Science.gov

Sample records for afm force measurements

  1. Imaging and force measurement of LDL and HDL by AFM in air and liquid

    PubMed Central

    Gan, Chaoye; Ao, Meiying; Liu, Zhanghua; Chen, Yong

    2015-01-01

    The size and biomechanical properties of lipoproteins are tightly correlated with their structures/functions. While atomic force microscopy (AFM) has been used to image lipoproteins the force measurement of these nano-sized particles is missing. We detected that the sizes of LDL and HDL in liquid are close to the commonly known values. The Young’s modulus of LDL or HDL is ∼0.4 GPa which is similar to that of some viral capsids or nanovesicles but greatly larger than that of various liposomes. The adhesive force of LDL or HDL is small (∼200 pN). The comparison of AFM detection in air and liquid was also performed which is currently lacking. Our data may provide useful information for better understanding and AFM detection of lipoproteins. PMID:25893163

  2. Imaging and force measurement of LDL and HDL by AFM in air and liquid.

    PubMed

    Gan, Chaoye; Ao, Meiying; Liu, Zhanghua; Chen, Yong

    2015-01-01

    The size and biomechanical properties of lipoproteins are tightly correlated with their structures/functions. While atomic force microscopy (AFM) has been used to image lipoproteins the force measurement of these nano-sized particles is missing. We detected that the sizes of LDL and HDL in liquid are close to the commonly known values. The Young's modulus of LDL or HDL is ∼0.4 GPa which is similar to that of some viral capsids or nanovesicles but greatly larger than that of various liposomes. The adhesive force of LDL or HDL is small (∼200 pN). The comparison of AFM detection in air and liquid was also performed which is currently lacking. Our data may provide useful information for better understanding and AFM detection of lipoproteins.

  3. Dynamics of a disturbed sessile drop measured by atomic force microscopy (AFM).

    PubMed

    McGuiggan, Patricia M; Grave, Daniel A; Wallace, Jay S; Cheng, Shengfeng; Prosperetti, Andrea; Robbins, Mark O

    2011-10-04

    A new method for studying the dynamics of a sessile drop by atomic force microscopy (AFM) is demonstrated. A hydrophobic microsphere (radius, r ∼ 20-30 μm) is brought into contact with a small sessile water drop resting on a polytetrafluoroethylene (PTFE) surface. When the microsphere touches the liquid surface, the meniscus rises onto it because of capillary forces. Although the microsphere volume is 6 orders of magnitude smaller than the drop, it excites the normal resonance modes of the liquid interface. The sphere is pinned at the interface, whose small (<100 nm) oscillations are readily measured with AFM. Resonance oscillation frequencies were measured for drop volumes between 5 and 200 μL. The results for the two lowest normal modes are quantitatively consistent with continuum calculations for the natural frequency of hemispherical drops with no adjustable parameters. The method may enable sensitive measurements of volume, surface tension, and viscosity of small drops.

  4. Measuring protein isoelectric points by AFM-based force spectroscopy using trace amounts of sample

    NASA Astrophysics Data System (ADS)

    Guo, Shifeng; Zhu, Xiaoying; Jańczewski, Dominik; Lee, Serina Siew Chen; He, Tao; Teo, Serena Lay Ming; Vancso, G. Julius

    2016-09-01

    Protein charge at various pH and isoelectric point (pI) values is important in understanding protein function. However, often only trace amounts of unknown proteins are available and pI measurements cannot be obtained using conventional methods. Here, we show a method based on the atomic force microscope (AFM) to determine pI using minute quantities of proteins. The protein of interest is immobilized on AFM colloidal probes and the adhesion force of the protein is measured against a positively and a negatively charged substrate made by layer-by-layer deposition of polyelectrolytes. From the AFM force-distance curves, pI values with an estimated accuracy of ±0.25 were obtained for bovine serum albumin, myoglobin, fibrinogen and ribonuclease A over a range of 4.7-9.8. Using this method, we show that the pI of the ‘footprint’ of the temporary adhesive proteins secreted by the barnacle cyprid larvae of Amphibalanus amphitrite is in the range 9.6-9.7.

  5. Measuring protein isoelectric points by AFM-based force spectroscopy using trace amounts of sample.

    PubMed

    Guo, Shifeng; Zhu, Xiaoying; Jańczewski, Dominik; Lee, Serina Siew Chen; He, Tao; Teo, Serena Lay Ming; Vancso, G Julius

    2016-09-01

    Protein charge at various pH and isoelectric point (pI) values is important in understanding protein function. However, often only trace amounts of unknown proteins are available and pI measurements cannot be obtained using conventional methods. Here, we show a method based on the atomic force microscope (AFM) to determine pI using minute quantities of proteins. The protein of interest is immobilized on AFM colloidal probes and the adhesion force of the protein is measured against a positively and a negatively charged substrate made by layer-by-layer deposition of polyelectrolytes. From the AFM force-distance curves, pI values with an estimated accuracy of ±0.25 were obtained for bovine serum albumin, myoglobin, fibrinogen and ribonuclease A over a range of 4.7-9.8. Using this method, we show that the pI of the 'footprint' of the temporary adhesive proteins secreted by the barnacle cyprid larvae of Amphibalanus amphitrite is in the range 9.6-9.7.

  6. Direct Measurement of Optical Force Induced by Near-Field Plasmonic Cavity Using Dynamic Mode AFM

    PubMed Central

    Guan, Dongshi; Hang, Zhi Hong; Marcet, Zsolt; Liu, Hui; Kravchenko, I. I.; Chan, C. T.; Chan, H. B.; Tong, Penger

    2015-01-01

    Plasmonic nanostructures have attracted much attention in recent years because of their potential applications in optical manipulation through near-field enhancement. Continuing experimental efforts have been made to develop accurate techniques to directly measure the near-field optical force induced by the plasmonic nanostructures in the visible frequency range. In this work, we report a new application of dynamic mode atomic force microscopy (DM-AFM) in the measurement of the enhanced optical force acting on a nano-structured plasmonic resonant cavity. The plasmonic cavity is made of an upper gold-coated glass sphere and a lower quartz substrate patterned with an array of subwavelength gold disks. In the near-field when the sphere is positioned close to the disk array, plasmonic resonance is excited in the cavity and the induced force by a 1550 nm infrared laser is found to be increased by an order of magnitude compared with the photon pressure generated by the same laser light. The experiment demonstrates that DM-AFM is a powerful tool for the study of light induced forces and their enhancement in plasmonic nanostructures. PMID:26586455

  7. Direct measurement of optical force induced by near-field plasmonic cavity using dynamic mode AFM

    DOE PAGES

    Guan, Dongshi; Hang, Zhi Hong; Marset, Zsolt; ...

    2015-11-20

    Plasmonic nanostructures have attracted much attention in recent years because of their potential applications in optical manipulation through near-field enhancement. Continuing experimental efforts have been made to develop accurate techniques to directly measure the near-field optical force induced by the plasmonic nanostructures in the visible frequency range. In this work, we report a new application of dynamic mode atomic force microscopy (DM-AFM) in the measurement of the enhanced optical force acting on a nano-structured plasmonic resonant cavity. The plasmonic cavity is made of an upper gold-coated glass sphere and a lower quartz substrate patterned with an array of subwavelength goldmore » disks. In the near-field when the sphere is positioned close to the disk array, plasmonic resonance is excited in the cavity and the induced force by a 1550 nm infrared laser is found to be increased by an order of magnitude compared with the photon pressure generated by the same laser light. Lastly, the experiment demonstrates that DM-AFM is a powerful tool for the study of light induced forces and their enhancement in plasmonic nanostructures.« less

  8. Direct measurement of optical force induced by near-field plasmonic cavity using dynamic mode AFM

    SciTech Connect

    Guan, Dongshi; Hang, Zhi Hong; Marset, Zsolt; Liu, Hui; Kravchenko, Ivan I.; Chan, Ho Bun; Chan, C. T.; Tong, Penger

    2015-11-20

    Plasmonic nanostructures have attracted much attention in recent years because of their potential applications in optical manipulation through near-field enhancement. Continuing experimental efforts have been made to develop accurate techniques to directly measure the near-field optical force induced by the plasmonic nanostructures in the visible frequency range. In this work, we report a new application of dynamic mode atomic force microscopy (DM-AFM) in the measurement of the enhanced optical force acting on a nano-structured plasmonic resonant cavity. The plasmonic cavity is made of an upper gold-coated glass sphere and a lower quartz substrate patterned with an array of subwavelength gold disks. In the near-field when the sphere is positioned close to the disk array, plasmonic resonance is excited in the cavity and the induced force by a 1550 nm infrared laser is found to be increased by an order of magnitude compared with the photon pressure generated by the same laser light. Lastly, the experiment demonstrates that DM-AFM is a powerful tool for the study of light induced forces and their enhancement in plasmonic nanostructures.

  9. Interaction force measurement between E. coli cells and nanoparticles immobilized surfaces by using AFM

    SciTech Connect

    Zhang, Wen; Chen, Yongsheng

    2011-01-01

    To better understand environmental behaviors of nanoparticles (NPs), we used the atomic force microscopy (AFM) to measure interaction forces between E. coli cells and NPs immobilized on surfaces in an aqueous environment. The results showed that adhesion force strength was significantly influenced by particle size for both hematite ( -Fe2 O3 ) and corundum ( -Al2 O3 ) NPs whereas the effect on the repulsive force was not observed. The adhesion force decreased from 6.3 0.7 nN to 0.8 0.4 nN as hematite NPs increased from 26 nm to 98 nm in diameter. Corundum NPs exhibited a similar dependence of adhesion force on particle size. The Johnson Kendall Roberts (JKR) model was employed to estimate the contact area between E. coli cells and NPs, and based on the JKR model a new model that considers local effective contact area was developed. The prediction of the new model matched the size dependence of adhesion force in experimental results. Size effects on adhesion forces may originate from the difference in local effective contact areas as supported by our model. These findings provide fundamental information for interpreting the environmental behaviors and biological interactions of NPs, which barely have been addressed.

  10. Unspecific membrane protein-lipid recognition: combination of AFM imaging, force spectroscopy, DSC and FRET measurements.

    PubMed

    Borrell, Jordi H; Montero, M Teresa; Morros, Antoni; Domènech, Òscar

    2015-11-01

    In this work, we will describe in quantitative terms the unspecific recognition between lactose permease (LacY) of Escherichia coli, a polytopic model membrane protein, and one of the main components of the inner membrane of this bacterium. Supported lipid bilayers of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) (3:1, mol/mol) in the presence of Ca(2+) display lateral phase segregation that can be distinguished by atomic force microscopy (AFM) as well as force spectroscopy. LacY shows preference for fluid (Lα) phases when it is reconstituted in POPE : POPG (3:1, mol/mol) proteoliposomes at a lipid-to-protein ratio of 40. When the lipid-to-protein ratio is decreased down to 0.5, two domains can be distinguished by AFM. While the upper domain is formed by self-segregated units of LacY, the lower domain is constituted only by phospholipids in gel (Lβ) phase. On the one hand, classical differential scanning calorimetry (DSC) measurements evidenced the segregation of a population of phospholipids and point to the existence of a boundary region at the lipid-protein interface. On the other hand, Förster Resonance Energy Transfer (FRET) measurements in solution evidenced that POPE is selectively recognized by LacY. A binary pseudophase diagram of POPE : POPG built from AFM observations enables to calculate the composition of the fluid phase where LacY is inserted. These results are consistent with a model where POPE constitutes the main component of the lipid-LacY interface segregated from the fluid bulk phase where POPG predominates.

  11. AFM/TIRF force clamp measurements of neurosecretory vesicle tethers reveal characteristic unfolding steps

    PubMed Central

    Harris, Mark C.; Cislo, Dillon; Lenz, Joan S.; Umbach, Christopher

    2017-01-01

    Although several proteins have been implicated in secretory vesicle tethering, the identity and mechanical properties of the components forming the physical vesicle-plasma membrane link remain unknown. Here we present the first experimental measurements of nanomechanical properties of secretory vesicle-plasma membrane tethers using combined AFM force clamp and TIRF microscopy on membrane sheets from PC12 cells expressing the vesicle marker ANF-eGFP. Application of pulling forces generated tether extensions composed of multiple steps with variable length. The frequency of short (<10 nm) tether extension events was markedly higher when a fluorescent vesicle was present at the cantilever tip and increased in the presence of GTPγS, indicating that these events reflect specifically the properties of vesicle-plasma membrane tethers. The magnitude of the short tether extension events is consistent with extension lengths expected from progressive unfolding of individual helices of the exocyst complex, supporting its direct role in forming the physical vesicle-plasma membrane link. PMID:28323853

  12. Precision Measurement of the Casimir Force for Au Using a Dynamic Afm

    NASA Astrophysics Data System (ADS)

    Chang, C.-C.; Banishev, A. A.; Castillo-Garza, R.; Klimchitskaya, G. L.; Mostepanenko, V. M.; Mohideen, U.

    2012-07-01

    The gradient of the Casimir force between carefully cleaned Au surfaces of a sphere and a plate is measured using a dynamic atomic force microscope in the frequency modulation regime in high vacuum. The electrostatic calibration of the setup did not reveal any effect of patches or surface contaminants. The experimental data for the force gradient are found to be consistent with theory using the plasma model approach over the entire measurement range. The Drude model approach is excluded by the data at separations from 235 to 400 nm at a 67% confidence level.

  13. Introduction to atomic force microscopy (AFM) in biology.

    PubMed

    Goldsbury, Claire S; Scheuring, Simon; Kreplak, Laurent

    2009-11-01

    The atomic force microscope (AFM) has the unique capability of imaging biological samples with molecular resolution in buffer solution. In addition to providing topographical images of surfaces with nanometer- to angstrom-scale resolution, forces between single molecules and mechanical properties of biological samples can be investigated from the nanoscale to the microscale. Importantly, the measurements are made in buffer solutions, allowing biological samples to "stay alive" within a physiological-like environment while temporal changes in structure are measured-e.g., before and after addition of chemical reagents. These qualities distinguish AFM from conventional imaging techniques of comparable resolution, e.g., electron microscopy (EM). This unit provides an introduction to AFM on biological systems and describes specific examples of AFM on proteins, cells, and tissues. The physical principles of the technique and methodological aspects of its practical use and applications are also described.

  14. Anomalies in nanostructure size measurements by AFM

    NASA Astrophysics Data System (ADS)

    Mechler, Ádám; Kopniczky, Judit; Kokavecz, János; Hoel, Anders; Granqvist, Claes-Göran; Heszler, Peter

    2005-09-01

    Anomalies in atomic force microscopy (AFM) based size determination of nanoparticles were studied via comparative analysis of experiments and numerical calculations. Single tungsten oxide nanoparticles with a mean diameter of 3nm were deposited on mica and graphite substrates and were characterised by AFM. The size (height) of the nanoparticles, measured by tapping mode AFM, was found to be sensitive to the free amplitude of the oscillating tip, thus indicating that the images were not purely topographical. By comparing the experimental results to model calculations, we demonstrate that the dependence of the nanoparticle size on the oscillation amplitude of the tip is an inherent characteristic of the tapping mode AFM; it is also a function of physical properties such as elasticity and surface energy of the nanoparticle and the sample surface, and it depends on the radius of curvature of the tip. We show that good approximation of the real size can easily be obtained from plots of particle height vs free amplitude of the oscillating tip, although errors might persist for individual experiments. The results are valid for size (height) determination of any nanometer-sized objects imaged by tapping mode AFM.

  15. [Application of atomic force microscopy (AFM) in ophthalmology].

    PubMed

    Milka, Michał; Mróz, Iwona; Jastrzebska, Maria; Wrzalik, Roman; Dobrowolski, Dariusz; Roszkowska, Anna M; Moćko, Lucyna; Wylegała, Edward

    2012-01-01

    Atomic force microscopy (AFM) allows to examine surface of different biological objects in the nearly physiological conditions at the nanoscale. The purpose of this work is to present the history of introduction and the potential applications of the AFM in ophthalmology research and clinical practice. In 1986 Binnig built the AFM as a next generation of the scanning tunnelling microscope (STM). The functional principle of AFM is based on the measurement of the forces between atoms on the sample surface and the probe. As a result, the three-dimensional image of the surface with the resolution on the order of nanometres can be obtained. Yamamoto used as the first the AFM on a wide scale in ophthalmology. The first investigations used the AFM method to study structure of collagen fibres of the cornea and of the sclera. Our research involves the analysis of artificial intraocular lenses (IOLs). According to earlier investigations, e.g. Lombardo et al., the AFM was used to study only native IOLs. Contrary to the earlier investigations, we focused our measurements on lenses explanted from human eyes. The surface of such lenses is exposed to the influence of the intraocular aqueous environment, and to the related impacts of biochemical processes. We hereby present the preliminary results of our work in the form of AFM images depicting IOL surface at the nanoscale. The images allowed us to observe early stages of the dye deposit formation as well as local calcinosis. We believe that AFM is a very promising tool for studying the structure of IOL surface and that further observations will make it possible to explain the pathomechanism of artificial intraocular lens opacity formation.

  16. AFM Force measurements of the gp120-sCD4 and gp120 or CD4 antigen-antibody interactions

    PubMed Central

    Chen, Yong; Zeng, Gucheng; Chen, Sherry Shiyi; Feng, Qian; Chen, Zheng Wei

    2011-01-01

    Soluble CD4 (sCD4), anti-CD4 antibody, and anti-gp120 antibody have long been regarded as entry inhibitors in human immunodeficiency virus (HIV) therapy. However, the interactions between these HIV entry inhibitors and corresponding target molecules are still poorly understood. In this study, atomic force microscopy (AFM) was utilized to investigate the interaction forces among them. We found that the unbinding forces of sCD4-gp120 interaction, CD4 antigen-antibody interaction, and gp120 antigen-antibody interaction were 25.45 ± 20.46 pN, 51.22 ± 34.64 pN, and 89.87 ± 44.63 pN, respectively, which may provide important mechanical information for understanding the effects of viral entry inhibitors on HIV infection. Moreover, we found that the functionalization of an interaction pair on AFM tip or substrate significantly influenced the results, implying that we must perform AFM force measurement and analyze the data with more caution. PMID:21382342

  17. Contact nanomechanical measurements with the AFM

    NASA Astrophysics Data System (ADS)

    Geisse, Nicholas

    2013-03-01

    The atomic force microscope (AFM) has found broad use in the biological sciences largely due to its ability to make measurements on unfixed and unstained samples under liquid. In addition to imaging at multiple spatial scales ranging from micro- to nanometer, AFMs are commonly used as nanomechanical probes. This is pertinent for cell biology, as it has been demonstrated that the geometrical and mechanical properties of the extracellular microenvironment are important in such processes as cancer, cardiovascular disease, muscular dystrophy, and even the control of cell life and death. Indeed, the ability to control and quantify these external geometrical and mechanical parameters arises as a key issue in the field. Because AFM can quantitatively measure the mechanical properties of various biological samples, novel insights to cell function and to cell-substrate interactions are now possible. As the application of AFM to these types of problems is widened, it is important to understand the performance envelope of the technique and its associated data analyses. This talk will discuss the important issues that must be considered when mechanical models are applied to real-world data. Examples of the effect of different model assumptions on our understanding of the measured material properties will be shown. Furthermore, specific examples of the importance of mechanical stimuli and the micromechanical environment to the structure and function of biological materials will be presented.

  18. The effect of surface properties on the strength of attachment of fungal spores using AFM perpendicular force measurements.

    PubMed

    Whitehead, Kathryn A; Deisenroth, Ted; Preuss, Andrea; Liauw, Christopher M; Verran, Joanna

    2011-02-01

    Polymeric substrata may be biodegraded by fungal species resulting in damaged, weakened and unsightly materials. This process typically begins with fungal spore attachment to the surface. In order to better understand the processes that precedes a biofouling event, fungal spore attachment to a range of surfaces, was determined using perpendicular force measurements. This was carried out using atomic force microscope cantilevers modified with fungal spores from Aspergillus niger 1957 (5μm diameter, non-wettable, spherical), Aspergillus niger 1988 (5μm diameter non-wettable, spikey) or Aureobasidium pullulans (5μm-10μm sized, wettable, ellipsoidal). The strength of attachment of the spores was determined in combination with seven surfaces (nitric acid cleaned glass, cast poly(methylmethacrylate) sheet [c-PMMA], polytetrafluoroethylene [PTFE], silicon wafers spin coated with poly(3-methacryloxypropyltrimethoxy silane (γ-MPS)-co-methylmethacrylate (MMA)) [p(γ-MPS-co-MMA)], poly (γ-MPS-co-lauryl methacrylate) [p(γ-MPS-co-LMA)] [both in a ratio of 10-90], PMMA dissolved in a solvent [PMMAsc] and silicon wafers). Perpendicular force measurements could not be related to the R(a) values of the surfaces, but surface wettability was shown to have an effect. All three spore types interacted comparably with the surfaces. All spores attached strongly to c-PMMA and glass (wettable surfaces), and weakly to PTFE, (p(γ- MPS-co-LMA)) (non-wettable) and (p(γ-MPS-co-MMA)). Spore shape also affected the strength of attachment. Aureobasidium pullulans spores attached with the widest range of forces whilst A. niger 1957 attached with the smallest. Findings will inform the selection of surfaces for use in environments where biofouling is an important consideration.

  19. Device level 3D characterization using PeakForce AFM

    NASA Astrophysics Data System (ADS)

    Timoney, Padraig; Zhang, Xiaoxiao; Vaid, Alok; Hand, Sean; Osborne, Jason; Milligan, Eric; Feinstein, Adam

    2016-03-01

    Traditional metrology solutions face a range of challenges at the 1X node such as three dimensional (3D) measurement capabilities, shrinking overlay and critical dimension (CD) error budgets driven by multi-patterning and via in trench CD measurements. With advent of advanced technology nodes and 3D processing, an increasing need is emerging for in-die metrology including across-structure and structure-to-structure characterization. A myriad of work has emerged in the past few years intending to address these challenges from various aspects; in-die OCD with reduced spot size and tilt beam on traditional critical dimension scanning electron microscopy (CDSEM) for height measurements. This paper explores the latest capability offered by PeakForceTM Tapping Atomic Force Microscopy (PFT-AFM). The use of traditional harmonic tapping mode for scanning high aspect ratio, and complex "3D" wafer structures, results in limited depth probing capability as well as excessive tip wear. These limitations arise due to the large tip-sample interaction volume in such confined spaces. PeakForce Tapping eliminates these limitations through direct real time control of the tip-sample interaction contact force. The ability of PeakForce to measure, and respond directly to tip- sample interaction forces results in more detailed feature resolution, reduced tip wear, and improved depth capability. In this work, the PFT-AFM tool was applied for multiple applications, including the 14nm fin and replacement metal gate (RMG) applications outlined below. Results from DOE wafers, detailed measurement precision studies and correlation to reference metrology are presented for validation of this methodology. With the fin application, precision of 0.3nm is demonstrated by measuring 5 dies with 10 consecutive runs. Capability to resolve within-die and localized within-macro height variation is also demonstrated. Results obtained from the fin measurements support the increasing trend that measurements

  20. Force and function: probing proteins with AFM-based force spectroscopy.

    PubMed

    Puchner, Elias M; Gaub, Hermann E

    2009-10-01

    Forces play a pivotal role in life, and the response of live systems to forces requires molecules and molecular interactions with adequate properties to counteract both in a passive and also, if needed, in an active, dynamic manner. However, at the level of individual molecules these forces are so minute, that the development of sophisticated experiments to measure and control them was required. With the maturation of these techniques, particularly the AFM-based single-molecule force spectroscopy into commercial instruments, the scope has widened considerably and more and more studies shed light onto the different aspects of biomolecular mechanics. Many surprises turned up and more are waiting for us.

  1. Probing the Double Layer: Effect of Image Forces on AFM

    PubMed Central

    Sachs, Frederick

    2006-01-01

    Force probes such as AFM tips or laser trap latex beads have a dielectric constant much less than that of the water that they displace. Thus when a probe approaches a charged surface under water it will be repelled simply based upon the image forces, and these can be of nN magnitude. PMID:16714346

  2. FRAME (Force Review Automation Environment): MATLAB-based AFM data processor.

    PubMed

    Partola, Kostyantyn R; Lykotrafitis, George

    2016-05-03

    Data processing of force-displacement curves generated by atomic force microscopes (AFMs) for elastic moduli and unbinding event measurements is very time consuming and susceptible to user error or bias. There is an evident need for consistent, dependable, and easy-to-use AFM data processing software. We have developed an open-source software application, the force review automation environment (or FRAME), that provides users with an intuitive graphical user interface, automating data processing, and tools for expediting manual processing. We did not observe a significant difference between manually processed and automatically processed results from the same data sets.

  3. Interlaboratory round robin on cantilever calibration for AFM force spectroscopy.

    PubMed

    te Riet, Joost; Katan, Allard J; Rankl, Christian; Stahl, Stefan W; van Buul, Arend M; Phang, In Yee; Gomez-Casado, Alberto; Schön, Peter; Gerritsen, Jan W; Cambi, Alessandra; Rowan, Alan E; Vancso, G Julius; Jonkheijm, Pascal; Huskens, Jurriaan; Oosterkamp, Tjerk H; Gaub, Hermann; Hinterdorfer, Peter; Figdor, Carl G; Speller, Sylvia

    2011-12-01

    Single-molecule force spectroscopy studies performed by Atomic Force Microscopes (AFMs) strongly rely on accurately determined cantilever spring constants. Hence, to calibrate cantilevers, a reliable calibration protocol is essential. Although the thermal noise method and the direct Sader method are frequently used for cantilever calibration, there is no consensus on the optimal calibration of soft and V-shaped cantilevers, especially those used in force spectroscopy. Therefore, in this study we aimed at establishing a commonly accepted approach to accurately calibrate compliant and V-shaped cantilevers. In a round robin experiment involving eight different laboratories we compared the thermal noise and the Sader method on ten commercial and custom-built AFMs. We found that spring constants of both rectangular and V-shaped cantilevers can accurately be determined with both methods, although the Sader method proved to be superior. Furthermore, we observed that simultaneous application of both methods on an AFM proved an accurate consistency check of the instrument and thus provides optimal and highly reproducible calibration. To illustrate the importance of optimal calibration, we show that for biological force spectroscopy studies, an erroneously calibrated cantilever can significantly affect the derived (bio)physical parameters. Taken together, our findings demonstrated that with the pre-established protocol described reliable spring constants can be obtained for different types of cantilevers.

  4. Investigation of Cell-Substrate Adhesion Properties of Living Chondrocyte by Measuring Adhesive Shear Force and Detachment Using AFM and Inverse FEA

    PubMed Central

    Nguyen, Trung Dung; Gu, YuanTong

    2016-01-01

    It is well-known that cell adhesion is important in many biological processes such as cell migration and proliferation. A better understanding of the cell adhesion process will shed insight into these cellular biological responses as well as cell adhesion-related diseases treatment. However, there is little research which has attempted to investigate the process of cell adhesion and its mechanism. Thus, this paper aims to study the time-dependent adhesion properties of single living chondrocytes using an advanced coupled experimental-numerical approach. Atomic Force Microscopy (AFM) tips will be used to apply lateral forces to detach chondrocytes that are seeded for three different periods. An advanced Finite Element Analysis (FEA) model combining porohyperelastic (PHE) constitutive model and cohesive zone formulation is developed to explore the mechanism of adhesion. The results revealed that the cells can resist normal traction better than tangential traction in the beginning of adhesion. This is when the cell adhesion molecules establish early attachment to the substrates. After that when the cells are spreading, stress fiber bundles generate tangential traction on the substrate to form strong adhesion. Both simulation and experimental results agree well with each other, providing a powerful tool to study the cellular adhesion process. PMID:27892536

  5. AFM study of forces between silica, silicon nitride and polyurethane pads.

    PubMed

    Sokolov, Igor; Ong, Quy K; Shodiev, Hasan; Chechik, Nina; James, David; Oliver, Mike

    2006-08-15

    Interaction of silica and silicon nitride with polyurethane surfaces is rather poorly studied despite being of great interest for modern semiconductor industry, e.g., for chemical-mechanical planarization (CMP) processes. Here we show the results from the application of the atomic force microscopy (AFM) technique to study the forces between silica or silicon nitride (AFM tips) and polyurethane surfaces in aqueous solutions of different acidity. The polyurethane surface potentials are derived from the measured AFM data. The obtained potentials are in rather good agreement with measurements of zeta-potentials using the streaming-potentials method. Another important parameter, adhesion, is also measured. While the surface potentials of silica are well known, there are ambiguous results on the potentials of silicon nitride that is naturally oxidized. Deriving the surface potential of the naturally oxidized silicon nitride from our measurements, we show that it is not oxidized to silica despite some earlier published expectations.

  6. Savinase action on bovine serum albumin (BSA) monolayers demonstrated with measurements at the air-water interface and liquid Atomic Force Microscopy (AFM) imaging.

    PubMed

    Balashev, Konstantin; Callisen, Thomas H; Svendsen, Allan; Bjørnholm, Thomas

    2011-12-01

    We studied the enzymatic action of Savinase on bovine serum albumin (BSA) organized in a monolayer spread at the air/water interface or adsorbed at the mica surface. We carried out two types of experiments. In the first one we followed the degradation of the protein monolayer by measuring the surface pressure and surface area decrease versus time. In the second approach we applied AFM imaging of the supported BSA monolayers adsorbed on mica solid supports and extracted information for the enzyme action by analyzing the obtained images of the surface topography in the course of enzyme action. In both cases we obtained an estimate for the turnover number (TON) of the enzyme reaction.

  7. Wetting properties of AFM probes by means of contact angle measurement

    NASA Astrophysics Data System (ADS)

    Tao, Zhenhua; Bhushan, Bharat

    2006-09-01

    An atomic force microscopy (AFM) based technique was developed to measure the wetting properties of probe tips. By advancing and receding the AFM tip across the water surface, the meniscus force between the tip and the liquid was measured at the tip-water separation. The water contact angle was determined from the meniscus force. The obtained contact angle results were compared with that by the sessile drop method. It was found that the AFM based technique provided higher contact angle values than the sessile drop method. The mechanisms responsible for the difference are discussed.

  8. Single-Molecule Studies of Integrins by AFM-Based Force Spectroscopy on Living Cells

    NASA Astrophysics Data System (ADS)

    Eibl, Robert H.

    The characterization of cell adhesion between two living cells at the single-molecule level, i.e., between one adhesion receptor and its counter-receptor, appears to be an experimental challenge. Atomic force microscopy (AFM) can be used in its force spectroscopy mode to determine unbinding forces of a single pair of adhesion receptors, even with a living cell as a probe. This chapter provides an overview of AFM force measurements of the integrin family of cell adhesion receptors and their ligands. A focus is given to major integrins expressed on leukocytes, such as lymphocyte function-associated antigen 1 (LFA-1) and very late antigen 4 (VLA-4). These receptors are crucial for leukocyte trafficking in health and disease. LFA-1 and VLA-1 can be activated within the bloodstream from a low-affinity to a high-affinity receptor by chemokines in order to adhere strongly to the vessel wall before the receptor-bearing leukocytes extravasate. The experimental considerations needed to provide near-physiological conditions for a living cell and to be able to measure adequate forces at the single-molecule level are discussed in detail. AFM technology has been developed into a modern and extremely sensitive tool in biomedical research. It appears now that AFM force spectroscopy could enter, within a few years, medical applications in diagnosis and therapy of cancer and autoimmune diseases.

  9. Nanometer-Sized Water Bridge and Pull-Off Force in AFM at Different Relative Humidities: Reproducibility Measurement and Model Based on Surface Tension Change.

    PubMed

    Bartošík, Miroslav; Kormoš, Lukáš; Flajšman, Lukáš; Kalousek, Radek; Mach, Jindřich; Lišková, Zuzana; Nezval, David; Švarc, Vojtěch; Šamořil, Tomáš; Šikola, Tomáš

    2017-01-26

    This article deals with the analysis of the relationship between the pull-off force measured by atomic force microscopy and the dimensions of water bridge condensed between a hydrophilic silicon oxide tip and a silicon oxide surface under ambient conditions. Our experiments have shown that the pull-off force increases linearly with the radius of the tip and nonmonotonically with the relative humidity (RH). The latter dependence generally consists of an initial constant part changing to a convex-concave-like increase of the pull-off force and finally followed by a concave-like decrease of this force. The reproducibility tests have demonstrated that the precision limits have to be taken into account for comparing these measurements carried out under atmospheric conditions. The results were fitted by a classical thermodynamic model based on water-bridge envelope calculations using the numerical solution of the Kelvin equation in the form of axisymmetric differential equations and consequent calculation of adhesive forces. To describe the measured data more precisely, a decrease of the water surface tension for low RH was incorporated into the calculation. Such a decrease can be expected as a consequence of the high surface curvature in the nanometer-sized water bridge between the tip and the surface.

  10. Quantitating membrane bleb stiffness using AFM force spectroscopy and an optical sideview setup.

    PubMed

    Gonnermann, Carina; Huang, Chaolie; Becker, Sarah F; Stamov, Dimitar R; Wedlich, Doris; Kashef, Jubin; Franz, Clemens M

    2015-03-01

    AFM-based force spectroscopy in combination with optical microscopy is a powerful tool for investigating cell mechanics and adhesion on the single cell level. However, standard setups featuring an AFM mounted on an inverted light microscope only provide a bottom view of cell and AFM cantilever but cannot visualize vertical cell shape changes, for instance occurring during motile membrane blebbing. Here, we have integrated a mirror-based sideview system to monitor cell shape changes resulting from motile bleb behavior of Xenopus cranial neural crest (CNC) cells during AFM elasticity and adhesion measurements. Using the sideview setup, we quantitatively investigate mechanical changes associated with bleb formation and compared cell elasticity values recorded during membrane bleb and non-bleb events. Bleb protrusions displayed significantly lower stiffness compared to the non-blebbing membrane in the same cell. Bleb stiffness values were comparable to values obtained from blebbistatin-treated cells, consistent with the absence of a functional actomyosin network in bleb protrusions. Furthermore, we show that membrane blebs forming within the cell-cell contact zone have a detrimental effect on cell-cell adhesion forces, suggesting that mechanical changes associated with bleb protrusions promote cell-cell detachment or prevent adhesion reinforcement. Incorporating a sideview setup into an AFM platform therefore provides a new tool to correlate changes in cell morphology with results from force spectroscopy experiments.

  11. Measurement of the interaction forces at various pH levels by using AFM for the interpretation of DNA adsorption on silanized surfaces

    NASA Astrophysics Data System (ADS)

    Han, Seung Pil; Suga, Kosaku; Fujihara, Masamichi; Park, Byung-Eun

    2014-09-01

    Various surfaces have been used for deoxyribonucleic acid (DNA) immobilization, one example being a silanized surface. This is useful for determining DNA lengths and, thus, locating specific gene sequences in DNA by using fluorescence microscopy and scanning probe microscopy. In this study, we deposited DNA by using the molecular combing method and, we used fluorescence microscopy to study how the chain lengths of n-alkylsilanes affected the surface density of DNA deposited on the silanized surfaces in a tris-ethylenediaminetetraacetic acid (TE) buffer. The forces between a cleaned silicon-nitride (Si3N4) tip and each substrate surface in aqueous buffers at various pH levels (1.0 ~ 9.0) were also studied by using atomic force microscopy to measure the force-distance curves. We explain why the density of lambda bacteriophage DNA (λ-DNA) deposited by using the molecular combing method at pH 8 was lower on the silanized surface with the shorter alkyl chain than it was on the silanized surface with the longer alkyl chain in terms of the electrical double layer (EDL) and the adhesive force.

  12. Measurement of Fibrin Fiber Strength using AFM

    NASA Astrophysics Data System (ADS)

    Jawerth, Louise; Falvo, Mchael; Canning, Anthony; Matthews, Garrett; Superfine, Richard; Guthold, Martin

    2003-11-01

    Blood clots usually form in the event of injury or damage to blood vessels to prevent the loss of blood. Moreover, as we age, blood clots often form in undesired locations, i.e. in blood vessels around the heart or brain, or in uninjured vessels resulting in heart attacks or strokes. Fibrin fibers, the skeleton of a blood clot, essentially perform the mechanical task of creating a blockage that stems blood flow. Thus, a better understanding of the mechanical properties of these fibers, such as the tensile strength and Young's modulus, will enhance our understanding of blood clots. For quantitative stress and strain measurements, we need to image the deformation of the fiber and measure the applied force simultaneously. For this reason, we are combining fluorescent microscopy with atomic force microscopy. Fibrin fibers were fluorescently labeled with streptavidin-coated quantum dots and deposited on a functionalized glass substrate, imaged and manipulated under buffer. We will describe our progress in obtaining quantitative lateral force measurements under buffer simultaneous with strain measurements from optical microscope images.

  13. Quantitative Measurements of Elastic Properties with Ultrasonic-Based AFM and Conventional Techniques

    NASA Astrophysics Data System (ADS)

    Hurley, D. C.

    A prime motivation for the original development of ultrasonic-based AFM methods was to enable measurements of elastic properties with nanoscale spatial resolution. In this chapter, we discuss the quantitative measurement of elastic modulus with ultrasonic-based AFM methods and compare it to measurement by more conventional or established techniques. First, we present the basic principles of modulus measurement with methods that involve contact resonance spectroscopy, such as atomic force acoustic microscopy (AFAM) and ultrasonic AFM (U-AFM). Fundamental concepts of modulus measurement with more established approaches, especially instrumented (nano-) indentation (NI) and surface acoustic wave spectroscopy (SAWS), are then discussed. We consider the relative strengths and limitations of various approaches, for example measurement accuracy, spatial resolution, and applicability to different materials. Example results for specific material systems are given with an emphasis on studies involving direct intercomparison of different techniques. Finally, current research in this area and opportunities for future work are described.

  14. Accurate, explicit formulae for higher harmonic force spectroscopy by frequency modulation-AFM.

    PubMed

    Kuchuk, Kfir; Sivan, Uri

    2015-01-01

    The nonlinear interaction between an AFM tip and a sample gives rise to oscillations of the cantilever at integral multiples (harmonics) of the fundamental resonance frequency. The higher order harmonics have long been recognized to hold invaluable information on short range interactions but their utilization has thus far been relatively limited due to theoretical and experimental complexities. In particular, existing approximations of the interaction force in terms of higher harmonic amplitudes generally require simultaneous measurements of multiple harmonics to achieve satisfactory accuracy. In the present letter we address the mathematical challenge and derive accurate, explicit formulae for both conservative and dissipative forces in terms of an arbitrary single harmonic. Additionally, we show that in frequency modulation-AFM (FM-AFM) each harmonic carries complete information on the force, obviating the need for multi-harmonic analysis. Finally, we show that higher harmonics may indeed be used to reconstruct short range forces more accurately than the fundamental harmonic when the oscillation amplitude is small compared with the interaction range.

  15. A review of the application of atomic force microscopy (AFM) in food science and technology.

    PubMed

    Liu, Shaoyang; Wang, Yifen

    2011-01-01

    Atomic force microscopy (AFM) is a powerful nanoscale analysis technique used in food area. This versatile technique can be used to acquire high-resolution sample images and investigate local interactions in air or liquid surroundings. In this chapter, we explain the principles of AFM and review representative applications of AFM in gelatin, casein micelle, carrageenan, gellan gum, starch, and interface. We elucidate new knowledge revealed with AFM as well as ways to use AFM to obtain morphology and rheology information in different food fields.

  16. Robust strategies for automated AFM force curve analysis--I. Non-adhesive indentation of soft, inhomogeneous materials.

    PubMed

    Lin, David C; Dimitriadis, Emilios K; Horkay, Ferenc

    2007-06-01

    The atomic force microscope (AFM) has found wide applicability as a nanoindentation tool to measure local elastic properties of soft materials. An automated approach to the processing of AFM indentation data, namely, the extraction of Young's modulus, is essential to realizing the high-throughput potential of the instrument as an elasticity probe for typical soft materials that exhibit inhomogeneity at microscopic scales. This paper focuses on Hertzian analysis techniques, which are applicable to linear elastic indentation. We compiled a series of synergistic strategies into an algorithm that overcomes many of the complications that have previously impeded efforts to automate the fitting of contact mechanics models to indentation data. AFM raster data sets containing up to 1024 individual force-displacement curves and macroscopic compression data were obtained from testing polyvinyl alcohol gels of known composition. Local elastic properties of tissue-engineered cartilage were also measured by the AFM. All AFM data sets were processed using customized software based on the algorithm, and the extracted values of Young's modulus were compared to those obtained by macroscopic testing. Accuracy of the technique was verified by the good agreement between values of Young's modulus obtained by AFM and by direct compression of the synthetic gels. Validation of robustness was achieved by successfully fitting the vastly different types of force curves generated from the indentation of tissue-engineered cartilage. For AFM indentation data that are amenable to Hertzian analysis, the method presented here minimizes subjectivity in preprocessing and allows for improved consistency and minimized user intervention. Automated, large-scale analysis of indentation data holds tremendous potential in bioengineering applications, such as high-resolution elasticity mapping of natural and artificial tissues.

  17. Magnetoelectric versus thermal actuation characteristics of shear force AFM probes with piezoresistive detection

    NASA Astrophysics Data System (ADS)

    Sierakowski, Andrzej; Kopiec, Daniel; Majstrzyk, Wojciech; Kunicki, Piotr; Janus, Paweł; Dobrowolski, Rafał; Grabiec, Piotr; Rangelow, Ivo W.; Gotszalk, Teodor

    2017-03-01

    In this paper the authors compare methods used for piezoresistive microcantilevers actuation for the atomic force microscopy (AFM) imaging in the dynamic shear force mode. The piezoresistive detection is an attractive technique comparing the optical beam detection of deflection. The principal advantage is that no external alignment of optical source and detector are needed. When the microcantilever is deflected, the stress is transferred into a change of resistivity of piezoresistors. The integration of piezoresistive read-out provides a promising solution in realizing a compact non-contact AFM. Resolution of piezoresistive read-out is limited by three main noise sources: Johnson, 1/f and thermomechanical noise. In the dynamic shear force mode measurement the method used for cantilever actuation will also affect the recorded noise in the piezoresistive detection circuit. This is the result of a crosstalk between an aluminium path (current loop used for actuation) and piezoresistors located near the base of the beam. In this paper authors described an elaborated in ITE (Institute of Electron Technology) technology of fabrication cantilevers with piezoresistive detection of deflection and compared efficiency of two methods used for cantilever actuation.

  18. An AFM-based pit-measuring method for indirect measurements of cell-surface membrane vesicles

    SciTech Connect

    Zhang, Xiaojun; Chen, Yuan; Chen, Yong

    2014-03-28

    Highlights: • Air drying induced the transformation of cell-surface membrane vesicles into pits. • An AFM-based pit-measuring method was developed to measure cell-surface vesicles. • Our method detected at least two populations of cell-surface membrane vesicles. - Abstract: Circulating membrane vesicles, which are shed from many cell types, have multiple functions and have been correlated with many diseases. Although circulating membrane vesicles have been extensively characterized, the status of cell-surface membrane vesicles prior to their release is less understood due to the lack of effective measurement methods. Recently, as a powerful, micro- or nano-scale imaging tool, atomic force microscopy (AFM) has been applied in measuring circulating membrane vesicles. However, it seems very difficult for AFM to directly image/identify and measure cell-bound membrane vesicles due to the similarity of surface morphology between membrane vesicles and cell surfaces. Therefore, until now no AFM studies on cell-surface membrane vesicles have been reported. In this study, we found that air drying can induce the transformation of most cell-surface membrane vesicles into pits that are more readily detectable by AFM. Based on this, we developed an AFM-based pit-measuring method and, for the first time, used AFM to indirectly measure cell-surface membrane vesicles on cultured endothelial cells. Using this approach, we observed and quantitatively measured at least two populations of cell-surface membrane vesicles, a nanoscale population (<500 nm in diameter peaking at ∼250 nm) and a microscale population (from 500 nm to ∼2 μm peaking at ∼0.8 μm), whereas confocal microscopy only detected the microscale population. The AFM-based pit-measuring method is potentially useful for studying cell-surface membrane vesicles and for investigating the mechanisms of membrane vesicle formation/release.

  19. Development of a 3D-AFM for true 3D measurements of nanostructures

    NASA Astrophysics Data System (ADS)

    Dai, Gaoliang; Häßler-Grohne, Wolfgang; Hüser, Dorothee; Wolff, Helmut; Danzebrink, Hans-Ulrich; Koenders, Ludger; Bosse, Harald

    2011-09-01

    The development of advanced lithography requires highly accurate 3D metrology methods for small line structures of both wafers and photomasks. Development of a new 3D atomic force microscopy (3D-AFM) with vertical and torsional oscillation modes is introduced in this paper. In its configuration, the AFM probe is oscillated using two piezo actuators driven at vertical and torsional resonance frequencies of the cantilever. In such a way, the AFM tip can probe the surface with a vertical and a lateral oscillation, offering high 3D probing sensitivity. In addition, a so-called vector approach probing (VAP) method has been applied. The sample is measured point-by-point using this method. At each probing point, the tip is approached towards the surface until the desired tip-sample interaction is detected and then immediately withdrawn from the surface. Compared to conventional AFMs, where the tip is kept continuously in interaction with the surface, the tip-sample interaction time using the VAP method is greatly reduced and consequently the tip wear is reduced. Preliminary experimental results show promising performance of the developed system. A measurement of a line structure of 800 nm height employing a super sharp AFM tip could be performed with a repeatability of its 3D profiles of better than 1 nm (p-v). A line structure of a Physikalisch-Technische Bundesanstalt photomask with a nominal width of 300 nm has been measured using a flared tip AFM probe. The repeatability of the middle CD values reaches 0.28 nm (1σ). A long-term stability investigation shows that the 3D-AFM has a high stability of better than 1 nm within 197 measurements taken over 30 h, which also confirms the very low tip wear.

  20. Noise in NC-AFM measurements with significant tip–sample interaction

    PubMed Central

    Lübbe, Jannis; Temmen, Matthias

    2016-01-01

    The frequency shift noise in non-contact atomic force microscopy (NC-AFM) imaging and spectroscopy consists of thermal noise and detection system noise with an additional contribution from amplitude noise if there are significant tip–sample interactions. The total noise power spectral density D Δ f(f m) is, however, not just the sum of these noise contributions. Instead its magnitude and spectral characteristics are determined by the strongly non-linear tip–sample interaction, by the coupling between the amplitude and tip–sample distance control loops of the NC-AFM system as well as by the characteristics of the phase locked loop (PLL) detector used for frequency demodulation. Here, we measure D Δ f(f m) for various NC-AFM parameter settings representing realistic measurement conditions and compare experimental data to simulations based on a model of the NC-AFM system that includes the tip–sample interaction. The good agreement between predicted and measured noise spectra confirms that the model covers the relevant noise contributions and interactions. Results yield a general understanding of noise generation and propagation in the NC-AFM and provide a quantitative prediction of noise for given experimental parameters. We derive strategies for noise-optimised imaging and spectroscopy and outline a full optimisation procedure for the instrumentation and control loops. PMID:28144538

  1. LET Spectrum Measurements In CR-39 PNTD With AFM

    SciTech Connect

    Johnson, C. E.; DeWitt, J. M.; Benton, E. R.; Yasuda, N.; Benton, E. V.

    2011-06-01

    Energetic protons, neutrons, and heavy ions undergoing collisions with target nuclei of varying Z can produce residual heavy recoil fragments via intra-nuclear cascade/evaporation reactions. The particles produced in these non-elastic collisions generally have such extremely short range ({approx}<10 {mu}m) that they cannot be directly observed by conventional detection methods including CR-39 plastic nuclear track detector (PNTD) that has been chemically etched for analysis by standard visible light microscopy. However, high-LET recoil fragments having range on the order of several cell diameters can be produced in tissue during radiotherapy using proton and carbon beams. We have developed a method to analyze short-range, high-LET tracks in CR-39 plastic nuclear track detector (PNTD) using short duration chemical etching ({approx}<1 {mu}m) following by automated atomic force microscope (AFM) scanning. The post-scan data processing used in this work was based on semi-automated matrix analysis opposed to traditional grey-scale image analysis. This method takes advantage of the 3-D data obtained via AFM to achieve robust discrimination of nuclear tracks from other features inherently present in the post-etch detector surface. Through automation of AFM scanning, sufficient AFM scan frames were obtained to attain an LET spectrum spanning the LET range from 200-1500 keV/{mu}m. In addition to our experiments, simulations were carried out with the Monte Carlo transport code, FLUKA. To demonstrate this method, CR-39 PNTD was exposed to the proton therapy beam at Loma Linda University Medical Center (LLUMC) at 60 and 230 MeV. Additionally, detectors were exposed to 1 GeV protons at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL). For these exposures CR-39 PNTD, Al and Cu target foils were used between detector layers.

  2. LET Spectrum Measurements In CR-39 PNTD With AFM

    NASA Astrophysics Data System (ADS)

    Johnson, C. E.; DeWitt, J. M.; Benton, E. R.; Yasuda, N.; Benton, E. V.

    2011-06-01

    Energetic protons, neutrons, and heavy ions undergoing collisions with target nuclei of varying Z can produce residual heavy recoil fragments via intra-nuclear cascade/evaporation reactions. The particles produced in these non-elastic collisions generally have such extremely short range (˜<10 μm) that they cannot be directly observed by conventional detection methods including CR-39 plastic nuclear track detector (PNTD) that has been chemically etched for analysis by standard visible light microscopy. However, high-LET recoil fragments having range on the order of several cell diameters can be produced in tissue during radiotherapy using proton and carbon beams. We have developed a method to analyze short-range, high-LET tracks in CR-39 plastic nuclear track detector (PNTD) using short duration chemical etching (˜<1 μm) following by automated atomic force microscope (AFM) scanning. The post-scan data processing used in this work was based on semi-automated matrix analysis opposed to traditional grey-scale image analysis. This method takes advantage of the 3-D data obtained via AFM to achieve robust discrimination of nuclear tracks from other features inherently present in the post-etch detector surface. Through automation of AFM scanning, sufficient AFM scan frames were obtained to attain an LET spectrum spanning the LET range from 200-1500 keV/μm. In addition to our experiments, simulations were carried out with the Monte Carlo transport code, FLUKA. To demonstrate this method, CR-39 PNTD was exposed to the proton therapy beam at Loma Linda University Medical Center (LLUMC) at 60 and 230 MeV. Additionally, detectors were exposed to 1 GeV protons at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL). For these exposures CR-39 PNTD, Al and Cu target foils were used between detector layers.

  3. LET spectrum measurements in Cr-39 PNTD with AFM

    SciTech Connect

    Johnson, Carl Edward; De Witt, Joel M; Benton, Eric R; Yasuda, Nakahiro; Benton, Eugene V

    2010-01-01

    Energetic protons, neutrons, and heavy ions undergoing collisions with target nuclei of varying Z can produce residual heavy recoil fragments via intra-nuclear cascade/evaporation reactions. The particles produced in these non-elastic collisions generally have such extremely short range ({approx}< 10 {mu}m) that they cannot be directly observed by conventional detection methods including CR-39 plastic nuclear track detector (PNTD) that has been chemically etched for analysis by standard visible light microscopy. However, high-LET recoil fragments having range on the order of several cell diameters can be produced in tissue during radiotherapy using proton and carbon beams. We have developed a method to analyze short-range, high-LET tracks in CR-39 plastic nuclear track detector (PNTD) using short duration chemical etching ({approx}< 1 {mu}m) followed by automated atomic force microscope (AFM) scanning. The post-scan data processing used in this work was based on semi-automated matrix analysis opposed to traditional grey-scale image analysis. This method takes advantage of the 3-D data obtained via AFM to achieve robust discrimination of nuclear tracks from other features. Through automation of AFM scanning, sufficient AFM scan frames were obtained to attain an LET spectrum spanning the LET range from 200-1500 keV/{mu}m. In addition to our experiments, simulations were carried out with the Monte Carlo transport code, FLUKA. To demonstrate this method, CR-39 PNTD was exposed to the proton therapy beam at Loma Linda University Medical Center (LLUMC) at 60 and 230 MeV. Additionally, detectors were exposed to I GeV protons at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL). For these exposures CR-39 PNTD, Al and Cu target foils were used between detector layers.

  4. Nanomechanical characterization of nanostructured bainitic steel: Peak Force Microscopy and Nanoindentation with AFM

    PubMed Central

    Morales-Rivas, Lucia; González-Orive, Alejandro; Garcia-Mateo, Carlos; Hernández-Creus, Alberto; Caballero, Francisca G.; Vázquez, Luis

    2015-01-01

    The full understanding of the deformation mechanisms in nanostructured bainite requires the local characterization of its mechanical properties, which are expected to change from one phase, bainitic ferrite, to another, austenite. This study becomes a challenging process due to the bainitic nanostructured nature and high Young’s modulus. In this work, we have carried out such study by means of the combination of AFM-based techniques, such as nanoindentation and Peak Force Quantitative Nanomechanical Mapping (PF-QNM) measurements. We have addressed critically the limits and advantages of these techniques and been able to measure some elastoplastic parameters of both phases. Specifically, we have analyzed by PF-QNM two nanostructured bainitic steels, with a finer and a coarser structure, and found that both phases have a similar Young’s modulus. PMID:26602631

  5. AFM study of forces between silicon oil and hydrophobic-hydrophilic surfaces in aqueous solutions.

    PubMed

    Zbik, Marek S; Frost, Ray L

    2010-09-15

    An investigation has been made of the interactions between silicone oil and various solid substrates immersed in aqueous solutions. Measurements were made using an atomic force microscope (AFM) using the colloid-probe method. The silicone oil drop is simulated by coating a small silica sphere with the oil, and measuring the force as this coated sphere is brought close to contact with a flat solid surface. It is found that the silicone oil surface is negatively charged, which causes a double-layer repulsion between the oil drop and another negatively charged surface such as mica. With hydrophilic solids, this repulsion is strong enough to prevent attachment of the drop to the solid. However, with hydrophobic surfaces there is an additional attractive force which overcomes the double-layer repulsion, and the silicone oil drop attaches to the solid. There is circumstantial evidence that linear and nonlinear effect take part in force results from compression of the silicone oil film coated on the glass sphere.

  6. Using AFM Force Curves to Explore Properties of Elastomers

    ERIC Educational Resources Information Center

    Ferguson, Megan A.; Kozlowski, Joseph J.

    2013-01-01

    polydimethylsiloxane (PDMS) elastomers. Force curves are used to quantify the stiffness of elastomers prepared with different base-to-curing agent ratios. Trends in observed spring constants of the…

  7. An improved measurement of dsDNA elasticity using AFM

    NASA Astrophysics Data System (ADS)

    Nguyen, Thi-Huong; Lee, Sang-Myung; Na, Kyounghwan; Yang, Sungwook; Kim, Jinseok; Yoon, Eui-Sung

    2010-02-01

    The mechanical properties of a small fragment (30 bp) of an individual double-stranded deoxyribonucleic acid (dsDNA) in water have been investigated by atomic force microscopy (AFM). We have stretched three systems including ssDNA, double-fixed dsDNA (one strand of the dsDNA molecules was biotinylated at the 3'-end and thiolated at the 5'-end, this was reversed for the other complementary strand) and single-fixed dsDNA (one strand of the dsDNA molecules was biotinylated at the 3'-end and thiolated at the 5'-end, whereas the other complementary strand was biotinylated at only the 5'-end). The achieved thiolation and biotinylation were to bind ds- or ssDNA to the gold surface and streptavidin-coated AFM tip, respectively. Analysis of the force versus displacement (F-D) curves from tip-DNA-substrate systems shows that the pull-off length (Lo) and stretch length (δ) from the double-fixed system were shorter than those observed in the ssDNA and the single-fixed system. The obtained stretch force (Fst) from the single-fixed dsDNA was much greater than that from the ssDNA even though it was about 10 pN greater than the one obtained in the double-fixed system. As a result, the Young's modulus of the double-fixed dsDNA was greater than that of the single-fixed dsDNA and the ssDNA. A more reliable stiffness of the dsDNA was observed via the double-fixed system, since there is no effect of the unpaired molecules during stretching, which always occurred in the single-fixed system. The unpaired molecules were also observed by comparing the stiffness of ssDNA and single-fixed dsDNA in which the end of one strand was left free.

  8. Multiparametric high-resolution imaging of native proteins by force-distance curve-based AFM.

    PubMed

    Pfreundschuh, Moritz; Martinez-Martin, David; Mulvihill, Estefania; Wegmann, Susanne; Muller, Daniel J

    2014-05-01

    A current challenge in the life sciences is to understand how the properties of individual molecular machines adjust in order to meet the functional requirements of the cell. Recent developments in force-distance (FD) curve-based atomic force microscopy (FD-based AFM) enable researchers to combine sub-nanometer imaging with quantitative mapping of physical, chemical and biological properties. Here we present a protocol to apply FD-based AFM to the multiparametric imaging of native proteins under physiological conditions. We describe procedures for experimental FD-based AFM setup, high-resolution imaging of proteins in the native unperturbed state with simultaneous quantitative mapping of multiple parameters, and data interpretation and analysis. The protocol, which can be completed in 1-3 d, enables researchers to image proteins and protein complexes in the native unperturbed state and to simultaneously map their biophysical and biochemical properties at sub-nanometer resolution.

  9. Combined quantitative ultrasonic and time-resolved interaction force AFM imaging

    NASA Astrophysics Data System (ADS)

    Parlak, Z.; Degertekin, F. L.

    2011-01-01

    The authors describe a method where quantitative ultrasonic atomic force microscopy (UAFM) is achieved during time-resolved interaction force (TRIF) imaging in intermittent contact mode. The method uses a calibration procedure for quantitative UAFM. It improves elasticity measurements of stiff regions of surfaces while retaining the capabilities of the TRIF mode for topography, adhesion, dissipation, and elasticity measurements on soft regions of sample surfaces. This combination is especially advantageous when measuring and imaging samples with broad stiffness range in a nondestructive manner. The experiments utilize an active AFM probe with high bandwidth and the UAFM calibration is performed by measuring the magnitude of the time-resolved UAFM signal at a judiciously chosen frequency for different contact stiffness values during individual taps. Improved sensitivity to stiff surface elasticity is demonstrated on a special sample. The results show that combining UAFM with TRIF provides 2.5 GPa (5%) standard deviation on the silicon surface reduced Young's modulus, representing 5× improvement over using only TRIF mode imaging.

  10. Dynamic force microscopy simulator (dForce): A tool for planning and understanding tapping and bimodal AFM experiments

    PubMed Central

    Guzman, Horacio V; Garcia, Pablo D

    2015-01-01

    Summary We present a simulation environment, dForce, which can be used for a better understanding of dynamic force microscopy experiments. The simulator presents the cantilever–tip dynamics for two dynamic AFM methods, tapping mode AFM and bimodal AFM. It can be applied for a wide variety of experimental situations in air or liquid. The code provides all the variables and parameters relevant in those modes, for example, the instantaneous deflection and tip–surface force, velocity, virial, dissipated energy, sample deformation and peak force as a function of time or distance. The simulator includes a variety of interactions and contact mechanics models to describe AFM experiments including: van der Waals, Hertz, DMT, JKR, bottom effect cone correction, linear viscoelastic forces or the standard linear solid viscoelastic model. We have compared two numerical integration methods to select the one that offers optimal accuracy and speed. The graphical user interface has been designed to facilitate the navigation of non-experts in simulations. Finally, the accuracy of dForce has been tested against numerical simulations performed during the last 18 years. PMID:25821676

  11. Combined force spectroscopy, AFM and calorimetric studies to reveal the nanostructural organization of biomimetic membranes.

    PubMed

    Suárez-Germà, C; Morros, A; Montero, M T; Hernández-Borrell, J; Domènech, Ò

    2014-10-01

    In this work we studied a binary lipid matrix of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG), a composition that mimics the inner membrane of Escherichia coli. More specifically, liposomes with varying fractions of POPG were analysed by differential scanning calorimetry (DSC) and a binary phase diagram of the system was created. Additionally, we performed atomic force microscopy (AFM) imaging of supported lipid bilayers (SLBs) of similar compositions at different temperatures, in order to create a pseudo-binary phase diagram specific to this membrane model. AFM study of SLBs is of particular interest, as it is conceived as the most adequate technique not only for studying lipid bilayer systems but also for imaging and even nanomanipulating inserted membrane proteins. The construction of the above-mentioned phase diagram enabled us to grasp better the thermodynamics of the thermal lipid transition from a gel-like POPE:POPG phase system to a more fluid phase system. Finally, AFM force spectroscopy (FS) was used to determine the nanomechanics of these two lipid phases at 27°C and at different POPG fractions. The resulting data correlated with the specific composition of each phase was calculated from the AFM phase diagram obtained. All the experiments were done in the presence of 10 mM of Ca(2+), as this ion is commonly used when performing AFM with negatively charged phospholipids.

  12. Increased imaging speed and force sensitivity for bio-applications with small cantilevers using a conventional AFM setup

    PubMed Central

    Leitner, Michael; Fantner, Georg E.; Fantner, Ernest J.; Ivanova, Katerina; Ivanov, Tzvetan; Rangelow, Ivo; Ebner, Andreas; Rangl, Martina; Tang, Jilin; Hinterdorfer, Peter

    2012-01-01

    In this study, we demonstrate the increased performance in speed and sensitivity achieved by the use of small AFM cantilevers on a standard AFM system. For this, small rectangular silicon oxynitride cantilevers were utilized to arrive at faster atomic force microscopy (AFM) imaging times and more sensitive molecular recognition force spectroscopy (MRFS) experiments. The cantilevers we used had lengths between 13 and 46 μm, a width of about 11 μm, and a thickness between 150 and 600 nm. They were coated with chromium and gold on the backside for a better laser reflection. We characterized these small cantilevers through their frequency spectrum and with electron microscopy. Due to their small size and high resonance frequency we were able to increase the imaging speed by a factor of 10 without any loss in resolution for images from several μm scansize down to the nanometer scale. This was shown on bacterial surface layers (s-layer) with tapping mode under aqueous, near physiological conditions and on nuclear membranes in contact mode in ambient environment. In addition, we showed that single molecular forces can be measured with an up to 5 times higher force sensitivity in comparison to conventional cantilevers with similar spring constants. PMID:22721963

  13. Searching events in AFM force-extension curves: A wavelet approach.

    PubMed

    Benítez, R; Bolós, V J

    2017-01-01

    An algorithm, based on the wavelet scalogram energy, for automatically detecting events in force-extension AFM force spectroscopy experiments is introduced. The events to be detected are characterized by a discontinuity in the signal. It is shown how the wavelet scalogram energy has different decay rates at different points depending on the degree of regularity of the signal, showing faster decay rates at regular points and slower rates at singular points (jumps). It is shown that these differences produce peaks in the scalogram energy plot at the event points. Finally, the algorithm is illustrated in a tether analysis experiment by using it for the detection of events in the AFM force-extension curves susceptible to being considered tethers. Microsc. Res. Tech. 80:153-159, 2017. © 2016 Wiley Periodicals, Inc.

  14. An AFM study of the chlorite-fluid interface. [Atomic Force Microscopy

    SciTech Connect

    Vrdoljak, G.A.; Henderson, G.S.; Fawcett, J.J. . Dept. of Geology)

    1992-01-01

    Chlorite is a ubiquitous mineral in many geologic environments and plays an important role in elemental adsorption and retention in soils. Chlorite has a 2:1 layer structure consisting of two tetrahedral sheets with an octahedral sheet between them (talc-like layer). The 2:1 layer is charge balanced and hydrogen-bonded by an interlayer of MgOH[sub 6] octahedra (brucite-like layer). The nature of chlorite's structure, its ease of imaging, and perfect 001 cleavage, make this mineral an ideal substrate for use in elemental adsorption studies in solution, with the AFM. The 001 cleavage plane of a 2b polytype with composition (Mg[sub 4.4]Fe[sub 0.6]Al[sub 1.0])[(Si[sub 2.9]Al[sub 1.1])]O[sub 10](OH)[sub g] has been imaged in air, water, and oil by atomic force microscopy. Dissolution features are observed in water, showing sub-micron features dissolving in real-time. Atomic resolution of both the talc-like and brucite-like layers has been obtained in air. However, only the tetrahedral sheet of the talc-like layer has been imaged at atomic resolution in oil and water, which may indicate a structural instability of the brucite-like surface in solution. Measurements of the unit-cell dimensions (a and b) for the talc-like layer in the three different media indicate a structural expansion of the mineral surface in solution. The a unit cell dimension expands by 7.4 [+-] 0.1% when in water; conversely, the b dimension varies greatly when in oil ([minus]10% to +20%), relative to air. The effects of these solution media on the structure of chlorite are revealed by characterization with the AFM. This information should prove useful in future studies of adsorption onto layer silicates.

  15. Morphology of Vapor-Deposited Ice at Low Temperatures by Atomic Force Microscopy (AFM)

    NASA Astrophysics Data System (ADS)

    Fain, , Jr.; Donev, J. M. K.; Tait, B. R. Long, Jr.; Yu, Q.

    2002-03-01

    The morphology of multilayer films of ice on various substrates is measured by AFM as a function of vapor-deposition and annealing temperatures below 150K. The films are deposited in-situ in UHV from an effusive doser at 67 degrees from the surface normal. For depositions near 100K on clean Au(111), previous measurements by Donev et al. using needle-sensor AFM indicate that 3-D clustering starts near 120K for initially flat thin films of amorphous solid water (ASW). For depositions below 85K on clean Au(111), preliminary measurements using non-contact AFM (nc-AFM) indicate that clustering does not occur during annealing until bulk diffusion becomes operative at T>140K. Deposition at glancing angle at the lower temperatures is known to increase porosity and is also expected to decrease the number of crystalline nuclei in the ASW. For depositions near 100K on mica that had been annealed in UHV, preliminary measurements using ncAFM show clustering near 120K. Supported by U. W. Nanotechnology Fellowship (J.M.K.D.), Mary Gates Fellowship (B. R. L.), and M. J. Murdock Charitable Trust.

  16. Experimental evidence of ultrathin polymer film stratification by AFM force spectroscopy.

    PubMed

    Delorme, Nicolas; Chebil, Mohamed Souheib; Vignaud, Guillaume; Le Houerou, Vincent; Bardeau, Jean-François; Busselez, Rémi; Gibaud, Alain; Grohens, Yves

    2015-06-01

    By performing Atomic Force Microscopy measurements of pull-off force as a function of the temperature, we were able to probe the dynamic of supported thin polystyrene (PS) films. Thermal transitions induce modifications in the surface energy, roughness and surface modulus that are clearly detected by AFM and related to PS chain relaxation mechanisms. We demonstrated the existence of three transition temperatures that can be associated to the relaxation of polymer chains located at different depth regions within the polymer film. Independently of the film thickness, we have confirmed the presence of a region of high mobility for the polymer chains at the free interface. The thickness of this region is estimated to be above 7nm. The detection of a transition only present for film thicker than the gyration radius Rg is linked to the dynamics of polymer chains in a bulk conformation (i.e. not in contact with the free interface). We claim here that our results demonstrate, in agreement with other techniques, the stratification of thin polymer film depth profile in terms of relaxation behavior.

