Science.gov

Sample records for afm measurements revealed

  1. AFM/TIRF force clamp measurements of neurosecretory vesicle tethers reveal characteristic unfolding steps

    PubMed Central

    Harris, Mark C.; Cislo, Dillon; Lenz, Joan S.; Umbach, Christopher

    2017-01-01

    Although several proteins have been implicated in secretory vesicle tethering, the identity and mechanical properties of the components forming the physical vesicle-plasma membrane link remain unknown. Here we present the first experimental measurements of nanomechanical properties of secretory vesicle-plasma membrane tethers using combined AFM force clamp and TIRF microscopy on membrane sheets from PC12 cells expressing the vesicle marker ANF-eGFP. Application of pulling forces generated tether extensions composed of multiple steps with variable length. The frequency of short (<10 nm) tether extension events was markedly higher when a fluorescent vesicle was present at the cantilever tip and increased in the presence of GTPγS, indicating that these events reflect specifically the properties of vesicle-plasma membrane tethers. The magnitude of the short tether extension events is consistent with extension lengths expected from progressive unfolding of individual helices of the exocyst complex, supporting its direct role in forming the physical vesicle-plasma membrane link. PMID:28323853

  2. Nanomechanics of Yeast Surfaces Revealed by AFM

    NASA Astrophysics Data System (ADS)

    Dague, Etienne; Beaussart, Audrey; Alsteens, David

    Despite the large and well-documented characterization of the microbial cell wall in terms of chemical composition, the determination of the mechanical properties of surface molecules in relation to their function remains a key challenge in cell biology.The emergence of powerful tools allowing molecular manipulations has already revolutionized our understanding of the surface properties of fungal cells. At the frontier between nanophysics and molecular biology, atomic force microscopy (AFM), and more specifically single-molecule force spectroscopy (SMFS), has strongly contributed to our current knowledge of the cell wall organization and nanomechanical properties. However, due to the complexity of the technique, measurements on live cells are still at their infancy.In this chapter, we describe the cell wall composition and recapitulate the principles of AFM as well as the main current methodologies used to perform AFM measurements on live cells, including sample immobilization and tip functionalization.The current status of the progress in probing nanomechanics of the yeast surface is illustrated through three recent breakthrough studies. Determination of the cell wall nanostructure and elasticity is presented through two examples: the mechanical response of mannoproteins from brewing yeasts and elasticity measurements on lacking polysaccharide mutant strains. Additionally, an elegant study on force-induced unfolding and clustering of adhesion proteins located at the cell surface is also presented.

  3. Anomalies in nanostructure size measurements by AFM

    NASA Astrophysics Data System (ADS)

    Mechler, Ádám; Kopniczky, Judit; Kokavecz, János; Hoel, Anders; Granqvist, Claes-Göran; Heszler, Peter

    2005-09-01

    Anomalies in atomic force microscopy (AFM) based size determination of nanoparticles were studied via comparative analysis of experiments and numerical calculations. Single tungsten oxide nanoparticles with a mean diameter of 3nm were deposited on mica and graphite substrates and were characterised by AFM. The size (height) of the nanoparticles, measured by tapping mode AFM, was found to be sensitive to the free amplitude of the oscillating tip, thus indicating that the images were not purely topographical. By comparing the experimental results to model calculations, we demonstrate that the dependence of the nanoparticle size on the oscillation amplitude of the tip is an inherent characteristic of the tapping mode AFM; it is also a function of physical properties such as elasticity and surface energy of the nanoparticle and the sample surface, and it depends on the radius of curvature of the tip. We show that good approximation of the real size can easily be obtained from plots of particle height vs free amplitude of the oscillating tip, although errors might persist for individual experiments. The results are valid for size (height) determination of any nanometer-sized objects imaged by tapping mode AFM.

  4. Contact nanomechanical measurements with the AFM

    NASA Astrophysics Data System (ADS)

    Geisse, Nicholas

    2013-03-01

    The atomic force microscope (AFM) has found broad use in the biological sciences largely due to its ability to make measurements on unfixed and unstained samples under liquid. In addition to imaging at multiple spatial scales ranging from micro- to nanometer, AFMs are commonly used as nanomechanical probes. This is pertinent for cell biology, as it has been demonstrated that the geometrical and mechanical properties of the extracellular microenvironment are important in such processes as cancer, cardiovascular disease, muscular dystrophy, and even the control of cell life and death. Indeed, the ability to control and quantify these external geometrical and mechanical parameters arises as a key issue in the field. Because AFM can quantitatively measure the mechanical properties of various biological samples, novel insights to cell function and to cell-substrate interactions are now possible. As the application of AFM to these types of problems is widened, it is important to understand the performance envelope of the technique and its associated data analyses. This talk will discuss the important issues that must be considered when mechanical models are applied to real-world data. Examples of the effect of different model assumptions on our understanding of the measured material properties will be shown. Furthermore, specific examples of the importance of mechanical stimuli and the micromechanical environment to the structure and function of biological materials will be presented.

  5. Measurement of Fibrin Fiber Strength using AFM

    NASA Astrophysics Data System (ADS)

    Jawerth, Louise; Falvo, Mchael; Canning, Anthony; Matthews, Garrett; Superfine, Richard; Guthold, Martin

    2003-11-01

    Blood clots usually form in the event of injury or damage to blood vessels to prevent the loss of blood. Moreover, as we age, blood clots often form in undesired locations, i.e. in blood vessels around the heart or brain, or in uninjured vessels resulting in heart attacks or strokes. Fibrin fibers, the skeleton of a blood clot, essentially perform the mechanical task of creating a blockage that stems blood flow. Thus, a better understanding of the mechanical properties of these fibers, such as the tensile strength and Young's modulus, will enhance our understanding of blood clots. For quantitative stress and strain measurements, we need to image the deformation of the fiber and measure the applied force simultaneously. For this reason, we are combining fluorescent microscopy with atomic force microscopy. Fibrin fibers were fluorescently labeled with streptavidin-coated quantum dots and deposited on a functionalized glass substrate, imaged and manipulated under buffer. We will describe our progress in obtaining quantitative lateral force measurements under buffer simultaneous with strain measurements from optical microscope images.

  6. Measurement of a CD and sidewall angle artifact with two-dimensional CD AFM metrology

    NASA Astrophysics Data System (ADS)

    Dixson, Ronald G.; Sullivan, Neal T.; Schneir, Jason; McWaid, Thomas H.; Tsai, Vincent W.; Prochazka, Jerry; Young, Michael

    1996-05-01

    Despite the widespread acceptance of SEM metrology in semiconductor manufacturing, there is no SEM CD standard currently available. Producing such a standard is challenging because SEM CD measurements are not only a function of the linewidth, but also dependent on the line material, sidewall roughness, sidewall angle, line height, substrate material, and the proximity of other objects. As the presence of AFM metrology in semiconductor manufacturing increases, the history of SEM CD metrology raises a number of questions about the prospect of AFM CD artifacts. Is an AFM CD artifact possible? What role would it play in the manufacturing environment? Although AFM has some important advantages over SEM, such as relative insensitivity to material differences, the throughput and reliability of most AFM instruments is not yet at the level necessary to support in-line CD metrology requirements. What, then, is the most useful relationship between AFM and SEM metrology? As a means of addressing some of these questions, we have measured the CD and sidewall angle of 1.2 micrometer oxy-nitride line on Si using three different techniques: optical microscopy (with modeling), AFM, and cross sectional TEM. Systematic errors in the AFM angle measurements were reduced by using a rotational averaging technique that we describe. We found good agreement with uncertainties below 30 nm (2 sigma) for the CD measurement and 1.0 degrees (2 sigma) for the sidewall angles. Based upon these results we suggest a measurement procedure which will yield useful AFM CD artifacts. We consider the possibility that AFMs, especially when used with suitable CD artifacts, can effectively support SEM CD metrology. This synergistic relationship between the AFM and SEM represents an emerging paradigm that has also been suggested by a number of others.

  7. LET Spectrum Measurements In CR-39 PNTD With AFM

    SciTech Connect

    Johnson, C. E.; DeWitt, J. M.; Benton, E. R.; Yasuda, N.; Benton, E. V.

    2011-06-01

    Energetic protons, neutrons, and heavy ions undergoing collisions with target nuclei of varying Z can produce residual heavy recoil fragments via intra-nuclear cascade/evaporation reactions. The particles produced in these non-elastic collisions generally have such extremely short range ({approx}<10 {mu}m) that they cannot be directly observed by conventional detection methods including CR-39 plastic nuclear track detector (PNTD) that has been chemically etched for analysis by standard visible light microscopy. However, high-LET recoil fragments having range on the order of several cell diameters can be produced in tissue during radiotherapy using proton and carbon beams. We have developed a method to analyze short-range, high-LET tracks in CR-39 plastic nuclear track detector (PNTD) using short duration chemical etching ({approx}<1 {mu}m) following by automated atomic force microscope (AFM) scanning. The post-scan data processing used in this work was based on semi-automated matrix analysis opposed to traditional grey-scale image analysis. This method takes advantage of the 3-D data obtained via AFM to achieve robust discrimination of nuclear tracks from other features inherently present in the post-etch detector surface. Through automation of AFM scanning, sufficient AFM scan frames were obtained to attain an LET spectrum spanning the LET range from 200-1500 keV/{mu}m. In addition to our experiments, simulations were carried out with the Monte Carlo transport code, FLUKA. To demonstrate this method, CR-39 PNTD was exposed to the proton therapy beam at Loma Linda University Medical Center (LLUMC) at 60 and 230 MeV. Additionally, detectors were exposed to 1 GeV protons at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL). For these exposures CR-39 PNTD, Al and Cu target foils were used between detector layers.

  8. LET Spectrum Measurements In CR-39 PNTD With AFM

    NASA Astrophysics Data System (ADS)

    Johnson, C. E.; DeWitt, J. M.; Benton, E. R.; Yasuda, N.; Benton, E. V.

    2011-06-01

    Energetic protons, neutrons, and heavy ions undergoing collisions with target nuclei of varying Z can produce residual heavy recoil fragments via intra-nuclear cascade/evaporation reactions. The particles produced in these non-elastic collisions generally have such extremely short range (˜<10 μm) that they cannot be directly observed by conventional detection methods including CR-39 plastic nuclear track detector (PNTD) that has been chemically etched for analysis by standard visible light microscopy. However, high-LET recoil fragments having range on the order of several cell diameters can be produced in tissue during radiotherapy using proton and carbon beams. We have developed a method to analyze short-range, high-LET tracks in CR-39 plastic nuclear track detector (PNTD) using short duration chemical etching (˜<1 μm) following by automated atomic force microscope (AFM) scanning. The post-scan data processing used in this work was based on semi-automated matrix analysis opposed to traditional grey-scale image analysis. This method takes advantage of the 3-D data obtained via AFM to achieve robust discrimination of nuclear tracks from other features inherently present in the post-etch detector surface. Through automation of AFM scanning, sufficient AFM scan frames were obtained to attain an LET spectrum spanning the LET range from 200-1500 keV/μm. In addition to our experiments, simulations were carried out with the Monte Carlo transport code, FLUKA. To demonstrate this method, CR-39 PNTD was exposed to the proton therapy beam at Loma Linda University Medical Center (LLUMC) at 60 and 230 MeV. Additionally, detectors were exposed to 1 GeV protons at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL). For these exposures CR-39 PNTD, Al and Cu target foils were used between detector layers.

  9. LET spectrum measurements in Cr-39 PNTD with AFM

    SciTech Connect

    Johnson, Carl Edward; De Witt, Joel M; Benton, Eric R; Yasuda, Nakahiro; Benton, Eugene V

    2010-01-01

    Energetic protons, neutrons, and heavy ions undergoing collisions with target nuclei of varying Z can produce residual heavy recoil fragments via intra-nuclear cascade/evaporation reactions. The particles produced in these non-elastic collisions generally have such extremely short range ({approx}< 10 {mu}m) that they cannot be directly observed by conventional detection methods including CR-39 plastic nuclear track detector (PNTD) that has been chemically etched for analysis by standard visible light microscopy. However, high-LET recoil fragments having range on the order of several cell diameters can be produced in tissue during radiotherapy using proton and carbon beams. We have developed a method to analyze short-range, high-LET tracks in CR-39 plastic nuclear track detector (PNTD) using short duration chemical etching ({approx}< 1 {mu}m) followed by automated atomic force microscope (AFM) scanning. The post-scan data processing used in this work was based on semi-automated matrix analysis opposed to traditional grey-scale image analysis. This method takes advantage of the 3-D data obtained via AFM to achieve robust discrimination of nuclear tracks from other features. Through automation of AFM scanning, sufficient AFM scan frames were obtained to attain an LET spectrum spanning the LET range from 200-1500 keV/{mu}m. In addition to our experiments, simulations were carried out with the Monte Carlo transport code, FLUKA. To demonstrate this method, CR-39 PNTD was exposed to the proton therapy beam at Loma Linda University Medical Center (LLUMC) at 60 and 230 MeV. Additionally, detectors were exposed to I GeV protons at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL). For these exposures CR-39 PNTD, Al and Cu target foils were used between detector layers.

  10. Quantitative Measurements of Elastic Properties with Ultrasonic-Based AFM and Conventional Techniques

    NASA Astrophysics Data System (ADS)

    Hurley, D. C.

    A prime motivation for the original development of ultrasonic-based AFM methods was to enable measurements of elastic properties with nanoscale spatial resolution. In this chapter, we discuss the quantitative measurement of elastic modulus with ultrasonic-based AFM methods and compare it to measurement by more conventional or established techniques. First, we present the basic principles of modulus measurement with methods that involve contact resonance spectroscopy, such as atomic force acoustic microscopy (AFAM) and ultrasonic AFM (U-AFM). Fundamental concepts of modulus measurement with more established approaches, especially instrumented (nano-) indentation (NI) and surface acoustic wave spectroscopy (SAWS), are then discussed. We consider the relative strengths and limitations of various approaches, for example measurement accuracy, spatial resolution, and applicability to different materials. Example results for specific material systems are given with an emphasis on studies involving direct intercomparison of different techniques. Finally, current research in this area and opportunities for future work are described.

  11. Wetting properties of AFM probes by means of contact angle measurement

    NASA Astrophysics Data System (ADS)

    Tao, Zhenhua; Bhushan, Bharat

    2006-09-01

    An atomic force microscopy (AFM) based technique was developed to measure the wetting properties of probe tips. By advancing and receding the AFM tip across the water surface, the meniscus force between the tip and the liquid was measured at the tip-water separation. The water contact angle was determined from the meniscus force. The obtained contact angle results were compared with that by the sessile drop method. It was found that the AFM based technique provided higher contact angle values than the sessile drop method. The mechanisms responsible for the difference are discussed.

  12. Molecular shape and binding force of Mycoplasma mobile's leg protein Gli349 revealed by an AFM study

    SciTech Connect

    Lesoil, Charles; Nonaka, Takahiro; Sekiguchi, Hiroshi; Osada, Toshiya; Miyata, Makoto; Afrin, Rehana; Ikai, Atsushi

    2010-01-15

    Recent studies of the gliding bacteria Mycoplasma mobile have identified a family of proteins called the Gli family which was considered to be involved in this novel and yet fairly unknown motility system. The 349 kDa protein called Gli349 was successfully isolated and purified from the bacteria, and electron microscopy imaging and antibody experiments led to the hypothesis that it acts as the 'leg' of M. mobile, responsible for attachment to the substrate as well as for gliding motility. However, more precise evidence of the molecular shape and function of this protein was required to asses this theory any further. In this study, an atomic force microscope (AFM) was used both as an imaging and a force measurement device to provide new information about Gli349 and its role in gliding motility. AFM images of the protein were obtained revealing a complex structure with both rigid and flexible parts, consistent with previous electron micrographs of the protein. Single-molecular force spectroscopy experiments were also performed, revealing that Gli349 is able to specifically bind to sialyllactose molecules and withstand unbinding forces around 70 pN. These findings strongly support the idea that Gli349 is the 'leg' protein of M. mobile, responsible for binding and also most probably force generation during gliding motility.

  13. An improved measurement of dsDNA elasticity using AFM

    NASA Astrophysics Data System (ADS)

    Nguyen, Thi-Huong; Lee, Sang-Myung; Na, Kyounghwan; Yang, Sungwook; Kim, Jinseok; Yoon, Eui-Sung

    2010-02-01

    The mechanical properties of a small fragment (30 bp) of an individual double-stranded deoxyribonucleic acid (dsDNA) in water have been investigated by atomic force microscopy (AFM). We have stretched three systems including ssDNA, double-fixed dsDNA (one strand of the dsDNA molecules was biotinylated at the 3'-end and thiolated at the 5'-end, this was reversed for the other complementary strand) and single-fixed dsDNA (one strand of the dsDNA molecules was biotinylated at the 3'-end and thiolated at the 5'-end, whereas the other complementary strand was biotinylated at only the 5'-end). The achieved thiolation and biotinylation were to bind ds- or ssDNA to the gold surface and streptavidin-coated AFM tip, respectively. Analysis of the force versus displacement (F-D) curves from tip-DNA-substrate systems shows that the pull-off length (Lo) and stretch length (δ) from the double-fixed system were shorter than those observed in the ssDNA and the single-fixed system. The obtained stretch force (Fst) from the single-fixed dsDNA was much greater than that from the ssDNA even though it was about 10 pN greater than the one obtained in the double-fixed system. As a result, the Young's modulus of the double-fixed dsDNA was greater than that of the single-fixed dsDNA and the ssDNA. A more reliable stiffness of the dsDNA was observed via the double-fixed system, since there is no effect of the unpaired molecules during stretching, which always occurred in the single-fixed system. The unpaired molecules were also observed by comparing the stiffness of ssDNA and single-fixed dsDNA in which the end of one strand was left free.

  14. Attaching single biomolecules selectively to the apex of AFM tips for measuring specific interactions.

    PubMed

    Gu, Jianhua; Xiao, Zhongdang; Yam, Chi-Ming; Qin, Guoting; Deluge, Maxence; Boutet, Sabine; Cai, Chengzhi

    2005-11-01

    We present a general approach for preparing well-defined AFM tips for probing single target molecules. We demonstrated that carboxylic acid groups could be generated by electrochemical oxidation selectively at the apex of an AFM tip that is coated with a monolayer of oligo(ethylene glycol) derivatives for resisting nonspecific interactions. These carboxylic acid groups were used as handles to tether only one ligand molecule, such as biotin, to the tip apex for measurement of specific interactions with biomolecules.

  15. Structure and Dynamics of Four-way DNA Junctions Dynamics Revealed by Single-Molecule AFM

    NASA Astrophysics Data System (ADS)

    Lyubchenko, Yuri

    2004-03-01

    For-way DNA junctions (Holliday junctions) are critical intermediates for homologous, site-specific recombination, DNA repair and replication. A wealth of structural information is available for immobile four-way junctions. However, these data cannot give the answer on the mechanism of branch migration, the major property of the Holliday junction. Two models for the mechanism of branch migration were suggested. According to the early model of Alberts-Meselson-Sigal, exchanging DNA strands around the junction remain parallel during branch migration. Kinetic studies of branch migration suggest an alternative model in which the junction adopts an extended conformation. We tested these models using a Holliday junction undergoing branch migration. Note that it was the first time when the dynamics of the four-way DNA junction capable of branch migration had been analyzed. We applied time-lapse atomic force microscopy (single molecule dynamics AFM) to image directly loosely bound DNA at liquid-surface interface. These experiments show that mobile Holliday junctions adopt an unfolded conformation during branch migration. This conformation of the junction remains unchanged until strand separation. The data obtained support the model for branch migration having the extended conformation of the Holliday junction. The analysis of the Holliday junctions dynamics at conditions limiting branch migration revealed a broad movement of the arms suggesting that the range of mobility of these junctions is much wider than detected before. Further applications of the time-lapse AFM approach in attempt to resolve the subpopulations of the junctions conformers and the prospects for analyses of dynamics of complex biological systems will be discussed.

  16. Development of a 3D-AFM for true 3D measurements of nanostructures

    NASA Astrophysics Data System (ADS)

    Dai, Gaoliang; Häßler-Grohne, Wolfgang; Hüser, Dorothee; Wolff, Helmut; Danzebrink, Hans-Ulrich; Koenders, Ludger; Bosse, Harald

    2011-09-01

    The development of advanced lithography requires highly accurate 3D metrology methods for small line structures of both wafers and photomasks. Development of a new 3D atomic force microscopy (3D-AFM) with vertical and torsional oscillation modes is introduced in this paper. In its configuration, the AFM probe is oscillated using two piezo actuators driven at vertical and torsional resonance frequencies of the cantilever. In such a way, the AFM tip can probe the surface with a vertical and a lateral oscillation, offering high 3D probing sensitivity. In addition, a so-called vector approach probing (VAP) method has been applied. The sample is measured point-by-point using this method. At each probing point, the tip is approached towards the surface until the desired tip-sample interaction is detected and then immediately withdrawn from the surface. Compared to conventional AFMs, where the tip is kept continuously in interaction with the surface, the tip-sample interaction time using the VAP method is greatly reduced and consequently the tip wear is reduced. Preliminary experimental results show promising performance of the developed system. A measurement of a line structure of 800 nm height employing a super sharp AFM tip could be performed with a repeatability of its 3D profiles of better than 1 nm (p-v). A line structure of a Physikalisch-Technische Bundesanstalt photomask with a nominal width of 300 nm has been measured using a flared tip AFM probe. The repeatability of the middle CD values reaches 0.28 nm (1σ). A long-term stability investigation shows that the 3D-AFM has a high stability of better than 1 nm within 197 measurements taken over 30 h, which also confirms the very low tip wear.

  17. Noise in NC-AFM measurements with significant tip–sample interaction

    PubMed Central

    Lübbe, Jannis; Temmen, Matthias

    2016-01-01

    The frequency shift noise in non-contact atomic force microscopy (NC-AFM) imaging and spectroscopy consists of thermal noise and detection system noise with an additional contribution from amplitude noise if there are significant tip–sample interactions. The total noise power spectral density D Δ f(f m) is, however, not just the sum of these noise contributions. Instead its magnitude and spectral characteristics are determined by the strongly non-linear tip–sample interaction, by the coupling between the amplitude and tip–sample distance control loops of the NC-AFM system as well as by the characteristics of the phase locked loop (PLL) detector used for frequency demodulation. Here, we measure D Δ f(f m) for various NC-AFM parameter settings representing realistic measurement conditions and compare experimental data to simulations based on a model of the NC-AFM system that includes the tip–sample interaction. The good agreement between predicted and measured noise spectra confirms that the model covers the relevant noise contributions and interactions. Results yield a general understanding of noise generation and propagation in the NC-AFM and provide a quantitative prediction of noise for given experimental parameters. We derive strategies for noise-optimised imaging and spectroscopy and outline a full optimisation procedure for the instrumentation and control loops. PMID:28144538

  18. An AFM-based pit-measuring method for indirect measurements of cell-surface membrane vesicles

    SciTech Connect

    Zhang, Xiaojun; Chen, Yuan; Chen, Yong

    2014-03-28

    Highlights: • Air drying induced the transformation of cell-surface membrane vesicles into pits. • An AFM-based pit-measuring method was developed to measure cell-surface vesicles. • Our method detected at least two populations of cell-surface membrane vesicles. - Abstract: Circulating membrane vesicles, which are shed from many cell types, have multiple functions and have been correlated with many diseases. Although circulating membrane vesicles have been extensively characterized, the status of cell-surface membrane vesicles prior to their release is less understood due to the lack of effective measurement methods. Recently, as a powerful, micro- or nano-scale imaging tool, atomic force microscopy (AFM) has been applied in measuring circulating membrane vesicles. However, it seems very difficult for AFM to directly image/identify and measure cell-bound membrane vesicles due to the similarity of surface morphology between membrane vesicles and cell surfaces. Therefore, until now no AFM studies on cell-surface membrane vesicles have been reported. In this study, we found that air drying can induce the transformation of most cell-surface membrane vesicles into pits that are more readily detectable by AFM. Based on this, we developed an AFM-based pit-measuring method and, for the first time, used AFM to indirectly measure cell-surface membrane vesicles on cultured endothelial cells. Using this approach, we observed and quantitatively measured at least two populations of cell-surface membrane vesicles, a nanoscale population (<500 nm in diameter peaking at ∼250 nm) and a microscale population (from 500 nm to ∼2 μm peaking at ∼0.8 μm), whereas confocal microscopy only detected the microscale population. The AFM-based pit-measuring method is potentially useful for studying cell-surface membrane vesicles and for investigating the mechanisms of membrane vesicle formation/release.

  19. Combined force spectroscopy, AFM and calorimetric studies to reveal the nanostructural organization of biomimetic membranes.

    PubMed

    Suárez-Germà, C; Morros, A; Montero, M T; Hernández-Borrell, J; Domènech, Ò

    2014-10-01

    In this work we studied a binary lipid matrix of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG), a composition that mimics the inner membrane of Escherichia coli. More specifically, liposomes with varying fractions of POPG were analysed by differential scanning calorimetry (DSC) and a binary phase diagram of the system was created. Additionally, we performed atomic force microscopy (AFM) imaging of supported lipid bilayers (SLBs) of similar compositions at different temperatures, in order to create a pseudo-binary phase diagram specific to this membrane model. AFM study of SLBs is of particular interest, as it is conceived as the most adequate technique not only for studying lipid bilayer systems but also for imaging and even nanomanipulating inserted membrane proteins. The construction of the above-mentioned phase diagram enabled us to grasp better the thermodynamics of the thermal lipid transition from a gel-like POPE:POPG phase system to a more fluid phase system. Finally, AFM force spectroscopy (FS) was used to determine the nanomechanics of these two lipid phases at 27°C and at different POPG fractions. The resulting data correlated with the specific composition of each phase was calculated from the AFM phase diagram obtained. All the experiments were done in the presence of 10 mM of Ca(2+), as this ion is commonly used when performing AFM with negatively charged phospholipids.

  20. Imaging and force measurement of LDL and HDL by AFM in air and liquid

    PubMed Central

    Gan, Chaoye; Ao, Meiying; Liu, Zhanghua; Chen, Yong

    2015-01-01

    The size and biomechanical properties of lipoproteins are tightly correlated with their structures/functions. While atomic force microscopy (AFM) has been used to image lipoproteins the force measurement of these nano-sized particles is missing. We detected that the sizes of LDL and HDL in liquid are close to the commonly known values. The Young’s modulus of LDL or HDL is ∼0.4 GPa which is similar to that of some viral capsids or nanovesicles but greatly larger than that of various liposomes. The adhesive force of LDL or HDL is small (∼200 pN). The comparison of AFM detection in air and liquid was also performed which is currently lacking. Our data may provide useful information for better understanding and AFM detection of lipoproteins. PMID:25893163

  1. Imaging and force measurement of LDL and HDL by AFM in air and liquid.

    PubMed

    Gan, Chaoye; Ao, Meiying; Liu, Zhanghua; Chen, Yong

    2015-01-01

    The size and biomechanical properties of lipoproteins are tightly correlated with their structures/functions. While atomic force microscopy (AFM) has been used to image lipoproteins the force measurement of these nano-sized particles is missing. We detected that the sizes of LDL and HDL in liquid are close to the commonly known values. The Young's modulus of LDL or HDL is ∼0.4 GPa which is similar to that of some viral capsids or nanovesicles but greatly larger than that of various liposomes. The adhesive force of LDL or HDL is small (∼200 pN). The comparison of AFM detection in air and liquid was also performed which is currently lacking. Our data may provide useful information for better understanding and AFM detection of lipoproteins.

  2. Measuring the energy landscape of complex bonds using AFM

    NASA Astrophysics Data System (ADS)

    Mayyas, Essa; Hoffmann, Peter; Runyan, Lindsay

    2009-03-01

    We measured rupture force of a complex bond of two interacting proteins with atomic force microscopy. Proteins of interest were active and latent Matrix metalloproteinases (MMPs), type 2 and 9, and their tissue inhibitors TIMP1 and TIMP2. Measurements show that the rupture force depends on the pulling speed; it ranges from 30 pN to 150 pN at pulling speeds 30nm/s to 48000nm/s. Analyzing data using an extended theory enabled us to understand the mechanism of MMP-TIMP interaction; we determined all physical parameters that form the landscape energy of the interaction, in addition to the life time of the bond and its length. Moreover, we used the pulling experiment to study the interaction of TIMP2 with the receptor MT1-MMP on the surface of living cells.

