed decomposition of formate as the reaction responsible for the Viking results. The experimental results of Hubbard (1979) simulating the results of the Viking Pyrolytic Release experiment using iron montmorillonites are pointed out, and it is concluded that many of the results of the Viking biology experiments can be explained in terms of the surface activity of smectite clays in catalysis and adsorption.

  12. Numerical Predictions and Experimental Results of Air Flow in a Smooth Quarter-Scale Nacelle

    SciTech Connect

    BLACK, AMALIA R.; SUO-ANTTILA, JILL M.; GRITZO, LOUIS A.; DISIMILE, PETER J.; TUCKER, JAMES R.

    2002-06-01

    Fires in aircraft engine nacelles must be rapidly suppressed to avoid loss of life and property. The design of new and retrofit suppression systems has become significantly more challenging due to the ban on production of Halon 1301 for environmental concerns. Since fire dynamics and the transport of suppressants within the nacelle are both largely determined by the available air flow, efforts to define systems using less effective suppressants greatly benefit from characterization of nacelle air flow fields. A combined experimental and computational study of nacelle air flow therefore has been initiated. Calculations have been performed using both CFD-ACE (a Computational Fluid Dynamics (CFD) model with a body-fitted coordinate grid) and WLCAN (a CFD-based fire field model with a Cartesian ''brick'' shaped grid). The flow conditions examined in this study correspond to the same Reynolds number as test data from the full-scale nacelle simulator at the 46 Test Wing. Pre-test simulations of a quarter-scale test fixture were performed using CFD-ACE and WLCAN prior to fabrication. Based on these pre-test simulations, a quarter-scale test fixture was designed and fabricated for the purpose of obtaining spatially-resolved measurements of velocity and turbulence intensity in a smooth nacelle. Post-test calculations have been performed for the conditions of the experiment and compared with experimental results obtained from the quarter-scale test fixture. In addition, several different simulations were performed to assess the sensitivity of the predictions to the grid size, to the turbulence models, and to the use of wall functions. In general, the velocity predictions show very good agreement with the data in the center of the channel but deviate near the walls. The turbulence intensity results tend to amplify the differences in velocity, although most of the trends are in agreement. In addition, there were some differences between WLCAN and CFD-ACE results in the angled

  13. Implementation and experimental results of 4D tumor tracking using robotic couch

    SciTech Connect

    Buzurovic, I.; Yu, Y.; Werner-Wasik, M.; Biswas, T.; Anne, P. R.; Dicker, A. P.; Podder, T. K.

    2012-11-15

    Purpose: This study presents the implementation and experimental results of a novel technique for 4D tumor tracking using a commercially available and commonly used treatment couch and evaluates the tumor tracking accuracy in clinical settings. Methods: Commercially available couch is capable of positioning the patient accurately; however, currently there is no provision for compensating physiological movement using the treatment couch in real-time. In this paper, a real-time couch tracking control technique is presented together with experimental results in tumor motion compensation in four dimensions (superior-inferior, lateral, anterior-posterior, and time). To implement real-time couch motion for tracking, a novel control system for the treatment couch was developed. The primary functional requirements for this novel technique were: (a) the treatment couch should maintain all previous/normal features for patient setup and positioning, (b) the new control system should be used as a parallel system when tumor tracking would be deployed, and (c) tracking could be performed in a single direction and/or concurrently in all three directions of the couch motion (longitudinal, lateral, and vertical). To the authors' best knowledge, the implementation of such technique to a regular treatment couch for tumor tracking has not been reported so far. To evaluate the performance of the tracking couch, we investigated the mechanical characteristics of the system such as system positioning resolution, repeatability, accuracy, and tracking performance. Performance of the tracking system was evaluated using dosimetric test as an endpoint. To investigate the accuracy of real-time tracking in the clinical setting, the existing clinical treatment couch was replaced with our experimental couch and the linear accelerator was used to deliver 3D conformal radiation therapy (3D-CRT) and intensity modulated radiation therapy (IMRT) treatment plans with and without tracking. The results of

  14. Investigation of Molecular Interactions between AFM-Tip and Thiol Films

    NASA Astrophysics Data System (ADS)

    Touhami, Ahmed; Moore, Justin; Lee, T. Randall

    Among various self-assembly processes, the formation of a self-assembled monolayer (SAM) is one of the most elegant ways for making an organic film with specific surface properties. Recently, much effort has been devoted in using AFM-based single-molecule force spectroscopy (SMFS) to understanding the formation of alkanethiol SAMs on gold surfaces. Investigating the factors that affect the AFM tip-SAMs interactions is necessary to clarify the controversial results of these studies. Here, we investigated the interactions between bare AFM-tips and several SAMs thiols-gold surfaces under controlled humidity conditions. Our results demonstrate that the Tip-SAM interactions can be used to precisely determine the length of the thiol chains, the adhesion force between thiols head groups and the AFM tip, and the strength of the thiol-gold contact. Our findings on the dynamics and the structure of the SAMs of alkanethiols on gold are useful for detail understanding of the thermodynamics, kinetics and mechanisms of SAM technology assembly. NSF.

  15. AFM tip characterization by using FFT filtered images of step structures.

    PubMed

    Yan, Yongda; Xue, Bo; Hu, Zhenjiang; Zhao, Xuesen

    2016-01-01

    The measurement resolution of an atomic force microscope (AFM) is largely dependent on the radius of the tip. Meanwhile, when using AFM to study nanoscale surface properties, the value of the tip radius is needed in calculations. As such, estimation of the tip radius is important for analyzing results taken using an AFM. In this study, a geometrical model created by scanning a step structure with an AFM tip was developed. The tip was assumed to have a hemispherical cone shape. Profiles simulated by tips with different scanning radii were calculated by fast Fourier transform (FFT). By analyzing the influence of tip radius variation on the spectra of simulated profiles, it was found that low-frequency harmonics were more susceptible, and that the relationship between the tip radius and the low-frequency harmonic amplitude of the step structure varied monotonically. Based on this regularity, we developed a new method to characterize the radius of the hemispherical tip. The tip radii estimated with this approach were comparable to the results obtained using scanning electron microscope imaging and blind reconstruction methods.

  16. Introduction to atomic force microscopy (AFM) in biology.

    PubMed

    Goldsbury, Claire S; Scheuring, Simon; Kreplak, Laurent

    2009-11-01

    The atomic force microscope (AFM) has the unique capability of imaging biological samples with molecular resolution in buffer solution. In addition to providing topographical images of surfaces with nanometer- to angstrom-scale resolution, forces between single molecules and mechanical properties of biological samples can be investigated from the nanoscale to the microscale. Importantly, the measurements are made in buffer solutions, allowing biological samples to "stay alive" within a physiological-like environment while temporal changes in structure are measured-e.g., before and after addition of chemical reagents. These qualities distinguish AFM from conventional imaging techniques of comparable resolution, e.g., electron microscopy (EM). This unit provides an introduction to AFM on biological systems and describes specific examples of AFM on proteins, cells, and tissues. The physical principles of the technique and methodological aspects of its practical use and applications are also described.

  17. Flapping counter torque (FCT) in animal flight: Experimental results and mathematical models

    NASA Astrophysics Data System (ADS)

    Cheng, Bo; Deng, Xinyan

    2009-11-01

    From our previous studies on a range of insects from fruit flies to cockatoos during fast yaw turning maneuvers (body saccades), we found that body rotation causes a substantial aerodynamic counter torque, termed as flapping counter-torque (FCT), which acts in the opposite direction of turning. In this study, we show that FCT exists in all roll, pitch and yaw axes and are linearly dependent on the flapping frequency and rotational velocity, respectively. We measured the FCTs systematically (by varying wing beat frequency and body turning velocity) on a pair of dynamically scaled robotic model wings. Furthermore, we developed mathematical FCT models based on quasi-steady analysis for roll, pitch and yaw axes. The results show that the experimental data matches the prediction of the analytical models. FCT induced passive damping accounts for a large part of the deceleration in saccade of animal flight, and implies passive rotational stability of the angular velocity dynamics in flapping flight.

  18. Structure of krypton gas: Monte Carlo results, virial expansions, and real experimental data

    NASA Astrophysics Data System (ADS)

    Egelstaff, P. A.; Teitsma, Albert; Wang, S. S.

    1980-10-01

    We have made Monte Carlo calculations of the pair correlation function g(r) of a dense gas along the 297 K isotherm using a published pair potential for krypton. Eleven states were simulated, and then, using the pair potential plus the Axilrod-Teller triple-dipole potential, seven states were simulated. The effect of the triplet potential was very small except near the principal peak of g(r). We compare, in real and Fourier space, these results to the virial expansion of g(r) at low densities to test its range of validity. This work provided the background for the interpretation of the experimental data of Teitsma and Egelstaff on real krypton gas, and examples are given involving the extraction of the pair- and triplet-potential terms.

  19. NACA 0012 benchmark model experimental flutter results with unsteady pressure distributions

    NASA Technical Reports Server (NTRS)

    Rivera, Jose A., Jr.; Dansberry, Bryan E.; Bennett, Robert M.; Durham, Michael H.; Silva, Walter A.

    1992-01-01

    The Structural Dynamics Division at NASA Langley Research Center has started a wind tunnel activity referred to as the Benchmark Models Program. The primary objective of the program is to acquire measured dynamic instability and corresponding pressure data that will be useful for developing and evaluating aeroelastic type CFD codes currently in use or under development. The program is a multi-year activity that will involve testing of several different models to investigate various aeroelastic phenomena. This paper describes results obtained from a second wind tunnel test of the first model in the Benchmark Models Program. This first model consisted of a rigid semispan wing having a rectangular planform and a NACA 0012 airfoil shape which was mounted on a flexible two degree-of-freedom mount system. Experimental flutter boundaries and corresponding unsteady pressure distribution data acquired over two model chords located at the 60 and 95 percent span stations are presented.

  20. Lateral and axial resolutions of an angle-deviation microscope for different numerical apertures: experimental results

    NASA Astrophysics Data System (ADS)

    Chiu, Ming-Hung; Lai, Chin-Fa; Tan, Chen-Tai; Lin, Yi-Zhi

    2011-03-01

    This paper presents a study of the lateral and axial resolutions of a transmission laser-scanning angle-deviation microscope (TADM) with different numerical aperture (NA) values. The TADM is based on geometric optics and surface plasmon resonance principles. The surface height is proportional to the phase difference between two marginal rays of the test beam, which is passed through the test medium. We used common-path heterodyne interferometry to measure the phase difference in real time, and used a personal computer to calculate and plot the surface profile. The experimental results showed that the best lateral and axial resolutions for NA = 0.41 were 0.5 μm and 3 nm, respectively, and the lateral resolution breaks through the diffraction limits.

  1. Numerical simulation and experimental results of filament wound CFRP tubes tested under biaxial load

    NASA Astrophysics Data System (ADS)

    Amaldi, A.; Giannuzzi, M.; Marchetti, M.; Miliozzi, A.

    1992-10-01

    The analysis of angle ply carbon/epoxy laminated composites when subjected to uniaxial and biaxial stresses is presented. Three classes of interwoven pattern filament wound cylindrical specimens are studied in order to compare the influence of angle on the mechanical behavior of the laminate. Three dimensional finite element and thin shell analyses were first applied to the problem in order to predict global elastic behavior of specimens subjected to uniaxial loads. Different failure criteria were then adopted to investigate specimens' failure and experimental tests were carried out for a comparison with numerical results. Biaxial stress conditions were produced by applying combinations of internal pressure and axial tensile and compressive loads to the specimens.

  2. Noise characteristics of upper surface blown configurations. Experimental program and results

    NASA Technical Reports Server (NTRS)

    Brown, W. H.; Searle, N.; Blakney, D. F.; Pennock, A. P.; Gibson, J. S.

    1977-01-01

    An experimental data base was developed from the model upper surface blowing (USB) propulsive lift system hardware. While the emphasis was on far field noise data, a considerable amount of relevant flow field data were also obtained. The data were derived from experiments in four different facilities resulting in: (1) small scale static flow field data; (2) small scale static noise data; (3) small scale simulated forward speed noise and load data; and (4) limited larger-scale static noise flow field and load data. All of the small scale tests used the same USB flap parts. Operational and geometrical variables covered in the test program included jet velocity, nozzle shape, nozzle area, nozzle impingement angle, nozzle vertical and horizontal location, flap length, flap deflection angle, and flap radius of curvature.

  3. NACA0012 benchmark model experimental flutter results with unsteady pressure distributions

    NASA Technical Reports Server (NTRS)

    Rivera, Jose A., Jr.; Dansberry, Bryan E.; Bennett, Robert M.; Durham, Michael H.; Silva, Walter A.

    1992-01-01

    The Structural Dynamics Division at NASA Langley Research Center has started a wind tunnel activity referred to as the Benchmark Models Program. The primary objective of this program is to acquire measured dynamic instability and corresponding pressure data that will be useful for developing and evaluating aeroelastic type computational fluid dynamics codes currently in use or under development. The program is a multi-year activity that will involve testing of several different models to investigate various aeroelastic phenomena. This paper describes results obtained from a second wind tunnel test of the first model in the Benchmark Models Program. This first model consisted of a rigid semispan wing having a rectangular planform and a NACA 0012 airfoil shape which was mounted on a flexible two degree of freedom mount system. Experimental flutter boundaries and corresponding unsteady pressure distribution data acquired over two model chords located at the 60 and 95 percent span stations are presented.

  4. ELF and VLF signals radiated by the 'polar electrojet antenna' - Experimental results

    NASA Astrophysics Data System (ADS)

    Barr, R.; Stubbe, P.; Rietveld, M. T.; Kopka, H.

    1986-04-01

    The heating facility at Ramfjordmoen near Tromso, Norway, has been used to modulate the auroral electrojet at frequencies in the range 223 Hz to 5.44 kHz. ELF/VLF signals have been received at Lycksele, Sweden, 554 km from the heating transmitter, over the whole frequency range with maximum amplitudes of about 50 fT. Both azimuthal and radial magnetic field components were recorded and the ratio of these two components, commonly termed the polarization, was determined. The experimental results have been successfully modelled by using waveguide mode theory and assuming the heating source to be a point dipole located in the ionosphere at the height of the maximum ELF/VLF Hall current.

  5. Optical constants of Titan aerosols and their tholins analogs: Experimental results and modeling/observational data

    NASA Astrophysics Data System (ADS)

    Brassé, Coralie; Muñoz, Olga; Coll, Patrice; Raulin, François

    2015-05-01

    Since Bishun Khare's pioneer works on Titan tholins, many studies have been performed to improve the experimental database of the optical constants of Titan tholins. The determination of the optical constants of Titan aerosols is indeed essential to quantify their capacity to absorb and scatter solar radiation, and thus to evaluate their role on Titan's radiative balance and climate. The study of the optical properties is also crucial to analyze and better interpret many of Titan's observational data, in particular those acquired during the Cassini-Huygens mission. This review paper critically summarizes these new results and presents constraints on Titan's aerosols optical constants. Finally, the information lacking in this field is highlighted as well as some possible investigations that could be carried out to fill these gaps.

  6. Experimental results for oscillatory water flow in 10-ppi metal foam at low-frequencies

    NASA Astrophysics Data System (ADS)

    Bağcı, Ö.; Arbak, A.; De Paepe, M.; Dukhan, N.

    2016-09-01

    This experimental study presents results and interpretation of oscillatory water flow in open-cell metal foam. The tested foam had 10 pores per inch and a porosity of 88%. At relatively low frequencies, three flow displacements were employed in the experiment. The influence of frequency and displacement on pressure loss and friction factor is discussed. A correlation of friction factor as a function of the kinetic Reynolds number was determined. Porous media parameters, permeability and drag coefficient, were also found for the same foam via steady-state flow experiments in the Darcy and Forchheimer regimes. The friction factor of oscillating flow was found to be higher than that of steady state. The findings of this study are considered important for oscillating heat transfer in metal foam.

  7. Deuteron induced reactions on Ho and La: Experimental excitation functions and comparison with code results

    NASA Astrophysics Data System (ADS)

    Hermanne, A.; Adam-Rebeles, R.; Tarkanyi, F.; Takacs, S.; Csikai, J.; Takacs, M. P.; Ignatyuk, A.

    2013-09-01

    Activation products of rare earth elements are gaining importance in medical and technical applications. In stacked foil irradiations, followed by high resolution gamma spectroscopy, the cross-sections for production of 161,165Er, 166gHo on 165Ho and 135,137m,137g,139Ce, 140La, 133m,133g,cumBa and 136Cs on natLa targets were measured up to 50 MeV. Reduced uncertainty is obtained by simultaneous remeasurement of the 27Al(d,x)24,22Na monitor reactions over the whole energy range. A comparison with experimental literature values and results from updated theoretical codes (ALICE-D, EMPIRE-D and the TENDL2012 online library) is discussed.

  8. Active vibration absorber for CSI evolutionary model: Design and experimental results

    NASA Technical Reports Server (NTRS)

    Bruner, Anne M.; Belvin, W. Keith; Horta, Lucas G.; Juang, Jer-Nan

    1991-01-01

    The development of control of large flexible structures technology must include practical demonstration to aid in the understanding and characterization of controlled structures in space. To support this effort, a testbed facility was developed to study practical implementation of new control technologies under realistic conditions. The design is discussed of a second order, acceleration feedback controller which acts as an active vibration absorber. This controller provides guaranteed stability margins for collocated sensor/actuator pairs in the absence of sensor/actuator dynamics and computational time delay. The primary performance objective considered is damping augmentation of the first nine structural modes. Comparison of experimental and predicted closed loop damping is presented, including test and simulation time histories for open and closed loop cases. Although the simulation and test results are not in full agreement, robustness of this design under model uncertainty is demonstrated. The basic advantage of this second order controller design is that the stability of the controller is model independent.

  9. An aerodynamic analysis of the autogiro rotor with a comparison between calculated and experimental results

    NASA Technical Reports Server (NTRS)

    Wheatley, John B

    1935-01-01

    This report presents an extension of the autogiro theory of Glauert and Lock in which the influence of a pitch varying with the blade radius is evaluated and methods of approximating the effect of blade tip losses and the influence of reversed velocities on the retreating blades are developed. A comparison of calculated and experimental results showed that most of the rotor characteristics could be calculated with reasonable accuracy, and that the type of induced flow assumed has a secondary effect upon the net rotor forces, although the flapping motion is influenced appreciably. An approximate evaluation of the effect of parasite drag on the rotor blades established the importance of including this factor in the analysis.

  10. Downstream evolution of turbulence from heated screens: Experimental and analytical results

    SciTech Connect

    O`Hern, T.J.; Shagam, R.N.; Neal, D.R.; Suo-Anttila, A.J.; Torczynski, J.R.

    1993-02-01

    This report discusses recent efforts to characterize the flow and density nonuniformities downstream of heated screens placed in a uniform flow. The Heated Screen Test Facility (HSTF) at Sandia National Laboratories and the Lockheed Palo Alto Flow Channel (LPAFC) were used to perform experiments over wide ranges of upstream velocities and heating rates. Screens of various mesh configurations were examined, including multiple screens sequentially positioned in the flow direction. Diagnostics in these experiments included pressure manometry, hot-wire anemometry, interferometry, Hartmann wavefront slope sensing, and photorefractive schlieren photography. A model was developed to describe the downstream evolution of the flow and density nonuniformities. Equations for the spatial variation of the mean flow quantities and the fluctuation magnitudes were derived by incorporating empirical correlations into the equations of motion. Numerical solutions of these equations are in fair agreement with previous and current experimental results.

  11. Simulation and experimental results of optical and thermal modeling of gold nanoshells.

    PubMed

    Ghazanfari, Lida; Khosroshahi, Mohammad E

    2014-09-01

    This paper proposes a generalized method for optical and thermal modeling of synthesized magneto-optical nanoshells (MNSs) for biomedical applications. Superparamagnetic magnetite nanoparticles with diameter of 9.5 ± 1.4 nm are fabricated using co-precipitation method and subsequently covered by a thin layer of gold to obtain 15.8 ± 3.5 nm MNSs. In this paper, simulations and detailed analysis are carried out for different nanoshell geometry to achieve a maximum heat power. Structural, magnetic and optical properties of MNSs are assessed using vibrating sample magnetometer (VSM), X-ray diffraction (XRD), UV-VIS spectrophotometer, dynamic light scattering (DLS), and transmission electron microscope (TEM). Magnetic saturation of synthesized magnetite nanoparticles are reduced from 46.94 to 11.98 emu/g after coating with gold. The performance of the proposed optical-thermal modeling technique is verified by simulation and experimental results.

  12. Inlet Flow Test Calibration for a Small Axial Compressor Facility. Part 1: Design and Experimental Results

    NASA Technical Reports Server (NTRS)

    Miller, D. P.; Prahst, P. S.

    1994-01-01

    An axial compressor test rig has been designed for the operation of small turbomachines. The inlet region consisted of a long flowpath region with two series of support struts and a flapped inlet guide vane. A flow test was run to calibrate and determine the source and magnitudes of the loss mechanisms in the inlet for a highly loaded two-stage axial compressor test. Several flow conditions and IGV angle settings were established in which detailed surveys were completed. Boundary layer bleed was also provided along the casing of the inlet behind the support struts and ahead of the IGV. A detailed discussion of the flowpath design along with a summary of the experimental results are provided in Part 1.

  13. Preliminary Results on the Experimental Investigation of the Structure Functions of Bound Nucleons

    SciTech Connect

    Bodek, Arie

    2015-09-01

    We present preliminary results on an experimental study of the nuclear modification of the longitudinal (σL) and transverse (σT) structure functions of nucleons bound in nuclear targets. The origin of these modifications (commonly referred as as the EMC effect) is not fully understood. Our measurements of R= σLT for nuclei (RA) and for deuterium (RD) indicate that nuclear modifications of the structure functions of bound nucleons are different for the longitudinal and transverse structure functions, and that contrary to expectation from several theoretical models, RA < RD.

