Science.gov

Sample records for afm force measurements

  1. AFM force measurement on nano scale Polystyrene

    NASA Astrophysics Data System (ADS)

    Yang, Guoyu; Zahra Fakhraai Team

    2014-03-01

    Large surface/volume ratio can significantly change the mechanical properties of polymer film with nanometer thickness. Intuitively, the average response contains a larger component of the liquid like layer on the surface compared with the bulk, which should lead to reduced elastic constant. But the ultra small length scale makes it challenging to directly measure the viscoelastic response of nanostructured polymers. When the film thickness is decreased, some measurement supports that the elastic moduli of amorphous polymer films also decreases , while others show the rubbery modulus stiffens. Though the indentation on millimeter and micrometer scale has become common, not much research has investigated the yield stress and strain on nano scale indentation, which contains much larger percentage and effect from the free surface layer. In this study, we use regular AFM tip to indent onto the surface of polystyrene nanodroplets, under various loading speeds to study relaxation times and mechanical response in these systems. . Thanks to the support from NBIC and NCF in U Penn.

  2. Novel Method of Measuring Cantilever Deflection during an AFM Force Measurement

    PubMed Central

    Hlady, V.; Pierce, M.; Pungor, A.

    2012-01-01

    A combination of a reflection interference contrast microscope (RICM) and the atomic force microscope (AFM) was used to monitor the cantilever–surface separation distance during force measurements using the streptavidin–biotin recognition pairs. The RICM showed that the cantilever loses contact with the surface before the final rupture of the adhesive bonds is measured by the AFM detection system. This finding suggests that the immobilization of biotin by physisorbed albumin and subsequent binding of streptavidin might have created a cross-linked protein network whose cohesion is tested by the AFM cantilever with the immobilized biotin ligands. PMID:25132721

  3. Capillary force on a tilted cylinder: Atomic Force Microscope (AFM) measurements.

    PubMed

    Kosgodagan Acharige, Sébastien; Laurent, Justine; Steinberger, Audrey

    2017-11-01

    The capillary force in situations where the liquid meniscus is asymmetric, such as the one around a tilted object, has been hitherto barely investigated even though these situations are very common in practice. In particular, the capillary force exerted on a tilted object may depend on the dipping angle i. We investigate experimentally the capillary force that applies on a tilted cylinder as a function of its dipping angle i, using a home-built tilting Atomic Force Microscope (AFM) with custom made probes. A micrometric-size rod is glued at the end of an AFM cantilever of known stiffness, whose deflection is measured when the cylindrical probe is dipped in and retracted from reference liquids. We show that a torque correction is necessary to understand the measured deflection. We give the explicit expression of this correction as a function of the probes' geometrical parameters, so that its magnitude can be readily evaluated. The results are compatible with a vertical capillary force varying as 1/cosi, in agreement with a recent theoretical prediction. Finally, we discuss the accuracy of the method for measuring the surface tension times the cosine of the contact angle of the liquid on the probe. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Imaging and force measurement of LDL and HDL by AFM in air and liquid

    PubMed Central

    Gan, Chaoye; Ao, Meiying; Liu, Zhanghua; Chen, Yong

    2015-01-01

    The size and biomechanical properties of lipoproteins are tightly correlated with their structures/functions. While atomic force microscopy (AFM) has been used to image lipoproteins the force measurement of these nano-sized particles is missing. We detected that the sizes of LDL and HDL in liquid are close to the commonly known values. The Young’s modulus of LDL or HDL is ∼0.4 GPa which is similar to that of some viral capsids or nanovesicles but greatly larger than that of various liposomes. The adhesive force of LDL or HDL is small (∼200 pN). The comparison of AFM detection in air and liquid was also performed which is currently lacking. Our data may provide useful information for better understanding and AFM detection of lipoproteins. PMID:25893163

  5. Imaging and force measurement of LDL and HDL by AFM in air and liquid.

    PubMed

    Gan, Chaoye; Ao, Meiying; Liu, Zhanghua; Chen, Yong

    2015-01-01

    The size and biomechanical properties of lipoproteins are tightly correlated with their structures/functions. While atomic force microscopy (AFM) has been used to image lipoproteins the force measurement of these nano-sized particles is missing. We detected that the sizes of LDL and HDL in liquid are close to the commonly known values. The Young's modulus of LDL or HDL is ∼0.4 GPa which is similar to that of some viral capsids or nanovesicles but greatly larger than that of various liposomes. The adhesive force of LDL or HDL is small (∼200 pN). The comparison of AFM detection in air and liquid was also performed which is currently lacking. Our data may provide useful information for better understanding and AFM detection of lipoproteins.

  6. Study on the AFM Force Spectroscopy method for elastic modulus measurement of living cells

    NASA Astrophysics Data System (ADS)

    Demichelis, A.; Pavarelli, S.; Mortati, L.; Sassi, G.; Sassi, M.

    2013-09-01

    The cell elasticity gives information about its pathological state and metastatic potential. The aim of this paper is to study the AFM Force Spectroscopy technique with the future goal of realizing a reference method for accurate elastic modulus measurement in the elasticity range of living cells. This biological range has not been yet explored with a metrological approach. Practical hints are given for the realization of a Sylgard elasticity scale. Systematic effects given by the sample curing thickness and nanoindenter geometry have been found with regards of the measured elastic modulus. AFM measurement reproducibility better than 20% is obtained in the entire investigated elastic modulus scale of 101 - 104 kPa.

  7. Dynamics of a disturbed sessile drop measured by atomic force microscopy (AFM).

    PubMed

    McGuiggan, Patricia M; Grave, Daniel A; Wallace, Jay S; Cheng, Shengfeng; Prosperetti, Andrea; Robbins, Mark O

    2011-10-04

    A new method for studying the dynamics of a sessile drop by atomic force microscopy (AFM) is demonstrated. A hydrophobic microsphere (radius, r ∼ 20-30 μm) is brought into contact with a small sessile water drop resting on a polytetrafluoroethylene (PTFE) surface. When the microsphere touches the liquid surface, the meniscus rises onto it because of capillary forces. Although the microsphere volume is 6 orders of magnitude smaller than the drop, it excites the normal resonance modes of the liquid interface. The sphere is pinned at the interface, whose small (<100 nm) oscillations are readily measured with AFM. Resonance oscillation frequencies were measured for drop volumes between 5 and 200 μL. The results for the two lowest normal modes are quantitatively consistent with continuum calculations for the natural frequency of hemispherical drops with no adjustable parameters. The method may enable sensitive measurements of volume, surface tension, and viscosity of small drops. © 2011 American Chemical Society

  8. Measuring protein isoelectric points by AFM-based force spectroscopy using trace amounts of sample

    NASA Astrophysics Data System (ADS)

    Guo, Shifeng; Zhu, Xiaoying; Jańczewski, Dominik; Lee, Serina Siew Chen; He, Tao; Teo, Serena Lay Ming; Vancso, G. Julius

    2016-09-01

    Protein charge at various pH and isoelectric point (pI) values is important in understanding protein function. However, often only trace amounts of unknown proteins are available and pI measurements cannot be obtained using conventional methods. Here, we show a method based on the atomic force microscope (AFM) to determine pI using minute quantities of proteins. The protein of interest is immobilized on AFM colloidal probes and the adhesion force of the protein is measured against a positively and a negatively charged substrate made by layer-by-layer deposition of polyelectrolytes. From the AFM force-distance curves, pI values with an estimated accuracy of ±0.25 were obtained for bovine serum albumin, myoglobin, fibrinogen and ribonuclease A over a range of 4.7-9.8. Using this method, we show that the pI of the ‘footprint’ of the temporary adhesive proteins secreted by the barnacle cyprid larvae of Amphibalanus amphitrite is in the range 9.6-9.7.

  9. Measuring protein isoelectric points by AFM-based force spectroscopy using trace amounts of sample.

    PubMed

    Guo, Shifeng; Zhu, Xiaoying; Jańczewski, Dominik; Lee, Serina Siew Chen; He, Tao; Teo, Serena Lay Ming; Vancso, G Julius

    2016-09-01

    Protein charge at various pH and isoelectric point (pI) values is important in understanding protein function. However, often only trace amounts of unknown proteins are available and pI measurements cannot be obtained using conventional methods. Here, we show a method based on the atomic force microscope (AFM) to determine pI using minute quantities of proteins. The protein of interest is immobilized on AFM colloidal probes and the adhesion force of the protein is measured against a positively and a negatively charged substrate made by layer-by-layer deposition of polyelectrolytes. From the AFM force-distance curves, pI values with an estimated accuracy of ±0.25 were obtained for bovine serum albumin, myoglobin, fibrinogen and ribonuclease A over a range of 4.7-9.8. Using this method, we show that the pI of the 'footprint' of the temporary adhesive proteins secreted by the barnacle cyprid larvae of Amphibalanus amphitrite is in the range 9.6-9.7.

  10. Direct measurement of optical force induced by near-field plasmonic cavity using dynamic mode AFM

    DOE PAGES

    Guan, Dongshi; Hang, Zhi Hong; Marset, Zsolt; ...

    2015-11-20

    Plasmonic nanostructures have attracted much attention in recent years because of their potential applications in optical manipulation through near-field enhancement. Continuing experimental efforts have been made to develop accurate techniques to directly measure the near-field optical force induced by the plasmonic nanostructures in the visible frequency range. In this work, we report a new application of dynamic mode atomic force microscopy (DM-AFM) in the measurement of the enhanced optical force acting on a nano-structured plasmonic resonant cavity. The plasmonic cavity is made of an upper gold-coated glass sphere and a lower quartz substrate patterned with an array of subwavelength goldmore » disks. In the near-field when the sphere is positioned close to the disk array, plasmonic resonance is excited in the cavity and the induced force by a 1550 nm infrared laser is found to be increased by an order of magnitude compared with the photon pressure generated by the same laser light. Lastly, the experiment demonstrates that DM-AFM is a powerful tool for the study of light induced forces and their enhancement in plasmonic nanostructures.« less

  11. Direct measurement of optical force induced by near-field plasmonic cavity using dynamic mode AFM

    SciTech Connect

    Guan, Dongshi; Hang, Zhi Hong; Marset, Zsolt; Liu, Hui; Kravchenko, Ivan I.; Chan, Ho Bun; Chan, C. T.; Tong, Penger

    2015-11-20

    Plasmonic nanostructures have attracted much attention in recent years because of their potential applications in optical manipulation through near-field enhancement. Continuing experimental efforts have been made to develop accurate techniques to directly measure the near-field optical force induced by the plasmonic nanostructures in the visible frequency range. In this work, we report a new application of dynamic mode atomic force microscopy (DM-AFM) in the measurement of the enhanced optical force acting on a nano-structured plasmonic resonant cavity. The plasmonic cavity is made of an upper gold-coated glass sphere and a lower quartz substrate patterned with an array of subwavelength gold disks. In the near-field when the sphere is positioned close to the disk array, plasmonic resonance is excited in the cavity and the induced force by a 1550 nm infrared laser is found to be increased by an order of magnitude compared with the photon pressure generated by the same laser light. Lastly, the experiment demonstrates that DM-AFM is a powerful tool for the study of light induced forces and their enhancement in plasmonic nanostructures.

  12. Direct Measurement of Optical Force Induced by Near-Field Plasmonic Cavity Using Dynamic Mode AFM

    PubMed Central

    Guan, Dongshi; Hang, Zhi Hong; Marcet, Zsolt; Liu, Hui; Kravchenko, I. I.; Chan, C. T.; Chan, H. B.; Tong, Penger

    2015-01-01

    Plasmonic nanostructures have attracted much attention in recent years because of their potential applications in optical manipulation through near-field enhancement. Continuing experimental efforts have been made to develop accurate techniques to directly measure the near-field optical force induced by the plasmonic nanostructures in the visible frequency range. In this work, we report a new application of dynamic mode atomic force microscopy (DM-AFM) in the measurement of the enhanced optical force acting on a nano-structured plasmonic resonant cavity. The plasmonic cavity is made of an upper gold-coated glass sphere and a lower quartz substrate patterned with an array of subwavelength gold disks. In the near-field when the sphere is positioned close to the disk array, plasmonic resonance is excited in the cavity and the induced force by a 1550 nm infrared laser is found to be increased by an order of magnitude compared with the photon pressure generated by the same laser light. The experiment demonstrates that DM-AFM is a powerful tool for the study of light induced forces and their enhancement in plasmonic nanostructures. PMID:26586455

  13. Interaction force measurement between E. coli cells and nanoparticles immobilized surfaces by using AFM

    SciTech Connect

    Zhang, Wen; Chen, Yongsheng

    2011-01-01

    To better understand environmental behaviors of nanoparticles (NPs), we used the atomic force microscopy (AFM) to measure interaction forces between E. coli cells and NPs immobilized on surfaces in an aqueous environment. The results showed that adhesion force strength was significantly influenced by particle size for both hematite ( -Fe2 O3 ) and corundum ( -Al2 O3 ) NPs whereas the effect on the repulsive force was not observed. The adhesion force decreased from 6.3 0.7 nN to 0.8 0.4 nN as hematite NPs increased from 26 nm to 98 nm in diameter. Corundum NPs exhibited a similar dependence of adhesion force on particle size. The Johnson Kendall Roberts (JKR) model was employed to estimate the contact area between E. coli cells and NPs, and based on the JKR model a new model that considers local effective contact area was developed. The prediction of the new model matched the size dependence of adhesion force in experimental results. Size effects on adhesion forces may originate from the difference in local effective contact areas as supported by our model. These findings provide fundamental information for interpreting the environmental behaviors and biological interactions of NPs, which barely have been addressed.

  14. Unspecific membrane protein-lipid recognition: combination of AFM imaging, force spectroscopy, DSC and FRET measurements.

    PubMed

    Borrell, Jordi H; Montero, M Teresa; Morros, Antoni; Domènech, Òscar

    2015-11-01

    In this work, we will describe in quantitative terms the unspecific recognition between lactose permease (LacY) of Escherichia coli, a polytopic model membrane protein, and one of the main components of the inner membrane of this bacterium. Supported lipid bilayers of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) (3:1, mol/mol) in the presence of Ca(2+) display lateral phase segregation that can be distinguished by atomic force microscopy (AFM) as well as force spectroscopy. LacY shows preference for fluid (Lα) phases when it is reconstituted in POPE : POPG (3:1, mol/mol) proteoliposomes at a lipid-to-protein ratio of 40. When the lipid-to-protein ratio is decreased down to 0.5, two domains can be distinguished by AFM. While the upper domain is formed by self-segregated units of LacY, the lower domain is constituted only by phospholipids in gel (Lβ) phase. On the one hand, classical differential scanning calorimetry (DSC) measurements evidenced the segregation of a population of phospholipids and point to the existence of a boundary region at the lipid-protein interface. On the other hand, Förster Resonance Energy Transfer (FRET) measurements in solution evidenced that POPE is selectively recognized by LacY. A binary pseudophase diagram of POPE : POPG built from AFM observations enables to calculate the composition of the fluid phase where LacY is inserted. These results are consistent with a model where POPE constitutes the main component of the lipid-LacY interface segregated from the fluid bulk phase where POPG predominates.

  15. Polymer nanowire elastic moduli measured with digital pulsed force mode AFM.

    PubMed

    Shanmugham, Saravanarajan; Jeong, Jonghwa; Alkhateeb, Abdullah; Aston, D Eric

    2005-10-25

    The mechanical bending behavior of polymer nanowires-polypyrrole and poly(3,4-ethylene dioxythiophene-co-styrene sulfonate)-produced by template molding were measured using a new innovation in atomic force microscopy (AFM). Digital pulsed force mode (DPFM) was used to image and simultaneously perform three-point bend tests along nanowires spanning microchannels in silicon. The bending profiles were analyzed for apparent elastic moduli variations along the suspended length of individually isolated nanowires and compared to classic beam deflection models for various geometric and boundary conditions. The elastic moduli calculated from these AFM data are 2-7 times that expected for bulk polymer values (approximately 1-3 GPa), demonstrating an apparent strengthening of nanostructured polymer even for diameters greater than 100 nm--the accepted boundary for nanoscience. Furthermore, detailed analysis of deflection data versus loading location demonstrates the experimental dependence on test geometry and inherent errors in relying solely on midpoint bending measurements or any single loading configuration for nanomechanical testing as well as the significant contribution of nanoindentation effects.

  16. AFM/TIRF force clamp measurements of neurosecretory vesicle tethers reveal characteristic unfolding steps

    PubMed Central

    Harris, Mark C.; Cislo, Dillon; Lenz, Joan S.; Umbach, Christopher

    2017-01-01

    Although several proteins have been implicated in secretory vesicle tethering, the identity and mechanical properties of the components forming the physical vesicle-plasma membrane link remain unknown. Here we present the first experimental measurements of nanomechanical properties of secretory vesicle-plasma membrane tethers using combined AFM force clamp and TIRF microscopy on membrane sheets from PC12 cells expressing the vesicle marker ANF-eGFP. Application of pulling forces generated tether extensions composed of multiple steps with variable length. The frequency of short (<10 nm) tether extension events was markedly higher when a fluorescent vesicle was present at the cantilever tip and increased in the presence of GTPγS, indicating that these events reflect specifically the properties of vesicle-plasma membrane tethers. The magnitude of the short tether extension events is consistent with extension lengths expected from progressive unfolding of individual helices of the exocyst complex, supporting its direct role in forming the physical vesicle-plasma membrane link. PMID:28323853

  17. Precision Measurement of the Casimir Force for Au Using a Dynamic Afm

    NASA Astrophysics Data System (ADS)

    Chang, C.-C.; Banishev, A. A.; Castillo-Garza, R.; Klimchitskaya, G. L.; Mostepanenko, V. M.; Mohideen, U.

    2012-07-01

    The gradient of the Casimir force between carefully cleaned Au surfaces of a sphere and a plate is measured using a dynamic atomic force microscope in the frequency modulation regime in high vacuum. The electrostatic calibration of the setup did not reveal any effect of patches or surface contaminants. The experimental data for the force gradient are found to be consistent with theory using the plasma model approach over the entire measurement range. The Drude model approach is excluded by the data at separations from 235 to 400 nm at a 67% confidence level.

  18. Nanophotonic Atomic Force Microscope Transducers Enable Chemical Composition and Thermal Conductivity Measurements at the Nanoscale [Nanophotonic AFM Transducers Enable Chemical Composition and Thermal Conductivity Measurements at the Nanoscale

    DOE PAGES

    Chae, Jungseok; An, Sangmin; Ramer, Georg; ...

    2017-08-03

    The atomic force microscope (AFM) offers a rich observation window on the nanoscale, yet many dynamic phenomena are too fast and too weak for direct AFM detection. Integrated cavity-optomechanics is revolutionizing micromechanical sensing; however, it has not yet impacted AFM. Here, we make a groundbreaking advance by fabricating picogram-scale probes integrated with photonic resonators to realize functional AFM detection that achieve high temporal resolution (<10 ns) and picometer vertical displacement uncertainty simultaneously. The ability to capture fast events with high precision is leveraged to measure the thermal conductivity (η), for the first time, concurrently with chemical composition at the nanoscalemore » in photothermal induced resonance experiments. The intrinsic η of metal–organic-framework individual microcrystals, not measurable by macroscale techniques, is obtained with a small measurement uncertainty (8%). The improved sensitivity (50×) increases the measurement throughput 2500-fold and enables chemical composition measurement of molecular monolayer-thin samples. In conclusion, our paradigm-shifting photonic readout for small probes breaks the common trade-off between AFM measurement precision and ability to capture transient events, thus transforming the ability to observe nanoscale dynamics in materials.« less

  19. Direct and quantitative AFM measurements of the concentration and temperature dependence of the hydrophobic force law at nanoscopic contacts.

    PubMed

    Stock, Philipp; Utzig, Thomas; Valtiner, Markus

    2015-05-15

    By virtue of its importance for self-organization of biological matter the hydrophobic force law and the range of hydrophobic interactions (HI) have been debated extensively over the last 40 years. Here, we directly measure and quantify the hydrophobic force-distance law over large temperature and concentration ranges. In particular, we study the HI between molecularly smooth hydrophobic self-assembled monolayers, and similarly modified gold-coated AFM tips (radii∼8-50 nm). We present quantitative and direct evidence that the hydrophobic force is both long-ranged and exponential down to distances of about 1-2 nm. Therefore, we introduce a self-consistent radius-normalization for atomic force microscopy data. This approach allows quantitative data fitting of AFM-based experimental data to the recently proposed Hydra-model. With a statistical significance of r(2)⩾0.96 our fitting and data directly reveal an exponential HI decay length of 7.2±1.2 Å that is independent of the salt concentration up to 750 mM. As such, electrostatic screening does not have a significant influence on the HI in electrolyte concentrations ranging from 1 mM to 750 mM. In 1 M solutions the observed instability during approach shifts to longer distances, indicating ion correlation/adsorption effects at high salt concentrations. With increasing temperature the magnitude of HI decreases monotonically, while the range increases slightly. We compare our results to the large body of available literature, and shed new light into range and magnitude of hydrophobic interactions at very close distances and over wide temperature and concentration regimes. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Attractive forces between hydrophobic solid surfaces measured by AFM on the first approach in salt solutions and in the presence of dissolved gases.

    PubMed

    Azadi, Mehdi; Nguyen, Anh V; Yakubov, Gleb E

    2015-02-17

    Interfacial gas enrichment of dissolved gases (IGE) has been shown to cover hydrophobic solid surfaces in water. The atomic force microscopy (AFM) data has recently been supported by molecular dynamics simulation. It was demonstrated that IGE is responsible for the unexpected stability and large contact angle of gaseous nanobubbles at the hydrophobic solid-water interface. Here we provide further evidence of the significant effect of IGE on an attractive force between hydrophobic solid surfaces in water. The force in the presence of dissolved gas, i.e., in aerated and nonaerated NaCl solutions (up to 4 M), was measured by the AFM colloidal probe technique. The effect of nanobubble bridging on the attractive force was minimized or eliminated by measuring forces on the first approach of the AFM probe toward the flat hydrophobic surface and by using high salt concentrations to reduce gas solubility. Our results confirm the presence of three types of forces, two of which are long-range attractive forces of capillary bridging origin as caused by either surface nanobubbles or gap-induced cavitation. The third type is a short-range attractive force observed in the absence of interfacial nanobubbles that is attributed to the IGE in the form of a dense gas layer (DGL) at hydrophobic surfaces. Such a force was found to increase with increasing gas saturation and to decrease with decreasing gas solubility.

  1. Introduction to atomic force microscopy (AFM) in biology.

    PubMed

    Goldsbury, Claire S; Scheuring, Simon; Kreplak, Laurent

    2009-11-01

    The atomic force microscope (AFM) has the unique capability of imaging biological samples with molecular resolution in buffer solution. In addition to providing topographical images of surfaces with nanometer- to angstrom-scale resolution, forces between single molecules and mechanical properties of biological samples can be investigated from the nanoscale to the microscale. Importantly, the measurements are made in buffer solutions, allowing biological samples to "stay alive" within a physiological-like environment while temporal changes in structure are measured-e.g., before and after addition of chemical reagents. These qualities distinguish AFM from conventional imaging techniques of comparable resolution, e.g., electron microscopy (EM). This unit provides an introduction to AFM on biological systems and describes specific examples of AFM on proteins, cells, and tissues. The physical principles of the technique and methodological aspects of its practical use and applications are also described.

  2. Anomalies in nanostructure size measurements by AFM

    NASA Astrophysics Data System (ADS)

    Mechler, Ádám; Kopniczky, Judit; Kokavecz, János; Hoel, Anders; Granqvist, Claes-Göran; Heszler, Peter

    2005-09-01

    Anomalies in atomic force microscopy (AFM) based size determination of nanoparticles were studied via comparative analysis of experiments and numerical calculations. Single tungsten oxide nanoparticles with a mean diameter of 3nm were deposited on mica and graphite substrates and were characterised by AFM. The size (height) of the nanoparticles, measured by tapping mode AFM, was found to be sensitive to the free amplitude of the oscillating tip, thus indicating that the images were not purely topographical. By comparing the experimental results to model calculations, we demonstrate that the dependence of the nanoparticle size on the oscillation amplitude of the tip is an inherent characteristic of the tapping mode AFM; it is also a function of physical properties such as elasticity and surface energy of the nanoparticle and the sample surface, and it depends on the radius of curvature of the tip. We show that good approximation of the real size can easily be obtained from plots of particle height vs free amplitude of the oscillating tip, although errors might persist for individual experiments. The results are valid for size (height) determination of any nanometer-sized objects imaged by tapping mode AFM.

  3. [Application of atomic force microscopy (AFM) in ophthalmology].

    PubMed

    Milka, Michał; Mróz, Iwona; Jastrzebska, Maria; Wrzalik, Roman; Dobrowolski, Dariusz; Roszkowska, Anna M; Moćko, Lucyna; Wylegała, Edward

    2012-01-01

    Atomic force microscopy (AFM) allows to examine surface of different biological objects in the nearly physiological conditions at the nanoscale. The purpose of this work is to present the history of introduction and the potential applications of the AFM in ophthalmology research and clinical practice. In 1986 Binnig built the AFM as a next generation of the scanning tunnelling microscope (STM). The functional principle of AFM is based on the measurement of the forces between atoms on the sample surface and the probe. As a result, the three-dimensional image of the surface with the resolution on the order of nanometres can be obtained. Yamamoto used as the first the AFM on a wide scale in ophthalmology. The first investigations used the AFM method to study structure of collagen fibres of the cornea and of the sclera. Our research involves the analysis of artificial intraocular lenses (IOLs). According to earlier investigations, e.g. Lombardo et al., the AFM was used to study only native IOLs. Contrary to the earlier investigations, we focused our measurements on lenses explanted from human eyes. The surface of such lenses is exposed to the influence of the intraocular aqueous environment, and to the related impacts of biochemical processes. We hereby present the preliminary results of our work in the form of AFM images depicting IOL surface at the nanoscale. The images allowed us to observe early stages of the dye deposit formation as well as local calcinosis. We believe that AFM is a very promising tool for studying the structure of IOL surface and that further observations will make it possible to explain the pathomechanism of artificial intraocular lens opacity formation.

  4. AFM Force measurements of the gp120-sCD4 and gp120 or CD4 antigen-antibody interactions

    PubMed Central

    Chen, Yong; Zeng, Gucheng; Chen, Sherry Shiyi; Feng, Qian; Chen, Zheng Wei

    2011-01-01

    Soluble CD4 (sCD4), anti-CD4 antibody, and anti-gp120 antibody have long been regarded as entry inhibitors in human immunodeficiency virus (HIV) therapy. However, the interactions between these HIV entry inhibitors and corresponding target molecules are still poorly understood. In this study, atomic force microscopy (AFM) was utilized to investigate the interaction forces among them. We found that the unbinding forces of sCD4-gp120 interaction, CD4 antigen-antibody interaction, and gp120 antigen-antibody interaction were 25.45 ± 20.46 pN, 51.22 ± 34.64 pN, and 89.87 ± 44.63 pN, respectively, which may provide important mechanical information for understanding the effects of viral entry inhibitors on HIV infection. Moreover, we found that the functionalization of an interaction pair on AFM tip or substrate significantly influenced the results, implying that we must perform AFM force measurement and analyze the data with more caution. PMID:21382342

  5. Contact nanomechanical measurements with the AFM

    NASA Astrophysics Data System (ADS)

    Geisse, Nicholas

    2013-03-01

    The atomic force microscope (AFM) has found broad use in the biological sciences largely due to its ability to make measurements on unfixed and unstained samples under liquid. In addition to imaging at multiple spatial scales ranging from micro- to nanometer, AFMs are commonly used as nanomechanical probes. This is pertinent for cell biology, as it has been demonstrated that the geometrical and mechanical properties of the extracellular microenvironment are important in such processes as cancer, cardiovascular disease, muscular dystrophy, and even the control of cell life and death. Indeed, the ability to control and quantify these external geometrical and mechanical parameters arises as a key issue in the field. Because AFM can quantitatively measure the mechanical properties of various biological samples, novel insights to cell function and to cell-substrate interactions are now possible. As the application of AFM to these types of problems is widened, it is important to understand the performance envelope of the technique and its associated data analyses. This talk will discuss the important issues that must be considered when mechanical models are applied to real-world data. Examples of the effect of different model assumptions on our understanding of the measured material properties will be shown. Furthermore, specific examples of the importance of mechanical stimuli and the micromechanical environment to the structure and function of biological materials will be presented.

  6. Adhesion forces between AFM tips and superficial dentin surfaces.

    PubMed

    Pelin, I M; Piednoir, A; Machon, D; Farge, P; Pirat, C; Ramos, S M M

    2012-06-15

    In this work, we study the adhesion forces between atomic force microscopy (AFM) tips and superficial dentin etched with phosphoric acid. Initially, we quantitatively analyze the effect of acid etching on the surface heterogeneity and the surface roughness, two parameters that play a key role in the adhesion phenomenon. From a statistical study of the force-distance curves, we determine the average adhesion forces on the processed substrates. Our results show that the average adhesion forces, measured in water, increase linearly with the acid exposure time. The highest values of such forces are ascribed to the high density of collagen fibers on the etched surfaces. The individual contribution of exposed collagen fibrils to the adhesion force is highlighted. We also discuss in this paper the influence of the environmental medium (water/air) in the adhesion measurements. We show that the weak forces involved require working in the aqueous medium. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Measuring bacterial cells size with AFM

    PubMed Central

    Osiro, Denise; Filho, Rubens Bernardes; Assis, Odilio Benedito Garrido; Jorge, Lúcio André de Castro; Colnago, Luiz Alberto

    2012-01-01

    Atomic Force Microscopy (AFM) can be used to obtain high-resolution topographical images of bacteria revealing surface details and cell integrity. During scanning however, the interactions between the AFM probe and the membrane results in distortion of the images. Such distortions or artifacts are the result of geometrical effects related to bacterial cell height, specimen curvature and the AFM probe geometry. The most common artifact in imaging is surface broadening, what can lead to errors in bacterial sizing. Several methods of correction have been proposed to compensate for these artifacts and in this study we describe a simple geometric model for the interaction between the tip (a pyramidal shaped AFM probe) and the bacterium (Escherichia coli JM-109 strain) to minimize the enlarging effect. Approaches to bacteria immobilization and examples of AFM images analysis are also described. PMID:24031837

  8. The effect of surface properties on the strength of attachment of fungal spores using AFM perpendicular force measurements.

    PubMed

    Whitehead, Kathryn A; Deisenroth, Ted; Preuss, Andrea; Liauw, Christopher M; Verran, Joanna

    2011-02-01

    Polymeric substrata may be biodegraded by fungal species resulting in damaged, weakened and unsightly materials. This process typically begins with fungal spore attachment to the surface. In order to better understand the processes that precedes a biofouling event, fungal spore attachment to a range of surfaces, was determined using perpendicular force measurements. This was carried out using atomic force microscope cantilevers modified with fungal spores from Aspergillus niger 1957 (5μm diameter, non-wettable, spherical), Aspergillus niger 1988 (5μm diameter non-wettable, spikey) or Aureobasidium pullulans (5μm-10μm sized, wettable, ellipsoidal). The strength of attachment of the spores was determined in combination with seven surfaces (nitric acid cleaned glass, cast poly(methylmethacrylate) sheet [c-PMMA], polytetrafluoroethylene [PTFE], silicon wafers spin coated with poly(3-methacryloxypropyltrimethoxy silane (γ-MPS)-co-methylmethacrylate (MMA)) [p(γ-MPS-co-MMA)], poly (γ-MPS-co-lauryl methacrylate) [p(γ-MPS-co-LMA)] [both in a ratio of 10-90], PMMA dissolved in a solvent [PMMAsc] and silicon wafers). Perpendicular force measurements could not be related to the R(a) values of the surfaces, but surface wettability was shown to have an effect. All three spore types interacted comparably with the surfaces. All spores attached strongly to c-PMMA and glass (wettable surfaces), and weakly to PTFE, (p(γ- MPS-co-LMA)) (non-wettable) and (p(γ-MPS-co-MMA)). Spore shape also affected the strength of attachment. Aureobasidium pullulans spores attached with the widest range of forces whilst A. niger 1957 attached with the smallest. Findings will inform the selection of surfaces for use in environments where biofouling is an important consideration.

  9. Device level 3D characterization using PeakForce AFM

    NASA Astrophysics Data System (ADS)

    Timoney, Padraig; Zhang, Xiaoxiao; Vaid, Alok; Hand, Sean; Osborne, Jason; Milligan, Eric; Feinstein, Adam

    2016-03-01

    Traditional metrology solutions face a range of challenges at the 1X node such as three dimensional (3D) measurement capabilities, shrinking overlay and critical dimension (CD) error budgets driven by multi-patterning and via in trench CD measurements. With advent of advanced technology nodes and 3D processing, an increasing need is emerging for in-die metrology including across-structure and structure-to-structure characterization. A myriad of work has emerged in the past few years intending to address these challenges from various aspects; in-die OCD with reduced spot size and tilt beam on traditional critical dimension scanning electron microscopy (CDSEM) for height measurements. This paper explores the latest capability offered by PeakForceTM Tapping Atomic Force Microscopy (PFT-AFM). The use of traditional harmonic tapping mode for scanning high aspect ratio, and complex "3D" wafer structures, results in limited depth probing capability as well as excessive tip wear. These limitations arise due to the large tip-sample interaction volume in such confined spaces. PeakForce Tapping eliminates these limitations through direct real time control of the tip-sample interaction contact force. The ability of PeakForce to measure, and respond directly to tip- sample interaction forces results in more detailed feature resolution, reduced tip wear, and improved depth capability. In this work, the PFT-AFM tool was applied for multiple applications, including the 14nm fin and replacement metal gate (RMG) applications outlined below. Results from DOE wafers, detailed measurement precision studies and correlation to reference metrology are presented for validation of this methodology. With the fin application, precision of 0.3nm is demonstrated by measuring 5 dies with 10 consecutive runs. Capability to resolve within-die and localized within-macro height variation is also demonstrated. Results obtained from the fin measurements support the increasing trend that measurements

  10. Savinase proteolysis of insulin Langmuir monolayers studied by surface pressure and surface potential measurements accompanied by atomic force microscopy (AFM) imaging.

    PubMed

    Balashev, K; Ivanova, Tz; Mircheva, K; Panaiotov, I

    2011-08-15

    The mechanism of the enzymatic action of Savinase on an insulin substrate organized in a monolayer at the air-water interface was studied. We followed two steps experimental approach classical surface pressure and surface potential measurements in combination with atomic force microscopy imaging. Utilizing the barostat surface balance, the hydrolysis kinetic was followed by measuring simultaneously the decrease in the surface area and the change of the surface potential versus time. The decrease in the surface area is a result of the random scission of the peptide bonds of polypeptide chain, progressively appearance of amino acid residues, and their solubilization in the aqueous subphase. The interpretation of the surface potential data was based on the contribution of the dipole moments of the intact and broken peptide groups which remain at the interface during the proteolysis. An appropriate kinetic model for the Savinase action was applied, and the global kinetic constant was obtained. The application of the AFM revealed the state of the insulin monolayers before and after the Savinase action. The comparison of the topography of the films and the roughness analysis showed that insulin Langmuir-Blodgett (LB) films transferred before the enzyme action were flat, while at the end of hydrolysis, roughness of films has increased and the appearance of 3D structures was observed. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Probing the Double Layer: Effect of Image Forces on AFM

    PubMed Central

    Sachs, Frederick

    2006-01-01

    Force probes such as AFM tips or laser trap latex beads have a dielectric constant much less than that of the water that they displace. Thus when a probe approaches a charged surface under water it will be repelled simply based upon the image forces, and these can be of nN magnitude. PMID:16714346

  12. Force and function: probing proteins with AFM-based force spectroscopy.

    PubMed

    Puchner, Elias M; Gaub, Hermann E

    2009-10-01

    Forces play a pivotal role in life, and the response of live systems to forces requires molecules and molecular interactions with adequate properties to counteract both in a passive and also, if needed, in an active, dynamic manner. However, at the level of individual molecules these forces are so minute, that the development of sophisticated experiments to measure and control them was required. With the maturation of these techniques, particularly the AFM-based single-molecule force spectroscopy into commercial instruments, the scope has widened considerably and more and more studies shed light onto the different aspects of biomolecular mechanics. Many surprises turned up and more are waiting for us.

  13. Mechanical properties of NRR domain from human Notch 1 studied by single molecule AFM force spectroscopy

    NASA Astrophysics Data System (ADS)

    Szoszkiewicz, Robert; Dey, Ashim

    2011-03-01

    For proteins in living cells, forces are present from macroscopic to single molecule levels. Single molecule atomic force microscopy in force extension (FX-AFM) mode measures forces at which proteins undergo major conformational transitions with ~ 10 pN force sensitivity (FX-AFM). Here, we present the results of the FX-AFM experiments on a construct comprising the NRR domain from human Notch 1. It is believed that understanding the mechanical properties of Notch at the single molecule level can help to understand its role in triggering some breast cancers. The experimental results on the Notch construct and further analysis revealed several conformational transitions of this molecule under force. These results opened a path for further investigations of Notch constructs at various physiologically relevant conditions.

  14. FRAME (Force Review Automation Environment): MATLAB-based AFM data processor.

    PubMed

    Partola, Kostyantyn R; Lykotrafitis, George

    2016-05-03

    Data processing of force-displacement curves generated by atomic force microscopes (AFMs) for elastic moduli and unbinding event measurements is very time consuming and susceptible to user error or bias. There is an evident need for consistent, dependable, and easy-to-use AFM data processing software. We have developed an open-source software application, the force review automation environment (or FRAME), that provides users with an intuitive graphical user interface, automating data processing, and tools for expediting manual processing. We did not observe a significant difference between manually processed and automatically processed results from the same data sets. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Interlaboratory round robin on cantilever calibration for AFM force spectroscopy.

    PubMed

    te Riet, Joost; Katan, Allard J; Rankl, Christian; Stahl, Stefan W; van Buul, Arend M; Phang, In Yee; Gomez-Casado, Alberto; Schön, Peter; Gerritsen, Jan W; Cambi, Alessandra; Rowan, Alan E; Vancso, G Julius; Jonkheijm, Pascal; Huskens, Jurriaan; Oosterkamp, Tjerk H; Gaub, Hermann; Hinterdorfer, Peter; Figdor, Carl G; Speller, Sylvia

    2011-12-01

    Single-molecule force spectroscopy studies performed by Atomic Force Microscopes (AFMs) strongly rely on accurately determined cantilever spring constants. Hence, to calibrate cantilevers, a reliable calibration protocol is essential. Although the thermal noise method and the direct Sader method are frequently used for cantilever calibration, there is no consensus on the optimal calibration of soft and V-shaped cantilevers, especially those used in force spectroscopy. Therefore, in this study we aimed at establishing a commonly accepted approach to accurately calibrate compliant and V-shaped cantilevers. In a round robin experiment involving eight different laboratories we compared the thermal noise and the Sader method on ten commercial and custom-built AFMs. We found that spring constants of both rectangular and V-shaped cantilevers can accurately be determined with both methods, although the Sader method proved to be superior. Furthermore, we observed that simultaneous application of both methods on an AFM proved an accurate consistency check of the instrument and thus provides optimal and highly reproducible calibration. To illustrate the importance of optimal calibration, we show that for biological force spectroscopy studies, an erroneously calibrated cantilever can significantly affect the derived (bio)physical parameters. Taken together, our findings demonstrated that with the pre-established protocol described reliable spring constants can be obtained for different types of cantilevers. Copyright © 2011. Published by Elsevier B.V.

  16. Investigation of Cell-Substrate Adhesion Properties of Living Chondrocyte by Measuring Adhesive Shear Force and Detachment Using AFM and Inverse FEA

    PubMed Central

    Nguyen, Trung Dung; Gu, YuanTong

    2016-01-01

    It is well-known that cell adhesion is important in many biological processes such as cell migration and proliferation. A better understanding of the cell adhesion process will shed insight into these cellular biological responses as well as cell adhesion-related diseases treatment. However, there is little research which has attempted to investigate the process of cell adhesion and its mechanism. Thus, this paper aims to study the time-dependent adhesion properties of single living chondrocytes using an advanced coupled experimental-numerical approach. Atomic Force Microscopy (AFM) tips will be used to apply lateral forces to detach chondrocytes that are seeded for three different periods. An advanced Finite Element Analysis (FEA) model combining porohyperelastic (PHE) constitutive model and cohesive zone formulation is developed to explore the mechanism of adhesion. The results revealed that the cells can resist normal traction better than tangential traction in the beginning of adhesion. This is when the cell adhesion molecules establish early attachment to the substrates. After that when the cells are spreading, stress fiber bundles generate tangential traction on the substrate to form strong adhesion. Both simulation and experimental results agree well with each other, providing a powerful tool to study the cellular adhesion process. PMID:27892536

  17. AFM study of forces between silica, silicon nitride and polyurethane pads.

    PubMed

    Sokolov, Igor; Ong, Quy K; Shodiev, Hasan; Chechik, Nina; James, David; Oliver, Mike

    2006-08-15

    Interaction of silica and silicon nitride with polyurethane surfaces is rather poorly studied despite being of great interest for modern semiconductor industry, e.g., for chemical-mechanical planarization (CMP) processes. Here we show the results from the application of the atomic force microscopy (AFM) technique to study the forces between silica or silicon nitride (AFM tips) and polyurethane surfaces in aqueous solutions of different acidity. The polyurethane surface potentials are derived from the measured AFM data. The obtained potentials are in rather good agreement with measurements of zeta-potentials using the streaming-potentials method. Another important parameter, adhesion, is also measured. While the surface potentials of silica are well known, there are ambiguous results on the potentials of silicon nitride that is naturally oxidized. Deriving the surface potential of the naturally oxidized silicon nitride from our measurements, we show that it is not oxidized to silica despite some earlier published expectations.

  18. Savinase action on bovine serum albumin (BSA) monolayers demonstrated with measurements at the air-water interface and liquid Atomic Force Microscopy (AFM) imaging.

    PubMed

    Balashev, Konstantin; Callisen, Thomas H; Svendsen, Allan; Bjørnholm, Thomas

    2011-12-01

    We studied the enzymatic action of Savinase on bovine serum albumin (BSA) organized in a monolayer spread at the air/water interface or adsorbed at the mica surface. We carried out two types of experiments. In the first one we followed the degradation of the protein monolayer by measuring the surface pressure and surface area decrease versus time. In the second approach we applied AFM imaging of the supported BSA monolayers adsorbed on mica solid supports and extracted information for the enzyme action by analyzing the obtained images of the surface topography in the course of enzyme action. In both cases we obtained an estimate for the turnover number (TON) of the enzyme reaction. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Wetting properties of AFM probes by means of contact angle measurement

    NASA Astrophysics Data System (ADS)

    Tao, Zhenhua; Bhushan, Bharat

    2006-09-01

    An atomic force microscopy (AFM) based technique was developed to measure the wetting properties of probe tips. By advancing and receding the AFM tip across the water surface, the meniscus force between the tip and the liquid was measured at the tip-water separation. The water contact angle was determined from the meniscus force. The obtained contact angle results were compared with that by the sessile drop method. It was found that the AFM based technique provided higher contact angle values than the sessile drop method. The mechanisms responsible for the difference are discussed.

  20. Single-Molecule Studies of Integrins by AFM-Based Force Spectroscopy on Living Cells

    NASA Astrophysics Data System (ADS)

    Eibl, Robert H.

    The characterization of cell adhesion between two living cells at the single-molecule level, i.e., between one adhesion receptor and its counter-receptor, appears to be an experimental challenge. Atomic force microscopy (AFM) can be used in its force spectroscopy mode to determine unbinding forces of a single pair of adhesion receptors, even with a living cell as a probe. This chapter provides an overview of AFM force measurements of the integrin family of cell adhesion receptors and their ligands. A focus is given to major integrins expressed on leukocytes, such as lymphocyte function-associated antigen 1 (LFA-1) and very late antigen 4 (VLA-4). These receptors are crucial for leukocyte trafficking in health and disease. LFA-1 and VLA-1 can be activated within the bloodstream from a low-affinity to a high-affinity receptor by chemokines in order to adhere strongly to the vessel wall before the receptor-bearing leukocytes extravasate. The experimental considerations needed to provide near-physiological conditions for a living cell and to be able to measure adequate forces at the single-molecule level are discussed in detail. AFM technology has been developed into a modern and extremely sensitive tool in biomedical research. It appears now that AFM force spectroscopy could enter, within a few years, medical applications in diagnosis and therapy of cancer and autoimmune diseases.

  1. Quantitating membrane bleb stiffness using AFM force spectroscopy and an optical sideview setup.

    PubMed

    Gonnermann, Carina; Huang, Chaolie; Becker, Sarah F; Stamov, Dimitar R; Wedlich, Doris; Kashef, Jubin; Franz, Clemens M

    2015-03-01

    AFM-based force spectroscopy in combination with optical microscopy is a powerful tool for investigating cell mechanics and adhesion on the single cell level. However, standard setups featuring an AFM mounted on an inverted light microscope only provide a bottom view of cell and AFM cantilever but cannot visualize vertical cell shape changes, for instance occurring during motile membrane blebbing. Here, we have integrated a mirror-based sideview system to monitor cell shape changes resulting from motile bleb behavior of Xenopus cranial neural crest (CNC) cells during AFM elasticity and adhesion measurements. Using the sideview setup, we quantitatively investigate mechanical changes associated with bleb formation and compared cell elasticity values recorded during membrane bleb and non-bleb events. Bleb protrusions displayed significantly lower stiffness compared to the non-blebbing membrane in the same cell. Bleb stiffness values were comparable to values obtained from blebbistatin-treated cells, consistent with the absence of a functional actomyosin network in bleb protrusions. Furthermore, we show that membrane blebs forming within the cell-cell contact zone have a detrimental effect on cell-cell adhesion forces, suggesting that mechanical changes associated with bleb protrusions promote cell-cell detachment or prevent adhesion reinforcement. Incorporating a sideview setup into an AFM platform therefore provides a new tool to correlate changes in cell morphology with results from force spectroscopy experiments.

  2. Nanometer-Sized Water Bridge and Pull-Off Force in AFM at Different Relative Humidities: Reproducibility Measurement and Model Based on Surface Tension Change.

    PubMed

    Bartošík, Miroslav; Kormoš, Lukáš; Flajšman, Lukáš; Kalousek, Radek; Mach, Jindřich; Lišková, Zuzana; Nezval, David; Švarc, Vojtěch; Šamořil, Tomáš; Šikola, Tomáš

    2017-01-26

    This article deals with the analysis of the relationship between the pull-off force measured by atomic force microscopy and the dimensions of water bridge condensed between a hydrophilic silicon oxide tip and a silicon oxide surface under ambient conditions. Our experiments have shown that the pull-off force increases linearly with the radius of the tip and nonmonotonically with the relative humidity (RH). The latter dependence generally consists of an initial constant part changing to a convex-concave-like increase of the pull-off force and finally followed by a concave-like decrease of this force. The reproducibility tests have demonstrated that the precision limits have to be taken into account for comparing these measurements carried out under atmospheric conditions. The results were fitted by a classical thermodynamic model based on water-bridge envelope calculations using the numerical solution of the Kelvin equation in the form of axisymmetric differential equations and consequent calculation of adhesive forces. To describe the measured data more precisely, a decrease of the water surface tension for low RH was incorporated into the calculation. Such a decrease can be expected as a consequence of the high surface curvature in the nanometer-sized water bridge between the tip and the surface.

  3. Relationship between model bacterial peptidoglycan network structures and AFM force-distance curves

    NASA Astrophysics Data System (ADS)

    Brown, Aidan; Wickham, Robert; Touhami, Ahmed; Dutcher, John

    2010-03-01

    Recent atomic force microscopy (AFM) measurements have involved pulling on Gram-negative bacterial sacculi with the AFM tip as a means of distinguishing between different proposed structures of the peptidoglycan network. The goal of the present study is to provide the theoretical connection between a given network structure and its response to the pulling force. We model the glycan strands as hinged rods, and the peptide cross-links as wormlike chains. Using Monte Carlo simulation to equilibrate the three-dimensional network, subject to a fixed AFM tip-to-substrate distance, we can compute the force exerted by the network on the AFM tip. The effects of adhesion of the sacculi to the substrate and enzymatic action on the network are included. We have modeled both the layered and the scaffold model for the peptidoglycan network structure. We have compared our theoretical force-distance curves for each network structure with experimental curves to determine which structure provides the best agreement with experiment.

  4. Measurement of Fibrin Fiber Strength using AFM

    NASA Astrophysics Data System (ADS)

    Jawerth, Louise; Falvo, Mchael; Canning, Anthony; Matthews, Garrett; Superfine, Richard; Guthold, Martin

    2003-11-01

    Blood clots usually form in the event of injury or damage to blood vessels to prevent the loss of blood. Moreover, as we age, blood clots often form in undesired locations, i.e. in blood vessels around the heart or brain, or in uninjured vessels resulting in heart attacks or strokes. Fibrin fibers, the skeleton of a blood clot, essentially perform the mechanical task of creating a blockage that stems blood flow. Thus, a better understanding of the mechanical properties of these fibers, such as the tensile strength and Young's modulus, will enhance our understanding of blood clots. For quantitative stress and strain measurements, we need to image the deformation of the fiber and measure the applied force simultaneously. For this reason, we are combining fluorescent microscopy with atomic force microscopy. Fibrin fibers were fluorescently labeled with streptavidin-coated quantum dots and deposited on a functionalized glass substrate, imaged and manipulated under buffer. We will describe our progress in obtaining quantitative lateral force measurements under buffer simultaneous with strain measurements from optical microscope images.

  5. Measurement of the interaction forces at various pH levels by using AFM for the interpretation of DNA adsorption on silanized surfaces

    NASA Astrophysics Data System (ADS)

    Han, Seung Pil; Suga, Kosaku; Fujihara, Masamichi; Park, Byung-Eun

    2014-09-01

    Various surfaces have been used for deoxyribonucleic acid (DNA) immobilization, one example being a silanized surface. This is useful for determining DNA lengths and, thus, locating specific gene sequences in DNA by using fluorescence microscopy and scanning probe microscopy. In this study, we deposited DNA by using the molecular combing method and, we used fluorescence microscopy to study how the chain lengths of n-alkylsilanes affected the surface density of DNA deposited on the silanized surfaces in a tris-ethylenediaminetetraacetic acid (TE) buffer. The forces between a cleaned silicon-nitride (Si3N4) tip and each substrate surface in aqueous buffers at various pH levels (1.0 ~ 9.0) were also studied by using atomic force microscopy to measure the force-distance curves. We explain why the density of lambda bacteriophage DNA (λ-DNA) deposited by using the molecular combing method at pH 8 was lower on the silanized surface with the shorter alkyl chain than it was on the silanized surface with the longer alkyl chain in terms of the electrical double layer (EDL) and the adhesive force.

  6. Quantitative Measurements of Elastic Properties with Ultrasonic-Based AFM and Conventional Techniques

    NASA Astrophysics Data System (ADS)

    Hurley, D. C.

    A prime motivation for the original development of ultrasonic-based AFM methods was to enable measurements of elastic properties with nanoscale spatial resolution. In this chapter, we discuss the quantitative measurement of elastic modulus with ultrasonic-based AFM methods and compare it to measurement by more conventional or established techniques. First, we present the basic principles of modulus measurement with methods that involve contact resonance spectroscopy, such as atomic force acoustic microscopy (AFAM) and ultrasonic AFM (U-AFM). Fundamental concepts of modulus measurement with more established approaches, especially instrumented (nano-) indentation (NI) and surface acoustic wave spectroscopy (SAWS), are then discussed. We consider the relative strengths and limitations of various approaches, for example measurement accuracy, spatial resolution, and applicability to different materials. Example results for specific material systems are given with an emphasis on studies involving direct intercomparison of different techniques. Finally, current research in this area and opportunities for future work are described.

  7. Mechanical properties of NRR domain from human Notch 1 studied by single molecule AFM force spectroscopy and steered molecular dynamics

    NASA Astrophysics Data System (ADS)

    Dey, Ashim; Chen, Jianhan; Li, Hui; Zolkiewska, Anna; Wu, Hui-Chuan; Zolkiewski, Michal; Szoszkiewicz, Robert

    2010-10-01

    For proteins in living cells, forces are present from macroscopic to single molecule levels. Single molecule atomic force microscopy in force extension (FX-AFM) mode measures forces at which proteins undergo major conformational transitions with ˜ 10 pN force sensitivity (FX-AFM). Here, we present the results of the FX-AFM experiments on a construct comprising the NRR domain from human Notch 1. It is believed that understanding the mechanical properties of Notch at the single molecule level can help to understand its role in triggering some breast cancers. The experimental results on our Notch construct revealed several conformational transitions of this molecule under force. These results were confronted with the steered molecular dynamics simulations based on a simplified Go model. These results opened a path for further investigations of Notch constructs at various physiologically relevant conditions.

  8. Diamond-modified AFM probes: from diamond nanowires to atomic force microscopy-integrated boron-doped diamond electrodes.

    PubMed

    Smirnov, Waldemar; Kriele, Armin; Hoffmann, René; Sillero, Eugenio; Hees, Jakob; Williams, Oliver A; Yang, Nianjun; Kranz, Christine; Nebel, Christoph E

    2011-06-15

    In atomic force microscopy (AFM), sharp and wear-resistant tips are a critical issue. Regarding scanning electrochemical microscopy (SECM), electrodes are required to be mechanically and chemically stable. Diamond is the perfect candidate for both AFM probes as well as for electrode materials if doped, due to diamond's unrivaled mechanical, chemical, and electrochemical properties. In this study, standard AFM tips were overgrown with typically 300 nm thick nanocrystalline diamond (NCD) layers and modified to obtain ultra sharp diamond nanowire-based AFM probes and probes that were used for combined AFM-SECM measurements based on integrated boron-doped conductive diamond electrodes. Analysis of the resonance properties of the diamond overgrown AFM cantilevers showed increasing resonance frequencies with increasing diamond coating thicknesses (i.e., from 160 to 260 kHz). The measured data were compared to performed simulations and show excellent correlation. A strong enhancement of the quality factor upon overgrowth was also observed (120 to 710). AFM tips with integrated diamond nanowires are shown to have apex radii as small as 5 nm and where fabricated by selectively etching diamond in a plasma etching process using self-organized metal nanomasks. These scanning tips showed superior imaging performance as compared to standard Si-tips or commercially available diamond-coated tips. The high imaging resolution and low tip wear are demonstrated using tapping and contact mode AFM measurements by imaging ultra hard substrates and DNA. Furthermore, AFM probes were coated with conductive boron-doped and insulating diamond layers to achieve bifunctional AFM-SECM probes. For this, focused ion beam (FIB) technology was used to expose the boron-doped diamond as a recessed electrode near the apex of the scanning tip. Such a modified probe was used to perform proof-of-concept AFM-SECM measurements. The results show that high-quality diamond probes can be fabricated, which are

  9. Accurate, explicit formulae for higher harmonic force spectroscopy by frequency modulation-AFM.

    PubMed

    Kuchuk, Kfir; Sivan, Uri

    2015-01-01

    The nonlinear interaction between an AFM tip and a sample gives rise to oscillations of the cantilever at integral multiples (harmonics) of the fundamental resonance frequency. The higher order harmonics have long been recognized to hold invaluable information on short range interactions but their utilization has thus far been relatively limited due to theoretical and experimental complexities. In particular, existing approximations of the interaction force in terms of higher harmonic amplitudes generally require simultaneous measurements of multiple harmonics to achieve satisfactory accuracy. In the present letter we address the mathematical challenge and derive accurate, explicit formulae for both conservative and dissipative forces in terms of an arbitrary single harmonic. Additionally, we show that in frequency modulation-AFM (FM-AFM) each harmonic carries complete information on the force, obviating the need for multi-harmonic analysis. Finally, we show that higher harmonics may indeed be used to reconstruct short range forces more accurately than the fundamental harmonic when the oscillation amplitude is small compared with the interaction range.

  10. A review of the application of atomic force microscopy (AFM) in food science and technology.

    PubMed

    Liu, Shaoyang; Wang, Yifen

    2011-01-01

    Atomic force microscopy (AFM) is a powerful nanoscale analysis technique used in food area. This versatile technique can be used to acquire high-resolution sample images and investigate local interactions in air or liquid surroundings. In this chapter, we explain the principles of AFM and review representative applications of AFM in gelatin, casein micelle, carrageenan, gellan gum, starch, and interface. We elucidate new knowledge revealed with AFM as well as ways to use AFM to obtain morphology and rheology information in different food fields. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Characterisation of tissue factor-bearing extracellular vesicles with AFM: comparison of air-tapping-mode AFM and liquid Peak Force AFM.

    PubMed

    Hardij, Julie; Cecchet, Francesca; Berquand, Alexandre; Gheldof, Damien; Chatelain, Christian; Mullier, François; Chatelain, Bernard; Dogné, Jean-Michel

    2013-01-01

    Extracellular vesicles (EVs) are shed from cells and carry markers of the parent cells. Vesicles derived from cancer cells reach the bloodstream and locally influence important physiological processes. It has been previously shown that procoagulant vesicles are circulating in patients' fluids. These EVs are therefore considered as promising biomarkers for the thrombotic risk. Because of their small size, classical methods such as flow cytometry suffer from limitation for their characterisation. Atomic force microscopy (AFM) has been proposed as a promising complementary method for the characterisation of EVs. THE OBJECTIVES OF THIS STUDY ARE: (a) to develop and validate AFM with specific antibodies (anti-TF) and (b) to compare air and liquid modes for EVs' size and number determination as potential biomarkers of the prothrombotic risk. AFM multimode nanoscope III was used for air tapping mode (TM). AFM catalyst was used for liquid Peak Force Tapping (PFT) mode. Vesicles are generated according to Davila et al.'s protocol. Substrates are coated with various concentrations of antibodies, thanks to ethanolamine and glutaraldehyde. Vesicles were immobilised on antibody-coated surfaces to select tissue factor (TF)-positive vesicles. The size range of vesicles observed in liquid PFT mode is 6-10 times higher than in air mode. This corresponds to the data found in the literature. We recommend liquid PFT mode to analyse vesicles on 5 µg/ml antibody-coated substrates.

  12. Quantitative Analysis of Human Keratinocyte Cell Elasticity using Atomic Force Microscopy (AFM)

    PubMed Central

    Fung, Carmen Kar Man; Yang, Ruiguo; Seiffert-Sinha, Kristina; Lai, King Wai Chiu; Sinha, Animesh A.

    2013-01-01

    This paper presents the use of atomic force microscopy (AFM) to visualize and quantify the dynamics of epithelial cell junction interactions under physiological and pathophysiological conditions at the nanoscale. Desmosomal junctions are specialized structures critical to cellular adhesion within epithelial tissues. Disassembly of these junctions is seen consequent to the development of autoantibodies directed at specific desmosomal proteins in blistering skin diseases such as Pemphigus. However, these structures are complex and mechanically inhomogeneous, making it difficult to study and the mechanisms of autoantibody mediated keratinocyte disassembly remain largely unknown. Here, we have used AFM system to image and measure the mechanical property of living skin epithelial cells in culture. We demonstrate that the force measurement data can possibly distinguish the cell with different antibody treatment. Our demonstration of the use of AFM for in situ imaging and elasticity measurement positioned us to begin to investigate disease mechanisms and monitor therapeutic strategies in blistering skin diseases in much greater detail, to meet the demands for understanding disease pathology at the local, or tissue level. PMID:21349797

  13. High resolution surface morphology measurements using EBSD cross-correlation techniques and AFM.

    PubMed

    Vaudin, M D; Stan, G; Gerbig, Y B; Cook, R F

    2011-07-01

    The surface morphology surrounding wedge indentations in (001) Si has been measured using electron backscattered diffraction (EBSD) and atomic force microscopy (AFM). EBSD measurement of the lattice displacement field relative to a strain-free reference location allowed the surface uplift to be measured by summation of lattice rotations about the indentation axis. AFM was used in intermittent contact mode to determine surface morphology. The height profiles across the indentations for the two techniques agreed within 1 nm. Elastic uplift theory is used to model the data. Published by Elsevier B.V.

  14. Robust strategies for automated AFM force curve analysis--I. Non-adhesive indentation of soft, inhomogeneous materials.

    PubMed

    Lin, David C; Dimitriadis, Emilios K; Horkay, Ferenc

    2007-06-01

    The atomic force microscope (AFM) has found wide applicability as a nanoindentation tool to measure local elastic properties of soft materials. An automated approach to the processing of AFM indentation data, namely, the extraction of Young's modulus, is essential to realizing the high-throughput potential of the instrument as an elasticity probe for typical soft materials that exhibit inhomogeneity at microscopic scales. This paper focuses on Hertzian analysis techniques, which are applicable to linear elastic indentation. We compiled a series of synergistic strategies into an algorithm that overcomes many of the complications that have previously impeded efforts to automate the fitting of contact mechanics models to indentation data. AFM raster data sets containing up to 1024 individual force-displacement curves and macroscopic compression data were obtained from testing polyvinyl alcohol gels of known composition. Local elastic properties of tissue-engineered cartilage were also measured by the AFM. All AFM data sets were processed using customized software based on the algorithm, and the extracted values of Young's modulus were compared to those obtained by macroscopic testing. Accuracy of the technique was verified by the good agreement between values of Young's modulus obtained by AFM and by direct compression of the synthetic gels. Validation of robustness was achieved by successfully fitting the vastly different types of force curves generated from the indentation of tissue-engineered cartilage. For AFM indentation data that are amenable to Hertzian analysis, the method presented here minimizes subjectivity in preprocessing and allows for improved consistency and minimized user intervention. Automated, large-scale analysis of indentation data holds tremendous potential in bioengineering applications, such as high-resolution elasticity mapping of natural and artificial tissues.

  15. Magnetoelectric versus thermal actuation characteristics of shear force AFM probes with piezoresistive detection

    NASA Astrophysics Data System (ADS)

    Sierakowski, Andrzej; Kopiec, Daniel; Majstrzyk, Wojciech; Kunicki, Piotr; Janus, Paweł; Dobrowolski, Rafał; Grabiec, Piotr; Rangelow, Ivo W.; Gotszalk, Teodor

    2017-03-01

    In this paper the authors compare methods used for piezoresistive microcantilevers actuation for the atomic force microscopy (AFM) imaging in the dynamic shear force mode. The piezoresistive detection is an attractive technique comparing the optical beam detection of deflection. The principal advantage is that no external alignment of optical source and detector are needed. When the microcantilever is deflected, the stress is transferred into a change of resistivity of piezoresistors. The integration of piezoresistive read-out provides a promising solution in realizing a compact non-contact AFM. Resolution of piezoresistive read-out is limited by three main noise sources: Johnson, 1/f and thermomechanical noise. In the dynamic shear force mode measurement the method used for cantilever actuation will also affect the recorded noise in the piezoresistive detection circuit. This is the result of a crosstalk between an aluminium path (current loop used for actuation) and piezoresistors located near the base of the beam. In this paper authors described an elaborated in ITE (Institute of Electron Technology) technology of fabrication cantilevers with piezoresistive detection of deflection and compared efficiency of two methods used for cantilever actuation.

  16. Single cell active force generation under dynamic loading - Part I: AFM experiments.

    PubMed

    Weafer, P P; Reynolds, N H; Jarvis, S P; McGarry, J P

    2015-11-01

    A novel series of experiments are performed on single cells using a bespoke AFM system where the response of cells to dynamic loading at physiologically relevant frequencies is uncovered. Measured forces for the untreated cells are dramatically different to cytochalasin-D (cyto-D) treated cells, indicating that the contractile actin cytoskeleton plays a critical role in the response of cells to dynamic loading. Following a change in applied strain magnitude, while maintaining a constant applied strain rate, the compression force for contractile cells recovers to 88.9±7.8% of the steady state force. In contrast, cyto-D cell compression forces recover to only 38.0±6.7% of the steady state force. Additionally, untreated cells exhibit strongly negative (pulling) forces during unloading half-cycles when the probe is retracted. In comparison, negligible pulling forces are measured for cyto-D cells during probe retraction. The current study demonstrates that active contractile forces, generated by actin-myosin cross-bridge cycling, dominate the response of single cells to dynamic loading. Such active force generation is shown to be independent of applied strain magnitude. Passive forces generated by the applied deformation are shown to be of secondary importance, exhibiting a high dependence on applied strain magnitude, in contrast to the active forces in untreated cells. A novel series of experiments are performed on single cells using a bespoke AFM system where the response of cells to dynamic loading at physiologically relevant frequencies is uncovered. Contractile cells, which contain the active force generation machinery of the actin cytoskeleton, are shown to be insensitive to applied strain magnitude, exhibiting high resistance to dynamic compression and stretching. Such trends are not observed for cells in which the actin cytoskeleton has been chemically disrupted. These biomechanical insights have not been previously reported. This detailed characterisation of

  17. An AFM-based pit-measuring method for indirect measurements of cell-surface membrane vesicles

    SciTech Connect

    Zhang, Xiaojun; Chen, Yuan; Chen, Yong

    2014-03-28

    Highlights: • Air drying induced the transformation of cell-surface membrane vesicles into pits. • An AFM-based pit-measuring method was developed to measure cell-surface vesicles. • Our method detected at least two populations of cell-surface membrane vesicles. - Abstract: Circulating membrane vesicles, which are shed from many cell types, have multiple functions and have been correlated with many diseases. Although circulating membrane vesicles have been extensively characterized, the status of cell-surface membrane vesicles prior to their release is less understood due to the lack of effective measurement methods. Recently, as a powerful, micro- or nano-scale imaging tool, atomic force microscopy (AFM) has been applied in measuring circulating membrane vesicles. However, it seems very difficult for AFM to directly image/identify and measure cell-bound membrane vesicles due to the similarity of surface morphology between membrane vesicles and cell surfaces. Therefore, until now no AFM studies on cell-surface membrane vesicles have been reported. In this study, we found that air drying can induce the transformation of most cell-surface membrane vesicles into pits that are more readily detectable by AFM. Based on this, we developed an AFM-based pit-measuring method and, for the first time, used AFM to indirectly measure cell-surface membrane vesicles on cultured endothelial cells. Using this approach, we observed and quantitatively measured at least two populations of cell-surface membrane vesicles, a nanoscale population (<500 nm in diameter peaking at ∼250 nm) and a microscale population (from 500 nm to ∼2 μm peaking at ∼0.8 μm), whereas confocal microscopy only detected the microscale population. The AFM-based pit-measuring method is potentially useful for studying cell-surface membrane vesicles and for investigating the mechanisms of membrane vesicle formation/release.

  18. Development of a 3D-AFM for true 3D measurements of nanostructures

    NASA Astrophysics Data System (ADS)

    Dai, Gaoliang; Häßler-Grohne, Wolfgang; Hüser, Dorothee; Wolff, Helmut; Danzebrink, Hans-Ulrich; Koenders, Ludger; Bosse, Harald

    2011-09-01

    The development of advanced lithography requires highly accurate 3D metrology methods for small line structures of both wafers and photomasks. Development of a new 3D atomic force microscopy (3D-AFM) with vertical and torsional oscillation modes is introduced in this paper. In its configuration, the AFM probe is oscillated using two piezo actuators driven at vertical and torsional resonance frequencies of the cantilever. In such a way, the AFM tip can probe the surface with a vertical and a lateral oscillation, offering high 3D probing sensitivity. In addition, a so-called vector approach probing (VAP) method has been applied. The sample is measured point-by-point using this method. At each probing point, the tip is approached towards the surface until the desired tip-sample interaction is detected and then immediately withdrawn from the surface. Compared to conventional AFMs, where the tip is kept continuously in interaction with the surface, the tip-sample interaction time using the VAP method is greatly reduced and consequently the tip wear is reduced. Preliminary experimental results show promising performance of the developed system. A measurement of a line structure of 800 nm height employing a super sharp AFM tip could be performed with a repeatability of its 3D profiles of better than 1 nm (p-v). A line structure of a Physikalisch-Technische Bundesanstalt photomask with a nominal width of 300 nm has been measured using a flared tip AFM probe. The repeatability of the middle CD values reaches 0.28 nm (1σ). A long-term stability investigation shows that the 3D-AFM has a high stability of better than 1 nm within 197 measurements taken over 30 h, which also confirms the very low tip wear.