  3. Spherical polystyrene particle deformation measured with the AFM

    NASA Astrophysics Data System (ADS)

    Nicolet, Anaïs; Meli, Felix

    2017-03-01

    Size measurements of sub-micrometre spherical particles are quite easily performed with an atomic force microscope. The diameter is typically evaluated as the apex of the particle relative to a flat surface. However, some interaction effects may modify the expected results, such as the adhesive forces between the particle and the substrate or the tip–particle interface. In this paper, both effects were experimentally investigated for polystyrene particles with sizes ranging from 150 nm to 700 nm deposited on mica. Additionally, the experimental findings were compared with theoretical models of adhesion, describing both elastic and plastic deformation at the particle–substrate interface. While no clear indication of particle deformation due to the tip–particle interaction was obtained, the deformation due to adhesive forces between the particle and the substrate could be quantified. Contrary to certain theoretical models, the deformation was found to be proportional to the particle size.

  4. Dynamics of a disturbed sessile drop measured by atomic force microscopy (AFM).

    PubMed

    McGuiggan, Patricia M; Grave, Daniel A; Wallace, Jay S; Cheng, Shengfeng; Prosperetti, Andrea; Robbins, Mark O

    2011-10-04

    A new method for studying the dynamics of a sessile drop by atomic force microscopy (AFM) is demonstrated. A hydrophobic microsphere (radius, r ∼ 20-30 μm) is brought into contact with a small sessile water drop resting on a polytetrafluoroethylene (PTFE) surface. When the microsphere touches the liquid surface, the meniscus rises onto it because of capillary forces. Although the microsphere volume is 6 orders of magnitude smaller than the drop, it excites the normal resonance modes of the liquid interface. The sphere is pinned at the interface, whose small (<100 nm) oscillations are readily measured with AFM. Resonance oscillation frequencies were measured for drop volumes between 5 and 200 μL. The results for the two lowest normal modes are quantitatively consistent with continuum calculations for the natural frequency of hemispherical drops with no adjustable parameters. The method may enable sensitive measurements of volume, surface tension, and viscosity of small drops.

  5. Implications of the contact radius to line step (CRLS) ratio in AFM for nanotribology measurements.

    PubMed

    Helt, James M; Batteas, James D

    2006-07-04

    Investigating the mechanisms of defect generation and growth at surfaces on the nanometer scale typically requires high-resolution tools such as the atomic force microscope (AFM). To accurately assess the kinetics and activation parameters of defect production over a wide range of loads (F(z)), the AFM data should be properly conditioned. Generally, AFM wear trials are performed over an area defined by the length of the slow (L(sscan)) and fast scan axes. The ratio of L(sscan) to image resolution (res, lines per image) becomes an important experimental parameter in AFM wear trials because it defines the magnitude of the line step (LS = L(sscan)/res), the distance the AFM tip steps along the slow scan axis. Comparing the contact radius (a) to the line step (LS) indicates that the overlap of successive scans will result unless the contact radius-line step ratio (CRLS) is < or =(1)/(2). If this relationship is not considered, then the scan history (e.g., contact frequency) associated with a single scan is not equivalent at different loads owing to the scaling of contact radius with load (a proportional variant F(z)(1/3)). Here, we present a model in conjunction with empirical wear tests on muscovite mica to evaluate the effects of scan overlap on surface wear. Using the Hertz contact mechanics definition of a, the CRLS model shows that scan overlap pervades AFM wear trials even under low loads. Such findings indicate that simply counting the number of scans (N(scans)) in an experiment underestimates the full history conveyed to the surface by the tip and translates into an error in the actual extent to which a region on the surface is contacted. Utilizing the CRLS method described here provides an approach to account for image scan history accurately and to predict the extent of surface wear. This general model also has implications for any AFM measurement where one wishes to correlate scan-dependent history to image properties as well as feature resolution in scanned

  6. EEMD based pitch evaluation method for accurate grating measurement by AFM

    NASA Astrophysics Data System (ADS)

    Li, Changsheng; Yang, Shuming; Wang, Chenying; Jiang, Zhuangde

    2016-09-01

    The pitch measurement and AFM calibration precision are significantly influenced by the grating pitch evaluation method. This paper presents the ensemble empirical mode decomposition (EEMD) based pitch evaluation method to relieve the accuracy deterioration caused by high and low frequency components of scanning profile during pitch evaluation. The simulation analysis shows that the application of EEMD can improve the pitch accuracy of the FFT-FT algorithm. The pitch error is small when the iteration number of the FFT-FT algorithms was 8. The AFM measurement of the 500 nm-pitch one-dimensional grating shows that the EEMD based pitch evaluation method could improve the pitch precision, especially the grating line position precision, and greatly expand the applicability of the gravity center algorithm when particles and impression marks were distributed on the sample surface. The measurement indicates that the nonlinearity was stable, and the nonlinearity of x axis and forward scanning was much smaller than their counterpart. Finally, a detailed pitch measurement uncertainty evaluation model suitable for commercial AFMs was demonstrated and a pitch uncertainty in the sub-nanometer range was achieved. The pitch uncertainty was reduced about 10% by EEMD.

  7. AFM imaging reveals the tetrameric structure of the TRPC1 channel

    SciTech Connect

    Barrera, Nelson P.; Shaifta, Yasin; McFadzean, Ian; Ward, Jeremy P.T.; Henderson, Robert M.; Edwardson, J. Michael . E-mail: jme1000@cam.ac.uk

    2007-07-13

    We have determined the subunit stoichiometry of the transient receptor potential C1 (TRPC1) channel by imaging isolated channels using atomic force microscopy (AFM). A frequency distribution of the molecular volumes of individual channel particles had two peaks, at 170 and 720 nm{sup 3}, corresponding with the expected sizes of TRPC1 monomers and tetramers, respectively. Complexes were formed between TRPC1 channels and antibodies against a V5 epitope tag present on each subunit. The frequency distribution of angles between pairs of bound antibodies had two peaks, at 88{sup o} and 178{sup o}. This result again indicates that the channel assembles as a tetramer.

  8. Measuring protein isoelectric points by AFM-based force spectroscopy using trace amounts of sample

    NASA Astrophysics Data System (ADS)

    Guo, Shifeng; Zhu, Xiaoying; Jańczewski, Dominik; Lee, Serina Siew Chen; He, Tao; Teo, Serena Lay Ming; Vancso, G. Julius

    2016-09-01

    Protein charge at various pH and isoelectric point (pI) values is important in understanding protein function. However, often only trace amounts of unknown proteins are available and pI measurements cannot be obtained using conventional methods. Here, we show a method based on the atomic force microscope (AFM) to determine pI using minute quantities of proteins. The protein of interest is immobilized on AFM colloidal probes and the adhesion force of the protein is measured against a positively and a negatively charged substrate made by layer-by-layer deposition of polyelectrolytes. From the AFM force-distance curves, pI values with an estimated accuracy of ±0.25 were obtained for bovine serum albumin, myoglobin, fibrinogen and ribonuclease A over a range of 4.7-9.8. Using this method, we show that the pI of the ‘footprint’ of the temporary adhesive proteins secreted by the barnacle cyprid larvae of Amphibalanus amphitrite is in the range 9.6-9.7.

  9. Measuring protein isoelectric points by AFM-based force spectroscopy using trace amounts of sample.

    PubMed

    Guo, Shifeng; Zhu, Xiaoying; Jańczewski, Dominik; Lee, Serina Siew Chen; He, Tao; Teo, Serena Lay Ming; Vancso, G Julius

    2016-09-01

    Protein charge at various pH and isoelectric point (pI) values is important in understanding protein function. However, often only trace amounts of unknown proteins are available and pI measurements cannot be obtained using conventional methods. Here, we show a method based on the atomic force microscope (AFM) to determine pI using minute quantities of proteins. The protein of interest is immobilized on AFM colloidal probes and the adhesion force of the protein is measured against a positively and a negatively charged substrate made by layer-by-layer deposition of polyelectrolytes. From the AFM force-distance curves, pI values with an estimated accuracy of ±0.25 were obtained for bovine serum albumin, myoglobin, fibrinogen and ribonuclease A over a range of 4.7-9.8. Using this method, we show that the pI of the 'footprint' of the temporary adhesive proteins secreted by the barnacle cyprid larvae of Amphibalanus amphitrite is in the range 9.6-9.7.

  10. Graphene Nanopore Support System for Simultaneous High-Resolution AFM Imaging and Conductance Measurements

    PubMed Central

    2015-01-01

    Accurately defining the nanoporous structure and sensing the ionic flow across nanoscale pores in thin films and membranes has a wide range of applications, including characterization of biological ion channels and receptors, DNA sequencing, molecule separation by nanoparticle films, sensing by block co-polymers films, and catalysis through metal–organic frameworks. Ionic conductance through nanopores is often regulated by their 3D structures, a relationship that can be accurately determined only by their simultaneous measurements. However, defining their structure–function relationships directly by any existing techniques is still not possible. Atomic force microscopy (AFM) can image the structures of these pores at high resolution in an aqueous environment, and electrophysiological techniques can measure ion flow through individual nanoscale pores. Combining these techniques is limited by the lack of nanoscale interfaces. We have designed a graphene-based single-nanopore support (∼5 nm thick with ∼20 nm pore diameter) and have integrated AFM imaging and ionic conductance recording using our newly designed double-chamber recording system to study an overlaid thin film. The functionality of this integrated system is demonstrated by electrical recording (<10 pS conductance) of suspended lipid bilayers spanning a nanopore and simultaneous AFM imaging of the bilayer. PMID:24581087

  11. Multiparametric AFM reveals turgor-responsive net-like peptidoglycan architecture in live streptococci

    NASA Astrophysics Data System (ADS)

    Saar Dover, Ron; Bitler, Arkady; Shimoni, Eyal; Trieu-Cuot, Patrick; Shai, Yechiel

    2015-05-01

    Cell-wall peptidoglycan (PG) of Gram-positive bacteria is a strong and elastic multi-layer designed to resist turgor pressure and determine the cell shape and growth. Despite its crucial role, its architecture remains largely unknown. Here using high-resolution multiparametric atomic force microscopy (AFM), we studied how the structure and elasticity of PG change when subjected to increasing turgor pressure in live Group B Streptococcus. We show a new net-like arrangement of PG, which stretches and stiffens following osmotic challenge. The same structure also exists in isogenic mutants lacking surface appendages. Cell aging does not alter the elasticity of the cell wall, yet destroys the net architecture and exposes single segmented strands with the same circumferential orientation as predicted for intact glycans. Together, we show a new functional PG architecture in live Gram-positive bacteria.

  12. Comparison of CD measurements of an EUV photomask by EUV scatterometry and CD-AFM

    NASA Astrophysics Data System (ADS)

    Scholze, Frank; Soltwisch, Victor; Dai, Gaoliang; Henn, Mark-Alexander; Gross, Hermann

    2013-09-01

    EUV scatterometry is a potential high-throughput measurement method for the characterization of EUV photomask structures. We present a comparison of angle resolved extreme ultraviolet (EUV) scatterometry and critical dimension atomic force microscope (CD-AFM) as a reference metrology for measurements of geometrical parameters like line width (CD), height and sidewall angle of EUV photomask structures. The structures investigated are dense and semidense bright and dark lines with different nominal CDs between 140 nm and 540 nm. The results show excellent linearity of the critical dimension measured with both methods within a range of only 1.8 nm and an offset of the absolute values below 3 nm. A maximum likelihood estimation (MLE) method is used to reconstruct the shape parameters and to estimate their uncertainties from the measured scattering efficiencies. The newly developed CD-AFM at PTB allows versatile measurements of parameters such as height, CD, sidewall angle, line edge/width roughness, corner rounding, and pitch. It applies flared tips to probe steep and even undercut sidewalls and employs a new vector approaching probing (VAP) strategy which enables very low tip wear and high measurement flexibility. Its traceability is ensured by a set of calibrated step-height and reference CD standards.

  13. Measurement of Cationic and Intracellular Modulation of Integrin Binding Affinity by AFM-Based Nanorobot

    PubMed Central

    Patterson, Kevin C.; Yang, Ruiguo; Zeng, Bixi; Song, Bo; Wang, Shouye; Xi, Ning; Basson, Marc D.

    2013-01-01

    Integrins are dynamic transmembrane cation-dependent heterodimers that both anchor cells in position and transduce signals into and out of cells. We used an atomic force microscope (AFM)-based nanorobotic system to measure integrin-binding forces in intact human intestinal epithelial Caco-2 cells. The AFM-based nanorobot enables human-directed, high-accuracy probe positioning and site-specific investigations. Functionalizing the AFM probe with an arginine-glycine-aspartate (RGD)-containing sequence (consensus binding sequence for integrins) allowed us to detect a series of peptide-cell membrane interactions with a median binding force of 115.1 ± 4.9 pN that were not detected in control interactions. Chelating divalent cations from the culture medium abolished these interactions, as did inhibiting intracellular focal adhesion kinase (FAK) using Y15. Adding 1 mM Mg2+ to the medium caused a rightward shift in the force-binding curve. Adding 1 mM Ca2+ virtually abolished the RGD-membrane specific interactions and blocked the Mg2+ effects. Cell adhesion assays demonstrated parallel effects of divalent cations and the FAK inhibitor on cell adhesion. These results demonstrate direct modulation of integrin-binding affinity by both divalent cations and intracellular signal inhibition. Additionally, three binding states (nonspecific, specific inactivated, and specific activated) were delineated from affinity measurements. Although other research has assumed that this process of integrin conformational change causes altered ligand binding, in this work we directly measured these three states in individual integrins in a physiologically based study. PMID:23823222

  14. Measurement of cationic and intracellular modulation of integrin binding affinity by AFM-based nanorobot.

    PubMed

    Patterson, Kevin C; Yang, Ruiguo; Zeng, Bixi; Song, Bo; Wang, Shouye; Xi, Ning; Basson, Marc D

    2013-07-02

    Integrins are dynamic transmembrane cation-dependent heterodimers that both anchor cells in position and transduce signals into and out of cells. We used an atomic force microscope (AFM)-based nanorobotic system to measure integrin-binding forces in intact human intestinal epithelial Caco-2 cells. The AFM-based nanorobot enables human-directed, high-accuracy probe positioning and site-specific investigations. Functionalizing the AFM probe with an arginine-glycine-aspartate (RGD)-containing sequence (consensus binding sequence for integrins) allowed us to detect a series of peptide-cell membrane interactions with a median binding force of 115.1 ± 4.9 pN that were not detected in control interactions. Chelating divalent cations from the culture medium abolished these interactions, as did inhibiting intracellular focal adhesion kinase (FAK) using Y15. Adding 1 mM Mg(2+) to the medium caused a rightward shift in the force-binding curve. Adding 1 mM Ca(2+) virtually abolished the RGD-membrane specific interactions and blocked the Mg(2+) effects. Cell adhesion assays demonstrated parallel effects of divalent cations and the FAK inhibitor on cell adhesion. These results demonstrate direct modulation of integrin-binding affinity by both divalent cations and intracellular signal inhibition. Additionally, three binding states (nonspecific, specific inactivated, and specific activated) were delineated from affinity measurements. Although other research has assumed that this process of integrin conformational change causes altered ligand binding, in this work we directly measured these three states in individual integrins in a physiologically based study.

  15. New insights into morphology of high performance BHJ photovoltaics revealed by high resolution AFM.

    PubMed

    Wang, Dong; Liu, Feng; Yagihashi, Noritoshi; Nakaya, Masafumi; Ferdous, Sunzida; Liang, Xiaobin; Muramatsu, Atsushi; Nakajima, Ken; Russell, Thomas P

    2014-10-08

    Direct imaging of the bulk heterojunction (BHJ) thin film morphology in polymer-based solar cells is essential to understand device function and optimize efficiency. The morphology of the BHJ active layer consists of bicontinuous domains of the donor and acceptor materials, having characteristic length scales of several tens of nanometers, that reduces charge recombination, enhances charge separation, and enables electron and hole transport to their respective electrodes. Direct imaging of the morphology from the molecular to macroscopic level, though, is lacking. Though transmission electron tomography provides a 3D, real-space image of the morphology, quantifying the structure is not possible. Here we used high-resolution atomic force microscopy (AFM) in the tapping and nanomechanical modes to investigate the BHJ active layer morphology that, when combined with Ar(+) etching, provided unique insights with unparalleled spatial resolution. PCBM was seen to form a network that interpenetrated into the fibrillar network of the hole-conducting polymer, both being imbedded in a mixture of the two components. The free surface was found to be enriched with polymer crystals having a "face-on" orientation and the morphology at the anode interface was markedly different.

  16. Concurrent Quantitative Conductivity and Mechanical Properties Measurements of Organic Photovoltaic Materials using AFM

    PubMed Central

    Nikiforov, Maxim P.; Darling, Seth B.

    2013-01-01

    Organic photovoltaic (OPV) materials are inherently inhomogeneous at the nanometer scale. Nanoscale inhomogeneity of OPV materials affects performance of photovoltaic devices. Thus, understanding of spatial variations in composition as well as electrical properties of OPV materials is of paramount importance for moving PV technology forward.1,2 In this paper, we describe a protocol for quantitative measurements of electrical and mechanical properties of OPV materials with sub-100 nm resolution. Currently, materials properties measurements performed using commercially available AFM-based techniques (PeakForce, conductive AFM) generally provide only qualitative information. The values for resistance as well as Young's modulus measured using our method on the prototypical ITO/PEDOT:PSS/P3HT:PC61BM system correspond well with literature data. The P3HT:PC61BM blend separates onto PC61BM-rich and P3HT-rich domains. Mechanical properties of PC61BM-rich and P3HT-rich domains are different, which allows for domain attribution on the surface of the film. Importantly, combining mechanical and electrical data allows for correlation of the domain structure on the surface of the film with electrical properties variation measured through the thickness of the film. PMID:23380988

  17. Unspecific membrane protein-lipid recognition: combination of AFM imaging, force spectroscopy, DSC and FRET measurements.

    PubMed

    Borrell, Jordi H; Montero, M Teresa; Morros, Antoni; Domènech, Òscar

    2015-11-01

    In this work, we will describe in quantitative terms the unspecific recognition between lactose permease (LacY) of Escherichia coli, a polytopic model membrane protein, and one of the main components of the inner membrane of this bacterium. Supported lipid bilayers of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) (3:1, mol/mol) in the presence of Ca(2+) display lateral phase segregation that can be distinguished by atomic force microscopy (AFM) as well as force spectroscopy. LacY shows preference for fluid (Lα) phases when it is reconstituted in POPE : POPG (3:1, mol/mol) proteoliposomes at a lipid-to-protein ratio of 40. When the lipid-to-protein ratio is decreased down to 0.5, two domains can be distinguished by AFM. While the upper domain is formed by self-segregated units of LacY, the lower domain is constituted only by phospholipids in gel (Lβ) phase. On the one hand, classical differential scanning calorimetry (DSC) measurements evidenced the segregation of a population of phospholipids and point to the existence of a boundary region at the lipid-protein interface. On the other hand, Förster Resonance Energy Transfer (FRET) measurements in solution evidenced that POPE is selectively recognized by LacY. A binary pseudophase diagram of POPE : POPG built from AFM observations enables to calculate the composition of the fluid phase where LacY is inserted. These results are consistent with a model where POPE constitutes the main component of the lipid-LacY interface segregated from the fluid bulk phase where POPG predominates.

  18. Direct Measurement of Optical Force Induced by Near-Field Plasmonic Cavity Using Dynamic Mode AFM

    PubMed Central

    Guan, Dongshi; Hang, Zhi Hong; Marcet, Zsolt; Liu, Hui; Kravchenko, I. I.; Chan, C. T.; Chan, H. B.; Tong, Penger

    2015-01-01

    Plasmonic nanostructures have attracted much attention in recent years because of their potential applications in optical manipulation through near-field enhancement. Continuing experimental efforts have been made to develop accurate techniques to directly measure the near-field optical force induced by the plasmonic nanostructures in the visible frequency range. In this work, we report a new application of dynamic mode atomic force microscopy (DM-AFM) in the measurement of the enhanced optical force acting on a nano-structured plasmonic resonant cavity. The plasmonic cavity is made of an upper gold-coated glass sphere and a lower quartz substrate patterned with an array of subwavelength gold disks. In the near-field when the sphere is positioned close to the disk array, plasmonic resonance is excited in the cavity and the induced force by a 1550 nm infrared laser is found to be increased by an order of magnitude compared with the photon pressure generated by the same laser light. The experiment demonstrates that DM-AFM is a powerful tool for the study of light induced forces and their enhancement in plasmonic nanostructures. PMID:26586455

  19. Direct measurement of optical force induced by near-field plasmonic cavity using dynamic mode AFM

    DOE PAGES

    Guan, Dongshi; Hang, Zhi Hong; Marset, Zsolt; ...

    2015-11-20

    Plasmonic nanostructures have attracted much attention in recent years because of their potential applications in optical manipulation through near-field enhancement. Continuing experimental efforts have been made to develop accurate techniques to directly measure the near-field optical force induced by the plasmonic nanostructures in the visible frequency range. In this work, we report a new application of dynamic mode atomic force microscopy (DM-AFM) in the measurement of the enhanced optical force acting on a nano-structured plasmonic resonant cavity. The plasmonic cavity is made of an upper gold-coated glass sphere and a lower quartz substrate patterned with an array of subwavelength goldmore » disks. In the near-field when the sphere is positioned close to the disk array, plasmonic resonance is excited in the cavity and the induced force by a 1550 nm infrared laser is found to be increased by an order of magnitude compared with the photon pressure generated by the same laser light. Lastly, the experiment demonstrates that DM-AFM is a powerful tool for the study of light induced forces and their enhancement in plasmonic nanostructures.« less

  20. Direct measurement of optical force induced by near-field plasmonic cavity using dynamic mode AFM

    SciTech Connect

    Guan, Dongshi; Hang, Zhi Hong; Marset, Zsolt; Liu, Hui; Kravchenko, Ivan I.; Chan, Ho Bun; Chan, C. T.; Tong, Penger

    2015-11-20

    Plasmonic nanostructures have attracted much attention in recent years because of their potential applications in optical manipulation through near-field enhancement. Continuing experimental efforts have been made to develop accurate techniques to directly measure the near-field optical force induced by the plasmonic nanostructures in the visible frequency range. In this work, we report a new application of dynamic mode atomic force microscopy (DM-AFM) in the measurement of the enhanced optical force acting on a nano-structured plasmonic resonant cavity. The plasmonic cavity is made of an upper gold-coated glass sphere and a lower quartz substrate patterned with an array of subwavelength gold disks. In the near-field when the sphere is positioned close to the disk array, plasmonic resonance is excited in the cavity and the induced force by a 1550 nm infrared laser is found to be increased by an order of magnitude compared with the photon pressure generated by the same laser light. Lastly, the experiment demonstrates that DM-AFM is a powerful tool for the study of light induced forces and their enhancement in plasmonic nanostructures.

  1. A Model for Step Height, Edge Slope and Linewidth Measurements Using AFM

    NASA Astrophysics Data System (ADS)

    Zhao, Xuezeng; Vorburger, Theodore V.; Fu, Joseph; Song, John; Nguyen, Cattien V.

    2003-09-01

    Nano-scale linewidth measurements are performed in semiconductor manufacturing and in the data storage industry and will become increasingly important in micro-mechanical engineering. With the development of manufacturing technology in recent years, the sizes of linewidths are steadily shrinking and are in the range of hundreds of nanometers. As a result, it is difficult to achieve accurate measurement results for nanometer scale linewidth, primarily because of the interaction volume of electrons in materials for an SEM probe or the tip size of an AFM probe. However, another source of methods divergence is the mathematical model of the line itself. In order to reduce the methods divergences caused by different measurement methods and instruments for an accurate determination of nanometer scale linewidth parameters, a metrological model and algorithm are proposed for linewidth measurements with AFM. The line profile is divided into 5 parts with 19 sections and 20 key derived points. Each section is fitted by a least squares straight line, so that the profile can be represented by a set of straight lines and 6 special points, or by a 20×2 matrix of fitted points and a 6×2 matrix of starter points. According to the algorithm, WT and WTF, WM and WMF, WB and WBF represent the widths at the top, the middle and the bottom of the line profile before and after the least squares fitting, respectively. AL and AR represent the left and right sidewall angles, and H represents the step height of the line profile. Based on this algorithm, software has been developed using MATLAB for the calculation of width and height parameters of the line profile. A NIST nanometer scale linewidth artifact developed at NIST's Electronics and Electrical Engineering Laboratory (EEEL) was measured using a commercial AFM with nanotube tips. The measured linewidth profiles are analyzed using our model, algorithm and software. The model developed in this paper is straightforward to understand, and

  2. Measuring cell wall elasticity on enteroaggregative Escherichia coli wild type and dispersin mutant by AFM

    SciTech Connect

    Beckmann, Melissa; Venkataraman, Sankar; Doktycz, Mitchel John; Nataro, James P; Sullivan, Claretta J; Morrell-Falvey, Jennifer L; Allison, David P

    2006-07-01

    Enteroaggregative Escherichia coli (EAEC) is pathogenic and produces severe diarrhea in humans. A mutant of EAEC that does not produce dispersin, a cell surface protein, is not pathogenic. It has been proposed that dispersin imparts a positive charge to the bacterial cell surface allowing the bacteria to colonize on the negatively charged intestinal mucosa. However, physical properties of the bacterial cell surface, such as rigidity, may be influenced by the presence of dispersin and may contribute to pathogenicity. Using the system developed in our laboratory for mounting and imaging bacterial cells by atomic force microscopy (AFM), in liquid, on gelatin coated mica surfaces, studies were initiated to measure cell surface elasticity. This was carried out in both wild type EAEC, that produces dispersin, and the mutant that does not produce dispersin. This was accomplished using AFM force-distance (FD) spectroscopy on the wild type and mutant grown in liquid or on solid medium. Images in liquid and in air of both the wild-type and mutant grown in liquid and on solid media are presented. This work represents an initial step in efforts to understand the pathogenic role of the dispersin protein in the wild-type bacteria.

  3. Single Cell Wall Nonlinear Mechanics Revealed by a Multiscale Analysis of AFM Force-Indentation Curves.

    PubMed

    Digiuni, Simona; Berne-Dedieu, Annik; Martinez-Torres, Cristina; Szecsi, Judit; Bendahmane, Mohammed; Arneodo, Alain; Argoul, Françoise

    2015-05-05

    Individual plant cells are rather complex mechanical objects. Despite the fact that their wall mechanical strength may be weakened by comparison with their original tissue template, they nevertheless retain some generic properties of the mother tissue, namely the viscoelasticity and the shape of their walls, which are driven by their internal hydrostatic turgor pressure. This viscoelastic behavior, which affects the power-law response of these cells when indented by an atomic force cantilever with a pyramidal tip, is also very sensitive to the culture media. To our knowledge, we develop here an original analyzing method, based on a multiscale decomposition of force-indentation curves, that reveals and quantifies for the first time the nonlinearity of the mechanical response of living single plant cells upon mechanical deformation. Further comparing the nonlinear strain responses of these isolated cells in three different media, we reveal an alteration of their linear bending elastic regime in both hyper- and hypotonic conditions.

  4. Mechanical properties of in situ demineralised human enamel measured by AFM nanoindentation

    NASA Astrophysics Data System (ADS)

    Finke, Manuela; Hughes, Julie A.; Parker, David M.; Jandt, Klaus D.