  17. Mechanical properties of complex biological systems using AFM-based force spectroscopy

    NASA Astrophysics Data System (ADS)

    Graham, John Stephen

    An atomic force microscope (AFM) was designed and built to study the mechanical properties of small collagen fibrils and the plasma membrane of living cells. Collagen is a major component of bone, skin and connective tissues, and is abundant in the extracellular matrix (ECM). Because of its abundance, an understanding of how disease affects collagen mechanics is crucial in disease prevention efforts. Two levels of type I collagen structure were investigated, subfibrils (on the order of 1 mum in length) and longer fibrils. Comparisons were made between measurements of wild-type (wt) collagen and collagen from the mouse model of osteogenesis imperfecta (OI). Significant differences between OI and wt collagen were observed, primarily that intermolecular bonds in OI collagen fibrils are weaker than in wt, or not ruptured, as in the case of OI subfibrils. As cells interact with collagen in the ECM, the mechanical properties of the plasma membrane are also of great interest. Membrane tethers were extracted from living cells under varied conditions in order to assess the contributions of membrane-associated macromolecules such as the actin cytoskeleton and the glycocalyx, and intracellular signaling. Tether extraction force was found to be sensitive to all of these altered conditions, suggesting that tether extraction may be used to monitor various cellular processes.

  18. Measurement of Cationic and Intracellular Modulation of Integrin Binding Affinity by AFM-Based Nanorobot

    PubMed Central

    Patterson, Kevin C.; Yang, Ruiguo; Zeng, Bixi; Song, Bo; Wang, Shouye; Xi, Ning; Basson, Marc D.

    2013-01-01

    Integrins are dynamic transmembrane cation-dependent heterodimers that both anchor cells in position and transduce signals into and out of cells. We used an atomic force microscope (AFM)-based nanorobotic system to measure integrin-binding forces in intact human intestinal epithelial Caco-2 cells. The AFM-based nanorobot enables human-directed, high-accuracy probe positioning and site-specific investigations. Functionalizing the AFM probe with an arginine-glycine-aspartate (RGD)-containing sequence (consensus binding sequence for integrins) allowed us to detect a series of peptide-cell membrane interactions with a median binding force of 115.1 ± 4.9 pN that were not detected in control interactions. Chelating divalent cations from the culture medium abolished these interactions, as did inhibiting intracellular focal adhesion kinase (FAK) using Y15. Adding 1 mM Mg2+ to the medium caused a rightward shift in the force-binding curve. Adding 1 mM Ca2+ virtually abolished the RGD-membrane specific interactions and blocked the Mg2+ effects. Cell adhesion assays demonstrated parallel effects of divalent cations and the FAK inhibitor on cell adhesion. These results demonstrate direct modulation of integrin-binding affinity by both divalent cations and intracellular signal inhibition. Additionally, three binding states (nonspecific, specific inactivated, and specific activated) were delineated from affinity measurements. Although other research has assumed that this process of integrin conformational change causes altered ligand binding, in this work we directly measured these three states in individual integrins in a physiologically based study. PMID:23823222

  19. Measurement of cationic and intracellular modulation of integrin binding affinity by AFM-based nanorobot.

    PubMed

    Patterson, Kevin C; Yang, Ruiguo; Zeng, Bixi; Song, Bo; Wang, Shouye; Xi, Ning; Basson, Marc D

    2013-07-02

    Integrins are dynamic transmembrane cation-dependent heterodimers that both anchor cells in position and transduce signals into and out of cells. We used an atomic force microscope (AFM)-based nanorobotic system to measure integrin-binding forces in intact human intestinal epithelial Caco-2 cells. The AFM-based nanorobot enables human-directed, high-accuracy probe positioning and site-specific investigations. Functionalizing the AFM probe with an arginine-glycine-aspartate (RGD)-containing sequence (consensus binding sequence for integrins) allowed us to detect a series of peptide-cell membrane interactions with a median binding force of 115.1 ± 4.9 pN that were not detected in control interactions. Chelating divalent cations from the culture medium abolished these interactions, as did inhibiting intracellular focal adhesion kinase (FAK) using Y15. Adding 1 mM Mg(2+) to the medium caused a rightward shift in the force-binding curve. Adding 1 mM Ca(2+) virtually abolished the RGD-membrane specific interactions and blocked the Mg(2+) effects. Cell adhesion assays demonstrated parallel effects of divalent cations and the FAK inhibitor on cell adhesion. These results demonstrate direct modulation of integrin-binding affinity by both divalent cations and intracellular signal inhibition. Additionally, three binding states (nonspecific, specific inactivated, and specific activated) were delineated from affinity measurements. Although other research has assumed that this process of integrin conformational change causes altered ligand binding, in this work we directly measured these three states in individual integrins in a physiologically based study.

  20. Implications of the contact radius to line step (CRLS) ratio in AFM for nanotribology measurements.

    PubMed

    Helt, James M; Batteas, James D

    2006-07-04

    Investigating the mechanisms of defect generation and growth at surfaces on the nanometer scale typically requires high-resolution tools such as the atomic force microscope (AFM). To accurately assess the kinetics and activation parameters of defect production over a wide range of loads (F(z)), the AFM data should be properly conditioned. Generally, AFM wear trials are performed over an area defined by the length of the slow (L(sscan)) and fast scan axes. The ratio of L(sscan) to image resolution (res, lines per image) becomes an important experimental parameter in AFM wear trials because it defines the magnitude of the line step (LS = L(sscan)/res), the distance the AFM tip steps along the slow scan axis. Comparing the contact radius (a) to the line step (LS) indicates that the overlap of successive scans will result unless the contact radius-line step ratio (CRLS) is < or =(1)/(2). If this relationship is not considered, then the scan history (e.g., contact frequency) associated with a single scan is not equivalent at different loads owing to the scaling of contact radius with load (a proportional variant F(z)(1/3)). Here, we present a model in conjunction with empirical wear tests on muscovite mica to evaluate the effects of scan overlap on surface wear. Using the Hertz contact mechanics definition of a, the CRLS model shows that scan overlap pervades AFM wear trials even under low loads. Such findings indicate that simply counting the number of scans (N(scans)) in an experiment underestimates the full history conveyed to the surface by the tip and translates into an error in the actual extent to which a region on the surface is contacted. Utilizing the CRLS method described here provides an approach to account for image scan history accurately and to predict the extent of surface wear. This general model also has implications for any AFM measurement where one wishes to correlate scan-dependent history to image properties as well as feature resolution in scanned

  1. Accelerated design and quality control of impact modifiers for plastics through atomic force microscopy (AFM) analysis

    NASA Astrophysics Data System (ADS)

    Moeller, Gunter

    2011-03-01

    Standard polymer resins are often too brittle or do not meet other mechanical property requirements for typical polymer applications. To achieve desired properties it is common to disperse so called ``impact modifiers'', which are spherical latex particles with diameters of much less than one micrometer, into the pure resin. Understanding and control of the entire process from latex particle formation to subsequent dispersion into polymer resins are necessary to accelerate the development of new materials that meet specific application requirements. In this work AFM imaging and nanoindentation techniques in combination with AFM-based spectroscopic techniques were applied to assess latex formation and dispersion. The size and size distribution of the latex particles can be measured based on AFM amplitude modulation images. AFM phase images provide information about the chemical homogeneity of individual particles. Nanoindentation may be used to estimate their elastic and viscoelastic properties. Proprietary creep and nanoscale Dynamic Mechanical Analysis (DMA) tests that we have developed were used to measure these mechanical properties. The small size of dispersed latex inclusions requires local mechanical and spectroscopic analysis techniques with high lateral and spatial resolution. We applied the CRAVE AFM method, developed at NIST, to perform mechanical analysis of individual latex inclusions and compared results with those obtained using nanoscale DMA. NanoIR, developed by Anasys Inc., and principal component confocal Raman were used for spectroscopic analysis and results from both techniques compared.

  2. Graphene Nanopore Support System for Simultaneous High-Resolution AFM Imaging and Conductance Measurements

    PubMed Central

    2015-01-01

    Accurately defining the nanoporous structure and sensing the ionic flow across nanoscale pores in thin films and membranes has a wide range of applications, including characterization of biological ion channels and receptors, DNA sequencing, molecule separation by nanoparticle films, sensing by block co-polymers films, and catalysis through metal–organic frameworks. Ionic conductance through nanopores is often regulated by their 3D structures, a relationship that can be accurately determined only by their simultaneous measurements. However, defining their structure–function relationships directly by any existing techniques is still not possible. Atomic force microscopy (AFM) can image the structures of these pores at high resolution in an aqueous environment, and electrophysiological techniques can measure ion flow through individual nanoscale pores. Combining these techniques is limited by the lack of nanoscale interfaces. We have designed a graphene-based single-nanopore support (∼5 nm thick with ∼20 nm pore diameter) and have integrated AFM imaging and ionic conductance recording using our newly designed double-chamber recording system to study an overlaid thin film. The functionality of this integrated system is demonstrated by electrical recording (<10 pS conductance) of suspended lipid bilayers spanning a nanopore and simultaneous AFM imaging of the bilayer. PMID:24581087

  3. Molecular shape and binding force of Mycoplasma mobile's leg protein Gli349 revealed by an AFM study

    SciTech Connect

    Lesoil, Charles; Nonaka, Takahiro; Sekiguchi, Hiroshi; Osada, Toshiya; Miyata, Makoto; Afrin, Rehana; Ikai, Atsushi

    2010-01-15

    Recent studies of the gliding bacteria Mycoplasma mobile have identified a family of proteins called the Gli family which was considered to be involved in this novel and yet fairly unknown motility system. The 349 kDa protein called Gli349 was successfully isolated and purified from the bacteria, and electron microscopy imaging and antibody experiments led to the hypothesis that it acts as the 'leg' of M. mobile, responsible for attachment to the substrate as well as for gliding motility. However, more precise evidence of the molecular shape and function of this protein was required to asses this theory any further. In this study, an atomic force microscope (AFM) was used both as an imaging and a force measurement device to provide new information about Gli349 and its role in gliding motility. AFM images of the protein were obtained revealing a complex structure with both rigid and flexible parts, consistent with previous electron micrographs of the protein. Single-molecular force spectroscopy experiments were also performed, revealing that Gli349 is able to specifically bind to sialyllactose molecules and withstand unbinding forces around 70 pN. These findings strongly support the idea that Gli349 is the 'leg' protein of M. mobile, responsible for binding and also most probably force generation during gliding motility.

  4. Interfacial forces between silica surfaces measured by atomic force microscopy.

    PubMed

    Duan, Jinming

    2009-01-01

    Colloidal particle stability and some other interfacial phenomena are governed by interfacial force interactions. The two well known forces are van der Waals force and electrostatic force, as documented by the classical Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory. Moreover, advances in modern instrumentation and colloid science suggested that some short-ranged forces or structure forces are important for relevant colloidal systems. The interfacial and/or molecular forces can be measured as a resultant force as function of separation distance by atomic force microscopy (AFM) colloid probe. This article presents a discussion on AFM colloid probe measurement of silica particle and silica wafer surfaces in solutions with some technical notifications in measurement and data convolution mechanisms. The measured forces are then analyzed and discussed based on the 'constant charge' and 'constant potential' models of DLVO theory. The difference between the prediction of DLVO theory and the measured results indicates that there is a strong short-range structure force between the two hydrophilic surfaces, even at extremely low ionic concentration, such as Milli-Q water purity solution.

  5. AFM in mode Peak Force applied to the study of un-worn contact lenses.

    PubMed

    Torrent-Burgués, J; Sanz, F

    2014-09-01

    Contact lenses (CLs) are of common use and the biocompatibility, topography and mechanical properties of the used materials are of major importance. The objective of this contribution is to apply the AFM in mode Peak Force to obtain surface topography and mechanical characteristics of un-worn CLs of different materials. One material of hydrogel, two of siloxane-hydrogel and one of rigid gas-permeable were used in the study. The results obtained with different materials have been compared, at a nanoscopic level, and the conclusions are diverse. There is no significant influence of the two environments used to measure the characteristics of the CLs, either water or saline solution. The pHEMA hydrogel CL (Polymacon of Soflens) shows the highest values of roughness, adhesion and elastic modulus. The siloxane-hydrogel CL named Asmofilcon A of PremiO presents the lowest values of mean roughness (Ra), root-mean-square roughness (RMS or Rq), adhesion (Adh) and elastic modulus (Ym), meanwhile the siloxane-hydrogel CL named Lotrafilcon B of Air Optix presents the lowest value of skewness (Rsk) and the rigid gas-permeable CL, named RXD, presents the lowest values of kurtosis (Rku) and maximum roughness (Rmax).

  6. Hydrodynamic effects of the tip movement on surface nanobubbles: a combined tapping mode, lift mode and force volume mode AFM study.

    PubMed

    Walczyk, Wiktoria; Hain, Nicole; Schönherr, Holger

    2014-08-28

    We report on an Atomic Force Microscopy (AFM) study of AFM tip-nanobubble interactions in experiments conducted on argon surface nanobubbles on HOPG (highly oriented pyrolytic graphite) in water in tapping mode, lift mode and Force Volume (FV) mode AFM. By subsequent data acquisition on the same nanobubbles in these three different AFM modes, we could directly compare the effect of different tip-sample interactions. The tip-bubble interaction strength was found to depend on the vertical and horizontal position of the tip on the bubble with respect to the bubble center. The interaction forces measured experimentally were in good agreement with the forces calculated using the dynamic interaction model. The strength of the hydrodynamic effect was also found to depend on the direction of the tip movement. It was more pronounced in the FV mode, in which the tip approaches the bubble from the top, than in the lift mode, in which the tip approaches the bubble from the side. This result suggests that the direction of tip movement influences the bubble deformation. The effect should be taken into account when nanobubbles are analysed by AFM in various scanning modes.

  7. Measuring the energy landscape of complex bonds using AFM

    NASA Astrophysics Data System (ADS)

    Mayyas, Essa; Hoffmann, Peter; Runyan, Lindsay

    2009-03-01

    We measured rupture force of a complex bond of two interacting proteins with atomic force microscopy. Proteins of interest were active and latent Matrix metalloproteinases (MMPs), type 2 and 9, and their tissue inhibitors TIMP1 and TIMP2. Measurements show that the rupture force depends on the pulling speed; it ranges from 30 pN to 150 pN at pulling speeds 30nm/s to 48000nm/s. Analyzing data using an extended theory enabled us to understand the mechanism of MMP-TIMP interaction; we determined all physical parameters that form the landscape energy of the interaction, in addition to the life time of the bond and its length. Moreover, we used the pulling experiment to study the interaction of TIMP2 with the receptor MT1-MMP on the surface of living cells.

  8. Tip convolution on HOPG surfaces measured in AM-AFM and interpreted using a combined experimental and simulation approach

    NASA Astrophysics Data System (ADS)

    Hu, Xiaoli; Chan, Nicholas; Martini, Ashlie; Egberts, Philip

    2017-01-01

    Amplitude modulated atomic force microscopy (AM-AFM) was used to examine the influence of the size of the AFM tip apex on the measured surface topography of single highly oriented pyrolytic graphite (HOPG) atomic steps. Experimental measurements were complemented by molecular dynamics simulations of AM-AFM and the results from both were evaluated by comparison of the measured or simulated width of the topography at the step to that predicted using simple rigid-body geometry. The results showed that the step width, which is a reflection of the resolution of the measurement, increased with tip size, as expected, but also that the difference between the measured/simulated step width and the geometric calculation was tip size dependent. The simulations suggested that this may be due to the deformation of the bodies and the effect of that deformation on the interaction force and oscillation amplitude. Overall, this study showed that the resolution of AM-AFM measurements of atomic steps can be correlated to tip size and that this relationship is affected by the deformation of the system.

  9. Comparison of CD measurements of an EUV photomask by EUV scatterometry and CD-AFM

    NASA Astrophysics Data System (ADS)

    Scholze, Frank; Soltwisch, Victor; Dai, Gaoliang; Henn, Mark-Alexander; Gross, Hermann

    2013-09-01

    EUV scatterometry is a potential high-throughput measurement method for the characterization of EUV photomask structures. We present a comparison of angle resolved extreme ultraviolet (EUV) scatterometry and critical dimension atomic force microscope (CD-AFM) as a reference metrology for measurements of geometrical parameters like line width (CD), height and sidewall angle of EUV photomask structures. The structures investigated are dense and semidense bright and dark lines with different nominal CDs between 140 nm and 540 nm. The results show excellent linearity of the critical dimension measured with both methods within a range of only 1.8 nm and an offset of the absolute values below 3 nm. A maximum likelihood estimation (MLE) method is used to reconstruct the shape parameters and to estimate their uncertainties from the measured scattering efficiencies. The newly developed CD-AFM at PTB allows versatile measurements of parameters such as height, CD, sidewall angle, line edge/width roughness, corner rounding, and pitch. It applies flared tips to probe steep and even undercut sidewalls and employs a new vector approaching probing (VAP) strategy which enables very low tip wear and high measurement flexibility. Its traceability is ensured by a set of calibrated step-height and reference CD standards.

  10. Spherical polystyrene particle deformation measured with the AFM

    NASA Astrophysics Data System (ADS)

    Nicolet, Anaïs; Meli, Felix

    2017-03-01

    Size measurements of sub-micrometre spherical particles are quite easily performed with an atomic force microscope. The diameter is typically evaluated as the apex of the particle relative to a flat surface. However, some interaction effects may modify the expected results, such as the adhesive forces between the particle and the substrate or the tip–particle interface. In this paper, both effects were experimentally investigated for polystyrene particles with sizes ranging from 150 nm to 700 nm deposited on mica. Additionally, the experimental findings were compared with theoretical models of adhesion, describing both elastic and plastic deformation at the particle–substrate interface. While no clear indication of particle deformation due to the tip–particle interaction was obtained, the deformation due to adhesive forces between the particle and the substrate could be quantified. Contrary to certain theoretical models, the deformation was found to be proportional to the particle size.

  11. Measurement of a CD and sidewall angle artifact with two-dimensional CD AFM metrology

    NASA Astrophysics Data System (ADS)

    Dixson, Ronald G.; Sullivan, Neal T.; Schneir, Jason; McWaid, Thomas H.; Tsai, Vincent W.; Prochazka, Jerry; Young, Michael

    1996-05-01

    Despite the widespread acceptance of SEM metrology in semiconductor manufacturing, there is no SEM CD standard currently available. Producing such a standard is challenging because SEM CD measurements are not only a function of the linewidth, but also dependent on the line material, sidewall roughness, sidewall angle, line height, substrate material, and the proximity of other objects. As the presence of AFM metrology in semiconductor manufacturing increases, the history of SEM CD metrology raises a number of questions about the prospect of AFM CD artifacts. Is an AFM CD artifact possible? What role would it play in the manufacturing environment? Although AFM has some important advantages over SEM, such as relative insensitivity to material differences, the throughput and reliability of most AFM instruments is not yet at the level necessary to support in-line CD metrology requirements. What, then, is the most useful relationship between AFM and SEM metrology? As a means of addressing some of these questions, we have measured the CD and sidewall angle of 1.2 micrometer oxy-nitride line on Si using three different techniques: optical microscopy (with modeling), AFM, and cross sectional TEM. Systematic errors in the AFM angle measurements were reduced by using a rotational averaging technique that we describe. We found good agreement with uncertainties below 30 nm (2 sigma) for the CD measurement and 1.0 degrees (2 sigma) for the sidewall angles. Based upon these results we suggest a measurement procedure which will yield useful AFM CD artifacts. We consider the possibility that AFMs, especially when used with suitable CD artifacts, can effectively support SEM CD metrology. This synergistic relationship between the AFM and SEM represents an emerging paradigm that has also been suggested by a number of others.

  12. Measurement of laterally induced optical forces at the nanoscale

    NASA Astrophysics Data System (ADS)

    Huang, Fei; Tamma, Venkata Ananth; Rajaei, Mohsen; Almajhadi, Mohammad; Kumar Wickramasinghe, H.

    2017-02-01

    We demonstrate the measurement of laterally induced optical forces using an Atomic Force Microscope (AFM). The lateral electric field distribution between a gold coated AFM probe and a single nano-aperture in a gold film is mapped by measuring the lateral optical force between the apex of the AFM probe and the nano-aperture. The fundamental torsional eigen-mode of an AFM cantilever probe was used to detect the laterally induced optical forces. We engineered the cantilever shape using focused ion beam milling to improve the detected signal to noise ratio. The measured distributions of lateral optical force agree well with electromagnetic simulations of the metal coated AFM probe interacting with the nano-aperture. This technique can be extended to simultaneously detect both lateral and longitudinal optical forces at the nanoscale by using an AFM cantilever as a multi-channel detector. This will enable simultaneous Photon Induced Force Microscopy detection of molecular responses with different incident field polarizations. The technique can be implemented on both cantilever and tuning fork based AFMs.

  13. Concurrent Quantitative Conductivity and Mechanical Properties Measurements of Organic Photovoltaic Materials using AFM

    PubMed Central

    Nikiforov, Maxim P.; Darling, Seth B.

    2013-01-01

    Organic photovoltaic (OPV) materials are inherently inhomogeneous at the nanometer scale. Nanoscale inhomogeneity of OPV materials affects performance of photovoltaic devices. Thus, understanding of spatial variations in composition as well as electrical properties of OPV materials is of paramount importance for moving PV technology forward.1,2 In this paper, we describe a protocol for quantitative measurements of electrical and mechanical properties of OPV materials with sub-100 nm resolution. Currently, materials properties measurements performed using commercially available AFM-based techniques (PeakForce, conductive AFM) generally provide only qualitative information. The values for resistance as well as Young's modulus measured using our method on the prototypical ITO/PEDOT:PSS/P3HT:PC61BM system correspond well with literature data. The P3HT:PC61BM blend separates onto PC61BM-rich and P3HT-rich domains. Mechanical properties of PC61BM-rich and P3HT-rich domains are different, which allows for domain attribution on the surface of the film. Importantly, combining mechanical and electrical data allows for correlation of the domain structure on the surface of the film with electrical properties variation measured through the thickness of the film. PMID:23380988

  14. Measuring cell wall elasticity on enteroaggregative Escherichia coli wild type and dispersin mutant by AFM

    SciTech Connect

    Beckmann, Melissa; Venkataraman, Sankar; Doktycz, Mitchel John; Nataro, James P; Sullivan, Claretta J; Morrell-Falvey, Jennifer L; Allison, David P

    2006-07-01

    Enteroaggregative Escherichia coli (EAEC) is pathogenic and produces severe diarrhea in humans. A mutant of EAEC that does not produce dispersin, a cell surface protein, is not pathogenic. It has been proposed that dispersin imparts a positive charge to the bacterial cell surface allowing the bacteria to colonize on the negatively charged intestinal mucosa. However, physical properties of the bacterial cell surface, such as rigidity, may be influenced by the presence of dispersin and may contribute to pathogenicity. Using the system developed in our laboratory for mounting and imaging bacterial cells by atomic force microscopy (AFM), in liquid, on gelatin coated mica surfaces, studies were initiated to measure cell surface elasticity. This was carried out in both wild type EAEC, that produces dispersin, and the mutant that does not produce dispersin. This was accomplished using AFM force-distance (FD) spectroscopy on the wild type and mutant grown in liquid or on solid medium. Images in liquid and in air of both the wild-type and mutant grown in liquid and on solid media are presented. This work represents an initial step in efforts to understand the pathogenic role of the dispersin protein in the wild-type bacteria.

  15. Measuring the viscoelastic creep of soft samples by step response AFM.

    PubMed

    Yango, Achu; Schäpe, Jens; Rianna, Carmela; Doschke, Holger; Radmacher, Manfred

    2016-10-12

    We have measured the creep response of soft gels and cells after applying a step in loading force with atomic force microscopy (AFM). By analysing the creep response data using the standard linear solid model, we can quantify the viscous and elastic properties of these soft samples independently. Cells, in comparison with gels of similar softness, are much more viscous, as has been qualitatively observed in conventional force curve data before. Here, we quantify the spring constant and the viscous damping coefficient from the creep response data. We propose two different modes for applying a force step: (1) indirectly by increasing the sample height or (2) directly by employing magnetic cantilevers. Both lead to similar results, whereas the latter seems to be better defined since it resembles closely a constant strain mode. The former is easier to implement in most instruments, and thus may be preferable from a practical point of view. Creep analysis by step response is much more appropriate to analyse the viscoelastic response of soft samples like cells than the usually used force curve analysis.

  16. PREFACE: NC-AFM 2005: Proceedings of the 8th International Conference on Non-Contact Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Reichling, M.; Mikosch, W.

    2006-04-01

    The 8th International Conference on Non-Contact Atomic Force Microscopy, held in Bad Essen, Germany, from 15 18th August 2005, attracted a record breaking number of participants presenting excellent contributions from a variety of scientific fields. This clearly demonstrated the high level of activity and innovation present in the community of NC-AFM researchers and the continuous growth of the field. The strongest ever participation of companies for a NC-AFM meeting is a sign for the emergence of new markets for the growing NC-AFM community; and the high standard of the products presented at the exhibition, many of them brand-new developments, reflected the unbroken progress in technology. The development of novel technologies and the sophistication of known techniques in research laboratories and their subsequent commercialization is still a major driving force for progress in this area of nanoscience. The conference was a perfect demonstration of how progress in the development of enabling technologies can readily be transcribed into basic research yielding fundamental insight with an impact across disciplines. The NC-AFM 2005 scientific programme was based on five cornerstones, each representing an area of vivid research and scientific progress. Atomic resolution imaging on oxide surfaces, which has long been a vision for the catalysis community, appears to be routine in several laboratories and after a period of demonstrative experiments NC-AFM now makes unique contributions to the understanding of processes in surface chemistry. These capabilities also open up new routes for the analysis of clusters and molecules deposited on dielectric surfaces where resolution limits are pushed towards the single atom level. Atomic precision manipulation with the dynamic AFM left the cradle of its infancy and flourishes in the family of bottom-up fabrication nanotechnologies. The systematic development of established and the introduction of new concepts of contrast

  17. Fabrication and characterization of mesoscale protein patterns using atomic force microscopy (AFM)

    NASA Astrophysics Data System (ADS)

    Gao, Pei

    2011-07-01

    A versatile AFM local oxidation lithography was developed for fabricating clean protein patterns ranging from nanometer to sub-millimeter scale on octadecyltrichlorosilane (OTS) layer of Si (100) wafer. This protein patterning method can generate bio-active protein pattern with a clean background without the need of the anti-fouling the surface or repetitive rinsing. As a model system, lysozyme protein patterns were investigated through their binding reactions with antibodies and aptamers by AFM. Polyclonal anti-lysozyme antibodies and anti-lysozyme aptamer are found to preferentially bind to the lysozyme molecules on the edge of a protein pattern before their binding to the interior ones. It was also demonstrated that the topography of the immobilized protein pattern affects the antibody binding direction. We found that the anti-lysozyme antibodies binding to the edge lysozyme molecules on the half-buried pattern started from the top but the binding on the extruded pattern started from the side because of their different spatial accessibility. In addition, after incubating lysozyme pattern with anti-lysozyme aptamer in buffer solution for enough long time, some fractal-shaped aptamer fibers with 1-6nm high and up to tens of micrometers long were formed by the self-assembling of aptamer molecules on the surface. The aptamer fibers anchor specifically on the edge of protein patterns, which originates from the biospecific recognition between the aptamer and its target protein. Once these edge-bound fibers have formed, they can serve as scaffolds for further assembly processes. We used these aptamer fibers as templates to fabricate palladium and streptavidin nanowires, which anchored on the pattern edges and never cross over or collapse over each other. The aptamer fiber scaffold potentially can lead to an effective means to fabricate and interface nanowires to existing surface patterns. KEYWORDS: Atomic Force Microscopy (AFM), Protein Patterns, Lysozyme, Aptamer

  18. Effect of enamel morphology on nanoscale adhesion forces of streptococcal bacteria : An AFM study.

    PubMed

    Wang, Chuanyong; Zhao, Yongqi; Zheng, Sainan; Xue, Jing; Zhou, Jinglin; Tang, Yi; Jiang, Li; Li, Wei

    2015-01-01

    We explore the influence of enamel surface morphology on nanoscale bacterial adhesion forces. Three dimensional morphology characteristics of enamel slices, which were treated with phosphoric acid (for 0 s, 5 s, 10 s, 20 s, and 30 s), were acquired. Adhesion forces of three initial colonizers (Streptococcus oralis, Streptococcus sanguinis, and Streptococcus mitis) and two cariogenic bacterial strains (Streptococcus mutans and Streptococcus sobrinus) with etched enamel surfaces were determined. Comparison of the forces was made by using bacterial probe method under atomic force microscope (AFM) in adhesion buffer. The results showed that enamel morphology was significantly altered by etching treatment. The roughness, peak-to-valley height, and valley-to-valley width of the depth profile, surface area, and volume increased linearly with acid exposure time, and reached the maximum at 30s, respectively. The adhesion forces of different strains increased accordingly with etching time. Adhesion forces of S. oralis, S. mitis, S. mutans, and S. sobrinus reached the maximum values of 0.81 nN, 0.84 nN, 0.73 nN, and 0.64 nN with enamel treated for 20s, respectively, whereas that of S. sanguinis at 10s (1.28nN), and dropped on coarser enamel surfaces. In conclusion, enamel micro-scale morphology may significantly alter the direct adhesion forces of bacteria. And there may be a threshold roughness for bacterial adhesion on enamel surface.

  19. PREFACE: NC-AFM 2006: Proceedings of the 9th International Conference on Non-contact Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Tomitori, Masahiko; Onishi, Hiroshi

    2007-02-01

    The advent of scanning probe microscopy (SPM) in the 1980s has significantly promoted nanoscience and nanotechnology. In particular, non-contact atomic force microscopy (NC-AFM), one of the SPM family, has unique capabilities with high spatial resolution for nanoscale measurements in vacuum, air and liquids. In the last decade we have witnessed the rapid progress of NC-AFM with improved performance and increasing applications. A series of NC-AFM international conferences have greatly contributed to this field. Initiated in Osaka in 1998, the NC-AFM meeting has been followed by annual conferences at Pontresina, Hamburg, Kyoto, Montreal, Dingle, Seattle and Bad Essen. The 9th conference was held in Kobe, Japan, 16-20 July 2006. This special issue of Nanotechnology contains the outstanding contributions of the conference. During the meeting delegates learnt about a number of significant advances. Topics covered atomic resolution imaging of metals, semiconductors, insulators, ionic crystals, oxides, molecular systems, imaging of biological materials in various environments and novel instrumentation. Work also included the characterization of electronic and magnetic properties, tip and cantilever fabrication and characterization, atomic distinction based on analysis of tip-sample interaction, atomic scale manipulation, fabrication of nanostructures using NC-AFM, and related theories and simulations. We are greatly impressed by the increasing number of applications, and convinced that NC-AFM and related techniques are building a bridge to a future nano world, where quantum phenomena will dominate and nano devices will be realized. In addition, a special session on SPM road maps was held as a first trial in the field, where the future prospects of SPM were discussed enthusiastically. The overall success of the NC-AFM 2006 conference was due to the efforts of many individuals and groups with respect to scientific and technological progress, as well as the international

  20. Friction of ice measured using lateral force microscopy

    SciTech Connect

    Bluhm, Hendrik; Inoue, Takahito; Salmeron, Miquel

    2000-03-15

    The friction of nanometer thin ice films grown on mica substrates is investigated using atomic force microscopy (AFM). Friction was found to be of similar magnitude as the static friction of ice reported in macroscopic experiments. The possible existence of a lubricating film of water due to pressure melting, frictional heating, and surface premelting is discussed based on the experimental results using noncontact, contact, and lateral force microscopy. We conclude that AFM measures the dry friction of ice due to the low scan speed and the squeezing out of the water layer between the sharp AFM tip and the ice surface. (c) 2000 The American Physical Society.

  1. Attaching single biomolecules selectively to the apex of AFM tips for measuring specific interactions.

    PubMed

    Gu, Jianhua; Xiao, Zhongdang; Yam, Chi-Ming; Qin, Guoting; Deluge, Maxence; Boutet, Sabine; Cai, Chengzhi

    2005-11-01

    We present a general approach for preparing well-defined AFM tips for probing single target molecules. We demonstrated that carboxylic acid groups could be generated by electrochemical oxidation selectively at the apex of an AFM tip that is coated with a monolayer of oligo(ethylene glycol) derivatives for resisting nonspecific interactions. These carboxylic acid groups were used as handles to tether only one ligand molecule, such as biotin, to the tip apex for measurement of specific interactions with biomolecules.

  2. Force-Measuring Clamps

    NASA Technical Reports Server (NTRS)

    Nunnelee, Mark

    2003-01-01

    Force-measuring clamps have been invented to facilitate and simplify the task of measuring the forces or pressures applied to clamped parts. There is a critical need to measure clamping forces or pressures in some applications for example, while bonding sensors to substrates or while clamping any sensitive or delicate parts. Many manufacturers of adhesives and sensors recommend clamping at specific pressures while bonding sensors or during adhesive bonding between parts in general. In the absence of a force-measuring clamp, measurement of clamping force can be cumbersome at best because of the need for additional load sensors and load-indicating equipment. One prior method of measuring clamping force involved the use of load washers or miniature load cells in combination with external power sources and load-indicating equipment. Calibrated spring clamps have also been used. Load washers and miniature load cells constitute additional clamped parts in load paths and can add to the destabilizing effects of loading mechanisms. Spring clamps can lose calibration quickly through weakening of the springs and are limited to the maximum forces that the springs can apply. The basic principle of a force-measuring clamp can be implemented on a clamp of almost any size and can enable measurement of a force of almost any magnitude. No external equipment is needed because the component(s) for transducing the clamping force and the circuitry for supplying power, conditioning the output of the transducers, and displaying the measurement value are all housed on the clamp. In other words, a force-measuring clamp is a complete force-application and force-measurement system all in one package. The advantage of unitary packaging of such a system is that it becomes possible to apply the desired clamping force or pressure with precision and ease.

  3. Vibrational CD (VCD) and atomic force microscopy (AFM) study of DNA interaction with Cr3+ ions: VCD and AFM evidence of DNA condensation.

    PubMed

    Andrushchenko, V; Leonenko, Z; Cramb, D; van de Sande, H; Wieser, H

    The interaction of natural calf thymus DNA with Cr(3+) ions was studied at room temperature by means of vibrational CD (VCD) and infrared absorption (ir) spectroscopy, and atomic force microscopy (AFM). Cr(3+) ion binding mainly to N(7) (G) and to phosphate groups was demonstrated. Psi-type VCD spectra resembling electronic CD (ECD) spectra, which appear during psi-type DNA condensation, were observed. These spectra are characterized mainly by an anomalous, severalfold increase of VCD intensity. Such anomalous VCD spectra were assigned to DNA condensation with formation of large and dense particles of a size comparable to the wavelength of the probing ir beam and possessing large-scale helicity. Atomic force microscopy confirmed DNA condensation by Cr(3+) ions and the formation of tight DNA particles responsible for the psi-type VCD spectra. Upon increasing the Cr(3+) ion concentration the shape of the condensates changed from loose flower-like structures to highly packed dense spheres. No DNA denaturation was seen even at the highest concentration of Cr(3+) ions studied. The secondary structure of DNA remained in a B-form before and after the condensation. VCD and ir as well as AFM proved to be an effective combination for investigating DNA condensation. In addition to the ability of VCD to determine DNA condensation, VCD and ir can in the same experiment provide unambiguous information about the secondary structure of DNA contained in the condensed particles.

  4. Optical trapping force combining an optical fiber probe and an AFM metallic probe.

    PubMed

    Liu, Binghui; Yang, Lijun; Wang, Yang

    2011-02-14

    A high-resolution optical trapping and manipulating scheme combining an optical fiber probe and an AFM metallic probe is proposed. This scheme is based on the combination of evanescent illumination and light scattering at the metallic probe apex, which shapes the optical field into a localized, three-dimensional optical trap. Detailed simulations of the electromagnetic fields in composite area and the resulting forces are described the methods of Maxwell stress tensor and three-dimensional FDTD. Calculations show that the scheme is able to overcome the disturbance of other forces to trap a polystyrene particle of up to 10 nm in radius with lower laser intensity (~1040 W/mm2) than that required by conventional optical tweezers (~10(5) W/mm2). Based on the discussion of high manipulating efficiency dependent on system parameters and the implementing procedure, the scheme allowing for effective manipulation of nano-particles opens a way for research on single nano-particle area.

  5. Mechanical properties of in situ demineralised human enamel measured by AFM nanoindentation

    NASA Astrophysics Data System (ADS)

    Finke, Manuela; Hughes, Julie A.; Parker, David M.; Jandt, Klaus D.

    2001-10-01

    Diet-induced demineralisation is one of the key factors in surface changes of tooth enamel, with soft drinks being a significant etiological agent. The first step in this dissolution process is characterised by a change in the mechanical properties of the enamel and a roughening of the surface. The objective of this pilot study was to measure early stages of in situ induced hardness changes of polished human enamel surfaces with high accuracy using a nanoindenter attached to an atomic force microscope (AFM). Human unerupted third molars were cleaned, sterilised with sodium hypochlorite, sectioned and embedded in epoxy resin. The outer enamel surface was polished and the samples partly covered with a tape, allowing a 2-mm-wide zone to be exposed to the oral environment. Samples were fitted in an intra-oral appliance, which was worn from 9 a.m. to 5 p.m. for one day. During this time the volunteer sipped 250 ml of a drink over 10 min periods at 9.00, 11.00, 13.00 and 15.00 h. Three different drinks, mineral water, orange juice and the prototype of a blackcurrant drink with low demineralisation potential were used in this study. At the end of the experiment the samples were detached from the appliance, the tape removed and the surfaces chemically cleaned. The surface hardness and reduced Young's modulus of the exposed and unexposed areas of each sample were determined. In addition, high resolution topographical AFM images were obtained. This study shows that by determining the hardness and reduced Young's modulus, the difference in demineralisation caused by the drinks can be detected and quantified before statistically significant changes in surface topography could be observed with the AFM. The maximum decrease in surface hardness and Young's modulus occurred in the samples exposed to orange juice, followed by those exposed to the blackcurrant drink, while exposure to water led to the same values as unexposed areas. A one-way ANOVA showed a statistically significant

  6. Force-Measuring Clamp

    NASA Technical Reports Server (NTRS)

    Nunnelee, Mark (Inventor)

    2004-01-01

    A precision clamp that accurately measures force over a wide range of conditions is described. Using a full bridge or other strain gage configuration. the elastic deformation of the clamp is measured or detected by the strain gages. Thc strain gages transmit a signal that corresponds to the degree of stress upon the clamp. Thc strain gage signal is converted to a numeric display. Calibration is achieved by ero and span potentiometers which enable accurate measurements by the force-measuring clamp.

  7. Understanding the TERS Effect with On-line Tunneling and Force Feedback Using Multiprobe AFM/NSOM with Raman Integration

    NASA Astrophysics Data System (ADS)

    Lewis, Aaron; Dekhter, Rimma; Hamra, Patricia; Bar-David, Yossi; Taha, Hesham

    Tip enhanced Raman scattering (TERS) has evolved in several directions over the past years. The data from this variety of methodologies has now accumulated to the point that there is a reasonable possibility of evolving an understanding of the underlying cause of the resulting effects that could be the origin of the various TERS enhancement processes. The objective of this presentation is to use the results thus far with atomic force microscopy (AFM) probes with noble metal coating, etching, transparent gold nanoparticles with and without a second nanoparticle [Wang and Schultz, ANALYST 138, 3150 (2013)] and tunneling feedback probes [R. Zhang et. al., NATURE 4 9 8, 8 2 (2013)]. We attempt at understanding this complex of results with AFM/NSOM multiprobe techniques. Results indicate that TERS is dominated by complex quantum interactions. This produces a highly confined and broadband plasmon field with all k vectors for effective excitation. Normal force tuning fork feedback with exposed tip probes provides an excellent means to investigate these effects with TERS probes that we have shown can circumvent the vexing problem of jump to contact prevalent in conventional AFM methodology and permit on-line switching between tunneling and AFM feedback modes of operation.

  8. Numerical study of the hydrodynamic drag force in atomic force microscopy measurements undertaken in fluids.

    PubMed

    Méndez-Méndez, J V; Alonso-Rasgado, M T; Faria, E Correia; Flores-Johnson, E A; Snook, R D

    2014-11-01

    When atomic force microscopy (AFM) is employed for in vivo study of immersed biological samples, the fluid medium presents additional complexities, not least of which is the hydrodynamic drag force due to viscous friction of the cantilever with the liquid. This force should be considered when interpreting experimental results and any calculated material properties. In this paper, a numerical model is presented to study the influence of the drag force on experimental data obtained from AFM measurements using computational fluid dynamics (CFD) simulation. The model provides quantification of the drag force in AFM measurements of soft specimens in fluids. The numerical predictions were compared with experimental data obtained using AFM with a V-shaped cantilever fitted with a pyramidal tip. Tip velocities ranging from 1.05 to 105 μm/s were employed in water, polyethylene glycol and glycerol with the platform approaching from a distance of 6000 nm. The model was also compared with an existing analytical model. Good agreement was observed between numerical results, experiments and analytical predictions. Accurate predictions were obtained without the need for extrapolation of experimental data. In addition, the model can be employed over the range of tip geometries and velocities typically utilized in AFM measurements.

  9. Leveraging Air Force Medical Service (AFMS) Senior Leadership Corps Diversity to Improve Efficiency

    DTIC Science & Technology

    2013-04-01

    commanders and AFMS senior leadership; • Set a single PME standard for AFMS officers; • Shift provider billets to patient care roles and establish...single PME standard, and by realigning human resources to increase clinical currency, medical readiness and resource efficiency. Some structural...organizational entity. Like running a surgical service or a medical service. . . . It’s much bigger than that, because you’re dealing with finance and

  10. Forces applied by cilia measured on explants from mucociliary tissue.

    PubMed

    Teff, Zvi; Priel, Zvi; Gheber, Levi A

    2007-03-01

    Forces applied by intact mucus-propelling cilia were measured for the first time that we know of using a combined atomic force microscopy (AFM) and electrooptic system. The AFM probe was dipped into a field of beating cilia and its time-dependent deflection was recorded as it was struck by the cilia while the electrooptic system simultaneously and colocally measured the frequency to ensure that no perturbation was induced by the AFM probe. Using cilia from frog esophagus, we measured forces of approximately 0.21 nN per cilium during the effective stroke. This value, together with the known internal structure of these cilia, leads to the conclusion that most dynein arms along the length of the axoneme contribute to the effective stroke of these cilia.

  11. The ReactorAFM: Non-contact atomic force microscope operating under high-pressure and high-temperature catalytic conditions

    SciTech Connect

    Roobol, S. B.; Cañas-Ventura, M. E.; Bergman, M.; Spronsen, M. A. van; Onderwaater, W. G.; Tuijn, P. C. van der; Koehler, R.; Frenken, J. W. M.; Ofitserov, A.; Baarle, G. J. C. van

    2015-03-15

    An Atomic Force Microscope (AFM) has been integrated in a miniature high-pressure flow reactor for in-situ observations of heterogeneous catalytic reactions under conditions similar to those of industrial processes. The AFM can image model catalysts such as those consisting of metal nanoparticles on flat oxide supports in a gas atmosphere up to 6 bar and at a temperature up to 600 K, while the catalytic activity can be measured using mass spectrometry. The high-pressure reactor is placed inside an Ultrahigh Vacuum (UHV) system to supplement it with standard UHV sample preparation and characterization techniques. To demonstrate that this instrument successfully bridges both the pressure gap and the materials gap, images have been recorded of supported palladium nanoparticles catalyzing the oxidation of carbon monoxide under high-pressure, high-temperature conditions.

  12. Fourier Transform Infrared (FTIR) Spectroscopy, Ultraviolet Resonance Raman (UVRR) Spectroscopy, and Atomic Force Microscopy (AFM) for Study of the Kinetics of Formation and Structural Characterization of Tau Fibrils.

    PubMed

    Ramachandran, Gayathri

    2017-01-01

    Kinetic studies of tau fibril formation in vitro most commonly employ spectroscopic probes such as thioflavinT fluorescence and laser light scattering or negative stain transmission electron microscopy. Here, I describe the use of Fourier transform infrared (FTIR) spectroscopy, ultraviolet resonance Raman (UVRR) spectroscopy, and atomic force microscopy (AFM) as complementary probes for studies of tau aggregation. The sensitivity of vibrational spectroscopic techniques (FTIR and UVRR) to secondary structure content allows for measurement of conformational changes that occur when the intrinsically disordered protein tau transforms into cross-β-core containing fibrils. AFM imaging serves as a gentle probe of structures populated over the time course of tau fibrillization. Together, these assays help further elucidate the structural and mechanistic complexity inherent in tau fibril formation.

  13. The physics of pulling polyproteins: a review of single molecule force spectroscopy using the AFM to study protein unfolding

    NASA Astrophysics Data System (ADS)

    Hughes, Megan L.; Dougan, Lorna

    2016-07-01

    One of the most exciting developments in the field of biological physics in recent years is the ability to manipulate single molecules and probe their properties and function. Since its emergence over two decades ago, single molecule force spectroscopy has become a powerful tool to explore the response of biological molecules, including proteins, DNA, RNA and their complexes, to the application of an applied force. The force versus extension response of molecules can provide valuable insight into its mechanical stability, as well as details of the underlying energy landscape. In this review we will introduce the technique of single molecule force spectroscopy using the atomic force microscope (AFM), with particular focus on its application to study proteins. We will review the models which have been developed and employed to extract information from single molecule force spectroscopy experiments. Finally, we will end with a discussion of future directions in this field.

  14. Wettability and surface forces measured by atomic force microscopy: the role of roughness

    NASA Astrophysics Data System (ADS)

    Gavoille, J.; Takadoum, J.; Martin, N.; Durand, D.

    2009-10-01

    Thin films of titanium, copper and silver with various roughnesses were prepared by physical vapour deposition technique: dc magnetron sputtering. By varying the deposition time from few minutes to one hour it was possible to obtain metallic films with surface roughness average ranging from 1 to 20 nm. The wettability of these films was studied by measuring the contact angle using the sessile drop method and surface forces were investigated using the atomic force microscopy (AFM) by measuring the pull-off force between the AFM tip and the surfaces. Experimental results have been mainly discussed in terms of metal surface reactivity, Young modulus of the materials and real surface of contact between the AFM tip and the film surfaces.

  15. Measurement of Surface Forces

    DTIC Science & Technology

    1990-11-16

    hydration forces were observed in solutions containing chloride salts of Li+ , K+ , Na 4 , and Cs+ , resulting from electrostatic binding of the cation...concentrated solutions of a series of tetraalkylammonium bromide salts [46] [Fig. 13]. In these measurements, the distance of closest approach of the two...solid metal electrodes separated by an electrolytic solution . Electrostatic forces, which are intimately related to electrode kinetics and adsorption

  16. Measurement methods in atomic force microscopy.

    PubMed

    Torre, Bruno; Canale, Claudio; Ricci, Davide; Braga, Pier Carlo

    2011-01-01

    This chapter is introductory to the measurements: it explains different measurement techniques both for imaging and for force spectroscopy, on which most of the AFM experiments rely. It gives a general overview of the different techniques and of the output expected from the instrument; therefore it is, at a basic level, a good tool to properly start a new experiment. Concepts introduced in this chapter give the base for understanding the applications shown in the following chapters. Subheading 1 introduces the distinction between spectroscopy and imaging experiments and, within the last ones, between DC and AC mode. Subheading 2 is focused on DC mode (contact), explaining the topography and the lateral force channel. Subheading 3 introduces AC mode, both in noncontact and intermittent contact case. Phase imaging and force modulation are also discussed. Subheading 4 explains how the AFM can be used to measure local mechanical and adhesive properties of specimens by means of force spectroscopy technique. An overview on the state of the art and future trends in this field is also given.

  17. Evaluating interaction forces between BSA and rabbit anti-BSA in sulphathiazole sodium, tylosin and levofloxacin solution by AFM

    NASA Astrophysics Data System (ADS)

    Wang, Congzhou; Wang, Jianhua; Deng, Linhong

    2011-11-01

    Protein-protein interactions play crucial roles in numerous biological processes. However, it is still challenging to evaluate the protein-protein interactions, such as antigen and antibody, in the presence of drug molecules in physiological liquid. In this study, the interaction between bovine serum albumin (BSA) and rabbit anti-BSA was investigated using atomic force microscopy (AFM) in the presence of various antimicrobial drugs (sulphathiazole sodium, tylosin and levofloxacin) under physiological condition. The results show that increasing the concentration of tylosin decreased the single-molecule-specific force between BSA and rabbit anti-BSA. As for sulphathiazole sodium, it dramatically decreased the specific force at a certain critical concentration, but increased the nonspecific force as its concentration increasing. In addition, the presence of levofloxacin did not greatly influence either the specific or nonspecific force. Collectively, these results suggest that these three drugs may adopt different mechanisms to affect the interaction force between BSA and rabbit anti-BSA. These findings may enhance our understanding of antigen/antibody binding processes in the presence of drug molecules, and hence indicate that AFM could be helpful in the design and screening of drugs-modulating protein-protein interaction processes.

  18. Examination of Humidity Effects on Measured Thickness and Interfacial Phenomena of Exfoliated Graphene on SiO2 via AC-AFM

    NASA Astrophysics Data System (ADS)

    Jinkins, Katherine; Camacho, Jorge; Farina, Lee; Wu, Yan

    2015-03-01

    Tapping (AC) mode Atomic Force Microscopy (AFM) is commonly used to determine the thickness of graphene samples. However, AFM measurements have been shown to be sensitive to environmental conditions such as adsorbed water, in turn dependent on relative humidity (RH). In the present study, AC-AFM is used to measure the thickness and loss tangent of exfoliated graphene on silicon dioxide (SiO2) as RH is increased from 10% to 80%. We show that the measured thickness of graphene is dependent on RH. Loss tangent is an AFM imaging technique that interprets the phase information as a relationship between the stored and dissipated energy in the tip-sample interaction. This study demonstrates the loss tangent of the graphene and oxide regions are both affected by humidity, with generally higher loss tangent for graphene than SiO2. As RH increases, we observe the loss tangent of both materials approaches the same value. We hypothesize that there is a layer of water trapped between the graphene and SiO2 substrate to explain this observation. Using this interpretation, the loss tangent images also indicate movement and change in this trapped water layer as RH increases, which impacts the measured thickness of graphene using AC-AFM.

  19. PREFACE: NC-AFM 2003: Proceedings of the 6th International Conference on Non-contact Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Reichling, Michael

    2004-02-01

    Direct nanoscale and atomic resolution imaging is a key issue in nanoscience and nanotechnology. The invention of the dynamic force microscope in the early 1990s was an important step forward in this direction as this instrument provides a universal tool for measuring the topography and many other physical and chemical properties of surfaces at the nanoscale. Operation in the so-called non-contact mode now allows direct atomic resolution imaging of electrically insulating surfaces and nanostructures which has been an unsolved problem during the first decade of nanotechnology. Today, we face a most rapid development of the technique and an extension of its capabilities far beyond imaging; atomically resolved force spectroscopy provides information about local binding properties and researchers now develop sophisticated schemes of force controlled atomic manipulation with the tip of the force microscope. Progress in the field of non-contact force microscopy is discussed at the annually held NC-AFM conferences that are part of a series started in 1998 with a meeting in Osaka, Japan. The 6th International Conference on Non-contact Atomic Force Microscopy took place in Dingle, Ireland, from 31 August to 3 September 2003 and this special issue is a compilation of the original publications of work presented at this meeting. The papers published here well reflect recent achievements, current trends and some of the challenging new directions in non-contact force microscopy that have been discussed during the most stimulating conference days in Dingle. Fundamental aspects of forces and dissipation relevant in imaging and spectroscopy have been covered by experimental and theoretical contributions yielding a more detailed understanding of tip--surface interaction in force microscopy. Novel and improved imaging and spectroscopy techniques have been introduced that either improve the performance of force microscopy or pave the way towards new functionalities and applications

  20. Recombinant albumin adsorption on mica studied by AFM and streaming potential measurements.

    PubMed

    Kujda, Marta; Adamczyk, Zbigniew; Morga, Maria; Sofińska, Kamila

    2015-03-01

    Recombinant human serum albumin (rHSA) in monomeric state is widely used in pharmaceutical industry as a drug excipient and for preparing coatings for medical devices. In this work the adsorption process of rHSA on model mica surface at pH 3.5 was studied using the atomic force microscopy (AFM) and in situ streaming potential measurements. The kinetics of albumin adsorption was determined by a direct enumeration of single molecules over various substrate areas. These results were consistent with streaming potential measurements carried out for the parallel-plate channel flow and with theoretical predictions derived from the random sequential adsorption (RSA) model. Desorption kinetics of albumin under flow conditions was also evaluated via the streaming potential measurements. In this way, the amount of irreversibly bound albumin was quantitatively evaluated to be 0.64 and 1.2 mg m(-2) for ionic strength of 0.01 and 0.15 M, respectively. This agrees with previous results obtained for HSA and theoretical calculations derived from the RSA model. Additionally, it was demonstrated that there existed a fraction of reversibly bound albumin that can be fully eluted within a few hours. The binding energy of these fraction of molecules was -18 kT that is consistent with the electrostatic controlled adsorption mechanism of albumin at this pH. It was concluded that the rHSA monolayers of well-defined coverage can find applications for quantitatively analyzing ligand binding and for performing efficient biomaterials and immunological tests.

  1. PREFACE: NC-AFM 2004: Proceedings of the 7th International Conference on Non-contact Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Schwarz, Udo

    2005-03-01

    With the ongoing miniaturization of devices and controlled nanostructuring of materials, the importance of atomic-scale information on surfaces and surface properties is growing continuously. The astonishing progress in nanoscience and nanotechnology that took place during the last two decades was in many ways related to recent progress in high-resolution imaging techniques such as scanning tunnelling microscopy and transmission electron microscopy. Since the mid-1990s, non-contact atomic force microscopy (NC-AFM) performed in ultrahigh vacuum has evolved as an alternative technique that achieves atomic resolution, but without the restriction to conducting surfaces of the previously established techniques. Advances of the rapidly developing field of NC-AFM are discussed at annual conferences as part of a series that started in 1998 in Osaka, Japan. This special issue of Nanotechnology is a compilation of original work presented at the 7th International Conference on Non-contact Atomic Force Microscopy that took place in Seattle, USA, 12-15 September 2004. Over the years, the conference grew in size and scope. Atomic resolution imaging of oxides and semiconductors remains an issue. Noticeable new developments have been presented in this regard such as, e.g., the demonstrated ability to manipulate individual atoms. Additionally, the investigation of individual molecules, clusters, and organic materials gains more and more attention. In this context, considerable effort is undertaken to transfer the NC-AFM principle based on frequency modulation to applications in air and liquids with the goal of enabling high-resolution surface studies of biological material in native environments, as well as to reduce the experimental complexity, which so far involves the availability of (costly) vacuum systems. Force spectroscopy methods continue to be improved and are applied to topics such as the imaging of the three-dimensional force field as a function of the distance with

  2. Real time drift measurement for colloidal probe atomic force microscope: a visual sensing approach

    SciTech Connect

    Wang, Yuliang Bi, Shusheng; Wang, Huimin

    2014-05-15

    Drift has long been an issue in atomic force microscope (AFM) systems and limits their ability to make long time period measurements. In this study, a new method is proposed to directly measure and compensate for the drift between AFM cantilevers and sample surfaces in AFM systems. This was achieved by simultaneously measuring z positions for beads at the end of an AFM colloidal probe and on sample surface through an off-focus image processing based visual sensing method. The working principle and system configuration are presented. Experiments were conducted to validate the real time drift measurement and compensation. The implication of the proposed method for regular AFM measurements is discussed. We believe that this technique provides a practical and efficient approach for AFM experiments requiring long time period measurement.

  3. Photothermally excited force modulation microscopy for broadband nanomechanical property measurements

    SciTech Connect

    Wagner, Ryan Killgore, Jason P.

    2015-11-16

    We demonstrate photothermally excited force modulation microscopy (PTE FMM) for mechanical property characterization across a broad frequency range with an atomic force microscope (AFM). Photothermal excitation allows for an AFM cantilever driving force that varies smoothly as a function of drive frequency, thus avoiding the problem of spurious resonant vibrations that hinder piezoelectric excitation schemes. A complication of PTE FMM is that the sub-resonance cantilever vibration shape is fundamentally different compared to piezoelectric excitation. By directly measuring the vibrational shape of the cantilever, we show that PTE FMM is an accurate nanomechanical characterization method. PTE FMM is a pathway towards the characterization of frequency sensitive specimens such as polymers and biomaterials with frequency range limited only by the resonance frequency of the cantilever and the low frequency limit of the AFM.

  4. Measuring and Understanding Forces on Atomic Length Scales with the Atomic Force Microscope

    NASA Astrophysics Data System (ADS)

    Cleveland, Jason Paul

    Most microscopes can be used with little understanding of how they work--much can be learned looking through a light microscope without ever knowing what a photon is or who Maxwell was--and the Atomic Force Microscope (AFM) is no exception. Many AFM images don't look much different from a mountainous landscape, and much is learned interpreting them as such; however, to really push a microscope to its limits means understanding the interactions creating the contrast in the picture. For a Scanning Electron Microscope, this means understanding how electrons interact with matter, for an AFM it means understanding forces. The focus of this thesis is understanding the forces acting (especially in liquids) between tip and sample in AFM and a better understanding the instrument itself. Chapters I, II and VI involve better characterizing and improving the most important part of the AFM, the tiny cantilever used to measure forces. Chapter I describes a solution to one of the most basic problems that must be solved before forces can be accurately measured--measuring the stiffness of these cantilevers. Many limitations in AFM are set by physical characteristics of the cantilever itself, such as resonance frequency, spring constant, and quality factor. If an external force can be applied to the cantilever, feedback can be used to improve these characteristics. Chapter II shows how to do this using a magnetically applied external force, which has the advantage of working in liquids. These physical characteristics also change drastically when the cantilever is immersed in fluid. The resonance frequency of common cantilevers drops by as much as a factor of six in going from air to water. Chapter VI studies these changes and shows how further miniaturization of cantilevers can improve imaging speeds and signal-to-noise ratio. Early in its career, the AFM was heralded as having atomic resolution, but as the field matured researchers realized that the contact area between tip and

  5. EEMD based pitch evaluation method for accurate grating measurement by AFM

    NASA Astrophysics Data System (ADS)

    Li, Changsheng; Yang, Shuming; Wang, Chenying; Jiang, Zhuangde

    2016-09-01

    The pitch measurement and AFM calibration precision are significantly influenced by the grating pitch evaluation method. This paper presents the ensemble empirical mode decomposition (EEMD) based pitch evaluation method to relieve the accuracy deterioration caused by high and low frequency components of scanning profile during pitch evaluation. The simulation analysis shows that the application of EEMD can improve the pitch accuracy of the FFT-FT algorithm. The pitch error is small when the iteration number of the FFT-FT algorithms was 8. The AFM measurement of the 500 nm-pitch one-dimensional grating shows that the EEMD based pitch evaluation method could improve the pitch precision, especially the grating line position precision, and greatly expand the applicability of the gravity center algorithm when particles and impression marks were distributed on the sample surface. The measurement indicates that the nonlinearity was stable, and the nonlinearity of x axis and forward scanning was much smaller than their counterpart. Finally, a detailed pitch measurement uncertainty evaluation model suitable for commercial AFMs was demonstrated and a pitch uncertainty in the sub-nanometer range was achieved. The pitch uncertainty was reduced about 10% by EEMD.

  6. Atomic force microscopy for analyzing metaphase chromosomes: comparison of AFM images with fluorescence labeling images of banding patterns.

    PubMed

    Hoshi, Osamu; Ushiki, Tatsuo

    2014-01-01

    The combined use of fluorescence microscopy with atomic force microscopy (AFM) has been introduced to analyze the replication-banding patterns of human chromosomes. Human lymphocytes synchronized with excess thymidine are treated with 5-ethynyl-2'-deoxyuridine (EdU) during the late S phase. EdU-labeled DNA is detected in metaphase chromosomes using Alexa Fluor 488(®) azide, through the 1,3-dipolar cycloaddition reaction of organic azides with the terminal acetylene group of EdU. Chromosomes with EdU incorporated during the late S phase show a banding pattern similar to the G-banding pattern of normal human chromosomes. The comparison between the fluorescence and AFM image of the same chromosome indicates the presence of ridges and grooves in the chromatid arms, which correspond to G-positive and G-negative bands, respectively. This technique of EdU-labeled replication bands combined with AFM is useful to analyze the structure of chromosomes in relation to the banding pattern.

  7. The Analog Atomic Force Microscope: Measuring, Modeling, and Graphing for Middle School

    ERIC Educational Resources Information Center

    Goss, Valerie; Brandt, Sharon; Lieberman, Marya

    2013-01-01

    using an analog atomic force microscope (A-AFM) made from a cardboard box and mailing tubes. Varying numbers of ping pong balls inside the tubes mimic atoms on a surface. Students use a dowel to make macroscale measurements similar to those of a nanoscale AFM tip as it…

  8. Adsorption of modified dextrins to a hydrophobic surface: QCM-D studies, AFM imaging, and dynamic contact angle measurements.

    PubMed

    Sedeva, Iliana G; Fetzer, Renate; Fornasiero, Daniel; Ralston, John; Beattie, David A

    2010-05-15

    The adsorption of three dextrin-based polymers, regular wheat dextrin (Dextrin TY), phenyl succinate dextrin (PS Dextrin), and styrene oxide dextrin (SO Dextrin) on a model hydrophobic surface, consisting of a mixed alkanethiol layer on gold, has been characterized using the quartz crystal microbalance with dissipation monitoring (QCM-D). The three polymers exhibited varying affinities and capacity for adsorption on the hydrophobic substrate. Atomic force microscope (AFM) imaging of the polymer layers indicates that all three polymers fully cover the surface. The effect of the three polymers on the static contact angle of the surface was studied using captive bubble contact angle measurements. The three polymers were seen to reduce the receding contact angle by similar amounts (approximately 14°) in spite of having varying adsorbed amounts and differences in adsorbed layer water content. Although no differences were observed in the ability of the polymers to reduce the static contact angle, measurements of the dynamic contact angle between a rising air bubble and the polymer covered substrate yielded stark differences between the polymers, with one polymer (SO Dextrin) slowing the dewetting by an order of magnitude more than the other two polymers. The differences in dewetting behavior correlate with the adsorbed layer characteristics determined by QCM-D and AFM. The role of the dynamic and static contact angle in the performance of a polymer as depressant is discussed.

  9. Spatial dependence of polycrystalline FTO’s conductance analyzed by conductive atomic force microscope (C-AFM)

    SciTech Connect

    Peixoto, Alexandre Pessoa; Costa, J. C. da

    2014-05-15

    Fluorine-doped Tin oxide (FTO) is a highly transparent, electrically conductive polycrystalline material frequently used as an electrode in organic solar cells and optical-electronic devices [1–2]. In this work a spatial analysis of the conductive behavior of FTO was carried out by Conductive-mode Atomic Force Microscopy (C-AFM). Rare highly oriented grains sample give us an opportunity to analyze the top portion of polycrystalline FTO and compare with the border one. It is shown that the current flow essentially takes place through the polycrystalline edge at grain boundaries.

  10. Measurement of polyamide and polystyrene adhesion with coated-tip atomic force microscopy.

    PubMed

    Thio, Beng Joo Reginald; Meredith, J Carson

    2007-10-01

    This work presents atomic force microscopy (AFM) measurements of adhesion forces between polyamides, polystyrene and AFM tips coated with the same materials. The polymers employed were polyamide 6 (PA6), PA66, PA12 and polystyrene (PS). All adhesion forces between the various unmodified or modified AFM tips and the polymer surfaces were in the range -1.5 to -8 nN. The weakest force was observed for an unmodified AFM tip with a PS surface and the strongest was between a PS-coated tip and PS surface. The results point to both the benefits and drawbacks of coated-tip AFM force-distance measurements. Adhesion forces between the two most dissimilar (PA6-PS and PA66-PS) materials were significantly asymmetric, e.g., the forces were different depending on the relative placement of each polymer on the AFM tip or substrate. Materials with similar chemistry and intermolecular interactions yielded forces in close agreement regardless of placement on tip or substrate. Using experimental forces, we calculated the contact radii via four models: Derjaguin, Muller, and Toporov; Johnson, Kendall, and Roberts; parametric tip-force-distance relation; and a square pyramid-flat surface (SPFS) model developed herein. The SPFS model gave the most reasonable contact tip radius estimate. Hamaker constants calculated from the SPFS model using this radius agreed in both magnitude and trends with experiment and Lifshitz theory.

  11. Easy and direct method for calibrating atomic force microscopy lateral force measurements

    PubMed Central

    Liu, Wenhua; Bonin, Keith; Guthold, Martin

    2010-01-01

    We have designed and tested a new, inexpensive, easy-to-make and easy-to-use calibration standard for atomic force microscopy (AFM) lateral force measurements. This new standard simply consists of a small glass fiber of known dimensions and Young’s modulus, which is fixed at one end to a substrate and which can be bent laterally with the AFM tip at the other end. This standard has equal or less error than the commonly used method of using beam mechanics to determine a cantilever’s lateral force constant. It is transferable, thus providing a universal tool for comparing the calibrations of different instruments. It does not require knowledge of the cantilever dimensions and composition or its tip height. This standard also allows direct conversion of the photodiode signal to force and, thus, circumvents the requirement for a sensor response (sensitivity) measurement. PMID:17614616

  12. Fundamental aspects of electric double layer force-distance measurements at liquid-solid interfaces using atomic force microscopy

    PubMed Central

    Black, Jennifer M.; Zhu, Mengyang; Zhang, Pengfei; Unocic, Raymond R.; Guo, Daqiang; Okatan, M. Baris; Dai, Sheng; Cummings, Peter T.; Kalinin, Sergei V.; Feng, Guang; Balke, Nina

    2016-01-01

    Atomic force microscopy (AFM) force-distance measurements are used to investigate the layered ion structure of Ionic Liquids (ILs) at the mica surface. The effects of various tip properties on the measured force profiles are examined and reveal that the measured ion position is independent of tip properties, while the tip radius affects the forces required to break through the ion layers as well as the adhesion force. Force data is collected for different ILs and directly compared with interfacial ion density profiles predicted by molecular dynamics. Through this comparison it is concluded that AFM force measurements are sensitive to the position of the ion with the larger volume and mass, suggesting that ion selectivity in force-distance measurements are related to excluded volume effects and not to electrostatic or chemical interactions between ions and AFM tip. The comparison also revealed that at distances greater than 1 nm the system maintains overall electroneutrality between the AFM tip and sample, while at smaller distances other forces (e.g., van der waals interactions) dominate and electroneutrality is no longer maintained. PMID:27587276

  13. Fundamental aspects of electric double layer force-distance measurements at liquid-solid interfaces using atomic force microscopy

    DOE PAGES

    Black, Jennifer M.; Zhu, Mengyang; Zhang, Pengfei; ...