  19. alpha-Synuclein misfolding: single molecule AFM force spectroscopy study.

    PubMed

    Yu, Junping; Malkova, Sarka; Lyubchenko, Yuri L

    2008-12-26

    Protein misfolding and aggregation are the very first and critical steps in development of various neurodegenerative disorders, including Parkinson's disease, induced by misfolding of alpha-synuclein. Thus, elucidating properties of proteins in misfolded states and understanding the mechanisms of their assembly into the disease prone aggregates are critical for the development of rational approaches to prevent protein misfolding-mediated pathologies. To accomplish this goal and as a first step to elucidate the mechanism of alpha-synuclein misfolding, we applied single-molecule force spectroscopy capable of detecting protein misfolding. We immobilized alpha-synuclein molecules at their C-termini at the atomic force microscope tips and substrate surfaces, and measured the interaction between the proteins by probing the microscope tip at various locations on the surface. Using this approach, we detected alpha-synuclein misfolded states by enhanced interprotein interaction. We used a dynamics force spectroscopy approach to measure such an important characteristic of dimers of misfolded alpha-synuclein as their lifetimes. We found that the dimer lifetimes are in the range of seconds and these values are much higher than the characteristics for the dynamics of the protein in monomeric state. These data show that compared to highly dynamic monomeric forms, alpha-synuclein dimers are much more stable and thus can serve as stable nuclei for the formation of multimeric and aggregated forms of alpha-synuclein. Importantly, two different lifetimes were observed for the dimers, suggesting that aggregation can follow different pathways that may lead to different aggregated morphologies of alpha-synuclein.

  20. Noise in NC-AFM measurements with significant tip-sample interaction.

    PubMed

    Lübbe, Jannis; Temmen, Matthias; Rahe, Philipp; Reichling, Michael

    2016-01-01

    The frequency shift noise in non-contact atomic force microscopy (NC-AFM) imaging and spectroscopy consists of thermal noise and detection system noise with an additional contribution from amplitude noise if there are significant tip-sample interactions. The total noise power spectral density D(Δ)(f) (fm) is, however, not just the sum of these noise contributions. Instead its magnitude and spectral characteristics are determined by the strongly non-linear tip-sample interaction, by the coupling between the amplitude and tip-sample distance control loops of the NC-AFM system as well as by the characteristics of the phase locked loop (PLL) detector used for frequency demodulation. Here, we measure D(Δ)(f) (fm) for various NC-AFM parameter settings representing realistic measurement conditions and compare experimental data to simulations based on a model of the NC-AFM system that includes the tip-sample interaction. The good agreement between predicted and measured noise spectra confirms that the model covers the relevant noise contributions and interactions. Results yield a general understanding of noise generation and propagation in the NC-AFM and provide a quantitative prediction of noise for given experimental parameters. We derive strategies for noise-optimised imaging and spectroscopy and outline a full optimisation procedure for the instrumentation and control loops.

  1. Noise in NC-AFM measurements with significant tip–sample interaction

    PubMed Central

    Lübbe, Jannis; Temmen, Matthias

    2016-01-01

    The frequency shift noise in non-contact atomic force microscopy (NC-AFM) imaging and spectroscopy consists of thermal noise and detection system noise with an additional contribution from amplitude noise if there are significant tip–sample interactions. The total noise power spectral density D Δ f(f m) is, however, not just the sum of these noise contributions. Instead its magnitude and spectral characteristics are determined by the strongly non-linear tip–sample interaction, by the coupling between the amplitude and tip–sample distance control loops of the NC-AFM system as well as by the characteristics of the phase locked loop (PLL) detector used for frequency demodulation. Here, we measure D Δ f(f m) for various NC-AFM parameter settings representing realistic measurement conditions and compare experimental data to simulations based on a model of the NC-AFM system that includes the tip–sample interaction. The good agreement between predicted and measured noise spectra confirms that the model covers the relevant noise contributions and interactions. Results yield a general understanding of noise generation and propagation in the NC-AFM and provide a quantitative prediction of noise for given experimental parameters. We derive strategies for noise-optimised imaging and spectroscopy and outline a full optimisation procedure for the instrumentation and control loops. PMID:28144538

  2. LET spectrum measurements in Cr-39 PNTD with AFM

    SciTech Connect

    Johnson, Carl Edward; De Witt, Joel M; Benton, Eric R; Yasuda, Nakahiro; Benton, Eugene V

    2010-01-01

    Energetic protons, neutrons, and heavy ions undergoing collisions with target nuclei of varying Z can produce residual heavy recoil fragments via intra-nuclear cascade/evaporation reactions. The particles produced in these non-elastic collisions generally have such extremely short range ({approx}< 10 {mu}m) that they cannot be directly observed by conventional detection methods including CR-39 plastic nuclear track detector (PNTD) that has been chemically etched for analysis by standard visible light microscopy. However, high-LET recoil fragments having range on the order of several cell diameters can be produced in tissue during radiotherapy using proton and carbon beams. We have developed a method to analyze short-range, high-LET tracks in CR-39 plastic nuclear track detector (PNTD) using short duration chemical etching ({approx}< 1 {mu}m) followed by automated atomic force microscope (AFM) scanning. The post-scan data processing used in this work was based on semi-automated matrix analysis opposed to traditional grey-scale image analysis. This method takes advantage of the 3-D data obtained via AFM to achieve robust discrimination of nuclear tracks from other features. Through automation of AFM scanning, sufficient AFM scan frames were obtained to attain an LET spectrum spanning the LET range from 200-1500 keV/{mu}m. In addition to our experiments, simulations were carried out with the Monte Carlo transport code, FLUKA. To demonstrate this method, CR-39 PNTD was exposed to the proton therapy beam at Loma Linda University Medical Center (LLUMC) at 60 and 230 MeV. Additionally, detectors were exposed to I GeV protons at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL). For these exposures CR-39 PNTD, Al and Cu target foils were used between detector layers.

  3. LET Spectrum Measurements In CR-39 PNTD With AFM

    SciTech Connect

    Johnson, C. E.; DeWitt, J. M.; Benton, E. R.; Yasuda, N.; Benton, E. V.

    2011-06-01

    Energetic protons, neutrons, and heavy ions undergoing collisions with target nuclei of varying Z can produce residual heavy recoil fragments via intra-nuclear cascade/evaporation reactions. The particles produced in these non-elastic collisions generally have such extremely short range ({approx}<10 {mu}m) that they cannot be directly observed by conventional detection methods including CR-39 plastic nuclear track detector (PNTD) that has been chemically etched for analysis by standard visible light microscopy. However, high-LET recoil fragments having range on the order of several cell diameters can be produced in tissue during radiotherapy using proton and carbon beams. We have developed a method to analyze short-range, high-LET tracks in CR-39 plastic nuclear track detector (PNTD) using short duration chemical etching ({approx}<1 {mu}m) following by automated atomic force microscope (AFM) scanning. The post-scan data processing used in this work was based on semi-automated matrix analysis opposed to traditional grey-scale image analysis. This method takes advantage of the 3-D data obtained via AFM to achieve robust discrimination of nuclear tracks from other features inherently present in the post-etch detector surface. Through automation of AFM scanning, sufficient AFM scan frames were obtained to attain an LET spectrum spanning the LET range from 200-1500 keV/{mu}m. In addition to our experiments, simulations were carried out with the Monte Carlo transport code, FLUKA. To demonstrate this method, CR-39 PNTD was exposed to the proton therapy beam at Loma Linda University Medical Center (LLUMC) at 60 and 230 MeV. Additionally, detectors were exposed to 1 GeV protons at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL). For these exposures CR-39 PNTD, Al and Cu target foils were used between detector layers.

  4. LET Spectrum Measurements In CR-39 PNTD With AFM

    NASA Astrophysics Data System (ADS)

    Johnson, C. E.; DeWitt, J. M.; Benton, E. R.; Yasuda, N.; Benton, E. V.

    2011-06-01

    Energetic protons, neutrons, and heavy ions undergoing collisions with target nuclei of varying Z can produce residual heavy recoil fragments via intra-nuclear cascade/evaporation reactions. The particles produced in these non-elastic collisions generally have such extremely short range (˜<10 μm) that they cannot be directly observed by conventional detection methods including CR-39 plastic nuclear track detector (PNTD) that has been chemically etched for analysis by standard visible light microscopy. However, high-LET recoil fragments having range on the order of several cell diameters can be produced in tissue during radiotherapy using proton and carbon beams. We have developed a method to analyze short-range, high-LET tracks in CR-39 plastic nuclear track detector (PNTD) using short duration chemical etching (˜<1 μm) following by automated atomic force microscope (AFM) scanning. The post-scan data processing used in this work was based on semi-automated matrix analysis opposed to traditional grey-scale image analysis. This method takes advantage of the 3-D data obtained via AFM to achieve robust discrimination of nuclear tracks from other features inherently present in the post-etch detector surface. Through automation of AFM scanning, sufficient AFM scan frames were obtained to attain an LET spectrum spanning the LET range from 200-1500 keV/μm. In addition to our experiments, simulations were carried out with the Monte Carlo transport code, FLUKA. To demonstrate this method, CR-39 PNTD was exposed to the proton therapy beam at Loma Linda University Medical Center (LLUMC) at 60 and 230 MeV. Additionally, detectors were exposed to 1 GeV protons at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL). For these exposures CR-39 PNTD, Al and Cu target foils were used between detector layers.

  5. AFM forces between mica and polystyrene surfaces in aqueous electrolyte solutions with and without gas bubbles.

    PubMed

    Saavedra, Jorge H; Acuña, Sergio M; Toledo, Pedro G

    2013-11-15

    Force curves between a flat mica substrate and a polystyrene microsphere were measured with an atomic force microscope (AFM) in carefully degassed water and aqueous NaCl, CaCl2, and AlCl3 solutions. The pH of the water used does not change significantly with degassing treatment, and its value remains close to 6. Electrolyte concentration ranges from 10-4 to 10-2M and pH from 4.7 to 5.1. We have found that the repulsive long-range electrostatic force between mica and polystyrene is attenuated by the presence of electrolytes and counterbalanced by a long-range attractive force, which we referred to as a hydrophobic force, which is longer-ranged than the ever present attractive van der Waals force. This force, which includes the adhesive bridging of residual air bubbles and newborn vapor cavities, and any other unknown forces, is reasonably well represented by a unique exponential law. Prefactor and decaying length are not very sensitive to electrolyte type, concentration, and pH, suggesting that any new force included in the law, in addition to adhesive bridges, should obey a non-classical electrostatic mechanism. However, we also know that liquid/solid contact angle and liquid/vapor surface tension increase with electrolyte concentration and valence increasing the stability of bubbles and cavities which in turn increase the bridging force. Clearly, these effects are hidden in the empirical force law. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. The Atomic Force Microscopic (AFM) Characterization of Nanomaterials

    DTIC Science & Technology

    2009-06-01

    the first intramolecular field effect transistors (FETs). Additionally, the first intramolecular logic gate utilizing SWNT FETs has recently become...magnetic force microscope (MFM)), Casimir forces, solvation forces, etc. In addition to these forces, other quantities could also be simultaneously...crystals may be employed, with each responsible for scanning in the x, y and z directions. This eliminates some of the distortion effects seen with a

  7. Determination of Mechanical Properties of Spatially Heterogeneous Breast Tissue Specimens Using Contact Mode Atomic Force Microscopy (AFM)

    PubMed Central

    Roy, Rajarshi; Desai, Jaydev P.

    2016-01-01

    This paper outlines a comprehensive parametric approach for quantifying mechanical properties of spatially heterogeneous thin biological specimens such as human breast tissue using contact-mode Atomic Force Microscopy. Using inverse finite element (FE) analysis of spherical nanoindentation, the force response from hyperelastic material models is compared with the predicted force response from existing analytical contact models, and a sensitivity study is carried out to assess uniqueness of the inverse FE solution. Furthermore, an automation strategy is proposed to analyze AFM force curves with varying levels of material nonlinearity with minimal user intervention. Implementation of our approach on an elastic map acquired from raster AFM indentation of breast tissue specimens indicates that a judicious combination of analytical and numerical techniques allow more accurate interpretation of AFM indentation data compared to relying on purely analytical contact models, while keeping the computational cost associated an inverse FE solution with reasonable limits. The results reported in this study have several implications in performing unsupervised data analysis on AFM indentation measurements on a wide variety of heterogeneous biomaterials. PMID:25015130

  8. Colloid-probe AFM studies of the interaction forces of proteins adsorbed on colloidal crystals.

    PubMed

    Singh, Gurvinder; Bremmell, Kristen E; Griesser, Hans J; Kingshott, Peter

    2015-04-28

    In recent years, colloid-probe AFM has been used to measure the direct interaction forces between colloidal particles of different size or surface functionality in aqueous media, as one can study different forces in symmerical systems (i.e., sphere-sphere geometry). The present study investigates the interaction between protein coatings on colloid probes and hydrophilic surfaces decorated with hexagonally close packed single particle layers that are either uncoated or coated with proteins. Controlled solvent evaporation from aqueous suspensions of colloidal particles (coated with or without lysozyme and albumin) produces single layers of close-packed colloidal crystals over large areas on a solid support. The measurements have been carried out in an aqueous medium at different salt concentrations and pH values. The results show changes in the interaction forces as the surface charge of the unmodified or modified particles, and ionic strength or pH of the solution is altered. At high ionic strength or pH, electrostatic interactions are screened, and a strong repulsive force at short separation below 5 nm dominates, suggesting structural changes in the absorbed protein layer on the particles. We also study the force of adhesion, which decreases with an increment in the salt concentration, and the interaction between two different proteins indicating a repulsive interaction on approach and adhesion on retraction.

  9. Forced Unfolding of the Coiled-Coils of Fibrinogen by Single-Molecule AFM

    NASA Astrophysics Data System (ADS)

    Brown, Andre; Litvinov, Rustem; Discher, Dennis; Weisel, John

    2007-03-01

    A blood clot needs to have the right degree of stiffness and plasticity for hemostasis, but the origin of these mechanical properties is unknown. Here we report the first measurements using single molecule atomic force microscopy (AFM) to study the forced unfolding of fibrinogen to begin addressing this problem. To generate longer reproducible curves than are possible using monomer, factor XIIIa cross-linked, single chain fibrinogen oligomers were used. When extended under force, these oligomers showed sawtooth shaped force-extension patterns characteristic of unfolding proteins with a peak-to-peak separation of approximately 26 nm, consistent with the independent unfolding of the coiled-coils. These results were then reproduced using a Monte Carlo simulation with parameters in the same range as those previously used for unfolding globular domains. In particular, we found that the refolding time was negligible on experimental time and force scales in contrast to previous work on simpler coiled-coils. We suggest that this difference may be due to fibrinogen's structurally and topologically more complex coiled-coils and that an interaction between the alpha C and central domains may be involved. These results suggest a new functional property of fibrinogen and that the coiled-coil is more than a passive structural element of this molecule.

  10. Nanomechanical characterization of nanostructured bainitic steel: Peak Force Microscopy and Nanoindentation with AFM

    PubMed Central

    Morales-Rivas, Lucia; González-Orive, Alejandro; Garcia-Mateo, Carlos; Hernández-Creus, Alberto; Caballero, Francisca G.; Vázquez, Luis

    2015-01-01

    The full understanding of the deformation mechanisms in nanostructured bainite requires the local characterization of its mechanical properties, which are expected to change from one phase, bainitic ferrite, to another, austenite. This study becomes a challenging process due to the bainitic nanostructured nature and high Young’s modulus. In this work, we have carried out such study by means of the combination of AFM-based techniques, such as nanoindentation and Peak Force Quantitative Nanomechanical Mapping (PF-QNM) measurements. We have addressed critically the limits and advantages of these techniques and been able to measure some elastoplastic parameters of both phases. Specifically, we have analyzed by PF-QNM two nanostructured bainitic steels, with a finer and a coarser structure, and found that both phases have a similar Young’s modulus. PMID:26602631

  11. Nanomechanical characterization of nanostructured bainitic steel: Peak Force Microscopy and Nanoindentation with AFM.

    PubMed

    Morales-Rivas, Lucia; González-Orive, Alejandro; Garcia-Mateo, Carlos; Hernández-Creus, Alberto; Caballero, Francisca G; Vázquez, Luis

    2015-11-25

    The full understanding of the deformation mechanisms in nanostructured bainite requires the local characterization of its mechanical properties, which are expected to change from one phase, bainitic ferrite, to another, austenite. This study becomes a challenging process due to the bainitic nanostructured nature and high Young's modulus. In this work, we have carried out such study by means of the combination of AFM-based techniques, such as nanoindentation and Peak Force Quantitative Nanomechanical Mapping (PF-QNM) measurements. We have addressed critically the limits and advantages of these techniques and been able to measure some elastoplastic parameters of both phases. Specifically, we have analyzed by PF-QNM two nanostructured bainitic steels, with a finer and a coarser structure, and found that both phases have a similar Young's modulus.

  12. AFM study of forces between silicon oil and hydrophobic-hydrophilic surfaces in aqueous solutions.

    PubMed

    Zbik, Marek S; Frost, Ray L

    2010-09-15

    An investigation has been made of the interactions between silicone oil and various solid substrates immersed in aqueous solutions. Measurements were made using an atomic force microscope (AFM) using the colloid-probe method. The silicone oil drop is simulated by coating a small silica sphere with the oil, and measuring the force as this coated sphere is brought close to contact with a flat solid surface. It is found that the silicone oil surface is negatively charged, which causes a double-layer repulsion between the oil drop and another negatively charged surface such as mica. With hydrophilic solids, this repulsion is strong enough to prevent attachment of the drop to the solid. However, with hydrophobic surfaces there is an additional attractive force which overcomes the double-layer repulsion, and the silicone oil drop attaches to the solid. There is circumstantial evidence that linear and nonlinear effect take part in force results from compression of the silicone oil film coated on the glass sphere.

  13. Using AFM Force Curves to Explore Properties of Elastomers

    ERIC Educational Resources Information Center

    Ferguson, Megan A.; Kozlowski, Joseph J.

    2013-01-01

    polydimethylsiloxane (PDMS) elastomers. Force curves are used to quantify the stiffness of elastomers prepared with different base-to-curing agent ratios. Trends in observed spring constants of the…

  14. Using AFM Force Curves to Explore Properties of Elastomers

    ERIC Educational Resources Information Center

    Ferguson, Megan A.; Kozlowski, Joseph J.

    2013-01-01

    polydimethylsiloxane (PDMS) elastomers. Force curves are used to quantify the stiffness of elastomers prepared with different base-to-curing agent ratios. Trends in observed spring constants of the…

  15. An improved measurement of dsDNA elasticity using AFM

    NASA Astrophysics Data System (ADS)

    Nguyen, Thi-Huong; Lee, Sang-Myung; Na, Kyounghwan; Yang, Sungwook; Kim, Jinseok; Yoon, Eui-Sung

    2010-02-01

    The mechanical properties of a small fragment (30 bp) of an individual double-stranded deoxyribonucleic acid (dsDNA) in water have been investigated by atomic force microscopy (AFM). We have stretched three systems including ssDNA, double-fixed dsDNA (one strand of the dsDNA molecules was biotinylated at the 3'-end and thiolated at the 5'-end, this was reversed for the other complementary strand) and single-fixed dsDNA (one strand of the dsDNA molecules was biotinylated at the 3'-end and thiolated at the 5'-end, whereas the other complementary strand was biotinylated at only the 5'-end). The achieved thiolation and biotinylation were to bind ds- or ssDNA to the gold surface and streptavidin-coated AFM tip, respectively. Analysis of the force versus displacement (F-D) curves from tip-DNA-substrate systems shows that the pull-off length (Lo) and stretch length (δ) from the double-fixed system were shorter than those observed in the ssDNA and the single-fixed system. The obtained stretch force (Fst) from the single-fixed dsDNA was much greater than that from the ssDNA even though it was about 10 pN greater than the one obtained in the double-fixed system. As a result, the Young's modulus of the double-fixed dsDNA was greater than that of the single-fixed dsDNA and the ssDNA. A more reliable stiffness of the dsDNA was observed via the double-fixed system, since there is no effect of the unpaired molecules during stretching, which always occurred in the single-fixed system. The unpaired molecules were also observed by comparing the stiffness of ssDNA and single-fixed dsDNA in which the end of one strand was left free.

  16. Multiparametric high-resolution imaging of native proteins by force-distance curve-based AFM.

    PubMed

    Pfreundschuh, Moritz; Martinez-Martin, David; Mulvihill, Estefania; Wegmann, Susanne; Muller, Daniel J

    2014-05-01

    A current challenge in the life sciences is to understand how the properties of individual molecular machines adjust in order to meet the functional requirements of the cell. Recent developments in force-distance (FD) curve-based atomic force microscopy (FD-based AFM) enable researchers to combine sub-nanometer imaging with quantitative mapping of physical, chemical and biological properties. Here we present a protocol to apply FD-based AFM to the multiparametric imaging of native proteins under physiological conditions. We describe procedures for experimental FD-based AFM setup, high-resolution imaging of proteins in the native unperturbed state with simultaneous quantitative mapping of multiple parameters, and data interpretation and analysis. The protocol, which can be completed in 1-3 d, enables researchers to image proteins and protein complexes in the native unperturbed state and to simultaneously map their biophysical and biochemical properties at sub-nanometer resolution.

  17. Combined quantitative ultrasonic and time-resolved interaction force AFM imaging

    NASA Astrophysics Data System (ADS)

    Parlak, Z.; Degertekin, F. L.

    2011-01-01

    The authors describe a method where quantitative ultrasonic atomic force microscopy (UAFM) is achieved during time-resolved interaction force (TRIF) imaging in intermittent contact mode. The method uses a calibration procedure for quantitative UAFM. It improves elasticity measurements of stiff regions of surfaces while retaining the capabilities of the TRIF mode for topography, adhesion, dissipation, and elasticity measurements on soft regions of sample surfaces. This combination is especially advantageous when measuring and imaging samples with broad stiffness range in a nondestructive manner. The experiments utilize an active AFM probe with high bandwidth and the UAFM calibration is performed by measuring the magnitude of the time-resolved UAFM signal at a judiciously chosen frequency for different contact stiffness values during individual taps. Improved sensitivity to stiff surface elasticity is demonstrated on a special sample. The results show that combining UAFM with TRIF provides 2.5 GPa (5%) standard deviation on the silicon surface reduced Young's modulus, representing 5× improvement over using only TRIF mode imaging.

  18. Combined force spectroscopy, AFM and calorimetric studies to reveal the nanostructural organization of biomimetic membranes.

    PubMed

    Suárez-Germà, C; Morros, A; Montero, M T; Hernández-Borrell, J; Domènech, Ò

    2014-10-01

    In this work we studied a binary lipid matrix of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG), a composition that mimics the inner membrane of Escherichia coli. More specifically, liposomes with varying fractions of POPG were analysed by differential scanning calorimetry (DSC) and a binary phase diagram of the system was created. Additionally, we performed atomic force microscopy (AFM) imaging of supported lipid bilayers (SLBs) of similar compositions at different temperatures, in order to create a pseudo-binary phase diagram specific to this membrane model. AFM study of SLBs is of particular interest, as it is conceived as the most adequate technique not only for studying lipid bilayer systems but also for imaging and even nanomanipulating inserted membrane proteins. The construction of the above-mentioned phase diagram enabled us to grasp better the thermodynamics of the thermal lipid transition from a gel-like POPE:POPG phase system to a more fluid phase system. Finally, AFM force spectroscopy (FS) was used to determine the nanomechanics of these two lipid phases at 27°C and at different POPG fractions. The resulting data correlated with the specific composition of each phase was calculated from the AFM phase diagram obtained. All the experiments were done in the presence of 10 mM of Ca(2+), as this ion is commonly used when performing AFM with negatively charged phospholipids.

  19. Dynamic force microscopy simulator (dForce): A tool for planning and understanding tapping and bimodal AFM experiments

    PubMed Central

    Guzman, Horacio V; Garcia, Pablo D

    2015-01-01

    Summary We present a simulation environment, dForce, which can be used for a better understanding of dynamic force microscopy experiments. The simulator presents the cantilever–tip dynamics for two dynamic AFM methods, tapping mode AFM and bimodal AFM. It can be applied for a wide variety of experimental situations in air or liquid. The code provides all the variables and parameters relevant in those modes, for example, the instantaneous deflection and tip–surface force, velocity, virial, dissipated energy, sample deformation and peak force as a function of time or distance. The simulator includes a variety of interactions and contact mechanics models to describe AFM experiments including: van der Waals, Hertz, DMT, JKR, bottom effect cone correction, linear viscoelastic forces or the standard linear solid viscoelastic model. We have compared two numerical integration methods to select the one that offers optimal accuracy and speed. The graphical user interface has been designed to facilitate the navigation of non-experts in simulations. Finally, the accuracy of dForce has been tested against numerical simulations performed during the last 18 years. PMID:25821676

  20. Increased imaging speed and force sensitivity for bio-applications with small cantilevers using a conventional AFM setup

    PubMed Central

    Leitner, Michael; Fantner, Georg E.; Fantner, Ernest J.; Ivanova, Katerina; Ivanov, Tzvetan; Rangelow, Ivo; Ebner, Andreas; Rangl, Martina; Tang, Jilin; Hinterdorfer, Peter

    2012-01-01

    In this study, we demonstrate the increased performance in speed and sensitivity achieved by the use of small AFM cantilevers on a standard AFM system. For this, small rectangular silicon oxynitride cantilevers were utilized to arrive at faster atomic force microscopy (AFM) imaging times and more sensitive molecular recognition force spectroscopy (MRFS) experiments. The cantilevers we used had lengths between 13 and 46 μm, a width of about 11 μm, and a thickness between 150 and 600 nm. They were coated with chromium and gold on the backside for a better laser reflection. We characterized these small cantilevers through their frequency spectrum and with electron microscopy. Due to their small size and high resonance frequency we were able to increase the imaging speed by a factor of 10 without any loss in resolution for images from several μm scansize down to the nanometer scale. This was shown on bacterial surface layers (s-layer) with tapping mode under aqueous, near physiological conditions and on nuclear membranes in contact mode in ambient environment. In addition, we showed that single molecular forces can be measured with an up to 5 times higher force sensitivity in comparison to conventional cantilevers with similar spring constants. PMID:22721963

  1. Quantitative mapping of the elastic modulus of soft materials with HarmoniX and PeakForce QNM AFM modes.

    PubMed

    Dokukin, Maxim E; Sokolov, Igor

    2012-11-20

    The modulus of elasticity of soft materials on the nanoscale is of interest when studying thin films, nanocomposites, and biomaterials. Two novel modes of atomic force microscopy (AFM) have been introduced recently: HarmoniX and PeakForce QNM. Both modes produce distribution maps of the elastic modulus over the sample surface. Here we investigate the question of how quantitative these maps are when studying soft materials. Three different polymers with a macroscopic Young's modulus of 0.6-0.7 GPa (polyurethanes) and 2.7 GPa (polystyrene) are analyzed using these new modes. The moduli obtained are compared to the data measured with the other commonly used techniques, dynamic mechanical analyzer (DMA), regular AFM, and nanoindenter. We show that the elastic modulus is overestimated in both the HarmoniX and PeakForce QNM modes when using regular sharp probes because of excessively overstressed material in the samples. We further demonstrate that both AFM modes can work in the linear stress-strain regime when using a relatively dull indentation probe (starting from ~210 nm). The analysis of the elasticity models to be used shows that the JKR model should be used for the samples considered here instead of the DMT model, which is currently implemented in HarmoniX and PeakForce QNM modes. Using the JKR model and ~240 nm AFM probe in the PeakForce QNM mode, we demonstrate that a quantitative mapping of the elastic modulus of polymeric materials is possible. A spatial resolution of ~50 nm and a minimum 2 to 3 nm indentation depth are achieved.

  2. Experimental and numerical investigation of nanoparticle releasing in AFM nanomanipulation using high voltage electrostatic forces

    NASA Astrophysics Data System (ADS)

    Ghattan Kashani, H.; Shokrolahi, S.; Akbari Moayyer, H.; Shariat Panahi, M.; Shahmoradi Zavareh, A.

    2017-07-01

    Atomic Force Microscopes (AFMs) have been widely used as nanomanipulators due to their versatility to work with a broad range of materials and their controllable interaction force, among other features. While AFMs can effectively grasp, move, and position nanoscale objects in 2D environments through basic pull/push operations, they often lack the high precision required in many 3D pick and place applications, especially in non-vacuum environments. In this study, a novel method to resolve the adhesion problem between nanoscale objects and the AFM tip has been developed and tested. The method is based on the application of a high electrostatic voltage to the tip to produce the repulsive force required for the release of the nanoobject. The method is proposed for conductive nanoparticles and tips used in many nanomanipulation applications, and can be easily implemented on typical AFMs with minimal alterations. The applicability of the proposed method is investigated through a series of combined Molecular Dynamics/Finite Element simulations.

  3. Structural impact of cations on lipid bilayer models: nanomechanical properties by AFM-force spectroscopy.

    PubMed

    Redondo-Morata, Lorena; Giannotti, Marina I; Sanz, Fausto

    2014-02-01

    Atomic Force Microscopy (AFM) has become an invaluable tool for studying the micro- and nanoworlds. As a stand-alone, high-resolution imaging technique and force transducer, it defies most other surface instrumentation in ease of use, sensitivity and versatility. The main strength of AFM relies on the possibility to operate in an aqueous environment on a wide variety of biological samples, from single molecules - DNA or proteins - to macromolecular assemblies like biological membranes. Understanding the effect of mechanical stress on membranes is of primary importance in biophysics, since cells are known to perform their function under a complex combination of forces. In the later years, AFM-based Force-Spectroscopy (AFM-FS) has provided a new vista on membrane mechanics in a confined area within the nanometer realm, where most of the specific molecular interactions take place. Lipid membranes are electrostatically charged entities that physiologically coexist with electrolyte solutions. Thus, specific interactions with ions are a matter of considerable interest. The distribution of ions in the solution and their interaction with the membranes are factors that substantially modify the structure and dynamics of the cell membranes. Furthermore, signaling processes are modified by the membrane capability of retaining ions. Supported Lipid Bilayers (SLBs) are a versatile tool to investigate phospholipid membranes mimicking biological surfaces. In the present contribution, we review selected experiments on the mechanical stability of SLBs as models of lipid membranes by means of AFM-FS, with special focus on the effect of cations and ionic strength in the overall nanomechanical stability.

  4. Searching events in AFM force-extension curves: A wavelet approach.

    PubMed

    Benítez, R; Bolós, V J

    2017-01-01

    An algorithm, based on the wavelet scalogram energy, for automatically detecting events in force-extension AFM force spectroscopy experiments is introduced. The events to be detected are characterized by a discontinuity in the signal. It is shown how the wavelet scalogram energy has different decay rates at different points depending on the degree of regularity of the signal, showing faster decay rates at regular points and slower rates at singular points (jumps). It is shown that these differences produce peaks in the scalogram energy plot at the event points. Finally, the algorithm is illustrated in a tether analysis experiment by using it for the detection of events in the AFM force-extension curves susceptible to being considered tethers. Microsc. Res. Tech. 80:153-159, 2017. © 2016 Wiley Periodicals, Inc.

  5. AFM-porosimetry: density and pore volume measurements of particulate materials.

    PubMed

    Sörensen, Malin H; Valle-Delgado, Juan J; Corkery, Robert W; Rutland, Mark W; Alberius, Peter C

    2008-06-01

    We introduced the novel technique of AFM-porosimetry and applied it to measure the total pore volume of porous particles with a spherical geometry. The methodology is based on using an atomic force microscope as a balance to measure masses of individual particles. Several particles within the same batch were measured, and by plotting particle mass versus particle volume, the bulk density of the sample can be extracted from the slope of the linear fit. The pore volume is then calculated from the densities of the bulk and matrix materials, respectively. In contrast to nitrogen sorption and mercury porosimetry, this method is capable of measuring the total pore volume regardless of pore size distribution and pore connectivity. In this study, three porous samples were investigated by AFM-porosimetry: one ordered mesoporous sample and two disordered foam structures. All samples were based on a matrix of amorphous silica templated by a block copolymer, Pluronic F127, swollen to various degrees with poly(propylene glycol). In addition, the density of silica spheres without a template was measured by two independent techniques: AFM and the Archimedes principle.

  6. An AFM study of the chlorite-fluid interface. [Atomic Force Microscopy

    SciTech Connect

    Vrdoljak, G.A.; Henderson, G.S.; Fawcett, J.J. . Dept. of Geology)

    1992-01-01

    Chlorite is a ubiquitous mineral in many geologic environments and plays an important role in elemental adsorption and retention in soils. Chlorite has a 2:1 layer structure consisting of two tetrahedral sheets with an octahedral sheet between them (talc-like layer). The 2:1 layer is charge balanced and hydrogen-bonded by an interlayer of MgOH[sub 6] octahedra (brucite-like layer). The nature of chlorite's structure, its ease of imaging, and perfect 001 cleavage, make this mineral an ideal substrate for use in elemental adsorption studies in solution, with the AFM. The 001 cleavage plane of a 2b polytype with composition (Mg[sub 4.4]Fe[sub 0.6]Al[sub 1.0])[(Si[sub 2.9]Al[sub 1.1])]O[sub 10](OH)[sub g] has been imaged in air, water, and oil by atomic force microscopy. Dissolution features are observed in water, showing sub-micron features dissolving in real-time. Atomic resolution of both the talc-like and brucite-like layers has been obtained in air. However, only the tetrahedral sheet of the talc-like layer has been imaged at atomic resolution in oil and water, which may indicate a structural instability of the brucite-like surface in solution. Measurements of the unit-cell dimensions (a and b) for the talc-like layer in the three different media indicate a structural expansion of the mineral surface in solution. The a unit cell dimension expands by 7.4 [+-] 0.1% when in water; conversely, the b dimension varies greatly when in oil ([minus]10% to +20%), relative to air. The effects of these solution media on the structure of chlorite are revealed by characterization with the AFM. This information should prove useful in future studies of adsorption onto layer silicates.

  7. Morphology of Vapor-Deposited Ice at Low Temperatures by Atomic Force Microscopy (AFM)

    NASA Astrophysics Data System (ADS)

    Fain, , Jr.; Donev, J. M. K.; Tait, B. R. Long, Jr.; Yu, Q.

    2002-03-01

    The morphology of multilayer films of ice on various substrates is measured by AFM as a function of vapor-deposition and annealing temperatures below 150K. The films are deposited in-situ in UHV from an effusive doser at 67 degrees from the surface normal. For depositions near 100K on clean Au(111), previous measurements by Donev et al. using needle-sensor AFM indicate that 3-D clustering starts near 120K for initially flat thin films of amorphous solid water (ASW). For depositions below 85K on clean Au(111), preliminary measurements using non-contact AFM (nc-AFM) indicate that clustering does not occur during annealing until bulk diffusion becomes operative at T>140K. Deposition at glancing angle at the lower temperatures is known to increase porosity and is also expected to decrease the number of crystalline nuclei in the ASW. For depositions near 100K on mica that had been annealed in UHV, preliminary measurements using ncAFM show clustering near 120K. Supported by U. W. Nanotechnology Fellowship (J.M.K.D.), Mary Gates Fellowship (B. R. L.), and M. J. Murdock Charitable Trust.

  8. Atomic scale contact formation: A combined Scanning Tunneling Microscopy (STM) and Atomic Force Microscopy (AFM) study

    NASA Astrophysics Data System (ADS)

    Hagedorn, Till; El Ouali, Mehdi; Miyahara, Yoichi; Grütter, Peter

    2008-03-01

    We are investigating contact formation at the atomic scale, in particular the interplay of forces and conductivity [1]. As it has been shown (e.g. in the case of C60 in between a STM tip and an Au(111) sample [2]), the conductivity in molecular junctions depends strongly on the contact geometry. In order to fully characterize the junction, we use a homebuilt ultra high vacuum (UHV) (p < 10-10 mbar) microscope which runs in simultaneous scanning tunneling microscope (STM) and atomic force microscope (AFM) modes. Additionally we image the STM tip structure with field ion microscopy (FIM) prior to using it in our experiments [3]. In order to realize a controlled contact we use the STM tip as one electrode and the sample as counter electrode. We are investigating bare Au(111) samples and W STM tips as an example of a nano metal-metal contact and one C60 molecule sandwiched between the W-tip and the Au(111) sample as a model for a controlled metal-molecule-metal contact. We will present new measurements of I(z), F(z) and dI/dV (z) curves of the above mentioned systems, where z is the tip-sample separation as well as images of the sample and tip structure. [1] Sun et. al. PRB 71 193407, 2005 [2] De Menech et. al. PRB 73, 155407, 2006 [3] Lucier et. al. PRB 72, 235420, 2005

  9. Experimental evidence of ultrathin polymer film stratification by AFM force spectroscopy.

    PubMed

    Delorme, Nicolas; Chebil, Mohamed Souheib; Vignaud, Guillaume; Le Houerou, Vincent; Bardeau, Jean-François; Busselez, Rémi; Gibaud, Alain; Grohens, Yves

    2015-06-01

    By performing Atomic Force Microscopy measurements of pull-off force as a function of the temperature, we were able to probe the dynamic of supported thin polystyrene (PS) films. Thermal transitions induce modifications in the surface energy, roughness and surface modulus that are clearly detected by AFM and related to PS chain relaxation mechanisms. We demonstrated the existence of three transition temperatures that can be associated to the relaxation of polymer chains located at different depth regions within the polymer film. Independently of the film thickness, we have confirmed the presence of a region of high mobility for the polymer chains at the free interface. The thickness of this region is estimated to be above 7nm. The detection of a transition only present for film thicker than the gyration radius Rg is linked to the dynamics of polymer chains in a bulk conformation (i.e. not in contact with the free interface). We claim here that our results demonstrate, in agreement with other techniques, the stratification of thin polymer film depth profile in terms of relaxation behavior.

  10. Mechanical properties of complex biological systems using AFM-based force spectroscopy

    NASA Astrophysics Data System (ADS)

    Graham, John Stephen

    An atomic force microscope (AFM) was designed and built to study the mechanical properties of small collagen fibrils and the plasma membrane of living cells. Collagen is a major component of bone, skin and connective tissues, and is abundant in the extracellular matrix (ECM). Because of its abundance, an understanding of how disease affects collagen mechanics is crucial in disease prevention efforts. Two levels of type I collagen structure were investigated, subfibrils (on the order of 1 mum in length) and longer fibrils. Comparisons were made between measurements of wild-type (wt) collagen and collagen from the mouse model of osteogenesis imperfecta (OI). Significant differences between OI and wt collagen were observed, primarily that intermolecular bonds in OI collagen fibrils are weaker than in wt, or not ruptured, as in the case of OI subfibrils. As cells interact with collagen in the ECM, the mechanical properties of the plasma membrane are also of great interest. Membrane tethers were extracted from living cells under varied conditions in order to assess the contributions of membrane-associated macromolecules such as the actin cytoskeleton and the glycocalyx, and intracellular signaling. Tether extraction force was found to be sensitive to all of these altered conditions, suggesting that tether extraction may be used to monitor various cellular processes.

  11. Measurement of cationic and intracellular modulation of integrin binding affinity by AFM-based nanorobot.

    PubMed

    Patterson, Kevin C; Yang, Ruiguo; Zeng, Bixi; Song, Bo; Wang, Shouye; Xi, Ning; Basson, Marc D

    2013-07-02

    Integrins are dynamic transmembrane cation-dependent heterodimers that both anchor cells in position and transduce signals into and out of cells. We used an atomic force microscope (AFM)-based nanorobotic system to measure integrin-binding forces in intact human intestinal epithelial Caco-2 cells. The AFM-based nanorobot enables human-directed, high-accuracy probe positioning and site-specific investigations. Functionalizing the AFM probe with an arginine-glycine-aspartate (RGD)-containing sequence (consensus binding sequence for integrins) allowed us to detect a series of peptide-cell membrane interactions with a median binding force of 115.1 ± 4.9 pN that were not detected in control interactions. Chelating divalent cations from the culture medium abolished these interactions, as did inhibiting intracellular focal adhesion kinase (FAK) using Y15. Adding 1 mM Mg(2+) to the medium caused a rightward shift in the force-binding curve. Adding 1 mM Ca(2+) virtually abolished the RGD-membrane specific interactions and blocked the Mg(2+) effects. Cell adhesion assays demonstrated parallel effects of divalent cations and the FAK inhibitor on cell adhesion. These results demonstrate direct modulation of integrin-binding affinity by both divalent cations and intracellular signal inhibition. Additionally, three binding states (nonspecific, specific inactivated, and specific activated) were delineated from affinity measurements. Although other research has assumed that this process of integrin conformational change causes altered ligand binding, in this work we directly measured these three states in individual integrins in a physiologically based study. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. Measurement of Cationic and Intracellular Modulation of Integrin Binding Affinity by AFM-Based Nanorobot

    PubMed Central

    Patterson, Kevin C.; Yang, Ruiguo; Zeng, Bixi; Song, Bo; Wang, Shouye; Xi, Ning; Basson, Marc D.

    2013-01-01

    Integrins are dynamic transmembrane cation-dependent heterodimers that both anchor cells in position and transduce signals into and out of cells. We used an atomic force microscope (AFM)-based nanorobotic system to measure integrin-binding forces in intact human intestinal epithelial Caco-2 cells. The AFM-based nanorobot enables human-directed, high-accuracy probe positioning and site-specific investigations. Functionalizing the AFM probe with an arginine-glycine-aspartate (RGD)-containing sequence (consensus binding sequence for integrins) allowed us to detect a series of peptide-cell membrane interactions with a median binding force of 115.1 ± 4.9 pN that were not detected in control interactions. Chelating divalent cations from the culture medium abolished these interactions, as did inhibiting intracellular focal adhesion kinase (FAK) using Y15. Adding 1 mM Mg2+ to the medium caused a rightward shift in the force-binding curve. Adding 1 mM Ca2+ virtually abolished the RGD-membrane specific interactions and blocked the Mg2+ effects. Cell adhesion assays demonstrated parallel effects of divalent cations and the FAK inhibitor on cell adhesion. These results demonstrate direct modulation of integrin-binding affinity by both divalent cations and intracellular signal inhibition. Additionally, three binding states (nonspecific, specific inactivated, and specific activated) were delineated from affinity measurements. Although other research has assumed that this process of integrin conformational change causes altered ligand binding, in this work we directly measured these three states in individual integrins in a physiologically based study. PMID:23823222

  13. Implications of the contact radius to line step (CRLS) ratio in AFM for nanotribology measurements.

    PubMed

    Helt, James M; Batteas, James D

    2006-07-04

    Investigating the mechanisms of defect generation and growth at surfaces on the nanometer scale typically requires high-resolution tools such as the atomic force microscope (AFM). To accurately assess the kinetics and activation parameters of defect production over a wide range of loads (F(z)), the AFM data should be properly conditioned. Generally, AFM wear trials are performed over an area defined by the length of the slow (L(sscan)) and fast scan axes. The ratio of L(sscan) to image resolution (res, lines per image) becomes an important experimental parameter in AFM wear trials because it defines the magnitude of the line step (LS = L(sscan)/res), the distance the AFM tip steps along the slow scan axis. Comparing the contact radius (a) to the line step (LS) indicates that the overlap of successive scans will result unless the contact radius-line step ratio (CRLS) is < or =(1)/(2). If this relationship is not considered, then the scan history (e.g., contact frequency) associated with a single scan is not equivalent at different loads owing to the scaling of contact radius with load (a proportional variant F(z)(1/3)). Here, we present a model in conjunction with empirical wear tests on muscovite mica to evaluate the effects of scan overlap on surface wear. Using the Hertz contact mechanics definition of a, the CRLS model shows that scan overlap pervades AFM wear trials even under low loads. Such findings indicate that simply counting the number of scans (N(scans)) in an experiment underestimates the full history conveyed to the surface by the tip and translates into an error in the actual extent to which a region on the surface is contacted. Utilizing the CRLS method described here provides an approach to account for image scan history accurately and to predict the extent of surface wear. This general model also has implications for any AFM measurement where one wishes to correlate scan-dependent history to image properties as well as feature resolution in scanned

  14. Accelerated design and quality control of impact modifiers for plastics through atomic force microscopy (AFM) analysis

    NASA Astrophysics Data System (ADS)

    Moeller, Gunter

    2011-03-01

    Standard polymer resins are often too brittle or do not meet other mechanical property requirements for typical polymer applications. To achieve desired properties it is common to disperse so called ``impact modifiers'', which are spherical latex particles with diameters of much less than one micrometer, into the pure resin. Understanding and control of the entire process from latex particle formation to subsequent dispersion into polymer resins are necessary to accelerate the development of new materials that meet specific application requirements. In this work AFM imaging and nanoindentation techniques in combination with AFM-based spectroscopic techniques were applied to assess latex formation and dispersion. The size and size distribution of the latex particles can be measured based on AFM amplitude modulation images. AFM phase images provide information about the chemical homogeneity of individual particles. Nanoindentation may be used to estimate their elastic and viscoelastic properties. Proprietary creep and nanoscale Dynamic Mechanical Analysis (DMA) tests that we have developed were used to measure these mechanical properties. The small size of dispersed latex inclusions requires local mechanical and spectroscopic analysis techniques with high lateral and spatial resolution. We applied the CRAVE AFM method, developed at NIST, to perform mechanical analysis of individual latex inclusions and compared results with those obtained using nanoscale DMA. NanoIR, developed by Anasys Inc., and principal component confocal Raman were used for spectroscopic analysis and results from both techniques compared.

  15. Molecular shape and binding force of Mycoplasma mobile's leg protein Gli349 revealed by an AFM study

    SciTech Connect

    Lesoil, Charles; Nonaka, Takahiro; Sekiguchi, Hiroshi; Osada, Toshiya; Miyata, Makoto; Afrin, Rehana; Ikai, Atsushi

    2010-01-15

    Recent studies of the gliding bacteria Mycoplasma mobile have identified a family of proteins called the Gli family which was considered to be involved in this novel and yet fairly unknown motility system. The 349 kDa protein called Gli349 was successfully isolated and purified from the bacteria, and electron microscopy imaging and antibody experiments led to the hypothesis that it acts as the 'leg' of M. mobile, responsible for attachment to the substrate as well as for gliding motility. However, more precise evidence of the molecular shape and function of this protein was required to asses this theory any further. In this study, an atomic force microscope (AFM) was used both as an imaging and a force measurement device to provide new information about Gli349 and its role in gliding motility. AFM images of the protein were obtained revealing a complex structure with both rigid and flexible parts, consistent with previous electron micrographs of the protein. Single-molecular force spectroscopy experiments were also performed, revealing that Gli349 is able to specifically bind to sialyllactose molecules and withstand unbinding forces around 70 pN. These findings strongly support the idea that Gli349 is the 'leg' protein of M. mobile, responsible for binding and also most probably force generation during gliding motility.

  16. Molecular shape and binding force of Mycoplasma mobile's leg protein Gli349 revealed by an AFM study.

    PubMed

    Lesoil, Charles; Nonaka, Takahiro; Sekiguchi, Hiroshi; Osada, Toshiya; Miyata, Makoto; Afrin, Rehana; Ikai, Atsushi

    2010-01-15

    Recent studies of the gliding bacteria Mycoplasma mobile have identified a family of proteins called the Gli family which was considered to be involved in this novel and yet fairly unknown motility system. The 349kDa protein called Gli349 was successfully isolated and purified from the bacteria, and electron microscopy imaging and antibody experiments led to the hypothesis that it acts as the "leg" of M. mobile, responsible for attachment to the substrate as well as for gliding motility. However, more precise evidence of the molecular shape and function of this protein was required to asses this theory any further. In this study, an atomic force microscope (AFM) was used both as an imaging and a force measurement device to provide new information about Gli349 and its role in gliding motility. AFM images of the protein were obtained revealing a complex structure with both rigid and flexible parts, consistent with previous electron micrographs of the protein. Single-molecular force spectroscopy experiments were also performed, revealing that Gli349 is able to specifically bind to sialyllactose molecules and withstand unbinding forces around 70pN. These findings strongly support the idea that Gli349 is the "leg" protein of M. mobile, responsible for binding and also most probably force generation during gliding motility. Copyright 2009 Elsevier Inc. All rights reserved.

  17. Quantitative Hardness Measurement by Instrumented AFM-indentation.

    PubMed

    Caron, Arnaud

    2016-11-22

    In this work, a combination of amplitude-modulated non-contact atomic force microscopy and atomic force spectroscopy is applied for instrumented hardness measurements on an Au(111) surface with atomistic resolution of single plasticity events. A careful experimental procedure is described that includes the force sensor selection, its calibration, the calibration of the cantilever deflection detection system, and the minimization of instrumental drift for accurate and reproducible force-distance measurements. Also, a method for the data analysis is presented that allows the extraction of force-penetration curves from recorded force-distance curves. A typical curve displays a clear elastic deformation regime up to the first plasticity event, or pop-in, with a length in the range of one to two Burger's vectors. Later plasticity events exhibit the same magnitude. The work of plasticity is further extracted from the measurements. Finally, the hardness is determined in combination with the indentation curve using non-contact atomic force microscopy images of the remaining indents.

  18. A comparison of atomic force microscopy (AFM) and dynamic light scattering (DLS) methods to characterize nanoparticle size distributions

    NASA Astrophysics Data System (ADS)

    Hoo, Christopher M.; Starostin, Natasha; West, Paul; Mecartney, Martha L.

    2008-12-01

    This paper compares the accuracy of conventional dynamic light scattering (DLS) and atomic force microscopy (AFM) for characterizing size distributions of polystyrene nanoparticles in the size range of 20-100 nm. Average DLS values for monosize dispersed particles are slightly higher than the nominal values whereas AFM values were slightly lower than nominal values. Bimodal distributions were easily identified with AFM, but DLS results were skewed toward larger particles. AFM characterization of nanoparticles using automated analysis software provides an accurate and rapid analysis for nanoparticle characterization and has advantages over DLS for non-monodispersed solutions.

  19. AFM in mode Peak Force applied to the study of un-worn contact lenses.

    PubMed

    Torrent-Burgués, J; Sanz, F

    2014-09-01

    Contact lenses (CLs) are of common use and the biocompatibility, topography and mechanical properties of the used materials are of major importance. The objective of this contribution is to apply the AFM in mode Peak Force to obtain surface topography and mechanical characteristics of un-worn CLs of different materials. One material of hydrogel, two of siloxane-hydrogel and one of rigid gas-permeable were used in the study. The results obtained with different materials have been compared, at a nanoscopic level, and the conclusions are diverse. There is no significant influence of the two environments used to measure the characteristics of the CLs, either water or saline solution. The pHEMA hydrogel CL (Polymacon of Soflens) shows the highest values of roughness, adhesion and elastic modulus. The siloxane-hydrogel CL named Asmofilcon A of PremiO presents the lowest values of mean roughness (Ra), root-mean-square roughness (RMS or Rq), adhesion (Adh) and elastic modulus (Ym), meanwhile the siloxane-hydrogel CL named Lotrafilcon B of Air Optix presents the lowest value of skewness (Rsk) and the rigid gas-permeable CL, named RXD, presents the lowest values of kurtosis (Rku) and maximum roughness (Rmax).

  20. Hydrodynamic effects of the tip movement on surface nanobubbles: a combined tapping mode, lift mode and force volume mode AFM study.

    PubMed

    Walczyk, Wiktoria; Hain, Nicole; Schönherr, Holger

    2014-08-28

    We report on an Atomic Force Microscopy (AFM) study of AFM tip-nanobubble interactions in experiments conducted on argon surface nanobubbles on HOPG (highly oriented pyrolytic graphite) in water in tapping mode, lift mode and Force Volume (FV) mode AFM. By subsequent data acquisition on the same nanobubbles in these three different AFM modes, we could directly compare the effect of different tip-sample interactions. The tip-bubble interaction strength was found to depend on the vertical and horizontal position of the tip on the bubble with respect to the bubble center. The interaction forces measured experimentally were in good agreement with the forces calculated using the dynamic interaction model. The strength of the hydrodynamic effect was also found to depend on the direction of the tip movement. It was more pronounced in the FV mode, in which the tip approaches the bubble from the top, than in the lift mode, in which the tip approaches the bubble from the side. This result suggests that the direction of tip movement influences the bubble deformation. The effect should be taken into account when nanobubbles are analysed by AFM in various scanning modes.

  1. Measuring the energy landscape of complex bonds using AFM

    NASA Astrophysics Data System (ADS)

    Mayyas, Essa; Hoffmann, Peter; Runyan, Lindsay

    2009-03-01

    We measured rupture force of a complex bond of two interacting proteins with atomic force microscopy. Proteins of interest were active and latent Matrix metalloproteinases (MMPs), type 2 and 9, and their tissue inhibitors TIMP1 and TIMP2. Measurements show that the rupture force depends on the pulling speed; it ranges from 30 pN to 150 pN at pulling speeds 30nm/s to 48000nm/s. Analyzing data using an extended theory enabled us to understand the mechanism of MMP-TIMP interaction; we determined all physical parameters that form the landscape energy of the interaction, in addition to the life time of the bond and its length. Moreover, we used the pulling experiment to study the interaction of TIMP2 with the receptor MT1-MMP on the surface of living cells.

  2. Interfacial forces between silica surfaces measured by atomic force microscopy.

    PubMed

    Duan, Jinming

    2009-01-01

    Colloidal particle stability and some other interfacial phenomena are governed by interfacial force interactions. The two well known forces are van der Waals force and electrostatic force, as documented by the classical Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory. Moreover, advances in modern instrumentation and colloid science suggested that some short-ranged forces or structure forces are important for relevant colloidal systems. The interfacial and/or molecular forces can be measured as a resultant force as function of separation distance by atomic force microscopy (AFM) colloid probe. This article presents a discussion on AFM colloid probe measurement of silica particle and silica wafer surfaces in solutions with some technical notifications in measurement and data convolution mechanisms. The measured forces are then analyzed and discussed based on the 'constant charge' and 'constant potential' models of DLVO theory. The difference between the prediction of DLVO theory and the measured results indicates that there is a strong short-range structure force between the two hydrophilic surfaces, even at extremely low ionic concentration, such as Milli-Q water purity solution.

  3. Tip convolution on HOPG surfaces measured in AM-AFM and interpreted using a combined experimental and simulation approach

    NASA Astrophysics Data System (ADS)

    Hu, Xiaoli; Chan, Nicholas; Martini, Ashlie; Egberts, Philip

    2017-01-01

    Amplitude modulated atomic force microscopy (AM-AFM) was used to examine the influence of the size of the AFM tip apex on the measured surface topography of single highly oriented pyrolytic graphite (HOPG) atomic steps. Experimental measurements were complemented by molecular dynamics simulations of AM-AFM and the results from both were evaluated by comparison of the measured or simulated width of the topography at the step to that predicted using simple rigid-body geometry. The results showed that the step width, which is a reflection of the resolution of the measurement, increased with tip size, as expected, but also that the difference between the measured/simulated step width and the geometric calculation was tip size dependent. The simulations suggested that this may be due to the deformation of the bodies and the effect of that deformation on the interaction force and oscillation amplitude. Overall, this study showed that the resolution of AM-AFM measurements of atomic steps can be correlated to tip size and that this relationship is affected by the deformation of the system.

  4. Comparison of CD measurements of an EUV photomask by EUV scatterometry and CD-AFM

    NASA Astrophysics Data System (ADS)

    Scholze, Frank; Soltwisch, Victor; Dai, Gaoliang; Henn, Mark-Alexander; Gross, Hermann

    2013-09-01

    EUV scatterometry is a potential high-throughput measurement method for the characterization of EUV photomask structures. We present a comparison of angle resolved extreme ultraviolet (EUV) scatterometry and critical dimension atomic force microscope (CD-AFM) as a reference metrology for measurements of geometrical parameters like line width (CD), height and sidewall angle of EUV photomask structures. The structures investigated are dense and semidense bright and dark lines with different nominal CDs between 140 nm and 540 nm. The results show excellent linearity of the critical dimension measured with both methods within a range of only 1.8 nm and an offset of the absolute values below 3 nm. A maximum likelihood estimation (MLE) method is used to reconstruct the shape parameters and to estimate their uncertainties from the measured scattering efficiencies. The newly developed CD-AFM at PTB allows versatile measurements of parameters such as height, CD, sidewall angle, line edge/width roughness, corner rounding, and pitch. It applies flared tips to probe steep and even undercut sidewalls and employs a new vector approaching probing (VAP) strategy which enables very low tip wear and high measurement flexibility. Its traceability is ensured by a set of calibrated step-height and reference CD standards.

  5. Method for quantitative measurements of the elastic modulus of biological cells in AFM indentation experiments.

    PubMed

    Sokolov, Igor; Dokukin, Maxim E; Guz, Nataliia V

    2013-04-01

    Here we overview and further develop a quantitative method to measure mechanics of biological cells in indentation experiments, which is based on the use of atomic force microscopy (AFM). We demonstrate how the elastic modulus of the cell body should be measured when the cellular brush is taken into account. The brush is an essential inelastic part of the cell, which surrounds all eukaryotic (the brush is mostly microvilli and glycocalyx) and gram-negative prokaryotic cells (the brush is polysaccharides). The other main feature of the described method is the use of a relatively dull AFM probe to stay in the linear stress-strain regime. In particular, we show that the elastic modulus (aka the Young's modulus) of cells is independent of the indentation depth up to 10-20% deformation for the eukaryotic cells studied here. Besides the elastic modulus, the method presented allows obtaining the parameters of cellular brush, such as the effective length and grafting density of the brush. Although the method is demonstrated on eukaryotic cells, it is directly applicable for all types of cells, and even non-biological soft materials surrounded by either a brush or any field of long-range forces. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Complete noise analysis of a simple force spectroscopy AFM setup and its applications to study nanomechanics of mammalian Notch 1 protein

    NASA Astrophysics Data System (ADS)

    Dey, Ashim; Szoszkiewicz, Robert

    2012-05-01

    We describe a complete noise analysis and application of a custom made AFM force spectroscopy setup on pulling a recombinant protein with an NRR domain of mouse Notch 1. Our table top AFM setup is affordable, has an open architecture, and is easily transferable to other laboratories. Its calculated noise characteristics are dominated by the Brownian noise with 2% non-Brownian components integrated over the first thermally induced resonance of a typical cantilever. For a typical SiN cantilever with a force constant of ˜15 pN nm-1 and in water the force sensitivity and resolution are less than 10 pN, and the corresponding deflection sensitivities are less than 100 pm Hz-1/2. Also, we obtain a sub-ms time resolution in detecting the protein length change, and only few ms cantilever response times as measured in the force clamp mode on a well-known protein standard. Using this setup we investigate force-induced conformational transitions in the NRR region of a mouse Notch 1. Notch is an important protein related to leukemia and breast cancers in humans. We demonstrate that it is feasible to develop AFM-based studies of the force-induced conformational transitions in Notch. Our results match recent steered molecular dynamics simulations of the NRR unfolding and constitute a first step towards a detailed study of Notch activation with AFM.

  7. Spherical polystyrene particle deformation measured with the AFM

    NASA Astrophysics Data System (ADS)

    Nicolet, Anaïs; Meli, Felix

    2017-03-01

    Size measurements of sub-micrometre spherical particles are quite easily performed with an atomic force microscope. The diameter is typically evaluated as the apex of the particle relative to a flat surface. However, some interaction effects may modify the expected results, such as the adhesive forces between the particle and the substrate or the tip–particle interface. In this paper, both effects were experimentally investigated for polystyrene particles with sizes ranging from 150 nm to 700 nm deposited on mica. Additionally, the experimental findings were compared with theoretical models of adhesion, describing both elastic and plastic deformation at the particle–substrate interface. While no clear indication of particle deformation due to the tip–particle interaction was obtained, the deformation due to adhesive forces between the particle and the substrate could be quantified. Contrary to certain theoretical models, the deformation was found to be proportional to the particle size.

  8. Measurement of a CD and sidewall angle artifact with two-dimensional CD AFM metrology

    NASA Astrophysics Data System (ADS)

    Dixson, Ronald G.; Sullivan, Neal T.; Schneir, Jason; McWaid, Thomas H.; Tsai, Vincent W.; Prochazka, Jerry; Young, Michael

    1996-05-01

    Despite the widespread acceptance of SEM metrology in semiconductor manufacturing, there is no SEM CD standard currently available. Producing such a standard is challenging because SEM CD measurements are not only a function of the linewidth, but also dependent on the line material, sidewall roughness, sidewall angle, line height, substrate material, and the proximity of other objects. As the presence of AFM metrology in semiconductor manufacturing increases, the history of SEM CD metrology raises a number of questions about the prospect of AFM CD artifacts. Is an AFM CD artifact possible? What role would it play in the manufacturing environment? Although AFM has some important advantages over SEM, such as relative insensitivity to material differences, the throughput and reliability of most AFM instruments is not yet at the level necessary to support in-line CD metrology requirements. What, then, is the most useful relationship between AFM and SEM metrology? As a means of addressing some of these questions, we have measured the CD and sidewall angle of 1.2 micrometer oxy-nitride line on Si using three different techniques: optical microscopy (with modeling), AFM, and cross sectional TEM. Systematic errors in the AFM angle measurements were reduced by using a rotational averaging technique that we describe. We found good agreement with uncertainties below 30 nm (2 sigma) for the CD measurement and 1.0 degrees (2 sigma) for the sidewall angles. Based upon these results we suggest a measurement procedure which will yield useful AFM CD artifacts. We consider the possibility that AFMs, especially when used with suitable CD artifacts, can effectively support SEM CD metrology. This synergistic relationship between the AFM and SEM represents an emerging paradigm that has also been suggested by a number of others.

  9. Concurrent quantitative conductivity and mechanical properties measurements of organic photovoltaic materials using AFM.

    PubMed

    Nikiforov, Maxim P; Darling, Seth B

    2013-01-23

    Organic photovoltaic (OPV) materials are inherently inhomogeneous at the nanometer scale. Nanoscale inhomogeneity of OPV materials affects performance of photovoltaic devices. Thus, understanding of spatial variations in composition as well as electrical properties of OPV materials is of paramount importance for moving PV technology forward. In this paper, we describe a protocol for quantitative measurements of electrical and mechanical properties of OPV materials with sub-100 nm resolution. Currently, materials properties measurements performed using commercially available AFM-based techniques (PeakForce, conductive AFM) generally provide only qualitative information. The values for resistance as well as Young's modulus measured using our method on the prototypical ITO/PEDOT:PSS/P3HT:PC(61)BM system correspond well with literature data. The P3HT:PC(61)BM blend separates onto PC(61)BM-rich and P3HT-rich domains. Mechanical properties of PC(61)BM-rich and P3HT-rich domains are different, which allows for domain attribution on the surface of the film. Importantly, combining mechanical and electrical data allows for correlation of the domain structure on the surface of the film with electrical properties variation measured through the thickness of the film.

  10. Concurrent Quantitative Conductivity and Mechanical Properties Measurements of Organic Photovoltaic Materials using AFM

    PubMed Central

    Nikiforov, Maxim P.; Darling, Seth B.

    2013-01-01

    Organic photovoltaic (OPV) materials are inherently inhomogeneous at the nanometer scale. Nanoscale inhomogeneity of OPV materials affects performance of photovoltaic devices. Thus, understanding of spatial variations in composition as well as electrical properties of OPV materials is of paramount importance for moving PV technology forward.1,2 In this paper, we describe a protocol for quantitative measurements of electrical and mechanical properties of OPV materials with sub-100 nm resolution. Currently, materials properties measurements performed using commercially available AFM-based techniques (PeakForce, conductive AFM) generally provide only qualitative information. The values for resistance as well as Young's modulus measured using our method on the prototypical ITO/PEDOT:PSS/P3HT:PC61BM system correspond well with literature data. The P3HT:PC61BM blend separates onto PC61BM-rich and P3HT-rich domains. Mechanical properties of PC61BM-rich and P3HT-rich domains are different, which allows for domain attribution on the surface of the film. Importantly, combining mechanical and electrical data allows for correlation of the domain structure on the surface of the film with electrical properties variation measured through the thickness of the film. PMID:23380988

  11. Adhesion Force Measurements Using an Atomic Force Microscope Upgraded with a Linear Position Sensitive Detector

    PubMed Central

    Pierce, M.; Stuart, J.; Pungor, A.; Dryden, P.

    2012-01-01

    The atomic force microscope (AFM), in addition to providing images on an atomic scale, can be used to measure the forces between surfaces and the AFM probe. The potential uses of mapping the adhesive forces on the surface include a spatial determination of surface energy and a direct identification of surface proteins through specific protein–ligand binding interactions. The capabilities of the AFM to measure adhesive forces can be extended by replacing the four-quadrant photodiode detection sensor with an external linear position sensitive detector and by utilizing a dedicated user-programmable signal generator and acquisiton system. Such an upgrade enables the microscope to measure in the larger dynamic range of adhesion forces, improves the sensitivity and linearity of the measurement, and eliminates the problems inherent to the multiple repetitious contacts between the AFM probe and the specimen surface. PMID:25125792

  12. Measuring cell wall elasticity on enteroaggregative Escherichia coli wild type and dispersin mutant by AFM

    SciTech Connect

    Beckmann, Melissa; Venkataraman, Sankar; Doktycz, Mitchel John; Nataro, James P; Sullivan, Claretta J; Morrell-Falvey, Jennifer L; Allison, David P

    2006-07-01

    Enteroaggregative Escherichia coli (EAEC) is pathogenic and produces severe diarrhea in humans. A mutant of EAEC that does not produce dispersin, a cell surface protein, is not pathogenic. It has been proposed that dispersin imparts a positive charge to the bacterial cell surface allowing the bacteria to colonize on the negatively charged intestinal mucosa. However, physical properties of the bacterial cell surface, such as rigidity, may be influenced by the presence of dispersin and may contribute to pathogenicity. Using the system developed in our laboratory for mounting and imaging bacterial cells by atomic force microscopy (AFM), in liquid, on gelatin coated mica surfaces, studies were initiated to measure cell surface elasticity. This was carried out in both wild type EAEC, that produces dispersin, and the mutant that does not produce dispersin. This was accomplished using AFM force-distance (FD) spectroscopy on the wild type and mutant grown in liquid or on solid medium. Images in liquid and in air of both the wild-type and mutant grown in liquid and on solid media are presented. This work represents an initial step in efforts to understand the pathogenic role of the dispersin protein in the wild-type bacteria.

  13. Measurement of laterally induced optical forces at the nanoscale

    NASA Astrophysics Data System (ADS)

    Huang, Fei; Tamma, Venkata Ananth; Rajaei, Mohsen; Almajhadi, Mohammad; Kumar Wickramasinghe, H.

    2017-02-01

    We demonstrate the measurement of laterally induced optical forces using an Atomic Force Microscope (AFM). The lateral electric field distribution between a gold coated AFM probe and a single nano-aperture in a gold film is mapped by measuring the lateral optical force between the apex of the AFM probe and the nano-aperture. The fundamental torsional eigen-mode of an AFM cantilever probe was used to detect the laterally induced optical forces. We engineered the cantilever shape using focused ion beam milling to improve the detected signal to noise ratio. The measured distributions of lateral optical force agree well with electromagnetic simulations of the metal coated AFM probe interacting with the nano-aperture. This technique can be extended to simultaneously detect both lateral and longitudinal optical forces at the nanoscale by using an AFM cantilever as a multi-channel detector. This will enable simultaneous Photon Induced Force Microscopy detection of molecular responses with different incident field polarizations. The technique can be implemented on both cantilever and tuning fork based AFMs.

  14. Measuring the viscoelastic creep of soft samples by step response AFM.

    PubMed

    Yango, Achu; Schäpe, Jens; Rianna, Carmela; Doschke, Holger; Radmacher, Manfred

    2016-10-12

    We have measured the creep response of soft gels and cells after applying a step in loading force with atomic force microscopy (AFM). By analysing the creep response data using the standard linear solid model, we can quantify the viscous and elastic properties of these soft samples independently. Cells, in comparison with gels of similar softness, are much more viscous, as has been qualitatively observed in conventional force curve data before. Here, we quantify the spring constant and the viscous damping coefficient from the creep response data. We propose two different modes for applying a force step: (1) indirectly by increasing the sample height or (2) directly by employing magnetic cantilevers. Both lead to similar results, whereas the latter seems to be better defined since it resembles closely a constant strain mode. The former is easier to implement in most instruments, and thus may be preferable from a practical point of view. Creep analysis by step response is much more appropriate to analyse the viscoelastic response of soft samples like cells than the usually used force curve analysis.