    2001-10-01

    Diet-induced demineralisation is one of the key factors in surface changes of tooth enamel, with soft drinks being a significant etiological agent. The first step in this dissolution process is characterised by a change in the mechanical properties of the enamel and a roughening of the surface. The objective of this pilot study was to measure early stages of in situ induced hardness changes of polished human enamel surfaces with high accuracy using a nanoindenter attached to an atomic force microscope (AFM). Human unerupted third molars were cleaned, sterilised with sodium hypochlorite, sectioned and embedded in epoxy resin. The outer enamel surface was polished and the samples partly covered with a tape, allowing a 2-mm-wide zone to be exposed to the oral environment. Samples were fitted in an intra-oral appliance, which was worn from 9 a.m. to 5 p.m. for one day. During this time the volunteer sipped 250 ml of a drink over 10 min periods at 9.00, 11.00, 13.00 and 15.00 h. Three different drinks, mineral water, orange juice and the prototype of a blackcurrant drink with low demineralisation potential were used in this study. At the end of the experiment the samples were detached from the appliance, the tape removed and the surfaces chemically cleaned. The surface hardness and reduced Young's modulus of the exposed and unexposed areas of each sample were determined. In addition, high resolution topographical AFM images were obtained. This study shows that by determining the hardness and reduced Young's modulus, the difference in demineralisation caused by the drinks can be detected and quantified before statistically significant changes in surface topography could be observed with the AFM. The maximum decrease in surface hardness and Young's modulus occurred in the samples exposed to orange juice, followed by those exposed to the blackcurrant drink, while exposure to water led to the same values as unexposed areas. A one-way ANOVA showed a statistically significant

  5. Combining AFM and Acoustic Probes to Reveal Changes in the Elastic Stiffness Tensor of Living Cells

    PubMed Central

    Nijenhuis, Nadja; Zhao, Xuegen; Carisey, Alex; Ballestrem, Christoph; Derby, Brian

    2014-01-01

    Knowledge of how the elastic stiffness of a cell affects its communication with its environment is of fundamental importance for the understanding of tissue integrity in health and disease. For stiffness measurements, it has been customary to quote a single parameter quantity, e.g., Young’s modulus, rather than the minimum of two terms of the stiffness tensor required by elasticity theory. In this study, we use two independent methods (acoustic microscopy and atomic force microscopy nanoindentation) to characterize the elastic properties of a cell and thus determine two independent elastic constants. This allows us to explore in detail how the mechanical properties of cells change in response to signaling pathways that are known to regulate the cell’s cytoskeleton. In particular, we demonstrate that altering the tensioning of actin filaments in NIH3T3 cells has a strong influence on the cell's shear modulus but leaves its bulk modulus unchanged. In contrast, altering the polymerization state of actin filaments influences bulk and shear modulus in a similar manner. In addition, we can use the data to directly determine the Poisson ratio of a cell and show that in all cases studied, it is less than, but very close to, 0.5 in value. PMID:25296302

  6. Tip convolution on HOPG surfaces measured in AM-AFM and interpreted using a combined experimental and simulation approach

    NASA Astrophysics Data System (ADS)

    Hu, Xiaoli; Chan, Nicholas; Martini, Ashlie; Egberts, Philip

    2017-01-01

    Amplitude modulated atomic force microscopy (AM-AFM) was used to examine the influence of the size of the AFM tip apex on the measured surface topography of single highly oriented pyrolytic graphite (HOPG) atomic steps. Experimental measurements were complemented by molecular dynamics simulations of AM-AFM and the results from both were evaluated by comparison of the measured or simulated width of the topography at the step to that predicted using simple rigid-body geometry. The results showed that the step width, which is a reflection of the resolution of the measurement, increased with tip size, as expected, but also that the difference between the measured/simulated step width and the geometric calculation was tip size dependent. The simulations suggested that this may be due to the deformation of the bodies and the effect of that deformation on the interaction force and oscillation amplitude. Overall, this study showed that the resolution of AM-AFM measurements of atomic steps can be correlated to tip size and that this relationship is affected by the deformation of the system.

  7. Interaction force measurement between E. coli cells and nanoparticles immobilized surfaces by using AFM

    SciTech Connect

    Zhang, Wen; Chen, Yongsheng

    2011-01-01

    To better understand environmental behaviors of nanoparticles (NPs), we used the atomic force microscopy (AFM) to measure interaction forces between E. coli cells and NPs immobilized on surfaces in an aqueous environment. The results showed that adhesion force strength was significantly influenced by particle size for both hematite ( -Fe2 O3 ) and corundum ( -Al2 O3 ) NPs whereas the effect on the repulsive force was not observed. The adhesion force decreased from 6.3 0.7 nN to 0.8 0.4 nN as hematite NPs increased from 26 nm to 98 nm in diameter. Corundum NPs exhibited a similar dependence of adhesion force on particle size. The Johnson Kendall Roberts (JKR) model was employed to estimate the contact area between E. coli cells and NPs, and based on the JKR model a new model that considers local effective contact area was developed. The prediction of the new model matched the size dependence of adhesion force in experimental results. Size effects on adhesion forces may originate from the difference in local effective contact areas as supported by our model. These findings provide fundamental information for interpreting the environmental behaviors and biological interactions of NPs, which barely have been addressed.

  8. Measuring the viscoelastic creep of soft samples by step response AFM.

    PubMed

    Yango, Achu; Schäpe, Jens; Rianna, Carmela; Doschke, Holger; Radmacher, Manfred

    2016-10-12

    We have measured the creep response of soft gels and cells after applying a step in loading force with atomic force microscopy (AFM). By analysing the creep response data using the standard linear solid model, we can quantify the viscous and elastic properties of these soft samples independently. Cells, in comparison with gels of similar softness, are much more viscous, as has been qualitatively observed in conventional force curve data before. Here, we quantify the spring constant and the viscous damping coefficient from the creep response data. We propose two different modes for applying a force step: (1) indirectly by increasing the sample height or (2) directly by employing magnetic cantilevers. Both lead to similar results, whereas the latter seems to be better defined since it resembles closely a constant strain mode. The former is easier to implement in most instruments, and thus may be preferable from a practical point of view. Creep analysis by step response is much more appropriate to analyse the viscoelastic response of soft samples like cells than the usually used force curve analysis.

  9. Recombinant albumin adsorption on mica studied by AFM and streaming potential measurements.

    PubMed

    Kujda, Marta; Adamczyk, Zbigniew; Morga, Maria; Sofińska, Kamila

    2015-03-01

    Recombinant human serum albumin (rHSA) in monomeric state is widely used in pharmaceutical industry as a drug excipient and for preparing coatings for medical devices. In this work the adsorption process of rHSA on model mica surface at pH 3.5 was studied using the atomic force microscopy (AFM) and in situ streaming potential measurements. The kinetics of albumin adsorption was determined by a direct enumeration of single molecules over various substrate areas. These results were consistent with streaming potential measurements carried out for the parallel-plate channel flow and with theoretical predictions derived from the random sequential adsorption (RSA) model. Desorption kinetics of albumin under flow conditions was also evaluated via the streaming potential measurements. In this way, the amount of irreversibly bound albumin was quantitatively evaluated to be 0.64 and 1.2 mg m(-2) for ionic strength of 0.01 and 0.15 M, respectively. This agrees with previous results obtained for HSA and theoretical calculations derived from the RSA model. Additionally, it was demonstrated that there existed a fraction of reversibly bound albumin that can be fully eluted within a few hours. The binding energy of these fraction of molecules was -18 kT that is consistent with the electrostatic controlled adsorption mechanism of albumin at this pH. It was concluded that the rHSA monolayers of well-defined coverage can find applications for quantitatively analyzing ligand binding and for performing efficient biomaterials and immunological tests.

  10. AFM Imaging Reveals Topographic Diversity of Wild Type and Z Variant Polymers of Human α1-Proteinase Inhibitor

    PubMed Central

    Gaczynska, Maria; Karpowicz, Przemyslaw; Stuart, Christine E.; Norton, Malgorzata G.; Teckman, Jeffrey H.; Marszal, Ewa; Osmulski, Pawel A.

    2016-01-01

    α1-Proteinase inhibitor (antitrypsin) is a canonical example of the serpin family member that binds and inhibits serine proteases. The natural metastability of serpins is crucial to carry out structural rearrangements necessary for biological activity. However, the enhanced metastability of the mutant Z variant of antitrypsin, in addition to folding defect, may substantially contribute to its polymerization, a process leading to incurable serpinopathy. The metastability also impedes structural studies on the polymers. There are no crystal structures of Z monomer or any kind of polymers larger than engineered wild type (WT) trimer. Our understanding of polymerization mechanisms is based on biochemical data using in vitro generated WT oligomers and molecular simulations. Here we applied atomic force microscopy (AFM) to compare topography of monomers, in vitro formed WT oligomers, and Z type polymers isolated from transgenic mouse liver. We found the AFM images of monomers closely resembled an antitrypsin outer shell modeled after the crystal structure. We confirmed that the Z variant demonstrated higher spontaneous propensity to dimerize than WT monomers. We also detected an unexpectedly broad range of different types of polymers with periodicity and topography depending on the applied method of polymerization. Short linear oligomers of unit arrangement similar to the Z polymers were especially abundant in heat-treated WT preparations. Long linear polymers were a prominent and unique component of liver extracts. However, the liver preparations contained also multiple types of oligomers of topographies undistinguishable from those found in WT samples polymerized with heat, low pH or guanidine hydrochloride treatments. In conclusion, we established that AFM is an excellent technique to assess morphological diversity of antitrypsin polymers, which is important for etiology of serpinopathies. These data also support previous, but controversial models of in vivo

  11. AFM Imaging Reveals Topographic Diversity of Wild Type and Z Variant Polymers of Human α1-Proteinase Inhibitor

    DOE PAGES

    Gaczynska, Maria; Karpowicz, Przemyslaw; Stuart, Christine E.; ...

    2016-03-23

    α1-Proteinase inhibitor (antitrypsin) is a canonical example of the serpin family member that binds and inhibits serine proteases. The natural metastability of serpins is crucial to carry out structural rearrangements necessary for biological activity. However, the enhanced metastability of the mutant Z variant of antitrypsin, in addition to folding defect, may substantially contribute to its polymerization, a process leading to incurable serpinopathy. The metastability also impedes structural studies on the polymers. There are no crystal structures of Z monomer or any kind of polymers larger than engineered wild type (WT) trimer. Our understanding of polymerization mechanisms is based on biochemicalmore » data using in vitro generated WT oligomers and molecular simulations. Here we applied atomic force microscopy (AFM) to compare topography of monomers, in vitro formed WT oligomers, and Z type polymers isolated from transgenic mouse liver. We found the AFM images of monomers closely resembled an antitrypsin outer shell modeled after the crystal structure. We confirmed that the Z variant demonstrated higher spontaneous propensity to dimerize than WT monomers. We also detected an unexpectedly broad range of different types of polymers with periodicity and topography depending on the applied method of polymerization. Short linear oligomers of unit arrangement similar to the Z polymers were especially abundant in heat-treated WT preparations. Long linear polymers were a prominent and unique component of liver extracts. However, the liver preparations contained also multiple types of oligomers of topographies undistinguishable from those found inWT samples polymerized with heat, low pH or guanidine hydrochloride treatments. In conclusion, we established that AFM is an excellent technique to assess morphological diversity of antitrypsin polymers, which is important for etiology of serpinopathies. These data also support previous, but controversial models of in vivo

  12. AFM Imaging Reveals Topographic Diversity of Wild Type and Z Variant Polymers of Human α1-Proteinase Inhibitor

    SciTech Connect

    Gaczynska, Maria; Karpowicz, Przemyslaw; Stuart, Christine E.; Norton, Malgorzata G.; Teckman, Jeffrey H.; Marszal, Ewa; Osmulski, Pawel A.

    2016-03-23

    α1-Proteinase inhibitor (antitrypsin) is a canonical example of the serpin family member that binds and inhibits serine proteases. The natural metastability of serpins is crucial to carry out structural rearrangements necessary for biological activity. However, the enhanced metastability of the mutant Z variant of antitrypsin, in addition to folding defect, may substantially contribute to its polymerization, a process leading to incurable serpinopathy. The metastability also impedes structural studies on the polymers. There are no crystal structures of Z monomer or any kind of polymers larger than engineered wild type (WT) trimer. Our understanding of polymerization mechanisms is based on biochemical data using in vitro generated WT oligomers and molecular simulations. Here we applied atomic force microscopy (AFM) to compare topography of monomers, in vitro formed WT oligomers, and Z type polymers isolated from transgenic mouse liver. We found the AFM images of monomers closely resembled an antitrypsin outer shell modeled after the crystal structure. We confirmed that the Z variant demonstrated higher spontaneous propensity to dimerize than WT monomers. We also detected an unexpectedly broad range of different types of polymers with periodicity and topography depending on the applied method of polymerization. Short linear oligomers of unit arrangement similar to the Z polymers were especially abundant in heat-treated WT preparations. Long linear polymers were a prominent and unique component of liver extracts. However, the liver preparations contained also multiple types of oligomers of topographies undistinguishable from those found inWT samples polymerized with heat, low pH or guanidine hydrochloride treatments. In conclusion, we established that AFM is an excellent technique to assess morphological diversity of antitrypsin polymers, which is important for etiology of serpinopathies. These data also support previous, but controversial models of in

  13. Precision Measurement of the Casimir Force for Au Using a Dynamic Afm

    NASA Astrophysics Data System (ADS)

    Chang, C.-C.; Banishev, A. A.; Castillo-Garza, R.; Klimchitskaya, G. L.; Mostepanenko, V. M.; Mohideen, U.

    2012-07-01

    The gradient of the Casimir force between carefully cleaned Au surfaces of a sphere and a plate is measured using a dynamic atomic force microscope in the frequency modulation regime in high vacuum. The electrostatic calibration of the setup did not reveal any effect of patches or surface contaminants. The experimental data for the force gradient are found to be consistent with theory using the plasma model approach over the entire measurement range. The Drude model approach is excluded by the data at separations from 235 to 400 nm at a 67% confidence level.

  14. Two-Dimensional Measurement of n+-p Asymmetrical Junctions in Multicrystalline Silicon Solar Cells Using AFM-Based Electrical Techniques with Nanometer Resolution: Preprint

    SciTech Connect

    Jiang, C. S.; Moutinho, H. R.; Li, J. V.; Al-Jassim, M. M.; Heath, J. T.

    2011-07-01

    Lateral inhomogeneities of modern solar cells demand direct electrical imaging with nanometer resolution. We show that atomic force microscopy (AFM)-based electrical techniques provide unique junction characterizations, giving a two-dimensional determination of junction locations. Two AFM-based techniques, scanning capacitance microscopy/spectroscopy (SCM/SCS) and scanning Kelvin probe force microscopy (SKPFM), were significantly improved and applied to the junction characterizations of multicrystalline silicon (mc-Si) cells. The SCS spectra were taken pixel by pixel by precisely controlling the tip positions in the junction area. The spectra reveal distinctive features that depend closely on the position relative to the electrical junction, which allows us to indentify the electrical junction location. In addition, SKPFM directly probes the built-in potential over the junction area modified by the surface band bending, which allows us to deduce the metallurgical junction location by identifying a peak of the electric field. Our results demonstrate resolutions of 10-40 nm, depending on the techniques (SCS or SKPFM). These direct electrical measurements with nanometer resolution and intrinsic two-dimensional capability are well suited for investigating the junction distribution of solar cells with lateral inhomogeneities.

  15. Adsorption of modified dextrins to a hydrophobic surface: QCM-D studies, AFM imaging, and dynamic contact angle measurements.

    PubMed

    Sedeva, Iliana G; Fetzer, Renate; Fornasiero, Daniel; Ralston, John; Beattie, David A

    2010-05-15

    The adsorption of three dextrin-based polymers, regular wheat dextrin (Dextrin TY), phenyl succinate dextrin (PS Dextrin), and styrene oxide dextrin (SO Dextrin) on a model hydrophobic surface, consisting of a mixed alkanethiol layer on gold, has been characterized using the quartz crystal microbalance with dissipation monitoring (QCM-D). The three polymers exhibited varying affinities and capacity for adsorption on the hydrophobic substrate. Atomic force microscope (AFM) imaging of the polymer layers indicates that all three polymers fully cover the surface. The effect of the three polymers on the static contact angle of the surface was studied using captive bubble contact angle measurements. The three polymers were seen to reduce the receding contact angle by similar amounts (approximately 14°) in spite of having varying adsorbed amounts and differences in adsorbed layer water content. Although no differences were observed in the ability of the polymers to reduce the static contact angle, measurements of the dynamic contact angle between a rising air bubble and the polymer covered substrate yielded stark differences between the polymers, with one polymer (SO Dextrin) slowing the dewetting by an order of magnitude more than the other two polymers. The differences in dewetting behavior correlate with the adsorbed layer characteristics determined by QCM-D and AFM. The role of the dynamic and static contact angle in the performance of a polymer as depressant is discussed.

  16. Utilization of profilometry, SEM, AFM and contact angle measurements in describing surfaces of plastic floor coverings and explaining their cleanability

    NASA Astrophysics Data System (ADS)

    Kuisma, R.; Pesonen-Leinonen, E.; Redsven, I.; Kymäläinen, H.-R.; Saarikoski, I.; Sjöberg, A.-M.; Hautala, M.

    2005-06-01

    The tendency to soil and cleanability of ten commercial plastic floor coverings: eight vinyl (PVC) floor coverings, one vinyl composite tile and one plastic composite tile, were examined. Floor coverings were soiled with inorganic, organic and biological soil. The cleanability was measured both by bioluminescence of ATP (adenosine triphosphate) and colorimetrically. The surface topography was studied by AFM, SEM and with a profilometer. From the 2D- and 3D-profilometric measurements several characteristic parameters of the surface profiles were extracted. The tendency to soil and cleanability were compared with the characteristics of the surface. A weak correlation was found between roughness and soilability but no correlation between roughness and cleanability. Roughness had no correlation with contact angle.

  17. Tendon exhibits complex poroelastic behavior at the nanoscale as revealed by high-frequency AFM-based rheology.

    PubMed

    Connizzo, Brianne K; Grodzinsky, Alan J

    2017-03-21

    Tendons transmit load from muscle to bone by utilizing their unique static and viscoelastic tensile properties. These properties are highly dependent on the composition and structure of the tissue matrix, including the collagen I hierarchy, proteoglycans, and water. While the role of matrix constituents in the tensile response has been studied, their role in compression, particularly in matrix pressurization via regulation of fluid flow, is not well understood. Injured or diseased tendons and tendon regions that naturally experience compression are known to have alterations in glycosaminoglycan content, which could modulate fluid flow and ultimately mechanical function. While recent theoretical studies have predicted tendon mechanics using poroelastic theory, no experimental data have directly demonstrated such behavior. In this study, we use high-bandwidth AFM-based rheology to determine the dynamic response of tendons to compressive loading at the nanoscale and to determine the presence of poroelastic behavior. Tendons are found to have significant characteristic dynamic relaxation behavior occurring at both low and high frequencies. Classic poroelastic behavior is observed, although we hypothesize that the full dynamic response is caused by a combination of flow-dependent poroelasticity as well as flow-independent viscoelasticity. Tendons also demonstrate regional dependence in their dynamic response, particularly near the junction of tendon and bone, suggesting that the structural and compositional heterogeneity in tendon may be responsible for regional poroelastic behavior. Overall, these experiments provide the foundation for understanding fluid-flow-dependent poroelastic mechanics of tendon, and the methodology is valuable for assessing changes in tendon matrix compressive behavior at the nanoscale.

  18. Lower nanometer-scale size limit for the deformation of a metallic glass by shear transformations revealed by quantitative AFM indentation.

    PubMed

    Caron, Arnaud; Bennewitz, Roland

    2015-01-01

    We combine non-contact atomic force microscopy (AFM) imaging and AFM indentation in ultra-high vacuum to quantitatively and reproducibly determine the hardness and deformation mechanisms of Pt(111) and a Pt57.5Cu14.7Ni5.3P22.5 metallic glass with unprecedented spatial resolution. Our results on plastic deformation mechanisms of crystalline Pt(111) are consistent with the discrete mechanisms established for larger scales: Plasticity is mediated by dislocation gliding and no rate dependence is observed. For the metallic glass we have discovered that plastic deformation at the nanometer scale is not discrete but continuous and localized around the indenter, and does not exhibit rate dependence. This contrasts with the observation of serrated, rate-dependent flow of metallic glasses at larger scales. Our results reveal a lower size limit for metallic glasses below which shear transformation mechanisms are not activated by indentation. In the case of metallic glass, we conclude that the energy stored in the stressed volume during nanometer-scale indentation is insufficient to account for the interfacial energy of a shear band in the glassy matrix.

  19. [Study of in-situ measurement system for porous alumina film based on AFM and reflectometric interference spectroscopy].

    PubMed

    Liu, Chao; Zhang, Dong-Xian; Zhang, Hai-Jun

    2008-07-01

    An in-situ measurement system for porous alumina (PA) film based on atomic force microscope (AFM) in liquid and reflectometric interference spectroscopy (RIFS) was developed. The present article briefly discusses the principle and structure of the system, and introduces its unique characteristic. The system consists of probe unit, XY scanner, Z-piezo feedback system, computer and software, fiber optic spectrometer, anodization control circuitry etc. When a white light beam illuminates the surface of the film, the reflective light beams at the front and back side of the layer are coherent, and lead to periodical amplifications and extinction in the reflective spectrum with the information of the optical thickness of the film. A fiber optic spectrometer was applied in the system which input the refractive spectrum into the computer by which the optical thickness of the film was calculated. Meanwhile according to the surface topography of PA films by AFM in liquid, the effective refractive index was calculated based on Maxwell-Garnett theory and coherent potential approximation (CPA). So the thickness of PA films could be gained at last. To checkout the feasibility and stability of the system, the real-time scanning and thickness measurement experiments were done during anodization of Al sheets in oxalic acid aqueous solution. In the experiment, the authors used 25 mm diameter aluminum (Al) sheets with 99.999% purity and 0.4 mm thickness as the anode, and graphite rod as the cathode. The pretreatment-cleaned Al sheets were anodized in an aqueous solution of 0.5 mol x L(-1) oxalic acid at the constant temperature (20 +/- 0.2) degrees C with 20 mA x cm(-2) anodization electronic current density. Real-time AFM images of PA film were successfully obtained during anodization. The pore-ratios of Al sheet were 7.81% and 13.83% at oxidizing time 150 min and 180 min respectively. Correspondingly, the effective indexes were calculated to be 1.62 and 1.60, respectively

  20. Examination of Humidity Effects on Measured Thickness and Interfacial Phenomena of Exfoliated Graphene on SiO2 via AC-AFM

    NASA Astrophysics Data System (ADS)

    Jinkins, Katherine; Camacho, Jorge; Farina, Lee; Wu, Yan

    2015-03-01

    Tapping (AC) mode Atomic Force Microscopy (AFM) is commonly used to determine the thickness of graphene samples. However, AFM measurements have been shown to be sensitive to environmental conditions such as adsorbed water, in turn dependent on relative humidity (RH). In the present study, AC-AFM is used to measure the thickness and loss tangent of exfoliated graphene on silicon dioxide (SiO2) as RH is increased from 10% to 80%. We show that the measured thickness of graphene is dependent on RH. Loss tangent is an AFM imaging technique that interprets the phase information as a relationship between the stored and dissipated energy in the tip-sample interaction. This study demonstrates the loss tangent of the graphene and oxide regions are both affected by humidity, with generally higher loss tangent for graphene than SiO2. As RH increases, we observe the loss tangent of both materials approaches the same value. We hypothesize that there is a layer of water trapped between the graphene and SiO2 substrate to explain this observation. Using this interpretation, the loss tangent images also indicate movement and change in this trapped water layer as RH increases, which impacts the measured thickness of graphene using AC-AFM.

  1. Nanomechanical recognition measurements of individual DNA molecules reveal epigenetic methylation patterns

    NASA Astrophysics Data System (ADS)

    Zhu, Rong; Howorka, Stefan; Pröll, Johannes; Kienberger, Ferry; Preiner, Johannes; Hesse, Jan; Ebner, Andreas; Pastushenko, Vassili Ph.; Gruber, Hermann J.; Hinterdorfer, Peter

    2010-11-01

    Atomic force microscopy (AFM) is a powerful tool for analysing the shapes of individual molecules and the forces acting on them. AFM-based force spectroscopy provides insights into the structural and energetic dynamics of biomolecules by probing the interactions within individual molecules, or between a surface-bound molecule and a cantilever that carries a complementary binding partner. Here, we show that an AFM cantilever with an antibody tether can measure the distances between 5-methylcytidine bases in individual DNA strands with a resolution of 4 Å, thereby revealing the DNA methylation pattern, which has an important role in the epigenetic control of gene expression. The antibody is able to bind two 5-methylcytidine bases of a surface-immobilized DNA strand, and retracting the cantilever results in a unique rupture signature reflecting the spacing between two tagged bases. This nanomechanical approach might also allow related chemical patterns to be retrieved from biopolymers at the single-molecule level.

  2. Direct measurement of electrostatic fields using single Teflon nanoparticle attached to AFM tip

    PubMed Central

    2013-01-01

    Abstract A single 210-nm Teflon nanoparticle (sTNP) was attached to the vertex of a silicon nitride (Si3N4) atomic force microscope tip and charged via contact electrification. The charged sTNP can then be considered a point charge and used to measure the electrostatic field adjacent to a parallel plate condenser using 30-nm gold/20-nm titanium as electrodes. This technique can provide a measurement resolution of 250/100 nm along the X- and Z-axes, and the minimum electrostatic force can be measured within 50 pN. PACS 07.79.Lh, 81.16.-c, 84.37. + q PMID:24314111

  3. Viscoelastic properties of healthy human artery measured in saline solution by AFM based indentation technique

    SciTech Connect

    Lundkvist, A.; Lilleodden, E.; Sickhaus, W.; Kinney, J.; Pruitt, L.; Balooch, M.

    1998-02-09

    Using an Atomic Force Microscope with an attachment for indentation, we have measured local, in vitro mechanical properties of healthy femoral artery tissue held in saline solution. The elastic modulus (34. 3 kPa) and viscoelastic response ({tau}sub{epsilon} {equals} 16.9 s and {tau}sub{sigma} {equals} 29.3 s) of the unstretched,intimal vessel wall have been determined using Sneddon theory and a three element model(standard linear solid) for viscoelastic materials. The procedures necessary to employ the indenting attachment to detect elastic moduli in the kPa range in liquid are described.

  4. Comparing AFM cantilever stiffness measured using the thermal vibration and the improved thermal vibration methods with that of an SI traceable method based on MEMS

    NASA Astrophysics Data System (ADS)

    Brand, Uwe; Gao, Sai; Engl, Wolfgang; Sulzbach, Thomas; Stahl, Stefan W.; Milles, Lukas F.; Nesterov, Vladimir; Li, Zhi

    2017-03-01

    PTB has developed a new contact based method for the traceable calibration of the normal stiffness of AFM cantilevers in the range from 0.03 N m‑1 to 300 N m‑1 to the SI units based on micro-electro-mechanical system (MEMS) actuators. This method is evaluated by comparing the measured cantilever stiffness with that measured by PTB’s new primary nanonewton force facility and by PTB’s microforce measuring device. The MEMS system was used to calibrate the stiffness of cantilevers in two case studies. One set of cantilevers for applications in biophysics was calibrated using the well-known thermal vibration method and the second set of cantilevers was calibrated by a cantilever manufacturer who applied an improved thermal vibration method based on calibrated reference cantilevers for the cantilever stiffness calibration. The comparison revealed a stiffness deviation of  +7.7% for the cantilevers calibrated using the thermal vibration method and a deviation of  +6.9% for the stiffnesses of the cantilevers calibrated using the improved thermal vibration method.

  5. Measurement of faradaic current during AFM local oxidation of magnetic metal thin films

    NASA Astrophysics Data System (ADS)

    Takemura, Yasushi; Shimada, Yasuyuki; Watanabe, Genta; Yamada, Tsutomu; Shirakashi, Jun-ichi

    2007-04-01

    Faradaic current during a local oxidation using an atomic force microscope was studied. The intensity of the measured faradaic current was increased with increasing bias voltage applied to a cantilever, resulting in fabrication of larger size of nano-oxide structures on Si substrates. On the other hand, an excess current (over current) that was considered not to contribute the oxidation reaction was observed noticeably in the local oxidation of NiFe thin films. It was found that the excess current could be suppressed by depositing insulating oxide layers on the surfaces. The surface oxide layers were also advantageous for stable existence of meniscus promoting the local oxidation because of their hydrophilic properties. This method of capped oxide layers is significant for stable performance of the local oxidation technique fabricating nanostructures and nano-devices.

  6. Measuring the biomechanical properties of the actin in MCF-7 breast cancer cell with a combined system of AFM and SIM

    NASA Astrophysics Data System (ADS)

    You, Minghai; Chen, Jianling; Wang, Yuhua; Jiang, Ningcheng; Xie, Shusen; Yang, Hongqin

    2016-10-01

    Biomechanics of cell plays an important role in the behavior and development of diseases, which has a profound influence on the health, structural integrity, and function of cells. In this study, we proposed a method to assess the biomechanical properties in single breast cancer cell line MCF-7 by combining structured illumination microscopy (SIM) with atomic force microscopy (AFM). High resolution optical image of actin in MCF-7 cell and its elastography were obtained. The result shows that the quantitative resolution was improved by SIM, with 490 nm of conventional fluorescence image and 285 nm of reconstructed SIM image, which could give a precise location for AFM measurement. The elasticity of actin is about in the range of 10 1000 kPa. The proposed methods will be helpful in the understanding and clinical diagnosis of diseases at single cell level.