    2016-09-02

    In this paper, atomic force microscopy (AFM) force-distance measurements are used to investigate the layered ion structure of Ionic Liquids (ILs) at the mica surface. The effects of various tip properties on the measured force profiles are examined and reveal that the measured ion position is independent of tip properties, while the tip radius affects the forces required to break through the ion layers as well as the adhesion force. Force data is collected for different ILs and directly compared with interfacial ion density profiles predicted by molecular dynamics. Through this comparison it is concluded that AFM force measurements aremore » sensitive to the position of the ion with the larger volume and mass, suggesting that ion selectivity in force-distance measurements are related to excluded volume effects and not to electrostatic or chemical interactions between ions and AFM tip. Finally, the comparison also revealed that at distances greater than 1 nm the system maintains overall electroneutrality between the AFM tip and sample, while at smaller distances other forces (e.g., van der waals interactions) dominate and electroneutrality is no longer maintained.« less

  14. Fundamental aspects of electric double layer force-distance measurements at liquid-solid interfaces using atomic force microscopy

    SciTech Connect

    Black, Jennifer M.; Zhu, Mengyang; Zhang, Pengfei; Unocic, Raymond R.; Guo, Daqiang; Okatan, M. Baris; Dai, Sheng; Cummings, Peter T.; Kalinin, Sergei V.; Feng, Guang; Balke, Nina

    2016-09-02

    In this paper, atomic force microscopy (AFM) force-distance measurements are used to investigate the layered ion structure of Ionic Liquids (ILs) at the mica surface. The effects of various tip properties on the measured force profiles are examined and reveal that the measured ion position is independent of tip properties, while the tip radius affects the forces required to break through the ion layers as well as the adhesion force. Force data is collected for different ILs and directly compared with interfacial ion density profiles predicted by molecular dynamics. Through this comparison it is concluded that AFM force measurements are sensitive to the position of the ion with the larger volume and mass, suggesting that ion selectivity in force-distance measurements are related to excluded volume effects and not to electrostatic or chemical interactions between ions and AFM tip. Finally, the comparison also revealed that at distances greater than 1 nm the system maintains overall electroneutrality between the AFM tip and sample, while at smaller distances other forces (e.g., van der waals interactions) dominate and electroneutrality is no longer maintained.

  15. Fundamental aspects of electric double layer force-distance measurements at liquid-solid interfaces using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Black, Jennifer M.; Zhu, Mengyang; Zhang, Pengfei; Unocic, Raymond R.; Guo, Daqiang; Okatan, M. Baris; Dai, Sheng; Cummings, Peter T.; Kalinin, Sergei V.; Feng, Guang; Balke, Nina

    2016-09-01

    Atomic force microscopy (AFM) force-distance measurements are used to investigate the layered ion structure of Ionic Liquids (ILs) at the mica surface. The effects of various tip properties on the measured force profiles are examined and reveal that the measured ion position is independent of tip properties, while the tip radius affects the forces required to break through the ion layers as well as the adhesion force. Force data is collected for different ILs and directly compared with interfacial ion density profiles predicted by molecular dynamics. Through this comparison it is concluded that AFM force measurements are sensitive to the position of the ion with the larger volume and mass, suggesting that ion selectivity in force-distance measurements are related to excluded volume effects and not to electrostatic or chemical interactions between ions and AFM tip. The comparison also revealed that at distances greater than 1 nm the system maintains overall electroneutrality between the AFM tip and sample, while at smaller distances other forces (e.g., van der waals interactions) dominate and electroneutrality is no longer maintained.

  16. Adhesion Forces between Lewis(X) Determinant Antigens as Measured by Atomic Force Microscopy.

    PubMed

    Tromas, C; Rojo, J; de la Fuente, J M; Barrientos, A G; García, R; Penadés, S

    2001-01-01

    The adhesion forces between individual molecules of Lewis(X) trisaccharide antigen (Le(X) ) have been measured in water and in calcium solution by using atomic force microscopy (AFM, see graph). These results demonstrate the self-recognition capability of this antigen, and reinforce the hypothesis that carbohydrate-carbohydrate interaction could be considered as the first step in the cell-adhesion process in nature.

  17. Point of zero charge of a corundum-water interface probed with optical second harmonic generation (SHG) and atomic force microscopy (AFM): New approaches to oxide surface charge

    NASA Astrophysics Data System (ADS)

    Stack, Andrew G.; Higgins, Steven R.; Eggleston, Carrick M.

    2001-09-01

    The pH and ionic strength dependence of light generated at a corundum-solution interface by the nonlinear optical process of second harmonic generation (SHG) is reported. A point of zero salt effect occurs in the pH range 5 to 6. The pH and ionic strength dependence of the SHG is qualitatively consistent with a model describing SHG from a charged mineral/water interface from Ong et al. (1992) and Zhao et al. (1993a, 1993b), but certain aspects of the model appear inadequate to describe the full range of our data. Atomic force microscopy (AFM) force-distance measurements, though imprecise, were consistent with a point of zero charge (p.z.c.) for the interface also in the pH range 5 to 6. The SHG (and AFM) results are different from expectation; the observed p.z.s.e. (and presumably also the p.z.c.) is considerably lower than the accepted point of zero charge of clean alumina powders ( pH 8-9.4; Parks, 1965; Sverjenksy and Sahai, 1996). Although the reasons for this are unclear, SHG holds promise as a probe of oxide-water interfaces that is independent of interpretation of acid-base titration stoichiometry.

  18. Measuring the elastic properties of living cells with atomic force microscopy indentation.

    PubMed

    Mackay, Joanna L; Kumar, Sanjay

    2013-01-01

    Atomic force microscopy (AFM) is a powerful and versatile tool for probing the mechanical properties of biological samples. This chapter describes the procedures for using AFM indentation to measure the elastic moduli of living cells. We include step-by-step instructions for cantilever calibration and data acquisition using a combined AFM/optical microscope system, as well as a detailed protocol for data analysis. Our protocol is written specifically for the BioScope™ Catalyst™ AFM system (Bruker AXS Inc.); however, most of the general concepts can be readily translated to other commercial systems.

  19. Isoelectric point of fluorite by direct force measurements using atomic force microscopy.

    PubMed

    Assemi, Shoeleh; Nalaskowski, Jakub; Miller, Jan D; Johnson, William P

    2006-02-14

    Interaction forces between a fluorite (CaF2) surface and colloidal silica were measured by atomic force microscopy (AFM) in 1 x 10(-3) M NaNO3 at different pH values. Forces between the silica colloid and fluorite flat were measured at a range of pH values above the isoelectric point (IEP) of silica so that the forces were mainly controlled by the fluorite surface charge. In this way, the IEP of the fluorite surface was deduced from AFM force curves at pH approximately 9.2. Experimental force versus separation distance curves were in good agreement with theoretical predictions based on long-range electrostatic interactions, allowing the potential of the fluorite surface to be estimated from the experimental force curves. AFM-deduced surface potentials were generally lower than the published zeta potentials obtained from electrokinetic methods for powdered samples. Differences in methodology, orientation of the fluorite, surface carbonation, and equilibration time all could have contributed to this difference.

  20. Uncertainty quantification in nanomechanical measurements using the atomic force microscope.

    PubMed

    Wagner, Ryan; Moon, Robert; Pratt, Jon; Shaw, Gordon; Raman, Arvind

    2011-11-11

    Quantifying uncertainty in measured properties of nanomaterials is a prerequisite for the manufacture of reliable nanoengineered materials and products. Yet, rigorous uncertainty quantification (UQ) is rarely applied for material property measurements with the atomic force microscope (AFM), a widely used instrument that can measure properties at nanometer scale resolution of both inorganic and biological surfaces and nanomaterials. We present a framework to ascribe uncertainty to local nanomechanical properties of any nanoparticle or surface measured with the AFM by taking into account the main uncertainty sources inherent in such measurements. We demonstrate the framework by quantifying uncertainty in AFM-based measurements of the transverse elastic modulus of cellulose nanocrystals (CNCs), an abundant, plant-derived nanomaterial whose mechanical properties are comparable to Kevlar fibers. For a single, isolated CNC the transverse elastic modulus was found to have a mean of 8.1 GPa and a 95% confidence interval of 2.7-20 GPa. A key result is that multiple replicates of force-distance curves do not sample the important sources of uncertainty, which are systematic in nature. The dominant source of uncertainty is the nondimensional photodiode sensitivity calibration rather than the cantilever stiffness or Z-piezo calibrations. The results underscore the great need for, and open a path towards, quantifying and minimizing uncertainty in AFM-based material property measurements of nanoparticles, nanostructured surfaces, thin films, polymers and biomaterials.

  1. Force profiles of protein pulling with or without cytoskeletal links studied by AFM

    SciTech Connect

    Afrin, Rehana; Ikai, Atsushi . E-mail: aikai@bio.titech.ac.jp

    2006-09-15

    To test the capability of the atomic force microscope for distinguishing membrane proteins with/without cytoskeletal associations, we studied the pull-out mechanics of lipid tethers from the red blood cell (RBC). When wheat germ agglutinin, a glycophorin A (GLA) specific lectin, was used to pull out tethers from RBC, characteristic force curves for tether elongation having a long plateau force were observed but without force peaks which are usually attributed to the forced unbinding of membrane components from the cytoskeleton. The result was in agreement with the reports that GLA is substantially free of cytoskeletal interactions. On the contrary, when the Band 3 specific lectin, concanavalin A, was used, the force peaks were indeed observed together with a plateau supporting its reported cytoskeletal association. Based on these observations, we postulate that the state of cytoskeletal association of particular membrane proteins can be identified from the force profiles of their pull-out mechanics.

  2. Combined atomic force microscopy and voltage pulse technique to accurately measure electrostatic force

    NASA Astrophysics Data System (ADS)

    Inami, Eiichi; Sugimoto, Yoshiaki

    2016-08-01

    We propose a new method of extracting electrostatic force. The technique is based on frequency modulation atomic force microscopy (FM-AFM) combined with a voltage pulse. In this method, the work that the electrostatic field does on the oscillating tip is measured through the cantilever energy dissipation. This allows us to directly extract capacitive forces including the longer range part, to which the conventional FM-AFM is insensitive. The distance-dependent contact potential difference, which is modulated by local charges distributed on the surfaces of the tip and/or sample, could also be correctly obtained. In the absence of local charges, our method can perfectly reproduce the electrostatic force as a function of the distance and the bias voltage. Furthermore, we demonstrate that the system serves as a sensitive sensor enabling us to check the existence of the local charges such as trapped charges and patch charges.

  3. PREFACE: Non-contact AFM Non-contact AFM

    NASA Astrophysics Data System (ADS)

    Giessibl, Franz J.; Morita, Seizo

    2012-02-01

    This special issue is focussed on high resolution non-contact atomic force microscopy (AFM). Non-contact atomic force microscopy was established approximately 15 years ago as a tool to image conducting and insulating surfaces with atomic resolution. Since 1998, an annual international conference has taken place, and although the proceedings of these conferences are a useful source of information, several key developments warrant devoting a special issue to this subject. In the theoretic field, the possibility of supplementing established techniques such as scanning tunneling microscopy (STM) and Kelvin probe microscopy with atomically resolved force micrsoscopy poses many challenges in the calculation of contrast and contrast reversal. The surface science of insulators, self-assembled monolayers and adsorbates on insulators is a fruitful field for the application of non-contact AFM: several articles in this issue are devoted to these subjects. Atomic imaging and manipulation have been pioneered using STM, but because AFM allows the measurement of forces, AFM has had a profound impact in this field as well. Three-dimensional force spectroscopy has allowed many important insights into surface science. In this issue a combined 3D tunneling and force microscopy is introduced. Non-contact AFM typically uses frequency modulation to measure force gradients and was initially used mainly in a vacuum. As can be seen in this issue, frequency modulation is now also used in ambient conditions, allowing better spatial and force resolution. We thank all of the contributors for their time and efforts in making this special issue possible. We are also very grateful to the staff of IOP Publishing for handling the administrative aspects and for steering the refereeing process. Non-contact AFM contents Relation between the chemical force and the tunnelling current in atomic point contacts: a simple model Pavel Jelínek, Martin Ondrácek and Fernando Flores Theoretical simulation of

  4. Impedance Spectroscopic Investigation of Proton Conductivity in Nafion Using Transient Electrochemical Atomic Force Microscopy (AFM)

    PubMed Central

    Hink, Steffen; Wagner, Norbert; Bessler, Wolfgang G.; Roduner, Emil

    2012-01-01

    Spatially resolved impedance spectroscopy of a Nafion polyelectrolyte membrane is performed employing a conductive and Pt-coated tip of an atomic force microscope as a point-like contact and electrode. The experiment is conducted by perturbing the system by a rectangular voltage step and measuring the incurred current, followed by Fourier transformation and plotting the impedance against the frequency in a conventional Bode diagram. To test the potential and limitations of this novel method, we present a feasibility study using an identical hydrogen atmosphere at a well-defined relative humidity on both sides of the membrane. It is demonstrated that good quality impedance spectra are obtained in a frequency range of 0.2–1000 Hz. The extracted polarization curves exhibit a maximum current which cannot be explained by typical diffusion effects. Simulation based on equivalent circuits requires a Nernst element for restricted diffusion in the membrane which suggests that this effect is based on the potential dependence of the electrolyte resistance in the high overpotential region. PMID:24958175

  5. Comparison of the ability of quantitative parameters to differentiate surface texture of Atomic Force Microscope (AFM) images

    NASA Astrophysics Data System (ADS)

    Niedzielski, Bethany; Caragianis Broadbridge, Christine; DaPonte, John S.; Gherasimova, Maria

    2010-01-01

    The purpose of this study was to compare the ability of several texture analysis parameters to differentiate textured samples from a smooth control on images obtained with an Atomic Force Microscope (AFM). Surface roughness plays a major role in the realm of material science, especially in integrated electronic devices. As these devices become smaller and smaller, new materials with better electrical properties are needed. New materials with smoother surface morphology have been found to have superior electrical properties than their rougher counterparts. Therefore, in many cases surface texture is indicative of the electrical properties that material will have. Physical vapor deposition techniques such as Jet Vapor Deposition and Molecular Beam Epitaxy are being utilized to synthesize these materials as they have been found to create pure and uniform thin layers. For the current study, growth parameters were varied to produce a spectrum of textured samples. The focus of this study was the image processing techniques associated with quantifying surface texture. As a result of the limited sample size, there was no attempt to draw conclusions about specimen processing methods. The samples were imaged using an AFM in tapping mode. In the process of collecting images, it was discovered that roughness data was much better depicted in the microscope's "height" mode as opposed to "equal area" mode. The AFM quantified the surface texture of each image by returning RMS roughness and the first order histogram statistics of mean roughness, standard deviation, skewness, and kurtosis. Color images from the AFM were then processed on an off line computer running NIH ImageJ with an image texture plug in. This plug in produced another set of first order statistics computed from each images' histogram as well as second order statistics computed from each images' cooccurrence matrix. The second order statistics, which were originally proposed by Haralick, include contrast, angular

  6. A Model for Step Height, Edge Slope and Linewidth Measurements Using AFM

    NASA Astrophysics Data System (ADS)

    Zhao, Xuezeng; Vorburger, Theodore V.; Fu, Joseph; Song, John; Nguyen, Cattien V.

    2003-09-01

    Nano-scale linewidth measurements are performed in semiconductor manufacturing and in the data storage industry and will become increasingly important in micro-mechanical engineering. With the development of manufacturing technology in recent years, the sizes of linewidths are steadily shrinking and are in the range of hundreds of nanometers. As a result, it is difficult to achieve accurate measurement results for nanometer scale linewidth, primarily because of the interaction volume of electrons in materials for an SEM probe or the tip size of an AFM probe. However, another source of methods divergence is the mathematical model of the line itself. In order to reduce the methods divergences caused by different measurement methods and instruments for an accurate determination of nanometer scale linewidth parameters, a metrological model and algorithm are proposed for linewidth measurements with AFM. The line profile is divided into 5 parts with 19 sections and 20 key derived points. Each section is fitted by a least squares straight line, so that the profile can be represented by a set of straight lines and 6 special points, or by a 20×2 matrix of fitted points and a 6×2 matrix of starter points. According to the algorithm, WT and WTF, WM and WMF, WB and WBF represent the widths at the top, the middle and the bottom of the line profile before and after the least squares fitting, respectively. AL and AR represent the left and right sidewall angles, and H represents the step height of the line profile. Based on this algorithm, software has been developed using MATLAB for the calculation of width and height parameters of the line profile. A NIST nanometer scale linewidth artifact developed at NIST's Electronics and Electrical Engineering Laboratory (EEEL) was measured using a commercial AFM with nanotube tips. The measured linewidth profiles are analyzed using our model, algorithm and software. The model developed in this paper is straightforward to understand, and

  7. [Study of in-situ measurement system for porous alumina film based on AFM and reflectometric interference spectroscopy].

    PubMed

    Liu, Chao; Zhang, Dong-Xian; Zhang, Hai-Jun

    2008-07-01

    An in-situ measurement system for porous alumina (PA) film based on atomic force microscope (AFM) in liquid and reflectometric interference spectroscopy (RIFS) was developed. The present article briefly discusses the principle and structure of the system, and introduces its unique characteristic. The system consists of probe unit, XY scanner, Z-piezo feedback system, computer and software, fiber optic spectrometer, anodization control circuitry etc. When a white light beam illuminates the surface of the film, the reflective light beams at the front and back side of the layer are coherent, and lead to periodical amplifications and extinction in the reflective spectrum with the information of the optical thickness of the film. A fiber optic spectrometer was applied in the system which input the refractive spectrum into the computer by which the optical thickness of the film was calculated. Meanwhile according to the surface topography of PA films by AFM in liquid, the effective refractive index was calculated based on Maxwell-Garnett theory and coherent potential approximation (CPA). So the thickness of PA films could be gained at last. To checkout the feasibility and stability of the system, the real-time scanning and thickness measurement experiments were done during anodization of Al sheets in oxalic acid aqueous solution. In the experiment, the authors used 25 mm diameter aluminum (Al) sheets with 99.999% purity and 0.4 mm thickness as the anode, and graphite rod as the cathode. The pretreatment-cleaned Al sheets were anodized in an aqueous solution of 0.5 mol x L(-1) oxalic acid at the constant temperature (20 +/- 0.2) degrees C with 20 mA x cm(-2) anodization electronic current density. Real-time AFM images of PA film were successfully obtained during anodization. The pore-ratios of Al sheet were 7.81% and 13.83% at oxidizing time 150 min and 180 min respectively. Correspondingly, the effective indexes were calculated to be 1.62 and 1.60, respectively

  8. Quantitative measurements of electromechanical response with a combined optical beam and interferometric atomic force microscope

    SciTech Connect

    Labuda, Aleksander; Proksch, Roger

    2015-06-22

    An ongoing challenge in atomic force microscope (AFM) experiments is the quantitative measurement of cantilever motion. The vast majority of AFMs use the optical beam deflection (OBD) method to infer the deflection of the cantilever. The OBD method is easy to implement, has impressive noise performance, and tends to be mechanically robust. However, it represents an indirect measurement of the cantilever displacement, since it is fundamentally an angular rather than a displacement measurement. Here, we demonstrate a metrological AFM that combines an OBD sensor with a laser Doppler vibrometer (LDV) to enable accurate measurements of the cantilever velocity and displacement. The OBD/LDV AFM allows a host of quantitative measurements to be performed, including in-situ measurements of cantilever oscillation modes in piezoresponse force microscopy. As an example application, we demonstrate how this instrument can be used for accurate quantification of piezoelectric sensitivity—a longstanding goal in the electromechanical community.

  9. Quantitative measurements of electromechanical response with a combined optical beam and interferometric atomic force microscope

    NASA Astrophysics Data System (ADS)

    Labuda, Aleksander; Proksch, Roger

    2015-06-01

    An ongoing challenge in atomic force microscope (AFM) experiments is the quantitative measurement of cantilever motion. The vast majority of AFMs use the optical beam deflection (OBD) method to infer the deflection of the cantilever. The OBD method is easy to implement, has impressive noise performance, and tends to be mechanically robust. However, it represents an indirect measurement of the cantilever displacement, since it is fundamentally an angular rather than a displacement measurement. Here, we demonstrate a metrological AFM that combines an OBD sensor with a laser Doppler vibrometer (LDV) to enable accurate measurements of the cantilever velocity and displacement. The OBD/LDV AFM allows a host of quantitative measurements to be performed, including in-situ measurements of cantilever oscillation modes in piezoresponse force microscopy. As an example application, we demonstrate how this instrument can be used for accurate quantification of piezoelectric sensitivity—a longstanding goal in the electromechanical community.

  10. Recording the dynamic endocytosis of single gold nanoparticles by AFM-based force tracing

    NASA Astrophysics Data System (ADS)

    Ding, Bohua; Tian, Yongmei; Pan, Yangang; Shan, Yuping; Cai, Mingjun; Xu, Haijiao; Sun, Yingchun; Wang, Hongda

    2015-04-01

    We utilized force tracing to directly record the endocytosis of single gold nanoparticles (Au NPs) with different sizes, revealing the size-dependent endocytosis dynamics and the crucial role of membrane cholesterol. The force, duration and velocity of Au NP invagination are accurately determined at the single-particle and microsecond level unprecedentedly.We utilized force tracing to directly record the endocytosis of single gold nanoparticles (Au NPs) with different sizes, revealing the size-dependent endocytosis dynamics and the crucial role of membrane cholesterol. The force, duration and velocity of Au NP invagination are accurately determined at the single-particle and microsecond level unprecedentedly. Electronic supplementary information (ESI) available: Details of the experimental procedures and the results of the control experiments. See DOI: 10.1039/c5nr01020a

  11. Uncertainty in NIST Force Measurements.

    PubMed

    Bartel, Tom

    2005-01-01

    This paper focuses upon the uncertainty of force calibration measurements at the National Institute of Standards and Technology (NIST). The uncertainty of the realization of force for the national deadweight force standards at NIST is discussed, as well as the uncertainties associated with NIST's voltage-ratio measuring instruments and with the characteristics of transducers being calibrated. The combined uncertainty is related to the uncertainty of dissemination for force transfer standards sent to NIST for calibration.

  12. Measuring the biomechanical properties of the actin in MCF-7 breast cancer cell with a combined system of AFM and SIM

    NASA Astrophysics Data System (ADS)

    You, Minghai; Chen, Jianling; Wang, Yuhua; Jiang, Ningcheng; Xie, Shusen; Yang, Hongqin

    2016-10-01

    Biomechanics of cell plays an important role in the behavior and development of diseases, which has a profound influence on the health, structural integrity, and function of cells. In this study, we proposed a method to assess the biomechanical properties in single breast cancer cell line MCF-7 by combining structured illumination microscopy (SIM) with atomic force microscopy (AFM). High resolution optical image of actin in MCF-7 cell and its elastography were obtained. The result shows that the quantitative resolution was improved by SIM, with 490 nm of conventional fluorescence image and 285 nm of reconstructed SIM image, which could give a precise location for AFM measurement. The elasticity of actin is about in the range of 10 1000 kPa. The proposed methods will be helpful in the understanding and clinical diagnosis of diseases at single cell level.

  13. Single Cell Wall Nonlinear Mechanics Revealed by a Multiscale Analysis of AFM Force-Indentation Curves.

    PubMed

    Digiuni, Simona; Berne-Dedieu, Annik; Martinez-Torres, Cristina; Szecsi, Judit; Bendahmane, Mohammed; Arneodo, Alain; Argoul, Françoise

    2015-05-05

    Individual plant cells are rather complex mechanical objects. Despite the fact that their wall mechanical strength may be weakened by comparison with their original tissue template, they nevertheless retain some generic properties of the mother tissue, namely the viscoelasticity and the shape of their walls, which are driven by their internal hydrostatic turgor pressure. This viscoelastic behavior, which affects the power-law response of these cells when indented by an atomic force cantilever with a pyramidal tip, is also very sensitive to the culture media. To our knowledge, we develop here an original analyzing method, based on a multiscale decomposition of force-indentation curves, that reveals and quantifies for the first time the nonlinearity of the mechanical response of living single plant cells upon mechanical deformation. Further comparing the nonlinear strain responses of these isolated cells in three different media, we reveal an alteration of their linear bending elastic regime in both hyper- and hypotonic conditions.

  14. High-resolution noncontact AFM and Kelvin probe force microscopy investigations of self-assembled photovoltaic donor–acceptor dyads

    PubMed Central

    Schwartz, Pierre-Olivier; Biniek, Laure; Brinkmann, Martin; Leclerc, Nicolas; Zaborova, Elena

    2016-01-01

    Summary Self-assembled donor–acceptor dyads are used as model nanostructured heterojunctions for local investigations by noncontact atomic force microscopy (nc-AFM) and Kelvin probe force microscopy (KPFM). With the aim to probe the photo-induced charge carrier generation, thin films deposited on transparent indium tin oxide substrates are investigated in dark conditions and upon illumination. The topographic and contact potential difference (CPD) images taken under dark conditions are analysed in view of the results of complementary transmission electron microscopy (TEM) experiments. After in situ annealing, it is shown that the dyads with longer donor blocks essentially lead to standing acceptor–donor lamellae, where the acceptor and donor groups are π-stacked in an edge-on configuration. The existence of strong CPD and surface photo-voltage (SPV) contrasts shows that structural variations occur within the bulk of the edge-on stacks. SPV images with a very high lateral resolution are achieved, which allows for the resolution of local photo-charging contrasts at the scale of single edge-on lamella. This work paves the way for local investigations of the optoelectronic properties of donor–acceptor supramolecular architectures down to the elementary building block level. PMID:27335768

  15. High-resolution noncontact AFM and Kelvin probe force microscopy investigations of self-assembled photovoltaic donor-acceptor dyads.

    PubMed

    Grévin, Benjamin; Schwartz, Pierre-Olivier; Biniek, Laure; Brinkmann, Martin; Leclerc, Nicolas; Zaborova, Elena; Méry, Stéphane

    2016-01-01

    Self-assembled donor-acceptor dyads are used as model nanostructured heterojunctions for local investigations by noncontact atomic force microscopy (nc-AFM) and Kelvin probe force microscopy (KPFM). With the aim to probe the photo-induced charge carrier generation, thin films deposited on transparent indium tin oxide substrates are investigated in dark conditions and upon illumination. The topographic and contact potential difference (CPD) images taken under dark conditions are analysed in view of the results of complementary transmission electron microscopy (TEM) experiments. After in situ annealing, it is shown that the dyads with longer donor blocks essentially lead to standing acceptor-donor lamellae, where the acceptor and donor groups are π-stacked in an edge-on configuration. The existence of strong CPD and surface photo-voltage (SPV) contrasts shows that structural variations occur within the bulk of the edge-on stacks. SPV images with a very high lateral resolution are achieved, which allows for the resolution of local photo-charging contrasts at the scale of single edge-on lamella. This work paves the way for local investigations of the optoelectronic properties of donor-acceptor supramolecular architectures down to the elementary building block level.

  16. AFM in peak force mode applied to worn siloxane-hydrogel contact lenses.

    PubMed

    Abadías, Clara; Serés, Carme; Torrent-Burgués, Juan

    2015-04-01

    The objective of this work is to apply Atomic Force Microscopy in Peak Force mode to obtain topographic characteristics (mean roughness, root-mean-square roughness, skewness and kurtosis) and mechanical characteristics (adhesion, elastic modulus) of Siloxane-Hydrogel Soft Contact Lenses (CLs) of two different materials, Lotrafilcon B of Air Optix (AO) and Asmofilcon A of PremiO (P), after use (worn CLs). Thus, the results obtained with both materials will be compared, as well as the changes produced by the wear at a nanoscopic level. The results show significant changes in the topographic and mechanical characteristics of the CLs, at a nanoscopic level, due to wear. The AO CL show values of the topographic parameters lower than those of the P CL after wear, which correlates with a better comfort qualification given to the former by the wearers. A significant correlation has also been obtained between the adhesion values found after the use of the CLs with tear quality tests, both break-up-time and Schirmer.

  17. Atomic Force Microscopy Protocol for Measurement of Membrane Plasticity and Extracellular Interactions in Single Neurons in Epilepsy

    PubMed Central

    Wu, Xin; Muthuchamy, Mariappan; Reddy, Doodipala Samba

    2016-01-01

    Physiological interactions between extracellular matrix (ECM) proteins and membrane integrin receptors play a crucial role in neuroplasticity in the hippocampus, a key region involved in epilepsy. The atomic force microscopy (AFM) is a cutting-edge technique to study structural and functional measurements at nanometer resolution between the AFM probe and cell surface under liquid. AFM has been incrementally employed in living cells including the nervous system. AFM is a unique technique that directly measures functional information at a nanoscale resolution. In addition to its ability to acquire detailed 3D imaging, the AFM probe permits quantitative measurements on the structure and function of the intracellular components such as cytoskeleton, adhesion force and binding probability between membrane receptors and ligands coated in the AFM probe, as well as the cell stiffness. Here we describe an optimized AFM protocol and its application for analysis of membrane plasticity and mechanical dynamics of individual hippocampus neurons in mice with chronic epilepsy. The unbinding force and binding probability between ECM, fibronectin-coated AFM probe and membrane integrin were strikingly lower in dentate gyrus granule cells in epilepsy. Cell elasticity, which represents changes in cytoskeletal reorganization, was significantly increased in epilepsy. The fibronectin-integrin binding probability was prevented by anti-α5β1 integrin. Thus, AFM is a unique nanotechnique that allows progressive functional changes in neuronal membrane plasticity and mechanotransduction in epilepsy and related brain disorders. PMID:27199735

  18. Development of a hybrid atomic force microscopic measurement system combined with white light scanning interferometry.

    PubMed

    Guo, Tong; Wang, Siming; Dorantes-Gonzalez, Dante J; Chen, Jinping; Fu, Xing; Hu, Xiaotang

    2012-01-01

    A hybrid atomic force microscopic (AFM) measurement system combined with white light scanning interferometry for micro/nanometer dimensional measurement is developed. The system is based on a high precision large-range positioning platform with nanometer accuracy on which a white light scanning interferometric module and an AFM head are built. A compact AFM head is developed using a self-sensing tuning fork probe. The head need no external optical sensors to detect the deflection of the cantilever, which saves room on the head, and it can be directly fixed under an optical microscopic interferometric system. To enhance the system's dynamic response, the frequency modulation (FM) mode is adopted for the AFM head. The measuring data can be traceable through three laser interferometers in the system. The lateral scanning range can reach 25 mm × 25 mm by using a large-range positioning platform. A hybrid method combining AFM and white light scanning interferometry is proposed to improve the AFM measurement efficiency. In this method, the sample is measured firstly by white light scanning interferometry to get an overall coarse morphology, and then, further measured with higher resolution by AFM. Several measuring experiments on standard samples demonstrate the system's good measurement performance and feasibility of the hybrid measurement method.

  19. Mechanism of amyloid β-protein dimerization determined using single-molecule AFM force spectroscopy

    NASA Astrophysics Data System (ADS)

    Lv, Zhengjian; Roychaudhuri, Robin; Condron, Margaret M.; Teplow, David B.; Lyubchenko, Yuri L.

    2013-10-01

    Aβ42 and Aβ40 are the two primary alloforms of human amyloid β-protein (Aβ). The two additional C-terminal residues of Aβ42 result in elevated neurotoxicity compared with Aβ40, but the molecular mechanism underlying this effect remains unclear. Here, we used single-molecule force microscopy to characterize interpeptide interactions for Aβ42 and Aβ40 and corresponding mutants. We discovered a dramatic difference in the interaction patterns of Aβ42 and Aβ40 monomers within dimers. Although the sequence difference between the two peptides is at the C-termini, the N-terminal segment plays a key role in the peptide interaction in the dimers. This is an unexpected finding as N-terminal was considered as disordered segment with no effect on the Aβ peptide aggregation. These novel properties of Aβ proteins suggests that the stabilization of N-terminal interactions is a switch in redirecting of amyloids form the neurotoxic aggregation pathway, opening a novel avenue for the disease preventions and treatments.

  20. Robust high-resolution imaging and quantitative force measurement with tuned-oscillator atomic force microscopy.

    PubMed

    Dagdeviren, Omur E; Götzen, Jan; Hölscher, Hendrik; Altman, Eric I; Schwarz, Udo D

    2016-02-12

    Atomic force microscopy (AFM) and spectroscopy are based on locally detecting the interactions between a surface and a sharp probe tip. For highest resolution imaging, noncontact modes that avoid tip-sample contact are used; control of the tip's vertical position is accomplished by oscillating the tip and detecting perturbations induced by its interaction with the surface potential. Due to this potential's nonlinear nature, however, achieving reliable control of the tip-sample distance is challenging, so much so that despite its power vacuum-based noncontact AFM has remained a niche technique. Here we introduce a new pathway to distance control that prevents instabilities by externally tuning the oscillator's response characteristics. A major advantage of this operational scheme is that it delivers robust position control in both the attractive and repulsive regimes with only one feedback loop, thereby providing an easy-to-implement route to atomic resolution imaging and quantitative tip-sample interaction force measurement.

  1. AFM-IR: Technology and Applications in Nanoscale Infrared Spectroscopy and Chemical Imaging.

    PubMed

    Dazzi, Alexandre; Prater, Craig B

    2016-12-13

    Atomic force microscopy-based infrared spectroscopy (AFM-IR) is a rapidly emerging technique that provides chemical analysis and compositional mapping with spatial resolution far below conventional optical diffraction limits. AFM-IR works by using the tip of an AFM probe to locally detect thermal expansion in a sample resulting from absorption of infrared radiation. AFM-IR thus can provide the spatial resolution of AFM in combination with the chemical analysis and compositional imaging capabilities of infrared spectroscopy. This article briefly reviews the development and underlying technology of AFM-IR, including recent advances, and then surveys a wide range of applications and investigations using AFM-IR. AFM-IR applications that will be discussed include those in polymers, life sciences, photonics, solar cells, semiconductors, pharmaceuticals, and cultural heritage. In the Supporting Information , the authors provide a theoretical section that reviews the physics underlying the AFM-IR measurement and detection mechanisms.

  2. Uncertainty quantification in nanomechanical measurements using the atomic force microscope

    NASA Astrophysics Data System (ADS)

    Wagner, Ryan; Moon, Robert; Pratt, Jon; Shaw, Gordon; Raman, Arvind

    2011-11-01

    Quantifying uncertainty in measured properties of nanomaterials is a prerequisite for the manufacture of reliable nanoengineered materials and products. Yet, rigorous uncertainty quantification (UQ) is rarely applied for material property measurements with the atomic force microscope (AFM), a widely used instrument that can measure properties at nanometer scale resolution of both inorganic and biological surfaces and nanomaterials. We present a framework to ascribe uncertainty to local nanomechanical properties of any nanoparticle or surface measured with the AFM by taking into account the main uncertainty sources inherent in such measurements. We demonstrate the framework by quantifying uncertainty in AFM-based measurements of the transverse elastic modulus of cellulose nanocrystals (CNCs), an abundant, plant-derived nanomaterial whose mechanical properties are comparable to Kevlar fibers. For a single, isolated CNC the transverse elastic modulus was found to have a mean of 8.1 GPa and a 95% confidence interval of 2.7-20 GPa. A key result is that multiple replicates of force-distance curves do not sample the important sources of uncertainty, which are systematic in nature. The dominant source of uncertainty is the nondimensional photodiode sensitivity calibration rather than the cantilever stiffness or Z-piezo calibrations. The results underscore the great need for, and open a path towards, quantifying and minimizing uncertainty in AFM-based material property measurements of nanoparticles, nanostructured surfaces, thin films, polymers and biomaterials. This work is a partial contribution of the USDA Forest Service and NIST, agencies of the US government, and is not subject to copyright.

  3. Measurement of solution viscosity by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Ahmed, Nabil; Nino, Diego F.; Moy, Vincent T.

    2001-06-01

    We report on studies aimed at employing the atomic force microscope (AFM) to measure the viscosity of aqueous solutions. At ambient temperature, the AFM cantilever undergoes thermal fluctuations that are highly sensitive to the local environment. Here, we present measurements of the cantilever's resonant frequency in aqueous solutions of glycerol, sucrose, ethanol, sodium chloride, polyethylene glycol, and bovine plasma albumin. The measurements revealed that variations in the resonant frequency of the cantilever in the different solutions are largely dependent on the viscosity of the medium. An application of this technique is to monitor the progression of a chemical reaction where a change in viscosity is expected to occur. An example is demonstrated through monitoring of the hydrolysis of double stranded deoxyribonucleic acid by DNase I.

  4. Atomic force microscopy(AFM) of Ice Vapor-Deposited on Au(111)at 100K

    NASA Astrophysics Data System (ADS)

    Donev, Jason; Fain, Sam; Joyce, Steve

    2001-05-01

    Multilayer films of water ice were vapor-deposited deposited in-situ in ultra-high vacuum from an effusive doser at an angle of 67 degrees from the surface normal of Au(111)on mica. These films were profiled by a probe tip attached to a quartz crystal (Omicron needle sensor) which provides nanometer resolution of surface features. Films deposited below 100K appear relatively flat, adopting the surface texture of the Au(111) substrate. Three-dimensional clusters typically 30 nm high form after annealing these films up to 130K. The lateral dimensions of the clusters depend on the initial coverage. These changes are produced by surface diffusion producing a non-wetting film. The rearrangement happened even if the annealing was done without imaging. Previous thermal desorption measurements by Kay and coworkers have inferred amorphous ice clusters surrounded by bare substrate for films deposited on Au(111) at low-temperatures. Supported by Department of Energy's Office of Biological and Environmental Research, a U. W. Nanotechnology Fellowship Award to J.M.K.D., and NSF KDI 99-80125.

  5. Jaw bite force measurement device.

    PubMed

    Flanagan, Dennis; Ilies, Horea; O'Brien, Brendan; McManus, Anne; Larrow, Beau

    2012-08-01

    We describe a cost-effective device that uses an off-the-shelf force transducer to measure patient bite force as a diagnostic aid in determining dental implant size, number of implants, and prosthetic design for restoring partial edentulism. The main advantages of the device are its accuracy, simplicity, modularity, ease of manufacturing, and low cost.

  6. 3D simulation of AFM non-uniform piezoelectric micro-cantilever with various geometries subjected to the tip-sample forces

    NASA Astrophysics Data System (ADS)

    Korayem, Alireza Habibnejad; Abdi, Moein

    2017-03-01

    Atomic force microscope (AFM) is a powerful instrument for investigation of surface topography at different workspaces. It is important to understand the dynamic behavior of AFM to improve its performance. 3D numerical method is suitable in order to simulate experimental conditions. This paper has investigated modeling and dynamic simulation of rectangular, Dagger and V-shaped geometries of AFM piezoelectric micro-cantilever (MC) with two electrode layers in the air environment. For a better understanding of the system dynamic, multi-layer MC dynamic equation has been derived. Euler-Bernoulli beam theory has been used for modeling the AFM cantilever. Hamilton's principle has been used for the MC modeling and the finite element method (FEM) has been applied for its discretization. In 3D, with respect to the tip-sample forces piezoelectric MC has been simulated via the COMSOL software. The frequency and time responses have been also investigated. The topographies have been performed on different surfaces with various roughness's types in the tapping and non-contact mode. The results of these two methods have been compared with experimental results. Moreover, the effects of MC geometrical parameters on surfaces topography and frequency responses have been studied and optimal dimensions of topographies have been obtained for each of the beam geometries. Simulations of various tip geometries have been performed in order to examine the effects of tip dimensions on the frequency and time responses. Furthermore, the effect of tip displacement on the frequency response has been investigated for different MC lengths.

  7. Cooling Force Measurements at CELSIUS

    SciTech Connect

    Ga ring lnander, B.; Lofnes, T.; Ziemann, V.; Fedotov, A. V.; Litvinenko, V. N.; Sidorin, A. O.; Smirnov, A. V.

    2006-03-20

    The design of future high energy coolers relies heavily on extending the results of cooling force measurements into new regimes by using simulation codes. In order to carefully benchmark these codes we have accurately measured the longitudinal friction force in CELSIUS by recording the phase shift between the beam and the RF voltage while varying the RF frequency. Moreover, parameter dependencies on the electron current, solenoid magnetic field and magnetic field alignment were carried out.

  8. COOLING FORCE MEASUREMENTS IN CELSIUS.

    SciTech Connect

    GALNANDER, B.; FEDOTOV, A.V.; LITVINENKO, V.N.; ET AL.

    2005-09-18

    The design of future high energy coolers relies heavily on extending the results of cooling force measurements into new regimes by using simulation codes. In order to carefully benchmark these codes we have accurately measured the longitudinal friction force in CELSIUS by recording the phase shift between the beam and the RF voltage while varying the RF frequency. Moreover, parameter dependencies on the electron current, solenoid magnetic field and magnetic field alignment were carried out.

  9. Measuring the Mechanical Properties of Living Cells Using Atomic Force Microscopy

    PubMed Central

    Thomas, Gawain; Burnham, Nancy A.; Camesano, Terri Anne; Wen, Qi

    2013-01-01

    Mechanical properties of cells and extracellular matrix (ECM) play important roles in many biological processes including stem cell differentiation, tumor formation, and wound healing. Changes in stiffness of cells and ECM are often signs of changes in cell physiology or diseases in tissues. Hence, cell stiffness is an index to evaluate the status of cell cultures. Among the multitude of methods applied to measure the stiffness of cells and tissues, micro-indentation using an Atomic Force Microscope (AFM) provides a way to reliably measure the stiffness of living cells. This method has been widely applied to characterize the micro-scale stiffness for a variety of materials ranging from metal surfaces to soft biological tissues and cells. The basic principle of this method is to indent a cell with an AFM tip of selected geometry and measure the applied force from the bending of the AFM cantilever. Fitting the force-indentation curve to the Hertz model for the corresponding tip geometry can give quantitative measurements of material stiffness. This paper demonstrates the procedure to characterize the stiffness of living cells using AFM. Key steps including the process of AFM calibration, force-curve acquisition, and data analysis using a MATLAB routine are demonstrated. Limitations of this method are also discussed. PMID:23851674

  10. Nano Mechanical Machining Using AFM Probe

    NASA Astrophysics Data System (ADS)

    Mostofa, Md. Golam

    and burr formations through intermittent cutting. Combining the AFM probe based machining with vibration-assisted machining enhanced nano mechanical machining processes by improving the accuracy, productivity and surface finishes. In this study, several scratching tests are performed with a single crystal diamond AFM probe to investigate the cutting characteristics and model the ploughing cutting forces. Calibration of the probe for lateral force measurements, which is essential, is also extended through the force balance method. Furthermore, vibration-assisted machining system is developed and applied to fabricate different materials to overcome some of the limitations of the AFM probe based single point nano mechanical machining. The novelty of this study includes the application of vibration-assisted AFM probe based nano scale machining to fabricate micro/nano scale features, calibration of an AFM by considering different factors, and the investigation of the nano scale material removal process from a different perspective.

  11. Direct measurement of electrostatic fields using single Teflon nanoparticle attached to AFM tip

    PubMed Central

    2013-01-01

    Abstract A single 210-nm Teflon nanoparticle (sTNP) was attached to the vertex of a silicon nitride (Si3N4) atomic force microscope tip and charged via contact electrification. The charged sTNP can then be considered a point charge and used to measure the electrostatic field adjacent to a parallel plate condenser using 30-nm gold/20-nm titanium as electrodes. This technique can provide a measurement resolution of 250/100 nm along the X- and Z-axes, and the minimum electrostatic force can be measured within 50 pN. PACS 07.79.Lh, 81.16.-c, 84.37. + q PMID:24314111

  12. Application of Electron Backscattered Diffraction (EBSD) and Atomic Force Microscopy (AFM) to Determine Texture, Microtexture, and Grain Boundary Energies in Ceramics

    SciTech Connect

    Glass, S.J.; Rohrer, G.S.; Saylor, D.M.; Vedula, V.R.

    1999-05-19

    Crystallographic orientations in alumina (Al203) and magnesium aluminate spinel (MgAl204) were obtained using electron backscattered diffraction (EBSD) patterns. The texture and mesotexture (grain boundary misorientations) were random and no special boundaries were observed. The relative grain boundary energies were determined by thermal groove geometries using atomic force microscopy (AFM) to identify relationships between the grain boundary energies and misorientations.

  13. Comparison of the bias voltage effect and the force effect during the nanoscale AFM electric lithography on the copper thin film surface.

    PubMed

    Yang, Ye; Lin, Jun

    2016-09-01

    As one of the tip-based nanoscale machining methods, AFM-based nanolithography has been proved to be capable of fabricating nanostructures and devices on a wide range of materials by means of mechanical force, bias voltage, chemical reaction, etc. In this paper, we have compared the influences of the bias voltage effect and the force effect during the nanoscale AFM electric lithography on the metallic copper film surface respectively through the bias voltage dominating scheme and the contact force dominating scheme. The geometric sizes of the line structures and the area patterns fabricated under the two schemes with different parameter settings were compared to obtain the machining characteristics and mechanisms of the two distinct effects separately. The ratios of debris amount to the total material removal amount under the two schemes were quantitatively evaluated. Furthermore, both the arbitrary line structure with high aspect ratio and the area pattern with small surface roughness were fabricated under the appropriate scheme and parameter settings. This study is of great help to effectively achieve the desired nanoscale patterns by AFM electric lithography for their promising applications in the fabrication of various MEMS or NEMS devices. SCANNING 38:412-420, 2016. © 2015 Wiley Periodicals, Inc.

  14. Analysis the effect of different geometries of AFM's cantilever on the dynamic behavior and the critical forces of three-dimensional manipulation.

    PubMed

    Korayem, Moharam Habibnejad; Saraie, Maniya B; Saraee, Mahdieh B

    2017-01-13

    An important challenge when using an atomic force microscope (AFM) is to be able to control the force exerted by the AFM for performing various tasks. Nevertheless, the exerted force is proportional to the deflection of the AFM cantilever, which itself is affected by a cantilever's stiffness coefficient. Many papers have been published so far on the methods of obtaining the stiffness coefficients of AFM cantilevers in 2D; however, a comprehensive model is yet to be presented on 3D cantilever motion. The discrepancies between the equations of the 2D and 3D analysis are due to the number and direction of forces and moments that are applied to a cantilever. Moreover, in the 3D analysis, contrary to the 2D analysis, due to the interaction between the forces and moments applied on a cantilever, its stiffness values cannot be separately expressed for each direction; and instead, a stiffness matrix should be used to correctly derive the relevant equations. In this paper, 3D stiffness coefficient matrices have been obtained for three common cantilever geometries including the rectangular, V-shape and dagger-shape cantilevers. The obtained equations are validated by two methods. In the first approach, the Finite Element Method is combined with the cantilever deflection values computed by using the obtained stiffness matrices. In the second approach, by reducing the problem's parameters, the forces applied on a cantilever along different directions are compared with each other in 2D and 3D cases. Then the 3D manipulation of a stiff nanoparticle is modeled and simulated by using the stiffness matrices obtained for the three cantilever geometries. The obtained results indicate that during the manipulation process, the dagger-shaped and rectangular cantilevers exert the maximum and minimum amounts of forces on the stiff nanoparticle, respectively. Also, by examining the effects of different probe tip geometries, it is realized that a probe tip of cylindrical geometry exerts the

  15. Two-Dimensional Measurement of n+-p Asymmetrical Junctions in Multicrystalline Silicon Solar Cells Using AFM-Based Electrical Techniques with Nanometer Resolution: Preprint

    SciTech Connect

    Jiang, C. S.; Moutinho, H. R.; Li, J. V.; Al-Jassim, M. M.; Heath, J. T.

    2011-07-01

    Lateral inhomogeneities of modern solar cells demand direct electrical imaging with nanometer resolution. We show that atomic force microscopy (AFM)-based electrical techniques provide unique junction characterizations, giving a two-dimensional determination of junction locations. Two AFM-based techniques, scanning capacitance microscopy/spectroscopy (SCM/SCS) and scanning Kelvin probe force microscopy (SKPFM), were significantly improved and applied to the junction characterizations of multicrystalline silicon (mc-Si) cells. The SCS spectra were taken pixel by pixel by precisely controlling the tip positions in the junction area. The spectra reveal distinctive features that depend closely on the position relative to the electrical junction, which allows us to indentify the electrical junction location. In addition, SKPFM directly probes the built-in potential over the junction area modified by the surface band bending, which allows us to deduce the metallurgical junction location by identifying a peak of the electric field. Our results demonstrate resolutions of 10-40 nm, depending on the techniques (SCS or SKPFM). These direct electrical measurements with nanometer resolution and intrinsic two-dimensional capability are well suited for investigating the junction distribution of solar cells with lateral inhomogeneities.

  16. Analyzing the vibrational response of an AFM cantilever in liquid with the consideration of tip mass by comparing the hydrodynamic and contact repulsive force models in higher modes

    NASA Astrophysics Data System (ADS)

    Korayem, Moharam Habibnejad; Nahavandi, Amir

    2017-04-01

    This paper investigates the vibration of a tapping-mode Atomic Force Microscope (AFM) cantilever covered with two whole piezoelectric layers in a liquid medium. The authors of this article have already modeled the vibration of a cantilever immersed in liquid over rough surfaces. Five new ideas have been considered for improving the results of the previous work. Mass and damping of a cantilever probe tip have been considered. Since the probe tip of an AFM cantilever has a mass, which can itself affect the natural frequency of vibration, the significance of this mass has been explored. Also, two hydrodynamic force models for analyzing the mass and damping added to a cantilever in liquid medium have been evaluated. In modeling the vibration of a cantilever in liquid, simplifications are made to the theoretical equations used in the modeling, which may make the obtained results different from those in the real case. So, two hydrodynamic force models are introduced and compared with each other. In addition to the already introduced DMT model, the JKR model has been proposed. The forces acting on a probe tip have attractive and repulsive effects. The attractive Van der Waals force can vary depending on the surface smoothness or roughness, and the repulsive contact force, which is independent of the type of surface roughness and usually varies with the hardness or softness of a surface. When the first mode is used in the vibration of an AFM cantilever, the changes of the existing physical parameters in the simulation do not usually produce a significant difference in the response. Thus, three cantilever vibration modes have been investigated. Finally, an analytical approach for obtaining the response of equations is presented which solves the resulting motion equation by the Laplace method and, thus, a time function is obtained for cantilever deflection is determined. Also, using the COMSOL software to model a cantilever in a liquid medium, the computed natural

  17. Role of silver ions in destabilization of intermolecular adhesion forces measured by atomic force microscopy in Staphylococcus epidermidis biofilms.

    PubMed

    Chaw, K C; Manimaran, M; Tay, Francis E H

    2005-12-01

    In this paper, we report on the potential use of atomic force microscopy (AFM) as a tool to measure the intermolecular forces in biofilm structures and to study the effect of silver ions on sessile Staphylococcus epidermidis cell viability and stability. We propose a strategy of destabilizing the biofilm matrix by reducing the intermolecular forces within the extracellular polymeric substances (EPSs) using a low concentration (50 ppb) of silver ions. Our AFM studies on the intermolecular forces within the EPSs of S. epidermidis RP62A and S.epidermidis 1457 biofilms suggest that the silver ions can destabilize the biofilm matrix by binding to electron donor groups of the biological molecules. This leads to reductions in the number of binding sites for hydrogen bonds and electrostatic and hydrophobic interactions and, hence, the destabilization of the biofilm structure.

  18. Contact sensing from force measurements

    NASA Technical Reports Server (NTRS)

    Bicchi, Antonio; Salisbury, J. K.; Brock, David L.

    1993-01-01

    This article addresses contact sensing (i.e., the problem of resolving the location of a contact, the force at the interface, and the moment about the contact normals). Called 'intrinsic' contact sensing for the use of internal force and torque measurements, this method allows for practical devices that provide simple, relevant contact information in practical robotic applications. Such sensors have been used in conjunction with robot hands to identify objects, determine surface friction, detect slip, augment grasp stability, measure object mass, probe surfaces, and control collision and for a variety of other useful tasks. This article describes the theoretical basis for their operation and provides a framework for future device design.

  19. Automatic HTS force measurement instrument

    DOEpatents

    Sanders, Scott T.; Niemann, Ralph C.

    1999-01-01

    A device for measuring the levitation force of a high temperature superconductor sample with respect to a reference magnet includes a receptacle for holding several high temperature superconductor samples each cooled to superconducting temperature. A rotatable carousel successively locates a selected one of the high temperature superconductor samples in registry with the reference magnet. Mechanism varies the distance between one of the high temperature superconductor samples and the reference magnet, and a sensor measures levitation force of the sample as a function of the distance between the reference magnet and the sample. A method is also disclosed.

  20. Automatic HTS force measurement instrument

    DOEpatents

    Sanders, S.T.; Niemann, R.C.

    1999-03-30

    A device is disclosed for measuring the levitation force of a high temperature superconductor sample with respect to a reference magnet includes a receptacle for holding several high temperature superconductor samples each cooled to superconducting temperature. A rotatable carousel successively locates a selected one of the high temperature superconductor samples in registry with the reference magnet. Mechanism varies the distance between one of the high temperature superconductor samples and the reference magnet, and a sensor measures levitation force of the sample as a function of the distance between the reference magnet and the sample. A method is also disclosed. 3 figs.

  1. Capillary and van der Waals interactions on CaF2 crystals from amplitude modulation AFM force reconstruction profiles under ambient conditions

    PubMed Central

    Calò, Annalisa; Robles, Oriol Vidal; Santos, Sergio

    2015-01-01

    Summary There has been much interest in the past two decades to produce experimental force profiles characteristic of the interaction between nanoscale objects or a nanoscale object and a plane. Arguably, the advent of the atomic force microscope AFM was instrumental in driving such efforts because, in principle, force profiles could be recovered directly. Nevertheless, it has taken years before techniques have developed enough as to recover the attractive part of the force with relatively low noise and without missing information on critical ranges, particularly under ambient conditions where capillary interactions are believed to dominate. Thus a systematic study of the different profiles that may arise in such situations is still lacking. Here we employ the surfaces of CaF2, on which nanoscale water films form, to report on the range and force profiles that might originate by dynamic capillary interactions occurring between an AFM tip and nanoscale water patches. Three types of force profiles were observed under ambient conditions. One in which the force decay resembles the well-known inverse-square law typical of van der Waals interactions during the first 0.5–1 nm of decay, a second one in which the force decays almost linearly, in relatively good agreement with capillary force predicted by the constant chemical potential approximation, and a third one in which the attractive force is almost constant, i.e., forms a plateau, up to 3–4 nm above the surface when the formation of a capillary neck dominates the tip–sample interaction. PMID:25977852

  2. Influence of Nanoscale Surface Roughness on Colloidal Force Measurements.

    PubMed

    Zou, Yi; Jayasuriya, Sunil; Manke, Charles W; Mao, Guangzhao

    2015-09-29

    Forces between colloidal particles determine the performances of many industrial processes and products. Colloidal force measurements conducted between a colloidal particle AFM probe and particles immobilized on a flat substrate are valuable in selecting appropriate surfactants for colloidal stabilization. One of the features of inorganic fillers and extenders is the prevalence of rough surfaces-even the polymer latex particles, often used as model colloidal systems including the current study, have rough surfaces albeit at a much smaller scale. Surface roughness is frequently cited as the reason for disparity between experimental observations and theoretical treatment but seldom verified by direct evidence. This work reports the effect of nanoscale surface roughness on colloidal force measurements carried out in the presence of surfactants. We applied a heating method to reduce the mean surface roughness of commercial latex particles from 30 to 1 nm. We conducted force measurements using the two types of particles at various salt and surfactant concentrations. The surfactants used were pentaethylene glycol monododecyl ether, Pluronic F108, and a styrene/acrylic copolymer, Joncryl 60. In the absence of the surfactant, nanometer surface roughness affects colloidal forces only in high salt conditions when the Debye length becomes smaller than the surface roughness. The adhesion is stronger between colloids with higher surface roughness and requires a higher surfactant concentration to be eliminated. The effect of surface roughness on colloidal forces was also investigated as a function of the adsorbed surfactant layer structure characterized by AFM indentation and dynamic light scattering. We found that when the layer thickness exceeds the surface roughness, the colloidal adhesion is less influenced by surfactant concentration variation. This study demonstrates that surface roughness at the nanoscale can influence colloidal forces significantly and should be taken

  3. Measuring Adhesion And Friction Forces

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1991-01-01

    Cavendish balance adapted to new purpose. Apparatus developed which measures forces of adhesion and friction between specimens of solid materials in vacuum at temperatures from ambient to 900 degrees C. Intended primarily for use in studying adhesion properties of ceramics and metals, including silicon carbide, aluminum oxide, and iron-base amorphous alloys.

  4. Viscoelastic properties of healthy human artery measured in saline solution by AFM based indentation technique

    SciTech Connect

    Lundkvist, A.; Lilleodden, E.; Sickhaus, W.; Kinney, J.; Pruitt, L.; Balooch, M.

    1998-02-09

    Using an Atomic Force Microscope with an attachment for indentation, we have measured local, in vitro mechanical properties of healthy femoral artery tissue held in saline solution. The elastic modulus (34. 3 kPa) and viscoelastic response ({tau}sub{epsilon} {equals} 16.9 s and {tau}sub{sigma} {equals} 29.3 s) of the unstretched,intimal vessel wall have been determined using Sneddon theory and a three element model(standard linear solid) for viscoelastic materials. The procedures necessary to employ the indenting attachment to detect elastic moduli in the kPa range in liquid are described.

  5. Viscoelastic Properties Measurement of Human Lymphocytes by Atomic Force Microscopy Based on Magnetic Beads Cell Isolation.

    PubMed

    Li, Mi; Liu, Lianqing; Xiao, Xiubin; Xi, Ning; Wang, Yuechao

    2016-03-28

    Cell mechanics has been proved to be an effective biomarker for indicating cellular states. The advent of atomic force microscopy (AFM) provides an exciting instrument for measuring the mechanical properties of single cells. However, current AFM single-cell mechanical measurements are commonly performed on cell lines cultured in vitro which are quite different from the primary cells in the human body. Investigating the mechanical properties of primary cells from clinical environments can help us to better understand cell behaviors. Here, by combining AFM with magnetic beads cell isolation, the viscoelastic properties of human primary B lymphocytes were quantitatively measured. B lymphocytes were isolated from the peripheral blood of healthy volunteers by density gradient centrifugation and CD19 magnetic beads cell isolation. The activity and specificity of the isolated cells were confirmed by fluorescence microscopy. AFM imaging revealed the surface topography and geometric parameters of B lymphocytes. The instantaneous modulus and relaxation time of living B lymphocytes were measured by AFM indenting technique, showing that the instantaneous modulus of human normal B lymphocytes was 2~3 kPa and the relaxation times were 0.03~0.06 s and 0.35~0.55 s. The differences in cellular visocoelastic properties between primary B lymphocytes and cell lines cultured in vitro were analyzed. The study proves the capability of AFM in quantifying the viscoelastic properties of individual specific primary cells from the blood sample of clinical patients, which will improve our understanding of the behaviors of cells in the human body.

  6. Analytical solutions of the first three frequency shifts of AFM non-uniform probe subjected to the Lennard-Jones force.

    PubMed

    Lin, Shueei-Muh; Liauh, Chihng-Tsung; Wang, Wen-Rong; Ho, Shing-Huei

    2006-04-01

    The role of higher cantilever modes is important to obtain some material contrast. The analysis of AFM subjected to a short-range force can improve greatly the studies of surface topography and interaction energies and interaction forces, especially for chemical and biological materials. When the tip-sample distance is in the order of inter-atomic spacing, the short-range tip-sample force is usually simulated by the Lennard-Jones model. In this study, the analytical method to determine the frequency shift of AFM subjected to the Lennard-Jones force is proposed. The closed-form solution of the partial differential equation with a nonlinear boundary condition is derived and then the corresponding frequency shifts of higher modes can be determined easily. Moreover, the conventional perturbation method is usually used to determine the frequency shift, but only for the first mode. This is because the original continuous beam system is transformed into a discrete lumped-masses model. Although the above disadvantages exist, the lumped-masses model is simple and intuitive. Using the principle of dynamic strain energy, the conventional perturbation method is revised successfully to determine the frequency shifts of higher modes. The assessment of the generalized perturbation method and the proposed method is made. Finally, the effects of several parameters on the first three frequency shifts are investigated.

  7. Nano-Wilhelmy investigation of dynamic wetting properties of AFM tips through tip-nanobubble interaction.

    PubMed

    Wang, Yuliang; Wang, Huimin; Bi, Shusheng; Guo, Bin

    2016-07-25

    The dynamic wetting properties of atomic force microscopy (AFM) tips are of much concern in many AFM-related measurement, fabrication, and manipulation applications. In this study, the wetting properties of silicon and silicon nitride AFM tips are investigated through dynamic contact angle measurement using a nano-Wilhelmy balance based method. This is done by capillary force measurement during extension and retraction motion of AFM tips relative to interfacial nanobubbles. The working principle of the proposed method and mathematic models for dynamic contact angle measurement are presented. Geometric models of AFM tips were constructed using scanning electronic microscopy (SEM) images taken from different view directions. The detailed process of tip-nanobubble interaction was investigated using force-distance curves of AFM on nanobubbles. Several parameters including nanobubble height, adhesion and capillary force between tip and nanobubbles are extracted. The variation of these parameters was studied over nanobubble surfaces. The dynamic contact angles of the AFM tips were calculated from the capillary force measurements. The proposed method provides direct measurement of dynamic contact angles for AFM tips and can also be taken as a general approach for nanoscale dynamic wetting property investigation.

  8. Nano-Wilhelmy investigation of dynamic wetting properties of AFM tips through tip-nanobubble interaction

    NASA Astrophysics Data System (ADS)

    Wang, Yuliang; Wang, Huimin; Bi, Shusheng; Guo, Bin

    2016-07-01

    The dynamic wetting properties of atomic force microscopy (AFM) tips are of much concern in many AFM-related measurement, fabrication, and manipulation applications. In this study, the wetting properties of silicon and silicon nitride AFM tips are investigated through dynamic contact angle measurement using a nano-Wilhelmy balance based method. This is done by capillary force measurement during extension and retraction motion of AFM tips relative to interfacial nanobubbles. The working principle of the proposed method and mathematic models for dynamic contact angle measurement are presented. Geometric models of AFM tips were constructed using scanning electronic microscopy (SEM) images taken from different view directions. The detailed process of tip-nanobubble interaction was investigated using force-distance curves of AFM on nanobubbles. Several parameters including nanobubble height, adhesion and capillary force between tip and nanobubbles are extracted. The variation of these parameters was studied over nanobubble surfaces. The dynamic contact angles of the AFM tips were calculated from the capillary force measurements. The proposed method provides direct measurement of dynamic contact angles for AFM tips and can also be taken as a general approach for nanoscale dynamic wetting property investigation.

  9. Nano-Wilhelmy investigation of dynamic wetting properties of AFM tips through tip-nanobubble interaction

    PubMed Central

    Wang, Yuliang; Wang, Huimin; Bi, Shusheng; Guo, Bin

    2016-01-01

    The dynamic wetting properties of atomic force microscopy (AFM) tips are of much concern in many AFM-related measurement, fabrication, and manipulation applications. In this study, the wetting properties of silicon and silicon nitride AFM tips are investigated through dynamic contact angle measurement using a nano-Wilhelmy balance based method. This is done by capillary force measurement during extension and retraction motion of AFM tips relative to interfacial nanobubbles. The working principle of the proposed method and mathematic models for dynamic contact angle measurement are presented. Geometric models of AFM tips were constructed using scanning electronic microscopy (SEM) images taken from different view directions. The detailed process of tip-nanobubble interaction was investigated using force-distance curves of AFM on nanobubbles. Several parameters including nanobubble height, adhesion and capillary force between tip and nanobubbles are extracted. The variation of these parameters was studied over nanobubble surfaces. The dynamic contact angles of the AFM tips were calculated from the capillary force measurements. The proposed method provides direct measurement of dynamic contact angles for AFM tips and can also be taken as a general approach for nanoscale dynamic wetting property investigation. PMID:27452115

  10. Charge injection in thin dielectric layers by atomic force microscopy: influence of geometry and material work function of the AFM tip on the injection process

    NASA Astrophysics Data System (ADS)

    Villeneuve-Faure, C.; Makasheva, K.; Boudou, L.; Teyssedre, G.

    2016-06-01

    Charge injection and retention in thin dielectric layers remain critical issues for the reliability of many electronic devices because of their association with a large number of failure mechanisms. To overcome this drawback, a deep understanding of the mechanisms leading to charge injection close to the injection area is needed. Even though the charge injection is extensively studied and reported in the literature to characterize the charge storage capability of dielectric materials, questions about charge injection mechanisms when using atomic force microscopy (AFM) remain open. In this paper, a thorough study of charge injection by using AFM in thin plasma-processed amorphous silicon oxynitride layers with properties close to that of thermal silica layers is presented. The study considers the impact of applied voltage polarity, work function of the AFM tip coating and tip curvature radius. A simple theoretical model was developed and used to analyze the obtained experimental results. The electric field distribution is computed as a function of tip geometry. The obtained experimental results highlight that after injection in the dielectric layer the charge lateral spreading is mainly controlled by the radial electric field component independently of the carrier polarity. The injected charge density is influenced by the nature of electrode metal coating (work function) and its geometry (tip curvature radius). The electron injection is mainly ruled by the Schottky injection barrier through the field electron emission mechanism enhanced by thermionic electron emission. The hole injection mechanism seems to differ from the electron one depending on the work function of the metal coating. Based on the performed analysis, it is suggested that for hole injection by AFM, pinning of the metal Fermi level with the metal-induced gap states in the studied silicon oxynitride layers starts playing a role in the injection mechanisms.

  11. Nanoscale structural and mechanical effects of beta-amyloid (1-42) on polymer cushioned membranes: a combined study by neutron reflectometry and AFM Force Spectroscopy.

    PubMed

    Dante, Silvia; Hauss, Thomas; Steitz, Roland; Canale, Claudio; Dencher, Norbert A

    2011-11-01

    The interaction of beta-amyloid peptides with lipid membranes is widely studied as trigger agents in Alzheimer's disease. Their mechanism of action at the molecular level is unknown and their interaction with the neural membrane is crucial to elucidate the onset of the disease. In this study we have investigated the interaction of water soluble forms of beta-amyloid Aβ(1-42) with lipid bilayers supported by polymer cushion. A reproducible protocol for the preparation of a supported phospholipid membrane with composition mimicking the neural membrane and in physiological condition (PBS buffer, pH=7.4) was refined by neutron reflectivity. The change in structure and local mechanical properties of the membrane in the presence of Aβ(1-42) was investigated by neutron reflectivity and Atomic Force Microscopy (AFM) Force Spectroscopy. Neutron reflectivity evidenced that Aβ(1-42) interacts strongly with the supported membrane, causing a change in the scattering length density profile of the lipid bilayer, and penetrates into the membrane. Concomitantly, the local mechanical properties of the bilayer are deeply modified by the interaction with the peptide as seen by AFM Force Spectroscopy. These results may be of great importance for the onset of the Alzheimer's disease, since a simultaneous change in the structural and mechanical properties of the lipid matrix could influence all membrane based signal cascades.

  12. Measurement of faradaic current during AFM local oxidation of magnetic metal thin films

    NASA Astrophysics Data System (ADS)

    Takemura, Yasushi; Shimada, Yasuyuki; Watanabe, Genta; Yamada, Tsutomu; Shirakashi, Jun-ichi

    2007-04-01

    Faradaic current during a local oxidation using an atomic force microscope was studied. The intensity of the measured faradaic current was increased with increasing bias voltage applied to a cantilever, resulting in fabrication of larger size of nano-oxide structures on Si substrates. On the other hand, an excess current (over current) that was considered not to contribute the oxidation reaction was observed noticeably in the local oxidation of NiFe thin films. It was found that the excess current could be suppressed by depositing insulating oxide layers on the surfaces. The surface oxide layers were also advantageous for stable existence of meniscus promoting the local oxidation because of their hydrophilic properties. This method of capped oxide layers is significant for stable performance of the local oxidation technique fabricating nanostructures and nano-devices.