  15. PREFACE: NC-AFM 2005: Proceedings of the 8th International Conference on Non-Contact Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Reichling, M.; Mikosch, W.

    2006-04-01

    The 8th International Conference on Non-Contact Atomic Force Microscopy, held in Bad Essen, Germany, from 15 18th August 2005, attracted a record breaking number of participants presenting excellent contributions from a variety of scientific fields. This clearly demonstrated the high level of activity and innovation present in the community of NC-AFM researchers and the continuous growth of the field. The strongest ever participation of companies for a NC-AFM meeting is a sign for the emergence of new markets for the growing NC-AFM community; and the high standard of the products presented at the exhibition, many of them brand-new developments, reflected the unbroken progress in technology. The development of novel technologies and the sophistication of known techniques in research laboratories and their subsequent commercialization is still a major driving force for progress in this area of nanoscience. The conference was a perfect demonstration of how progress in the development of enabling technologies can readily be transcribed into basic research yielding fundamental insight with an impact across disciplines. The NC-AFM 2005 scientific programme was based on five cornerstones, each representing an area of vivid research and scientific progress. Atomic resolution imaging on oxide surfaces, which has long been a vision for the catalysis community, appears to be routine in several laboratories and after a period of demonstrative experiments NC-AFM now makes unique contributions to the understanding of processes in surface chemistry. These capabilities also open up new routes for the analysis of clusters and molecules deposited on dielectric surfaces where resolution limits are pushed towards the single atom level. Atomic precision manipulation with the dynamic AFM left the cradle of its infancy and flourishes in the family of bottom-up fabrication nanotechnologies. The systematic development of established and the introduction of new concepts of contrast

  16. Fabrication and characterization of mesoscale protein patterns using atomic force microscopy (AFM)

    NASA Astrophysics Data System (ADS)

    Gao, Pei

    2011-07-01

    A versatile AFM local oxidation lithography was developed for fabricating clean protein patterns ranging from nanometer to sub-millimeter scale on octadecyltrichlorosilane (OTS) layer of Si (100) wafer. This protein patterning method can generate bio-active protein pattern with a clean background without the need of the anti-fouling the surface or repetitive rinsing. As a model system, lysozyme protein patterns were investigated through their binding reactions with antibodies and aptamers by AFM. Polyclonal anti-lysozyme antibodies and anti-lysozyme aptamer are found to preferentially bind to the lysozyme molecules on the edge of a protein pattern before their binding to the interior ones. It was also demonstrated that the topography of the immobilized protein pattern affects the antibody binding direction. We found that the anti-lysozyme antibodies binding to the edge lysozyme molecules on the half-buried pattern started from the top but the binding on the extruded pattern started from the side because of their different spatial accessibility. In addition, after incubating lysozyme pattern with anti-lysozyme aptamer in buffer solution for enough long time, some fractal-shaped aptamer fibers with 1-6nm high and up to tens of micrometers long were formed by the self-assembling of aptamer molecules on the surface. The aptamer fibers anchor specifically on the edge of protein patterns, which originates from the biospecific recognition between the aptamer and its target protein. Once these edge-bound fibers have formed, they can serve as scaffolds for further assembly processes. We used these aptamer fibers as templates to fabricate palladium and streptavidin nanowires, which anchored on the pattern edges and never cross over or collapse over each other. The aptamer fiber scaffold potentially can lead to an effective means to fabricate and interface nanowires to existing surface patterns. KEYWORDS: Atomic Force Microscopy (AFM), Protein Patterns, Lysozyme, Aptamer

  17. Effect of enamel morphology on nanoscale adhesion forces of streptococcal bacteria : An AFM study.

    PubMed

    Wang, Chuanyong; Zhao, Yongqi; Zheng, Sainan; Xue, Jing; Zhou, Jinglin; Tang, Yi; Jiang, Li; Li, Wei

    2015-01-01

    We explore the influence of enamel surface morphology on nanoscale bacterial adhesion forces. Three dimensional morphology characteristics of enamel slices, which were treated with phosphoric acid (for 0 s, 5 s, 10 s, 20 s, and 30 s), were acquired. Adhesion forces of three initial colonizers (Streptococcus oralis, Streptococcus sanguinis, and Streptococcus mitis) and two cariogenic bacterial strains (Streptococcus mutans and Streptococcus sobrinus) with etched enamel surfaces were determined. Comparison of the forces was made by using bacterial probe method under atomic force microscope (AFM) in adhesion buffer. The results showed that enamel morphology was significantly altered by etching treatment. The roughness, peak-to-valley height, and valley-to-valley width of the depth profile, surface area, and volume increased linearly with acid exposure time, and reached the maximum at 30s, respectively. The adhesion forces of different strains increased accordingly with etching time. Adhesion forces of S. oralis, S. mitis, S. mutans, and S. sobrinus reached the maximum values of 0.81 nN, 0.84 nN, 0.73 nN, and 0.64 nN with enamel treated for 20s, respectively, whereas that of S. sanguinis at 10s (1.28nN), and dropped on coarser enamel surfaces. In conclusion, enamel micro-scale morphology may significantly alter the direct adhesion forces of bacteria. And there may be a threshold roughness for bacterial adhesion on enamel surface. © Wiley Periodicals, Inc.

  18. PREFACE: NC-AFM 2006: Proceedings of the 9th International Conference on Non-contact Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Tomitori, Masahiko; Onishi, Hiroshi

    2007-02-01

    The advent of scanning probe microscopy (SPM) in the 1980s has significantly promoted nanoscience and nanotechnology. In particular, non-contact atomic force microscopy (NC-AFM), one of the SPM family, has unique capabilities with high spatial resolution for nanoscale measurements in vacuum, air and liquids. In the last decade we have witnessed the rapid progress of NC-AFM with improved performance and increasing applications. A series of NC-AFM international conferences have greatly contributed to this field. Initiated in Osaka in 1998, the NC-AFM meeting has been followed by annual conferences at Pontresina, Hamburg, Kyoto, Montreal, Dingle, Seattle and Bad Essen. The 9th conference was held in Kobe, Japan, 16-20 July 2006. This special issue of Nanotechnology contains the outstanding contributions of the conference. During the meeting delegates learnt about a number of significant advances. Topics covered atomic resolution imaging of metals, semiconductors, insulators, ionic crystals, oxides, molecular systems, imaging of biological materials in various environments and novel instrumentation. Work also included the characterization of electronic and magnetic properties, tip and cantilever fabrication and characterization, atomic distinction based on analysis of tip-sample interaction, atomic scale manipulation, fabrication of nanostructures using NC-AFM, and related theories and simulations. We are greatly impressed by the increasing number of applications, and convinced that NC-AFM and related techniques are building a bridge to a future nano world, where quantum phenomena will dominate and nano devices will be realized. In addition, a special session on SPM road maps was held as a first trial in the field, where the future prospects of SPM were discussed enthusiastically. The overall success of the NC-AFM 2006 conference was due to the efforts of many individuals and groups with respect to scientific and technological progress, as well as the international

  19. Acquire an Bruker Dimension FastScanTM Atomic Force Microscope (AFM) for Materials, Physical and Biological Science Research and Education

    DTIC Science & Technology

    2016-04-14

    UU 14-04-2016 1-Jan-2015 31-Jan-2016 Final Report: Acquire an Bruker Dimension FastScanTM Atomic Force Microscope (AFM) for Materials, Physical and...published in non peer-reviewed journals: Final Report: Acquire an Bruker Dimension FastScanTM Atomic Force Microscope (AFM) for Materials, Physical and...the DOD HBCU/MI Instrumentation Award Regarding “Acquire an Bruker Dimension FastScan TM Atomic Force Microscope (AFM) for Materials, Physical

  20. Attaching single biomolecules selectively to the apex of AFM tips for measuring specific interactions.

    PubMed

    Gu, Jianhua; Xiao, Zhongdang; Yam, Chi-Ming; Qin, Guoting; Deluge, Maxence; Boutet, Sabine; Cai, Chengzhi

    2005-11-01

    We present a general approach for preparing well-defined AFM tips for probing single target molecules. We demonstrated that carboxylic acid groups could be generated by electrochemical oxidation selectively at the apex of an AFM tip that is coated with a monolayer of oligo(ethylene glycol) derivatives for resisting nonspecific interactions. These carboxylic acid groups were used as handles to tether only one ligand molecule, such as biotin, to the tip apex for measurement of specific interactions with biomolecules.

  1. Vibrational CD (VCD) and atomic force microscopy (AFM) study of DNA interaction with Cr3+ ions: VCD and AFM evidence of DNA condensation.

    PubMed

    Andrushchenko, V; Leonenko, Z; Cramb, D; van de Sande, H; Wieser, H

    The interaction of natural calf thymus DNA with Cr(3+) ions was studied at room temperature by means of vibrational CD (VCD) and infrared absorption (ir) spectroscopy, and atomic force microscopy (AFM). Cr(3+) ion binding mainly to N(7) (G) and to phosphate groups was demonstrated. Psi-type VCD spectra resembling electronic CD (ECD) spectra, which appear during psi-type DNA condensation, were observed. These spectra are characterized mainly by an anomalous, severalfold increase of VCD intensity. Such anomalous VCD spectra were assigned to DNA condensation with formation of large and dense particles of a size comparable to the wavelength of the probing ir beam and possessing large-scale helicity. Atomic force microscopy confirmed DNA condensation by Cr(3+) ions and the formation of tight DNA particles responsible for the psi-type VCD spectra. Upon increasing the Cr(3+) ion concentration the shape of the condensates changed from loose flower-like structures to highly packed dense spheres. No DNA denaturation was seen even at the highest concentration of Cr(3+) ions studied. The secondary structure of DNA remained in a B-form before and after the condensation. VCD and ir as well as AFM proved to be an effective combination for investigating DNA condensation. In addition to the ability of VCD to determine DNA condensation, VCD and ir can in the same experiment provide unambiguous information about the secondary structure of DNA contained in the condensed particles.

  2. AFM nanoindentation: tip shape and tip radius of curvature effect on the hardness measurement

    NASA Astrophysics Data System (ADS)

    Calabri, L.; Pugno, N.; Menozzi, C.; Valeri, S.

    2008-11-01

    AFM nanoindentation is nowadays not so widespread for the study of mechanical properties of materials at the nanoscale. 'Nanoindenter' machines are presently more accurate and more standardized. However, AFM could provide interesting features such as imaging the indentation impression right after the load application. In this work a new method for nanoindentation via AFM is proposed. The use of AFM allows hardness measurement with standard sharp AFM probes and a simultaneous high-resolution imaging (which is not achievable with standard indenters—cube corner and Berkovich). How the shape of the indenter and the tip radius of curvature affect the hardness measurement is here analysed with three different approaches: experiments, numerical simulations and theoretical models. In particular the effect of the tip radius of curvature, which is not negligible for the real indenters, has been considered both in the nature of the indentation process, than in the practice of imaging with AFM. A final theoretical model has been developed, that includes the effect of the tip radius of curvature as well as variable corner angle. Through this model we have been able to define a correction factor which permits us to evaluate the actual hardness of the material, once the radius of curvature of the tip is measured.

  3. Friction of ice measured using lateral force microscopy

    SciTech Connect

    Bluhm, Hendrik; Inoue, Takahito; Salmeron, Miquel

    2000-03-15

    The friction of nanometer thin ice films grown on mica substrates is investigated using atomic force microscopy (AFM). Friction was found to be of similar magnitude as the static friction of ice reported in macroscopic experiments. The possible existence of a lubricating film of water due to pressure melting, frictional heating, and surface premelting is discussed based on the experimental results using noncontact, contact, and lateral force microscopy. We conclude that AFM measures the dry friction of ice due to the low scan speed and the squeezing out of the water layer between the sharp AFM tip and the ice surface. (c) 2000 The American Physical Society.

  4. Oriented Membrane Protein Reconstitution into Tethered Lipid Membranes for AFM Force Spectroscopy.

    PubMed

    Bronder, Anna M; Bieker, Adeline; Elter, Shantha; Etzkorn, Manuel; Häussinger, Dieter; Oesterhelt, Filipp

    2016-11-01

    Membrane proteins act as a central interface between the extracellular environment and the intracellular response and as such represent one of the most important classes of drug targets. The characterization of the molecular properties of integral membrane proteins, such as topology and interdomain interaction, is key to a fundamental understanding of their function. Atomic force microscopy (AFM) and force spectroscopy have the intrinsic capabilities of investigating these properties in a near-native setting. However, atomic force spectroscopy of membrane proteins is traditionally carried out in a crystalline setup. Alternatively, model membrane systems, such as tethered bilayer membranes, have been developed for surface-dependent techniques. While these setups can provide a more native environment, data analysis may be complicated by the normally found statistical orientation of the reconstituted protein in the model membrane. We have developed a model membrane system that enables the study of membrane proteins in a defined orientation by single-molecule force spectroscopy. Our approach is demonstrated using cell-free expressed bacteriorhodopsin coupled to a quartz glass surface in a defined orientation through a protein anchor and reconstituted inside an artificial membrane system. This approach offers an effective way to study membrane proteins in a planar lipid bilayer. It can be easily transferred to all membrane proteins that possess a suitable tag and can be reconstituted into a lipid bilayer. In this respect, we anticipate that this technique may contribute important information on structure, topology, and intra- and intermolecular interactions of other seven-transmembrane helical receptors. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. Optical trapping force combining an optical fiber probe and an AFM metallic probe.

    PubMed

    Liu, Binghui; Yang, Lijun; Wang, Yang

    2011-02-14

    A high-resolution optical trapping and manipulating scheme combining an optical fiber probe and an AFM metallic probe is proposed. This scheme is based on the combination of evanescent illumination and light scattering at the metallic probe apex, which shapes the optical field into a localized, three-dimensional optical trap. Detailed simulations of the electromagnetic fields in composite area and the resulting forces are described the methods of Maxwell stress tensor and three-dimensional FDTD. Calculations show that the scheme is able to overcome the disturbance of other forces to trap a polystyrene particle of up to 10 nm in radius with lower laser intensity (~1040 W/mm2) than that required by conventional optical tweezers (~10(5) W/mm2). Based on the discussion of high manipulating efficiency dependent on system parameters and the implementing procedure, the scheme allowing for effective manipulation of nano-particles opens a way for research on single nano-particle area.

  6. Application of evanescent wave optics to the determination of absolute distance in surface force measurements using the atomic force microscope.

    PubMed

    Huntington, S T; Hartley, P G; Katsifolis, J

    2003-04-01

    A combined scanning near field optical/atomic force microscope (AFM) is used to obtain surface force measurements between a near field sensing tip and a tapered optical fibre surface, whilst simultaneously detecting the intensity of the evanescent field emanating from the fibre. The tapered optical fibre acts as a compliant sample to demonstrate the possible use of the near field intensity measurement system in determining 'real' surface separations from normal AFM surface force measurements at sub-nanometer resolution between deformable surfaces.

  7. Acquire an Bruker Dimension FastScan (trademark) Atomic Force Microscope (AFM) for Materials, Physical and Biological Science Research and Education

    DTIC Science & Technology

    2016-04-14

    Force Microscope (AFM) in 2015.The AFM instrument was installed in June 2015 and is greatly promoting our scientific research work and education programs...UU 14-04-2016 1-Jan-2015 31-Jan-2016 Final Report: Acquire an Bruker Dimension FastScanTM Atomic Force Microscope (AFM) for Materials, Physical and...Biological Science Research and Education The views, opinions and/or findings contained in this report are those of the author(s) and should not

  8. Force-Measuring Clamps

    NASA Technical Reports Server (NTRS)

    Nunnelee, Mark

    2003-01-01

    Force-measuring clamps have been invented to facilitate and simplify the task of measuring the forces or pressures applied to clamped parts. There is a critical need to measure clamping forces or pressures in some applications for example, while bonding sensors to substrates or while clamping any sensitive or delicate parts. Many manufacturers of adhesives and sensors recommend clamping at specific pressures while bonding sensors or during adhesive bonding between parts in general. In the absence of a force-measuring clamp, measurement of clamping force can be cumbersome at best because of the need for additional load sensors and load-indicating equipment. One prior method of measuring clamping force involved the use of load washers or miniature load cells in combination with external power sources and load-indicating equipment. Calibrated spring clamps have also been used. Load washers and miniature load cells constitute additional clamped parts in load paths and can add to the destabilizing effects of loading mechanisms. Spring clamps can lose calibration quickly through weakening of the springs and are limited to the maximum forces that the springs can apply. The basic principle of a force-measuring clamp can be implemented on a clamp of almost any size and can enable measurement of a force of almost any magnitude. No external equipment is needed because the component(s) for transducing the clamping force and the circuitry for supplying power, conditioning the output of the transducers, and displaying the measurement value are all housed on the clamp. In other words, a force-measuring clamp is a complete force-application and force-measurement system all in one package. The advantage of unitary packaging of such a system is that it becomes possible to apply the desired clamping force or pressure with precision and ease.

  9. Mechanical properties of in situ demineralised human enamel measured by AFM nanoindentation

    NASA Astrophysics Data System (ADS)

    Finke, Manuela; Hughes, Julie A.; Parker, David M.; Jandt, Klaus D.

    2001-10-01

    Diet-induced demineralisation is one of the key factors in surface changes of tooth enamel, with soft drinks being a significant etiological agent. The first step in this dissolution process is characterised by a change in the mechanical properties of the enamel and a roughening of the surface. The objective of this pilot study was to measure early stages of in situ induced hardness changes of polished human enamel surfaces with high accuracy using a nanoindenter attached to an atomic force microscope (AFM). Human unerupted third molars were cleaned, sterilised with sodium hypochlorite, sectioned and embedded in epoxy resin. The outer enamel surface was polished and the samples partly covered with a tape, allowing a 2-mm-wide zone to be exposed to the oral environment. Samples were fitted in an intra-oral appliance, which was worn from 9 a.m. to 5 p.m. for one day. During this time the volunteer sipped 250 ml of a drink over 10 min periods at 9.00, 11.00, 13.00 and 15.00 h. Three different drinks, mineral water, orange juice and the prototype of a blackcurrant drink with low demineralisation potential were used in this study. At the end of the experiment the samples were detached from the appliance, the tape removed and the surfaces chemically cleaned. The surface hardness and reduced Young's modulus of the exposed and unexposed areas of each sample were determined. In addition, high resolution topographical AFM images were obtained. This study shows that by determining the hardness and reduced Young's modulus, the difference in demineralisation caused by the drinks can be detected and quantified before statistically significant changes in surface topography could be observed with the AFM. The maximum decrease in surface hardness and Young's modulus occurred in the samples exposed to orange juice, followed by those exposed to the blackcurrant drink, while exposure to water led to the same values as unexposed areas. A one-way ANOVA showed a statistically significant

  10. Chair-boat transitions in single polysaccharide molecules observed with force-ramp AFM

    PubMed Central

    Marszalek, Piotr E.; Li, Hongbin; Oberhauser, Andres F.; Fernandez, Julio M.

    2002-01-01

    Under a stretching force, the sugar ring of polysaccharide molecules switches from the chair to the boat-like or inverted chair conformation. This conformational change can be observed by stretching single polysaccharide molecules with an atomic force microscope. In those early experiments, the molecules were stretched at a constant rate while the resulting force changed over wide ranges. However, because the rings undergo force-dependent transitions, an experimental arrangement where the force is the free variable introduces an undesirable level of complexity in the results. Here we demonstrate the use of force-ramp atomic force microscopy to capture the conformational changes in single polysaccharide molecules. Force-ramp atomic force microscopy readily captures the ring transitions under conditions where the entropic elasticity of the molecule is separated from its conformational transitions, enabling a quantitative analysis of the data with a simple two-state model. This analysis directly provides the physico-chemical characteristics of the ring transitions such as the width of the energy barrier, the relative energy of the conformers, and their enthalpic elasticity. Our experiments enhance the ability of single-molecule force spectroscopy to make high-resolution measurements of the conformations of single polysaccharide molecules under a stretching force, making an important addition to polysaccharide spectroscopy. PMID:11917130

  11. Specific antigen/antibody interactions measured by force microscopy.

    PubMed Central

    Dammer, U; Hegner, M; Anselmetti, D; Wagner, P; Dreier, M; Huber, W; Güntherodt, H J

    1996-01-01

    Molecular recognition between biotinylated bovine serum albumin and polyclonal, biotin-directed IG antibodies has been measured directly under various buffer conditions using an atomic force microscope (AFM). It was found that even highly structured molecules such as IgG antibodies preserve their specific affinity to their antigens when probed with an AFM in the force mode. We could measure the rupture force between individual antibody-antigen complexes. The potential and limitations of this new approach for the measurement of individual antigen/antibody interactions and some possible applications are discussed. Images FIGURE 1 FIGURE 3 PMID:9172770

  12. FM-AFM constant height imaging and force curves: high resolution study of DNA-tip interactions.

    PubMed

    Cerreta, Andrea; Vobornik, Dusan; Di Santo, Giovanni; Tobenas, Susana; Alonso-Sarduy, Livan; Adamcik, Jozef; Dietler, Giovanni

    2012-09-01

    Interaction of the atomic force microscopy (AFM) tip with the sample can be invasive for soft samples. Frequency Modulation (FM) AFM is gentler because it allows scanning in the non-contact regime where only attractive forces exist between the tip and the sample, and there is no sample compression. Recently, FM-AFM was used to resolve the atomic structure of single molecules of pentacene and of carbon nanotubes. We are testing similar FM-AFM-based approaches to study biological samples. We present FM-AFM experiments on dsDNA deposited on 3-aminopropyltriethoxysilane modified mica in ultra high vacuum. With flexible samples such as DNA, the substrate flatness is a sub-molecular resolution limiting factor. Non-contact topographic images of DNA show variations that have the periodicity of the right handed helix of B-form DNA - this is an unexpected result as dehydrated DNA is thought to assume the A-form structure. Frequency shift maps at constant height allow working in the non-monotonic frequency shift range, show a rich contrast that changes significantly with the tip-sample separation, and show 0.2 to 0.4 nm size details on DNA. Frequency shift versus distance curves acquired on DNA molecules and converted in force curves show that for small molecules (height < 2.5 nm), there is a contribution to the interaction force from the substrate when the tip is on top of the molecules. Our data shine a new light on dehydrated and adsorbed DNA behavior. They show a longer tip-sample interaction distance. These experiments may have an impact on nanotechnological DNA applications in non-physiological environments such as DNA based nanoelectronics and nanotemplating. Copyright © 2012 John Wiley & Sons, Ltd.

  13. Understanding the TERS Effect with On-line Tunneling and Force Feedback Using Multiprobe AFM/NSOM with Raman Integration

    NASA Astrophysics Data System (ADS)

    Lewis, Aaron; Dekhter, Rimma; Hamra, Patricia; Bar-David, Yossi; Taha, Hesham

    Tip enhanced Raman scattering (TERS) has evolved in several directions over the past years. The data from this variety of methodologies has now accumulated to the point that there is a reasonable possibility of evolving an understanding of the underlying cause of the resulting effects that could be the origin of the various TERS enhancement processes. The objective of this presentation is to use the results thus far with atomic force microscopy (AFM) probes with noble metal coating, etching, transparent gold nanoparticles with and without a second nanoparticle [Wang and Schultz, ANALYST 138, 3150 (2013)] and tunneling feedback probes [R. Zhang et. al., NATURE 4 9 8, 8 2 (2013)]. We attempt at understanding this complex of results with AFM/NSOM multiprobe techniques. Results indicate that TERS is dominated by complex quantum interactions. This produces a highly confined and broadband plasmon field with all k vectors for effective excitation. Normal force tuning fork feedback with exposed tip probes provides an excellent means to investigate these effects with TERS probes that we have shown can circumvent the vexing problem of jump to contact prevalent in conventional AFM methodology and permit on-line switching between tunneling and AFM feedback modes of operation.

  14. Force measurements with the atomic force microscope: Technique, interpretation and applications

    NASA Astrophysics Data System (ADS)

    Butt, Hans-Jürgen; Cappella, Brunero; Kappl, Michael

    2005-10-01

    The atomic force microscope (AFM) is not only a tool to image the topography of solid surfaces at high resolution. It can also be used to measure force-versus-distance curves. Such curves, briefly called force curves, provide valuable information on local material properties such as elasticity, hardness, Hamaker constant, adhesion and surface charge densities. For this reason the measurement of force curves has become essential in different fields of research such as surface science, materials engineering, and biology. Another application is the analysis of surface forces per se. Some of the most fundamental questions in colloid and surface science can be addressed directly with the AFM: What are the interactions between particles in a liquid? How can a dispersion be stabilized? How do surfaces in general and particles in particular adhere to each other? Particles and surfaces interactions have major implications for friction and lubrication. Force measurements on single molecules involving the rupture of single chemical bonds and the stretching of polymer chains have almost become routine. The structure and properties of confined liquids can be addressed since force measurements provide information on the energy of a confined liquid film. After the review of Cappella [B. Cappella, G. Dietler, Surf. Sci. Rep. 34 (1999) 1-104] 6 years of intense development have occurred. In 1999, the AFM was used only by experts to do force measurements. Now, force curves are used by many AFM researchers to characterize materials and single molecules. The technique and our understanding of surface forces has reached a new level of maturity. In this review we describe the technique of AFM force measurements. Important experimental issues such as the determination of the spring constant and of the tip radius are discussed. Current state of the art in analyzing force curves obtained under different conditions is presented. Possibilities, perspectives but also open questions and

  15. High-resolution capacitance measurement and potentiometry by force microscopy

    NASA Astrophysics Data System (ADS)

    Martin, Yves; Abraham, David W.; Wickramasinghe, H. Kumar

    1988-03-01

    We demonstrate the usefulness and high sensitivity of the atomic force microscope (AFM) for imaging surface dielectric properties and for potentiometry through the detection of electrostatic forces. Electric forces as small as 10-10 N have been measured, corresponding to a capacitance of 10-19 farad. The sensitivity of our AFM should ultimately allow us to detect capacitances as low as 8×10-22 F. The method enables us to detect the presence of dielectric material over Si, and to measure the voltage in a p-n junction with submicron spatial resolution.

  16. Quantitative measurements of shear displacement using atomic force microscopy

    SciTech Connect

    Wang, Wenbo; Wu, Weida; Sun, Ying; Zhao, Yonggang

    2016-03-21

    We report a method to quantitatively measure local shear deformation with high sensitivity using atomic force microscopy. The key point is to simultaneously detect both torsional and buckling motions of atomic force microscopy (AFM) cantilevers induced by the lateral piezoelectric response of the sample. This requires the quantitative calibration of torsional and buckling response of AFM. This method is validated by measuring the angular dependence of the in-plane piezoelectric response of a piece of piezoelectric α-quartz. The accurate determination of the amplitude and orientation of the in-plane piezoelectric response, without rotation, would greatly enhance the efficiency of lateral piezoelectric force microscopy.

  17. Leveraging Air Force Medical Service (AFMS) Senior Leadership Corps Diversity to Improve Efficiency

    DTIC Science & Technology

    2013-04-01

    commanders and AFMS senior leadership; • Set a single PME standard for AFMS officers; • Shift provider billets to patient care roles and establish...single PME standard, and by realigning human resources to increase clinical currency, medical readiness and resource efficiency. Some structural...organizational entity. Like running a surgical service or a medical service. . . . It’s much bigger than that, because you’re dealing with finance and

  18. Force-Measuring Clamp

    NASA Technical Reports Server (NTRS)

    Nunnelee, Mark (Inventor)

    2004-01-01

    A precision clamp that accurately measures force over a wide range of conditions is described. Using a full bridge or other strain gage configuration. the elastic deformation of the clamp is measured or detected by the strain gages. Thc strain gages transmit a signal that corresponds to the degree of stress upon the clamp. Thc strain gage signal is converted to a numeric display. Calibration is achieved by ero and span potentiometers which enable accurate measurements by the force-measuring clamp.

  19. Force-Measuring Clamp

    NASA Technical Reports Server (NTRS)

    Nunnelee, Mark (Inventor)

    2004-01-01

    A precision clamp that accurately measures force over a wide range of conditions is described. Using a full bridge or other strain gage configuration. the elastic deformation of the clamp is measured or detected by the strain gages. Thc strain gages transmit a signal that corresponds to the degree of stress upon the clamp. Thc strain gage signal is converted to a numeric display. Calibration is achieved by ero and span potentiometers which enable accurate measurements by the force-measuring clamp.

  20. Dynamic measurement and modeling of the Casimir force at the nanometer scale

    SciTech Connect

    Kohoutek, John; Wan, Ivy Yoke Leng; Mohseni, Hooman

    2010-02-08

    We present a dynamic method for measurement of the Casimir force with an atomic force microscope (AFM) with a conventional AFM tip. With this method, originally based on the phase of vibration of the AFM tip, we are able to verify the Casimir force at distances of nearly 6 nm with an AFM tip that has a radius of curvature of nearly 100 nm. Until now dynamic methods have been done using large metal spheres at greater distances. Also presented is a theoretical model based on the harmonic oscillator, including nonidealities. This model accurately predicts the experimental data.

  1. Sequential adaptation in latent tuberculosis bacilli: observation by atomic force microscopy (AFM)

    PubMed Central

    Velayati, Ali Akbar; Farnia, Parissa; Masjedi, Mohammad Reza; Zhavnerko, Gennady Konstantinovich; Merza, Muayad Aghali; Ghanavi, Jalladein; Tabarsi, Payam; Farnia, Poopak; Poleschuyk, Nikolai Nikolaevich; Ignatyev, George

    2011-01-01

    Mycobacterium tuberculosis (MTB) can persist within the human host for years without causing disease, in a syndrome known as latent tuberculosis. The mechanisms by which M. tuberculosis establishes a latent metabolic state is unknown, but it is hypothesized that reduced oxygen tension may trigger the bacillus to enter a state of latency. Therefore, we are studying anaerobic culture of M. tuberculosis (H37RV) as a model of latency. For the first time, the sequential adaptation of latent bacilli (every 90 days for 48 months) viewed under Atomic Force Microscopy (AFM). Two types of adaptation were observed and are described here. First, cells are undergoing temporary adaptation (from 1 to 18 months of latency) that includes; thickening of cell wall (20.5±1.8 nm versus 15.2±1.8 nm, P<0.05), formation of ovoid cells by “folding phenomena”(65-70%), size reduction (0.8±0.1 μm versus 2.5±0.5 μm), and budding type of cell division (20-25%).A second feature include changes that accompany development of specialized cells i.e., production of spore like cells (0.5±0.2 μm) and their progeny (filterable non -acid fast forms; 150 to 300 μm in size). Although, these cells were not real spore because they fail to form a heat resistant colony forming units, after incubation for 35-40 min at 65°C. The filterable non-acid fast forms of bacilli are metabolically active and increased their number by symmetrical type of cell-division. Therefore, survival strategies that developed by M. tuberculosis under oxygen limited condition are linked to its shape, size and conspicuous loss of acid fastness. PMID:21977232

  2. Atomic force microscopy probing in the measurement of cell mechanics

    PubMed Central

    Kirmizis, Dimitrios; Logothetidis, Stergios

    2010-01-01

    Atomic force microscope (AFM) has been used incrementally over the last decade in cell biology. Beyond its usefulness in high resolution imaging, AFM also has unique capabilities for probing the viscoelastic properties of living cells in culture and, even more, mapping the spatial distribution of cell mechanical properties, providing thus an indirect indicator of the structure and function of the underlying cytoskeleton and cell organelles. AFM measurements have boosted our understanding of cell mechanics in normal and diseased states and provide future potential in the study of disease pathophysiology and in the establishment of novel diagnostic and treatment options. PMID:20463929

  3. Fourier Transform Infrared (FTIR) Spectroscopy, Ultraviolet Resonance Raman (UVRR) Spectroscopy, and Atomic Force Microscopy (AFM) for Study of the Kinetics of Formation and Structural Characterization of Tau Fibrils.

    PubMed

    Ramachandran, Gayathri

    2017-01-01

    Kinetic studies of tau fibril formation in vitro most commonly employ spectroscopic probes such as thioflavinT fluorescence and laser light scattering or negative stain transmission electron microscopy. Here, I describe the use of Fourier transform infrared (FTIR) spectroscopy, ultraviolet resonance Raman (UVRR) spectroscopy, and atomic force microscopy (AFM) as complementary probes for studies of tau aggregation. The sensitivity of vibrational spectroscopic techniques (FTIR and UVRR) to secondary structure content allows for measurement of conformational changes that occur when the intrinsically disordered protein tau transforms into cross-β-core containing fibrils. AFM imaging serves as a gentle probe of structures populated over the time course of tau fibrillization. Together, these assays help further elucidate the structural and mechanistic complexity inherent in tau fibril formation.

  4. The ReactorAFM: Non-contact atomic force microscope operating under high-pressure and high-temperature catalytic conditions

    SciTech Connect

    Roobol, S. B.; Cañas-Ventura, M. E.; Bergman, M.; Spronsen, M. A. van; Onderwaater, W. G.; Tuijn, P. C. van der; Koehler, R.; Frenken, J. W. M.; Ofitserov, A.; Baarle, G. J. C. van

    2015-03-15

    An Atomic Force Microscope (AFM) has been integrated in a miniature high-pressure flow reactor for in-situ observations of heterogeneous catalytic reactions under conditions similar to those of industrial processes. The AFM can image model catalysts such as those consisting of metal nanoparticles on flat oxide supports in a gas atmosphere up to 6 bar and at a temperature up to 600 K, while the catalytic activity can be measured using mass spectrometry. The high-pressure reactor is placed inside an Ultrahigh Vacuum (UHV) system to supplement it with standard UHV sample preparation and characterization techniques. To demonstrate that this instrument successfully bridges both the pressure gap and the materials gap, images have been recorded of supported palladium nanoparticles catalyzing the oxidation of carbon monoxide under high-pressure, high-temperature conditions.

  5. The ReactorAFM: Non-contact atomic force microscope operating under high-pressure and high-temperature catalytic conditions

    NASA Astrophysics Data System (ADS)

    Roobol, S. B.; Cañas-Ventura, M. E.; Bergman, M.; van Spronsen, M. A.; Onderwaater, W. G.; van der Tuijn, P. C.; Koehler, R.; Ofitserov, A.; van Baarle, G. J. C.; Frenken, J. W. M.

    2015-03-01

    An Atomic Force Microscope (AFM) has been integrated in a miniature high-pressure flow reactor for in-situ observations of heterogeneous catalytic reactions under conditions similar to those of industrial processes. The AFM can image model catalysts such as those consisting of metal nanoparticles on flat oxide supports in a gas atmosphere up to 6 bar and at a temperature up to 600 K, while the catalytic activity can be measured using mass spectrometry. The high-pressure reactor is placed inside an Ultrahigh Vacuum (UHV) system to supplement it with standard UHV sample preparation and characterization techniques. To demonstrate that this instrument successfully bridges both the pressure gap and the materials gap, images have been recorded of supported palladium nanoparticles catalyzing the oxidation of carbon monoxide under high-pressure, high-temperature conditions.

  6. The ReactorAFM: non-contact atomic force microscope operating under high-pressure and high-temperature catalytic conditions.

    PubMed

    Roobol, S B; Cañas-Ventura, M E; Bergman, M; van Spronsen, M A; Onderwaater, W G; van der Tuijn, P C; Koehler, R; Ofitserov, A; van Baarle, G J C; Frenken, J W M

    2015-03-01

    An Atomic Force Microscope (AFM) has been integrated in a miniature high-pressure flow reactor for in-situ observations of heterogeneous catalytic reactions under conditions similar to those of industrial processes. The AFM can image model catalysts such as those consisting of metal nanoparticles on flat oxide supports in a gas atmosphere up to 6 bar and at a temperature up to 600 K, while the catalytic activity can be measured using mass spectrometry. The high-pressure reactor is placed inside an Ultrahigh Vacuum (UHV) system to supplement it with standard UHV sample preparation and characterization techniques. To demonstrate that this instrument successfully bridges both the pressure gap and the materials gap, images have been recorded of supported palladium nanoparticles catalyzing the oxidation of carbon monoxide under high-pressure, high-temperature conditions.

  7. The physics of pulling polyproteins: a review of single molecule force spectroscopy using the AFM to study protein unfolding

    NASA Astrophysics Data System (ADS)

    Hughes, Megan L.; Dougan, Lorna

    2016-07-01

    One of the most exciting developments in the field of biological physics in recent years is the ability to manipulate single molecules and probe their properties and function. Since its emergence over two decades ago, single molecule force spectroscopy has become a powerful tool to explore the response of biological molecules, including proteins, DNA, RNA and their complexes, to the application of an applied force. The force versus extension response of molecules can provide valuable insight into its mechanical stability, as well as details of the underlying energy landscape. In this review we will introduce the technique of single molecule force spectroscopy using the atomic force microscope (AFM), with particular focus on its application to study proteins. We will review the models which have been developed and employed to extract information from single molecule force spectroscopy experiments. Finally, we will end with a discussion of future directions in this field.

  8. The physics of pulling polyproteins: a review of single molecule force spectroscopy using the AFM to study protein unfolding.

    PubMed

    Hughes, Megan L; Dougan, Lorna

    2016-07-01

    One of the most exciting developments in the field of biological physics in recent years is the ability to manipulate single molecules and probe their properties and function. Since its emergence over two decades ago, single molecule force spectroscopy has become a powerful tool to explore the response of biological molecules, including proteins, DNA, RNA and their complexes, to the application of an applied force. The force versus extension response of molecules can provide valuable insight into its mechanical stability, as well as details of the underlying energy landscape. In this review we will introduce the technique of single molecule force spectroscopy using the atomic force microscope (AFM), with particular focus on its application to study proteins. We will review the models which have been developed and employed to extract information from single molecule force spectroscopy experiments. Finally, we will end with a discussion of future directions in this field.

  9. Development and testing of hyperbaric atomic force microscopy (AFM) and fluorescence microscopy for biological applications.

    PubMed

    D'Agostino, D P; McNally, H A; Dean, J B

    2012-05-01

    A commercially available atomic force microscopy and fluorescence microscope were installed and tested inside a custom-designed hyperbaric chamber to provide the capability to study the effects of hyperbaric gases on biological preparations, including cellular mechanism of oxidative stress. In this report, we list details of installing and testing atomic force microscopy and fluorescence microscopy inside a hyperbaric chamber. The pressure vessel was designed to accommodate a variety of imaging equipment and ensures full functionality at ambient and hyperbaric conditions (≤85 psi). Electrical, gas and fluid lines were installed to enable remote operation of instrumentation under hyperbaric conditions, and to maintain viable biological samples with gas-equilibrated superfusate and/or drugs. Systems were installed for vibration isolation and temperature regulation to maintain atomic force microscopy performance during compression and decompression. Results of atomic force microscopy testing demonstrate sub-nanometre resolution at hyperbaric pressure in dry scans and fluid scans, in both contact mode and tapping mode. Noise levels were less when measurements were taken under hyperbaric pressure with air, helium (He) and nitrogen (N(2) ). Atomic force microscopy and fluorescence microscopy measurements were made on a variety of living cell cultures exposed to hyperbaric gases (He, N(2) , O(2) , air). In summary, atomic force microscopy and fluorescence microscopy were installed and tested for use at hyperbaric pressures and enables the study of cellular and molecular effects of hyperbaric gases and pressure per se in biological preparations. © 2012 The Authors Journal of Microscopy © 2012 Royal Microscopical Society.

  10. Evaluating interaction forces between BSA and rabbit anti-BSA in sulphathiazole sodium, tylosin and levofloxacin solution by AFM

    NASA Astrophysics Data System (ADS)

    Wang, Congzhou; Wang, Jianhua; Deng, Linhong

    2011-11-01

    Protein-protein interactions play crucial roles in numerous biological processes. However, it is still challenging to evaluate the protein-protein interactions, such as antigen and antibody, in the presence of drug molecules in physiological liquid. In this study, the interaction between bovine serum albumin (BSA) and rabbit anti-BSA was investigated using atomic force microscopy (AFM) in the presence of various antimicrobial drugs (sulphathiazole sodium, tylosin and levofloxacin) under physiological condition. The results show that increasing the concentration of tylosin decreased the single-molecule-specific force between BSA and rabbit anti-BSA. As for sulphathiazole sodium, it dramatically decreased the specific force at a certain critical concentration, but increased the nonspecific force as its concentration increasing. In addition, the presence of levofloxacin did not greatly influence either the specific or nonspecific force. Collectively, these results suggest that these three drugs may adopt different mechanisms to affect the interaction force between BSA and rabbit anti-BSA. These findings may enhance our understanding of antigen/antibody binding processes in the presence of drug molecules, and hence indicate that AFM could be helpful in the design and screening of drugs-modulating protein-protein interaction processes.

  11. Forces applied by cilia measured on explants from mucociliary tissue.

    PubMed

    Teff, Zvi; Priel, Zvi; Gheber, Levi A

    2007-03-01

    Forces applied by intact mucus-propelling cilia were measured for the first time that we know of using a combined atomic force microscopy (AFM) and electrooptic system. The AFM probe was dipped into a field of beating cilia and its time-dependent deflection was recorded as it was struck by the cilia while the electrooptic system simultaneously and colocally measured the frequency to ensure that no perturbation was induced by the AFM probe. Using cilia from frog esophagus, we measured forces of approximately 0.21 nN per cilium during the effective stroke. This value, together with the known internal structure of these cilia, leads to the conclusion that most dynein arms along the length of the axoneme contribute to the effective stroke of these cilia.

  12. Examination of Humidity Effects on Measured Thickness and Interfacial Phenomena of Exfoliated Graphene on SiO2 via AC-AFM

    NASA Astrophysics Data System (ADS)

    Jinkins, Katherine; Camacho, Jorge; Farina, Lee; Wu, Yan

    2015-03-01

    Tapping (AC) mode Atomic Force Microscopy (AFM) is commonly used to determine the thickness of graphene samples. However, AFM measurements have been shown to be sensitive to environmental conditions such as adsorbed water, in turn dependent on relative humidity (RH). In the present study, AC-AFM is used to measure the thickness and loss tangent of exfoliated graphene on silicon dioxide (SiO2) as RH is increased from 10% to 80%. We show that the measured thickness of graphene is dependent on RH. Loss tangent is an AFM imaging technique that interprets the phase information as a relationship between the stored and dissipated energy in the tip-sample interaction. This study demonstrates the loss tangent of the graphene and oxide regions are both affected by humidity, with generally higher loss tangent for graphene than SiO2. As RH increases, we observe the loss tangent of both materials approaches the same value. We hypothesize that there is a layer of water trapped between the graphene and SiO2 substrate to explain this observation. Using this interpretation, the loss tangent images also indicate movement and change in this trapped water layer as RH increases, which impacts the measured thickness of graphene using AC-AFM.

  13. PREFACE: NC-AFM 2003: Proceedings of the 6th International Conference on Non-contact Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Reichling, Michael

    2004-02-01

    Direct nanoscale and atomic resolution imaging is a key issue in nanoscience and nanotechnology. The invention of the dynamic force microscope in the early 1990s was an important step forward in this direction as this instrument provides a universal tool for measuring the topography and many other physical and chemical properties of surfaces at the nanoscale. Operation in the so-called non-contact mode now allows direct atomic resolution imaging of electrically insulating surfaces and nanostructures which has been an unsolved problem during the first decade of nanotechnology. Today, we face a most rapid development of the technique and an extension of its capabilities far beyond imaging; atomically resolved force spectroscopy provides information about local binding properties and researchers now develop sophisticated schemes of force controlled atomic manipulation with the tip of the force microscope. Progress in the field of non-contact force microscopy is discussed at the annually held NC-AFM conferences that are part of a series started in 1998 with a meeting in Osaka, Japan. The 6th International Conference on Non-contact Atomic Force Microscopy took place in Dingle, Ireland, from 31 August to 3 September 2003 and this special issue is a compilation of the original publications of work presented at this meeting. The papers published here well reflect recent achievements, current trends and some of the challenging new directions in non-contact force microscopy that have been discussed during the most stimulating conference days in Dingle. Fundamental aspects of forces and dissipation relevant in imaging and spectroscopy have been covered by experimental and theoretical contributions yielding a more detailed understanding of tip--surface interaction in force microscopy. Novel and improved imaging and spectroscopy techniques have been introduced that either improve the performance of force microscopy or pave the way towards new functionalities and applications

  14. Uncertainty quantification in nanomechanical measurements using the atomic force microscope

    Treesearch

    Ryan Wagner; Robert Moon; Jon Pratt; Gordon Shaw; Arvind Raman

    2011-01-01

    Quantifying uncertainty in measured properties of nanomaterials is a prerequisite for the manufacture of reliable nanoengineered materials and products. Yet, rigorous uncertainty quantification (UQ) is rarely applied for material property measurements with the atomic force microscope (AFM), a widely used instrument that can measure properties at nanometer scale...

  15. Recombinant albumin adsorption on mica studied by AFM and streaming potential measurements.

    PubMed

    Kujda, Marta; Adamczyk, Zbigniew; Morga, Maria; Sofińska, Kamila

    2015-03-01

    Recombinant human serum albumin (rHSA) in monomeric state is widely used in pharmaceutical industry as a drug excipient and for preparing coatings for medical devices. In this work the adsorption process of rHSA on model mica surface at pH 3.5 was studied using the atomic force microscopy (AFM) and in situ streaming potential measurements. The kinetics of albumin adsorption was determined by a direct enumeration of single molecules over various substrate areas. These results were consistent with streaming potential measurements carried out for the parallel-plate channel flow and with theoretical predictions derived from the random sequential adsorption (RSA) model. Desorption kinetics of albumin under flow conditions was also evaluated via the streaming potential measurements. In this way, the amount of irreversibly bound albumin was quantitatively evaluated to be 0.64 and 1.2 mg m(-2) for ionic strength of 0.01 and 0.15 M, respectively. This agrees with previous results obtained for HSA and theoretical calculations derived from the RSA model. Additionally, it was demonstrated that there existed a fraction of reversibly bound albumin that can be fully eluted within a few hours. The binding energy of these fraction of molecules was -18 kT that is consistent with the electrostatic controlled adsorption mechanism of albumin at this pH. It was concluded that the rHSA monolayers of well-defined coverage can find applications for quantitatively analyzing ligand binding and for performing efficient biomaterials and immunological tests.

  16. PREFACE: NC-AFM 2004: Proceedings of the 7th International Conference on Non-contact Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Schwarz, Udo

    2005-03-01

    With the ongoing miniaturization of devices and controlled nanostructuring of materials, the importance of atomic-scale information on surfaces and surface properties is growing continuously. The astonishing progress in nanoscience and nanotechnology that took place during the last two decades was in many ways related to recent progress in high-resolution imaging techniques such as scanning tunnelling microscopy and transmission electron microscopy. Since the mid-1990s, non-contact atomic force microscopy (NC-AFM) performed in ultrahigh vacuum has evolved as an alternative technique that achieves atomic resolution, but without the restriction to conducting surfaces of the previously established techniques. Advances of the rapidly developing field of NC-AFM are discussed at annual conferences as part of a series that started in 1998 in Osaka, Japan. This special issue of Nanotechnology is a compilation of original work presented at the 7th International Conference on Non-contact Atomic Force Microscopy that took place in Seattle, USA, 12-15 September 2004. Over the years, the conference grew in size and scope. Atomic resolution imaging of oxides and semiconductors remains an issue. Noticeable new developments have been presented in this regard such as, e.g., the demonstrated ability to manipulate individual atoms. Additionally, the investigation of individual molecules, clusters, and organic materials gains more and more attention. In this context, considerable effort is undertaken to transfer the NC-AFM principle based on frequency modulation to applications in air and liquids with the goal of enabling high-resolution surface studies of biological material in native environments, as well as to reduce the experimental complexity, which so far involves the availability of (costly) vacuum systems. Force spectroscopy methods continue to be improved and are applied to topics such as the imaging of the three-dimensional force field as a function of the distance with

  17. Wettability and surface forces measured by atomic force microscopy: the role of roughness

    NASA Astrophysics Data System (ADS)

    Gavoille, J.; Takadoum, J.; Martin, N.; Durand, D.

    2009-10-01

    Thin films of titanium, copper and silver with various roughnesses were prepared by physical vapour deposition technique: dc magnetron sputtering. By varying the deposition time from few minutes to one hour it was possible to obtain metallic films with surface roughness average ranging from 1 to 20 nm. The wettability of these films was studied by measuring the contact angle using the sessile drop method and surface forces were investigated using the atomic force microscopy (AFM) by measuring the pull-off force between the AFM tip and the surfaces. Experimental results have been mainly discussed in terms of metal surface reactivity, Young modulus of the materials and real surface of contact between the AFM tip and the film surfaces.

  18. Measurement methods in atomic force microscopy.

    PubMed

    Torre, Bruno; Canale, Claudio; Ricci, Davide; Braga, Pier Carlo

    2011-01-01

    This chapter is introductory to the measurements: it explains different measurement techniques both for imaging and for force spectroscopy, on which most of the AFM experiments rely. It gives a general overview of the different techniques and of the output expected from the instrument; therefore it is, at a basic level, a good tool to properly start a new experiment. Concepts introduced in this chapter give the base for understanding the applications shown in the following chapters. Subheading 1 introduces the distinction between spectroscopy and imaging experiments and, within the last ones, between DC and AC mode. Subheading 2 is focused on DC mode (contact), explaining the topography and the lateral force channel. Subheading 3 introduces AC mode, both in noncontact and intermittent contact case. Phase imaging and force modulation are also discussed. Subheading 4 explains how the AFM can be used to measure local mechanical and adhesive properties of specimens by means of force spectroscopy technique. An overview on the state of the art and future trends in this field is also given.

  19. Measuring molecular weight by atomic force microscopy.

    PubMed

    Sheiko, Sergei S; da Silva, Marcelo; Shirvaniants, David; LaRue, Isaac; Prokhorova, Svetlana; Moeller, Martin; Beers, Kathryn; Matyjaszewski, Krzysztof

    2003-06-04

    Absolute-molecular-weight distribution of cylindrical brush molecules were determined using a combination of the Langmuir Blodget (LB) technique and Atomic Force Microscopy (AFM). The LB technique gives mass density of a monolayer, i.e., mass per unit area, whereas visualization of individual molecules by AFM enables accurate measurements of the molecular density, i.e., number of molecules per unit area. From the ratio of the mass density to the molecular density, one can determine the absolute value for the number average molecular weight. Assuming that the structure of brush molecules is uniform along the backbone, the length distribution should be virtually identical to the molecular weight distribution. Although we used only brush molecules for demonstration purpose, this approach can be applied for a large variety of molecular and colloidal species that can be visualized by a microscopic technique.

  20. Scaling law to determine peak forces in tapping-mode AFM experiments on finite elastic soft matter systems

    PubMed Central

    2017-01-01

    Analytical equations to estimate the peak force will facilitate the interpretation and the planning of amplitude-modulation force microscopy (tapping mode) experiments. A closed-form analytical equation to estimate the tip–sample peak forces while imaging soft materials in liquid environment and within an elastic deformation regime has been deduced. We have combined a multivariate regression method with input from the virial–dissipation equations and Tatara’s bidimensional deformation contact mechanics model. The equation enables to estimate the peak force based on the tapping mode observables, probe characteristics and the material properties of the sample. The accuracy of the equation has been verified by comparing it to numerical simulations for the archetypical operating conditions to image soft matter with high spatial resolution in tapping-mode AFM. PMID:28546891

  1. Scaling law to determine peak forces in tapping-mode AFM experiments on finite elastic soft matter systems.

    PubMed

    Guzman, Horacio V

    2017-01-01

    Analytical equations to estimate the peak force will facilitate the interpretation and the planning of amplitude-modulation force microscopy (tapping mode) experiments. A closed-form analytical equation to estimate the tip-sample peak forces while imaging soft materials in liquid environment and within an elastic deformation regime has been deduced. We have combined a multivariate regression method with input from the virial-dissipation equations and Tatara's bidimensional deformation contact mechanics model. The equation enables to estimate the peak force based on the tapping mode observables, probe characteristics and the material properties of the sample. The accuracy of the equation has been verified by comparing it to numerical simulations for the archetypical operating conditions to image soft matter with high spatial resolution in tapping-mode AFM.

  2. EEMD based pitch evaluation method for accurate grating measurement by AFM

    NASA Astrophysics Data System (ADS)

    Li, Changsheng; Yang, Shuming; Wang, Chenying; Jiang, Zhuangde

    2016-09-01

    The pitch measurement and AFM calibration precision are significantly influenced by the grating pitch evaluation method. This paper presents the ensemble empirical mode decomposition (EEMD) based pitch evaluation method to relieve the accuracy deterioration caused by high and low frequency components of scanning profile during pitch evaluation. The simulation analysis shows that the application of EEMD can improve the pitch accuracy of the FFT-FT algorithm. The pitch error is small when the iteration number of the FFT-FT algorithms was 8. The AFM measurement of the 500 nm-pitch one-dimensional grating shows that the EEMD based pitch evaluation method could improve the pitch precision, especially the grating line position precision, and greatly expand the applicability of the gravity center algorithm when particles and impression marks were distributed on the sample surface. The measurement indicates that the nonlinearity was stable, and the nonlinearity of x axis and forward scanning was much smaller than their counterpart. Finally, a detailed pitch measurement uncertainty evaluation model suitable for commercial AFMs was demonstrated and a pitch uncertainty in the sub-nanometer range was achieved. The pitch uncertainty was reduced about 10% by EEMD.

  3. Real time drift measurement for colloidal probe atomic force microscope: a visual sensing approach

    SciTech Connect

    Wang, Yuliang Bi, Shusheng; Wang, Huimin

    2014-05-15

    Drift has long been an issue in atomic force microscope (AFM) systems and limits their ability to make long time period measurements. In this study, a new method is proposed to directly measure and compensate for the drift between AFM cantilevers and sample surfaces in AFM systems. This was achieved by simultaneously measuring z positions for beads at the end of an AFM colloidal probe and on sample surface through an off-focus image processing based visual sensing method. The working principle and system configuration are presented. Experiments were conducted to validate the real time drift measurement and compensation. The implication of the proposed method for regular AFM measurements is discussed. We believe that this technique provides a practical and efficient approach for AFM experiments requiring long time period measurement.

  4. Photothermally excited force modulation microscopy for broadband nanomechanical property measurements

    SciTech Connect

    Wagner, Ryan Killgore, Jason P.

    2015-11-16

    We demonstrate photothermally excited force modulation microscopy (PTE FMM) for mechanical property characterization across a broad frequency range with an atomic force microscope (AFM). Photothermal excitation allows for an AFM cantilever driving force that varies smoothly as a function of drive frequency, thus avoiding the problem of spurious resonant vibrations that hinder piezoelectric excitation schemes. A complication of PTE FMM is that the sub-resonance cantilever vibration shape is fundamentally different compared to piezoelectric excitation. By directly measuring the vibrational shape of the cantilever, we show that PTE FMM is an accurate nanomechanical characterization method. PTE FMM is a pathway towards the characterization of frequency sensitive specimens such as polymers and biomaterials with frequency range limited only by the resonance frequency of the cantilever and the low frequency limit of the AFM.

  5. Atomic force microscopy for analyzing metaphase chromosomes: comparison of AFM images with fluorescence labeling images of banding patterns.

    PubMed

    Hoshi, Osamu; Ushiki, Tatsuo

    2014-01-01

    The combined use of fluorescence microscopy with atomic force microscopy (AFM) has been introduced to analyze the replication-banding patterns of human chromosomes. Human lymphocytes synchronized with excess thymidine are treated with 5-ethynyl-2'-deoxyuridine (EdU) during the late S phase. EdU-labeled DNA is detected in metaphase chromosomes using Alexa Fluor 488(®) azide, through the 1,3-dipolar cycloaddition reaction of organic azides with the terminal acetylene group of EdU. Chromosomes with EdU incorporated during the late S phase show a banding pattern similar to the G-banding pattern of normal human chromosomes. The comparison between the fluorescence and AFM image of the same chromosome indicates the presence of ridges and grooves in the chromatid arms, which correspond to G-positive and G-negative bands, respectively. This technique of EdU-labeled replication bands combined with AFM is useful to analyze the structure of chromosomes in relation to the banding pattern.

  6. Measuring and Understanding Forces on Atomic Length Scales with the Atomic Force Microscope

    NASA Astrophysics Data System (ADS)

    Cleveland, Jason Paul

    Most microscopes can be used with little understanding of how they work--much can be learned looking through a light microscope without ever knowing what a photon is or who Maxwell was--and the Atomic Force Microscope (AFM) is no exception. Many AFM images don't look much different from a mountainous landscape, and much is learned interpreting them as such; however, to really push a microscope to its limits means understanding the interactions creating the contrast in the picture. For a Scanning Electron Microscope, this means understanding how electrons interact with matter, for an AFM it means understanding forces. The focus of this thesis is understanding the forces acting (especially in liquids) between tip and sample in AFM and a better understanding the instrument itself. Chapters I, II and VI involve better characterizing and improving the most important part of the AFM, the tiny cantilever used to measure forces. Chapter I describes a solution to one of the most basic problems that must be solved before forces can be accurately measured--measuring the stiffness of these cantilevers. Many limitations in AFM are set by physical characteristics of the cantilever itself, such as resonance frequency, spring constant, and quality factor. If an external force can be applied to the cantilever, feedback can be used to improve these characteristics. Chapter II shows how to do this using a magnetically applied external force, which has the advantage of working in liquids. These physical characteristics also change drastically when the cantilever is immersed in fluid. The resonance frequency of common cantilevers drops by as much as a factor of six in going from air to water. Chapter VI studies these changes and shows how further miniaturization of cantilevers can improve imaging speeds and signal-to-noise ratio. Early in its career, the AFM was heralded as having atomic resolution, but as the field matured researchers realized that the contact area between tip and

  7. Spatial dependence of polycrystalline FTO’s conductance analyzed by conductive atomic force microscope (C-AFM)

    SciTech Connect

    Peixoto, Alexandre Pessoa; Costa, J. C. da

    2014-05-15

    Fluorine-doped Tin oxide (FTO) is a highly transparent, electrically conductive polycrystalline material frequently used as an electrode in organic solar cells and optical-electronic devices [1–2]. In this work a spatial analysis of the conductive behavior of FTO was carried out by Conductive-mode Atomic Force Microscopy (C-AFM). Rare highly oriented grains sample give us an opportunity to analyze the top portion of polycrystalline FTO and compare with the border one. It is shown that the current flow essentially takes place through the polycrystalline edge at grain boundaries.

  8. Use of atomic force microscopy (AFM) for microfabric study of cohesive soils.

    PubMed

    Sachan, A

    2008-12-01

    Microfabric reflects the imprints of the geologic and stress history of the soil deposit, the depositional environment and weathering history. Many investigators have been concerned with the fundamental problem of how the engineering properties of clay depend on the microfabric, which can be defined as geometric arrangement of particles within the soil mass. It is believed that scanning electron microscopy (SEM) and transmission electron microscopy (TEM) are the only techniques that can reveal particle arrangements of clayey soils directly; however, current research introduces a novel and more advanced technique, atomic force microscopy, to evaluate the microfabric of cohesive materials. The atomic force microscopy has several advantages over SEM/TEM for characterizing cohesive particles at the sub-micrometre range by providing 3D images and 2D images with Z-information used in quantitative measurements of soil microfabric using SPIP software, and having the capability of obtaining images in all environments (ambient air, liquids and vacuums). This paper focuses on the use of atomic force microscopy technique to quantify the microfabric of clayey soils by developing the criteria for average and maximum values of angle of particle orientation within the soil mass using proposed empirical equations for intermediate and extreme microfabrics (dispersed, flocculated).

  9. Adsorption of modified dextrins to a hydrophobic surface: QCM-D studies, AFM imaging, and dynamic contact angle measurements.

    PubMed

    Sedeva, Iliana G; Fetzer, Renate; Fornasiero, Daniel; Ralston, John; Beattie, David A

    2010-05-15

    The adsorption of three dextrin-based polymers, regular wheat dextrin (Dextrin TY), phenyl succinate dextrin (PS Dextrin), and styrene oxide dextrin (SO Dextrin) on a model hydrophobic surface, consisting of a mixed alkanethiol layer on gold, has been characterized using the quartz crystal microbalance with dissipation monitoring (QCM-D). The three polymers exhibited varying affinities and capacity for adsorption on the hydrophobic substrate. Atomic force microscope (AFM) imaging of the polymer layers indicates that all three polymers fully cover the surface. The effect of the three polymers on the static contact angle of the surface was studied using captive bubble contact angle measurements. The three polymers were seen to reduce the receding contact angle by similar amounts (approximately 14°) in spite of having varying adsorbed amounts and differences in adsorbed layer water content. Although no differences were observed in the ability of the polymers to reduce the static contact angle, measurements of the dynamic contact angle between a rising air bubble and the polymer covered substrate yielded stark differences between the polymers, with one polymer (SO Dextrin) slowing the dewetting by an order of magnitude more than the other two polymers. The differences in dewetting behavior correlate with the adsorbed layer characteristics determined by QCM-D and AFM. The role of the dynamic and static contact angle in the performance of a polymer as depressant is discussed.

  10. The Analog Atomic Force Microscope: Measuring, Modeling, and Graphing for Middle School

    ERIC Educational Resources Information Center

    Goss, Valerie; Brandt, Sharon; Lieberman, Marya

    2013-01-01

    using an analog atomic force microscope (A-AFM) made from a cardboard box and mailing tubes. Varying numbers of ping pong balls inside the tubes mimic atoms on a surface. Students use a dowel to make macroscale measurements similar to those of a nanoscale AFM tip as it…

  11. The Analog Atomic Force Microscope: Measuring, Modeling, and Graphing for Middle School

    ERIC Educational Resources Information Center

    Goss, Valerie; Brandt, Sharon; Lieberman, Marya

    2013-01-01

    using an analog atomic force microscope (A-AFM) made from a cardboard box and mailing tubes. Varying numbers of ping pong balls inside the tubes mimic atoms on a surface. Students use a dowel to make macroscale measurements similar to those of a nanoscale AFM tip as it…

  12. Contribution to crystallographic slip assessment by means of topographic measurements achieved with atomic force microscopy

    SciTech Connect

    Kahloun, C.; Badji, R.; Bacroix, B.; Bouabdallah, M.

    2010-09-15

    In this paper, atomic force microscopy (AFM) is used to quantitatively characterize the plastic glide occurring during tensile deformation of a duplex 2205 stainless steel sample. We demonstrate that an appropriate treatment of the topographic image issued from AFM measurements allows precise and quantitative information about the characteristics of plastic deformation and especially the amount of crystallographic slip.

  13. Logarithmic contact time dependence of adhesion force and its dominant role among the effects of AFM experimental parameters under low humidity

    NASA Astrophysics Data System (ADS)

    Lai, Tianmao; Meng, Yonggang

    2017-10-01

    The influences of contact time, normal load, piezo velocity, and measurement number of times on the adhesion force between two silicon surfaces were studied with an atomic force microscope (AFM) at low humidity (17-15%). Results show that the adhesion force is time-dependent and increases logarithmically with contact time until saturation is reached, which is related with the growing size of a water bridge between them. The contact time plays a dominant role among these parameters. The adhesion forces with different normal loads and piezo velocities can be quantitatively obtained just by figuring out the length of contact time, provided that the contact time dependence is known. The time-dependent adhesion force with repeated contacts at one location usually increases first sharply and then slowly with measurement number of times until saturation is reached, which is in accordance with the contact time dependence. The behavior of the adhesion force with repeated contacts can be adjusted by the lengths of contact time and non-contact time. These results may help facilitate the anti-adhesion design of silicon-based microscale systems working under low humidity.

  14. Minimising the effect of nanoparticle deformation in intermittent contact amplitude modulation atomic force microscopy measurements

    SciTech Connect

    Babic, Bakir Lawn, Malcolm A.; Coleman, Victoria A.; Jämting, Åsa K.; Herrmann, Jan

    2016-06-07

    The results of systematic height measurements of polystyrene (PS) nanoparticles using intermittent contact amplitude modulation atomic force microscopy (IC-AM-AFM) are presented. The experimental findings demonstrate that PS nanoparticles deform during AFM imaging, as indicated by a reduction in the measured particle height. This deformation depends on the IC-AM-AFM imaging parameters, material composition, and dimensional properties of the nanoparticles. A model for nanoparticle deformation occurring during IC-AM-AFM imaging is developed as a function of the peak force which can be calculated for a particular set of experimental conditions. The undeformed nanoparticle height can be estimated from the model by extrapolation to zero peak force. A procedure is proposed to quantify and minimise nanoparticle deformation during IC-AM-AFM imaging, based on appropriate adjustments of the experimental control parameters.

  15. Measurement of polyamide and polystyrene adhesion with coated-tip atomic force microscopy.

    PubMed

    Thio, Beng Joo Reginald; Meredith, J Carson

    2007-10-01

    This work presents atomic force microscopy (AFM) measurements of adhesion forces between polyamides, polystyrene and AFM tips coated with the same materials. The polymers employed were polyamide 6 (PA6), PA66, PA12 and polystyrene (PS). All adhesion forces between the various unmodified or modified AFM tips and the polymer surfaces were in the range -1.5 to -8 nN. The weakest force was observed for an unmodified AFM tip with a PS surface and the strongest was between a PS-coated tip and PS surface. The results point to both the benefits and drawbacks of coated-tip AFM force-distance measurements. Adhesion forces between the two most dissimilar (PA6-PS and PA66-PS) materials were significantly asymmetric, e.g., the forces were different depending on the relative placement of each polymer on the AFM tip or substrate. Materials with similar chemistry and intermolecular interactions yielded forces in close agreement regardless of placement on tip or substrate. Using experimental forces, we calculated the contact radii via four models: Derjaguin, Muller, and Toporov; Johnson, Kendall, and Roberts; parametric tip-force-distance relation; and a square pyramid-flat surface (SPFS) model developed herein. The SPFS model gave the most reasonable contact tip radius estimate. Hamaker constants calculated from the SPFS model using this radius agreed in both magnitude and trends with experiment and Lifshitz theory.

  16. Characterizing aliphatic moieties in hydrocarbons with atomic force microscopy† †Electronic supplementary information (ESI) available: Additional scanning tunneling microscopy (STM) and atomic force microscopy (AFM) measurements as well as NMR, optical spectroscopy and gas chromatography (GC) characterization of the five model compounds are provided. For CPNP and CHNP the synthetic route is described. See DOI: 10.1039/c6sc04698c Click here for additional data file.

    PubMed Central

    Collazos, Sara; Fatayer, Shadi; Meyer, Gerhard; Pérez, Dolores; Guitián, Enrique; Harper, Michael R.; Kushnerick, J. Douglas; Gross, Leo

    2017-01-01

    We designed and studied hydrocarbon model compounds by high-resolution noncontact atomic force microscopy. In addition to planar polycyclic aromatic moieties, these novel model compounds feature linear alkyl and cycloaliphatic motifs that exist in most hydrocarbon resources – particularly in petroleum asphaltenes and other petroleum fractions – or in lipids in biological samples. We demonstrate successful intact deposition by sublimation of the alkyl-aromatics, and differentiate aliphatic moieties from their aromatic counterparts which were generated from the former by atomic manipulation. The characterization by AFM in combination with atomic manipulation provides clear fingerprints of the aromatic and aliphatic moieties that will facilitate their assignment in a priori unknown samples. PMID:28451335

  17. Point of zero charge of a corundum-water interface probed with optical second harmonic generation (SHG) and atomic force microscopy (AFM): New approaches to oxide surface charge

    NASA Astrophysics Data System (ADS)

    Stack, Andrew G.; Higgins, Steven R.; Eggleston, Carrick M.