  7. AFM Force measurements of the gp120-sCD4 and gp120 or CD4 antigen-antibody interactions

    PubMed Central

    Chen, Yong; Zeng, Gucheng; Chen, Sherry Shiyi; Feng, Qian; Chen, Zheng Wei

    2011-01-01

    Soluble CD4 (sCD4), anti-CD4 antibody, and anti-gp120 antibody have long been regarded as entry inhibitors in human immunodeficiency virus (HIV) therapy. However, the interactions between these HIV entry inhibitors and corresponding target molecules are still poorly understood. In this study, atomic force microscopy (AFM) was utilized to investigate the interaction forces among them. We found that the unbinding forces of sCD4-gp120 interaction, CD4 antigen-antibody interaction, and gp120 antigen-antibody interaction were 25.45 ± 20.46 pN, 51.22 ± 34.64 pN, and 89.87 ± 44.63 pN, respectively, which may provide important mechanical information for understanding the effects of viral entry inhibitors on HIV infection. Moreover, we found that the functionalization of an interaction pair on AFM tip or substrate significantly influenced the results, implying that we must perform AFM force measurement and analyze the data with more caution. PMID:21382342

  8. AFM nanoscale indentation in air of polymeric and hybrid materials with highly different stiffness

    NASA Astrophysics Data System (ADS)

    Suriano, Raffaella; Credi, Caterina; Levi, Marinella; Turri, Stefano

    2014-08-01

    In this study, nanomechanical properties of a variety of polymeric materials was investigated by means of AFM. In particular, selecting different AFM probes, poly(methyl methacrylate) (PMMA), polydimethylsiloxane (PDMS) bulk samples, sol-gel hybrid thin films and hydrated hyaluronic acid hydrogels were indented in air to determine the elastic modulus. The force-distance curves and the indentation data were found to be greatly affected by the cantilever stiffness and by tip geometry. AFM indentation tests show that the choice of the cantilever spring constant and of tip shape is crucially influenced by elastic properties of samples. When adhesion-dominated interactions occur between the tip and the surface of samples, force-displacement curves reveal that a suitable functionalization of AFM probes allows the control of such interactions and the extraction of Young' modulus from AFM curves that would be otherwise unfeasible. By applying different mathematical models depending on AFM probes and materials under investigation, the values of Young's modulus were obtained and compared to those measured by rheological and dynamic mechanical analysis or to literature data. Our results show that a wide range of elastic moduli (10 kPa-10 GPa) can be determined by AFM in good agreement with those measured by conventional macroscopic measurements.

  9. PREFACE: Non-contact AFM Non-contact AFM

    NASA Astrophysics Data System (ADS)

    Giessibl, Franz J.; Morita, Seizo

    2012-02-01

    This special issue is focussed on high resolution non-contact atomic force microscopy (AFM). Non-contact atomic force microscopy was established approximately 15 years ago as a tool to image conducting and insulating surfaces with atomic resolution. Since 1998, an annual international conference has taken place, and although the proceedings of these conferences are a useful source of information, several key developments warrant devoting a special issue to this subject. In the theoretic field, the possibility of supplementing established techniques such as scanning tunneling microscopy (STM) and Kelvin probe microscopy with atomically resolved force micrsoscopy poses many challenges in the calculation of contrast and contrast reversal. The surface science of insulators, self-assembled monolayers and adsorbates on insulators is a fruitful field for the application of non-contact AFM: several articles in this issue are devoted to these subjects. Atomic imaging and manipulation have been pioneered using STM, but because AFM allows the measurement of forces, AFM has had a profound impact in this field as well. Three-dimensional force spectroscopy has allowed many important insights into surface science. In this issue a combined 3D tunneling and force microscopy is introduced. Non-contact AFM typically uses frequency modulation to measure force gradients and was initially used mainly in a vacuum. As can be seen in this issue, frequency modulation is now also used in ambient conditions, allowing better spatial and force resolution. We thank all of the contributors for their time and efforts in making this special issue possible. We are also very grateful to the staff of IOP Publishing for handling the administrative aspects and for steering the refereeing process. Non-contact AFM contents Relation between the chemical force and the tunnelling current in atomic point contacts: a simple model Pavel Jelínek, Martin Ondrácek and Fernando Flores Theoretical simulation of

  10. Savinase action on bovine serum albumin (BSA) monolayers demonstrated with measurements at the air-water interface and liquid Atomic Force Microscopy (AFM) imaging.

    PubMed

    Balashev, Konstantin; Callisen, Thomas H; Svendsen, Allan; Bjørnholm, Thomas

    2011-12-01

    We studied the enzymatic action of Savinase on bovine serum albumin (BSA) organized in a monolayer spread at the air/water interface or adsorbed at the mica surface. We carried out two types of experiments. In the first one we followed the degradation of the protein monolayer by measuring the surface pressure and surface area decrease versus time. In the second approach we applied AFM imaging of the supported BSA monolayers adsorbed on mica solid supports and extracted information for the enzyme action by analyzing the obtained images of the surface topography in the course of enzyme action. In both cases we obtained an estimate for the turnover number (TON) of the enzyme reaction.

  11. Structural investigations on native collagen type I fibrils using AFM

    SciTech Connect

    Strasser, Stefan; Zink, Albert; Janko, Marek; Heckl, Wolfgang M.; Thalhammer, Stefan . E-mail: stefan.thalhammer@gsf.de

    2007-03-02

    This study was carried out to determine the elastic properties of single collagen type I fibrils with the use of atomic force microscopy (AFM). Native collagen fibrils were formed by self-assembly in vitro characterized with the AFM. To confirm the inner assembly of the collagen fibrils, the AFM was used as a microdissection tool. Native collagen type I fibrils were dissected and the inner core uncovered. To determine the elastic properties of collagen fibrils the tip of the AFM was used as a nanoindentor by recording force-displacement curves. Measurements were done on the outer shell and in the core of the fibril. The structural investigations revealed the banding of the shell also in the core of native collagen fibrils. Nanoindentation experiments showed the same Young's modulus on the shell as well as in the core of the investigated native collagen fibrils. In addition, the measurements indicate a higher adhesion in the core of the collagen fibrils compared to the shell.

  12. Cheap non-toxic non-corrosive method of glass cleaning evaluated by contact angle, AFM, and SEM-EDX measurements.

    PubMed

    Dey, Tania; Naughton, Daragh

    2017-04-06

    Glass surface cleaning is the very first step in advanced coating deposition and it also finds use in conserving museum objects. However, most of the wet chemical methods of glass cleaning use toxic and corrosive chemicals like concentrated sulfuric acid (H2SO4), piranha (a mixture of concentrated sulfuric acid and 30% hydrogen peroxide), and hydrogen fluoride (HF). On the other hand, most of the dry cleaning techniques like UV-ozone, plasma, and laser treatment require costly instruments. In this report, five eco-friendly wet chemical methods of glass cleaning were evaluated in terms of contact angle (measured by optical tensiometer), nano-scale surface roughness (measured by atomic force microscopy or AFM), and elemental composition (measured by energy dispersive x-ray spectroscopy or SEM-EDX). These glass cleaning methods are devoid of harsh chemicals and costly equipment, hence can be applied in situ in close proximity with plantation such as greenhouse or upon subtle objects such as museum artifacts. Out of these five methods, three methods are based on the chemical principle of chelation. It was found that the citric acid cleaning method gave the greatest change in contact angle within the hydrophilic regime (14.25° for new glass) indicating effective cleansing and the least surface roughness (0.178 nm for new glass) indicating no corrosive effect. One of the glass sample showed unique features which were traced backed to the history of the glass usage.

  13. Investigation of Cell-Substrate Adhesion Properties of Living Chondrocyte by Measuring Adhesive Shear Force and Detachment Using AFM and Inverse FEA

    PubMed Central

    Nguyen, Trung Dung; Gu, YuanTong

    2016-01-01

    It is well-known that cell adhesion is important in many biological processes such as cell migration and proliferation. A better understanding of the cell adhesion process will shed insight into these cellular biological responses as well as cell adhesion-related diseases treatment. However, there is little research which has attempted to investigate the process of cell adhesion and its mechanism. Thus, this paper aims to study the time-dependent adhesion properties of single living chondrocytes using an advanced coupled experimental-numerical approach. Atomic Force Microscopy (AFM) tips will be used to apply lateral forces to detach chondrocytes that are seeded for three different periods. An advanced Finite Element Analysis (FEA) model combining porohyperelastic (PHE) constitutive model and cohesive zone formulation is developed to explore the mechanism of adhesion. The results revealed that the cells can resist normal traction better than tangential traction in the beginning of adhesion. This is when the cell adhesion molecules establish early attachment to the substrates. After that when the cells are spreading, stress fiber bundles generate tangential traction on the substrate to form strong adhesion. Both simulation and experimental results agree well with each other, providing a powerful tool to study the cellular adhesion process. PMID:27892536

  14. Multi-terminal magnetotransport measurements over a tunable graphene p-n junction created by AFM-nanomachining

    NASA Astrophysics Data System (ADS)

    Schmidt, H.; Smirnov, D.; Rode, J.; Haug, R. J.

    2013-12-01

    An Atomic Force Microscope is used to alter one part of a single layer graphene sample locally. Transport experiments at low temperatures are then used to characterize the different parts independently with field effect and Hall measurements. It is shown, that the nanomachining leads to an effective doping in the altered area and therefore to a difference in the charge carrier density of Δn = 3.5 ṡ 1015m-2 between the unchanged and changed part. These two parts can be tuned with a global backgate to form a junction of different polarity, i.e. a p-n junction.

  15. The effect of surface properties on the strength of attachment of fungal spores using AFM perpendicular force measurements.

    PubMed

    Whitehead, Kathryn A; Deisenroth, Ted; Preuss, Andrea; Liauw, Christopher M; Verran, Joanna

    2011-02-01

    Polymeric substrata may be biodegraded by fungal species resulting in damaged, weakened and unsightly materials. This process typically begins with fungal spore attachment to the surface. In order to better understand the processes that precedes a biofouling event, fungal spore attachment to a range of surfaces, was determined using perpendicular force measurements. This was carried out using atomic force microscope cantilevers modified with fungal spores from Aspergillus niger 1957 (5μm diameter, non-wettable, spherical), Aspergillus niger 1988 (5μm diameter non-wettable, spikey) or Aureobasidium pullulans (5μm-10μm sized, wettable, ellipsoidal). The strength of attachment of the spores was determined in combination with seven surfaces (nitric acid cleaned glass, cast poly(methylmethacrylate) sheet [c-PMMA], polytetrafluoroethylene [PTFE], silicon wafers spin coated with poly(3-methacryloxypropyltrimethoxy silane (γ-MPS)-co-methylmethacrylate (MMA)) [p(γ-MPS-co-MMA)], poly (γ-MPS-co-lauryl methacrylate) [p(γ-MPS-co-LMA)] [both in a ratio of 10-90], PMMA dissolved in a solvent [PMMAsc] and silicon wafers). Perpendicular force measurements could not be related to the R(a) values of the surfaces, but surface wettability was shown to have an effect. All three spore types interacted comparably with the surfaces. All spores attached strongly to c-PMMA and glass (wettable surfaces), and weakly to PTFE, (p(γ- MPS-co-LMA)) (non-wettable) and (p(γ-MPS-co-MMA)). Spore shape also affected the strength of attachment. Aureobasidium pullulans spores attached with the widest range of forces whilst A. niger 1957 attached with the smallest. Findings will inform the selection of surfaces for use in environments where biofouling is an important consideration.

  16. Nano Mechanical Machining Using AFM Probe

    NASA Astrophysics Data System (ADS)

    Mostofa, Md. Golam

    and burr formations through intermittent cutting. Combining the AFM probe based machining with vibration-assisted machining enhanced nano mechanical machining processes by improving the accuracy, productivity and surface finishes. In this study, several scratching tests are performed with a single crystal diamond AFM probe to investigate the cutting characteristics and model the ploughing cutting forces. Calibration of the probe for lateral force measurements, which is essential, is also extended through the force balance method. Furthermore, vibration-assisted machining system is developed and applied to fabricate different materials to overcome some of the limitations of the AFM probe based single point nano mechanical machining. The novelty of this study includes the application of vibration-assisted AFM probe based nano scale machining to fabricate micro/nano scale features, calibration of an AFM by considering different factors, and the investigation of the nano scale material removal process from a different perspective.

  17. Quantitative nano-mechanics of biological cells with AFM

    NASA Astrophysics Data System (ADS)

    Sokolov, Igor

    2013-03-01

    The importance of study of living cells is hard to overestimate. Cell mechanics is a relatively young, yet not a well-developed area. Besides just a fundamental interest, large practical need has emerged to measure cell mechanics quantitatively. Recent studies revealed a significant correlation between stiffness of biological cells and various human diseases, such as cancer, malaria, arthritis, and even aging. However, really quantitative studies of mechanics of biological cells are virtually absent. It is not even clear if the cell, being a complex and heterogeneous object, can be described by the elastic modulus at all. Atomic force microscopy (AFM) is a natural instrument to study properties of cells in their native environments. Here we will demonstrate that quantitative measurements of elastic modulus of cells with AFM are possible. Specifically, we will show that the ``cell body'' (cell without ``brush'' surface layer, a non-elastic layer surrounding cells) typically demonstrates the response of a homogeneous elastic medium up to the deformation of 10-20%, but if and only if a) the cellular brush layer is taken into account, b) rather dull AFM probes are used. This will be justified with the help of the strong condition of elastic behavior of material: the elastic modulus is shown to be independent on the indentation depth. We will also demonstrate that an attempt either to ignore the brush layer or to use sharp AFM probes will result in the violation of the strong condition, which implies impossibility to use the concept of the elastic modulus to describe cell mechanics in such experiments. Examples of quantitative measurements of the Young's modulus of the cell body and the cell brush parameters will be given for various cells. Address when submitting: Clarkson University, Potsdam, NY 13699

  18. The AFM Observation of Single Polyethylene Molecules in Coiled State on Mica

    NASA Astrophysics Data System (ADS)

    Prokhorov, V. V.; Yaminsky, I. V.

    2003-12-01

    Single polyethylene molecules and their small aggregates have been deposited on mica from diluted solutions at elevated temperatures and visualized by AFM in coiled and crystalline states. Coils have two-dimensional conformations with both highly tangled sites and locally extended segments with a length much exceeding the persistent length in a solution. The length measurements of coils reveal a wide distribution with the length of a maximum much smaller than the length of fully stretched molecules, moreover the long coils have been observed indicating the existence of linear multimolecular aggregates. Two models have been considered for the explanation of the observed deficit in the coils length, correspondingly the model implying the substantial smoothing of a winding chain trajectory due to the lack of the AFM resolution and the model of locally extended surface conformations with the long intramolecular folds. The roots of the apparent negative AFM height contrast of coils have been discussed.

  19. AFM-IR: Technology and Applications in Nanoscale Infrared Spectroscopy and Chemical Imaging.

    PubMed

    Dazzi, Alexandre; Prater, Craig B

    2016-12-13

    Atomic force microscopy-based infrared spectroscopy (AFM-IR) is a rapidly emerging technique that provides chemical analysis and compositional mapping with spatial resolution far below conventional optical diffraction limits. AFM-IR works by using the tip of an AFM probe to locally detect thermal expansion in a sample resulting from absorption of infrared radiation. AFM-IR thus can provide the spatial resolution of AFM in combination with the chemical analysis and compositional imaging capabilities of infrared spectroscopy. This article briefly reviews the development and underlying technology of AFM-IR, including recent advances, and then surveys a wide range of applications and investigations using AFM-IR. AFM-IR applications that will be discussed include those in polymers, life sciences, photonics, solar cells, semiconductors, pharmaceuticals, and cultural heritage. In the Supporting Information , the authors provide a theoretical section that reviews the physics underlying the AFM-IR measurement and detection mechanisms.

  20. A review of the application of atomic force microscopy (AFM) in food science and technology.

    PubMed

    Liu, Shaoyang; Wang, Yifen

    2011-01-01

    Atomic force microscopy (AFM) is a powerful nanoscale analysis technique used in food area. This versatile technique can be used to acquire high-resolution sample images and investigate local interactions in air or liquid surroundings. In this chapter, we explain the principles of AFM and review representative applications of AFM in gelatin, casein micelle, carrageenan, gellan gum, starch, and interface. We elucidate new knowledge revealed with AFM as well as ways to use AFM to obtain morphology and rheology information in different food fields.

  1. High-speed AFM of human chromosomes in liquid

    NASA Astrophysics Data System (ADS)

    Picco, L. M.; Dunton, P. G.; Ulcinas, A.; Engledew, D. J.; Hoshi, O.; Ushiki, T.; Miles, M. J.

    2008-09-01

    Further developments of the previously reported high-speed contact-mode AFM are described. The technique is applied to the imaging of human chromosomes at video rate both in air and in water. These are the largest structures to have been imaged with high-speed AFM and the first imaging in liquid to be reported. A possible mechanism that allows such high-speed contact-mode imaging without significant damage to the sample is discussed in the context of the velocity dependence of the measured lateral force on the AFM tip.

  2. Detection of Pathogens Using AFM and SPR

    NASA Astrophysics Data System (ADS)

    Vaseashta, Ashok

    2005-03-01

    A priori detection of pathogens in food and water has become a subject of paramount importance. Several recent incidents have resulted in the government passing stringent regulations for tolerable amounts of contamination of food products. Identification and/or monitoring of bacterial contamination in food are critical. The conventional methods of pathogen detection require time-consuming steps to arrive disembark at meaningful measurement in a timely manner as the detection time exceeds the time in which perishable food recycles through the food chain distribution. The aim of this presentation is to outline surface plasmon resonance (SPR) and atomic force microscopy (AFM) as two methods for fast detect6ion of pathogens. Theoretical basis of SPR and experimental results of SPR and AFM on E. coli O157:H7 and prion are presented.

  3. AFM imaging of fenestrated liver sinusoidal endothelial cells.

    PubMed

    Braet, F; Wisse, E

    2012-12-01

    Each microscope with its dedicated sample preparation technique provides the investigator with a specific set of data giving an instrument-determined (or restricted) insight into the structure and function of a tissue, a cell or parts thereof. Stepwise improvements in existing techniques, both instrumental and preparative, can sometimes cross barriers in resolution and image quality. Of course, investigators get really excited when completely new principles of microscopy and imaging are offered in promising new instruments, such as the AFM. The present paper summarizes a first phase of studies on the thin endothelial cells of the liver. It describes the preparation-dependent differences in AFM imaging of these cells after isolation. Special point of interest concerned the dynamics of the fenestrae, thought to filter lipid-carrying particles during their transport from the blood to the liver cells. It also describes the attempts to image the details of these cells when alive in cell cultures. It explains what physical conditions, mainly contributed to the scanning stylus, are thought to play a part in the limitations in imaging these cells. The AFM also offers promising specifications to those interested in cell surface details, such as membrane-associated structures, receptors, coated pits, cellular junctions and molecular aggregations or domains. The AFM also offers nano-manipulation possibilities, strengths and elasticity measurements, force interactions, affinity measurements, stiffness and other physical aspects of membranes and cytoskeleton. The potential for molecular approaches is there. New developments in cantilever construction and computer software promise to bring real time video imaging to the AFM. Home made accessories for the first generation of AFM are now commodities in commercial instruments and make the life of the AFM microscopist easier. Also, the combination of different microscopies, such as AFM and TEM, or AFM and SEM find their way to the

  4. [Application of atomic force microscopy (AFM) in ophthalmology].

    PubMed

    Milka, Michał; Mróz, Iwona; Jastrzebska, Maria; Wrzalik, Roman; Dobrowolski, Dariusz; Roszkowska, Anna M; Moćko, Lucyna; Wylegała, Edward

    2012-01-01

    Atomic force microscopy (AFM) allows to examine surface of different biological objects in the nearly physiological conditions at the nanoscale. The purpose of this work is to present the history of introduction and the potential applications of the AFM in ophthalmology research and clinical practice. In 1986 Binnig built the AFM as a next generation of the scanning tunnelling microscope (STM). The functional principle of AFM is based on the measurement of the forces between atoms on the sample surface and the probe. As a result, the three-dimensional image of the surface with the resolution on the order of nanometres can be obtained. Yamamoto used as the first the AFM on a wide scale in ophthalmology. The first investigations used the AFM method to study structure of collagen fibres of the cornea and of the sclera. Our research involves the analysis of artificial intraocular lenses (IOLs). According to earlier investigations, e.g. Lombardo et al., the AFM was used to study only native IOLs. Contrary to the earlier investigations, we focused our measurements on lenses explanted from human eyes. The surface of such lenses is exposed to the influence of the intraocular aqueous environment, and to the related impacts of biochemical processes. We hereby present the preliminary results of our work in the form of AFM images depicting IOL surface at the nanoscale. The images allowed us to observe early stages of the dye deposit formation as well as local calcinosis. We believe that AFM is a very promising tool for studying the structure of IOL surface and that further observations will make it possible to explain the pathomechanism of artificial intraocular lens opacity formation.

  5. Introduction to atomic force microscopy (AFM) in biology.

    PubMed

    Goldsbury, Claire S; Scheuring, Simon; Kreplak, Laurent

    2009-11-01

    The atomic force microscope (AFM) has the unique capability of imaging biological samples with molecular resolution in buffer solution. In addition to providing topographical images of surfaces with nanometer- to angstrom-scale resolution, forces between single molecules and mechanical properties of biological samples can be investigated from the nanoscale to the microscale. Importantly, the measurements are made in buffer solutions, allowing biological samples to "stay alive" within a physiological-like environment while temporal changes in structure are measured-e.g., before and after addition of chemical reagents. These qualities distinguish AFM from conventional imaging techniques of comparable resolution, e.g., electron microscopy (EM). This unit provides an introduction to AFM on biological systems and describes specific examples of AFM on proteins, cells, and tissues. The physical principles of the technique and methodological aspects of its practical use and applications are also described.

  6. Vibration signature analysis of AFM images

    SciTech Connect

    Joshi, G.A.; Fu, J.; Pandit, S.M.

    1995-12-31

    Vibration signature analysis has been commonly used for the machine condition monitoring and the control of errors. However, it has been rarely employed for the analysis of the precision instruments such as an atomic force microscope (AFM). In this work, an AFM was used to collect vibration data from a sample positioning stage under different suspension and support conditions. Certain structural characteristics of the sample positioning stage show up as a result of the vibration signature analysis of the surface height images measured using an AFM. It is important to understand these vibration characteristics in order to reduce vibrational uncertainty, improve the damping and structural design, and to eliminate the imaging imperfections. The choice of method applied for vibration analysis may affect the results. Two methods, the data dependent systems (DDS) analysis and the Welch`s periodogram averaging method were investigated for application to this problem. Both techniques provide smooth spectrum plots from the data. Welch`s periodogram provides a coarse resolution as limited by the number of samples and requires a choice of window to be decided subjectively by the user. The DDS analysis provides sharper spectral peaks at a much higher resolution and a much lower noise floor. A decomposition of the signal variance in terms of the frequencies is provided as well. The technique is based on an objective model adequacy criterion.

  7. Nanoscale structural features determined by AFM for single virus particles

    NASA Astrophysics Data System (ADS)

    Chen, Shu-Wen W.; Odorico, Michael; Meillan, Matthieu; Vellutini, Luc; Teulon, Jean-Marie; Parot, Pierre; Bennetau, Bernard; Pellequer, Jean-Luc

    2013-10-01

    In this work, we propose ``single-image analysis'', as opposed to multi-image averaging, for extracting valuable information from AFM images of single bio-particles. This approach allows us to study molecular systems imaged by AFM under general circumstances without restrictions on their structural forms. As feature exhibition is a resolution correlation, we have performed AFM imaging on surfaces of tobacco mosaic virus (TMV) to demonstrate variations of structural patterns with probing resolution. Two AFM images were acquired with the same tip at different probing resolutions in terms of pixel width, i.e., 1.95 and 0.49 nm per pixel. For assessment, we have constructed an in silico topograph based on the three-dimensional crystal structure of TMV as a reference. The prominent artifacts observed in the AFM-determined shape of TMV were attributed to tip convolutions. The width of TMV rod was systematically overestimated by ~10 nm at both probing resolutions of AFM. Nevertheless, the effects of tip convolution were less severe in vertical orientation so that the estimated height of TMV by AFM imaging was in close agreement with the in silico X-ray topograph. Using dedicated image processing algorithms, we found that at low resolution (i.e., 1.95 nm per pixel), the extracted surface features of TMV can be interpreted as a partial or full helical repeat (three complete turns with ~7.0 nm in length), while individual protein subunits (~2.5 nm) were perceivable only at high resolution. The present study shows that the scales of revealed structural features in AFM images are subject to both probing resolution and processing algorithms for image analysis.

  8. In-plane information from tapping mode AFM images

    NASA Astrophysics Data System (ADS)

    Marcus, Matthew

    2003-03-01

    Phase contrast in intermittent-contact atomic force microscopy is shown to reveal in-plane structural and mechanical properties of poly(diacetylene) monolayer films. This is surprising because measurements of in-plane properties typically require a contact mode of microscopy. Such measurements are possible because the tilt in the oscillating cantilever provides components of motion not just perpendicular to the surface, but also parallel to the sample surface. Lateral tip displacement is virtually universal in AFM, implying that any oscillating tip-AFM technique is sensitive to in-plane material properties. Although the tilt in the cantilever is small ( 10^o) it produces a component of motion that is 20% of the total tip displacement, and this motion accounts for 5-10% of dissipated energy through the tip-sample interaction[1]. The data is used in conjunction with a numerical model to extract in-plane material parameters. The effect of the cantilever tilt on phase measurements is directly verified through measurements on silicon samples tilted at a variety of angles with respect to the cantilever. The lateral tip displacement we make use of allows measurements of in-plane properties of soft samples such as polymer and biological samples. This work was done in collaboration with M. D'Amato, R.W. Carpick, and M.A. Eriksson, and was supported by the NSF CAREER and MRSEC programs and the Research Corporation. 1. M.S. Marcus, R.W. Carpick, D.Y. Sasaki, M.A. Eriksson, Phys. Rev. Lett. 88, 226103 (2002)

  9. AFM Structural Characterization of Drinking Water Biofilm ...

    EPA Pesticide Factsheets

    Due to the complexity of mixed culture drinking water biofilm, direct visual observation under in situ conditions has been challenging. In this study, atomic force microscopy (AFM) revealed the three dimensional morphology and arrangement of drinking water relevant biofilm in air and aqueous solution. Operating parameters were optimized to improve imaging of structural details for a mature biofilm in liquid. By using a soft cantilever (0.03 N/m) and slow scan rate (0.5 Hz), biofilm and individual bacterial cell’s structural topography were resolved and continuously imaged in liquid without loss of spatial resolution or sample damage. The developed methodology will allow future in situ investigations to temporally monitor mixed culture drinking water biofilm structural changes during disinfection treatments. Due to the complexity of mixed culture drinking water biofilm, direct visual observation under in situ conditions has been challenging. In this study, atomic force microscopy (AFM) revealed the three dimensional morphology and arrangement of drinking water relevant biofilm in air and aqueous solution. Operating parameters were optimized to improve imaging of structural details for a mature biofilm in liquid. By using a soft cantilever (0.03 N/m) and slow scan rate (0.5 Hz), biofilm and individual bacterial cell’s structural topography were resolved and continuously imaged in liquid without loss of spatial resolution or sample damage. The developed methodo

  10. Tip in-light on: Advantages, challenges, and applications of combining AFM and Raman microscopy on biological samples.

    PubMed

    Prats-Mateu, Batirtze; Gierlinger, Notburga

    2017-01-01

    Scanning probe microscopies and spectroscopies, especially AFM and Confocal Raman microscopy are powerful tools to characterize biological materials. They are both non-destructive methods and reveal mechanical and chemical properties on the micro and nano-scale. In the last years the interest for increasing the lateral resolution of optical and spectral images has driven the development of new technologies that overcome the diffraction limit of light. The combination of AFM and Raman reaches resolutions of about 50-150 nm in near-field Raman and 1.7-50 nm in tip enhanced Raman spectroscopy (TERS) and both give a molecular information of the sample and the topography of the scanned surface. In this review, the mentioned approaches are introduced, the main advantages and problems for application on biological samples discussed and some examples for successful experiments given. Finally the potential of colocated AFM and Raman measurements is shown on a case study of cellulose-lignin films: the topography structures revealed by AFM can be related to a certain chemistry by the colocated Raman scan and additionally the mechanical properties be revealed by using the digital pulsed force mode. Microsc. Res. Tech. 80:30-40, 2017. © 2016 Wiley Periodicals, Inc.

  11. Tip in–light on: Advantages, challenges, and applications of combining AFM and Raman microscopy on biological samples

    PubMed Central

    Gierlinger, Notburga

    2016-01-01

    Abstract Scanning probe microscopies and spectroscopies, especially AFM and Confocal Raman microscopy are powerful tools to characterize biological materials. They are both non‐destructive methods and reveal mechanical and chemical properties on the micro and nano‐scale. In the last years the interest for increasing the lateral resolution of optical and spectral images has driven the development of new technologies that overcome the diffraction limit of light. The combination of AFM and Raman reaches resolutions of about 50–150 nm in near‐field Raman and 1.7–50 nm in tip enhanced Raman spectroscopy (TERS) and both give a molecular information of the sample and the topography of the scanned surface. In this review, the mentioned approaches are introduced, the main advantages and problems for application on biological samples discussed and some examples for successful experiments given. Finally the potential of colocated AFM and Raman measurements is shown on a case study of cellulose‐lignin films: the topography structures revealed by AFM can be related to a certain chemistry by the colocated Raman scan and additionally the mechanical properties be revealed by using the digital pulsed force mode. Microsc. Res. Tech. 80:30–40, 2017. © 2016 Wiley Periodicals, Inc. PMID:27514318

  12. New developments at PTB in 3D-AFM with tapping and torsion AFM mode and vector approach probing strategy

    NASA Astrophysics Data System (ADS)

    Dai, G.; Hässler-Grohne, W.; Hüser, D.; Wolff, H.; Fluegge, J.; Bosse, H.