  14. Physical model and experimental results of cathode erosion related to power supply ripple

    NASA Technical Reports Server (NTRS)

    Harris, W. J.; O'Hair, E. A.; Hatfield, L. L.; Kristiansen, M.

    1992-01-01

    This paper discusses the physical effects of power supply ripple on cathode erosion and cathode arc attachment in a water-cooled, 30 kW nitrogen arcjet. Experimental results are presented for 2 percent thoriated tungsten, which show that the long-term cathode erosion rate is a decreasing function of current ripple over the range 1-13 percent. Above this range, the cathode discharge becomes unstable, and the erosion rate rapidly increases. A qualitative model of this effect is given in terms of a magnetically induced radial motion of the arc column, and an overall increase in the cathode spot radius due to the higher peak current associated with higher ripple. The most important effect of power supply ripple is therefore shown to be its ability to collectively drive the cathode attachment away from the cathode center. This leads to an increase in the cathode attachment area, and a subsequent decrease in the cathode erosion rate.

  15. Comparative quantification and statistical analysis of η′ and η precipitates in aluminum alloy AA7075-T651 by TEM and AFM

    SciTech Connect

    Garcia-Garcia, Adrian Luis Dominguez-Lopez, Ivan Lopez-Jimenez, Luis Barceinas-Sanchez, J.D. Oscar

    2014-01-15

    Quantification of nanometric precipitates in metallic alloys has been traditionally performed using transmission electron microscopy, which is nominally a low throughput technique. This work presents a comparative study of quantification of η′ and η precipitates in aluminum alloy AA7075-T651 using transmission electron microscopy (TEM) and non-contact atomic force microscopy (AFM). AFM quantification was compared with 2-D stereological results reported elsewhere. Also, a method was developed, using specialized software, to characterize nanometric size precipitates observed in dark-field TEM micrographs. Statistical analysis of the quantification results from both measurement techniques supports the use of AFM for precipitate characterization. Once the precipitate stoichiometry has been determined by appropriate analytical techniques like TEM, as it is the case for η′ and η in AA7075-T651, the relative ease with which specimens are prepared for AFM analysis could be advantageous in product and process development, and quality control, where a large number of samples are expected for analysis on a regular basis. - Highlights: • Nanometric MgZn{sub 2} precipitates in AA7075-T651 were characterized using AFM and TEM. • Phase-contrast AFM was used to differentiate metal matrix from MgZn{sub 2} precipitates. • TEM and AFM micrographs were analyzed using commercially available software. • AFM image analysis and TEM 2-D stereology render statistically equivalent results.

  16. Influence of Fluid Cell Design on the Frequency Response of AFM Microcantilevers in Liquid Media

    PubMed Central

    Motamedi, Ramin; Wood-Adams, Paula M.

    2008-01-01

    A study of the frequency response of AFM microcantilevers in liquid media contained in a commercial fluid cell is presented. Such systems exhibit complicated dynamics which are often not well described by available theories. Their dynamic behavior has a direct effect on the use of the AFM in dynamic mode while imaging in liquid or while extracting the rheological properties of the fluid. We explore the issues related to the design of the cantilever holder/fluid cell and propose an approach for evaluating, minimizing and recognizing the ultimate limitations of commercial cantilever holders. A technique for estimating the frequency response spectrum of the fluid cell itself from experimental data is presented. This spectrum can then be used to evaluate whether or not the fluid cell is suited for the desired purpose. PMID:27873849

  17. Preliminary experimental results on studying possibility of variable mass liner (VML) formation

    SciTech Connect

    1995-12-31

    The main objective of the present experiment was to study the formation process and initial stage of acceleration of a variable-mass plasma liner (VML). The method is based on magnetic acceleration of a liner with the mass reduced during such acceleration. The experiment was carried out on February 16 at VNIIEF. This report describes the results of measurements obtained in the experiment and preliminary analysis of the results characterizing operation of the test facility main units: helical EMG; 5-module disk EMG 400 mm in diameter (DEMG); ponderomotive unit (PU) with a cylindric condensed liner and a special tooth-cutoff. The first part of the report presents measurement results obtained on the VNIIEF`s diagnostic equipment that are compared with those obtained by American specialists on their diagnostic equipment. Information submitted by American specialists is included in part 2 of this report. The second part of the report presents preliminary computational-theoretic analysis of the main measured results describing operation of DEMG TL system in the experiment; experimental data are compared with theoretical ones obtained before and after the experiment. But more emphasis is placed on the data preliminary analysis indicating that in the experiment a variable mass liner is formed (VML or plasma bubble).

  18. Nanoscale structural features determined by AFM for single virus particles

    NASA Astrophysics Data System (ADS)

    Chen, Shu-Wen W.; Odorico, Michael; Meillan, Matthieu; Vellutini, Luc; Teulon, Jean-Marie; Parot, Pierre; Bennetau, Bernard; Pellequer, Jean-Luc

    2013-10-01

    In this work, we propose ``single-image analysis'', as opposed to multi-image averaging, for extracting valuable information from AFM images of single bio-particles. This approach allows us to study molecular systems imaged by AFM under general circumstances without restrictions on their structural forms. As feature exhibition is a resolution correlation, we have performed AFM imaging on surfaces of tobacco mosaic virus (TMV) to demonstrate variations of structural patterns with probing resolution. Two AFM images were acquired with the same tip at different probing resolutions in terms of pixel width, i.e., 1.95 and 0.49 nm per pixel. For assessment, we have constructed an in silico topograph based on the three-dimensional crystal structure of TMV as a reference. The prominent artifacts observed in the AFM-determined shape of TMV were attributed to tip convolutions. The width of TMV rod was systematically overestimated by ~10 nm at both probing resolutions of AFM. Nevertheless, the effects of tip convolution were less severe in vertical orientation so that the estimated height of TMV by AFM imaging was in close agreement with the in silico X-ray topograph. Using dedicated image processing algorithms, we found that at low resolution (i.e., 1.95 nm per pixel), the extracted surface features of TMV can be interpreted as a partial or full helical repeat (three complete turns with ~7.0 nm in length), while individual protein subunits (~2.5 nm) were perceivable only at high resolution. The present study shows that the scales of revealed structural features in AFM images are subject to both probing resolution and processing algorithms for image analysis.

  19. Using leg muscles as shock absorbers: theoretical predictions and experimental results of drop landing performance.

    PubMed

    Minetti, A E; Ardigò, L P; Susta, D; Cotelli, F

    1998-12-01

    The use of muscles as power dissipators is investigated in this study, both from the modellistic and the experimental points of view. Theoretical predictions of the drop landing manoeuvre for a range of initial conditions have been obtained by accounting for the mechanical characteristics of knee extensor muscles, the limb geometry and assuming maximum neural activation. Resulting dynamics have been represented in the phase plane (vertical displacement versus speed) to better classify the damping performance. Predictions of safe landing in sedentary subjects were associated to dropping from a maximum (feet) height of 1.6-2.0 m (about 11 m on the moon). Athletes can extend up to 2.6-3.0 m, while for obese males (m = 100 kg, standard stature) the limit should reduce to 0.9-1.3 m. These results have been calculated by including in the model the estimated stiffness of the 'global elastic elements' acting below the squat position. Experimental landings from a height of 0.4, 0.7, 1.1 m (sedentary males (SM) and male (AM) and female (AF) athletes from the alpine ski national team) showed dynamics similar to the model predictions. While the peak power (for a drop height of about 0.7 m) was similar in SM and AF (AM shows a +40% increase, about 33 W/kg), AF stopped the downward movement after a time interval (0.219 +/- 0.030 s) from touch-down 20% significantly shorter than SM. Landing strategy and the effect of anatomical constraints are discussed in the paper.

  20. Ultrafast solvation dynamics in water: Isotope effects and comparison with experimental results

    NASA Astrophysics Data System (ADS)

    Nandi, Nilashis; Roy, Srabani; Bagchi, Biman

    1995-01-01

    A detailed theoretical study of solvation dynamics in water is presented. The motivation of the present study comes from the recent experimental observation that the dynamics of solvation of an ion in water is ultrafast and the solvation time correlation function decays with a time constant of about 55 fs. The slower decay in the long time can be described by a sum of two exponentials with time constants equal to 126 and 880 fs. The molecular theory (developed earlier) predicts a time constant equal to 52 fs for the initial Gaussian decay and time constants equal to 134 and 886 fs for the two exponential components at the long time. This nearly perfect agreement is obtained by using the most detailed dynamical information available in the literature. The present study emphasizes the importance of the intermolecular vibrational band originating from the O...O stretching mode of the O-H...O units in the initial dynamics and raises several interesting questions regarding the nature of the decay of this mode. We have also studied the effects of isotope substitution on solvation dynamics. It is predicted that a significant isotope effect may be observed in the long time. The experimental results have also been compared with the prediction of the dynamic mean spherical approximation (DMSA); the agreement is not satisfactory at the long time. It is further found that the molecular theory and the DMSA lead to virtually identical results if the translational modes of the solvent molecules are neglected in the former. DMSA has also been used to investigate the dynamics of solvation of a dipolar solute in water. It is found that the dynamics of dipolar solvation exhibit features rather different from those of ion solvation.

  1. Interaction force measurement between E. coli cells and nanoparticles immobilized surfaces by using AFM

    SciTech Connect

    Zhang, Wen; Chen, Yongsheng

    2011-01-01

    To better understand environmental behaviors of nanoparticles (NPs), we used the atomic force microscopy (AFM) to measure interaction forces between E. coli cells and NPs immobilized on surfaces in an aqueous environment. The results showed that adhesion force strength was significantly influenced by particle size for both hematite ( -Fe2 O3 ) and corundum ( -Al2 O3 ) NPs whereas the effect on the repulsive force was not observed. The adhesion force decreased from 6.3 0.7 nN to 0.8 0.4 nN as hematite NPs increased from 26 nm to 98 nm in diameter. Corundum NPs exhibited a similar dependence of adhesion force on particle size. The Johnson Kendall Roberts (JKR) model was employed to estimate the contact area between E. coli cells and NPs, and based on the JKR model a new model that considers local effective contact area was developed. The prediction of the new model matched the size dependence of adhesion force in experimental results. Size effects on adhesion forces may originate from the difference in local effective contact areas as supported by our model. These findings provide fundamental information for interpreting the environmental behaviors and biological interactions of NPs, which barely have been addressed.

  2. Direct electrochemical and AFM detection of amyloid-β peptide aggregation on basal plane HOPG

    NASA Astrophysics Data System (ADS)

    Lopes, Paula; Xu, Meng; Zhang, Min; Zhou, Ting; Yang, Yanlian; Wang, Chen; Ferapontova, Elena E.

    2014-06-01

    Amyloidogenesis is associated with more than 30 human diseases, including Alzheimer's which is related to aggregation of β-amyloid peptide (Aβ). Here, consecutive stages of Aβ42 aggregation and amyloid fibril formation were followed electrochemically via oxidation of tyrosines in Aβ42 adsorbed on the basal plane graphite electrode and directly correlated with Aβ42 morphological changes observed by atomic force microscopy of the same substrate. The results offer new tools for analysis of mechanisms of Aβ aggregation.Amyloidogenesis is associated with more than 30 human diseases, including Alzheimer's which is related to aggregation of β-amyloid peptide (Aβ). Here, consecutive stages of Aβ42 aggregation and amyloid fibril formation were followed electrochemically via oxidation of tyrosines in Aβ42 adsorbed on the basal plane graphite electrode and directly correlated with Aβ42 morphological changes observed by atomic force microscopy of the same substrate. The results offer new tools for analysis of mechanisms of Aβ aggregation. Electronic supplementary information (ESI) available: Experimental details: procedures for Aβ42 aggregation and electrode modification, DPV/AFM measurements and analysis. See DOI: 10.1039/c4nr02413c

  3. Shuttle Damage/Repair from the Perspective of Hypersonic Boundary Layer Transition - Experimental Results

    NASA Technical Reports Server (NTRS)

    Horvath, Thomas J.; Berry, Scott A.; Merski, N. Ronald; Berger, Karen T.; Buck, Gregory M.; Liechty, Derek S.; Schneider, Steven P.

    2006-01-01

    An overview is provided of the experimental wind tunnel program conducted at the NASA Langley Research Center Aerothermodynamics Laboratory in support of an agency-wide effort to prepare the Shuttle Orbiter for Return-to-Flight. The effect of an isolated protuberance and an isolated rectangular cavity on hypersonic boundary layer transition onset on the windward surface of the Shuttle Orbiter has been experimentally characterized. These experimental studies were initiated to provide a protuberance and cavity effects database for developing hypersonic transition criteria to support on-orbit disposition of thermal protection system damage or repair. In addition, a synergistic experimental investigation was undertaken to assess the impact of an isolated mass-flow entrainment source (simulating pyrolysis/outgassing from a proposed tile repair material) on boundary layer transition. A brief review of the relevant literature regarding hypersonic boundary layer transition induced from cavities and localized mass addition from ablation is presented. Boundary layer transition results were obtained using 0.0075-scale Orbiter models with simulated tile damage (rectangular cavities) of varying length, width, and depth and simulated tile damage or repair (protuberances) of varying height. Cavity and mass addition effects were assessed at a fixed location (x/L = 0.3) along the model centerline in a region of near zero pressure gradient. Cavity length-to-depth ratio was systematically varied from 2.5 to 17.7 and length-to-width ratio of 1 to 8.5. Cavity depth-to-local boundary layer thickness ranged from 0.5 to 4.8. Protuberances were located at several sites along the centerline and port/starboard attachment lines along the chine and wing leading edge. Protuberance height-to-boundary layer thickness was varied from approximately 0.2 to 1.1. Global heat transfer images and heating distributions of the Orbiter windward surface using phosphor thermography were used to infer the

  4. Theoretical versus experimental results for the rotordynamic coefficients of eccentric, smooth, gas annular seal annular gas seals

    NASA Technical Reports Server (NTRS)

    Childs, Dara W.; Alexander, Chis

    1994-01-01

    This viewgraph presentation presents the following results: (1) The analytical results overpredict the experimental results for the direct stiffness values and incorrectly predict increasing stiffness with decreasing pressure ratios. (2) Theory correctly predicts increasing cross-coupled stiffness, K(sub YX), with increasing eccentricity and inlet preswirl. (3) Direct damping, C(sub XX), underpredicts the experimental results, but the analytical results do correctly show that damping increases with increasing eccentricity. (4) The whirl frequency values predicted by theory are insensitive to changes in the static eccentricity ratio. Although these values match perfectly with the experimental results at 16,000 rpm, the results at the lower speed do not correspond. (5) Theoretical and experimental mass flow rates match at 5000 rpm, but at 16,000 rpm the theoretical results overpredict the experimental mass flow rates. (6) Theory correctly shows the linear pressure profiles and the associated entrance losses with the specified rotor positions.

  5. Combined AFM nano-machining and reactive ion etching to fabricate high aspect ratio structures.

    PubMed

    Peng, Ping; Shi, Tielin; Liao, Guanglan; Tang, Zirong

    2010-11-01

    In this paper, a new combined method of sub-micron high aspect ratio structure fabrication is developed which can be used for production of nano imprint template. The process includes atomic force microscope (AFM) scratch nano-machining and reactive ion etching (RIE) fabrication. First, 40 nm aluminum film was deposited on the silicon substrate by magnetron sputtering, and then sub-micron grooves were fabricated on the aluminum film by nano scratch using AFM diamond tip. As aluminum film is a good mask for etching silicon, high aspect ratio structures were finally fabricated by RIE process. The fabricated structures were studied by SEM, which shows that the grooves are about 400 nm in width and 5 microm in depth. To obtain sub-micron scale groove structures on the aluminum film, experiments of nanomachining on aluminum films under various machining conditions were conducted. The depths of the grooves fabricated using different scratch loads were also studied by the AFM. The result shows that the material properties of the film/substrate are elastic-plastic following nearly a bilinear law with isotropic strain hardening. Combined AFM nanomachining and RIE process provides a relative lower cost nano fabrication technique than traditional e-beam lithography, and it has a good prospect in nano imprint template fabrication.

  6. Smectite clays in Mars soil: evidence for their presence and role in Viking biology experimental results.

    PubMed

    Banin, A; Rishpon, J

    1979-12-01

    Various chemical, physical and geological observations indicate that smectite clays are probably the major components of the Martian soil. Satisfactory ground-based chemical simulation of the Viking biology experimental results was obtained with the smectite clays nontronite and montmorillonite when they contained iron and hydrogen as adsorbed ions. Radioactive gas was released from the medium solution used in the Viking Labeled Release (LR) experiment when interacted with the clays, at rates and quantities similar to those measured by Viking on Mars. Heating of the active clay (mixed with soluble salts) to 160 degrees C in CO2 atmosphere reduced the decomposition activity considerably, again, as was observed on Mars. The decomposition reaction in LR experiment is postulated to be iron-catalyzed formate decomposition on the clay surface. The main features of the Viking Pyrolytic Release (PR) experiment were also simulated recently (Hubbard, 1979) which the iron clays, including a relatively low '1st peak' and significant '2nd peak'. The accumulated observations on various Martian soil properties and the results of simulation experiments, thus indicate that smectite clays are major and active components of the Martian soil. It now appears that many of the results of the Viking biology experiments can be explained on the basis of their surface activity in catalysis and adsorption.

  7. Comparison Between Numerical and Experimental Results on Mechanical Stirrer and Bubbling in a Cylindrical Tank - 13047

    SciTech Connect

    Lima da Silva, M.; Sauvage, E.; Brun, P.; Gagnoud, A.; Fautrelle, Y.; Riva, R.

    2013-07-01

    The process of vitrification in a cold crucible heated by direct induction is used in the fusion of oxides. Its feature is the production of high-purity materials. The high-level of purity of the molten is achieved because this melting technique excludes the contamination of the charge by the crucible. The aim of the present paper is to analyze the hydrodynamic of the vitrification process by direct induction, with the focus in the effects associated with the interaction between the mechanical stirrer and bubbling. Considering the complexity of the analyzed system and the goal of the present work, we simplified the system by not taking into account the thermal and electromagnetic phenomena. Based in the concept of hydraulic similitude, we performed an experimental study and a numerical modeling of the simplified model. The results of these two studies were compared and showed a good agreement. The results presented in this paper in conjunction with the previous work contribute to a better understanding of the hydrodynamics effects resulting from the interaction between the mechanical stirrer and air bubbling in the cold crucible heated by direct induction. Further works will take into account thermal and electromagnetic phenomena in the presence of mechanical stirrer and air bubbling. (authors)

  8. An experimental investigation of multi-element airfoil ice accretion and resulting performance degradation

    NASA Technical Reports Server (NTRS)

    Potapczuk, Mark G.; Berkowitz, Brian M.

    1989-01-01

    An investigation of the ice accretion pattern and performance characteristics of a multi-element airfoil was undertaken in the NASA Lewis 6- by 9-Foot Icing Research Tunnel. Several configurations of main airfoil, slat, and flaps were employed to examine the effects of ice accretion and provide further experimental information for code validation purposes. The text matrix consisted of glaze, rime, and mixed icing conditions. Airflow and icing cloud conditions were set to correspond to those typical of the operating environment anticipated tor a commercial transport vehicle. Results obtained included ice profile tracings, photographs of the ice accretions, and force balance measurements obtained both during the accretion process and in a post-accretion evaluation over a range of angles of attack. The tracings and photographs indicated significant accretions on the slat leading edge, in gaps between slat or flaps and the main wing, on the flap leading-edge surfaces, and on flap lower surfaces. Force measurments indicate the possibility of severe performance degradation, especially near C sub Lmax, for both light and heavy ice accretion and performance analysis codes presently in use. The LEWICE code was used to evaluate the ice accretion shape developed during one of the rime ice tests. The actual ice shape was then evaluated, using a Navier-Strokes code, for changes in performance characteristics. These predicted results were compared to the measured results and indicate very good agreement.

  9. Optimal placement of piezoelectric plates for active vibration control of gas turbine blades: experimental results

    NASA Astrophysics Data System (ADS)

    Botta, F.; Marx, N.; Gentili, S.; Schwingshackl, C. W.; Di Mare, L.; Cerri, G.; Dini, D.

    2012-04-01

    It is well known that the gas turbine blade vibrations can give rise to catastrophic failures and a reduction of the blades life because of fatigue related phenomena[1]-[3] . In last two decades, the adoption of piezoelectric elements, has received considerable attention by many researcher for its potential applicability to different areas of mechanical, aerospace, aeronautical and civil engineering. Recently, a number of studies of blades vibration control via piezoelectric plates and patches have been reported[4]-[6] . It was reported that the use of piezoelectric elements can be very effective in actively controlling vibrations. In one of their previous contributions[7] , the authors of the present manuscript studied a model to control the blade vibrations by piezoelectric elements and validated their results using a multi-physics finite elements package (COMSOL) and results from the literature. An optimal placement method of piezoelectric plate has been developed and applied to different loading scenarios for realistic configurations encountered in gas turbine blades. It has been demonstrated that the optimal placement depends on the spectrum of the load, so that segmented piezoelectric patches have been considered and, for different loads, an optimal combination of sequential and/or parallel actuation and control of the segments has been studied. In this paper, an experimental investigation carried out by the authors using a simplified beam configuration is reported and discussed. The test results obtained by the investigators are then compared with the numerical predictions [7] .

  10. Low Dimensional Non-Crystallographic Metallic Nanostructures:. HRTEM Simulation, Models and Experimental Results

    NASA Astrophysics Data System (ADS)

    Rodríguez-López, J. L.; Montejano-Carrizales, J. M.; José-Yacamán, M.