    2001-09-01

    The pH and ionic strength dependence of light generated at a corundum-solution interface by the nonlinear optical process of second harmonic generation (SHG) is reported. A point of zero salt effect occurs in the pH range 5 to 6. The pH and ionic strength dependence of the SHG is qualitatively consistent with a model describing SHG from a charged mineral/water interface from Ong et al. (1992) and Zhao et al. (1993a, 1993b), but certain aspects of the model appear inadequate to describe the full range of our data. Atomic force microscopy (AFM) force-distance measurements, though imprecise, were consistent with a point of zero charge (p.z.c.) for the interface also in the pH range 5 to 6. The SHG (and AFM) results are different from expectation; the observed p.z.s.e. (and presumably also the p.z.c.) is considerably lower than the accepted point of zero charge of clean alumina powders ( pH 8-9.4; Parks, 1965; Sverjenksy and Sahai, 1996). Although the reasons for this are unclear, SHG holds promise as a probe of oxide-water interfaces that is independent of interpretation of acid-base titration stoichiometry.

  18. Force profiles of protein pulling with or without cytoskeletal links studied by AFM

    SciTech Connect

    Afrin, Rehana; Ikai, Atsushi . E-mail: aikai@bio.titech.ac.jp

    2006-09-15

    To test the capability of the atomic force microscope for distinguishing membrane proteins with/without cytoskeletal associations, we studied the pull-out mechanics of lipid tethers from the red blood cell (RBC). When wheat germ agglutinin, a glycophorin A (GLA) specific lectin, was used to pull out tethers from RBC, characteristic force curves for tether elongation having a long plateau force were observed but without force peaks which are usually attributed to the forced unbinding of membrane components from the cytoskeleton. The result was in agreement with the reports that GLA is substantially free of cytoskeletal interactions. On the contrary, when the Band 3 specific lectin, concanavalin A, was used, the force peaks were indeed observed together with a plateau supporting its reported cytoskeletal association. Based on these observations, we postulate that the state of cytoskeletal association of particular membrane proteins can be identified from the force profiles of their pull-out mechanics.

  19. Easy and direct method for calibrating atomic force microscopy lateral force measurements

    PubMed Central

    Liu, Wenhua; Bonin, Keith; Guthold, Martin

    2010-01-01

    We have designed and tested a new, inexpensive, easy-to-make and easy-to-use calibration standard for atomic force microscopy (AFM) lateral force measurements. This new standard simply consists of a small glass fiber of known dimensions and Young’s modulus, which is fixed at one end to a substrate and which can be bent laterally with the AFM tip at the other end. This standard has equal or less error than the commonly used method of using beam mechanics to determine a cantilever’s lateral force constant. It is transferable, thus providing a universal tool for comparing the calibrations of different instruments. It does not require knowledge of the cantilever dimensions and composition or its tip height. This standard also allows direct conversion of the photodiode signal to force and, thus, circumvents the requirement for a sensor response (sensitivity) measurement. PMID:17614616

  20. PREFACE: Non-contact AFM Non-contact AFM

    NASA Astrophysics Data System (ADS)

    Giessibl, Franz J.; Morita, Seizo

    2012-02-01

    This special issue is focussed on high resolution non-contact atomic force microscopy (AFM). Non-contact atomic force microscopy was established approximately 15 years ago as a tool to image conducting and insulating surfaces with atomic resolution. Since 1998, an annual international conference has taken place, and although the proceedings of these conferences are a useful source of information, several key developments warrant devoting a special issue to this subject. In the theoretic field, the possibility of supplementing established techniques such as scanning tunneling microscopy (STM) and Kelvin probe microscopy with atomically resolved force micrsoscopy poses many challenges in the calculation of contrast and contrast reversal. The surface science of insulators, self-assembled monolayers and adsorbates on insulators is a fruitful field for the application of non-contact AFM: several articles in this issue are devoted to these subjects. Atomic imaging and manipulation have been pioneered using STM, but because AFM allows the measurement of forces, AFM has had a profound impact in this field as well. Three-dimensional force spectroscopy has allowed many important insights into surface science. In this issue a combined 3D tunneling and force microscopy is introduced. Non-contact AFM typically uses frequency modulation to measure force gradients and was initially used mainly in a vacuum. As can be seen in this issue, frequency modulation is now also used in ambient conditions, allowing better spatial and force resolution. We thank all of the contributors for their time and efforts in making this special issue possible. We are also very grateful to the staff of IOP Publishing for handling the administrative aspects and for steering the refereeing process. Non-contact AFM contents Relation between the chemical force and the tunnelling current in atomic point contacts: a simple model Pavel Jelínek, Martin Ondrácek and Fernando Flores Theoretical simulation of

  1. Fundamental aspects of electric double layer force-distance measurements at liquid-solid interfaces using atomic force microscopy

    SciTech Connect

    Black, Jennifer M.; Zhu, Mengyang; Zhang, Pengfei; Unocic, Raymond R.; Guo, Daqiang; Okatan, M. Baris; Dai, Sheng; Cummings, Peter T.; Kalinin, Sergei V.; Feng, Guang; Balke, Nina

    2016-09-02

    In this paper, atomic force microscopy (AFM) force-distance measurements are used to investigate the layered ion structure of Ionic Liquids (ILs) at the mica surface. The effects of various tip properties on the measured force profiles are examined and reveal that the measured ion position is independent of tip properties, while the tip radius affects the forces required to break through the ion layers as well as the adhesion force. Force data is collected for different ILs and directly compared with interfacial ion density profiles predicted by molecular dynamics. Through this comparison it is concluded that AFM force measurements are sensitive to the position of the ion with the larger volume and mass, suggesting that ion selectivity in force-distance measurements are related to excluded volume effects and not to electrostatic or chemical interactions between ions and AFM tip. Finally, the comparison also revealed that at distances greater than 1 nm the system maintains overall electroneutrality between the AFM tip and sample, while at smaller distances other forces (e.g., van der waals interactions) dominate and electroneutrality is no longer maintained.

  2. Fundamental aspects of electric double layer force-distance measurements at liquid-solid interfaces using atomic force microscopy

    DOE PAGES

    Black, Jennifer M.; Zhu, Mengyang; Zhang, Pengfei; ...

    2016-09-02

    In this paper, atomic force microscopy (AFM) force-distance measurements are used to investigate the layered ion structure of Ionic Liquids (ILs) at the mica surface. The effects of various tip properties on the measured force profiles are examined and reveal that the measured ion position is independent of tip properties, while the tip radius affects the forces required to break through the ion layers as well as the adhesion force. Force data is collected for different ILs and directly compared with interfacial ion density profiles predicted by molecular dynamics. Through this comparison it is concluded that AFM force measurements aremore » sensitive to the position of the ion with the larger volume and mass, suggesting that ion selectivity in force-distance measurements are related to excluded volume effects and not to electrostatic or chemical interactions between ions and AFM tip. Finally, the comparison also revealed that at distances greater than 1 nm the system maintains overall electroneutrality between the AFM tip and sample, while at smaller distances other forces (e.g., van der waals interactions) dominate and electroneutrality is no longer maintained.« less

  3. Fundamental aspects of electric double layer force-distance measurements at liquid-solid interfaces using atomic force microscopy.

    PubMed

    Black, Jennifer M; Zhu, Mengyang; Zhang, Pengfei; Unocic, Raymond R; Guo, Daqiang; Okatan, M Baris; Dai, Sheng; Cummings, Peter T; Kalinin, Sergei V; Feng, Guang; Balke, Nina

    2016-09-02

    Atomic force microscopy (AFM) force-distance measurements are used to investigate the layered ion structure of Ionic Liquids (ILs) at the mica surface. The effects of various tip properties on the measured force profiles are examined and reveal that the measured ion position is independent of tip properties, while the tip radius affects the forces required to break through the ion layers as well as the adhesion force. Force data is collected for different ILs and directly compared with interfacial ion density profiles predicted by molecular dynamics. Through this comparison it is concluded that AFM force measurements are sensitive to the position of the ion with the larger volume and mass, suggesting that ion selectivity in force-distance measurements are related to excluded volume effects and not to electrostatic or chemical interactions between ions and AFM tip. The comparison also revealed that at distances greater than 1 nm the system maintains overall electroneutrality between the AFM tip and sample, while at smaller distances other forces (e.g., van der waals interactions) dominate and electroneutrality is no longer maintained.

  4. Fundamental aspects of electric double layer force-distance measurements at liquid-solid interfaces using atomic force microscopy

    PubMed Central

    Black, Jennifer M.; Zhu, Mengyang; Zhang, Pengfei; Unocic, Raymond R.; Guo, Daqiang; Okatan, M. Baris; Dai, Sheng; Cummings, Peter T.; Kalinin, Sergei V.; Feng, Guang; Balke, Nina

    2016-01-01

    Atomic force microscopy (AFM) force-distance measurements are used to investigate the layered ion structure of Ionic Liquids (ILs) at the mica surface. The effects of various tip properties on the measured force profiles are examined and reveal that the measured ion position is independent of tip properties, while the tip radius affects the forces required to break through the ion layers as well as the adhesion force. Force data is collected for different ILs and directly compared with interfacial ion density profiles predicted by molecular dynamics. Through this comparison it is concluded that AFM force measurements are sensitive to the position of the ion with the larger volume and mass, suggesting that ion selectivity in force-distance measurements are related to excluded volume effects and not to electrostatic or chemical interactions between ions and AFM tip. The comparison also revealed that at distances greater than 1 nm the system maintains overall electroneutrality between the AFM tip and sample, while at smaller distances other forces (e.g., van der waals interactions) dominate and electroneutrality is no longer maintained. PMID:27587276

  5. Fundamental aspects of electric double layer force-distance measurements at liquid-solid interfaces using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Black, Jennifer M.; Zhu, Mengyang; Zhang, Pengfei; Unocic, Raymond R.; Guo, Daqiang; Okatan, M. Baris; Dai, Sheng; Cummings, Peter T.; Kalinin, Sergei V.; Feng, Guang; Balke, Nina

    2016-09-01

    Atomic force microscopy (AFM) force-distance measurements are used to investigate the layered ion structure of Ionic Liquids (ILs) at the mica surface. The effects of various tip properties on the measured force profiles are examined and reveal that the measured ion position is independent of tip properties, while the tip radius affects the forces required to break through the ion layers as well as the adhesion force. Force data is collected for different ILs and directly compared with interfacial ion density profiles predicted by molecular dynamics. Through this comparison it is concluded that AFM force measurements are sensitive to the position of the ion with the larger volume and mass, suggesting that ion selectivity in force-distance measurements are related to excluded volume effects and not to electrostatic or chemical interactions between ions and AFM tip. The comparison also revealed that at distances greater than 1 nm the system maintains overall electroneutrality between the AFM tip and sample, while at smaller distances other forces (e.g., van der waals interactions) dominate and electroneutrality is no longer maintained.

  6. Measuring the elastic properties of living cells with atomic force microscopy indentation.

    PubMed

    Mackay, Joanna L; Kumar, Sanjay

    2013-01-01

    Atomic force microscopy (AFM) is a powerful and versatile tool for probing the mechanical properties of biological samples. This chapter describes the procedures for using AFM indentation to measure the elastic moduli of living cells. We include step-by-step instructions for cantilever calibration and data acquisition using a combined AFM/optical microscope system, as well as a detailed protocol for data analysis. Our protocol is written specifically for the BioScope™ Catalyst™ AFM system (Bruker AXS Inc.); however, most of the general concepts can be readily translated to other commercial systems.

  7. Adhesion Forces between Lewis(X) Determinant Antigens as Measured by Atomic Force Microscopy.

    PubMed

    Tromas, C; Rojo, J; de la Fuente, J M; Barrientos, A G; García, R; Penadés, S

    2001-01-01

    The adhesion forces between individual molecules of Lewis(X) trisaccharide antigen (Le(X) ) have been measured in water and in calcium solution by using atomic force microscopy (AFM, see graph). These results demonstrate the self-recognition capability of this antigen, and reinforce the hypothesis that carbohydrate-carbohydrate interaction could be considered as the first step in the cell-adhesion process in nature. Copyright © 2001 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.

  8. Isoelectric point of fluorite by direct force measurements using atomic force microscopy.

    PubMed

    Assemi, Shoeleh; Nalaskowski, Jakub; Miller, Jan D; Johnson, William P

    2006-02-14

    Interaction forces between a fluorite (CaF2) surface and colloidal silica were measured by atomic force microscopy (AFM) in 1 x 10(-3) M NaNO3 at different pH values. Forces between the silica colloid and fluorite flat were measured at a range of pH values above the isoelectric point (IEP) of silica so that the forces were mainly controlled by the fluorite surface charge. In this way, the IEP of the fluorite surface was deduced from AFM force curves at pH approximately 9.2. Experimental force versus separation distance curves were in good agreement with theoretical predictions based on long-range electrostatic interactions, allowing the potential of the fluorite surface to be estimated from the experimental force curves. AFM-deduced surface potentials were generally lower than the published zeta potentials obtained from electrokinetic methods for powdered samples. Differences in methodology, orientation of the fluorite, surface carbonation, and equilibration time all could have contributed to this difference.

  9. Impedance Spectroscopic Investigation of Proton Conductivity in Nafion Using Transient Electrochemical Atomic Force Microscopy (AFM)

    PubMed Central

    Hink, Steffen; Wagner, Norbert; Bessler, Wolfgang G.; Roduner, Emil

    2012-01-01

    Spatially resolved impedance spectroscopy of a Nafion polyelectrolyte membrane is performed employing a conductive and Pt-coated tip of an atomic force microscope as a point-like contact and electrode. The experiment is conducted by perturbing the system by a rectangular voltage step and measuring the incurred current, followed by Fourier transformation and plotting the impedance against the frequency in a conventional Bode diagram. To test the potential and limitations of this novel method, we present a feasibility study using an identical hydrogen atmosphere at a well-defined relative humidity on both sides of the membrane. It is demonstrated that good quality impedance spectra are obtained in a frequency range of 0.2–1000 Hz. The extracted polarization curves exhibit a maximum current which cannot be explained by typical diffusion effects. Simulation based on equivalent circuits requires a Nernst element for restricted diffusion in the membrane which suggests that this effect is based on the potential dependence of the electrolyte resistance in the high overpotential region. PMID:24958175

  10. Comparison of the ability of quantitative parameters to differentiate surface texture of Atomic Force Microscope (AFM) images

    NASA Astrophysics Data System (ADS)

    Niedzielski, Bethany; Caragianis Broadbridge, Christine; DaPonte, John S.; Gherasimova, Maria

    2010-01-01

    The purpose of this study was to compare the ability of several texture analysis parameters to differentiate textured samples from a smooth control on images obtained with an Atomic Force Microscope (AFM). Surface roughness plays a major role in the realm of material science, especially in integrated electronic devices. As these devices become smaller and smaller, new materials with better electrical properties are needed. New materials with smoother surface morphology have been found to have superior electrical properties than their rougher counterparts. Therefore, in many cases surface texture is indicative of the electrical properties that material will have. Physical vapor deposition techniques such as Jet Vapor Deposition and Molecular Beam Epitaxy are being utilized to synthesize these materials as they have been found to create pure and uniform thin layers. For the current study, growth parameters were varied to produce a spectrum of textured samples. The focus of this study was the image processing techniques associated with quantifying surface texture. As a result of the limited sample size, there was no attempt to draw conclusions about specimen processing methods. The samples were imaged using an AFM in tapping mode. In the process of collecting images, it was discovered that roughness data was much better depicted in the microscope's "height" mode as opposed to "equal area" mode. The AFM quantified the surface texture of each image by returning RMS roughness and the first order histogram statistics of mean roughness, standard deviation, skewness, and kurtosis. Color images from the AFM were then processed on an off line computer running NIH ImageJ with an image texture plug in. This plug in produced another set of first order statistics computed from each images' histogram as well as second order statistics computed from each images' cooccurrence matrix. The second order statistics, which were originally proposed by Haralick, include contrast, angular

  11. Uncertainty quantification in nanomechanical measurements using the atomic force microscope.

    PubMed

    Wagner, Ryan; Moon, Robert; Pratt, Jon; Shaw, Gordon; Raman, Arvind

    2011-11-11

    Quantifying uncertainty in measured properties of nanomaterials is a prerequisite for the manufacture of reliable nanoengineered materials and products. Yet, rigorous uncertainty quantification (UQ) is rarely applied for material property measurements with the atomic force microscope (AFM), a widely used instrument that can measure properties at nanometer scale resolution of both inorganic and biological surfaces and nanomaterials. We present a framework to ascribe uncertainty to local nanomechanical properties of any nanoparticle or surface measured with the AFM by taking into account the main uncertainty sources inherent in such measurements. We demonstrate the framework by quantifying uncertainty in AFM-based measurements of the transverse elastic modulus of cellulose nanocrystals (CNCs), an abundant, plant-derived nanomaterial whose mechanical properties are comparable to Kevlar fibers. For a single, isolated CNC the transverse elastic modulus was found to have a mean of 8.1 GPa and a 95% confidence interval of 2.7-20 GPa. A key result is that multiple replicates of force-distance curves do not sample the important sources of uncertainty, which are systematic in nature. The dominant source of uncertainty is the nondimensional photodiode sensitivity calibration rather than the cantilever stiffness or Z-piezo calibrations. The results underscore the great need for, and open a path towards, quantifying and minimizing uncertainty in AFM-based material property measurements of nanoparticles, nanostructured surfaces, thin films, polymers and biomaterials.

  12. Combined atomic force microscopy and voltage pulse technique to accurately measure electrostatic force

    NASA Astrophysics Data System (ADS)

    Inami, Eiichi; Sugimoto, Yoshiaki

    2016-08-01

    We propose a new method of extracting electrostatic force. The technique is based on frequency modulation atomic force microscopy (FM-AFM) combined with a voltage pulse. In this method, the work that the electrostatic field does on the oscillating tip is measured through the cantilever energy dissipation. This allows us to directly extract capacitive forces including the longer range part, to which the conventional FM-AFM is insensitive. The distance-dependent contact potential difference, which is modulated by local charges distributed on the surfaces of the tip and/or sample, could also be correctly obtained. In the absence of local charges, our method can perfectly reproduce the electrostatic force as a function of the distance and the bias voltage. Furthermore, we demonstrate that the system serves as a sensitive sensor enabling us to check the existence of the local charges such as trapped charges and patch charges.

  13. A Model for Step Height, Edge Slope and Linewidth Measurements Using AFM

    NASA Astrophysics Data System (ADS)

    Zhao, Xuezeng; Vorburger, Theodore V.; Fu, Joseph; Song, John; Nguyen, Cattien V.

    2003-09-01

    Nano-scale linewidth measurements are performed in semiconductor manufacturing and in the data storage industry and will become increasingly important in micro-mechanical engineering. With the development of manufacturing technology in recent years, the sizes of linewidths are steadily shrinking and are in the range of hundreds of nanometers. As a result, it is difficult to achieve accurate measurement results for nanometer scale linewidth, primarily because of the interaction volume of electrons in materials for an SEM probe or the tip size of an AFM probe. However, another source of methods divergence is the mathematical model of the line itself. In order to reduce the methods divergences caused by different measurement methods and instruments for an accurate determination of nanometer scale linewidth parameters, a metrological model and algorithm are proposed for linewidth measurements with AFM. The line profile is divided into 5 parts with 19 sections and 20 key derived points. Each section is fitted by a least squares straight line, so that the profile can be represented by a set of straight lines and 6 special points, or by a 20×2 matrix of fitted points and a 6×2 matrix of starter points. According to the algorithm, WT and WTF, WM and WMF, WB and WBF represent the widths at the top, the middle and the bottom of the line profile before and after the least squares fitting, respectively. AL and AR represent the left and right sidewall angles, and H represents the step height of the line profile. Based on this algorithm, software has been developed using MATLAB for the calculation of width and height parameters of the line profile. A NIST nanometer scale linewidth artifact developed at NIST's Electronics and Electrical Engineering Laboratory (EEEL) was measured using a commercial AFM with nanotube tips. The measured linewidth profiles are analyzed using our model, algorithm and software. The model developed in this paper is straightforward to understand, and

  14. Accuracy of AFM force distance curves via direct solution of the Euler-Bernoulli equation

    SciTech Connect

    Eppell, Steven J. Liu, Yehe; Zypman, Fredy R.

    2016-03-15

    In an effort to improve the accuracy of force-separation curves obtained from atomic force microscope data, we compare force-separation curves computed using two methods to solve the Euler-Bernoulli equation. A recently introduced method using a direct sequential forward solution, Causal Time-Domain Analysis, is compared against a previously introduced Tikhonov Regularization method. Using the direct solution as a benchmark, it is found that the regularization technique is unable to reproduce accurate curve shapes. Using L-curve analysis and adjusting the regularization parameter, λ, to match either the depth or the full width at half maximum of the force curves, the two techniques are contrasted. Matched depths result in full width at half maxima that are off by an average of 27% and matched full width at half maxima produce depths that are off by an average of 109%.

  15. Recording the dynamic endocytosis of single gold nanoparticles by AFM-based force tracing

    NASA Astrophysics Data System (ADS)

    Ding, Bohua; Tian, Yongmei; Pan, Yangang; Shan, Yuping; Cai, Mingjun; Xu, Haijiao; Sun, Yingchun; Wang, Hongda

    2015-04-01

    We utilized force tracing to directly record the endocytosis of single gold nanoparticles (Au NPs) with different sizes, revealing the size-dependent endocytosis dynamics and the crucial role of membrane cholesterol. The force, duration and velocity of Au NP invagination are accurately determined at the single-particle and microsecond level unprecedentedly.We utilized force tracing to directly record the endocytosis of single gold nanoparticles (Au NPs) with different sizes, revealing the size-dependent endocytosis dynamics and the crucial role of membrane cholesterol. The force, duration and velocity of Au NP invagination are accurately determined at the single-particle and microsecond level unprecedentedly. Electronic supplementary information (ESI) available: Details of the experimental procedures and the results of the control experiments. See DOI: 10.1039/c5nr01020a

  16. [Study of in-situ measurement system for porous alumina film based on AFM and reflectometric interference spectroscopy].

    PubMed

    Liu, Chao; Zhang, Dong-Xian; Zhang, Hai-Jun

    2008-07-01

    An in-situ measurement system for porous alumina (PA) film based on atomic force microscope (AFM) in liquid and reflectometric interference spectroscopy (RIFS) was developed. The present article briefly discusses the principle and structure of the system, and introduces its unique characteristic. The system consists of probe unit, XY scanner, Z-piezo feedback system, computer and software, fiber optic spectrometer, anodization control circuitry etc. When a white light beam illuminates the surface of the film, the reflective light beams at the front and back side of the layer are coherent, and lead to periodical amplifications and extinction in the reflective spectrum with the information of the optical thickness of the film. A fiber optic spectrometer was applied in the system which input the refractive spectrum into the computer by which the optical thickness of the film was calculated. Meanwhile according to the surface topography of PA films by AFM in liquid, the effective refractive index was calculated based on Maxwell-Garnett theory and coherent potential approximation (CPA). So the thickness of PA films could be gained at last. To checkout the feasibility and stability of the system, the real-time scanning and thickness measurement experiments were done during anodization of Al sheets in oxalic acid aqueous solution. In the experiment, the authors used 25 mm diameter aluminum (Al) sheets with 99.999% purity and 0.4 mm thickness as the anode, and graphite rod as the cathode. The pretreatment-cleaned Al sheets were anodized in an aqueous solution of 0.5 mol x L(-1) oxalic acid at the constant temperature (20 +/- 0.2) degrees C with 20 mA x cm(-2) anodization electronic current density. Real-time AFM images of PA film were successfully obtained during anodization. The pore-ratios of Al sheet were 7.81% and 13.83% at oxidizing time 150 min and 180 min respectively. Correspondingly, the effective indexes were calculated to be 1.62 and 1.60, respectively

  17. Measuring Force-Induced Dissociation Kinetics of Protein Complexes Using Single-Molecule Atomic Force Microscopy.

    PubMed

    Manibog, K; Yen, C F; Sivasankar, S

    2017-01-01

    Proteins respond to mechanical force by undergoing conformational changes and altering the kinetics of their interactions. However, the biophysical relationship between mechanical force and the lifetime of protein complexes is not completely understood. In this chapter, we provide a step-by-step tutorial on characterizing the force-dependent regulation of protein interactions using in vitro and in vivo single-molecule force clamp measurements with an atomic force microscope (AFM). While we focus on the force-induced dissociation of E-cadherins, a critical cell-cell adhesion protein, the approaches described here can be readily adapted to study other protein complexes. We begin this chapter by providing a brief overview of theoretical models that describe force-dependent kinetics of biomolecular interactions. Next, we present step-by-step methods for measuring the response of single receptor-ligand bonds to tensile force in vitro. Finally, we describe methods for quantifying the mechanical response of single protein complexes on the surface of living cells. We describe general protocols for conducting such measurements, including sample preparation, AFM force clamp measurements, and data analysis. We also highlight critical limitations in current technologies and discuss solutions to these challenges. © 2017 Elsevier Inc. All rights reserved.

  18. Nanonet Force Microscopy for Measuring Cell Forces.

    PubMed

    Sheets, Kevin; Wang, Ji; Zhao, Wei; Kapania, Rakesh; Nain, Amrinder S

    2016-07-12

    The influence of physical forces exerted by or felt by cells on cell shape, migration, and cytoskeleton arrangement is now widely acknowledged and hypothesized to occur due to modulation of cellular inside-out forces in response to changes in the external fibrous environment (outside-in). Our previous work using the non-electrospinning Spinneret-based Tunable Engineered Parameters' suspended fibers has revealed that cells are able to sense and respond to changes in fiber curvature and structural stiffness as evidenced by alterations to focal adhesion cluster lengths. Here, we present the development and application of a suspended nanonet platform for measuring C2C12 mouse myoblast forces attached to fibers of three diameters (250, 400, and 800 nm) representing a wide range of structural stiffness (3-50 nN/μm). The nanonet force microscopy platform measures cell adhesion forces in response to symmetric and asymmetric external perturbation in single and cyclic modes. We find that contractility-based, inside-out forces are evenly distributed at the edges of the cell, and that forces are dependent on fiber structural stiffness. Additionally, external perturbation in symmetric and asymmetric modes biases cell-fiber failure location without affecting the outside-in forces of cell-fiber adhesion. We then extend the platform to measure forces of (1) cell-cell junctions, (2) single cells undergoing cyclic perturbation in the presence of drugs, and (3) cancerous single-cells transitioning from a blebbing to a pseudopodial morphology. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. Unequivocal Single-Molecule Force Spectroscopy of Proteins by AFM Using pFS Vectors

    PubMed Central

    Oroz, Javier; Hervás, Rubén; Carrión-Vázquez, Mariano

    2012-01-01

    Nanomechanical analysis of proteins by single-molecule force spectroscopy based on atomic force microscopy is increasingly being used to investigate the inner workings of mechanical proteins and substrate proteins of unfoldase machines as well as to gain new insight into the process of protein folding. However, such studies are hindered by a number of technical problems, including the noise of the proximal region, ambiguous single-molecule identification, as well as difficulties in protein expression/folding and full-length purification. To overcome these major drawbacks in protein nanomechanics, we designed a family of cloning/expression vectors, termed pFS (plasmid for force spectroscopy), that essentially has an unstructured region to surmount the noisy proximal region, a homomeric polyprotein marker, a carrier to mechanically protect the protein of interest (only the pFS-2 version) that also acts as a reporter, and two purification tags. pFS-2 enables the unambiguous analysis of proteins with low mechanical stability or/and complex force spectra, such as the increasingly abundant class of intrinsically disordered proteins, which are hard to characterize by traditional bulk techniques and have important biological and clinical implications. The advantages, applications, and potential of this ready-to-go system are illustrated through the analysis of representative proteins. PMID:22325292

  20. Measuring the Stiffness of Ex Vivo Mouse Aortas Using Atomic Force Microscopy.

    PubMed

    Bae, Yong Ho; Liu, Shu-Lin; Byfield, Fitzroy J; Janmey, Paul A; Assoian, Richard K

    2016-10-19

    Arterial stiffening is a significant risk factor and biomarker for cardiovascular disease and a hallmark of aging. Atomic force microscopy (AFM) is a versatile analytical tool for characterizing viscoelastic mechanical properties for a variety of materials ranging from hard (plastic, glass, metal, etc.) surfaces to cells on any substrate. It has been widely used to measure the stiffness of cells, but less frequently used to measure the stiffness of aortas. In this paper, we will describe the procedures for using AFM in contact mode to measure the ex vivo elastic modulus of unloaded mouse arteries. We describe our procedure for isolation of mouse aortas, and then provide detailed information for the AFM analysis. This includes step-by-step instructions for alignment of the laser beam, calibration of the spring constant and deflection sensitivity of the AFM probe, and acquisition of force curves. We also provide a detailed protocol for data analysis of the force curves.

  1. Quantitative measurements of electromechanical response with a combined optical beam and interferometric atomic force microscope

    NASA Astrophysics Data System (ADS)

    Labuda, Aleksander; Proksch, Roger

    2015-06-01

    An ongoing challenge in atomic force microscope (AFM) experiments is the quantitative measurement of cantilever motion. The vast majority of AFMs use the optical beam deflection (OBD) method to infer the deflection of the cantilever. The OBD method is easy to implement, has impressive noise performance, and tends to be mechanically robust. However, it represents an indirect measurement of the cantilever displacement, since it is fundamentally an angular rather than a displacement measurement. Here, we demonstrate a metrological AFM that combines an OBD sensor with a laser Doppler vibrometer (LDV) to enable accurate measurements of the cantilever velocity and displacement. The OBD/LDV AFM allows a host of quantitative measurements to be performed, including in-situ measurements of cantilever oscillation modes in piezoresponse force microscopy. As an example application, we demonstrate how this instrument can be used for accurate quantification of piezoelectric sensitivity—a longstanding goal in the electromechanical community.

  2. Quantitative measurements of electromechanical response with a combined optical beam and interferometric atomic force microscope

    SciTech Connect

    Labuda, Aleksander; Proksch, Roger

    2015-06-22

    An ongoing challenge in atomic force microscope (AFM) experiments is the quantitative measurement of cantilever motion. The vast majority of AFMs use the optical beam deflection (OBD) method to infer the deflection of the cantilever. The OBD method is easy to implement, has impressive noise performance, and tends to be mechanically robust. However, it represents an indirect measurement of the cantilever displacement, since it is fundamentally an angular rather than a displacement measurement. Here, we demonstrate a metrological AFM that combines an OBD sensor with a laser Doppler vibrometer (LDV) to enable accurate measurements of the cantilever velocity and displacement. The OBD/LDV AFM allows a host of quantitative measurements to be performed, including in-situ measurements of cantilever oscillation modes in piezoresponse force microscopy. As an example application, we demonstrate how this instrument can be used for accurate quantification of piezoelectric sensitivity—a longstanding goal in the electromechanical community.

  3. Single Cell Wall Nonlinear Mechanics Revealed by a Multiscale Analysis of AFM Force-Indentation Curves.

    PubMed

    Digiuni, Simona; Berne-Dedieu, Annik; Martinez-Torres, Cristina; Szecsi, Judit; Bendahmane, Mohammed; Arneodo, Alain; Argoul, Françoise

    2015-05-05

    Individual plant cells are rather complex mechanical objects. Despite the fact that their wall mechanical strength may be weakened by comparison with their original tissue template, they nevertheless retain some generic properties of the mother tissue, namely the viscoelasticity and the shape of their walls, which are driven by their internal hydrostatic turgor pressure. This viscoelastic behavior, which affects the power-law response of these cells when indented by an atomic force cantilever with a pyramidal tip, is also very sensitive to the culture media. To our knowledge, we develop here an original analyzing method, based on a multiscale decomposition of force-indentation curves, that reveals and quantifies for the first time the nonlinearity of the mechanical response of living single plant cells upon mechanical deformation. Further comparing the nonlinear strain responses of these isolated cells in three different media, we reveal an alteration of their linear bending elastic regime in both hyper- and hypotonic conditions.

  4. Measuring the biomechanical properties of the actin in MCF-7 breast cancer cell with a combined system of AFM and SIM

    NASA Astrophysics Data System (ADS)

    You, Minghai; Chen, Jianling; Wang, Yuhua; Jiang, Ningcheng; Xie, Shusen; Yang, Hongqin

    2016-10-01

    Biomechanics of cell plays an important role in the behavior and development of diseases, which has a profound influence on the health, structural integrity, and function of cells. In this study, we proposed a method to assess the biomechanical properties in single breast cancer cell line MCF-7 by combining structured illumination microscopy (SIM) with atomic force microscopy (AFM). High resolution optical image of actin in MCF-7 cell and its elastography were obtained. The result shows that the quantitative resolution was improved by SIM, with 490 nm of conventional fluorescence image and 285 nm of reconstructed SIM image, which could give a precise location for AFM measurement. The elasticity of actin is about in the range of 10 1000 kPa. The proposed methods will be helpful in the understanding and clinical diagnosis of diseases at single cell level.

  5. High-resolution noncontact AFM and Kelvin probe force microscopy investigations of self-assembled photovoltaic donor–acceptor dyads

    PubMed Central

    Schwartz, Pierre-Olivier; Biniek, Laure; Brinkmann, Martin; Leclerc, Nicolas; Zaborova, Elena

    2016-01-01

    Summary Self-assembled donor–acceptor dyads are used as model nanostructured heterojunctions for local investigations by noncontact atomic force microscopy (nc-AFM) and Kelvin probe force microscopy (KPFM). With the aim to probe the photo-induced charge carrier generation, thin films deposited on transparent indium tin oxide substrates are investigated in dark conditions and upon illumination. The topographic and contact potential difference (CPD) images taken under dark conditions are analysed in view of the results of complementary transmission electron microscopy (TEM) experiments. After in situ annealing, it is shown that the dyads with longer donor blocks essentially lead to standing acceptor–donor lamellae, where the acceptor and donor groups are π-stacked in an edge-on configuration. The existence of strong CPD and surface photo-voltage (SPV) contrasts shows that structural variations occur within the bulk of the edge-on stacks. SPV images with a very high lateral resolution are achieved, which allows for the resolution of local photo-charging contrasts at the scale of single edge-on lamella. This work paves the way for local investigations of the optoelectronic properties of donor–acceptor supramolecular architectures down to the elementary building block level. PMID:27335768

  6. High-resolution noncontact AFM and Kelvin probe force microscopy investigations of self-assembled photovoltaic donor-acceptor dyads.

    PubMed

    Grévin, Benjamin; Schwartz, Pierre-Olivier; Biniek, Laure; Brinkmann, Martin; Leclerc, Nicolas; Zaborova, Elena; Méry, Stéphane

    2016-01-01

    Self-assembled donor-acceptor dyads are used as model nanostructured heterojunctions for local investigations by noncontact atomic force microscopy (nc-AFM) and Kelvin probe force microscopy (KPFM). With the aim to probe the photo-induced charge carrier generation, thin films deposited on transparent indium tin oxide substrates are investigated in dark conditions and upon illumination. The topographic and contact potential difference (CPD) images taken under dark conditions are analysed in view of the results of complementary transmission electron microscopy (TEM) experiments. After in situ annealing, it is shown that the dyads with longer donor blocks essentially lead to standing acceptor-donor lamellae, where the acceptor and donor groups are π-stacked in an edge-on configuration. The existence of strong CPD and surface photo-voltage (SPV) contrasts shows that structural variations occur within the bulk of the edge-on stacks. SPV images with a very high lateral resolution are achieved, which allows for the resolution of local photo-charging contrasts at the scale of single edge-on lamella. This work paves the way for local investigations of the optoelectronic properties of donor-acceptor supramolecular architectures down to the elementary building block level.

  7. AFM in peak force mode applied to worn siloxane-hydrogel contact lenses.

    PubMed

    Abadías, Clara; Serés, Carme; Torrent-Burgués, Juan

    2015-04-01

    The objective of this work is to apply Atomic Force Microscopy in Peak Force mode to obtain topographic characteristics (mean roughness, root-mean-square roughness, skewness and kurtosis) and mechanical characteristics (adhesion, elastic modulus) of Siloxane-Hydrogel Soft Contact Lenses (CLs) of two different materials, Lotrafilcon B of Air Optix (AO) and Asmofilcon A of PremiO (P), after use (worn CLs). Thus, the results obtained with both materials will be compared, as well as the changes produced by the wear at a nanoscopic level. The results show significant changes in the topographic and mechanical characteristics of the CLs, at a nanoscopic level, due to wear. The AO CL show values of the topographic parameters lower than those of the P CL after wear, which correlates with a better comfort qualification given to the former by the wearers. A significant correlation has also been obtained between the adhesion values found after the use of the CLs with tear quality tests, both break-up-time and Schirmer.

  8. Uncertainty in NIST Force Measurements.

    PubMed

    Bartel, Tom

    2005-01-01

    This paper focuses upon the uncertainty of force calibration measurements at the National Institute of Standards and Technology (NIST). The uncertainty of the realization of force for the national deadweight force standards at NIST is discussed, as well as the uncertainties associated with NIST's voltage-ratio measuring instruments and with the characteristics of transducers being calibrated. The combined uncertainty is related to the uncertainty of dissemination for force transfer standards sent to NIST for calibration.

  9. Mechanism of amyloid β-protein dimerization determined using single-molecule AFM force spectroscopy

    NASA Astrophysics Data System (ADS)

    Lv, Zhengjian; Roychaudhuri, Robin; Condron, Margaret M.; Teplow, David B.; Lyubchenko, Yuri L.

    2013-10-01

    Aβ42 and Aβ40 are the two primary alloforms of human amyloid β-protein (Aβ). The two additional C-terminal residues of Aβ42 result in elevated neurotoxicity compared with Aβ40, but the molecular mechanism underlying this effect remains unclear. Here, we used single-molecule force microscopy to characterize interpeptide interactions for Aβ42 and Aβ40 and corresponding mutants. We discovered a dramatic difference in the interaction patterns of Aβ42 and Aβ40 monomers within dimers. Although the sequence difference between the two peptides is at the C-termini, the N-terminal segment plays a key role in the peptide interaction in the dimers. This is an unexpected finding as N-terminal was considered as disordered segment with no effect on the Aβ peptide aggregation. These novel properties of Aβ proteins suggests that the stabilization of N-terminal interactions is a switch in redirecting of amyloids form the neurotoxic aggregation pathway, opening a novel avenue for the disease preventions and treatments.

  10. Atomic Force Microscopy Protocol for Measurement of Membrane Plasticity and Extracellular Interactions in Single Neurons in Epilepsy

    PubMed Central

    Wu, Xin; Muthuchamy, Mariappan; Reddy, Doodipala Samba

    2016-01-01

    Physiological interactions between extracellular matrix (ECM) proteins and membrane integrin receptors play a crucial role in neuroplasticity in the hippocampus, a key region involved in epilepsy. The atomic force microscopy (AFM) is a cutting-edge technique to study structural and functional measurements at nanometer resolution between the AFM probe and cell surface under liquid. AFM has been incrementally employed in living cells including the nervous system. AFM is a unique technique that directly measures functional information at a nanoscale resolution. In addition to its ability to acquire detailed 3D imaging, the AFM probe permits quantitative measurements on the structure and function of the intracellular components such as cytoskeleton, adhesion force and binding probability between membrane receptors and ligands coated in the AFM probe, as well as the cell stiffness. Here we describe an optimized AFM protocol and its application for analysis of membrane plasticity and mechanical dynamics of individual hippocampus neurons in mice with chronic epilepsy. The unbinding force and binding probability between ECM, fibronectin-coated AFM probe and membrane integrin were strikingly lower in dentate gyrus granule cells in epilepsy. Cell elasticity, which represents changes in cytoskeletal reorganization, was significantly increased in epilepsy. The fibronectin-integrin binding probability was prevented by anti-α5β1 integrin. Thus, AFM is a unique nanotechnique that allows progressive functional changes in neuronal membrane plasticity and mechanotransduction in epilepsy and related brain disorders. PMID:27199735

  11. AFM-IR: Technology and Applications in Nanoscale Infrared Spectroscopy and Chemical Imaging.

    PubMed

    Dazzi, Alexandre; Prater, Craig B

    2016-12-13

    Atomic force microscopy-based infrared spectroscopy (AFM-IR) is a rapidly emerging technique that provides chemical analysis and compositional mapping with spatial resolution far below conventional optical diffraction limits. AFM-IR works by using the tip of an AFM probe to locally detect thermal expansion in a sample resulting from absorption of infrared radiation. AFM-IR thus can provide the spatial resolution of AFM in combination with the chemical analysis and compositional imaging capabilities of infrared spectroscopy. This article briefly reviews the development and underlying technology of AFM-IR, including recent advances, and then surveys a wide range of applications and investigations using AFM-IR. AFM-IR applications that will be discussed include those in polymers, life sciences, photonics, solar cells, semiconductors, pharmaceuticals, and cultural heritage. In the Supporting Information , the authors provide a theoretical section that reviews the physics underlying the AFM-IR measurement and detection mechanisms.

  12. Development of a hybrid atomic force microscopic measurement system combined with white light scanning interferometry.

    PubMed

    Guo, Tong; Wang, Siming; Dorantes-Gonzalez, Dante J; Chen, Jinping; Fu, Xing; Hu, Xiaotang

    2012-01-01

    A hybrid atomic force microscopic (AFM) measurement system combined with white light scanning interferometry for micro/nanometer dimensional measurement is developed. The system is based on a high precision large-range positioning platform with nanometer accuracy on which a white light scanning interferometric module and an AFM head are built. A compact AFM head is developed using a self-sensing tuning fork probe. The head need no external optical sensors to detect the deflection of the cantilever, which saves room on the head, and it can be directly fixed under an optical microscopic interferometric system. To enhance the system's dynamic response, the frequency modulation (FM) mode is adopted for the AFM head. The measuring data can be traceable through three laser interferometers in the system. The lateral scanning range can reach 25 mm × 25 mm by using a large-range positioning platform. A hybrid method combining AFM and white light scanning interferometry is proposed to improve the AFM measurement efficiency. In this method, the sample is measured firstly by white light scanning interferometry to get an overall coarse morphology, and then, further measured with higher resolution by AFM. Several measuring experiments on standard samples demonstrate the system's good measurement performance and feasibility of the hybrid measurement method.

  13. Measuring Your Force

    ERIC Educational Resources Information Center

    Gee, David E.

    2005-01-01

    This article talks about the force behind education leaders. With all the challenges facing public education today, it is difficult to remain focused and to remember why one chartered this particular leadership course. Perhaps someone respected encouraged one to take this path long ago. Perhaps this kind of service to the nation and its future…

  14. Measuring Your Force

    ERIC Educational Resources Information Center

    Gee, David E.

    2005-01-01

    This article talks about the force behind education leaders. With all the challenges facing public education today, it is difficult to remain focused and to remember why one chartered this particular leadership course. Perhaps someone respected encouraged one to take this path long ago. Perhaps this kind of service to the nation and its future…

  15. Precision AFM measurements of dynamic interactions between deformable drops in aqueous surfactant and surfactant-free solutions.

    PubMed

    Lockie, Hannah J; Manica, Rogerio; Stevens, Geoffrey W; Grieser, Franz; Chan, Derek Y C; Dagastine, Raymond R

    2011-03-15

    The atomic force microscope (AFM) has provided unprecedented opportunities to study velocity-dependent interactions between deformable drops and bubbles under a range of solution conditions. The challenge is to design an experimental system that enables accurate force spectroscopy of the interaction between deformable drops and thus the extraction of accurate quantitative information about the physically important force-separation relation. This step requires very precise control and knowledge of the interfacial properties of the interacting drops, the drive conditions of the force-sensing cantilever, the disposition of the interacting drops on the substrate and on the cantilever, and transducer calibrations of the instrument in order to quantify the effects of approach velocities and interfacial deformation. This article examines and quantifies in detail all experimental conditions that are necessary to facilitate accurate processing of dynamic force spectroscopy data from the AFM using the well-defined system of tetradecane drops in aqueous solutions under surfactant and surfactant-free conditions over a range of force magnitudes that has not been attained before. The ability of drops to deform and increase the effective area of interaction instead of decreasing the distance of closest approach when disjoining pressure exceeds the Laplace pressure means that the DLVO paradigm of colloidal stability as being determined by a balance of kinetic energy against the height of the primary maximum is no longer valid. The range of interfacially active species present in alkane-aqueous systems investigated provides insight into the applicability of the tangentially immobile boundary condition in colloidal interactions.

  16. Atomic force microscopy(AFM) of Ice Vapor-Deposited on Au(111)at 100K

    NASA Astrophysics Data System (ADS)

    Donev, Jason; Fain, Sam; Joyce, Steve

    2001-05-01

    Multilayer films of water ice were vapor-deposited deposited in-situ in ultra-high vacuum from an effusive doser at an angle of 67 degrees from the surface normal of Au(111)on mica. These films were profiled by a probe tip attached to a quartz crystal (Omicron needle sensor) which provides nanometer resolution of surface features. Films deposited below 100K appear relatively flat, adopting the surface texture of the Au(111) substrate. Three-dimensional clusters typically 30 nm high form after annealing these films up to 130K. The lateral dimensions of the clusters depend on the initial coverage. These changes are produced by surface diffusion producing a non-wetting film. The rearrangement happened even if the annealing was done without imaging. Previous thermal desorption measurements by Kay and coworkers have inferred amorphous ice clusters surrounded by bare substrate for films deposited on Au(111) at low-temperatures. Supported by Department of Energy's Office of Biological and Environmental Research, a U. W. Nanotechnology Fellowship Award to J.M.K.D., and NSF KDI 99-80125.

  17. Robust high-resolution imaging and quantitative force measurement with tuned-oscillator atomic force microscopy.

    PubMed

    Dagdeviren, Omur E; Götzen, Jan; Hölscher, Hendrik; Altman, Eric I; Schwarz, Udo D

    2016-02-12

    Atomic force microscopy (AFM) and spectroscopy are based on locally detecting the interactions between a surface and a sharp probe tip. For highest resolution imaging, noncontact modes that avoid tip-sample contact are used; control of the tip's vertical position is accomplished by oscillating the tip and detecting perturbations induced by its interaction with the surface potential. Due to this potential's nonlinear nature, however, achieving reliable control of the tip-sample distance is challenging, so much so that despite its power vacuum-based noncontact AFM has remained a niche technique. Here we introduce a new pathway to distance control that prevents instabilities by externally tuning the oscillator's response characteristics. A major advantage of this operational scheme is that it delivers robust position control in both the attractive and repulsive regimes with only one feedback loop, thereby providing an easy-to-implement route to atomic resolution imaging and quantitative tip-sample interaction force measurement.

  18. Adhesion measurement of micropatterned surfaces using three-dimensional-printed atomic force microscopy tips

    NASA Astrophysics Data System (ADS)

    Hung, Chih-Yi; Yeh, Yun-Peng; Sung, Cheng-Kuo; Liao, Wei-Chien; Chuang, Tzu-Han; Fu, Chien-Chung

    2017-06-01

    The aim of the present work is to fabricate three-dimensional-printed (3D-printed) atomic force microscopy (AFM) tips for the measurement of the adhesion force on micropatterned surfaces. The shape of the microstructure strongly affects the peeling-off process in the fabrication of flexible electronic devices, and we demonstrate the fabrication of a micropatterned structure for the peeling-off process from soft materials. Furthermore, the 3D-printed AFM tips not only have an optimized design but also increase the sensitivity of adhesion force measurement. We have demonstrated the conical 3D-printed AFM tips with the radii of the spherical end from 2 to 10 µm with various sensitivities of adhesive force measurement.

  19. 3D simulation of AFM non-uniform piezoelectric micro-cantilever with various geometries subjected to the tip-sample forces

    NASA Astrophysics Data System (ADS)

    Korayem, Alireza Habibnejad; Abdi, Moein

    2017-03-01

    Atomic force microscope (AFM) is a powerful instrument for investigation of surface topography at different workspaces. It is important to understand the dynamic behavior of AFM to improve its performance. 3D numerical method is suitable in order to simulate experimental conditions. This paper has investigated modeling and dynamic simulation of rectangular, Dagger and V-shaped geometries of AFM piezoelectric micro-cantilever (MC) with two electrode layers in the air environment. For a better understanding of the system dynamic, multi-layer MC dynamic equation has been derived. Euler-Bernoulli beam theory has been used for modeling the AFM cantilever. Hamilton's principle has been used for the MC modeling and the finite element method (FEM) has been applied for its discretization. In 3D, with respect to the tip-sample forces piezoelectric MC has been simulated via the COMSOL software. The frequency and time responses have been also investigated. The topographies have been performed on different surfaces with various roughness's types in the tapping and non-contact mode. The results of these two methods have been compared with experimental results. Moreover, the effects of MC geometrical parameters on surfaces topography and frequency responses have been studied and optimal dimensions of topographies have been obtained for each of the beam geometries. Simulations of various tip geometries have been performed in order to examine the effects of tip dimensions on the frequency and time responses. Furthermore, the effect of tip displacement on the frequency response has been investigated for different MC lengths.

  20. An atomic force microscope operating at hypergravity for in situ measurement of cellular mechano-response.

    PubMed

    van Loon, J J W A; van Laar, M C; Korterik, J P; Segerink, F B; Wubbels, R J; de Jong, H A A; van Hulst, N F

    2009-02-01

    We present a novel atomic force microscope (AFM) system, operational in liquid at variable gravity, dedicated to image cell shape changes of cells in vitro under hypergravity conditions. The hypergravity AFM is realized by mounting a stand-alone AFM into a large-diameter centrifuge. The balance between mechanical forces, both intra- and extracellular, determines both cell shape and integrity. Gravity seems to be an insignificant force at the level of a single cell, in contrast to the effect of gravity on a complete (multicellular) organism, where for instance bones and muscles are highly unloaded under near weightless (microgravity) conditions. However, past space flights and ground based cell biological studies, under both hypogravity and hypergravity conditions have shown changes in cell behaviour (signal transduction), cell architecture (cytoskeleton) and proliferation. Thus the role of direct or indirect gravity effects at the level of cells has remained unclear. Here we aim to address the role of gravity on cell shape. We concentrate on the validation of the novel AFM for use under hypergravity conditions. We find indications that a single cell exposed to 2 to 3 x g reduces some 30-50% in average height, as monitored with AFM. Indeed, in situ measurements of the effects of changing gravitational load on cell shape are well feasible by means of AFM in liquid. The combination provides a promising technique to measure, online, the temporal characteristics of the cellular mechano-response during exposure to inertial forces.

  1. Measurement of Surface Forces

    DTIC Science & Technology

    1990-11-16

    combination of these opposing forces, described by the DLVO theory [30,311 (named after Derjaguin, Landau, Verwey, and Overbeek ), is the basis of a variety of...1988): 199. 18. van Blokland. P. H. G. M mnd Overbeek . 1. T. J. Chem Soc., Faraday Trans. 1 74 (1978)- Ifk ’. 19. Lee, C.-W., and Bard. A. J. J...and Overbeek . 1. T. G. Theory of the Stability of Lyophobic Colloids. Elsevier: Amsterdam, 1948. 32. Voropajeva. T.; Derjaguin. B.; and Kabanov. B

  2. Qplus AFM driven nanostencil.

    PubMed

    Grévin, B; Fakir, M; Hayton, J; Brun, M; Demadrille, R; Faure-Vincent, J

    2011-06-01

    We describe the development of a novel setup, in which large stencils with suspended silicon nitride membranes are combined with atomic force microscopy (AFM) regulation by using tuning forks. This system offers the possibility to perform separate AFM and nanostencil operations, as well as combined modes when using stencil chips with integrated tips. The flexibility and performances are demonstrated through a series of examples, including wide AFM scans in closed loop mode, probe positioning repeatability of a few tens of nanometer, simultaneous evaporation of large (several hundred of micron square) and nanoscopic metals and fullerene patterns in static, multistep, and dynamic modes. This approach paves the way for further developments, as it fully combines the advantages of conventional stenciling with the ones of an AFM driven shadow mask. © 2011 American Institute of Physics

  3. Uncertainty quantification in nanomechanical measurements using the atomic force microscope

    NASA Astrophysics Data System (ADS)

    Wagner, Ryan; Moon, Robert; Pratt, Jon; Shaw, Gordon; Raman, Arvind

    2011-11-01

    Quantifying uncertainty in measured properties of nanomaterials is a prerequisite for the manufacture of reliable nanoengineered materials and products. Yet, rigorous uncertainty quantification (UQ) is rarely applied for material property measurements with the atomic force microscope (AFM), a widely used instrument that can measure properties at nanometer scale resolution of both inorganic and biological surfaces and nanomaterials. We present a framework to ascribe uncertainty to local nanomechanical properties of any nanoparticle or surface measured with the AFM by taking into account the main uncertainty sources inherent in such measurements. We demonstrate the framework by quantifying uncertainty in AFM-based measurements of the transverse elastic modulus of cellulose nanocrystals (CNCs), an abundant, plant-derived nanomaterial whose mechanical properties are comparable to Kevlar fibers. For a single, isolated CNC the transverse elastic modulus was found to have a mean of 8.1 GPa and a 95% confidence interval of 2.7-20 GPa. A key result is that multiple replicates of force-distance curves do not sample the important sources of uncertainty, which are systematic in nature. The dominant source of uncertainty is the nondimensional photodiode sensitivity calibration rather than the cantilever stiffness or Z-piezo calibrations. The results underscore the great need for, and open a path towards, quantifying and minimizing uncertainty in AFM-based material property measurements of nanoparticles, nanostructured surfaces, thin films, polymers and biomaterials. This work is a partial contribution of the USDA Forest Service and NIST, agencies of the US government, and is not subject to copyright.

  4. Measurement of solution viscosity by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Ahmed, Nabil; Nino, Diego F.; Moy, Vincent T.

    2001-06-01

    We report on studies aimed at employing the atomic force microscope (AFM) to measure the viscosity of aqueous solutions. At ambient temperature, the AFM cantilever undergoes thermal fluctuations that are highly sensitive to the local environment. Here, we present measurements of the cantilever's resonant frequency in aqueous solutions of glycerol, sucrose, ethanol, sodium chloride, polyethylene glycol, and bovine plasma albumin. The measurements revealed that variations in the resonant frequency of the cantilever in the different solutions are largely dependent on the viscosity of the medium. An application of this technique is to monitor the progression of a chemical reaction where a change in viscosity is expected to occur. An example is demonstrated through monitoring of the hydrolysis of double stranded deoxyribonucleic acid by DNase I.

  5. Nano Mechanical Machining Using AFM Probe

    NASA Astrophysics Data System (ADS)

    Mostofa, Md. Golam

    and burr formations through intermittent cutting. Combining the AFM probe based machining with vibration-assisted machining enhanced nano mechanical machining processes by improving the accuracy, productivity and surface finishes. In this study, several scratching tests are performed with a single crystal diamond AFM probe to investigate the cutting characteristics and model the ploughing cutting forces. Calibration of the probe for lateral force measurements, which is essential, is also extended through the force balance method. Furthermore, vibration-assisted machining system is developed and applied to fabricate different materials to overcome some of the limitations of the AFM probe based single point nano mechanical machining. The novelty of this study includes the application of vibration-assisted AFM probe based nano scale machining to fabricate micro/nano scale features, calibration of an AFM by considering different factors, and the investigation of the nano scale material removal process from a different perspective.

  6. Force measurements on airplanes

    NASA Technical Reports Server (NTRS)

    Seewald, F

    1929-01-01

    The most essential phenomena of aircraft should be classified according to their origin and then measured. Information can thus be obtained in a quicker, cheaper, and more reliable way than otherwise would be possible.

  7. Application of Electron Backscattered Diffraction (EBSD) and Atomic Force Microscopy (AFM) to Determine Texture, Microtexture, and Grain Boundary Energies in Ceramics

    SciTech Connect

    Glass, S.J.; Rohrer, G.S.; Saylor, D.M.; Vedula, V.R.

    1999-05-19

    Crystallographic orientations in alumina (Al203) and magnesium aluminate spinel (MgAl204) were obtained using electron backscattered diffraction (EBSD) patterns. The texture and mesotexture (grain boundary misorientations) were random and no special boundaries were observed. The relative grain boundary energies were determined by thermal groove geometries using atomic force microscopy (AFM) to identify relationships between the grain boundary energies and misorientations.

  8. Jaw bite force measurement device.

    PubMed

    Flanagan, Dennis; Ilies, Horea; O'Brien, Brendan; McManus, Anne; Larrow, Beau

    2012-08-01

    We describe a cost-effective device that uses an off-the-shelf force transducer to measure patient bite force as a diagnostic aid in determining dental implant size, number of implants, and prosthetic design for restoring partial edentulism. The main advantages of the device are its accuracy, simplicity, modularity, ease of manufacturing, and low cost.

  9. Direct measurement of electrostatic fields using single Teflon nanoparticle attached to AFM tip

    PubMed Central

    2013-01-01

    Abstract A single 210-nm Teflon nanoparticle (sTNP) was attached to the vertex of a silicon nitride (Si3N4) atomic force microscope tip and charged via contact electrification. The charged sTNP can then be considered a point charge and used to measure the electrostatic field adjacent to a parallel plate condenser using 30-nm gold/20-nm titanium as electrodes. This technique can provide a measurement resolution of 250/100 nm along the X- and Z-axes, and the minimum electrostatic force can be measured within 50 pN. PACS 07.79.Lh, 81.16.-c, 84.37. + q PMID:24314111

  10. Comparison of the bias voltage effect and the force effect during the nanoscale AFM electric lithography on the copper thin film surface.

    PubMed

    Yang, Ye; Lin, Jun

    2016-09-01

    As one of the tip-based nanoscale machining methods, AFM-based nanolithography has been proved to be capable of fabricating nanostructures and devices on a wide range of materials by means of mechanical force, bias voltage, chemical reaction, etc. In this paper, we have compared the influences of the bias voltage effect and the force effect during the nanoscale AFM electric lithography on the metallic copper film surface respectively through the bias voltage dominating scheme and the contact force dominating scheme. The geometric sizes of the line structures and the area patterns fabricated under the two schemes with different parameter settings were compared to obtain the machining characteristics and mechanisms of the two distinct effects separately. The ratios of debris amount to the total material removal amount under the two schemes were quantitatively evaluated. Furthermore, both the arbitrary line structure with high aspect ratio and the area pattern with small surface roughness were fabricated under the appropriate scheme and parameter settings. This study is of great help to effectively achieve the desired nanoscale patterns by AFM electric lithography for their promising applications in the fabrication of various MEMS or NEMS devices. SCANNING 38:412-420, 2016. © 2015 Wiley Periodicals, Inc.

  11. Advances in Atomic Force Microscopy (AFM) for investigating soil wettability states and soil organic matter (SOM) properties at the nano-scale

    NASA Astrophysics Data System (ADS)

    Gazze, Andrea; Hallin, Ingrid; Van Keulen, Geertje; Matthews, Peter; Dudely, Edward; Whalley, Richard; Quinn, Gerry; Sinclair, Kathryn; Ashton, Rhys; Doerr, Stefan; Francis, Lewis

    2017-04-01

    Many environmental processes that have a major impact at the field-scale are determined by events occurring at the micro- and nanometer scales. Due to technical challenges, soil has only relatively recently been the focus of nanoscale studies. Recent advances in Atomic Force Microscopy (AFM) now allow the characterization of natural soil samples both topographically, mechanically and chemically at the micro- to nanometer scale. To date AFM has been used for analysing materials that occur in soil ex-situ, such as minerals and organic matter as individual components; however its application to complete natural soil material has been very limited. Here we report on applications of AFM for mechanically and topographically characterising soil aggregates. Mechanical properties of interest are Young's modulus, surface deformation, adhesion and chemical mapping, all of which allow for gaining information on soil nano-mechanical properties that have implications for particle wettability. This presentation includes (i) a brief summary of recent advances in AFM capabilities and applications relevant to studying soil materials, and (ii) our latest findings in soil profiling for wettable and repellent soils, and the role of soil organic matter in affecting soil topographical and mechanical properties.

  12. Mechanisms of fibrinogen adsorption on latex particles determined by zeta potential and AFM measurements.

    PubMed

    Adamczyk, Zbigniew; Bratek-Skicki, Anna; Dąbrowska, Paulina; Nattich-Rak, Małgorzata

    2012-01-10

    The adsorption of fibrinogen on polystyrene latex particles was studied using the concentration depletion method combined with the AFM detection of residual protein after adsorption. Measurements were carried out for a pH range of 3.5-11 and an ionic strength range of 10(-3)-0.15 M NaCl. First, the bulk physicochemical properties of fibrinogen and the latex particle suspension were characterized for this range of pH and ionic strength. The zeta potential and the number of uncompensated (electrokinetic) charges on the protein were determined from microelectrophoretic measurements. It was revealed that fibrinogen molecules exhibited amphoteric characteristics, being on average positively charged for pH <5.8 (isolectric point) and negative otherwise. However, the latex particles did not show any isoelectric point, remaining strongly negative for this pH range. Afterward, systematic measurements of the electrophoretic mobility of fibrinogen-covered latex were carried out as a function of the amount of adsorbed protein, expressed as the surface concentration. A monotonic increase in the electrophoretic mobility (zeta potential) of the latex was observed in all cases, indicating a significant adsorption of fibrinogen on latex for pH below 11. It was also proven that fibrinogen adsorption was irreversible, with the maximum surface concentration varying between 2.5 and 5 × 10(3) μm(-2) (weight concentration of a bare molecule was 1.4 to 2.8 mg m(-2)). These measurements revealed two main adsorption mechanisms of fibrinogen: (i) the unoriented (random) mechanism prevailing for lower ionic strength, where adsorbing molecules significantly penetrate the fuzzy polymeric layer on the latex core and (ii) the side-on adsorption mechanism prevailing for pH > 5.8 and a higher ionic strength of 0.15 M. It was also shown that in the latter case, variations in the zeta potential with the protein coverage could be adequately described in terms of the electrokinetic model, previously

  13. Analysis the effect of different geometries of AFM's cantilever on the dynamic behavior and the critical forces of three-dimensional manipulation.

    PubMed

    Korayem, Moharam Habibnejad; Saraie, Maniya B; Saraee, Mahdieh B

    2017-01-13

    An important challenge when using an atomic force microscope (AFM) is to be able to control the force exerted by the AFM for performing various tasks. Nevertheless, the exerted force is proportional to the deflection of the AFM cantilever, which itself is affected by a cantilever's stiffness coefficient. Many papers have been published so far on the methods of obtaining the stiffness coefficients of AFM cantilevers in 2D; however, a comprehensive model is yet to be presented on 3D cantilever motion. The discrepancies between the equations of the 2D and 3D analysis are due to the number and direction of forces and moments that are applied to a cantilever. Moreover, in the 3D analysis, contrary to the 2D analysis, due to the interaction between the forces and moments applied on a cantilever, its stiffness values cannot be separately expressed for each direction; and instead, a stiffness matrix should be used to correctly derive the relevant equations. In this paper, 3D stiffness coefficient matrices have been obtained for three common cantilever geometries including the rectangular, V-shape and dagger-shape cantilevers. The obtained equations are validated by two methods. In the first approach, the Finite Element Method is combined with the cantilever deflection values computed by using the obtained stiffness matrices. In the second approach, by reducing the problem's parameters, the forces applied on a cantilever along different directions are compared with each other in 2D and 3D cases. Then the 3D manipulation of a stiff nanoparticle is modeled and simulated by using the stiffness matrices obtained for the three cantilever geometries. The obtained results indicate that during the manipulation process, the dagger-shaped and rectangular cantilevers exert the maximum and minimum amounts of forces on the stiff nanoparticle, respectively. Also, by examining the effects of different probe tip geometries, it is realized that a probe tip of cylindrical geometry exerts the

  14. Cooling Force Measurements at CELSIUS

    SciTech Connect

    Ga ring lnander, B.; Lofnes, T.; Ziemann, V.; Fedotov, A. V.; Litvinenko, V. N.; Sidorin, A. O.; Smirnov, A. V.

    2006-03-20

    The design of future high energy coolers relies heavily on extending the results of cooling force measurements into new regimes by using simulation codes. In order to carefully benchmark these codes we have accurately measured the longitudinal friction force in CELSIUS by recording the phase shift between the beam and the RF voltage while varying the RF frequency. Moreover, parameter dependencies on the electron current, solenoid magnetic field and magnetic field alignment were carried out.

  15. COOLING FORCE MEASUREMENTS IN CELSIUS.

    SciTech Connect

    GALNANDER, B.; FEDOTOV, A.V.; LITVINENKO, V.N.; ET AL.

    2005-09-18

    The design of future high energy coolers relies heavily on extending the results of cooling force measurements into new regimes by using simulation codes. In order to carefully benchmark these codes we have accurately measured the longitudinal friction force in CELSIUS by recording the phase shift between the beam and the RF voltage while varying the RF frequency. Moreover, parameter dependencies on the electron current, solenoid magnetic field and magnetic field alignment were carried out.

  16. Measuring the Mechanical Properties of Living Cells Using Atomic Force Microscopy

    PubMed Central

    Thomas, Gawain; Burnham, Nancy A.; Camesano, Terri Anne; Wen, Qi

    2013-01-01

    Mechanical properties of cells and extracellular matrix (ECM) play important roles in many biological processes including stem cell differentiation, tumor formation, and wound healing. Changes in stiffness of cells and ECM are often signs of changes in cell physiology or diseases in tissues. Hence, cell stiffness is an index to evaluate the status of cell cultures. Among the multitude of methods applied to measure the stiffness of cells and tissues, micro-indentation using an Atomic Force Microscope (AFM) provides a way to reliably measure the stiffness of living cells. This method has been widely applied to characterize the micro-scale stiffness for a variety of materials ranging from metal surfaces to soft biological tissues and cells. The basic principle of this method is to indent a cell with an AFM tip of selected geometry and measure the applied force from the bending of the AFM cantilever. Fitting the force-indentation curve to the Hertz model for the corresponding tip geometry can give quantitative measurements of material stiffness. This paper demonstrates the procedure to characterize the stiffness of living cells using AFM. Key steps including the process of AFM calibration, force-curve acquisition, and data analysis using a MATLAB routine are demonstrated. Limitations of this method are also discussed. PMID:23851674

  17. Two-Dimensional Measurement of n+-p Asymmetrical Junctions in Multicrystalline Silicon Solar Cells Using AFM-Based Electrical Techniques with Nanometer Resolution: Preprint

    SciTech Connect

    Jiang, C. S.; Moutinho, H. R.; Li, J. V.; Al-Jassim, M. M.; Heath, J. T.

    2011-07-01

    Lateral inhomogeneities of modern solar cells demand direct electrical imaging with nanometer resolution. We show that atomic force microscopy (AFM)-based electrical techniques provide unique junction characterizations, giving a two-dimensional determination of junction locations. Two AFM-based techniques, scanning capacitance microscopy/spectroscopy (SCM/SCS) and scanning Kelvin probe force microscopy (SKPFM), were significantly improved and applied to the junction characterizations of multicrystalline silicon (mc-Si) cells. The SCS spectra were taken pixel by pixel by precisely controlling the tip positions in the junction area. The spectra reveal distinctive features that depend closely on the position relative to the electrical junction, which allows us to indentify the electrical junction location. In addition, SKPFM directly probes the built-in potential over the junction area modified by the surface band bending, which allows us to deduce the metallurgical junction location by identifying a peak of the electric field. Our results demonstrate resolutions of 10-40 nm, depending on the techniques (SCS or SKPFM). These direct electrical measurements with nanometer resolution and intrinsic two-dimensional capability are well suited for investigating the junction distribution of solar cells with lateral inhomogeneities.