    2011-06-01

    A new 3D-AFM for true 3D measurements of nano structures has been developed at Physikalisch Technische-Bundesanstalt, the national metrology institute of Germany. In its configuration, two piezo actuators are applied to drive the AFM cantilever near its vertical and torsional resonant frequencies. In such a way, the AFM tip can probe the surface with a vertical and/or a lateral oscillation, offering high 3D probing sensitivity. For enhancing measurement flexibility as well as reducing tip wear, a so called "vector approach probing" (VAP) method has been applied. The sample is measured point by point using this method. At each probing point, the tip is approached towards the surface in its normal direction until the desired tip-sample interaction is detected and then immediately withdrawn from the surface. Preliminary experimental results show promising performance of the developed system. The measurement of a line structure of 800 nm height employing a super sharp AFM tip is performed, showing a repeatability of its 3D profiles of better than 1 nm (p-v). A single crystal critical dimension reference material (SCCDRM) having features with almost vertical sidewall is measured using a flared AFM tip. Results show that the feature has averaged left and right sidewall angles of 88.64° and 88.67deg;, respectively. However, the feature width non-uniformity may reach 10 nm within the measurement range of 1 μm. The standard deviation of the averaged middle CD values of 7 repeated measurements reaches 0.35 nm. In addition, an investigation of long term measurement stability is performed on a PTB photomask. The results shows that the 3D-AFM has a drift rate of about 0.00033 nm per line, which confirms the high measurement stability and the very low tip wear.

  13. AFM Structural Characterization of Drinking Water Biofilm under Physiological Conditions

    EPA Science Inventory

    Due to the complexity of mixed culture drinking water biofilm, direct visual observation under in situ conditions has been challenging. In this study, atomic force microscopy (AFM) revealed the three dimensional morphology and arrangement of drinking water relevant biofilm in air...

  14. Combining complexity measures of EEG data: multiplying measures reveal previously hidden information.

    PubMed

    Burns, Thomas; Rajan, Ramesh

    2015-01-01

    Many studies have noted significant differences among human electroencephalograph (EEG) results when participants or patients are exposed to different stimuli, undertaking different tasks, or being affected by conditions such as epilepsy or Alzheimer's disease. Such studies often use only one or two measures of complexity and do not regularly justify their choice of measure beyond the fact that it has been used in previous studies. If more measures were added to such studies, however, more complete information might be found about these reported differences. Such information might be useful in confirming the existence or extent of such differences, or in understanding their physiological bases. In this study we analysed publically-available EEG data using a range of complexity measures to determine how well the measures correlated with one another. The complexity measures did not all significantly correlate, suggesting that different measures were measuring unique features of the EEG signals and thus revealing information which other measures were unable to detect. Therefore, the results from this analysis suggests that combinations of complexity measures reveal unique information which is in addition to the information captured by other measures of complexity in EEG data. For this reason, researchers using individual complexity measures for EEG data should consider using combinations of measures to more completely account for any differences they observe and to ensure the robustness of any relationships identified.

  15. Combining complexity measures of EEG data: multiplying measures reveal previously hidden information

    PubMed Central

    Burns, Thomas; Rajan, Ramesh

    2015-01-01

    Many studies have noted significant differences among human electroencephalograph (EEG) results when participants or patients are exposed to different stimuli, undertaking different tasks, or being affected by conditions such as epilepsy or Alzheimer's disease. Such studies often use only one or two measures of complexity and do not regularly justify their choice of measure beyond the fact that it has been used in previous studies. If more measures were added to such studies, however, more complete information might be found about these reported differences. Such information might be useful in confirming the existence or extent of such differences, or in understanding their physiological bases. In this study we analysed publically-available EEG data using a range of complexity measures to determine how well the measures correlated with one another. The complexity measures did not all significantly correlate, suggesting that different measures were measuring unique features of the EEG signals and thus revealing information which other measures were unable to detect. Therefore, the results from this analysis suggests that combinations of complexity measures reveal unique information which is in addition to the information captured by other measures of complexity in EEG data. For this reason, researchers using individual complexity measures for EEG data should consider using combinations of measures to more completely account for any differences they observe and to ensure the robustness of any relationships identified. PMID:26594331

  16. AFM of biological complexes: what can we learn?

    PubMed Central

    Gaczynska, Maria; Osmulski, Pawel A.

    2009-01-01

    The term “biological complexes” broadly encompasses particles as diverse as multisubunit enzymes, viral capsids, transport cages, molecular nets, ribosomes, nucleosomes, biological membrane components and amyloids. The complexes represent a broad range of stability and composition. Atomic force microscopy offers a wealth of structural and functional data about such assemblies. For this review, we choose to comment on the significance of AFM to study various aspects of biology of selected nonmembrane protein assemblies. Such particles are large enough to reveal many structural details under the AFM probe. Importantly, the specific advantages of the method allow for gathering dynamic information about their formation, stability or allosteric structural changes critical for their function. Some of them have already found their way to nanomedical or nanotechnological applications. Here we present examples of studies where the AFM provided pioneering information about the biology of complexes, and examples of studies where the simplicity of the method is used toward the development of potential diagnostic applications. PMID:19802337

  17. Drought sensitivity of Amazonian carbon balance revealed by atmospheric measurements.

    PubMed

    Gatti, L V; Gloor, M; Miller, J B; Doughty, C E; Malhi, Y; Domingues, L G; Basso, L S; Martinewski, A; Correia, C S C; Borges, V F; Freitas, S; Braz, R; Anderson, L O; Rocha, H; Grace, J; Phillips, O L; Lloyd, J

    2014-02-06

    Feedbacks between land carbon pools and climate provide one of the largest sources of uncertainty in our predictions of global climate. Estimates of the sensitivity of the terrestrial carbon budget to climate anomalies in the tropics and the identification of the mechanisms responsible for feedback effects remain uncertain. The Amazon basin stores a vast amount of carbon, and has experienced increasingly higher temperatures and more frequent floods and droughts over the past two decades. Here we report seasonal and annual carbon balances across the Amazon basin, based on carbon dioxide and carbon monoxide measurements for the anomalously dry and wet years 2010 and 2011, respectively. We find that the Amazon basin lost 0.48 ± 0.18 petagrams of carbon per year (Pg C yr(-1)) during the dry year but was carbon neutral (0.06 ± 0.1 Pg C yr(-1)) during the wet year. Taking into account carbon losses from fire by using carbon monoxide measurements, we derived the basin net biome exchange (that is, the carbon flux between the non-burned forest and the atmosphere) revealing that during the dry year, vegetation was carbon neutral. During the wet year, vegetation was a net carbon sink of 0.25 ± 0.14 Pg C yr(-1), which is roughly consistent with the mean long-term intact-forest biomass sink of 0.39 ± 0.10 Pg C yr(-1) previously estimated from forest censuses. Observations from Amazonian forest plots suggest the suppression of photosynthesis during drought as the primary cause for the 2010 sink neutralization. Overall, our results suggest that moisture has an important role in determining the Amazonian carbon balance. If the recent trend of increasing precipitation extremes persists, the Amazon may become an increasing carbon source as a result of both emissions from fires and the suppression of net biome exchange by drought.

  18. Nanometer-Sized Water Bridge and Pull-Off Force in AFM at Different Relative Humidities: Reproducibility Measurement and Model Based on Surface Tension Change.

    PubMed

    Bartošík, Miroslav; Kormoš, Lukáš; Flajšman, Lukáš; Kalousek, Radek; Mach, Jindřich; Lišková, Zuzana; Nezval, David; Švarc, Vojtěch; Šamořil, Tomáš; Šikola, Tomáš

    2017-01-26

    This article deals with the analysis of the relationship between the pull-off force measured by atomic force microscopy and the dimensions of water bridge condensed between a hydrophilic silicon oxide tip and a silicon oxide surface under ambient conditions. Our experiments have shown that the pull-off force increases linearly with the radius of the tip and nonmonotonically with the relative humidity (RH). The latter dependence generally consists of an initial constant part changing to a convex-concave-like increase of the pull-off force and finally followed by a concave-like decrease of this force. The reproducibility tests have demonstrated that the precision limits have to be taken into account for comparing these measurements carried out under atmospheric conditions. The results were fitted by a classical thermodynamic model based on water-bridge envelope calculations using the numerical solution of the Kelvin equation in the form of axisymmetric differential equations and consequent calculation of adhesive forces. To describe the measured data more precisely, a decrease of the water surface tension for low RH was incorporated into the calculation. Such a decrease can be expected as a consequence of the high surface curvature in the nanometer-sized water bridge between the tip and the surface.

  19. AFM-Based Mechanical Nanomanipulation

    NASA Astrophysics Data System (ADS)

    Landolsi, Fakhreddine

    2011-12-01

    Advances in several research areas increase the need for more sophisticated fabrication techniques and better performing materials. Tackling this problem from a bottom-up perspective is currently an active field of research. The bottom-up fabrication procedure offers sub-nanometer accurate manipulation. At this time, candidates to achieve nanomanipulation include chemical (self-assembly), biotechnology methods (DNA-based), or using controllable physical forces (e.g. electrokinetic forces, mechanical forces). In this thesis, new methods and techniques for mechanical nanomanipulation using probe force interaction are developed. The considered probes are commonly used in Atomic Force Microscopes (AFMs) for high resolution imaging. AFM-based mechanical nanomanipulation will enable arranging nanoscale entities such as nanotubes and molecules in a precise and controlled manner to assemble and produce novel devices and systems at the nanoscale. The novelty of this research stems from the development of new modeling of the physics and mechanics of the tip interaction with nanoscale entities, coupled with the development of new smart cantilevers with multiple degrees of freedom. The gained knowledge from the conducted simulations and analysis is expected to enable true precision and repeatability of nanomanipulation tasks which is not feasible with existing methods and technologies.

  20. Low tip damage AFM technique development for nano structures characterization

    NASA Astrophysics Data System (ADS)

    Liu, Biao; Wang, Charles C.; Huang, Po-Fu; Uritsky, Yuri

    2010-06-01

    Ambient dynamic mode (tapping mode or intermittent-contact mode) AFM imaging has been used extensively for the characterization of the topography of nano structures. However, the results are beset with artifacts, because hard tapping of the AFM tip on sample surface usually causes premature tip damage. Through careful study of the cantilever amplitude and phase signals as functions of tip-to-sample distance, principle of non-contact AFM operation was discovered to enable high resolution and low tip damage AFM image acquisition [1, 2]. However, current study discovers that the conventional way of acquiring amplitude and phase versus distance curves gives erroneous non-contact operating range, because the tip gets damaged during the data acquisition process. A new technique is developed to reliably map the operating parameters of an intact tip that ensures the AFM be operated with the correct non-contact settings. Two examples are given to illustrate the successful applications of this new technique. The first example involves the size characterization of polystyrene latex (PSL) nano particles used for light scattering tool calibration. The second example is the development of robust recipes for the measurement of the depth of phase-shift mask trenches.

  1. Measurement of the interaction forces at various pH levels by using AFM for the interpretation of DNA adsorption on silanized surfaces

    NASA Astrophysics Data System (ADS)

    Han, Seung Pil; Suga, Kosaku; Fujihara, Masamichi; Park, Byung-Eun

    2014-09-01

    Various surfaces have been used for deoxyribonucleic acid (DNA) immobilization, one example being a silanized surface. This is useful for determining DNA lengths and, thus, locating specific gene sequences in DNA by using fluorescence microscopy and scanning probe microscopy. In this study, we deposited DNA by using the molecular combing method and, we used fluorescence microscopy to study how the chain lengths of n-alkylsilanes affected the surface density of DNA deposited on the silanized surfaces in a tris-ethylenediaminetetraacetic acid (TE) buffer. The forces between a cleaned silicon-nitride (Si3N4) tip and each substrate surface in aqueous buffers at various pH levels (1.0 ~ 9.0) were also studied by using atomic force microscopy to measure the force-distance curves. We explain why the density of lambda bacteriophage DNA (λ-DNA) deposited by using the molecular combing method at pH 8 was lower on the silanized surface with the shorter alkyl chain than it was on the silanized surface with the longer alkyl chain in terms of the electrical double layer (EDL) and the adhesive force.

  2. Mapping individual cosmid DNAs by direct AFM imaging.

    PubMed

    Allison, D P; Kerper, P S; Doktycz, M J; Thundat, T; Modrich, P; Larimer, F W; Johnson, D K; Hoyt, P R; Mucenski, M L; Warmack, R J

    1997-05-01

    Individual cosmid clones have been restriction mapped by directly imaging, with the atomic force microscope (AFM), a mutant EcoRI endonuclease site-specifically bound to DNA. Images and data are presented that locate six restriction sites, predicted from gel electrophoresis, on a 35-kb cosmid isolated from mouse chromosome 7. Measured distances between endonuclease molecules bound to lambda DNA, when compared to known values, demonstrate the accuracy of AFM mapping to better than 1%. These results may be extended to identify other important site-specific protein-DNA interactions, such as transcription factor and mismatch repair enzyme binding, difficult to resolve by current techniques.

  3. Determining surface properties with bimodal and multimodal AFM.

    PubMed

    Forchheimer, D; Borysov, Stanislav S; Platz, D; Haviland, David B

    2014-12-05

    Conventional dynamic atomic force microscopy (AFM) can be extended to bimodal and multimodal AFM in which the cantilever is simultaneously excited at two or more resonance frequencies. Such excitation schemes result in one additional amplitude and phase images for each driven resonance, and potentially convey more information about the surface under investigation. Here we present a theoretical basis for using this information to approximate the parameters of a tip-surface interaction model. The theory is verified by simulations with added noise corresponding to room-temperature measurements.

  4. Nano-Wilhelmy investigation of dynamic wetting properties of AFM tips through tip-nanobubble interaction.

    PubMed

    Wang, Yuliang; Wang, Huimin; Bi, Shusheng; Guo, Bin

    2016-07-25

    The dynamic wetting properties of atomic force microscopy (AFM) tips are of much concern in many AFM-related measurement, fabrication, and manipulation applications. In this study, the wetting properties of silicon and silicon nitride AFM tips are investigated through dynamic contact angle measurement using a nano-Wilhelmy balance based method. This is done by capillary force measurement during extension and retraction motion of AFM tips relative to interfacial nanobubbles. The working principle of the proposed method and mathematic models for dynamic contact angle measurement are presented. Geometric models of AFM tips were constructed using scanning electronic microscopy (SEM) images taken from different view directions. The detailed process of tip-nanobubble interaction was investigated using force-distance curves of AFM on nanobubbles. Several parameters including nanobubble height, adhesion and capillary force between tip and nanobubbles are extracted. The variation of these parameters was studied over nanobubble surfaces. The dynamic contact angles of the AFM tips were calculated from the capillary force measurements. The proposed method provides direct measurement of dynamic contact angles for AFM tips and can also be taken as a general approach for nanoscale dynamic wetting property investigation.

  5. Nano-Wilhelmy investigation of dynamic wetting properties of AFM tips through tip-nanobubble interaction

    NASA Astrophysics Data System (ADS)

    Wang, Yuliang; Wang, Huimin; Bi, Shusheng; Guo, Bin

    2016-07-01

    The dynamic wetting properties of atomic force microscopy (AFM) tips are of much concern in many AFM-related measurement, fabrication, and manipulation applications. In this study, the wetting properties of silicon and silicon nitride AFM tips are investigated through dynamic contact angle measurement using a nano-Wilhelmy balance based method. This is done by capillary force measurement during extension and retraction motion of AFM tips relative to interfacial nanobubbles. The working principle of the proposed method and mathematic models for dynamic contact angle measurement are presented. Geometric models of AFM tips were constructed using scanning electronic microscopy (SEM) images taken from different view directions. The detailed process of tip-nanobubble interaction was investigated using force-distance curves of AFM on nanobubbles. Several parameters including nanobubble height, adhesion and capillary force between tip and nanobubbles are extracted. The variation of these parameters was studied over nanobubble surfaces. The dynamic contact angles of the AFM tips were calculated from the capillary force measurements. The proposed method provides direct measurement of dynamic contact angles for AFM tips and can also be taken as a general approach for nanoscale dynamic wetting property investigation.

  6. Nano-Wilhelmy investigation of dynamic wetting properties of AFM tips through tip-nanobubble interaction

    PubMed Central

    Wang, Yuliang; Wang, Huimin; Bi, Shusheng; Guo, Bin

    2016-01-01

    The dynamic wetting properties of atomic force microscopy (AFM) tips are of much concern in many AFM-related measurement, fabrication, and manipulation applications. In this study, the wetting properties of silicon and silicon nitride AFM tips are investigated through dynamic contact angle measurement using a nano-Wilhelmy balance based method. This is done by capillary force measurement during extension and retraction motion of AFM tips relative to interfacial nanobubbles. The working principle of the proposed method and mathematic models for dynamic contact angle measurement are presented. Geometric models of AFM tips were constructed using scanning electronic microscopy (SEM) images taken from different view directions. The detailed process of tip-nanobubble interaction was investigated using force-distance curves of AFM on nanobubbles. Several parameters including nanobubble height, adhesion and capillary force between tip and nanobubbles are extracted. The variation of these parameters was studied over nanobubble surfaces. The dynamic contact angles of the AFM tips were calculated from the capillary force measurements. The proposed method provides direct measurement of dynamic contact angles for AFM tips and can also be taken as a general approach for nanoscale dynamic wetting property investigation. PMID:27452115

  7. BOREAS AFM-07 SRC Surface Meteorological Data

    NASA Technical Reports Server (NTRS)

    Osborne, Heather; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Young, Kim; Wittrock, Virginia; Shewchuck, Stan; Smith, David E. (Technical Monitor)

    2000-01-01

    The Saskatchewan Research Council (SRC) collected surface meteorological and radiation data from December 1993 until December 1996. The data set comprises Suite A (meteorological and energy balance measurements) and Suite B (diffuse solar and longwave measurements) components. Suite A measurements were taken at each of ten sites, and Suite B measurements were made at five of the Suite A sites. The data cover an approximate area of 500 km (North-South) by 1000 km (East-West) (a large portion of northern Manitoba and northern Saskatchewan). The measurement network was designed to provide researchers with a sufficient record of near-surface meteorological and radiation measurements. The data are provided in tabular ASCII files, and were collected by Aircraft Flux and Meteorology (AFM)-7. The surface meteorological and radiation data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  8. Cryogenic AFM-STM for mesoscopic physics

    NASA Astrophysics Data System (ADS)

    Le Sueur, H.

    Electronic spectroscopy based on electron tunneling gives access to the electronic density of states (DOS) in conductive materials, and thus provides detailed information about their electronic properties. During this thesis work, we have developed a microscope in order to perform spatially resolved (10 nm) tunneling spectroscopy, with an unprecedented energy resolution (10 μeV), on individual nanocircuits. This machine combines an Atomic Force Microscope (AFM mode) together with a Scanning Tunneling Spectroscope (STS mode) and functions at very low temperatures (30 mK). In the AFM mode, the sample topography is recorded using a piezoelectric quartz tuning fork, which allows us to locate and image nanocircuits. Tunneling can then be performed on conductive areas of the circuit. With this microscope, we have measured the local DOS in a hybrid Superconductor-Normal metal-Superconductor (S-N-S) structure. In such circuit, the electronic properties of N and S are modified by the superconducting proximity effect. In particular, for short N wires, we have observed a minigap independent of position in the DOS of the N wire, as was previously predicted. Moreover, when varying the superconducting phase difference between the S electrodes, we have measured the modification of the minigap and its disappearance when the phase difference equals π. Our experimental results for the DOS, and its dependences (on phase, position, N length), are quantitatively accounted for by the quasiclassical theory of superconductivity. Some predictions of this theory are observed for the first time. La spectroscopie électronique basée sur l'effet tunnel donne accès à la densité d'états des électrons (DOS) dans les matériaux conducteurs, et renseigne ainsi en détail sur leurs propriétés électroniques. Au cours de cette thèse, nous avons développé un microscope permettant d'effectuer la spectroscopie tunnel résolue spatialement (10 nm) de nanocircuits individuels, avec une r

  9. Radioactive waste reality as revealed by neutron measurements

    SciTech Connect

    Schultz, F.J.

    1995-12-31

    To comprehend certain aspects of the contents of a radioactive waste container is not a trivial matter, especially if one is not allowed to open the container and peer inside. One of the suite of tools available to a practioner in the art of nondestructive assay is based upon neutron measurements. Neutrons, both naturally occuring and induced, are penertrating radiations that can be detected external to the waste container. The practioner should be skilled in applying the proper technique(s) to selected waste types. Available techniques include active and passive neutron measurements, each with their own strengths and weaknesses. The waste material itself can compromise the assay results by occluding a portion of the mass of fissile material present, or by multiplying the number of neutrons produced by a spontaneously fissioning mass. This paper will discuss the difficult, but albeit necessary marriage, between radiioactive waste types and alternative neutron measurement techniques.

  10. Microrheology using a custom-made AFM

    NASA Astrophysics Data System (ADS)

    Kosgodagan Acharige, Sebastien; Benzaquen, Michael; Steinberger, Audrey

    In the past few years, a new method was developed to measure local properties of liquids (X. Xiong et al., Phys. Rev. E 80, 2009). This method consists of gluing a micron-sized glass fiber at the tip of an AFM cantilever and probing the liquid with it. In ENS Lyon, this method was perfected (C. Devailly et al., EPL, 106 5, 2014) with the help of an interferometer developped in the same laboratory (L. Bellon et al., Opt. Commun. 207 49, 2002 and P. Paolino et al., Rev. Sci. Instrum. 84, 2013), which background noise can reach 10-14 m /√{ Hz } . This method allows us to measure a wide range of viscosities (1 mPa . s to 500 mPa . s) of transparent and opaque fluids using a small sample volume ( 5 mL). In this presentation, I will briefly describe the interferometer developped in ENS Lyon, then explain precisely the microrheology measurements and then compare the experimental results to a model developped by M. Benzaquen. This work is supported financially by the ANR project NANOFLUIDYN (Grant Number ANR-13-BS10-0009).

  11. Mars Exospheric Temperature Trends as Revealed by MAVEN NGIMS Measurements

    NASA Astrophysics Data System (ADS)

    Bougher, Stephen W.; Olsen, Kirk; Roeten, Kali; Bell, Jared; Mahaffy, Paul; Benna, Mehdi; Elrod, Meredith; Jakosky, Bruce

    2015-11-01

    The Martian dayside upper thermosphere and exosphere temperatures (Texo) have been the subject of considerable debate and study since the first Mariner ultraviolet spectrometer (UVS) measurements (1969-1972), up to recent Mars Express SPICAM UVS measurements (2004-present) (e.g., see reviews by Stewart 1987; Bougher et al. 2000, 2014; Müeller-Wodarg et al. 2008; Stiepen et al. 2014). Prior to MAVEN, the Martian upper atmosphere thermal structure was poorly constrained by a limited number of both in-situ and remote sensing measurements at selected locations, seasons, and periods scattered throughout the solar cycle. Nevertheless, it is recognized that the Mars orbit eccentricity determines that both the solar cycle and seasonal variations in upper atmosphere temperatures must be considered together. The MAVEN NGIMS instrument measures the neutral composition of the major gas species (e.g. He, N, O, CO, N2, O2, NO, Ar and CO2) and their major isotopes, with a vertical resolution of ~5 km for targeted species and a target accuracy of <25% for most of these species (Mahaffy et al. 2014; 2015). Corresponding temperatures can now be derived from the neutral scale heights (especially CO2, Ar, and N2) (e.g. Mahaffy et al. 2015; Bougher et al. 2015). Texo mean temperatures spanning ~200 to 300 km are examined for both Deep Dip and Science orbits over 11-February 2015 (Ls ~ 290) to 14-July 2015 (Ls ~ 12). During these times, dayside sampling below 300 km occurred from the dusk terminator, across the dayside, and approaching the dawn terminator. NGIMS temperatures are investigated to extract spatial (e.g. SZA) and temporal (e.g. orbit-to-orbit, seasonal, solar rotational) variability and trends over this sampling period. Solar and seasonal driven trends in Texo are clearly visible, but orbit-to-orbit variability is significant, and demands further investigation to uncover the major drivers that are responsible.

  12. Nanoviscosity Measurements Revealing Domain Formation in Biomimetic Membranes.

    PubMed

    Hasan, Imad Younus; Mechler, Adam

    2017-02-07

    Partitioning of lipid molecules in biomimetic membranes is a model system for the study of naturally occurring domains, such as rafts, in biological membranes. The existence of nanometer scale membrane domains in binary lipid mixtures has been shown with microscopy methods; however, the nature of these domains has not been established unequivocally. A common notion is to ascribe domain separation to thermodynamic phase equilibria. However, characterizing thermodynamic phases of single bilayer membranes has not been possible due to their extreme dimensions: the size of the domains falls to the order of tens to hundreds of nanometers whereas the membrane thickness is only a few nanometers. Here, we present direct measurements of phase transitions in single bilayers of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)/1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) phospholipid mixtures using quartz crystal microbalance-based nanoviscosity measurements. Coexisting thermodynamic phases have been successfully identified, and a phase diagram was constructed for the single bilayer binary lipid system. It was demonstrated that domain separation only takes place in planar membranes, and thus, it is absent in liposomes and not detectable in calorimetric measurements on liposome suspensions. On the basis of energetic analysis, the main transition was identified as the breaking of van der Waals interactions between the acyl chains.

  13. Lyin’ Eyes: Ocular-motor Measures of Reading Reveal Deception

    PubMed Central

    Cook, Anne E.; Hacker, Douglas J.; Webb, Andrea K.; Osher, Dahvyn; Kristjansson, Sean; Woltz, Dan J.; Kircher, John C.

    2013-01-01

    Our goal was to evaluate an alternative to current methods for detecting deception in security screening contexts. We evaluated a new cognitive-based test of deception that measured participants’ ocular-motor responses (pupil responses and reading behaviors) while they read and responded to statements on a computerized questionnaire. In Experiment 1, participants from a university community were randomly assigned to either a “guilty” group that committed one of two mock crimes or an “innocent” group that only learned about the crime. Participants then reported for testing, where they completed the computer-administered questionnaire that addressed their possible involvement in the crimes. Experiment 2 also manipulated participants’ incentive to pass the test and difficulty of statements on the test. In both experiments, guilty participants had increased pupil responses to statements answered deceptively; however, they spent less time fixating on, reading, and re-reading those statements than statements answered truthfully. These ocular-motor measures were optimally weighted in a discrimination function that correctly classified 85% of participants as either guilty or innocent. Findings from Experiment 2 indicated that group discrimination was improved with greater incentives to pass the test and the use of statements with simple syntax. The present findings suggest that two cognitive processes are involved in deception -- vigilance and strategy -- and that these processes are reflected in different ocular-motor measures. The ocular-motor test reported here represents a new approach to detecting deception that may fill an important need in security screening contexts. PMID:22545928

  14. High aspect ratio AFM Probe processing by helium-ion-beam induced deposition.

    PubMed

    Onishi, Keiko; Guo, Hongxuan; Nagano, Syoko; Fujita, Daisuke

    2014-11-01

    A Scanning Helium Ion Microscope (SHIM) is a high resolution surface observation instrument similar to a Scanning Electron Microscope (SEM) since both instruments employ finely focused particle beams of ions or electrons [1]. The apparent difference is that SHIMs can be used not only for a sub-nanometer scale resolution microscopic research, but also for the applications of very fine fabrication and direct lithography of surfaces at the nanoscale dimensions. On the other hand, atomic force microscope (AFM) is another type of high resolution microscopy which can measure a three-dimensional surface morphology by tracing a fine probe with a sharp tip apex on a specimen's surface.In order to measure highly uneven and concavo-convex surfaces by AFM, the probe of a high aspect ratio with a sharp tip is much more necessary than the probe of a general quadrangular pyramid shape. In this paper we report the manufacture of the probe tip of the high aspect ratio by ion-beam induced gas deposition using a nanoscale helium ion beam of SHIM.Gas of platinum organic compound was injected into the sample surface neighborhood in the vacuum chamber of SHIM. The decomposition of the gas and the precipitation of the involved metal brought up a platinum nano-object in a pillar shape on the normal commercial AFM probe tip. A SHIM system (Carl Zeiss, Orion Plus) equipped with the gas injection system (OmniProbe, OmniGIS) was used for the research. While the vacuum being kept to work, we injected platinum organic compound ((CH3)3(CH3C5H4)Pt) into the sample neighborhood and irradiated the helium ion beam with the shape of a point on the apex of the AFM probe tip. It is found that we can control the length of the Pt nano-pillar by irradiation time of the helium ion beam. The AFM probe which brought up a Pt nano-pillar is shown in Figure 1. It is revealed that a high-aspect-ratio Pt nano-pillar of ∼40nm diameter and up to ∼2000 nm length can be grown. In addition, for possible heating

  15. Structure, cell wall elasticity and polysaccharide properties of living yeast cells, as probed by AFM

    NASA Astrophysics Data System (ADS)

    Alsteens, David; Dupres, Vincent; McEvoy, Kevin; Wildling, Linda; Gruber, Hermann J.; Dufrêne, Yves F.