    Modern nanoparticle research in the field of small metallic systems has confirmed that many nanoparticles take on some Platonic and Archimedean solids related shapes. A Platonic solid looks the same from any vertex, and intuitively they appear as good candidates for atomic equilibrium shapes. A very clear example is the icosahedral (Ih) particle that only shows {111} faces that contribute to produce a more rounded structure. Indeed, many studies report the Ih as the most stable particle at the size range r≤20 Å for noble gases and for some metals. In this review, we report on the structure and shape of mono- and bimetallic nanoparticles in the wide size range from 1-300 nm. First, we present AuPd nanoparticles in the 1-2 nm size range that show dodecahedral atomic growth packing, one of the Platonic solid shapes that have not been identified before in this small size range for metallic particles. Next, with particles in the size range of 2-5 nm, we present an energetic surface reconstruction phenomenon observed also on bimetallic nanoparticle systems of AuPd and AuCu, similar to a re-solidification effect observed during cooling process in lead clusters. These binary alloy nanoparticles show the fivefold edges truncated, resulting in {100} faces on decahedral structures, an effect largely envisioned and reported theoretically, with no experimental evidence in the literature before. Next nanostructure we review is a monometallic system in the size range of ≈5 nm that we termed the decmon. We present here some detailed geometrical analysis and experimental evidence that supports our models. Finally, in the size range of 100-300 nm, we present icosahedrally derived star gold nanocrystals which resembles the great stellated dodechaedron, which is a Kepler-Poisont solid. We conclude then that the shape or morphology of some mono- and bimetallic particles evolves with size following the sequence from atoms to the Platonic solids, and with a slightly greater particle

  11. A stereo triangulation system for structural identification: Analytical and experimental results

    NASA Technical Reports Server (NTRS)

    Junkins, J. L.; James, G. H., III; Pollock, T. C.; Rahman, Z. H.

    1988-01-01

    , and have established conclusively the feasibility and desirability of this approach. We discuss, in summary, recent advances in analog and digital video processing methodology, actuation methods, and bring them to bear on the structural identification problem. We include a brief discussion of our experimental hardware and some recent experimental results which support the practical feasibility of this structural vibration sensing approach.

  12. Dynamics of Dual Prism Adaptation: Relating Novel Experimental Results to a Minimalistic Neural Model

    PubMed Central

    Arévalo, Orlando; Bornschlegl, Mona A.; Eberhardt, Sven; Ernst, Udo; Pawelzik, Klaus; Fahle, Manfred

    2013-01-01

    In everyday life, humans interact with a dynamic environment often requiring rapid adaptation of visual perception and motor control. In particular, new visuo–motor mappings must be learned while old skills have to be kept, such that after adaptation, subjects may be able to quickly change between two different modes of generating movements (‘dual–adaptation’). A fundamental question is how the adaptation schedule determines the acquisition speed of new skills. Given a fixed number of movements in two different environments, will dual–adaptation be faster if switches (‘phase changes’) between the environments occur more frequently? We investigated the dynamics of dual–adaptation under different training schedules in a virtual pointing experiment. Surprisingly, we found that acquisition speed of dual visuo–motor mappings in a pointing task is largely independent of the number of phase changes. Next, we studied the neuronal mechanisms underlying this result and other key phenomena of dual–adaptation by relating model simulations to experimental data. We propose a simple and yet biologically plausible neural model consisting of a spatial mapping from an input layer to a pointing angle which is subjected to a global gain modulation. Adaptation is performed by reinforcement learning on the model parameters. Despite its simplicity, the model provides a unifying account for a broad range of experimental data: It quantitatively reproduced the learning rates in dual–adaptation experiments for both direct effect, i.e. adaptation to prisms, and aftereffect, i.e. behavior after removal of prisms, and their independence on the number of phase changes. Several other phenomena, e.g. initial pointing errors that are far smaller than the induced optical shift, were also captured. Moreover, the underlying mechanisms, a local adaptation of a spatial mapping and a global adaptation of a gain factor, explained asymmetric spatial transfer and generalization of

  13. Preliminary Experimental Results on the Technique of Artificial River Replenishment to Mitigate Sediment Loss Downstream Dams

    NASA Astrophysics Data System (ADS)

    Franca, M. J.; Battisacco, E.; Schleiss, A. J.

    2014-12-01

    The transport of sediments by water throughout the river basins, from the steep slopes of the upstream regions to the sea level, is recognizable important to keep the natural conditions of rivers with a role on their ecology processes. Over the last decades, a reduction on the supply of sand and gravel has been observed downstream dams existing in several alpine rivers. Many studies highlight that the presence of a dam strongly modifies the river behavior in the downstream reach, in terms of morphology and hydrodynamics, with consequences on local ecology. Sediment deficit, bed armoring, river incision and bank instability are the main effects which affect negatively the aquatic habitats and the water quality. One of the proposed techniques to solve the problem of sediment deficit downstream dams, already adopted in few Japanese and German rivers although on an unsatisfactory fashion, is the artificial replenishment of these. Generally, it was verified that the erosion of the replenishments was not satisfactory and the transport rate was not enough to move the sediments to sufficient downstream distances. In order to improve and to provide an engineering answer to make this technique more applicable, a series of laboratory tests are ran as preparatory study to understand the hydrodynamics of the river flow when the replenishment technique is applied. Erodible volumes, with different lengths and submergence conditions, reproducing sediment replenishments volumes, are positioned along a channel bank. Different geometrical combinations of erodible sediment volumes are tested as well on the experimental flume. The first results of the experimental research, concerning erosion time evolution, the influence of discharge and the distance travelled by the eroded sediments, will be presented and discussed.

  14. Beryllium metal I. experimental results on acute oral toxicity, local skin and eye effects, and genotoxicity.

    PubMed

    Strupp, Christian

    2011-01-01

    The toxicity of soluble metal compounds is often different from that of the parent metal. Since no reliable data on acute toxicity, local effects, and mutagenicity of beryllium metal have ever been generated, beryllium metal powder was tested according to the respective Organisation for Economical Co-Operation and Development (OECD) guidelines. Acute oral toxicity of beryllium metal was investigated in rats and local effects on skin and eye in rabbits. Skin-sensitizing properties were investigated in guinea pigs (maximization method). Basic knowledge about systemic bioavailability is important for the design of genotoxicity tests on poorly soluble substances. Therefore, it was necessary to experimentally compare the capacities of beryllium chloride and beryllium metal to form ions under simulated human lung conditions. Solubility of beryllium metal in artificial lung fluid was low, while solubility in artificial lysosomal fluid was moderate. Beryllium chloride dissolution kinetics were largely different, and thus, metal extracts were used in the in vitro genotoxicity tests. Genotoxicity was investigated in vitro in a bacterial reverse mutagenicity assay, a mammalian cell gene mutation assay, a mammalian cell chromosome aberration assay, and an unscheduled DNA synthesis (UDS) assay. In addition, cell transformation was tested in a Syrian hamster embryo cell assay, and potential inhibition of DNA repair was tested by modification of the UDS assay. Beryllium metal was found not to be mutagenic or clastogenic based on the experimental in vitro results. Furthermore, treatment with beryllium metal extracts did not induce DNA repair synthesis, indicative of no DNA-damaging potential of beryllium metal. A cell-transforming potential and a tendency to inhibit DNA repair when the cell is severely damaged by an external stimulus were observed. Beryllium metal was also found not to be a skin or eye irritant, not to be a skin sensitizer, and not to have relevant acute oral

  15. Beryllium Metal I. Experimental Results on Acute Oral Toxicity, Local Skin and Eye Effects, and Genotoxicity

    PubMed Central

    Strupp, Christian

    2011-01-01

    The toxicity of soluble metal compounds is often different from that of the parent metal. Since no reliable data on acute toxicity, local effects, and mutagenicity of beryllium metal have ever been generated, beryllium metal powder was tested according to the respective Organisation for Economical Co-Operation and Development (OECD) guidelines. Acute oral toxicity of beryllium metal was investigated in rats and local effects on skin and eye in rabbits. Skin-sensitizing properties were investigated in guinea pigs (maximization method). Basic knowledge about systemic bioavailability is important for the design of genotoxicity tests on poorly soluble substances. Therefore, it was necessary to experimentally compare the capacities of beryllium chloride and beryllium metal to form ions under simulated human lung conditions. Solubility of beryllium metal in artificial lung fluid was low, while solubility in artificial lysosomal fluid was moderate. Beryllium chloride dissolution kinetics were largely different, and thus, metal extracts were used in the in vitro genotoxicity tests. Genotoxicity was investigated in vitro in a bacterial reverse mutagenicity assay, a mammalian cell gene mutation assay, a mammalian cell chromosome aberration assay, and an unscheduled DNA synthesis (UDS) assay. In addition, cell transformation was tested in a Syrian hamster embryo cell assay, and potential inhibition of DNA repair was tested by modification of the UDS assay. Beryllium metal was found not to be mutagenic or clastogenic based on the experimental in vitro results. Furthermore, treatment with beryllium metal extracts did not induce DNA repair synthesis, indicative of no DNA-damaging potential of beryllium metal. A cell-transforming potential and a tendency to inhibit DNA repair when the cell is severely damaged by an external stimulus were observed. Beryllium metal was also found not to be a skin or eye irritant, not to be a skin sensitizer, and not to have relevant acute oral

  16. Contribution of material properties of cellular components on the viscoelastic, stress-relaxation response of a cell during AFM indentation

    NASA Astrophysics Data System (ADS)

    Unnikrishnan, Ginu U.; Unnikrishnan, Vinu U.; Reddy, J. N.

    2016-05-01

    The close relationship between the mechanical properties of biological cells, namely, elasticity, viscosity, and the state of its disease condition has been widely investigated using atomic force microscopy (AFM). In this study, computational simulation of the AFM indentation is carried out using a finite element (FE) model of an adherent cell. A parametric evaluation of the material properties of the cellular components on the viscoelastic, stress-relaxation response during AFM indentation is performed. In addition, the loading rate, the size of the nucleus, and the geometry of the cell are varied. From the present study, it is found that when comparing the material properties derived from experimental force-deflection curves, the influence of loading rates should be accommodated. It also provides a framework that can quantify the variation of the mechanical property with various stages of malignancy of the cancer cell, a potential procedure for cancer diagnosis.

  17. The Las Cruces Trench Site: Characterization, Experimental Results, and One-Dimensional Flow Predictions

    NASA Astrophysics Data System (ADS)

    Wierenga, P. J.; Hills, R. G.; Hudson, D. B.

    1991-10-01

    A comprehensive field trench study was conducted in a semiarid area of southern New Mexico to provide data to test deterministic and stochastic models of vadose zone flow and transport. A 4 m by 9 m area was irrigated with water containing a tracer using a carefully controlled drip irrigation system. The area was heavily instrumented with tensiometers and neutron probe access tubes to monitor water movement and with suction tubes to monitor solute transport. Approximately 600 disturbed and 600 core samples of soil were taken to support deterministic and stochastic characterization of the soil water hydraulic parameters. The core sample-based saturated hydraulic conductivities ranged from 1.4 to 6731 cm/d with a mean of 533 cm/d and a standard deviation of 647 cm/d, indicating significant spatial variability. However, visual observation of the wetting front on the trench wall shows no indication of preferential flow or water flow through visible root channels and cracks. The tensiometer readings and the neutron probe measurements also suggest that the wetting front moves in a fairly homogeneous fashion despite the significant spatial variability of the saturated hydraulic conductivity. In addition to the description of the experiment and the presentation of the experimental results, predictions of simple one-dimensional uniform and layered soil deterministic models for infiltration are presented and compared to field observations. These models are presented here to provide a base case against which more sophisticated deterministic and stochastic models can be compared in the future. The results indicate that the simple models give adequate predictions of the overall movement of the wetting front through the soil during infiltration. However, the models give poor predictions of point values for water content due to the spatial variability of the soil. Comparisons between the one-dimensional infiltration model predictions and field observations show that the use of

  18. Quantitative Assessment of the CCMC's Experimental Real-time SWMF-Geospace Results

    NASA Astrophysics Data System (ADS)

    Liemohn, Michael; Ganushkina, Natalia; De Zeeuw, Darren; Welling, Daniel; Toth, Gabor; Ilie, Raluca; Gombosi, Tamas; van der Holst, Bart; Kuznetsova, Maria; Maddox, Marlo; Rastaetter, Lutz

    2016-04-01

    Experimental real-time simulations of the Space Weather Modeling Framework (SWMF) are conducted at the Community Coordinated Modeling Center (CCMC), with results available there (http://ccmc.gsfc.nasa.gov/realtime.php), through the CCMC Integrated Space Weather Analysis (iSWA) site (http://iswa.ccmc.gsfc.nasa.gov/IswaSystemWebApp/), and the Michigan SWMF site (http://csem.engin.umich.edu/realtime). Presently, two configurations of the SWMF are running in real time at CCMC, both focusing on the geospace modules, using the BATS-R-US magnetohydrodynamic model, the Ridley Ionosphere Model, and with and without the Rice Convection Model for inner magnetospheric drift physics. While both have been running for several years, nearly continuous results are available since July 2015. Dst from the model output is compared against the Kyoto real-time Dst, in particular the daily minimum value of Dst to quantify the ability of the model to capture storms. Contingency tables are presented, showing that the run with the inner magnetosphere model is much better at reproducing storm-time values. For disturbances with a minimum Dst lower than -50 nT, this version yields a probability of event detection of 0.86 and a Heidke Skill Score of 0.60. In the other version of the SWMF, without the inner magnetospheric module included, the modeled Dst never dropped below -50 nT during the examined epoch.

  19. Polyvalent display and packing of peptides and proteins on semiconductor quantum dots: predicted versus experimental results.

    PubMed

    Prasuhn, Duane E; Deschamps, Jeffrey R; Susumu, Kimihiro; Stewart, Michael H; Boeneman, Kelly; Blanco-Canosa, Juan B; Dawson, Philip E; Medintz, Igor L

    2010-02-22

    Quantum dots (QDs) are loaded with a series of peptides and proteins of increasing size, including a <20 residue peptide, myoglobin, mCherry, and maltose binding protein, which together cover a range of masses from <2.2 to approximately 44 kDa. Conjugation to the surface of dihydrolipoic acid-functionalized QDs is facilitated by polyhistidine metal affinity coordination. Increasing ratios of dye-labeled peptides and proteins are self-assembled to the QDs and then the bioconjugates are separated and analyzed using agarose gel electrophoresis. Fluorescent visualization of both conjugated and unbound species allows determination of an experimentally derived maximum loading number. Molecular modeling utilizing crystallographic coordinates or space-filling structures of the peptides and proteins also allow the predicted maximum loadings to the QDs to be estimated. Comparison of the two sets of results provides insight into the nature of the QD surface and reflects the important role played by the nanoparticle's hydrophilic solubilizing surface ligands. It is found that for the larger protein molecules steric hindrance is the major packing constraint. In contrast, for the smaller peptides, the number of available QD binding sites is the principal determinant. These results can contribute towards an overall understanding of how to engineer designer bioconjugates for both QDs and other nanoparticle materials.

  20. Experimental demonstration of quantitation errors in MR spectroscopy resulting from saturation corrections under changing conditions

    NASA Astrophysics Data System (ADS)

    Galbán, Craig J.; Ellis, Scott J.; Spencer, Richard G. S.

    2003-04-01

    Metabolite concentration measurements in in vivo NMR are generally performed under partially saturated conditions, with correction for partial saturation performed after data collection using a measured saturation factor. Here, we present an experimental test of the hypothesis that quantitation errors can occur due to application of such saturation factor corrections in changing systems. Thus, this extends our previous theoretical work on quantitation errors due to varying saturation factors. We obtained results for two systems frequently studied by 31P NMR, the ischemic rat heart and the electrically stimulated rat gastrocnemius muscle. The results are interpreted in light of previous theoretical work which defined the degree of saturation occurring in a one-pulse experiment for a system with given spin-lattice relaxation times, T1s, equilibrium magnetizations, M0s, and reaction rates. We found that (i) the assumption of constancy of saturation factors leads to quantitation errors on the order of 40% in inorganic phosphate; (ii) the dominant contributor to the quantitation errors in inorganic phosphate is most likely changes in T1; (iii) T1 and M0 changes between control and intervention periods, and chemical exchange contribute to different extents to quantitation errors in phosphocreatine and γ-ATP; (iv) relatively small increases in interpulse delay substantially decreased quantitation errors for metabolites in ischemic rat hearts; (v) random error due to finite SNR led to approximately 4% error in quantitation, and hence was a substantially smaller contributor than were changes in saturation factors.

  1. Preliminary experimental results of tungsten wire-array Z-pinches on primary test stand

    SciTech Connect

    Huang, Xian-Bin; Zhou, Shao-Tong; Dan, Jia-Kun; Ren, Xiao-Dong Wang, Kun-Lun; Zhang, Si-Qun; Li, Jing; Xu, Qiang; Cai, Hong-Chun; Duan, Shu-Chao; Ouyang, Kai; Chen, Guang-Hua; Ji, Ce; Wei, Bing; Feng, Shu-Ping; Wang, Meng; Xie, Wei-Ping; Deng, Jian-Jun; Zhou, Xiu-Wen; Yang, Yi

    2015-07-15

    The Primary Test Stand (PTS) developed at the China Academy of Engineering Physics is a 20 TW pulsed power driver, which can deliver a ∼10 MA, 70 ns rise-time (10%–90%) current to a short-circuit load and has important applications in Z-pinch driven inertial confinement fusion and high energy density physics. Preliminary results of tungsten wire-array Z-pinch experiments on PTS are presented. The load geometries investigated include 15-mm-tall cylindrical single and nested arrays with diameter ranging from 13 mm to 30 mm, consisting of 132–300 tungsten wires with 5–10 μm in diameter. Multiple diagnostics were fielded to characterize the x-ray radiation from wire-array Z pinches. The x-ray peak power (∼50 TW) and total radiated energy (∼500 kJ) were obtained from a single 20-mm-diam array with 80-ns stagnation time. The highest x-ray peak power up to 80 TW with 2.4 ns FWHM was achieved by using a nested array with 20-mm outer diameter, and the total x-ray energy from the nested array is comparable to that of single array. Implosion velocity estimated from the time-resolved image measurement exceeds 30 cm/μs. The detailed experimental results and other findings are presented and discussed.

  2. A comparison of experimental results of soot production in laminar premixed flames

    NASA Astrophysics Data System (ADS)

    Caetano, Nattan R.; Soares, Diego; Nunes, Roger P.; Pereira, Fernando M.; Smith Schneider, Paulo; Vielmo, Horácio A.; van der Laan, Flávio Tadeu

    2015-05-01

    Soot emission has been the focus of numerous studies due to the numerous applications in industry, as well as the harmful effects caused to the environment. Thus, the purpose of this work is to analyze the soot formation in a flat flame burner using premixed compressed natural gas and air, where these quasi-adiabatic flames have one-dimensional characteristics. The measurements were performed applying the light extinction technique. The air/fuel equivalence ratiowas varied to assess the soot volume fractions for different flame configurations. Soot production along the flamewas also analyzed by measurements at different heights in relation to the burner surface. Results indicate that soot volume fraction increases with the equivalence ratio. The higher regions of the flamewere analyzed in order to map the soot distribution on these flames. The results are incorporated into the experimental database for measurement techniques calibration and for computational models validation of soot formation in methane premixed laminar flames, where the equivalence ratio ranging from 1.5 up to 8.

  3. Experimental Results for Temporally Overlapping Pulses from Quantel EverGreen 200 Laser

    NASA Technical Reports Server (NTRS)

    Watkins, A. Neal

    2013-01-01

    This report will detail the experimental results and observations obtained while investigating the feasibility of temporally overlapping the two laser pulses from a Quantel EverGreen 200 Laser. This laser was specifically designed for Particle Imaging Velocimetry (PIV) applications and operate by emitting two 532 nm laser pulses that are seperated by an adjustable finite time (typically on the order of ten to hundreds of microseconds). However, the use of this model laser has found recent application for Pressure Sensitive Paint (PSP) testing, especially for rotorcraft research. For this testing, it is desired to only use one laser pulse. While this is easily done by only firing one of the laser heads, more excitation energy could conceivably be had if both laser heads are fired with zero pulse separation. In addition, recently large field-of-view PIV measurements have become possible and need ever increasing laser power to illuminate the larger areas. For this work, two different methods of timing the laser are investigated using both a traditional power meter to monitor laser power as well as a fast photodiode to determine pulse separation. The results are presented here as well as some simple implications for PIV experiments using these methods.

  4. Thermodiffusion in concentrated ferrofluids: Experimental and numerical results on magnetic thermodiffusion

    SciTech Connect

    Sprenger, Lisa Lange, Adrian; Odenbach, Stefan

    2014-02-15

    Ferrofluids consist of magnetic nanoparticles dispersed in a carrier liquid. Their strong thermodiffusive behaviour, characterised by the Soret coefficient, coupled with the dependency of the fluid's parameters on magnetic fields is dealt with in this work. It is known from former experimental investigations on the one hand that the Soret coefficient itself is magnetic field dependent and on the other hand that the accuracy of the coefficient's experimental determination highly depends on the volume concentration of the fluid. The thermally driven separation of particles and carrier liquid is carried out with a concentrated ferrofluid (φ = 0.087) in a horizontal thermodiffusion cell and is compared to equally detected former measurement data. The temperature gradient (1 K/mm) is applied perpendicular to the separation layer. The magnetic field is either applied parallel or perpendicular to the temperature difference. For three different magnetic field strengths (40 kA/m, 100 kA/m, 320 kA/m) the diffusive separation is detected. It reveals a sign change of the Soret coefficient with rising field strength for both field directions which stands for a change in the direction of motion of the particles. This behaviour contradicts former experimental results with a dilute magnetic fluid, in which a change in the coefficient's sign could only be detected for the parallel setup. An anisotropic behaviour in the current data is measured referring to the intensity of the separation being more intense in the perpendicular position of the magnetic field: S{sub T‖} = −0.152 K{sup −1} and S{sub T⊥} = −0.257 K{sup −1} at H = 320 kA/m. The ferrofluiddynamics-theory (FFD-theory) describes the thermodiffusive processes thermodynamically and a numerical simulation of the fluid's separation depending on the two transport parameters ξ{sub ‖} and ξ{sub ⊥} used within the FFD-theory can be implemented. In the case of a parallel aligned magnetic field, the parameter can

  5. COMPARISON OF EXPERIMENTAL RESULTS TO CFD MODELS FOR BLENDING IN A TANK USING DUAL OPPOSING JETS

    SciTech Connect

    Leishear, R.