  18. Analyzing the vibrational response of an AFM cantilever in liquid with the consideration of tip mass by comparing the hydrodynamic and contact repulsive force models in higher modes

    NASA Astrophysics Data System (ADS)

    Korayem, Moharam Habibnejad; Nahavandi, Amir

    2017-04-01

    This paper investigates the vibration of a tapping-mode Atomic Force Microscope (AFM) cantilever covered with two whole piezoelectric layers in a liquid medium. The authors of this article have already modeled the vibration of a cantilever immersed in liquid over rough surfaces. Five new ideas have been considered for improving the results of the previous work. Mass and damping of a cantilever probe tip have been considered. Since the probe tip of an AFM cantilever has a mass, which can itself affect the natural frequency of vibration, the significance of this mass has been explored. Also, two hydrodynamic force models for analyzing the mass and damping added to a cantilever in liquid medium have been evaluated. In modeling the vibration of a cantilever in liquid, simplifications are made to the theoretical equations used in the modeling, which may make the obtained results different from those in the real case. So, two hydrodynamic force models are introduced and compared with each other. In addition to the already introduced DMT model, the JKR model has been proposed. The forces acting on a probe tip have attractive and repulsive effects. The attractive Van der Waals force can vary depending on the surface smoothness or roughness, and the repulsive contact force, which is independent of the type of surface roughness and usually varies with the hardness or softness of a surface. When the first mode is used in the vibration of an AFM cantilever, the changes of the existing physical parameters in the simulation do not usually produce a significant difference in the response. Thus, three cantilever vibration modes have been investigated. Finally, an analytical approach for obtaining the response of equations is presented which solves the resulting motion equation by the Laplace method and, thus, a time function is obtained for cantilever deflection is determined. Also, using the COMSOL software to model a cantilever in a liquid medium, the computed natural

  19. AFM studies of homogeneous and mixed lipid mono- and bilayers

    NASA Astrophysics Data System (ADS)

    Runyan, Lindsay; Pantea, Mircea; Hoffmann, Peter

    2007-03-01

    Phospholipid mono- and bilayers have potential research applications in various areas of biology and medicine, where they serve as substitutes for cell membranes. The use of atomic force microscopy (AFM) to characterize such materials allows for the measurement of the topographic features of the material on a subnanometric scale and of the forces arising due to the interaction between the AFM tip and the phospholipid surface; the addition of biological molecules commonly found in cells to the AFM tip, such as proteins, allows the interaction between these molecules and a cell membrane to be studied. For this study, mixed phospholipid monolayers consisting of 1,2-Distearoyl-sn-Glycero-3-Phosphoethanolamine (DSPE) and 1,2-Dioleoyl-sn-Glycero-3-Phosphoethanolamine (DOPE) as well as bilayers consisting of 1,2-Dipalmitoyl-sn-Glycero-3-Phosphocholine (DPPC) were synthesized and studied using AFM imaging and force measurements.

  20. Capillary and van der Waals interactions on CaF2 crystals from amplitude modulation AFM force reconstruction profiles under ambient conditions

    PubMed Central

    Calò, Annalisa; Robles, Oriol Vidal; Santos, Sergio

    2015-01-01

    Summary There has been much interest in the past two decades to produce experimental force profiles characteristic of the interaction between nanoscale objects or a nanoscale object and a plane. Arguably, the advent of the atomic force microscope AFM was instrumental in driving such efforts because, in principle, force profiles could be recovered directly. Nevertheless, it has taken years before techniques have developed enough as to recover the attractive part of the force with relatively low noise and without missing information on critical ranges, particularly under ambient conditions where capillary interactions are believed to dominate. Thus a systematic study of the different profiles that may arise in such situations is still lacking. Here we employ the surfaces of CaF2, on which nanoscale water films form, to report on the range and force profiles that might originate by dynamic capillary interactions occurring between an AFM tip and nanoscale water patches. Three types of force profiles were observed under ambient conditions. One in which the force decay resembles the well-known inverse-square law typical of van der Waals interactions during the first 0.5–1 nm of decay, a second one in which the force decays almost linearly, in relatively good agreement with capillary force predicted by the constant chemical potential approximation, and a third one in which the attractive force is almost constant, i.e., forms a plateau, up to 3–4 nm above the surface when the formation of a capillary neck dominates the tip–sample interaction. PMID:25977852

  1. Role of silver ions in destabilization of intermolecular adhesion forces measured by atomic force microscopy in Staphylococcus epidermidis biofilms.

    PubMed

    Chaw, K C; Manimaran, M; Tay, Francis E H

    2005-12-01

    In this paper, we report on the potential use of atomic force microscopy (AFM) as a tool to measure the intermolecular forces in biofilm structures and to study the effect of silver ions on sessile Staphylococcus epidermidis cell viability and stability. We propose a strategy of destabilizing the biofilm matrix by reducing the intermolecular forces within the extracellular polymeric substances (EPSs) using a low concentration (50 ppb) of silver ions. Our AFM studies on the intermolecular forces within the EPSs of S. epidermidis RP62A and S.epidermidis 1457 biofilms suggest that the silver ions can destabilize the biofilm matrix by binding to electron donor groups of the biological molecules. This leads to reductions in the number of binding sites for hydrogen bonds and electrostatic and hydrophobic interactions and, hence, the destabilization of the biofilm structure.

  2. Viscoelastic properties of healthy human artery measured in saline solution by AFM based indentation technique

    SciTech Connect

    Lundkvist, A.; Lilleodden, E.; Sickhaus, W.; Kinney, J.; Pruitt, L.; Balooch, M.

    1998-02-09

    Using an Atomic Force Microscope with an attachment for indentation, we have measured local, in vitro mechanical properties of healthy femoral artery tissue held in saline solution. The elastic modulus (34. 3 kPa) and viscoelastic response ({tau}sub{epsilon} {equals} 16.9 s and {tau}sub{sigma} {equals} 29.3 s) of the unstretched,intimal vessel wall have been determined using Sneddon theory and a three element model(standard linear solid) for viscoelastic materials. The procedures necessary to employ the indenting attachment to detect elastic moduli in the kPa range in liquid are described.

  3. Analytical solutions of the first three frequency shifts of AFM non-uniform probe subjected to the Lennard-Jones force.

    PubMed

    Lin, Shueei-Muh; Liauh, Chihng-Tsung; Wang, Wen-Rong; Ho, Shing-Huei

    2006-04-01

    The role of higher cantilever modes is important to obtain some material contrast. The analysis of AFM subjected to a short-range force can improve greatly the studies of surface topography and interaction energies and interaction forces, especially for chemical and biological materials. When the tip-sample distance is in the order of inter-atomic spacing, the short-range tip-sample force is usually simulated by the Lennard-Jones model. In this study, the analytical method to determine the frequency shift of AFM subjected to the Lennard-Jones force is proposed. The closed-form solution of the partial differential equation with a nonlinear boundary condition is derived and then the corresponding frequency shifts of higher modes can be determined easily. Moreover, the conventional perturbation method is usually used to determine the frequency shift, but only for the first mode. This is because the original continuous beam system is transformed into a discrete lumped-masses model. Although the above disadvantages exist, the lumped-masses model is simple and intuitive. Using the principle of dynamic strain energy, the conventional perturbation method is revised successfully to determine the frequency shifts of higher modes. The assessment of the generalized perturbation method and the proposed method is made. Finally, the effects of several parameters on the first three frequency shifts are investigated.

  4. Contact sensing from force measurements

    NASA Technical Reports Server (NTRS)

    Bicchi, Antonio; Salisbury, J. K.; Brock, David L.

    1993-01-01

    This article addresses contact sensing (i.e., the problem of resolving the location of a contact, the force at the interface, and the moment about the contact normals). Called 'intrinsic' contact sensing for the use of internal force and torque measurements, this method allows for practical devices that provide simple, relevant contact information in practical robotic applications. Such sensors have been used in conjunction with robot hands to identify objects, determine surface friction, detect slip, augment grasp stability, measure object mass, probe surfaces, and control collision and for a variety of other useful tasks. This article describes the theoretical basis for their operation and provides a framework for future device design.

  5. Automatic HTS force measurement instrument

    DOEpatents

    Sanders, Scott T.; Niemann, Ralph C.

    1999-01-01

    A device for measuring the levitation force of a high temperature superconductor sample with respect to a reference magnet includes a receptacle for holding several high temperature superconductor samples each cooled to superconducting temperature. A rotatable carousel successively locates a selected one of the high temperature superconductor samples in registry with the reference magnet. Mechanism varies the distance between one of the high temperature superconductor samples and the reference magnet, and a sensor measures levitation force of the sample as a function of the distance between the reference magnet and the sample. A method is also disclosed.

  6. Automatic HTS force measurement instrument

    DOEpatents

    Sanders, S.T.; Niemann, R.C.

    1999-03-30

    A device is disclosed for measuring the levitation force of a high temperature superconductor sample with respect to a reference magnet includes a receptacle for holding several high temperature superconductor samples each cooled to superconducting temperature. A rotatable carousel successively locates a selected one of the high temperature superconductor samples in registry with the reference magnet. Mechanism varies the distance between one of the high temperature superconductor samples and the reference magnet, and a sensor measures levitation force of the sample as a function of the distance between the reference magnet and the sample. A method is also disclosed. 3 figs.

  7. High-Resolution Capacitance Measurement By Force Microscopy: Application To Sample Characterization And Potentiometry

    NASA Astrophysics Data System (ADS)

    Abraham, David W.; Martin, Yves; Wiekramasinghe, Kumar

    1988-07-01

    We demonstrate the usefulness and high sensitivity of the atomic force microscope (AFM) for imaging surface dielectric properties and for potentiometry through the detection of electrostatic forces. The attractive force with an applied voltage between tip and sample is generally much larger than the van der Waals force. On the other hand, electric forces as small as 10-10 N have been measured, corresponding to a capacitance of 10-19 farad. The sensitivity of our AFM should ultimately allow us to detect capacitances as low as 8 x 10-22 farad. We have used this technique to detect the presence of dielectric material over Si, and have made measure-ments of the voltage over a p-n junction with sub-micron spatial resolution.

  8. Uncertainties in forces extracted from non-contact atomic force microscopy measurements by fitting of long-range background forces.

    PubMed

    Sweetman, Adam; Stannard, Andrew

    2014-01-01

    In principle, non-contact atomic force microscopy (NC-AFM) now readily allows for the measurement of forces with sub-nanonewton precision on the atomic scale. In practice, however, the extraction of the often desired 'short-range' force from the experimental observable (frequency shift) is often far from trivial. In most cases there is a significant contribution to the total tip-sample force due to non-site-specific van der Waals and electrostatic forces. Typically, the contribution from these forces must be removed before the results of the experiment can be successfully interpreted, often by comparison to density functional theory calculations. In this paper we compare the 'on-minus-off' method for extracting site-specific forces to a commonly used extrapolation method modelling the long-range forces using a simple power law. By examining the behaviour of the fitting method in the case of two radically different interaction potentials we show that significant uncertainties in the final extracted forces may result from use of the extrapolation method.

  9. Uncertainties in forces extracted from non-contact atomic force microscopy measurements by fitting of long-range background forces

    PubMed Central

    Stannard, Andrew

    2014-01-01

    Summary In principle, non-contact atomic force microscopy (NC-AFM) now readily allows for the measurement of forces with sub-nanonewton precision on the atomic scale. In practice, however, the extraction of the often desired ‘short-range’ force from the experimental observable (frequency shift) is often far from trivial. In most cases there is a significant contribution to the total tip–sample force due to non-site-specific van der Waals and electrostatic forces. Typically, the contribution from these forces must be removed before the results of the experiment can be successfully interpreted, often by comparison to density functional theory calculations. In this paper we compare the ‘on-minus-off’ method for extracting site-specific forces to a commonly used extrapolation method modelling the long-range forces using a simple power law. By examining the behaviour of the fitting method in the case of two radically different interaction potentials we show that significant uncertainties in the final extracted forces may result from use of the extrapolation method. PMID:24778964

  10. Influence of Nanoscale Surface Roughness on Colloidal Force Measurements.

    PubMed

    Zou, Yi; Jayasuriya, Sunil; Manke, Charles W; Mao, Guangzhao

    2015-09-29

    Forces between colloidal particles determine the performances of many industrial processes and products. Colloidal force measurements conducted between a colloidal particle AFM probe and particles immobilized on a flat substrate are valuable in selecting appropriate surfactants for colloidal stabilization. One of the features of inorganic fillers and extenders is the prevalence of rough surfaces-even the polymer latex particles, often used as model colloidal systems including the current study, have rough surfaces albeit at a much smaller scale. Surface roughness is frequently cited as the reason for disparity between experimental observations and theoretical treatment but seldom verified by direct evidence. This work reports the effect of nanoscale surface roughness on colloidal force measurements carried out in the presence of surfactants. We applied a heating method to reduce the mean surface roughness of commercial latex particles from 30 to 1 nm. We conducted force measurements using the two types of particles at various salt and surfactant concentrations. The surfactants used were pentaethylene glycol monododecyl ether, Pluronic F108, and a styrene/acrylic copolymer, Joncryl 60. In the absence of the surfactant, nanometer surface roughness affects colloidal forces only in high salt conditions when the Debye length becomes smaller than the surface roughness. The adhesion is stronger between colloids with higher surface roughness and requires a higher surfactant concentration to be eliminated. The effect of surface roughness on colloidal forces was also investigated as a function of the adsorbed surfactant layer structure characterized by AFM indentation and dynamic light scattering. We found that when the layer thickness exceeds the surface roughness, the colloidal adhesion is less influenced by surfactant concentration variation. This study demonstrates that surface roughness at the nanoscale can influence colloidal forces significantly and should be taken

  11. Nano-Wilhelmy investigation of dynamic wetting properties of AFM tips through tip-nanobubble interaction

    PubMed Central

    Wang, Yuliang; Wang, Huimin; Bi, Shusheng; Guo, Bin

    2016-01-01

    The dynamic wetting properties of atomic force microscopy (AFM) tips are of much concern in many AFM-related measurement, fabrication, and manipulation applications. In this study, the wetting properties of silicon and silicon nitride AFM tips are investigated through dynamic contact angle measurement using a nano-Wilhelmy balance based method. This is done by capillary force measurement during extension and retraction motion of AFM tips relative to interfacial nanobubbles. The working principle of the proposed method and mathematic models for dynamic contact angle measurement are presented. Geometric models of AFM tips were constructed using scanning electronic microscopy (SEM) images taken from different view directions. The detailed process of tip-nanobubble interaction was investigated using force-distance curves of AFM on nanobubbles. Several parameters including nanobubble height, adhesion and capillary force between tip and nanobubbles are extracted. The variation of these parameters was studied over nanobubble surfaces. The dynamic contact angles of the AFM tips were calculated from the capillary force measurements. The proposed method provides direct measurement of dynamic contact angles for AFM tips and can also be taken as a general approach for nanoscale dynamic wetting property investigation. PMID:27452115

  12. Nano-Wilhelmy investigation of dynamic wetting properties of AFM tips through tip-nanobubble interaction

    NASA Astrophysics Data System (ADS)

    Wang, Yuliang; Wang, Huimin; Bi, Shusheng; Guo, Bin

    2016-07-01

    The dynamic wetting properties of atomic force microscopy (AFM) tips are of much concern in many AFM-related measurement, fabrication, and manipulation applications. In this study, the wetting properties of silicon and silicon nitride AFM tips are investigated through dynamic contact angle measurement using a nano-Wilhelmy balance based method. This is done by capillary force measurement during extension and retraction motion of AFM tips relative to interfacial nanobubbles. The working principle of the proposed method and mathematic models for dynamic contact angle measurement are presented. Geometric models of AFM tips were constructed using scanning electronic microscopy (SEM) images taken from different view directions. The detailed process of tip-nanobubble interaction was investigated using force-distance curves of AFM on nanobubbles. Several parameters including nanobubble height, adhesion and capillary force between tip and nanobubbles are extracted. The variation of these parameters was studied over nanobubble surfaces. The dynamic contact angles of the AFM tips were calculated from the capillary force measurements. The proposed method provides direct measurement of dynamic contact angles for AFM tips and can also be taken as a general approach for nanoscale dynamic wetting property investigation.

  13. Nano-Wilhelmy investigation of dynamic wetting properties of AFM tips through tip-nanobubble interaction.

    PubMed

    Wang, Yuliang; Wang, Huimin; Bi, Shusheng; Guo, Bin

    2016-07-25

    The dynamic wetting properties of atomic force microscopy (AFM) tips are of much concern in many AFM-related measurement, fabrication, and manipulation applications. In this study, the wetting properties of silicon and silicon nitride AFM tips are investigated through dynamic contact angle measurement using a nano-Wilhelmy balance based method. This is done by capillary force measurement during extension and retraction motion of AFM tips relative to interfacial nanobubbles. The working principle of the proposed method and mathematic models for dynamic contact angle measurement are presented. Geometric models of AFM tips were constructed using scanning electronic microscopy (SEM) images taken from different view directions. The detailed process of tip-nanobubble interaction was investigated using force-distance curves of AFM on nanobubbles. Several parameters including nanobubble height, adhesion and capillary force between tip and nanobubbles are extracted. The variation of these parameters was studied over nanobubble surfaces. The dynamic contact angles of the AFM tips were calculated from the capillary force measurements. The proposed method provides direct measurement of dynamic contact angles for AFM tips and can also be taken as a general approach for nanoscale dynamic wetting property investigation.

  14. Viscoelastic Properties Measurement of Human Lymphocytes by Atomic Force Microscopy Based on Magnetic Beads Cell Isolation.

    PubMed

    Li, Mi; Liu, Lianqing; Xiao, Xiubin; Xi, Ning; Wang, Yuechao

    2016-03-28

    Cell mechanics has been proved to be an effective biomarker for indicating cellular states. The advent of atomic force microscopy (AFM) provides an exciting instrument for measuring the mechanical properties of single cells. However, current AFM single-cell mechanical measurements are commonly performed on cell lines cultured in vitro which are quite different from the primary cells in the human body. Investigating the mechanical properties of primary cells from clinical environments can help us to better understand cell behaviors. Here, by combining AFM with magnetic beads cell isolation, the viscoelastic properties of human primary B lymphocytes were quantitatively measured. B lymphocytes were isolated from the peripheral blood of healthy volunteers by density gradient centrifugation and CD19 magnetic beads cell isolation. The activity and specificity of the isolated cells were confirmed by fluorescence microscopy. AFM imaging revealed the surface topography and geometric parameters of B lymphocytes. The instantaneous modulus and relaxation time of living B lymphocytes were measured by AFM indenting technique, showing that the instantaneous modulus of human normal B lymphocytes was 2~3 kPa and the relaxation times were 0.03~0.06 s and 0.35~0.55 s. The differences in cellular visocoelastic properties between primary B lymphocytes and cell lines cultured in vitro were analyzed. The study proves the capability of AFM in quantifying the viscoelastic properties of individual specific primary cells from the blood sample of clinical patients, which will improve our understanding of the behaviors of cells in the human body.

  15. Measuring Adhesion And Friction Forces

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1991-01-01

    Cavendish balance adapted to new purpose. Apparatus developed which measures forces of adhesion and friction between specimens of solid materials in vacuum at temperatures from ambient to 900 degrees C. Intended primarily for use in studying adhesion properties of ceramics and metals, including silicon carbide, aluminum oxide, and iron-base amorphous alloys.

  16. Charge injection in thin dielectric layers by atomic force microscopy: influence of geometry and material work function of the AFM tip on the injection process

    NASA Astrophysics Data System (ADS)

    Villeneuve-Faure, C.; Makasheva, K.; Boudou, L.; Teyssedre, G.

    2016-06-01

    Charge injection and retention in thin dielectric layers remain critical issues for the reliability of many electronic devices because of their association with a large number of failure mechanisms. To overcome this drawback, a deep understanding of the mechanisms leading to charge injection close to the injection area is needed. Even though the charge injection is extensively studied and reported in the literature to characterize the charge storage capability of dielectric materials, questions about charge injection mechanisms when using atomic force microscopy (AFM) remain open. In this paper, a thorough study of charge injection by using AFM in thin plasma-processed amorphous silicon oxynitride layers with properties close to that of thermal silica layers is presented. The study considers the impact of applied voltage polarity, work function of the AFM tip coating and tip curvature radius. A simple theoretical model was developed and used to analyze the obtained experimental results. The electric field distribution is computed as a function of tip geometry. The obtained experimental results highlight that after injection in the dielectric layer the charge lateral spreading is mainly controlled by the radial electric field component independently of the carrier polarity. The injected charge density is influenced by the nature of electrode metal coating (work function) and its geometry (tip curvature radius). The electron injection is mainly ruled by the Schottky injection barrier through the field electron emission mechanism enhanced by thermionic electron emission. The hole injection mechanism seems to differ from the electron one depending on the work function of the metal coating. Based on the performed analysis, it is suggested that for hole injection by AFM, pinning of the metal Fermi level with the metal-induced gap states in the studied silicon oxynitride layers starts playing a role in the injection mechanisms.

  17. Nanoscale structural and mechanical effects of beta-amyloid (1-42) on polymer cushioned membranes: a combined study by neutron reflectometry and AFM Force Spectroscopy.

    PubMed

    Dante, Silvia; Hauss, Thomas; Steitz, Roland; Canale, Claudio; Dencher, Norbert A

    2011-11-01

    The interaction of beta-amyloid peptides with lipid membranes is widely studied as trigger agents in Alzheimer's disease. Their mechanism of action at the molecular level is unknown and their interaction with the neural membrane is crucial to elucidate the onset of the disease. In this study we have investigated the interaction of water soluble forms of beta-amyloid Aβ(1-42) with lipid bilayers supported by polymer cushion. A reproducible protocol for the preparation of a supported phospholipid membrane with composition mimicking the neural membrane and in physiological condition (PBS buffer, pH=7.4) was refined by neutron reflectivity. The change in structure and local mechanical properties of the membrane in the presence of Aβ(1-42) was investigated by neutron reflectivity and Atomic Force Microscopy (AFM) Force Spectroscopy. Neutron reflectivity evidenced that Aβ(1-42) interacts strongly with the supported membrane, causing a change in the scattering length density profile of the lipid bilayer, and penetrates into the membrane. Concomitantly, the local mechanical properties of the bilayer are deeply modified by the interaction with the peptide as seen by AFM Force Spectroscopy. These results may be of great importance for the onset of the Alzheimer's disease, since a simultaneous change in the structural and mechanical properties of the lipid matrix could influence all membrane based signal cascades. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Measurement of faradaic current during AFM local oxidation of magnetic metal thin films

    NASA Astrophysics Data System (ADS)

    Takemura, Yasushi; Shimada, Yasuyuki; Watanabe, Genta; Yamada, Tsutomu; Shirakashi, Jun-ichi

    2007-04-01

    Faradaic current during a local oxidation using an atomic force microscope was studied. The intensity of the measured faradaic current was increased with increasing bias voltage applied to a cantilever, resulting in fabrication of larger size of nano-oxide structures on Si substrates. On the other hand, an excess current (over current) that was considered not to contribute the oxidation reaction was observed noticeably in the local oxidation of NiFe thin films. It was found that the excess current could be suppressed by depositing insulating oxide layers on the surfaces. The surface oxide layers were also advantageous for stable existence of meniscus promoting the local oxidation because of their hydrophilic properties. This method of capped oxide layers is significant for stable performance of the local oxidation technique fabricating nanostructures and nano-devices.

  19. High-speed AFM of human chromosomes in liquid

    NASA Astrophysics Data System (ADS)

    Picco, L. M.; Dunton, P. G.; Ulcinas, A.; Engledew, D. J.; Hoshi, O.; Ushiki, T.; Miles, M. J.

    2008-09-01

    Further developments of the previously reported high-speed contact-mode AFM are described. The technique is applied to the imaging of human chromosomes at video rate both in air and in water. These are the largest structures to have been imaged with high-speed AFM and the first imaging in liquid to be reported. A possible mechanism that allows such high-speed contact-mode imaging without significant damage to the sample is discussed in the context of the velocity dependence of the measured lateral force on the AFM tip.

  20. Measuring adhesion on rough surfaces using atomic force microscopy with a liquid probe.

    PubMed

    Escobar, Juan V; Garza, Cristina; Castillo, Rolando

    2017-01-01

    We present a procedure to perform and interpret pull-off force measurements during the jump-off-contact process between a liquid drop and rough surfaces using a conventional atomic force microscope. In this method, a micrometric liquid mercury drop is attached to an AFM tipless cantilever to measure the force required to pull this drop off a rough surface. We test the method with two surfaces: a square array of nanometer-sized peaks commonly used for the determination of AFM tip sharpness and a multi-scaled rough diamond surface containing sub-micrometer protrusions. Measurements are carried out in a nitrogen atmosphere to avoid water capillary interactions. We obtain information about the average force of adhesion between a single peak or protrusion and the liquid drop. This procedure could provide useful microscopic information to improve our understanding of wetting phenomena on rough surfaces.

  1. Direct measurement of interaction forces between a platinum dichloride complex and DNA molecules.

    PubMed

    Muramatsu, Hiroshi; Shimada, Shogo; Okada, Tomoko

    2017-06-29

    The interaction forces between a platinum dichloride complex and DNA molecules have been studied using atomic force microscopy (AFM). The platinum dichloride complex, di-dimethylsulfoxide-dichloroplatinum (II) (Pt(DMSO)2Cl2), was immobilized on an AFM probe by coordinating the platinum to two amino groups to form a complex similar to Pt(en)Cl2, which is structurally similar to cisplatin. The retraction forces were measured between the platinum complex and DNA molecules immobilized on mica plates using force curve measurements. The histogram of the retraction force for λ-DNA showed several peaks; the unit retraction force was estimated to be 130 pN for a pulling rate of 60 nm/s. The retraction forces were also measured separately for four single-base DNA oligomers (adenine, guanine, thymine, and cytosine). Retraction forces were frequently observed in the force curves for the DNA oligomers of guanine and adenine. For the guanine DNA oligomer, the most frequent retraction force was slightly lower than but very similar to the retraction force for λ-DNA. A higher retraction force was obtained for the adenine DNA oligomer than for the guanine oligomer. This result is consistent with a higher retraction activation energy of adenine with the Pt complex being than that of guanine because the kinetic rate constant for retraction correlates to exp(FΔx - ΔE) where ΔE is an activation energy, F is an applied force, and Δx is a displacement of distance.

  2. A measurement of the hysteresis loop in force-spectroscopy curves using a tuning-fork atomic force microscope.

    PubMed

    Lange, Manfred; van Vörden, Dennis; Möller, Rolf

    2012-01-01

    Measurements of the frequency shift versus distance in noncontact atomic force microscopy (NC-AFM) allow measurements of the force gradient between the oscillating tip and a surface (force-spectroscopy measurements). When nonconservative forces act between the tip apex and the surface the oscillation amplitude is damped. The dissipation is caused by bistabilities in the potential energy surface of the tip-sample system, and the process can be understood as a hysteresis of forces between approach and retraction of the tip. In this paper, we present the direct measurement of the whole hysteresis loop in force-spectroscopy curves at 77 K on the PTCDA/Ag/Si(111) √3 × √3 surface by means of a tuning-fork-based NC-AFM with an oscillation amplitude smaller than the distance range of the hysteresis loop. The hysteresis effect is caused by the making and breaking of a bond between PTCDA molecules on the surface and a PTCDA molecule at the tip. The corresponding energy loss was determined to be 0.57 eV by evaluation of the force-distance curves upon approach and retraction. Furthermore, a second dissipation process was identified through the damping of the oscillation while the molecule on the tip is in contact with the surface. This dissipation process occurs mainly during the retraction of the tip. It reaches a maximum value of about 0.22 eV/cycle.

  3. Atomic force microscope adhesion measurements and atomistic molecular dynamics simulations at different humidities

    NASA Astrophysics Data System (ADS)

    Seppä, Jeremias; Reischl, Bernhard; Sairanen, Hannu; Korpelainen, Virpi; Husu, Hannu; Heinonen, Martti; Raiteri, Paolo; Rohl, Andrew L.; Nordlund, Kai; Lassila, Antti

    2017-03-01

    Due to their operation principle atomic force microscopes (AFMs) are sensitive to all factors affecting the detected force between the probe and the sample. Relative humidity is an important and often neglected—both in experiments and simulations—factor in the interaction force between AFM probe and sample in air. This paper describes the humidity control system designed and built for the interferometrically traceable metrology AFM (IT-MAFM) at VTT MIKES. The humidity control is based on circulating the air of the AFM enclosure via dryer and humidifier paths with adjustable flow and mixing ratio of dry and humid air. The design humidity range of the system is 20–60 %rh. Force–distance adhesion studies at humidity levels between 25 %rh and 53 %rh are presented and compared to an atomistic molecular dynamics (MD) simulation. The uncertainty level of the thermal noise method implementation used for force constant calibration of the AFM cantilevers is 10 %, being the dominant component of the interaction force measurement uncertainty. Comparing the simulation and the experiment, the primary uncertainties are related to the nominally 7 nm radius and shape of measurement probe apex, possible wear and contamination, and the atomistic simulation technique details. The interaction forces are of the same order of magnitude in simulation and measurement (5 nN). An elongation of a few nanometres of the water meniscus between probe tip and sample, before its rupture, is seen in simulation upon retraction of the tip in higher humidity. This behaviour is also supported by the presented experimental measurement data but the data is insufficient to conclusively verify the quantitative meniscus elongation.

  4. Force Measurement for Interaction between Cucurbit[7]uril and Mica and Self-Assembled Monolayer in the Presence of Zn2+ Studied with Atomic Force Microscopy.

    PubMed

    Bae, Young-In; Hwang, Ilha; Kim, Ikjin; Kim, Kimoon; Park, Joon Won

    2017-09-26

    Force spectroscopy with atomic force microscopy (AFM) revealed that cucurbit[7]uril (CB[7]) strongly binds to a mica surface in the presence of cations. Indeed, Zn2+ was observed to facilitate the self-assembly of CB[7] on the mica surface, while monocations, such as Na+, were less effective. The progression of the process and cation-mediated self-assembled monolayer were characterized using AFM, and the observed height of the layer agrees well with the calculated CB[7] value (9.1 angstroms). We utilized force-based AFM to further study the interaction of CB[7] with guest molecules. To this end, CB[7] was immobilized on a glass substrate and aminomethylferrocene (am-Fc) was conjugated onto an AFM tip. The single-molecule interaction between CB[7] and am-Fc was monitored by collecting the unbinding force curves. The force histogram showed single ruptures and a unimodal distribution, and the most probable unbinding force value was 101 pN in deionized water and 86 pN in PBS buffer. The results indicate that the unbinding force was larger than that of streptavidin-biotin measured under the same conditions, whereas the dissociation constant was smaller by one order of magnitude (0.012 s-1 vs. 0.13 s-1). Furthermore, a high-resolution adhesion force map showed a part of the CB[7] cavities on the surface.

  5. Slip-length measurement of confined air flow using dynamic atomic force microscopy.

    PubMed

    Maali, Abdelhamid; Bhushan, Bharat

    2008-08-01

    We present an experimental measurement of the slip length of air flow close to solid surfaces using an atomic force microscope (AFM) in dynamic mode. The air was confined between a glass surface and a spherical glass particle glued to an AFM cantilever. The Knudsen number was varied continuously over three decades by varying the distance between the two surfaces. Our results show that the effect of confining the air is purely dissipative. The data are described by an isothermal Maxwell slip-boundary condition, and the measured slip-length value was 118 nm .

  6. Quantitative force and dissipation measurements in liquids using piezo-excited atomic force microscopy: a unifying theory.

    PubMed

    Kiracofe, Daniel; Raman, Arvind

    2011-12-02

    The use of a piezoelectric element (acoustic excitation) to vibrate the base of microcantilevers is a popular method for dynamic atomic force microscopy. In air or vacuum, the base motion is so small (relative to tip motion) that it can be neglected. However, in liquid environments the base motion can be large and cannot be neglected. Yet it cannot be directly observed in most AFMs. Therefore, in liquids, quantitative force and energy dissipation spectroscopy with acoustic AFM relies on theoretical formulae and models to estimate the magnitude of the base motion. However, such formulae can be inaccurate due to several effects. For example, a significant component of the piezo excitation does not mechanically excite the cantilever but rather transmits acoustic waves through the surrounding liquid, which in turn indirectly excites the cantilever. Moreover, resonances of the piezo, chip and holder can obscure the true cantilever dynamics even in well-designed liquid cells. Although some groups have tried to overcome these limitations (either by theory modification or better design of piezos and liquid cells), it is generally accepted that acoustic excitation is unsuitable for quantitative force and dissipation spectroscopy in liquids. In this paper the authors present a careful study of the base motion and excitation forces and propose a method by which quantitative analysis is in fact possible, thus opening this popular method for quantitative force and dissipation spectroscopy using dynamic AFM in liquids. This method is validated by experiments in water on mica using a scanning laser Doppler vibrometer, which can measure the actual base motion. Finally, the method is demonstrated by using small-amplitude dynamic AFM to extract the force gradients and dissipation on solvation shells of octamethylcyclotetrasiloxane (OMCTS) molecules on mica.

  7. Dynamics of Nanoconfined Fluids measured by combined Force Microscopy and Fluorescence Correlation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Subba Rao, Venkatesh; Pantea, Mircea; Grabowski, Christopher; Mukhopadhyay, Ashis; Hoffmann, Peter

    2009-03-01

    We present work performed on a model liquid, tetrakis(2-ethylhexoxy)silane (TEHOS), using Atomic Force microscopy (AFM) and Fluorescence Correlation Spectroscopy (FCS) to study its dynamical structure at the nanoscale. A novel homebuilt interferometer-based small amplitude AFM was used to measure directly the stiffness and damping coefficient of TEHOS film. Oscillations in stiffness and damping coefficient with period ˜1 nm (TEHOS molecular size) were observed. Translational diffusion in spin-coated TEHOS films was measured using Fluorescence Correlation Spectroscopy (FCS). Diffusion was found to be heterogeneous. Finally we present the ongoing work on an integrated platform of AFM and FCS to perform simultaneous measurements of nanoconfined fluids. Recent results using this new setup on a fluorescently labelled nanoparticle solution in confinement will be discussed.

  8. A measurement of the hysteresis loop in force-spectroscopy curves using a tuning-fork atomic force microscope

    PubMed Central

    van Vörden, Dennis; Möller, Rolf

    2012-01-01

    Summary Measurements of the frequency shift versus distance in noncontact atomic force microscopy (NC-AFM) allow measurements of the force gradient between the oscillating tip and a surface (force-spectroscopy measurements). When nonconservative forces act between the tip apex and the surface the oscillation amplitude is damped. The dissipation is caused by bistabilities in the potential energy surface of the tip–sample system, and the process can be understood as a hysteresis of forces between approach and retraction of the tip. In this paper, we present the direct measurement of the whole hysteresis loop in force-spectroscopy curves at 77 K on the PTCDA/Ag/Si(111) √3 × √3 surface by means of a tuning-fork-based NC-AFM with an oscillation amplitude smaller than the distance range of the hysteresis loop. The hysteresis effect is caused by the making and breaking of a bond between PTCDA molecules on the surface and a PTCDA molecule at the tip. The corresponding energy loss was determined to be 0.57 eV by evaluation of the force–distance curves upon approach and retraction. Furthermore, a second dissipation process was identified through the damping of the oscillation while the molecule on the tip is in contact with the surface. This dissipation process occurs mainly during the retraction of the tip. It reaches a maximum value of about 0.22 eV/cycle. PMID:22496993

  9. Elasticity measurement of breast cancer cells by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Xu, Chaoxian; Wang, Yuhua; Jiang, Ningcheng; Yang, Hongqin; Lin, Juqiang; Xie, Shusen

    2014-09-01

    Mechanical properties of living cells play an important role in understanding various cells' function and state. Therefore cell biomechanics is expected to become a useful tool for cancer diagnosis. In this study, atomic force microscopy (AFM) using a square pyramid probe was performed to investigate cancerous (MCF-7) and benign (MCF-10A) human breast epithelial cells. The new QITM mode was used to acquire high-resolution topographic images and elasticity of living cells. Furthermore, individual force curves were recorded at maximum loads of 0.2, 0.5 and 1 nN, and the dependence of cell's elasticity with loading force was discussed. It was showed that the cancerous cells exhibited smaller elasticity modulus in comparison to non-cancerous counterparts. The elasticity modulus increased as the loading force increased from 0.2 nN to 1 nN. This observation indicates that loading force affects the cell's apparent elasticity and it is important to choose the appropriate force applied to cells in order to distinguish normal and cancer cells. The results reveal that the mechanical properties of living cells measured by atomic force microscopy may be a useful indicator of cell type and disease.

  10. Electrostatic patch potentials in Casimir force measurements

    NASA Astrophysics Data System (ADS)

    Garrett, Joseph; Somers, David; Munday, Jeremy

    2015-03-01

    Measurements of the Casimir force require the elimination of the electrostatic force between interacting surfaces. The force can be minimized by applying a potential to one of the two surfaces. However, electrostatic patch potentials remain and contribute an additional force which can obscure the Casimir force signal. We will discuss recent measurements of patch potentials made with Heterodyne Amplitude-Modulated Kelvin Probe Force Microscopy that suggest patches could be responsible for >1% of the signal in some Casimir force measurements, and thus make the distinction between different theoretical models of the Casimir force (e.g. a Drude-model or a plasma-model for the dielectric response) difficult to discern.

  11. Adhesion and friction between individual carbon nanotubes measured using force-versus-distance curves in atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Bhushan, Bharat; Ling, Xing

    2008-07-01

    The adhesion and friction between individual nanotubes was investigated in ambient using a dynamic atomic force microscope (AFM) operating in force-calibration mode to capture force-versus-distance curves. A multiwalled carbon nanotube (MWNT) tip attached to a conventional AFM probe was brought into contact with and then ramped in vertical direction against a single-walled carbon nanotube (SWNT) bridge suspended over a 2-μm -wide trench. The interaction between nanotubes altered the oscillation amplitude, phase lag, and average deflection of AFM cantilever, from which the interacting forces between nanotubes are quantitatively derived. During ramping, a stick-slip motion was found to dominate the sliding between the nanotubes. The stick was attributed to the presence of high-energy points, such as structural defects or coating of amorphous carbon, on the surface of the MWNT tip. The coefficients of static friction and shear strength between nanotubes were evaluated to be about 0.2 and 1.4 GPa, respectively. They are about 2 orders of magnitude larger than the kinetic counterparts. The kinetic values are on the same order as that measured previously by sliding a MWNT tip across a SWNT bridge in lateral direction.

  12. Quantification of the interaction forces between metals and graphene by quantum chemical calculations and dynamic force measurements under ambient conditions.

    PubMed

    Lazar, Petr; Zhang, Shuai; Safářová, Klára; Li, Qiang; Froning, Jens Peter; Granatier, Jaroslav; Hobza, Pavel; Zbořil, Radek; Besenbacher, Flemming; Dong, Mingdong; Otyepka, Michal

    2013-02-26

    The two-dimensional material graphene has numerous potential applications in nano(opto)electronics, which inevitably involve metal graphene interfaces.Theoretical approaches have been employed to examine metal graphene interfaces, but experimental evidence is currently lacking. Here, we combine atomic force microscopy (AFM) based dynamic force measurements and density functional theory calculations to quantify the interaction between metal-coated AFM tips and graphene under ambient conditions. The results show that copper has the strongest affinity to graphene among the studied metals (Cu, Ag, Au, Pt, Si), which has important implications for the construction of a new generation of electronic devices. Observed differences in the nature of the metal-graphene bonding are well reproduced by the calculations, which included nonlocal Hartree-Fock exchange and van der Waals effects.

  13. Utilization of profilometry, SEM, AFM and contact angle measurements in describing surfaces of plastic floor coverings and explaining their cleanability

    NASA Astrophysics Data System (ADS)

    Kuisma, R.; Pesonen-Leinonen, E.; Redsven, I.; Kymäläinen, H.-R.; Saarikoski, I.; Sjöberg, A.-M.; Hautala, M.

    2005-06-01

    The tendency to soil and cleanability of ten commercial plastic floor coverings: eight vinyl (PVC) floor coverings, one vinyl composite tile and one plastic composite tile, were examined. Floor coverings were soiled with inorganic, organic and biological soil. The cleanability was measured both by bioluminescence of ATP (adenosine triphosphate) and colorimetrically. The surface topography was studied by AFM, SEM and with a profilometer. From the 2D- and 3D-profilometric measurements several characteristic parameters of the surface profiles were extracted. The tendency to soil and cleanability were compared with the characteristics of the surface. A weak correlation was found between roughness and soilability but no correlation between roughness and cleanability. Roughness had no correlation with contact angle.

  14. Phase transition behaviors of the supported DPPC bilayer investigated by sum frequency generation (SFG) vibrational spectroscopy and atomic force microscopy (AFM).

    PubMed

    Wu, Heng-Liang; Tong, Yujin; Peng, Qiling; Li, Na; Ye, Shen

    2016-01-21

    The phase transition behaviors of a supported bilayer of dipalmitoylphosphatidyl-choline (DPPC) have been systematically evaluated by in situ sum frequency generation (SFG) vibrational spectroscopy and atomic force microscopy (AFM). By using an asymmetric bilayer composed of per-deuterated and per-protonated monolayers, i.e., DPPC-d75/DPPC and a symmetric bilayer of DPPC/DPPC, we were able to probe the molecular structural changes during the phase transition process of the lipid bilayer by SFG spectroscopy. It was found that the DPPC bilayer is sequentially melted from the top (adjacent to the solution) to bottom leaflet (adjacent to the substrate) over a wide temperature range. The conformational ordering of the supported bilayer does not decrease (even slightly increases) during the phase transition process. The conformational defects in the bilayer can be removed after the complete melting process. The phase transition enthalpy for the bottom leaflet was found to be approximately three times greater than that for the top leaflet, indicating a strong interaction of the lipids with the substrate. The present SFG and AFM observations revealed similar temperature dependent profiles. Based on these results, the temperature-induced structural changes in the supported lipid bilayer during its phase transition process are discussed in comparison with previous studies.

  15. Frequency, amplitude, and phase measurements in contact resonance atomic force microscopies.

    PubMed

    Stan, Gheorghe; Solares, Santiago D

    2014-01-01

    The resonance frequency, amplitude, and phase response of the first two eigenmodes of two contact-resonance atomic force microscopy (CR-AFM) configurations, which differ in the method used to excite the system (cantilever base vs sample excitation), are analyzed in this work. Similarities and differences in the observables of the cantilever dynamics, as well as the different effect of the tip-sample contact properties on those observables in each configuration are discussed. Finally, the expected accuracy of CR-AFM using phase-locked loop detection is investigated and quantification of the typical errors incurred during measurements is provided.

  16. Correlation between Desorption Force Measured by Atomic Force Microscopy and Adsorption Free Energy Measured by Surface Plasmon Resonance Spectroscopy for Peptide–Surface Interactions

    PubMed Central

    Wei, Yang; Latour, Robert A.

    2010-01-01

    Surface Plasmon resonance (SPR) spectroscopy is a useful technique for thermodynamically characterizing peptide–surface interactions; however, its usefulness is limited to the types of surfaces that can readily be formed as thin layers in nanometer scale on metallic biosensor substrates. Atomic force microscopy (AFM), on the other hand, can be used with any microscopically flat surface, thus making it more versatile for studying peptide–surface interactions. AFM, however, has the drawback of data interpretation due to questions regarding peptide-to-probe–tip density. This problem could be overcome if results from a standardized AFM method could be correlated with SPR results for a similar set of peptide–surface interactions so that AFM studies using the standardized method could be extended to characterize peptide–surface interactions for surfaces that are not amenable for characterization by SPR. In this paper, we present the development and application of an AFM method to measure adsorption forces for host–guest peptides sequence on surfaces consisting of alkanethiol self–assembled monolayers (SAMs) with different functionality. The results from these studies show that a linear correlation exists between these data and the adsorption free energy (ΔG°ads) values associated with a similar set of peptide–surface systems available from SPR measurements. These methods will be extremely useful to thermodynamically characterize the adsorption behavior for peptides on a much broader range of surfaces than can be used with SPR to provide information related to understanding protein adsorption behavior to these surfaces and to provide an experimental database that can be used for the evaluation, modification, and validation of force field parameters that are needed to accurately represent protein adsorption behavior for molecular simulations. PMID:21073182

  17. Atomic force microscopy imaging and mechanical properties measurement of red blood cells and aggressive cancer cells.

    PubMed

    Li, Mi; Liu, Lianqing; Xi, Ning; Wang, Yuechao; Dong, Zaili; Xiao, Xiubin; Zhang, Weijing

    2012-11-01

    Mechanical properties play an important role in regulating cellular activities and are critical for unlocking the mysteries of life. Atomic force microscopy (AFM) enables researchers to measure mechanical properties of single living cells under physiological conditions. Here, AFM was used to investigate the topography and mechanical properties of red blood cells (RBCs) and three types of aggressive cancer cells (Burkitt's lymphoma Raji, cutaneous lymphoma Hut, and chronic myeloid leukemia K562). The surface topography of the RBCs and the three cancer cells was mapped with a conventional AFM probe, while mechanical properties were investigated with a micro-sphere glued onto a tip-less cantilever. The diameters of RBCs are significantly smaller than those of the cancer cells, and mechanical measurements indicated that Young's modulus of RBCs is smaller than those of the cancer cells. Aggressive cancer cells have a lower Young's modulus than that of indolent cancer cells, which may improve our understanding of metastasis.

  18. Nanomechanics of Yeast Surfaces Revealed by AFM

    NASA Astrophysics Data System (ADS)

    Dague, Etienne; Beaussart, Audrey; Alsteens, David

    Despite the large and well-documented characterization of the microbial cell wall in terms of chemical composition, the determination of the mechanical properties of surface molecules in relation to their function remains a key challenge in cell biology.The emergence of powerful tools allowing molecular manipulations has already revolutionized our understanding of the surface properties of fungal cells. At the frontier between nanophysics and molecular biology, atomic force microscopy (AFM), and more specifically single-molecule force spectroscopy (SMFS), has strongly contributed to our current knowledge of the cell wall organization and nanomechanical properties. However, due to the complexity of the technique, measurements on live cells are still at their infancy.In this chapter, we describe the cell wall composition and recapitulate the principles of AFM as well as the main current methodologies used to perform AFM measurements on live cells, including sample immobilization and tip functionalization.The current status of the progress in probing nanomechanics of the yeast surface is illustrated through three recent breakthrough studies. Determination of the cell wall nanostructure and elasticity is presented through two examples: the mechanical response of mannoproteins from brewing yeasts and elasticity measurements on lacking polysaccharide mutant strains. Additionally, an elegant study on force-induced unfolding and clustering of adhesion proteins located at the cell surface is also presented.

  19. Standardized Nanomechanical Atomic Force Microscopy Procedure (SNAP) for Measuring Soft and Biological Samples.

    PubMed

    Schillers, Hermann; Rianna, Carmela; Schäpe, Jens; Luque, Tomas; Doschke, Holger; Wälte, Mike; Uriarte, Juan José; Campillo, Noelia; Michanetzis, Georgios P A; Bobrowska, Justyna; Dumitru, Andra; Herruzo, Elena T; Bovio, Simone; Parot, Pierre; Galluzzi, Massimiliano; Podestà, Alessandro; Puricelli, Luca; Scheuring, Simon; Missirlis, Yannis; Garcia, Ricardo; Odorico, Michael; Teulon, Jean-Marie; Lafont, Frank; Lekka, Malgorzata; Rico, Felix; Rigato, Annafrancesca; Pellequer, Jean-Luc; Oberleithner, Hans; Navajas, Daniel; Radmacher, Manfred

    2017-07-11

    We present a procedure that allows a reliable determination of the elastic (Young's) modulus of soft samples, including living cells, by atomic force microscopy (AFM). The standardized nanomechanical AFM procedure (SNAP) ensures the precise adjustment of the AFM optical lever system, a prerequisite for all kinds of force spectroscopy methods, to obtain reliable values independent of the instrument, laboratory and operator. Measurements of soft hydrogel samples with a well-defined elastic modulus using different AFMs revealed that the uncertainties in the determination of the deflection sensitivity and subsequently cantilever's spring constant were the main sources of error. SNAP eliminates those errors by calculating the correct deflection sensitivity based on spring constants determined with a vibrometer. The procedure was validated within a large network of European laboratories by measuring the elastic properties of gels and living cells, showing that its application reduces the variability in elastic moduli of hydrogels down to 1%, and increased the consistency of living cells elasticity measurements by a factor of two. The high reproducibility of elasticity measurements provided by SNAP could improve significantly the applicability of cell mechanics as a quantitative marker to discriminate between cell types and conditions.

  20. Investigation of biopolymer networks by means of AFM

    NASA Astrophysics Data System (ADS)

    Keresztes, Z.; Rigó, T.; Telegdi, J.; Kálmán, E.

    Natural hydrogel alginate was investigated by means of atomic force microscopy (AFM) to gain microscale information on the morphological and rheological properties of the biopolymer network cross-linked by various cations. Local rheological properties of the gels measured by force spectroscopy gave correlation between increasing ion selectivity and increasing polymer elasticity. Adhesive forces acting between the surface of the gel and the probe, and also the intrinsic rheological properties of bulk polymers affect the microscopical image formation.

  1. Comparing AFM cantilever stiffness measured using the thermal vibration and the improved thermal vibration methods with that of an SI traceable method based on MEMS

    NASA Astrophysics Data System (ADS)

    Brand, Uwe; Gao, Sai; Engl, Wolfgang; Sulzbach, Thomas; Stahl, Stefan W.; Milles, Lukas F.; Nesterov, Vladimir; Li, Zhi

    2017-03-01

    PTB has developed a new contact based method for the traceable calibration of the normal stiffness of AFM cantilevers in the range from 0.03 N m‑1 to 300 N m‑1 to the SI units based on micro-electro-mechanical system (MEMS) actuators. This method is evaluated by comparing the measured cantilever stiffness with that measured by PTB’s new primary nanonewton force facility and by PTB’s microforce measuring device. The MEMS system was used to calibrate the stiffness of cantilevers in two case studies. One set of cantilevers for applications in biophysics was calibrated using the well-known thermal vibration method and the second set of cantilevers was calibrated by a cantilever manufacturer who applied an improved thermal vibration method based on calibrated reference cantilevers for the cantilever stiffness calibration. The comparison revealed a stiffness deviation of  +7.7% for the cantilevers calibrated using the thermal vibration method and a deviation of  +6.9% for the stiffnesses of the cantilevers calibrated using the improved thermal vibration method.

  2. Cheap non-toxic non-corrosive method of glass cleaning evaluated by contact angle, AFM, and SEM-EDX measurements.

    PubMed

    Dey, Tania; Naughton, Daragh

    2017-05-01

    Glass surface cleaning is the very first step in advanced coating deposition and it also finds use in conserving museum objects. However, most of the wet chemical methods of glass cleaning use toxic and corrosive chemicals like concentrated sulfuric acid (H2SO4), piranha (a mixture of concentrated sulfuric acid and 30% hydrogen peroxide), and hydrogen fluoride (HF). On the other hand, most of the dry cleaning techniques like UV-ozone, plasma, and laser treatment require costly instruments. In this report, five eco-friendly wet chemical methods of glass cleaning were evaluated in terms of contact angle (measured by optical tensiometer), nano-scale surface roughness (measured by atomic force microscopy or AFM), and elemental composition (measured by energy dispersive x-ray spectroscopy or SEM-EDX). These glass cleaning methods are devoid of harsh chemicals and costly equipment, hence can be applied in situ in close proximity with plantation such as greenhouse or upon subtle objects such as museum artifacts. Out of these five methods, three methods are based on the chemical principle of chelation. It was found that the citric acid cleaning method gave the greatest change in contact angle within the hydrophilic regime (14.25° for new glass) indicating effective cleansing and the least surface roughness (0.178 nm for new glass) indicating no corrosive effect. One of the glass sample showed unique features which were traced backed to the history of the glass usage.

  3. Measurement of cell adhesion force by vertical forcible detachment using an arrowhead nanoneedle and atomic force microscopy

    SciTech Connect

    Ryu, Seunghwan; Hashizume, Yui; Mishima, Mari; Kawamura, Ryuzo; Tamura, Masato; Matsui, Hirofumi; Matsusaki, Michiya; Akashi, Mitsuru; Nakamura, Chikashi

    2014-08-15

    Graphical abstract: - Highlights: • We developed a method to measure cell adhesion force by detaching cell using an arrowhead nanoneedle and AFM. • A nanofilm consisting of fibronectin and gelatin was formed on cell surface to reinforce the cell cortex. • By the nanofilm lamination, detachment efficiencies of strongly adherent cell lines were improved markedly. - Abstract: The properties of substrates and extracellular matrices (ECM) are important factors governing the functions and fates of mammalian adherent cells. For example, substrate stiffness often affects cell differentiation. At focal adhesions, clustered–integrin bindings link cells mechanically to the ECM. In order to quantitate the affinity between cell and substrate, the cell adhesion force must be measured for single cells. In this study, forcible detachment of a single cell in the vertical direction using AFM was carried out, allowing breakage of the integrin–substrate bindings. An AFM tip was fabricated into an arrowhead shape to detach the cell from the substrate. Peak force observed in the recorded force curve during probe retraction was defined as the adhesion force, and was analyzed for various types of cells. Some of the cell types adhered so strongly that they could not be picked up because of plasma membrane breakage by the arrowhead probe. To address this problem, a technique to reinforce the cellular membrane with layer-by-layer nanofilms composed of fibronectin and gelatin helped to improve insertion efficiency and to prevent cell membrane rupture during the detachment process, allowing successful detachment of the cells. This method for detaching cells, involving cellular membrane reinforcement, may be beneficial for evaluating true cell adhesion forces in various cell types.

  4. Improving dimensional measurement from noisy atomic force microscopy images by non-local means filtering.

    PubMed

    Chen, Yuhang

    2016-01-01

    Quantitative evaluation of dimensional parameters from noisy atomic force microscopy (AFM) images was investigated. Non-local means (NLM) denoising was adopted to reduce noise and maintain fine image structures. Major tuning parameters in NLM filtering, such as the patch size and the window size, were optimized on simulated surface structures. The ability of dimensional evaluation from noisy data was demonstrated to be improved by almost 15 times. Finally, NLM filtering with optimal settings was applied on experimental AFM images, which were scanned on a patterned few-layer graphene specimen. Evaluations of the step height and the pattern size were verified to be much more accurate and robust. Such a data processing method can enhance the AFM dimensional measurements, particularly when the noise-level is reached.

  5. Elastic Properties of the Annular Ligament of the Human Stapes--AFM Measurement.

    PubMed

    Kwacz, Monika; Rymuza, Zygmunt; Michałowski, Marcin; Wysocki, Jarosław

    2015-08-01

    Elastic properties of the human stapes annular ligament were determined in the physiological range of the ligament deflection using atomic force microscopy and temporal bone specimens. The annular ligament stiffness was determined based on the experimental load-deflection curves. The elastic modulus (Young's modulus) for a simplified geometry was calculated using the Kirchhoff-Love theory for thin plates. The results obtained in this study showed that the annular ligament is a linear elastic material up to deflections of about 100 nm, with a stiffness of about 120 N/m and a calculated elastic modulus of about 1.1 MPa. These parameters can be used in numerical and physical models of the middle and/or inner ear.

  6. AFM imaging of fenestrated liver sinusoidal endothelial cells.

    PubMed

    Braet, F; Wisse, E

    2012-12-01

    Each microscope with its dedicated sample preparation technique provides the investigator with a specific set of data giving an instrument-determined (or restricted) insight into the structure and function of a tissue, a cell or parts thereof. Stepwise improvements in existing techniques, both instrumental and preparative, can sometimes cross barriers in resolution and image quality. Of course, investigators get really excited when completely new principles of microscopy and imaging are offered in promising new instruments, such as the AFM. The present paper summarizes a first phase of studies on the thin endothelial cells of the liver. It describes the preparation-dependent differences in AFM imaging of these cells after isolation. Special point of interest concerned the dynamics of the fenestrae, thought to filter lipid-carrying particles during their transport from the blood to the liver cells. It also describes the attempts to image the details of these cells when alive in cell cultures. It explains what physical conditions, mainly contributed to the scanning stylus, are thought to play a part in the limitations in imaging these cells. The AFM also offers promising specifications to those interested in cell surface details, such as membrane-associated structures, receptors, coated pits, cellular junctions and molecular aggregations or domains. The AFM also offers nano-manipulation possibilities, strengths and elasticity measurements, force interactions, affinity measurements, stiffness and other physical aspects of membranes and cytoskeleton. The potential for molecular approaches is there. New developments in cantilever construction and computer software promise to bring real time video imaging to the AFM. Home made accessories for the first generation of AFM are now commodities in commercial instruments and make the life of the AFM microscopist easier. Also, the combination of different microscopies, such as AFM and TEM, or AFM and SEM find their way to the

  7. Traction Force Measurement Using Deformable Microposts.

    PubMed

    Xie, Tianfa; Hawkins, Jamar; Sun, Yubing

    2017-01-01

    Recent findings suggest that mechanical forces strongly influence wound repair and fibrosis across multiple organ systems. Traction force is vital to the characterization of cellular responses to mechanical stimuli. Using hydrogel-based traction force microscopy, a FRET-based tension sensor, or microengineered cantilevers, the magnitude of traction forces can be measured. Here, we describe a traction force measurement methodology using a dense array of elastomeric microposts. This platform can be used to measure the traction force of a single cell or a colony of cells with or without geometric confinement.

  8. Extending the limits of direct force measurements: colloidal probes from sub-micron particles.

    PubMed

    Helfricht, Nicolas; Mark, Andreas; Dorwling-Carter, Livie; Zambelli, Tomaso; Papastavrou, Georg

    2017-07-13

    Direct force measurements by atomic force microscopy (AFM) in combination with the colloidal probe technique are widely used to determine interaction forces in colloidal systems. However, a number of limitations are still preventing a more universal applicability of this technique. Currently, one of the most significant limitations is that only particles with diameters of several micrometers can be used as probe particles. Here, we present a novel approach, based on the combination of nanofluidics and AFM (also referred to as FluidFM-technique), that allows to overcome this size limit and extend the size of suitable probe particles below diameters of 500 nanometers. Moreover, by aspiration of colloidal particles with a hollow AFM-cantilever, the immobilization process is independent of the particle's surface chemistry. Furthermore, the probe particles can be exchanged in situ. The applicability of the FluidFM-technique is demonstrated with silica particles, which are also the types of particles most often used for the preparation of colloidal probes. By comparing 'classical' colloidal probes, i.e. probes from particles irreversibly attached with glue, and various particle sizes aspirated by the FluidFM-technique, we can quantitatively evaluate the instrumental limits. Evaluation of the force profiles demonstrate that even for 500 nm silica particles the diffuse layer properties can be evaluated quantitatively. Therefore, direct force measurements on the level of particle sizes used in industrial formulations will become available in the future.

  9. Vibrational analysis of single-layered piezoelectric AFM microcantilever in amplitude mode by considering the capillary force

    NASA Astrophysics Data System (ADS)

    Habibnejad Korayem, Alireza; Habibnejad Korayem, Moharam; Ghaderi, Reza

    2014-12-01

    In this article, the vibrational behavior of a microcantilever (MC) with an extended piezoelectric layer in the air ambient undergoes examination. To model the vibrational motion of this type of cantilever, the Hamilton's principle has been used. For this purpose, the MC vibrational equation has been derived by the assumption of the continuous beam based on the Euler-Bernoulli beam theory. By adopting the finite element method (FEM), the MC differential equation has been solved. In the present simulation not only van der Waals and contact forces but also the capillary forces resulting from the condensation of the water vapors in air on MC tip have been considered. The results illustrate that the force between the sample surface and the probe affects the MC amplitude; furthermore, it causes the reduction in the resonance frequency. In addition, to reduce the time delay during topography from the surface roughness, it is better to select MCs with larger width and length and smaller thickness. Furthermore, the results indicate that the best imaging takes place when the vibration is in its second vibrational mode. Finally, the effects of MC geometric parameters on the time delay between the starting moment of surface roughness and the moment of variation in the MC amplitude (surface roughness topography) have been analyzed.

  10. Modelling of surface nanoparticle inclusions for nanomechanical measurements by an AFM or nanoindenter: spatial issues.

    PubMed

    Clifford, Charles A; Seah, Martin P

    2012-04-27

    Finite element analysis (FEA) is used to model nanoindentation by a rigid, spherically shaped indenter, axially indenting an elastic two phase polymer system comprised of a cylindrical nanoparticle of compliant polymer set in a semi-infinite matrix of stiffer polymer. The cylindrical nanoparticle is normal to the sample surface. An axisymmetric finite element model is used to determine the reduced modulus measured as a function of the indentation depth for various nanoparticle radii and extensions below the surface. We show how the previous simple analytical equations may be extended to describe these situations with accuracy. This gives excellent agreement with the FEA and provides a clear guide to the maximum indentation depth as a function of both the nanoparticle radius and its thickness consistent with a choice of either computation from the analytical equations or direct measurement with a maximum of 10% error in the measured reduced modulus.

  11. Modelling of surface nanoparticle inclusions for nanomechanical measurements by an AFM or nanoindenter: spatial issues

    NASA Astrophysics Data System (ADS)

    Clifford, Charles A.; Seah, Martin P.

    2012-04-01

    Finite element analysis (FEA) is used to model nanoindentation by a rigid, spherically shaped indenter, axially indenting an elastic two phase polymer system comprised of a cylindrical nanoparticle of compliant polymer set in a semi-infinite matrix of stiffer polymer. The cylindrical nanoparticle is normal to the sample surface. An axisymmetric finite element model is used to determine the reduced modulus measured as a function of the indentation depth for various nanoparticle radii and extensions below the surface. We show how the previous simple analytical equations may be extended to describe these situations with accuracy. This gives excellent agreement with the FEA and provides a clear guide to the maximum indentation depth as a function of both the nanoparticle radius and its thickness consistent with a choice of either computation from the analytical equations or direct measurement with a maximum of 10% error in the measured reduced modulus.

  12. Dynamic Force Measurement with Strain Gauges

    ERIC Educational Resources Information Center

    Lee, Bruce E.

    1974-01-01

    Discusses the use of four strain gauges, a Wheatstone bridge, and an oscilloscope to measure forces dynamically. Included is an example of determining the centripetal force of a pendulum in a general physics laboratory. (CC)

  13. Dynamic Force Measurement with Strain Gauges

    ERIC Educational Resources Information Center

    Lee, Bruce E.

    1974-01-01

    Discusses the use of four strain gauges, a Wheatstone bridge, and an oscilloscope to measure forces dynamically. Included is an example of determining the centripetal force of a pendulum in a general physics laboratory. (CC)

  14. Measurement of deep groove structures using a self-fabricated long tip in a large range metrological atomic force microscope

    NASA Astrophysics Data System (ADS)

    Wang, S. H.; Tan, S. L.; Xu, G.; Koyama, K.

    2011-09-01

    Metrological atomic force microscopes are widely used in national metrology institutes for measuring step height, lateral pitch and surface roughness. However, the maximum measurable depth or height variation is limited by both the vertical scanning range of the AFM and the tip height and sharpness of the tip at the end of the cantilever. A normal commercial AFM typically has a vertical scanning range less than 10 µm and a tip height of the cantilever only up to 15 µm so that it can be used to detect only relatively smooth surfaces or shallow structures up to several micrometres. To overcome these limitations, we have successfully integrated a long diamond tip of up to 120 µm developed at Namiki Precision Jewel Co., Ltd of Japan onto our large range metrological atomic force microprobe (LRM-AFM) for deep groove structure measurement. The LRM-AFM is based on a nano-measuring machine with a large scanning range of 25 mm in the X and Y axes and 5 mm in the Z axis. This paper describes the long diamond tip fabrication process and especially its application in the LRM-AFM for measuring deep groove structures of a step height of up to 100 µm. In addition, the mechanical quality factor (Q) of the diamond tip micro-cantilever was detected in the system. The results demonstrate that the system is capable of calibrating and measuring the surface structure with deep groove in tens of micrometres.

  15. AFM force spectroscopy reveals how subtle structural differences affect the interaction strength between Candida albicans and DC-SIGN.

    PubMed

    te Riet, Joost; Reinieren-Beeren, Inge; Figdor, Carl G; Cambi, Alessandra

    2015-11-01

    The fungus Candida albicans is the most common cause of mycotic infections in immunocompromised hosts. Little is known about the initial interactions between Candida and immune cell receptors, such as the C-type lectin dendritic cell-specific intracellular cell adhesion molecule-3 (ICAM-3)-grabbing non-integrin (DC-SIGN), because a detailed characterization at the structural level is lacking. DC-SIGN recognizes specific Candida-associated molecular patterns, that is, mannan structures present in the cell wall of Candida. The molecular recognition mechanism is however poorly understood. We postulated that small differences in mannan-branching may result in considerable differences in the binding affinity. Here, we exploit atomic force microscope-based dynamic force spectroscopy with single Candida cells to gain better insight in the carbohydrate recognition capacity of DC-SIGN. We demonstrate that slight differences in the N-mannan structure of Candida, that is, the absence or presence of a phosphomannan side chain, results in differences in the recognition by DC-SIGN as follows: (i) it contributes to the compliance of the outer cell wall of Candida, and (ii) its presence results in a higher binding energy of 1.6 kB T. The single-bond affinity of tetrameric DC-SIGN for wild-type C. albicans is ~10.7 kB T and a dissociation constant kD of 23 μM, which is relatively strong compared with other carbohydrate-protein interactions described in the literature. In conclusion, this study shows that DC-SIGN specifically recognizes mannan patterns on C. albicans with high affinity. Knowledge on the binding pocket of DC-SIGN and its pathogenic ligands will lead to a better understanding of how fungal-associated carbohydrate structures are recognized by receptors of the immune system and can ultimately contribute to the development of new anti-fungal drugs.

  16. Measurement of Subcellular Force Generation in Neurons

    PubMed Central

    O’Toole, Matthew; Lamoureux, Phillip; Miller, Kyle E.

    2015-01-01

    Forces are important for neuronal outgrowth during the initial wiring of the nervous system and after trauma, yet subcellular force generation over the microtubule-rich region at the rear of the growth cone and along the axon has never, to our knowledge, been directly measured. Because previous studies have indicated microtubule polymerization and the microtubule-associated proteins Kinesin-1 and dynein all generate forces that push microtubules forward, a major question is whether the net forces in these regions are contractile or expansive. A challenge in addressing this is that measuring local subcellular force generation is difficult. Here we develop an analytical mathematical model that describes the relationship between unequal subcellular forces arranged in series within the neuron and the net overall tension measured externally. Using force-calibrated towing needles to measure and apply forces, in combination with docked mitochondria to monitor subcellular strain, we then directly measure force generation over the rear of the growth cone and along the axon of chick sensory neurons. We find the rear of the growth cone generates 2.0 nN of contractile force, the axon generates 0.6 nN of contractile force, and that the net overall tension generated by the neuron is 1.3 nN. This work suggests that the forward bulk flow of the cytoskeletal framework that occurs during axonal elongation and growth-cone pauses arises because strong contractile forces in the rear of the growth cone pull material forward. PMID:25762315

  17. Structure assisted compressed sensing reconstruction of undersampled AFM images.

    PubMed

    Oxvig, Christian Schou; Arildsen, Thomas; Larsen, Torben

    2017-01-01

    The use of compressed sensing in atomic force microscopy (AFM) can potentially speed-up image acquisition, lower probe-specimen interaction, or enable super resolution imaging. The idea in compressed sensing for AFM is to spatially undersample the specimen, i.e. only acquire a small fraction of the full image of it, and then use advanced computational techniques to reconstruct the remaining part of the image whenever this is possible. Our initial experiments have shown that it is possible to leverage inherent structure in acquired AFM images to improve image reconstruction. Thus, we have studied structure in the discrete cosine transform coefficients of typical AFM images. Based on this study, we propose a generic support structure model that may be used to improve the quality of the reconstructed AFM images. Furthermore, we propose a modification to the established iterative thresholding reconstruction algorithms that enables the use of our proposed structure model in the reconstruction process. Through a large set of reconstructions, the general reconstruction capability improvement achievable using our structured model is shown both quantitatively and qualitatively. Specifically, our experiments show that our proposed algorithm improves over established iterative thresholding algorithms by being able to reconstruct AFM images to a comparable quality using fewer measurements or equivalently obtaining a more detailed reconstruction for a fixed number of measurements. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Diamagnetic Levitation Cantilever System for the Calibration of Normal Force Atomic Force Microscopy Measurements

    NASA Astrophysics Data System (ADS)

    Torres, Jahn; Yi, Jin-Woo; Murphy, Colin; Kim, Kyung-Suk

    2011-03-01

    In this presentation we report a novel technique for normal force calibration for Atomic Force Microcopy (AFM) adhesion measurements known as the diamagnetic normal force calibration (D-NFC) system. The levitation produced by the repulsion between a diamagnetic graphite sheet and a set of rare-earth magnets is used in order to produce an oscillation due to an unstable mechanical moment produced by a silicon cantilever supported on the graphite. The measurement of the natural frequency of this oscillation allows for the calculation of the stiffness of the system to three-digit accuracy. The D-NFC response was proven to have a high sensitivity for the structure of water molecules collected on its surface. This in turns allows for the study of the effects of coatings on the structure of surface water. This work was supported by the Coatings/Biofouling Program and the Maritime Sensing Program of the Office of Naval Research as well as the ILIR Program of the Naval Undersea Warfare Center DIVNPT.