    2008-09-01

    Although the chemical composition of yeast cell walls is known, the organization, assembly, and interactions of the various macromolecules remain poorly understood. Here, we used in situ atomic force microscopy (AFM) in three different modes to probe the ultrastructure, cell wall elasticity and polymer properties of two brewing yeast strains, i.e. Saccharomyces carlsbergensis and S. cerevisiae. Topographic images of the two strains revealed smooth and homogeneous cell surfaces, and the presence of circular bud scars on dividing cells. Nanomechanical measurements demonstrated that the cell wall elasticity of S. carlsbergensis is homogeneous. By contrast, the bud scar of S. cerevisiae was found to be stiffer than the cell wall, presumably due to the accumulation of chitin. Notably, single molecule force spectroscopy with lectin-modified tips revealed major differences in polysaccharide properties of the two strains. Polysaccharides were clearly more extended on S. cerevisiae, suggesting that not only oligosaccharides, but also polypeptide chains of the mannoproteins were stretched. Consistent with earlier cell surface analyses, these findings may explain the very different aggregation properties of the two organisms. This study demonstrates the power of using multiple complementary AFM modalities for probing the organization and interactions of the various macromolecules of microbial cell walls.

  16. Tip Characterization Method using Multi-feature Characterizer for CD-AFM

    PubMed Central

    Orji, Ndubuisi G.; Itoh, Hiroshi; Wang, Chumei; Dixson, Ronald G.; Walecki, Peter S.; Schmidt, Sebastian W.; Irmer, Bernd

    2016-01-01

    In atomic force microscopy (AFM) metrology, the tip is a key source of uncertainty. Images taken with an AFM show a change in feature width and shape that depends on tip geometry. This geometric dilation is more pronounced when measuring features with high aspect ratios, and makes it difficult to obtain absolute dimensions. In order to accurately measure nanoscale features using an AFM, the tip dimensions should be known with a high degree of precision. We evaluate a new AFM tip characterizer, and apply it to critical dimension AFM (CD-AFM) tips used for high aspect ratio features. The characterizer is made up of comb-shaped lines and spaces, and includes a series of gratings that could be used as an integrated nanoscale length reference. We also demonstrate a simulation method that could be used to specify what range of tip sizes and shapes the characterizer can measure. Our experiments show that for non re-entrant features, the results obtained with this characterizer are consistent to 1 nm with the results obtained by using widely accepted but slower methods that are common practice in CD-AFM metrology. A validation of the integrated length standard using displacement interferometry indicates a uniformity of better than 0.75%, suggesting that the sample could be used as highly accurate and SI traceable lateral scale for the whole evaluation process. PMID:26720439

  17. Investigation of biopolymer networks by means of AFM

    NASA Astrophysics Data System (ADS)

    Keresztes, Z.; Rigó, T.; Telegdi, J.; Kálmán, E.

    Natural hydrogel alginate was investigated by means of atomic force microscopy (AFM) to gain microscale information on the morphological and rheological properties of the biopolymer network cross-linked by various cations. Local rheological properties of the gels measured by force spectroscopy gave correlation between increasing ion selectivity and increasing polymer elasticity. Adhesive forces acting between the surface of the gel and the probe, and also the intrinsic rheological properties of bulk polymers affect the microscopical image formation.

  18. Nanoscale Nucleosome Dynamics Assessed with Time-lapse AFM

    PubMed Central

    Lyubchenko, Yuri L.

    2013-01-01

    A fundamental challenge associated with chromosomal gene regulation is accessibility of DNA within nucleosomes. Recent studies performed by various techniques, including single-molecule approaches, led to the realization that nucleosomes are dynamic structures rather than static systems, as it was once believed. Direct data is required in order to understand the dynamics of nucleosomes more clearly and answer fundamental questions, including: What is the range of nucleosome dynamics? Does a non-ATP dependent unwrapping process of nucleosomes exist? What are the factors facilitating the large scale opening and unwrapping of nucleosomes? This review summarizes the results of nucleosome dynamics obtained with time-lapse AFM, including a high-speed version (HS-AFM) capable of visualizing molecular dynamics on the millisecond time scale. With HS-AFM, the dynamics of nucleosomes at a sub-second time scale was observed allowing one to visualize various pathways of nucleosome dynamics, such as sliding and unwrapping, including complete dissociation. Overall, these findings reveal new insights into the dynamics of nucleosomes and the novel mechanisms controlling spontaneous chromatin dynamics. PMID:24839467

  19. Hydration states of AFm cement phases

    SciTech Connect

    Baquerizo, Luis G.; Matschei, Thomas; Scrivener, Karen L.; Saeidpour, Mahsa; Wadsö, Lars

    2015-07-15

    The AFm phase, one of the main products formed during the hydration of Portland and calcium aluminate cement based systems, belongs to the layered double hydrate (LDH) family having positively charged layers and water plus charge-balancing anions in the interlayer. It is known that these phases present different hydration states (i.e. varying water content) depending on the relative humidity (RH), temperature and anion type, which might be linked to volume changes (swelling and shrinkage). Unfortunately the stability conditions of these phases are insufficiently reported. This paper presents novel experimental results on the different hydration states of the most important AFm phases: monocarboaluminate, hemicarboaluminate, strätlingite, hydroxy-AFm and monosulfoaluminate, and the thermodynamic properties associated with changes in their water content during absorption/desorption. This data opens the possibility to model the response of cementitious systems during drying and wetting and to engineer systems more resistant to harsh external conditions.

  20. Graphene MEMS: AFM probe performance improvement.

    PubMed

    Martin-Olmos, Cristina; Rasool, Haider Imad; Weiller, Bruce H; Gimzewski, James K

    2013-05-28

    We explore the feasibility of growing a continuous layer of graphene in prepatterned substrates, like an engineered silicon wafer, and we apply this as a mold for the fabrication of AFM probes. This fabrication method proves the fabrication of SU-8 devices coated with graphene in a full-wafer parallel technology and with high yield. It also demonstrates that graphene coating enhances the functionality of SU-8 probes, turning them conductive and more resistant to wear. Furthermore, it opens new experimental possibilities such as studying graphene-graphene interaction at the nanoscale with the precision of an AFM or the exploration of properties in nonplanar graphene layers.

  1. Conductance of AFM Deformed Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexei; Maiti, Amitesh; Anatram, M. P.; Biegel, Bryan (Technical Monitor)

    2002-01-01

    This viewgraph presentation provides information on the electrical conductivity of carbon nanotubes upon deformation by atomic force microscopy (AFM). The density of states and conductance were computed using four orbital tight-binding method with various parameterizations. Different chiralities develop bandgap that varies with chirality.

  2. Optical fiber fluorescence spectroscopy for detecting AFM1 in milk

    NASA Astrophysics Data System (ADS)

    Mignani, A. G.; Cucci, C.; Ciaccheri, L.; Dall'Asta, C.; Galaverna, G.; Dossena, A.; Marchelli, R.

    2008-04-01

    Fluorescence spectroscopy carried out by means of optical fibers was used for the rapid screening of M1 aflatoxin in milk, enabling the detection of concentrations up to the legal limit, which is 50 ppt. A compact fluorometric device equipped with a LED source, a miniaturized spectrometer, and optical fibers for illumination/detection of the measuring micro-cell was tested for measuring threshold values of AFM1 in pre-treated milk samples. Multivariate processing of the spectral data made it possible to obtain a preliminary screening at the earlier stages of the industrial process, as well as to discard contaminated milk stocks before their inclusion in the production chain.

  3. Probing ternary solvent effect in high Voc polymer solar cells using advanced AFM techniques

    DOE PAGES

    Li, Chao; Soleman, Mikhael; Lorenzo, Josie; ...

    2016-01-25

    This work describes a simple method to develop a high Voc low band gap PSCs. In addition, two new atomic force microscopy (AFM)-based nanoscale characterization techniques to study the surface morphology and physical properties of the structured active layer are introduced. With the help of ternary solvent processing of the active layer and C60 buffer layer, a bulk heterojunction PSC with Voc more than 0.9 V and conversion efficiency 7.5% is developed. In order to understand the fundamental properties of the materials ruling the performance of the PSCs tested, AFM-based nanoscale characterization techniques including Pulsed-Force-Mode AFM (PFM-AFM) and Mode-Synthesizing AFMmore » (MSAFM) are introduced. Interestingly, MSAFM exhibits high sensitivity for direct visualization of the donor–acceptor phases in the active layer of the PSCs. Lastly, conductive-AFM (cAFM) studies reveal local variations in conductivity in the donor and acceptor phases as well as a significant increase in photocurrent in the PTB7:ICBA sample obtained with the ternary solvent processing.« less

  4. Probing Cytoskeletal Structures by Coupling Optical Superresolution and AFM Techniques for a Correlative Approach

    PubMed Central

    Chacko, Jenu Varghese; Zanacchi, Francesca Cella; Diaspro, Alberto

    2013-01-01

    In this article, we describe and show the application of some of the most advanced fluorescence superresolution techniques, STED AFM and STORM AFM microscopy towards imaging of cytoskeletal structures, such as microtubule filaments. Mechanical and structural properties can play a relevant role in the investigation of cytoskeletal structures of interest, such as microtubules, that provide support to the cell structure. In fact, the mechanical properties, such as the local stiffness and the elasticity, can be investigated by AFM force spectroscopy with tens of nanometers resolution. Force curves can be analyzed in order to obtain the local elasticity (and the Young's modulus calculation by fitting the force curves from every pixel of interest), and the combination with STED/STORM microscopy integrates the measurement with high specificity and yields superresolution structural information. This hybrid modality of superresolution-AFM working is a clear example of correlative multimodal microscopy. PMID:24027190

  5. Nanogap based graphene coated AFM tips with high spatial resolution, conductivity and durability.

    PubMed

    Lanza, Mario; Gao, Teng; Yin, Zixuan; Zhang, Yanfeng; Liu, Zhongfan; Tong, Yuzhen; Shen, Ziyong; Duan, Huiling

    2013-11-21

    After one decade of analyzing the intrinsic properties of graphene, interest into the development of graphene-based devices and micro electromechanical systems is increasing. Here, we fabricate graphene-coated atomic force microscope tips by growing the graphene on copper foil and transferring it onto the apex of a commercially available AFM tip. The resulting tip exhibits surprising enhanced resolution in nanoscale electrical measurements. By means of topographic AFM maps and statistical analyses we determine that this superior performance may be related to the presence of a nanogap between the graphene and the tip apex, which reduces the tip radius and tip-sample contact area. In addition, the graphene-coated tips show a low tip-sample interaction, high conductivity and long life times. The novel fabrication-friendly tip could improve the quality and reliability of AFM experiments, while reducing the cost of AFM-based research.

  6. The Retrocausal Nature of Quantum Measurement Revealed by Partial and Weak Measurements

    SciTech Connect

    Elitzur, Avshalom C.; Cohen, Eliahu

    2011-11-29

    Quantum measurement is sometimes more effective when its result is not definite. Partial measurement turns the initial superposition not into a certain state but to a greater probability for it, enabling probing the quantum state in cases where complete measurement makes the noncommuting variables inaccessible. It also enables full quantum erasure that, unlike prevailing method, can be carried out even on recorded results. Aharonov's weak measurement is another method of imprecisely measuring quantum variables, outsmarting the uncertainty principle in even subtler ways. Happily, the two methods complement and corroborate one another in several interesting ways. We gedankenly apply these measurements to the EPR case. A pair of entangled particles undergoes more than one pair of partial and weak measurements, which, unlike complete measurements, leave them partially correlated. Their erasure is then shown to be as nonlocal as measurement itself. Surprisingly, the temporal relations between such measurements in the EPR setting do not follow the temporal sequence perceived by an external observer. For each particle, the measurements performed on the other operate as if they occurred (with signs reversed) in its own past, and in reversed order. This fully accords with Cramer's transactional interpretation and Aharonov's two state-vector formalism.

  7. The Retrocausal Nature of Quantum Measurement Revealed by Partial and Weak Measurements

    NASA Astrophysics Data System (ADS)

    Elitzur, Avshalom C.; Cohen, Eliahu

    2011-11-01

    Quantum measurement is sometimes more effective when its result is not definite. Partial measurement turns the initial superposition not into a certain state but to a greater probability for it, enabling probing the quantum state in cases where complete measurement makes the noncommuting variables inaccessible. It also enables full quantum erasure that, unlike prevailing method, can be carried out even on recorded results. Aharonov's weak measurement is another method of imprecisely measuring quantum variables, outsmarting the uncertainty principle in even subtler ways. Happily, the two methods complement and corroborate one another in several interesting ways. We gedankenly apply these measurements to the EPR case. A pair of entangled particles undergoes more than one pair of partial and weak measurements, which, unlike complete measurements, leave them partially correlated. Their erasure is then shown to be as nonlocal as measurement itself. Surprisingly, the temporal relations between such measurements in the EPR setting do not follow the temporal sequence perceived by an external observer. For each particle, the measurements performed on the other operate as if they occurred (with signs reversed) in its own past, and in reversed order. This fully accords with Cramer's transactional interpretation and Aharonov's two state-vector formalism.

  8. High-speed AFM probe with micromachined membrane tip

    NASA Astrophysics Data System (ADS)

    Kim, Byungki; Kwak, Byung Hyung; Jamil, Faize

    2008-08-01

    This paper presents a micromachined silicon membrane type AFM tip designed to move nearly 1µm by electrostatic force. Since the tip can be vibrated in small amplitude with AC voltage input and can be displaced up to 1μm by DC voltage input, an additional piezo actuator is not required for scanning of submicron features. The micromachined membrane tips are designed to have 100 kHz ~ 1 MHz resonant frequency. Displacement of the membrane tip is measured by an optical interferometer using a micromachined diffraction grating on a quartz wafer which is positioned behind the membrane tip.

  9. Characterizing Cell Mechanics with AFM and Microfluidics

    NASA Astrophysics Data System (ADS)

    Walter, N.; Micoulet, A.; Suresh, S.; Spatz, J. P.

    2007-03-01

    Cell mechanical properties and functionality are mainly determined by the cytoskeleton, besides the cell membrane, the nucleus and the cytosol, and depend on various parameters e.g. surface chemistry and rigidity, surface area and time available for cell spreading, nutrients and drugs provided in the culture medium. Human epithelial pancreatic and mammary cancer cells and their keratin intermediate filaments are the main focus of our work. We use Atomic Force Microscopy (AFM) to study cells adhering to substrates and Microfluidic Channels to probe cells in suspension, respectively. Local and global properties are extracted by varying AFM probe tip size and the available adhesion area for cells. Depth-sensing, instrumented indentation tests with AFM show a clear difference in contact stiffness for cells that are spread of controlled substrates and those that are loosely attached. Microfluidic Channels are utilized in parallel to evaluate cell deformation and ``flow resistance'', which are dependent on channel cross section, flow rate, cell nucleus size and the mechanical properties of cytoskeleton and membrane. The results from the study are used to provide some broad and quantitative assessments of the connections between cellular/subcellular mechanics and biochemical origins of disease states.

  10. Dual role of Cu²⁺ ions on the aggregation and degradation of soluble Aβ oligomers and protofibrils investigated by fluorescence spectroscopy and AFM.

    PubMed

    García, Silvia; Cuscó, Cristina; Brissos, Rosa F; Torrents, Ester; Caubet, Amparo; Gamez, Patrick

    2012-11-01

    The neuropathological character of copper(II) ions (Cu(2+)) upon interaction with soluble human amyloid-β(1-42) that subsequently generates senile plaques and/or reactive oxygen species (ROS) is considered as one of the very important features of Alzheimer's disease. The present study carried out by using fluorescence spectroscopy and atomic-force microscopy (AFM) indeed confirms the dual role played by Cu(2+), namely as mediator of protein aggregation and as generator of ROS leading to irreversible protein alteration, which most likely involve two distinct copper-binding sites. The AFM investigations clearly evidence the copper-induced aggregation of Aβ oligomers and protofibrils, while comparative fluorescence measurements with copper and zinc reveals the crucial involvement of redox-active copper in the generation of Aβ-cross-linked structures.

  11. Image Analysis and Length Estimation of Biomolecules Using AFM

    PubMed Central

    Sundstrom, Andrew; Cirrone, Silvio; Paxia, Salvatore; Hsueh, Carlin; Kjolby, Rachel; Gimzewski, James K.; Reed, Jason; Mishra, Bud

    2014-01-01

    There are many examples of problems in pattern analysis for which it is often possible to obtain systematic characterizations, if in addition a small number of useful features or parameters of the image are known a priori or can be estimated reasonably well. Often, the relevant features of a particular pattern analysis problem are easy to enumerate, as when statistical structures of the patterns are well understood from the knowledge of the domain. We study a problem from molecular image analysis, where such a domain-dependent understanding may be lacking to some degree and the features must be inferred via machine-learning techniques. In this paper, we propose a rigorous, fully automated technique for this problem. We are motivated by an application of atomic force microscopy (AFM) image processing needed to solve a central problem in molecular biology, aimed at obtaining the complete transcription profile of a single cell, a snapshot that shows which genes are being expressed and to what degree. Reed et al. (“Single molecule transcription profiling with AFM,” Nanotechnology, vol. 18, no. 4, 2007) showed that the transcription profiling problem reduces to making high-precision measurements of biomolecule backbone lengths, correct to within 20–25 bp (6–7.5 nm). Here, we present an image processing and length estimation pipeline using AFM that comes close to achieving these measurement tolerances. In particular, we develop a biased length estimator on trained coefficients of a simple linear regression model, biweighted by a Beaton–Tukey function, whose feature universe is constrained by James–Stein shrinkage to avoid overfitting. In terms of extensibility and addressing the model selection problem, this formulation subsumes the models we studied. PMID:22759526

  12. Device level 3D characterization using PeakForce AFM

    NASA Astrophysics Data System (ADS)

    Timoney, Padraig; Zhang, Xiaoxiao; Vaid, Alok; Hand, Sean; Osborne, Jason; Milligan, Eric; Feinstein, Adam

    2016-03-01

    Traditional metrology solutions face a range of challenges at the 1X node such as three dimensional (3D) measurement capabilities, shrinking overlay and critical dimension (CD) error budgets driven by multi-patterning and via in trench CD measurements. With advent of advanced technology nodes and 3D processing, an increasing need is emerging for in-die metrology including across-structure and structure-to-structure characterization. A myriad of work has emerged in the past few years intending to address these challenges from various aspects; in-die OCD with reduced spot size and tilt beam on traditional critical dimension scanning electron microscopy (CDSEM) for height measurements. This paper explores the latest capability offered by PeakForceTM Tapping Atomic Force Microscopy (PFT-AFM). The use of traditional harmonic tapping mode for scanning high aspect ratio, and complex "3D" wafer structures, results in limited depth probing capability as well as excessive tip wear. These limitations arise due to the large tip-sample interaction volume in such confined spaces. PeakForce Tapping eliminates these limitations through direct real time control of the tip-sample interaction contact force. The ability of PeakForce to measure, and respond directly to tip- sample interaction forces results in more detailed feature resolution, reduced tip wear, and improved depth capability. In this work, the PFT-AFM tool was applied for multiple applications, including the 14nm fin and replacement metal gate (RMG) applications outlined below. Results from DOE wafers, detailed measurement precision studies and correlation to reference metrology are presented for validation of this methodology. With the fin application, precision of 0.3nm is demonstrated by measuring 5 dies with 10 consecutive runs. Capability to resolve within-die and localized within-macro height variation is also demonstrated. Results obtained from the fin measurements support the increasing trend that measurements

  13. AFM study of forces between silica, silicon nitride and polyurethane pads.

    PubMed

    Sokolov, Igor; Ong, Quy K; Shodiev, Hasan; Chechik, Nina; James, David; Oliver, Mike

    2006-08-15

    Interaction of silica and silicon nitride with polyurethane surfaces is rather poorly studied despite being of great interest for modern semiconductor industry, e.g., for chemical-mechanical planarization (CMP) processes. Here we show the results from the application of the atomic force microscopy (AFM) technique to study the forces between silica or silicon nitride (AFM tips) and polyurethane surfaces in aqueous solutions of different acidity. The polyurethane surface potentials are derived from the measured AFM data. The obtained potentials are in rather good agreement with measurements of zeta-potentials using the streaming-potentials method. Another important parameter, adhesion, is also measured. While the surface potentials of silica are well known, there are ambiguous results on the potentials of silicon nitride that is naturally oxidized. Deriving the surface potential of the naturally oxidized silicon nitride from our measurements, we show that it is not oxidized to silica despite some earlier published expectations.

  14. Morphology of Vapor-Deposited Ice at Low Temperatures by Atomic Force Microscopy (AFM)

    NASA Astrophysics Data System (ADS)

    Fain, , Jr.; Donev, J. M. K.; Tait, B. R. Long, Jr.; Yu, Q.

    2002-03-01

    The morphology of multilayer films of ice on various substrates is measured by AFM as a function of vapor-deposition and annealing temperatures below 150K. The films are deposited in-situ in UHV from an effusive doser at 67 degrees from the surface normal. For depositions near 100K on clean Au(111), previous measurements by Donev et al. using needle-sensor AFM indicate that 3-D clustering starts near 120K for initially flat thin films of amorphous solid water (ASW). For depositions below 85K on clean Au(111), preliminary measurements using non-contact AFM (nc-AFM) indicate that clustering does not occur during annealing until bulk diffusion becomes operative at T>140K. Deposition at glancing angle at the lower temperatures is known to increase porosity and is also expected to decrease the number of crystalline nuclei in the ASW. For depositions near 100K on mica that had been annealed in UHV, preliminary measurements using ncAFM show clustering near 120K. Supported by U. W. Nanotechnology Fellowship (J.M.K.D.), Mary Gates Fellowship (B. R. L.), and M. J. Murdock Charitable Trust.

  15. Measuring revealed and emergent vulnerabilities of coastal communities to tsunami in Sri Lanka.

    PubMed

    Birkmann, Jörn; Fernando, Nishara

    2008-03-01

    This paper presents the important findings of a study undertaken in two selected tsunami-affected coastal cities in Sri Lanka (Batticaloa and Galle) to measure the revealed and emergent vulnerability of coastal communities. International risk studies have failed to demonstrate the high vulnerability of coastal communities to tsunami in Sri Lanka. Therefore, indirect assessment tools to measure pre-event vulnerability have to be complemented by assessment tools that analyse revealed and emergent vulnerability in looking at the aftermath and impact patterns of a real scenario, as well as in examining the dynamics of disaster recovery in which different vulnerabilities can be identified. The paper first presents a conceptual framework for capturing vulnerability within a process-oriented approach linked to sustainable development. Next, it highlights selected indicators and methods to measure revealed and emergent vulnerability at the local level using the examples of Batticaloa and Galle. Finally, it discusses the usefulness and application of vulnerability indicators within the framework of reconstruction.

  16. Revealing statistical properties of quasi-CW fibre lasers in bandwidth-limited measurements.

    PubMed

    Gorbunov, O A; Sugavanam, S; Churkin, D V

    2014-11-17

    We introduce a general technique how to reveal in experiments of limited electrical bandwidth which is lower than the optical bandwidth of the optical signal under study, whether the statistical properties of the light source obey Gaussian distribution or mode correlations do exist. To do that one needs to perform measurements by decreasing the measurement bandwidth. We develop a simple model of bandwidth-limited measurements and predict universal laws how intensity probability density function and intensity auto-correlation function of ideal completely stochastic source of Gaussian statistics depend on limited measurement bandwidth and measurement noise level. Results of experimental investigation are in good agreement with model predictions. In particular, we reveal partial mode correlations in the radiation of quasi-CW Raman fibre laser.

  17. Bubble colloidal AFM probes formed from ultrasonically generated bubbles.

    PubMed

    Vakarelski, Ivan U; Lee, Judy; Dagastine, Raymond R; Chan, Derek Y C; Stevens, Geoffrey W; Grieser, Franz

    2008-02-05

    Here we introduce a simple and effective experimental approach to measuring the interaction forces between two small bubbles (approximately 80-140 microm) in aqueous solution during controlled collisions on the scale of micrometers to nanometers. The colloidal probe technique using atomic force microscopy (AFM) was extended to measure interaction forces between a cantilever-attached bubble and surface-attached bubbles of various sizes. By using an ultrasonic source, we generated numerous small bubbles on a mildly hydrophobic surface of a glass slide. A single bubble picked up with a strongly hydrophobized V-shaped cantilever was used as the colloidal probe. Sample force measurements were used to evaluate the pure water bubble cleanliness and the general consistency of the measurements.

  18. Force measurements on natural membrane nanovesicles reveal a composition-independent, high Young's modulus

    NASA Astrophysics Data System (ADS)

    Calò, Annalisa; Reguera, David; Oncins, Gerard; Persuy, Marie-Annick; Sanz, Guenhaël; Lobasso, Simona; Corcelli, Angela; Pajot-Augy, Edith; Gomila, Gabriel

    2014-01-01

    Mechanical properties of nano-sized vesicles made up of natural membranes are crucial to the development of stable, biocompatible nanocontainers with enhanced functional, recognition and sensing capabilities. Here we measure and compare the mechanical properties of plasma and inner membrane nanovesicles ~80 nm in diameter obtained from disrupted yeast Saccharomyces cerevisiae cells. We provide evidence of a highly deformable behaviour for these vesicles, able to support repeated wall-to-wall compressions without irreversible deformations, accompanied by a noticeably high Young's modulus (~300 MPa) compared to that obtained for reconstituted artificial liposomes of similar size and approaching that of some virus particles. Surprisingly enough, the results are approximately similar for plasma and inner membrane nanovesicles, in spite of their different lipid compositions, especially on what concerns the ergosterol content. These results point towards an important structural role of membrane proteins in the mechanical response of natural membrane vesicles and open the perspective to their potential use as robust nanocontainers for bioapplications.Mechanical properties of nano-sized vesicles made up of natural membranes are crucial to the development of stable, biocompatible nanocontainers with enhanced functional, recognition and sensing capabilities. Here we measure and compare the mechanical properties of plasma and inner membrane nanovesicles ~80 nm in diameter obtained from disrupted yeast Saccharomyces cerevisiae cells. We provide evidence of a highly deformable behaviour for these vesicles, able to support repeated wall-to-wall compressions without irreversible deformations, accompanied by a noticeably high Young's modulus (~300 MPa) compared to that obtained for reconstituted artificial liposomes of similar size and approaching that of some virus particles. Surprisingly enough, the results are approximately similar for plasma and inner membrane nanovesicles, in

  19. Nanoscale thermal AFM of polymers: transient heat flow effects.

    PubMed

    Duvigneau, Joost; Schönherr, Holger; Vancso, G Julius

    2010-11-23

    Thermal transport around the nanoscale contact area between the heated atomic force microscopy (AFM) probe tip and the specimen under investigation is a central issue in scanning thermal microscopy (SThM). Polarized light microscopy and AFM imaging of the temperature-induced crystallization of poly(ethylene terephthalate) (PET) films in the region near the tip were used in this study to unveil the lateral heat transport. The radius of the observed lateral surface isotherm at 133 °C ranged from 2.2 ± 0.5 to 18.7 ± 0.5 μm for tip-polymer interface temperatures between 200 and 300 °C with contact times varying from 20 to 120 s, respectively. In addition, the heat transport into polymer films was assessed by measurements of the thermal expansion of poly(dimethyl siloxane) (PDMS) films with variable thickness on silicon supports. Our data showed that heat transport in the specimen normal (z) direction occurred to depths exceeding 1000 μm using representative non-steady-state SThM conditions (i.e., heating from 40 to 180 °C at a rate of 10 °C s(-1)). On the basis of the experimental results, a 1D steady-state model for heat transport was developed, which shows the temperature profile close to the tip-polymer contact. The model also indicates that ≤1% of the total power generated in the heater area, which is embedded in the cantilever end, is transported into the polymer through the tip-polymer contact interface. Our results complement recent efforts in the evaluation and improvement of existing theoretical models for thermal AFM, as well as advance further developments of SThM for nanoscale thermal materials characterization and/or manipulation via scanning thermal lithography (SThL).