    2011-08-07

    Research has been completed in a pilot scale, eight foot diameter tank to investigate blending, using a pump with dual opposing jets. The jets re-circulate fluids in the tank to promote blending when fluids are added to the tank. Different jet diameters and different horizontal and vertical orientations of the jets were investigated. In all, eighty five tests were performed both in a tank without internal obstructions and a tank with vertical obstructions similar to a tube bank in a heat exchanger. These obstructions provided scale models of several miles of two inch diameter, serpentine, vertical cooling coils below the liquid surface for a full scale, 1.3 million gallon, liquid radioactive waste storage tank. Two types of tests were performed. One type of test used a tracer fluid, which was homogeneously blended into solution. Data were statistically evaluated to determine blending times for solutions of different density and viscosity, and the blending times were successfully compared to computational fluid dynamics (CFD) models. The other type of test blended solutions of different viscosity. For example, in one test a half tank of water was added to a half tank of a more viscous, concentrated salt solution. In this case, the fluid mechanics of the blending process was noted to significantly change due to stratification of fluids. CFD models for stratification were not investigated. This paper is the fourth in a series of papers resulting from this research (Leishear, et.al. [1- 4]), and this paper documents final test results, statistical analysis of the data, a comparison of experimental results to CFD models, and scale-up of the results to a full scale tank.

  6. Factors influencing the stability of AFm and AFt in the Ca–Al–S–O–H system at 25 °C

    PubMed Central

    Feng, Pan; Miao, Changwen; Bullard, Jeffrey W.

    2016-01-01

    The stabilities of Al2O3–Fe2O3-mono (AFm) and –tri (AFt) phases in the Ca–Al–S–O–H system at 25 °C are examined using Gibbs energy minimization as implemented by GEM-Selektor software coupled with the Nagra/PSI thermodynamic database. Equilibrium phase diagrams are constructed and compared to those reported in previous studies. The sensitivity of the calculations to the assumed solid solubility products, highlighted by the example of hydrogarnet, is likely the reason why some studies, including this one, predict a stable SO4-rich AFm phase while others do not. The majority of the effort is given to calculating the influences on AFm and AFt stability of alkali and carbonate components, both of which are typically present in cementitious binders. Higher alkali content shifts the equilibria of both AFt and AFm to lower Ca but higher Al and S concentrations in solution. More importantly, higher alkali content significantly expands the range of solution compositions in equilibrium with AFm relative to AFt phases. The introduction of carbonates alters not only the stable AFm solid solution compositions, as expected, but also influences the range of solution pH over which SO4-rich and OH-rich AFm phases are dominant. Some experimental tests are suggested that could provide validation of these calculations, which are all the more important because of the implications for resistance of portland cement binders to external sulfate attack. PMID:27335503

  7. Factors influencing the stability of AFm and AFt in the Ca-Al-S-O-H system at 25 °C.

    PubMed

    Feng, Pan; Miao, Changwen; Bullard, Jeffrey W

    2016-03-01

    The stabilities of Al2O3-Fe2O3-mono (AFm) and -tri (AFt) phases in the Ca-Al-S-O-H system at 25 °C are examined using Gibbs energy minimization as implemented by GEM-Selektor software coupled with the Nagra/PSI thermodynamic database. Equilibrium phase diagrams are constructed and compared to those reported in previous studies. The sensitivity of the calculations to the assumed solid solubility products, highlighted by the example of hydrogarnet, is likely the reason why some studies, including this one, predict a stable SO4-rich AFm phase while others do not. The majority of the effort is given to calculating the influences on AFm and AFt stability of alkali and carbonate components, both of which are typically present in cementitious binders. Higher alkali content shifts the equilibria of both AFt and AFm to lower Ca but higher Al and S concentrations in solution. More importantly, higher alkali content significantly expands the range of solution compositions in equilibrium with AFm relative to AFt phases. The introduction of carbonates alters not only the stable AFm solid solution compositions, as expected, but also influences the range of solution pH over which SO4-rich and OH-rich AFm phases are dominant. Some experimental tests are suggested that could provide validation of these calculations, which are all the more important because of the implications for resistance of portland cement binders to external sulfate attack.

  8. Kentucky's Experimental Elementary Counselor Program: Results and Recommendations for Marketing Exemplary Practices To Meet KERA Goals.

    ERIC Educational Resources Information Center

    Holcomb, Thomas F.; Latto, Lowell D.

    This report examines Kentucky's experimental elementary guidance programs, which were funded in 1988 and evaluated in the second year of the 2-year experimental program. In the second year, data were gathered from counselors, teachers, students, and parents; the data are presented in this document. The first section, "Effective Elementary…

  9. Modal characterization of the ASCIE segmented optics testbed: New algorithms and experimental results

    NASA Technical Reports Server (NTRS)

    Carrier, Alain C.; Aubrun, Jean-Noel

    1993-01-01

    New frequency response measurement procedures, on-line modal tuning techniques, and off-line modal identification algorithms are developed and applied to the modal identification of the Advanced Structures/Controls Integrated Experiment (ASCIE), a generic segmented optics telescope test-bed representative of future complex space structures. The frequency response measurement procedure uses all the actuators simultaneously to excite the structure and all the sensors to measure the structural response so that all the transfer functions are measured simultaneously. Structural responses to sinusoidal excitations are measured and analyzed to calculate spectral responses. The spectral responses in turn are analyzed as the spectral data become available and, which is new, the results are used to maintain high quality measurements. Data acquisition, processing, and checking procedures are fully automated. As the acquisition of the frequency response progresses, an on-line algorithm keeps track of the actuator force distribution that maximizes the structural response to automatically tune to a structural mode when approaching a resonant frequency. This tuning is insensitive to delays, ill-conditioning, and nonproportional damping. Experimental results show that is useful for modal surveys even in high modal density regions. For thorough modeling, a constructive procedure is proposed to identify the dynamics of a complex system from its frequency response with the minimization of a least-squares cost function as a desirable objective. This procedure relies on off-line modal separation algorithms to extract modal information and on least-squares parameter subset optimization to combine the modal results and globally fit the modal parameters to the measured data. The modal separation algorithms resolved modal density of 5 modes/Hz in the ASCIE experiment. They promise to be useful in many challenging applications.

  10. Experimental Results from the Thermal Energy Storage-2 (TES-2) Flight Experiment

    NASA Technical Reports Server (NTRS)

    Tolbert, Carol

    2000-01-01

    Thermal Energy Storage-2 (TES-2) is a flight experiment that flew on the Space Shuttle Endeavour (STS-72), in January 1996. TES-2 originally flew with TES-1 as part of the OAST-2 Hitchhiker payload on the Space Shuttle Columbia (STS-62) in early 1994. The two experiments, TES-1 and TES-2 were identical except for the fluoride salts to be characterized. TES-1 provided data on lithium fluoride (LiF), TES-2 provided data on a fluoride eutectic (LiF/CaF2). Each experiment was a complex autonomous payload in a Get-Away-Special payload canister. TES-1 operated flawlessly for 22 hr. Results were reported in a paper entitled, Effect of Microgravity on Materials Undergoing Melting and Freezing-The TES Experiment, by David Namkoong et al. A software failure in TES-2 caused its shutdown after 4 sec of operation. TES-1 and 2 were the first experiments in a four experiment suite designed to provide data for understanding the long duration microgravity behavior of thermal energy storage salts that undergo repeated melting and freezing. Such data have never been obtained before and have direct application for the development of space-based solar dynamic (SD) power systems. These power systems will store energy in a thermal energy salt such as lithium fluoride or a eutectic of lithium fluoride/calcium difluoride. The stored energy is extracted during the shade portion of the orbit. This enables the solar dynamic power system to provide constant electrical power over the entire orbit. Analytical computer codes were developed for predicting performance of a space-based solar dynamic power system. Experimental verification of the analytical predictions were needed prior to using the analytical results for future space power design applications. The four TES flight experiments were to be used to obtain the needed experimental data. This paper will address the flight results from the first and second experiments, TES-1 and 2, in comparison to the predicted results from the Thermal

  11. Experimental Results From Stitched Composite Multi-Bay Fuselage Panels Tested Under Uni-Axial Compression

    NASA Technical Reports Server (NTRS)

    Baker, Donald J.

    2004-01-01

    The experimental results from two stitched VARTM composite panels tested under uni-axial compression loading are presented. The curved panels are divided by frames and stringers into five or six bays with a column of three bays along the compressive loading direction. The frames are supported at the ends to resist out-of-plane translation. Back-to-back strain gages are used to record the strain and displacement transducers were used to record the out-of-plane displacements. In addition a full-field measurement technique that utilizes a camera-based-stero-vision system was used to record displacements. The panels were loaded in increments to determine the first bay to buckle. Loading was discontinued at limit load and the panels were removed from the test machine for impact testing. After impacting at 20 ft-lbs to 25 ft-lbs of energy with a spherical indenter, the panels were loaded in compression until failure. Impact testing reduced the axial stiffness 4 percent and less than 1 percent. Postbuckled axial panel stiffness was 52 percent and 70 percent of the pre-buckled stiffness.

  12. First Experimental Results Using Sparse Aperture Mask for Low Order Wavefront Sensing

    NASA Astrophysics Data System (ADS)

    Subedi, Hari; Zimmerman, Neil T.; Kasdin, N. Jeremy; Eldorado Riggs, A. J.

    2016-01-01

    We can determine the existence of life outside of earth by analyzing the spectra of exoplanets. Such direct imaging will provide the capability to thoroughly characterize an exoplanet's atmosphere. Direct imaging of exoplanets, however, has many technical challenges and difficulties: scattering and diffraction of light and the large difference in contrast, which is the ratio of brightness between the bright star and the dimmer planet. A coronagraph is an optical device that manipulates the diffraction of starlight and creates a region of high contrast (dark hole) where the dimmer planets can be seen. While in principle the level of contrast required for direct imaging of exoplanets can be achieved by stellar coronagraphic imaging, the resulting dark hole is highly sensitive to phase aberrations. In order to effectively suppress starlight for exoplanet imaging applications, low-order wavefront aberrations entering a coronagraph such as tip-tilt, defocus and coma must be determined and compensated for. A sparse-aperture mask (SAM) can be integrated in the telescopic imaging system to make precise estimate of low-order wavefront aberrations. In this technique, the starlight rejected by the coronagraph's focal plane stop is collimated to a relay pupil, where the mask forms an interference fringe pattern on a detector and the phase aberrations are inferred from this fringe pattern. At Princeton's High Contrast Imaging Lab (HCIL), we have numerically proved this concept and we are currently working on verifying it experimentally.

  13. Vibrational reduction in integral-damped composite fan blades: experimental results

    NASA Astrophysics Data System (ADS)

    Kosmatka, John B.; Mehmed, Oral

    1998-06-01

    The experimental behavior of spinning laminated composite pretwisted plates (turbo-fan blade-like) with small (less than 10% by volume) integral viscoelastic damping patches is investigated. Two different plate sets were examined. The first set investigated tailoring patch locations and definitions to damp specific modes on spinning flat graphite/epoxy plates as a function of rotational speed. The second set investigated damping patch size and location on specific modes of pretwisted (30 degrees) graphite/epoxy plates. The results reveal that: (1) significant amount of damping can be added using a small amount of damping material, (2) the damped plates experienced no failures up to the tested 28,000 g's and 750,000 cycles, (3) centrifugal loads caused an increase in bending frequencies and corresponding reductions in bending damping levels that are proportional to the bending stiffness increase, and (4) the centrifugal loads caused a decrease in torsion natural frequency and increase in damping levels of pretwisted composite plates.

  14. Experimental Results Obtained with Air Liquide Cold Compression System: CERN LHC and SNS Projects

    NASA Astrophysics Data System (ADS)

    Delcayre, F.; Courty, J.-C.; Hamber, F.; Hilbert, B.; Monneret, E.; Toia, J.-L.

    2006-04-01

    Large scale collider facilities will make intensive use of superconducting magnets, operating below 2.0 K. This dictates high-capacity refrigeration systems operating below 2.0 K. These systems, making use of cryogenic centrifugal compressors in a series arrangement with room temperature screw compressors will be coupled to a refrigerator, providing a certain power at 4.5 K. A first Air Liquide Cold Compression System (CCS) unit was built and delivered to CERN in 2001. Installed at the beginning of 2002, it was commissioned and tested successfully during year 2002. A series of four sets of identical CCS were then tested in 2004. Another set of four cryogenic centrifugal compressors (CCC) has been delivered to Thomas Jefferson National Accelerator Facility (JLAB) for the Spallation Neutron Source (SNS) in 2002. These compressors were tested and commissioned from December 2004 to July 2005. The experimental results obtained with these systems will be presented and discussed: the characteristics of the CCC will be detailed. The principles of control for the CCC in series will be detailed.

  15. The Preliminary Experimental Results of Resonant Magnetic Perturbation Coils on J-TEXT Tokamak

    NASA Astrophysics Data System (ADS)

    Rao, Bo; Ding, Yonghua; Jin, Wei; Hu, Qiming; Wang, Nengchao; Yi, Bin; Li, Quanlin; Zeng, Wubing; Zhuang, Ge

    2012-10-01

    A set of saddle coils system designed for generating rotating resonant magnetic perturbations (RMPs) has been installed inside the vacuum vessel of the J-TEXT tokamak and recently operated in DC mode and produced mainly m/n=2/1 mode perturbations. This system named as DRMP consists of 12 coils divided into 4 groups which equivalently locate in the toroidal direction. Another set of saddle coils system (now given a new name as SRMP) originally designed for TEXT-U has also been reconstructed outside the J-TEXT vessel wall. The SRMP mainly generates 2/1, 3/1 and some other higher m modes perturbations. In a J-TEXT Ohmic discharge, when the visible tearing modes with a high frequency ( > 6 kHz, typically), the SRMP applied on a suitable spatial phase can suppress the modes completely, but if the SRMP operates at the opposite spatial phase, a locked mode would be stimulated afterward even though the modes have been suppressed. Nevertheless, if the mode frequency is too low, RMP will directly lead to mode locking. With some discharges without any visible tearing modes, mode penetration by DRMP is observed. The experimental results and their possible explanations will be given in the meeting.

  16. Optimal piezoelectric beam shape for single and broadband vibration energy harvesting: Modeling, simulation and experimental results

    NASA Astrophysics Data System (ADS)

    Muthalif, Asan G. A.; Nordin, N. H. Diyana

    2015-03-01

    Harvesting energy from the surroundings has become a new trend in saving our environment. Among the established ones are solar panels, wind turbines and hydroelectric generators which have successfully grown in meeting the world's energy demand. However, for low powered electronic devices; especially when being placed in a remote area, micro scale energy harvesting is preferable. One of the popular methods is via vibration energy scavenging which converts mechanical energy (from vibration) to electrical energy by the effect of coupling between mechanical variables and electric or magnetic fields. As the voltage generated greatly depends on the geometry and size of the piezoelectric material, there is a need to define an optimum shape and configuration of the piezoelectric energy scavenger. In this research, mathematical derivations for unimorph piezoelectric energy harvester are presented. Simulation is done using MATLAB and COMSOL Multiphysics software to study the effect of varying the length and shape of the beam to the generated voltage. Experimental results comparing triangular and rectangular shaped piezoelectric beam are also presented.

  17. Surface roughness prediction model and experimental results based on multi-wavelength fiber optic sensors.

    PubMed

    Zhu, Nan-Nan; Zhang, Jun

    2016-10-31

    The surface roughness prediction model based on a support vector machine was proposed and the multi-wavelength fiber optic sensor was established. The specimens with different surface roughness selected as the test samples were analyzed by using the prediction model when the incident wavelengths were 650 nm and 1310 nm, respectively. The working distance of 2.5 mm ~3.5 mm was chosen as the optimum measurement distance. The experimental results indicate that the error range of surface roughness is 0.74% ~7.56% at 650 nm, and the error range of surface roughness is 1.03% ~5.92% at 1310 nm. The average relative error is about 2.669% at 650 nm, while it is about 2.431% at 1310 nm. The error of roughness measurement is less than 3% by using the model, which is acceptable. The error of surface roughness based on the prediction model is smaller than that by using the characteristic curves between surface roughness and the scattering intensity ratio.

  18. Experimental study of heat pump thermodynamic cycles using CO2 based mixtures - Methodology and first results

    NASA Astrophysics Data System (ADS)

    Bouteiller, Paul; Terrier, Marie-France; Tobaly, Pascal

    2017-02-01

    The aim of this work is to study heat pump cycles, using CO2 based mixtures as working fluids. Since adding other chemicals to CO2 moves the critical point and generally equilibrium lines, it is expected that lower operating pressures as well as higher global efficiencies may be reached. A simple stage pure CO2 cycle is used as reference, with fixed external conditions. Two scenarios are considered: water is heated from 10 °C to 65 °C for Domestic Hot Water scenario and from 30 °C to 35 °C for Central Heating scenario. In both cases, water at the evaporator inlet is set at 7 °C to account for such outdoor temperature conditions. In order to understand the dynamic behaviour of thermodynamic cycles with mixtures, it is essential to measure the fluid circulating composition. To this end, we have developed a non intrusive method. Online optical flow cells allow the recording of infrared spectra by means of a Fourier Transform Infra Red spectrometer. A careful calibration is performed by measuring a statistically significant number of spectra for samples of known composition. Then, a statistical model is constructed to relate spectra to compositions. After calibration, compositions are obtained by recording the spectrum in few seconds, thus allowing for a dynamic analysis. This article will describe the experimental setup and the composition measurement techniques. Then a first account of results with pure CO2, and with the addition of propane or R-1234yf will be given.

  19. Control of Warm Compression Stations Using Model Predictive Control: Simulation and Experimental Results

    NASA Astrophysics Data System (ADS)

    Bonne, F.; Alamir, M.; Bonnay, P.

    2017-02-01

    This paper deals with multivariable constrained model predictive control for Warm Compression Stations (WCS). WCSs are subject to numerous constraints (limits on pressures, actuators) that need to be satisfied using appropriate algorithms. The strategy is to replace all the PID loops controlling the WCS with an optimally designed model-based multivariable loop. This new strategy leads to high stability and fast disturbance rejection such as those induced by a turbine or a compressor stop, a key-aspect in the case of large scale cryogenic refrigeration. The proposed control scheme can be used to achieve precise control of pressures in normal operation or to avoid reaching stopping criteria (such as excessive pressures) under high disturbances (such as a pulsed heat load expected to take place in future fusion reactors, expected in the cryogenic cooling systems of the International Thermonuclear Experimental Reactor ITER or the Japan Torus-60 Super Advanced fusion experiment JT-60SA). The paper details the simulator used to validate this new control scheme and the associated simulation results on the SBTs WCS. This work is partially supported through the French National Research Agency (ANR), task agreement ANR-13-SEED-0005.

  20. The Cu-Sn phase diagram, Part I: New experimental results.

    PubMed

    Fürtauer, S; Li, D; Cupid, D; Flandorfer, H

    2013-03-01

    Phase diagram investigation of the Cu-Sn system was carried out on twenty Cu-rich samples by thermal analysis (DTA), metallographic methods (EPMA/SEM-EDX) and crystallographic analysis (powder XRD, high temperature powder XRD). One main issue in this work was to investigate the high temperature phases beta (W-type) and gamma (BiF3-type) and to check the phase relations between them. In the high temperature powder XRD experiments the presence of the two-phase-field between the beta- and the gamma-phase could not be confirmed. Detailed study of primary literature together with our experimental results leads to a new phase diagram version with a higher order transformation between these two high temperature phases. The present work is designated as part I of our joint publication. The new findings described here have been included into a completely new thermodynamic assessment of the Cu-Sn phase diagram which is presented in part II.

  1. Experimental Results From a 2kW Brayton Power Conversion Unit

    NASA Technical Reports Server (NTRS)

    Hervol, David; Mason, Lee; Birchenough, Arthur

    2003-01-01

    This paper presents experimental test results from operation of a 2 kWe Brayton power conversion unit. The Brayton converter was developed for a solar dynamic power system flight experiment planned for the Mir Space Station in 1997. The flight experiment was cancelled, but the converter was tested at Glenn Research Center as part of the Solar Dynamic Ground Test Demonstration system which included a solar concentrator, heat receiver, and space radiator. In preparation for the current testing, the heat receiver was removed and replaced with an electrical resistance heater, simulating the thermal input of a steady-state nuclear source. The converter was operated over a full range of thermal input power levels and rotor speeds to generate an overall performance map. The converter unit will serve as the centerpiece of a Nuclear Electric Propulsion Testbed at Glenn. Future potential uses for the Testbed include high voltage electrical controller development, integrated electric thruster testing and advanced radiator demonstration testing to help guide high power Brayton technology development for Nuclear Electric Propulsion (NEP).

  2. Colloid filtration in surface dense vegetation: experimental results and theoretical predictions.

    PubMed

    Wu, Lei; Muñoz-Carpena, Rafael; Gao, Bin; Yang, Wen; Pachepsky, Yakov A

    2014-04-01

    Understanding colloid and colloid-facilitated contaminant transport in overland flow through dense vegetation is important to protect water quality in the environment, especially for water bodies receiving agricultural and urban runoff. In previous studies, a single-stem efficiency theory for rigid and clean stem systems was developed to predict colloid filtration by plant stems of vegetation in laminar overland flow. Hence, in order to improve the accuracy of the single-stem efficiency theory to real dense vegetation system, we incorporated the effect of natural organic matter (NOM) on the filtration of colloids by stems. Laboratory dense vegetation flow chamber experiments and model simulations were used to determine the kinetic deposition (filtration) rate of colloids under various conditions. The results show that, in addition to flow hydrodynamics and solution chemistry, steric repulsion afforded by NOM layer on the plants stem surface also plays a significant role in controlling colloid deposition on vegetation in overland flow. For the first time, a refined single-stem efficiency theory with considerations of the NOM effect is developed that describes the experimental data with good accuracy. This theory can be used to not only help construct and refine mathematical models of colloid transport in real vegetation systems in overland flow, but also inform the development of theories of colloid deposition on NOM-coated surfaces in natural, engineered, and biomedical systems.