  19. Detection of Pathogens Using AFM and SPR

    NASA Astrophysics Data System (ADS)

    Vaseashta, Ashok

    2005-03-01

    A priori detection of pathogens in food and water has become a subject of paramount importance. Several recent incidents have resulted in the government passing stringent regulations for tolerable amounts of contamination of food products. Identification and/or monitoring of bacterial contamination in food are critical. The conventional methods of pathogen detection require time-consuming steps to arrive disembark at meaningful measurement in a timely manner as the detection time exceeds the time in which perishable food recycles through the food chain distribution. The aim of this presentation is to outline surface plasmon resonance (SPR) and atomic force microscopy (AFM) as two methods for fast detect6ion of pathogens. Theoretical basis of SPR and experimental results of SPR and AFM on E. coli O157:H7 and prion are presented.

  20. Adhesive force measurement between HOPG and zinc oxide as an indicator for interfacial bonding of carbon fiber composites.

    PubMed

    Patterson, Brendan A; Galan, Ulises; Sodano, Henry A

    2015-07-22

    Vertically aligned zinc oxide (ZnO) nanowires have recently been utilized as an interphase to increase the interfacial strength of carbon fiber composites. It was shown that the interaction between the carbon fiber and the ZnO nanowires was a critical parameter in adhesion; however, fiber based testing techniques are dominated by local defects and cannot be used to effectively study the bonding interaction directly. Here, the strength of the interface between ZnO and graphitic carbon is directly measured with atomic force microscopy (AFM) using oxygen plasma treated highly oriented pyrolytic graphite (HOPG) and an AFM tip coated with ZnO nanoparticles. X-ray photoelectron spectroscopy analysis is used to compare the surface chemistry of HOPG and carbon fiber and to quantify the presence of various oxygen functional groups. An indirect measurement of the interfacial strength is then performed through single fiber fragmentation testing (SFF) on functionalized carbon fibers coated with ZnO nanowires to validate the AFM measurements. The SFF and AFM methods showed the same correlation, demonstrating the capacity of the AFM method to study the interfacial properties in composite materials. Additionally, the chemical interactions between oxygen functional groups and the ionic structure of ZnO suggest that intermolecular forces at the interface are responsible for the strong interface.

  1. Knee joint forces: prediction, measurement, and significance

    PubMed Central

    D’Lima, Darryl D.; Fregly, Benjamin J.; Patil, Shantanu; Steklov, Nikolai; Colwell, Clifford W.

    2011-01-01

    Knee forces are highly significant in osteoarthritis and in the survival and function of knee arthroplasty. A large number of studies have attempted to estimate forces around the knee during various activities. Several approaches have been used to relate knee kinematics and external forces to internal joint contact forces, the most popular being inverse dynamics, forward dynamics, and static body analyses. Knee forces have also been measured in vivo after knee arthroplasty, which serves as valuable validation of computational predictions. This review summarizes the results of published studies that measured knee forces for various activities. The efficacy of various methods to alter knee force distribution, such as gait modification, orthotics, walking aids, and custom treadmills are analyzed. Current gaps in our knowledge are identified and directions for future research in this area are outlined. PMID:22468461

  2. Parameters affecting the adhesion strength between a living cell and a colloid probe when measured by the atomic force microscope.

    PubMed

    McNamee, Cathy E; Pyo, Nayoung; Tanaka, Saaya; Vakarelski, Ivan U; Kanda, Yoichi; Higashitani, Ko

    2006-03-15

    In this study, we used the colloid probe atomic force microscopy (AFM) technique to investigate the adhesion force between a living cell and a silica colloid particle in a Leibovitz's L-15 medium (L-15). The L-15 liquid maintained the pharmaceutical conditions necessary to keep the cells alive in the outside environment during the AFM experiment. The force curves in such a system showed a steric repulsion in the compression force curve, due to the compression of the cells by the colloid probe, and an adhesion force in the decompression force curve, due to binding events between the cell and the probe. We also investigated for the first time how the position on the cell surface, the strength of the pushing force, and the residence time of the probe at the cell surface individually affected the adhesion force between a living cell and a 6.84 microm diameter silica colloid particle in L-15. The position of measuring the force on the cell surface was seen not to affect the value of the maximum adhesion force. The loading force was also seen not to notably affect the value of the maximum adhesion force, if it was small enough not to pierce and damage the cell. The residence time of the probe at the cell surface, however, clearly affected the adhesion force, where a longer residence time gave a larger maximum force. From these results, we could conclude that the AFM force measurements should be made using a loading force small enough not to damage the cell and a fixed residence time, when comparing results of different systems.

  3. Hybrid AFM for Nanoscale Physicochemical Characterization: Recent Development and Emerging Applications.

    PubMed

    Fu, Wanyi; Zhang, Wen

    2017-03-01

    Atomic force microscopy (AFM) has evolved to be one of the most powerful tools for the characterization of material surfaces especially at the nanoscale. Recent development of AFM has incorporated a suite of analytical techniques including surface-enhanced Raman scattering (SERS) technique and infrared (IR) spectroscopy to further reveal chemical composition and map the chemical distribution. This incorporation not only elevates the functionality of AFM but also increases the resolution limitation of conventional IR and Raman spectroscopy. Despite the rapid development of such hybrid AFM techniques, many unique features, principles, applications, potential pitfalls or artifacts are not well known to the community. This review systematically summarizes the recent relevant literature on hybrid AFM principles and applications. It focuses specially on AFM-IR and AFM-Raman techniques. Various applications in different research fields are critically reviewed and discussed, highlighting the potentials of these hybrid AFM techniques. Here, the major drawbacks and limitations of these two hybrid AFM techniques are presented. The intentions of this article are to shed new light on the future research and achieve improvements in stability and reliability of the measurements.

  4. A study of the surface morphological features of the polar faces of ZnO by atomic force microscopy (AFM) methods and AlN films deposited on ZnO polar faces by PLD

    SciTech Connect

    Suscavage, M.J.; Yip, P.W.; Ryder, D.F. Jr.

    1997-12-31

    The effects of both temperature and atmosphere on the resulting morphological features of the polar faces of single crystal ZnO were investigated and characterized by atomic force microscopy (AFM). In studies where ZnO was thermally processed in flowing oxygen at atmospheric conditions within the temperature range of 500 C to 900 C for 30 minutes, the Zn-surface showed a tendency to reconstruct with increasing temperature until terraces became evident at 900 C. Terrace heights were as small as 0.9 nm. In contrast, the O-surface was observed to change very little during the O{sub 2}-atmosphere, thermal treatment and remained comparatively rougher than the Zn-surface. ZnO samples which were thermally processed under high vacuum (i.e., 5 {times} 10{sup {minus}7} Torr) conditions exhibited a more dramatic contrast. The vacuum annealed Zn-surface was observed to develop very smooth surface features (Roughness = 0.09 nm) at annealing temperatures within the 700--800 C range. In contrast, and as expected, the O-surface roughness increased due to surface reduction reactions. In addition to these findings, it is noted that AFM measurements may be utilized as a convenient method to distinguish between the two polar surfaces of ZnO. Aluminum nitride was deposited on the Zn- and O-surfaces from 700 to 850 C by pulsed laser evaporation. X-ray diffraction indicated that the AlN was c-axis oriented with no interface reaction products detected between the ZnO substrate and AlN film.

  5. Atomic force microscopy to study intermolecular forces and bonds associated with bacteria.

    PubMed

    Lower, Steven K

    2011-01-01

    Atomic force microscopy (AFM) operates on a very different principle than other forms of microscopy, such as optical microscopy or electron microscopy. The key component of an AFM is a cantilever that bends in response to forces that it experiences as it touches another surface. Forces as small as a few picoNewtons can be detected and probed with AFM. AFM has become very useful in biological sciences because it can be used on living cells that are immersed in water. AFM is particularly useful when the cantilever is modified with chemical groups (e.g. amine or carboxylic groups), small beads (e.g. glass or latex), or even a bacterium. This chapter describes how AFM can be used to measure forces and bonds between a bacterium and another surface. This paper also provides an example of the use of AFM on Staphylococcus aureus, a Gram-positive bacterium that is often associated with biofilms in humans.

  6. Probing Cytoskeletal Structures by Coupling Optical Superresolution and AFM Techniques for a Correlative Approach

    PubMed Central

    Chacko, Jenu Varghese; Zanacchi, Francesca Cella; Diaspro, Alberto

    2013-01-01

    In this article, we describe and show the application of some of the most advanced fluorescence superresolution techniques, STED AFM and STORM AFM microscopy towards imaging of cytoskeletal structures, such as microtubule filaments. Mechanical and structural properties can play a relevant role in the investigation of cytoskeletal structures of interest, such as microtubules, that provide support to the cell structure. In fact, the mechanical properties, such as the local stiffness and the elasticity, can be investigated by AFM force spectroscopy with tens of nanometers resolution. Force curves can be analyzed in order to obtain the local elasticity (and the Young's modulus calculation by fitting the force curves from every pixel of interest), and the combination with STED/STORM microscopy integrates the measurement with high specificity and yields superresolution structural information. This hybrid modality of superresolution-AFM working is a clear example of correlative multimodal microscopy. PMID:24027190

  7. Fabrication and measurement of nanostructures on the micro ball surface using a modified atomic force microscope

    NASA Astrophysics Data System (ADS)

    Zhao, X. S.; Geng, Y. Q.; Li, W. B.; Yan, Y. D.; Hu, Z. J.; Sun, T.; Liang, Y. C.; Dong, S.

    2012-11-01

    In order to machine and measure nanostructures on the micro ball surface, a modified atomic force microscope (AFM) combining a commercial AFM system with a home built precision air bearing spindle is established. Based on this system, motions of both the AFM scanner and the air bearing spindle are controlled to machine nanostructures on the micro ball based on the AFM tip-based nano mechanical machining approach. The eccentric error between the axis of the micro ball and the axis of the spindle is reduced to 3-4 μm by the provided fine adjusting method. A 1000 nano lines array, 36 square pits structure, 10 square pits structure, and a zig-zag structure on the circumference of the micro ball with the diameter of 1.5 mm are machined successfully. The measurement results achieved by the same system reveal that the profiles and mode-power spectra curves of the micro ball are influenced by the artificially machined nanostructures significantly according to their distributions. This work is an useful attempt for modifying the micro ball profile and manufacture of the spherical modulation targets to study the experimental performance of the micro ball in implosion.

  8. Fabrication and measurement of nanostructures on the micro ball surface using a modified atomic force microscope.

    PubMed

    Zhao, X S; Geng, Y Q; Li, W B; Yan, Y D; Hu, Z J; Sun, T; Liang, Y C; Dong, S

    2012-11-01

    In order to machine and measure nanostructures on the micro ball surface, a modified atomic force microscope (AFM) combining a commercial AFM system with a home built precision air bearing spindle is established. Based on this system, motions of both the AFM scanner and the air bearing spindle are controlled to machine nanostructures on the micro ball based on the AFM tip-based nano mechanical machining approach. The eccentric error between the axis of the micro ball and the axis of the spindle is reduced to 3-4 μm by the provided fine adjusting method. A 1000 nano lines array, 36 square pits structure, 10 square pits structure, and a zig-zag structure on the circumference of the micro ball with the diameter of 1.5 mm are machined successfully. The measurement results achieved by the same system reveal that the profiles and mode-power spectra curves of the micro ball are influenced by the artificially machined nanostructures significantly according to their distributions. This work is an useful attempt for modifying the micro ball profile and manufacture of the spherical modulation targets to study the experimental performance of the micro ball in implosion.

  9. Determining surface properties with bimodal and multimodal AFM.

    PubMed

    Forchheimer, D; Borysov, Stanislav S; Platz, D; Haviland, David B

    2014-12-05

    Conventional dynamic atomic force microscopy (AFM) can be extended to bimodal and multimodal AFM in which the cantilever is simultaneously excited at two or more resonance frequencies. Such excitation schemes result in one additional amplitude and phase images for each driven resonance, and potentially convey more information about the surface under investigation. Here we present a theoretical basis for using this information to approximate the parameters of a tip-surface interaction model. The theory is verified by simulations with added noise corresponding to room-temperature measurements.

  10. Mapping individual cosmid DNAs by direct AFM imaging.

    PubMed

    Allison, D P; Kerper, P S; Doktycz, M J; Thundat, T; Modrich, P; Larimer, F W; Johnson, D K; Hoyt, P R; Mucenski, M L; Warmack, R J

    1997-05-01

    Individual cosmid clones have been restriction mapped by directly imaging, with the atomic force microscope (AFM), a mutant EcoRI endonuclease site-specifically bound to DNA. Images and data are presented that locate six restriction sites, predicted from gel electrophoresis, on a 35-kb cosmid isolated from mouse chromosome 7. Measured distances between endonuclease molecules bound to lambda DNA, when compared to known values, demonstrate the accuracy of AFM mapping to better than 1%. These results may be extended to identify other important site-specific protein-DNA interactions, such as transcription factor and mismatch repair enzyme binding, difficult to resolve by current techniques.

  11. Axial force measurement for esophageal function testing

    PubMed Central

    Gravesen, Flemming H; Funch-Jensen, Peter; Gregersen, Hans; Drewes, Asbjørn Mohr

    2009-01-01

    The esophagus serves to transport food and fluid from the pharynx to the stomach. Manometry has been the “golden standard” for the diagnosis of esophageal motility diseases for many decades. Hence, esophageal function is normally evaluated by means of manometry even though it reflects the squeeze force (force in radial direction) whereas the bolus moves along the length of esophagus in a distal direction. Force measurements in the longitudinal (axial) direction provide a more direct measure of esophageal transport function. The technique used to record axial force has developed from external force transducers over in-vivo strain gauges of various sizes to electrical impedance based measurements. The amplitude and duration of the axial force has been shown to be as reliable as manometry. Normal, as well as abnormal, manometric recordings occur with normal bolus transit, which have been documented using imaging modalities such as radiography and scintigraphy. This inconsistency using manometry has also been documented by axial force recordings. This underlines the lack of information when diagnostics are based on manometry alone. Increasing the volume of a bag mounted on a probe with combined axial force and manometry recordings showed that axial force amplitude increased by 130% in contrast to an increase of 30% using manometry. Using axial force in combination with manometry provides a more complete picture of esophageal motility, and the current paper outlines the advantages of using this method. PMID:19132762

  12. DNA nanofilm thickness measurement on microarray in air and in liquid using an atomic force microscope.

    PubMed

    Legay, Guillaume; Finot, Eric; Meunier-Prest, Rita; Cherkaoui-Malki, Mustapha; Latruffe, Norbert; Dereux, Alain

    2005-10-15

    The measurement of the thickness of DNA films on microarray as a function of the medium (liquid, air) is gaining importance for understanding the signal response of biosensors. Thiol group has been used to attach DNA strands to gold micropads deposited on silicon surface. Atomic force microscopy (AFM) was employed in its height mode to measure the change in the pad thickness and in its force mode to measure the indentation depth of the nanofilm. A good coherence between the height and force modes is observed for the film thickness in air. The adhesion force was found to be an alternative way to measure the surface coverage of the biolayer at nanoscopic scale. However the force analysis (compression, steric and electrostatic) provides baseline information necessary to interpret the AFM height image in liquid. Analysis of the film thickness distribution shows that the height of the DNA strands depends on both the DNA strand length (15-35 base pairs) and the environment (air, liquid). In air, longer strands lay down onto gold surface whereas the charge reversal of gold in liquid causes a repulsion of longer strands, which stand up.

  13. Measurement of edgewise torque force in vitro.

    PubMed

    Steyn, C L

    1977-05-01

    The construction of a model for the measurement of palatal root torque is described. It was demonstrated that: 1. Halfway between the apex of a tooth and the arch wire the force was double that which was delivered at the apex. 2. The lateral incisors were subjected to appreciably more force than the central incisors. 3. The smaller the number of teeth acted upon, the greater the force they received.

  14. Accurate analytical measurements in the atomic force microscope: a microfabricated spring constant standard potentially traceable to the SI

    NASA Astrophysics Data System (ADS)

    Cumpson, Peter J.; Hedley, John

    2003-12-01

    Calibration of atomic force microscope (AFM) cantilevers is necessary for the measurement of nanonewton and piconewton forces, which are critical to analytical applications of AFM in the analysis of polymer surfaces, biological structures and organic molecules at nanoscale lateral resolution. We have developed a compact and easy-to-use reference artefact for this calibration, using a method that allows traceability to the SI (Système International). Traceability is crucial to ensure that force measurements by AFM are comparable to those made by optical tweezers and other methods. The new non-contact calibration method measures the spring constant of these artefacts, by a combination of electrical measurements and Doppler velocimetry. The device was fabricated by silicon surface micromachining. The device allows AFM cantilevers to be calibrated quite easily by the 'cantilever-on-reference' method, with our reference device having a spring constant uncertainty of around ± 5% at one standard deviation. A simple substitution of the analogue velocimeter used in this work with a digital model should reduce this uncertainty to around ± 2%. Both are significant improvements on current practice, and allow traceability to the SI for the first time at these nanonewton levels.

  15. Force measurement enabling precise analysis by dynamic force spectroscopy.

    PubMed

    Taninaka, Atsushi; Hirano, Yuuichi; Takeuchi, Osamu; Shigekawa, Hidemi

    2012-01-01

    Dynamic force spectroscopy (DFS) makes it possible to investigate specific interactions between two molecules such as ligand-receptor pairs at the single-molecule level. In the DFS method based on the Bell-Evans model, the unbinding force applied to a molecular bond is increased at a constant rate, and the force required to rupture the molecular bond is measured. By analyzing the relationship between the modal rupture force and the logarithm of the loading rate, microscopic potential barrier landscapes and the lifetimes of bonds can be obtained. However, the results obtained, for example, in the case of streptavidin/biotin complexes, have differed among previous studies and some results have been inconsistent with theoretical predictions. In this study, using an atomic force microscopy technique that enables the precise analysis of molecular interactions on the basis of DFS, we investigated the effect of the sampling rate on DFS analysis. The shape of rupture force histograms, for example, was significantly deformed at a sampling rate of 1 kHz in comparison with that of histograms obtained at 100 kHz, indicating the fundamental importance of ensuring suitable experimental conditions for further advances in the DFS method.

  16. Force Measurement Device for ARIANE 5 Payloads

    NASA Astrophysics Data System (ADS)

    Brunner, O.; Braeken, R.

    2004-08-01

    ESTEC uses since 1991 a Force Measurement Device (FMD) for the measurement of dynamic mechanical forces and moments. This tool allows the determination of forces and moments applied to the test hardware at its interface to the test facilities during dynamic testing. Three forces and three moments are calculated from the measurements of eight tri-axial force links and used to either characterize the dynamic mechanical behaviour of the test item and/or to control forces and moments during vibration testing (force limited vibration control). The current FMD is limited to test items with an interface diameter of up to about 1.2 m (adapter already available) and a mass compatible with ARIANE 4 payloads. The limitations of the current system come from the maximum of eight tri-axial force links and from the analogue technique of the Signal Processing Unit (SPU) that allows only a limited number of geometric configurations for the mechanical interface. Following the success of the FMD during former test campaigns, e.g. ROSETTA STM + FM, the need for a FMD, compatible with ARIANE 5 payloads has been established. Therefore ESA decided to develop a new FMD system. The system will include a digital real time SPU with 72 force input channels, corresponding to 24 tri-axes force sensors or 72 mono axial force sensors. The SPU design will allow extending the number of force input channels to 144. The set-up of the FMD will be done via a standard PC interface. The user will enter for each force sensor the location and the measurement direction in the reference coordinate system. Based on the geometrical information and the maximum forces and moments expected the PC will calculate the optimum range settings for the charge-amplifiers and the corresponding matrix with weighting factors which will allow to perform a fast calculation of the six output forces and moments from the 72 (or 144) input forces. The six output channels with forces and moments can then be connected either to the

  17. The hydrophobic force: measurements and methods.

    PubMed

    Tabor, Rico F; Grieser, Franz; Dagastine, Raymond R; Chan, Derek Y C

    2014-09-14

    The hydrophobic force describes the attraction between water-hating molecules (and surfaces) that draws them together, causing aggregation, phase separation, protein folding and many other inherent physical phenomena. Attempts have been made to isolate the range and magnitude of this interaction between extended surfaces for more than four decades, with wildly varying results. In this perspective, we critically analyse the application of common force-measuring techniques to the hydrophobic force conundrum. In doing so, we highlight possible interferences to these measurements and provide physical rationalisation where possible. By analysing the most recent measurements, new approaches to establishing the form of this force become apparent, and we suggest potential future directions to further refine our understanding of this vital, physical force.

  18. Augmented Computer Mouse Would Measure Applied Force

    NASA Technical Reports Server (NTRS)

    Li, Larry C. H.

    1993-01-01

    Proposed computer mouse measures force of contact applied by user. Adds another dimension to two-dimensional-position-measuring capability of conventional computer mouse; force measurement designated to represent any desired continuously variable function of time and position, such as control force, acceleration, velocity, or position along axis perpendicular to computer video display. Proposed mouse enhances sense of realism and intuition in interaction between operator and computer. Useful in such applications as three-dimensional computer graphics, computer games, and mathematical modeling of dynamics.

  19. Augmented Computer Mouse Would Measure Applied Force

    NASA Technical Reports Server (NTRS)

    Li, Larry C. H.

    1993-01-01

    Proposed computer mouse measures force of contact applied by user. Adds another dimension to two-dimensional-position-measuring capability of conventional computer mouse; force measurement designated to represent any desired continuously variable function of time and position, such as control force, acceleration, velocity, or position along axis perpendicular to computer video display. Proposed mouse enhances sense of realism and intuition in interaction between operator and computer. Useful in such applications as three-dimensional computer graphics, computer games, and mathematical modeling of dynamics.

  20. AFM nanoscale indentation in air of polymeric and hybrid materials with highly different stiffness

    NASA Astrophysics Data System (ADS)

    Suriano, Raffaella; Credi, Caterina; Levi, Marinella; Turri, Stefano

    2014-08-01

    In this study, nanomechanical properties of a variety of polymeric materials was investigated by means of AFM. In particular, selecting different AFM probes, poly(methyl methacrylate) (PMMA), polydimethylsiloxane (PDMS) bulk samples, sol-gel hybrid thin films and hydrated hyaluronic acid hydrogels were indented in air to determine the elastic modulus. The force-distance curves and the indentation data were found to be greatly affected by the cantilever stiffness and by tip geometry. AFM indentation tests show that the choice of the cantilever spring constant and of tip shape is crucially influenced by elastic properties of samples. When adhesion-dominated interactions occur between the tip and the surface of samples, force-displacement curves reveal that a suitable functionalization of AFM probes allows the control of such interactions and the extraction of Young' modulus from AFM curves that would be otherwise unfeasible. By applying different mathematical models depending on AFM probes and materials under investigation, the values of Young's modulus were obtained and compared to those measured by rheological and dynamic mechanical analysis or to literature data. Our results show that a wide range of elastic moduli (10 kPa-10 GPa) can be determined by AFM in good agreement with those measured by conventional macroscopic measurements.

  1. Atomic force microscope imaging and force measurements at electrified and actively corroding interfaces: Challenges and novel cell design

    NASA Astrophysics Data System (ADS)

    Valtiner, Markus; Ankah, Genesis Ngwa; Bashir, Asif; Renner, Frank Uwe

    2011-02-01

    We report the design of an improved electrochemical cell for atomic force microscope measurements in corrosive electrochemical environments. Our design improvements are guided by experimental requirements for studying corrosive reactions such as selective dissolution, dealloying, pitting corrosion, and/or surface and interface forces at electrified interfaces. Our aim is to examine some of the limitations of typical electrochemical scanning probe microscopy (SPM) experiments and in particular to outline precautions and cell-design elements, which must necessarily be taken into account in order to obtain reliable experimental results. In particular, we discuss electrochemical requirements for typical electrochemical SPM experiments and introduce novel design features to avoid common issues such as crevice formations; we discuss the choice of electrodes and contaminations from ions of reference electrodes. We optimize the cell geometry and introduce standard samples for electrochemical AFM experiments. We have tested the novel design by performing force-distance spectroscopy as a function of the applied electrochemical potential between a bare gold electrode surface and a SAM-coated AFM tip. Topography imaging was tested by studying the well-known dealloying process of a Cu3Au(111) surface up to the critical potential. Our design improvements should be equally applicable to in situ electrochemical scanning tunneling microscope cells.

  2. Direct, concurrent measurements of the forces and currents affecting DNA in a nanopore with comparable topography.

    PubMed

    Nelson, Edward M; Li, Hui; Timp, Gregory

    2014-06-24

    We report direct, concurrent measurements of the forces and currents associated with the translocation of a single-stranded DNA molecule tethered to the tip of an atomic force microscope (AFM) cantilever through synthetic pores with topagraphies comparable to the DNA. These measurements were performed to gauge the signal available for sequencing and the electric force required to impel a single molecule through synthetic nanopores ranging from 1.0 to 3.5 nm in diameter in silicon nitride membranes 6-10 nm thick. The measurements revealed that a molecule can slide relatively frictionlessly through a pore, but regular fluctuations are observed intermittently in the force (and the current) every 0.35-0.72 nm, which are attributed to individual nucleotides translating through the nanopore in a turnstile-like motion.

  3. Imaging and measuring the biophysical properties of Fc gamma receptors on single macrophages using atomic force microscopy

    SciTech Connect

    Li, Mi; Liu, Lianqing; Xi, Ning; Wang, Yuechao; Xiao, Xiubin; Zhang, Weijing

    2013-09-06

    Highlights: •Nanoscale cellular ultra-structures of macrophages were observed. •The binding affinities of FcγRs were measured directly on macrophages. •The nanoscale distributions of FcγRs were mapped on macrophages. -- Abstract: Fc gamma receptors (FcγR), widely expressed on effector cells (e.g., NK cells, macrophages), play an important role in clinical cancer immunotherapy. The binding of FcγRs to the Fc portions of antibodies that are attached to the target cells can activate the antibody-dependent cell-mediated cytotoxicity (ADCC) killing mechanism which leads to the lysis of target cells. In this work, we used atomic force microscopy (AFM) to observe the cellular ultra-structures and measure the biophysical properties (affinity and distribution) of FcγRs on single macrophages in aqueous environments. AFM imaging was used to obtain the topographies of macrophages, revealing the nanoscale cellular fine structures. For molecular interaction recognition, antibody molecules were attached onto AFM tips via a heterobifunctional polyethylene glycol (PEG) crosslinker. With AFM single-molecule force spectroscopy, the binding affinities of FcγRs were quantitatively measured on single macrophages. Adhesion force mapping method was used to localize the FcγRs, revealing the nanoscale distribution of FcγRs on local areas of macrophages. The experimental results can improve our understanding of FcγRs on macrophages; the established approach will facilitate further research on physiological activities involved in antibody-based immunotherapy.

  4. Vibration signature analysis of AFM images

    SciTech Connect

    Joshi, G.A.; Fu, J.; Pandit, S.M.

    1995-12-31

    Vibration signature analysis has been commonly used for the machine condition monitoring and the control of errors. However, it has been rarely employed for the analysis of the precision instruments such as an atomic force microscope (AFM). In this work, an AFM was used to collect vibration data from a sample positioning stage under different suspension and support conditions. Certain structural characteristics of the sample positioning stage show up as a result of the vibration signature analysis of the surface height images measured using an AFM. It is important to understand these vibration characteristics in order to reduce vibrational uncertainty, improve the damping and structural design, and to eliminate the imaging imperfections. The choice of method applied for vibration analysis may affect the results. Two methods, the data dependent systems (DDS) analysis and the Welch`s periodogram averaging method were investigated for application to this problem. Both techniques provide smooth spectrum plots from the data. Welch`s periodogram provides a coarse resolution as limited by the number of samples and requires a choice of window to be decided subjectively by the user. The DDS analysis provides sharper spectral peaks at a much higher resolution and a much lower noise floor. A decomposition of the signal variance in terms of the frequencies is provided as well. The technique is based on an objective model adequacy criterion.

  5. Development of computerized masticatory force measurement system.

    PubMed

    Rane, Vivek; Hamde, Satish; Agrawal, Ankush

    2017-01-01

    The aim of this study was to assess the Maximum Voluntary Bite Force (MVBF) in Indian population with normal occlusion and after treatment of mandibular angle fracture. This paper discusses the development of a sensor fork with modified load cell and computer-based bite force measuring system that generates force profile on the computer. This is a powerful diagnostic tool in response to the needs of dentists seeking an accurate way to dynamically measure occlusion. This study was carried out to evaluate the maximum voluntary bite force generated by the patients after the treatment of mandibular angle fracture. The in vivo measurements were repeated on the following day, week and two months later. The measurements of the device were highly repeatable. This development provides the cost effective and handy equipment for bite force measurement further, if again sensor thickness reduced, we will be able to get more close results of forces that are exactly generated during the mastication process. Our study shows a significant difference in mean bite force efficiency between the all the treatment weeks and increased with time at α = 0.05 level. The gender difference was statistically significant in the male and female.

  6. Elastic modulus measurements at variable temperature: Validation of atomic force microscopy techniques

    NASA Astrophysics Data System (ADS)

    Natali, Marco; Reggente, Melania; Passeri, Daniele; Rossi, Marco

    2016-06-01

    The development of polymer-based nanocomposites to be used in critical thermal environments requires the characterization of their mechanical properties, which are related to their chemical composition, size, morphology and operating temperature. Atomic force microscopy (AFM) has been proven to be a useful tool to develop techniques for the mechanical characterization of these materials, thanks to its nanometer lateral resolution and to the capability of exerting ultra-low loads, down to the piconewton range. In this work, we demonstrate two techniques, one quasi-static, i.e., AFM-based indentation (I-AFM), and one dynamic, i.e., contact resonance AFM (CR-AFM), for the mechanical characterization of compliant materials at variable temperature. A cross-validation of I-AFM and CR-AFM has been performed by comparing the results obtained on two reference materials, i.e., low-density polyethylene (LDPE) and polycarbonate (PC), which demonstrated the accuracy of the techniques.

  7. Characterization of electrowetting processes through force measurements.

    PubMed

    Crane, Nathan B; Mishra, Pradeep; Volinsky, Alex A

    2010-04-01

    A new method of characterizing electrowetting is presented. In this method, the electrowetting actuation forces are measured rather than the contact angle. The forces on the liquid are measured by trapping a droplet between a flat nanoindenter tip and the test substrate. When voltage is applied to electrodes in the substrate, lateral and normal forces are exerted on the tip and measured by the nanoindenter transducer. Proper selection of the tip geometry permits direct prediction of the resulting in-plane lateral forces using analytical formulas derived from the Young-Lippmann equation. Experimental results show good agreement with both analytical and numerical predictions. Numerical modeling using SURFACE EVOLVER shows that the lateral forces are relatively insensitive to most alignment errors and that the analytical model is most accurate when the flat tip is close to the substrate. Evaporation of the test liquid can introduce modest errors in long measurements, but compensation methods are presented. As the droplet undergoes almost no movement, the fluid dynamics have minimal impact on the measured forces and transient electrowetting events are readily detected. Experimental results show significant response at frequencies up to 40 Hz. This setup is useful in measuring electrowetting responses at high speeds and in measuring system degradation processes.

  8. Atomic force microscopy of orb-spider-web-silks to measure surface nanostructuring and evaluate silk fibers per strand

    NASA Astrophysics Data System (ADS)

    Kane, D. M.; Naidoo, N.; Staib, G. R.

    2010-10-01

    Atomic force microscopy (AFM) study is used to measure the surface topology and roughness of radial and capture spider silks on the micro- and nanoscale. This is done for silks of the orb weaver spider Argiope keyserlingi. Capture silk has a surface roughness that is five times less than that for radial silk. The capture silk has an equivalent flatness of λ /100 (5-6 nm deep surface features) as an optical surface. This is equivalent to a very highly polished optical surface. AFM does show the number of silk fibers that make up a silk thread but geometric distortion occurs during sample preparation. This prevented AFM from accurately measuring the silk topology on the microscale in this study.

  9. Nanomechanical measurements of hair as an example of micro-fibre analysis using atomic force microscopy nanoindentation.

    PubMed

    Clifford, Charles A; Sano, Naoko; Doyle, Peter; Seah, Martin P

    2012-03-01

    The characterisation of nanoscale surface properties of textile and hair fibres is key to developing new effective laundry and hair care products. Here, we develop nanomechanical methods to characterise fibres using an atomic force microscope (AFM) to give their nanoscale modulus. Good mounting methods for the fibre that are chemically inert, clean and give strong mechanical coupling to a substrate are important and here we detail two methods to do this. We show, for elastic nanoindentation measurements, the situation when the tip radius significantly affects the result via a function of the ratio of the radii of the tip and fibre and indicate the importance of using an AFM for such work. A valid method to measure the nanoscale modulus of fibres using AFM is thus detailed and exampled on hair to show that bleaching changes the nanoscale reduced modulus at the outer surface. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  10. Deconvolution of calcium fluorescent indicator signal from AFM cantilever reflection.

    PubMed

    Lopez-Ayon, G Monserratt; Oliver, David J; Grutter, Peter H; Komarova, Svetlana V

    2012-08-01

    Atomic force microscopy (AFM) can be combined with fluorescence microscopy to measure the changes in intracellular calcium levels (indicated by fluorescence of Ca²⁺ sensitive dye fluo-4) in response to mechanical stimulation performed by AFM. Mechanical stimulation using AFM is associated with cantilever movement, which may interfere with the fluorescence signal. The motion of the AFM cantilever with respect to the sample resulted in changes of the reflection of light back to the sample and a subsequent variation in the fluorescence intensity, which was not related to changes in intracellular Ca²⁺ levels. When global Ca²⁺ responses to a single stimulation were assessed, the interference of reflected light with the fluorescent signal was minimal. However, in experiments where local repetitive stimulations were performed, reflection artifacts, correlated with cantilever motion, represented a significant component of the fluorescent signal. We developed a protocol to correct the fluorescence traces for reflection artifacts, as well as photobleaching. An added benefit of our method is that the cantilever reflection in the fluorescence recordings can be used for precise temporal correlation of the AFM and fluorescence measurements.

  11. Micromechanical apparatus for measurement of forces

    DOEpatents

    Tanner, Danelle Mary; Allen, James Joe

    2004-05-25

    A new class of micromechanical dynamometers has been disclosed which are particularly suited to fabrication in parallel with other microelectromechanical apparatus. Forces in the microNewton regime and below can be measured with such dynamometers which are based on a high-compliance deflection element (e.g. a ring or annulus) suspended above a substrate for deflection by an applied force, and one or more distance scales for optically measuring the deflection.

  12. Instrument for measuring human biting force

    NASA Astrophysics Data System (ADS)

    Kopola, Harri K.; Mantyla, Olavi; Makiniemi, Matti; Mahonen, Kalevi; Virtanen, Kauko

    1995-02-01

    Alongside EMG activity, biting force is the primary parameter used for assessing the biting problems of dentulous patients and patients with dentures. In a highly conductive oral cavity, dielectric measurement methods are preferred, for safety reasons. The maximum biting force for patients with removable dentures is not more than 100 ... 300 N. We report here on an instrument developed for measuring human biting force which consists of three units: a mouthpiece, a signal processing and interface unit (SPI), and a PC. The mouthpiece comprises a sensor head of thickness 3.4 mm, width 20 mm and length 30 mm constructed of two stainless steel plates and with a fiber optic microbending sensor between them. This is connected to the SPI unit by a three-meter fiber optic cable, and the SPI unit to the PC by an RS connection. A computer program has been developed that includes measurement, display, zeroing, and calibration operations. The instrument measures biting force as a function of time and displays the time-dependent force profile and maximum force on a screen or plots it in hard copy. The dynamic measurement range of the mouthpiece is from 0 to 1000 N, and the resolution of the instrument is 10 N. The results of preliminary clinical measurements and repeatability tests are reported.

  13. Force measurements in skinned muscle fibres

    PubMed Central

    Hellam, D. C.; Podolsky, R. J.

    1969-01-01

    1. Isometric force was measured in skinned segments of frog semitendinosus muscle fibres exposed to solutions in which the calcium ion concentration was controlled with EGTA. 2. The threshold for force development, calculated from an apparent stability constant for the CaEGTA complex of 106.69 M-1 at pH 7·0, was generally close to pCa 7·5. Maximum force was reached at about pCa 6·0. 3. Maximum force is proportional to the cross-sectional area of the fibres. 4. The rate of force development was slower than that expected from simple diffusion of a substance from the bathing solution into the fibre. The delay appears to be due to slow equilibration of the EGTA buffer system during calcium uptake by the sarcoplasmic reticulum. 5. Addition of deoxycholate (DOC) to the bathing solution produced a reversible increase in the rate of force development. The steady force was also increased for values of pCa that gave less than maximum force, which shifted the force—pCa relation toward lower calcium concentrations by about 0·5 pCa unit. 6. The length—force relation in partially activated preparations is similar to that reported for electrically activated intact fibres. This result suggests that in the region of myofilament overlap the affinity of the binding sites for calcium is uniform along the length of the calciumbinding myofilament. PMID:5765859

  14. Imaging and measuring the biophysical properties of Fc gamma receptors on single macrophages using atomic force microscopy.

    PubMed

    Li, Mi; Liu, Lianqing; Xi, Ning; Wang, Yuechao; Xiao, Xiubin; Zhang, Weijing

    2013-09-06

    Fc gamma receptors (FcγR), widely expressed on effector cells (e.g., NK cells, macrophages), play an important role in clinical cancer immunotherapy. The binding of FcγRs to the Fc portions of antibodies that are attached to the target cells can activate the antibody-dependent cell-mediated cytotoxicity (ADCC) killing mechanism which leads to the lysis of target cells. In this work, we used atomic force microscopy (AFM) to observe the cellular ultra-structures and measure the biophysical properties (affinity and distribution) of FcγRs on single macrophages in aqueous environments. AFM imaging was used to obtain the topographies of macrophages, revealing the nanoscale cellular fine structures. For molecular interaction recognition, antibody molecules were attached onto AFM tips via a heterobifunctional polyethylene glycol (PEG) crosslinker. With AFM single-molecule force spectroscopy, the binding affinities of FcγRs were quantitatively measured on single macrophages. Adhesion force mapping method was used to localize the FcγRs, revealing the nanoscale distribution of FcγRs on local areas of macrophages. The experimental results can improve our understanding of FcγRs on macrophages; the established approach will facilitate further research on physiological activities involved in antibody-based immunotherapy. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Detecting chameleons through Casimir force measurements

    SciTech Connect

    Brax, Philippe; Davis, Anne-Christine; Shaw, Douglas; Mota, David F.

    2007-12-15

    The best laboratory constraints on strongly coupled chameleon fields come not from tests of gravity per se but from precision measurements of the Casimir force. The chameleonic force between two nearby bodies is more akin to a Casimir-like force than a gravitational one: The chameleon force behaves as an inverse power of the distance of separation between the surfaces of two bodies, just as the Casimir force does. Additionally, experimental tests of gravity often employ a thin metallic sheet to shield electrostatic forces; however, this sheet masks any detectable signal due to the presence of a strongly coupled chameleon field. As a result of this shielding, experiments that are designed to specifically test the behavior of gravity are often unable to place any constraint on chameleon fields with a strong coupling to matter. Casimir force measurements do not employ a physical electrostatic shield and as such are able to put tighter constraints on the properties of chameleons fields with a strong matter coupling than tests of gravity. Motivated by this, we perform a full investigation on the possibility of testing chameleon models with both present and future Casimir experiments. We find that present-day measurements are not able to detect the chameleon. However, future experiments have a strong possibility of detecting or rule out a whole class of chameleon models.

  16. Multi-terminal magnetotransport measurements over a tunable graphene p-n junction created by AFM-nanomachining

    NASA Astrophysics Data System (ADS)

    Schmidt, H.; Smirnov, D.; Rode, J.; Haug, R. J.

    2013-12-01

    An Atomic Force Microscope is used to alter one part of a single layer graphene sample locally. Transport experiments at low temperatures are then used to characterize the different parts independently with field effect and Hall measurements. It is shown, that the nanomachining leads to an effective doping in the altered area and therefore to a difference in the charge carrier density of Δn = 3.5 ṡ 1015m-2 between the unchanged and changed part. These two parts can be tuned with a global backgate to form a junction of different polarity, i.e. a p-n junction.

  17. Measurement of tool forces in diamond turning

    SciTech Connect

    Drescher, J.; Dow, T.A.

    1988-12-01

    A dynamometer has been designed and built to measure forces in diamond turning. The design includes a 3-component, piezoelectric transducer. Initial experiments with this dynamometer system included verification of its predicted dynamic characteristics as well as a detailed study of cutting parameters. Many cutting experiments have been conducted on OFHC Copper and 6061-T6 Aluminum. Tests have involved investigation of velocity effects, and the effects of depth and feedrate on tool forces. Velocity has been determined to have negligible effects between 4 and 21 m/s. Forces generally increase with increasing depth of cut. Increasing feedrate does not necessarily lead to higher forces. Results suggest that a simple model may not be sufficient to describe the forces produced in the diamond turning process.

  18. High-throughput and non-destructive sidewall roughness measurement using 3-dimensional atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Hua, Yueming; Buenviaje-Coggins, Cynthia; Lee, Yong-ha; Park, Sang-il

    2012-03-01

    As the feature size of the semiconductor device is becoming increasingly smaller and the transistor has become three-dimensional (e.g. Fin-FET structure), a simple Line Edge Roughness (LER) is no longer sufficient for characterizing these devices. Sidewall Roughness (SWR) is now the more proper metric for these metrology applications. However, current metrology technologies, such as SEM and OCD, provide limited information on the sidewall of such small structures. The subject of this study is the sidewall roughness measurement with a three-dimensional Atomic Force Microscopy (AFM) using tilted Z scanner. This 3D AFM is based on a decoupled XY and Z scanning configuration, in which the Z scanner can be intentionally tilted to the side. A sharp conical tip is typically used for imaging, which provides high resolution capability on both the flat surfaces (top and bottom) and the steep sidewalls.

  19. Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy.

    PubMed

    Iwamoto, Shinichiro; Kai, Weihua; Isogai, Akira; Iwata, Tadahisa

    2009-09-14

    The elastic modulus of single microfibrils from tunicate ( Halocynthia papillosa ) cellulose was measured by atomic force microscopy (AFM). Microfibrils with cross-sectional dimensions 8 x 20 nm and several micrometers in length were obtained by oxidation of cellulose with 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO) as a catalyst and subsequent mechanical disintegration in water and by sulfuric acid hydrolysis. The nanocellulosic materials were deposited on a specially designed silicon wafer with grooves 227 nm in width, and a three-point bending test was applied to determine the elastic modulus using an AFM cantilever. The elastic moduli of single microfibrils prepared by TEMPO-oxidation and acid hydrolysis were 145.2 +/- 31.3 and 150.7 +/- 28.8 GPa, respectively. The result showed that the experimentally determined modulus of the highly crystalline tunicate microfibrils was in agreement with the elastic modulus of native cellulose crystals.

  20. Direct measurement of critical Casimir forces

    NASA Astrophysics Data System (ADS)

    Hertlein, C.; Helden, L.; Gambassi, A.; Dietrich, S.; Bechinger, C.

    2008-01-01

    When fluctuating fields are confined between two surfaces, long-range forces arise. A famous example is the quantum-electrodynamical Casimir force that results from zero-point vacuum fluctuations confined between two conducting metal plates. A thermodynamic analogue is the critical Casimir force: it acts between surfaces immersed in a binary liquid mixture close to its critical point and arises from the confinement of concentration fluctuations within the thin film of fluid separating the surfaces. So far, all experimental evidence for the existence of this effect has been indirect. Here we report the direct measurement of critical Casimir force between a single colloidal sphere and a flat silica surface immersed in a mixture of water and 2,6-lutidine near its critical point. We use total internal reflection microscopy to determine in situ the forces between the sphere and the surface, with femtonewton resolution. Depending on whether the adsorption preferences of the sphere and the surface for water and 2,6-lutidine are identical or opposite, we measure attractive and repulsive forces, respectively, that agree quantitatively with theoretical predictions and exhibit exquisite dependence on the temperature of the system. We expect that these features of critical Casimir forces may result in novel uses of colloids as model systems.

  1. Direct measurement of critical Casimir forces.

    PubMed

    Hertlein, C; Helden, L; Gambassi, A; Dietrich, S; Bechinger, C

    2008-01-10

    When fluctuating fields are confined between two surfaces, long-range forces arise. A famous example is the quantum-electrodynamical Casimir force that results from zero-point vacuum fluctuations confined between two conducting metal plates. A thermodynamic analogue is the critical Casimir force: it acts between surfaces immersed in a binary liquid mixture close to its critical point and arises from the confinement of concentration fluctuations within the thin film of fluid separating the surfaces. So far, all experimental evidence for the existence of this effect has been indirect. Here we report the direct measurement of critical Casimir force between a single colloidal sphere and a flat silica surface immersed in a mixture of water and 2,6-lutidine near its critical point. We use total internal reflection microscopy to determine in situ the forces between the sphere and the surface, with femtonewton resolution. Depending on whether the adsorption preferences of the sphere and the surface for water and 2,6-lutidine are identical or opposite, we measure attractive and repulsive forces, respectively, that agree quantitatively with theoretical predictions and exhibit exquisite dependence on the temperature of the system. We expect that these features of critical Casimir forces may result in novel uses of colloids as model systems.

  2. Statistical analysis of long- and short-range forces involved in bacterial adhesion to substratum surfaces as measured using atomic force microscopy.

    PubMed

    Chen, Yun; Busscher, Henk J; van der Mei, Henny C; Norde, Willem

    2011-08-01

    Surface thermodynamic analyses of microbial adhesion using measured contact angles on solid substrata and microbial cell surfaces are widely employed to determine the nature of the adhesion forces, i.e., the interplay between Lifshitz-van der Waals and acid-base forces. While surface thermodynamic analyses are often viewed critically, atomic force microscopy (AFM) can also provide information on the nature of the adhesion forces by means of Poisson analysis of the measured forces. This review first presents a description of Poisson analysis and its underlying assumptions. The data available from the literature for different combinations of bacterial strains and substrata are then summarized, leading to the conclusion that bacterial adhesion to surfaces is generally dominated by short-range, attractive acid-base interactions, in combination with long-range, weaker Lifshitz-van der Waals forces. This is in line with the findings of surface thermodynamic analyses of bacterial adhesion. Comparison with single-molecule ligand-receptor forces from the literature suggests that the short-range-force contribution from Poisson analysis involves a discrete adhesive bacterial cell surface site rather than a single molecular force. The adhesion force arising from these cell surface sites and the number of sites available may differ from strain to strain. Force spectroscopy, however, involves the tedious task of identifying the minor peaks in the AFM retraction force-distance curve. This step can be avoided by carrying out Poisson analysis on the work of adhesion, which can also be derived from retraction force-distance curves. This newly proposed way of performing Poisson analysis confirms that multiple molecular bonds, rather than a single molecular bond, contribute to a discrete adhesive bacterial cell surface site.

  3. Force based displacement measurement in micromechanical devices

    SciTech Connect

    O {close_quote}Shea, S. J.; Ng, C. K.; Tan, Y. Y.; Xu, Y.; Tay, E. H.; Chua, B. L.; Tien, N. C.; Tang, X. S.; Chen, W. T.

    2001-06-18

    We demonstrate how force detection methods based on atomic force microscopy can be used to measure displacement in micromechanical devices. We show the operation of a simple microfabricated accelerometer, the proof mass of which incorporates a tip which can be moved towards an opposing surface. Both noncontact operation using long range electrostatic forces and tapping mode operation are demonstrated. The displacement sensitivity of the present device using feedback to control the tip-surface separation is approximately 1 nm. {copyright} 2001 American Institute of Physics.

  4. Structural investigations on native collagen type I fibrils using AFM

    SciTech Connect

    Strasser, Stefan; Zink, Albert; Janko, Marek; Heckl, Wolfgang M.; Thalhammer, Stefan . E-mail: stefan.thalhammer@gsf.de

    2007-03-02

    This study was carried out to determine the elastic properties of single collagen type I fibrils with the use of atomic force microscopy (AFM). Native collagen fibrils were formed by self-assembly in vitro characterized with the AFM. To confirm the inner assembly of the collagen fibrils, the AFM was used as a microdissection tool. Native collagen type I fibrils were dissected and the inner core uncovered. To determine the elastic properties of collagen fibrils the tip of the AFM was used as a nanoindentor by recording force-displacement curves. Measurements were done on the outer shell and in the core of the fibril. The structural investigations revealed the banding of the shell also in the core of native collagen fibrils. Nanoindentation experiments showed the same Young's modulus on the shell as well as in the core of the investigated native collagen fibrils. In addition, the measurements indicate a higher adhesion in the core of the collagen fibrils compared to the shell.

  5. CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES: A Thin Liquid Film and Its Effects in an Atomic Force Microscopy Measurement

    NASA Astrophysics Data System (ADS)

    Lin, Jing; Zheng, Zhi-Jun; Yu, Ji-Lin; Bai, Yi-Long

    2009-08-01

    Recently, it has been observed that a liquid film spreading on a sample surface will significantly distort atomic force microscopy (AFM) measurements. In order to elaborate on the effect, we establish an equation governing the deformation of liquid film under its interaction with the AFM tip and substrate. A key issue is the critical liquid bump height y0c, at which the liquid film jumps to contact the AFM tip. It is found that there are three distinct regimes in the variation of y0c with film thickness H, depending on Hamaker constants of tip, sample and liquid. Noticeably, there is a characteristic thickness H* physically defining what a thin film is; namely, once the film thickness H is the same order as H*, the effect of film thickness should be taken into account. The value of H* is dependent on Hamaker constants and liquid surface tension as well as tip radius.

  6. Theory of non-equilibrium force measurements involving deformable drops and bubbles.

    PubMed

    Chan, Derek Y C; Klaseboer, Evert; Manica, Rogerio

    2011-07-11

    Over the past decade, direct force measurements using the Atomic Force Microscope (AFM) have been extended to study non-equilibrium interactions. Perhaps the more scientifically interesting and technically challenging of such studies involved deformable drops and bubbles in relative motion. The scientific interest stems from the rich complexity that arises from the combination of separation dependent surface forces such as Van der Waals, electrical double layer and steric interactions with velocity dependent forces from hydrodynamic interactions. Moreover the effects of these forces also depend on the deformations of the surfaces of the drops and bubbles that alter local conditions on the nanometer scale, with deformations that can extend over micrometers. Because of incompressibility, effects of such deformations are strongly influenced by small changes of the sizes of the drops and bubbles that may be in the millimeter range. Our focus is on interactions between emulsion drops and bubbles at around 100 μm size range. At the typical velocities in dynamic force measurements with the AFM which span the range of Brownian velocities of such emulsions, the ratio of hydrodynamic force to surface tension force, as characterized by the capillary number, is ~10(-6) or smaller, which poses challenges to modeling using direct numerical simulations. However, the qualitative and quantitative features of the dynamic forces between interacting drops and bubbles are sensitive to the detailed space and time-dependent deformations. It is this dynamic coupling between forces and deformations that requires a detailed quantitative theoretical framework to help interpret experimental measurements. Theories that do not treat forces and deformations in a consistent way simply will not have much predictive power. The technical challenges of undertaking force measurements are substantial. These range from generating drop and bubble of the appropriate size range to controlling the

  7. A quadruple-scanning-probe force microscope for electrical property measurements of microscopic materials.

    PubMed

    Higuchi, Seiji; Kubo, Osamu; Kuramochi, Hiromi; Aono, Masakazu; Nakayama, Tomonobu

    2011-07-15

    Four-terminal electrical measurement is realized on a microscopic structure in air, without a lithographic process, using a home-built quadruple-scanning-probe force microscope (QSPFM). The QSPFM has four probes whose positions are individually controlled by obtaining images of a sample in the manner of atomic force microscopy (AFM), and uses the probes as contacting electrodes for electrical measurements. A specially arranged tuning fork probe (TFP) is used as a self-detection force sensor to operate each probe in a frequency modulation AFM mode, resulting in simultaneous imaging of the same microscopic feature on an insulator using the four TFPs. Four-terminal electrical measurement is then demonstrated in air by placing each probe electrode in contact with a graphene flake exfoliated on a silicon dioxide film, and the sheet resistance of the flake is measured by the van der Pauw method. The present work shows that the QSPFM has the potential to measure the intrinsic electrical properties of a wide range of microscopic materials in situ without electrode fabrication.

  8. A quadruple-scanning-probe force microscope for electrical property measurements of microscopic materials

    NASA Astrophysics Data System (ADS)

    Higuchi, Seiji; Kubo, Osamu; Kuramochi, Hiromi; Aono, Masakazu; Nakayama, Tomonobu

    2011-07-01

    Four-terminal electrical measurement is realized on a microscopic structure in air, without a lithographic process, using a home-built quadruple-scanning-probe force microscope (QSPFM). The QSPFM has four probes whose positions are individually controlled by obtaining images of a sample in the manner of atomic force microscopy (AFM), and uses the probes as contacting electrodes for electrical measurements. A specially arranged tuning fork probe (TFP) is used as a self-detection force sensor to operate each probe in a frequency modulation AFM mode, resulting in simultaneous imaging of the same microscopic feature on an insulator using the four TFPs. Four-terminal electrical measurement is then demonstrated in air by placing each probe electrode in contact with a graphene flake exfoliated on a silicon dioxide film, and the sheet resistance of the flake is measured by the van der Pauw method. The present work shows that the QSPFM has the potential to measure the intrinsic electrical properties of a wide range of microscopic materials in situ without electrode fabrication.

  9. Flapping wing PIV and force measurements

    NASA Astrophysics Data System (ADS)

    Cameron, Benjamin H.

    Flapping wing aerodynamics has been of interest to engineers recently due in part to the DARPA (Defense Advanced Research Projects Agency) MAV (Micro-Aerial Vehicle) initiative. MAVs are small unmanned aerial vehicles with length scales similar to birds and insects. Flapping wing MAVs would serve as mobile and stealthy sensing platforms capable of gathering intelligence in hazardous and physically inaccessible locations. Traditional means of lift and thrust generation become inefficient when scaled to these sizes, therefore a flapping wing propulsion system will be necessary. The design of a flapping wing MAV requires the ability to measure forces and velocities around the wing. Three components of velocity were measured in the wake of a two dimensional (2D) flapping airfoil model using a novel application of stereoscopic DPIV (Digital Particle Image Velocimetry). One component of force was measured using a newly proposed method outlined in the dissertation. The force measurement technique relies on a specific sequence of data acquisition, which has the benefit of reducing measurement uncertainty and noise. No experiments of this type have been conducted, and no direct aerodynamic force data exists for the low Reynolds numbers applicable to flapping wing MAVs. The well-established stereoscopic DPIV technique produces relatively low uncertainties while the new force measurement technique has not been previously tested. Theoretical analysis and experimental results show that aerodynamic forces are attainable for chord Reynolds numbers as low as 1,000, which is significantly lower than previous studies. PIV measurements reveal symmetric and asymmetric wake topologies for a NACA 0012 and flat plate airfoil. A sinusoidally heaving flat plate airfoil produces highly deflected wakes for a wider range of flapping conditions than a NACA 0012 airfoil. Deflected wakes are of potentially interest since both lift and thrust components of force are developed. The flat plate also

  10. Probing three-dimensional surface force fields with atomic resolution: Measurement strategies, limitations, and artifact reduction.

    PubMed

    Baykara, Mehmet Z; Dagdeviren, Omur E; Schwendemann, Todd C; Mönig, Harry; Altman, Eric I; Schwarz, Udo D

    2012-01-01

    Noncontact atomic force microscopy (NC-AFM) is being increasingly used to measure the interaction force between an atomically sharp probe tip and surfaces of interest, as a function of the three spatial dimensions, with picometer and piconewton accuracy. Since the results of such measurements may be affected by piezo nonlinearities, thermal and electronic drift, tip asymmetries, and elastic deformation of the tip apex, these effects need to be considered during image interpretation.In this paper, we analyze their impact on the acquired data, compare different methods to record atomic-resolution surface force fields, and determine the approaches that suffer the least from the associated artifacts. The related discussion underscores the idea that since force fields recorded by using NC-AFM always reflect the properties of both the sample and the probe tip, efforts to reduce unwanted effects of the tip on recorded data are indispensable for the extraction of detailed information about the atomic-scale properties of the surface.

  11. Bi-harmonic cantilever design for improved measurement sensitivity in tapping-mode atomic force microscopy.

    PubMed

    Loganathan, Muthukumaran; Bristow, Douglas A

    2014-04-01

    This paper presents a method and cantilever design for improving the mechanical measurement sensitivity in the atomic force microscopy (AFM) tapping mode. The method uses two harmonics in the drive signal to generate a bi-harmonic tapping trajectory. Mathematical analysis demonstrates that the wide-valley bi-harmonic tapping trajectory is as much as 70% more sensitive to changes in the sample topography than the standard single-harmonic trajectory typically used. Although standard AFM cantilevers can be driven in the bi-harmonic tapping trajectory, they require large forcing at the second harmonic. A design is presented for a bi-harmonic cantilever that has a second resonant mode at twice its first resonant mode, thereby capable of generating bi-harmonic trajectories with small forcing signals. Bi-harmonic cantilevers are fabricated by milling a small cantilever on the interior of a standard cantilever probe using a focused ion beam. Bi-harmonic drive signals are derived for standard cantilevers and bi-harmonic cantilevers. Experimental results demonstrate better than 30% improvement in measurement sensitivity using the bi-harmonic cantilever. Images obtained through bi-harmonic tapping exhibit improved sharpness and surface tracking, especially at high scan speeds and low force fields.

  12. Bi-harmonic cantilever design for improved measurement sensitivity in tapping-mode atomic force microscopy

    SciTech Connect

    Loganathan, Muthukumaran; Bristow, Douglas A.

    2014-04-15

    This paper presents a method and cantilever design for improving the mechanical measurement sensitivity in the atomic force microscopy (AFM) tapping mode. The method uses two harmonics in the drive signal to generate a bi-harmonic tapping trajectory. Mathematical analysis demonstrates that the wide-valley bi-harmonic tapping trajectory is as much as 70% more sensitive to changes in the sample topography than the standard single-harmonic trajectory typically used. Although standard AFM cantilevers can be driven in the bi-harmonic tapping trajectory, they require large forcing at the second harmonic. A design is presented for a bi-harmonic cantilever that has a second resonant mode at twice its first resonant mode, thereby capable of generating bi-harmonic trajectories with small forcing signals. Bi-harmonic cantilevers are fabricated by milling a small cantilever on the interior of a standard cantilever probe using a focused ion beam. Bi-harmonic drive signals are derived for standard cantilevers and bi-harmonic cantilevers. Experimental results demonstrate better than 30% improvement in measurement sensitivity using the bi-harmonic cantilever. Images obtained through bi-harmonic tapping exhibit improved sharpness and surface tracking, especially at high scan speeds and low force fields.

  13. Tip Characterization Method using Multi-feature Characterizer for CD-AFM

    PubMed Central

    Orji, Ndubuisi G.; Itoh, Hiroshi; Wang, Chumei; Dixson, Ronald G.; Walecki, Peter S.; Schmidt, Sebastian W.; Irmer, Bernd

    2016-01-01

    In atomic force microscopy (AFM) metrology, the tip is a key source of uncertainty. Images taken with an AFM show a change in feature width and shape that depends on tip geometry. This geometric dilation is more pronounced when measuring features with high aspect ratios, and makes it difficult to obtain absolute dimensions. In order to accurately measure nanoscale features using an AFM, the tip dimensions should be known with a high degree of precision. We evaluate a new AFM tip characterizer, and apply it to critical dimension AFM (CD-AFM) tips used for high aspect ratio features. The characterizer is made up of comb-shaped lines and spaces, and includes a series of gratings that could be used as an integrated nanoscale length reference. We also demonstrate a simulation method that could be used to specify what range of tip sizes and shapes the characterizer can measure. Our experiments show that for non re-entrant features, the results obtained with this characterizer are consistent to 1 nm with the results obtained by using widely accepted but slower methods that are common practice in CD-AFM metrology. A validation of the integrated length standard using displacement interferometry indicates a uniformity of better than 0.75%, suggesting that the sample could be used as highly accurate and SI traceable lateral scale for the whole evaluation process. PMID:26720439

  14. Analysis of the effect of LRP-1 silencing on the invasive potential of cancer cells by nanomechanical probing and adhesion force measurements using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Le Cigne, A.; Chièze, L.; Beaussart, A.; El-Kirat-Chatel, S.; Dufrêne, Y. F.; Dedieu, S.; Schneider, C.; Martiny, L.; Devy, J.; Molinari, M.

    2016-03-01

    Low-density lipoprotein receptor-related protein 1 (LRP-1) can internalize proteases involved in cancer progression and is thus considered a promising therapeutic target. However, it has been demonstrated that LRP-1 is also able to regulate the endocytosis of membrane-anchored proteins. Thus, strategies that target LRP-1 to modulate proteolysis could also affect adhesion and cytoskeleton dynamics. Here, we investigated the effect of LRP-1 silencing on parameters reflecting cancer cells' invasiveness by atomic force microscopy (AFM). The results show that LRP-1 silencing induces changes in the cells' adhesion behavior, particularly the dynamics of cell attachment. Clear alterations in morphology, such as more pronounced stress fibers and increased spreading, leading to increased area and circularity, were also observed. The determination of the cells' mechanical properties by AFM showed that these differences are correlated with an increase in Young's modulus. Moreover, the measurements show an overall decrease in cell motility and modifications of directional persistence. An overall increase in the adhesion force between the LRP-1-silenced cells and a gelatin-coated bead was also observed. Ultimately, our AFM-based force spectroscopy data, recorded using an antibody directed against the β1 integrin subunit, provide evidence that LRP-1 silencing modifies the rupture force distribution. Together, our results show that techniques traditionally used for the investigation of cancer cells can be coupled with AFM to gain access to complementary phenotypic parameters that can help discriminate between specific phenotypes associated with different degrees of invasiveness.Low-density lipoprotein receptor-related protein 1 (LRP-1) can internalize proteases involved in cancer progression and is thus considered a promising therapeutic target. However, it has been demonstrated that LRP-1 is also able to regulate the endocytosis of membrane-anchored proteins. Thus, strategies

  15. Fiber Bragg Grating based bite force measurement.

    PubMed

    Umesh, Sharath; Padma, Srivani; Asokan, Sundarrajan; Srinivas, Talabattula

    2016-09-06

    The present study reports an in vivo, novel methodology for the dynamic measurement of the bite force generated by individual tooth using a Fiber Bragg Grating Bite Force Recorder (FBGBFR). Bite force is considered as one of the major indicators of the functional state of the masticatory system, which is dependent on the craniomandibular structure comprising functional components such as muscles of mastication, joints and teeth. The proposed FBGBFR is an intra-oral device, developed for the transduction of the bite force exerted at the occlusal surface, into strain variations on a base plate, which in turn is sensed by the FBG sensor bonded over it. The FBGBFR is calibrated against a Micro Universal Testing Machine (UTM) for 0-900N range and the resolution of the developed FBGBFR is found to be 0.54N. 36 volunteers (20 males and 16 females) performed the bite force measurement test at molar, premolar and incisor tooth on either side of the dental arch and the obtained results show clinically relevant bite forces varying from 176N to 635N. The bite forces obtained from the current study for a substantial sample size, show that the bite forces increases along the dental arch from the incisors towards the molars and are found to be higher in male than in female. The FBG sensor element utilized in FBGBFR is electrically passive, which makes it a safe in vivo intra-oral device. Hence the FBGBFR is viable to be employed in clinical studies on biomechanics of oral function. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Measurement systems for cell adhesive forces.

    PubMed

    Zhou, Dennis W; García, Andrés J

    2015-02-01

    Cell adhesion to the extracellular matrix (ECM) involves integrin receptor-ligand binding and clustering to form focal adhesion (FA) complexes, which mechanically link the cell's cytoskeleton to the ECM and regulate fundamental cell signaling pathways. Although elucidation of the biochemical events in cell-matrix adhesive interactions is rapidly advancing, recent studies show that the forces underlying cell-matrix adhesive interactions are also critical to cell responses. Therefore, multiple measurement systems have been developed to quantify the spatial and temporal dynamics of cell adhesive forces, and these systems have identified how mechanical events influence cell phenotype and FA structure-function relationships under physiological and pathological settings. This review focuses on the development, methodology, and applications of measurement systems for probing (a) cell adhesion strength and (b) 2D and 3D cell traction forces.

  17. Unsteady Aerodynamic Force Sensing from Measured Strain

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi

    2016-01-01

    A simple approach for computing unsteady aerodynamic forces from simulated measured strain data is proposed in this study. First, the deflection and slope of the structure are computed from the unsteady strain using the two-step approach. Velocities and accelerations of the structure are computed using the autoregressive moving average model, on-line parameter estimator, low-pass filter, and a least-squares curve fitting method together with analytical derivatives with respect to time. Finally, aerodynamic forces over the wing are computed using modal aerodynamic influence coefficient matrices, a rational function approximation, and a time-marching algorithm. A cantilevered rectangular wing built and tested at the NASA Langley Research Center (Hampton, Virginia, USA) in 1959 is used to validate the simple approach. Unsteady aerodynamic forces as well as wing deflections, velocities, accelerations, and strains are computed using the CFL3D computational fluid dynamics (CFD) code and an MSC/NASTRAN code (MSC Software Corporation, Newport Beach, California, USA), and these CFL3D-based results are assumed as measured quantities. Based on the measured strains, wing deflections, velocities, accelerations, and aerodynamic forces are computed using the proposed approach. These computed deflections, velocities, accelerations, and unsteady aerodynamic forces are compared with the CFL3D/NASTRAN-based results. In general, computed aerodynamic forces based on the lifting surface theory in subsonic speeds are in good agreement with the target aerodynamic forces generated using CFL3D code with the Euler equation. Excellent aeroelastic responses are obtained even with unsteady strain data under the signal to noise ratio of -9.8dB. The deflections, velocities, and accelerations at each sensor location are independent of structural and aerodynamic models. Therefore, the distributed strain data together with the current proposed approaches can be used as distributed deflection

  18. Fabrication of cone-shaped boron doped diamond and gold nanoelectrodes for AFM-SECM

    NASA Astrophysics Data System (ADS)

    Avdic, A.; Lugstein, A.; Wu, M.; Gollas, B.; Pobelov, I.; Wandlowski, T.; Leonhardt, K.; Denuault, G.; Bertagnolli, E.

    2011-04-01

    We demonstrate a reliable microfabrication process for a combined atomic force microscopy (AFM) and scanning electrochemical microscopy (SECM) measurement tool. Integrated cone-shaped sensors with boron doped diamond (BDD) or gold (Au) electrodes were fabricated from commercially available AFM probes. The sensor formation process is based on mature semiconductor processing techniques, including focused ion beam (FIB) machining, and highly selective reactive ion etching (RIE). The fabrication approach preserves the geometry of the original AFM tips resulting in well reproducible nanoscaled sensors. The feasibility and functionality of the fully featured tips are demonstrated by cyclic voltammetry, showing good agreement between the measured and calculated currents of the cone-shaped AFM-SECM electrodes.

  19. A MEMS sensor for microscale force measurements

    NASA Astrophysics Data System (ADS)

    Majcherek, S.; Aman, A.; Fochtmann, J.