  20. Solvent-mediated repair and patterning of surfaces by AFM

    SciTech Connect

    Elhadj, S; Chernov, A; De Yoreo, J

    2007-10-30

    A tip-based approach to shaping surfaces of soluble materials with nanometer-scale control is reported. The proposed method can be used, for example, to eliminate defects and inhomogeneities in surface shape, repair mechanical or laser-induced damage to surfaces, or perform 3D lithography on the length scale of an AFM tip. The phenomenon that enables smoothing and repair of surfaces is based on the transport of material from regions of high- to low-curvature within the solution meniscus formed in a solvent-containing atmosphere between the surface in question and an AFM tip scanned over the surface. Using in situ AFM measurements of the kinetics of surface remodeling on KDP (KH{sub 2}PO{sub 4}) crystals in humid air, we show that redistribution of solute material during relaxation of grooves and mounds is driven by a reduction in surface free energy as described by the Gibbs-Thomson law. We find that the perturbation from a flat interface evolves according to the diffusion equation where the effective diffusivity is determined by the product of the surface stiffness and the step kinetic coefficient. We also show that, surprisingly, if the tip is instead scanned over or kept stationary above an atomically flat area of the surface, a convex structure is formed with a diameter that is controlled by the dimensions of the meniscus, indicating that the presence of the tip and meniscus reduces the substrate chemical potential beneath that of the free surface. This allows one to create nanometer-scale 3D structures of arbitrary shape without the removal of substrate material or the use of extrinsic masks or chemical compounds. Potential applications of these tip-based phenomena are discussed.

  1. Fractal analysis of AFM images of the surface of Bowman's membrane of the human cornea.

    PubMed

    Ţălu, Ştefan; Stach, Sebastian; Sueiras, Vivian; Ziebarth, Noël Marysa

    2015-04-01

    The objective of this study is to further investigate the ultrastructural details of the surface of Bowman's membrane of the human cornea, using atomic force microscopy (AFM) images. One representative image acquired of Bowman's membrane of a human cornea was investigated. The three-dimensional (3-D) surface of the sample was imaged using AFM in contact mode, while the sample was completely submerged in optisol solution. Height and deflection images were acquired at multiple scan lengths using the MFP-3D AFM system software (Asylum Research, Santa Barbara, CA), based in IGOR Pro (WaveMetrics, Lake Oswego, OR). A novel approach, based on computational algorithms for fractal analysis of surfaces applied for AFM data, was utilized to analyze the surface structure. The surfaces revealed a fractal structure at the nanometer scale. The fractal dimension, D, provided quantitative values that characterize the scale properties of surface geometry. Detailed characterization of the surface topography was obtained using statistical parameters, in accordance with ISO 25178-2: 2012. Results obtained by fractal analysis confirm the relationship between the value of the fractal dimension and the statistical surface roughness parameters. The surface structure of Bowman's membrane of the human cornea is complex. The analyzed AFM images confirm a fractal nature of the surface, which is not taken into account by classical surface statistical parameters. Surface fractal dimension could be useful in ophthalmology to quantify corneal architectural changes associated with different disease states to further our understanding of disease evolution.

  2. Study of the influence of the acrylic acid plasma parameters on silicon and polyurethane substrates using XPS and AFM

    NASA Astrophysics Data System (ADS)

    Vilani, C.; Weibel, D. E.; Zamora, R. R. M.; Habert, A. C.; Achete, C. A.

    2007-10-01

    XPS and AFM have been used to investigate surface modifications produced by acrylic acid (AA) vapor plasma treatment of silicon (Si)(1 0 0) substrates and polyurethanes (PUs) membranes. XPS analyses of Si and PUs treated substrates at low plasma power (5-20 W) revealed the formation of a thin film on the surfaces, which chemically resembles the poly(acrylic acid) film conventionally synthesised. No signal of the Si substrate could be seen under these low plasma power applications on silicon. However, when the plasma power is higher than 30 W one can clearly see XPS silicon signatures. AFM measurements of silicon substrates treated with AA plasma at low power (5-20 W) showed the formation of a thin polymer film of about 220-55 nm thickness. Further, applications of high plasma power (30-100 W) displayed a marked difference from low plasma modifications and it was found sputtering of the silicon substrate. Pervaporation results of AA plasma treated PUs membranes revealed that the selectivity for the separation of methanol from methyl- t-butyl ether is higher at 100 W and 1 min treatment time, than the other conditions studied. This last finding is discussed concerning the surface modifications produced on plasma treated silicon substrates and PU membranes.

  3. AFM characterization of nonwoven material functionalized by ZnO sputter coating

    SciTech Connect

    Deng Bingyao; Yan Xiong; Wei Qufu Gao Weidong

    2007-10-15

    Sputter coatings provide new approaches to the surface functionalization of textile materials. In this study, polyethylene terephthalate (PET) nonwoven material was used as a substrate for creating functional nanostructures on the fiber surfaces. A magnetron sputter coating was used to deposit functional zinc oxide (ZnO) nanostructures onto the nonwoven substrate. The evolution of the surface morphology of the fibers in the nonwoven web was examined using atomic force microscopy (AFM). The AFM observations revealed a significant difference in the morphology of the fibers before and after the sputter coating. The AFM images also indicated the effect of the sputtering conditions on the surface morphology of the fibers. The increase in the sputtering time led to the growth of the ZnO grains on the fiber surfaces. The higher pressure in the sputtering chamber could cause the formation of larger grains on the fiber surfaces. The higher power used also generated larger grains on the fiber surfaces.

  4. BOREAS AFM-6 Surface Meteorological Data

    NASA Technical Reports Server (NTRS)

    Wilczak, James; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-6 team from the National Oceanic and Atmospheric Adminsitration/Environment Technology Laboratory (NOAA/ETL) collected surface meteorological data from 21 May to 20 Sep 1994 near the Southern Study Area-Old Jack Pine (SSA-OJP) tower site. The data are in tabular ASCII files. The surface meteorological data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  5. Probing ternary solvent effect in high Voc polymer solar cells using advanced AFM techniques

    SciTech Connect

    Li, Chao; Soleman, Mikhael; Lorenzo, Josie; Dhasmana, Nitesh; Chantharasupawong, Panit; Ievlev, Anton; Gesquiere, Andre; Tetard, Laurene; Thomas, Jayan

    2016-01-25

    This work describes a simple method to develop a high Voc low band gap PSCs. In addition, two new atomic force microscopy (AFM)-based nanoscale characterization techniques to study the surface morphology and physical properties of the structured active layer are introduced. With the help of ternary solvent processing of the active layer and C60 buffer layer, a bulk heterojunction PSC with Voc more than 0.9 V and conversion efficiency 7.5% is developed. In order to understand the fundamental properties of the materials ruling the performance of the PSCs tested, AFM-based nanoscale characterization techniques including Pulsed-Force-Mode AFM (PFM-AFM) and Mode-Synthesizing AFM (MSAFM) are introduced. Interestingly, MSAFM exhibits high sensitivity for direct visualization of the donor–acceptor phases in the active layer of the PSCs. Lastly, conductive-AFM (cAFM) studies reveal local variations in conductivity in the donor and acceptor phases as well as a significant increase in photocurrent in the PTB7:ICBA sample obtained with the ternary solvent processing.

  6. Accelerated design and quality control of impact modifiers for plastics through atomic force microscopy (AFM) analysis

    NASA Astrophysics Data System (ADS)

    Moeller, Gunter

    2011-03-01

    Standard polymer resins are often too brittle or do not meet other mechanical property requirements for typical polymer applications. To achieve desired properties it is common to disperse so called ``impact modifiers'', which are spherical latex particles with diameters of much less than one micrometer, into the pure resin. Understanding and control of the entire process from latex particle formation to subsequent dispersion into polymer resins are necessary to accelerate the development of new materials that meet specific application requirements. In this work AFM imaging and nanoindentation techniques in combination with AFM-based spectroscopic techniques were applied to assess latex formation and dispersion. The size and size distribution of the latex particles can be measured based on AFM amplitude modulation images. AFM phase images provide information about the chemical homogeneity of individual particles. Nanoindentation may be used to estimate their elastic and viscoelastic properties. Proprietary creep and nanoscale Dynamic Mechanical Analysis (DMA) tests that we have developed were used to measure these mechanical properties. The small size of dispersed latex inclusions requires local mechanical and spectroscopic analysis techniques with high lateral and spatial resolution. We applied the CRAVE AFM method, developed at NIST, to perform mechanical analysis of individual latex inclusions and compared results with those obtained using nanoscale DMA. NanoIR, developed by Anasys Inc., and principal component confocal Raman were used for spectroscopic analysis and results from both techniques compared.

  7. Enabling accurate gate profile control with inline 3D-AFM

    NASA Astrophysics Data System (ADS)

    Bao, Tianming; Lopez, Andrew; Dawson, Dean

    2009-05-01

    The logic and memory semiconductor device technology strives to follow the aggressive ITRS roadmap. The ITRS calls for increased 3D metrology to meet the demand for tighter process control at 45nm and 32nm nodes. In particular, gate engineering has advanced to a level where conventional metrology by CD-SEM and optical scatterometry (OCD) faces fundamental limitations without involvement of 3D atomic force microscope (3D-AFM or CD-AFM). This paper reports recent progress in 3D-AFM to address the metrology need to control gate dimension in MOSFET transistor formation. 3D-AFM metrology measures the gate electrode at post-etch with the lowest measurement uncertainty for critical gate geometry, including linewidth, sidewall profile, sidewall angle (SWA), line width roughness (LWR), and line edge roughness (LER). 3D-AFM enables accurate gate profile control in three types of metrology applications: reference metrology to validate CD-SEM and OCD, inline depth or 3D monitoring, or replacing TEM for 3D characterization for engineering analysis.

  8. Effect of AFM probe geometry on visco-hyperelastic characterization of soft materials

    NASA Astrophysics Data System (ADS)

    Boccaccio, Antonio; Lamberti, Luciano; Papi, Massimiliano; De Spirito, Marco; Pappalettere, Carmine

    2015-08-01

    Atomic force microscopy (AFM) nanoindentation is very suited for nano- and microscale mechanical characterization of soft materials. Although the structural response of polymeric networks that form soft matter depends on viscous effects caused by the relative slippage of polymeric chains, the usual assumption made in the AFM-based characterization is that the specimen behaves as a purely elastic material and viscous forces are negligible. However, for each geometric configuration of the AFM tip, there will be a limit indentation rate above which viscous effects must be taken into account to correctly determine mechanical properties. A parametric finite element study conducted on 12 geometric configurations of a blunt cone AFM tip (overall, the study included about 200 finite element analyses) allowed us to determine the limit indentation rate for each configuration. The selected tip dimensions cover commercially available products and account for changes in tip geometry caused by serial measurements. Nanoindentation rates cover typical experimental conditions set in AFM bio-measurements on soft matter. Viscous effects appear to be more significant in the case of sharper tips. This implies that, if quantitative data on sample viscosity are not available, using a rounded indenter and carrying out experiments below the limit indentation rate will allow errors in the determination of mechanical properties to be minimized.

  9. Visualization of internal structure of banana starch granule through AFM.

    PubMed

    Peroni-Okita, Fernanda H G; Gunning, A Patrick; Kirby, Andrew; Simão, Renata A; Soares, Claudinéia A; Cordenunsi, Beatriz R

    2015-09-05

    Atomic force microscopy (AFM) is a high resolution technique for studying the external and internal structures of starch granules. For this purpose granules were isolated from bananas and embedded in a non-penetrating resin. To achieve image contrast of the ultrastructure, the face of the cut blocks were wetted in steam and force modulation mode imaging was used. Images of starch from green bananas showed large variation of height across the granule due to a locational specific absorption of water and swelling of amorphous regions; the data reveal that the center of the granules are structurally different and have different viscoelastic properties. Images of starches from ripe bananas showed an even greater different level of organization: absence of growth rings around the hilum; the central region of the granule is richer in amylose; very porous surface with round shaped dark structures; the size of blocklets are larger than the green fruits.

  10. SU-8 hollow cantilevers for AFM cell adhesion studies

    NASA Astrophysics Data System (ADS)

    Martinez, Vincent; Behr, Pascal; Drechsler, Ute; Polesel-Maris, Jérôme; Potthoff, Eva; Vörös, Janos; Zambelli, Tomaso

    2016-05-01

    A novel fabrication method was established to produce flexible, transparent, and robust tipless hollow atomic force microscopy (AFM) cantilevers made entirely from SU-8. Channels of 3 μm thickness and several millimeters length were integrated into 12 μm thick and 40 μm wide cantilevers. Connected to a pressure controller, the devices showed high sealing performance with no leakage up to 6 bars. Changing the cantilever lengths from 100 μm to 500 μm among the same wafer allowed the targeting of various spring constants ranging from 0.5 to 80 N m-1 within a single fabrication run. These hollow polymeric AFM cantilevers were operated in the optical beam deflection configuration. To demonstrate the performance of the device, single-cell force spectroscopy experiments were performed with a single probe detaching in a serial protocol more than 100 Saccharomyces cerevisiae yeast cells from plain glass and glass coated with polydopamine while measuring adhesion forces in the sub-nanoNewton range. SU-8 now offers a new alternative to conventional silicon-based hollow cantilevers with more flexibility in terms of complex geometric design and surface chemistry modification.

  11. An AFM study of the chlorite-fluid interface. [Atomic Force Microscopy

    SciTech Connect

    Vrdoljak, G.A.; Henderson, G.S.; Fawcett, J.J. . Dept. of Geology)

    1992-01-01

    Chlorite is a ubiquitous mineral in many geologic environments and plays an important role in elemental adsorption and retention in soils. Chlorite has a 2:1 layer structure consisting of two tetrahedral sheets with an octahedral sheet between them (talc-like layer). The 2:1 layer is charge balanced and hydrogen-bonded by an interlayer of MgOH[sub 6] octahedra (brucite-like layer). The nature of chlorite's structure, its ease of imaging, and perfect 001 cleavage, make this mineral an ideal substrate for use in elemental adsorption studies in solution, with the AFM. The 001 cleavage plane of a 2b polytype with composition (Mg[sub 4.4]Fe[sub 0.6]Al[sub 1.0])[(Si[sub 2.9]Al[sub 1.1])]O[sub 10](OH)[sub g] has been imaged in air, water, and oil by atomic force microscopy. Dissolution features are observed in water, showing sub-micron features dissolving in real-time. Atomic resolution of both the talc-like and brucite-like layers has been obtained in air. However, only the tetrahedral sheet of the talc-like layer has been imaged at atomic resolution in oil and water, which may indicate a structural instability of the brucite-like surface in solution. Measurements of the unit-cell dimensions (a and b) for the talc-like layer in the three different media indicate a structural expansion of the mineral surface in solution. The a unit cell dimension expands by 7.4 [+-] 0.1% when in water; conversely, the b dimension varies greatly when in oil ([minus]10% to +20%), relative to air. The effects of these solution media on the structure of chlorite are revealed by characterization with the AFM. This information should prove useful in future studies of adsorption onto layer silicates.

  12. BOREAS AFM-04 Twin Otter Aircraft Sounding Data

    NASA Technical Reports Server (NTRS)

    MacPherson, J. Ian; Desjardins, Raymond L.; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-4 team used the National Research Council, Canada (NRC) Twin Otter aircraft to make sounding measurements through the boundary layer. These measurements included concentrations of carbon dioxide and ozone, atmospheric pressure, dry bulb temperature, potential temperature, dewpoint temperature, calculated mixing ratio, and wind speed and direction. Aircraft position, heading, and altitude were also recorded. Data were collected at both the Northern Study Area (NSA) and the Southern Study Area (SSA) in 1994 and 1996. These data are stored in tabular ASCII files. The Twin Otter aircraft sounding data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files also are available on a CD-ROM (see document number 20010000884).

  13. AFM as an analysis tool for high-capacity sulfur cathodes for Li–S batteries

    PubMed Central

    Sörgel, Seniz; Costa, Rémi; Carlé, Linus; Galm, Ines; Cañas, Natalia; Pascucci, Brigitta; Friedrich, K Andreas

    2013-01-01

    Summary In this work, material-sensitive atomic force microscopy (AFM) techniques were used to analyse the cathodes of lithium–sulfur batteries. A comparison of their nanoscale electrical, electrochemical, and morphological properties was performed with samples prepared by either suspension-spraying or doctor-blade coating with different binders. Morphological studies of the cathodes before and after the electrochemical tests were performed by using AFM and scanning electron microscopy (SEM). The cathodes that contained polyvinylidene fluoride (PVDF) and were prepared by spray-coating exhibited a superior stability of the morphology and the electric network associated with the capacity and cycling stability of these batteries. A reduction of the conductive area determined by conductive AFM was found to correlate to the battery capacity loss for all cathodes. X-ray diffraction (XRD) measurements of Li2S exposed to ambient air showed that insulating Li2S hydrolyses to insulating LiOH. This validates the significance of electrical ex-situ AFM analysis after cycling. Conductive tapping mode AFM indicated the existence of large carbon-coated sulfur particles. Based on the analytical findings, the first results of an optimized cathode showed a much improved discharge capacity of 800 mA·g(sulfur)−1 after 43 cycles. PMID:24205455

  14. Quantitating membrane bleb stiffness using AFM force spectroscopy and an optical sideview setup.

    PubMed

    Gonnermann, Carina; Huang, Chaolie; Becker, Sarah F; Stamov, Dimitar R; Wedlich, Doris; Kashef, Jubin; Franz, Clemens M

    2015-03-01

    AFM-based force spectroscopy in combination with optical microscopy is a powerful tool for investigating cell mechanics and adhesion on the single cell level. However, standard setups featuring an AFM mounted on an inverted light microscope only provide a bottom view of cell and AFM cantilever but cannot visualize vertical cell shape changes, for instance occurring during motile membrane blebbing. Here, we have integrated a mirror-based sideview system to monitor cell shape changes resulting from motile bleb behavior of Xenopus cranial neural crest (CNC) cells during AFM elasticity and adhesion measurements. Using the sideview setup, we quantitatively investigate mechanical changes associated with bleb formation and compared cell elasticity values recorded during membrane bleb and non-bleb events. Bleb protrusions displayed significantly lower stiffness compared to the non-blebbing membrane in the same cell. Bleb stiffness values were comparable to values obtained from blebbistatin-treated cells, consistent with the absence of a functional actomyosin network in bleb protrusions. Furthermore, we show that membrane blebs forming within the cell-cell contact zone have a detrimental effect on cell-cell adhesion forces, suggesting that mechanical changes associated with bleb protrusions promote cell-cell detachment or prevent adhesion reinforcement. Incorporating a sideview setup into an AFM platform therefore provides a new tool to correlate changes in cell morphology with results from force spectroscopy experiments.

  15. DNA-duplex linker for AFM-SELEX of DNA aptamer against human serum albumin.

    PubMed

    Takenaka, Musashi; Okumura, Yuzo; Amino, Tomokazu; Miyachi, Yusuke; Ogino, Chiaki; Kondo, Akihiko

    2017-02-15

    DNA-duplex interactions in thymines and adenins are used as a linker for the novel methodology of Atomic Force Microscope-Systematic Evolution of Ligands by EXpotential enrichment (AFM-SELEX). This study used the hydrogen bonds in 10 mer of both thymines (T10) and adenines (A10). Initially, the interactive force in T10-A10 was measured by AFM, which returned an average interactive force of approximately 350pN. Based on this result, DNA aptamers against human serum albumin could be selected in the 4th round, and 15 different clones could be sequenced. The lowest dissociation constant of the selected aptamer was identified via surface plasmon resonance, and it proved to be identical to that of the commercial aptamer. Therefore, specific hydrogen bonds in DNA can be useful linkers for AFM-SELEX.

  16. In situ nanomanipulators as a tool to separate individual tobermorite crystals for AFM studies.

    PubMed

    Yang, Tianhe; Holzer, Lorenz; Kägi, Ralf; Winnefeld, Frank; Keller, Bruno

    2007-10-01

    Atomic force microscopy (AFM) studies of cementitious materials are limited, mainly due to the lack of appropriate sample preparation techniques. In porous autoclaved aerated concrete (AAC), calcium silicate hydrate (C-S-H) is produced in its crystalline form, tobermorite. The crystals are lath-like with a length of several micrometers. In this work, we demonstrate the application of nanomanipulators to separate an individual tobermorite crystal from the bulk AAC for subsequent AFM investigations. The nanomanipulators are operated directly in an environmental scanning electron microscope (ESEM). We studied the interaction between moisture and the tobermorite surface under controlled relative humidity (RH). The results of topography and adhesion force measurements with AFM suggest that the surface of tobermorite is hydrophobic, which contrasts the macroscopic material properties (e.g. moisture transport in capillary pores).

  17. FRAME (Force Review Automation Environment): MATLAB-based AFM data processor.

    PubMed

    Partola, Kostyantyn R; Lykotrafitis, George

    2016-05-03

    Data processing of force-displacement curves generated by atomic force microscopes (AFMs) for elastic moduli and unbinding event measurements is very time consuming and susceptible to user error or bias. There is an evident need for consistent, dependable, and easy-to-use AFM data processing software. We have developed an open-source software application, the force review automation environment (or FRAME), that provides users with an intuitive graphical user interface, automating data processing, and tools for expediting manual processing. We did not observe a significant difference between manually processed and automatically processed results from the same data sets.

  18. BOREAS AFM-6 Boundary Layer Height Data

    NASA Technical Reports Server (NTRS)

    Wilczak, James; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-6 team from National Oceanic and Atmospheric Adminsitration/Environment Technology Laboratory (NOAA/ETL) operated a 915-MHz wind/Radio Acoustic Sounding System (RASS) profiler system in the Southern Study Area (SSA) near the Old Jack Pine (OJP) site. This data set provides boundary layer height information over the site. The data were collected from 21 May 1994 to 20 Sep 1994 and are stored in tabular ASCII files. The boundary layer height data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  19. BOREAS AFM-06 Mean Wind Profile Data

    NASA Technical Reports Server (NTRS)

    Wilczak, James; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-6 team from the National Oceanic and Atmospheric Administration/Environment Technology Laboratory (NOAA/ETL) operated a 915-MHz wind/Radio Acoustic Sounding System (RASS) profiler system in the Southern Study Area (SSA) near the Old Jack Pine (OJP) tower from 21 May 1994 to 20 Sep 1994. The data set provides wind profiles at 38 heights, containing the variables of wind speed; wind direction; and the u-, v-, and w-components of the total wind. The data are stored in tabular ASCII files. The mean wind profile data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  20. BOREAS AFM-06 Mean Temperature Profile Data

    NASA Technical Reports Server (NTRS)

    Wilczak, James; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-6 team from the National Oceanic and Atmospheric Adminsitration/Environment Technology Laboratory (NOAA/ETL) operated a 915-MHz wind/Radio Acoustic Sounding System (RASS) profiler system in the Southern Study Area (SSA) near the Old Jack Pine (OJP) tower from 21 May 1994 to 20 Sep 1994. The data set provides temperature profiles at 15 heights, containing the variables of virtual temperature, vertical velocity, the speed of sound, and w-bar. The data are stored in tabular ASCII files. The mean temperature profile data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  1. Real-time Redox Measurements during Endoplasmic Reticulum Stress Reveal Interlinked Protein Folding Functions

    PubMed Central

    Merksamer, Philip I.; Trusina, Ala; Papa, Feroz R.

    2008-01-01

    SUMMARY Disruption of protein folding in the endoplasmic reticulum (ER) causes unfolded proteins to accumulate, triggering the unfolded protein response (UPR). UPR outputs in turn decrease ER unfolded proteins to close a negative feedback loop. However, because it is infeasible to directly measure the concentration of unfolded proteins in vivo, cells are generically described as experiencing “ER stress” whenever the UPR is active. Because ER redox potential is optimized for oxidative protein folding, we reasoned that measureable redox changes should accompany unfolded protein accumulation. To test this concept, we employed fluorescent protein reporters to dynamically measure ER redox status and UPR activity in single cells. Using these tools, we show that diverse stressors, both experimental and physiological, compromise ER protein oxidation when UPR-imposed homeostatic control is lost. Using genetic analysis we uncovered redox heterogeneities in isogenic cell populations, and revealed functional interlinks between ER protein folding, modification, and quality control systems. PMID:19026441

  2. An AFM study of calcite dissolution in concentrated electrolyte solutions

    NASA Astrophysics Data System (ADS)

    Ruiz Agudo, E.; Putnis, C. V.; Putnis, A.; Rodriguez-Navarro, C.

    2009-04-01

    Calcite-solution interactions are of a paramount importance in a range of processes such as the removal of heavy metals, carbon dioxide sequestration, landscape modeling, weathering of building stone and biomineralization. Water in contact with minerals often carries significant amounts of solutes; additionally, their concentration may vary due to evaporation and condensation. It is well known that calcite dissolution is affected dramatically by the presence of such solutes. Here we present investigations on the dissolution of calcite in the presence of different electrolytes. Both bulk (batch reactors) experiments and nanoscale (in situ AFM) techniques are used to study the dissolution of calcite in a range of solutions containing alkaly cations balanced by halide anions. Previous works have indicated that the ionic strength has little influence in calcite dissolution rates measured from bulk experiments (Pokrovsky et al. 2005; Glendhill and Morse, 2004). Contrary to these results, our quantitative analyses of AFM observations show an enhancement of the calcite dissolution rate with increasing electrolyte concentration. Such an effect is concentration-dependent and it is most evident in concentrated solutions. AFM experiments have been carried out in a fluid cell using calcite cleavage surfaces in contact with solutions of simple salts of the alkaly metals and halides at different undersaturations with respect to calcite to try to specify the effect of the ionic strength on etch pit spreading rate and calcite dissolution rate. These results show that the presence of soluble salts may critically affect the weathering of carbonate rocks in nature as well as the decay of carbonate stone in built cultural heritage. References: Pokrosky, O.S.; Golubev, S.V.; Schott, J. Dissolution kinetics of calcite, dolomite and magnesite at 25°C and 0 to 50 atm pCO2. Chemical Geology, 2005, 217 (3-4) 239-255. Glendhill, D.K.; Morse, J.W. Dissolution kinetics of calcite in Na

  3. AFM/MFM hybrid nanocharacterization of martensitic transformation and degradation for Fe-Pd shape memory alloy

    NASA Astrophysics Data System (ADS)

    Suzuki, Takayuki; Nagatani, Kohei; Hirano, Kazumi; Teramoto, Tokuo; Taya, Minoru

    2003-07-01

    Martensitic transformation and degradation characteristics for Fe-Pd ferromagnetic shape memory alloy were investigated by the developed AFM (Atomic Force Microscope)/MFM (Magnetic Force Microscope) hybrid nano-characterization technique. In AFM martensitic transformation was detected by the changes of surface topography of martensite plates. In MFM martensitic transformation was detected by the changes of magnetic domain structures. This technique has an advantage that martensitic transformation characteristics such as martensitic transformation temperature and reverse transformation temperature can be measured at microscopic and nanoscopic small area. Degradation characteristics of martensitic transformation under cyclic loading were also detected by the changes of AFM and MFM images. In AFM images surface topography of martensite plates became flat and in MFM images the morphology of magnetic domain structures became unfocused under cyclic loading. Then it was found that the hybrid nano-characterization was very high sensitive technique to evaluate degradation for Fe-Pd ferromagnetic shape memory alloy.

  4. Preparation of DNA and nucleoprotein samples for AFM imaging

    PubMed Central

    Lyubchenko, Yuri L.

    2010-01-01

    Sample preparation techniques allowing reliable and reproducible imaging of DNA with various structures, topologies and complexes with proteins are reviewed. The major emphasis is given to methods utilizing chemical functionalization of mica, enabling preparation of the surfaces with required characteristics. The methods are illustrated by examples of imaging of different DNA structures. Special attention is given to the possibility of AFM to image the dynamics of DNA at the nanoscale. The capabilities of time-lapse AFM in aqueous solutions are illustrated by imaging of dynamic processes as transitions of local alternative structures (transition of DNA between H and B forms). The application of AFM to studies of protein-DNA complexes is illustrated by a few examples of imaging site-specific complexes, as well as such systems as chromatin. The time-lapse AFM studies of protein-DNA complexes including very recent advances with the use of high-speed AFM are reviewed. PMID:20864349

  5. Manufacturing process of nanofluidics using afm probe

    NASA Astrophysics Data System (ADS)

    Karingula, Varun Kumar

    A new process for fabricating a nano fluidic device that can be used in medical application is developed and demonstrated. Nano channels are fabricated using a nano tip in indentation mode on AFM (Atomic Force Microscopy). The nano channels are integrated between the micro channels and act as a filter to separate biomolecules. Nano channels of 4 to7 m in length, 80nm in width, and at varying depths from 100nm to 850 nm allow the resulting device to separate selected groups of lysosomes and other viruses. Sharply developed vertical micro channels are produced from a deep reaction ion etching followed by deposition of different materials, such as gold and polymers, on the top surface, allowing the study of alternative ways of manufacturing a nanofluidic device. PDMS (Polydimethylsiloxane) bonding is performed to close the top surface of the device. An experimental setup is used to test and validate the device by pouring fluid through the channels. A detailed cost evaluation is conducted to compare the economical merits of the proposed process. It is shown that there is a 47:7% manufacturing time savings and a 60:6% manufacturing cost savings.