  3. Avalanching granular flows down curved and twisted channels: Theoretical and experimental results

    NASA Astrophysics Data System (ADS)

    Pudasaini, Shiva P.; Wang, Yongqi; Sheng, Li-Tsung; Hsiau, Shu-San; Hutter, Kolumban; Katzenbach, Rolf

    2008-07-01

    Depth evolution and final deposits play a crucial role in the description of the dynamics of granular avalanches. This paper presents new and important results on the geometric deformation and measurements of avalanche depositions in laboratory granular flows and their comparisons with theoretical predictions through some benchmark problems for flows down curved and twisted channels merging into a horizontal plane. XY-table and analoglaser sensor are applied to measure geometries of deposited masses in the fanlike open transition and runout zones for different granular materials, different channel lengths, and different channel mouths in the runout zone. The model equations proposed by Pudasaini and Hutter ["Rapid shear flows of dry granular masses down curved and twisted channels," J. Fluid Mech. 495, 193 (2003)] are used for theoretical prediction. We show that geometric parameters such as curvature, twist and local details of the channel play a crucial role in the description of avalanching debris and their deposits in the standstill. Asymmetric depositions and surface contours about the central line of the channel could not be produced and predicted by any other classical theories and available experiments in the literature as done in this paper. Such a role played by the geometrical parameters of the channel over physical parameters for the flow of granular materials down a general channel was not investigated before. It is demonstrated that the numerical simulations of the model equations and experimental observations are generally in good agreement.

  4. Waterjet dissection of the brain: experimental and first clinical results. Technical note.

    PubMed

    Piek, J; Wille, C; Warzok, R; Gaab, M R

    1998-11-01

    Control of bleeding during dissection is a problem that is still not completely resolved in neurosurgical procedures. To overcome this problem in some settings, the authors, in close collaboration with their institution, developed a new device for blunt dissection of brain tumors that is based on a waterjet technique. This report describes their first experimental and clinical experience with this new method. Numerous cutting experiments were performed in porcine cadaver brains. The best results were obtained using pressures from 4 to 6 bars with a 100-microm tip, which produced very small, precise cuts. Histological evaluation showed no disruption or vacuolization of the surrounding tissue. The authors have used the new device in nine patients (seven with gliomas and two undergoing temporal lobe resections for epilepsy), and no complications have been observed. The waterjet device allowed dissection of the brain tissue while even small exposed vessels were spared injury. The instrument was found to be easy to use. Future investigations will concentrate on adapting this new method to endoscopic surgery and evaluating fluids with low surface tension to avoid foaming and bubbling during open surgery.

  5. Experimental Results of Site Calibration and Sensitivity Measurements in OTR for UWB Systems

    NASA Astrophysics Data System (ADS)

    Viswanadham, Chandana; Rao, P. Mallikrajuna

    2016-08-01

    System calibration and parameter accuracy measurement of electronic support measures (ESM) systems is a major activity, carried out by electronic warfare (EW) engineers. These activities are very critical and needs good understanding in the field of microwaves, antennas, wave propagation, digital and communication domains. EW systems are broad band, built with state-of-the art electronic hardware, installed on different varieties of military platforms to guard country's security from time to time. EW systems operate in wide frequency ranges, typically in the order of thousands of MHz, hence these are ultra wide band (UWB) systems. Few calibration activities are carried within the system and in the test sites, to meet the accuracies of final specifications. After calibration, parameters are measured for their accuracies either in feed mode by injecting the RF signals into the front end or in radiation mode by transmitting the RF signals on to system antenna. To carry out these activities in radiation mode, a calibrated open test range (OTR) is necessary in the frequency band of interest. Thus site calibration of OTR is necessary to be carried out before taking up system calibration and parameter measurements. This paper presents the experimental results of OTR site calibration and sensitivity measurements of UWB systems in radiation mode.

  6. New experimental results on local heat transfer inside a rectangular channel with rib-roughened surfaces

    NASA Astrophysics Data System (ADS)

    Fustinoni, D.; Gramazio, P.; Vitali, L.; Niro, A.

    2017-01-01

    In this paper we present new experimental results on local heat transfer characteristics of a forced air-flow through a 12-mm-height, rectangular channel of 1:10 aspect ratio, with square-cross-section ribs mounted onto the lower surface. Data are collected on a completely redesigned test section. Specifically, the electric heater is made of very thin copper tracks, in direct contact with the air flow and covering at 97.5% the channel lower surface to guarantee a very uniform heat flux. The copper tracks are laminated onto a 2-mm thick board of FR-4 glass epoxy to provide negligible heat conduction inside the plate and heat losses from its sides. Finally, the channel walls are in XPS and, into the upper one, a double glazing consisting of two 120 mm x 120 mm Germanium windows is mounted to allow optical access to the IR camera and to reduce local heat dispersions. Data here presented refer to convection over 4 mm x 2 mm ribs in transverse configuration for Reynolds numbers, based on the duct hydraulic diameter, ranging between 700 and 8000. Preliminary tests show how the new apparatus has significantly improved the quality, the ease and the quickness of the measurements.

  7. Contribution to modeling of the reflooding of a severely damaged reactor core using PRELUDE experimental results

    SciTech Connect

    Bachrata, A.; Fichot, F.; Repetto, G.; Quintard, M.; Fleurot, J.

    2012-07-01

    In case of accident at a nuclear power plant, water sources may not be available for a long period of time and the core heats up due to the residual power. The reflooding (injection of water into core) may be applied if the availability of safety injection is recovered during accident. If the injection becomes available only in the late phase of accident, water will enter a core configuration that will differ significantly from original rod-bundle geometry. Any attempt to inject water after significant core degradation can lead to further fragmentation of core material. The fragmentation of fuel rods may result in the formation of a 'debris bed'. The typical particle size in a debris bed might reach few millimeters (characteristic length-scale: 1 to 5 mm), i.e., a high permeability porous medium. The French 'Institut de Radioprotection et de Surete Nucleaire' is developing experimental programs (PEARL and PRELUDE) and simulation tools (ICARE-CATHARE and ASTEC) to study and optimize the severe accident management strategy and to assess the probabilities to stop the progress of in-vessel core degradation. It is shown that the quench front exhibits either a ID behaviour or a 2D one, depending on injection rate or bed characteristics. The PRELUDE experiment covers a rather large range of variation of parameters, for which the developed model appears to be quite predictive. (authors)

  8. Experimental results performed in the framework of the HIPER European Project

    NASA Astrophysics Data System (ADS)

    Batani, D.; Koenig, M.; Baton, S.; Perez, F.; Gizzi, L. A.; Koester, P.; Labate, L.; Honrubia, J.; Debayle, A.; Santos, J.; Schurtz, G.; Hulin, S.; Ribeyre, X.; Fourment, C.; Nicolai, P.; Vauzour, B.; Gremillet, L.; Nazarov, W.; Pasley, J.; Tallents, G.; Richetta, M.; Lancaster, K.; Spindloe, Ch.; Tolley, M.; Neely, D.; Norreys, P.; Kozlova, M.; Nejdl, J.; Rus, B.; Antonelli, L.; Morace, A.; Volpe, L.,; Davies, J.; Wolowski, J.; Badziak, J.

    2011-06-01

    This paper presents the goals and some of the results of experiments conducted within the Working Package 10 (Fusion Experimental Programme) of the HiPER Project. These experiments concern the study of the physics connected to "Advanced Ignition Schemes", i.e. the Fast Ignition and the Shock Ignition Approaches to Inertial Fusion. Such schemes are aimed at achieving a higher gain, as compared to the classical approach which is used in NIF, as required for future reactors, and making fusion possible with smaller facilities. In particular, a series of experiments related to Fast Ignition were performed at the RAL (UK) and LULI, France) Laboratories and were addressed to study the propagation of fast electrons (created by a short-pulse ultra-high-intensity beam) in compressed matter, created either by cylindrical implosions or by compression of planar targets by (planar) laser-driven shock waves. A more recent experiment was performed at PALS and investigated the laser-plasma coupling in the 1016 W/cm2 intensity regime of interest for Shock Ignition.

  9. Magnetic properties of a Kramers doublet. An univocal bridge between experimental results and theoretical predictions.

    PubMed

    Alonso, P J; Martínez, J I

    2015-06-01

    The magnetic response of a Kramers doublet is analyzed in a general case taking into account only the formal properties derived from time reversal operation. It leads to a definition of a matrix G (gyromagnetic matrix) whose expression depends on the chosen reference frame and on the Kramers conjugate basis used to describe the physical system. It is shown that there exists a reference frame and a suitable Kramers conjugate basis that gives a diagonal form for the G-matrix with all non-null elements having the same sign. A detailed procedure for obtaining this canonical expression of G is presented when the electronic structure of the KD is known regardless the level of the used theory. This procedure provides a univocal way to compare the theoretical predictions with the experimental results obtained from a complete set of magnetic experiments. In this way the problems arising from ambiguities in the g-tensor definition are overcome. This procedure is extended to find a spin-Hamiltonian suitable for describing the magnetic behavior of a pair of weakly coupled Kramers systems in the multispin scheme when the interaction between the two moieties as well as the individual Zeeman interaction are small enough as compared with ligand field splitting. Explicit relations between the physical interaction and the parameters of such a spin-Hamiltonian are also obtained.

  10. Wageningen Urban Rainfall Experiment 2014 (WURex14): Experimental Setup and First Results

    NASA Astrophysics Data System (ADS)

    Uijlenhoet, R.; Overeem, A.; Leijnse, H.; Hazenberg, P.

    2014-12-01

    the atmosphere. Approximately halfway along the link path a rain gauge from the KNMI operational network is located. Finally, data is available from several commercial microwave links in the vicinity of the experimental setup, as well as from the KNMI weather radars. We report on the first results from this experiment, collected during the Summer and Fall of 2014.

  11. Wageningen Urban Rainfall Experiment 2014 (WURex14): Experimental Setup and First Results

    NASA Astrophysics Data System (ADS)

    van Leth, Thomas; Uijlenhoet, Remko; Overeem, Aart; Leijnse, Hidde; Hazenberg, Pieter

    2015-04-01

    the atmosphere. Approximately halfway along the link path a rain gauge from the KNMI operational network is located. Finally, data is available from several commercial microwave links in the vicinity of the experimental setup, as well as from the KNMI weather radars. We report on the first results from this experiment, collected during the Summer and Fall of 2014.

  12. A comparison of experimental and theoretical results for rotordynamic coefficients of four annular gas seals

    NASA Technical Reports Server (NTRS)

    Childs, D. W.; Nelson, C. C.; Elrod, D.; Nicks, C.

    1985-01-01

    The test facility and initial test program developed to experimentally measure the fluid forces induced by annular gas seals is described. A comparison of theoretically predicted and experimentally obtained data for smooth and honeycomb seals is provided. And a comparison of experimental data from the tests of three smooth-rotor/smooth-stator seals is provided. The leakage of the working fluid through the seal, the pressure gradient along the seal length, entrance pressure-loss data, and rotordynamic coefficients provide a basis for comparison. A short discussion on seal theory is included, and various rotordynamic coefficient identification schemes are described.

  13. NASA/Pratt and Whitney experimental clean combustor program: Engine test results

    NASA Technical Reports Server (NTRS)

    Roberts, R.; Fiorentino, A. J.; Greene, W.

    1977-01-01

    A two-stage vorbix (vortex burning and mixing) combustor and associated fuel system components were successfully tested in an experimental JT9D engine at steady-state and transient operating conditions, using ASTM Jet-A fuel. Full-scale JT9D experimental engine tests were conducted in a phase three aircraft experimental clean combustor program. The low-pollution combustor, fuel system, and fuel control concepts were derived from phase one and phase two programs in which several combustor concepts were evaluated, refined, and optimized in a component test rig. Significant pollution reductions were achieved with the combustor which meets the performance, operating, and installation requirements of the engine.

  14. The role of friends' disruptive behavior in the development of children's tobacco experimentation: results from a preventive intervention study.

    PubMed

    van Lier, Pol A C; Huizink, Anja; Vuijk, Patricia

    2011-01-01

    Having friends who engage in disruptive behavior in childhood may be a risk factor for childhood tobacco experimentation. This study tested the role of friends' disruptive behavior as a mediator of the effects of a classroom based intervention on children's tobacco experimentation. 433 Children (52% males) were randomly assigned to the Good Behavior Game (GBG) intervention, a universal preventive intervention targeting disruptive behavior, and facilitating positive prosocial peer interactions. Friends' disruptive behavior was assessed from age 7-10 years. Participants' experimentation with tobacco was assessed annually from age 10-13. Reduced rates in tobacco experimentation and friends' disruptive behavior were found among GBG children, as compared to controls. Support for friends' disruptive behavior as a mediator in the link between intervention status and tobacco experimentation was found. These results remained after controlling for friends' and parental smoking status, and child ADHD symptoms. The results support the role of friends' disruptive behavior in preadolescents' tobacco experimentation.

  15. On-board four-dimensional digital tomosynthesis: first experimental results.

    PubMed

    Maurer, Jacqueline; Godfrey, Devon; Wang, Zhiheng; Yin, Fang-Fang

    2008-08-01

    The purpose of this study is to propose four-dimensional digital tomosynthesis (4D-DTS) for on-board analysis of motion information in three dimensions. Images of a dynamic motion phantom were reconstructed using acquisition scan angles ranging from 20 degrees (DTS) to full 360 degrees cone-beam computed tomography (CBCT). Projection images were acquired using an on-board imager mounted on a clinical linear accelerator. Three-dimensional (3D) images of the moving target were reconstructed for various scan angles. 3D respiratory correlated phase images were also reconstructed. For phase-based image reconstructions, the trajectory of a radiopaque marker was tracked in projection space and used to retrospectively assign respiratory phases to projections. The projections were then sorted according phase and used to reconstruct motion correlated images. By using two sets of projections centered about anterior-posterior and lateral axes, this study demonstrates how phase resolved coronal and sagittal DTS images can be used to obtain 3D motion information. Motion artifacts in 4D-DTS phase images are compared with those present in four-dimensional CT (4DCT) images. Due to the nature of data acquisition for the two modalities, superior-inferior motion artifacts are suppressed to a greater extent in 4D-DTS images compared with 4DCT. Theoretical derivations and experimental results are presented to demonstrate how optimal selection of image acquisition parameters including the frequency of projection acquisition and the phase window depend on the respiratory period. Two methods for acquiring projections are discussed. Preliminary results indicate that 4D-DTS can be used to acquire valuable kinetic information of internal anatomy just prior to radiation treatment.

  16. Nitrogen-broadened lineshapes in the oxygen A-band: Experimental results and theoretical calculations

    NASA Astrophysics Data System (ADS)

    Predoi-Cross, Adriana; Holladay, Christopher; Heung, Henry; Bouanich, Jean-Pierre; Mellau, Georg Ch.; Keller, Reimund; Hurtmans, Daniel R.

    2008-09-01

    We report measurements for N 2-broadening, pressure-shift and line mixing coefficients for 55 oxygen transitions in the A-band retrieved using a multispectrum fitting technique. Nineteen laboratory absorption spectra were recorded at 0.02 cm -1 resolution using a multi-pass absorption cell with path length of 1636.9 cm and the IFS 120 Fourier transform spectrometer located at Justus-Liebig-University in Giessen, Germany. The total sample pressures ranged from 8.8 to 3004.5 Torr with oxygen volume mixing ratios in nitrogen ranging between 0.057 and 0.62. An Exponential Power Gap (EPG) scaling law was used to calculate the N 2-broadening and N 2-line mixing coefficients. The line broadening and shift coefficients for the A-band of oxygen self-perturbed and perturbed by N 2 are modeled using semiclassical calculations based on the Robert-Bonamy formalism and two intermolecular potentials. These potentials involve electrostatic contributions including the hexadecapole moment of the molecules and (a) a simple dispersion contribution with one adjustable parameter to fit the broadening coefficients or (b) the atom-atom Lennard-Jones model without such adjustable parameters. The first potential leads to very weak broadening coefficients for high J transitions whereas the second potential gives much more improved results at medium and large J values, in reasonable agreement with the experimental data. For the line shifts which mainly arise in our calculation from the electronic state dependence of the isotropic potential, their general trends with increasing J values can be well predicted, especially from the first potential. From the theoretical results, we have derived air-broadening and air-induced shift coefficients with an agreement comparable to that obtained for O 2-O 2 and O 2-N 2.

  17. Experimental results from containment piping bellows subjected to severe accident conditions: Results from bellows tested in corroded conditions. Volume 2

    SciTech Connect

    Lambert, L.D.; Parks, M.B.

    1995-10-01

    Bellows are an integral part of the containment pressure boundary in nuclear power plants. They are used at piping penetrations to allow relative movement between piping and the containment wall, while minimizing the load imposed on the piping and wall. Piping bellows are primarily used in steel containments; however, they have received limited use in some concrete (reinforced and prestressed) containments. In a severe accident they may be subjected to pressure and temperature conditions that exceed the design values, along with a combination of axial and lateral deflections. A test program to determine the leak-tight capacity of containment penetration bellows is being conducted at Sandia National Laboratories under the sponsorship of the US Nuclear Regulatory Commission. Several different bellows geometries, representative of actual containment bellows, have been subjected to extreme deflections along with pressure and temperature loads. The bellows geometries and loading conditions are described along with the testing apparatus and procedures. A total of nineteen bellows have been tested. Thirteen bellows were tested in ``like-new`` condition (results reported in Volume 1), and six were tested in a corroded condition. The tests showed that bellows in ``like-new`` condition are capable of withstanding relatively large deformations, up to, or near, the point of full compression or elongation, before developing leakage, while those in a corroded condition did not perform as well, depending on the amount of corrosion. The corroded bellows test program and results are presented in this report.

  18. Accurate, explicit formulae for higher harmonic force spectroscopy by frequency modulation-AFM.

    PubMed

    Kuchuk, Kfir; Sivan, Uri

    2015-01-01

    The nonlinear interaction between an AFM tip and a sample gives rise to oscillations of the cantilever at integral multiples (harmonics) of the fundamental resonance frequency. The higher order harmonics have long been recognized to hold invaluable information on short range interactions but their utilization has thus far been relatively limited due to theoretical and experimental complexities. In particular, existing approximations of the interaction force in terms of higher harmonic amplitudes generally require simultaneous measurements of multiple harmonics to achieve satisfactory accuracy. In the present letter we address the mathematical challenge and derive accurate, explicit formulae for both conservative and dissipative forces in terms of an arbitrary single harmonic. Additionally, we show that in frequency modulation-AFM (FM-AFM) each harmonic carries complete information on the force, obviating the need for multi-harmonic analysis. Finally, we show that higher harmonics may indeed be used to reconstruct short range forces more accurately than the fundamental harmonic when the oscillation amplitude is small compared with the interaction range.

  19. On the determination of elastic moduli of cells by AFM based indentation

    PubMed Central

    Ding, Yue; Xu, Guang-Kui; Wang, Gang-Feng

    2017-01-01

    The atomic force microscopy (AFM) has been widely used to measure the mechanical properties of biological cells through indentations. In most of existing studies, the cell is supposed to be linear elastic within the small strain regime when analyzing the AFM indentation data. However, in experimental situations, the roles of large deformation and surface tension of cells should be taken into consideration. Here, we use the neo-Hookean model to describe the hyperelastic behavior of cells and investigate the influence of surface tension through finite element simulations. At large deformation, a correction factor, depending on the geometric ratio of indenter radius to cell radius, is introduced to modify the force-indent depth relation of classical Hertzian model. Moreover, when the indent depth is comparable with an intrinsic length defined as the ratio of surface tension to elastic modulus, the surface tension evidently affects the indentation response, indicating an overestimation of elastic modulus by the Hertzian model. The dimensionless-analysis-based theoretical predictions, which include both large deformation and surface tension, are in good agreement with our finite element simulation data. This study provides a novel method to more accurately measure the mechanical properties of biological cells and soft materials in AFM indentation experiments. PMID:28368053

  20. A study of water droplet between an AFM tip and a substrate using dissipative particle dynamics

    NASA Astrophysics Data System (ADS)

    Pal, Souvik; Lan, Chuanjin; Li, Zhen; Hirleman, E. Daniel; Ma, Yanbao

    2014-11-01

    Formation of a water droplet between a sharp AFM tip and a substrate due to capillary condensation affects the tip-substrate interaction. As a consequence, AFM measurements lose precision and often produce incorrect sample topology. Understanding the physics of liquid bridges is also important in the field of Dip-pen nanolithography (DPN). Significant research is being carried out to understand the mechanics of the formation of the liquid bridge and its dependence of surface properties, ambient conditions etc. The in-between length scale, i.e., mesoscale (~100 nm) associated with this phenomenon presents a steep challenge for experimental measurements. In addition, molecular dynamics (MD) can be computationally prohibitive to model the entire system, especially over microseconds to seconds. Theoretical analysis using Young Laplace equation has so far provided some qualitative insights only. We study this system using Dissipative Particle Dynamics (DPD) which is a simulation technique suitable for describing mesoscopic hydrodynamic behavior of fluids. In this work, we carry out simulations to improve understanding of the process of formation of the meniscus, the mechanics of manipulation and control of its shape, and better estimation of capillary forces. The knowledge gained through our study will help in correcting the AFM measurements affected by capillary condensation. Moreover, it will improve understanding of more accurate droplet manipulation in DPN.