  13. 2011 AFMS Medical Research Symposium Held in National Harbor, Maryland on August 2-4, 2011. Volume 3: Force Health Protection Track

    DTIC Science & Technology

    2011-08-01

    hearing loss indicating JP-8 only potentiates NIHL. A fourth 28-day study consisted of exposures at 102 dB for 15 min per hr for 6 hrs per day, 1000 mg...frequencies "f1" and "f2" p Sound energy generated by cochlea consists of different frequencies than the "primary tones" so they are "distortion products...Noite95d6 ..,_, :t~ i ;.~ I i·j .. .,... ·- ··~ 14 16 Proceedings of the 2011 AFMS Medical Research Symposium Volume 3 Force Health Protection 21

  14. A measurement of the hysteresis loop in force-spectroscopy curves using a tuning-fork atomic force microscope.

    PubMed

    Lange, Manfred; van Vörden, Dennis; Möller, Rolf

    2012-01-01

    Measurements of the frequency shift versus distance in noncontact atomic force microscopy (NC-AFM) allow measurements of the force gradient between the oscillating tip and a surface (force-spectroscopy measurements). When nonconservative forces act between the tip apex and the surface the oscillation amplitude is damped. The dissipation is caused by bistabilities in the potential energy surface of the tip-sample system, and the process can be understood as a hysteresis of forces between approach and retraction of the tip. In this paper, we present the direct measurement of the whole hysteresis loop in force-spectroscopy curves at 77 K on the PTCDA/Ag/Si(111) √3 × √3 surface by means of a tuning-fork-based NC-AFM with an oscillation amplitude smaller than the distance range of the hysteresis loop. The hysteresis effect is caused by the making and breaking of a bond between PTCDA molecules on the surface and a PTCDA molecule at the tip. The corresponding energy loss was determined to be 0.57 eV by evaluation of the force-distance curves upon approach and retraction. Furthermore, a second dissipation process was identified through the damping of the oscillation while the molecule on the tip is in contact with the surface. This dissipation process occurs mainly during the retraction of the tip. It reaches a maximum value of about 0.22 eV/cycle.

  15. Atomic force microscope adhesion measurements and atomistic molecular dynamics simulations at different humidities

    NASA Astrophysics Data System (ADS)

    Seppä, Jeremias; Reischl, Bernhard; Sairanen, Hannu; Korpelainen, Virpi; Husu, Hannu; Heinonen, Martti; Raiteri, Paolo; Rohl, Andrew L.; Nordlund, Kai; Lassila, Antti

    2017-03-01

    Due to their operation principle atomic force microscopes (AFMs) are sensitive to all factors affecting the detected force between the probe and the sample. Relative humidity is an important and often neglected—both in experiments and simulations—factor in the interaction force between AFM probe and sample in air. This paper describes the humidity control system designed and built for the interferometrically traceable metrology AFM (IT-MAFM) at VTT MIKES. The humidity control is based on circulating the air of the AFM enclosure via dryer and humidifier paths with adjustable flow and mixing ratio of dry and humid air. The design humidity range of the system is 20–60 %rh. Force–distance adhesion studies at humidity levels between 25 %rh and 53 %rh are presented and compared to an atomistic molecular dynamics (MD) simulation. The uncertainty level of the thermal noise method implementation used for force constant calibration of the AFM cantilevers is 10 %, being the dominant component of the interaction force measurement uncertainty. Comparing the simulation and the experiment, the primary uncertainties are related to the nominally 7 nm radius and shape of measurement probe apex, possible wear and contamination, and the atomistic simulation technique details. The interaction forces are of the same order of magnitude in simulation and measurement (5 nN). An elongation of a few nanometres of the water meniscus between probe tip and sample, before its rupture, is seen in simulation upon retraction of the tip in higher humidity. This behaviour is also supported by the presented experimental measurement data but the data is insufficient to conclusively verify the quantitative meniscus elongation.

  16. Slip-length measurement of confined air flow using dynamic atomic force microscopy.

    PubMed

    Maali, Abdelhamid; Bhushan, Bharat

    2008-08-01

    We present an experimental measurement of the slip length of air flow close to solid surfaces using an atomic force microscope (AFM) in dynamic mode. The air was confined between a glass surface and a spherical glass particle glued to an AFM cantilever. The Knudsen number was varied continuously over three decades by varying the distance between the two surfaces. Our results show that the effect of confining the air is purely dissipative. The data are described by an isothermal Maxwell slip-boundary condition, and the measured slip-length value was 118 nm .

  17. Quantitative force and dissipation measurements in liquids using piezo-excited atomic force microscopy: a unifying theory.

    PubMed

    Kiracofe, Daniel; Raman, Arvind

    2011-12-02

    The use of a piezoelectric element (acoustic excitation) to vibrate the base of microcantilevers is a popular method for dynamic atomic force microscopy. In air or vacuum, the base motion is so small (relative to tip motion) that it can be neglected. However, in liquid environments the base motion can be large and cannot be neglected. Yet it cannot be directly observed in most AFMs. Therefore, in liquids, quantitative force and energy dissipation spectroscopy with acoustic AFM relies on theoretical formulae and models to estimate the magnitude of the base motion. However, such formulae can be inaccurate due to several effects. For example, a significant component of the piezo excitation does not mechanically excite the cantilever but rather transmits acoustic waves through the surrounding liquid, which in turn indirectly excites the cantilever. Moreover, resonances of the piezo, chip and holder can obscure the true cantilever dynamics even in well-designed liquid cells. Although some groups have tried to overcome these limitations (either by theory modification or better design of piezos and liquid cells), it is generally accepted that acoustic excitation is unsuitable for quantitative force and dissipation spectroscopy in liquids. In this paper the authors present a careful study of the base motion and excitation forces and propose a method by which quantitative analysis is in fact possible, thus opening this popular method for quantitative force and dissipation spectroscopy using dynamic AFM in liquids. This method is validated by experiments in water on mica using a scanning laser Doppler vibrometer, which can measure the actual base motion. Finally, the method is demonstrated by using small-amplitude dynamic AFM to extract the force gradients and dissipation on solvation shells of octamethylcyclotetrasiloxane (OMCTS) molecules on mica.

  18. High-speed AFM of human chromosomes in liquid

    NASA Astrophysics Data System (ADS)

    Picco, L. M.; Dunton, P. G.; Ulcinas, A.; Engledew, D. J.; Hoshi, O.; Ushiki, T.; Miles, M. J.

    2008-09-01

    Further developments of the previously reported high-speed contact-mode AFM are described. The technique is applied to the imaging of human chromosomes at video rate both in air and in water. These are the largest structures to have been imaged with high-speed AFM and the first imaging in liquid to be reported. A possible mechanism that allows such high-speed contact-mode imaging without significant damage to the sample is discussed in the context of the velocity dependence of the measured lateral force on the AFM tip.

  19. Electrostatic patch potentials in Casimir force measurements

    NASA Astrophysics Data System (ADS)

    Garrett, Joseph; Somers, David; Munday, Jeremy

    2015-03-01

    Measurements of the Casimir force require the elimination of the electrostatic force between interacting surfaces. The force can be minimized by applying a potential to one of the two surfaces. However, electrostatic patch potentials remain and contribute an additional force which can obscure the Casimir force signal. We will discuss recent measurements of patch potentials made with Heterodyne Amplitude-Modulated Kelvin Probe Force Microscopy that suggest patches could be responsible for >1% of the signal in some Casimir force measurements, and thus make the distinction between different theoretical models of the Casimir force (e.g. a Drude-model or a plasma-model for the dielectric response) difficult to discern.

  20. A measurement of the hysteresis loop in force-spectroscopy curves using a tuning-fork atomic force microscope

    PubMed Central

    van Vörden, Dennis; Möller, Rolf

    2012-01-01

    Summary Measurements of the frequency shift versus distance in noncontact atomic force microscopy (NC-AFM) allow measurements of the force gradient between the oscillating tip and a surface (force-spectroscopy measurements). When nonconservative forces act between the tip apex and the surface the oscillation amplitude is damped. The dissipation is caused by bistabilities in the potential energy surface of the tip–sample system, and the process can be understood as a hysteresis of forces between approach and retraction of the tip. In this paper, we present the direct measurement of the whole hysteresis loop in force-spectroscopy curves at 77 K on the PTCDA/Ag/Si(111) √3 × √3 surface by means of a tuning-fork-based NC-AFM with an oscillation amplitude smaller than the distance range of the hysteresis loop. The hysteresis effect is caused by the making and breaking of a bond between PTCDA molecules on the surface and a PTCDA molecule at the tip. The corresponding energy loss was determined to be 0.57 eV by evaluation of the force–distance curves upon approach and retraction. Furthermore, a second dissipation process was identified through the damping of the oscillation while the molecule on the tip is in contact with the surface. This dissipation process occurs mainly during the retraction of the tip. It reaches a maximum value of about 0.22 eV/cycle. PMID:22496993

  1. Elasticity measurement of breast cancer cells by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Xu, Chaoxian; Wang, Yuhua; Jiang, Ningcheng; Yang, Hongqin; Lin, Juqiang; Xie, Shusen

    2014-09-01

    Mechanical properties of living cells play an important role in understanding various cells' function and state. Therefore cell biomechanics is expected to become a useful tool for cancer diagnosis. In this study, atomic force microscopy (AFM) using a square pyramid probe was performed to investigate cancerous (MCF-7) and benign (MCF-10A) human breast epithelial cells. The new QITM mode was used to acquire high-resolution topographic images and elasticity of living cells. Furthermore, individual force curves were recorded at maximum loads of 0.2, 0.5 and 1 nN, and the dependence of cell's elasticity with loading force was discussed. It was showed that the cancerous cells exhibited smaller elasticity modulus in comparison to non-cancerous counterparts. The elasticity modulus increased as the loading force increased from 0.2 nN to 1 nN. This observation indicates that loading force affects the cell's apparent elasticity and it is important to choose the appropriate force applied to cells in order to distinguish normal and cancer cells. The results reveal that the mechanical properties of living cells measured by atomic force microscopy may be a useful indicator of cell type and disease.

  2. Quantification of the interaction forces between metals and graphene by quantum chemical calculations and dynamic force measurements under ambient conditions.

    PubMed

    Lazar, Petr; Zhang, Shuai; Safářová, Klára; Li, Qiang; Froning, Jens Peter; Granatier, Jaroslav; Hobza, Pavel; Zbořil, Radek; Besenbacher, Flemming; Dong, Mingdong; Otyepka, Michal

    2013-02-26

    The two-dimensional material graphene has numerous potential applications in nano(opto)electronics, which inevitably involve metal graphene interfaces.Theoretical approaches have been employed to examine metal graphene interfaces, but experimental evidence is currently lacking. Here, we combine atomic force microscopy (AFM) based dynamic force measurements and density functional theory calculations to quantify the interaction between metal-coated AFM tips and graphene under ambient conditions. The results show that copper has the strongest affinity to graphene among the studied metals (Cu, Ag, Au, Pt, Si), which has important implications for the construction of a new generation of electronic devices. Observed differences in the nature of the metal-graphene bonding are well reproduced by the calculations, which included nonlocal Hartree-Fock exchange and van der Waals effects.

  3. Frequency, amplitude, and phase measurements in contact resonance atomic force microscopies.

    PubMed

    Stan, Gheorghe; Solares, Santiago D

    2014-01-01

    The resonance frequency, amplitude, and phase response of the first two eigenmodes of two contact-resonance atomic force microscopy (CR-AFM) configurations, which differ in the method used to excite the system (cantilever base vs sample excitation), are analyzed in this work. Similarities and differences in the observables of the cantilever dynamics, as well as the different effect of the tip-sample contact properties on those observables in each configuration are discussed. Finally, the expected accuracy of CR-AFM using phase-locked loop detection is investigated and quantification of the typical errors incurred during measurements is provided.

  4. Utilization of profilometry, SEM, AFM and contact angle measurements in describing surfaces of plastic floor coverings and explaining their cleanability

    NASA Astrophysics Data System (ADS)

    Kuisma, R.; Pesonen-Leinonen, E.; Redsven, I.; Kymäläinen, H.-R.; Saarikoski, I.; Sjöberg, A.-M.; Hautala, M.

    2005-06-01

    The tendency to soil and cleanability of ten commercial plastic floor coverings: eight vinyl (PVC) floor coverings, one vinyl composite tile and one plastic composite tile, were examined. Floor coverings were soiled with inorganic, organic and biological soil. The cleanability was measured both by bioluminescence of ATP (adenosine triphosphate) and colorimetrically. The surface topography was studied by AFM, SEM and with a profilometer. From the 2D- and 3D-profilometric measurements several characteristic parameters of the surface profiles were extracted. The tendency to soil and cleanability were compared with the characteristics of the surface. A weak correlation was found between roughness and soilability but no correlation between roughness and cleanability. Roughness had no correlation with contact angle.

  5. Phase transition behaviors of the supported DPPC bilayer investigated by sum frequency generation (SFG) vibrational spectroscopy and atomic force microscopy (AFM).

    PubMed

    Wu, Heng-Liang; Tong, Yujin; Peng, Qiling; Li, Na; Ye, Shen

    2016-01-21

    The phase transition behaviors of a supported bilayer of dipalmitoylphosphatidyl-choline (DPPC) have been systematically evaluated by in situ sum frequency generation (SFG) vibrational spectroscopy and atomic force microscopy (AFM). By using an asymmetric bilayer composed of per-deuterated and per-protonated monolayers, i.e., DPPC-d75/DPPC and a symmetric bilayer of DPPC/DPPC, we were able to probe the molecular structural changes during the phase transition process of the lipid bilayer by SFG spectroscopy. It was found that the DPPC bilayer is sequentially melted from the top (adjacent to the solution) to bottom leaflet (adjacent to the substrate) over a wide temperature range. The conformational ordering of the supported bilayer does not decrease (even slightly increases) during the phase transition process. The conformational defects in the bilayer can be removed after the complete melting process. The phase transition enthalpy for the bottom leaflet was found to be approximately three times greater than that for the top leaflet, indicating a strong interaction of the lipids with the substrate. The present SFG and AFM observations revealed similar temperature dependent profiles. Based on these results, the temperature-induced structural changes in the supported lipid bilayer during its phase transition process are discussed in comparison with previous studies.

  6. Nanomechanics of Yeast Surfaces Revealed by AFM

    NASA Astrophysics Data System (ADS)

    Dague, Etienne; Beaussart, Audrey; Alsteens, David

    Despite the large and well-documented characterization of the microbial cell wall in terms of chemical composition, the determination of the mechanical properties of surface molecules in relation to their function remains a key challenge in cell biology.The emergence of powerful tools allowing molecular manipulations has already revolutionized our understanding of the surface properties of fungal cells. At the frontier between nanophysics and molecular biology, atomic force microscopy (AFM), and more specifically single-molecule force spectroscopy (SMFS), has strongly contributed to our current knowledge of the cell wall organization and nanomechanical properties. However, due to the complexity of the technique, measurements on live cells are still at their infancy.In this chapter, we describe the cell wall composition and recapitulate the principles of AFM as well as the main current methodologies used to perform AFM measurements on live cells, including sample immobilization and tip functionalization.The current status of the progress in probing nanomechanics of the yeast surface is illustrated through three recent breakthrough studies. Determination of the cell wall nanostructure and elasticity is presented through two examples: the mechanical response of mannoproteins from brewing yeasts and elasticity measurements on lacking polysaccharide mutant strains. Additionally, an elegant study on force-induced unfolding and clustering of adhesion proteins located at the cell surface is also presented.

  7. Measurement of cell adhesion force by vertical forcible detachment using an arrowhead nanoneedle and atomic force microscopy

    SciTech Connect

    Ryu, Seunghwan; Hashizume, Yui; Mishima, Mari; Kawamura, Ryuzo; Tamura, Masato; Matsui, Hirofumi; Matsusaki, Michiya; Akashi, Mitsuru; Nakamura, Chikashi

    2014-08-15

    Graphical abstract: - Highlights: • We developed a method to measure cell adhesion force by detaching cell using an arrowhead nanoneedle and AFM. • A nanofilm consisting of fibronectin and gelatin was formed on cell surface to reinforce the cell cortex. • By the nanofilm lamination, detachment efficiencies of strongly adherent cell lines were improved markedly. - Abstract: The properties of substrates and extracellular matrices (ECM) are important factors governing the functions and fates of mammalian adherent cells. For example, substrate stiffness often affects cell differentiation. At focal adhesions, clustered–integrin bindings link cells mechanically to the ECM. In order to quantitate the affinity between cell and substrate, the cell adhesion force must be measured for single cells. In this study, forcible detachment of a single cell in the vertical direction using AFM was carried out, allowing breakage of the integrin–substrate bindings. An AFM tip was fabricated into an arrowhead shape to detach the cell from the substrate. Peak force observed in the recorded force curve during probe retraction was defined as the adhesion force, and was analyzed for various types of cells. Some of the cell types adhered so strongly that they could not be picked up because of plasma membrane breakage by the arrowhead probe. To address this problem, a technique to reinforce the cellular membrane with layer-by-layer nanofilms composed of fibronectin and gelatin helped to improve insertion efficiency and to prevent cell membrane rupture during the detachment process, allowing successful detachment of the cells. This method for detaching cells, involving cellular membrane reinforcement, may be beneficial for evaluating true cell adhesion forces in various cell types.

  8. Improving dimensional measurement from noisy atomic force microscopy images by non-local means filtering.

    PubMed

    Chen, Yuhang

    2016-01-01

    Quantitative evaluation of dimensional parameters from noisy atomic force microscopy (AFM) images was investigated. Non-local means (NLM) denoising was adopted to reduce noise and maintain fine image structures. Major tuning parameters in NLM filtering, such as the patch size and the window size, were optimized on simulated surface structures. The ability of dimensional evaluation from noisy data was demonstrated to be improved by almost 15 times. Finally, NLM filtering with optimal settings was applied on experimental AFM images, which were scanned on a patterned few-layer graphene specimen. Evaluations of the step height and the pattern size were verified to be much more accurate and robust. Such a data processing method can enhance the AFM dimensional measurements, particularly when the noise-level is reached.

  9. Dynamic Force Measurement with Strain Gauges

    ERIC Educational Resources Information Center

    Lee, Bruce E.

    1974-01-01

    Discusses the use of four strain gauges, a Wheatstone bridge, and an oscilloscope to measure forces dynamically. Included is an example of determining the centripetal force of a pendulum in a general physics laboratory. (CC)

  10. Cheap non-toxic non-corrosive method of glass cleaning evaluated by contact angle, AFM, and SEM-EDX measurements.

    PubMed

    Dey, Tania; Naughton, Daragh

    2017-04-06

    Glass surface cleaning is the very first step in advanced coating deposition and it also finds use in conserving museum objects. However, most of the wet chemical methods of glass cleaning use toxic and corrosive chemicals like concentrated sulfuric acid (H2SO4), piranha (a mixture of concentrated sulfuric acid and 30% hydrogen peroxide), and hydrogen fluoride (HF). On the other hand, most of the dry cleaning techniques like UV-ozone, plasma, and laser treatment require costly instruments. In this report, five eco-friendly wet chemical methods of glass cleaning were evaluated in terms of contact angle (measured by optical tensiometer), nano-scale surface roughness (measured by atomic force microscopy or AFM), and elemental composition (measured by energy dispersive x-ray spectroscopy or SEM-EDX). These glass cleaning methods are devoid of harsh chemicals and costly equipment, hence can be applied in situ in close proximity with plantation such as greenhouse or upon subtle objects such as museum artifacts. Out of these five methods, three methods are based on the chemical principle of chelation. It was found that the citric acid cleaning method gave the greatest change in contact angle within the hydrophilic regime (14.25° for new glass) indicating effective cleansing and the least surface roughness (0.178 nm for new glass) indicating no corrosive effect. One of the glass sample showed unique features which were traced backed to the history of the glass usage.

  11. Comparing AFM cantilever stiffness measured using the thermal vibration and the improved thermal vibration methods with that of an SI traceable method based on MEMS

    NASA Astrophysics Data System (ADS)

    Brand, Uwe; Gao, Sai; Engl, Wolfgang; Sulzbach, Thomas; Stahl, Stefan W.; Milles, Lukas F.; Nesterov, Vladimir; Li, Zhi

    2017-03-01

    PTB has developed a new contact based method for the traceable calibration of the normal stiffness of AFM cantilevers in the range from 0.03 N m‑1 to 300 N m‑1 to the SI units based on micro-electro-mechanical system (MEMS) actuators. This method is evaluated by comparing the measured cantilever stiffness with that measured by PTB’s new primary nanonewton force facility and by PTB’s microforce measuring device. The MEMS system was used to calibrate the stiffness of cantilevers in two case studies. One set of cantilevers for applications in biophysics was calibrated using the well-known thermal vibration method and the second set of cantilevers was calibrated by a cantilever manufacturer who applied an improved thermal vibration method based on calibrated reference cantilevers for the cantilever stiffness calibration. The comparison revealed a stiffness deviation of  +7.7% for the cantilevers calibrated using the thermal vibration method and a deviation of  +6.9% for the stiffnesses of the cantilevers calibrated using the improved thermal vibration method.

  12. Investigation of biopolymer networks by means of AFM

    NASA Astrophysics Data System (ADS)

    Keresztes, Z.; Rigó, T.; Telegdi, J.; Kálmán, E.

    Natural hydrogel alginate was investigated by means of atomic force microscopy (AFM) to gain microscale information on the morphological and rheological properties of the biopolymer network cross-linked by various cations. Local rheological properties of the gels measured by force spectroscopy gave correlation between increasing ion selectivity and increasing polymer elasticity. Adhesive forces acting between the surface of the gel and the probe, and also the intrinsic rheological properties of bulk polymers affect the microscopical image formation.

  13. Elastic Properties of the Annular Ligament of the Human Stapes--AFM Measurement.

    PubMed

    Kwacz, Monika; Rymuza, Zygmunt; Michałowski, Marcin; Wysocki, Jarosław

    2015-08-01

    Elastic properties of the human stapes annular ligament were determined in the physiological range of the ligament deflection using atomic force microscopy and temporal bone specimens. The annular ligament stiffness was determined based on the experimental load-deflection curves. The elastic modulus (Young's modulus) for a simplified geometry was calculated using the Kirchhoff-Love theory for thin plates. The results obtained in this study showed that the annular ligament is a linear elastic material up to deflections of about 100 nm, with a stiffness of about 120 N/m and a calculated elastic modulus of about 1.1 MPa. These parameters can be used in numerical and physical models of the middle and/or inner ear.

  14. AFM imaging of fenestrated liver sinusoidal endothelial cells.

    PubMed

    Braet, F; Wisse, E

    2012-12-01

    Each microscope with its dedicated sample preparation technique provides the investigator with a specific set of data giving an instrument-determined (or restricted) insight into the structure and function of a tissue, a cell or parts thereof. Stepwise improvements in existing techniques, both instrumental and preparative, can sometimes cross barriers in resolution and image quality. Of course, investigators get really excited when completely new principles of microscopy and imaging are offered in promising new instruments, such as the AFM. The present paper summarizes a first phase of studies on the thin endothelial cells of the liver. It describes the preparation-dependent differences in AFM imaging of these cells after isolation. Special point of interest concerned the dynamics of the fenestrae, thought to filter lipid-carrying particles during their transport from the blood to the liver cells. It also describes the attempts to image the details of these cells when alive in cell cultures. It explains what physical conditions, mainly contributed to the scanning stylus, are thought to play a part in the limitations in imaging these cells. The AFM also offers promising specifications to those interested in cell surface details, such as membrane-associated structures, receptors, coated pits, cellular junctions and molecular aggregations or domains. The AFM also offers nano-manipulation possibilities, strengths and elasticity measurements, force interactions, affinity measurements, stiffness and other physical aspects of membranes and cytoskeleton. The potential for molecular approaches is there. New developments in cantilever construction and computer software promise to bring real time video imaging to the AFM. Home made accessories for the first generation of AFM are now commodities in commercial instruments and make the life of the AFM microscopist easier. Also, the combination of different microscopies, such as AFM and TEM, or AFM and SEM find their way to the

  15. Measurement of deep groove structures using a self-fabricated long tip in a large range metrological atomic force microscope

    NASA Astrophysics Data System (ADS)

    Wang, S. H.; Tan, S. L.; Xu, G.; Koyama, K.

    2011-09-01

    Metrological atomic force microscopes are widely used in national metrology institutes for measuring step height, lateral pitch and surface roughness. However, the maximum measurable depth or height variation is limited by both the vertical scanning range of the AFM and the tip height and sharpness of the tip at the end of the cantilever. A normal commercial AFM typically has a vertical scanning range less than 10 µm and a tip height of the cantilever only up to 15 µm so that it can be used to detect only relatively smooth surfaces or shallow structures up to several micrometres. To overcome these limitations, we have successfully integrated a long diamond tip of up to 120 µm developed at Namiki Precision Jewel Co., Ltd of Japan onto our large range metrological atomic force microprobe (LRM-AFM) for deep groove structure measurement. The LRM-AFM is based on a nano-measuring machine with a large scanning range of 25 mm in the X and Y axes and 5 mm in the Z axis. This paper describes the long diamond tip fabrication process and especially its application in the LRM-AFM for measuring deep groove structures of a step height of up to 100 µm. In addition, the mechanical quality factor (Q) of the diamond tip micro-cantilever was detected in the system. The results demonstrate that the system is capable of calibrating and measuring the surface structure with deep groove in tens of micrometres.

  16. Vibrational analysis of single-layered piezoelectric AFM microcantilever in amplitude mode by considering the capillary force

    NASA Astrophysics Data System (ADS)

    Habibnejad Korayem, Alireza; Habibnejad Korayem, Moharam; Ghaderi, Reza

    2014-12-01

    In this article, the vibrational behavior of a microcantilever (MC) with an extended piezoelectric layer in the air ambient undergoes examination. To model the vibrational motion of this type of cantilever, the Hamilton's principle has been used. For this purpose, the MC vibrational equation has been derived by the assumption of the continuous beam based on the Euler-Bernoulli beam theory. By adopting the finite element method (FEM), the MC differential equation has been solved. In the present simulation not only van der Waals and contact forces but also the capillary forces resulting from the condensation of the water vapors in air on MC tip have been considered. The results illustrate that the force between the sample surface and the probe affects the MC amplitude; furthermore, it causes the reduction in the resonance frequency. In addition, to reduce the time delay during topography from the surface roughness, it is better to select MCs with larger width and length and smaller thickness. Furthermore, the results indicate that the best imaging takes place when the vibration is in its second vibrational mode. Finally, the effects of MC geometric parameters on the time delay between the starting moment of surface roughness and the moment of variation in the MC amplitude (surface roughness topography) have been analyzed.

  17. AFM force spectroscopy reveals how subtle structural differences affect the interaction strength between Candida albicans and DC-SIGN.

    PubMed

    te Riet, Joost; Reinieren-Beeren, Inge; Figdor, Carl G; Cambi, Alessandra

    2015-11-01

    The fungus Candida albicans is the most common cause of mycotic infections in immunocompromised hosts. Little is known about the initial interactions between Candida and immune cell receptors, such as the C-type lectin dendritic cell-specific intracellular cell adhesion molecule-3 (ICAM-3)-grabbing non-integrin (DC-SIGN), because a detailed characterization at the structural level is lacking. DC-SIGN recognizes specific Candida-associated molecular patterns, that is, mannan structures present in the cell wall of Candida. The molecular recognition mechanism is however poorly understood. We postulated that small differences in mannan-branching may result in considerable differences in the binding affinity. Here, we exploit atomic force microscope-based dynamic force spectroscopy with single Candida cells to gain better insight in the carbohydrate recognition capacity of DC-SIGN. We demonstrate that slight differences in the N-mannan structure of Candida, that is, the absence or presence of a phosphomannan side chain, results in differences in the recognition by DC-SIGN as follows: (i) it contributes to the compliance of the outer cell wall of Candida, and (ii) its presence results in a higher binding energy of 1.6 kB T. The single-bond affinity of tetrameric DC-SIGN for wild-type C. albicans is ~10.7 kB T and a dissociation constant kD of 23 μM, which is relatively strong compared with other carbohydrate-protein interactions described in the literature. In conclusion, this study shows that DC-SIGN specifically recognizes mannan patterns on C. albicans with high affinity. Knowledge on the binding pocket of DC-SIGN and its pathogenic ligands will lead to a better understanding of how fungal-associated carbohydrate structures are recognized by receptors of the immune system and can ultimately contribute to the development of new anti-fungal drugs.

  18. Knee joint forces: prediction, measurement, and significance

    PubMed Central

    D’Lima, Darryl D.; Fregly, Benjamin J.; Patil, Shantanu; Steklov, Nikolai; Colwell, Clifford W.

    2011-01-01

    Knee forces are highly significant in osteoarthritis and in the survival and function of knee arthroplasty. A large number of studies have attempted to estimate forces around the knee during various activities. Several approaches have been used to relate knee kinematics and external forces to internal joint contact forces, the most popular being inverse dynamics, forward dynamics, and static body analyses. Knee forces have also been measured in vivo after knee arthroplasty, which serves as valuable validation of computational predictions. This review summarizes the results of published studies that measured knee forces for various activities. The efficacy of various methods to alter knee force distribution, such as gait modification, orthotics, walking aids, and custom treadmills are analyzed. Current gaps in our knowledge are identified and directions for future research in this area are outlined. PMID:22468461

  19. Parameters affecting the adhesion strength between a living cell and a colloid probe when measured by the atomic force microscope.

    PubMed

    McNamee, Cathy E; Pyo, Nayoung; Tanaka, Saaya; Vakarelski, Ivan U; Kanda, Yoichi; Higashitani, Ko

    2006-03-15

    In this study, we used the colloid probe atomic force microscopy (AFM) technique to investigate the adhesion force between a living cell and a silica colloid particle in a Leibovitz's L-15 medium (L-15). The L-15 liquid maintained the pharmaceutical conditions necessary to keep the cells alive in the outside environment during the AFM experiment. The force curves in such a system showed a steric repulsion in the compression force curve, due to the compression of the cells by the colloid probe, and an adhesion force in the decompression force curve, due to binding events between the cell and the probe. We also investigated for the first time how the position on the cell surface, the strength of the pushing force, and the residence time of the probe at the cell surface individually affected the adhesion force between a living cell and a 6.84 microm diameter silica colloid particle in L-15. The position of measuring the force on the cell surface was seen not to affect the value of the maximum adhesion force. The loading force was also seen not to notably affect the value of the maximum adhesion force, if it was small enough not to pierce and damage the cell. The residence time of the probe at the cell surface, however, clearly affected the adhesion force, where a longer residence time gave a larger maximum force. From these results, we could conclude that the AFM force measurements should be made using a loading force small enough not to damage the cell and a fixed residence time, when comparing results of different systems.

  20. Detection of Pathogens Using AFM and SPR

    NASA Astrophysics Data System (ADS)

    Vaseashta, Ashok

    2005-03-01

    A priori detection of pathogens in food and water has become a subject of paramount importance. Several recent incidents have resulted in the government passing stringent regulations for tolerable amounts of contamination of food products. Identification and/or monitoring of bacterial contamination in food are critical. The conventional methods of pathogen detection require time-consuming steps to arrive disembark at meaningful measurement in a timely manner as the detection time exceeds the time in which perishable food recycles through the food chain distribution. The aim of this presentation is to outline surface plasmon resonance (SPR) and atomic force microscopy (AFM) as two methods for fast detect6ion of pathogens. Theoretical basis of SPR and experimental results of SPR and AFM on E. coli O157:H7 and prion are presented.

  1. Axial force measurement for esophageal function testing

    PubMed Central

    Gravesen, Flemming H; Funch-Jensen, Peter; Gregersen, Hans; Drewes, Asbjørn Mohr

    2009-01-01

    The esophagus serves to transport food and fluid from the pharynx to the stomach. Manometry has been the “golden standard” for the diagnosis of esophageal motility diseases for many decades. Hence, esophageal function is normally evaluated by means of manometry even though it reflects the squeeze force (force in radial direction) whereas the bolus moves along the length of esophagus in a distal direction. Force measurements in the longitudinal (axial) direction provide a more direct measure of esophageal transport function. The technique used to record axial force has developed from external force transducers over in-vivo strain gauges of various sizes to electrical impedance based measurements. The amplitude and duration of the axial force has been shown to be as reliable as manometry. Normal, as well as abnormal, manometric recordings occur with normal bolus transit, which have been documented using imaging modalities such as radiography and scintigraphy. This inconsistency using manometry has also been documented by axial force recordings. This underlines the lack of information when diagnostics are based on manometry alone. Increasing the volume of a bag mounted on a probe with combined axial force and manometry recordings showed that axial force amplitude increased by 130% in contrast to an increase of 30% using manometry. Using axial force in combination with manometry provides a more complete picture of esophageal motility, and the current paper outlines the advantages of using this method. PMID:19132762

  2. Fabrication and measurement of nanostructures on the micro ball surface using a modified atomic force microscope.

    PubMed

    Zhao, X S; Geng, Y Q; Li, W B; Yan, Y D; Hu, Z J; Sun, T; Liang, Y C; Dong, S

    2012-11-01

    In order to machine and measure nanostructures on the micro ball surface, a modified atomic force microscope (AFM) combining a commercial AFM system with a home built precision air bearing spindle is established. Based on this system, motions of both the AFM scanner and the air bearing spindle are controlled to machine nanostructures on the micro ball based on the AFM tip-based nano mechanical machining approach. The eccentric error between the axis of the micro ball and the axis of the spindle is reduced to 3-4 μm by the provided fine adjusting method. A 1000 nano lines array, 36 square pits structure, 10 square pits structure, and a zig-zag structure on the circumference of the micro ball with the diameter of 1.5 mm are machined successfully. The measurement results achieved by the same system reveal that the profiles and mode-power spectra curves of the micro ball are influenced by the artificially machined nanostructures significantly according to their distributions. This work is an useful attempt for modifying the micro ball profile and manufacture of the spherical modulation targets to study the experimental performance of the micro ball in implosion.

  3. Fabrication and measurement of nanostructures on the micro ball surface using a modified atomic force microscope

    NASA Astrophysics Data System (ADS)

    Zhao, X. S.; Geng, Y. Q.; Li, W. B.; Yan, Y. D.; Hu, Z. J.; Sun, T.; Liang, Y. C.; Dong, S.

    2012-11-01

    In order to machine and measure nanostructures on the micro ball surface, a modified atomic force microscope (AFM) combining a commercial AFM system with a home built precision air bearing spindle is established. Based on this system, motions of both the AFM scanner and the air bearing spindle are controlled to machine nanostructures on the micro ball based on the AFM tip-based nano mechanical machining approach. The eccentric error between the axis of the micro ball and the axis of the spindle is reduced to 3-4 μm by the provided fine adjusting method. A 1000 nano lines array, 36 square pits structure, 10 square pits structure, and a zig-zag structure on the circumference of the micro ball with the diameter of 1.5 mm are machined successfully. The measurement results achieved by the same system reveal that the profiles and mode-power spectra curves of the micro ball are influenced by the artificially machined nanostructures significantly according to their distributions. This work is an useful attempt for modifying the micro ball profile and manufacture of the spherical modulation targets to study the experimental performance of the micro ball in implosion.

  4. Measurement of edgewise torque force in vitro.

    PubMed

    Steyn, C L

    1977-05-01

    The construction of a model for the measurement of palatal root torque is described. It was demonstrated that: 1. Halfway between the apex of a tooth and the arch wire the force was double that which was delivered at the apex. 2. The lateral incisors were subjected to appreciably more force than the central incisors. 3. The smaller the number of teeth acted upon, the greater the force they received.

  5. Atomic force microscopy to study intermolecular forces and bonds associated with bacteria.

    PubMed

    Lower, Steven K

    2011-01-01

    Atomic force microscopy (AFM) operates on a very different principle than other forms of microscopy, such as optical microscopy or electron microscopy. The key component of an AFM is a cantilever that bends in response to forces that it experiences as it touches another surface. Forces as small as a few picoNewtons can be detected and probed with AFM. AFM has become very useful in biological sciences because it can be used on living cells that are immersed in water. AFM is particularly useful when the cantilever is modified with chemical groups (e.g. amine or carboxylic groups), small beads (e.g. glass or latex), or even a bacterium. This chapter describes how AFM can be used to measure forces and bonds between a bacterium and another surface. This paper also provides an example of the use of AFM on Staphylococcus aureus, a Gram-positive bacterium that is often associated with biofilms in humans.

  6. DNA nanofilm thickness measurement on microarray in air and in liquid using an atomic force microscope.

    PubMed

    Legay, Guillaume; Finot, Eric; Meunier-Prest, Rita; Cherkaoui-Malki, Mustapha; Latruffe, Norbert; Dereux, Alain

    2005-10-15

    The measurement of the thickness of DNA films on microarray as a function of the medium (liquid, air) is gaining importance for understanding the signal response of biosensors. Thiol group has been used to attach DNA strands to gold micropads deposited on silicon surface. Atomic force microscopy (AFM) was employed in its height mode to measure the change in the pad thickness and in its force mode to measure the indentation depth of the nanofilm. A good coherence between the height and force modes is observed for the film thickness in air. The adhesion force was found to be an alternative way to measure the surface coverage of the biolayer at nanoscopic scale. However the force analysis (compression, steric and electrostatic) provides baseline information necessary to interpret the AFM height image in liquid. Analysis of the film thickness distribution shows that the height of the DNA strands depends on both the DNA strand length (15-35 base pairs) and the environment (air, liquid). In air, longer strands lay down onto gold surface whereas the charge reversal of gold in liquid causes a repulsion of longer strands, which stand up.

  7. Force Measurement Device for ARIANE 5 Payloads

    NASA Astrophysics Data System (ADS)

    Brunner, O.; Braeken, R.

    2004-08-01

    ESTEC uses since 1991 a Force Measurement Device (FMD) for the measurement of dynamic mechanical forces and moments. This tool allows the determination of forces and moments applied to the test hardware at its interface to the test facilities during dynamic testing. Three forces and three moments are calculated from the measurements of eight tri-axial force links and used to either characterize the dynamic mechanical behaviour of the test item and/or to control forces and moments during vibration testing (force limited vibration control). The current FMD is limited to test items with an interface diameter of up to about 1.2 m (adapter already available) and a mass compatible with ARIANE 4 payloads. The limitations of the current system come from the maximum of eight tri-axial force links and from the analogue technique of the Signal Processing Unit (SPU) that allows only a limited number of geometric configurations for the mechanical interface. Following the success of the FMD during former test campaigns, e.g. ROSETTA STM + FM, the need for a FMD, compatible with ARIANE 5 payloads has been established. Therefore ESA decided to develop a new FMD system. The system will include a digital real time SPU with 72 force input channels, corresponding to 24 tri-axes force sensors or 72 mono axial force sensors. The SPU design will allow extending the number of force input channels to 144. The set-up of the FMD will be done via a standard PC interface. The user will enter for each force sensor the location and the measurement direction in the reference coordinate system. Based on the geometrical information and the maximum forces and moments expected the PC will calculate the optimum range settings for the charge-amplifiers and the corresponding matrix with weighting factors which will allow to perform a fast calculation of the six output forces and moments from the 72 (or 144) input forces. The six output channels with forces and moments can then be connected either to the

  8. Force measurement enabling precise analysis by dynamic force spectroscopy.

    PubMed

    Taninaka, Atsushi; Hirano, Yuuichi; Takeuchi, Osamu; Shigekawa, Hidemi

    2012-01-01

    Dynamic force spectroscopy (DFS) makes it possible to investigate specific interactions between two molecules such as ligand-receptor pairs at the single-molecule level. In the DFS method based on the Bell-Evans model, the unbinding force applied to a molecular bond is increased at a constant rate, and the force required to rupture the molecular bond is measured. By analyzing the relationship between the modal rupture force and the logarithm of the loading rate, microscopic potential barrier landscapes and the lifetimes of bonds can be obtained. However, the results obtained, for example, in the case of streptavidin/biotin complexes, have differed among previous studies and some results have been inconsistent with theoretical predictions. In this study, using an atomic force microscopy technique that enables the precise analysis of molecular interactions on the basis of DFS, we investigated the effect of the sampling rate on DFS analysis. The shape of rupture force histograms, for example, was significantly deformed at a sampling rate of 1 kHz in comparison with that of histograms obtained at 100 kHz, indicating the fundamental importance of ensuring suitable experimental conditions for further advances in the DFS method.

  9. Augmented Computer Mouse Would Measure Applied Force

    NASA Technical Reports Server (NTRS)

    Li, Larry C. H.

    1993-01-01

    Proposed computer mouse measures force of contact applied by user. Adds another dimension to two-dimensional-position-measuring capability of conventional computer mouse; force measurement designated to represent any desired continuously variable function of time and position, such as control force, acceleration, velocity, or position along axis perpendicular to computer video display. Proposed mouse enhances sense of realism and intuition in interaction between operator and computer. Useful in such applications as three-dimensional computer graphics, computer games, and mathematical modeling of dynamics.

  10. Accurate analytical measurements in the atomic force microscope: a microfabricated spring constant standard potentially traceable to the SI

    NASA Astrophysics Data System (ADS)

    Cumpson, Peter J.; Hedley, John

    2003-12-01

    Calibration of atomic force microscope (AFM) cantilevers is necessary for the measurement of nanonewton and piconewton forces, which are critical to analytical applications of AFM in the analysis of polymer surfaces, biological structures and organic molecules at nanoscale lateral resolution. We have developed a compact and easy-to-use reference artefact for this calibration, using a method that allows traceability to the SI (Système International). Traceability is crucial to ensure that force measurements by AFM are comparable to those made by optical tweezers and other methods. The new non-contact calibration method measures the spring constant of these artefacts, by a combination of electrical measurements and Doppler velocimetry. The device was fabricated by silicon surface micromachining. The device allows AFM cantilevers to be calibrated quite easily by the 'cantilever-on-reference' method, with our reference device having a spring constant uncertainty of around ± 5% at one standard deviation. A simple substitution of the analogue velocimeter used in this work with a digital model should reduce this uncertainty to around ± 2%. Both are significant improvements on current practice, and allow traceability to the SI for the first time at these nanonewton levels.

  11. Probing Cytoskeletal Structures by Coupling Optical Superresolution and AFM Techniques for a Correlative Approach

    PubMed Central

    Chacko, Jenu Varghese; Zanacchi, Francesca Cella; Diaspro, Alberto

    2013-01-01

    In this article, we describe and show the application of some of the most advanced fluorescence superresolution techniques, STED AFM and STORM AFM microscopy towards imaging of cytoskeletal structures, such as microtubule filaments. Mechanical and structural properties can play a relevant role in the investigation of cytoskeletal structures of interest, such as microtubules, that provide support to the cell structure. In fact, the mechanical properties, such as the local stiffness and the elasticity, can be investigated by AFM force spectroscopy with tens of nanometers resolution. Force curves can be analyzed in order to obtain the local elasticity (and the Young's modulus calculation by fitting the force curves from every pixel of interest), and the combination with STED/STORM microscopy integrates the measurement with high specificity and yields superresolution structural information. This hybrid modality of superresolution-AFM working is a clear example of correlative multimodal microscopy. PMID:24027190

  12. Atomic force microscope imaging and force measurements at electrified and actively corroding interfaces: Challenges and novel cell design

    NASA Astrophysics Data System (ADS)

    Valtiner, Markus; Ankah, Genesis Ngwa; Bashir, Asif; Renner, Frank Uwe

    2011-02-01

    We report the design of an improved electrochemical cell for atomic force microscope measurements in corrosive electrochemical environments. Our design improvements are guided by experimental requirements for studying corrosive reactions such as selective dissolution, dealloying, pitting corrosion, and/or surface and interface forces at electrified interfaces. Our aim is to examine some of the limitations of typical electrochemical scanning probe microscopy (SPM) experiments and in particular to outline precautions and cell-design elements, which must necessarily be taken into account in order to obtain reliable experimental results. In particular, we discuss electrochemical requirements for typical electrochemical SPM experiments and introduce novel design features to avoid common issues such as crevice formations; we discuss the choice of electrodes and contaminations from ions of reference electrodes. We optimize the cell geometry and introduce standard samples for electrochemical AFM experiments. We have tested the novel design by performing force-distance spectroscopy as a function of the applied electrochemical potential between a bare gold electrode surface and a SAM-coated AFM tip. Topography imaging was tested by studying the well-known dealloying process of a Cu3Au(111) surface up to the critical potential. Our design improvements should be equally applicable to in situ electrochemical scanning tunneling microscope cells.

  13. Mapping individual cosmid DNAs by direct AFM imaging.

    PubMed

    Allison, D P; Kerper, P S; Doktycz, M J; Thundat, T; Modrich, P; Larimer, F W; Johnson, D K; Hoyt, P R; Mucenski, M L; Warmack, R J

    1997-05-01

    Individual cosmid clones have been restriction mapped by directly imaging, with the atomic force microscope (AFM), a mutant EcoRI endonuclease site-specifically bound to DNA. Images and data are presented that locate six restriction sites, predicted from gel electrophoresis, on a 35-kb cosmid isolated from mouse chromosome 7. Measured distances between endonuclease molecules bound to lambda DNA, when compared to known values, demonstrate the accuracy of AFM mapping to better than 1%. These results may be extended to identify other important site-specific protein-DNA interactions, such as transcription factor and mismatch repair enzyme binding, difficult to resolve by current techniques.

  14. Determining surface properties with bimodal and multimodal AFM.

    PubMed

    Forchheimer, D; Borysov, Stanislav S; Platz, D; Haviland, David B

    2014-12-05

    Conventional dynamic atomic force microscopy (AFM) can be extended to bimodal and multimodal AFM in which the cantilever is simultaneously excited at two or more resonance frequencies. Such excitation schemes result in one additional amplitude and phase images for each driven resonance, and potentially convey more information about the surface under investigation. Here we present a theoretical basis for using this information to approximate the parameters of a tip-surface interaction model. The theory is verified by simulations with added noise corresponding to room-temperature measurements.

  15. Micromechanical apparatus for measurement of forces

    DOEpatents

    Tanner, Danelle Mary; Allen, James Joe

    2004-05-25

    A new class of micromechanical dynamometers has been disclosed which are particularly suited to fabrication in parallel with other microelectromechanical apparatus. Forces in the microNewton regime and below can be measured with such dynamometers which are based on a high-compliance deflection element (e.g. a ring or annulus) suspended above a substrate for deflection by an applied force, and one or more distance scales for optically measuring the deflection.

  16. Instrument for measuring human biting force

    NASA Astrophysics Data System (ADS)

    Kopola, Harri K.; Mantyla, Olavi; Makiniemi, Matti; Mahonen, Kalevi; Virtanen, Kauko

    1995-02-01

    Alongside EMG activity, biting force is the primary parameter used for assessing the biting problems of dentulous patients and patients with dentures. In a highly conductive oral cavity, dielectric measurement methods are preferred, for safety reasons. The maximum biting force for patients with removable dentures is not more than 100 ... 300 N. We report here on an instrument developed for measuring human biting force which consists of three units: a mouthpiece, a signal processing and interface unit (SPI), and a PC. The mouthpiece comprises a sensor head of thickness 3.4 mm, width 20 mm and length 30 mm constructed of two stainless steel plates and with a fiber optic microbending sensor between them. This is connected to the SPI unit by a three-meter fiber optic cable, and the SPI unit to the PC by an RS connection. A computer program has been developed that includes measurement, display, zeroing, and calibration operations. The instrument measures biting force as a function of time and displays the time-dependent force profile and maximum force on a screen or plots it in hard copy. The dynamic measurement range of the mouthpiece is from 0 to 1000 N, and the resolution of the instrument is 10 N. The results of preliminary clinical measurements and repeatability tests are reported.

  17. Imaging and measuring the biophysical properties of Fc gamma receptors on single macrophages using atomic force microscopy

    SciTech Connect

    Li, Mi; Liu, Lianqing; Xi, Ning; Wang, Yuechao; Xiao, Xiubin; Zhang, Weijing

    2013-09-06

    Highlights: •Nanoscale cellular ultra-structures of macrophages were observed. •The binding affinities of FcγRs were measured directly on macrophages. •The nanoscale distributions of FcγRs were mapped on macrophages. -- Abstract: Fc gamma receptors (FcγR), widely expressed on effector cells (e.g., NK cells, macrophages), play an important role in clinical cancer immunotherapy. The binding of FcγRs to the Fc portions of antibodies that are attached to the target cells can activate the antibody-dependent cell-mediated cytotoxicity (ADCC) killing mechanism which leads to the lysis of target cells. In this work, we used atomic force microscopy (AFM) to observe the cellular ultra-structures and measure the biophysical properties (affinity and distribution) of FcγRs on single macrophages in aqueous environments. AFM imaging was used to obtain the topographies of macrophages, revealing the nanoscale cellular fine structures. For molecular interaction recognition, antibody molecules were attached onto AFM tips via a heterobifunctional polyethylene glycol (PEG) crosslinker. With AFM single-molecule force spectroscopy, the binding affinities of FcγRs were quantitatively measured on single macrophages. Adhesion force mapping method was used to localize the FcγRs, revealing the nanoscale distribution of FcγRs on local areas of macrophages. The experimental results can improve our understanding of FcγRs on macrophages; the established approach will facilitate further research on physiological activities involved in antibody-based immunotherapy.

  18. Atomic force microscopy of orb-spider-web-silks to measure surface nanostructuring and evaluate silk fibers per strand

    NASA Astrophysics Data System (ADS)

    Kane, D. M.; Naidoo, N.; Staib, G. R.

    2010-10-01

    Atomic force microscopy (AFM) study is used to measure the surface topology and roughness of radial and capture spider silks on the micro- and nanoscale. This is done for silks of the orb weaver spider Argiope keyserlingi. Capture silk has a surface roughness that is five times less than that for radial silk. The capture silk has an equivalent flatness of λ /100 (5-6 nm deep surface features) as an optical surface. This is equivalent to a very highly polished optical surface. AFM does show the number of silk fibers that make up a silk thread but geometric distortion occurs during sample preparation. This prevented AFM from accurately measuring the silk topology on the microscale in this study.

  19. Force measurements in skinned muscle fibres

    PubMed Central

    Hellam, D. C.; Podolsky, R. J.

    1969-01-01

    1. Isometric force was measured in skinned segments of frog semitendinosus muscle fibres exposed to solutions in which the calcium ion concentration was controlled with EGTA. 2. The threshold for force development, calculated from an apparent stability constant for the CaEGTA complex of 106.69 M-1 at pH 7·0, was generally close to pCa 7·5. Maximum force was reached at about pCa 6·0. 3. Maximum force is proportional to the cross-sectional area of the fibres. 4. The rate of force development was slower than that expected from simple diffusion of a substance from the bathing solution into the fibre. The delay appears to be due to slow equilibration of the EGTA buffer system during calcium uptake by the sarcoplasmic reticulum. 5. Addition of deoxycholate (DOC) to the bathing solution produced a reversible increase in the rate of force development. The steady force was also increased for values of pCa that gave less than maximum force, which shifted the force—pCa relation toward lower calcium concentrations by about 0·5 pCa unit. 6. The length—force relation in partially activated preparations is similar to that reported for electrically activated intact fibres. This result suggests that in the region of myofilament overlap the affinity of the binding sites for calcium is uniform along the length of the calciumbinding myofilament. PMID:5765859

  20. Elastic modulus measurements at variable temperature: Validation of atomic force microscopy techniques

    NASA Astrophysics Data System (ADS)

    Natali, Marco; Reggente, Melania; Passeri, Daniele; Rossi, Marco

    2016-06-01

    The development of polymer-based nanocomposites to be used in critical thermal environments requires the characterization of their mechanical properties, which are related to their chemical composition, size, morphology and operating temperature. Atomic force microscopy (AFM) has been proven to be a useful tool to develop techniques for the mechanical characterization of these materials, thanks to its nanometer lateral resolution and to the capability of exerting ultra-low loads, down to the piconewton range. In this work, we demonstrate two techniques, one quasi-static, i.e., AFM-based indentation (I-AFM), and one dynamic, i.e., contact resonance AFM (CR-AFM), for the mechanical characterization of compliant materials at variable temperature. A cross-validation of I-AFM and CR-AFM has been performed by comparing the results obtained on two reference materials, i.e., low-density polyethylene (LDPE) and polycarbonate (PC), which demonstrated the accuracy of the techniques.

  1. Detecting chameleons through Casimir force measurements

    SciTech Connect

    Brax, Philippe; Davis, Anne-Christine; Shaw, Douglas; Mota, David F.

    2007-12-15

    The best laboratory constraints on strongly coupled chameleon fields come not from tests of gravity per se but from precision measurements of the Casimir force. The chameleonic force between two nearby bodies is more akin to a Casimir-like force than a gravitational one: The chameleon force behaves as an inverse power of the distance of separation between the surfaces of two bodies, just as the Casimir force does. Additionally, experimental tests of gravity often employ a thin metallic sheet to shield electrostatic forces; however, this sheet masks any detectable signal due to the presence of a strongly coupled chameleon field. As a result of this shielding, experiments that are designed to specifically test the behavior of gravity are often unable to place any constraint on chameleon fields with a strong coupling to matter. Casimir force measurements do not employ a physical electrostatic shield and as such are able to put tighter constraints on the properties of chameleons fields with a strong matter coupling than tests of gravity. Motivated by this, we perform a full investigation on the possibility of testing chameleon models with both present and future Casimir experiments. We find that present-day measurements are not able to detect the chameleon. However, future experiments have a strong possibility of detecting or rule out a whole class of chameleon models.

  2. AFM nanoscale indentation in air of polymeric and hybrid materials with highly different stiffness

    NASA Astrophysics Data System (ADS)

    Suriano, Raffaella; Credi, Caterina; Levi, Marinella; Turri, Stefano

    2014-08-01

    In this study, nanomechanical properties of a variety of polymeric materials was investigated by means of AFM. In particular, selecting different AFM probes, poly(methyl methacrylate) (PMMA), polydimethylsiloxane (PDMS) bulk samples, sol-gel hybrid thin films and hydrated hyaluronic acid hydrogels were indented in air to determine the elastic modulus. The force-distance curves and the indentation data were found to be greatly affected by the cantilever stiffness and by tip geometry. AFM indentation tests show that the choice of the cantilever spring constant and of tip shape is crucially influenced by elastic properties of samples. When adhesion-dominated interactions occur between the tip and the surface of samples, force-displacement curves reveal that a suitable functionalization of AFM probes allows the control of such interactions and the extraction of Young' modulus from AFM curves that would be otherwise unfeasible. By applying different mathematical models depending on AFM probes and materials under investigation, the values of Young's modulus were obtained and compared to those measured by rheological and dynamic mechanical analysis or to literature data. Our results show that a wide range of elastic moduli (10 kPa-10 GPa) can be determined by AFM in good agreement with those measured by conventional macroscopic measurements.

  3. Measurement of tool forces in diamond turning

    SciTech Connect

    Drescher, J.; Dow, T.A.

    1988-12-01

    A dynamometer has been designed and built to measure forces in diamond turning. The design includes a 3-component, piezoelectric transducer. Initial experiments with this dynamometer system included verification of its predicted dynamic characteristics as well as a detailed study of cutting parameters. Many cutting experiments have been conducted on OFHC Copper and 6061-T6 Aluminum. Tests have involved investigation of velocity effects, and the effects of depth and feedrate on tool forces. Velocity has been determined to have negligible effects between 4 and 21 m/s. Forces generally increase with increasing depth of cut. Increasing feedrate does not necessarily lead to higher forces. Results suggest that a simple model may not be sufficient to describe the forces produced in the diamond turning process.

  4. Imaging and measuring the biophysical properties of Fc gamma receptors on single macrophages using atomic force microscopy.

    PubMed

    Li, Mi; Liu, Lianqing; Xi, Ning; Wang, Yuechao; Xiao, Xiubin; Zhang, Weijing

    2013-09-06

    Fc gamma receptors (FcγR), widely expressed on effector cells (e.g., NK cells, macrophages), play an important role in clinical cancer immunotherapy. The binding of FcγRs to the Fc portions of antibodies that are attached to the target cells can activate the antibody-dependent cell-mediated cytotoxicity (ADCC) killing mechanism which leads to the lysis of target cells. In this work, we used atomic force microscopy (AFM) to observe the cellular ultra-structures and measure the biophysical properties (affinity and distribution) of FcγRs on single macrophages in aqueous environments. AFM imaging was used to obtain the topographies of macrophages, revealing the nanoscale cellular fine structures. For molecular interaction recognition, antibody molecules were attached onto AFM tips via a heterobifunctional polyethylene glycol (PEG) crosslinker. With AFM single-molecule force spectroscopy, the binding affinities of FcγRs were quantitatively measured on single macrophages. Adhesion force mapping method was used to localize the FcγRs, revealing the nanoscale distribution of FcγRs on local areas of macrophages. The experimental results can improve our understanding of FcγRs on macrophages; the established approach will facilitate further research on physiological activities involved in antibody-based immunotherapy.

  5. Direct measurement of critical Casimir forces

    NASA Astrophysics Data System (ADS)

    Hertlein, C.; Helden, L.; Gambassi, A.; Dietrich, S.; Bechinger, C.

    2008-01-01

    When fluctuating fields are confined between two surfaces, long-range forces arise. A famous example is the quantum-electrodynamical Casimir force that results from zero-point vacuum fluctuations confined between two conducting metal plates. A thermodynamic analogue is the critical Casimir force: it acts between surfaces immersed in a binary liquid mixture close to its critical point and arises from the confinement of concentration fluctuations within the thin film of fluid separating the surfaces. So far, all experimental evidence for the existence of this effect has been indirect. Here we report the direct measurement of critical Casimir force between a single colloidal sphere and a flat silica surface immersed in a mixture of water and 2,6-lutidine near its critical point. We use total internal reflection microscopy to determine in situ the forces between the sphere and the surface, with femtonewton resolution. Depending on whether the adsorption preferences of the sphere and the surface for water and 2,6-lutidine are identical or opposite, we measure attractive and repulsive forces, respectively, that agree quantitatively with theoretical predictions and exhibit exquisite dependence on the temperature of the system. We expect that these features of critical Casimir forces may result in novel uses of colloids as model systems.

  6. Direct measurement of critical Casimir forces.

    PubMed

    Hertlein, C; Helden, L; Gambassi, A; Dietrich, S; Bechinger, C

    2008-01-10

    When fluctuating fields are confined between two surfaces, long-range forces arise. A famous example is the quantum-electrodynamical Casimir force that results from zero-point vacuum fluctuations confined between two conducting metal plates. A thermodynamic analogue is the critical Casimir force: it acts between surfaces immersed in a binary liquid mixture close to its critical point and arises from the confinement of concentration fluctuations within the thin film of fluid separating the surfaces. So far, all experimental evidence for the existence of this effect has been indirect. Here we report the direct measurement of critical Casimir force between a single colloidal sphere and a flat silica surface immersed in a mixture of water and 2,6-lutidine near its critical point. We use total internal reflection microscopy to determine in situ the forces between the sphere and the surface, with femtonewton resolution. Depending on whether the adsorption preferences of the sphere and the surface for water and 2,6-lutidine are identical or opposite, we measure attractive and repulsive forces, respectively, that agree quantitatively with theoretical predictions and exhibit exquisite dependence on the temperature of the system. We expect that these features of critical Casimir forces may result in novel uses of colloids as model systems.

  7. Force based displacement measurement in micromechanical devices

    SciTech Connect

    O {close_quote}Shea, S. J.; Ng, C. K.; Tan, Y. Y.; Xu, Y.; Tay, E. H.; Chua, B. L.; Tien, N. C.; Tang, X. S.; Chen, W. T.

    2001-06-18

    We demonstrate how force detection methods based on atomic force microscopy can be used to measure displacement in micromechanical devices. We show the operation of a simple microfabricated accelerometer, the proof mass of which incorporates a tip which can be moved towards an opposing surface. Both noncontact operation using long range electrostatic forces and tapping mode operation are demonstrated. The displacement sensitivity of the present device using feedback to control the tip-surface separation is approximately 1 nm. {copyright} 2001 American Institute of Physics.

  8. Vibration signature analysis of AFM images

    SciTech Connect

    Joshi, G.A.; Fu, J.; Pandit, S.M.

    1995-12-31

    Vibration signature analysis has been commonly used for the machine condition monitoring and the control of errors. However, it has been rarely employed for the analysis of the precision instruments such as an atomic force microscope (AFM). In this work, an AFM was used to collect vibration data from a sample positioning stage under different suspension and support conditions. Certain structural characteristics of the sample positioning stage show up as a result of the vibration signature analysis of the surface height images measured using an AFM. It is important to understand these vibration characteristics in order to reduce vibrational uncertainty, improve the damping and structural design, and to eliminate the imaging imperfections. The choice of method applied for vibration analysis may affect the results. Two methods, the data dependent systems (DDS) analysis and the Welch`s periodogram averaging method were investigated for application to this problem. Both techniques provide smooth spectrum plots from the data. Welch`s periodogram provides a coarse resolution as limited by the number of samples and requires a choice of window to be decided subjectively by the user. The DDS analysis provides sharper spectral peaks at a much higher resolution and a much lower noise floor. A decomposition of the signal variance in terms of the frequencies is provided as well. The technique is based on an objective model adequacy criterion.

  9. Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy.

    PubMed

    Iwamoto, Shinichiro; Kai, Weihua; Isogai, Akira; Iwata, Tadahisa

    2009-09-14

    The elastic modulus of single microfibrils from tunicate ( Halocynthia papillosa ) cellulose was measured by atomic force microscopy (AFM). Microfibrils with cross-sectional dimensions 8 x 20 nm and several micrometers in length were obtained by oxidation of cellulose with 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO) as a catalyst and subsequent mechanical disintegration in water and by sulfuric acid hydrolysis. The nanocellulosic materials were deposited on a specially designed silicon wafer with grooves 227 nm in width, and a three-point bending test was applied to determine the elastic modulus using an AFM cantilever. The elastic moduli of single microfibrils prepared by TEMPO-oxidation and acid hydrolysis were 145.2 +/- 31.3 and 150.7 +/- 28.8 GPa, respectively. The result showed that the experimentally determined modulus of the highly crystalline tunicate microfibrils was in agreement with the elastic modulus of native cellulose crystals.

  10. High-throughput and non-destructive sidewall roughness measurement using 3-dimensional atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Hua, Yueming; Buenviaje-Coggins, Cynthia; Lee, Yong-ha; Park, Sang-il

    2012-03-01

    As the feature size of the semiconductor device is becoming increasingly smaller and the transistor has become three-dimensional (e.g. Fin-FET structure), a simple Line Edge Roughness (LER) is no longer sufficient for characterizing these devices. Sidewall Roughness (SWR) is now the more proper metric for these metrology applications. However, current metrology technologies, such as SEM and OCD, provide limited information on the sidewall of such small structures. The subject of this study is the sidewall roughness measurement with a three-dimensional Atomic Force Microscopy (AFM) using tilted Z scanner. This 3D AFM is based on a decoupled XY and Z scanning configuration, in which the Z scanner can be intentionally tilted to the side. A sharp conical tip is typically used for imaging, which provides high resolution capability on both the flat surfaces (top and bottom) and the steep sidewalls.

  11. A quadruple-scanning-probe force microscope for electrical property measurements of microscopic materials.

    PubMed

    Higuchi, Seiji; Kubo, Osamu; Kuramochi, Hiromi; Aono, Masakazu; Nakayama, Tomonobu

    2011-07-15

    Four-terminal electrical measurement is realized on a microscopic structure in air, without a lithographic process, using a home-built quadruple-scanning-probe force microscope (QSPFM). The QSPFM has four probes whose positions are individually controlled by obtaining images of a sample in the manner of atomic force microscopy (AFM), and uses the probes as contacting electrodes for electrical measurements. A specially arranged tuning fork probe (TFP) is used as a self-detection force sensor to operate each probe in a frequency modulation AFM mode, resulting in simultaneous imaging of the same microscopic feature on an insulator using the four TFPs. Four-terminal electrical measurement is then demonstrated in air by placing each probe electrode in contact with a graphene flake exfoliated on a silicon dioxide film, and the sheet resistance of the flake is measured by the van der Pauw method. The present work shows that the QSPFM has the potential to measure the intrinsic electrical properties of a wide range of microscopic materials in situ without electrode fabrication.

  12. A quadruple-scanning-probe force microscope for electrical property measurements of microscopic materials

    NASA Astrophysics Data System (ADS)

    Higuchi, Seiji; Kubo, Osamu; Kuramochi, Hiromi; Aono, Masakazu; Nakayama, Tomonobu

    2011-07-01

    Four-terminal electrical measurement is realized on a microscopic structure in air, without a lithographic process, using a home-built quadruple-scanning-probe force microscope (QSPFM). The QSPFM has four probes whose positions are individually controlled by obtaining images of a sample in the manner of atomic force microscopy (AFM), and uses the probes as contacting electrodes for electrical measurements. A specially arranged tuning fork probe (TFP) is used as a self-detection force sensor to operate each probe in a frequency modulation AFM mode, resulting in simultaneous imaging of the same microscopic feature on an insulator using the four TFPs. Four-terminal electrical measurement is then demonstrated in air by placing each probe electrode in contact with a graphene flake exfoliated on a silicon dioxide film, and the sheet resistance of the flake is measured by the van der Pauw method. The present work shows that the QSPFM has the potential to measure the intrinsic electrical properties of a wide range of microscopic materials in situ without electrode fabrication.

  13. CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES: A Thin Liquid Film and Its Effects in an Atomic Force Microscopy Measurement

    NASA Astrophysics Data System (ADS)

    Lin, Jing; Zheng, Zhi-Jun; Yu, Ji-Lin; Bai, Yi-Long

    2009-08-01

    Recently, it has been observed that a liquid film spreading on a sample surface will significantly distort atomic force microscopy (AFM) measurements. In order to elaborate on the effect, we establish an equation governing the deformation of liquid film under its interaction with the AFM tip and substrate. A key issue is the critical liquid bump height y0c, at which the liquid film jumps to contact the AFM tip. It is found that there are three distinct regimes in the variation of y0c with film thickness H, depending on Hamaker constants of tip, sample and liquid. Noticeably, there is a characteristic thickness H* physically defining what a thin film is; namely, once the film thickness H is the same order as H*, the effect of film thickness should be taken into account. The value of H* is dependent on Hamaker constants and liquid surface tension as well as tip radius.

  14. Multi-terminal magnetotransport measurements over a tunable graphene p-n junction created by AFM-nanomachining

    NASA Astrophysics Data System (ADS)

    Schmidt, H.; Smirnov, D.; Rode, J.; Haug, R. J.

    2013-12-01

    An Atomic Force Microscope is used to alter one part of a single layer graphene sample locally. Transport experiments at low temperatures are then used to characterize the different parts independently with field effect and Hall measurements. It is shown, that the nanomachining leads to an effective doping in the altered area and therefore to a difference in the charge carrier density of Δn = 3.5 ṡ 1015m-2 between the unchanged and changed part. These two parts can be tuned with a global backgate to form a junction of different polarity, i.e. a p-n junction.

  15. Bi-harmonic cantilever design for improved measurement sensitivity in tapping-mode atomic force microscopy.

    PubMed

    Loganathan, Muthukumaran; Bristow, Douglas A

    2014-04-01

    This paper presents a method and cantilever design for improving the mechanical measurement sensitivity in the atomic force microscopy (AFM) tapping mode. The method uses two harmonics in the drive signal to generate a bi-harmonic tapping trajectory. Mathematical analysis demonstrates that the wide-valley bi-harmonic tapping trajectory is as much as 70% more sensitive to changes in the sample topography than the standard single-harmonic trajectory typically used. Although standard AFM cantilevers can be driven in the bi-harmonic tapping trajectory, they require large forcing at the second harmonic. A design is presented for a bi-harmonic cantilever that has a second resonant mode at twice its first resonant mode, thereby capable of generating bi-harmonic trajectories with small forcing signals. Bi-harmonic cantilevers are fabricated by milling a small cantilever on the interior of a standard cantilever probe using a focused ion beam. Bi-harmonic drive signals are derived for standard cantilevers and bi-harmonic cantilevers. Experimental results demonstrate better than 30% improvement in measurement sensitivity using the bi-harmonic cantilever. Images obtained through bi-harmonic tapping exhibit improved sharpness and surface tracking, especially at high scan speeds and low force fields.