    2016-02-01

    This paper describes the development and testing of a new MEMS-based sensor device for microscale contact force measurements. A special MEMS cell was developed to reach higher lateral resolution than common steel-based load cells with foil-type strain gauges as mechanical-electrical converters. The design provided more than one normal force measurement point with spatial resolution in submillimeter range. Specific geometric adaption of the MEMS-device allowed adjustability of its measurement range between 0.5 and 5 N. The thin film nickel-chromium piezo resistors were used to achieve a mechanical-electrical conversion. The production process was realized by established silicon processing technologies such as deep reactive ion etching and vapor deposition (sputtering). The sensor was tested in two steps. Firstly, the sensor characteristics were carried out by application of defined loads at the measurement points by a push-pull tester. As a result, the sensor showed linear behavior. A measurement system analysis (MSA1) was performed to define the reliability of the measurement system. The measured force values had the maximal relative deviation of 1% to average value of 1.97 N. Secondly, the sensor was tested under near-industrial conditions. In this context, the thermal induced relaxation behavior of the electrical connector contact springs was investigated. The handling of emerging problems during the characterization process of the sensor is also described.

  20. Simplified fundamental force and mass measurements

    NASA Astrophysics Data System (ADS)

    Robinson, I. A.

    2016-08-01

    The watt balance relates force or mass to the Planck constant h, the metre and the second. It enables the forthcoming redefinition of the unit of mass within the SI by measuring the Planck constant in terms of mass, length and time with an uncertainty of better than 2 parts in 108. To achieve this, existing watt balances require complex and time-consuming alignment adjustments limiting their use to a few national metrology laboratories. This paper describes a simplified construction and operating principle for a watt balance which eliminates the need for the majority of these adjustments and is readily scalable using either electromagnetic or electrostatic actuators. It is hoped that this will encourage the more widespread use of the technique for a wide range of measurements of force or mass. For example: thrust measurements for space applications which would require only measurements of electrical quantities and velocity/displacement.

  1. Preparation and Friction Force Microscopy Measurements of Immiscible, Opposing Polymer Brushes

    PubMed Central

    de Beer, Sissi; Kutnyanszky, Edit; Müser, Martin H.; Vancso, G. Julius

    2014-01-01

    Solvated polymer brushes are well known to lubricate high-pressure contacts, because they can sustain a positive normal load while maintaining low friction at the interface. Nevertheless, these systems can be sensitive to wear due to interdigitation of the opposing brushes. In a recent publication, we have shown via molecular dynamics simulations and atomic force microscopy experiments, that using an immiscible polymer brush system terminating the substrate and the slider surfaces, respectively, can eliminate such interdigitation. As a consequence, wear in the contacts is reduced. Moreover, the friction force is two orders of magnitude lower compared to traditional miscible polymer brush systems. This newly proposed system therefore holds great potential for application in industry. Here, the methodology to construct an immiscible polymer brush system of two different brushes each solvated by their own preferred solvent is presented. The procedure how to graft poly(N-isopropylacrylamide) (PNIPAM) from a flat surface and poly(methyl methacrylate) (PMMA) from an atomic force microscopy (AFM) colloidal probe is described. PNIPAM is solvated in water and PMMA in acetophenone. Via friction force AFM measurements, it is shown that the friction for this system is indeed reduced by two orders of magnitude compared to the miscible system of PMMA on PMMA solvated in acetophenone. PMID:25590429

  2. Measuring viscoelasticity of soft samples using atomic force microscopy.

    PubMed

    Tripathy, S; Berger, E J

    2009-09-01

    Relaxation indentation experiments using atomic force microscopy (AFM) are used to obtain viscoelastic material properties of soft samples. The quasilinear viscoelastic (QLV) model formulated by Fung (1972, "Stress Strain History Relations of Soft Tissues in Simple Elongation," in Biomechanics, Its Foundation and Objectives, Prentice-Hall, Englewood Cliffs, NJ, pp. 181-207) for uniaxial compression data was modified for the indentation test data in this study. Hertz contact mechanics was used for the instantaneous deformation, and a reduced relaxation function based on continuous spectrum is used for the time-dependent part in the model. The modified QLV indentation model presents a novel method to obtain viscoelastic properties from indentation data independent of relaxation times of the test. The major objective of the present study is to develop the QLV indentation model and implement the model on AFM indentation data for 1% agarose gel and a viscoelastic polymer using spherical indenter.

  3. Proximity effect on hydrodynamic interaction between a sphere and a plane measured by force feedback microscopy at different frequencies

    NASA Astrophysics Data System (ADS)

    Carpentier, Simon; Rodrigues, Mario S.; Charlaix, Elisabeth; Chevrier, Joël

    2015-07-01

    In this article, we measure the viscous damping G″, and the associated stiffness G', of a liquid flow in sphere-plane geometry over a large frequency range. In this regime, the lubrication approximation is expected to dominate. We first measure the static force applied to the tip. This is made possible thanks to a force feedback method. Adding a sub-nanometer oscillation of the tip, we obtain the dynamic part of the interaction with solely the knowledge of the lever properties in the experimental context using a linear transformation of the amplitude and phase change. Using a Force Feedback Microscope (FFM), we are then able to measure simultaneously the static force, the stiffness, and the dissipative part of the interaction in a broad frequency range using a single AFM probe. Similar measurements have been performed by the Surface Force Apparatus (SFA) with a probe radius hundred times bigger. In this context, the FFM can be called nano-SFA.

  4. Trends of Measured Climate Forcing Agents

    NASA Technical Reports Server (NTRS)

    Hansen, James E.; Sato, Makiko; Einaudi, Franco (Technical Monitor)

    2002-01-01

    The growth rate of climate forcing by measured greenhouse gases peaked near 1980 at almost 5 W/sq m per century. This growth rate has since declined to approximately equal to 3 W/sq m per century, largely because of cooperative international actions. We argue that trends can be reduced to the level needed for the moderate "alternative" climate scenario (approximately equal to 2 W/M2 per century for the next 50 years) by means of concerted actions that have other benefits, but the forcing reductions are not automatic "co-benefits" of actions that slow CO2 emissions. Current trends of climate forcings by aerosols remain very uncertain. Nevertheless, practical constraints on changes in emission levels suggest that global warming at a rate + 0.15 +/- 0.05 C per decade will occur over the next several decades.

  5. Motion recognition from contact force measurement.

    PubMed

    Yabuki, Takumi; Venture, Gentiane

    2013-01-01

    Optical motion capture systems, which are used in broad fields of research, are costly; they need large installation space and calibrations. We find difficulty in applying it in typical homes and care centers. Therefore we propose to use low cost contact force measurement systems to develop rehabilitation and healthcare monitoring tools. Here, we propose a novel algorithm for motion recognition using the feature vector from force data solely obtained during a daily exercise program. We recognized 7 types of movement (Radio Exercises) of two candidates (mean age 22, male). The results show that the recognition rate of each motion has high score (mean: 86.9%). The results also confirm that there is a clustering of each movement in personal exercises data, and a similarity of the clustering even for different candidates thus that motion recognition is possible using contact force data.

  6. Atomic force microscope-assisted scanning tunneling spectroscopy under ambient conditions.

    PubMed

    Vakhshouri, Amin; Hashimoto, Katsushi; Hirayama, Yoshiro

    2014-12-01

    We have developed a method of atomic force microscopy (AFM)-assisted scanning tunneling spectroscopy (STS) under ambient conditions. An AFM function is used for rapid access to a selected position prior to performing STS. The AFM feedback is further used to suppress vertical thermal drift of the tip-sample distance during spectroscopy, enabling flexible and stable spectroscopy measurements at room temperature.

  7. Nano-scale simulative measuring model for tapping mode atomic force microscopy and analysis for measuring a nano-scale ladder-shape standard sample.

    PubMed

    Lin, Zone-Ching; Chou, Ming-Ho

    2010-07-01

    This study proposes to construct a nano-scale simulative measuring model of Tapping Mode Atomic Force Microscopy (TM-AFM), compare with the edge effect of simulative and measurement results. It combines with the Morse potential and vibration theory to calculate the tip-sample atomic interaction force between probe and sample. Used Silicon atoms (Si) arrange the shape of the rectangular cantilever probe and the nano-scale ladder-shape standard sample atomic model. The simulative measurements are compared with the results for the simulative measurements and experimental measurement. It is found that the scan rate and the probe tip's bevel angle are the two reasons to cause the surface error and edge effect of measuring the nano-scale ladder-shape standard sample by TM-AFM. And the bevel angle is about equal to the probe tip's bevel angle from the results of simulated and experimented on the vertical section of the sample edge. To compare with the edge effect between the simulation and experimental measurement, its error is small. It could be verified that the constructed simulative measuring model for TM-AFM in this article is reasonable.

  8. Direct Measurement of the Wettability of Minerals Using Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Deng, Y.; Xu, L.; Lu, H.; Wang, H.; Shi, Y.

    2016-12-01

    The wettability of reservoir rock plays an essential role in affecting the states of fluids (water, oil, etc) in pores which are constructed with various minerals. The contact angle method, which is based on the optical microscope photographs of millimeter-sized droplets on a smooth mineral surface, is one of the most widely employed methods to evaluate the wettability of a rock. However, the real reservoir rocks are composed of several kinds of minerals and thus nonhomogeneous, which leads to different wettability at different location of the rock. The mineral grains are usually micrometer-sized so that the traditional optical contact angle method cannot obtain the wettability of different minerals in the rock. Here we used a tapping-mode atomic force microscopy (TM-AFM, MFP-3D-BIO, Asylum Research) to measure the contact angles of micrometer-sized water droplets on different minerals in a tight sand rock which is mainly composed of quartz, albite, potash feldspar and anorthite. The water droplets varied from submicron to several tens micron in diameter. With the optimization of tool and operation parameters, the AFM tip was well controlled so that the nanoscale morphology of the contact configuration between water film and the mineral surface can be obtained at high resolution without disturbing the liquid surface. The AFM results showed that the contact angles of water on quartz and albite were 30-40 ° and 37-45 °, respectively. The AFM method provides a new measure for the wettability evaluation of reservoir rocks, and it is with potential to be applied to oil and gas hydrate studies.

  9. DNA-duplex linker for AFM-SELEX of DNA aptamer against human serum albumin.

    PubMed

    Takenaka, Musashi; Okumura, Yuzo; Amino, Tomokazu; Miyachi, Yusuke; Ogino, Chiaki; Kondo, Akihiko

    2017-02-15

    DNA-duplex interactions in thymines and adenins are used as a linker for the novel methodology of Atomic Force Microscope-Systematic Evolution of Ligands by EXpotential enrichment (AFM-SELEX). This study used the hydrogen bonds in 10 mer of both thymines (T10) and adenines (A10). Initially, the interactive force in T10-A10 was measured by AFM, which returned an average interactive force of approximately 350pN. Based on this result, DNA aptamers against human serum albumin could be selected in the 4th round, and 15 different clones could be sequenced. The lowest dissociation constant of the selected aptamer was identified via surface plasmon resonance, and it proved to be identical to that of the commercial aptamer. Therefore, specific hydrogen bonds in DNA can be useful linkers for AFM-SELEX. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Forced free-shear layer measurements

    NASA Technical Reports Server (NTRS)

    Leboeuf, Richard L.

    1994-01-01

    Detailed three-dimensional three-component phase averaged measurements of the spanwise and streamwise vorticity formation and evolution in acoustically forced plane free-shear flows have been obtained. For the first time, phase-averaged measurements of all three velocity components have been obtained in both a mixing layer and a wake on three-dimensional grids, yielding the spanwise and streamwise vorticity distributions without invoking Taylor's hypothesis. Initially, two-frequency forcing was used to phase-lock the roll-up and first pairing of the spanwise vortical structures in a plane mixing layer. The objective of this study was to measure the near-field vortical structure morphology in a mixing layer with 'natural' laminar initial boundary layers. For the second experiment the second and third subharmonics of the fundamental roll-up frequency were added to the previous two-frequency forcing in order to phase-lock the roll-up and first three pairings of the spanwise rollers in the mixing layer. The objective of this study was to determine the details of spanwise scale changes observed in previous time-averaged measurements and flow visualization of unforced mixing layers. For the final experiment, single-frequency forcing was used to phase-lock the Karman vortex street in a plane wake developing from nominally two-dimensional laminar initial boundary layers. The objective of this study was to compare measurements of the three-dimensional structure in a wake developing from 'natural' initial boundary layers to existing models of wake vortical structure.

  11. Influence of Halide Solutions on Collagen Networks: Measurements of Physical Properties by Atomic Force Microscopy

    PubMed Central

    Kempe, André; Lackner, Maximilian

    2016-01-01

    The influence of aqueous halide solutions on collagen coatings was tested. The effects on resistance against indentation/penetration on adhesion forces were measured by atomic force microscopy (AFM) and the change of Young's modulus of the coating was derived. Comparative measurements over time were conducted with halide solutions of various concentrations. Physical properties of the mesh-like coating generally showed large variability. Starting with a compact set of physical properties, data disperse after minutes. A trend of increase in elasticity and permeability was found for all halide solutions. These changes were largest in NaI, displaying a logical trend with ion size. However a correlation with concentration was not measured. Adhesion properties were found to be independent of mechanical properties. The paper also presents practical experience for AFM measurements of soft tissue under liquids, particularly related to data evaluation. The weakening in physical strength found after exposure to halide solutions may be interpreted as widening of the network structure or change in the chemical properties in part of the collagen fibres (swelling). In order to design customized surface coatings at optimized conditions also for medical applications, halide solutions might be used as agents with little impact on the safety of patients. PMID:27721994

  12. Bubble colloidal AFM probes formed from ultrasonically generated bubbles.

    PubMed

    Vakarelski, Ivan U; Lee, Judy; Dagastine, Raymond R; Chan, Derek Y C; Stevens, Geoffrey W; Grieser, Franz

    2008-02-05

    Here we introduce a simple and effective experimental approach to measuring the interaction forces between two small bubbles (approximately 80-140 microm) in aqueous solution during controlled collisions on the scale of micrometers to nanometers. The colloidal probe technique using atomic force microscopy (AFM) was extended to measure interaction forces between a cantilever-attached bubble and surface-attached bubbles of various sizes. By using an ultrasonic source, we generated numerous small bubbles on a mildly hydrophobic surface of a glass slide. A single bubble picked up with a strongly hydrophobized V-shaped cantilever was used as the colloidal probe. Sample force measurements were used to evaluate the pure water bubble cleanliness and the general consistency of the measurements.

  13. Nanogap based graphene coated AFM tips with high spatial resolution, conductivity and durability.

    PubMed

    Lanza, Mario; Gao, Teng; Yin, Zixuan; Zhang, Yanfeng; Liu, Zhongfan; Tong, Yuzhen; Shen, Ziyong; Duan, Huiling

    2013-11-21

    After one decade of analyzing the intrinsic properties of graphene, interest into the development of graphene-based devices and micro electromechanical systems is increasing. Here, we fabricate graphene-coated atomic force microscope tips by growing the graphene on copper foil and transferring it onto the apex of a commercially available AFM tip. The resulting tip exhibits surprising enhanced resolution in nanoscale electrical measurements. By means of topographic AFM maps and statistical analyses we determine that this superior performance may be related to the presence of a nanogap between the graphene and the tip apex, which reduces the tip radius and tip-sample contact area. In addition, the graphene-coated tips show a low tip-sample interaction, high conductivity and long life times. The novel fabrication-friendly tip could improve the quality and reliability of AFM experiments, while reducing the cost of AFM-based research.

  14. Measurement-only topological quantum computation without forced measurements

    NASA Astrophysics Data System (ADS)

    Zheng, Huaixiu; Dua, Arpit; Jiang, Liang

    2016-12-01

    We investigate the measurement-only topological quantum computation (MOTQC) approach proposed by Bonderson et al (2008 Phys. Rev. Lett. 101 010501) where the braiding operation is shown to be equivalent to a series of topological charge ‘forced measurements’ of anyons. In a forced measurement, the charge measurement is forced to yield the desired outcome (e.g. charge 0) via repeatedly measuring charges in different bases. This is a probabilistic process with a certain success probability for each trial. In practice, the number of measurements needed will vary from run to run. We show that such an uncertainty associated with forced measurements can be removed by simulating the braiding operation using a fixed number of three measurements supplemented by a correction operator. Furthermore, we demonstrate that in practice we can avoid applying the correction operator in hardware by implementing it in software. Our findings greatly simplify the MOTQC proposal and only require the capability of performing charge measurements to implement topologically protected transformations generated by braiding exchanges without physically moving anyons.

  15. Micro-wilhelmy and related liquid property measurements using constant-diameter nanoneedle-tipped atomic force microscope probes.

    PubMed

    Yazdanpanah, Mehdi M; Hosseini, Mahdi; Pabba, Santosh; Berry, Scott M; Dobrokhotov, Vladimir V; Safir, Abdelilah; Keynton, Robert S; Cohn, Robert W

    2008-12-02

    The micro-Wilhelmy method is a well-established method of determining surface tension by measuring the force of withdrawing a tens of microns to millimeters in diameter cylindrical wire or fiber from a liquid. A comparison of insertion force to retraction force can also be used to determine the contact angle with the fiber. Given the limited availability of atomic force microscope (AFM) probes that have long constant diameter tips, force-distance (F-D) curves using probes with standard tapered tips have been difficult to relate to surface tension. In this report, constant diameter metal alloy nanowires (referred to as "nanoneedles") between 7.2 and 67 microm in length and 108 and 1006 nm in diameter were grown on AFM probes. F-D and Q damping AFM measurements of wetting and drag forces made with the probes were compared against standard macroscopic models of these forces on slender cylinders to estimate surface tension, contact angle, meniscus height, evaporation rate, and viscosity. The surface tensions for several low molecular weight liquids that were measured with these probes were between -4.2% and +8.3% of standard reported values. Also, the F-D curves show well-defined stair-step events on insertion and retraction from partial wetting liquids, compared to the continuously growing attractive force of standard tapered AFM probe tips. In the AFM used, the stair-step feature in F-D curves was repeatably monitored for at least 0.5 h (depending on the volatility of the liquid), and this feature was then used to evaluate evaporation rates (as low as 0.30 nm/s) through changes in the surface height of the liquid. A nanoneedle with a step change in diameter at a known distance from its end produced two steps in the F-D curve from which the meniscus height was determined. The step features enable meniscus height to be determined from distance between the steps, as an alternative to calculating the height corresponding to the AFM measured values of surface tension and

  16. Monitoring the osmotic response of single yeast cells through force measurement in the environmental scanning electron microscope

    NASA Astrophysics Data System (ADS)

    Jansson, Anna; Nafari, Alexandra; Hedfalk, Kristina; Olsson, Eva; Svensson, Krister; Sanz-Velasco, Anke

    2014-02-01

    We present a measurement system that combines an environmental scanning electron microscope (ESEM) and an atomic force microscope (AFM). This combination enables studies of static and dynamic mechanical properties of hydrated specimens, such as individual living cells. The integrated AFM sensor provides direct and continuous force measurement based on piezoresistive force transduction, allowing the recording of events in the millisecond range. The in situ ESEM-AFM setup was used to study Pichia pastoris wild-type yeast cells. For the first time, a quantified measure of the osmotic response of an individual yeast cell inside an ESEM is presented. With this technique, cell size changes due to humidity variations can be monitored with nanometre accuracy. In addition, mechanical properties were extracted from load-displacement curves. A Young's modulus of 13-15 MPa was obtained for the P. pastoris yeast cells. The developed method is highly interesting as a complementary tool for the screening of drugs directed towards cellular water transport activity and provides new possibilities of studying mechanosensitive regulation of aquaporins.

  17. Demonstrating the uses of the novel gravitational force spectrometer to stretch and measure fibrous proteins.

    PubMed

    Dunn, James W; Root, Douglas D

    2011-03-19

    The study of macromolecular structure has become critical to the elucidation of molecular mechanisms and function. There are several limited, but important bioinstruments capable of testing the force dependence of structural features in proteins. Scale has been a limiting parameter on how accurately researchers can peer into the nanomechanical world of molecules, such as nucleic acids, enzymes, and motor proteins that perform life-sustaining work. Atomic force microscopy (AFM) is well tuned to determine native structures of fibrous proteins with a distance resolution on par with electron microscopy. However, in AFM force studies, the forces are typically much higher than a single molecule might experience. Optical traps (OT) are very good at determining the relative distance between the trapped beads and they can impart very small forces. However, they do not yield accurate absolute lengths of the molecules under study. Molecular simulations provide supportive information to such experiments, but are limited in the ability to handle the same large molecular sizes, long time frames, and convince some researchers in the absence of other supporting evidence. The gravitational force spectrometer (GFS) fills a critical niche in the arsenal of an investigator by providing a unique combination of abilities. This instrument is capable of generating forces typically with 98% or better accuracy from the femtonewton range to the nanonewton range. The distance measurements currently are capable of resolving the absolute molecular length down to five nanometers, and relative bead pair separation distances with a precision similar to an optical trap. Also, the GFS can determine stretching or uncoiling where the force is near equilibrium, or provide a graded force to juxtapose against any measured structural changes. It is even possible to determine how many amino acid residues are involved in uncoiling events under physiological force loads. Unlike in other methods where there

  18. Pulling angle-dependent force microscopy

    NASA Astrophysics Data System (ADS)

    Grebíková, L.; Gojzewski, H.; Kieviet, B. D.; Klein Gunnewiek, M.; Vancso, G. J.

    2017-03-01

    In this paper, we describe a method allowing one to perform three-dimensional displacement control in force spectroscopy by atomic force microscopy (AFM). Traditionally, AFM force curves are measured in the normal direction of the contacted surface. The method described can be employed to address not only the magnitude of the measured force but also its direction. We demonstrate the technique using a case study of angle-dependent desorption of a single poly(2-hydroxyethyl methacrylate) (PHEMA) chain from a planar silica surface in an aqueous solution. The chains were end-grafted from the AFM tip in high dilution, enabling single macromolecule pull experiments. Our experiments give evidence of angular dependence of the desorption force of single polymer chains and illustrate the added value of introducing force direction control in AFM.

  19. Measurement of interaction force between nanoarrayed integrin {alpha}{sub v}{beta}{sub 3} and immobilized vitronectin on the cantilever tip

    SciTech Connect

    Lee, Minsu; Yang, Hyun-Kyu; Park, Keun-Hyung; Kang, Dong-Ku; Chang, Soo-Ik Kang, In-Cheol

    2007-11-03

    Protein nanoarrays containing integrin {alpha}{sub v}{beta}{sub 3} or BSA were fabricated on ProLinker{sup TM}-coated Au surface by dip-pen nanolithography (DPN). An atomic force microscope (AFM) tip coated with ProLinker{sup TM} was modified by vitronectin. We measured the interaction force between nanoarrayed integrin {alpha}{sub v}{beta}{sub 3} or BSA and immobilized vitronectin on the cantilever tip by employing tethering-unbinding method. The unbinding force between integrin {alpha}{sub v}{beta}{sub 3} and vitronectin (1087 {+-} 62 pN) was much higher than that of between BSA and vitronectin (643 {+-} 74 pN). These results demonstrate that one can distinguish a specific protein interaction from non-specific interactions by means of force measurement on the molecular interactions between the nanoarrayed protein and its interacting protein on the AFM tip.

  20. Progressing single biomolecule force spectroscopy measurements for the screening of DNA binding agents

    NASA Astrophysics Data System (ADS)

    Zhang, Wenke; Barbagallo, Romina; Madden, Claire; Roberts, Clive J.; Woolford, Alison; Allen, Stephanie

    2005-10-01

    Recent studies have indicated that the force-extension properties of single molecules of double stranded (ds) DNA are sensitive to the presence of small molecule DNA binding agents, and also to their mode of binding. These observations raise the possibility of using this approach as a highly sensitive tool for the screening of such agents. However, particularly for studies employing the atomic force microscope (AFM), several non-trivial barriers hinder the progress of this approach to the non-specialist arena and hence also the full realization of this possibility. In this paper, we therefore address a series of key reproducibility and metrological issues associated with this type of measurement. Specifically, we present an improved immobilization method that covalently anchors one end (5' end) of a dual labelled (5'-thiol, 3'-biotin) p53 DNA molecule onto a gold substrate via gold-thiol chemistry, whilst the biotinylated 3' end is available for 'pick-up' using a streptavidin modified AFM tip. We also show that co-surface immobilization of DNA with 6-mercapto-1-hexanol (MCH) can also lead to a further increase the measured contour length. We demonstrate the impact of these improved protocols through the observation of the cooperative transition plateau in a DNA fragment of approximately 118 bp, a significantly smaller fragment than previously investigated. The results of a comparative study of the effects of a model minor groove binder (Hoechst 33258) and an intercalating drug (proflavine), alone, as a mixture and under different buffer conditions, are also presented.

  1. AFM/MFM hybrid nanocharacterization of martensitic transformation and degradation for Fe-Pd shape memory alloy

    NASA Astrophysics Data System (ADS)

    Suzuki, Takayuki; Nagatani, Kohei; Hirano, Kazumi; Teramoto, Tokuo; Taya, Minoru

    2003-07-01

    Martensitic transformation and degradation characteristics for Fe-Pd ferromagnetic shape memory alloy were investigated by the developed AFM (Atomic Force Microscope)/MFM (Magnetic Force Microscope) hybrid nano-characterization technique. In AFM martensitic transformation was detected by the changes of surface topography of martensite plates. In MFM martensitic transformation was detected by the changes of magnetic domain structures. This technique has an advantage that martensitic transformation characteristics such as martensitic transformation temperature and reverse transformation temperature can be measured at microscopic and nanoscopic small area. Degradation characteristics of martensitic transformation under cyclic loading were also detected by the changes of AFM and MFM images. In AFM images surface topography of martensite plates became flat and in MFM images the morphology of magnetic domain structures became unfocused under cyclic loading. Then it was found that the hybrid nano-characterization was very high sensitive technique to evaluate degradation for Fe-Pd ferromagnetic shape memory alloy.

  2. Accurate Calibration and Uncertainty Estimation of the Normal Spring Constant of Various AFM Cantilevers

    PubMed Central

    Song, Yunpeng; Wu, Sen; Xu, Linyan; Fu, Xing

    2015-01-01

    Measurement of force on a micro- or nano-Newton scale is important when exploring the mechanical properties of materials in the biophysics and nanomechanical fields. The atomic force microscope (AFM) is widely used in microforce measurement. The cantilever probe works as an AFM force sensor, and the spring constant of the cantilever is of great significance to the accuracy of the measurement results. This paper presents a normal spring constant calibration method with the combined use of an electromagnetic balance and a homemade AFM head. When the cantilever presses the balance, its deflection is detected through an optical lever integrated in the AFM head. Meanwhile, the corresponding bending force is recorded by the balance. Then the spring constant can be simply calculated using Hooke’s law. During the calibration, a feedback loop is applied to control the deflection of the cantilever. Errors that may affect the stability of the cantilever could be compensated rapidly. Five types of commercial cantilevers with different shapes, stiffness, and operating modes were chosen to evaluate the performance of our system. Based on the uncertainty analysis, the expanded relative standard uncertainties of the normal spring constant of most measured cantilevers are believed to be better than 2%. PMID:25763650

  3. Accurate calibration and uncertainty estimation of the normal spring constant of various AFM cantilevers.

    PubMed

    Song, Yunpeng; Wu, Sen; Xu, Linyan; Fu, Xing

    2015-03-10

    Measurement of force on a micro- or nano-Newton scale is important when exploring the mechanical properties of materials in the biophysics and nanomechanical fields. The atomic force microscope (AFM) is widely used in microforce measurement. The cantilever probe works as an AFM force sensor, and the spring constant of the cantilever is of great significance to the accuracy of the measurement results. This paper presents a normal spring constant calibration method with the combined use of an electromagnetic balance and a homemade AFM head. When the cantilever presses the balance, its deflection is detected through an optical lever integrated in the AFM head. Meanwhile, the corresponding bending force is recorded by the balance. Then the spring constant can be simply calculated using Hooke's law. During the calibration, a feedback loop is applied to control the deflection of the cantilever. Errors that may affect the stability of the cantilever could be compensated rapidly. Five types of commercial cantilevers with different shapes, stiffness, and operating modes were chosen to evaluate the performance of our system. Based on the uncertainty analysis, the expanded relative standard uncertainties of the normal spring constant of most measured cantilevers are believed to be better than 2%.

  4. Single molecule force measurements delineate salt, pH and surface effects on biopolymer adhesion

    NASA Astrophysics Data System (ADS)

    Pirzer, T.; Geisler, M.; Scheibel, T.; Hugel, T.

    2009-06-01

    In this paper we probe the influence of surface properties, pH and salt on the adhesion of recombinant spider silk proteins onto solid substrates with single molecule force spectroscopy. A single engineered spider silk protein (monomeric C16 or dimeric (QAQ)8NR3) is covalently bound with one end to an AFM tip, which assures long-time measurements for hours with one and the same protein. The tip with the protein is brought into contact with various substrates at various buffer conditions and then retracted to desorb the protein. We observe a linear dependence of the adhesion force on the concentration of three selected salts (NaCl, NaH2PO4 and NaI) and a Hofmeister series both for anions and cations. As expected, the more hydrophobic C16 shows a higher adhesion force than (QAQ)8NR3, and the adhesion force rises with the hydrophobicity of the substrate. Unexpected is the magnitude of the dependences—we never observe a change of more than 30%, suggesting a surprisingly well-regulated balance between dispersive forces, water-structure-induced forces as well as co-solute-induced forces in biopolymer adhesion.

  5. Interaction imaging with amplitude-dependence force spectroscopy.

    PubMed

    Platz, Daniel; Forchheimer, Daniel; Tholén, Erik A; Haviland, David B

    2013-01-01

    Knowledge of surface forces is the key to understanding a large number of processes in fields ranging from physics to material science and biology. The most common method to study surfaces is dynamic atomic force microscopy (AFM). Dynamic AFM has been enormously successful in imaging surface topography, even to atomic resolution, but the force between the AFM tip and the surface remains unknown during imaging. Here we present a new approach that combines high-accuracy force measurements and high-resolution scanning. The method, called amplitude-dependence force spectroscopy (ADFS), is based on the amplitude dependence of the cantilever's response near resonance and allows for separate determination of both conservative and dissipative tip-surface interactions. We use ADFS to quantitatively study and map the nano-mechanical interaction between the AFM tip and heterogeneous polymer surfaces. ADFS is compatible with commercial atomic force microscopes and we anticipate its widespread use in taking AFM toward quantitative microscopy.

  6. A method to quantitatively measure the elastic modulus of materials in nanometer scale using atomic force microscopy.

    PubMed

    Tang, B; Ngan, A H W; Pethica, J B

    2008-12-10

    A method is proposed for quantitatively measuring the elastic modulus of materials using atomic force microscopy (AFM) nanoindentation. In this method, the cantilever deformation and the tip-sample interaction during the early loading portion are treated as two springs in series, and based on Sneddon's elastic contact solution, a new cantilever-tip property α is proposed which, together with the cantilever sensitivity A, can be measured from AFM tests on two reference materials with known elastic moduli. The measured α and A values specific to the tip and machine used can then be employed to accurately measure the elastic modulus of a third sample, assuming that the tip does not get significantly plastically deformed during the calibration procedure. AFM nanoindentation tests were performed on polypropylene (PP), fused quartz and acrylic samples to verify the validity of the proposed method. The cantilever-tip property and the cantilever sensitivity measured on PP and fused quartz were 0.514 GPa and 51.99 nm nA(-1), respectively. Using these measured quantities, the elastic modulus of acrylic was measured to be 3.24 GPa, which agrees well with the value measured using conventional depth-sensing indentation in a commercial nanoindenter.

  7. Oriented covalent immobilization of antibodies for measurement of intermolecular binding forces between zipper-like contact surfaces of split inteins

    PubMed Central

    Sorci, Mirco; Dassa, Bareket; Liu, Hongwei; Anand, Gaurav; Dutta, Amit K.; Pietrokovski, Shmuel; Belfort, Marlene; Belfort, Georges

    2013-01-01

    In order to measure the intermolecular binding forces between two halves (or partners) of naturally split protein splicing elements called inteins, a novel thiol-hydrazide linker was designed and used to orient immobilized antibodies specific for each partner. Activation of the surfaces was achieved in one step allowing direct force measurements of the formation of a peptide bond catalyzed by the binding of the two partners of the split intein (called protein trans-splicing). Through this binding process, a whole functional intein is formed resulting in subsequent splicing. Atomic force microscopy (AFM) was used to directly measure the split intein partner binding at 1µm/s between native (wild-type) and mixed pairs of C- and N-terminal partners of naturally occurring split inteins from three cyanobacteria. Native and mixed pairs exhibit similar binding forces within the error of the measurement technique (~52 pN). Bioinformatic sequence analysis and computational structural analysis discovered a zipper-like contact between the two partners with electrostatic and non-polar attraction between multiple aligned ion pairs and hydrophobic residues. Also, we tested the Jarzynski’s equality and demonstrated, as expected, that non-equilibrium dissipative measurements obtained here gave larger energies of interaction as compared with those for equilibrium. Hence, AFM coupled with our immobilization strategy and computational studies provides a useful analytical tool for the direct measurement of intermolecular association of split inteins and could be extended to any interacting protein pair. PMID:23679912

  8. Application of a positioning and measuring machine for metrological long-range scanning force microscopy

    NASA Astrophysics Data System (ADS)

    Hausotte, T.; Jaeger, G.; Manske, E.; Hofmann, N.; Dorozhovets, N.

    2005-08-01

    This article deals with a high-precision three-dimensional positioning and measuring machine and its application as a metrological long-range scanning force microscope. At the Institute of Process Measurement and Sensor Technology of the Technische Universitaet Ilmenau an interferometric nanopositioning and nanomeasuring machine has been developed. Which is able to achieve a resolution of less than 0.1 nm over the entire positioning and measurement range of 25 mm x 25 mm x 5 mm and is traceable to the length standard. The Abbe offset-free design in conjunction with a corner mirror as a reference coordinate system provides extraordinary accuracy. The integration of several probe systems and nanotools (AFM, STM, focus sensor, tactile probes) makes the nanopositioning and nanomeasuring machine suitable for various tasks in the micro- and nanotechnologies. Various probe systems have been integrated in the last few years. For example, a commercial piezo tube AFM was integrated and tested. Additionally, interferometeric measurement systems of the nanopositioning and nanomeasuring machine enables the calibration of probe systems. Also in order to achieve the best possible measurement results special probe systems have been developed and tested and are discussed briefly.

  9. Improved etch and CMP process control using in-line AFM

    NASA Astrophysics Data System (ADS)

    Trenkler, Thomas; Kraiss, Thomas; Mantz, Ulrich; Weidner, Peter; Pinto, Rebecca H.

    2004-05-01

    As aspect ratios become higher, features become smaller, and requirements for planarity tighten, Atomic Force Microscopy (AFM) has begun to replace profilometry for topographic measurements such as trench and via depths, step height, and micro-planarity measurements, both in development and in production. In this paper, we describe the application of a new, high throughput AFM for line monitoring in the STI and trench capacitor modules. We focus on two key applications: the post-CMP height difference between the active area and the isolation area in the STI module, and the post-etch depth of a DRAM trench capacitor. We begin by describing the two initial AFM applications. Next, we introduce a statistical approach for determining optimal lot sampling for these applications. From the gap between throughput of our current AFMs, and statistically determined sampling requirements, we validate the need for a high throughput AFM. Next, we describe the design of such an AFM, recently developed by KLA-Tencor, and its expected benefits. Finally, we discuss the economic benefit to Infineon of detecting metrology problems in-line, without the delay and cost of cross-sectional SEM analysis.

  10. Sub-surface imaging of carbon nanotube-polymer composites using dynamic AFM methods.

    PubMed

    Cadena, Maria J; Misiego, Rocio; Smith, Kyle C; Avila, Alba; Pipes, Byron; Reifenberger, Ron; Raman, Arvind

    2013-04-05

    High-resolution sub-surface imaging of carbon nanotube (CNT) networks within polymer nanocomposites is demonstrated through electrical characterization techniques based on dynamic atomic force microscopy (AFM). We compare three techniques implemented in the single-pass configuration: DC-biased amplitude modulated AFM (AM-AFM), electrostatic force microscopy (EFM) and Kelvin probe force microscopy (KPFM) in terms of the physics of sub-surface image formation and experimental robustness. The methods were applied to study the dispersion of sub-surface networks of single-walled nanotubes (SWNTs) in a polyimide (PI) matrix. We conclude that among these methods, the KPFM channel, which measures the capacitance gradient (∂C/∂d) at the second harmonic of electrical excitation, is the best channel to obtain high-contrast images of the CNT network embedded in the polymer matrix, without the influence of surface conditions. Additionally, we propose an analysis of the ∂C/∂d images as a tool to characterize the dispersion and connectivity of the CNTs. Through the analysis we demonstrate that these AFM-based sub-surface methods probe sufficiently deep within the SWNT composites, to resolve clustered networks that likely play a role in conductivity percolation. This opens up the possibility of dynamic AFM-based characterization of sub-surface dispersion and connectivity in nanostructured composites, two critical parameters for nanocomposite applications in sensors and energy storage devices.

  11. Spring constants and adhesive properties of native bacterial biofilm cells measured by atomic force microscopy.

    PubMed

    Volle, C B; Ferguson, M A; Aidala, K E; Spain, E M; Núñez, M E

    2008-11-15

    Bacterial biofilms were imaged by atomic force microscopy (AFM), and their elasticity and adhesion to the AFM tip were determined from a series of tip extension and retraction cycles. Though the five bacterial strains studied included both Gram-negative and -positive bacteria and both environmental and laboratory strains, all formed simple biofilms on glass surfaces. Cellular spring constants, determined from the extension portion of the force cycle, varied between 0.16+/-0.01 and 0.41+/-0.01 N/m, where larger spring constants were measured for Gram-positive cells than for Gram-negative cells. The nonlinear regime in the extension curve depended upon the biomolecules on the cell surface: the extension curves for the smooth Gram-negative bacterial strains with the longest lipopolysaccharides on their surface had a larger nonlinear region than the rough bacterial strain with shorter lipopolysaccharides on the surface. Adhesive forces between the retracting silicon nitride tip and the cells varied between cell types in terms of the force components, the distance components, and the number of adhesion events. The Gram-negative cells' adhesion to the tip showed the longest distance components, sometimes more than 1 microm, whereas the shortest distance adhesion events were measured between the two Gram-positive cell types and the tip. Fixation of free-swimming planktonic cells by NHS and EDC perturbed both the elasticity and the adhesive properties of the cells. Here we consider the biochemical meaning of the measured physical properties of simple biofilms and implications to the colonization of surfaces in the first stages of biofilm formation.

  12. On CD-AFM bias related to probe bending

    NASA Astrophysics Data System (ADS)

    Ukraintsev, V. A.; Orji, N. G.; Vorburger, T. V.; Dixson, R. G.; Fu, J.; Silver, R. M.

    2012-03-01

    Critical Dimension AFM (CD-AFM) is a widely used reference metrology. To characterize modern semiconductor devices, very small and flexible probes, often 15 nm to 20 nm in diameter, are now frequently used. Several recent publications have reported on uncontrolled and significant probe-to-probe bias variation during linewidth and sidewall angle measurements [1,2]. Results obtained in this work suggest that probe bending can be on the order of several nanometers and thus potentially can explain much of the observed CD-AFM probe-to-probe bias variation. We have developed and experimentally tested one-dimensional (1D) and two-dimensional (2D) models to describe the bending of cylindrical probes. An earlier 1D bending model reported by Watanabe et al. [3] was refined. Contributions from several new phenomena were considered, including: probe misalignment, diameter variation near the carbon nanotube tip (CNT) apex, probe bending before snapping, distributed van der Waals-London force, etc. The methodology for extraction of the Hamaker probe-surface interaction energy from experimental probe bending data was developed. To overcome limitations of the 1D model, a new 2D distributed force (DF) model was developed. Comparison of the new model with the 1D single point force (SPF) model revealed about 27 % difference in probe bending bias between the two. A simple linear relation between biases predicted by the 1D SPF and 2D DF models was found. This finding simplifies use of the advanced 2D DF model of probe bending in various CD-AFM applications. New 2D and three-dimensional (3D) CDAFM data analysis software is needed to take full advantage of the new bias correction modeling capabilities.

  13. Electron work functions of ferrite and austenite phases in a duplex stainless steel and their adhesive forces with AFM silicon probe.

    PubMed

    Guo, Liqiu; Hua, Guomin; Yang, Binjie; Lu, Hao; Qiao, Lijie; Yan, Xianguo; Li, Dongyang

    2016-02-12

    Local electron work function, adhesive force, modulus and deformation of ferrite and austenite phases in a duplex stainless steel were analyzed by scanning force microscopy. It is demonstrated that the austenite has a higher electron work function than the ferrite, corresponding to higher modulus, smaller deformation and larger adhesive force. Relevant first-principles calculations were conducted to elucidate the mechanism behind. It is demonstrated that the difference in the properties between austenite and ferrite is intrinsically related to their electron work functions.

  14. Tuning the instability in static mode atomic force spectroscopy as obtained in an AFM by applying an electric field between the tip and the substrate.

    PubMed

    Biswas, Soma; Raychaudhuri, A K; Sreeram, P A; Dietzel, Dirk

    2012-11-01

    We have investigated experimentally the role of cantilever instabilities in determination of the static mode force-distance curves in presence of a dc electric field. The electric field has been applied between the tip and the sample in an atomic force microscope working in ultra-high vacuum. We have shown how an electric field modifies the observed force (or cantilever deflection)-vs-distance curves, commonly referred to as the static mode force spectroscopy curves, taken using an atomic force microscope. The electric field induced instabilities shift the jump-into-contact and jump-off-contact points and also the deflection at these instability points. We explained the experimental results using a model of the tip-sample interaction and quantitatively established a relation between the observed static mode force spectroscopy curves and the applied electric field which modifies the effective tip-sample interaction in a controlled manner. The investigation establishes a way to quantitatively evaluate the electrostatic force in an atomic force microscope using the static mode force spectroscopy curves.

  15. Lubrication forces in air and accommodation coefficient measured by a thermal damping method using an atomic force microscope

    NASA Astrophysics Data System (ADS)

    Honig, Christopher D. F.; Sader, John E.; Mulvaney, Paul; Ducker, William A.

    2010-05-01

    By analysis of the thermally driven oscillation of an atomic force microscope (AFM) cantilever, we have measured both the damping and static forces acting on a sphere near a flat plate immersed in gas. By varying the proximity of the sphere to the plate, we can continuously vary the Knudsen number (Kn) at constant pressure, thereby accessing the slip flow, transition, and molecular regimes at a single pressure. We use measurements in the slip-flow regime to determine the combined slip length (on both sphere and plate) and the tangential momentum accommodation coefficient, σ . For ambient air at 1 atm between two methylated glass solids, the inverse damping is linear with separation and the combined slip length on both surfaces is 250nm±100nm , which corresponds to σ=0.77±0.24 . At small separations (Kn>0.4) the measured inverse damping is no longer linear with separation, and is observed to exhibit reasonable agreement with the Vinogradova formula.

  16. In situ nanomanipulators as a tool to separate individual tobermorite crystals for AFM studies.

    PubMed

    Yang, Tianhe; Holzer, Lorenz; Kägi, Ralf; Winnefeld, Frank; Keller, Bruno

    2007-10-01

    Atomic force microscopy (AFM) studies of cementitious materials are limited, mainly due to the lack of appropriate sample preparation techniques. In porous autoclaved aerated concrete (AAC), calcium silicate hydrate (C-S-H) is produced in its crystalline form, tobermorite. The crystals are lath-like with a length of several micrometers. In this work, we demonstrate the application of nanomanipulators to separate an individual tobermorite crystal from the bulk AAC for subsequent AFM investigations. The nanomanipulators are operated directly in an environmental scanning electron microscope (ESEM). We studied the interaction between moisture and the tobermorite surface under controlled relative humidity (RH). The results of topography and adhesion force measurements with AFM suggest that the surface of tobermorite is hydrophobic, which contrasts the macroscopic material properties (e.g. moisture transport in capillary pores).

  17. Measurement of no-slip and slip boundary conditions in confined Newtonian fluids using atomic force microscopy.

    PubMed

    Henry, C L; Craig, V S J

    2009-11-07

    We report measurements of slip length at smooth and rough hydrophilic silica surfaces, using the hydrodynamic force measurement atomic force microscope (AFM). There has been some debate in the literature as to whether the boundary condition between a solid and a wetting fluid is one of no-slip or partial-slip; in particular the results of Neto et al. (C. Neto, V. S. J. Craig and D. R. M. Williams, Eur. Phys. J. E, 2003, 12, S71-S74) and of Honig and Ducker (C. D. F. Honig and W. A. Ducker, Phys. Rev. Lett., 2007, 98, 028305) are inconsistent. Unexpectedly, the AFM cantilever geometry leads to a different measurement of hydrodynamic drainage force. Rectangular cantilevers give results consistent with a no-slip boundary condition on smooth and rough surfaces, while v-shaped cantilever measurements show variability and can produce a finding of apparent partial-slip, consistent with earlier results in the literature. Possible reasons for the discrepancy are discussed. Equilibrium force measurements show no cantilever shape dependence. We conclude that the appropriate boundary condition for aqueous solutions on smooth and nanoscale-rough hydrophilic surfaces is one of no-slip.

  18. Measurement of pull-off force on imprinted nanopatterns in an inert liquid

    NASA Astrophysics Data System (ADS)

    Kim, Jae Kwan; Eon Lee, Dong; Lee, Woo Il; Suh, Kahp Y.

    2010-07-01

    We report on the measurement of the pull-off force on nanoscale patterns that are formed by thermal nanoimprint lithography (t-NIL). Various patterns with feature sizes in the range of 50-900 nm were fabricated on silicon substrates using a rigiflex polymeric mold of ultraviolet curable polyurethane acrylate (PUA, Young's modulus ~ 1 GPa) or perfluoropolyether (PFPE, Young's modulus ~ 10.5 MPa) and a resist layer of polystyrene (PS) of three different molecular weights (Mw = 18 100, 211 600 and 2043 000). The pull-off force was measured in non-polar, non-reactive perfluorodecalin (PFD) solvent between a sharp atomic force microscopy (AFM) tip and an imprinted pattern. Our experimental data demonstrated that the measured pull-off forces were in good agreement with a simple adhesion model based on Lifshitz theory. Also, the force on the pressed region (valley) is higher than that on the cavity region (hill), with the ratio (hill/valley) decreasing with the decrease of pattern size and the increase of molecular weight. The confinement effects were more pronounced for smaller patterns (<300 nm) and higher molecular weights (Mw = 211 600 and 2043 000) presumably due to sluggish movement of polymer chains into nano-cavities. Finally, the experimental observations were compared with molecular dynamic simulations based on a simplified amorphous polyethylene model.

  19. Measuring Spatially Resolved Collective Ionic Transport on Lithium Battery Cathodes Using Atomic Force Microscopy.

    PubMed

    Mascaro, Aaron; Wang, Zi; Hovington, Pierre; Miyahara, Yoichi; Paolella, Andrea; Gariepy, Vincent; Feng, Zimin; Enright, Tyler; Aiken, Connor; Zaghib, Karim; Bevan, Kirk H; Grutter, Peter

    2017-07-12

    One of the main challenges in improving fast charging lithium-ion batteries is the development of suitable active materials for cathodes and anodes. Many materials suffer from unacceptable structural changes under high currents and/or low intrinsic conductivities. Experimental measurements are required to optimize these properties, but few techniques are able to spatially resolve ionic transport properties at small length scales. Here we demonstrate an atomic force microscope (AFM)-based technique to measure local ionic transport on LiFePO4 to correlate with the structural and compositional analysis of the same region. By comparing the measured values with density functional theory (DFT) calculations, we demonstrate that Coulomb interactions between ions give rise to a collective activation energy for ionic transport that is dominated by large phase boundary hopping barriers. We successfully measure both the collective activation energy and the smaller single-ion bulk hopping barrier and obtain excellent agreement with values obtained from our DFT calculations.

  20. Surface-charge differentiation of streptavidin and avidin by atomic force microscopy-force spectroscopy.

    PubMed

    Almonte, Lisa; Lopez-Elvira, Elena; Baró, Arturo M

    2014-09-15

    Chemical information can be obtained by using atomic force microscopy (AFM) and force spectroscopy (FS) with atomic or molecular resolution, even in liquid media. The aim of this paper is to demonstrate that single molecules of avidin and streptavidin anchored to a biotinylated bilayer can be differentiated by using AFM, even though AFM topographical images of the two proteins are remarkably alike. At physiological pH, the basic glycoprotein avidin is positively charged, whereas streptavidin is a neutral protein. This charge difference can be determined with AFM, which can probe electrostatic double-layer forces by using FS. The force curves, owing to the electrostatic interaction, show major differences when measured on top of each protein as well as on the lipid substrate. FS data show that the two proteins are negatively charged. Nevertheless, avidin and streptavidin can be clearly distinguished, thus demonstrating the sensitivity of AFM to detect small changes in the charge state of macromolecules.

  1. Nanomechanical probing of soft matter through hydrophobic AFM tips fabricated by two-photon polymerization.

    PubMed

    Suriano, Raffaella; Zandrini, Tommaso; De Marco, Carmela; Osellame, Roberto; Turri, Stefano; Bragheri, Francesca

    2016-04-15

    Atomic force microscopy (AFM) nanoindentation of soft materials is a powerful tool for probing mechanical properties of biomaterials. Though many results have been reported in this field over the last decade, adhesion forces between the tip and the sample hinder the elastic modulus measurement when hydrophilic soft samples are investigated. Here, two-photon polymerization (2PP) technology was used to fabricate hydrophobic perfluoropolyether-based AFM tips. The hydrophobic 2PP tips allowed us to overcome the limitations of commercial and functionalized tips as well as to successfully measure the elastic modulus of medically relevant soft materials in air. Our results obtained in the characterization of poly(dimethyl siloxane) and polyethylene glycol hydrogels showed lower adhesion forces over a larger measurement range when compared to measurements performed with commercial tips. The elastic moduli measured by means of hydrophobic 2PP AFM tips were also found to be comparable to those obtained using conventional techniques for macroscopic samples. We successfully showed that the hydrophobic AFM tips developed by this highly versatile technology enable the study of mechanical properties of soft matter, benefiting from reduced sample-tip interactions, and a custom-made shape and dimension of the tips.

  2. Nanomechanical probing of soft matter through hydrophobic AFM tips fabricated by two-photon polymerization

    NASA Astrophysics Data System (ADS)

    Suriano, Raffaella; Zandrini, Tommaso; De Marco, Carmela; Osellame, Roberto; Turri, Stefano; Bragheri, Francesca

    2016-04-01

    Atomic force microscopy (AFM) nanoindentation of soft materials is a powerful tool for probing mechanical properties of biomaterials. Though many results have been reported in this field over the last decade, adhesion forces between the tip and the sample hinder the elastic modulus measurement when hydrophilic soft samples are investigated. Here, two-photon polymerization (2PP) technology was used to fabricate hydrophobic perfluoropolyether-based AFM tips. The hydrophobic 2PP tips allowed us to overcome the limitations of commercial and functionalized tips as well as to successfully measure the elastic modulus of medically relevant soft materials in air. Our results obtained in the characterization of poly(dimethyl siloxane) and polyethylene glycol hydrogels showed lower adhesion forces over a larger measurement range when compared to measurements performed with commercial tips. The elastic moduli measured by means of hydrophobic 2PP AFM tips were also found to be comparable to those obtained using conventional techniques for macroscopic samples. We successfully showed that the hydrophobic AFM tips developed by this highly versatile technology enable the study of mechanical properties of soft matter, benefiting from reduced sample-tip interactions, and a custom-made shape and dimension of the tips.

  3. Conductance of AFM Deformed Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexei; Maiti, Amitesh; Anatram, M. P.; Biegel, Bryan (Technical Monitor)

    2002-01-01

    This viewgraph presentation provides information on the electrical conductivity of carbon nanotubes upon deformation by atomic force microscopy (AFM). The density of states and conductance were computed using four orbital tight-binding method with various parameterizations. Different chiralities develop bandgap that varies with chirality.

  4. Measuring graphene adhesion using atomic force microscopy with a microsphere tip

    NASA Astrophysics Data System (ADS)

    Jiang, Tao; Zhu, Yong

    2015-06-01

    Van der Waals adhesion between graphene and various substrates has an important impact on the physical properties, device applications and nanomanufacturing processes of graphene. Here we report a general, high-throughput and reliable method that can measure adhesion energies between ultraflat graphene and a broad range of materials using atomic force microscopy with a microsphere tip. In our experiments, only van der Waals force between the tip and a graphene flake is measured. The Maugis-Dugdale theory is employed to convert the measured adhesion force using AFM to the adhesion energy. The ultraflatness of monolayer graphene on mica eliminates the effect of graphene surface roughness on the adhesion, while roughness of the microsphere tip is addressed by the modified Rumpf model. Adhesion energies of monolayer graphene to SiO2 and Cu are obtained as 0.46 and 0.75 J m-2, respectively. This work provides valuable insight into the mechanism of graphene adhesion and can readily extend to the adhesion measurement for other 2D nanomaterials.Van der Waals adhesion between graphene and various substrates has an important impact on the physical properties, device applications and nanomanufacturing processes of graphene. Here we report a general, high-throughput and reliable method that can measure adhesion energies between ultraflat graphene and a broad range of materials using atomic force microscopy with a microsphere tip. In our experiments, only van der Waals force between the tip and a graphene flake is measured. The Maugis-Dugdale theory is employed to convert the measured adhesion force using AFM to the adhesion energy. The ultraflatness of monolayer graphene on mica eliminates the effect of graphene surface roughness on the adhesion, while roughness of the microsphere tip is addressed by the modified Rumpf model. Adhesion energies of monolayer graphene to SiO2 and Cu are obtained as 0.46 and 0.75 J m-2, respectively. This work provides valuable insight into the

  5. Reconstructing the distributed force on an atomic force microscope cantilever

    NASA Astrophysics Data System (ADS)

    Wagner, Ryan; Killgore, Jason

    2017-03-01

    A methodology is developed to reconstruct the force applied to an atomic force microscopy (AFM) cantilever given the shape in which it vibrates. This is accomplished by rewriting Bernoulli-Euler beam theory such that the force on the cantilever is approximated as a linear superposition of the theoretical cantilever eigenmodes. The weighting factors in this summation are calculated from the amplitude and phase measured along the length of the cantilever. The accuracy of the force reconstruction is shown to depend on the frequency at which the measurement is performed, the number of discrete points measured along the length of the cantilever, and the signal-to-noise ratio of the measured signal. In contrast to other AFM force reconstruction techniques, this method can reconstruct the distribution of force applied over the length of the AFM cantilever. However, this method performs poorly for localized forces applied to the cantilever, such as is typical of most tip-sample interaction forces. Proof of concept experiments are performed on an electrostatically excited cantilever and the expected force distribution is recovered. This force reconstruction technique offers previously unavailable insight into the distributed forces experienced by an AFM cantilever.

  6. Reconstructing the distributed force on an atomic force microscope cantilever.

    PubMed

    Wagner, Ryan; Killgore, Jason

    2017-03-10

    A methodology is developed to reconstruct the force applied to an atomic force microscopy (AFM) cantilever given the shape in which it vibrates. This is accomplished by rewriting Bernoulli-Euler beam theory such that the force on the cantilever is approximated as a linear superposition of the theoretical cantilever eigenmodes. The weighting factors in this summation are calculated from the amplitude and phase measured along the length of the cantilever. The accuracy of the force reconstruction is shown to depend on the frequency at which the measurement is performed, the number of discrete points measured along the length of the cantilever, and the signal-to-noise ratio of the measured signal. In contrast to other AFM force reconstruction techniques, this method can reconstruct the distribution of force applied over the length of the AFM cantilever. However, this method performs poorly for localized forces applied to the cantilever, such as is typical of most tip-sample interaction forces. Proof of concept experiments are performed on an electrostatically excited cantilever and the expected force distribution is recovered. This force reconstruction technique offers previously unavailable insight into the distributed forces experienced by an AFM cantilever.

  7. Molecular Mechanics of Single Protein Molecules Measured with the Atomic Force Microscope

    NASA Astrophysics Data System (ADS)

    Hansma, Paul K.

    2000-03-01

    After a short history of AFM development in our lab, including recent developments with small cantilevers, this talk will focus on 1) pulling single protein molecules to explore the forces involved in unfolding and 2) watching single protein molecules in action to learn how they function mechanically. 1) Pulling experiments on proteins used as marine adhesives in abalone shells and other biological composite materials reveal modules bound together by sacrificial bonds that are weaker than the backbone bonds in the polypeptide chain.1 These self-healing modules provide effective energy absorption and appear to be a real key to understanding the impressive fracture resistance of biological composite materials. For example, the abalone shell is 3000 times more fracture resistant than a single crystal of calcium carbonate, despite the fact that 97% of the mass of the shell is crystalline calcium carbonate. 2) It is becoming possible, again with AFMs, to learn how some enzymes, nature's nanomachines, do their exquisite materials synthesis and processing. The talk will focus on the chaperonin system of GroEL and GroES that processes incorrectly folded proteins and assists them in refolding correctly. It is becoming possible not only to see single molecule events such as the association and disassociation of the GroEL-Gro-ES complex, but also to measure potential energy functions for the molecules in various conformational states. These new measurements, together with detailed structural measurements from other techniques, give new clues about how these proteins use the energy of ATP to do their work. Since the AFMs of today are very far from fundamental limits, this is only the beginning. 1. B. L. Smith, T. E. Schaffer, M. Viani, J. B. Thompson, N. A. Frederick, J. Kindt, A. Belcher, G. D. Stucky, D. E. Morse and P. K. Hansma, Nature 399, 761 (1999)

  8. Effect of AFM probe geometry on visco-hyperelastic characterization of soft materials

    NASA Astrophysics Data System (ADS)

    Boccaccio, Antonio; Lamberti, Luciano; Papi, Massimiliano; De Spirito, Marco; Pappalettere, Carmine

    2015-08-01

    Atomic force microscopy (AFM) nanoindentation is very suited for nano- and microscale mechanical characterization of soft materials. Although the structural response of polymeric networks that form soft matter depends on viscous effects caused by the relative slippage of polymeric chains, the usual assumption made in the AFM-based characterization is that the specimen behaves as a purely elastic material and viscous forces are negligible. However, for each geometric configuration of the AFM tip, there will be a limit indentation rate above which viscous effects must be taken into account to correctly determine mechanical properties. A parametric finite element study conducted on 12 geometric configurations of a blunt cone AFM tip (overall, the study included about 200 finite element analyses) allowed us to determine the limit indentation rate for each configuration. The selected tip dimensions cover commercially available products and account for changes in tip geometry caused by serial measurements. Nanoindentation rates cover typical experimental conditions set in AFM bio-measurements on soft matter. Viscous effects appear to be more significant in the case of sharper tips. This implies that, if quantitative data on sample viscosity are not available, using a rounded indenter and carrying out experiments below the limit indentation rate will allow errors in the determination of mechanical properties to be minimized.

  9. Advanced atomic force microscopy techniques for characterizing the properties of cellulosic nanomaterials

    NASA Astrophysics Data System (ADS)

    Wagner, Ryan Bradley

    The measurement of nanomechanical properties is of great interest to science and industry. Key to progress in this area is the development of new techniques and analysis methods to identify, measure, and quantify these properties. In this dissertation, new data analysis methods and experimental techniques for measuring nanomechanical properties with the atomic force microscope (AFM) are considered. These techniques are then applied to the study of cellulose nanoparticles, an abundant, plant derived nanomaterial. Quantifying uncertainty is a prerequisite for the manufacture of reliable nano-engineered materials and products. However, rigorous uncertainty quantification is rarely applied for material property measurements with the AFM. A framework is presented to ascribe uncertainty to local nanomechanical properties of any nanoparticle or surface measured with the AFM by taking into account the main uncertainty sources inherent in such measurements. This method is demonstrated by quantifying uncertainty in force displacement AFM based measurements of the transverse elastic modulus of tunicate cellulose nanocrystals. Next, a more comprehensive study of different types of cellulose nanoparticles is undertaken with contact resonance (CR) AFM. CR-AFM is a dynamic AFM technique that exploits the resonance frequency of the AFM cantilever while it is permanent contact with the sample surface to predict nanomechanical properties. This technique offers improved measurement sensitivity over static AFM methods for some material systems. The effects of cellulose source material and processing technique on the properties of cellulose nanoparticles are compared. Finally, dynamic AFM cantilever vibration shapes are studied. Many AFM modes exploit the dynamic response of a cantilever in permanent contact with a sample to extract local material properties. A common challenge to these modes is that they assume a certain shape of cantilever vibration, which is not accessible in

  10. The Emergence of AFM Applications to Cell Biology: How new technologies are facilitating investigation of human cells in health and disease at the nanoscale.

    PubMed

    Yang, Ruiguo; Xi, Ning; Fung, Carmen Kar Man; Seiffert-Sinha, Kristina; Lai, King Wai Chiu; Sinha, Animesh A

    2011-01-01

    Atomic Force Microscopy (AFM) based nanorobotics has been used for building nano devices in semiconductors for almost a decade. Leveraging the unparallel precision localization capabilities of this technology, high resolution imaging and mechanical property characterization is now increasingly being performed in biological settings. AFM also offers the prospect for handling and manipulating biological materials at nanometer scale. It has unique advantages over other methods, permitting experiments in the liquid phase where physiological conditions can be maintained. Taking advantage of these properties, our group has visualized membrane and cytoskeletal structures of live cells by controlling the interaction force of the AFM tip with cellular components at the nN or sub-nN range. Cell stiffness changes were observed by statistically analyzing the Young's modulus values of human keratinocytes before and after specific antibody treatment. Furthermore, we used the AFM cantilever as a robotic arm for mechanical pushing, pulling and cutting to perform nanoscale manipulations of cell-associated structures. AFM guided nano-dissection, or nanosurgery was enacted on the cell in order to sever intermediate filaments connecting neighboring keratinocytes via sub 100 nm resolution cuts. Finally, we have used a functionalized AFM tip to probe cell surface receptors to obtain binding force measurements. This technique formed the basis for Single Molecule Force Spectroscopy (SMFS). In addition to enhancing our basic understanding of dynamic signaling events in cell biology, these advancements in AFM based biomedical investigations can be expected to facilitate the search for biomarkers related to disease diagnosis progress and treatment.

  11. Technique for measurement of magnetostriction in an individual nanowire using atomic force microscopy

    SciTech Connect

    Jin Park, Jung Flatau, Alison B.; Estrine, Eliot C.; Madhukar Reddy, Sai; Stadler, Bethanie J. H.

    2014-05-07

    We have investigated a method for measuring the dimensions of an individual multilayered Fe-Ga/Cu nanowire (NW) as it changes with induced magnetization. In this study, we demonstrate the proposed approach and establish this as a viable method for measuring the magnetostrictive behavior of an individual Fe-Ga/Cu NW using atomic force microscopy (AFM). When an external magnetic field (∼300 Oe) was applied perpendicular to the NW axis, the NW length appeared minimized. When a field (∼1000 Oe) was applied parallel to the NW axis, the height profile of the NW was found to be higher than in the case with no parallel external field. Since both ends of the NW were welded to the substrate, the magnetic field induced dimensional change of the NW caused deflection of the NW in the upward direction, which was significant enough to be detected by AFM. An average height difference of 15 nm was measured with and without an applied field which was then used to calculate the magnetostriction of the multilayered NW.

  12. Orthoclase surface structure dissolution measured in situ by x-ray reflectivity and atomic force microscopy.

    SciTech Connect

    Sturchio, N. C.; Fenter, P.; Cheng, L.; Teng, H.

    2000-11-28

    Orthoclase (001) surface topography and interface structure were measured during dissolution by using in situ atomic force microscopy (AFM) and synchrotrons X-ray reflectivity at pH 1.1-12.9 and T = 25-84 C. Terrace roughening at low pH and step motion at high pH were the main phenomena observed, and dissolution rates were measured precisely. Contrasting dissolution mechanisms are inferred for low- and high-pH conditions. These observations clarify differences in alkali feldspar dissolution mechanisms as a function of pH, demonstrate a new in situ method for measuring face-specific dissolution rates on single crystals, and improve the fundamental basis for understanding alkali feldspar weathering processes.

  13. A Simple Apparatus for Electrostatic Force Measurement.

    ERIC Educational Resources Information Center

    Hale, D. P.

    1981-01-01

    Describes the construction of an apparatus that demonstrates that electrostatic forces can be large and also gives some idea of dependence of electrostatic forces between charged parallel discs on potential differences and separation. (CS)

  14. An AFM-SIMS Nano Tomography Acquisition System

    NASA Astrophysics Data System (ADS)

    Swinford, Richard William

    An instrument, adding the capability to measure 3D volumetric chemical composition, has been constructed by me as a member of the Sanchez Nano Laboratory. The laboratory's in situ atomic force microscope (AFM) and secondary ion mass spectrometry systems (SIMS) are functional and integrated as one instrument. The SIMS utilizes a Ga focused ion beam (FIB) combined with a quadrupole mass analyzer. The AFM is comprised of a 6-axis stage, three coarse axes and three fine. The coarse stage is used for placing the AFM tip anywhere inside a (13x13x5 mm3) (xyz) volume. Thus the tip can be moved in and out of the FIB processing region with ease. The planned range for the Z-axis piezo was 60 microm, but was reduced after it was damaged from arc events. The repaired Z-axis piezo is now operated at a smaller nominal range of 18 microm (16.7 microm after pre-loading), still quite respectable for an AFM. The noise floor of the AFM is approximately 0.4 nm Rq. The voxel size for the combined instrument is targeted at 50 nm or larger. Thus 0.4 nm of xyz uncertainty is acceptable. The instrument has been used for analyzing samples using FIB beam currents of 250 pA and 5.75 nA. Coarse tip approaches can take a long time so an abbreviated technique is employed. Because of the relatively long thro of the Z piezo, the tip can be disengaged by deactivating the servo PID. Once disengaged, it can be moved laterally out of the way of the FIB-SIMS using the coarse stage. This instrument has been used to acquire volumetric data on AlTiC using AFM tip diameters of 18.9 nm and 30.6 nm. Acquisition times are very long, requiring multiple days to acquire a 50-image stack. New features to be added include auto stigmation, auto beam shift, more software automation, etc. Longer term upgrades to include a new lower voltage Z-piezo with strain-gauge feedback and a new design to extend the life for the coarse XY nano-positioners. This AFM-SIMS instrument, as constructed, has proven to be a great proof

  15. Measurements of the rotordynamic shroud forces for centrifugal pumps

    NASA Technical Reports Server (NTRS)

    Guinzburg, A.; Brennen, C. E.; Acosta, A. J.; Caughey, T. K.

    1990-01-01

    An experiment was designed to measure the rotordynamic shroud forces on a centrifugal pump impeller. The measurements were done for various whirl/impeller speed ratios and for different flow rates. A destabilizing tangential force was measured for small positive whirl ratios and this force decreased with increasing flow rate.

  16. Measurements of the rotordynamic shroud forces for centrifugal pumps

    NASA Technical Reports Server (NTRS)

    Guinzburg, A.; Brennen, C. E.; Acosta, A. J.; Caughey, T. K.

    1990-01-01

    An experiment was designed to measure the rotordynamic shroud forces on a centrifugal pump impeller. The measurements were done for various whirl/impeller speed ratios and for different flow rates. A destabilizing tangential force was measured for small positive whirl ratios and this force decreased with increasing flow rate.

  17. Following aptamer-ricin specific binding by single molecule recognition and force spectroscopy measurements

    USDA-ARS?s Scientific Manuscript database

    The atomic force microscope (AFM) recognition and dynamic force spectroscopy (DFS) experiments provide both morphology and interaction information of the aptamer and protein, which can be used for the future study on the thermodynamics and kinetics properties of ricin-aptamer/antibody interactions. ...

  18. Surface conformations of anti-ricin aptamer and its affinity to ricin determined by atomic force microscopy and surface plasmon resonance

    USDA-ARS?s Scientific Manuscript database

    The specific interactions between ricin and anti-ricin aptamer were measured with atomic force microscopy (AFM) and surface plasmon resonance (SPR) spectrometry and the results were compared. In AFM, a single-molecule experiment with ricin functionalized AFM tip was used for scanning the aptamer mol...