  1. On the determination of elastic moduli of cells by AFM based indentation.

    PubMed

    Ding, Yue; Xu, Guang-Kui; Wang, Gang-Feng

    2017-04-03

    The atomic force microscopy (AFM) has been widely used to measure the mechanical properties of biological cells through indentations. In most of existing studies, the cell is supposed to be linear elastic within the small strain regime when analyzing the AFM indentation data. However, in experimental situations, the roles of large deformation and surface tension of cells should be taken into consideration. Here, we use the neo-Hookean model to describe the hyperelastic behavior of cells and investigate the influence of surface tension through finite element simulations. At large deformation, a correction factor, depending on the geometric ratio of indenter radius to cell radius, is introduced to modify the force-indent depth relation of classical Hertzian model. Moreover, when the indent depth is comparable with an intrinsic length defined as the ratio of surface tension to elastic modulus, the surface tension evidently affects the indentation response, indicating an overestimation of elastic modulus by the Hertzian model. The dimensionless-analysis-based theoretical predictions, which include both large deformation and surface tension, are in good agreement with our finite element simulation data. This study provides a novel method to more accurately measure the mechanical properties of biological cells and soft materials in AFM indentation experiments.

  2. Data processing and display of laser Doppler experimental results, volume 1

    NASA Technical Reports Server (NTRS)

    Ashmore, B. R.; Kimura, A.; Skeith, R. W.

    1976-01-01

    Contract activities performed in developing a laser Doppler system for detecting, tracking, and measuring aircraft wake vortices are summarized. The computer program for processing and displaying the Dust Devil experimental data is presented. Program listings are included in the appendix.

  3. Prediction of sonic boom from experimental near-field overpressure data. Volume 1: Method and results

    NASA Technical Reports Server (NTRS)

    Glatt, C. R.; Hague, D. S.; Reiners, S. J.

    1975-01-01

    A computerized procedure for predicting sonic boom from experimental near-field overpressure data has been developed. The procedure extrapolates near-field pressure signatures for a specified flight condition to the ground by the Thomas method. Near-field pressure signatures are interpolated from a data base of experimental pressure signatures. The program is an independently operated ODIN (Optimal Design Integration) program which obtains flight path information from other ODIN programs or from input.

  4. Review on optical constants of Titan aerosols: Experimental results and modeling/observational data

    NASA Astrophysics Data System (ADS)

    Brassé, Coralie; Muñoz, Olga; Coll, Patrice; Raulin, François

    2014-05-01

    During the last years many studies have been performed to improve the experimental database of optical constants of Titan aerosols. Indeed, the determination of the optical constants of these particles is essential to quantify their capacity to absorb and to scatter solar radiation, and thus to evaluate their role on Titan's radiative balance and climate. The study of optical properties is also crucial to analyze and to better interpret many of Titan's observational data, in particular those acquired during the Cassini-Huygens mission. One way to determine Titan aerosols optical constant is to measure the optical constants of analogues of Titan complex organic material synthesized in the laboratory, usually named Titan's tholins (Sagan and Khare, 1979). But the optical constants depend on the chemical composition, the size and the shape of particles (Raulin et al., 2012). Those three parameters result from the experimental conditions such as energy source, gas mixing ratio, gas pressure, flow rate and irradiation time (Cable et al., 2012). Besides the determination of the refractive index in the laboratory, there are others methods using theoretical models or observational data. Nevertheless, theoretical models are based on laboratory data or/and observational data. The visible - near infrared spectral region of optical constants has been widely studied with laboratory analogues. Comparison of the obtained results suggest that tholins synthesized by Tran et al. (2003) and Majhoub et al. (2012) are the best representative of Titan aerosols with regards to their refractive indexes in this spectral region. The mid-infrared spectral range has been studied only by Imanaka et al. (2012) and slightly by Tran et al. (2003). In that spectral range, Titan tholins do not exhibit the features displayed by Kim and Courtin (2013) from Titan's observations. For spectral region of wavelengths smaller than 0.20µm or higher than 25µm, only the data from Khare et al. (1984) are

  5. Hazards by shock waves during explosive eruptions: preliminary results of experimental investigations.

    NASA Astrophysics Data System (ADS)

    Scolamacchia, Teresa; Alatorre Ibarguengoïtia, Miguel; Spieler, Oliver; Dingwell, Donald B.

    2010-05-01

    velocities (205 to 257 m/s) were obtained for smaller grain-sizes, in a range of fine lapilli-medium ash (2.8 to 177 μm). Lower velocities, 40 m/s to 85 m/s, were attained by medium (8 mm) and fine lapilli (4 mm), respectively. These values seem not directly related to the the material composition. Impacts craters on steel plates were experimentally obtained, but we did not observe a modification of the steel inner structure, as observed in the original impacted pole. These results are in agreement with impacts occurred at low particle velocities, typical for gravity driven currents, as those reached in these experiments. We observed a great reduction in grain-size of samples recovered after all experiments with respect to the original material. Such evidence coud be due not only to the disruption of grains when impacting the metal plate, but also to processes stricly related to shock wave propagation and gas expansion. These preliminary results need to be further investigated.

  6. Effect of Hydrodynamics on Particle Transport in Saturated Fractures: Experimental and Simulation Results

    NASA Astrophysics Data System (ADS)

    Cianflone, S.; Lakhian, V.; Dickson, S. E.

    2014-12-01

    experimental results. These results suggest that local hydrodynamics are important in defining the transport of particles through a fracture. We plan to discuss further applications, general statistics, and particle retention in fractures due to hydrodynamics and ultimately the role of fracture geometry in particle transport.

  7. Evaluating Impacts of CO2 Gas Intrusion Into a Confined Sandstone aquifer: Experimental Results

    DOE PAGES

    Qafoku, Nikolla; Lawter, Amanda R.; Shao, Hongbo; ...

    2014-12-31

    Deep subsurface storage and sequestration of CO2 has been identified as a potential mitigation technique for rising atmospheric CO2 concentrations. Sequestered CO2 represents a potential risk to overlying aquifers if the CO2 leaks from the deep storage reservoir. Experimental and modeling work is required to evaluate potential risks to groundwater quality and develop a systematic understanding of how CO2 leakage may cause important changes in aquifer chemistry and mineralogy by promoting dissolution/precipitation, adsorption/desorption, and redox reactions. Sediments from the High Plains aquifer in Kansas, United States, were used in this investigation, which is part of the National Risk Assessment Partnershipmore » Program sponsored by the US Department of Energy. This aquifer was selected to be representative of consolidated sand and gravel/sandstone aquifers overlying potential CO2 sequestration repositories within the continental US. In this paper, we present results from batch experiments conducted at room temperature and atmospheric pressure with four High Plains aquifer sediments. Batch experiments simulate sudden, fast, and short-lived releases of the CO2 gas as would occur in the case of well failure during injection. Time-dependent release of major, minor, and trace elements were determined by analyzing the contacting solutions. Characterization studies demonstrated that the High Plains aquifer sediments were abundant in quartz and feldspars, and contained about 15 to 20 wt% montmorillonite and up to 5 wt% micas. Some of the High Plains aquifer sediments contained no calcite, while others had up to about 7 wt% calcite. The strong acid extraction tests confirmed that in addition to the usual elements present in most soils, rocks, and sediments, the High Plains aquifer sediments had appreciable amounts of As, Cd, Pb, Cu, and occasionally Zn, which potentially may be mobilized from the solid to the aqueous phase during or after exposure to CO2. However

  8. Evaluating Impacts of CO2 Gas Intrusion Into a Confined Sandstone aquifer: Experimental Results

    SciTech Connect

    Qafoku, Nikolla; Lawter, Amanda R.; Shao, Hongbo; Wang, Guohui; Brown, Christopher F.

    2014-12-31

    Deep subsurface storage and sequestration of CO2 has been identified as a potential mitigation technique for rising atmospheric CO2 concentrations. Sequestered CO2 represents a potential risk to overlying aquifers if the CO2 leaks from the deep storage reservoir. Experimental and modeling work is required to evaluate potential risks to groundwater quality and develop a systematic understanding of how CO2 leakage may cause important changes in aquifer chemistry and mineralogy by promoting dissolution/precipitation, adsorption/desorption, and redox reactions. Sediments from the High Plains aquifer in Kansas, United States, were used in this investigation, which is part of the National Risk Assessment Partnership Program sponsored by the US Department of Energy. This aquifer was selected to be representative of consolidated sand and gravel/sandstone aquifers overlying potential CO2 sequestration repositories within the continental US. In this paper, we present results from batch experiments conducted at room temperature and atmospheric pressure with four High Plains aquifer sediments. Batch experiments simulate sudden, fast, and short-lived releases of the CO2 gas as would occur in the case of well failure during injection. Time-dependent release of major, minor, and trace elements were determined by analyzing the contacting solutions. Characterization studies demonstrated that the High Plains aquifer sediments were abundant in quartz and feldspars, and contained about 15 to 20 wt% montmorillonite and up to 5 wt% micas. Some of the High Plains aquifer sediments contained no calcite, while others had up to about 7 wt% calcite. The strong acid extraction tests confirmed that in addition to the usual elements present in most soils, rocks, and sediments, the High Plains aquifer sediments had appreciable amounts of As, Cd, Pb, Cu, and occasionally Zn, which potentially may be mobilized from the solid to the aqueous phase during or after exposure to CO2. However, the

  9. Experimental study of the tritium distribution in the effluents resulting from the sodium hydrolysis

    SciTech Connect

    Chassery, A.; Lorcet, H.; Godlewski, J; Liger, K.; Latge, C.; Joulia, X.

    2015-03-15

    Within the framework of the dismantling of fast breeder reactors in France several processes are under investigation regarding sodium disposal. One of them, called ELA (radioactive sodium waste treatment process), is based on the implementation of the sodium-water reaction, in a controlled and progressive way, to remove residual sodium. This sodium contains impurities such as sodium hydride, sodium oxide and tritiated sodium hydride. The hydrolysis of these various chemical species leads to the production of a liquid effluent, mainly composed of an aqueous solution of sodium hydroxide, and a gaseous effluent, mainly composed of nitrogen (inert gas), hydrogen and steam. The tritium is distributed between these effluents, and, within the gaseous effluent, according to its forms HT and HTO (tritiated water). HTO being 10,000 times more radio-toxic than HT, a precise knowledge of the mechanisms governing the phase distribution of tritium is necessary. This paper presents the first experimental results from a parametric study on the tritium distribution between the various effluents generated during hydrolysis operations. A series of experiments have been performed in order to study the influence of water flow rate, argon flow rate, initial mass and specific activity of the hydrolyzed sodium sample. An important influence of the total tritium concentration in the hydrolyzed sample has been highlighted. As for the phenomena suspected to be responsible for the phase change of tritiated water, in the studied range of parameters, vaporization induced by the heat of reactions seems to be dominant over the evaporation induced by the inert gas flow rate.

  10. Cosmic-Ray Spectrum Approximation Model: Experimental Results and Comparison with Other Models

    NASA Astrophysics Data System (ADS)

    Buchvarova, M.; Draganov, D.

    2013-06-01

    We discuss a model which parameterizes the cosmic-ray (CR) spectrum at different physical conditions, which include the most important effects controlling the CR intensity, like convection-diffusion and energy losses. By a suitable choice of parameters the proposed model results in two approximations: one close to a "force-field" model (describing the energy losses of CRs in the inner heliosphere) and a "convection-diffusion" equation (giving the reduction of CR intensity in the outer heliosphere). The BESS ( Balloon-borne Experiment with Superconducting Spectrometer) experimental spectra of galactic protons and helium nuclei are fitted by the model spectra. The calculation of the unknown parameters is performed using a constrained least squares method as an alternative to the standard chi-square minimization method, because the data contain not only random errors, but also systematic ones. The CR spectrum approximation (CRSA) model is compared to the Moscow State University (MSU) model and the Badhwar and O'Neill (Badhwar and O'Neill, Adv. Space. Res. 14, 749, 1994; Adv. Space Res. 17, 7, 1994) model; we show that depending on the choice of the model parameters it can be examined in the context of one of these two models. We derive a relation between the parameters of the CRSA and MSU models for rigidities above about 10 GV (drift effects are ignored) during periods of low to approximately average levels of solar activity. The drawbacks of the proposed approximation are that: i) the model parameters do not depend on rigidity and ii) the model does not take into account general trends in the variations of the heliospheric magnetic field; thus, the influence of the drift effects on the shape of the spectral curves for different magnetic field polarity swings is ignored.

  11. The Second Las Cruces Trench Experiment: Experimental Results and Two-Dimensional Flow Predictions

    NASA Astrophysics Data System (ADS)

    Hills, R. G.; Wierenga, P. J.; Hudson, D. B.; Kirkland, M. R.

    1991-10-01

    As part of a comprehensive field study designed to provide data to test stochastic and deterministic models of water flow and contaminant transport in the vadose zone, several trench experiments were performed in the semiarid region of southern New Mexico. The first trench experiment is discussed by Wierenga et al. (this issue). During the second trench experiment, a 1.2 m wide by 12 m long area on the north side of and parallel to a 26.4 m long by 4.8 m wide by 6m deep trench was irrigated with water containing tracers using a carefully controlled drip irrigation system. The irrigated area was heavily instrumented with tensiometers and neutron probe access tubes to monitor water movement, and with suction samplers to monitor solute transport. Water containing tritium and bromide was. applied during the first 11.5 days of the study. Thereafter, water was applied without tracers for an additional 64 days. Both water movement and tracer movement were monitored in the subsoil during infiltration and redistribution. The experimental results indicate that water and bromide moved fairly uniformly during infiltration and the bromide moved ahead of the tritium due to anion exclusion during redistribution. Comparisons between measurements and predictions made with a two-dimensional model show qualitative agreement for two of the three water content measurement planes. Model predictions of tritium and bromide transport were not as satisfactory. Measurements of both tritium and bromide show localized areas of high relative concentrations and a large downward motion of bromide relative to tritium during redistribution. While the simple deterministic model does show larger downward motions for bromide than for tritium during redistribution, it does not predict the high concentrations of solute observed during infiltration, nor can it predict the heterogeneous behavior observed for tritium during infiltration and for bromide during redistribution.

  12. Method and device for dynamic modelling of rubbery materials applied to human soft tissues. Part II: device and experimental results

    NASA Astrophysics Data System (ADS)

    Alaci, S.; Ciornei, M. C.; Ciornei, F. C.; Filote, C.; Romanu, I. C.

    2016-11-01

    The paper presents the experimental results obtained on an experimental device where a horizontal rubber wire is stretched by a transversal oscillating force - that is a body with an acceleration sensor attached, placed at the middle of it that oscillates freely. A nonlinear model was proposed for the experimental test rig, the differential equation of motion was offered and a series of curves were traced and compared to the experimental ones. One can conclude that the theoretical model certifies very well the behaviour of the real model. An open problem remains the manner of adopting the parameters characteristic to the dissipative element of the system.

  13. Water-waves on linear shear currents. A comparison of experimental and numerical results.

    NASA Astrophysics Data System (ADS)

    Simon, Bruno; Seez, William; Touboul, Julien; Rey, Vincent; Abid, Malek; Kharif, Christian

    2016-04-01

    Propagation of water waves can be described for uniformly sheared current conditions. Indeed, some mathematical simplifications remain applicable in the study of waves whether there is no current or a linearly sheared current. However, the widespread use of mathematical wave theories including shear has rarely been backed by experimental studies of such flows. New experimental and numerical methods were both recently developed to study wave current interactions for constant vorticity. On one hand, the numerical code can simulate, in two dimensions, arbitrary non-linear waves. On the other hand, the experimental methods can be used to generate waves with various shear conditions. Taking advantage of the simplicity of the experimental protocol and versatility of the numerical code, comparisons between experimental and numerical data are discussed and compared with linear theory for validation of the methods. ACKNOWLEDGEMENTS The DGA (Direction Générale de l'Armement, France) is acknowledged for its financial support through the ANR grant N° ANR-13-ASTR-0007.

  14. Electromagnetic (EM) earthquake precursor transmission and detection regarding experimental field and laboratory results.

    NASA Astrophysics Data System (ADS)

    Jones, Kenneth B., II; Saxton, Patrick

    2016-04-01

    Aside from understanding the animal kingdom reacting to a per-earthquake signal, a transmission source is apparent. The focus of this investigation is an electromagnetic emission approach and detection capable of becoming both practical and reliable to other plausible earthquake precursors. To better determine this method, several prototype magnetometers were devised and built with each successive version improving upon the next. Two twin (prototype #2) antennae were deployed to field settings outside the NE Texas town of Timpson, TX back in February, 2013 and very recent laboratory tests using the most refined (prototype #4) experimental antenna for detecting unconfined, granitic block fracturing. Field testing encompassed the small NE Texas town of Timpson, TX, which endured an earthquake phenomenon (May, 2012 - September, 2013). A rare sequence of events was strictly attributed to hydraulic fracturing activity in the immediate area all for hydrocarbon capture; thus, a chance to detect and record man-made earthquake activity. By swiveling two directional antennae at three locations, one mobile, the antennae could 'zero' in on a signal source until its pattern was well established and mapped, accordingly. Three signals were detected, two strong and one moderately strong, each with epicenter implications several kilometers from known seismological sites. Six months later, two M4s and a M2.4 earthquake hit over the 2013 Labor Day weekend. Hydraulic pump pressure increased deep Earth pore pressure, reduced friction, and displaced opposing tectonic stresses causing rock to fracture. This was the last earthquake sequence in the Timpson area, due to personal involvement and area citizens in contact with their state representatives. Well and drilling operations have since moved 40-50 miles SE of Timpson, TX and rare earthquake activity has now occurred there. Laboratory testing was next performed using cored granitic blocks and the latest, improved antenna with an

  15. Modeling the Fracturing of Rock by Fluid Injection - Comparison of Numerical and Experimental Results

    NASA Astrophysics Data System (ADS)

    Heinze, Thomas; Galvan, Boris; Miller, Stephen

    2013-04-01

    Fluid-rock interactions are mechanically fundamental to many earth processes, including fault zones and hydrothermal/volcanic systems, and to future green energy solutions such as enhanced geothermal systems and carbon capture and storage (CCS). Modeling these processes is challenging because of the strong coupling between rock fracture evolution and the consequent large changes in the hydraulic properties of the system. In this talk, we present results of a numerical model that includes poro-elastic plastic rheology (with hardening, softening, and damage), and coupled to a non-linear diffusion model for fluid pressure propagation and two-phase fluid flow. Our plane strain model is based on the poro- elastic plastic behavior of porous rock and is advanced with hardening, softening and damage using the Mohr- Coulomb failure criteria. The effective stress model of Biot (1944) is used for coupling the pore pressure and the rock behavior. Frictional hardening and cohesion softening are introduced following Vermeer and de Borst (1984) with the angle of internal friction and the cohesion as functions of the principal strain rates. The scalar damage coefficient is assumed to be a linear function of the hardening parameter. Fluid injection is modeled as a two phase mixture of water and air using the Richards equation. The theoretical model is solved using finite differences on a staggered grid. The model is benchmarked with experiments on the laboratory scale in which fluid is injected from below in a critically-stressed, dry sandstone (Stanchits et al. 2011). We simulate three experiments, a) the failure a dry specimen due to biaxial compressive loading, b) the propagation a of low pressure fluid front induced from the bottom in a critically stressed specimen, and c) the failure of a critically stressed specimen due to a high pressure fluid intrusion. Comparison of model results with the fluid injection experiments shows that the model captures most of the experimental

  16. Sodium laser guide star system at Lawrence Livermore National Laboratory: System description and experimental results

    SciTech Connect

    Avicola, K.; Brase, J.; Morris, J.

    1994-03-02

    The architecture and major system components of the sodium-layer kw guide star system at LLNL will be described, and experimental results reported. The subsystems include the laser system, the beam delivery system including a pulse stretcher and beam pointing control, the beam director, and the telescope with its adaptive-optics package. The laser system is one developed for the Atomic Vapor Laser Isotope Separation (AVLIS) Program. This laser system can be configured in various ways in support of the AVLIS program objectives, and was made available to the guide star program at intermittent times on a non-interference basis. The first light transmitted into the sky was in July of 1992, at a power level of 1. 1 kW. The laser pulse width is about 32 ns, and the pulse repetition rate was 26 kHz for the 1. 1 kW configuration and 13 kHz for a 400 W configuration. The laser linewidth is tailored to match the sodium D{sub 2} absorption line, and the laser system has active control of beam pointing and wavefront quality. Because of the short pulse length the sodium transition is saturated and the laser power is not efficiently utilized. For this reason a pulse stretcher was developed, and the results of this effort will be reported. The beam is delivered via an evacuated pipe from the laser building to the guide star site, a distance of about 100 meters, and then launched vertically. A beam director provides the means to track the sky in the full AO system, but was not used in the experiments reported here. The return signal is collected by a 1/2 meter telescope with the AO package. This telescope is located 5 meters from the km launch tube. Smaller packages for photometry, wavefront measurement, and spot image and motion analysis have been used. Although the unavailability of the AVLIS laser precluded a full AO system demonstration, data supporting feasibility and providing input to the system design for a Lick Observatory AO system was obtained.

  17. Fractal properties of macrophage membrane studied by AFM.

    PubMed

    Bitler, A; Dover, R; Shai, Y

    2012-12-01

    Complexity of cell membrane poses difficulties to quantify corresponding morphology changes during cell proliferation and damage. We suggest using fractal dimension of the cell membrane to quantify its complexity and track changes produced by various treatments. Glutaraldehyde fixed mouse RAW 264.7 macrophage membranes were chosen as model system and imaged in PeakForce QNM (quantitative nanomechanics) mode of AFM (atomic force microscope). The morphology of the membranes was characterized by fractal dimension. The parameter was calculated for set of AFM images by three different methods. The same calculations were done for the AFM images of macrophages treated with colchicine, an inhibitor of the microtubule polymerization, and microtubule stabilizing agent taxol. We conclude that fractal dimension can be additional and useful parameter to characterize the cell membrane complexity and track the morphology changes produced by different treatments.

  18. AFM of biological complexes: what can we learn?

    PubMed Central

    Gaczynska, Maria; Osmulski, Pawel A.