  16. Bi-harmonic cantilever design for improved measurement sensitivity in tapping-mode atomic force microscopy

    SciTech Connect

    Loganathan, Muthukumaran; Bristow, Douglas A.

    2014-04-15

    This paper presents a method and cantilever design for improving the mechanical measurement sensitivity in the atomic force microscopy (AFM) tapping mode. The method uses two harmonics in the drive signal to generate a bi-harmonic tapping trajectory. Mathematical analysis demonstrates that the wide-valley bi-harmonic tapping trajectory is as much as 70% more sensitive to changes in the sample topography than the standard single-harmonic trajectory typically used. Although standard AFM cantilevers can be driven in the bi-harmonic tapping trajectory, they require large forcing at the second harmonic. A design is presented for a bi-harmonic cantilever that has a second resonant mode at twice its first resonant mode, thereby capable of generating bi-harmonic trajectories with small forcing signals. Bi-harmonic cantilevers are fabricated by milling a small cantilever on the interior of a standard cantilever probe using a focused ion beam. Bi-harmonic drive signals are derived for standard cantilevers and bi-harmonic cantilevers. Experimental results demonstrate better than 30% improvement in measurement sensitivity using the bi-harmonic cantilever. Images obtained through bi-harmonic tapping exhibit improved sharpness and surface tracking, especially at high scan speeds and low force fields.

  17. Probing three-dimensional surface force fields with atomic resolution: Measurement strategies, limitations, and artifact reduction.

    PubMed

    Baykara, Mehmet Z; Dagdeviren, Omur E; Schwendemann, Todd C; Mönig, Harry; Altman, Eric I; Schwarz, Udo D

    2012-01-01

    Noncontact atomic force microscopy (NC-AFM) is being increasingly used to measure the interaction force between an atomically sharp probe tip and surfaces of interest, as a function of the three spatial dimensions, with picometer and piconewton accuracy. Since the results of such measurements may be affected by piezo nonlinearities, thermal and electronic drift, tip asymmetries, and elastic deformation of the tip apex, these effects need to be considered during image interpretation.In this paper, we analyze their impact on the acquired data, compare different methods to record atomic-resolution surface force fields, and determine the approaches that suffer the least from the associated artifacts. The related discussion underscores the idea that since force fields recorded by using NC-AFM always reflect the properties of both the sample and the probe tip, efforts to reduce unwanted effects of the tip on recorded data are indispensable for the extraction of detailed information about the atomic-scale properties of the surface.

  18. Analysis of the effect of LRP-1 silencing on the invasive potential of cancer cells by nanomechanical probing and adhesion force measurements using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Le Cigne, A.; Chièze, L.; Beaussart, A.; El-Kirat-Chatel, S.; Dufrêne, Y. F.; Dedieu, S.; Schneider, C.; Martiny, L.; Devy, J.; Molinari, M.

    2016-03-01

    Low-density lipoprotein receptor-related protein 1 (LRP-1) can internalize proteases involved in cancer progression and is thus considered a promising therapeutic target. However, it has been demonstrated that LRP-1 is also able to regulate the endocytosis of membrane-anchored proteins. Thus, strategies that target LRP-1 to modulate proteolysis could also affect adhesion and cytoskeleton dynamics. Here, we investigated the effect of LRP-1 silencing on parameters reflecting cancer cells' invasiveness by atomic force microscopy (AFM). The results show that LRP-1 silencing induces changes in the cells' adhesion behavior, particularly the dynamics of cell attachment. Clear alterations in morphology, such as more pronounced stress fibers and increased spreading, leading to increased area and circularity, were also observed. The determination of the cells' mechanical properties by AFM showed that these differences are correlated with an increase in Young's modulus. Moreover, the measurements show an overall decrease in cell motility and modifications of directional persistence. An overall increase in the adhesion force between the LRP-1-silenced cells and a gelatin-coated bead was also observed. Ultimately, our AFM-based force spectroscopy data, recorded using an antibody directed against the β1 integrin subunit, provide evidence that LRP-1 silencing modifies the rupture force distribution. Together, our results show that techniques traditionally used for the investigation of cancer cells can be coupled with AFM to gain access to complementary phenotypic parameters that can help discriminate between specific phenotypes associated with different degrees of invasiveness.Low-density lipoprotein receptor-related protein 1 (LRP-1) can internalize proteases involved in cancer progression and is thus considered a promising therapeutic target. However, it has been demonstrated that LRP-1 is also able to regulate the endocytosis of membrane-anchored proteins. Thus, strategies

  19. Structural investigations on native collagen type I fibrils using AFM

    SciTech Connect

    Strasser, Stefan; Zink, Albert; Janko, Marek; Heckl, Wolfgang M.; Thalhammer, Stefan . E-mail: stefan.thalhammer@gsf.de

    2007-03-02

    This study was carried out to determine the elastic properties of single collagen type I fibrils with the use of atomic force microscopy (AFM). Native collagen fibrils were formed by self-assembly in vitro characterized with the AFM. To confirm the inner assembly of the collagen fibrils, the AFM was used as a microdissection tool. Native collagen type I fibrils were dissected and the inner core uncovered. To determine the elastic properties of collagen fibrils the tip of the AFM was used as a nanoindentor by recording force-displacement curves. Measurements were done on the outer shell and in the core of the fibril. The structural investigations revealed the banding of the shell also in the core of native collagen fibrils. Nanoindentation experiments showed the same Young's modulus on the shell as well as in the core of the investigated native collagen fibrils. In addition, the measurements indicate a higher adhesion in the core of the collagen fibrils compared to the shell.

  20. Unsteady Aerodynamic Force Sensing from Measured Strain

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi

    2016-01-01

    A simple approach for computing unsteady aerodynamic forces from simulated measured strain data is proposed in this study. First, the deflection and slope of the structure are computed from the unsteady strain using the two-step approach. Velocities and accelerations of the structure are computed using the autoregressive moving average model, on-line parameter estimator, low-pass filter, and a least-squares curve fitting method together with analytical derivatives with respect to time. Finally, aerodynamic forces over the wing are computed using modal aerodynamic influence coefficient matrices, a rational function approximation, and a time-marching algorithm. A cantilevered rectangular wing built and tested at the NASA Langley Research Center (Hampton, Virginia, USA) in 1959 is used to validate the simple approach. Unsteady aerodynamic forces as well as wing deflections, velocities, accelerations, and strains are computed using the CFL3D computational fluid dynamics (CFD) code and an MSC/NASTRAN code (MSC Software Corporation, Newport Beach, California, USA), and these CFL3D-based results are assumed as measured quantities. Based on the measured strains, wing deflections, velocities, accelerations, and aerodynamic forces are computed using the proposed approach. These computed deflections, velocities, accelerations, and unsteady aerodynamic forces are compared with the CFL3D/NASTRAN-based results. In general, computed aerodynamic forces based on the lifting surface theory in subsonic speeds are in good agreement with the target aerodynamic forces generated using CFL3D code with the Euler equation. Excellent aeroelastic responses are obtained even with unsteady strain data under the signal to noise ratio of -9.8dB. The deflections, velocities, and accelerations at each sensor location are independent of structural and aerodynamic models. Therefore, the distributed strain data together with the current proposed approaches can be used as distributed deflection

  1. A MEMS sensor for microscale force measurements

    NASA Astrophysics Data System (ADS)

    Majcherek, S.; Aman, A.; Fochtmann, J.

    2016-02-01

    This paper describes the development and testing of a new MEMS-based sensor device for microscale contact force measurements. A special MEMS cell was developed to reach higher lateral resolution than common steel-based load cells with foil-type strain gauges as mechanical-electrical converters. The design provided more than one normal force measurement point with spatial resolution in submillimeter range. Specific geometric adaption of the MEMS-device allowed adjustability of its measurement range between 0.5 and 5 N. The thin film nickel-chromium piezo resistors were used to achieve a mechanical-electrical conversion. The production process was realized by established silicon processing technologies such as deep reactive ion etching and vapor deposition (sputtering). The sensor was tested in two steps. Firstly, the sensor characteristics were carried out by application of defined loads at the measurement points by a push-pull tester. As a result, the sensor showed linear behavior. A measurement system analysis (MSA1) was performed to define the reliability of the measurement system. The measured force values had the maximal relative deviation of 1% to average value of 1.97 N. Secondly, the sensor was tested under near-industrial conditions. In this context, the thermal induced relaxation behavior of the electrical connector contact springs was investigated. The handling of emerging problems during the characterization process of the sensor is also described.

  2. Tip Characterization Method using Multi-feature Characterizer for CD-AFM

    PubMed Central

    Orji, Ndubuisi G.; Itoh, Hiroshi; Wang, Chumei; Dixson, Ronald G.; Walecki, Peter S.; Schmidt, Sebastian W.; Irmer, Bernd

    2016-01-01

    In atomic force microscopy (AFM) metrology, the tip is a key source of uncertainty. Images taken with an AFM show a change in feature width and shape that depends on tip geometry. This geometric dilation is more pronounced when measuring features with high aspect ratios, and makes it difficult to obtain absolute dimensions. In order to accurately measure nanoscale features using an AFM, the tip dimensions should be known with a high degree of precision. We evaluate a new AFM tip characterizer, and apply it to critical dimension AFM (CD-AFM) tips used for high aspect ratio features. The characterizer is made up of comb-shaped lines and spaces, and includes a series of gratings that could be used as an integrated nanoscale length reference. We also demonstrate a simulation method that could be used to specify what range of tip sizes and shapes the characterizer can measure. Our experiments show that for non re-entrant features, the results obtained with this characterizer are consistent to 1 nm with the results obtained by using widely accepted but slower methods that are common practice in CD-AFM metrology. A validation of the integrated length standard using displacement interferometry indicates a uniformity of better than 0.75%, suggesting that the sample could be used as highly accurate and SI traceable lateral scale for the whole evaluation process. PMID:26720439

  3. Motion recognition from contact force measurement.

    PubMed

    Yabuki, Takumi; Venture, Gentiane

    2013-01-01

    Optical motion capture systems, which are used in broad fields of research, are costly; they need large installation space and calibrations. We find difficulty in applying it in typical homes and care centers. Therefore we propose to use low cost contact force measurement systems to develop rehabilitation and healthcare monitoring tools. Here, we propose a novel algorithm for motion recognition using the feature vector from force data solely obtained during a daily exercise program. We recognized 7 types of movement (Radio Exercises) of two candidates (mean age 22, male). The results show that the recognition rate of each motion has high score (mean: 86.9%). The results also confirm that there is a clustering of each movement in personal exercises data, and a similarity of the clustering even for different candidates thus that motion recognition is possible using contact force data.

  4. Trends of Measured Climate Forcing Agents

    NASA Technical Reports Server (NTRS)

    Hansen, James E.; Sato, Makiko; Einaudi, Franco (Technical Monitor)

    2002-01-01

    The growth rate of climate forcing by measured greenhouse gases peaked near 1980 at almost 5 W/sq m per century. This growth rate has since declined to approximately equal to 3 W/sq m per century, largely because of cooperative international actions. We argue that trends can be reduced to the level needed for the moderate "alternative" climate scenario (approximately equal to 2 W/M2 per century for the next 50 years) by means of concerted actions that have other benefits, but the forcing reductions are not automatic "co-benefits" of actions that slow CO2 emissions. Current trends of climate forcings by aerosols remain very uncertain. Nevertheless, practical constraints on changes in emission levels suggest that global warming at a rate + 0.15 +/- 0.05 C per decade will occur over the next several decades.

  5. Proximity effect on hydrodynamic interaction between a sphere and a plane measured by force feedback microscopy at different frequencies

    NASA Astrophysics Data System (ADS)

    Carpentier, Simon; Rodrigues, Mario S.; Charlaix, Elisabeth; Chevrier, Joël

    2015-07-01

    In this article, we measure the viscous damping G″, and the associated stiffness G', of a liquid flow in sphere-plane geometry over a large frequency range. In this regime, the lubrication approximation is expected to dominate. We first measure the static force applied to the tip. This is made possible thanks to a force feedback method. Adding a sub-nanometer oscillation of the tip, we obtain the dynamic part of the interaction with solely the knowledge of the lever properties in the experimental context using a linear transformation of the amplitude and phase change. Using a Force Feedback Microscope (FFM), we are then able to measure simultaneously the static force, the stiffness, and the dissipative part of the interaction in a broad frequency range using a single AFM probe. Similar measurements have been performed by the Surface Force Apparatus (SFA) with a probe radius hundred times bigger. In this context, the FFM can be called nano-SFA.

  6. Nano-scale simulative measuring model for tapping mode atomic force microscopy and analysis for measuring a nano-scale ladder-shape standard sample.

    PubMed

    Lin, Zone-Ching; Chou, Ming-Ho

    2010-07-01

    This study proposes to construct a nano-scale simulative measuring model of Tapping Mode Atomic Force Microscopy (TM-AFM), compare with the edge effect of simulative and measurement results. It combines with the Morse potential and vibration theory to calculate the tip-sample atomic interaction force between probe and sample. Used Silicon atoms (Si) arrange the shape of the rectangular cantilever probe and the nano-scale ladder-shape standard sample atomic model. The simulative measurements are compared with the results for the simulative measurements and experimental measurement. It is found that the scan rate and the probe tip's bevel angle are the two reasons to cause the surface error and edge effect of measuring the nano-scale ladder-shape standard sample by TM-AFM. And the bevel angle is about equal to the probe tip's bevel angle from the results of simulated and experimented on the vertical section of the sample edge. To compare with the edge effect between the simulation and experimental measurement, its error is small. It could be verified that the constructed simulative measuring model for TM-AFM in this article is reasonable.

  7. Measuring viscoelasticity of soft samples using atomic force microscopy.

    PubMed

    Tripathy, S; Berger, E J

    2009-09-01

    Relaxation indentation experiments using atomic force microscopy (AFM) are used to obtain viscoelastic material properties of soft samples. The quasilinear viscoelastic (QLV) model formulated by Fung (1972, "Stress Strain History Relations of Soft Tissues in Simple Elongation," in Biomechanics, Its Foundation and Objectives, Prentice-Hall, Englewood Cliffs, NJ, pp. 181-207) for uniaxial compression data was modified for the indentation test data in this study. Hertz contact mechanics was used for the instantaneous deformation, and a reduced relaxation function based on continuous spectrum is used for the time-dependent part in the model. The modified QLV indentation model presents a novel method to obtain viscoelastic properties from indentation data independent of relaxation times of the test. The major objective of the present study is to develop the QLV indentation model and implement the model on AFM indentation data for 1% agarose gel and a viscoelastic polymer using spherical indenter.

  8. Forced free-shear layer measurements

    NASA Technical Reports Server (NTRS)

    Leboeuf, Richard L.

    1994-01-01

    Detailed three-dimensional three-component phase averaged measurements of the spanwise and streamwise vorticity formation and evolution in acoustically forced plane free-shear flows have been obtained. For the first time, phase-averaged measurements of all three velocity components have been obtained in both a mixing layer and a wake on three-dimensional grids, yielding the spanwise and streamwise vorticity distributions without invoking Taylor's hypothesis. Initially, two-frequency forcing was used to phase-lock the roll-up and first pairing of the spanwise vortical structures in a plane mixing layer. The objective of this study was to measure the near-field vortical structure morphology in a mixing layer with 'natural' laminar initial boundary layers. For the second experiment the second and third subharmonics of the fundamental roll-up frequency were added to the previous two-frequency forcing in order to phase-lock the roll-up and first three pairings of the spanwise rollers in the mixing layer. The objective of this study was to determine the details of spanwise scale changes observed in previous time-averaged measurements and flow visualization of unforced mixing layers. For the final experiment, single-frequency forcing was used to phase-lock the Karman vortex street in a plane wake developing from nominally two-dimensional laminar initial boundary layers. The objective of this study was to compare measurements of the three-dimensional structure in a wake developing from 'natural' initial boundary layers to existing models of wake vortical structure.

  9. Measurement-only topological quantum computation without forced measurements

    NASA Astrophysics Data System (ADS)

    Zheng, Huaixiu; Dua, Arpit; Jiang, Liang

    2016-12-01

    We investigate the measurement-only topological quantum computation (MOTQC) approach proposed by Bonderson et al (2008 Phys. Rev. Lett. 101 010501) where the braiding operation is shown to be equivalent to a series of topological charge ‘forced measurements’ of anyons. In a forced measurement, the charge measurement is forced to yield the desired outcome (e.g. charge 0) via repeatedly measuring charges in different bases. This is a probabilistic process with a certain success probability for each trial. In practice, the number of measurements needed will vary from run to run. We show that such an uncertainty associated with forced measurements can be removed by simulating the braiding operation using a fixed number of three measurements supplemented by a correction operator. Furthermore, we demonstrate that in practice we can avoid applying the correction operator in hardware by implementing it in software. Our findings greatly simplify the MOTQC proposal and only require the capability of performing charge measurements to implement topologically protected transformations generated by braiding exchanges without physically moving anyons.

  10. Influence of Halide Solutions on Collagen Networks: Measurements of Physical Properties by Atomic Force Microscopy

    PubMed Central

    Kempe, André; Lackner, Maximilian

    2016-01-01

    The influence of aqueous halide solutions on collagen coatings was tested. The effects on resistance against indentation/penetration on adhesion forces were measured by atomic force microscopy (AFM) and the change of Young's modulus of the coating was derived. Comparative measurements over time were conducted with halide solutions of various concentrations. Physical properties of the mesh-like coating generally showed large variability. Starting with a compact set of physical properties, data disperse after minutes. A trend of increase in elasticity and permeability was found for all halide solutions. These changes were largest in NaI, displaying a logical trend with ion size. However a correlation with concentration was not measured. Adhesion properties were found to be independent of mechanical properties. The paper also presents practical experience for AFM measurements of soft tissue under liquids, particularly related to data evaluation. The weakening in physical strength found after exposure to halide solutions may be interpreted as widening of the network structure or change in the chemical properties in part of the collagen fibres (swelling). In order to design customized surface coatings at optimized conditions also for medical applications, halide solutions might be used as agents with little impact on the safety of patients. PMID:27721994

  11. AFM-Based Mechanical Nanomanipulation

    NASA Astrophysics Data System (ADS)

    Landolsi, Fakhreddine

    2011-12-01

    Advances in several research areas increase the need for more sophisticated fabrication techniques and better performing materials. Tackling this problem from a bottom-up perspective is currently an active field of research. The bottom-up fabrication procedure offers sub-nanometer accurate manipulation. At this time, candidates to achieve nanomanipulation include chemical (self-assembly), biotechnology methods (DNA-based), or using controllable physical forces (e.g. electrokinetic forces, mechanical forces). In this thesis, new methods and techniques for mechanical nanomanipulation using probe force interaction are developed. The considered probes are commonly used in Atomic Force Microscopes (AFMs) for high resolution imaging. AFM-based mechanical nanomanipulation will enable arranging nanoscale entities such as nanotubes and molecules in a precise and controlled manner to assemble and produce novel devices and systems at the nanoscale. The novelty of this research stems from the development of new modeling of the physics and mechanics of the tip interaction with nanoscale entities, coupled with the development of new smart cantilevers with multiple degrees of freedom. The gained knowledge from the conducted simulations and analysis is expected to enable true precision and repeatability of nanomanipulation tasks which is not feasible with existing methods and technologies.

  12. Atomic force microscope-assisted scanning tunneling spectroscopy under ambient conditions.

    PubMed

    Vakhshouri, Amin; Hashimoto, Katsushi; Hirayama, Yoshiro

    2014-12-01

    We have developed a method of atomic force microscopy (AFM)-assisted scanning tunneling spectroscopy (STS) under ambient conditions. An AFM function is used for rapid access to a selected position prior to performing STS. The AFM feedback is further used to suppress vertical thermal drift of the tip-sample distance during spectroscopy, enabling flexible and stable spectroscopy measurements at room temperature.

  13. Micro-wilhelmy and related liquid property measurements using constant-diameter nanoneedle-tipped atomic force microscope probes.

    PubMed

    Yazdanpanah, Mehdi M; Hosseini, Mahdi; Pabba, Santosh; Berry, Scott M; Dobrokhotov, Vladimir V; Safir, Abdelilah; Keynton, Robert S; Cohn, Robert W

    2008-12-02

    The micro-Wilhelmy method is a well-established method of determining surface tension by measuring the force of withdrawing a tens of microns to millimeters in diameter cylindrical wire or fiber from a liquid. A comparison of insertion force to retraction force can also be used to determine the contact angle with the fiber. Given the limited availability of atomic force microscope (AFM) probes that have long constant diameter tips, force-distance (F-D) curves using probes with standard tapered tips have been difficult to relate to surface tension. In this report, constant diameter metal alloy nanowires (referred to as "nanoneedles") between 7.2 and 67 microm in length and 108 and 1006 nm in diameter were grown on AFM probes. F-D and Q damping AFM measurements of wetting and drag forces made with the probes were compared against standard macroscopic models of these forces on slender cylinders to estimate surface tension, contact angle, meniscus height, evaporation rate, and viscosity. The surface tensions for several low molecular weight liquids that were measured with these probes were between -4.2% and +8.3% of standard reported values. Also, the F-D curves show well-defined stair-step events on insertion and retraction from partial wetting liquids, compared to the continuously growing attractive force of standard tapered AFM probe tips. In the AFM used, the stair-step feature in F-D curves was repeatably monitored for at least 0.5 h (depending on the volatility of the liquid), and this feature was then used to evaluate evaporation rates (as low as 0.30 nm/s) through changes in the surface height of the liquid. A nanoneedle with a step change in diameter at a known distance from its end produced two steps in the F-D curve from which the meniscus height was determined. The step features enable meniscus height to be determined from distance between the steps, as an alternative to calculating the height corresponding to the AFM measured values of surface tension and

  14. Monitoring the osmotic response of single yeast cells through force measurement in the environmental scanning electron microscope

    NASA Astrophysics Data System (ADS)

    Jansson, Anna; Nafari, Alexandra; Hedfalk, Kristina; Olsson, Eva; Svensson, Krister; Sanz-Velasco, Anke

    2014-02-01

    We present a measurement system that combines an environmental scanning electron microscope (ESEM) and an atomic force microscope (AFM). This combination enables studies of static and dynamic mechanical properties of hydrated specimens, such as individual living cells. The integrated AFM sensor provides direct and continuous force measurement based on piezoresistive force transduction, allowing the recording of events in the millisecond range. The in situ ESEM-AFM setup was used to study Pichia pastoris wild-type yeast cells. For the first time, a quantified measure of the osmotic response of an individual yeast cell inside an ESEM is presented. With this technique, cell size changes due to humidity variations can be monitored with nanometre accuracy. In addition, mechanical properties were extracted from load-displacement curves. A Young's modulus of 13-15 MPa was obtained for the P. pastoris yeast cells. The developed method is highly interesting as a complementary tool for the screening of drugs directed towards cellular water transport activity and provides new possibilities of studying mechanosensitive regulation of aquaporins.

  15. Bubble colloidal AFM probes formed from ultrasonically generated bubbles.

    PubMed

    Vakarelski, Ivan U; Lee, Judy; Dagastine, Raymond R; Chan, Derek Y C; Stevens, Geoffrey W; Grieser, Franz

    2008-02-05

    Here we introduce a simple and effective experimental approach to measuring the interaction forces between two small bubbles (approximately 80-140 microm) in aqueous solution during controlled collisions on the scale of micrometers to nanometers. The colloidal probe technique using atomic force microscopy (AFM) was extended to measure interaction forces between a cantilever-attached bubble and surface-attached bubbles of various sizes. By using an ultrasonic source, we generated numerous small bubbles on a mildly hydrophobic surface of a glass slide. A single bubble picked up with a strongly hydrophobized V-shaped cantilever was used as the colloidal probe. Sample force measurements were used to evaluate the pure water bubble cleanliness and the general consistency of the measurements.

  16. DNA-duplex linker for AFM-SELEX of DNA aptamer against human serum albumin.

    PubMed

    Takenaka, Musashi; Okumura, Yuzo; Amino, Tomokazu; Miyachi, Yusuke; Ogino, Chiaki; Kondo, Akihiko

    2017-02-15

    DNA-duplex interactions in thymines and adenins are used as a linker for the novel methodology of Atomic Force Microscope-Systematic Evolution of Ligands by EXpotential enrichment (AFM-SELEX). This study used the hydrogen bonds in 10 mer of both thymines (T10) and adenines (A10). Initially, the interactive force in T10-A10 was measured by AFM, which returned an average interactive force of approximately 350pN. Based on this result, DNA aptamers against human serum albumin could be selected in the 4th round, and 15 different clones could be sequenced. The lowest dissociation constant of the selected aptamer was identified via surface plasmon resonance, and it proved to be identical to that of the commercial aptamer. Therefore, specific hydrogen bonds in DNA can be useful linkers for AFM-SELEX.

  17. Nanogap based graphene coated AFM tips with high spatial resolution, conductivity and durability.

    PubMed

    Lanza, Mario; Gao, Teng; Yin, Zixuan; Zhang, Yanfeng; Liu, Zhongfan; Tong, Yuzhen; Shen, Ziyong; Duan, Huiling

    2013-11-21

    After one decade of analyzing the intrinsic properties of graphene, interest into the development of graphene-based devices and micro electromechanical systems is increasing. Here, we fabricate graphene-coated atomic force microscope tips by growing the graphene on copper foil and transferring it onto the apex of a commercially available AFM tip. The resulting tip exhibits surprising enhanced resolution in nanoscale electrical measurements. By means of topographic AFM maps and statistical analyses we determine that this superior performance may be related to the presence of a nanogap between the graphene and the tip apex, which reduces the tip radius and tip-sample contact area. In addition, the graphene-coated tips show a low tip-sample interaction, high conductivity and long life times. The novel fabrication-friendly tip could improve the quality and reliability of AFM experiments, while reducing the cost of AFM-based research.

  18. Measurement of interaction force between nanoarrayed integrin {alpha}{sub v}{beta}{sub 3} and immobilized vitronectin on the cantilever tip

    SciTech Connect

    Lee, Minsu; Yang, Hyun-Kyu; Park, Keun-Hyung; Kang, Dong-Ku; Chang, Soo-Ik Kang, In-Cheol

    2007-11-03

    Protein nanoarrays containing integrin {alpha}{sub v}{beta}{sub 3} or BSA were fabricated on ProLinker{sup TM}-coated Au surface by dip-pen nanolithography (DPN). An atomic force microscope (AFM) tip coated with ProLinker{sup TM} was modified by vitronectin. We measured the interaction force between nanoarrayed integrin {alpha}{sub v}{beta}{sub 3} or BSA and immobilized vitronectin on the cantilever tip by employing tethering-unbinding method. The unbinding force between integrin {alpha}{sub v}{beta}{sub 3} and vitronectin (1087 {+-} 62 pN) was much higher than that of between BSA and vitronectin (643 {+-} 74 pN). These results demonstrate that one can distinguish a specific protein interaction from non-specific interactions by means of force measurement on the molecular interactions between the nanoarrayed protein and its interacting protein on the AFM tip.

  19. Pulling angle-dependent force microscopy

    NASA Astrophysics Data System (ADS)

    Grebíková, L.; Gojzewski, H.; Kieviet, B. D.; Klein Gunnewiek, M.; Vancso, G. J.

    2017-03-01

    In this paper, we describe a method allowing one to perform three-dimensional displacement control in force spectroscopy by atomic force microscopy (AFM). Traditionally, AFM force curves are measured in the normal direction of the contacted surface. The method described can be employed to address not only the magnitude of the measured force but also its direction. We demonstrate the technique using a case study of angle-dependent desorption of a single poly(2-hydroxyethyl methacrylate) (PHEMA) chain from a planar silica surface in an aqueous solution. The chains were end-grafted from the AFM tip in high dilution, enabling single macromolecule pull experiments. Our experiments give evidence of angular dependence of the desorption force of single polymer chains and illustrate the added value of introducing force direction control in AFM.

  20. Progressing single biomolecule force spectroscopy measurements for the screening of DNA binding agents

    NASA Astrophysics Data System (ADS)

    Zhang, Wenke; Barbagallo, Romina; Madden, Claire; Roberts, Clive J.; Woolford, Alison; Allen, Stephanie

    2005-10-01

    Recent studies have indicated that the force-extension properties of single molecules of double stranded (ds) DNA are sensitive to the presence of small molecule DNA binding agents, and also to their mode of binding. These observations raise the possibility of using this approach as a highly sensitive tool for the screening of such agents. However, particularly for studies employing the atomic force microscope (AFM), several non-trivial barriers hinder the progress of this approach to the non-specialist arena and hence also the full realization of this possibility. In this paper, we therefore address a series of key reproducibility and metrological issues associated with this type of measurement. Specifically, we present an improved immobilization method that covalently anchors one end (5' end) of a dual labelled (5'-thiol, 3'-biotin) p53 DNA molecule onto a gold substrate via gold-thiol chemistry, whilst the biotinylated 3' end is available for 'pick-up' using a streptavidin modified AFM tip. We also show that co-surface immobilization of DNA with 6-mercapto-1-hexanol (MCH) can also lead to a further increase the measured contour length. We demonstrate the impact of these improved protocols through the observation of the cooperative transition plateau in a DNA fragment of approximately 118 bp, a significantly smaller fragment than previously investigated. The results of a comparative study of the effects of a model minor groove binder (Hoechst 33258) and an intercalating drug (proflavine), alone, as a mixture and under different buffer conditions, are also presented.

  1. Oriented covalent immobilization of antibodies for measurement of intermolecular binding forces between zipper-like contact surfaces of split inteins

    PubMed Central

    Sorci, Mirco; Dassa, Bareket; Liu, Hongwei; Anand, Gaurav; Dutta, Amit K.; Pietrokovski, Shmuel; Belfort, Marlene; Belfort, Georges

    2013-01-01

    In order to measure the intermolecular binding forces between two halves (or partners) of naturally split protein splicing elements called inteins, a novel thiol-hydrazide linker was designed and used to orient immobilized antibodies specific for each partner. Activation of the surfaces was achieved in one step allowing direct force measurements of the formation of a peptide bond catalyzed by the binding of the two partners of the split intein (called protein trans-splicing). Through this binding process, a whole functional intein is formed resulting in subsequent splicing. Atomic force microscopy (AFM) was used to directly measure the split intein partner binding at 1µm/s between native (wild-type) and mixed pairs of C- and N-terminal partners of naturally occurring split inteins from three cyanobacteria. Native and mixed pairs exhibit similar binding forces within the error of the measurement technique (~52 pN). Bioinformatic sequence analysis and computational structural analysis discovered a zipper-like contact between the two partners with electrostatic and non-polar attraction between multiple aligned ion pairs and hydrophobic residues. Also, we tested the Jarzynski’s equality and demonstrated, as expected, that non-equilibrium dissipative measurements obtained here gave larger energies of interaction as compared with those for equilibrium. Hence, AFM coupled with our immobilization strategy and computational studies provides a useful analytical tool for the direct measurement of intermolecular association of split inteins and could be extended to any interacting protein pair. PMID:23679912

  2. Application of a positioning and measuring machine for metrological long-range scanning force microscopy

    NASA Astrophysics Data System (ADS)

    Hausotte, T.; Jaeger, G.; Manske, E.; Hofmann, N.; Dorozhovets, N.

    2005-08-01

    This article deals with a high-precision three-dimensional positioning and measuring machine and its application as a metrological long-range scanning force microscope. At the Institute of Process Measurement and Sensor Technology of the Technische Universitaet Ilmenau an interferometric nanopositioning and nanomeasuring machine has been developed. Which is able to achieve a resolution of less than 0.1 nm over the entire positioning and measurement range of 25 mm x 25 mm x 5 mm and is traceable to the length standard. The Abbe offset-free design in conjunction with a corner mirror as a reference coordinate system provides extraordinary accuracy. The integration of several probe systems and nanotools (AFM, STM, focus sensor, tactile probes) makes the nanopositioning and nanomeasuring machine suitable for various tasks in the micro- and nanotechnologies. Various probe systems have been integrated in the last few years. For example, a commercial piezo tube AFM was integrated and tested. Additionally, interferometeric measurement systems of the nanopositioning and nanomeasuring machine enables the calibration of probe systems. Also in order to achieve the best possible measurement results special probe systems have been developed and tested and are discussed briefly.

  3. Interaction imaging with amplitude-dependence force spectroscopy.

    PubMed

    Platz, Daniel; Forchheimer, Daniel; Tholén, Erik A; Haviland, David B

    2013-01-01

    Knowledge of surface forces is the key to understanding a large number of processes in fields ranging from physics to material science and biology. The most common method to study surfaces is dynamic atomic force microscopy (AFM). Dynamic AFM has been enormously successful in imaging surface topography, even to atomic resolution, but the force between the AFM tip and the surface remains unknown during imaging. Here we present a new approach that combines high-accuracy force measurements and high-resolution scanning. The method, called amplitude-dependence force spectroscopy (ADFS), is based on the amplitude dependence of the cantilever's response near resonance and allows for separate determination of both conservative and dissipative tip-surface interactions. We use ADFS to quantitatively study and map the nano-mechanical interaction between the AFM tip and heterogeneous polymer surfaces. ADFS is compatible with commercial atomic force microscopes and we anticipate its widespread use in taking AFM toward quantitative microscopy.

  4. Lubrication forces in air and accommodation coefficient measured by a thermal damping method using an atomic force microscope

    NASA Astrophysics Data System (ADS)

    Honig, Christopher D. F.; Sader, John E.; Mulvaney, Paul; Ducker, William A.

    2010-05-01

    By analysis of the thermally driven oscillation of an atomic force microscope (AFM) cantilever, we have measured both the damping and static forces acting on a sphere near a flat plate immersed in gas. By varying the proximity of the sphere to the plate, we can continuously vary the Knudsen number (Kn) at constant pressure, thereby accessing the slip flow, transition, and molecular regimes at a single pressure. We use measurements in the slip-flow regime to determine the combined slip length (on both sphere and plate) and the tangential momentum accommodation coefficient, σ . For ambient air at 1 atm between two methylated glass solids, the inverse damping is linear with separation and the combined slip length on both surfaces is 250nm±100nm , which corresponds to σ=0.77±0.24 . At small separations (Kn>0.4) the measured inverse damping is no longer linear with separation, and is observed to exhibit reasonable agreement with the Vinogradova formula.

  5. AFM/MFM hybrid nanocharacterization of martensitic transformation and degradation for Fe-Pd shape memory alloy

    NASA Astrophysics Data System (ADS)

    Suzuki, Takayuki; Nagatani, Kohei; Hirano, Kazumi; Teramoto, Tokuo; Taya, Minoru

    2003-07-01

    Martensitic transformation and degradation characteristics for Fe-Pd ferromagnetic shape memory alloy were investigated by the developed AFM (Atomic Force Microscope)/MFM (Magnetic Force Microscope) hybrid nano-characterization technique. In AFM martensitic transformation was detected by the changes of surface topography of martensite plates. In MFM martensitic transformation was detected by the changes of magnetic domain structures. This technique has an advantage that martensitic transformation characteristics such as martensitic transformation temperature and reverse transformation temperature can be measured at microscopic and nanoscopic small area. Degradation characteristics of martensitic transformation under cyclic loading were also detected by the changes of AFM and MFM images. In AFM images surface topography of martensite plates became flat and in MFM images the morphology of magnetic domain structures became unfocused under cyclic loading. Then it was found that the hybrid nano-characterization was very high sensitive technique to evaluate degradation for Fe-Pd ferromagnetic shape memory alloy.

  6. Measuring graphene adhesion using atomic force microscopy with a microsphere tip

    NASA Astrophysics Data System (ADS)

    Jiang, Tao; Zhu, Yong

    2015-06-01

    Van der Waals adhesion between graphene and various substrates has an important impact on the physical properties, device applications and nanomanufacturing processes of graphene. Here we report a general, high-throughput and reliable method that can measure adhesion energies between ultraflat graphene and a broad range of materials using atomic force microscopy with a microsphere tip. In our experiments, only van der Waals force between the tip and a graphene flake is measured. The Maugis-Dugdale theory is employed to convert the measured adhesion force using AFM to the adhesion energy. The ultraflatness of monolayer graphene on mica eliminates the effect of graphene surface roughness on the adhesion, while roughness of the microsphere tip is addressed by the modified Rumpf model. Adhesion energies of monolayer graphene to SiO2 and Cu are obtained as 0.46 and 0.75 J m-2, respectively. This work provides valuable insight into the mechanism of graphene adhesion and can readily extend to the adhesion measurement for other 2D nanomaterials.Van der Waals adhesion between graphene and various substrates has an important impact on the physical properties, device applications and nanomanufacturing processes of graphene. Here we report a general, high-throughput and reliable method that can measure adhesion energies between ultraflat graphene and a broad range of materials using atomic force microscopy with a microsphere tip. In our experiments, only van der Waals force between the tip and a graphene flake is measured. The Maugis-Dugdale theory is employed to convert the measured adhesion force using AFM to the adhesion energy. The ultraflatness of monolayer graphene on mica eliminates the effect of graphene surface roughness on the adhesion, while roughness of the microsphere tip is addressed by the modified Rumpf model. Adhesion energies of monolayer graphene to SiO2 and Cu are obtained as 0.46 and 0.75 J m-2, respectively. This work provides valuable insight into the

  7. Molecular Mechanics of Single Protein Molecules Measured with the Atomic Force Microscope

    NASA Astrophysics Data System (ADS)

    Hansma, Paul K.

    2000-03-01

    After a short history of AFM development in our lab, including recent developments with small cantilevers, this talk will focus on 1) pulling single protein molecules to explore the forces involved in unfolding and 2) watching single protein molecules in action to learn how they function mechanically. 1) Pulling experiments on proteins used as marine adhesives in abalone shells and other biological composite materials reveal modules bound together by sacrificial bonds that are weaker than the backbone bonds in the polypeptide chain.1 These self-healing modules provide effective energy absorption and appear to be a real key to understanding the impressive fracture resistance of biological composite materials. For example, the abalone shell is 3000 times more fracture resistant than a single crystal of calcium carbonate, despite the fact that 97% of the mass of the shell is crystalline calcium carbonate. 2) It is becoming possible, again with AFMs, to learn how some enzymes, nature's nanomachines, do their exquisite materials synthesis and processing. The talk will focus on the chaperonin system of GroEL and GroES that processes incorrectly folded proteins and assists them in refolding correctly. It is becoming possible not only to see single molecule events such as the association and disassociation of the GroEL-Gro-ES complex, but also to measure potential energy functions for the molecules in various conformational states. These new measurements, together with detailed structural measurements from other techniques, give new clues about how these proteins use the energy of ATP to do their work. Since the AFMs of today are very far from fundamental limits, this is only the beginning. 1. B. L. Smith, T. E. Schaffer, M. Viani, J. B. Thompson, N. A. Frederick, J. Kindt, A. Belcher, G. D. Stucky, D. E. Morse and P. K. Hansma, Nature 399, 761 (1999)

  8. Reconstructing the distributed force on an atomic force microscope cantilever.

    PubMed

    Wagner, Ryan; Killgore, Jason

    2017-03-10

    A methodology is developed to reconstruct the force applied to an atomic force microscopy (AFM) cantilever given the shape in which it vibrates. This is accomplished by rewriting Bernoulli-Euler beam theory such that the force on the cantilever is approximated as a linear superposition of the theoretical cantilever eigenmodes. The weighting factors in this summation are calculated from the amplitude and phase measured along the length of the cantilever. The accuracy of the force reconstruction is shown to depend on the frequency at which the measurement is performed, the number of discrete points measured along the length of the cantilever, and the signal-to-noise ratio of the measured signal. In contrast to other AFM force reconstruction techniques, this method can reconstruct the distribution of force applied over the length of the AFM cantilever. However, this method performs poorly for localized forces applied to the cantilever, such as is typical of most tip-sample interaction forces. Proof of concept experiments are performed on an electrostatically excited cantilever and the expected force distribution is recovered. This force reconstruction technique offers previously unavailable insight into the distributed forces experienced by an AFM cantilever.

  9. Reconstructing the distributed force on an atomic force microscope cantilever

    NASA Astrophysics Data System (ADS)

    Wagner, Ryan; Killgore, Jason

    2017-03-01

    A methodology is developed to reconstruct the force applied to an atomic force microscopy (AFM) cantilever given the shape in which it vibrates. This is accomplished by rewriting Bernoulli–Euler beam theory such that the force on the cantilever is approximated as a linear superposition of the theoretical cantilever eigenmodes. The weighting factors in this summation are calculated from the amplitude and phase measured along the length of the cantilever. The accuracy of the force reconstruction is shown to depend on the frequency at which the measurement is performed, the number of discrete points measured along the length of the cantilever, and the signal-to-noise ratio of the measured signal. In contrast to other AFM force reconstruction techniques, this method can reconstruct the distribution of force applied over the length of the AFM cantilever. However, this method performs poorly for localized forces applied to the cantilever, such as is typical of most tip–sample interaction forces. Proof of concept experiments are performed on an electrostatically excited cantilever and the expected force distribution is recovered. This force reconstruction technique offers previously unavailable insight into the distributed forces experienced by an AFM cantilever.

  10. Surface-charge differentiation of streptavidin and avidin by atomic force microscopy-force spectroscopy.

    PubMed

    Almonte, Lisa; Lopez-Elvira, Elena; Baró, Arturo M

    2014-09-15

    Chemical information can be obtained by using atomic force microscopy (AFM) and force spectroscopy (FS) with atomic or molecular resolution, even in liquid media. The aim of this paper is to demonstrate that single molecules of avidin and streptavidin anchored to a biotinylated bilayer can be differentiated by using AFM, even though AFM topographical images of the two proteins are remarkably alike. At physiological pH, the basic glycoprotein avidin is positively charged, whereas streptavidin is a neutral protein. This charge difference can be determined with AFM, which can probe electrostatic double-layer forces by using FS. The force curves, owing to the electrostatic interaction, show major differences when measured on top of each protein as well as on the lipid substrate. FS data show that the two proteins are negatively charged. Nevertheless, avidin and streptavidin can be clearly distinguished, thus demonstrating the sensitivity of AFM to detect small changes in the charge state of macromolecules.

  11. Measurements of the rotordynamic shroud forces for centrifugal pumps

    NASA Technical Reports Server (NTRS)

    Guinzburg, A.; Brennen, C. E.; Acosta, A. J.; Caughey, T. K.

    1990-01-01

    An experiment was designed to measure the rotordynamic shroud forces on a centrifugal pump impeller. The measurements were done for various whirl/impeller speed ratios and for different flow rates. A destabilizing tangential force was measured for small positive whirl ratios and this force decreased with increasing flow rate.

  12. Orthoclase surface structure dissolution measured in situ by x-ray reflectivity and atomic force microscopy.

    SciTech Connect

    Sturchio, N. C.; Fenter, P.; Cheng, L.; Teng, H.

    2000-11-28

    Orthoclase (001) surface topography and interface structure were measured during dissolution by using in situ atomic force microscopy (AFM) and synchrotrons X-ray reflectivity at pH 1.1-12.9 and T = 25-84 C. Terrace roughening at low pH and step motion at high pH were the main phenomena observed, and dissolution rates were measured precisely. Contrasting dissolution mechanisms are inferred for low- and high-pH conditions. These observations clarify differences in alkali feldspar dissolution mechanisms as a function of pH, demonstrate a new in situ method for measuring face-specific dissolution rates on single crystals, and improve the fundamental basis for understanding alkali feldspar weathering processes.

  13. Electron work functions of ferrite and austenite phases in a duplex stainless steel and their adhesive forces with AFM silicon probe.

    PubMed

    Guo, Liqiu; Hua, Guomin; Yang, Binjie; Lu, Hao; Qiao, Lijie; Yan, Xianguo; Li, Dongyang

    2016-02-12

    Local electron work function, adhesive force, modulus and deformation of ferrite and austenite phases in a duplex stainless steel were analyzed by scanning force microscopy. It is demonstrated that the austenite has a higher electron work function than the ferrite, corresponding to higher modulus, smaller deformation and larger adhesive force. Relevant first-principles calculations were conducted to elucidate the mechanism behind. It is demonstrated that the difference in the properties between austenite and ferrite is intrinsically related to their electron work functions.

  14. Technique for measurement of magnetostriction in an individual nanowire using atomic force microscopy

    SciTech Connect

    Jin Park, Jung Flatau, Alison B.; Estrine, Eliot C.; Madhukar Reddy, Sai; Stadler, Bethanie J. H.

    2014-05-07

    We have investigated a method for measuring the dimensions of an individual multilayered Fe-Ga/Cu nanowire (NW) as it changes with induced magnetization. In this study, we demonstrate the proposed approach and establish this as a viable method for measuring the magnetostrictive behavior of an individual Fe-Ga/Cu NW using atomic force microscopy (AFM). When an external magnetic field (∼300 Oe) was applied perpendicular to the NW axis, the NW length appeared minimized. When a field (∼1000 Oe) was applied parallel to the NW axis, the height profile of the NW was found to be higher than in the case with no parallel external field. Since both ends of the NW were welded to the substrate, the magnetic field induced dimensional change of the NW caused deflection of the NW in the upward direction, which was significant enough to be detected by AFM. An average height difference of 15 nm was measured with and without an applied field which was then used to calculate the magnetostriction of the multilayered NW.

  15. Tuning the instability in static mode atomic force spectroscopy as obtained in an AFM by applying an electric field between the tip and the substrate.

    PubMed

    Biswas, Soma; Raychaudhuri, A K; Sreeram, P A; Dietzel, Dirk

    2012-11-01

    We have investigated experimentally the role of cantilever instabilities in determination of the static mode force-distance curves in presence of a dc electric field. The electric field has been applied between the tip and the sample in an atomic force microscope working in ultra-high vacuum. We have shown how an electric field modifies the observed force (or cantilever deflection)-vs-distance curves, commonly referred to as the static mode force spectroscopy curves, taken using an atomic force microscope. The electric field induced instabilities shift the jump-into-contact and jump-off-contact points and also the deflection at these instability points. We explained the experimental results using a model of the tip-sample interaction and quantitatively established a relation between the observed static mode force spectroscopy curves and the applied electric field which modifies the effective tip-sample interaction in a controlled manner. The investigation establishes a way to quantitatively evaluate the electrostatic force in an atomic force microscope using the static mode force spectroscopy curves.

  16. In situ nanomanipulators as a tool to separate individual tobermorite crystals for AFM studies.

    PubMed

    Yang, Tianhe; Holzer, Lorenz; Kägi, Ralf; Winnefeld, Frank; Keller, Bruno

    2007-10-01

    Atomic force microscopy (AFM) studies of cementitious materials are limited, mainly due to the lack of appropriate sample preparation techniques. In porous autoclaved aerated concrete (AAC), calcium silicate hydrate (C-S-H) is produced in its crystalline form, tobermorite. The crystals are lath-like with a length of several micrometers. In this work, we demonstrate the application of nanomanipulators to separate an individual tobermorite crystal from the bulk AAC for subsequent AFM investigations. The nanomanipulators are operated directly in an environmental scanning electron microscope (ESEM). We studied the interaction between moisture and the tobermorite surface under controlled relative humidity (RH). The results of topography and adhesion force measurements with AFM suggest that the surface of tobermorite is hydrophobic, which contrasts the macroscopic material properties (e.g. moisture transport in capillary pores).

  17. Advanced atomic force microscopy techniques for characterizing the properties of cellulosic nanomaterials

    NASA Astrophysics Data System (ADS)

    Wagner, Ryan Bradley

    The measurement of nanomechanical properties is of great interest to science and industry. Key to progress in this area is the development of new techniques and analysis methods to identify, measure, and quantify these properties. In this dissertation, new data analysis methods and experimental techniques for measuring nanomechanical properties with the atomic force microscope (AFM) are considered. These techniques are then applied to the study of cellulose nanoparticles, an abundant, plant derived nanomaterial. Quantifying uncertainty is a prerequisite for the manufacture of reliable nano-engineered materials and products. However, rigorous uncertainty quantification is rarely applied for material property measurements with the AFM. A framework is presented to ascribe uncertainty to local nanomechanical properties of any nanoparticle or surface measured with the AFM by taking into account the main uncertainty sources inherent in such measurements. This method is demonstrated by quantifying uncertainty in force displacement AFM based measurements of the transverse elastic modulus of tunicate cellulose nanocrystals. Next, a more comprehensive study of different types of cellulose nanoparticles is undertaken with contact resonance (CR) AFM. CR-AFM is a dynamic AFM technique that exploits the resonance frequency of the AFM cantilever while it is permanent contact with the sample surface to predict nanomechanical properties. This technique offers improved measurement sensitivity over static AFM methods for some material systems. The effects of cellulose source material and processing technique on the properties of cellulose nanoparticles are compared. Finally, dynamic AFM cantilever vibration shapes are studied. Many AFM modes exploit the dynamic response of a cantilever in permanent contact with a sample to extract local material properties. A common challenge to these modes is that they assume a certain shape of cantilever vibration, which is not accessible in

  18. Following aptamer-ricin specific binding by single molecule recognition and force spectroscopy measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The atomic force microscope (AFM) recognition and dynamic force spectroscopy (DFS) experiments provide both morphology and interaction information of the aptamer and protein, which can be used for the future study on the thermodynamics and kinetics properties of ricin-aptamer/antibody interactions. ...

  19. Effect of AFM probe geometry on visco-hyperelastic characterization of soft materials

    NASA Astrophysics Data System (ADS)

    Boccaccio, Antonio; Lamberti, Luciano; Papi, Massimiliano; De Spirito, Marco; Pappalettere, Carmine

    2015-08-01

    Atomic force microscopy (AFM) nanoindentation is very suited for nano- and microscale mechanical characterization of soft materials. Although the structural response of polymeric networks that form soft matter depends on viscous effects caused by the relative slippage of polymeric chains, the usual assumption made in the AFM-based characterization is that the specimen behaves as a purely elastic material and viscous forces are negligible. However, for each geometric configuration of the AFM tip, there will be a limit indentation rate above which viscous effects must be taken into account to correctly determine mechanical properties. A parametric finite element study conducted on 12 geometric configurations of a blunt cone AFM tip (overall, the study included about 200 finite element analyses) allowed us to determine the limit indentation rate for each configuration. The selected tip dimensions cover commercially available products and account for changes in tip geometry caused by serial measurements. Nanoindentation rates cover typical experimental conditions set in AFM bio-measurements on soft matter. Viscous effects appear to be more significant in the case of sharper tips. This implies that, if quantitative data on sample viscosity are not available, using a rounded indenter and carrying out experiments below the limit indentation rate will allow errors in the determination of mechanical properties to be minimized.

  20. T cell activation requires force generation

    PubMed Central

    Hu, Kenneth H.

    2016-01-01

    Triggering of the T cell receptor (TCR) integrates both binding kinetics and mechanical forces. To understand the contribution of the T cell cytoskeleton to these forces, we triggered T cells using a novel application of atomic force microscopy (AFM). We presented antigenic stimulation using the AFM cantilever while simultaneously imaging with optical microscopy and measuring forces on the cantilever. T cells respond forcefully to antigen after calcium flux. All forces and calcium responses were abrogated upon treatment with an F-actin inhibitor. When we emulated the forces of the T cell using the AFM cantilever, even these actin-inhibited T cells became activated. Purely mechanical stimulation was not sufficient; the exogenous forces had to couple through the TCR. These studies suggest a mechanical–chemical feedback loop in which TCR-triggered T cells generate forceful contacts with antigen-presenting cells to improve access to antigen. PMID:27241914

  1. Conductance of AFM Deformed Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexei; Maiti, Amitesh; Anatram, M. P.; Biegel, Bryan (Technical Monitor)

    2002-01-01

    This viewgraph presentation provides information on the electrical conductivity of carbon nanotubes upon deformation by atomic force microscopy (AFM). The density of states and conductance were computed using four orbital tight-binding method with various parameterizations. Different chiralities develop bandgap that varies with chirality.

  2. The Emergence of AFM Applications to Cell Biology: How new technologies are facilitating investigation of human cells in health and disease at the nanoscale.

    PubMed

    Yang, Ruiguo; Xi, Ning; Fung, Carmen Kar Man; Seiffert-Sinha, Kristina; Lai, King Wai Chiu; Sinha, Animesh A

    2011-01-01

    Atomic Force Microscopy (AFM) based nanorobotics has been used for building nano devices in semiconductors for almost a decade. Leveraging the unparallel precision localization capabilities of this technology, high resolution imaging and mechanical property characterization is now increasingly being performed in biological settings. AFM also offers the prospect for handling and manipulating biological materials at nanometer scale. It has unique advantages over other methods, permitting experiments in the liquid phase where physiological conditions can be maintained. Taking advantage of these properties, our group has visualized membrane and cytoskeletal structures of live cells by controlling the interaction force of the AFM tip with cellular components at the nN or sub-nN range. Cell stiffness changes were observed by statistically analyzing the Young's modulus values of human keratinocytes before and after specific antibody treatment. Furthermore, we used the AFM cantilever as a robotic arm for mechanical pushing, pulling and cutting to perform nanoscale manipulations of cell-associated structures. AFM guided nano-dissection, or nanosurgery was enacted on the cell in order to sever intermediate filaments connecting neighboring keratinocytes via sub 100 nm resolution cuts. Finally, we have used a functionalized AFM tip to probe cell surface receptors to obtain binding force measurements. This technique formed the basis for Single Molecule Force Spectroscopy (SMFS). In addition to enhancing our basic understanding of dynamic signaling events in cell biology, these advancements in AFM based biomedical investigations can be expected to facilitate the search for biomarkers related to disease diagnosis progress and treatment.

  3. Surface conformations of anti-ricin aptamer and its affinity to ricin determined by atomic force microscopy and surface plasmon resonance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The specific interactions between ricin and anti-ricin aptamer were measured with atomic force microscopy (AFM) and surface plasmon resonance (SPR) spectrometry and the results were compared. In AFM, a single-molecule experiment with ricin functionalized AFM tip was used for scanning the aptamer mol...

  4. Atomic force microscopy measurements of bacterial adhesion and biofilm formation onto clay-sized particles

    PubMed Central

    Huang, Qiaoyun; Wu, Huayong; Cai, Peng; Fein, Jeremy B.; Chen, Wenli

    2015-01-01

    Bacterial adhesion onto mineral surfaces and subsequent biofilm formation play key roles in aggregate stability, mineral weathering, and the fate of contaminants in soils. However, the mechanisms of bacteria-mineral interactions are not fully understood. Atomic force microscopy (AFM) was used to determine the adhesion forces between bacteria and goethite in water and to gain insight into the nanoscale surface morphology of the bacteria-mineral aggregates and biofilms formed on clay-sized minerals. This study yields direct evidence of a range of different association mechanisms between bacteria and minerals. All strains studied adhered predominantly to the edge surfaces of kaolinite rather than to the basal surfaces. Bacteria rarely formed aggregates with montmorillonite, but were more tightly adsorbed onto goethite surfaces. This study reports the first measured interaction force between bacteria and a clay surface, and the approach curves exhibited jump-in events with attractive forces of 97 ± 34 pN between E. coli and goethite. Bond strengthening between them occurred within 4 s to the maximum adhesion forces and energies of −3.0 ± 0.4 nN and −330 ± 43 aJ (10−18 J), respectively. Under the conditions studied, bacteria tended to form more extensive biofilms on minerals under low rather than high nutrient conditions. PMID:26585552

  5. Atomic force microscopy measurements of bacterial adhesion and biofilm formation onto clay-sized particles

    NASA Astrophysics Data System (ADS)

    Huang, Qiaoyun; Wu, Huayong; Cai, Peng; Fein, Jeremy B.; Chen, Wenli

    2015-11-01

    Bacterial adhesion onto mineral surfaces and subsequent biofilm formation play key roles in aggregate stability, mineral weathering, and the fate of contaminants in soils. However, the mechanisms of bacteria-mineral interactions are not fully understood. Atomic force microscopy (AFM) was used to determine the adhesion forces between bacteria and goethite in water and to gain insight into the nanoscale surface morphology of the bacteria-mineral aggregates and biofilms formed on clay-sized minerals. This study yields direct evidence of a range of different association mechanisms between bacteria and minerals. All strains studied adhered predominantly to the edge surfaces of kaolinite rather than to the basal surfaces. Bacteria rarely formed aggregates with montmorillonite, but were more tightly adsorbed onto goethite surfaces. This study reports the first measured interaction force between bacteria and a clay surface, and the approach curves exhibited jump-in events with attractive forces of 97 ± 34 pN between E. coli and goethite. Bond strengthening between them occurred within 4 s to the maximum adhesion forces and energies of -3.0 ± 0.4 nN and -330 ± 43 aJ (10-18 J), respectively. Under the conditions studied, bacteria tended to form more extensive biofilms on minerals under low rather than high nutrient conditions.

  6. Lateral force microscope calibration using a modified atomic force microscope cantilever

    SciTech Connect

    Reitsma, M. G.

    2007-10-15

    A proof-of-concept study is presented for a prototype atomic force microscope (AFM) cantilever and associated calibration procedure that provide a path for quantitative friction measurement using a lateral force microscope (LFM). The calibration procedure is based on the method proposed by Feiler et al. [Rev. Sci. Instrum. 71, 2746 (2000)] but allows for calibration and friction measurements to be carried out in situ and with greater precision. The modified AFM cantilever is equipped with lateral lever arms that facilitate the application of normal and lateral forces, comparable to those acting in a typical LFM friction experiment. The technique allows the user to select acceptable precision via a potentially unlimited number of calibration measurements across the full working range of the LFM photodetector. A microfabricated version of the cantilever would be compatible with typical commercial AFM instrumentation and allow for common AFM techniques such as topography imaging and other surface force measurements to be performed.

  7. Rigid two-axis MEMS force plate for measuring cellular traction force

    NASA Astrophysics Data System (ADS)

    Takahashi, Hidetoshi; Jung, Uijin G.; Kan, Tetsuo; Tsukagoshi, Takuya; Matsumoto, Kiyoshi; Shimoyama, Isao

    2016-10-01

    Cellular traction force is one of the important factors for understanding cell behaviors, such as spreading, migration and differentiation. Cells are known to change their behavior according to the mechanical stiffness of the environment. However, the measurement of cell traction forces on a rigid environment has remained difficult. This paper reports a micro-electromechanical systems (MEMS) force plate that provides a cellular traction force measurement on a rigid substrate. Both the high force sensitivity and high stiffness of the substrate were obtained using piezoresistive sensing elements. The proposed force plate consists of a 70 µm  ×  15 µm  ×  5 µm base as the substrate for cultivating a bovine aortic smooth muscle cell, and the supporting beams with piezoresistors on the sidewall and the surface were used to measure the forces in both the horizontal and vertical directions. The spring constant and force resolution of the fabricated force plate in the horizontal direction were 0.2 N m-1 and less than 0.05 µN, respectively. The cell traction force was measured, and the traction force increased by approximately 1 µN over 30 min. These results demonstrate that the proposed force plate is applicable as an effective traction force measurement.

  8. Measuring the Magnetic Force on a Current-Carrying Conductor.

    ERIC Educational Resources Information Center

    Herreman, W.; Huysentruyt, R.

    1995-01-01

    Describes a fast and simple method for measuring the magnetic force acting on a current-carrying conductor using a digital balance. Discusses the influence of current intensity and wire length on the magnetic force on the conductor. (JRH)

  9. Dynamometer for measuring machining forces in two perpendicular directions

    NASA Technical Reports Server (NTRS)

    Sutherland, I. A.

    1974-01-01

    Published report discusses development of two-component force dynamometer which is used for dynamic measurement of machining forces in cutting and thrust directions. Resulting data suggest that faster metal-cutting machines may be developed that have reduced vibrations.

  10. Cantilevers orthodontics forces measured by fiber sensors

    NASA Astrophysics Data System (ADS)

    Schneider, Neblyssa; Milczewski, Maura S.; de Oliveira, Valmir; Guariza Filho, Odilon; Lopes, Stephani C. P. S.; Kalinowski, Hypolito J.

    2015-09-01

    Fibers Bragg Gratings were used to evaluate the transmission of the forces generates by orthodontic mechanic based one and two cantilevers used to move molars to the upright position. The results showed levels forces of approximately 0,14N near to the root of the molar with one and two cantilevers.

  11. Measurement of dynamic bite force during mastication.

    PubMed

    Shimada, A; Yamabe, Y; Torisu, T; Baad-Hansen, L; Murata, H; Svensson, P

    2012-05-01

    Efficient mastication of different types and size of food depends on fast integration of sensory information from mechanoreceptors and central control mechanisms of jaw movements and applied bite force. The neural basis underlying mastication has been studied for decades but little progress in understanding the dynamics of bite force has been made mainly due to technical limitations of bite force recorders. The aims of this study were to develop a new intraoral bite force recorder which would allow the study of natural mastication without an increase in the occlusal vertical dimension and subsequently to analyze the relation between electromyographic (EMG) activity of jaw-closing muscles, jaw movements and bite force during mastication of five different types of food. Customized force recorders based on strain gauge sensors were fitted to the upper and lower molar teeth on the preferred chewing side in fourteen healthy and dentate subjects (21-39 years), and recordings were carried out during voluntary mastication of five different kinds of food. Intraoral force recordings were successively obtained from all subjects. anova showed that impulse of bite force as well as integrated EMG was significantly influenced by food (P<0·05), while time-related parameters were significantly affected by chewing cycles (P<0·001). This study demonstrates that intraoral force recordings are feasible and can provide new information on the dynamics of human mastication with direct implications for oral rehabilitation. We also propose that the control of bite force during mastication is achieved by anticipatory adjustment and encoding of bolus characteristics.

  12. Direct Measurement of Lateral Force Using Dual Cantilevers

    PubMed Central

    Ishikawa, Makoto; Ichikawa, Masaya; Miura, Kouji

    2012-01-01

    We have constructed an experimental system to measure a piconewton lateral force using dual cantilevers which cross with each other. The resolution of the lateral force is estimated to be 3.3 p ± 0.2 pN, which is comparable to forces due to thermal fluctuation. This experimental apparatus works so easily that it will enable us to determine forces during nano-manipulation and nano-tribological measurements. PMID:22737001

  13. Diagnosis of cervical cancer cell taken from scanning electron and atomic force microscope images of the same patients using discrete wavelet entropy energy and Jensen Shannon, Hellinger, Triangle Measure classifier.

    PubMed

    Aytac Korkmaz, Sevcan

    2016-05-05

    The aim of this article is to provide early detection of cervical cancer by using both Atomic Force Microscope (AFM) and Scanning Electron Microscope (SEM) images of same patient. When the studies in the literature are examined, it is seen that the AFM and SEM images of the same patient are not used together for early diagnosis of cervical cancer. AFM and SEM images can be limited when using only one of them for the early detection of cervical cancer. Therefore, multi-modality solutions which give more accuracy results than single solutions have been realized in this paper. Optimum feature space has been obtained by Discrete Wavelet Entropy Energy (DWEE) applying to the 3×180 AFM and SEM images. Then, optimum features of these images are classified with Jensen Shannon, Hellinger, and Triangle Measure (JHT) Classifier for early diagnosis of cervical cancer. However, between classifiers which are Jensen Shannon, Hellinger, and triangle distance have been validated the measures via relationships. Afterwards, accuracy diagnosis of normal, benign, and malign cervical cancer cell was found by combining mean success rates of Jensen Shannon, Hellinger, and Triangle Measure which are connected with each other. Averages of accuracy diagnosis for AFM and SEM images by averaging the results obtained from these 3 classifiers are found as 98.29% and 97.10%, respectively. It has been observed that AFM images for early diagnosis of cervical cancer have higher performance than SEM images. Also in this article, surface roughness of malign AFM images in the result of the analysis made for the AFM images, according to the normal and benign AFM images is observed as larger, If the volume of particles has found as smaller.

  14. Diagnosis of cervical cancer cell taken from scanning electron and atomic force microscope images of the same patients using discrete wavelet entropy energy and Jensen Shannon, Hellinger, Triangle Measure classifier

    NASA Astrophysics Data System (ADS)

    Aytac Korkmaz, Sevcan

    2016-05-01

    The aim of this article is to provide early detection of cervical cancer by using both Atomic Force Microscope (AFM) and Scanning Electron Microscope (SEM) images of same patient. When the studies in the literature are examined, it is seen that the AFM and SEM images of the same patient are not used together for early diagnosis of cervical cancer. AFM and SEM images can be limited when using only one of them for the early detection of cervical cancer. Therefore, multi-modality solutions which give more accuracy results than single solutions have been realized in this paper. Optimum feature space has been obtained by Discrete Wavelet Entropy Energy (DWEE) applying to the 3 × 180 AFM and SEM images. Then, optimum features of these images are classified with Jensen Shannon, Hellinger, and Triangle Measure (JHT) Classifier for early diagnosis of cervical cancer. However, between classifiers which are Jensen Shannon, Hellinger, and triangle distance have been validated the measures via relationships. Afterwards, accuracy diagnosis of normal, benign, and malign cervical cancer cell was found by combining mean success rates of Jensen Shannon, Hellinger, and Triangle Measure which are connected with each other. Averages of accuracy diagnosis for AFM and SEM images by averaging the results obtained from these 3 classifiers are found as 98.29% and 97.10%, respectively. It has been observed that AFM images for early diagnosis of cervical cancer have higher performance than SEM images. Also in this article, surface roughness of malign AFM images in the result of the analysis made for the AFM images, according to the normal and benign AFM images is observed as larger, If the volume of particles has found as smaller. She has been a Faculty Member at Fırat University in the Electrical- Electronic Engineering Department since 2007. Her research interests include image processing, computer vision systems, pattern recognition, data fusion, wavelet theory, artificial neural

  15. Direct measurements of drag forces in C. elegans crawling locomotion.

    PubMed

    Rabets, Yegor; Backholm, Matilda; Dalnoki-Veress, Kari; Ryu, William S

    2014-10-21

    With a simple and versatile microcantilever-based force measurement technique, we have probed the drag forces involved in Caenorhabditis elegans locomotion. As a worm crawls on an agar surface, we found that substrate viscoelasticity introduces nonlinearities in the force-velocity relationships, yielding nonconstant drag coefficients that are not captured by original resistive force theory. A major contributing factor to these nonlinearities is the formation of a shallow groove on the agar surface. We measured both the adhesion forces that cause the worm's body to settle into the agar and the resulting dynamics of groove formation. Furthermore, we quantified the locomotive forces produced by C. elegans undulatory motions on a wet viscoelastic agar surface. We show that an extension of resistive force theory is able to use the dynamics of a nematode's body shape along with the measured drag coefficients to predict the forces generated by a crawling nematode.