  19. Critical dimension AFM tip characterization and image reconstruction applied to the 45-nm node

    NASA Astrophysics Data System (ADS)

    Dahlen, Gregory; Osborn, Marc; Liu, Hao-Chih; Jain, Rohit; Foreman, William; Osborne, Jason R.

    2006-03-01

    Three significant critical dimension atomic force microscopy (CD AFM) advances are presented in this paper. First, scanning probe image reconstruction methodologies that were formerly limited to parabolic type tip shapes and single-valued surfaces (i.e., non-reentrant topography), are extended to multi-valued surfaces and reentrant tip geometries. This crucial step allows the elimination of image artifacts associated with CD AFM scanning of complex feature shapes using reentrant tips. Second, in situ AFM tip images are provided in an automated tool that enables full image reconstruction. Consequently, for the first time, the combination of in situ tip reconstruction with the inherent reference measurement qualities of the AFM and full morphology reconstruction allow CD AFM metrology essentially free of tip shape effects. CD AFM is now primarily driven by development of tip geometries that contact the entire specimen surface while retaining adequate tip lifetime. The background of CD AFM image dilation is described, and the limitations of "legacy" 1D image reconstruction ("tip width subtraction") are illustrated with idealized probe shapes. Initial validation of the automated software is provided by comparison with TEM micrographs. Tip characterizations are presented for a morphologically complex ~20 nm diameter carbon nanotube tip and reentrant silicon CD32 tips (tip width ~ 30nm). Finally, the capability for CD AFM to scan a reentrant sub-45 nm width trench is demonstrated. An EUV resist trench was scanned with a CD32 tip (tip width = 27.4 nm). Minimum CD ranged from 42 to 45 nm. Reentrant image reconstruction is shown for the scan cross-section.

  20. T cell activation requires force generation

    PubMed Central

    Hu, Kenneth H.

    2016-01-01

    Triggering of the T cell receptor (TCR) integrates both binding kinetics and mechanical forces. To understand the contribution of the T cell cytoskeleton to these forces, we triggered T cells using a novel application of atomic force microscopy (AFM). We presented antigenic stimulation using the AFM cantilever while simultaneously imaging with optical microscopy and measuring forces on the cantilever. T cells respond forcefully to antigen after calcium flux. All forces and calcium responses were abrogated upon treatment with an F-actin inhibitor. When we emulated the forces of the T cell using the AFM cantilever, even these actin-inhibited T cells became activated. Purely mechanical stimulation was not sufficient; the exogenous forces had to couple through the TCR. These studies suggest a mechanical–chemical feedback loop in which TCR-triggered T cells generate forceful contacts with antigen-presenting cells to improve access to antigen. PMID:27241914

  1. Direct quantitative measurement of the C═O⋅⋅⋅H–C bond by atomic force microscopy

    PubMed Central

    Kawai, Shigeki; Nishiuchi, Tomohiko; Kodama, Takuya; Spijker, Peter; Pawlak, Rémy; Meier, Tobias; Tracey, John; Kubo, Takashi; Meyer, Ernst; Foster, Adam S.

    2017-01-01

    The hydrogen atom—the smallest and most abundant atom—is of utmost importance in physics and chemistry. Although many analysis methods have been applied to its study, direct observation of hydrogen atoms in a single molecule remains largely unexplored. We use atomic force microscopy (AFM) to resolve the outermost hydrogen atoms of propellane molecules via very weak C═O⋅⋅⋅H–C hydrogen bonding just before the onset of Pauli repulsion. The direct measurement of the interaction with a hydrogen atom paves the way for the identification of three-dimensional molecules such as DNAs and polymers, building the capabilities of AFM toward quantitative probing of local chemical reactivity. PMID:28508080

  2. [AFM fishing of proteins under impulse electric field].

    PubMed

    Ivanov, Yu D; Pleshakova, T O; Malsagova, K A; Kaysheva, A L; Kopylov, A T; Izotov, A A; Tatur, V Yu; Vesnin, S G; Ivanova, N D; Ziborov, V S; Archakov, A I

    2016-05-01

    A combination of (atomic force microscopy)-based fishing (AFM-fishing) and mass spectrometry allows to capture protein molecules from solutions, concentrate and visualize them on an atomically flat surface of the AFM chip and identify by subsequent mass spectrometric analysis. In order to increase the AFM-fishing efficiency we have applied pulsed voltage with the rise time of the front of about 1 ns to the AFM chip. The AFM-chip was made using a conductive material, highly oriented pyrolytic graphite (HOPG). The increased efficiency of AFM-fishing has been demonstrated using detection of cytochrome b5 protein. Selection of the stimulating pulse with a rise time of 1 ns, corresponding to the GHz frequency range, by the effect of intrinsic emission from water observed in this frequency range during water injection into the cell.

  3. Development of a commercially viable piezoelectric force sensor system for static force measurement

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Luo, Xinwei; Liu, Jingcheng; Li, Min; Qin, Lan

    2017-09-01

    A compensation method for measuring static force with a commercial piezoelectric force sensor is proposed to disprove the theory that piezoelectric sensors and generators can only operate under dynamic force. After studying the model of the piezoelectric force sensor measurement system, the principle of static force measurement using a piezoelectric material or piezoelectric force sensor is analyzed. Then, the distribution law of the decay time constant of the measurement system and the variation law of the measurement system’s output are studied, and a compensation method based on the time interval threshold Δ t and attenuation threshold Δ {{u}th} is proposed. By calibrating the system and considering the influences of the environment and the hardware, a suitable Δ {{u}th} value is determined, and the system’s output attenuation is compensated based on the Δ {{u}th} value to realize the measurement. Finally, a static force measurement system with a piezoelectric force sensor is developed based on the compensation method. The experimental results confirm the successful development of a simple compensation method for static force measurement with a commercial piezoelectric force sensor. In addition, it is established that, contrary to the current perception, a piezoelectric force sensor system can be used to measure static force through further calibration.

  4. Multifrequency AFM: from origins to convergence.

    PubMed

    Santos, Sergio; Lai, Chia-Yun; Olukan, Tuza; Chiesa, Matteo

    2017-04-20

    Since the inception of the atomic force microscope (AFM) in 1986, influential papers have been presented by the community and tremendous advances have been reported. Being able to routinely image conductive and non-conductive surfaces in air, liquid and vacuum environments with nanoscale, and sometimes atomic, resolution, the AFM has long been perceived by many as the instrument to unlock the nanoscale. From exploiting a basic form of Hooke's law to interpret AFM data to interpreting a seeming zoo of maps in the more advanced multifrequency methods however, an inflection point has been reached. Here, we discuss this evolution, from the fundamental dilemmas that arose in the beginning, to the exploitation of computer sciences, from machine learning to big data, hoping to guide the newcomer and inspire the experimenter.

  5. Measurement of Surface Photovoltage by Atomic Force Microscopy under Pulsed Illumination

    NASA Astrophysics Data System (ADS)

    Schumacher, Zeno; Miyahara, Yoichi; Spielhofer, Andreas; Grutter, Peter

    2016-04-01

    Measuring the structure-function relation in photovoltaic materials has been a major drive for atomic force microscopy (AFM) and Kelvin-probe force microscopy (KPFM). The local surface photovoltage (SPV) is measured as the change in contact potential difference (CPD) between the tip and sample upon illumination. The quantities of interest that one will like to correlate with the structure are the decay times of SPV and/or its wavelength dependence. KPFM depends on the tip and sample potential; therefore, SPV is prone to tip changes, rendering an accurate measurement of SPV challenging. We present a measurement technique which allows us to directly measure the difference in the CPD between illuminated and dark states and, thus, SPV as well as the capacitance derivative by using pulsed illumination. The variation of the measured SPV can be minimized due to the time-domain measurement, allowing accurate measurements of the SPV. The increased accuracy enables the systematic comparison of SPV across different measurement setups and excitation conditions (e.g., wavelength dependence and decay time of SPV).

  6. Lateral force microscope calibration using a modified atomic force microscope cantilever

    SciTech Connect

    Reitsma, M. G.

    2007-10-15

    A proof-of-concept study is presented for a prototype atomic force microscope (AFM) cantilever and associated calibration procedure that provide a path for quantitative friction measurement using a lateral force microscope (LFM). The calibration procedure is based on the method proposed by Feiler et al. [Rev. Sci. Instrum. 71, 2746 (2000)] but allows for calibration and friction measurements to be carried out in situ and with greater precision. The modified AFM cantilever is equipped with lateral lever arms that facilitate the application of normal and lateral forces, comparable to those acting in a typical LFM friction experiment. The technique allows the user to select acceptable precision via a potentially unlimited number of calibration measurements across the full working range of the LFM photodetector. A microfabricated version of the cantilever would be compatible with typical commercial AFM instrumentation and allow for common AFM techniques such as topography imaging and other surface force measurements to be performed.

  7. Atomic force microscopy measurements of bacterial adhesion and biofilm formation onto clay-sized particles

    PubMed Central

    Huang, Qiaoyun; Wu, Huayong; Cai, Peng; Fein, Jeremy B.; Chen, Wenli

    2015-01-01

    Bacterial adhesion onto mineral surfaces and subsequent biofilm formation play key roles in aggregate stability, mineral weathering, and the fate of contaminants in soils. However, the mechanisms of bacteria-mineral interactions are not fully understood. Atomic force microscopy (AFM) was used to determine the adhesion forces between bacteria and goethite in water and to gain insight into the nanoscale surface morphology of the bacteria-mineral aggregates and biofilms formed on clay-sized minerals. This study yields direct evidence of a range of different association mechanisms between bacteria and minerals. All strains studied adhered predominantly to the edge surfaces of kaolinite rather than to the basal surfaces. Bacteria rarely formed aggregates with montmorillonite, but were more tightly adsorbed onto goethite surfaces. This study reports the first measured interaction force between bacteria and a clay surface, and the approach curves exhibited jump-in events with attractive forces of 97 ± 34 pN between E. coli and goethite. Bond strengthening between them occurred within 4 s to the maximum adhesion forces and energies of −3.0 ± 0.4 nN and −330 ± 43 aJ (10−18 J), respectively. Under the conditions studied, bacteria tended to form more extensive biofilms on minerals under low rather than high nutrient conditions. PMID:26585552

  8. Atomic force microscopy measurements of bacterial adhesion and biofilm formation onto clay-sized particles

    NASA Astrophysics Data System (ADS)

    Huang, Qiaoyun; Wu, Huayong; Cai, Peng; Fein, Jeremy B.; Chen, Wenli

    2015-11-01

    Bacterial adhesion onto mineral surfaces and subsequent biofilm formation play key roles in aggregate stability, mineral weathering, and the fate of contaminants in soils. However, the mechanisms of bacteria-mineral interactions are not fully understood. Atomic force microscopy (AFM) was used to determine the adhesion forces between bacteria and goethite in water and to gain insight into the nanoscale surface morphology of the bacteria-mineral aggregates and biofilms formed on clay-sized minerals. This study yields direct evidence of a range of different association mechanisms between bacteria and minerals. All strains studied adhered predominantly to the edge surfaces of kaolinite rather than to the basal surfaces. Bacteria rarely formed aggregates with montmorillonite, but were more tightly adsorbed onto goethite surfaces. This study reports the first measured interaction force between bacteria and a clay surface, and the approach curves exhibited jump-in events with attractive forces of 97 ± 34 pN between E. coli and goethite. Bond strengthening between them occurred within 4 s to the maximum adhesion forces and energies of -3.0 ± 0.4 nN and -330 ± 43 aJ (10-18 J), respectively. Under the conditions studied, bacteria tended to form more extensive biofilms on minerals under low rather than high nutrient conditions.

  9. Quantitative nano-mechanics of biological cells with AFM

    NASA Astrophysics Data System (ADS)

    Sokolov, Igor

    2013-03-01

    The importance of study of living cells is hard to overestimate. Cell mechanics is a relatively young, yet not a well-developed area. Besides just a fundamental interest, large practical need has emerged to measure cell mechanics quantitatively. Recent studies revealed a significant correlation between stiffness of biological cells and various human diseases, such as cancer, malaria, arthritis, and even aging. However, really quantitative studies of mechanics of biological cells are virtually absent. It is not even clear if the cell, being a complex and heterogeneous object, can be described by the elastic modulus at all. Atomic force microscopy (AFM) is a natural instrument to study properties of cells in their native environments. Here we will demonstrate that quantitative measurements of elastic modulus of cells with AFM are possible. Specifically, we will show that the ``cell body'' (cell without ``brush'' surface layer, a non-elastic layer surrounding cells) typically demonstrates the response of a homogeneous elastic medium up to the deformation of 10-20%, but if and only if a) the cellular brush layer is taken into account, b) rather dull AFM probes are used. This will be justified with the help of the strong condition of elastic behavior of material: the elastic modulus is shown to be independent on the indentation depth. We will also demonstrate that an attempt either to ignore the brush layer or to use sharp AFM probes will result in the violation of the strong condition, which implies impossibility to use the concept of the elastic modulus to describe cell mechanics in such experiments. Examples of quantitative measurements of the Young's modulus of the cell body and the cell brush parameters will be given for various cells. Address when submitting: Clarkson University, Potsdam, NY 13699

  10. Diagnosis of cervical cancer cell taken from scanning electron and atomic force microscope images of the same patients using discrete wavelet entropy energy and Jensen Shannon, Hellinger, Triangle Measure classifier.

    PubMed

    Aytac Korkmaz, Sevcan

    2016-05-05

    The aim of this article is to provide early detection of cervical cancer by using both Atomic Force Microscope (AFM) and Scanning Electron Microscope (SEM) images of same patient. When the studies in the literature are examined, it is seen that the AFM and SEM images of the same patient are not used together for early diagnosis of cervical cancer. AFM and SEM images can be limited when using only one of them for the early detection of cervical cancer. Therefore, multi-modality solutions which give more accuracy results than single solutions have been realized in this paper. Optimum feature space has been obtained by Discrete Wavelet Entropy Energy (DWEE) applying to the 3×180 AFM and SEM images. Then, optimum features of these images are classified with Jensen Shannon, Hellinger, and Triangle Measure (JHT) Classifier for early diagnosis of cervical cancer. However, between classifiers which are Jensen Shannon, Hellinger, and triangle distance have been validated the measures via relationships. Afterwards, accuracy diagnosis of normal, benign, and malign cervical cancer cell was found by combining mean success rates of Jensen Shannon, Hellinger, and Triangle Measure which are connected with each other. Averages of accuracy diagnosis for AFM and SEM images by averaging the results obtained from these 3 classifiers are found as 98.29% and 97.10%, respectively. It has been observed that AFM images for early diagnosis of cervical cancer have higher performance than SEM images. Also in this article, surface roughness of malign AFM images in the result of the analysis made for the AFM images, according to the normal and benign AFM images is observed as larger, If the volume of particles has found as smaller.

  11. Cryogenic AFM-STM for mesoscopic physics

    NASA Astrophysics Data System (ADS)

    Le Sueur, H.

    Electronic spectroscopy based on electron tunneling gives access to the electronic density of states (DOS) in conductive materials, and thus provides detailed information about their electronic properties. During this thesis work, we have developed a microscope in order to perform spatially resolved (10 nm) tunneling spectroscopy, with an unprecedented energy resolution (10 μeV), on individual nanocircuits. This machine combines an Atomic Force Microscope (AFM mode) together with a Scanning Tunneling Spectroscope (STS mode) and functions at very low temperatures (30 mK). In the AFM mode, the sample topography is recorded using a piezoelectric quartz tuning fork, which allows us to locate and image nanocircuits. Tunneling can then be performed on conductive areas of the circuit. With this microscope, we have measured the local DOS in a hybrid Superconductor-Normal metal-Superconductor (S-N-S) structure. In such circuit, the electronic properties of N and S are modified by the superconducting proximity effect. In particular, for short N wires, we have observed a minigap independent of position in the DOS of the N wire, as was previously predicted. Moreover, when varying the superconducting phase difference between the S electrodes, we have measured the modification of the minigap and its disappearance when the phase difference equals π. Our experimental results for the DOS, and its dependences (on phase, position, N length), are quantitatively accounted for by the quasiclassical theory of superconductivity. Some predictions of this theory are observed for the first time. La spectroscopie électronique basée sur l'effet tunnel donne accès à la densité d'états des électrons (DOS) dans les matériaux conducteurs, et renseigne ainsi en détail sur leurs propriétés électroniques. Au cours de cette thèse, nous avons développé un microscope permettant d'effectuer la spectroscopie tunnel résolue spatialement (10 nm) de nanocircuits individuels, avec une r

  12. High-speed AFM probe with micromachined membrane tip

    NASA Astrophysics Data System (ADS)

    Kim, Byungki; Kwak, Byung Hyung; Jamil, Faize

    2008-08-01

    This paper presents a micromachined silicon membrane type AFM tip designed to move nearly 1µm by electrostatic force. Since the tip can be vibrated in small amplitude with AC voltage input and can be displaced up to 1μm by DC voltage input, an additional piezo actuator is not required for scanning of submicron features. The micromachined membrane tips are designed to have 100 kHz ~ 1 MHz resonant frequency. Displacement of the membrane tip is measured by an optical interferometer using a micromachined diffraction grating on a quartz wafer which is positioned behind the membrane tip.

  13. Tip-force induced surface deformation in the layered commensurate tellurides NbA xTe 2 (A = Si, Ge) during atomic force microscopy measurements

    NASA Astrophysics Data System (ADS)

    Bengel, H.; Cantow, H.-J.; Magonov, S. N.; Monconduit, L.; Evain, M.; Whangbo, M.-H.

    1994-12-01

    The Te-atom surfaces of commensurate layered tellurides NbA xTe 2 ( A = Si, x = {1}/{2}; A = Ge, x = {1}/{3}, {2}/{5}, {3}/{7}) were examined by atomic force microscopy (AFM) at different applied forces. Although the bulk crystal structures show a negligible height corrugation in the surface Te-atom sheets, the AFM images exhibit dark linear patterns that become strongly pronounced at high applied forces (several hundreds nN). This feature comes about because the tip-sample force interactions induce a surface corrugation according to the local hardness variation of the surface.

  14. Cantilevers orthodontics forces measured by fiber sensors

    NASA Astrophysics Data System (ADS)

    Schneider, Neblyssa; Milczewski, Maura S.; de Oliveira, Valmir; Guariza Filho, Odilon; Lopes, Stephani C. P. S.; Kalinowski, Hypolito J.

    2015-09-01

    Fibers Bragg Gratings were used to evaluate the transmission of the forces generates by orthodontic mechanic based one and two cantilevers used to move molars to the upright position. The results showed levels forces of approximately 0,14N near to the root of the molar with one and two cantilevers.

  15. Rigid two-axis MEMS force plate for measuring cellular traction force

    NASA Astrophysics Data System (ADS)

    Takahashi, Hidetoshi; Jung, Uijin G.; Kan, Tetsuo; Tsukagoshi, Takuya; Matsumoto, Kiyoshi; Shimoyama, Isao

    2016-10-01

    Cellular traction force is one of the important factors for understanding cell behaviors, such as spreading, migration and differentiation. Cells are known to change their behavior according to the mechanical stiffness of the environment. However, the measurement of cell traction forces on a rigid environment has remained difficult. This paper reports a micro-electromechanical systems (MEMS) force plate that provides a cellular traction force measurement on a rigid substrate. Both the high force sensitivity and high stiffness of the substrate were obtained using piezoresistive sensing elements. The proposed force plate consists of a 70 µm  ×  15 µm  ×  5 µm base as the substrate for cultivating a bovine aortic smooth muscle cell, and the supporting beams with piezoresistors on the sidewall and the surface were used to measure the forces in both the horizontal and vertical directions. The spring constant and force resolution of the fabricated force plate in the horizontal direction were 0.2 N m-1 and less than 0.05 µN, respectively. The cell traction force was measured, and the traction force increased by approximately 1 µN over 30 min. These results demonstrate that the proposed force plate is applicable as an effective traction force measurement.

  16. Measurement of dynamic bite force during mastication.

    PubMed

    Shimada, A; Yamabe, Y; Torisu, T; Baad-Hansen, L; Murata, H; Svensson, P

    2012-05-01

    Efficient mastication of different types and size of food depends on fast integration of sensory information from mechanoreceptors and central control mechanisms of jaw movements and applied bite force. The neural basis underlying mastication has been studied for decades but little progress in understanding the dynamics of bite force has been made mainly due to technical limitations of bite force recorders. The aims of this study were to develop a new intraoral bite force recorder which would allow the study of natural mastication without an increase in the occlusal vertical dimension and subsequently to analyze the relation between electromyographic (EMG) activity of jaw-closing muscles, jaw movements and bite force during mastication of five different types of food. Customized force recorders based on strain gauge sensors were fitted to the upper and lower molar teeth on the preferred chewing side in fourteen healthy and dentate subjects (21-39 years), and recordings were carried out during voluntary mastication of five different kinds of food. Intraoral force recordings were successively obtained from all subjects. anova showed that impulse of bite force as well as integrated EMG was significantly influenced by food (P<0·05), while time-related parameters were significantly affected by chewing cycles (P<0·001). This study demonstrates that intraoral force recordings are feasible and can provide new information on the dynamics of human mastication with direct implications for oral rehabilitation. We also propose that the control of bite force during mastication is achieved by anticipatory adjustment and encoding of bolus characteristics.

  17. Measuring the Magnetic Force on a Current-Carrying Conductor.

    ERIC Educational Resources Information Center

    Herreman, W.; Huysentruyt, R.

    1995-01-01

    Describes a fast and simple method for measuring the magnetic force acting on a current-carrying conductor using a digital balance. Discusses the influence of current intensity and wire length on the magnetic force on the conductor. (JRH)

  18. Dynamometer for measuring machining forces in two perpendicular directions

    NASA Technical Reports Server (NTRS)

    Sutherland, I. A.

    1974-01-01

    Published report discusses development of two-component force dynamometer which is used for dynamic measurement of machining forces in cutting and thrust directions. Resulting data suggest that faster metal-cutting machines may be developed that have reduced vibrations.

  19. Applications of AFM for atomic manipulation and spectroscopy

    NASA Astrophysics Data System (ADS)

    Custance, Oscar

    2009-03-01

    Since the first demonstration of atom-by-atom assembly [1], atomic manipulation with scanning tunneling microscopy has yielded stunning realizations in nanoscience. A new exciting panorama has been recently opened with the possibility of manipulating atoms at surfaces using atomic force microscopy (AFM) [2-5]. In this talk, we will present two different approaches that enable patterning structures at semiconductor surfaces by manipulating individual atoms with AFM and at room temperature [2, 3]. We will discuss the physics behind each protocol through the analysis of the measured forces associated with these manipulations [3-5]. Another challenging issue in scanning probe microscopy is the ability to disclose the local chemical composition of a multi-element system at atomic level. Here, we will introduce a single-atom chemical identification method, which is based on detecting the forces between the outermost atom of the AFM tip and the atoms at a surface [6]. We demonstrate this identification procedure on a particularly challenging system, where any discrimination attempt based solely on topographic measurements would be impossible to achieve. [4pt] References: [0pt] [1] D. M. Eigler and E. K. Schweizer, Nature 344, 524 (1990); [0pt] [2] Y. Sugimoto, M. Abe, S. Hirayama, N. Oyabu, O. Custance and S. Morita, Nature Materials 4, 156 (2005); [0pt] [3] Y. Sugimoto, P. Pou, O. Custance, P. Jelinek, M. Abe, R. Perez and S. Morita, Science 322, 413 (2008); [0pt] [4] Y. Sugimoto, P. Jelinek, P. Pou, M. Abe, S. Morita, R. Perez and O. Custance, Phys. Rev. Lett. 98, 106104 (2007); [0pt] [5] M. Ternes, C. P. Lutz, C. F. Hirjibehedin, F. J. Giessibl and A. J. Heinrich, Science 319, 1066 (2008); [0pt] [6] Y. Sugimoto, P. Pou, M. Abe, P. Jelinek, R. Perez, S. Morita, and O. Custance, Nature 446, 64 (2007)

  20. Direct Measurement of Lateral Force Using Dual Cantilevers

    PubMed Central

    Ishikawa, Makoto; Ichikawa, Masaya; Miura, Kouji

    2012-01-01

    We have constructed an experimental system to measure a piconewton lateral force using dual cantilevers which cross with each other. The resolution of the lateral force is estimated to be 3.3 p ± 0.2 pN, which is comparable to forces due to thermal fluctuation. This experimental apparatus works so easily that it will enable us to determine forces during nano-manipulation and nano-tribological measurements. PMID:22737001

  1. Measurement of Cantilever's Spring Constant with Cms Electrostatic Force Standard

    NASA Astrophysics Data System (ADS)

    Chen, Sheng-Jui; Pan, Sheau-Shi; Yeh, Yu-Shan; Lin, Yi-Ching

    The mechanical property is one of the important parameters for evaluating micro/nano-scale materials. The measurement of micro/nano-mechanical property usually involves measurements of small displacement and force. To provide a traceable force standard in micro/nano-newton level, we have developed a force measurement system based on electrostatic sensing and actuation techniques. The system mainly consists of a monolithic flexure stage, a three-electrode capacitor and a digital controller. The three-electrode capacitor is utilized as a position sensor, and at the same time an electrostatic force actuator. The force under measurement is balanced by a compensation electrostatic force which is traceable to electrical and length standards. A commercial cantilever-type micro-force probe was used in this calibration experiment. The force probe was brought to contact with and press into the load button (a ruby sphere) of the force measurement system by a closed-loop controlled z-scanner. The spring constant was obtained from the average slope determined from measured force-displacement curves and was found to be (2.26 ± 0.01) N/m where the given uncertainty is one standard deviation. We have successfully demonstrated the calibration of the microforce probe using our self-developed electrostatic sensing and actuating force measurement system. The measured spring constant is consistent with the manufacturer's specification, and the relative standard deviation is less than 0.5%. Note from Publisher: This article contains the abstract only.

  2. Application of protein-coated scanning force microscopy probes in measurements of surface affinity to protein adsorption

    NASA Astrophysics Data System (ADS)

    Chen, X.; Patel, N.; Davies, M. C.; Roberts, C. J.; Tendler, S. J. B.; Williams, P. M.; Davies, J.; Dawkes, A. C.; Edwards, J. C.

    Scanning force microscopy (SFM, also called atomic force microscopy, or AFM) has been applied to rapid in situ quantification of surface affinity to protein. The surface affinity was measured by adhesion force measurement with protein-coated SFM probes. Experiments on three model surfaces, -CH3, -COOH and -NH2 terminated self-assembled monolayer (SAM) surfaces, have been performed at pH 4.5 and pH 6.8 environments, using probes covalently coated with bovine serum albumin (BSA). Results show that the hydrophobic -CH3 surface possesses the highest affinity and is independent of pH values. The -COOH and -NH2 surfaces possess pH-dependent affinities. A higher affinity was observed on charged surfaces to proteins with dissimilar net surface charges than with similar net surface charges. Results are corroborated to previous elutability studies on similar systems.

  3. Versatile method for AFM-tip functionalization with biomolecules: fishing a ligand by means of an in situ click reaction

    NASA Astrophysics Data System (ADS)

    Kumar, Rakesh; Ramakrishna, Shivaprakash N.; Naik, Vikrant V.; Chu, Zonglin; Drew, Michael E.; Spencer, Nicholas D.; Yamakoshi, Yoko

    2015-04-01

    A facile and universal method for the functionalization of an AFM tip has been developed for chemical force spectroscopy (CFS) studies of intermolecular interactions of biomolecules. A click reaction between tripod-acetylene and an azide-linker-ligand molecule was successfully carried out on the AFM tip surface and used for the CFS study of ligand-receptor interactions.A facile and universal method for the functionalization of an AFM tip has been developed for chemical force spectroscopy (CFS) studies of intermolecular interactions of biomolecules. A click reaction between tripod-acetylene and an azide-linker-ligand molecule was successfully carried out on the AFM tip surface and used for the CFS study of ligand-receptor interactions. Electronic supplementary information (ESI) available: Experimental details with synthesis and characterization of compounds. Procedures for modifications of Au surfaces and AFM tips. AFM images and full PM-IRRAS spectra of modified surfaces. Detailed procedure for QCM measurement. A table showing ligand-receptor interaction probability. NMR, IR and MS charts. See DOI: 10.1039/c5nr01495f

  4. Direct measurements of drag forces in C. elegans crawling locomotion.

    PubMed

    Rabets, Yegor; Backholm, Matilda; Dalnoki-Veress, Kari; Ryu, William S

    2014-10-21

    With a simple and versatile microcantilever-based force measurement technique, we have probed the drag forces involved in Caenorhabditis elegans locomotion. As a worm crawls on an agar surface, we found that substrate viscoelasticity introduces nonlinearities in the force-velocity relationships, yielding nonconstant drag coefficients that are not captured by original resistive force theory. A major contributing factor to these nonlinearities is the formation of a shallow groove on the agar surface. We measured both the adhesion forces that cause the worm's body to settle into the agar and the resulting dynamics of groove formation. Furthermore, we quantified the locomotive forces produced by C. elegans undulatory motions on a wet viscoelastic agar surface. We show that an extension of resistive force theory is able to use the dynamics of a nematode's body shape along with the measured drag coefficients to predict the forces generated by a crawling nematode.

  5. Enabling accurate gate profile control with inline 3D-AFM

    NASA Astrophysics Data System (ADS)

    Bao, Tianming; Lopez, Andrew; Dawson, Dean

    2009-05-01

    The logic and memory semiconductor device technology strives to follow the aggressive ITRS roadmap. The ITRS calls for increased 3D metrology to meet the demand for tighter process control at 45nm and 32nm nodes. In particular, gate engineering has advanced to a level where conventional metrology by CD-SEM and optical scatterometry (OCD) faces fundamental limitations without involvement of 3D atomic force microscope (3D-AFM or CD-AFM). This paper reports recent progress in 3D-AFM to address the metrology need to control gate dimension in MOSFET transistor formation. 3D-AFM metrology measures the gate electrode at post-etch with the lowest measurement uncertainty for critical gate geometry, including linewidth, sidewall profile, sidewall angle (SWA), line width roughness (LWR), and line edge roughness (LER). 3D-AFM enables accurate gate profile control in three types of metrology applications: reference metrology to validate CD-SEM and OCD, inline depth or 3D monitoring, or replacing TEM for 3D characterization for engineering analysis.

  6. AFM Bio-Mechanical Investigation of the Taxol Treatment of Breast Cancer Cells

    NASA Astrophysics Data System (ADS)

    Smith, Dylan; Patel, Dipika; Monjaraz, Fernando; Park, Soyeun

    2009-10-01

    Cancerous cells are known to be softer and easier to deform than normal cells. Changes in mechanical properties originate from the alteration of the actin cytoskeleton. The mechanism of cancer treatment using Taxol is related to the stabilization of microtubules. It has been shown that Taxol binds to polymerized tublin, stabilizes it against disassembly, and consequently inhibits cell division. An accurate quantitative study still lacks to relate the microtubule stabilizing effect with the cellular mechanical properties. We utilized our AFM to study changes in elastic properties of treated breast cancer cells. The AFM has several advantages for precise force measurements on a localized region with nanometer lateral dimension. In previous AFM studies, measurable contributions from the underlying hard substrate have been an obstacle to accurately determine the properties on thin samples. We modified our AFM tip to obtain the exact deformation profile as well as reducing the high stresses produced. We have probed depth profiles of mechanical properties of the taxol-treated and untreated cells by varying the indentation depth of the AFM-nanoindenting experiments.

  7. Determination of the surface free energy of crystalline and amorphous lactose by atomic force microscopy adhesion measurement.

    PubMed

    Zhang, Jianxin; Ebbens, Stephen; Chen, Xinyong; Jin, Zheng; Luk, Shen; Madden, Claire; Patel, Nikin; Roberts, Clive J

    2006-02-01

    This study was conducted to accurately measure the dispersive surface free energy of lactose solids in ordered and disordered states. Atomic force microscopy (AFM) was used to determine the contact adhesion force between an AFM tip and lactose under low humidity (ca. 1% RH). The geometry of the tip contacting apex was characterized by scanning a porous aluminum film with ultrasharp spikes (radius 2-3 nm). A sphere vs. flat surface model was employed to relate the adhesion force determined to the surface energy based upon the Johnson-Kendal-Roberts theory. Spray-dried amorphous lactose in a compressed-disk form and single crystals of alpha-lactose monohydrate were prepared as model samples. The condition of the smooth sample surface and sphere-shaped tip used was shown to be appropriate to the application of the JKR model. The surface energy of crystalline [(0,-1,-1) face] and amorphous lactose was determined to be 23.3 +/- 2.3 and 57.4 +/- 7.9 mJ m(-2), respectively. We have demonstrated the capability of AFM to measure the dispersive surface free energy of pharmaceutical materials directly through a blank probe at the nanometer scale. These data, although consistent with results from more traditional methods, illustrate some unique attributes of this approach, namely, surface energies are directly derived from solid-solid interactions, measurements may be made on specific crystalline faces, and the potential exists to identify the submicron heterogeneity of organic solids in terms of their molecular energy states (such as ordered and disordered lactose).

  8. Atomically resolved force microscopy at room temperature

    SciTech Connect

    Morita, Seizo

    2014-04-24

    Atomic force microscopy (AFM) can now not only image individual atoms but also construct atom letters using atom manipulation method even at room temperature (RT). Therefore, the AFM is the second generation atomic tool following the scanning tunneling microscopy (STM). However the AFM can image even insulating atoms, and also directly measure/map the atomic force and potential at the atomic scale. Noting these advantages, we have been developing a bottom-up nanostructuring system at RT based on the AFM. It can identify chemical species of individual atoms and then manipulate selected atom species to the predesigned site one-by-one to assemble complex nanostructures consisted of multi atom species at RT. Here we introduce our results toward atom-by-atom assembly of composite nanostructures based on the AFM at RT including the latest result on atom gating of nano-space for atom-by-atom creation of atom clusters at RT for semiconductor surfaces.

  9. Atomic Force Microscopy Measurements of the Mechanical Properties of Cell Walls on Living Bacterial Cells

    NASA Astrophysics Data System (ADS)

    Bailey, Richard; Mullin, Nic; Turner, Robert; Foster, Simon; Hobbs, Jamie

    2014-03-01

    Staphylococcus aureus is a major cause of infection in humans, including the Methicillin resistant strain, MRSA. However, very little is known about the mechanical properties of these cells. Our investigations use AFM to examine live S. aureus cells to quantify mechanical properties. These were explored using force spectroscopy with different trigger forces, allowing the properties to be extracted at different indentation depths. A value for the cell wall stiffness has been extracted, along with a second, higher value which is found upon indenting at higher forces. This higher value drops as the cells are exposed to high salt, sugar and detergent concentrations, implying that this measurement contains a contribution from the internal turgor pressure. We have monitored these properties as the cells progress through the cell cycle. Force maps were taken over the cells at different stages of the growth process to identify changes in the mechanics throughout the progression of growth and division. The effect of Oxacillin has also been studied, to better understand its mechanism of action. Finally mutant strains of S. aureus and a second species Bacillus subtilis have been used to link the mechanical properties of the cell walls with the chain lengths and substructures involved.

  10. Theoretical Models for Surface Forces and Adhesion and Their Measurement Using Atomic Force Microscopy

    PubMed Central

    Leite, Fabio L.; Bueno, Carolina C.; Da Róz, Alessandra L.; Ziemath, Ervino C.; Oliveira, Osvaldo N.

    2012-01-01

    The increasing importance of studies on soft matter and their impact on new technologies, including those associated with nanotechnology, has brought intermolecular and surface forces to the forefront of physics and materials science, for these are the prevailing forces in micro and nanosystems. With experimental methods such as the atomic force spectroscopy (AFS), it is now possible to measure these forces accurately, in addition to providing information on local material properties such as elasticity, hardness and adhesion. This review provides the theoretical and experimental background of AFS, adhesion forces, intermolecular interactions and surface forces in air, vacuum and in solution. PMID:23202925

  11. Theoretical models for surface forces and adhesion and their measurement using atomic force microscopy.

    PubMed

    Leite, Fabio L; Bueno, Carolina C; Da Róz, Alessandra L; Ziemath, Ervino C; Oliveira, Osvaldo N

    2012-10-08

    The increasing importance of studies on soft matter and their impact on new technologies, including those associated with nanotechnology, has brought intermolecular and surface forces to the forefront of physics and materials science, for these are the prevailing forces in micro and nanosystems. With experimental methods such as the atomic force spectroscopy (AFS), it is now possible to measure these forces accurately, in addition to providing information on local material properties such as elasticity, hardness and adhesion. This review provides the theoretical and experimental background of afs, adhesion forces, intermolecular interactions and surface forces in air, vacuum and in solution.

  12. Two techniques for measuring locomotion impact forces during zero G

    NASA Technical Reports Server (NTRS)

    Greenisen, Michael C.; Smith, Richard A.; Klute, Glenn K.; Mccaulley, James B.

    1993-01-01

    A load-cell-instrumented treadmill mated to a Kistler force plate was used to investigate two methods of force measurement instrumentation during treadmill ambulation in zero g, created by parabolic flight on NASA's KC-135 aircraft. Current spaceflight treadmills do not have adequate instrumentation to determine the resultant foot impact force applied during restrained ambulation. Accurate measurement of foot-ground reaction forces is critical in attaining proper one-g loading, therefore ensuring proper musculoskeletal conditioning. Treadmill instrumentation and force plate measurements were compared for frequency response and linearity. Locomotion impact data were also collected under one-g laboratory settings and in Keplerian flight. The first resonant frequency for both techniques was found to be well above the primary frequency content of the locomotive forces. Peak impact forces measured by the two systems compared to within 10 percent.

  13. The effect of patch potentials in Casimir force measurements determined by heterodyne Kelvin probe force microscopy.

    PubMed

    Garrett, Joseph L; Somers, David; Munday, Jeremy N

    2015-06-03

    Measurements of the Casimir force require the elimination of the electrostatic force between the surfaces. However, due to electrostatic patch potentials, the voltage required to minimize the total force may not be sufficient to completely nullify the electrostatic interaction. Thus, these surface potential variations cause an additional force, which can obscure the Casimir force signal. In this paper, we inspect the spatially varying surface potential of e-beamed, sputtered, sputtered and annealed, and template stripped gold surfaces with Heterodyne amplitude modulated Kelvin probe force microscopy (HAM-KPFM). It is demonstrated that HAM-KPFM improves the spatial resolution of surface potential measurements compared to amplitude modulated Kelvin probe force microscopy. We find that patch potentials vary depending on sample preparation, and that the calculated pressure can be similar to the pressure difference between Casimir force calculations employing the plasma and Drude models.

  14. The effect of patch potentials in Casimir force measurements determined by heterodyne Kelvin probe force microscopy

    NASA Astrophysics Data System (ADS)

    Garrett, Joseph L.; Somers, David; Munday, Jeremy N.

    2015-06-01

    Measurements of the Casimir force require the elimination of the electrostatic force between the surfaces. However, due to electrostatic patch potentials, the voltage required to minimize the total force may not be sufficient to completely nullify the electrostatic interaction. Thus, these surface potential variations cause an additional force, which can obscure the Casimir force signal. In this paper, we inspect the spatially varying surface potential of e-beamed, sputtered, sputtered and annealed, and template stripped gold surfaces with Heterodyne amplitude modulated Kelvin probe force microscopy (HAM-KPFM). It is demonstrated that HAM-KPFM improves the spatial resolution of surface potential measurements compared to amplitude modulated Kelvin probe force microscopy. We find that patch potentials vary depending on sample preparation, and that the calculated pressure can be similar to the pressure difference between Casimir force calculations employing the plasma and Drude models.

  15. SU-8 hollow cantilevers for AFM cell adhesion studies

    NASA Astrophysics Data System (ADS)

    Martinez, Vincent; Behr, Pascal; Drechsler, Ute; Polesel-Maris, Jérôme; Potthoff, Eva; Vörös, Janos; Zambelli, Tomaso

    2016-05-01

    A novel fabrication method was established to produce flexible, transparent, and robust tipless hollow atomic force microscopy (AFM) cantilevers made entirely from SU-8. Channels of 3 μm thickness and several millimeters length were integrated into 12 μm thick and 40 μm wide cantilevers. Connected to a pressure controller, the devices showed high sealing performance with no leakage up to 6 bars. Changing the cantilever lengths from 100 μm to 500 μm among the same wafer allowed the targeting of various spring constants ranging from 0.5 to 80 N m-1 within a single fabrication run. These hollow polymeric AFM cantilevers were operated in the optical beam deflection configuration. To demonstrate the performance of the device, single-cell force spectroscopy experiments were performed with a single probe detaching in a serial protocol more than 100 Saccharomyces cerevisiae yeast cells from plain glass and glass coated with polydopamine while measuring adhesion forces in the sub-nanoNewton range. SU-8 now offers a new alternative to conventional silicon-based hollow cantilevers with more flexibility in terms of complex geometric design and surface chemistry modification.

  16. Direct Force Measurements of Receptor-Ligand Interactions on Living Cells

    NASA Astrophysics Data System (ADS)

    Eibl, Robert H.

    The characterization of cell adhesion between two living cells at the level of single receptor-ligand bonds is an experimental challenge. This chapter describes how the extremely sensitive method of atomic force microscopy (AFM) based force spectroscopy can be applied to living cells in order to probe for cell-to-cell or cell-to-substrate interactions mediated by single pairs of adhesion receptors. In addition, it is outlined how single-molecule AFM force spectroscopy can be used to detect physiologic changes of an adhesion receptor in a living cell. This force spectroscopy allows us to detect in living cells rapidly changing, chemokine SDF-1 triggered activation states of single VLA-4 receptors. This recently developed AFM application will allow for the detailed investigation of the integrin-chemokine crosstalk of integrin activation mechanisms and on how other adhesion receptors are modulated in health and disease. As adhesion molecules, living cells and even bacteria can be studied by single-molecule AFM force spectroscopy, this method is set to become a powerful tool that can not only be used in biophysics, but in cell biology as well as in immunology and cancer research.

  17. Analytical model of atomic-force-microscopy force curves in viscoelastic materials exhibiting power law relaxation

    NASA Astrophysics Data System (ADS)

    de Sousa, J. S.; Santos, J. A. C.; Barros, E. B.; Alencar, L. M. R.; Cruz, W. T.; Ramos, M. V.; Mendes Filho, J.

    2017-01-01

    We propose an analytical model for the force-indentation relationship in viscoelastic materials exhibiting a power law relaxation described by an exponent n, where n = 1 represents the standard viscoelastic solid (SLS) model and n < 1 represents a fractional SLS model. To validate the model, we perform nanoindentation measurements of polyacrylamide gels with atomic force microscopy (AFM) force curves. We found exponents n < 1 that depend on the bisacrylamide concentration. We also demonstrate that the fitting of AFM force curves for varying load speeds can reproduce the dynamic viscoelastic properties of those gels measured with dynamic force modulation methods.

  18. Subminiature transducers for measuring forces and deformation of heart muscle

    NASA Technical Reports Server (NTRS)

    Feldstein, C.; Osher, J. V.; Lewis, G. W.; Silver, R. H.; Duran, E. N.

    1975-01-01

    Two subminiature transducers, one measuring muscle forces and one measuring muscle displacement, can be inserted into heart muscle without interfering with it. Probe, approximately 1 mm (0.04 in), causes no damage to heart muscle. Probe can be rotated to different positions to measure muscle forces from various directions.

  19. Examination of humidity effects on measured thickness and interfacial phenomena of exfoliated graphene on silicon dioxide via amplitude modulation atomic force microscopy

    SciTech Connect

    Jinkins, K.; Farina, L.; Wu, Y.; Camacho, J.

    2015-12-14

    The properties of Few-Layer Graphene (FLG) change with the number of layers and Amplitude Modulation (AM) Atomic Force Microscopy (AFM) is commonly used to determine the thickness of FLG. However, AFM measurements have been shown to be sensitive to environmental conditions such as relative humidity (RH). In the present study, AM-AFM is used to measure the thickness and loss tangent of exfoliated graphene on silicon dioxide (SiO{sub 2}) as RH is increased from 10% to 80%. We show that the measured thickness of graphene is dependent on RH. The loss tangent values of the graphene and oxide regions are both affected by humidity, with generally higher loss tangent for graphene than SiO{sub 2}. As RH increases, we observe the loss tangent of both materials approaches the same value. We hypothesize that there is a layer of water trapped between the graphene and SiO{sub 2} substrate to explain this observation. Using this interpretation, the loss tangent images also indicate movement and change in this trapped water layer as RH increases, which impacts the measured thickness of graphene using AM-AFM.

  20. Roughness in Surface Force Measurements: Extension of DLVO Theory To Describe the Forces between Hafnia Surfaces.

    PubMed

    Eom, Namsoon; Parsons, Drew F; Craig, Vincent S J

    2017-07-06

    The interaction between colloidal particles is commonly viewed through the lens of DLVO theory, whereby the interaction is described as the sum of the electrostatic and dispersion forces. For similar materials acting across a medium at pH values remote from the isoelectric point the theory typically involves an electrostatic repulsion that is overcome by dispersion forces at very small separations. However, the dominance of the dispersion forces at short separations is generally not seen in force measurements, with the exception of the interaction between mica surfaces. The discrepancy for silica surfaces has been attributed to hydration forces, but this does not explain the situation for titania surfaces where the dispersion forces are very much larger. Here, the interaction forces between very smooth hafnia surfaces have been measured using the colloid probe technique and the forces evaluated within the DLVO framework, including both hydration forces and the influence of roughness. The measured forces across a wide range of pH at different salt concentrations are well described with a single parameter for the surface roughness. These findings show that even small degrees of surface roughness significantly alter the form of the interaction force and therefore indicate that surface roughness needs to be included in the evaluation of surface forces between all surfaces that are not ideally smooth.

  1. Molecular Dynamic Simulations of Interaction of an AFM Probe with the Surface of an SCN Sample

    NASA Technical Reports Server (NTRS)

    Bune, Adris; Kaukler, William; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Molecular dynamic (MD) simulations is conducted in order to estimate forces of probe-substrate interaction in the Atomic Force Microscope (AFM). First a review of available molecular dynamic techniques is given. Implementation of MD simulation is based on an object-oriented code developed at the University of Delft. Modeling of the sample material - succinonitrile (SCN) - is based on the Lennard-Jones potentials. For the polystyrene probe an atomic interaction potential is used. Due to object-oriented structure of the code modification of an atomic interaction potential is straight forward. Calculation of melting temperature is used for validation of the code and of the interaction potentials. Various fitting parameters of the probe-substrate interaction potentials are considered, as potentials fitted to certain properties and temperature ranges may not be reliable for the others. This research provides theoretical foundation for an interpretation of actual measurements of an interaction forces using AFM.

  2. Molecular Dynamic Simulations of Interaction of an AFM Probe with the Surface of an SCN Sample

    NASA Technical Reports Server (NTRS)

    Bune, Adris; Kaukler, William; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Molecular dynamic (MD) simulations is conducted in order to estimate forces of probe-substrate interaction in the Atomic Force Microscope (AFM). First a review of available molecular dynamic techniques is given. Implementation of MD simulation is based on an object-oriented code developed at the University of Delft. Modeling of the sample material - succinonitrile (SCN) - is based on the Lennard-Jones potentials. For the polystyrene probe an atomic interaction potential is used. Due to object-oriented structure of the code modification of an atomic interaction potential is straight forward. Calculation of melting temperature is used for validation of the code and of the interaction potentials. Various fitting parameters of the probe-substrate interaction potentials are considered, as potentials fitted to certain properties and temperature ranges may not be reliable for the others. This research provides theoretical foundation for an interpretation of actual measurements of an interaction forces using AFM.

  3. AFM studies of environmental effects on nanomechanical properties and cellular structure of human hair.

    PubMed

    Bhushan, Bharat; Chen, Nianhuan

    2006-01-01

    Characterization of cellular structure and physical and mechanical properties of hair are essential to develop better cosmetic products and advance biological and cosmetic science. Although the morphology of the cellular structure of human hair has been traditionally investigated using scanning electron microscopy and transmission electron microscopy, these techniques provide limited capability to in situ study of the physical and mechanical properties of human hair in various environments. Atomic force microscopy (AFM) overcomes these problems and can be used for characterization in ambient conditions without requiring specific sample preparations and surface treatment. In this study, film thickness, adhesive forces and effective Young's modulus of various hair surfaces were measured at different environments (humidity and temperature) using force calibration plot technique with an AFM. Torsional resonance mode phase contrast images were also taken in order to characterize the morphology and cellular structure changes of human hair at different humidity. The correlation between the nanomechanical properties and the cellular structure of hair is discussed.

  4. Sharp high-aspect-ratio AFM tips fabricated by a combination of deep reactive ion etching and focused ion beam techniques.

    PubMed

    Caballero, David; Villanueva, Guillermo; Plaza, Jose Antonio; Mills, Christopher A; Samitier, Josep; Errachid, Abdelhamid

    2010-01-01

    The shape and dimensions of an atomic force microscope tip are crucial factors to obtain high resolution images at the nanoscale. When measuring samples with narrow trenches, inclined sidewalls near 90 degrees or nanoscaled structures, standard silicon atomic force microscopy (AFM) tips do not provide satisfactory results. We have combined deep reactive ion etching (DRIE) and focused ion beam (FIB) lithography techniques in order to produce probes with sharp rocket-shaped silicon AFM tips for high resolution imaging. The cantilevers were shaped and the bulk micromachining was performed using the same DRIE equipment. To improve the tip aspect ratio we used FIB nanolithography technique. The tips were tested on narrow silicon trenches and over biological samples showing a better resolution when compared with standard AFM tips, which enables nanocharacterization and nanometrology of high-aspect-ratio structures and nanoscaled biological elements to be completed, and provides an alternative to commercial high aspect ratio AFM tips.

  5. Comparative quantification and statistical analysis of η′ and η precipitates in aluminum alloy AA7075-T651 by TEM and AFM

    SciTech Connect

    Garcia-Garcia, Adrian Luis Dominguez-Lopez, Ivan Lopez-Jimenez, Luis Barceinas-Sanchez, J.D. Oscar

    2014-01-15

    Quantification of nanometric precipitates in metallic alloys has been traditionally performed using transmission electron microscopy, which is nominally a low throughput technique. This work presents a comparative study of quantification of η′ and η precipitates in aluminum alloy AA7075-T651 using transmission electron microscopy (TEM) and non-contact atomic force microscopy (AFM). AFM quantification was compared with 2-D stereological results reported elsewhere. Also, a method was developed, using specialized software, to characterize nanometric size precipitates observed in dark-field TEM micrographs. Statistical analysis of the quantification results from both measurement techniques supports the use of AFM for precipitate characterization. Once the precipitate stoichiometry has been determined by appropriate analytical techniques like TEM, as it is the case for η′ and η in AA7075-T651, the relative ease with which specimens are prepared for AFM analysis could be advantageous in product and process development, and quality control, where a large number of samples are expected for analysis on a regular basis. - Highlights: • Nanometric MgZn{sub 2} precipitates in AA7075-T651 were characterized using AFM and TEM. • Phase-contrast AFM was used to differentiate metal matrix from MgZn{sub 2} precipitates. • TEM and AFM micrographs were analyzed using commercially available software. • AFM image analysis and TEM 2-D stereology render statistically equivalent results.

  6. Measuring the Forces between Magnetic Dipoles

    ERIC Educational Resources Information Center

    Gayetsky, Lisa E.; Caylor, Craig L.

    2007-01-01

    We describe a simple undergraduate lab in which students determine how the force between two magnetic dipoles depends on their separation. We consider the case where both dipoles are permanent and the case where one of the dipoles is induced by the field of the other (permanent) dipole. Agreement with theoretically expected results is quite good.

  7. Local viscoelasticity of the surfaces of individual Gram-negative bacterial cells measured using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Vadillo-Rodriguez, Virginia; Beveridge, Terry; Dutcher, John

    2008-03-01

    The cell wall of Gram-negative bacteria performs many important biological functions: it plays a structural role, it allows the selective movement of molecules across itself, and it allows for growth and division. These functions not only suggest that the cell wall is dynamic, but that its mechanical properties are very important. We have used a novel, AFM-based approach to probe the mechanical properties of single bacterial cells by applying a constant compressive force to the cell under physiological conditions while measuring the time-dependent displacement (creep) of the AFM tip due to the viscoelastic properties of the cell. For these experiments, we chose a representative Gram-negative bacterium, P. aeruginosa PAO1, and we used AFM tips of different size and geometry. We find that the cell response is well described by a three element mechanical model with an effective cell spring constant k and an effective time constant τ for the creep motion. Adding glutaraldehyde, which increases the covalent bonding of the cell surface, produced a significant increase in k and a significant decrease in τ.

  8. Imaging and measuring the rituximab-induced changes of mechanical properties in B-lymphoma cells using atomic force microscopy

    SciTech Connect

    Li, Mi; Liu, Lianqing; Xi, Ning; Wang, Yuechao; Dong, Zaili; Tabata, Osamu; Xiao, Xiubin; Zhang, Weijing

    2011-01-14

    Research highlights: {yields} Single B-lymphoma living cells were imaged by AFM with the assistance of microfabricated pillars. {yields} The apoptosis of B-lymphoma cells triggered by rituximab without cross-linking was observed by AO/EB double fluorescent staining. {yields} The B-lymphoma cells became dramatically softer after adding rituximab. -- Abstract: The topography and mechanical properties of single B-lymphoma cells have been investigated by atomic force microscopy (AFM). With the assistance of microfabricated patterned pillars, the surface topography and ultrastructure of single living B-lymphoma cell were visualized by AFM. The apoptosis of B-lymphoma cells induced by rituximab alone was observed by acridine orange/ethidium bromide (AO/EB) double fluorescent staining. The rituximab-induced changes of mechanical properties in B-lymphoma cells were measured dynamically and the results showed that B-lymphoma cells became dramatically softer after incubation with rituximab. These results can improve our understanding of rituximab'effect and will facilitate the further investigation of the underlying mechanisms.

  9. Cryogen-free low temperature STM/AFM based on a closed cycle cryostat

    NASA Astrophysics Data System (ADS)

    Choi, Byoung; Ulrich, Stefen; Murdick, Ryan; RHK Technology, Inc. Team

    2015-03-01

    Closed cycle cryogenic scanning tunneling microscope (CCC-STM) and atomic force microscope (AFM) will be presented. By using He heat exchange gas, thermally linked and mechanically decoupled CCC-STM/AFM enables atomically resolved microscopy and spectroscopy on various surfaces. We will present the noise measurement of the tunneling current and the thermal drift analysis. Temperature as low as 14K on the sample and the tip-sample distance fluctuation as low as 2 picometer have been achieved from 9K cryostat after 8h of cooling time. Low thermal drift in a lateral direction (<0.1nm/hr) enables to get a scanning tunneling spectroscopy grid with more than 64x64 pixels which typically takes over 10 hrs. We will also present the high stability and reproducibility of the CCC-STM/AFM with the atom resolved imaging of Si, Pt, Au and KBr surfaces in STM and AFM mode. These results demonstrate that the developed CCC-STM/AFM is a versatile instrument enabling experiments on a variety of materials and surfaces at picometer resolution without using any liquid cryogen.

  10. AFM as an analysis tool for high-capacity sulfur cathodes for Li–S batteries

    PubMed Central

    Sörgel, Seniz; Costa, Rémi; Carlé, Linus; Galm, Ines; Cañas, Natalia; Pascucci, Brigitta; Friedrich, K Andreas

    2013-01-01

    Summary In this work, material-sensitive atomic force microscopy (AFM) techniques were used to analyse the cathodes of lithium–sulfur batteries. A comparison of their nanoscale electrical, electrochemical, and morphological properties was performed with samples prepared by either suspension-spraying or doctor-blade coating with different binders. Morphological studies of the cathodes before and after the electrochemical tests were performed by using AFM and scanning electron microscopy (SEM). The cathodes that contained polyvinylidene fluoride (PVDF) and were prepared by spray-coating exhibited a superior stability of the morphology and the electric network associated with the capacity and cycling stability of these batteries. A reduction of the conductive area determined by conductive AFM was found to correlate to the battery capacity loss for all cathodes. X-ray diffraction (XRD) measurements of Li2S exposed to ambient air showed that insulating Li2S hydrolyses to insulating LiOH. This validates the significance of electrical ex-situ AFM analysis after cycling. Conductive tapping mode AFM indicated the existence of large carbon-coated sulfur particles. Based on the analytical findings, the first results of an optimized cathode showed a much improved discharge capacity of 800 mA·g(sulfur)−1 after 43 cycles. PMID:24205455

  11. Polynomial force approximations and multifrequency atomic force microscopy.

    PubMed

    Platz, Daniel; Forchheimer, Daniel; Tholén, Erik A; Haviland, David B

    2013-01-01

    We present polynomial force reconstruction from experimental intermodulation atomic force microscopy (ImAFM) data. We study the tip-surface force during a slow surface approach and compare the results with amplitude-dependence force spectroscopy (ADFS). Based on polynomial force reconstruction we generate high-resolution surface-property maps of polymer blend samples. The polynomial method is described as a special example of a more general approximative force reconstruction, where the aim is to determine model parameters that best approximate the measured force spectrum. This approximative approach is not limited to spectral data, and we demonstrate how it can be adapted to a force quadrature picture.

  12. Fiber based optical tweezers for simultaneous in situ force exertion and measurements in a 3D polyacrylamide gel compartment.

    PubMed

    Ti, Chaoyang; Thomas, Gawain M; Ren, Yundong; Zhang, Rui; Wen, Qi; Liu, Yuxiang

    2015-07-01

    Optical tweezers play an important role in biological applications. However, it is difficult for traditional optical tweezers based on objective lenses to work in a three-dimensional (3D) solid far away from the substrate. In this work, we develop a fiber based optical trapping system, namely inclined dual fiber optical tweezers, that can simultaneously apply and measure forces both in water and in a 3D polyacrylamide gel matrix. In addition, we demonstrate in situ, non-invasive characterization of local mechanical properties of polyacrylamide gel by measurements on an embedded bead. The fiber optical tweezers measurements agree well with those of atomic force microscopy (AFM). The inclined dual fiber optical tweezers provide a promising and versatile tool for cell mechanics study in 3D environments.

  13. Fiber based optical tweezers for simultaneous in situ force exertion and measurements in a 3D polyacrylamide gel compartment

    PubMed Central

    Ti, Chaoyang; Thomas, Gawain M; Ren, Yundong; Zhang, Rui; Wen, Qi; Liu, Yuxiang

    2015-01-01

    Optical tweezers play an important role in biological applications. However, it is difficult for traditional optical tweezers based on objective lenses to work in a three-dimensional (3D) solid far away from the substrate. In this work, we develop a fiber based optical trapping system, namely inclined dual fiber optical tweezers, that can simultaneously apply and measure forces both in water and in a 3D polyacrylamide gel matrix. In addition, we demonstrate in situ, non-invasive characterization of local mechanical properties of polyacrylamide gel by measurements on an embedded bead. The fiber optical tweezers measurements agree well with those of atomic force microscopy (AFM). The inclined dual fiber optical tweezers provide a promising and versatile tool for cell mechanics study in 3D environments. PMID:26203364

  14. Lateral force microscopy of multiwalled carbon nanotubes.

    PubMed

    Lievonen, J; Ahlskog, M

    2009-06-01

    Carbon nanotubes are usually imaged with the atomic force microscope (AFM) in non-contact mode. However, in many applications, such as mechanical manipulation or elasticity measurements, contact mode is used. The forces affecting the nanotube are then considerable and not fully understood. In this work lateral forces were measured during contact mode imaging with an AFM across a carbon nanotube. We found that, qualitatively, both magnitude and sign of the lateral forces to the AFM tip were independent of scan direction and can be concluded to arise from the tip slipping on the round edges of the nanotube. The dependence on the normal force applied to the tip and on the ratio between nanotube diameter and tip radius was studied. We show that for small values of this ratio, the lateral force signal can be explained with a simple geometrical model.

  15. Force plate for measuring small animal forces by digital speckle pattern interferometry

    NASA Astrophysics Data System (ADS)

    Arroyo, M. Pilar; Bea, José Antonio; Andrés, Nieves; Osta, Rosario; Doblaré, Manuel

    2007-06-01

    This paper presents a force plate specially designed for measuring ground reaction forces in small animals. Digital Speckle Pattern Interferometry (DSPI) is used to measure the plate deformation produced by the animal. Elasticity theory is used to obtain force magnitude and application position from the vertical displacement field measured with DSPI. The force plate has been tested with static weights of 5g and 10g at various locations on the plate. Some experiments with 20g body weight transgenic mice are also reported.

  16. Interactions of biopolymers with silica surfaces: Force measurements and electronic structure calculation studies

    NASA Astrophysics Data System (ADS)

    Kwon, Kideok D.; Vadillo-Rodriguez, Virginia; Logan, Bruce E.; Kubicki, James D.

    2006-08-01

    Pull-off forces were measured between a silica colloid attached to an atomic force microscope (AFM) cantilever and three homopolymer surfaces representing constituents of extracellular polymeric substances (EPS). The pull-off forces were -0.84 (±0.16), -0.68 (±0.15), and -2.37 (±0.31) nN as measured in water for dextran, phosphorylated dextran, and poly- L-lysine, respectively. Molecular orbital and density functional theory methods (DFT) were applied to analyze the measured pull-off forces using dimer clusters representing interactions between the three polymers and silica surfaces. Binding energies for each dimer were calculated with basis set superposition error (BSSE) and interpolated using corrections for silica surface hydroxyl density and silica charge density. The binding energies were compared with the normalized pull-off forces with the effective silica surface area contacting the polymer surfaces. The predicted binding energies at a -0.064 C/m 2 silica surface charge density corresponding to circum-neutral pH were -0.055, -0.029, and -0.338 × 10 -18 J/nm 2 for the dimers corresponding to the silica surface with dextran, phosphorylated dextran, and poly- L-lysine, respectively. Polarizable continuum model (PCM) calculations with different solvents, silanol vibrational frequency calculations, and orbital interaction analysis based on natural bonding orbital (NBO) showed that phosphate groups formed stronger H-bonds with neutral silanols than hydroxyl and amino functional groups of polymers, implying that phosphate containing polymers would play important roles in EPS binding to silica surfaces.

  17. Getting Physical with Your Chemistry: Mechanically Investigating Local Structure and Properties of Surfaces with the Atomic Force Microscope

    ERIC Educational Resources Information Center

    Heinz, William F.; Hoh, Jan H.

    2005-01-01

    Atomic force microscope (AFM) investigates mechanically the chemical properties of individual molecules, surfaces, and materials using suitably designed probes. The current state of the art of AFM in terms of imaging, force measurement, and sample manipulation and its application to physical chemistry is discussed.

  18. Getting Physical with Your Chemistry: Mechanically Investigating Local Structure and Properties of Surfaces with the Atomic Force Microscope

    ERIC Educational Resources Information Center

    Heinz, William F.; Hoh, Jan H.

    2005-01-01

    Atomic force microscope (AFM) investigates mechanically the chemical properties of individual molecules, surfaces, and materials using suitably designed probes. The current state of the art of AFM in terms of imaging, force measurement, and sample manipulation and its application to physical chemistry is discussed.

  19. The Effects of Noncellulosic Compounds on the Nanoscale Interaction Forces Measured between Carbohydrate-Binding Module and Lignocellulosic Biomass.

    PubMed

    Arslan, Baran; Colpan, Mert; Ju, Xiaohui; Zhang, Xiao; Kostyukova, Alla; Abu-Lail, Nehal I

    2016-05-09

    The lack of fundamental understanding of the types of forces that govern how cellulose-degrading enzymes interact with cellulosic and noncellulosic components of lignocellulosic surfaces limits the design of new strategies for efficient conversion of biomass to bioethanol. In a step to improve our fundamental understanding of such interactions, nanoscale forces acting between a model cellulase-a carbohydrate-binding module (CBM) of cellobiohydrolase I (CBH I)-and a set of lignocellulosic substrates with controlled composition were measured using atomic force microscopy (AFM). The three model substrates investigated were kraft (KP), sulfite (SP), and organosolv (OPP) pulped substrates. These substrates varied in their surface lignin coverage, lignin type, and xylan and acetone extractives' content. Our results indicated that the overall adhesion forces of biomass to CBM increased linearly with surface lignin coverage with kraft lignin showing the highest forces among lignin types investigated. When the overall adhesion forces were decoupled into specific and nonspecific component forces via the Poisson statistical model, hydrophobic and Lifshitz-van der Waals (LW) forces dominated the binding forces of CBM to kraft lignin, whereas permanent dipole-dipole interactions and electrostatic forces facilitated the interactions of lignosulfonates to CBM. Xylan and acetone extractives' content increased the attractive forces between CBM and lignin-free substrates, most likely through hydrogen bonding forces. When the substrates treated differently were compared, it was found that both the differences in specific and nonspecific forces between lignin-containing and lignin-free substrates were the least for OPP. Therefore, cellulase enzymes represented by CBM would weakly bind to organosolv lignin. This will facilitate an easy enzyme recovery compared to other substrates treated with kraft or sulfite pulping. Our results also suggest that altering the surface hydrophobicity

  20. Force dependency of biochemical reactions measured by single molecule force-clamp spectroscopy

    PubMed Central

    Popa, Ionel; Kosuri, Pallav; Alegre-Cebollada, Jorge; Garcia-Manyes, Sergi; Fernandez, Julio M.

    2015-01-01

    Here we describe a protocol for using force-clamp spectroscopy to precisely quantify the effect of force on biochemical reactions. A calibrated force is used to control the exposure of reactive sites in a single polyprotein substrate composed of repeated domains. The use of polyproteins allows the identification of successful single-molecule recordings from unambiguous mechanical unfolding fingerprints. Biochemical reactions are then measured directly by detecting the length changes of the substrate held at a constant force. We present the layout of a force-clamp spectrometer along with protocols to design and conduct experiments. These experiments measure reaction kinetics as a function of applied force. We show sample data of the force dependency of two different reactions, protein unfolding and disulfide reduction. These data, which can be acquired in just a few days, reveal mechanistic details of the reactions that currently cannot be resolved by any other technique. PMID:23744288

  1. Microsystems for cellular force measurement: a review

    NASA Astrophysics Data System (ADS)

    Rayne Zheng, Xiaoyu; Zhang, Xin

    2011-05-01

    Microsystems are providing key advances in studying single cell mechanical behavior. The mechanical interaction of cells with their extracellular matrix is fundamentally important for cell migration, division, phagocytosis and aptoptosis. This review reports the development of microsystems on studying cell forces. Microsystems provide advantages of studying single cells since the scale of cells is on the micron level. The components of microsystems provide culture, loading, guiding, trapping and on chip analysis of cellular mechanical forces. This paper gives overviews on how MEMS are advancing in the field of cell biomechno sensory systems. It presents different materials, and mode of studying cell mechanics. Finally, we comment on the future directions and challenges on the state of art techniques.

  2. Measurement of non-monotonic Casimir forces between silicon nanostructures

    NASA Astrophysics Data System (ADS)

    Tang, L.; Wang, M.; Ng, C. Y.; Nikolic, M.; Chan, C. T.; Rodriguez, A. W.; Chan, H. B.

    2017-01-01

    Casimir forces are of fundamental interest because they originate from quantum fluctuations of the electromagnetic field. Apart from controlling this force via the optical properties of materials, a number of novel geometries have been proposed to generate repulsive and/or non-monotonic Casimir forces between bodies separated by vacuum gaps. Experimental realization of these geometries, however, is hindered by the difficulties in alignment when the bodies are brought into close proximity. Here, using an on-chip platform with integrated force sensors and actuators, we circumvent the alignment problem and measure the Casimir force between two surfaces with nanoscale protrusions. We demonstrate that the force depends non-monotonically on the displacement. At some displacements, the Casimir force leads to an effective stiffening of the nanomechanical spring. Our findings pave the way for exploiting the Casimir force in nanomechanical systems using structures of complex and non-conventional shapes.

  3. A new technical approach to monitor the cellular physiology by atomic force microscopy.

    PubMed

    Jeong, Kyung Hwan; Lee, Sang Ho

    2012-12-01

    Atomic force microscopy (AFM) has become an important medical and biological tool for non-invasive imaging and measuring the mechanical changes of cells since its invention by Binnig et al. AFM can be used to investigate the mechanical properties of cellular events in indiv