    2009-01-01

    The term “biological complexes” broadly encompasses particles as diverse as multisubunit enzymes, viral capsids, transport cages, molecular nets, ribosomes, nucleosomes, biological membrane components and amyloids. The complexes represent a broad range of stability and composition. Atomic force microscopy offers a wealth of structural and functional data about such assemblies. For this review, we choose to comment on the significance of AFM to study various aspects of biology of selected nonmembrane protein assemblies. Such particles are large enough to reveal many structural details under the AFM probe. Importantly, the specific advantages of the method allow for gathering dynamic information about their formation, stability or allosteric structural changes critical for their function. Some of them have already found their way to nanomedical or nanotechnological applications. Here we present examples of studies where the AFM provided pioneering information about the biology of complexes, and examples of studies where the simplicity of the method is used toward the development of potential diagnostic applications. PMID:19802337

  19. Sub-diffraction nano manipulation using STED AFM.

    PubMed

    Chacko, Jenu Varghese; Canale, Claudio; Harke, Benjamin; Diaspro, Alberto

    2013-01-01

    In the last two decades, nano manipulation has been recognized as a potential tool of scientific interest especially in nanotechnology and nano-robotics. Contemporary optical microscopy (super resolution) techniques have also reached the nanometer scale resolution to visualize this and hence a combination of super resolution aided nano manipulation ineluctably gives a new perspective to the scenario. Here we demonstrate how specificity and rapid determination of structures provided by stimulated emission depletion (STED) microscope can aid another microscopic tool with capability of mechanical manoeuvring, like an atomic force microscope (AFM) to get topological information or to target nano scaled materials. We also give proof of principle on how high-resolution real time visualization can improve nano manipulation capability within a dense sample, and how STED-AFM is an optimal combination for this job. With these evidences, this article points to future precise nano dissections and maybe even to a nano-snooker game with an AFM tip and fluorospheres.

  20. Optimization of phase contrast in bimodal amplitude modulation AFM

    PubMed Central

    Damircheli, Mehrnoosh; Payam, Amir F

    2015-01-01

    Summary Bimodal force microscopy has expanded the capabilities of atomic force microscopy (AFM) by providing high spatial resolution images, compositional contrast and quantitative mapping of material properties without compromising the data acquisition speed. In the first bimodal AFM configuration, an amplitude feedback loop keeps constant the amplitude of the first mode while the observables of the second mode have not feedback restrictions (bimodal AM). Here we study the conditions to enhance the compositional contrast in bimodal AM while imaging heterogeneous materials. The contrast has a maximum by decreasing the amplitude of the second mode. We demonstrate that the roles of the excited modes are asymmetric. The operational range of bimodal AM is maximized when the second mode is free to follow changes in the force. We also study the contrast in trimodal AFM by analyzing the kinetic energy ratios. The phase contrast improves by decreasing the energy of second mode relative to those of the first and third modes. PMID:26114079

  1. New AFM Techniques for Investigating Molecular Growth Mechanisms of Protein Crystals

    NASA Technical Reports Server (NTRS)

    Li, Huayu; Nadarajah, Arunan; Konnert, John H.; Pusey, Marc L.

    1998-01-01

    Atomic Force Microscopy (AFM) has emerged as a powerful technique for investigating protein crystal growth. Earlier AFM studies were among the first to demonstrate that these crystals grew by dislocation and 2D nucleation growth mechanisms [1]. These investigations were restricted to the micron range where only surface features, such as dislocation hillocks and 2D islands are visible. Most AFM instruments can scan at higher resolutions and have the potential to resolve individual protein molecules at nanometer ranges. Such scans are essential for determining the molecular packing arrangements on crystal faces and for probing the growth process at the molecular level. However, at this resolution the AFM tip influences the image produced, with the resulting image being a convolution of the tip shape and the surface morphology [2]. In most studies this problem is resolved by deconvoluting the image to obtain the true surface morphology. Although deconvolution routines work reasonably well for simple one- dimensional shapes, for complex surfaces this approach does not produce accurate results. In this study we devised a new approach which takes advantage of the precise molecular order of crystal surfaces, combined with the knowledge of individual molecular shapes from the crystallographic data of the protein and the AFM tip shape. This information is used to construct expected theoretical AFM images by convoluting the tip shape with the constructed crystal surface shape for a given surface packing arrangement. By comparing the images from actual AFM scans with the constructed ones for different possible surface packing arrangements, the correct packing arrangement can be conclusively determined. This approach was used in this study to determine the correct one from two possible packing arrangements on (I 10) faces of tetragonal lysozyme crystals. Another novel AFM technique was also devised to measure the dimension of individual growth units of the crystal faces

  2. Experimental determination of the solubility of iridium in silicate melts: Preliminary results

    NASA Technical Reports Server (NTRS)

    Borisov, Alexander; Dingwell, Donald B.; Oneill, Hugh ST.C.; Palme, Herbert

    1992-01-01

    Little is known of the geochemical behavior of iridium. Normally this element is taken to be chalcophile and/or siderophile so that during planetary differentiation processes, e.g., core formation, iridium is extracted from silicate phases into metallic phases. Experimental determination of the metal/silicate partition coefficient of iridium is difficult simply because it is so large. Also there are no data on the solubility behavior of iridium in silicate melts. With information on the solubility of iridium in silicate melts it is possible, in combination with experimental data for Fe-Ir alloys, to calculate the partition coefficient between a metallic phase and a silicate melt.

  3. 3D assembly of upconverting NaYF4 nanocrystals by AFM nanoxerography: creation of anti-counterfeiting microtags

    NASA Astrophysics Data System (ADS)

    Sangeetha, Neralagatta M.; Moutet, Pierre; Lagarde, Delphine; Sallen, Gregory; Urbaszek, Bernhard; Marie, Xavier; Viau, Guillaume; Ressier, Laurence

    2013-09-01

    Formation of 3D close-packed assemblies of upconverting NaYF4 colloidal nanocrystals (NCs) on surfaces, by Atomic Force Microscopy (AFM) nanoxerography is presented. The surface potential of the charge patterns, the NC concentration, the polarizability of the NCs and the polarity of the dispersing solvent are identified as the key parameters controlling the assembly of NaYF4 NCs into micropatterns of the desired 3D architecture. This insight allowed us to fabricate micrometer sized Quick Response (QR) codes encoded in terms of upconversion luminescence intensity or color. Topographically hidden messages could also be readily incorporated within these microtags. This work demonstrates that AFM nanoxerography has enormous potential for generating high-security anti-counterfeiting microtags.Formation of 3D close-packed assemblies of upconverting NaYF4 colloidal nanocrystals (NCs) on surfaces, by Atomic Force Microscopy (AFM) nanoxerography is presented. The surface potential of the charge patterns, the NC concentration, the polarizability of the NCs and the polarity of the dispersing solvent are identified as the key parameters controlling the assembly of NaYF4 NCs into micropatterns of the desired 3D architecture. This insight allowed us to fabricate micrometer sized Quick Response (QR) codes encoded in terms of upconversion luminescence intensity or color. Topographically hidden messages could also be readily incorporated within these microtags. This work demonstrates that AFM nanoxerography has enormous potential for generating high-security anti-counterfeiting microtags. Electronic supplementary information (ESI) available: Detailed experimental procedures for the synthesis of upconverting NaYF4 nanocrystals and their transmission electron microscopy images. KFM and AFM images corresponding to the assembly of positively charged β-NaYF4:Er3+,Yb3+ nanocrystals from water suspensions by AFM nanoxerography. Photoluminescence spectra of β-NaYF4:Er3+,Yb3+ nanocrystals

  4. Understanding how hydrodynamics affects particle transport in saturated fractures using modelling and experimental results

    NASA Astrophysics Data System (ADS)

    Cianflone, S.; Lakhian, V.; Dickson, S. E.

    2013-12-01

    poly(methyl methacrylate), thus creating a pseudo-2D fracture. Namely, the 2D fracture (x-y coordinates) is cut into the plastic using a laser printer, thus the z-coordinate is constant to a depth of 2.3 mm. Experiments using Acid Yellow 17, as a tracer, as well as fluorescent microspheres (42.5 nm and 525 nm, non-carboxylated to minimize attachment/detachment) will be performed in order to compare simulations and experimental results. Concentrations of the microspheres and tracer were measured at the effluent end of the fracture where the end cap housed an LED (400-470 nm) and an optical fibre attached to a spectrophotometer. Simulations suggest that in fractures where eddies occur, there is retention of smaller particles only when there is sufficient diffusion and a slow enough fluid velocity to allow them to enter the eddy. Otherwise, the particles exit the fracture earlier than typically expected when considering particle size exclusion and average fluid velocity. Further modelling results suggest that using bulk measurements (eg. mean aperture, mean fluid velocity, and measures of fracture roughness) to predict the resultant particulate outflow in a saturated fracture is difficult. We plan to include visualization experiments in order to draw further comparisons to the modelling results.

  5. Turbulence in edge and core transport barriers: new experimental results and modeling

    NASA Astrophysics Data System (ADS)

    Tokuzawa, T.

    2017-02-01

    In this paper, recent progressive studies on experimental analysis and theoretical models for turbulence phenomena around the transport barriers in high-performance magnetic confined fusion plasma are reviewed. The linkage of radial electric fields and turbulence, the importance of radial electric field curvature, and observations of spatiotemporal turbulence structures are described with related theoretical models.

  6. Comparison of Breast Health Teaching Methods for Adolescent Females: Results of a Quasi-Experimental Study

    ERIC Educational Resources Information Center

    Evans, Retta R.; Horton, Jacqueline A.; Ahmad, Wajih A.; Davies, Susan L.; Snyder, Scott W.; Macrina, David M.

    2013-01-01

    Purpose: A breast health educational program was administered in two public high school settings in north Alabama to subjects enrolled in health related courses. The purpose of this quasi-experimental study was to determine if teaching breast health with or without interactive learning would affect the breast health knowledge and beliefs of…

  7. Analysis of Experimentation Results on University Graduates' Readiness Formation to Act in Extraordinary Situations

    ERIC Educational Resources Information Center

    Moloshavenko, Vera L.; Prozorova, Galina V.; Sienkiewicz, Lyudmila B.

    2016-01-01

    The article presents the experimentation on graduates' readiness formation to act in extraordinary situations conducted in the Tyumen Industrial University in training bachelors in "Oil and Gas Business". The criteria of graduates' readiness formation to act in extraordinary situations are the following: practicability, validity,…

  8. Perspiration Poisoning of Protective Clothing Materials. Part I. Experimental Results and Evaluation

    DTIC Science & Technology

    1974-06-01

    coconut shell activated carbon having an average particle diameter of 0.038 cm. Comparisons between calculated and experimental data were quite good... active charcoal . There was . no obvious change in the appearance of carbon impregnated foam material upon irradiation, however, after the 72 hours...ION ISOTHERMS ADSORPTION BREAKTHROUJGH- TIME UNDERGARMENT POISONING ACTIVATED CARBON UNDERGARMENT MODIFICATION SWEAT POISONING FOAM The objectives of

  9. Charging characteristics of materials: Comparison of experimental results with simple analytical models

    NASA Technical Reports Server (NTRS)

    Purvis, C. K.; Stevens, N. J.; Oglebay, J. C.

    1977-01-01

    A one-dimensional model for charging of samples is used in conjunction with experimental data taken to develop material charging characteristics for silvered Teflon. These characteristics are then used in a one dimensional model for charging in space to examine expected response. Relative charging rates as well as relative charging levels for silvered Teflon and metal are discussed.

  10. BOREAS AFM-04 Twin Otter Aircraft Flux Data

    NASA Technical Reports Server (NTRS)

    MacPherson, J. Ian; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Desjardins, Raymond L.; Smith, David E. (Technical Monitor)

    2000-01-01

    The BOREAS AFM-5 team collected and processed data from the numerous radiosonde flights during the project. The goals of the AFM-05 team were to provide large-scale definition of the atmosphere by supplementing the existing AES aerological network, both temporally and spatially. This data set includes basic upper-air parameters collected from the network of upper-air stations during the 1993, 1994, and 1996 field campaigns over the entire study region. The data are contained in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884) or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  11. OVERVIEW OF RECENT EXPERIMENTAL RESULTS FROM THE DIII-D ADVANCED TOKAMAK PROGRAM

    SciTech Connect

    BURRELL,KH

    2002-11-01

    OAK A271 OVERVIEW OF RECENT EXPERIMENTAL RESULTS FROM THE DIII-D ADVANCED TOKAMAK PROGRAM. The DIII-D research program is developing the scientific basis for advanced tokamak (AT) modes of operation in order to enhance the attractiveness of the tokamak as an energy producing system. Since the last International Atomic Energy Agency (IAEA) meeting, the authors have made significant progress in developing the building blocks needed for AT operation: (1) the authors have doubled the magnetohydrodynamic (MHD) stable tokamak operating space through rotational stabilization of the resistive wall mode; (2) using this rotational stabilization, they have achieved {beta}{sub N}H{sub 89} {le} 10 for 4 {tau}{sub E} limited by the neoclassical tearing mode; (3) using real-time feedback of the electron cyclotron current drive (ECCD) location, they have stabilized the (m,n) = (3,2) neoclassical tearing mode and then increased {beta}{sub T} by 60%; (4) they have produced ECCD stabilization of the (2,1) neoclassical tearing mode in initial experiments; (5) they have made the first integrated AT demonstration discharges with current profile control using ECCD; (6) ECCD and electron cyclotron heating (ECH) have been used to control the pressure profile in high performance plasmas; and (7) they have demonstrated stationary tokamak operation for 6.5 s (36 {tau}{sub E}) at the same fusion gain parameter of {beta}{sub N}H{sub 89}/q{sub 95}{sup 2} {approx} 0.4 as ITER but at much higher q{sub 95} = 4.2. They have developed general improvements applicable to conventional and advanced tokamak operating modes: (1) they have an existence proof of a mode of tokamak operation, quiescent H-mode, which has no pulsed, ELM heat load to the divertor and which can run for long periods of time (3.8 s or 25 {tau}{sub E}) with constant density and constant radiation power; (2) they have demonstrated real-time disruption detection and mitigation for vertical disruption events using high pressure gas jet

  12. Frictional Melting can Terminate Seismic Slips: Experimental Results of Stick-slips

    NASA Astrophysics Data System (ADS)

    Koizumi, Y.; Otsuki, K.

    2004-12-01

    Whether frictionally melted layers are weak or strong is a question in issue. We conducted stick-slip experiments for granite samples at 150 MPa confining pressure using a tri-axial apparatus. The pre-cut surfaces were mirror finished. In order to detect the exact time of melting, we set sensors inside the pressure vessel; two strain gauges for measurement of axial stress and fault slip, two electrodes on a pre-cut surface to measure tribo-electromotive force, and a troidal coil for monitoring the current which flows along the slip zone. From the electrode potential and the potential induced in the coil we calculate the resistance of the slip zone which is expected to decrease by several orders of magnitude once the slip zone is melted. The signals from these sensors were recorded synchronously at 2 MHz sampling rate. A moderately large stick-slip event was analyzed in detail. The fault slip, stress drop, rise time and maximum slip velocity were 0.32 mm, 230 MPa, 23 μ s and 40 m/s. The sensors detected precisely the time point when the slip zone melted. This occurred only 2 μ s after the slip velocity reached the maximum, and at the same time the friction coefficient reached a minimum (0.3). Immediately thereafter, it recovered promptly and remarkably, and the slip stopped eventually. Our SEM and EPMA observations ascertained the melting of the slip zone that was evidenced by a glass layer a few μ m thick in the experimented sample. The early half of the slip event is assumed to have been governed by solid interface friction, because carrot-shaped grooved and blobs of scratched debris were well developed in other experimented samples which experienced small events with ca. 0.1 mm slip. Our numerical simulations for frictional melting using observed time-shear stress and/or time-slip velocity data successfully reproduced the temperature and thickness of the melt layer, validating our experimental result at least phenomenologically. Therefore, we conclude that

  13. Experimental warming delays autumn senescence in a boreal spruce bog: Initial results from the SPRUCE experiment

    NASA Astrophysics Data System (ADS)

    Richardson, Andrew; Furze, Morgan; Aubrecht, Donald; Milliman, Thomas; Nettles, Robert; Krassovski, Misha; Hanson, Paul

    2016-04-01

    Phenology is considered one of the most robust indicators of the biological impacts of global change. In temperate and boreal regions, long-term data show that rising temperatures are advancing spring onset (e.g. budburst and flowering) and delaying autumn senescence (e.g. leaf coloration and leaf fall) in a wide range of ecosystems. While warm and cold temperatures, day length and insolation, precipitation and water availability, and other factors, have all been shown to influence plant phenology, the future response of phenology to rising temperatures and elevated CO2 still remains highly uncertain because of the challenges associated with conducting realistic manipulative experiments to simulate future environmental conditions. At the SPRUCE (Spruce and Peatland Responses Under Climatic and Environmental Change) experiment in the north-central United States, experimental temperature (0 to +9° C above ambient) and CO2 (ambient and elevated) treatments are being applied to mature, and intact, Picea mariana-Sphagnum spp. bog communities in their native habitat through the use of ten large (approximately 12 m wide, 10 m high) open-topped enclosures. We are tracking vegetation green-up and senescence in these chambers, at both the individual and whole-community level, using repeat digital photography. Within each chamber, digital camera images are recorded every 30 minutes and uploaded to the PhenoCam (http://phenocam.sr.unh.edu) project web page, where they are displayed in near-real-time. Image processing is conducted nightly to extract quantitative measures of canopy color, which we characterize using Gcc, the green chromatic coordinate. Data from a camera mounted outside the chambers (since November 2014) indicate strong seasonal variation in Gcc for both evergreen shrubs and trees. Shrub Gcc rises steeply in May and June, and declines steeply in September and October. By comparison, tree Gcc rises gradually from March through June, and declines gradually from

  14. Development of a novel nanoindentation technique by utilizing a dual-probe AFM system

    PubMed Central

    Sahin, Ferat; Yablon, Dalia

    2015-01-01

    Summary A novel instrumentation approach to nanoindentation is described that exhibits improved resolution and depth sensing. The approach is based on a multi-probe scanning probe microscopy (SPM) tool that utilizes tuning-fork based probes for both indentation and depth sensing. Unlike nanoindentation experiments performed with conventional AFM systems using beam-bounce technology, this technique incorporates a second probe system with an ultra-high resolution for depth sensing. The additional second probe measures only the vertical movement of the straight indenter attached to a tuning-fork probe with a high spring constant and it can also be used for AFM scanning to obtain an accurate profiling. Nanoindentation results are demonstrated on silicon, fused silica, and Corning Eagle Glass. The results show that this new approach is viable in terms of accurately characterizing mechanical properties of materials through nanoindentation with high accuracy, and it opens doors to many other exciting applications in the field of nanomechanical characterization. PMID:26665072

  15. Exploring electron transport through organic monolayers using conductive tip AFM techniques

    NASA Astrophysics Data System (ADS)

    Scaini, Denis; Castronovo, Matteo; Dell'Angela, Martina; Hudej, Robert; Casalis, Loredana; Scoles, Giacinto

    2006-03-01

    We follow an alternative approach to the study of Metal-molecule-Metal junctions that uses a combination of two atomic force microscopy (AFM) techniques. We use Nanografting to build a nanopatch of the molecules of interest and a second made of a reference molecule into a hosting self assembled monolayer (SAM) typically made of alkanethiols. After the tip is changed to a conductive one CT-AFM is used to characterized the whole system recording, at the same time, the system topography. Some of the advantages of this approach are the possibility to build and study a wide range of different M-m-M junctions and the in-situ control of the quality of the monolayers and patches. Results will be presented on saturated and unsaturated thiols self-assembled and nanografted on Au(111) surfaces. The results will be compared with those obtained by Liang and Scoles at Princeton using similar techniques.

  16. Topographical and electrical study of contact and intermittent contact mode InP AFM lithography

    NASA Astrophysics Data System (ADS)

    Tranvouez, E.; Budau, P.; Bremond, G.

    2006-01-01

    In order to fabricate nanoscale oxide patterns on an InP(001) surface, local anodization by atomic force microscopy (AFM) contact and intermittent contact modes has been performed. Contact mode results are similar to those obtained with the local anodization of silicon, and mainly limited by the effect of space charge that occurs during the oxide growth. The existence of this space charge associated with the poor dielectric quality of the obtained oxide has been verified by performing scanning capacitance microscopy (SCM) measurements. Results for oxidation using intermittent AFM contact mode associated with a modulated voltage are more specific. For a more than two decade variation of probe velocity (0.01-5 µm s-1), the AFM oxidation introduces no significant changes in the oxide pattern. Experiments on the influence of oxidation time give rise to two regimes. First, for times shorter than 100 ms, a high growth rate is found. Second, for oxidation times longer than 100 ms, we observe an oxide height saturation and a significant decrease of lateral growth rate. These results provide a way to easily control the oxide shape. The space charge neutralization in this mode has also been investigated by SCM. The interesting results for intermittent contact oxidation confirm the capability of this technique to modify a nanoscale InP surface.

  17. High fidelity studies of exploding foil initiator bridges, Part 2: Experimental results

    NASA Astrophysics Data System (ADS)

    Neal, William; Bowden, Mike

    2017-01-01

    Simulations of high voltage detonators, such as Exploding Bridgewire (EBW) and Exploding Foil Initiators (EFI), have historically been simple, often empirical, one-dimensional models capable of predicting parameters such as current, voltage, and in the case of EFIs, flyer velocity. Experimental methods have correspondingly generally been limited to the same parameters. With the advent of complex, first principles magnetohydrodynamic codes such as ALEGRA MHD, it is now possible to simulate these components in three dimensions and predict greater range of parameters than before. A significant improvement in experimental capability was therefore required to ensure these simulations could be adequately verified. In this second paper of a three part study, data is presented from a flexible foil EFI header experiment. This study has shown that there is significant bridge expansion before time of peak voltage and that heating within the bridge material is spatially affected by the microstructure of the metal foil.

  18. Cold Climate Foundation Retrofit Experimental Hygrothermal Performance. Cloquet Residential Research Facility Laboratory Results

    SciTech Connect

    Goldberg, Louise F.; Harmon, Anna C.