  16. Quantitative nano-mechanics of biological cells with AFM

    NASA Astrophysics Data System (ADS)

    Sokolov, Igor

    2013-03-01

    The importance of study of living cells is hard to overestimate. Cell mechanics is a relatively young, yet not a well-developed area. Besides just a fundamental interest, large practical need has emerged to measure cell mechanics quantitatively. Recent studies revealed a significant correlation between stiffness of biological cells and various human diseases, such as cancer, malaria, arthritis, and even aging. However, really quantitative studies of mechanics of biological cells are virtually absent. It is not even clear if the cell, being a complex and heterogeneous object, can be described by the elastic modulus at all. Atomic force microscopy (AFM) is a natural instrument to study properties of cells in their native environments. Here we will demonstrate that quantitative measurements of elastic modulus of cells with AFM are possible. Specifically, we will show that the ``cell body'' (cell without ``brush'' surface layer, a non-elastic layer surrounding cells) typically demonstrates the response of a homogeneous elastic medium up to the deformation of 10-20%, but if and only if a) the cellular brush layer is taken into account, b) rather dull AFM probes are used. This will be justified with the help of the strong condition of elastic behavior of material: the elastic modulus is shown to be independent on the indentation depth. We will also demonstrate that an attempt either to ignore the brush layer or to use sharp AFM probes will result in the violation of the strong condition, which implies impossibility to use the concept of the elastic modulus to describe cell mechanics in such experiments. Examples of quantitative measurements of the Young's modulus of the cell body and the cell brush parameters will be given for various cells. Address when submitting: Clarkson University, Potsdam, NY 13699

  17. Two techniques for measuring locomotion impact forces during zero G

    NASA Technical Reports Server (NTRS)

    Greenisen, Michael C.; Smith, Richard A.; Klute, Glenn K.; Mccaulley, James B.

    1993-01-01

    A load-cell-instrumented treadmill mated to a Kistler force plate was used to investigate two methods of force measurement instrumentation during treadmill ambulation in zero g, created by parabolic flight on NASA's KC-135 aircraft. Current spaceflight treadmills do not have adequate instrumentation to determine the resultant foot impact force applied during restrained ambulation. Accurate measurement of foot-ground reaction forces is critical in attaining proper one-g loading, therefore ensuring proper musculoskeletal conditioning. Treadmill instrumentation and force plate measurements were compared for frequency response and linearity. Locomotion impact data were also collected under one-g laboratory settings and in Keplerian flight. The first resonant frequency for both techniques was found to be well above the primary frequency content of the locomotive forces. Peak impact forces measured by the two systems compared to within 10 percent.

  18. Theoretical Models for Surface Forces and Adhesion and Their Measurement Using Atomic Force Microscopy

    PubMed Central

    Leite, Fabio L.; Bueno, Carolina C.; Da Róz, Alessandra L.; Ziemath, Ervino C.; Oliveira, Osvaldo N.

    2012-01-01

    The increasing importance of studies on soft matter and their impact on new technologies, including those associated with nanotechnology, has brought intermolecular and surface forces to the forefront of physics and materials science, for these are the prevailing forces in micro and nanosystems. With experimental methods such as the atomic force spectroscopy (AFS), it is now possible to measure these forces accurately, in addition to providing information on local material properties such as elasticity, hardness and adhesion. This review provides the theoretical and experimental background of AFS, adhesion forces, intermolecular interactions and surface forces in air, vacuum and in solution. PMID:23202925

  19. Theoretical models for surface forces and adhesion and their measurement using atomic force microscopy.

    PubMed

    Leite, Fabio L; Bueno, Carolina C; Da Róz, Alessandra L; Ziemath, Ervino C; Oliveira, Osvaldo N

    2012-10-08

    The increasing importance of studies on soft matter and their impact on new technologies, including those associated with nanotechnology, has brought intermolecular and surface forces to the forefront of physics and materials science, for these are the prevailing forces in micro and nanosystems. With experimental methods such as the atomic force spectroscopy (AFS), it is now possible to measure these forces accurately, in addition to providing information on local material properties such as elasticity, hardness and adhesion. This review provides the theoretical and experimental background of afs, adhesion forces, intermolecular interactions and surface forces in air, vacuum and in solution.

  20. High-speed AFM probe with micromachined membrane tip

    NASA Astrophysics Data System (ADS)

    Kim, Byungki; Kwak, Byung Hyung; Jamil, Faize

    2008-08-01

    This paper presents a micromachined silicon membrane type AFM tip designed to move nearly 1µm by electrostatic force. Since the tip can be vibrated in small amplitude with AC voltage input and can be displaced up to 1μm by DC voltage input, an additional piezo actuator is not required for scanning of submicron features. The micromachined membrane tips are designed to have 100 kHz ~ 1 MHz resonant frequency. Displacement of the membrane tip is measured by an optical interferometer using a micromachined diffraction grating on a quartz wafer which is positioned behind the membrane tip.

  1. The effect of patch potentials in Casimir force measurements determined by heterodyne Kelvin probe force microscopy

    NASA Astrophysics Data System (ADS)

    Garrett, Joseph L.; Somers, David; Munday, Jeremy N.

    2015-06-01

    Measurements of the Casimir force require the elimination of the electrostatic force between the surfaces. However, due to electrostatic patch potentials, the voltage required to minimize the total force may not be sufficient to completely nullify the electrostatic interaction. Thus, these surface potential variations cause an additional force, which can obscure the Casimir force signal. In this paper, we inspect the spatially varying surface potential of e-beamed, sputtered, sputtered and annealed, and template stripped gold surfaces with Heterodyne amplitude modulated Kelvin probe force microscopy (HAM-KPFM). It is demonstrated that HAM-KPFM improves the spatial resolution of surface potential measurements compared to amplitude modulated Kelvin probe force microscopy. We find that patch potentials vary depending on sample preparation, and that the calculated pressure can be similar to the pressure difference between Casimir force calculations employing the plasma and Drude models.

  2. Atomic Force Microscopy Measurements of the Mechanical Properties of Cell Walls on Living Bacterial Cells

    NASA Astrophysics Data System (ADS)

    Bailey, Richard; Mullin, Nic; Turner, Robert; Foster, Simon; Hobbs, Jamie

    2014-03-01

    Staphylococcus aureus is a major cause of infection in humans, including the Methicillin resistant strain, MRSA. However, very little is known about the mechanical properties of these cells. Our investigations use AFM to examine live S. aureus cells to quantify mechanical properties. These were explored using force spectroscopy with different trigger forces, allowing the properties to be extracted at different indentation depths. A value for the cell wall stiffness has been extracted, along with a second, higher value which is found upon indenting at higher forces. This higher value drops as the cells are exposed to high salt, sugar and detergent concentrations, implying that this measurement contains a contribution from the internal turgor pressure. We have monitored these properties as the cells progress through the cell cycle. Force maps were taken over the cells at different stages of the growth process to identify changes in the mechanics throughout the progression of growth and division. The effect of Oxacillin has also been studied, to better understand its mechanism of action. Finally mutant strains of S. aureus and a second species Bacillus subtilis have been used to link the mechanical properties of the cell walls with the chain lengths and substructures involved.

  3. Subminiature transducers for measuring forces and deformation of heart muscle

    NASA Technical Reports Server (NTRS)

    Feldstein, C.; Osher, J. V.; Lewis, G. W.; Silver, R. H.; Duran, E. N.

    1975-01-01

    Two subminiature transducers, one measuring muscle forces and one measuring muscle displacement, can be inserted into heart muscle without interfering with it. Probe, approximately 1 mm (0.04 in), causes no damage to heart muscle. Probe can be rotated to different positions to measure muscle forces from various directions.

  4. Cryogenic AFM-STM for mesoscopic physics

    NASA Astrophysics Data System (ADS)

    Le Sueur, H.

    Electronic spectroscopy based on electron tunneling gives access to the electronic density of states (DOS) in conductive materials, and thus provides detailed information about their electronic properties. During this thesis work, we have developed a microscope in order to perform spatially resolved (10 nm) tunneling spectroscopy, with an unprecedented energy resolution (10 μeV), on individual nanocircuits. This machine combines an Atomic Force Microscope (AFM mode) together with a Scanning Tunneling Spectroscope (STS mode) and functions at very low temperatures (30 mK). In the AFM mode, the sample topography is recorded using a piezoelectric quartz tuning fork, which allows us to locate and image nanocircuits. Tunneling can then be performed on conductive areas of the circuit. With this microscope, we have measured the local DOS in a hybrid Superconductor-Normal metal-Superconductor (S-N-S) structure. In such circuit, the electronic properties of N and S are modified by the superconducting proximity effect. In particular, for short N wires, we have observed a minigap independent of position in the DOS of the N wire, as was previously predicted. Moreover, when varying the superconducting phase difference between the S electrodes, we have measured the modification of the minigap and its disappearance when the phase difference equals π. Our experimental results for the DOS, and its dependences (on phase, position, N length), are quantitatively accounted for by the quasiclassical theory of superconductivity. Some predictions of this theory are observed for the first time. La spectroscopie électronique basée sur l'effet tunnel donne accès à la densité d'états des électrons (DOS) dans les matériaux conducteurs, et renseigne ainsi en détail sur leurs propriétés électroniques. Au cours de cette thèse, nous avons développé un microscope permettant d'effectuer la spectroscopie tunnel résolue spatialement (10 nm) de nanocircuits individuels, avec une r

  5. Accurate and precise calibration of AFM cantilever spring constants using laser Doppler vibrometry.

    PubMed

    Gates, Richard S; Pratt, Jon R

    2012-09-21

    Accurate cantilever spring constants are important in atomic force microscopy both in control of sensitive imaging and to provide correct nanomechanical property measurements. Conventional atomic force microscope (AFM) spring constant calibration techniques are usually performed in an AFM. They rely on significant handling and often require touching the cantilever probe tip to a surface to calibrate the optical lever sensitivity of the configuration. This can damage the tip. The thermal calibration technique developed for laser Doppler vibrometry (LDV) can be used to calibrate cantilevers without handling or touching the tip to a surface. Both flexural and torsional spring constants can be measured. Using both Euler-Bernoulli modeling and an SI traceable electrostatic force balance technique as a comparison we demonstrate that the LDV thermal technique is capable of providing rapid calibrations with a combination of ease, accuracy and precision beyond anything previously available.

  6. Direct Force Measurements of Receptor-Ligand Interactions on Living Cells

    NASA Astrophysics Data System (ADS)

    Eibl, Robert H.

    The characterization of cell adhesion between two living cells at the level of single receptor-ligand bonds is an experimental challenge. This chapter describes how the extremely sensitive method of atomic force microscopy (AFM) based force spectroscopy can be applied to living cells in order to probe for cell-to-cell or cell-to-substrate interactions mediated by single pairs of adhesion receptors. In addition, it is outlined how single-molecule AFM force spectroscopy can be used to detect physiologic changes of an adhesion receptor in a living cell. This force spectroscopy allows us to detect in living cells rapidly changing, chemokine SDF-1 triggered activation states of single VLA-4 receptors. This recently developed AFM application will allow for the detailed investigation of the integrin-chemokine crosstalk of integrin activation mechanisms and on how other adhesion receptors are modulated in health and disease. As adhesion molecules, living cells and even bacteria can be studied by single-molecule AFM force spectroscopy, this method is set to become a powerful tool that can not only be used in biophysics, but in cell biology as well as in immunology and cancer research.

  7. Atomically resolved force microscopy at room temperature

    SciTech Connect

    Morita, Seizo

    2014-04-24

    Atomic force microscopy (AFM) can now not only image individual atoms but also construct atom letters using atom manipulation method even at room temperature (RT). Therefore, the AFM is the second generation atomic tool following the scanning tunneling microscopy (STM). However the AFM can image even insulating atoms, and also directly measure/map the atomic force and potential at the atomic scale. Noting these advantages, we have been developing a bottom-up nanostructuring system at RT based on the AFM. It can identify chemical species of individual atoms and then manipulate selected atom species to the predesigned site one-by-one to assemble complex nanostructures consisted of multi atom species at RT. Here we introduce our results toward atom-by-atom assembly of composite nanostructures based on the AFM at RT including the latest result on atom gating of nano-space for atom-by-atom creation of atom clusters at RT for semiconductor surfaces.

  8. Versatile method for AFM-tip functionalization with biomolecules: fishing a ligand by means of an in situ click reaction

    NASA Astrophysics Data System (ADS)

    Kumar, Rakesh; Ramakrishna, Shivaprakash N.; Naik, Vikrant V.; Chu, Zonglin; Drew, Michael E.; Spencer, Nicholas D.; Yamakoshi, Yoko

    2015-04-01

    A facile and universal method for the functionalization of an AFM tip has been developed for chemical force spectroscopy (CFS) studies of intermolecular interactions of biomolecules. A click reaction between tripod-acetylene and an azide-linker-ligand molecule was successfully carried out on the AFM tip surface and used for the CFS study of ligand-receptor interactions.A facile and universal method for the functionalization of an AFM tip has been developed for chemical force spectroscopy (CFS) studies of intermolecular interactions of biomolecules. A click reaction between tripod-acetylene and an azide-linker-ligand molecule was successfully carried out on the AFM tip surface and used for the CFS study of ligand-receptor interactions. Electronic supplementary information (ESI) available: Experimental details with synthesis and characterization of compounds. Procedures for modifications of Au surfaces and AFM tips. AFM images and full PM-IRRAS spectra of modified surfaces. Detailed procedure for QCM measurement. A table showing ligand-receptor interaction probability. NMR, IR and MS charts. See DOI: 10.1039/c5nr01495f

  9. Measuring the Forces between Magnetic Dipoles

    ERIC Educational Resources Information Center

    Gayetsky, Lisa E.; Caylor, Craig L.

    2007-01-01

    We describe a simple undergraduate lab in which students determine how the force between two magnetic dipoles depends on their separation. We consider the case where both dipoles are permanent and the case where one of the dipoles is induced by the field of the other (permanent) dipole. Agreement with theoretically expected results is quite good.

  10. Examination of humidity effects on measured thickness and interfacial phenomena of exfoliated graphene on silicon dioxide via amplitude modulation atomic force microscopy

    SciTech Connect

    Jinkins, K.; Farina, L.; Wu, Y.; Camacho, J.

    2015-12-14

    The properties of Few-Layer Graphene (FLG) change with the number of layers and Amplitude Modulation (AM) Atomic Force Microscopy (AFM) is commonly used to determine the thickness of FLG. However, AFM measurements have been shown to be sensitive to environmental conditions such as relative humidity (RH). In the present study, AM-AFM is used to measure the thickness and loss tangent of exfoliated graphene on silicon dioxide (SiO{sub 2}) as RH is increased from 10% to 80%. We show that the measured thickness of graphene is dependent on RH. The loss tangent values of the graphene and oxide regions are both affected by humidity, with generally higher loss tangent for graphene than SiO{sub 2}. As RH increases, we observe the loss tangent of both materials approaches the same value. We hypothesize that there is a layer of water trapped between the graphene and SiO{sub 2} substrate to explain this observation. Using this interpretation, the loss tangent images also indicate movement and change in this trapped water layer as RH increases, which impacts the measured thickness of graphene using AM-AFM.

  11. Force plate for measuring small animal forces by digital speckle pattern interferometry

    NASA Astrophysics Data System (ADS)

    Arroyo, M. Pilar; Bea, José Antonio; Andrés, Nieves; Osta, Rosario; Doblaré, Manuel

    2007-06-01

    This paper presents a force plate specially designed for measuring ground reaction forces in small animals. Digital Speckle Pattern Interferometry (DSPI) is used to measure the plate deformation produced by the animal. Elasticity theory is used to obtain force magnitude and application position from the vertical displacement field measured with DSPI. The force plate has been tested with static weights of 5g and 10g at various locations on the plate. Some experiments with 20g body weight transgenic mice are also reported.

  12. Enabling accurate gate profile control with inline 3D-AFM

    NASA Astrophysics Data System (ADS)

    Bao, Tianming; Lopez, Andrew; Dawson, Dean

    2009-05-01

    The logic and memory semiconductor device technology strives to follow the aggressive ITRS roadmap. The ITRS calls for increased 3D metrology to meet the demand for tighter process control at 45nm and 32nm nodes. In particular, gate engineering has advanced to a level where conventional metrology by CD-SEM and optical scatterometry (OCD) faces fundamental limitations without involvement of 3D atomic force microscope (3D-AFM or CD-AFM). This paper reports recent progress in 3D-AFM to address the metrology need to control gate dimension in MOSFET transistor formation. 3D-AFM metrology measures the gate electrode at post-etch with the lowest measurement uncertainty for critical gate geometry, including linewidth, sidewall profile, sidewall angle (SWA), line width roughness (LWR), and line edge roughness (LER). 3D-AFM enables accurate gate profile control in three types of metrology applications: reference metrology to validate CD-SEM and OCD, inline depth or 3D monitoring, or replacing TEM for 3D characterization for engineering analysis.

  13. Fiber based optical tweezers for simultaneous in situ force exertion and measurements in a 3D polyacrylamide gel compartment.

    PubMed

    Ti, Chaoyang; Thomas, Gawain M; Ren, Yundong; Zhang, Rui; Wen, Qi; Liu, Yuxiang

    2015-07-01

    Optical tweezers play an important role in biological applications. However, it is difficult for traditional optical tweezers based on objective lenses to work in a three-dimensional (3D) solid far away from the substrate. In this work, we develop a fiber based optical trapping system, namely inclined dual fiber optical tweezers, that can simultaneously apply and measure forces both in water and in a 3D polyacrylamide gel matrix. In addition, we demonstrate in situ, non-invasive characterization of local mechanical properties of polyacrylamide gel by measurements on an embedded bead. The fiber optical tweezers measurements agree well with those of atomic force microscopy (AFM). The inclined dual fiber optical tweezers provide a promising and versatile tool for cell mechanics study in 3D environments.

  14. Polynomial force approximations and multifrequency atomic force microscopy.

    PubMed

    Platz, Daniel; Forchheimer, Daniel; Tholén, Erik A; Haviland, David B

    2013-01-01

    We present polynomial force reconstruction from experimental intermodulation atomic force microscopy (ImAFM) data. We study the tip-surface force during a slow surface approach and compare the results with amplitude-dependence force spectroscopy (ADFS). Based on polynomial force reconstruction we generate high-resolution surface-property maps of polymer blend samples. The polynomial method is described as a special example of a more general approximative force reconstruction, where the aim is to determine model parameters that best approximate the measured force spectrum. This approximative approach is not limited to spectral data, and we demonstrate how it can be adapted to a force quadrature picture.

  15. Imaging and measuring the rituximab-induced changes of mechanical properties in B-lymphoma cells using atomic force microscopy

    SciTech Connect

    Li, Mi; Liu, Lianqing; Xi, Ning; Wang, Yuechao; Dong, Zaili; Tabata, Osamu; Xiao, Xiubin; Zhang, Weijing

    2011-01-14

    Research highlights: {yields} Single B-lymphoma living cells were imaged by AFM with the assistance of microfabricated pillars. {yields} The apoptosis of B-lymphoma cells triggered by rituximab without cross-linking was observed by AO/EB double fluorescent staining. {yields} The B-lymphoma cells became dramatically softer after adding rituximab. -- Abstract: The topography and mechanical properties of single B-lymphoma cells have been investigated by atomic force microscopy (AFM). With the assistance of microfabricated patterned pillars, the surface topography and ultrastructure of single living B-lymphoma cell were visualized by AFM. The apoptosis of B-lymphoma cells induced by rituximab alone was observed by acridine orange/ethidium bromide (AO/EB) double fluorescent staining. The rituximab-induced changes of mechanical properties in B-lymphoma cells were measured dynamically and the results showed that B-lymphoma cells became dramatically softer after incubation with rituximab. These results can improve our understanding of rituximab'effect and will facilitate the further investigation of the underlying mechanisms.

  16. Local viscoelasticity of the surfaces of individual Gram-negative bacterial cells measured using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Vadillo-Rodriguez, Virginia; Beveridge, Terry; Dutcher, John

    2008-03-01

    The cell wall of Gram-negative bacteria performs many important biological functions: it plays a structural role, it allows the selective movement of molecules across itself, and it allows for growth and division. These functions not only suggest that the cell wall is dynamic, but that its mechanical properties are very important. We have used a novel, AFM-based approach to probe the mechanical properties of single bacterial cells by applying a constant compressive force to the cell under physiological conditions while measuring the time-dependent displacement (creep) of the AFM tip due to the viscoelastic properties of the cell. For these experiments, we chose a representative Gram-negative bacterium, P. aeruginosa PAO1, and we used AFM tips of different size and geometry. We find that the cell response is well described by a three element mechanical model with an effective cell spring constant k and an effective time constant τ for the creep motion. Adding glutaraldehyde, which increases the covalent bonding of the cell surface, produced a significant increase in k and a significant decrease in τ.

  17. Microsystems for cellular force measurement: a review

    NASA Astrophysics Data System (ADS)

    Rayne Zheng, Xiaoyu; Zhang, Xin

    2011-05-01

    Microsystems are providing key advances in studying single cell mechanical behavior. The mechanical interaction of cells with their extracellular matrix is fundamentally important for cell migration, division, phagocytosis and aptoptosis. This review reports the development of microsystems on studying cell forces. Microsystems provide advantages of studying single cells since the scale of cells is on the micron level. The components of microsystems provide culture, loading, guiding, trapping and on chip analysis of cellular mechanical forces. This paper gives overviews on how MEMS are advancing in the field of cell biomechno sensory systems. It presents different materials, and mode of studying cell mechanics. Finally, we comment on the future directions and challenges on the state of art techniques.

  18. Measurement of non-monotonic Casimir forces between silicon nanostructures

    NASA Astrophysics Data System (ADS)

    Tang, L.; Wang, M.; Ng, C. Y.; Nikolic, M.; Chan, C. T.; Rodriguez, A. W.; Chan, H. B.

    2017-01-01

    Casimir forces are of fundamental interest because they originate from quantum fluctuations of the electromagnetic field. Apart from controlling this force via the optical properties of materials, a number of novel geometries have been proposed to generate repulsive and/or non-monotonic Casimir forces between bodies separated by vacuum gaps. Experimental realization of these geometries, however, is hindered by the difficulties in alignment when the bodies are brought into close proximity. Here, using an on-chip platform with integrated force sensors and actuators, we circumvent the alignment problem and measure the Casimir force between two surfaces with nanoscale protrusions. We demonstrate that the force depends non-monotonically on the displacement. At some displacements, the Casimir force leads to an effective stiffening of the nanomechanical spring. Our findings pave the way for exploiting the Casimir force in nanomechanical systems using structures of complex and non-conventional shapes.

  19. Force Measurement on the GLAST Delta II Flight

    NASA Technical Reports Server (NTRS)

    Gordon, Scott; Kaufman, Daniel

    2009-01-01

    This viewgraph presentation reviews the interface force measurement at spacecraft separation of GLAST Delta II. The contents include: 1) Flight Force Measurement (FFM) Background; 2) Team Members; 3) GLAST Mission Overview; 4) Methodology Development; 5) Ground Test Validation; 6) Flight Data; 7) Coupled Loads Simulation (VCLA & Reconstruction); 8) Basedrive Simulation; 9) Findings; and 10) Summary and Conclusions.

  20. Measurements of particle-wall interaction forces using simultaneous position and force detection (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kashchuk, Anatolii V.; Bui, Ann A. M.; Stilgoe, Alexander B.; Carberry, David M.; Nieminen, Timo A.; Rubinsztein-Dunlop, Halina

    2016-09-01

    Particle-wall interactions are important in biology, micromachining, coagulation studies, and many other areas of science. As a contactless tool, optical tweezers are ideal for measuring these kind of interactions. Here we will present a new method for calculating the non-optical forces acting on a trapped particle using simultaneous position and force detection. Analysis of the particle's Brownian motion when trapped gives a measure of all the forces experienced by the particle. In contrast, measuring only the light's momentum change directly gives the solely optical force. This is achieved measuring the changes in the scattered light. The difference between the forces recorded by the two techniques reveals the external forces acting on the trapped particle. Therefore, by trapping the particle close to a wall, one can study the particle-wall interaction force in details. The simulation were done using the optical tweezer toolbox [1] to find the optical force acting on a particle. The net force was calculated from a Brownian motion's statistics of a trapped particle in the presence of the exponential external force. By using the proposed method, we were able to successfully reconstruct the external force. The experiment was done on a trapped spherical PMMA particle (d=2.2um) close to the 3D-printed wall. For the particle-wall distance 0.7um the non-optical force is 100fN . The experiment and simulation results confirm the efficiency of the proposed method for an external force measurements. [1] Nieminen et al., J. Opt. A 9, S196-S203 (2007).

  1. Lateral force microscopy of multiwalled carbon nanotubes.

    PubMed

    Lievonen, J; Ahlskog, M

    2009-06-01

    Carbon nanotubes are usually imaged with the atomic force microscope (AFM) in non-contact mode. However, in many applications, such as mechanical manipulation or elasticity measurements, contact mode is used. The forces affecting the nanotube are then considerable and not fully understood. In this work lateral forces were measured during contact mode imaging with an AFM across a carbon nanotube. We found that, qualitatively, both magnitude and sign of the lateral forces to the AFM tip were independent of scan direction and can be concluded to arise from the tip slipping on the round edges of the nanotube. The dependence on the normal force applied to the tip and on the ratio between nanotube diameter and tip radius was studied. We show that for small values of this ratio, the lateral force signal can be explained with a simple geometrical model.

  2. SU-8 hollow cantilevers for AFM cell adhesion studies

    NASA Astrophysics Data System (ADS)

    Martinez, Vincent; Behr, Pascal; Drechsler, Ute; Polesel-Maris, Jérôme; Potthoff, Eva; Vörös, Janos; Zambelli, Tomaso

    2016-05-01

    A novel fabrication method was established to produce flexible, transparent, and robust tipless hollow atomic force microscopy (AFM) cantilevers made entirely from SU-8. Channels of 3 μm thickness and several millimeters length were integrated into 12 μm thick and 40 μm wide cantilevers. Connected to a pressure controller, the devices showed high sealing performance with no leakage up to 6 bars. Changing the cantilever lengths from 100 μm to 500 μm among the same wafer allowed the targeting of various spring constants ranging from 0.5 to 80 N m-1 within a single fabrication run. These hollow polymeric AFM cantilevers were operated in the optical beam deflection configuration. To demonstrate the performance of the device, single-cell force spectroscopy experiments were performed with a single probe detaching in a serial protocol more than 100 Saccharomyces cerevisiae yeast cells from plain glass and glass coated with polydopamine while measuring adhesion forces in the sub-nanoNewton range. SU-8 now offers a new alternative to conventional silicon-based hollow cantilevers with more flexibility in terms of complex geometric design and surface chemistry modification.

  3. Recent Investments by NASA's National Force Measurement Technology Capability

    NASA Technical Reports Server (NTRS)

    Commo, Sean A.; Ponder, Jonathan D.

    2016-01-01

    The National Force Measurement Technology Capability (NFMTC) is a nationwide partnership established in 2008 and sponsored by NASA's Aeronautics Evaluation and Test Capabilities (AETC) project to maintain and further develop force measurement capabilities. The NFMTC focuses on force measurement in wind tunnels and provides operational support in addition to conducting balance research. Based on force measurement capability challenges, strategic investments into research tasks are designed to meet the experimental requirements of current and future aerospace research programs and projects. This paper highlights recent and force measurement investments into several areas including recapitalizing the strain-gage balance inventory, developing balance best practices, improving calibration and facility capabilities, and researching potential technologies to advance balance capabilities.

  4. Impact of Thermal Gradients on Wind Tunnel Force Measurements

    NASA Technical Reports Server (NTRS)

    Hereford, James; Parker, Peter A.; Rhew, Ray D.

    1999-01-01

    In a wind tunnel facility, the direct measurement of forces and moments induced on the model are performed by a force measurement balance. The measurement balance is a precision-machined device that has strain gages at strategic locations to measure the strain (i.e., deformations) due to applied forces and moments. The strain gages convert the strain (and hence the applied force) to an electrical voltage that is measured by external meters. Thermal gradients can complicate the process, however. Thermal gradients on the balance cause differential expansion (or contraction) of various parts of the balance that induce a strain that is detected by the strain gages and is indistinguishable from an external applied force. The thermal gradients can result when testing is done at elevated temperatures or at cryogenic temperatures such as at the National Transonic Facility (NTF) at NASA Langley Research Center (LaRC).

  5. Getting Physical with Your Chemistry: Mechanically Investigating Local Structure and Properties of Surfaces with the Atomic Force Microscope

    ERIC Educational Resources Information Center

    Heinz, William F.; Hoh, Jan H.

    2005-01-01

    Atomic force microscope (AFM) investigates mechanically the chemical properties of individual molecules, surfaces, and materials using suitably designed probes. The current state of the art of AFM in terms of imaging, force measurement, and sample manipulation and its application to physical chemistry is discussed.

  6. Molecular Dynamic Simulations of Interaction of an AFM Probe with the Surface of an SCN Sample

    NASA Technical Reports Server (NTRS)

    Bune, Adris; Kaukler, William; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Molecular dynamic (MD) simulations is conducted in order to estimate forces of probe-substrate interaction in the Atomic Force Microscope (AFM). First a review of available molecular dynamic techniques is given. Implementation of MD simulation is based on an object-oriented code developed at the University of Delft. Modeling of the sample material - succinonitrile (SCN) - is based on the Lennard-Jones potentials. For the polystyrene probe an atomic interaction potential is used. Due to object-oriented structure of the code modification of an atomic interaction potential is straight forward. Calculation of melting temperature is used for validation of the code and of the interaction potentials. Various fitting parameters of the probe-substrate interaction potentials are considered, as potentials fitted to certain properties and temperature ranges may not be reliable for the others. This research provides theoretical foundation for an interpretation of actual measurements of an interaction forces using AFM.

  7. Sharp high-aspect-ratio AFM tips fabricated by a combination of deep reactive ion etching and focused ion beam techniques.

    PubMed

    Caballero, David; Villanueva, Guillermo; Plaza, Jose Antonio; Mills, Christopher A; Samitier, Josep; Errachid, Abdelhamid

    2010-01-01

    The shape and dimensions of an atomic force microscope tip are crucial factors to obtain high resolution images at the nanoscale. When measuring samples with narrow trenches, inclined sidewalls near 90 degrees or nanoscaled structures, standard silicon atomic force microscopy (AFM) tips do not provide satisfactory results. We have combined deep reactive ion etching (DRIE) and focused ion beam (FIB) lithography techniques in order to produce probes with sharp rocket-shaped silicon AFM tips for high resolution imaging. The cantilevers were shaped and the bulk micromachining was performed using the same DRIE equipment. To improve the tip aspect ratio we used FIB nanolithography technique. The tips were tested on narrow silicon trenches and over biological samples showing a better resolution when compared with standard AFM tips, which enables nanocharacterization and nanometrology of high-aspect-ratio structures and nanoscaled biological elements to be completed, and provides an alternative to commercial high aspect ratio AFM tips.

  8. Extracting local surface charges and charge regulation behavior from atomic force microscopy measurements at heterogeneous solid-electrolyte interfaces

    NASA Astrophysics Data System (ADS)

    Zhao, Cunlu; Ebeling, Daniel; Siretanu, Igor; van den Ende, Dirk; Mugele, Frieder

    2015-10-01

    We present a method to determine the local surface charge of solid-liquid interfaces from Atomic Force Microscopy (AFM) measurements that takes into account shifts of the adsorption/desorption equilibria of protons and ions as the cantilever tip approaches the sample. We recorded AFM force distance curves in dynamic mode with sharp tips on heterogeneous silica surfaces partially covered by gibbsite nano-particles immersed in an aqueous electrolyte with variable concentrations of dissolved NaCl and KCl at pH 5.8. Forces are analyzed in the framework of Derjaguin-Landau-Verwey-Overbeek (DLVO) theory in combination with a charge regulation boundary that describes adsorption and desorption reactions of protons and ions. A systematic method to extract the equilibrium constants of these reactions by simultaneous least-squared fitting to experimental data for various salt concentrations is developed and is shown to yield highly consistent results for silica-electrolyte interfaces. For gibbsite-electrolyte interfaces, the surface charge can be determined, yet, an unambiguous identification of the relevant surface speciation reactions is not possible, presumably due to a combination of intrinsic chemical complexity and heterogeneity of the nano-particle surfaces.

  9. Polymer Droplet Dynamic Wetting Measurement at the Nanometer Scale on Smooth Surfaces Using Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Soleymaniha, Mohammadreza; Felts, Jonathan Robert; Anml Team

    2016-11-01

    Fluid spreading is a complex phenomenon driven strongly by intermolecular forces that requires nanometer scale microscopy to observe and understand. We present a technique for measuring molten polymer spreading dynamics with nanometer scale spatial resolution at elevated temperatures on sapphire, silicon oxide and mica using tapping-mode atomic force microscopy (AFM). The experimental setup is used to measure the spreading dynamics of polystyrene droplets with 2 μ m diameters at 115-175 C. Custom image processing algorithms realize the droplet height, radius, volume and contact angle of the droplet over time. The contact angle evolution followed a power law with time with experimental exponent values of -0.26, -0.08, and -0.2 for sapphire, silicon oxide, and mica, respectively at 115 C. The non-zero steady state contact angles result in a slower evolution of contact angle with time compared to Tanner's Law, as expected. We observe local crystallinity on the molten droplet surface, where crystalline structures appear to nucleate at the contact line and migrate toward the top of the droplet. Increasing the temperature from 115 C to 175 C reduced surface crystallinity from 35% to 12%, consistent with increasingly energetically favorable amorphous phase as the temperature approaches the melting temperature. This platform provides a way to measure spreading dynamics of extremely small volumes of heterogeneously complex fluids not possible through other means. Dr.Jonathan Felts is the principal investigator of the ANML research group in Mechanical Engineering Department of Texas A&M University.

  10. Development of cylindrical-type finger force measuring system using force sensors and its characteristics evaluation

    NASA Astrophysics Data System (ADS)

    Kim, Hyeon-Min; Yoon, Joungwon; Shin, Hee-Suk; Kim, Gab-Soon

    2012-02-01

    Some patients cannot use their hands because of the paralysis of their fingers. Their fingers can recover with rehabilitative training, and the extent of rehabilitation can be judged by grasping a cylindrical-object with their fingers. At present, the cylindrical-object used in hospitals is only a plastic cylinder, which cannot measure grasping force of the fingers. Therefore, doctors must judge the extent of rehabilitation by watching patients' fingers as they grasp the plastic cylinder. In this paper, the development of two cylindrical-type finger force measuring systems with four force sensors for left hand and right hand were developed. The developed finger force measuring system can measure the grasping force of patients' each finger (forefinger, middle finger, ring finger and little finger), and the measured results could be used to judge the rehabilitation extent of a finger patient. The grasping force tests of men and women were performed using the developed cylindrical-type finger force measuring systems. The tests confirm that the average finger forces of right hand and left hand for men were about 194 N and 179 N, and for women, 108 N and 95 N.

  11. Comparative quantification and statistical analysis of η′ and η precipitates in aluminum alloy AA7075-T651 by TEM and AFM

    SciTech Connect

    Garcia-Garcia, Adrian Luis Dominguez-Lopez, Ivan Lopez-Jimenez, Luis Barceinas-Sanchez, J.D. Oscar

    2014-01-15

    Quantification of nanometric precipitates in metallic alloys has been traditionally performed using transmission electron microscopy, which is nominally a low throughput technique. This work presents a comparative study of quantification of η′ and η precipitates in aluminum alloy AA7075-T651 using transmission electron microscopy (TEM) and non-contact atomic force microscopy (AFM). AFM quantification was compared with 2-D stereological results reported elsewhere. Also, a method was developed, using specialized software, to characterize nanometric size precipitates observed in dark-field TEM micrographs. Statistical analysis of the quantification results from both measurement techniques supports the use of AFM for precipitate characterization. Once the precipitate stoichiometry has been determined by appropriate analytical techniques like TEM, as it is the case for η′ and η in AA7075-T651, the relative ease with which specimens are prepared for AFM analysis could be advantageous in product and process development, and quality control, where a large number of samples are expected for analysis on a regular basis. - Highlights: • Nanometric MgZn{sub 2} precipitates in AA7075-T651 were characterized using AFM and TEM. • Phase-contrast AFM was used to differentiate metal matrix from MgZn{sub 2} precipitates. • TEM and AFM micrographs were analyzed using commercially available software. • AFM image analysis and TEM 2-D stereology render statistically equivalent results.

  12. A measurable force driven by an excitonic condensate

    SciTech Connect

    Hakioğlu, T.; Özgün, Ege; Günay, Mehmet

    2014-04-21

    Free energy signatures related to the measurement of an emergent force (≈10{sup −9}N) due to the exciton condensate (EC) in Double Quantum Wells are predicted and experiments are proposed to measure the effects. The EC-force is attractive and reminiscent of the Casimir force between two perfect metallic plates, but also distinctively different from it by its driving mechanism and dependence on the parameters of the condensate. The proposed experiments are based on a recent experimental work on a driven micromechanical oscillator. Conclusive observations of EC in recent experiments also provide a strong promise for the observation of the EC-force.

  13. Correct height measurement in noncontact atomic force microscopy.

    PubMed

    Sadewasser, Sascha; Lux-Steiner, Martha Ch

    2003-12-31

    We demonstrate that topography measurements by noncontact atomic force microscopy are subject to residual electrostatic forces. On highly oriented pyrolitic graphite (HOPG) with a submonolayer coverage of C60, we monitor the step height from C60 to HOPG as a function of dc bias between tip and sample. Because of the different contact potential of C60 and HOPG ( approximately 50 mV), the step height is strongly dependent on the dc bias. The presented results and additional simulations demonstrate clearly that for correct height measurements it is mandatory to use a Kelvin probe force microscopy method with active compensation of electrostatic forces.

  14. AFM as an analysis tool for high-capacity sulfur cathodes for Li–S batteries

    PubMed Central

    Sörgel, Seniz; Costa, Rémi; Carlé, Linus; Galm, Ines; Cañas, Natalia; Pascucci, Brigitta; Friedrich, K Andreas

    2013-01-01

    Summary In this work, material-sensitive atomic force microscopy (AFM) techniques were used to analyse the cathodes of lithium–sulfur batteries. A comparison of their nanoscale electrical, electrochemical, and morphological properties was performed with samples prepared by either suspension-spraying or doctor-blade coating with different binders. Morphological studies of the cathodes before and after the electrochemical tests were performed by using AFM and scanning electron microscopy (SEM). The cathodes that contained polyvinylidene fluoride (PVDF) and were prepared by spray-coating exhibited a superior stability of the morphology and the electric network associated with the capacity and cycling stability of these batteries. A reduction of the conductive area determined by conductive AFM was found to correlate to the battery capacity loss for all cathodes. X-ray diffraction (XRD) measurements of Li2S exposed to ambient air showed that insulating Li2S hydrolyses to insulating LiOH. This validates the significance of electrical ex-situ AFM analysis after cycling. Conductive tapping mode AFM indicated the existence of large carbon-coated sulfur particles. Based on the analytical findings, the first results of an optimized cathode showed a much improved discharge capacity of 800 mA·g(sulfur)−1 after 43 cycles. PMID:24205455

  15. Micromechanical cohesion force measurements to determine cyclopentane hydrate interfacial properties.

    PubMed

    Aman, Zachary M; Joshi, Sanjeev E; Sloan, E Dendy; Sum, Amadeu K; Koh, Carolyn A

    2012-06-15

    Hydrate aggregation and deposition are critical factors in determining where and when hydrates may plug a deepwater flowline. We present the first direct measurement of structure II (cyclopentane) hydrate cohesive forces in the water, liquid hydrocarbon and gas bulk phases. For fully annealed hydrate particles, gas phase cohesive forces were approximately twice that obtained in a liquid hydrocarbon phase, and approximately six times that obtained in the water phase. Direct measurements show that hydrate cohesion force in a water-continuous bulk may be only the product of solid-solid cohesion. When excess water was present on the hydrate surface, gas phase cohesive forces increased by a factor of three, suggesting the importance of the liquid or quasi-liquid layer (QLL) in determining cohesive force. Hydrate-steel adhesion force measurements show that, when the steel surface is coated with hydrophobic wax, forces decrease up to 96%. As the micromechanical force technique is uniquely capable of measuring hydrate-surface forces with variable contact time, the present work contains significant implications for hydrate applications in flow assurance.

  16. Measurement of axial forces via natural frequency

    NASA Astrophysics Data System (ADS)

    Petro, Samer H.; Reynolds, Don; EnChen, Shen; GangaRao, Hota V. S.

    1998-03-01

    This paper presents results from testing several suspender ropes of the Delaware Memorial Bridge using vibration measurements and a non-destructive evaluation (NDE) instrument called the Axial Load Monitor (ALM). The testing consisted of measuring the frequencies of suspender ropes and determining their tension levels. Results were compared to theoretical predictions. This paper presents the results of the testing and discusses the problems associated with vibration measurements on actual bridges.

  17. Measuring thermal rupture force distributions from an ensemble of trajectories.

    PubMed

    Swan, J W; Shindel, M M; Furst, E M

    2012-11-09

    Rupture, bond breaking, or extraction from a deep and narrow potential well requires considerable force while producing minimal displacement. In thermally fluctuating systems, there is not a single force required to achieve rupture, but a spectrum, as thermal forces can both augment and inhibit the bond breaking. We demonstrate measurement and interpretation of the distribution of rupture forces between pairs of colloidal particles bonded via the van der Waals attraction. The otherwise irreversible bond is broken by pulling the particles apart with optical tweezers. We show that an ensemble of the particle trajectories before, during and after the rupture event may be used to produce a high fidelity description of the distribution of rupture forces. This analysis is equally suitable for describing rupture forces in molecular and biomolecular contexts with a number of measurement techniques.

  18. Measured force/current relations in solid magnetic thrust bearings

    SciTech Connect

    Allaire, P.E.; Fittro, R.L.; Maslen, E.H.; Wakefield, W.C.

    1997-01-01

    When magnetic bearings are employed in a pump, compressor, turbine, or other rotating machine, measurement of the current in the bearing coils provides knowledge of the forces imposed on the bearings. This can be a significant indicator of machine problems. Additionally, magnetic bearings can be utilized as a load cell for measuring impeller forces in test rigs. The forces supported by magnetic bearings are directly related to the currents, air gaps, and other parameters in the bearings. This paper discusses the current/force relation for magnetic thrust bearings. Force versus current measurements were made on a particular magnetic bearing in a test rig as the bearing coil currents were cycled at various time rates of change.d the quasi-static force versus current relations were measured for a variety of air gaps and currents. The thrust bearing exhibits a hysteresis effect, which creates a significant difference between the measured force when the current is increasing as compared to that when the current is decreasing. For design current loops, 0.95 A to 2.55 A, at the time rate of change of 0.1 A/s, the difference between increasing and decreasing current curves due to hysteresis ranged from 4 to 8%. If the bearing is operated in small trajectories about a fixed (nonzero) operation point on the F/I (force/current) curve, the scatter in the measurement error could be expected to be on the order of 4%. A quasi-static nonlinear current/force equation was developed to model the data and curve-fit parameters established for the measured data. The effects of coercive force and iron reluctance, obtained from conventional magnetic materials tests, were included to improve the model, but theoretically calculated values from simple magnetic circuit theory do not produce accurate results. Magnetic fringing, leakage, and other effects must be included.

  19. Measurement and analysis of forces in grinding of silicon nitride

    SciTech Connect

    Jahanmir, S.; Hwang, T.; Whitenton, E.P.; Job, L.S.; Evans, C.J.

    1995-12-31

    Using an instrumented surface grinder, the two components of grinding forces (normal and tangential) were measured for different types of silicon nitride ceramics. The influences of grinding parameters, such as down feed and table speed, and grinding fluids on forces were determined. In addition to these measurements, the specific grinding energy defined as the energy per unit volume of removed material was calculated. This parameter and the measured forces were then analyzed to determine possible correlations with mechanical properties of the silicon nitrides. It was found that, in general, the grinding forces and the specific grinding energy increase with the hardness. Both the grinding forces and the specific grinding energy were influenced by the grinding fluid and the grinding parameters. The implication of these results on the mechanisms of material removal in grinding of silicon nitride and the possible tribological effects are discussed.

  20. Nanonewton force measurement using a modified Michelson interferometer

    NASA Astrophysics Data System (ADS)

    Tahviliyan, Masoud; Charsooghi, Mohammad A.; Akhlaghi, Ehsan A.; Taghi Tavassoly, Mohammad

    2017-04-01

    In this paper, we introduce a new method to measure forces in the nanonewton range. The method is based on modification of a Michelson interferometer in which the rigid mirrors are replaced with two thin rod-like mirrors. One of the rod-like mirrors is fixed at both ends and the other has one free end. As the mirror with free end deflects in response to an applied force the spatial interference pattern is changed. Analysis of the interference fringes provides a readout of the rod deflection and thereby the applied force. The device is calibrated by applying known forces to the mirror with a free end and measuring the resulting displacement. Two different methods, mechanical and electrostatic, are used for calibration. The precision of the measurements and the propagation of the calibration uncertainty are investigated. The results show that this optical method is a good candidate for detecting small forces in the nanonewton range.

  1. Direct measurement of the forces generated by an undulatory microswimmer

    NASA Astrophysics Data System (ADS)

    Schulman, Rafael; Backholm, Matilda; Ryu, William; Dalnoki-Veress, Kari

    2014-11-01

    C. elegans is a millimeter-sized nematode which has served as a model organism in biology for several decades, primarily due to its simple anatomy. Employing an undulatory form of locomotion, this worm is capable of propelling itself through various media. Using a micropipette deflection technique, in conjunction with high speed imaging, we directly measure the time-varying forces generated by C. elegans. We observe excellent agreement between our measured forces and the predictions of resistive force theory, through which we determine the drag coefficients of the worm. We also perform the direct force measurements at controlled distances from a single solid boundary as well as between two solid boundaries. We extract the drag coefficients of the worm to quantify the influence of the boundary on the swimming and the hydrodynamic forces involved.

  2. Force Measurements in Magnetic Suspension and Balance System

    NASA Technical Reports Server (NTRS)

    Kuzin, Alexander; Shapovalov, George; Prohorov, Nikolay

    1996-01-01

    The description of an infrared telemetry system for measurement of drag forces in Magnetic Suspension and Balance Systems (MSBS) is presented. This system includes a drag force sensor, electronic pack and transmitter placed in the model which is of special construction, and receiver with a microprocessor-based measuring device, placed outside of the test section. Piezosensitive resonators as sensitive elements and non-magnetic steel as the material for the force sensor are used. The main features of the proposed system for load measurements are discussed and the main characteristics are presented.

  3. Vehicle Lateral State Estimation Based on Measured Tyre Forces

    PubMed Central

    Tuononen, Ari J.

    2009-01-01

    Future active safety systems need more accurate information about the state of vehicles. This article proposes a method to evaluate the lateral state of a vehicle based on measured tyre forces. The tyre forces of two tyres are estimated from optically measured tyre carcass deflections and transmitted wirelessly to the vehicle body. The two remaining tyres are so-called virtual tyre sensors, the forces of which are calculated from the real tyre sensor estimates. The Kalman filter estimator for lateral vehicle state based on measured tyre forces is presented, together with a simple method to define adaptive measurement error covariance depending on the driving condition of the vehicle. The estimated yaw rate and lateral velocity are compared with the validation sensor measurements. PMID:22291535

  4. Report of the Task Force on Institutional Effectiveness Measures.

    ERIC Educational Resources Information Center

    Arizona State Board of Directors for Community Colleges, Phoenix.

    The Task Force on Institutional Effectiveness Measures was formed by the State Board of Directors for Community Colleges of Arizona to develop a statewide plan for systematically demonstrating the degree to which community colleges accomplish their diverse missions. Two subgroups were formed in the Task Force on transfer and college programs and…

  5. From static to animated: Measuring mechanical forces in tissues.

    PubMed

    Nelson, Celeste M

    2017-01-02

    Cells are physical objects that exert mechanical forces on their surroundings as they migrate and take their places within tissues. New techniques are now poised to enable the measurement of cell-generated mechanical forces in intact tissues in vivo, which will illuminate the secret dynamic lives of cells and change our current perception of cell biology.

  6. High-throughput atomic force microscopes operating in parallel

    NASA Astrophysics Data System (ADS)

    Sadeghian, Hamed; Herfst, Rodolf; Dekker, Bert; Winters, Jasper; Bijnagte, Tom; Rijnbeek, Ramon

    2017-03-01

    Atomic force microscopy (AFM) is an essential nanoinstrument technique for several applications such as cell biology and nanoelectronics metrology and inspection. The need for statistically significant sample sizes means that data collection can be an extremely lengthy process in AFM. The use of a single AFM instrument is known for its very low speed and not being suitable for scanning large areas, resulting in a very-low-throughput measurement. We address this challenge by parallelizing AFM instruments. The parallelization is achieved by miniaturizing the AFM instrument and operating many of them simultaneously. This instrument has the advantages that each miniaturized AFM can be operated independently and that the advances in the field of AFM, both in terms of speed and imaging modalities, can be implemented more easily. Moreover, a parallel AFM instrument also allows one to measure several physical parameters simultaneously; while one instrument measures nano-scale topography, another instrument can measure mechanical, electrical, or thermal properties, making it a lab-on-an-instrument. In this paper, a proof of principle of such a parallel AFM instrument has been demonstrated by analyzing the topography of large samples such as semiconductor wafers. This nanoinstrument provides new research opportunities in the nanometrology of wafers and nanolithography masks by enabling real die-to-die and wafer-level measurements and in cell biology by measuring the nano-scale properties of a large number of cells.

  7. Direct measurement of Vorticella contraction force by micropipette deflection.

    PubMed

    France, Danielle; Tejada, Jonathan; Matsudaira, Paul

    2017-02-01

    The ciliated protozoan Vorticella convallaria is noted for its exceptionally fast adenosine triphosphate-independent cellular contraction, but direct measurements of contractile force have proven difficult given the length scale, speed, and forces involved. We used high-speed video microscopy to image live Vorticella stalled in midcontraction by deflection of an attached micropipette. Stall forces correlate with both distance contracted and the resting stalk length. Estimated isometric forces range from 95 to 177 nanonewtons (nN), or 1.12 nN·μm(-1) of the stalk. Maximum velocity and work are also proportional to distance contracted. These parameters constrain proposed biochemical/physical models of the contractile mechanism.

  8. Interpreting atomic force microscopy measurements of hydrodynamic and surface forces with nonlinear parametric estimation.

    PubMed

    Cui, Song; Manica, Rogerio; Tabor, Rico F; Chan, Derek Y C

    2012-10-01

    A nonlinear parameter estimation method has been developed to extract the separation-dependent surface force and cantilever spring constant from atomic force microscope data taken at different speeds for the interaction between a silica colloidal probe and plate in aqueous solution. The distinguishing feature of this approach is that it exploits information from the velocity dependence of the force-displacement data due to hydrodynamic interaction to provide an unbiased estimate of the functional form of the separation-dependent surface force. An assumed function for the surface force with unknown parameters is not required. In addition, the analysis also yields a consistent estimate of the in situ cantilever spring constant. In combination with data from static force measurements, this approach can further be used to quantify the extent of hydrodynamic slip.

  9. Force Developments. The Measurement of Effectiveness

    DTIC Science & Technology

    1973-01-01

    14309 Prevention and Control of Cormmunicable Diseases oi Animals . 14689 Analysis to Identify Non-Divisional TOE Combat FSarvi~e Support Units Requiring...powerful tool for performing comparative analyses if experimentaion is properly de- signed and conducted. 4. Specifics in the Measurement .f

  10. Measuring Drag Force in Newtonian Liquids

    ERIC Educational Resources Information Center

    Mawhinney, Matthew T.; O'Donnell, Mary Kate; Fingerut, Jonathan; Habdas, Piotr

    2012-01-01

    The experiments described in this paper have two goals. The first goal is to show how students can perform simple but fundamental measurements of objects moving through simple liquids (such as water, oil, or honey). In doing so, students can verify Stokes' law, which governs the motion of spheres through simple liquids, and see how it fails at…

  11. A force balance system for the measurement of skin friction drag force

    NASA Technical Reports Server (NTRS)

    Moore, J. W.; Mcvey, E. S.

    1971-01-01

    Research on force balance instrumentation to measure the skin friction of hypersonic vehicles at extreme temperatures, high altitudes and in a vibration field is discussed. A rough overall summary and operating instructions for the equipment are presented.

  12. Sensitivity of Force Specifications to the Errors in Measuring the Interface Force

    NASA Technical Reports Server (NTRS)

    Worth, Daniel

    1999-01-01

    Force-Limited Random Vibration Testing has been applied in the last several years at NASA/GSFC for various programs at the instrument and system level. Different techniques have been developed over the last few decades to estimate the dynamic forces that the test article under consideration will encounter in the operational environment. Some of these techniques are described in the handbook, NASA-HDBK-7004, and the monograph, NASA-RP-1403. A key element in the ability to perform force-limited testing is multi-component force gauges. This paper will show how some measurement and calibration errors in force gauges are compensated for w en tie force specification is calculated. The resulting notches in the acceleration spectrum, when a random vibration test is performed, are the same as the notches produced during an uncompensated test that has no measurement errors. The paper will also present the results of tests that were used to validate this compensation. Knowing that the force specification can compensate for some measurement errors allows tests to continue after force gauge failures or allows dummy gauges to be used in places that are inaccessible.

  13. Cell volume increase in murine MC3T3-E1 pre-osteoblasts attaching onto biocompatible tantalum observed by magnetic AC mode atomic force microscopy.

    PubMed

    Andersen, L Klembt; Contera, S Antoranz; Justesen, J; Duch, M; Hansen, O; Chevallier, J; Foss, M; Pedersen, F S; Besenbacher, F

    2005-12-02

    Magnetic AC mode (MACmode) atomic force microscopy (AFM) was used to study murine (mouse) MC3T3-E1 preosteoblastic cells attached to biocompatible tantalum substrates. Cell volumes of attached cells derived from AFM images were compared to volumes of detached cells in suspension measured by the Coulter sizing technique. An increase of approximately 50% in cell volume was observed when the cells attached to planar tantalum substrates and developed a flattened structure including lamellipodia. We address thoroughly the issues general to the AFM determination of absolute cell volumes, and compare our magnetic AC mode AFM measurements to hitherto reported cell volume determinations by contact mode AFM.

  14. Electrostatic-free piezoresponse force microscopy

    NASA Astrophysics Data System (ADS)

    Kim, Sungho; Seol, Daehee; Lu, Xiaoli; Alexe, Marin; Kim, Yunseok

    2017-01-01

    Contact and non-contact based atomic force microscopy (AFM) approaches have been extensively utilized to explore various nanoscale surface properties. In most AFM-based measurements, a concurrent electrostatic effect between the AFM tip/cantilever and sample surface can occur. This electrostatic effect often hinders accurate measurements. Thus, it is very important to quantify as well as remove the impact of the electrostatic effect on AFM-based measurements. In this study, we examine the impact of the electrostatic effect on the electromechanical (EM) response in piezoresponse force microscopy as a model AFM mode. We quantitatively studied the effects of increasing the external electric field and reducing the spring constant of a cantilever. Further, we explored ways to minimize the electrostatic effect. The results provide broad guidelines for quantitatively analyzing the EM response as well as, eventually, for obtaining the electrostatic-free EM response. The conclusions can be applied to other AFM-based measurements that are subject to a strong electrostatic effect between the AFM tip/cantilever and sample surface, regardless of contact and non-contact modes.

  15. Electrostatic-free piezoresponse force microscopy

    PubMed Central

    Kim, Sungho; Seol, Daehee; Lu, Xiaoli; Alexe, Marin; Kim, Yunseok

    2017-01-01

    Contact and non-contact based atomic force microscopy (AFM) approaches have been extensively utilized to explore various nanoscale surface properties. In most AFM-based measurements, a concurrent electrostatic effect between the AFM tip/cantilever and sample surface can occur. This electrostatic effect often hinders accurate measurements. Thus, it is very important to quantify as well as remove the impact of the electrostatic effect on AFM-based measurements. In this study, we examine the impact of the electrostatic effect on the electromechanical (EM) response in piezoresponse force microscopy as a model AFM mode. We quantitatively studied the effects of increasing the external electric field and reducing the spring constant of a cantilever. Further, we explored ways to minimize the electrostatic effect. The results provide broad guidelines for quantitatively analyzing the EM response as well as, eventually, for obtaining the electrostatic-free EM response. The conclusions can be applied to other AFM-based measurements that are subject to a strong electrostatic effect between the AFM tip/cantilever and sample surface, regardless of contact and non-contact modes. PMID:28139715

  16. Applications of AFM in semiconductor R&D and manufacturing at 45 nm technology node and beyond

    NASA Astrophysics Data System (ADS)

    Lee, Moon-Keun; Shin, Minjung; Bao, Tianming; Song, Chul-Gi; Dawson, Dean; Ihm, Dong-Chul; Ukraintsev, Vladimir

    2009-03-01

    Continuing demand for high performance microelectronic products propelled integrated circuit technology into 45 nm node and beyond. The shrinking device feature geometry created unprecedented challenges for dimension metrology in semiconductor manufacturing and research and development. Automated atomic force microscope (AFM) has been used to meet the challenge and characterize narrower lines, trenches and holes at 45nm technology node and beyond. AFM is indispensable metrology techniques capable of non-destructive full three-dimensional imaging, surface morphology characterization and accurate critical dimension (CD) measurements. While all available dimensional metrology techniques approach their limits, AFM continues to provide reliable information for development and control of processes in memory, logic, photomask, image sensor and data storage manufacturing. In this paper we review up-todate applications of automated AFM in every mentioned above semiconductor industry sector. To demonstrate benefits of AFM at 45 nm node and beyond we compare capability of automated AFM with established in-line and off-line metrologies like critical dimension scanning electron microscopy (CDSEM), optical scatterometry (OCD) and transmission electronic microscopy (TEM).

  17. Crystallographic order and decomposition of [MnIII6CrIII]3+ single-molecule magnets deposited in submonolayers and monolayers on HOPG studied by means of molecular resolved atomic force microscopy (AFM) and Kelvin probe force microscopy in UHV

    PubMed Central

    2014-01-01

    Monolayers and submonolayers of [Mn III 6 Cr III ] 3+ single-molecule magnets (SMMs) adsorbed on highly oriented pyrolytic graphite (HOPG) using the droplet technique characterized by non-contact atomic force microscopy (nc-AFM) as well as by Kelvin probe force microscopy (KPFM) show island-like structures with heights resembling the height of the molecule. Furthermore, islands were found which revealed ordered 1D as well as 2D structures with periods close to the width of the SMMs. Along this, islands which show half the heights of intact SMMs were observed which are evidences for a decomposing process of the molecules during the preparation. Finally, models for the structure of the ordered SMM adsorbates are proposed to explain the observations. PMID:24495692

  18. Measuring the complete force field of an optical trap.

    PubMed

    Jahnel, Marcus; Behrndt, Martin; Jannasch, Anita; Schäffer, Erik; Grill, Stephan W

    2011-04-01

    The use of optical traps to measure or apply forces on the molecular level requires a precise knowledge of the trapping force field. Close to the trap center, this field is typically approximated as linear in the displacement of the trapped microsphere. However, applications demanding high forces at low laser intensities can probe the light-microsphere interaction beyond the linear regime. Here, we measured the full nonlinear force and displacement response of an optical trap in two dimensions using a dual-beam optical trap setup with back-focal-plane photodetection. We observed a substantial stiffening of the trap beyond the linear regime that depends on microsphere size, in agreement with Mie theory calculations. Surprisingly, we found that the linear detection range for forces exceeds the one for displacement by far. Our approach allows for a complete calibration of an optical trap.

  19. Cutting force measurement of electrical jigsaw by strain gauges

    NASA Astrophysics Data System (ADS)

    Kazup, L.; Varadine Szarka, A.

    2016-11-01

    This paper describes a measuring method based on strain gauges for accurate specification of electric jigsaw's cutting force. The goal of the measurement is to provide an overall perspective about generated forces in a jigsaw's gearbox during a cutting period. The lifetime of the tool is affected by these forces primarily. This analysis is part of the research and development project aiming to develop a special linear magnetic brake for realizing automatic lifetime tests of electric jigsaws or similar handheld tools. The accurate specification of cutting force facilitates to define realistic test cycles during the automatic lifetime test. The accuracy and precision resulted by the well described cutting force characteristic and the possibility of automation provide new dimension for lifetime testing of the handheld tools with alternating movement.

  20. Fat-Line Towed-Array Force Measurement Apparatus

    DTIC Science & Technology

    2000-06-12

    No. 78872 n 3 FAT -LINE TOWED-ARRAY FORCE MEASUREMENT APPARATUS 4 5 STATEMENT OF GOVERNMENT INTEREST 6 The invention described herein may be...application. 16 17 BACKGROUND OF THE INVENTION 18 (1) Field of the Invention 19 The present invention relates generally to fat -line towed- 2 0 arrays, and...more particularly to an apparatus for measuring the 21 force applied to fat -line towed-arrays during flushing cycles. 22 (2) Description of the

  1. Laser Photon Force Measurements using a CW Laser

    NASA Technical Reports Server (NTRS)

    Gray, Perry; Edwards, David L.; Carruth, M. Ralph, Jr.; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    The photon force resulting from the non-damaging impact of laser derived photons on a metallic target was measured using a vacuum compatible microbalance. This experiment quantitatively verified that the force resulting from laser photons impacting a reflective surface is measurable and predictable. The photon wavelength is 1064 mn and the laser is a multi-mode 30OW Nd YAG continuous wave (CW) laser.

  2. Icing Research Tunnel (IRT) Force Measurement System (FMS)

    NASA Technical Reports Server (NTRS)

    Roberts, Paul W.

    2012-01-01

    An Electronics Engineer at the Glenn Research Center (GRC), requested the NASA Engineering and Safety Center (NESC) provide technical support for an evaluation of the existing force measurement system (FMS) at the GRC's Icing Research Tunnel (IRT) with the intent of developing conceptual designs to improve the tunnel's force measurement capability in order to better meet test customer needs. This report contains the outcome of the NESC technical review.

  3. Flight of a Rufous Hummingbird Robotic Model-Force Measurements

    NASA Astrophysics Data System (ADS)

    Chavez Alarcon, Ramiro; Bocanegra Evans, Humberto; Ferreira de Sousa, Paulo; Tobalske, Bret; Allen, James

    2008-11-01

    Aerodynamic force data was measured on a 2-DOF scaled robotic hummingbird model for both hovering and translational flight. Experiments were conducted in a large water channel facility at New Mexico State University. Reynolds and Strouhal numbers for the experiment are in the range of 3600 and 0.97, respectively. Forces are directly measured using strain gages and compared with phase-locked PIV results.

  4. Raman and AFM study of gamma irradiated plastic bottle sheets

    NASA Astrophysics Data System (ADS)

    Ali, Yasir; Kumar, Vijay; Sonkawade, R. G.; Dhaliwal, A. S.

    2013-02-01

    In this investigation, the effects of gamma irradiation on the structural properties of plastic bottle sheet are studied. The Plastic sheets were exposed with 1.25MeV 60Co gamma rays source at various dose levels within the range from 0-670 kGy. The induced modifications were followed by micro-Raman and atomic force microscopy (AFM). The Raman spectrum shows the decrease in Raman intensity and formation of unsaturated bonds with an increase in the gamma dose. AFM image displays rough surface morphology after irradiation. The detailed Raman analysis of plastic bottle sheets is presented here, and the results are correlated with the AFM observations.

  5. Acoustic force measurement in a dual-temperature resonant chamber

    NASA Technical Reports Server (NTRS)

    Robey, Judith L.; Trinh, Eugene H.; Wang, Taylor G.

    1987-01-01

    The acoustic radiation force was measured for a dual-temperature resonant chamber. This rectangular chamber has its long dimension approximately 8.5 times the square cross-sectional dimension, and the opposite ends are at widely different temperatures. Force profiles were obtained for two hot end temperatures of 520 C and 760 C, while the cool end remained at approximately room temperature. Force magnitudes as high as 17 dyn for a sample 1.2 cm in diameter at 760 C and at 162-dB input level were measured.

  6. Flight Force Measurements on a Spacecraft to Launch Vehicle Interface

    NASA Astrophysics Data System (ADS)

    Kaufman, Daniel S.; Gordon, Scott A.

    2012-07-01

    For several years we had wanted to measure interface forces between a launch vehicle and the Payload. Finally in July 2006 a proposal was made and funded to evaluate the use of flight force measurements (FFM) to improve the loads process of a Spacecraft in its design and test cycle. A NASA/Industry team was formed, the core Team consisted of 20 people. The proposal identified two questions that this assessment would attempt to address by obtaining the flight forces. These questions were: 1) Is flight correlation and reconstruction with acceleration methods sufficient? 2) How much can the loads and therefore the design and qualification be reduced by having force measurements? The objective was to predict the six interface driving forces between the Spacecraft and the Launch Vehicle throughout the boost phase. Then these forces would be compared with reconstructed loads analyses for evaluation in an attempt to answer them. The paper will present the development of a strain based force measurement system and also an acceleration method, actual flight results, post flight evaluations and lessons learned.

  7. Does an instrumented treadmill correctly measure the ground reaction forces?

    PubMed Central

    Willems, Patrick A.; Gosseye, Thierry P.

    2013-01-01

    Summary Since the 1990s, treadmills have been equipped with multi-axis force transducers to measure the three components of the ground reaction forces during walking and running. These measurements are correctly performed if the whole treadmill (including the motor) is mounted on the transducers. In this case, the acceleration of the treadmill centre of mass relative to the reference frame of the laboratory is nil. The external forces exerted on one side of the treadmill are thus equal in magnitude and opposite in direction to the external forces exerted on the other side. However, uncertainty exists about the accuracy of these measures: due to friction between the belt and the tread-surface, due to the motor pulling the belt, some believe that it is not possible to correctly measure the horizontal components of the forces exerted by the feet on the belt. Here, we propose a simple model of an instrumented treadmill and we demonstrate (1) that the forces exerted by the subject moving on the upper part of the treadmill are accurately transmitted to the transducers placed under it and (2) that all internal forces – including friction – between the parts of the treadmill are cancelling each other. PMID:24285705

  8. MEMS-Based Flexible Force Sensor for Tri-Axial Catheter Contact Force Measurement.

    PubMed

    Pandya, Hardik J; Sheng, Jun; Desai, Jaydev P

    2017-02-01

    Atrial fibrillation (AFib) is a significant healthcare problem caused by the uneven and rapid discharge of electrical signals from pulmonary veins (PVs). The technique of radiofrequency (RF) ablation can block these abnormal electrical signals by ablating myocardial sleeves inside PVs. Catheter contact force measurement during RF ablation can reduce the rate of AFib recurrence, since it helps to determine effective contact of the catheter with the tissue, thereby resulting in effective power delivery for ablation. This paper presents the development of a three-dimensional (3D) force sensor to provide the real-time measurement of tri-axial catheter contact force. The 3D force sensor consists of a plastic cubic bead and five flexible force sensors. Each flexible force sensor was made of a PEDOT:PSS strain gauge and a PDMS bump on a flexible PDMS substrate. Calibration results show that the fabricated sensor has a linear response in the force range required for RF ablation. To evaluate its working performance, the fabricated sensor was pressed against gelatin tissue by a micromanipulator and also integrated on a catheter tip to test it within deionized water flow. Both experiments simulated the ventricular environment and proved the validity of applying the 3D force sensor in RF ablation.

  9. Experimental and numerical analyses of local mechanical properties measured by atomic force microscopy for sheared endothelial cells.

    PubMed

    Ohashi, T; Ishii, Y; Ishikawa, Y; Matsumoto, T; Sato, M

    2002-01-01

    Local mechanical properties were measured for bovine endothelial cells exposed to shear stress using an atomic force microscopy (AFM), and the AFM indentations were simulated using a finite element method (FEM) to determine the elastic modulus. After exposure to shear stress, the endothelial cells showed marked elongation and orientation in the flow direction, together with significant decrease in the peak cell height. The applied force-indentation depth curve was obtained at seven different locations on the major axis of the cell surface and quantitatively expressed by the quadratic equation. The elastic modulus was determined by comparison of the experimental and numerical results. The modulus using our FEM model significantly became higher from 12.2+/-4.2 to 18.7+/-5.7 kPa with exposure to shear stress. Fluorescent images showed that stress fibers of F-actin bundles were mainly formed in the central portion of the sheared cells. The significant increase in the modulus may be due to this remodeling of cytoskeletal structure. The moduli using the Hertz model are 0.87+/-0.23 and 1.75+/-0.43 kPa for control and sheared endothelial cells respectively. This difference can be attributable to the differences in approximation functions to determine the elastic modulus. The elastic modulus would contribute a better understanding of local mechanical properties of the cells.

  10. Prototype cantilevers for quantitative lateral force microscopy

    SciTech Connect

    Reitsma, Mark G.; Gates, Richard S.; Friedman, Lawrence H.; Cook, Robert F.

    2011-09-15

    Prototype cantilevers are presented that enable quantitative surface force measurements using contact-mode atomic force microscopy (AFM). The ''hammerhead'' cantilevers facilitate precise optical lever system calibrations for cantilever flexure and torsion, enabling quantifiable adhesion measurements and friction measurements by lateral force microscopy (LFM). Critically, a single hammerhead cantilever of known flexural stiffness and probe length dimension can be used to perform both a system calibration as well as surface force measurements in situ, which greatly increases force measurement precision and accuracy. During LFM calibration mode, a hammerhead cantilever allows an optical lever ''torque sensitivity'' to be generated for the quantification of LFM friction forces. Precise calibrations were performed on two different AFM instruments, in which torque sensitivity values were specified with sub-percent relative uncertainty. To examine the potential for accurate lateral force measurements using the prototype cantilevers, finite element analysis predicted measurement errors of a few percent or less, which could be reduced via refinement of calibration methodology or cantilever design. The cantilevers are compatible with commercial AFM instrumentation and can be used for other AFM techniques such as contact imaging and dynamic mode measurements.

  11. Quantitative measurements of force and displacement using an optical trap.

    PubMed Central

    Simmons, R M; Finer, J T; Chu, S; Spudich, J A

    1996-01-01

    We combined a single-beam gradient optical trap with a high-resolution photodiode position detector to show that an optical trap can be used to make quantitative measurements of nanometer displacements and piconewton forces with millisecond resolution. When an external force is applied to a micron-sized bead held by an optical trap, the bead is displaced from the center of the trap by an amount proportional to the applied force. When the applied force is changed rapidly, the rise time of the displacement is on the millisecond time scale, and thus a trapped bead can be used as a force transducer. The performance can be enhanced by a feedback circuit so that the position of the trap moves by means of acousto-optic modulators to exert a force equal and opposite to the external force applied to the bead. In this case the position of the trap can be used to measure the applied force. We consider parameters of the trapped bead such as stiffness and response time as a function of bead diameter and laser beam power and compare the results with recent ray-optic calculations. PMID:8785341

  12. The Kilogram and Measurements of Mass and Force

    PubMed Central

    Jabbour, Z. J.; Yaniv, S. L.

    2001-01-01

    This paper describes the facilities, measurement capabilities, and ongoing research activities in the areas of mass and force at the National Institute of Standards and Technology (NIST). The first section of the paper is devoted to mass metrology and starts with a brief historical perspective on the developments that led to the current definition of the kilogram. An overview of mass measurement procedures is given with a brief discussion of current research on alternative materials for mass standards and surface profiles of the U.S. national prototype kilograms. A brief outlook into the future possible redefinition of the unit of mass based on fundamental principles is included. The second part of this paper focuses on the unit of force and describes the realization of the unit, measurement procedures, uncertainty in the realized force, facilities, and current efforts aimed at the realization of small forces. PMID:27500016

  13. Novel Low-Cost Sensor for Human Bite Force Measurement

    PubMed Central

    Fastier-Wooller, Jarred; Phan, Hoang-Phuong; Dinh, Toan; Nguyen, Tuan-Khoa; Cameron, Andrew; Öchsner, Andreas; Dao, Dzung Viet

    2016-01-01

    This paper presents the design and development of a low cost and reliable maximal voluntary bite force sensor which can be manufactured in-house by using an acrylic laser cutting machine. The sensor has been designed for ease of fabrication, assembly, calibration, and safe use. The sensor is capable of use within an hour of commencing production, allowing for rapid prototyping/modifications and practical implementation. The measured data shows a good linear relationship between the applied force and the electrical resistance of the sensor. The output signal has low drift, excellent repeatability, and a large measurable range of 0 to 700 N. A high signal-to-noise response to human bite forces was observed, indicating the high potential of the proposed sensor for human bite force measurement. PMID:27509496

  14. NASA ATP Force Measurement Technology Capability Strategic Plan

    NASA Technical Reports Server (NTRS)

    Rhew, Ray D.

    2008-01-01

    The Aeronautics Test Program (ATP) within the National Aeronautics and Space Administration (NASA) Aeronautics Research Mission Directorate (ARMD) initiated a strategic planning effort to re-vitalize the force measurement capability within NASA. The team responsible for developing the plan included members from three NASA Centers (Langley, Ames and Glenn) as well as members from the Air Force s Arnold Engineering and Development Center (AEDC). After visiting and discussing force measurement needs and current capabilities at each participating facility as well as selected force measurement companies, a strategic plan was developed to guide future NASA investments. This paper will provide the details of the strategic plan and include asset management, organization and technology research and development investment priorities as well as efforts to date.

  15. Rail supporting transducer posts for three-dimensional force measurement.

    PubMed

    Jin, Z; Kobetic, R

    1997-12-01

    Parallel bars supported on transducer posts were designed, instrumented and calibrated to measure three-dimensional (3-D) forces applied to the rails. These instrumented rails were designed for measuring forces applied by paraplegic patients during development and evaluation of functional electrical stimulation (FES) patterns for standing, side stepping, and ascending and descending stairs. The focus of this study was on the adaptation of the system for measuring support forces during stair climbing and descent. The specific problems with crosstalk among the three axes, nonlinearity, and hysteresis were investigated. In this design, the crosstalk between axes was less than 5%, nonlinearity was less than 2% of full scale, and force accuracy was better than 5%.

  16. Phoretic and Radiometric Force Measurements on Microparticles in Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Davis, E. James

    1996-01-01

    Thermophoretic, diffusiophoretic and radiometric forces on microparticles are being measured over a wide range of gas phase and particle conditions using electrodynamic levitation of single particles to simulate microgravity conditions. The thermophoretic force, which arises when a particle exists in a gas having a temperature gradient, is measured by levitating an electrically charged particle between heated and cooled plates mounted in a vacuum chamber. The diffusiophoretic force arising from a concentration gradient in the gas phase is measured in a similar manner except that the heat exchangers are coated with liquids to establish a vapor concentration gradient. These phoretic forces and the radiation pressure force acting on a particle are measured directly in terms of the change in the dc field required to levitate the particle with and without the force applied. The apparatus developed for the research and the experimental techniques are discussed, and results obtained by thermophoresis experiments are presented. The determination of the momentum and energy accommodation coefficients associated with molecular collisions between gases molecules and particles and the measurement of the interaction between electromagnetic radiation and small particles are of particular interest.

  17. Measuring the force of drag on air sheared sessile drops

    NASA Astrophysics Data System (ADS)

    Milne, Andrew J. B.; Fleck, Brian; Amirfazli, Alidad

    2012-11-01

    To blow a drop along or off of a surface (i.e. to shed the drop), the drag force on the drop (based on flow conditions, drop shape, and fluid properties) must overcome the adhesion force between the drop and the surface (based on surface tension, drop shape, and contact angle). While the shedding of sessile drops by shear flow has been studied [Milne, A. J. B. & Amirfazli, A. Langmuir 25, 14155 (2009).], no independent measurements of the drag or adhesion forces have been made. Likewise, analytic predictions are limited to hemispherical drops and low air velocities. We present, therefore, measurements of the drag force on sessile drops at air velocities up to the point of incipient motion. Measurements were made using a modified floating element shear sensor in a laminar low speed wind tunnel to record drag force over the surface with the drop absent, and over the combined system of the surface and drop partially immersed in the boundary layer. Surfaces of different wettabilities were used to study the effects of drop shape and contact angles, with drop volume ranged between approximately 10 and 100 microlitres. The drag force for incipient motion (which by definition equals the maximum of the adhesion force) is compared to simplified models for drop adhesion such as that of Furmidge

  18. Direct Aerosol Radiative Forcing: Calculations and Measurements from the Tropospheric

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Hignett, P.; Stowe, L. L.; Livingston, J. M.; Kinne, S.; Wong, J.; Chan, K. Roland (Technical Monitor)

    1997-01-01

    Radiative forcing is defined as the change in the net (downwelling minus upwelling) radiative flux at a given level in the atmosphere. This net flux is the radiative power density available to drive climatic processes in the earth-atmosphere system below that level. Recent research shows that radiative forcing by aerosol particles is a major source of uncertainty in climate predictions. To reduce those uncertainties, TARFOX was designed to determine direct (cloud-free) radiative forcing by the aerosols in one of the world's major industrial pollution plumes--that flowing from the east coast of the US over the Atlantic Ocean. TARFOX measured a variety of aerosol radiative effects (including direct forcing) while simultaneously measuring the chemical, physical, and optical properties of the aerosol particles causing those effects. The resulting data sets permit a wide variety of tests of the consistency, or closure, among the measurements and the models that link them. Because climate predictions use the same or similar model components, closure tests help to assess and reduce prediction uncertainties. In this work we use the TARFOX-determined aerosol, gas, and surface properties to compute radiative forcing for a variety of aerosol episodes, with inadvisable optical depths ranging from 0.07 to 0.6. We calculate forcing by several techniques with varying degrees of sophistication, in part to test the range of applicability of simplified techniques--which are often the only ones feasible in climate predictions by general circulation models (GCMs). We then compare computed forcing to that determined from: (1) Upwelling and downwelling fluxes (0.3-0.7 mm and 0.7-3.0 mm) measured by radiometers on the UK MRF C-130. and (2) Daily average cloud-free absorbed solar and emitted thermal radiative flux at the top of the atmosphere derived from the AVHRR radiometer on the NOAA- 14 satellite. The calculations and measurements all yield aerosol direct radiative forcing in the

  19. Nano-Electrochemistry and Nano-Electrografting with an Original Combined AFM-SECM

    PubMed Central

    Ghorbal, Achraf; Grisotto, Federico; Charlier, Julienne; Palacin, Serge; Goyer, Cédric; Demaille, Christophe; Ben Brahim, Ammar

    2013-01-01

    This study demonstrates the advantages of the combination between atomic force microscopy and scanning electrochemical microscopy. The combined technique can perform nano-electrochemical measurements onto agarose surface and nano-electrografting of non-conducting polymers onto conducting surfaces. This work was achieved by manufacturing an original Atomic Force Microscopy-Scanning ElectroChemical Microscopy (AFM-SECM) electrode. The capabilities of the AFM-SECM-electrode were tested with the nano-electrografting of vinylic monomers initiated by aryl diazonium salts. Nano-electrochemical and technical processes were thoroughly described, so as to allow experiments reproducing. A plausible explanation of chemical and electrochemical mechanisms, leading to the nano-grafting process, was reported. This combined technique represents the first step towards improved nano-processes for the nano-electrografting.

  20. Acquisition of a Modular, Multi-laser, Raman-AFM Instrument for Multdisciplinary Research

    DTIC Science & Technology

    2015-04-28

    vapor deposition on copper foils. The four lasers range from the blue to 785 nm and provides a unique handle to determine excitation dependence of...Acquisition of a Modular, Multi- laser , Raman- AFM Instrument for Multdisciplinary Research A four- laser , confocal Raman/Atomic Force Scanning... laser , Raman-AFM Instrument for Multdisciplinary Research Report Title A four- laser , confocal Raman/Atomic Force Scanning microscope (Raman-AFM

  1. Large area scanning probe microscope in ultra-high vacuum demonstrated for electrostatic force measurements on high-voltage devices

    PubMed Central

    Glatzel, Thilo; Schmölzer, Thomas; Schöner, Adolf; Reshanov, Sergey; Bartolf, Holger; Meyer, Ernst

    2015-01-01

    Summary Background: The resolution in electrostatic force microscopy (EFM), a descendant of atomic force microscopy (AFM), has reached nanometre dimensions, necessary to investigate integrated circuits in modern electronic devices. However, the characterization of conducting or semiconducting power devices with EFM methods requires an accurate and reliable technique from the nanometre up to the micrometre scale. For high force sensitivity it is indispensable to operate the microscope under high to ultra-high vacuum (UHV) conditions to suppress viscous damping of the sensor. Furthermore, UHV environment allows for the analysis of clean surfaces under controlled environmental conditions. Because of these requirements we built a large area scanning probe microscope operating under UHV conditions at room temperature allowing to perform various electrical measurements, such as Kelvin probe force microscopy, scanning capacitance force microscopy, scanning spreading resistance microscopy, and also electrostatic force microscopy at higher harmonics. The instrument incorporates beside a standard beam deflection detection system a closed loop scanner with a scan range of 100 μm in lateral and 25 μm in vertical direction as well as an additional fibre optics. This enables the illumination of the tip–sample interface for optically excited measurements such as local surface photo voltage detection. Results: We present Kelvin probe force microscopy (KPFM) measurements before and after sputtering of a copper alloy with chromium grains used as electrical contact surface in ultra-high power switches. In addition, we discuss KPFM measurements on cross sections of cleaved silicon carbide structures: a calibration layer sample and a power rectifier. To demonstrate the benefit of surface photo voltage measurements, we analysed the contact potential difference of a silicon carbide p/n-junction under illumination. PMID:26885461

  2. Measuring the Drag Force on a Falling Ball

    NASA Astrophysics Data System (ADS)

    Cross, Rod; Lindsey, Crawford

    2014-03-01

    The effect of the aerodynamic drag force on an object in flight is well known and has been described in this and other journals many times. At speeds less than about 1 m/s, the drag force on a sphere is proportional to the speed and is given by Stokes' law. At higher speeds, the drag force is proportional to the velocity squared and is usually small compared with the gravitational force if the object mass is large and its speed is low. In order to observe a significant effect, or to measure the terminal velocity, experiments are often conducted with very light objects such as a balloon or coffee filter3 or muffin cup,4 or are conducted in a liquid rather than in air. The effect of the drag force can also be increased by increasing the surface area of the object.

  3. Comparison of the cohesion-adhesion balance approach to colloidal probe atomic force microscopy and the measurement of Hansen partial solubility parameters by inverse gas chromatography for the prediction of dry powder inhalation performance.

    PubMed

    Jones, Matthew D; Buckton, Graham

    2016-07-25

    The abilities of the cohesive-adhesive balance approach to atomic force microscopy (AFM) and the measurement of Hansen partial solubility parameters by inverse gas chromatography (IGC) to predict the performance of carrier-based dry powder inhaler (DPI) formulations were compared. Five model drugs (beclometasone dipropionate, budesonide, salbutamol sulphate, terbutaline sulphate and triamcinolone acetonide) and three model carriers (erythritol, α-lactose monohydrate and d-mannitol) were chosen, giving fifteen drug-carrier combinations. Comparison of the AFM and IGC interparticulate adhesion data suggested that they did not produce equivalent results. Comparison of the AFM data with the in vitro fine particle delivery of appropriate DPI formulations normalised to account for particle size differences revealed a previously observed pattern for the AFM measurements, with a slightly cohesive AFM CAB ratio being associated with the highest fine particle fraction. However, no consistent relationship between formulation performance and the IGC data was observed. The results as a whole highlight the complexity of the many interacting variables that can affect the behaviour of DPIs and suggest that the prediction of their performance from a single measurement is unlikely to be successful in every case.

  4. Fiber optic micro sensor for the measurement of tendon forces.

    PubMed

    Behrmann, Gregory P; Hidler, Joseph; Mirotznik, Mark S

    2012-10-03

    A fiber optic sensor developed for the measurement of tendon forces was designed, numerically modeled, fabricated, and experimentally evaluated. The sensor incorporated fiber Bragg gratings and micro-fabricated stainless steel housings. A fiber Bragg grating is an optical device that is spectrally sensitive to axial strain. Stainless steel housings were designed to convert radial forces applied to the housing into axial forces that could be sensed by the fiber Bragg grating. The metal housings were fabricated by several methods including laser micromachining, swaging, and hydroforming. Designs are presented that allow for simultaneous temperature and force measurements as well as for simultaneous resolution of multi-axis forces.The sensor was experimentally evaluated by hydrostatic loading and in vitro testing. A commercial hydraulic burst tester was used to provide uniform pressures on the sensor in order to establish the linearity, repeatability, and accuracy characteristics of the sensor. The in vitro experiments were performed in excised tendon and in a dynamic gait simulator to simulate biological conditions. In both experimental conditions, the sensor was found to be a sensitive and reliable method for acquiring minimally invasive measurements of soft tissue forces. Our results suggest that this sensor will prove useful in a variety of biomechanical measurements.

  5. Fiber optic micro sensor for the measurement of tendon forces

    PubMed Central

    2012-01-01

    A fiber optic sensor developed for the measurement of tendon forces was designed, numerically modeled, fabricated, and experimentally evaluated. The sensor incorporated fiber Bragg gratings and micro-fabricated stainless steel housings. A fiber Bragg grating is an optical device that is spectrally sensitive to axial strain. Stainless steel housings were designed to convert radial forces applied to the housing into axial forces that could be sensed by the fiber Bragg grating. The metal housings were fabricated by several methods including laser micromachining, swaging, and hydroforming. Designs are presented that allow for simultaneous temperature and force measurements as well as for simultaneous resolution of multi-axis forces. The sensor was experimentally evaluated by hydrostatic loading and in vitro testing. A commercial hydraulic burst tester was used to provide uniform pressures on the sensor in order to establish the linearity, repeatability, and accuracy characteristics of the sensor. The in vitro experiments were performed in excised tendon and in a dynamic gait simulator to simulate biological conditions. In both experimental conditions, the sensor was found to be a sensitive and reliable method for acquiring minimally invasive measurements of soft tissue forces. Our results suggest that this sensor will prove useful in a variety of biomechanical measurements. PMID:23033868

  6. Image Analysis and Length Estimation of Biomolecules Using AFM

    PubMed Central

    Sundstrom, Andrew; Cirrone, Silvio; Paxia, Salvatore; Hsueh, Carlin; Kjolby, Rachel; Gimzewski, James K.; Reed, Jason; Mishra, Bud

    2014-01-01

    There are many examples of problems in pattern analysis for which it is often possible to obtain systematic characterizations, if in addition a small number of useful features or parameters of the image are known a priori or can be estimated reasonably well. Often, the relevant features of a particular pattern analysis problem are easy to enumerate, as when statistical structures of the patterns are well understood from the knowledge of the domain. We study a problem from molecular image analysis, where such a domain-dependent understanding may be lacking to some degree and the features must be inferred via machine-learning techniques. In this paper, we propose a rigorous, fully automated technique for this problem. We are motivated by an application of atomic force microscopy (AFM) image processing needed to solve a central problem in molecular biology, aimed at obtaining the complete transcription profile of a single cell, a snapshot that shows which genes are being expressed and to what degree. Reed et al. (“Single molecule transcription profiling with AFM,” Nanotechnology, vol. 18, no. 4, 2007) showed that the transcription profiling problem reduces to making high-precision measurements of biomolecule backbone lengths, correct to within 20–25 bp (6–7.5 nm). Here, we present an image processing and length estimation pipeline using AFM that comes close to achieving these measurement tolerances. In particular, we develop a biased length estimator on trained coefficients of a simple linear regression model, biweighted by a Beaton–Tukey function, whose feature universe is constrained by James–Stein shrinkage to avoid overfitting. In terms of extensibility and addressing the model selection problem, this formulation subsumes the models we studied. PMID:22759526

  7. A force plate system for measuring low-magnitude reaction forces in small laboratory animals.

    PubMed

    Handley, D E; Ross, J F; Carr, G J

    1998-07-01

    We present a force plate system which measures low-magnitude vertical reaction forces generated by small laboratory animals. The force plate mechanical design minimizes radiated transverse waves, acoustic reverberation, and standing waves caused by impacts on the force plate surface. A secondary force plate and PC-based software algorithm minimize floor vibrational artifact. The force plate was used to measure function of rats during two tests: forelimb/hindlimb hopping reaction and surface righting reaction. In control rats, forelimb hopping rate exceeded hindlimb hopping rate during 16 weeks of repeated testing. Subchronic intraperitoneal (i.p.) dosing of 10 mg/kg/day acrylamide produced a selective impairment of hindlimb hopping. In contrast, single doses of haloperidol (1-5 mg/kg, i.p.) slowed the righting reaction and produced a relatively selective impairment of forelimb hopping. The force plate system presents new opportunities for performing quantitative neurological assessments of small laboratory animals when previously such tests had been performed subjectively and qualitatively.

  8. Spatial spectrograms of vibrating atomic force microscopy cantilevers coupled to sample surfaces

    SciTech Connect

    Wagner, Ryan; Raman, Arvind; Proksch, Roger

    2013-12-23

    Many advanced dynamic Atomic Force Microscopy (AFM) techniques such as contact resonance, force modulation, piezoresponse force microscopy, electrochemical strain microscopy, and AFM infrared spectroscopy exploit the dynamic response of a cantilever in contact with a sample to extract local material properties. Achieving quantitative results in these techniques usually requires the assumption of a certain shape of cantilever vibration. We present a technique that allows in-situ measurements of the vibrational shape of AFM cantilevers coupled to surfaces. This technique opens up unique approaches to nanoscale material property mapping, which are not possible with single point measurements alone.

  9. Topological and geometric measurements of force-chain structure

    NASA Astrophysics Data System (ADS)

    Giusti, Chad; Papadopoulos, Lia; Owens, Eli T.; Daniels, Karen E.; Bassett, Danielle S.

    2016-09-01

    Developing quantitative methods for characterizing structural properties of force chains in densely packed granular media is an important step toward understanding or predicting large-scale physical properties of a packing. A promising framework in which to develop such methods is network science, which can be used to translate particle locations and force contacts into a graph in which particles are represented by nodes and forces between particles are represented by weighted edges. Recent work applying network-based community-detection techniques to extract force chains opens the door to developing statistics of force-chain structure, with the goal of identifying geometric and topological differences across packings, and providing a foundation on which to build predictions of bulk material properties from mesoscale network features. Here we discuss a trio of related but fundamentally distinct measurements of the mesoscale structure of force chains in two-dimensional (2D) packings, including a statistic derived using tools from algebraic topology, which together provide a tool set for the analysis of force chain architecture. We demonstrate the utility of this tool set by detecting variations in force-chain architecture with pressure. Collectively, these techniques can be generalized to 3D packings, and to the assessment of continuous deformations of packings under stress or strain.

  10. Topological and geometric measurements of force-chain structure.

    PubMed

    Giusti, Chad; Papadopoulos, Lia; Owens, Eli T; Daniels, Karen E; Bassett, Danielle S

    2016-09-01

    Developing quantitative methods for characterizing structural properties of force chains in densely packed granular media is an important step toward understanding or predicting large-scale physical properties of a packing. A promising framework in which to develop such methods is network science, which can be used to translate particle locations and force contacts into a graph in which particles are represented by nodes and forces between particles are represented by weighted edges. Recent work applying network-based community-detection techniques to extract force chains opens the door to developing statistics of force-chain structure, with the goal of identifying geometric and topological differences across packings, and providing a foundation on which to build predictions of bulk material properties from mesoscale network features. Here we discuss a trio of related but fundamentally distinct measurements of the mesoscale structure of force chains in two-dimensional (2D) packings, including a statistic derived using tools from algebraic topology, which together provide a tool set for the analysis of force chain architecture. We demonstrate the utility of this tool set by detecting variations in force-chain architecture with pressure. Collectively, these techniques can be generalized to 3D packings, and to the assessment of continuous deformations of packings under stress or strain.

  11. Monitoring Coaxial-Probe Contact Force for Dielectric Properties Measurement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A means is described for measuring and monitoring the contact force applied to a material sample with an open-ended coaxial-line probe for purposes of measuring the dielectric properties of semisolid material samples such as fruit, vegetable and animal tissues. The equipment consists of a stainless...

  12. Atomic force microscopy as a tool to study Xenopus laevis embryo

    NASA Astrophysics Data System (ADS)

    Pukhlyakova, E. A.; Efremov, Yu M.; Bagrov, D. V.; Luchinskaya, N. N.; Kiryukhin, D. O.; Belousov, L. V.; Shaitan, K. V.

    2012-02-01

    Atomic force microscopy (AFM) has become a powerful tool for imaging biological structures (from single molecules to living cells) and carrying out measurements of their mechanical properties. AFM provides three-dimensional high-resolution images of the studied biological objects in physiological environment. However there are only few AFM investigations of fresh tissue explants and virtually no such research on a whole organism, since most researchers work with cell cultures. In the current work AFM was used to observe the surface of living and fixed embryos and to measure mechanical properties of naive embryos and embryos with overexpression of guanine nucleotide-binding protein G-alpha-13.

  13. Interpreting motion and force for narrow-band intermodulation atomic force microscopy.

    PubMed

    Platz, Daniel; Forchheimer, Daniel; Tholén, Erik A; Haviland, David B

    2013-01-01

    Intermodulation atomic force microscopy (ImAFM) is a mode of dynamic atomic force microscopy that probes the nonlinear tip-surface force by measurement of the mixing of multiple modes in a frequency comb. A high-quality factor cantilever resonance and a suitable drive comb will result in tip motion described by a narrow-band frequency comb. We show, by a separation of time scales, that such motion is equivalent to rapid oscillations at the cantilever resonance with a slow amplitude and phase or frequency modulation. With this time-domain perspective, we analyze single oscillation cycles in ImAFM to extract the Fourier components of the tip-surface force that are in-phase with the tip motion (F(I)) and quadrature to the motion (F(Q)). Traditionally, these force components have been considered as a function of the static-probe height only. Here we show that F(I) and F(Q) actually depend on both static-probe height and oscillation amplitude. We demonstrate on simulated data how to reconstruct the amplitude dependence of F(I) and F(Q) from a single ImAFM measurement. Furthermore, we introduce ImAFM approach measurements with which we reconstruct the full amplitude and probe-height dependence of the force components F(I) and F(Q), providing deeper insight into the tip-surface interaction. We demonstrate the capabilities of ImAFM approach measurements on a polystyrene polymer surface.

  14. Field measurement of basal forces generated by erosive debris flows

    USGS Publications Warehouse

    McCoy, S.W.; Tucker, G.E.; Kean, J.W.; Coe, J.A.

    2013-01-01

    It has been proposed that debris flows cut bedrock valleys in steeplands worldwide, but field measurements needed to constrain mechanistic models of this process remain sparse due to the difficulty of instrumenting natural flows. Here we present and analyze measurements made using an automated sensor network, erosion bolts, and a 15.24 cm by 15.24 cm force plate installed in the bedrock channel floor of a steep catchment. These measurements allow us to quantify the distribution of basal forces from natural debris‒flow events that incised bedrock. Over the 4 year monitoring period, 11 debris‒flow events scoured the bedrock channel floor. No clear water flows were observed. Measurements of erosion bolts at the beginning and end of the study indicated that the bedrock channel floor was lowered by 36 to 64 mm. The basal force during these erosive debris‒flow events had a large‒magnitude (up to 21 kN, which was approximately 50 times larger than the concurrent time‒averaged mean force), high‒frequency (greater than 1 Hz) fluctuating component. We interpret these fluctuations as flow particles impacting the bed. The resulting variability in force magnitude increased linearly with the time‒averaged mean basal force. Probability density functions of basal normal forces were consistent with a generalized Pareto distribution, rather than the exponential distribution that is commonly found in experimental and simulated monodispersed granular flows and which has a lower probability of large forces. When the bed sediment thickness covering the force plate was greater than ~ 20 times the median bed sediment grain size, no significant fluctuations about the time‒averaged mean force were measured, indicating that a thin layer of sediment (~ 5 cm in the monitored cases) can effectively shield the subjacent bed from erosive impacts. Coarse‒grained granular surges and water‒rich, intersurge flow had very similar basal force distributions despite

  15. Simultaneous mechanical stiffness and electrical potential measurements of living vascular endothelial cells using combined atomic force and epifluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Callies, Chiara; Schön, Peter; Liashkovich, Ivan; Stock, Christian; Kusche-Vihrog, Kristina; Fels, Johannes; Sträter, Alexandra S.; Oberleithner, Hans

    2009-04-01

    The degree of mechanical stiffness of vascular endothelial cells determines the endogenous production of the vasodilating gas nitric oxide (NO). However, the underlying mechanisms are not yet understood. Experiments on vascular endothelial cells suggest that the electrical plasma membrane potential is involved in this regulatory process. To test this hypothesis we developed a technique that simultaneously measures the electrical membrane potential and stiffness of vascular endothelial cells (GM7373 cell line derived from bovine aortic endothelium) under continuous perfusion with physiological electrolyte solution. The cellular stiffness was determined by nano-indentation using an atomic force microscope (AFM) while the electrical membrane potential was measured with bis-oxonol, a voltage-reporting fluorescent dye. These two methods were combined using an AFM attached to an epifluorescence microscope. The electrical membrane potential and mechanical stiffness of the same cell were continuously recorded for a time span of 5 min. Fast fluctuations (in the range of seconds) of both the electrical membrane potential and mechanical stiffness could be observed that were not related to each other. In contrast, slow cell depolarizations (in the range of minutes) were paralleled by significant increases in mechanical stiffness. In conclusion, using the combined AFM-fluorescence technique we monitored for the first time simultaneously the electrical plasma membrane potential and mechanical stiffness in a living cell. Vascular endothelial cells exhibit oscillatory non-synchronized waves of electrical potential and mechanical stiffness. The sustained membrane depolarization, however, is paralleled by a concomitant increase of cell stiffness. The described method is applicable for any fluorophore, which opens new perspectives in biomedical research.

  16. Measurements of human force control during a constrained arm motion using a force-actuated joystick.

    PubMed

    McIntyre, J; Gurfinkel, E V; Lipshits, M I; Droulez, J; Gurfinkel, V S

    1995-03-01

    1. When interacting with the environment, human arm movements may be prevented in certain directions (i.e., when sliding the hand along a surface) resulting in what is called a "constrained motion." In the directions that the movement is restricted, the subject is instead free to control the forces against the constraint. 2. Control strategies for constrained motion may be characterized by two extreme models. Under the active compliance model, an essentially feedback-based approach, measurements of contact force may be used in real time to modify the motor command and precisely control the forces generated against the constraint. Under the passive compliance model the motion would be executed in a feedforward manner, using an internal model of the constraint geometry. The feedforward model relies on the compliant behavior of the passive mechanical system to maintain contact while avoiding excessive contact forces. 3. Subjects performed a task in which they were required to slide the hand along a rigid surface. This task was performed in a virtual force environment in which contact forces were simulated by a two-dimensional force-actuated joystick. Unknown to the subject, the orientation of the surface constraint was varied from trial to trial, and contact force changes induced by these perturbations were measured. 4. Subjects showed variations in contact force correlated with the direction of the orientation perturbation. "Upward" tilts resulted in higher contact forces, whereas "downward" tilts resulted in lower contact forces. This result is consistent with a feedforward-based control of a passively compliant system. 5. Subject responses did not, however, correspond exactly to the predictions of a static analysis of a passive, feedforward-controlled system. A dynamic analysis reveals a much closer resemblance between a passive, feedforward model and the observed data. Numerical simulations demonstrate that a passive, dynamic system model of the movement captures

  17. Capillary-force measurement on SiC surfaces

    NASA Astrophysics Data System (ADS)

    Sedighi, M.; Svetovoy, V. B.; Palasantzas, G.

    2016-06-01

    Capillary forces have been measured by atomic force microscopy in the sphere-plate geometry, in a controlled humidity environment, between smooth silicon carbide and borosilicate glass spheres. The force measurements were performed as a function of the rms surface roughness ˜4-14 nm mainly due to sphere morphology, the relative humidity (RH) ˜0%-40%, the applied load on the cantilever, and the contact time. The pull-off force was found to decrease by nearly two orders of magnitude with increasing rms roughness from 8 to 14 nm due to formation of a few capillary menisci for the roughest surfaces, while it remained unchanged for rms roughness <8 nm implying fully wetted surface features leading to a single meniscus. The latter reached a steady state in less than 5 s for the smoothest surfaces, as force measurements versus contact time indicated for increased RH˜40%. Finally, the pull-off force increases and reaches a maximum with applied load, which is associated with plastic deformation of surface asperities, and decreases at higher loads.

  18. Measuring the charge state of an adatom with noncontact atomic force microscopy.

    PubMed

    Gross, Leo; Mohn, Fabian; Liljeroth, Peter; Repp, Jascha; Giessibl, Franz J; Meyer, Gerhard

    2009-06-12

    Charge states of atoms can be investigated with scanning tunneling microscopy, but this method requires a conducting substrate. We investigated the charge-switching of individual adsorbed gold and silver atoms (adatoms) on ultrathin NaCl films on Cu(111) using a qPlus tuning fork atomic force microscope (AFM) operated at 5 kelvin with oscillation amplitudes in the subangstrom regime. Charging of a gold atom by one electron charge increases the force on the AFM tip by a few piconewtons. Moreover, the local contact potential difference is shifted depending on the sign of the charge and allows the discrimination of positively charged, neutral, and negatively charged atoms. The combination of single-electron charge sensitivity and atomic lateral resolution should foster investigations of molecular electronics, photonics, catalysis, and solar photoconversion.

  19. Sensitivity of Force Specifications to the Errors in Measuring the Interface Force

    NASA Technical Reports Server (NTRS)

    Worth, Daniel

    2000-01-01

    Force-Limited Random Vibration Testing has been applied in the last several years at the NASA Goddard Space Flight Center (GSFC) and other NASA centers for various programs at the instrument and spacecraft level. Different techniques have been developed over the last few decades to estimate the dynamic forces that the test article under consideration will encounter in the flight environment. Some of these techniques are described in the handbook, NASA-HDBK-7004, and the monograph, NASA-RP-1403. This paper will show the effects of some measurement and calibration errors in force gauges. In some cases, the notches in the acceleration spectrum when a random vibration test is performed with measurement errors are the same as the notches produced during a test that has no measurement errors. The paper will also present the results Of tests that were used to validate this effect. Knowing the effect of measurement errors can allow tests to continue after force gauge failures or allow dummy gauges to be used in places that are inaccessible to a force gage.

  20. Note: Electrical resolution during conductive atomic force microscopy measurements under different environmental conditions and contact forces

    SciTech Connect

    Lanza, M.; Porti, M.; Nafria, M.; Aymerich, X.; Whittaker, E.; Hamilton, B.

    2010-10-15

    Conductive atomic force microscopy experiments on gate dielectrics in air, nitrogen, and UHV have been compared to evaluate the impact of the environment on topography and electrical measurements. In current images, an increase of the lateral resolution and a reduction of the conductivity were observed in N{sub 2} and, especially, in UHV (where current depends also on the contact force). Both effects were related to the reduction/elimination of the water layer between the tip and the sample in N{sub 2}/UHV. Therefore, since current measurements are very sensitive to environmental conditions, these factors must be taken into consideration when comparisons between several experiments are performed.

  1. Phoretic Force Measurement for Microparticles Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Davis, E. J.; Zheng, R.

    1999-01-01

    This theoretical and experimental investigation of the collisional interactions between gas molecules and solid and liquid surfaces of microparticles involves fundamental studies of the transfer of energy, mass and momentum between gas molecules and surfaces. The numerous applications include particle deposition on semiconductor surfaces and on surfaces in combustion processes, containerless processing, the production of nanophase materials, pigments and ceramic precursors, and pollution abatement technologies such as desulfurization of gaseous effluents from combustion processes. Of particular emphasis are the forces exerted on microparticles present in a nonuniform gas, that is, in gaseous surroundings involving temperature and concentration gradients. These so-called phoretic forces become the dominant forces when the gravitational force is diminished, and they are strongly dependent on the momentum transfer between gas molecules and the surface. The momentum transfer, in turn, depends on the gas and particle properties and the mean free path and kinetic energy of the gas molecules. The experimental program involves the particle levitation system shown. A micrometer size particle is held between two heat exchangers enclosed in a vacuum chamber by means of ac and dc electric fields. The ac field keeps the particle centered on the vertical axis of the chamber, and the dc field balances the gravitational force and the thermophoretic force. Some measurements of the thermophoretic force are presented in this paper.

  2. Optimization of phase contrast in bimodal amplitude modulation AFM

    PubMed Central

    Damircheli, Mehrnoosh; Payam, Amir F

    2015-01-01

    Summary Bimodal force microscopy has expanded the capabilities of atomic force microscopy (AFM) by providing high spatial resolution images, compositional contrast and quantitative mapping of material properties without compromising the data acquisition speed. In the first bimodal AFM configuration, an amplitude feedback loop keeps constant the amplitude of the first mode while the observables of the second mode have not feedback restrictions (bimodal AM). Here we study the conditions to enhance the compositional contrast in bimodal AM while imaging heterogeneous materials. The contrast has a maximum by decreasing the amplitude of the second mode. We demonstrate that the roles of the excited modes are asymmetric. The operational range of bimodal AM is maximized when the second mode is free to follow changes in the force. We also study the contrast in trimodal AFM by analyzing the kinetic energy ratios. The phase contrast improves by decreasing the energy of second mode relative to those of the first and third modes. PMID:26114079

  3. Nanoscale thermal AFM of polymers: transient heat flow effects.

    PubMed

    Duvigneau, Joost; Schönherr, Holger; Vancso, G Julius

    2010-11-23

    Thermal transport around the nanoscale contact area between the heated atomic force microscopy (AFM) probe tip and the specimen under investigation is a central issue in scanning thermal microscopy (SThM). Polarized light microscopy and AFM imaging of the temperature-induced crystallization of poly(ethylene terephthalate) (PET) films in the region near the tip were used in this study to unveil the lateral heat transport. The radius of the observed lateral surface isotherm at 133 °C ranged from 2.2 ± 0.5 to 18.7 ± 0.5 μm for tip-polymer interface temperatures between 200 and 300 °C with contact times varying from 20 to 120 s, respectively. In addition, the heat transport into polymer films was assessed by measurements of the thermal expansion of poly(dimethyl siloxane) (PDMS) films with variable thickness on silicon supports. Our data showed that heat transport in the specimen normal (z) direction occurred to depths exceeding 1000 μm using representative non-steady-state SThM conditions (i.e., heating from 40 to 180 °C at a rate of 10 °C s(-1)). On the basis of the experimental results, a 1D steady-state model for heat transport was developed, which shows the temperature profile close to the tip-polymer contact. The model also indicates that ≤1% of the total power generated in the heater area, which is embedded in the cantilever end, is transported into the polymer through the tip-polymer contact interface. Our results complement recent efforts in the evaluation and improvement of existing theoretical models for thermal AFM, as well as advance further developments of SThM for nanoscale thermal materials characterization and/or manipulation via scanning thermal lithography (SThL).

  4. Intrinsic adhesion force of lubricants to steel surface.

    PubMed

    Lee, Jonghwi

    2004-09-01

    The intrinsic adhesion forces of lubricants and other pharmaceutical materials to a steel surface were quantitatively compared using Atomic Force Microscopy (AFM). A steel sphere was attached to the tip of an AFM cantilever, and its adhesion forces to the substrate surfaces of magnesium stearate, sodium stearyl fumarate, lactose, 4-acetamidophenol, and naproxen were measured. Surface roughness varied by an order of magnitude among the materials. However, the results clearly showed that the two lubricants had about half the intrinsic adhesion force as lactose, 4-acetamidophenol, and naproxen. Differences in the intrinsic adhesion forces of the two lubricants were insignificant. The lubricant molecules were unable to cover the steel surface during AFM measurements. Intrinsic adhesion force can slightly be modified by surface treatment and compaction, and its tip-to-tip variation was not greater than its difference between lubricants and other pharmaceutical particles. This study provides a quantitative fundamental basis for understanding adhesion related issues.

  5. Measured long-range repulsive Casimir–Lifshitz forces

    PubMed Central

    Munday, J. N.; Capasso, Federico; Parsegian, V. Adrian

    2014-01-01

    Quantum fluctuations create intermolecular forces that pervade macroscopic bodies1–3. At molecular separations of a few nanometres or less, these interactions are the familiar van der Waals forces4. However, as recognized in the theories of Casimir, Polder and Lifshitz5–7, at larger distances and between macroscopic condensed media they reveal retardation effects associated with the finite speed of light. Although these long-range forces exist within all matter, only attractive interactions have so far been measured between material bodies8–11. Here we show experimentally that, in accord with theoretical prediction12, the sign of the force can be changed from attractive to repulsive by suitable choice of interacting materials immersed in a fluid. The measured repulsive interaction is found to be weaker than the attractive. However, in both cases the magnitude of the force increases with decreasing surface separation. Repulsive Casimir–Lifshitz forces could allow quantum levitation of objects in a fluid and lead to a new class of switchable nanoscale devices with ultra-low static friction13–15. PMID:19129843

  6. Reduced hydrophobic interaction of polystyrene surfaces by spontaneous segregation of block copolymers with oligo (ethylene glycol) methyl ether methacrylate blocks: force measurements in water using atomic force microscope with hydrophobic probes.

    PubMed

    Zhang, Rui; Seki, Akiko; Ishizone, Takashi; Yokoyama, Hideaki

    2008-05-20

    Reduction of hydrophobic interaction in water is important in biological interfaces. In our previous work, we have found that poly(styrene- b-triethylene glycol methyl ether methacrylate) (PS-PME3MA) segregates the PME3MA block to the surface in hydrophobic environment, such as in air or in a vacuum, and shows remarkable resistance against adsorption or adhesion of proteins, platelets, and cells in water. In this paper, we report that atomic force microscopy (AFM) with hydrophobic probes can directly monitor the reduced hydrophobic interaction of the PS surfaces modified by poly(styrene- b-origoethylene glycol methyl ether methacrylate) (PS-PME NMA), where N is the number of ethylene glycol units. The pull-off forces between the hydrophobic probes that are coated with octyltrichlorosilane (OLTS) and the PS-PME NMA modified polystyrene (PS) surfaces in water were measured. The absolute spring constants and tip-curvatures of the AFM cantilevers were measured to compute the work of adhesion by the Johnson, Kendall, and Roberts (JKR) theory, which relates the pull-off force at which the separation occurs between a hemisphere and a plane to the work of adhesion. The hydrophobic interactions between the hydrophobic tip and polymer surfaces in water were greatly reduced with the segregated PME NMA blocks. The hydrophobic interactions decrease with increasing N of the series of PS-PME NMA and show a correlation with the amount of protein adsorbed.

  7. Characterizing Cell Mechanics with AFM and Microfluidics

    NASA Astrophysics Data System (ADS)

    Walter, N.; Micoulet, A.; Suresh, S.; Spatz, J. P.

    2007-03-01

    Cell mechanical properties and functionality are mainly determined by the cytoskeleton, besides the cell membrane, the nucleus and the cytosol, and depend on various parameters e.g. surface chemistry and rigidity, surface area and time available for cell spreading, nutrients and drugs provided in the culture medium. Human epithelial pancreatic and mammary cancer cells and their keratin intermediate filaments are the main focus of our work. We use Atomic Force Microscopy (AFM) to study cells adhering to substrates and Microfluidic Channels to probe cells in suspension, respectively. Local and global properties are extracted by varying AFM probe tip size and the available adhesion area for cells. Depth-sensing, instrumented indentation tests with AFM show a clear difference in contact stiffness for cells that are spread of controlled substrates and those that are loosely attached. Microfluidic Channels are utilized in parallel to evaluate cell deformation and ``flow resistance'', which are dependent on channel cross section, flow rate, cell nucleus size and the mechanical properties of cytoskeleton and membrane. The results from the study are used to provide some broad and quantitative assessments of the connections between cellular/subcellular mechanics and biochemical origins of disease states.

  8. Measurement of transmitted blast force-time histories

    SciTech Connect

    Dr. Benjamin Langhorst; Corey Cook; James Schondel; Dr. Henry S. Chu

    2010-03-01

    A simple, reliable, and cost effective method is presented for the measurement of transmitted force behind a panel subjected to blast loads. Sensors were designed for a specific blast environment and successfully used to measure transmitted blast force behind solid polyethylene plates of thickness 0.125 and 0.25 inches. Experimental data was collected and examined to reveal consistent differences in the response of different thicknesses of otherwise identical panels. Finally, recommendations are made for future design, construction and use of similar sensors.

  9. Measuring forces and spatiotemporal evolution of thin water films between an air bubble and solid surfaces of different hydrophobicity.

    PubMed

    Shi, Chen; Cui, Xin; Xie, Lei; Liu, Qingxia; Chan, Derek Y C; Israelachvili, Jacob N; Zeng, Hongbo

    2015-01-27

    A combination of atomic force microscopy (AFM) and reflection interference contrast microscopy (RICM) was used to measure simultaneously the interaction force and the spatiotemporal evolution of the thin water film between a bubble in water and mica surfaces with varying degrees of hydrophobicity. Stable films, supported by the repulsive van der Waals-Casimir-Lifshitz force were always observed between air bubble and hydrophilic mica surfaces (water contact angle, θ(w) < 5°) whereas bubble attachment occurred on hydrophobized mica surfaces. A theoretical model, based on the Reynolds lubrication theory and the augmented Young-Laplace equation including the effects of disjoining pressure, provided excellent agreement with experiment results, indicating the essential physics involved in the interaction between air bubble and solid surfaces can be elucidated. A hydrophobic interaction free energy per unit area of the form: WH(h) = -γ(1 - cos θ(w))exp(-h/D(H)) can be used to quantify the attraction between bubble and hydrophobized solid substrate at separation, h, with γ being the surface tension of water. For surfaces with water contact angle in the range 45° < θ(w) < 90°, the decay length DH varied between 0.8 and 1.0 nm. This study quantified the hydrophobic interaction in asymmetric system between air bubble and hydrophobic surfaces, and provided a feasible method for synchronous measurements of the interaction forces with sub-nN resolution and the drainage dynamics of thin films down to nm thickness.

  10. Minimizing pulling geometry errors in atomic force microscope single molecule force spectroscopy.

    PubMed

    Rivera, Monica; Lee, Whasil; Ke, Changhong; Marszalek, Piotr E; Cole, Daniel G; Clark, Robert L

    2008-10-01

    In atomic force microscopy-based single molecule force spectroscopy (AFM-SMFS), it is assumed that the pulling angle is negligible and that the force applied to the molecule is equivalent to the force measured by the instrument. Recent studies, however, have indicated that the pulling geometry errors can drastically alter the measured force-extension relationship of molecules. Here we describe a software-based alignment method that repositions the cantilever such that it is located directly above the molecule's substrate attachment site. By aligning the applied force with the measurement axis, the molecule is no longer undergoing combined loading, and the full force can be measured by the cantilever. Simulations and experimental results verify the ability of the alignment program to minimize pulling geometry errors in AFM-SMFS studies.

  11. Minimizing Pulling Geometry Errors in Atomic Force Microscope Single Molecule Force Spectroscopy

    PubMed Central

    Rivera, Monica; Lee, Whasil; Ke, Changhong; Marszalek, Piotr E.; Cole, Daniel G.; Clark, Robert L.

    2008-01-01

    In atomic force microscopy-based single molecule force spectroscopy (AFM-SMFS), it is assumed that the pulling angle is negligible and that the force applied to the molecule is equivalent to the force measured by the instrument. Recent studies, however, have indicated that the pulling geometry errors can drastically alter the measured force-extension relationship of molecules. Here we describe a software-based alignment method that repositions the cantilever such that it is located directly above the molecule's substrate attachment site. By aligning the applied force with the measurement axis, the molecule is no longer undergoing combined loading, and the full force can be measured by the cantilever. Simulations and experimental results verify the ability of the alignment program to minimize pulling geometry errors in AFM-SMFS studies. PMID:18641069

  12. The Emergence of AFM Applications to Cell Biology: How new technologies are facilitating investigation of human cells in health and disease at the nanoscale

    PubMed Central

    Yang, Ruiguo; Xi, Ning; Fung, Carmen Kar Man; Seiffert-Sinha, Kristina; Lai, King Wai Chiu; Sinha, Animesh A.

    2013-01-01

    Atomic Force Microscopy (AFM) based nanorobotics has been used for building nano devices in semiconductors for almost a decade. Leveraging the unparallel precision localization capabilities of this technology, high resolution imaging and mechanical property characterization is now increasingly being performed in biological settings. AFM also offers the prospect for handling and manipulating biological materials at nanometer scale. It has unique advantages over other methods, permitting experiments in the liquid phase where physiological conditions can be maintained. Taking advantage of these properties, our group has visualized membrane and cytoskeletal structures of live cells by controlling the interaction force of the AFM tip with cellular components at the nN or sub-nN range. Cell stiffness changes were observed by statistically analyzing the Young’s modulus values of human keratinocytes before and after specific antibody treatment. Furthermore, we used the AFM cantilever as a robotic arm for mechanical pushing, pulling and cutting to perform nanoscale manipulations of cell-associated structures. AFM guided nano-dissection, or nanosurgery was enacted on the cell in order to sever intermediate filaments connecting neighboring keratinocytes via sub 100 nm resolution cuts. Finally, we have used a functionalized AFM tip to probe cell surface receptors to obtain binding force measurements. This technique formed the basis for Single Molecule Force Spectroscopy (SMFS). In addition to enhancing our basic understanding of dynamic signaling events in cell biology, these advancements in AFM based biomedical investigations can be expected to facilitate the search for biomarkers related to disease diagnosis progress and treatment. PMID:24416719

  13. Wideband phase-locked loop circuit with real-time phase correction for frequency modulation atomic force microscopy.

    PubMed

    Fukuma, Takeshi; Yoshioka, Shunsuke; Asakawa, Hitoshi

    2011-07-01

    We have developed a wideband phase-locked loop (PLL) circuit with real-time phase correction for high-speed and accurate force measurements by frequency modulation atomic force microscopy (FM-AFM) in liquid. A high-speed operation of FM-AFM requires the use of a high frequency cantilever which, however, increases frequency-dependent phase delay caused by the signal delay within the cantilever excitation loop. Such phase delay leads to an error in the force measurements by FM-AFM especially with a low Q factor. Here, we present a method to compensate this phase delay in real time. Combined with a wideband PLL using a subtraction-based phase comparator, the method allows to perform an accurate and high-speed force measurement by FM-AFM. We demonstrate the improved performance by applying the developed PLL to three-dimensional force measurements at a mica/water interface.

  14. Wideband phase-locked loop circuit with real-time phase correction for frequency modulation atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Fukuma, Takeshi; Yoshioka, Shunsuke; Asakawa, Hitoshi

    2011-07-01

    We have developed a wideband phase-locked loop (PLL) circuit with real-time phase correction for high-speed and accurate force measurements by frequency modulation atomic force microscopy (FM-AFM) in liquid. A high-speed operation of FM-AFM requires the use of a high frequency cantilever which, however, increases frequency-dependent phase delay caused by the signal delay within the cantilever excitation loop. Such phase delay leads to an error in the force measurements by FM-AFM especially with a low Q factor. Here, we present a method to compensate this phase delay in real time. Combined with a wideband PLL using a subtraction-based phase comparator, the method allows to perform an accurate and high-speed force measurement by FM-AFM. We demonstrate the improved performance by applying the developed PLL to three-dimensional force measurements at a mica/water interface.

  15. A Simple Instrument for Measuring Surface Forces in Liquids

    NASA Astrophysics Data System (ADS)

    Hannon, James; Tromp, Rudolf; Haight, Richard; Ellis, Arthur

    2015-03-01

    We have constructed a simple instrument to measure the interaction force between two surfaces in solution, or in vacuum. Specifically, we measure the interaction between a lens and a thin silicon cantilever. Either the lens, or the cantilever (or both) can be coated with the species of interest. When the lens is brought close to the cantilever surface, the force of interaction causes the cantilever to bend. By measuring the deflection as a function of the distance between the lens and cantilever, the long-range interactions between the two surfaces can be determined. Our approach includes three important innovations. First, a commercial lens with a radius of ~ 1 cm is used for one surface. The relatively large radius of curvature enhances force sensitivity of the method. Second, we use optical interference (Newton's Rings) to determine the distance between lens and cantilever with ~ 1 nm accuracy. Third, we make use of thin crystalline cantilevers (100 μm thick) whose elastic properties can be easily measured. We have achieved a force sensitivity F / R better than 0.001 mN/m. I will discuss the theory of operation of the new instrument and describe measurements made on SiO2 and metal oxide surfaces in water.

  16. Systematic review of ground reaction force measurements in cats.

    PubMed

    Schnabl, E; Bockstahler, B

    2015-10-01

    Although orthopaedic abnormalities in cats are frequently observed radiographically, they remain clinically underdiagnosed, and kinetic motion analysis, a fundamental aspect of orthopaedic research in dogs and horses, is not commonly performed. More information obtained with non-invasive measurement techniques to assess normal and abnormal gait in cats would provide a greater insight into their locomotion and biomechanics and improve the objective measurement of disease alterations and treatment modalities. In this systematic review, 12 previously performed studies that investigated ground reaction force measurements in cats during locomotion were evaluated. The aims of these studies, the measurement methods and equipment used, and the outcomes of parameters used to assess both sound and diseased cats are summarised and discussed. All reviewed studies used pressure sensitive walkways to gain data and all provided an acclimatisation period as a prerequisite for measurements. In sound cats during walking, the forelimb peak vertical force was greater than in the hindlimb and the peak vertical force in the hindlimb was greater in cats than in dogs. This review confirms that ground reaction forces can be used to evaluate lameness and treatment effects in the cat.

  17. AFM tip characterization by using FFT filtered images of step structures.

    PubMed

    Yan, Yongda; Xue, Bo; Hu, Zhenjiang; Zhao, Xuesen

    2016-01-01

    The measurement resolution of an atomic force microscope (AFM) is largely dependent on the radius of the tip. Meanwhile, when using AFM to study nanoscale surface properties, the value of the tip radius is needed in calculations. As such, estimation of the tip radius is important for analyzing results taken using an AFM. In this study, a geometrical model created by scanning a step structure with an AFM tip was developed. The tip was assumed to have a hemispherical cone shape. Profiles simulated by tips with different scanning radii were calculated by fast Fourier transform (FFT). By analyzing the influence of tip radius variation on the spectra of simulated profiles, it was found that low-frequency harmonics were more susceptible, and that the relationship between the tip radius and the low-frequency harmonic amplitude of the step structure varied monotonically. Based on this regularity, we developed a new method to characterize the radius of the hemispherical tip. The tip radii estimated with this approach were comparable to the results obtained using scanning electron microscope imaging and blind reconstruction methods.

  18. Microfluidics, Chromatography, and Atomic-Force Microscopy

    NASA Technical Reports Server (NTRS)

    Anderson, Mark

    2008-01-01

    A Raman-and-atomic-force microscope (RAFM) has been shown to be capable of performing several liquid-transfer and sensory functions essential for the operation of a microfluidic laboratory on a chip that would be used to perform rapid, sensitive chromatographic and spectro-chemical analyses of unprecedentedly small quantities of liquids. The most novel aspect of this development lies in the exploitation of capillary and shear effects at the atomic-force-microscope (AFM) tip to produce shear-driven flow of liquids along open microchannels of a microfluidic device. The RAFM can also be used to perform such functions as imaging liquids in microchannels; removing liquid samples from channels for very sensitive, tip-localized spectrochemical analyses; measuring a quantity of liquid adhering to the tip; and dip-pen deposition from a chromatographic device. A commercial Raman-spectroscopy system and a commercial AFM were integrated to make the RAFM so as to be able to perform simultaneous topographical AFM imaging and surface-enhanced Raman spectroscopy (SERS) at the AFM tip. The Raman-spectroscopy system includes a Raman microprobe attached to an optical microscope, the translation stage of which is modified to accommodate the AFM head. The Raman laser excitation beam, which is aimed at the AFM tip, has a wavelength of 785 nm and a diameter of about 5 m, and its power is adjustable up to 10 mW. The AFM is coated with gold to enable tip-localized SERS.

  19. Assembly of live micro-organisms on microstructured PDMS stamps by convective/capillary deposition for AFM bio-experiments.

    PubMed

    Dague, E; Jauvert, E; Laplatine, L; Viallet, B; Thibault, C; Ressier, L

    2011-09-30

    Immobilization of live micro-organisms on solid substrates is an important prerequisite for atomic force microscopy (AFM) bio-experiments. The method employed must immobilize the cells firmly enough to enable them to withstand the lateral friction forces exerted by the tip during scanning but without denaturing the cell interface. In this work, a generic method for the assembly of living cells on specific areas of substrates is proposed. It consists in assembling the living cells within the patterns of microstructured, functionalized poly-dimethylsiloxane (PDMS) stamps using convective/capillary deposition. This versatile approach is validated by applying it to two systems of foremost importance in biotechnology and medicine: Saccharomyces cerevisiae yeasts and Aspergillus fumigatus fungal spores. We show that this method allows multiplexing AFM nanomechanical measurements by force spectroscopy on S. cerevisiae yeasts and high-resolution AFM imaging of germinated Aspergillus conidia in buffer medium. These two examples clearly demonstrate the immense potential of micro-organism assembly on functionalized, microstructured PDMS stamps by convective/capillary deposition for performing rigorous AFM bio-experiments on living cells.

  20. Assembly of live micro-organisms on microstructured PDMS stamps by convective/capillary deposition for AFM bio-experiments

    NASA Astrophysics Data System (ADS)

    Dague, E.; Jauvert, E.; Laplatine, L.; Viallet, B.; Thibault, C.; Ressier, L.

    2011-09-01

    Immobilization of live micro-organisms on solid substrates is an important prerequisite for atomic force microscopy (AFM) bio-experiments. The method employed must immobilize the cells firmly enough to enable them to withstand the lateral friction forces exerted by the tip during scanning but without denaturing the cell interface. In this work, a generic method for the assembly of living cells on specific areas of substrates is proposed. It consists in assembling the living cells within the patterns of microstructured, functionalized poly-dimethylsiloxane (PDMS) stamps using convective/capillary deposition. This versatile approach is validated by applying it to two systems of foremost importance in biotechnology and medicine: Saccharomyces cerevisiae yeasts and Aspergillus fumigatus fungal spores. We show that this method allows multiplexing AFM nanomechanical measurements by force spectroscopy on S. cerevisiae yeasts and high-resolution AFM imaging of germinated Aspergillus conidia in buffer medium. These two examples clearly demonstrate the immense potential of micro-organism assembly on functionalized, microstructured PDMS stamps by convective/capillary deposition for performing rigorous AFM bio-experiments on living cells.

  1. Atomic force microscopy application in biological research: a review study.

    PubMed

    Vahabi, Surena; Nazemi Salman, Bahareh; Javanmard, Anahita

    2013-06-01

    Atomic force microscopy (AFM) is a three-dimensional topographic technique with a high atomic resolution to measure surface roughness. AFM is a kind of scanning probe microscope, and its near-field technique is based on the interaction between a sharp tip and the atoms of the sample surface. There are several methods and many ways to modify the tip of the AFM to investigate surface properties, including measuring friction, adhesion forces and viscoelastic properties as well as determining the Young modulus and imaging magnetic or electrostatic properties. The AFM technique can analyze any kind of samples such as polymers, adsorbed molecules, films or fibers, and powders in the air whether in a controlled atmosphere or in a liquid medium. In the past decade, the AFM has emerged as a powerful tool to obtain the nanostructural details and biomechanical properties of biological samples, including biomolecules and cells. The AFM applications, techniques, and -in particular- its ability to measure forces, are not still familiar to most clinicians. This paper reviews the literature on the main principles of the AFM modality and highlights the advantages of this technique in biology, medicine, and- especially- dentistry. This literature review was performed through E-resources, including Science Direct, PubMed, Blackwell Synergy, Embase, Elsevier, and Scholar Google for the references published between 1985 and 2010.

  2. Force-Velocity Measurements of a Few Growing Actin Filaments

    PubMed Central

    Brangbour, Coraline; du Roure, Olivia; Helfer, Emmanuèle; Démoulin, Damien; Mazurier, Alexis; Fermigier, Marc; Carlier, Marie-France; Bibette, Jérôme; Baudry, Jean

    2011-01-01

    The polymerization of actin in filaments generates forces that play a pivotal role in many cellular processes. We introduce a novel technique to determine the force-velocity relation when a few independent anchored filaments grow between magnetic colloidal particles. When a magnetic field is applied, the colloidal particles assemble into chains under controlled loading or spacing. As the filaments elongate, the beads separate, allowing the force-velocity curve to be precisely measured. In the widely accepted Brownian ratchet model, the transduced force is associated with the slowing down of the on-rate polymerization. Unexpectedly, in our experiments, filaments are shown to grow at the same rate as when they are free in solution. However, as they elongate, filaments are more confined in the interspace between beads. Higher repulsive forces result from this higher confinement, which is associated with a lower entropy. In this mechanism, the production of force is not controlled by the polymerization rate, but is a consequence of the restriction of filaments' orientational fluctuations at their attachment point. PMID:21541364

  3. Measurement of impact force, simulation of fall and hip fracture.

    PubMed

    Gardner, T N; Simpson, A H; Booth, C; Sprukkelhorst, P; Evans, M; Kenwright, J; Evans, J G

    1998-01-01

    It has been shown that the incidence of hip fracture in the elderly may be influenced by the type of floor covering commonly used in homes for the elderly. This study describes the development of a method for modelling a fall during a hip fracture event, to examine the influence of different floors on impact force. An impact transducer is dropped in free fall through a smooth plastic tube. The impactor nose of the transducer models the curvature of the greater trochanter, and a steel spring is used to simulate the compliance of the skeletal structure. A weight, which corresponds to one-sixteenth of average body mass, compresses the spring and applies force to the impactor nose on striking the floor. The temporal variation in the force of impact with the floor is measured by the transducer to within 0.41 percent (SD = 0.63%, n = 10). Five common floor coverings were tested over a concrete floor slab (vinyl, loop carpet and pile carpet--both with and without underpad). ANOVA analysis showed that the differences between mean forces for each floor covering were highly significant (p > 0.001), with the thicker coverings producing 7 percent lower forces. The transducer may be used to examine the correlation between impact force and fracture incidence for a variety of different floors in homes for the elderly.

  4. 21 CFR 890.1575 - Force-measuring platform.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Force-measuring platform. 890.1575 Section 890.1575 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Diagnostic Devices § 890.1575...

  5. 21 CFR 890.1575 - Force-measuring platform.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Force-measuring platform. 890.1575 Section 890.1575 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Diagnostic Devices § 890.1575...

  6. 21 CFR 890.1575 - Force-measuring platform.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Force-measuring platform. 890.1575 Section 890.1575 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Diagnostic Devices § 890.1575...

  7. 21 CFR 890.1575 - Force-measuring platform.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Force-measuring platform. 890.1575 Section 890.1575 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Diagnostic Devices § 890.1575...

  8. 21 CFR 890.1575 - Force-measuring platform.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Force-measuring platform. 890.1575 Section 890.1575 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Diagnostic Devices § 890.1575...

  9. Force Exertion Capacity Measurements in Haptic Virtual Environments

    ERIC Educational Resources Information Center

    Munih, Marko; Bardorfer, Ales; Ceru, Bojan; Bajd, Tadej; Zupan, Anton

    2010-01-01

    An objective test for evaluating functional status of the upper limbs (ULs) in patients with muscular distrophy (MD) is presented. The method allows for quantitative assessment of the UL functional state with an emphasis on force exertion capacity. The experimental measurement setup and the methodology for the assessment of maximal exertable force…

  10. Quantitative measurement of the nanoparticle size and number concentration from liquid suspensions by atomic force microscopy.

    PubMed

    Baalousha, M; Prasad, A; Lead, J R

    2014-05-01

    Microscopy techniques are indispensable to the nanoanalytical toolbox and can provide accurate information on the number size distribution and number concentration of nanoparticles (NPs) at low concentrations (ca. ppt to ppb range) and small sizes (ca. <20 nm). However, the high capabilities of microscopy techniques are limited by the traditional sample preparation based on drying a small volume of suspension of NPs on a microscopy substrate. This method is limited by low recovery of NPs (ca. <10%), formation of aggregates during the drying process, and thus, the complete misrepresentation of the NP suspensions under consideration. This paper presents a validated quantitative sampling technique for atomic force microscopy (AFM) that overcomes the above-mentioned shortcomings and allows full recovery and representativeness of the NPs under consideration by forcing the NPs into the substrate via ultracentrifugation and strongly attaches the NPs to the substrate by surface functionalization of the substrate or by adding cations to the NP suspension. The high efficiency of the analysis is demonstrated by the uniformity of the NP distribution on the substrate (that is low variability between the number of NPs counted on different images on different areas of the substrate), the high recovery of the NPs up to 71%) and the good correlation (R > 0.95) between the mass and number concentrations. Therefore, for the first time, we developed a validated quantitative sampling technique that enables the use of the full capabilities of microscopy tools to quantitatively and accurately determine the number size distribution and number concentration of NPs at environmentally relevant low concentrations (i.e. 0.34-100 ppb). This approach is of high environmental relevance and can be applied widely in environmental nanoscience and nanotoxicology for (i) measuring the number concentration dose in nanotoxicological studies and (ii) accurately measuring the number size distribution of

  11. Development of a microlateral force sensor and its evaluation using lateral force microscopy.

    PubMed

    Ando, Yasuhisa; Shiraishi, Naoki

    2007-03-01

    A microlateral force sensor (MLFS) was developed and evaluated using atomic force microscopy (AFM). The sensor was attached to a sensing table supported by a suspension system. The lateral motion of the sensing table was activated by a comb actuator. The driving voltage to the comb actuator was controlled to maintain a constant position of the sensing table by detecting the tunneling current at a detector, which consisted of two electrodes where the bias voltage was applied. An AFM was used to apply a lateral force to the sensing table of the sensor. When the probe of a cantilever was pressed against the sensing table and a raster scanning was conducted, the driving voltage of the comb actuator changed to compensate the friction force between the probe and sensing table. AFM measurements of an asperity array on the sensing table were conducted, and a lateral force microscopy image (LFM) was obtained from the change in driving voltage. The image by MLFS was very similar to the LFM image that was conventionally obtained from torsion of the cantilever. The LFM image strongly correlated with the gradient image calculated from the AFM topographic image. The force sensitivity of the MLFS was determined by comparing the LFM image obtained by using the MLFS with the tangential force derived from the gradient of the AFM image.

  12. Harnessing bifurcations in tapping-mode atomic force microscopy to calibrate time-varying tip-sample force measurements.

    PubMed

    Sahin, Ozgur

    2007-10-01

    Torsional harmonic cantilevers allow measurement of time-varying tip-sample forces in tapping-mode atomic force microscopy. Accuracy of these force measurements is important for quantitative nanomechanical measurements. Here we demonstrate a method to convert the torsional deflection signals into a calibrated force wave form with the use of nonlinear dynamical response of the tapping cantilever. Specifically the transitions between steady oscillation regimes are used to calibrate the torsional deflection signals.