    2015-04-09

    This project was funded jointly by the National Renewable Energy Laboratory (NREL) and Oak Ridge National Laboratory (ORNL). ORNL focused on developing a full basement wall system experimental database to enable others to validate hygrothermal simulation codes. NREL focused on testing the moisture durability of practical basement wall interior insulation retrofit solutions for cold climates. The project has produced a physically credible and reliable long-term hygrothermal performance database for retrofit foundation wall insulation systems in zone 6 and 7 climates that are fully compliant with the performance criteria in the 2009 Minnesota Energy Code. These data currently span the period from November 10, 2012 through May 31, 2014 and are anticipated to be extended through November 2014. The experimental data were configured into a standard format that can be published online and that is compatible with standard commercially available spreadsheet and database software.

  19. Recent Experimental Results Related to Ejector Mode Studies of Rocket-Based Combined Cycle (RBCC) Engines

    NASA Technical Reports Server (NTRS)

    Cramer, J. M.; Pal, S.; Marshall, W. M.; Santoro, R. J.

    2003-01-01

    Contents include the folloving: 1. Motivation. Support NASA's 3d generation launch vehicle technology program. RBCC is promising candidate for 3d generation propulsion system. 2. Approach. Focus on ejector mode p3erformance (Mach 0-3). Perform testing on established flowpath geometry. Use conventional propulsion measurement techniques. Use advanced optical diagnostic techniques to measure local combustion gas properties. 3. Objectives. Gain physical understanding of detailing mixing and combustion phenomena. Establish an experimental data set for CFD code development and validation.

  20. Workstation Analytics in Distributed Warfighting Experimentation: Results from Coalition Attack Guidance Experiment 3A

    DTIC Science & Technology

    2014-06-01

    Behavioural biometrics (e.g., keystroke and mouse dynamics ) to estimate participant workload, fatigue, boredom, etc.;  Detecting and tracking experimental...every mouse click;  Record details of all keystrokes ;  Have the ability to record video screen captures;  Have the ability to record screen...Details of all keystrokes . What application and window the text was typed/cut/copied/pasted into, which user typed the text, and when the user

  1. Preliminary experimental results of gas recycling subsystems except carbon dioxide concentration

    NASA Astrophysics Data System (ADS)

    Otsuji, K.; Sawada, T.; Satoh, S.; Kanda, S.; Matsumura, H.; Kondo, S.; Otsubo, K.

    Oxygen concentration and separation is an essential factor for air recycling in a CELSS. Furthermore, if the value of the plant assimilatory quotient is not coincident with that of the animal respiratory quotient, the recovery of O2 from the concentrated CO2 through chemical methods will become necessary to balance the gas contents in a CELSS. Therefore, oxygen concentration and separation equipment using Salcomine and O2 recovery equipment, such as Sabatier and Bosch reactors, were experimentally developed and tested.

  2. Experimental Results of Ground Disturbance Detection Using Uncooled Infrared Imagers in Wideband and Multispectral Modes

    DTIC Science & Technology

    2012-02-01

    imaging for ground disturbance detection. We performed experiments to study ground disturbance detection using multispectral imaging. Multispectral...were investigated and experimentally validated on buried mines signature using MWIR and LWIR cameras [2-4]. As the performance of low cost, uncooled...NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Defence R&D Canada

  3. Family team conferencing: results and implications from an experimental study in Florida.

    PubMed

    Perry, Robin; Yoo, Jane; Spoliansky, Toni; Edelman, Pebbles

    2013-01-01

    This article reports the outcome evaluation findings of an experimental study conducted with families in the child welfare system in Florida. Families were randomly assigned to one of three Family Team Conferencing (FTC) models. In Pathway 1, the comparison model, FTCs were facilitated by case-workers. In Pathway 2, one of two experimental models, FTCs were cofacilitated by caseworkers and a designated/trained facilitator, and included expedited family engagement as well as the provision of FTCs throughout the life of a case. Pathway 3, also an experimental model, had the same components of Pathway 2 but also included family alone time. In approximately three years of the project period, 623 families agreed to participate in the study. Study findings showed no statistically significant change observed for families participating in Pathway 1 FTCs in terms of protective factors, achieving family-defined service and plan-of-care goals, and emotional and behavioral symptomology of children. Cases in Pathway 2 demonstrated significant improvement in family functioning and resiliency, nurturing and attachment, and increasing parents' knowledge about "what to do as a parent." Caregivers and teens in Pathway 3 reported significant improvement in expression of emotional symptomology/problems, conduct problems, hyperactivity, peer problems, and a measure of total difficulties. However, foster care re-entry rates were significantly higher for Pathway 3 than Pathway 2 (but not Pathway 1). Moreover, Pathway 2 and Pathway 3 FTCs had a significant effect on moving the family toward agreed upon service goals. Taken together, these findings suggest that the experimental FTC models in which facilitators were used and family engagement was expedited and sustained through subsequent FTCs demonstrated moderate, yet mixed benefits to children, youth, and families.

  4. Elasticity of mechanical oscillators in nonequilibrium steady states: Experimental, numerical, and theoretical results

    NASA Astrophysics Data System (ADS)

    Conti, Livia; De Gregorio, Paolo; Bonaldi, Michele; Borrielli, Antonio; Crivellari, Michele; Karapetyan, Gagik; Poli, Charles; Serra, Enrico; Thakur, Ram-Krishna; Rondoni, Lamberto

    2012-06-01

    We study experimentally, numerically, and theoretically the elastic response of mechanical resonators along which the temperature is not uniform, as a consequence of the onset of steady-state thermal gradients. Two experimental setups and designs are employed, both using low-loss materials. In both cases, we monitor the resonance frequencies of specific modes of vibration, as they vary along with variations of temperatures and of temperature differences. In one case, we consider the first longitudinal mode of vibration of an aluminum alloy resonator; in the other case, we consider the antisymmetric torsion modes of a silicon resonator. By defining the average temperature as the volume-weighted mean of the temperatures of the respective elastic sections, we find out that the elastic response of an object depends solely on it, regardless of whether a thermal gradient exists and, up to 10% imbalance, regardless of its magnitude. The numerical model employs a chain of anharmonic oscillators, with first- and second-neighbor interactions and temperature profiles satisfying Fourier's Law to a good degree. Its analysis confirms, for the most part, the experimental findings and it is explained theoretically from a statistical mechanics perspective with a loose notion of local equilibrium.

  5. Tracer kinetic modeling of [11C]AFM, a new PET imaging agent for the serotonin transporter

    PubMed Central

    Naganawa, Mika; Nabulsi, Nabeel; Planeta, Beata; Gallezot, Jean-Dominique; Lin, Shu-Fei; Najafzadeh, Soheila; Williams, Wendol; Ropchan, Jim; Labaree, David; Neumeister, Alexander; Huang, Yiyun; Carson, Richard E

    2013-01-01

    [11C]AFM, or [11C]2-[2-(dimethylaminomethyl)phenylthio]-5-fluoromethylphenylamine, is a new positron emission tomography (PET) radioligand with high affinity and selectivity for the serotonin transporter (SERT). The purpose of this study was to determine the most appropriate kinetic model to quantify [11C]AFM binding in the healthy human brain. Positron emission tomography data and arterial input functions were acquired from 10 subjects. Compartmental modeling and the multilinear analysis-1(MA1) method were tested using the arterial input functions. The one-tissue model showed a lack of fit in low-binding regions, and the two-tissue model failed to estimate parameters reliably. Regional time–activity curves were well described by MA1. The rank order of [11C]AFM binding potential (BPND) matched well with the known regional SERT densities. For routine use of [11C]AFM, several noninvasive methods for quantification of regional binding were evaluated, including simplified reference tissue models (SRTM and SRTM2), and multilinear reference tissue models (MRTM and MRTM2). The best methods for region of interest (ROI) analysis were MA1, MRTM2, and SRTM2, with fixed population kinetic values ( or b′) for the reference methods. The MA1 and MRTM2 methods were best for parametric imaging. These results showed that [11C]AFM is a suitable PET radioligand to image and quantify SERT in humans. PMID:23921898

  6. OVERVIEW OF RECENT EXPERIMENTAL RESULTS FROM THE DIII-D ADVANCED TOKAMAK PROGRAM

    SciTech Connect

    BURRELL,HK

    2002-11-01

    OAK A271 OVERVIEW OF RECENT EXPERIMENTAL RESULTS FROM THE DIII-D ADVANCED TOKAMAK PROGRAM. The DIII-D research program is developing the scientific basis for advanced tokamak (AT) modes of operation in order to enhance the attractiveness of the tokamak as an energy producing system. Since the last International Atomic Energy Agency (IAEA) meeting, they have made significant progress in developing the building blocks needed for AT operation: (1) they have doubled the magnetohydrodynamic (MHD) stable tokamak operating space through rotational stabilization of the resistive wall mode; (2) using this rotational stabilization, they have achieved {beta}{sub N}H{sub 89} {ge} 10 for 4 {tau}{sub E} limited by the neoclassical tearing mode; (3) using real-time feedback of the electron cyclotron current drive (ECCD) location, they have stabilized the (m,n) = (3,2) neoclassical tearing mode and then increased {beta}{sub T} by 60%; (4) they have produced ECCD stabilization of the (2,1) neoclassical tearing mode in initial experiments; (5) they have made the first integrated AT demonstration discharges with current profile control using ECCD; (6) ECCD and electron cyclotron heating (ECH) have been used to control the pressure profile in high performance plasmas; and (7) they have demonstrated stationary tokamak operation for 6.5 s (36 {tau}{sub E}) at the same fusion gain parameter of {beta}{sub N}H{sub 89}/q{sub 95}{sup 2} {approx} 0.4 as ITER but at much higher q{sub 95} = 4.2. The authors have developed general improvements applicable to conventional and advanced tokamak operating modes: (1) they have an existence proof of a mode of tokamak operation, quiescent H-mode, which has no pulsed, ELM heat load to the divertor and which can run for long periods of time (3.8 s or 25 {tau}{sub E}) with constant density and constant radiated power; (2) they have demonstrated real-time disruption detection and mitigation for vertical disruption events using high pressure gas jet

  7. Molecular dynamics study on the mechanism of AFM-based nanoscratching process with water-layer lubrication

    NASA Astrophysics Data System (ADS)

    Ren, Jiaqi; Zhao, Jinsheng; Dong, Zeguang; Liu, Pinkuan

    2015-08-01

    The atomic force microscopy (AFM) based direct nanoscratching has been thoroughly studied but the mechanism of nanoscratching with water-layer lubrication is yet to be well understood. In current study, three-dimensional molecular dynamics (MD) simulations are conducted to evaluate the effects of the water-layer lubrication on the AFM-based nanoscratching process on monocrystalline copper. Comparisons of workpiece deformation, scratching forces, and friction coefficients are made between the water-lubricated and dry scratching under various thickness of water layer, scratching depth and scratching velocity. Simulation results reveal that the water layer has positive impact on the surface quality and significant influence on the scratching forces (normal forces and tangential forces). The friction coefficients of the tip in water-lubricated nanoscratching are significantly bigger than those in the dry process. Our simulation results shed lights on a promising AFM-based nanofabrication method, which can assist to get nanoscale surface morphologies with higher quality than traditional approaches.

  8. Atom probe, AFM, and STM studies on vacuum-fired stainless steels.

    PubMed

    Stupnik, A; Frank, P; Leisch, M

    2009-04-01

    The surface morphology of grades 304L and 316LN stainless steels, after low-temperature bake-out process and vacuum annealing, has been studied by atomic force microscopy (AFM) and scanning tunnelling microscopy (STM). The local elemental composition on the surface before and after thermal treatment has been investigated by atom probe (AP) depth profiling measurements. After vacuum annealing, AFM and STM show significant changes in the surface structure and topology. Recrystallization and surface reconstruction is less pronounced on the 316LN stainless steel. AP depth profiling analyses result in noticeable nickel enrichment on the surface of grade 304L samples. Since hydrogen recombination is almost controlled by surface structure and composition, a strong influence on the outgassing behaviour by the particular surface microstructure can be deduced.

  9. Dynamics of a disturbed sessile drop measured by atomic force microscopy (AFM).

    PubMed

    McGuiggan, Patricia M; Grave, Daniel A; Wallace, Jay S; Cheng, Shengfeng; Prosperetti, Andrea; Robbins, Mark O

    2011-10-04

    A new method for studying the dynamics of a sessile drop by atomic force microscopy (AFM) is demonstrated. A hydrophobic microsphere (radius, r ∼ 20-30 μm) is brought into contact with a small sessile water drop resting on a polytetrafluoroethylene (PTFE) surface. When the microsphere touches the liquid surface, the meniscus rises onto it because of capillary forces. Although the microsphere volume is 6 orders of magnitude smaller than the drop, it excites the normal resonance modes of the liquid interface. The sphere is pinned at the interface, whose small (<100 nm) oscillations are readily measured with AFM. Resonance oscillation frequencies were measured for drop volumes between 5 and 200 μL. The results for the two lowest normal modes are quantitatively consistent with continuum calculations for the natural frequency of hemispherical drops with no adjustable parameters. The method may enable sensitive measurements of volume, surface tension, and viscosity of small drops.

  10. 3D Color Digital Elevation Map of AFM Sample

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This color image is a three dimensional (3D) view of a digital elevation map of a sample collected by NASA's Phoenix Mars Lander's Atomic Force Microscope (AFM).

    The image shows four round pits, only 5 microns in depth, that were micromachined into the silicon substrate, which is the background plane shown in red. This image has been processed to reflect the levelness of the substrate.

    A Martian particle only one micrometer, or one millionth of a meter, across is held in the upper left pit.

    The rounded particle shown at the highest magnification ever seen from another world is a particle of the dust that cloaks Mars. Such dust particles color the Martian sky pink, feed storms that regularly envelop the planet and produce Mars' distinctive red soil.

    The particle was part of a sample informally called 'Sorceress' delivered to the AFM on the 38th Martian day, or sol, of the mission (July 2, 2008). The AFM is part of Phoenix's microscopic station called MECA, or the Microscopy, Electrochemistry, and Conductivity Analyzer.

    The AFM was developed by a Swiss-led consortium, with Imperial College London producing the silicon substrate that holds sampled particles.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  11. AFM Structural Characterization of Drinking Water Biofilm under Physiological Conditions

    EPA Science Inventory

    Due to the complexity of mixed culture drinking water biofilm, direct visual observation under in situ conditions has been challenging. In this study, atomic force microscopy (AFM) revealed the three dimensional morphology and arrangement of drinking water relevant biofilm in air...

  12. Probing the Double Layer: Effect of Image Forces on AFM

    PubMed Central

    Sachs, Frederick

    2006-01-01

    Force probes such as AFM tips or laser trap latex beads have a dielectric constant much less than that of the water that they displace. Thus when a probe approaches a charged surface under water it will be repelled simply based upon the image forces, and these can be of nN magnitude. PMID:16714346

  13. Structural investigations on native collagen type I fibrils using AFM

    SciTech Connect

    Strasser, Stefan; Zink, Albert; Janko, Marek; Heckl, Wolfgang M.; Thalhammer, Stefan . E-mail: stefan.thalhammer@gsf.de

    2007-03-02

    This study was carried out to determine the elastic properties of single collagen type I fibrils with the use of atomic force microscopy (AFM). Native collagen fibrils were formed by self-assembly in vitro characterized with the AFM. To confirm the inner assembly of the collagen fibrils, the AFM was used as a microdissection tool. Native collagen type I fibrils were dissected and the inner core uncovered. To determine the elastic properties of collagen fibrils the tip of the AFM was used as a nanoindentor by recording force-displacement curves. Measurements were done on the outer shell and in the core of the fibril. The structural investigations revealed the banding of the shell also in the core of native collagen fibrils. Nanoindentation experiments showed the same Young's modulus on the shell as well as in the core of the investigated native collagen fibrils. In addition, the measurements indicate a higher adhesion in the core of the collagen fibrils compared to the shell.

  14. Comparison of dynamic analysis of a Schilling hydraulic manipulator with experimental results

    SciTech Connect

    Baker, C.P.; Lew, J.Y.; Evans, M.S.; Magee, D.P.

    1993-07-01

    Two independent models of the dynamics of a Schilling Titan II hydraulic manipulator were developed and compared in order to obtain an accurate model of the manipulator dynamics. These models will be used in the development of feedback control laws and active damping algorithms. One of the model is an analytical model which was developed {open_quotes}by hand{close_quotes} with the assistance of computer symbolic manipulation. The other is a numerical model developed using a commercially available dynamics code. The data from these models were then compared with experimental data from an actual Titan II manipulator.

  15. Experimental and numerical results on a shear layer excited by a sound pulse

    NASA Technical Reports Server (NTRS)

    Maestrello, L.; Bayliss, A.; Turkel, E.

    1979-01-01

    The behavior of a sound in a jet was investigated. It is verified that the far-field acoustic power increased with flow velocity for the lower and medium frequency range. Experimentally, an attenuation at higher frequencies is also observed. This increase is found numerically to be due primarily to the interactions between the mean vorticity and the fluctuation velocities. Spectral decomposition of the real time data indicates that the power increase occurs in the low and middle frequency range, where the local instability waves have the largest spatial growth rate. The connection between this amplification and the local instability waves is discussed.

  16. Charging characteristics of materials: Comparison of experimental results with simple analytical models

    NASA Technical Reports Server (NTRS)

    Purvis, C. K.; Stevens, N. J.; Oglebay, J. C.

    1977-01-01

    An understanding of the behavior of materials, of dielectrics in particular, under charged particle bombardment is essential to the prediction and prevention of the adverse effects of spacecraft charging. A one-dimensional model for charging of samples in a test facility was used in conjunction with experimental data taken to develop "material charging characteristics" for silvered Teflon. These characteristics were then used in a one-dimensional model for charging in space to examine expected response. Relative charging rates as well as relative charging levels for silvered Teflon and metal are discussed.

  17. Preliminary experimental results of gas recycling subsystems except carbon dioxide concentration

    NASA Technical Reports Server (NTRS)

    Otsuji, K.; Sawada, T.; Satoh, S.; Kanda, S.; Matsumura, H.; Kondo, S.; Otsubo, K.

    1987-01-01

    Oxygen concentration and separation is an essential factor for air recycling in a controlled ecological life support system (CELSS). Furthermore, if the value of the plant assimilatory quotient is not coincident with that of the animal respiratory quotient, the recovery of oxygen from the concentrated CO2 through chemical methods will become necessary to balance the gas contents in a CELSS. Therefore, oxygen concentration and separation equipment using Salcomine and O2 recovery equipment, such as Sabatier and Bosch reactors, were experimentally developed and tested.

  18. Literature review and experimental results for a cylinder with perforations and protrusions at high Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Jones, G. S.; Horvath, T. J.; Stainback, P. C.; Beasley, W. D.; Mcghee, R. J.

    1987-01-01

    The NASA Langley Low Turbulence Pressure Tunnel has been used to conduct an experimental study of the flow around a series of circular cylinders; the models used consisted of a baseline, smooth cylinder together with a cylinder that could be reconfigured with six different arrangements of two types of surface irregularity. Mean lift and drag forces were measured on all seven model configurations, and correlations were made between unsteady pressure in the wake region and fluctuating lift forces, in order to identify coherent structures.

  19. Bent crystal analyzer without grooves for inelastic scattering -- first experimental results

    SciTech Connect

    Kushnir, V.I.; Macrander, A.T.

    1996-11-01

    A new design of a bent crystal analyzer for high energy resolution inelastic X-ray scattering has been recently proposed. It has been theoretically predicted that an analyzer with reflecting planes at a certain angle with respect to a crystal surface, bent with two different radii of curvature, will have the same energy resolution as a perfect crystal. The first experimental measurement obtained at the Advanced Photon Source of a bandwidth of such an analyzer is presented. The overall energy resolution of the analyzer and monochromator observed with a narrow beam is equal to 16.4 meV (FWHM) at 13.84 KeV.

  20. A phase 1 study of the bispecific anti-CD30/CD16A antibody construct AFM13 in patients with relapsed or refractory Hodgkin lymphoma

    PubMed Central

    Rothe, Achim; Sasse, Stephanie; Topp, Max S.; Eichenauer, Dennis A.; Hummel, Horst; Reiners, Katrin S.; Dietlein, Markus; Kuhnert, Georg; Kessler, Joerg; Buerkle, Carolin; Ravic, Miroslav; Knackmuss, Stefan; Marschner, Jens-Peter; Pogge von Strandmann, Elke; Borchmann, Peter

    2015-01-01

    AFM13 is a bispecific, tetravalent chimeric antibody construct (TandAb) designed for the treatment of CD30-expressing malignancies. AFM13 recruits natural killer (NK) cells via binding to CD16A as immune effector cells. In this phase 1 dose-escalation study, 28 patients with heavily pretreated relapsed or refractory Hodgkin lymphoma received AFM13 at doses of 0.01 to 7 mg/kg body weight. Primary objectives were safety and tolerability. Secondary objectives included pharmacokinetics, antitumor activity, and pharmacodynamics. Adverse events were generally mild to moderate. The maximum tolerated dose was not reached. Pharmacokinetics assessment revealed a half-life of up to 19 hours. Three of 26 evaluable patients achieved partial remission (11.5%) and 13 patients achieved stable disease (50%), with an overall disease control rate of 61.5%. AFM13 was also active in brentuximab vedotin–refractory patients. In 13 patients who received doses of ≥1.5 mg/kg AFM13, the overall response rate was 23% and the disease control rate was 77%. AFM13 treatment resulted in a significant NK-cell activation and a decrease of soluble CD30 in peripheral blood. In conclusion, AFM13 represents a well-tolerated, safe, and active targeted immunotherapy of Hodgkin lymphoma. A phase 2 study is currently planned to optimize the dosing schedule in order to further improve the therapeutic efficacy. This phase 1 study was registered at www.clinicaltrials.gov as #NCT01221571. PMID:25887777