  13. Noncontact intraoral measurement of force-related tooth mobility.

    PubMed

    Göllner, Matthias; Holst, Alexandra; Berthold, Christine; Schmitt, Johannes; Wichmann, Manfred; Holst, Stefan

    2010-10-01

    The aim of this pilot study was to measure force-related tooth mobility. Vertical and horizontal anterior tooth mobility in 31 healthy periodontal subjects was measured by a noncontact optical measurement technique. The subjects continuously increased the force on each tooth by biting on a load cell. An automated software program recorded tooth displacement at 9-N intervals. Vertical and horizontal displacements were subsequently measured. The vector of tooth mobility in the buccal direction was calculated using the Pythagorean theorem. The average displacements over all subjects for each tooth were determined. Global differences were assessed with the Wilcoxon test. There were no significant differences between contralateral teeth overall load stages. There were no significant differences in tooth mobility between the central and lateral incisors except for in the horizontal direction. However, there were significant differences between central incisor and canine and lateral incisor and canine teeth.

  14. Enclosed electronic system for force measurements in knee implants.

    PubMed

    Forchelet, David; Simoncini, Matteo; Arami, Arash; Bertsch, Arnaud; Meurville, Eric; Aminian, Kamiar; Ryser, Peter; Renaud, Philippe

    2014-08-14

    Total knee arthroplasty is a widely performed surgical technique. Soft tissue force balancing during the operation relies strongly on the experience of the surgeon in equilibrating tension in the collateral ligaments. Little information on the forces in the implanted prosthesis is available during surgery and post-operative treatment. This paper presents the design, fabrication and testing of an instrumented insert performing force measurements in a knee prosthesis. The insert contains a closed structure composed of printed circuit boards and incorporates a microfabricated polyimide thin-film piezoresistive strain sensor for each condylar compartment. The sensor is tested in a mechanical knee simulator that mimics in-vivo conditions. For characterization purposes, static and dynamic load patterns are applied to the instrumented insert. Results show that the sensors are able to measure forces up to 1.5 times body weight with a sensitivity fitting the requirements for the proposed use. Dynamic testing of the insert shows a good tracking of slow and fast changing forces in the knee prosthesis by the sensors.

  15. Bite force measurements with hard and soft bite surfaces.

    PubMed

    Serra, C M; Manns, A E

    2013-08-01

    Bite force has been measured by different methods and over a wide variety of designs. In several instruments, the fact that bite surface has been manufactured with stiff materials might interfere in obtaining reliable data, by a more prompt activation of inhibitory reflex mechanisms. The purpose of this study was to compare the maximum voluntary bite force measured by a digital occlusal force gauge (GM10 Nagano Keiki, Japan) between different opponent teeth, employing semi-hard or soft bite surfaces. A sample of 34 young adults with complete natural dentition was studied. The original semi-hard bite surface was exchanged by a soft one, made of leather and rubber. Maximum voluntary bite force recordings were made for each tooth group and for both bite surfaces. Statistical analyses (Student's t-test) revealed significant differences, with higher scores while using the soft surface across sexes and tooth groups (P < 0·05). Differential activation of periodontal mechanoreceptors of a specific tooth group is mainly conditioned by the hardness of the bite surface; a soft surface induces greater activation of elevator musculature, while a hard one induces inhibition more promptly. Thus, soft bite surfaces are recommended for higher reliability in maximum voluntary bite force recordings.

  16. Enclosed Electronic System for Force Measurements in Knee Implants

    PubMed Central

    Forchelet, David; Simoncini, Matteo; Arami, Arash; Bertsch, Arnaud; Meurville, Eric; Aminian, Kamiar; Ryser, Peter; Renaud, Philippe

    2014-01-01

    Total knee arthroplasty is a widely performed surgical technique. Soft tissue force balancing during the operation relies strongly on the experience of the surgeon in equilibrating tension in the collateral ligaments. Little information on the forces in the implanted prosthesis is available during surgery and post-operative treatment. This paper presents the design, fabrication and testing of an instrumented insert performing force measurements in a knee prosthesis. The insert contains a closed structure composed of printed circuit boards and incorporates a microfabricated polyimide thin-film piezoresistive strain sensor for each condylar compartment. The sensor is tested in a mechanical knee simulator that mimics in-vivo conditions. For characterization purposes, static and dynamic load patterns are applied to the instrumented insert. Results show that the sensors are able to measure forces up to 1.5 times body weight with a sensitivity fitting the requirements for the proposed use. Dynamic testing of the insert shows a good tracking of slow and fast changing forces in the knee prosthesis by the sensors. PMID:25196007

  17. Model Engine Performance Measurement From Force Balance Instrumentation

    NASA Technical Reports Server (NTRS)

    Jeracki, Robert J.

    1998-01-01

    A large scale model representative of a low-noise, high bypass ratio turbofan engine was tested for acoustics and performance in the NASA Lewis 9- by 15-Foot Low-Speed Wind Tunnel. This test was part of NASA's continuing Advanced Subsonic Technology Noise Reduction Program. The low tip speed fan, nacelle, and an un-powered core passage (with core inlet guide vanes) were simulated. The fan blades and hub are mounted on a rotating thrust and torque balance. The nacelle, bypass duct stators, and core passage are attached to a six component force balance. The two balance forces, when corrected for internal pressure tares, measure the total thrust-minus-drag of the engine simulator. Corrected for scaling and other effects, it is basically the same force that the engine supports would feel, operating at similar conditions. A control volume is shown and discussed, identifying the various force components of the engine simulator thrust and definitions of net thrust. Several wind tunnel runs with nearly the same hardware installed are compared, to identify the repeatability of the measured thrust-minus-drag. Other wind tunnel runs, with hardware changes that affected fan performance, are compared to the baseline configuration, and the thrust and torque effects are shown. Finally, a thrust comparison between the force balance and nozzle gross thrust methods is shown, and both yield very similar results.

  18. On the determination of elastic moduli of cells by AFM based indentation

    PubMed Central

    Ding, Yue; Xu, Guang-Kui; Wang, Gang-Feng

    2017-01-01

    The atomic force microscopy (AFM) has been widely used to measure the mechanical properties of biological cells through indentations. In most of existing studies, the cell is supposed to be linear elastic within the small strain regime when analyzing the AFM indentation data. However, in experimental situations, the roles of large deformation and surface tension of cells should be taken into consideration. Here, we use the neo-Hookean model to describe the hyperelastic behavior of cells and investigate the influence of surface tension through finite element simulations. At large deformation, a correction factor, depending on the geometric ratio of indenter radius to cell radius, is introduced to modify the force-indent depth relation of classical Hertzian model. Moreover, when the indent depth is comparable with an intrinsic length defined as the ratio of surface tension to elastic modulus, the surface tension evidently affects the indentation response, indicating an overestimation of elastic modulus by the Hertzian model. The dimensionless-analysis-based theoretical predictions, which include both large deformation and surface tension, are in good agreement with our finite element simulation data. This study provides a novel method to more accurately measure the mechanical properties of biological cells and soft materials in AFM indentation experiments. PMID:28368053

  19. On the determination of elastic moduli of cells by AFM based indentation.

    PubMed

    Ding, Yue; Xu, Guang-Kui; Wang, Gang-Feng

    2017-04-03

    The atomic force microscopy (AFM) has been widely used to measure the mechanical properties of biological cells through indentations. In most of existing studies, the cell is supposed to be linear elastic within the small strain regime when analyzing the AFM indentation data. However, in experimental situations, the roles of large deformation and surface tension of cells should be taken into consideration. Here, we use the neo-Hookean model to describe the hyperelastic behavior of cells and investigate the influence of surface tension through finite element simulations. At large deformation, a correction factor, depending on the geometric ratio of indenter radius to cell radius, is introduced to modify the force-indent depth relation of classical Hertzian model. Moreover, when the indent depth is comparable with an intrinsic length defined as the ratio of surface tension to elastic modulus, the surface tension evidently affects the indentation response, indicating an overestimation of elastic modulus by the Hertzian model. The dimensionless-analysis-based theoretical predictions, which include both large deformation and surface tension, are in good agreement with our finite element simulation data. This study provides a novel method to more accurately measure the mechanical properties of biological cells and soft materials in AFM indentation experiments.

  20. Lateral force calibration of an atomic force microscope with a diamagnetic levitation spring system

    SciTech Connect

    Li, Q.; Kim, K.-S.; Rydberg, A.

    2006-06-15

    A novel diamagnetic lateral force calibrator (D-LFC) has been developed to directly calibrate atomic force microscope (AFM) cantilever-tip or -bead assemblies. This enables an AFM to accurately measure the lateral forces encountered in friction or biomechanical-testing experiments at a small length scale. In the process of development, deformation characteristics of the AFM cantilever assemblies under frictional loading have been analyzed and four essential response variables, i.e., force constants, of the assembly have been identified. Calibration of the lateral force constant and the 'crosstalk' lateral force constant, among the four, provides the capability of measuring absolute AFM lateral forces. The D-LFC is composed of four NdFeB magnets and a diamagnetic pyrolytic graphite sheet, which can calibrate the two constants with an accuracy on the order of 0.1%. Preparation of the D-LFC and the data processing required to get the force constants is significantly simpler than any other calibration methods. The most up-to-date calibration technique, known as the 'wedge method', calibrates mainly one of the two constants and, if the crosstalk effect is properly analyzed, is primarily applicable to a sharp tip. In contrast, the D-LFC can calibrate both constants simultaneously for AFM tips or beads with any radius of curvature. These capabilities can extend the applicability of AFM lateral force measurement to studies of anisotropic multiscale friction processes and biomechanical behavior of cells and molecules under combined loading. Details of the D-LFC method as well as a comparison with the wedge method are provided in this article.

  1. Effect of permanent-magnet irregularities in levitation force measurements

    NASA Astrophysics Data System (ADS)

    Hull, John R.

    2000-06-01

    In the measurement of the levitation force between a vertically magnetized permanent magnet (PM) and a bulk high-temperature superconductor (HTS), PM domains with horizontal components of magnetization are shown to produce a non-negligible contribution to the levitation force in most systems. Such domains are typically found in all PMs, even in those that exhibit zero net horizontal magnetic moment. Extension of this analysis leads to an HTS analogue of Earnshaw's theorem, in which the vertical stiffness is equal to the sum of the horizontal stiffness at the field-cooling position, independent of the angular distribution of magnetic moments within the PM.

  2. Effect of permanent-magnet irregularities in levitation force measurements.

    SciTech Connect

    Hull, J. R.

    1999-10-14

    In the measurement of the levitation force between a vertically magnetized permanent magnet (PM) and a bulk high-temperature superconductor (HTS), PM domains with horizontal components of magnetization are shown to produce a nonnegligible contribution to the levitation force in most systems. Such domains are typically found in all PMs, even in those that exhibit zero net horizontal magnetic moment. Extension of this analysis leads to an HTS analog of Earnshaw's theorem, in which at the field-cooling position the vertical stiffness is equal to the sum of the horizontal stiffnesses, independent of angular distribution of magnetic moments within the PM.

  3. Direct measurement of interaction forces between bovine serum albumin and poly(ethylene oxide) in water and electrolyte solutions.

    PubMed

    Acuña, Sergio M; Bastías, José M; Toledo, Pedro G

    2017-01-01

    The net interaction between a probe tip coated with bovine serum albumin (BSA) protein and a flat substrate coated with poly(ethylene oxide) (PEO) polymer was measured directly on approach in water and electrolyte solutions using AFM. The approach force curve between the two surfaces was monotonically repulsive in water and in electrolyte solutions. At pH ~5, slightly above the isoelectric point (pI) of BSA, and at large distances, the force was dominated by electrostatic repulsion between the oxygen atoms of the incoming protein with those belonging to the ether groups of PEO. Such repulsive force and range decreased in NaCl. Under physiological conditions, pH 6, BSA is definitely charged and the electrostatic repulsion with ether groups in PEO appears at larger separation distances. Interestingly, at pH 4, below the pI of BSA, the repulsion decreased because of an attractive, although weak, electrostatic force that appeared between the ether groups in PEO and the positively charged amino groups of BSA. However, for all solution conditions, once compression of PEO begun, the net repulsion was always dominated by short-range polymeric steric repulsion and repulsive enthalpy penalties for breaking PEO-water bonds. Results suggest that PEO in mushroom conformation may also be effective in reducing biofouling.

  4. Direct measurement of interaction forces between bovine serum albumin and poly(ethylene oxide) in water and electrolyte solutions

    PubMed Central

    Bastías, José M.; Toledo, Pedro G.

    2017-01-01

    The net interaction between a probe tip coated with bovine serum albumin (BSA) protein and a flat substrate coated with poly(ethylene oxide) (PEO) polymer was measured directly on approach in water and electrolyte solutions using AFM. The approach force curve between the two surfaces was monotonically repulsive in water and in electrolyte solutions. At pH ~5, slightly above the isoelectric point (pI) of BSA, and at large distances, the force was dominated by electrostatic repulsion between the oxygen atoms of the incoming protein with those belonging to the ether groups of PEO. Such repulsive force and range decreased in NaCl. Under physiological conditions, pH 6, BSA is definitely charged and the electrostatic repulsion with ether groups in PEO appears at larger separation distances. Interestingly, at pH 4, below the pI of BSA, the repulsion decreased because of an attractive, although weak, electrostatic force that appeared between the ether groups in PEO and the positively charged amino groups of BSA. However, for all solution conditions, once compression of PEO begun, the net repulsion was always dominated by short-range polymeric steric repulsion and repulsive enthalpy penalties for breaking PEO-water bonds. Results suggest that PEO in mushroom conformation may also be effective in reducing biofouling. PMID:28296940

  5. Taking nanomedicine teaching into practice with atomic force microscopy and force spectroscopy.

    PubMed

    Carvalho, Filomena A; Freitas, Teresa; Santos, Nuno C

    2015-12-01

    Atomic force microscopy (AFM) is a useful and powerful tool to study molecular interactions applied to nanomedicine. The aim of the present study was to implement a hands-on atomic AFM course for graduated biosciences and medical students. The course comprises two distinct practical sessions, where students get in touch with the use of an atomic force microscope by performing AFM scanning images of human blood cells and force spectroscopy measurements of the fibrinogen-platelet interaction. Since the beginning of this course, in 2008, the overall rating by the students was 4.7 (out of 5), meaning a good to excellent evaluation. Students were very enthusiastic and produced high-quality AFM images and force spectroscopy data. The implementation of the hands-on AFM course was a success, giving to the students the opportunity of contact with a technique that has a wide variety of applications on the nanomedicine field. In the near future, nanomedicine will have remarkable implications in medicine regarding the definition, diagnosis, and treatment of different diseases. AFM enables students to observe single molecule interactions, enabling the understanding of molecular mechanisms of different physiological and pathological processes at the nanoscale level. Therefore, the introduction of nanomedicine courses in bioscience and medical school curricula is essential.

  6. Accurate noncontact calibration of colloidal probe sensitivities in atomic force microscopy.

    PubMed

    Chung, Koo-Hyun; Shaw, Gordon A; Pratt, Jon R

    2009-06-01

    The absolute force sensitivities of colloidal probes comprised of atomic force microscope, or AFM, cantilevers with microspheres attached to their distal ends are measured. The force sensitivities are calibrated through reference to accurate electrostatic forces, the realizations of which are described in detail. Furthermore, the absolute accuracy of a common AFM force calibration scheme, known as the thermal noise method, is evaluated. It is demonstrated that the thermal noise method can be applied with great success to colloidal probe calibration in air and in liquid to yield force measurements with relative standard uncertainties below 5%. Techniques to combine the electrostatics-based determination of the AFM force sensitivity with measurements of the colloidal probe's thermal noise spectrum to compute noncontact estimates of the displacement sensitivity and spring constant are also developed.

  7. Accurate noncontact calibration of colloidal probe sensitivities in atomic force microscopy

    SciTech Connect

    Chung, Koo-Hyun; Shaw, Gordon A.; Pratt, Jon R.

    2009-06-15

    The absolute force sensitivities of colloidal probes comprised of atomic force microscope, or AFM, cantilevers with microspheres attached to their distal ends are measured. The force sensitivities are calibrated through reference to accurate electrostatic forces, the realizations of which are described in detail. Furthermore, the absolute accuracy of a common AFM force calibration scheme, known as the thermal noise method, is evaluated. It is demonstrated that the thermal noise method can be applied with great success to colloidal probe calibration in air and in liquid to yield force measurements with relative standard uncertainties below 5%. Techniques to combine the electrostatics-based determination of the AFM force sensitivity with measurements of the colloidal probe's thermal noise spectrum to compute noncontact estimates of the displacement sensitivity and spring constant are also developed.

  8. Measurement of the Casimir force between dissimilar metals.

    PubMed

    Decca, R S; López, D; Fischbach, E; Krause, D E

    2003-08-01

    The first precise measurement of the Casimir force between dissimilar metals is reported. The attractive force, between a Cu layer evaporated on a microelectromechanical torsional oscillator and an Au layer deposited on an Al2O3 sphere, was measured dynamically with a noise level of 6 fN/sqrt[Hz]. Measurements were performed for separations in the 0.2-2 micro m range. The results agree to better than 1% in the 0.2-0.5 micro m range with a theoretical model that takes into account the finite conductivity and roughness of the two metals. The observed discrepancies, which are much larger than the experimental precision, can be attributed to a lack of a complete characterization of the optical properties of the specific samples used in the experiment.

  9. In-plane information from tapping mode AFM images

    NASA Astrophysics Data System (ADS)

    Marcus, Matthew

    2003-03-01

    Phase contrast in intermittent-contact atomic force microscopy is shown to reveal in-plane structural and mechanical properties of poly(diacetylene) monolayer films. This is surprising because measurements of in-plane properties typically require a contact mode of microscopy. Such measurements are possible because the tilt in the oscillating cantilever provides components of motion not just perpendicular to the surface, but also parallel to the sample surface. Lateral tip displacement is virtually universal in AFM, implying that any oscillating tip-AFM technique is sensitive to in-plane material properties. Although the tilt in the cantilever is small ( 10^o) it produces a component of motion that is 20% of the total tip displacement, and this motion accounts for 5-10% of dissipated energy through the tip-sample interaction[1]. The data is used in conjunction with a numerical model to extract in-plane material parameters. The effect of the cantilever tilt on phase measurements is directly verified through measurements on silicon samples tilted at a variety of angles with respect to the cantilever. The lateral tip displacement we make use of allows measurements of in-plane properties of soft samples such as polymer and biological samples. This work was done in collaboration with M. D'Amato, R.W. Carpick, and M.A. Eriksson, and was supported by the NSF CAREER and MRSEC programs and the Research Corporation. 1. M.S. Marcus, R.W. Carpick, D.Y. Sasaki, M.A. Eriksson, Phys. Rev. Lett. 88, 226103 (2002)

  10. Fractal properties of macrophage membrane studied by AFM.

    PubMed

    Bitler, A; Dover, R; Shai, Y

    2012-12-01

    Complexity of cell membrane poses difficulties to quantify corresponding morphology changes during cell proliferation and damage. We suggest using fractal dimension of the cell membrane to quantify its complexity and track changes produced by various treatments. Glutaraldehyde fixed mouse RAW 264.7 macrophage membranes were chosen as model system and imaged in PeakForce QNM (quantitative nanomechanics) mode of AFM (atomic force microscope). The morphology of the membranes was characterized by fractal dimension. The parameter was calculated for set of AFM images by three different methods. The same calculations were done for the AFM images of macrophages treated with colchicine, an inhibitor of the microtubule polymerization, and microtubule stabilizing agent taxol. We conclude that fractal dimension can be additional and useful parameter to characterize the cell membrane complexity and track the morphology changes produced by different treatments.

  11. Heart cell contractions measured using a micromachined polysilicon force transducer

    NASA Astrophysics Data System (ADS)

    Lin, Gisela; Pister, Kristofer S. J.; Roos, Kenneth P.

    1995-09-01

    A microelectromechanical systems (MEMS) force transducer, with a volume less than one cubic millimeter, is being developed to measure forces generated by living, isolated cardiac muscle cells in order to resolve the complex mechanisms of muscle contraction. The force transducer consists of two movable clamps facing each other. Each clamp contains two vertical, parallel hinged polysilicon plates attached to a moveable shuttle, and the entire structure is suspended 2 micrometers above the substrate via support beams attached to the substrate at one end. Each end of a living rat heart cell is glued between a pair of vertical plates. Calcium is then introduced into the cell's nutrient bath and stimulates the cell to contract. Upon contraction the support beams bend, and the amount of deflection is translated to force via the known spring constant in the beams. Typcially the 70 micrometers long central portion of a 120 micrometers long cell will contract approximately 6-7 micrometers in full activating solution, resulting in forces up to 16 (mu) N. The average value obtained for Fmax per cross-sectional area was 21.8mN/mm2 which is comparable to the value found in other laboratories using standard transducer technology.

  12. Dispersion and Fixation of Adeno-Associated Virus with Glutaraldehyde for Afm Studies

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Wang, Xinyan; Yang, Haijun; Lü, Junhong

    Sample preparation is an important procedure for atomic force microscope (AFM) studies. However, flexible virus particles have a tendency to aggregate together and are easily compressed during sample preparation or by AFM tip that subsequently hamper studying of virus by AFM. Herein, low concentration chemical reagent of glutaraldehyde (2%, v/v) is pre-mixed in virus suspension that facilitates the dispersion and observation of recombinant serotype 2 adeno-associated virus particles deposited on mica surface with little deformation.

  13. AFM Structural Characterization of Drinking Water Biofilm ...

    EPA Pesticide Factsheets

    Due to the complexity of mixed culture drinking water biofilm, direct visual observation under in situ conditions has been challenging. In this study, atomic force microscopy (AFM) revealed the three dimensional morphology and arrangement of drinking water relevant biofilm in air and aqueous solution. Operating parameters were optimized to improve imaging of structural details for a mature biofilm in liquid. By using a soft cantilever (0.03 N/m) and slow scan rate (0.5 Hz), biofilm and individual bacterial cell’s structural topography were resolved and continuously imaged in liquid without loss of spatial resolution or sample damage. The developed methodology will allow future in situ investigations to temporally monitor mixed culture drinking water biofilm structural changes during disinfection treatments. Due to the complexity of mixed culture drinking water biofilm, direct visual observation under in situ conditions has been challenging. In this study, atomic force microscopy (AFM) revealed the three dimensional morphology and arrangement of drinking water relevant biofilm in air and aqueous solution. Operating parameters were optimized to improve imaging of structural details for a mature biofilm in liquid. By using a soft cantilever (0.03 N/m) and slow scan rate (0.5 Hz), biofilm and individual bacterial cell’s structural topography were resolved and continuously imaged in liquid without loss of spatial resolution or sample damage. The developed methodo

  14. Confocal Raman spectroscopy and AFM for evaluation of sidewalls in type II superlattice FPAs

    NASA Astrophysics Data System (ADS)

    Rotter, T. J.; Busani, T.; Rathi, P.; Jaeckel, F.; Reyes, P. A.; Malloy, K. J.; Ukhanov, A. A.; Plis, E.; Krishna, S.; Jaime-Vasquez, M.; Baril, N. F.; Benson, J. D.; Tenne, D. A.

    2015-06-01

    We propose to utilize confocal Raman spectroscopy combined with high resolution atomic force microscopy (AFM) for nondestructive characterisation of the sidewalls of etched and passivated small pixel (24 μm×24 μm) focal plane arrays (FPA) fabricated using LW/LWIR InAs/GaSb type-II strained layer superlattice (T2SL) detector material. Special high aspect ratio Si and GaAs AFM probes, with tip length of 13 μm and tip aperture less than 7°, allow characterisation of the sidewall morphology. Confocal microscopy enables imaging of the sidewall profile through optical sectioning. Raman spectra measured on etched T2SL FPA single pixels enable us to quantify the non-uniformity of the mesa delineation process.

  15. Atom probe, AFM, and STM studies on vacuum-fired stainless steels.

    PubMed

    Stupnik, A; Frank, P; Leisch, M

    2009-04-01

    The surface morphology of grades 304L and 316LN stainless steels, after low-temperature bake-out process and vacuum annealing, has been studied by atomic force microscopy (AFM) and scanning tunnelling microscopy (STM). The local elemental composition on the surface before and after thermal treatment has been investigated by atom probe (AP) depth profiling measurements. After vacuum annealing, AFM and STM show significant changes in the surface structure and topology. Recrystallization and surface reconstruction is less pronounced on the 316LN stainless steel. AP depth profiling analyses result in noticeable nickel enrichment on the surface of grade 304L samples. Since hydrogen recombination is almost controlled by surface structure and composition, a strong influence on the outgassing behaviour by the particular surface microstructure can be deduced.

  16. Characterization of the polycaprolactone melt crystallization: complementary optical microscopy, DSC, and AFM studies.

    PubMed

    Speranza, V; Sorrentino, A; De Santis, F; Pantani, R

    2014-01-01

    The first stages of the crystallization of polycaprolactone (PCL) were studied using several techniques. The crystallization exotherms measured by differential scanning calorimetry (DSC) were analyzed and compared with results obtained by polarized optical microscopy (POM), rheology, and atomic force microscope (AFM). The experimental results suggest a strong influence of the observation scale. In particular, the AFM, even if limited on time scale, appears to be the most sensitive technique to detect the first stages of crystallization. On the contrary, at least in the case analysed in this work, rheology appears to be the least sensitive technique. DSC and POM provide closer results. This suggests that the definition of induction time in the polymer crystallization is a vague concept that, in any case, requires the definition of the technique used for its characterization.

  17. A low-cost AFM setup with an interferometer for undergraduates and secondary-school students

    NASA Astrophysics Data System (ADS)

    Bergmann, Antje; Feigl, Daniela; Kuhn, David; Schaupp, Manuel; Quast, Günter; Busch, Kurt; Eichner, Ludwig; Schumacher, Jens

    2013-07-01

    Atomic force microscopy (AFM) is an important tool in nanotechnology. This method makes it possible to observe nanoscopic surfaces beyond the resolution of light microscopy. In order to provide undergraduate and secondary-school students with insights into this world, we have developed a very robust low-cost AFM setup with a Fabry-Perot interferometer as a detecting device. This setup is designed to be operated almost completely manually and its simplicity gives access to a profound understanding of the working principle. Our AFM is operated in a constant height mode, i.e. the topography of the sample surface is represented directly by the deflection of the cantilever. Thus, the measuring procedure can be understood even by secondary-school students; furthermore, it is the method with the lowest cost, totalling not more than 10-15 k Euros. Nevertheless, we are able to examine a large variety of sample topographies such as CD and DVD surfaces, IC structures, blood cells, butterfly wings or moth eyes. Furthermore, force-distance curves can be recorded and the tensile moduli of some materials can be evaluated. We present our setup in detail and describe its working principles. In addition, we show various experiments which have already been performed by students.

  18. Evaluation of the sensing block method for dynamic force measurement

    NASA Astrophysics Data System (ADS)

    Zhang, Qinghui; Chen, Hao; Li, Wenzhao; Song, Li

    2017-01-01

    Sensing block method was proposed for the dynamic force measurement by Tanimura et al. in 1994. Comparing with the Split Hopkinson pressure bar (SHPB) technique, it can provide a much longer measuring time for the dynamic properties test of materials. However, the signals recorded by sensing block are always accompanied with additional oscillations. Tanimura et al. discussed the effect of force rising edge on the test results, whereas more research is still needed. In this paper, some more dominant factors have been extracted through dimensional analysis. The finite element simulation has been performed to assess these factors. Base on the analysis and simulation, some valuable results are obtained and some criterions proposed in this paper can be applied in design or selection of the sensing block.

  19. Measurement of Multiple Blade Rate Unsteady Propeller Forces

    DTIC Science & Technology

    1990-05-01

    Report I 0 Measurement of Multiple Blade Rate Unsteady Propeller Forces _ by Stuart D. Jessup DTIC SELECTE JUN07 1990 00 U,);i -,,I-ll lll ll mml~ CODE...blade rat and multiple axia wake inflow harmonics. The axial wake distributions weret meaured using a Piot tube. Unsteady propeller bearing thrust and...diameter EAR Propeller expanded area ratio f Maximum camber of section J Advance coefficient, Vvm/nD K Integer multiple of blade number KT Thrust

  20. Dynamic Forces in Spur Gears - Measurement, Prediction, and Code Validation

    NASA Technical Reports Server (NTRS)

    Oswald, Fred B.; Townsend, Dennis P.; Rebbechi, Brian; Lin, Hsiang Hsi

    1996-01-01

    Measured and computed values for dynamic loads in spur gears were compared to validate a new version of the NASA gear dynamics code DANST-PC. Strain gage data from six gear sets with different tooth profiles were processed to determine the dynamic forces acting between the gear teeth. Results demonstrate that the analysis code successfully simulates the dynamic behavior of the gears. Differences between analysis and experiment were less than 10 percent under most conditions.

  1. Coefficients of variation of ground reaction force measurement in cats

    PubMed Central

    Tichy, Alexander

    2017-01-01

    Gait analysis has been extensively performed in dogs and horses; however, very little is known about feline biomechanics. It was, therefore, the aim of this study to determine the coefficient of variation (CV) among three ground reaction force (GRF) measurements taken for 15 client-owned European shorthaired cats without a training period and a short acclimatisation time. Gait was measured as each cat walked across a pressure-sensitive walkway, and measurements were made three times over a multi-week period (range: 2 to 17 weeks). The parameters evaluated were peak vertical force (PFz), vertical impulse (IFz), stance phase duration (SPD), step length (SL), paw contact area (PCA) and symmetry index (SI%) of the front and hind limbs. After averaging each of the values from the three measurements, the CV and 95% confidence interval (CI) were calculated for all parameters. PFz showed the lowest CV (~ 3%), while IFz showed the highest CV (~11%) when normalised to body mass. When the GRFs were normalised to total force, the CV of PFz dropped to ~2% and that of IFz dropped to ~3%. The CV of SL and PCA were lower (~6% respectively ~5%) compared to the CV for SPD (~10%). The SI% for both PFz and IFz were comparable to the values reported in the gait analysis literature for dogs. Results of the current study indicate that gait analysis of cats using pressure-sensitive walkways produces reliable data and is a promising approach for evaluation of lameness. The results also suggest that PFz may be a more reliable parameter than IFz and that normalisation to percent of total force may aid in interpretation of the evaluated data. PMID:28355209

  2. Development of Field Excavator with Embedded Force Measurement

    NASA Technical Reports Server (NTRS)

    Johnson, K.; Creager, C.; Izadnegahdar, A.; Bauman, S.; Gallo, C.; Abel, P.

    2012-01-01

    A semi-intelligent excavation mechanism was developed for use with the NASA-built Centaur 2 rover prototype. The excavator features a continuously rotatable large bucket supported between two parallel arms, both of which share a single pivot axis near the excavator base attached to the rover. The excavator is designed to simulate the collection of regolith, such as on the Moon, and to dump the collected soil into a hopper up to one meter tall for processing to extract oxygen. Because the vehicle can be autonomous and the terrain is generally unknown, there is risk of damaging equipment or using excessive power when attempting to extract soil from dense or rocky terrain. To minimize these risks, it is critical for the rover to sense the digging forces and adjust accordingly. It is also important to understand the digging capabilities and limitations of the excavator. This paper discusses the implementation of multiple strain gages as an embedded force measurement system in the excavator's arms. These strain gages can accurately measure and resolve multi-axial forces on the excavator. In order to validate these sensors and characterize the load capabilities, a series of controlled excavation tests were performed at Glenn Research Center with the excavator at various depths and cut angles while supported by a six axis load cell. The results of these tests are both compared to a force estimation model and used for calibration of the embedded strain gages. In addition, excavation forces generated using two different types of bucket edge (straight vs. with teeth) were compared.

  3. AFM Structural Characterization of Drinking Water Biofilm under Physiological Conditions

    EPA Science Inventory

    Due to the complexity of mixed culture drinking water biofilm, direct visual observation under in situ conditions has been challenging. In this study, atomic force microscopy (AFM) revealed the three dimensional morphology and arrangement of drinking water relevant biofilm in air...

  4. Cantilever's behavior in the AC mode of an AFM

    SciTech Connect

    Nunes, V.B.; Zanette, S.I.; Caride, A.O.; Prioli, R.; Rivas, A.M.F

    2003-03-15

    In this paper, a model with a small number of parameters is used to simulate the motion of a cantilever in the AC mode of an atomic force microscope (AFM). The results elucidate the transition dependence-from noncontact to tapping operating mode-on the height of the contamination layer and on the stiffness of the sample.

  5. Distance-Dependent Measurements of the Conductance of Porphyrin Nanorods Studied with Conductive Probe Atomic Force Microscopy.

    PubMed

    Zhai, Xianglin; Alexander, Denzel; Derosa, Pedro; Garno, Jayne C

    2017-02-07

    Protocols for nanopatterning porphyrins on Au(111) were developed based on immersion particle lithography. Porphyrins with and without a central metal ion, 5,10,15,20-tetraphenyl-21H,23H-porphyrin (TPP) and 5,10,15,20-tetraphenyl-21H,23H-porphyrin cobalt(II) (CoTPP), were selected for study, which spontaneously formed nanorod geometries depending on concentration parameters. The elongated shapes of the nanorods offers an opportunity for successive distance-dependent conductive probe atomic force microscopy (CP-AFM) measurements along the length of the nanorods. To prepare patterns of TPP and CoTPP nanorods, a mask of silica mesospheres was placed on gold substrates to generate nanoholes within an alkanethiol matrix film. The nanoholes prepared by particle lithography with an immersion step were backfilled with porphyrins by a second immersion step. By controlling the concentration and immersion interval, nanorods of porphyrins were generated with one end of the nanostructure attached to gold within a nanohole. The porphyrin nanorods exhibited slight differences in dimensions at the nanoscale to enable size-dependent measurements of conductive properties. The conductivity along the horizontal direction of the nanorods was evaluated with CP-AFM studies. Changes in conductivity were measured along the long axis of TPP and CoTPP nanorods. The TPP nanorods exhibited conductive profiles of an insulating material, and the CoTPP nanorods exhibited profiles of a semiconductor. The experiments demonstrate the applicability of particle lithography for preparing unique and functional surface platforms of porphyrins to measure distance-dependent conductive properties on gold.

  6. A subsurface add-on for standard atomic force microscopes.

    PubMed

    Verbiest, G J; van der Zalm, D J; Oosterkamp, T H; Rost, M J

    2015-03-01

    The application of ultrasound in an Atomic Force Microscope (AFM) gives access to subsurface information. However, no commercially AFM exists that is equipped with this technique. The main problems are the electronic crosstalk in the AFM setup and the insufficiently strong excitation of the cantilever at ultrasonic (MHz) frequencies. In this paper, we describe the development of an add-on that provides a solution to these problems by using a special piezo element with a lowest resonance frequency of 2.5 MHz and by separating the electronic connection for this high frequency piezo element from all other connections. In this sense, we support researches with the possibility to perform subsurface measurements with their existing AFMs and hopefully pave also the way for the development of a commercial AFM that is capable of imaging subsurface features with nanometer resolution.

  7. A subsurface add-on for standard atomic force microscopes

    SciTech Connect

    Verbiest, G. J.; Zalm, D. J. van der; Oosterkamp, T. H.; Rost, M. J.

    2015-03-15

    The application of ultrasound in an Atomic Force Microscope (AFM) gives access to subsurface information. However, no commercially AFM exists that is equipped with this technique. The main problems are the electronic crosstalk in the AFM setup and the insufficiently strong excitation of the cantilever at ultrasonic (MHz) frequencies. In this paper, we describe the development of an add-on that provides a solution to these problems by using a special piezo element with a lowest resonance frequency of 2.5 MHz and by separating the electronic connection for this high frequency piezo element from all other connections. In this sense, we support researches with the possibility to perform subsurface measurements with their existing AFMs and hopefully pave also the way for the development of a commercial AFM that is capable of imaging subsurface features with nanometer resolution.

  8. Force measurements reveal how small binders perturb the dissociation mechanisms of DNA duplex sequences

    NASA Astrophysics Data System (ADS)

    Burmistrova, Anastasia; Fresch, Barbara; Sluysmans, Damien; de Pauw, Edwin; Remacle, Françoise; Duwez, Anne-Sophie

    2016-06-01

    The force-driven separation of double-stranded DNA is crucial to the accomplishment of cellular processes like genome transactions. Ligands binding to short DNA sequences can have a local stabilizing or destabilizing effect and thus severely affect these processes. Although the design of ligands that bind to specific sequences is a field of intense research with promising biomedical applications, so far, their effect on the force-induced strand separation has remained elusive. Here, by means of AFM-based single molecule force spectroscopy, we show the co-existence of two different mechanisms for the separation of a short DNA duplex and demonstrate how they are perturbed by small binders. With the support of Molecular Dynamics simulations, we evidence that above a critical pulling rate one of the dissociation pathways becomes dominant, with a dramatic effect on the rupture forces. Around the critical threshold, we observe a drop of the most probable rupture forces for ligand-stabilized duplexes. Our results offer a deep understanding of how a stable DNA-ligand complex behaves under force-driven strand separation.The force-driven separation of double-stranded DNA is crucial to the accomplishment of cellular processes like genome transactions. Ligands binding to short DNA sequences can have a local stabilizing or destabilizing effect and thus severely affect these processes. Although the design of ligands that bind to specific sequences is a field of intense research with promising biomedical applications, so far, their effect on the force-induced strand separation has remained elusive. Here, by means of AFM-based single molecule force spectroscopy, we show the co-existence of two different mechanisms for the separation of a short DNA duplex and demonstrate how they are perturbed by small binders. With the support of Molecular Dynamics simulations, we evidence that above a critical pulling rate one of the dissociation pathways becomes dominant, with a dramatic effect

  9. High-speed atomic force microscopy and peak force tapping control

    NASA Astrophysics Data System (ADS)

    Hu, Shuiqing; Mininni, Lars; Hu, Yan; Erina, Natalia; Kindt, Johannes; Su, Chanmin

    2012-03-01

    ITRS Roadmap requires defect size measurement below 10 nanometers and challenging classifications for both blank and patterned wafers and masks. Atomic force microscope (AFM) is capable of providing metrology measurement in 3D at sub-nanometer accuracy but has long suffered from drawbacks in throughput and limitation of slow topography imaging without chemical information. This presentation focus on two disruptive technology developments, namely high speed AFM and quantitative nanomechanical mapping, which enables high throughput measurement with capability of identifying components through concurrent physical property imaging. The high speed AFM technology has allowed the imaging speed increase by 10-100 times without loss of the data quality. Such improvement enables the speed of defect review on a wafer to increase from a few defects per hour to nearly 100 defects an hour, approaching the requirements of ITRS Roadmap. Another technology development, Peak Force Tapping, substantially simplified the close loop system response, leading to self-optimization of most challenging samples groups to generate expert quality data. More importantly, AFM also simultaneously provides a series of mechanical property maps with a nanometer spatial resolution during defect review. These nanomechanical maps (including elastic modulus, hardness, and surface adhesion) provide complementary information for elemental analysis, differentiate defect materials by their physical properties, and assist defect classification beyond topographic measurements. This paper will explain the key enabling technologies, namely high speed tip-scanning AFM using innovative flexure design and control algorithm. Another critical element is AFM control using Peak Force Tapping, in which the instantaneous tip-sample interaction force is measured and used to derive a full suite of physical properties at each imaging pixel. We will provide examples of defect review data on different wafers and media disks

  10. Use of piezoelectric multicomponent force measuring devices in fluid mechanics

    NASA Technical Reports Server (NTRS)

    Richter, A.; Stefan, K.

    1979-01-01

    The characterisitics of piezoelectric multicomponent transducers are discussed, giving attention to the advantages of quartz over other materials. The main advantage of piezoelectric devices in aerodynamic studies is their ability to indicate rapid changes in the values of physical parameters. Problems in the accuracy of measurments by piezoelectric devices can be overcome by suitable design approaches. A practical example is given of how such can be utilized to measure rapid fluctuations of fluid forces exerted on a circular cylinder mounted in a water channel.

  11. Instrumented Bolts Would Measure Shear Forces In Joints

    NASA Technical Reports Server (NTRS)

    Sawyer, James Wayne; Mcwithey, Robert R.

    1994-01-01

    Bolts instrumented with strain gauges used to measure shear forces. Bolts installed in multiple-bolt lap joints to obtain data on distribution of stresses and deformations in and around joints. Strain gauges indicate share of applied load borne by each individual bolt. In original application, bolted panels made of advanced refractory composite materials designed to withstand use at temperatures up to 4,000 degrees F. Also applicable to other joint materials and measurement of shear loads in other connections such as, shear loads on shafts in pulleys or gears.

  12. A novel dog-bone oscillating AFM probe with thermal actuation and piezoresistive detection.

    PubMed

    Xiong, Zhuang; Mairiaux, Estelle; Walter, Benjamin; Faucher, Marc; Buchaillot, Lionel; Legrand, Bernard

    2014-10-31

    In order to effectively increase the resonance frequency and the quality factor of atomic force microscope (AFM) probes, a novel oscillating probe based on a dog-bone shaped MEMS resonator was conceived, designed, fabricated and evaluated. The novel probe with 400 μm in length, 100 μm in width and 5 μm in thickness was enabled to feature MHz resonance frequencies with integrated thermal actuation and piezoresistive detection. Standard silicon micromachining was employed. Both electrical and optical measurements were carried out in air. The resonance frequency and the quality factor of the novel probe were measured to be 5.4 MHz and 4000 respectively, which are much higher than those (about several hundreds of kHz) of commonly used cantilever probes. The probe was mounted onto a commercial AFM set-up through a dedicated probe-holder and circuit board. Topographic images of patterned resist samples were obtained. It is expected that the resonance frequency and the measurement bandwidth of such probes will be further increased by a proper downscaling, thus leading to a significant increase in the scanning speed capability of AFM instruments.

  13. A Novel Dog-Bone Oscillating AFM Probe with Thermal Actuation and Piezoresistive Detection †

    PubMed Central

    Xiong, Zhuang; Mairiaux, Estelle; Walter, Benjamin; Faucher, Marc; Buchaillot, Lionel; Legrand, Bernard

    2014-01-01

    In order to effectively increase the resonance frequency and the quality factor of atomic force microscope (AFM) probes, a novel oscillating probe based on a dog-bone shaped MEMS resonator was conceived, designed, fabricated and evaluated. The novel probe with 400 μm in length, 100 μm in width and 5 μm in thickness was enabled to feature MHz resonance frequencies with integrated thermal actuation and piezoresistive detection. Standard silicon micromachining was employed. Both electrical and optical measurements were carried out in air. The resonance frequency and the quality factor of the novel probe were measured to be 5.4 MHz and 4000 respectively, which are much higher than those (about several hundreds of kHz) of commonly used cantilever probes. The probe was mounted onto a commercial AFM set-up through a dedicated probe-holder and circuit board. Topographic images of patterned resist samples were obtained. It is expected that the resonance frequency and the measurement bandwidth of such probes will be further increased by a proper downscaling, thus leading to a significant increase in the scanning speed capability of AFM instruments. PMID:25365463

  14. A study of water droplet between an AFM tip and a substrate using dissipative particle dynamics

    NASA Astrophysics Data System (ADS)

    Pal, Souvik; Lan, Chuanjin; Li, Zhen; Hirleman, E. Daniel; Ma, Yanbao

    2014-11-01

    Formation of a water droplet between a sharp AFM tip and a substrate due to capillary condensation affects the tip-substrate interaction. As a consequence, AFM measurements lose precision and often produce incorrect sample topology. Understanding the physics of liquid bridges is also important in the field of Dip-pen nanolithography (DPN). Significant research is being carried out to understand the mechanics of the formation of the liquid bridge and its dependence of surface properties, ambient conditions etc. The in-between length scale, i.e., mesoscale (~100 nm) associated with this phenomenon presents a steep challenge for experimental measurements. In addition, molecular dynamics (MD) can be computationally prohibitive to model the entire system, especially over microseconds to seconds. Theoretical analysis using Young Laplace equation has so far provided some qualitative insights only. We study this system using Dissipative Particle Dynamics (DPD) which is a simulation technique suitable for describing mesoscopic hydrodynamic behavior of fluids. In this work, we carry out simulations to improve understanding of the process of formation of the meniscus, the mechanics of manipulation and control of its shape, and better estimation of capillary forces. The knowledge gained through our study will help in correcting the AFM measurements affected by capillary condensation. Moreover, it will improve understanding of more accurate droplet manipulation in DPN.

  15. Atomic-scale mechanical properties of orientated C60 molecules revealed by noncontact atomic force microscopy.

    PubMed

    Pawlak, Rémy; Kawai, Shigeki; Fremy, Sweetlana; Glatzel, Thilo; Meyer, Ernst

    2011-08-23

    In this work, the mechanical properties of C(60) molecules adsorbed on Cu(111) are measured by tuning-fork-based noncontact atomic force microscopy (nc-AFM) and spectroscopy at cryogenic conditions. Site-specific tip-sample force variations are detected above the buckyball structure. Moreover, high-resolution images obtained by nc-AFM show the chemical structure of this molecule and describes unambiguously its orientations on the surface.

  16. A novel approach for measuring the intrinsic nanoscale thickness of polymer brushes by means of atomic force microscopy: application of a compressible fluid model.

    PubMed

    Cuellar, José Luis; Llarena, Irantzu; Iturri, Jagoba J; Donath, Edwin; Moya, Sergio Enrique

    2013-12-07

    The thickness of a poly(sulfo propyl methacrylate) (PSPM) brush is determined by Atomic Force Microscopy (AFM) imaging as a function of the loading force at different ionic strengths, ranging from Milli-Q water to 1 M NaCl. Imaging is performed both with a sharp tip and a colloidal probe. The brush thickness strongly depends both on the applied load and on the ionic strength. A brush thickness of 150 nm is measured in Millipore water when applying the minimal loading force. Imaging with an 8 μm silica particle as a colloidal probe results in a thickness of 30 nm larger than that measured with the tip. Increasing the ionic strength causes the well known reduction of the thickness of the brush. The apparent thickness of the brush decreases with increasing loading forces. An empirical model analogous to that of a compressible fluid is applied to describe the dependence of the apparent thickness of the brush with loading force. The model comprises three ionic strength dependent parameters for the brush: thickness at infinite compression, energy, and cohesive force. The meaning and significance of these parameters are discussed. A particular advantage of the model is that it allows for determination of the brush thickness at zero loading force.

  17. The formation of liquid bridge in different operating modes of AFM

    NASA Astrophysics Data System (ADS)

    Wei, Zheng; Sun, Yan; Ding, WenXuan; Wang, ZaiRan

    2016-09-01

    The liquid bridge is one of the principal factors that cause artifacts in ambient-pressure atomic force microscope (AFM) images. Additionally, it is the main component of the adhesion force in ambient conditions. To understand the AFM imaging mechanism and the sample characteristics, it is essential to study the liquid bridge. This study interprets the physical mechanism involved in liquid bridge formation, which is composed of three different physical processes: the squeezing process, capillary condensation, and liquid film flow. We discuss the contributions of these three mechanisms to the volume and the capillary force of the liquid bridge in different AFM operation modes.

  18. A Sensitive Technique Using Atomic Force Microscopy to Measure the Low Earth Orbit Atomic Oxygen Erosion of Polymers

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Banks, Bruce A.; Clark, Gregory W.; Hammerstrom, Anne M.; Youngstrom, Erica E.; Kaminski, Carolyn; Fine, Elizabeth S.; Marx, Laura M.

    2001-01-01

    Polymers such as polyimide Kapton and Teflon FEP (fluorinated ethylene propylene) are commonly used spacecraft materials due to their desirable properties such as flexibility, low density, and in the case of FEP low solar absorptance and high thermal emittance. Polymers on the exterior of spacecraft in the low Earth orbit (LEO) environment are exposed to energetic atomic oxygen. Atomic oxygen erosion of polymers occurs in LEO and is a threat to spacecraft durability. It is therefore important to understand the atomic oxygen erosion yield (E, the volume loss per incident oxygen atom) of polymers being considered in spacecraft design. Because long-term space exposure data is rare and very costly, short-term exposures such as on the shuttle are often relied upon for atomic oxygen erosion determination. The most common technique for determining E is through mass loss measurements. For limited duration exposure experiments, such as shuttle experiments, the atomic oxygen fluence is often so small that mass loss measurements can not produce acceptable uncertainties. Therefore, a recession measurement technique has been developed using selective protection of polymer samples, combined with postflight atomic force microscopy (AFM) analysis, to obtain accurate erosion yields of polymers exposed to low atomic oxygen fluences. This paper discusses the procedures used for this recession depth technique along with relevant characterization issues. In particular, a polymer is salt-sprayed prior to flight, then the salt is washed off postflight and AFM is used to determine the erosion depth from the protected plateau. A small sample was salt-sprayed for AFM erosion depth analysis and flown as part of the Limited Duration Candidate Exposure (LDCE-4,-5) shuttle flight experiment on STS-51. This sample was used to study issues such as use of contact versus non-contact mode imaging for determining recession depth measurements. Error analyses were conducted and the percent probable

  19. Measurement of the adhesion force between particles for high gradient magnetic separation of pneumatic conveyed powder products

    NASA Astrophysics Data System (ADS)

    Senkawa, K.; Nakai, Y.; Mishima, F.; Akiyama, Y.; Nishijima, S.

    2011-11-01

    In the industrial plants such as foods, medicines or industrial materials, there are big amount of issues on contamination by metallic wear debris originated from pipes of manufacturing lines. In this study, we developed a high gradient magnetic separation system (HGMS) under the dry process by using superconducting magnet to remove the ferromagnetic particles. One of the major problems of dry HGMS systems is, however, the blockage of magnetic filter caused by particle coagulation or deposition. In order to actualize the magnetic separation without blockage, we introduced pneumatic conveyance system as a new method to feed the powder. It is important to increase the drag force acting on the sufficiently dispersed particles, which require strong magnetic fields. To generate the strong magnetic fields, HGMS technique was examined which consists of a magnetic filter and a superconducting solenoid magnet. As a result of the magnetic separation experiment, it was shown that the separation efficiency changes due to the difference of the cohesive property of the particles. On the basis of the result, the adhesion force which acts between the ferromagnetic particles and the medium particles used for the magnetic separation was measured by Atomic Force Microscope (AFM), and cohesion of particles was studied from the aspect of interparticle interaction. We assessed a suitable flow velocity for magnetic separation according to the cohesive property of each particle based on the result.

  20. Modular apparatus for electrostatic actuation of common atomic force microscope cantilevers

    SciTech Connect

    Long, Christian J.; Cannara, Rachel J.

    2015-07-15

    Piezoelectric actuation of atomic force microscope (AFM) cantilevers often suffers from spurious mechanical resonances in the loop between the signal driving the cantilever and the actual tip motion. These spurious resonances can reduce the accuracy of AFM measurements and in some cases completely obscure the cantilever response. To address these limitations, we developed a specialized AFM cantilever holder for electrostatic actuation of AFM cantilevers. The holder contains electrical contacts for the AFM cantilever chip, as well as an electrode (or electrodes) that may be precisely positioned with respect to the back of the cantilever. By controlling the voltages on the AFM cantilever and the actuation electrode(s), an electrostatic force is applied directly to the cantilever, providing a near-ideal transfer function from drive signal to tip motion. We demonstrate both static and dynamic actuations, achieved through the application of direct current and alternating current voltage schemes, respectively. As an example application, we explore contact resonance atomic force microscopy, which is a technique for measuring the mechanical properties of surfaces on the sub-micron length scale. Using multiple electrodes, we also show that the torsional resonances of the AFM cantilever may be excited electrostatically, opening the door for advanced dynamic lateral force measurements with improved accuracy and precision.

  1. Modular apparatus for electrostatic actuation of common atomic force microscope cantilevers.

    PubMed

    Long, Christian J; Cannara, Rachel J

    2015-07-01

    Piezoelectric actuation of atomic force microscope (AFM) cantilevers often suffers from spurious mechanical resonances in the loop between the signal driving the cantilever and the actual tip motion. These spurious resonances can reduce the accuracy of AFM measurements and in some cases completely obscure the cantilever response. To address these limitations, we developed a specialized AFM cantilever holder for electrostatic actuation of AFM cantilevers. The holder contains electrical contacts for the AFM cantilever chip, as well as an electrode (or electrodes) that may be precisely positioned with respect to the back of the cantilever. By controlling the voltages on the AFM cantilever and the actuation electrode(s), an electrostatic force is applied directly to the cantilever, providing a near-ideal transfer function from drive signal to tip motion. We demonstrate both static and dynamic actuations, achieved through the application of direct current and alternating current voltage schemes, respectively. As an example application, we explore contact resonance atomic force microscopy, which is a technique for measuring the mechanical properties of surfaces on the sub-micron length scale. Using multiple electrodes, we also show that the torsional resonances of the AFM cantilever may be excited electrostatically, opening the door for advanced dynamic lateral force measurements with improved accuracy and precision.

  2. An Electromotive Force Measurement System for Alloy Fuels

    SciTech Connect

    Changhu Xing; Colby Jensen; Heng Ban; Robert Mariani; J. Rory Kennedy

    2010-11-01

    The development of advanced nuclear fuels requires a better understanding of the transmutation and micro-structural evolution of the materials. Alloy fuels have the advantage of high thermal conductivity and improved characteristics in fuel-cladding chemical reaction. However, information on thermodynamic and thermophysical properties is limited. The objective of this project is to design and build an experimental system to measure the thermodynamic properties of solid materials from which the understanding of their phase change can be determined. The apparatus was used to measure the electromotive force (EMF) of several materials in order to calibrate and test the system. The EMF of chromel was measured from 100°C to 800°C and compared with theoretical values. Additionally, the EMF measurement of Ni-Fe alloy was performed and compared with the Ni-Fe phase diagram. The prototype system is to be modified eventually and used in a radioactive hot-cell in the future.

  3. Biophysical properties of cardiomyocyte surface explored by multiparametric AFM.

    PubMed

    Smolyakov, Georges; Cauquil, Marie; Severac, Childerick; Lachaize, Véronique; Guilbeau-Frugier, Céline; Sénard, Jean-Michel; Galés, Céline; Dague, Etienne

    2017-03-02

    PeakForce Quantitative Nanomechanical Mapping (PeakForce QNM) multiparametric AFM mode was adapted to qualitative and quantitative study of the lateral membrane of cardiomyocytes (CMs), extending this powerful mode to the study of soft cells. On living CM, PeakForce QNM depicted the crests and hollows periodic alternation of cell surface architecture previously described using AFM Force Volume (FV) mode. PeakForce QNM analysis provided better resolution in terms of pixel number compared to FV mode and reduced acquisition time, thus limiting the consequences of spontaneous living adult CM dedifferentiation once isolated from the cardiac tissue. PeakForce QNM mode on fixed CMs clearly visualized subsarcolemmal mitochondria (SSM) and their loss following formamide treatment, concomitant with the interfibrillar mitochondria climbing up and forming heaps at the cell surface. Interestingly, formamide-promoted SSM loss allowed visualization of the sarcomeric apparatus ultrastructure below the plasma membrane. High PeakForce QNM resolution led to better contrasted mechanical maps than FV mode and provided correlation between adhesion, dissipation, mechanical and topographical maps. Modified hydrophobic AFM tip enhanced contrast on adhesion and dissipation maps and suggested that CM surface crests and hollows exhibit distinct chemical properties. Finally, two-dimensional Fast Fourier Transform to objectively quantify AFM maps allowed characterization of periodicity of both sarcomeric Z-line and M-band. Overall, this study validated PeakForce QNM as a valuable and innovative mode for the exploration of living and fixed CMs. In the future, it could be applied to depict cell membrane architectural, mechanical and chemical defects as well as sarcomeric abnormalities associated with cardiac diseases.

  4. Molecular Dynamics Simulation of Atomic Force Microscopy at the Water-Muscovite Interface: Hydration Layer Structure and Force Analysis.

    PubMed

    Kobayashi, Kazuya; Liang, Yunfeng; Amano, Ken-ichi; Murata, Sumihiko; Matsuoka, Toshifumi; Takahashi, Satoru; Nishi, Naoya; Sakka, Tetsuo

    2016-04-19

    With the development of atomic force microscopy (AFM), it is now possible to detect the buried liquid-solid interfacial structure in three dimensions at the atomic scale. One of the model surfaces used for AFM is the muscovite surface because it is atomically flat after cleavage along the basal plane. Although it is considered that force profiles obtained by AFM reflect the interfacial structures (e.g., muscovite surface and water structure), the force profiles are not straightforward because of the lack of a quantitative relationship between the force and the interfacial structure. In the present study, molecular dynamics simulations were performed to investigate the relationship between the muscovite-water interfacial structure and the measured AFM force using a capped carbon nanotube (CNT) AFM tip. We provide divided force profiles, where the force contributions from each water layer at the interface are shown. They reveal that the first hydration layer is dominant in the total force from water even after destruction of the layer. Moreover, the lateral structure of the first hydration layer transcribes the muscovite surface structure. It resembles the experimentally resolved surface structure of muscovite in previous AFM studies. The local density profile of water between the tip and the surface provides further insight into the relationship between the water structure and the detected force structure. The detected force structure reflects the basic features of the atomic structure for the local hydration layers. However, details including the peak-peak distance in the force profile (force-distance curve) differ from those in the density profile (density-distance curve) because of disturbance by the tip.

  5. Probing stem cell differentiation using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Liang, Xiaobin; Shi, Xuetao; Ostrovidov, Serge; Wu, Hongkai; Nakajima, Ken

    2016-03-01

    A real-time method using atomic force microscopy (AFM) was developed to probe stem cell differentiation by measuring the mechanical properties of cells and the extracellular matrix (ECM). The mechanical properties of stem cells and their ECMs can be used to clearly distinguish specific stem cell-differentiated lineages. It is clear that AFM is a facile and useful tool for monitoring the differentiation of stem cells in a non-invasive manner.

  6. Structural and functional changes of the articular surface in a post-traumatic model of early osteoarthritis measured by atomic force microscopy.

    PubMed

    Desrochers, Jane; Amrein, Matthias A; Matyas, John R

    2010-12-01

    The functional integrity of the articulating cartilage surface is a critical determinant of joint health. Although a variety of techniques exist to characterize the structural changes in the tissue with osteoarthritis (OA), some with extremely high resolution, most lack the ability to detect and monitor the functional changes that accompany the structural deterioration of this essential bearing surface. Atomic force microscopy (AFM) enables the acquisition of both structural and mechanical properties of the articular cartilage surface, with up to nanoscale resolution, making it particularly useful for evaluating the functional behavior of the macromolecular network forming the cartilage surface, which disintegrates in OA. In the present study, AFM was applied to the articular cartilage surfaces from six pairs of canine knee joints with post-traumatic OA. Microstructure (RMS roughness) and micromechanics (dynamic indentation modulus, E* of medial femoral condyle cartilages were compared between contralateral controls and cruciate-transected knee joints, which develop early signs of OA by three months after surgery. Results reveal a significant increase in RMS roughness and a significant four-fold decrease in E* in cartilages from cruciate-transected joints versus contralateral controls. Compared to previous reports of changes in bulk mechanics, AFM was considerably more sensitive at detecting early cartilage changes due to cruciate-deficiency. The use of AFM in this study provides important new information on early changes in the natural history of OA because of its ability to sensitively detect and measure local structural and functional changes of the articular cartilage surface, the presumptive site of osteoarthritic initiation.

  7. Possibility of measuring thermal effects in the Casimir force

    SciTech Connect

    Geyer, B.; Klimchitskaya, G. L.; Mostepanenko, V. M.

    2010-09-15

    We analyze the possibility of measuring small thermal effects in the Casimir force between metal test bodies in configurations of a sphere above a plate and two parallel plates. For the sphere-plate geometry used in many experiments, we investigate the applicability of the proximity force approximation (PFA) to calculation of thermal effects in the Casimir force and its gradient. It is shown that for real metals the two formulations of the PFA used in the literature lead to relative differences in the results obtained being less than a small parameter equal to the ratio of separation distance to sphere radius. For ideal metals, PFA results for the thermal correction are obtained and compared with available exact results. It is emphasized that in the experimental region in the zeroth order of the small parameter already mentioned, the thermal Casimir force and its gradient calculated using the PFA (and thermal corrections in their own right) coincide with the respective exact results. For real metals, available exact results are outside the application region of the PFA. However, the exact results are shown to converge with the PFA results when the small parameter goes down to experimental values. We arrive at the conclusion that the large thermal effects predicted by the Drude-model approach, if they exist, could be measured in both static and dynamic experiments in sphere-plate and plate-plate configurations. As for the small thermal effects predicted by the plasma-model approach, the static experiment in the configuration of two parallel plates is found to be the best for their observation.

  8. Development of low temperature atomic force microscopy with an optical beam deflection system capable of simultaneously detecting the lateral and vertical forces

    NASA Astrophysics Data System (ADS)

    Arima, Eiji; Wen, Huanfei; Naitoh, Yoshitaka; Li, Yan Jun; Sugawara, Yasuhiro

    2016-09-01

    The atomic force microscopy (AFM) is a very important tool for imaging and investigating the complex force interactions on sample surfaces with high spatial resolution. In the AFM, two types of detection systems of the tip-sample interaction forces have been used: an optical detection system and an electrical detection system. In optical detection systems, such as optical beam deflection system or optical fiber interferometer system, both the lateral and the vertical tip-sample forces can be measured simultaneously. In electrical detection systems, such as qPlus or Kolibri sensors, either the lateral or vertical forces can be measured. Simultaneous measurement of the lateral and vertical interaction forces effectively allows investigation of force interactions because the force is a vector with magnitude and direction. In this study, we developed a low-temperature, frequency-modulation AFM using an optical beam deflection system to simultaneously measure the vertical and lateral forces. In this system, the heat sources, such as a laser diode and a current-to-voltage converter, for measuring the photocurrent of the four-segmented photodiode are located outside the observation chamber to avoid a temperature increase of the AFM unit. The focused optical beam is three-dimensionally adjustable on the back side of the cantilever. We demonstrate low-noise displacement measurement of the cantilever and successful atomic resolution imaging using the vertical and lateral forces at low temperatures.

  9. Development of low temperature atomic force microscopy with an optical beam deflection system capable of simultaneously detecting the lateral and vertical forces.

    PubMed

    Arima, Eiji; Wen, Huanfei; Naitoh, Yoshitaka; Li, Yan Jun; Sugawara, Yasuhiro

    2016-09-01

    The atomic force microscopy (AFM) is a very important tool for imaging and investigating the complex force interactions on sample surfaces with high spatial resolution. In the AFM, two types of detection systems of the tip-sample interaction forces have been used: an optical detection system and an electrical detection system. In optical detection systems, such as optical beam deflection system or optical fiber interferometer system, both the lateral and the vertical tip-sample forces can be measured simultaneously. In electrical detection systems, such as qPlus or Kolibri sensors, either the lateral or vertical forces can be measured. Simultaneous measurement of the lateral and vertical interaction forces effectively allows investigation of force interactions because the force is a vector with magnitude and direction. In this study, we developed a low-temperature, frequency-modulation AFM using an optical beam deflection system to simultaneously measure the vertical and lateral forces. In this system, the heat sources, such as a laser diode and a current-to-voltage converter, for measuring the photocurrent of the four-segmented photodiode are located outside the observation chamber to avoid a temperature increase of the AFM unit. The focused optical beam is three-dimensionally adjustable on the back side of the cantilever. We demonstrate low-noise displacement measurement of the cantilever and successful atomic resolution imaging using the vertical and lateral forces at low temperatures.

  10. Formation of sensor array on the AFM chip surface by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Shumov, I. D.; Kanashenko, S. L.; Ziborov, V. S.; Ivanov, Yu D.; Archakov, A. I.; Pleshakova, T. O.

    2017-01-01

    Development of atomic force microscopy (AFM)-based nanotechnological approaches to highly sensitive detection of proteins is a perspective direction in biomedical research. These approaches use AFM chips to concentrate the target proteins from the test solution volume (buffer solution, diluted biological fluid) onto the chip surface for their subsequent registration on the chip surface by AFM. Atomic force microscope is a molecular detector that enables protein detection at ultra-low (subfemtomolar) concentrations in single-molecule counting mode. Due to extremely high sensitivity of AFM, its application for multiplexed protein detection is of great interest for use in proteomics and diagnostic applications. In this study, AFM chips containing an array of sensor areas have been fabricated. Magnetron sputtering of chromium and tungsten nanolayers has been used to form optically visible metallic marks on the AFM chip surface to provide necessary precision of AFM probe positioning against each sensor area for scanning. It has been demonstrated that the marks formed by magnetron sputtering of Cr and W are stable on the surface of the AFM chips during the following activation and intensive washing of this surface. The results obtained in our present study allow application of the developed chips for multiplexed protein analysis by AFM.

  11. Intrinsically High-Q Dynamic AFM Imaging in Liquid with a Significantly Extended Needle Tip

    PubMed Central

    Minary-Jolandan, Majid; Tajik, Arash; Wang, Ning; Yu, Min-Feng

    2012-01-01

    Atomic force microscope (AFM) probe with a long and rigid needle tip was fabricated and studied for high Q factor dynamic (tapping mode) AFM imaging of samples submersed in liquid. The extended needle tip over a regular commercially-available tapping mode AFM cantilever was sufficiently long to keep the AFM cantilever from submersed in liquid, which significantly minimized the hydrodynamic damping involved in dynamic AFM imaging of samples in liquid. Dynamic AFM imaging of samples in liquid at an intrinsic Q factor of over 100 and an operation frequency of over 200 kHz was demonstrated. The method has the potential to be extended to acquire viscoelastic materials properties and provide truly gentle imaging of soft biological samples in physiological environments. PMID:22595833

  12. Three-dimensional atomic force microscopy: interaction force vector by direct observation of tip trajectory.

    PubMed

    Sigdel, Krishna P; Grayer, Justin S; King, Gavin M

    2013-11-13

    The prospect of a robust three-dimensional atomic force microscope (AFM) holds significant promise in nanoscience. Yet, in conventional AFM, the tip-sample interaction force vector is not directly accessible. We scatter a focused laser directly off an AFM tip apex to rapidly and precisely measure the tapping tip trajectory in three-dimensional space. This data also yields three-dimensional cantilever spring constants, effective masses, and hence, the tip-sample interaction force components via Newton's second law. Significant lateral forces representing 49 and 13% of the normal force (Fz = 152 ± 17 pN) were observed in common tapping mode conditions as a silicon tip intermittently contacted a glass substrate in aqueous solution; as a consequence, the direction of the force vector tilted considerably more than expected. When addressing the surface of a lipid bilayer, the behavior of the force components differed significantly from that observed on glass. This is attributed to the lateral mobility of the lipid membrane coupled with its elastic properties. Direct access to interaction components Fx, Fy, and Fz provides a more complete view of tip dynamics that underlie force microscope operation and can form the foundation of a three-dimensional AFM in a plurality of conditions.

  13. Complex Squeezing and Force Measurement Beyond the Standard Quantum Limit

    NASA Astrophysics Data System (ADS)

    Buchmann, L. F.; Schreppler, S.; Kohler, J.; Spethmann, N.; Stamper-Kurn, D. M.

    2016-07-01

    A continuous quantum field, such as a propagating beam of light, may be characterized by a squeezing spectrum that is inhomogeneous in frequency. We point out that homodyne detectors, which are commonly employed to detect quantum squeezing, are blind to squeezing spectra in which the correlation between amplitude and phase fluctuations is complex. We find theoretically that such complex squeezing is a component of ponderomotive squeezing of light through cavity optomechanics. We propose a detection scheme called synodyne detection, which reveals complex squeezing and allows the accounting of measurement backaction. Even with the optomechanical system subject to continuous measurement, such detection allows the measurement of one component of an external force with sensitivity only limited by the mechanical oscillator's thermal occupation.