  6. Single-Molecule Studies of Integrins by AFM-Based Force Spectroscopy on Living Cells

    NASA Astrophysics Data System (ADS)

    Eibl, Robert H.

    The characterization of cell adhesion between two living cells at the single-molecule level, i.e., between one adhesion receptor and its counter-receptor, appears to be an experimental challenge. Atomic force microscopy (AFM) can be used in its force spectroscopy mode to determine unbinding forces of a single pair of adhesion receptors, even with a living cell as a probe. This chapter provides an overview of AFM force measurements of the integrin family of cell adhesion receptors and their ligands. A focus is given to major integrins expressed on leukocytes, such as lymphocyte function-associated antigen 1 (LFA-1) and very late antigen 4 (VLA-4). These receptors are crucial for leukocyte trafficking in health and disease. LFA-1 and VLA-1 can be activated within the bloodstream from a low-affinity to a high-affinity receptor by chemokines in order to adhere strongly to the vessel wall before the receptor-bearing leukocytes extravasate. The experimental considerations needed to provide near-physiological conditions for a living cell and to be able to measure adequate forces at the single-molecule level are discussed in detail. AFM technology has been developed into a modern and extremely sensitive tool in biomedical research. It appears now that AFM force spectroscopy could enter, within a few years, medical applications in diagnosis and therapy of cancer and autoimmune diseases.

  7. Kinetic Measurements Reveal Enhanced Protein-Protein Interactions at Intercellular Junctions

    PubMed Central

    Shashikanth, Nitesh; Kisting, Meridith A.; Leckband, Deborah E.

    2016-01-01

    The binding properties of adhesion proteins are typically quantified from measurements with soluble fragments, under conditions that differ radically from the confined microenvironment of membrane bound proteins in adhesion zones. Using classical cadherin as a model adhesion protein, we tested the postulate that confinement within quasi two-dimensional intercellular gaps exposes weak protein interactions that are not detected in solution binding assays. Micropipette-based measurements of cadherin-mediated, cell-cell binding kinetics identified a unique kinetic signature that reflects both adhesive (trans) bonds between cadherins on opposing cells and lateral (cis) interactions between cadherins on the same cell. In solution, proposed lateral interactions were not detected, even at high cadherin concentrations. Mutations postulated to disrupt lateral cadherin association altered the kinetic signatures, but did not affect the adhesive (trans) binding affinity. Perturbed kinetics further coincided with altered cadherin distributions at junctions, wound healing dynamics, and paracellular permeability. Intercellular binding kinetics thus revealed cadherin interactions that occur within confined, intermembrane gaps but not in solution. Findings further demonstrate the impact of these revealed interactions on the organization and function of intercellular junctions. PMID:27009566

  8. A genetic strategy to measure circulating Drosophila insulin reveals genes regulating insulin production and secretion.

    PubMed

    Park, Sangbin; Alfa, Ronald W; Topper, Sydni M; Kim, Grace E S; Kockel, Lutz; Kim, Seung K

    2014-08-01

    Insulin is a major regulator of metabolism in metazoans, including the fruit fly Drosophila melanogaster. Genome-wide association studies (GWAS) suggest a genetic basis for reductions of both insulin sensitivity and insulin secretion, phenotypes commonly observed in humans with type 2 diabetes mellitus (T2DM). To identify molecular functions of genes linked to T2DM risk, we developed a genetic tool to measure insulin-like peptide 2 (Ilp2) levels in Drosophila, a model organism with superb experimental genetics. Our system permitted sensitive quantification of circulating Ilp2, including measures of Ilp2 dynamics during fasting and re-feeding, and demonstration of adaptive Ilp2 secretion in response to insulin receptor haploinsufficiency. Tissue specific dissection of this reduced insulin signaling phenotype revealed a critical role for insulin signaling in specific peripheral tissues. Knockdown of the Drosophila orthologues of human T2DM risk genes, including GLIS3 and BCL11A, revealed roles of these Drosophila genes in Ilp2 production or secretion. Discovery of Drosophila mechanisms and regulators controlling in vivo insulin dynamics should accelerate functional dissection of diabetes genetics.

  9. Outcome revealed by preference in schizophrenia (OPS): development of a new class of outcome measurements.

    PubMed

    Falissard, Bruno; Bazin, Nadine; Hardy-Bayle, Marie-Christine

    2006-01-01

    The objective of this paper is to describe the development of a new type of outcome measurement, based on revealed preference, which can be used in serious chronic illnesses. Fifteen texts of about 200 words each were written by one of the authors on the day-to-day life of 15 schizophrenic patients. These 15 'slices of life' thus described were then ranked in terms of acceptability by a second group of 10 schizophrenic patients and by a group of 12 relatives of schizophrenic patients. From these rankings, six situations were selected so as to obtain evenly distributed positioning on an axis of acceptability. These six situations comprised the final instrument. In administration, the patients were first asked if the 'slices of life' that were described were acceptable or not, then if the 'slices of life' described were more or less acceptable than their own lives. Two scores were derived, one for an absolute level and the other for a relative level of the patient's satisfaction with his or her existence. Validation results were presented to a new sample of 229 schizophrenic patients. Internal consistency appeared good and the initial ranking of the six situations in terms of acceptability was confirmed. This study encourages the development of global outcome measures based on revealed preference in chronic serious illnesses.

  10. Compositional variability across Mercury's surface revealed by MESSENGER measurements of variations in thermal neutron count rates

    NASA Astrophysics Data System (ADS)

    Peplowski, P. N.; Lawrence, D. J.; Goldsten, J. O.; Nittler, L. R.; Solomon, S. C.

    2013-12-01

    Measurements by MESSENGER's Gamma-Ray and Neutron Spectrometer (GRNS) have revealed variations in the flux of thermal neutrons across Mercury's northern hemisphere. These variations are interpreted to originate from spatial variations in surface elemental composition. In particular, the measurements are sensitive to the near-surface abundances of elements that absorb thermal neutrons, including major rock-forming elements such as Fe and Ti, minor elements such as Mn and Cl, and rare-earth elements such as Gd and Sm. We have constructed a map of thermal neutron variability across the surface and compared it with known variations in elemental composition and with the distribution of geologic units. Development of the map included the derivation of the macroscopic thermal neutron absorption cross section across the surface, a quantity whose value and variability provides useful constraints on the formation and geochemical evolution of Mercury's crust. Finally, by combining the thermal neutron measurements with previously reported elemental measurements from the GRNS and MESSENGER's X-Ray Spectrometer, we have derived constraints on the abundances of neutron-absorbing elements, including previously unreported limits for some minor and rare-earth elements.

  11. Polaron dynamics in two types of long oligothiophenes revealed by Q - and X -band ESR measurements

    NASA Astrophysics Data System (ADS)

    Kanemoto, Katsuichi; Furukawa, Ko; Negishi, Nobukazu; Aso, Yoshio; Otsubo, Tetsuo

    2007-10-01

    The polaron dynamics has been investigated through the X - and Q -band ESR measurements for two types of iodine-doped long oligothiophenes, the 20-mer with octyl substituents (o-20T) and the 16-mer with hexyl substituents (h-16T) . o-20T , used as a model compound of conjugated polymers with crystalline grains, gives anisotropic ESR spectra attributed to g anisotropy at low temperatures. The anisotropic spectra are found to be brought by polarons moving within the crystalline grains consisting of parallel chains. The anisotropy is shown to decrease with increasing temperature. This provides definite evidence that the polarons transfer among some grains by the assist of temperature. In contrast, h-16T , used as a model of the polymers with amorphous morphology, gives almost isotropic ESR spectra even in the Q -band measurement. This feature of h-16T is explained to be caused by a rapid interchain transfer of polarons. Spectral simulations performed for obtained spectra reveal that the ESR linewidth in the Q -band measurement is larger than that in the X band for both oligothiophenes. The difference of the linewidth is analyzed by a simplified motional narrowing model in order to draw the information of polaron dynamics. Analyses for o-20T show that the intergrain motion almost follows the variable range hopping model. The interchain motion in h-16T is found to have a much weaker temperature dependence than the intergrain motion in o-20T . This result suggests that the interchain dynamics of h-16T revealed by the ESR technique includes a variety of processes of motion.

  12. AFM studies of the crystallization and habit modification of an excipient material, adipic acid.

    PubMed

    Keel, T R; Thompson, C; Davies, M C; Tendler, S J B; Roberts, C J

    2004-08-06

    Atomic force microscopy (AFM) has been used to investigate the (1 0 0) face of crystalline adipic acid, both in air and liquid environments. In air, surface reorganization occurred during scanning of the AFM probe, which has been investigated using single point force-distance analysis under a controlled relative humidity (RH) environment. We suggest such reorganization can be attributed to the influence of a network of water molecules bound to the hydrophilic (1 0 0) surface permitting local AFM tip-enhanced dissolution and reorganization of the solute. In situ imaging was also carried out on the crystals, revealing etch-pit formation during dissolution, and rapid growth at higher levels of supersaturation (sigma), both of which are direct consequences of the hydrophilic nature of the (1 0 0) face. Also presented here are nanoscale observations of the effect of octanoic acid, a structurally-related habit modifier, on crystalline adipic acid. Using AFM, we have been able to show that the presence of octanoic acid at low concentration has little observable affect on the development of the (1 0 0) face; however, as this concentration is increased, there are clear changes in step morphology and growth mode on the (1 0 0) face of the crystal. At a concentration of 1.26 mmol dm(-3) (a concentration corresponding to a molar ratio of approximately 1:175 octanoic acid:adipic acid), growth on the (1 0 0) face is inhibited, with in situ AFM imaging indicating this is a direct consequence of octanoic acid binding to the surface, and pinning the monomolecular growth steps.

  13. Versatile method for AFM-tip functionalization with biomolecules: fishing a ligand by means of an in situ click reaction

    NASA Astrophysics Data System (ADS)

    Kumar, Rakesh; Ramakrishna, Shivaprakash N.; Naik, Vikrant V.; Chu, Zonglin; Drew, Michael E.; Spencer, Nicholas D.; Yamakoshi, Yoko

    2015-04-01

    A facile and universal method for the functionalization of an AFM tip has been developed for chemical force spectroscopy (CFS) studies of intermolecular interactions of biomolecules. A click reaction between tripod-acetylene and an azide-linker-ligand molecule was successfully carried out on the AFM tip surface and used for the CFS study of ligand-receptor interactions.A facile and universal method for the functionalization of an AFM tip has been developed for chemical force spectroscopy (CFS) studies of intermolecular interactions of biomolecules. A click reaction between tripod-acetylene and an azide-linker-ligand molecule was successfully carried out on the AFM tip surface and used for the CFS study of ligand-receptor interactions. Electronic supplementary information (ESI) available: Experimental details with synthesis and characterization of compounds. Procedures for modifications of Au surfaces and AFM tips. AFM images and full PM-IRRAS spectra of modified surfaces. Detailed procedure for QCM measurement. A table showing ligand-receptor interaction probability. NMR, IR and MS charts. See DOI: 10.1039/c5nr01495f

  14. Applications of AFM in semiconductor R&D and manufacturing at 45 nm technology node and beyond

    NASA Astrophysics Data System (ADS)

    Lee, Moon-Keun; Shin, Minjung; Bao, Tianming; Song, Chul-Gi; Dawson, Dean; Ihm, Dong-Chul; Ukraintsev, Vladimir

    2009-03-01

    Continuing demand for high performance microelectronic products propelled integrated circuit technology into 45 nm node and beyond. The shrinking device feature geometry created unprecedented challenges for dimension metrology in semiconductor manufacturing and research and development. Automated atomic force microscope (AFM) has been used to meet the challenge and characterize narrower lines, trenches and holes at 45nm technology node and beyond. AFM is indispensable metrology techniques capable of non-destructive full three-dimensional imaging, surface morphology characterization and accurate critical dimension (CD) measurements. While all available dimensional metrology techniques approach their limits, AFM continues to provide reliable information for development and control of processes in memory, logic, photomask, image sensor and data storage manufacturing. In this paper we review up-todate applications of automated AFM in every mentioned above semiconductor industry sector. To demonstrate benefits of AFM at 45 nm node and beyond we compare capability of automated AFM with established in-line and off-line metrologies like critical dimension scanning electron microscopy (CDSEM), optical scatterometry (OCD) and transmission electronic microscopy (TEM).

  15. Raman and AFM study of gamma irradiated plastic bottle sheets

    NASA Astrophysics Data System (ADS)

    Ali, Yasir; Kumar, Vijay; Sonkawade, R. G.; Dhaliwal, A. S.

    2013-02-01

    In this investigation, the effects of gamma irradiation on the structural properties of plastic bottle sheet are studied. The Plastic sheets were exposed with 1.25MeV 60Co gamma rays source at various dose levels within the range from 0-670 kGy. The induced modifications were followed by micro-Raman and atomic force microscopy (AFM). The Raman spectrum shows the decrease in Raman intensity and formation of unsaturated bonds with an increase in the gamma dose. AFM image displays rough surface morphology after irradiation. The detailed Raman analysis of plastic bottle sheets is presented here, and the results are correlated with the AFM observations.

  16. AFM tip characterization by using FFT filtered images of step structures.

    PubMed

    Yan, Yongda; Xue, Bo; Hu, Zhenjiang; Zhao, Xuesen

    2016-01-01

    The measurement resolution of an atomic force microscope (AFM) is largely dependent on the radius of the tip. Meanwhile, when using AFM to study nanoscale surface properties, the value of the tip radius is needed in calculations. As such, estimation of the tip radius is important for analyzing results taken using an AFM. In this study, a geometrical model created by scanning a step structure with an AFM tip was developed. The tip was assumed to have a hemispherical cone shape. Profiles simulated by tips with different scanning radii were calculated by fast Fourier transform (FFT). By analyzing the influence of tip radius variation on the spectra of simulated profiles, it was found that low-frequency harmonics were more susceptible, and that the relationship between the tip radius and the low-frequency harmonic amplitude of the step structure varied monotonically. Based on this regularity, we developed a new method to characterize the radius of the hemispherical tip. The tip radii estimated with this approach were comparable to the results obtained using scanning electron microscope imaging and blind reconstruction methods.

  17. BOREAS AFM-03-NCAR Electra 1994 Aircraft Sounding Data

    NASA Technical Reports Server (NTRS)

    Lenschow, Donald H.; Oncley, Steven P.; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-3 team used the National Center for Atmospheric Research's (NCAR) Electra aircraft to make sounding measurements to study the planetary boundary layer using in situ and remote-sensing measurements. Measurements were made of wind speed and direction, air pressure and temperature, potential temperature, dewpoint, mixing ratio of H, O, CO, concentration, and ozone concentration. Twenty-five research missions were flown over the Northern Study Area (NSA), Southern Study Area (SSA), and the transect during BOREAS Intensive Field Campaigns (IFCs) 1, 2, and 3 during 1994. All missions had from four to ten soundings through the top of the planetary boundary layer. This sounding data set contains all of the in situ vertical profiles through the boundary layer top that were made (with the exception of 'porpoise' maneuvers). Data were recorded in one-second time intervals. These data are stored in tabular ASCII files. The NCAR Electra 1994 aircraft sounding data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  18. Fibrinogen adsorption mechanisms at the gold substrate revealed by QCM-D measurements and RSA modeling.

    PubMed

    Kubiak, Katarzyna; Adamczyk, Zbigniew; Cieśla, Michał

    2016-03-01

    Adsorption kinetics of fibrinogen at a gold substrate at various pHs was thoroughly studied using the QCM-D method. The experimental were interpreted in terms of theoretical calculations performed according to the random sequential adsorption model (RSA). In this way, the hydration functions and water factors of fibrinogen monolayers were quantitatively evaluated at various pHs. It was revealed that for the lower range of fibrinogen coverage the hydration function were considerably lower than previously obtained for the silica sensor [33]. The lower hydration of fibrinogen monolayers on the gold sensor was attributed to its higher roughness. However, for higher fibrinogen coverage the hydration functions for both sensors became identical exhibiting an universal behavior. By using the hydration functions, the fibrinogen adsorption/desorption runs derived from QCM-D measurements were converted to the Γd vs. the time relationships. This allowed to precisely determine the maximum coverage that varied between 1.6mgm(-2) at pH 3.5 and 4.5mgm(-2) at pH 7.4 (for ionic strength of 0.15M). These results agree with theoretical eRSA modeling and previous experimental data derived by using ellipsometry, OWLS and TIRF. Various fibrinogen adsorption mechanisms were revealed by exploiting the maximum coverage data. These results allow one to develop a method for preparing fibrinogen monolayers of well-controlled coverage and molecule orientation.

  19. Force measurements reveal how small binders perturb the dissociation mechanisms of DNA duplex sequences

    NASA Astrophysics Data System (ADS)

    Burmistrova, Anastasia; Fresch, Barbara; Sluysmans, Damien; de Pauw, Edwin; Remacle, Françoise; Duwez, Anne-Sophie

    2016-06-01

    The force-driven separation of double-stranded DNA is crucial to the accomplishment of cellular processes like genome transactions. Ligands binding to short DNA sequences can have a local stabilizing or destabilizing effect and thus severely affect these processes. Although the design of ligands that bind to specific sequences is a field of intense research with promising biomedical applications, so far, their effect on the force-induced strand separation has remained elusive. Here, by means of AFM-based single molecule force spectroscopy, we show the co-existence of two different mechanisms for the separation of a short DNA duplex and demonstrate how they are perturbed by small binders. With the support of Molecular Dynamics simulations, we evidence that above a critical pulling rate one of the dissociation pathways becomes dominant, with a dramatic effect on the rupture forces. Around the critical threshold, we observe a drop of the most probable rupture forces for ligand-stabilized duplexes. Our results offer a deep understanding of how a stable DNA-ligand complex behaves under force-driven strand separation.The force-driven separation of double-stranded DNA is crucial to the accomplishment of cellular processes like genome transactions. Ligands binding to short DNA sequences can have a local stabilizing or destabilizing effect and thus severely affect these processes. Although the design of ligands that bind to specific sequences is a field of intense research with promising biomedical applications, so far, their effect on the force-induced strand separation has remained elusive. Here, by means of AFM-based single molecule force spectroscopy, we show the co-existence of two different mechanisms for the separation of a short DNA duplex and demonstrate how they are perturbed by small binders. With the support of Molecular Dynamics simulations, we evidence that above a critical pulling rate one of the dissociation pathways becomes dominant, with a dramatic effect

  20. Multimodal and Multi-tissue Measures of Connectivity Revealed by Joint Independent Component Analysis

    PubMed Central

    Ling, Josef; Caprihan, Arvind; Calhoun, Vince D.; Jung, Rex E.; Heileman, Gregory L.

    2009-01-01

    The human brain functions as an efficient system where signals arising from gray matter are transported via white matter tracts to other regions of the brain to facilitate human behavior. However, with a few exceptions, functional and structural neuroimaging data are typically optimized to maximize the quantification of signals arising from a single source. For example, functional magnetic resonance imaging (FMRI) is typically used as an index of gray matter functioning whereas diffusion tensor imaging (DTI) is typically used to determine white matter properties. While it is likely that these signals arising from different tissue sources contain complementary information, the signal processing algorithms necessary for the fusion of neuroimaging data across imaging modalities are still in a nascent stage. In the current paper we present a data-driven method for combining measures of functional connectivity arising from gray matter sources (FMRI resting state data) with different measures of white matter connectivity (DTI). Specifically, a joint independent component analysis (J-ICA) was used to combine these measures of functional connectivity following intensive signal processing and feature extraction within each of the individual modalities. Our results indicate that one of the most predominantly used measures of functional connectivity (activity in the default mode network) is highly dependent on the integrity of white matter connections between the two hemispheres (corpus callosum) and within the cingulate bundles. Importantly, the discovery of this complex relationship of connectivity was entirely facilitated by the signal processing and fusion techniques presented herein and could not have been revealed through separate analyses of both data types as is typically performed in the majority of neuroimaging experiments. We conclude by discussing future applications of this technique to other areas of neuroimaging and examining potential limitations of the

  1. Comparative quantification and statistical analysis of η′ and η precipitates in aluminum alloy AA7075-T651 by TEM and AFM

    SciTech Connect

    Garcia-Garcia, Adrian Luis Dominguez-Lopez, Ivan Lopez-Jimenez, Luis Barceinas-Sanchez, J.D. Oscar

    2014-01-15

    Quantification of nanometric precipitates in metallic alloys has been traditionally performed using transmission electron microscopy, which is nominally a low throughput technique. This work presents a comparative study of quantification of η′ and η precipitates in aluminum alloy AA7075-T651 using transmission electron microscopy (TEM) and non-contact atomic force microscopy (AFM). AFM quantification was compared with 2-D stereological results reported elsewhere. Also, a method was developed, using specialized software, to characterize nanometric size precipitates observed in dark-field TEM micrographs. Statistical analysis of the quantification results from both measurement techniques supports the use of AFM for precipitate characterization. Once the precipitate stoichiometry has been determined by appropriate analytical techniques like TEM, as it is the case for η′ and η in AA7075-T651, the relative ease with which specimens are prepared for AFM analysis could be advantageous in product and process development, and quality control, where a large number of samples are expected for analysis on a regular basis. - Highlights: • Nanometric MgZn{sub 2} precipitates in AA7075-T651 were characterized using AFM and TEM. • Phase-contrast AFM was used to differentiate metal matrix from MgZn{sub 2} precipitates. • TEM and AFM micrographs were analyzed using commercially available software. • AFM image analysis and TEM 2-D stereology render statistically equivalent results.

  2. New Aspects of Photocurrent Generation at Graphene pn Junctions Revealed by Ultrafast Optical Measurements

    NASA Astrophysics Data System (ADS)

    Aivazian, Grant; Sun, Dong; Jones, Aaron; Ross, Jason; Yao, Wang; Cobden, David; Xu, Xiaodong

    2012-02-01

    The remarkable electrical and optical properties of graphene make it a promising material for new optoelectronic applications. However, one important, but so far unexplored, property is the role of hot carriers in charge and energy transport at graphene interfaces. Here we investigate the photocurrent (PC) dynamics at a tunable graphene pn junction using ultrafast scanning PC microscopy. Pump-probe measurements show a temperature dependent relaxation time of photogenerated carriers that increases from 1.5ps at 290K to 4ps at 20K; while the amplitude of the PC is independent of the lattice temperature. These observations imply that it is hot carriers, not phonons, which dominate ultrafast energy transport. Gate dependent measurements show many interesting features such as pump induced saturation, enhancement, and sign reversal of probe generated PC. These observations reveal that the underlying PC mechanism is a combination of the thermoelectric and built-in electric field effects. Our results enhance the understanding of non-equilibrium electron dynamics, electron-electron interactions, and electron-phonon interactions in graphene. They also determine fundamental limits on ultrafast device operation speeds (˜500 GHz) for graphene-based photodetectors.

  3. New insights into the mucoadhesion of pectins by AFM roughness parameters in combination with SPR.

    PubMed

    Joergensen, Lars; Klösgen, Beate; Simonsen, Adam Cohen; Borch, Jonas; Hagesaether, Ellen

    2011-06-15

    The object of this study was to assess the mucoadhesion of the three main commercially available types of pectin by atomic force microscopy (AFM) and surface Plasmon resonance (SPR). Polyacrylic acid and polyvinyl pyrrolidone were used as positive and negative control, respectively. Image analysis of the AFM scans revealed a significant change of roughness parameters when low-ester pectin was introduced to mica supported bovine submaxillarymucin, indicating a high mucoadhesion for this type of pectin. Only minor changes were observed with high-ester and amidated pectin. The same ranking order of adhesion affinity was confirmed by SPR. In conclusion, a high specific mucin interaction of pectin with a high charge density was demonstrated directly on a molecular scale without interference from the viscoelastic properties or the intra-molecular interactions between the polymer chains themselves, using two independent methods.

  4. AFM AND XPS Characterization of Zinc-Aluminum Alloy Coatings with Attention to Surface Dross and Flow Lines

    NASA Astrophysics Data System (ADS)

    Harding, Felipe A.; Alarcon, Nelson A.; Toledo, Pedro G.

    Surfaces of various zinc-aluminum alloy (Zn-Al) coated steel samples are studied with attention to foreign surface dross by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS/ESCA). AFM topographic maps of zinc-aluminum alloy surfaces free of dross reveal the perfect nanoscale details of two kinds of dendrites: branched and globular. In all magnifications the dendrites appear smooth and, in general, very clean. XPS analysis of the extreme surface of a Zn-Al sample reveals Al, Zn, Si and O as the main components. The XPS results show no segregation or separation of phases other than those indicated by the ternary Al-Zn-Si diagram. For surfaces of Zn-Al plagued with impurities, high resolution AFM topographic maps reveal three situations: (1) areas with well-defined dendrites, relatively free of dross; (2) areas with small, millimeter-sized black spots known as dross; and (3) areas with large black stains, known as flow lines. Dendrite deformation and dross accumulation increase notably in the neighborhood, apparently clean to the naked eye, of dross or flow lines. XPS results of areas with dross and flow lines indicate unacceptable high concentration of Si and important Si phase separation. These results, in the light of AFM work, reveal that dross and flow lines are a consequence of a high local concentration of Si from high melting point silica and silicate impurities in the Zn-Al alloy source.

  5. Robust strategies for automated AFM force curve analysis--I. Non-adhesive indentation of soft, inhomogeneous materials.

    PubMed

    Lin, David C; Dimitriadis, Emilios K; Horkay, Ferenc

    2007-06-01

    The atomic force microscope (AFM) has found wide applicability as a nanoindentation tool to measure local elastic properties of soft materials. An automated approach to the processing of AFM indentation data, namely, the extraction of Young's modulus, is essential to realizing the high-throughput potential of the instrument as an elasticity probe for typical soft materials that exhibit inhomogeneity at microscopic scales. This paper focuses on Hertzian analysis techniques, which are applicable to linear elastic indentation. We compiled a series of synergistic strategies into an algorithm that overcomes many of the complications that have previously impeded efforts to automate the fitting of contact mechanics models to indentation data. AFM raster data sets containing up to 1024 individual force-displacement curves and macroscopic compression data were obtained from testing polyvinyl alcohol gels of known composition. Local elastic properties of tissue-engineered cartilage were also measured by the AFM. All AFM data sets were processed using customized software based on the algorithm, and the extracted values of Young's modulus were compared to those obtained by macroscopic testing. Accuracy of the technique was verified by the good agreement between values of Young's modulus obtained by AFM and by direct compression of the synthetic gels. Validation of robustness was achieved by successfully fitting the vastly different types of force curves generated from the indentation of tissue-engineered cartilage. For AFM indentation data that are amenable to Hertzian analysis, the method presented here minimizes subjectivity in preprocessing and allows for improved consistency and minimized user intervention. Automated, large-scale analysis of indentation data holds tremendous potential in bioengineering applications, such as high-resolution elasticity mapping of natural and artificial tissues.

  6. Revealing Time-Unlocked Brain Activity from MEG Measurements by Common Waveform Estimation

    PubMed Central

    Takeda, Yusuke; Yamanaka, Kentaro; Yamagishi, Noriko; Sato, Masa-aki

    2014-01-01

    Brain activities related to cognitive functions, such as attention, occur with unknown and variable delays after stimulus onsets. Recently, we proposed a method (Common Waveform Estimation, CWE) that could extract such brain activities from magnetoencephalography (MEG) or electroencephalography (EEG) measurements. CWE estimates spatiotemporal MEG/EEG patterns occurring with unknown and variable delays, referred to here as unlocked waveforms, without hypotheses about their shapes. The purpose of this study is to demonstrate the usefulness of CWE for cognitive neuroscience. For this purpose, we show procedures to estimate unlocked waveforms using CWE and to examine their role. We applied CWE to the MEG epochs during Go trials of a visual Go/NoGo task. This revealed unlocked waveforms with interesting properties, specifically large alpha oscillations around the temporal areas. To examine the role of the unlocked waveform, we attempted to estimate the strength of the brain activity of the unlocked waveform in various conditions. We made a spatial filter to extract the component reflecting the brain activity of the unlocked waveform, applied this spatial filter to MEG data under different conditions (a passive viewing, a simple reaction time, and Go/NoGo tasks), and calculated the powers of the extracted components. Comparing the powers across these conditions suggests that the unlocked waveforms may reflect the inhibition of the task-irrelevant activities in the temporal regions while the subject attends to the visual stimulus. Our results demonstrate that CWE is a potential tool for revealing new findings of cognitive brain functions without any hypothesis in advance. PMID:24879410

  7. Accurate and precise calibration of AFM cantilever spring constants using laser Doppler vibrometry.

    PubMed

    Gates, Richard S; Pratt, Jon R

    2012-09-21

    Accurate cantilever spring constants are important in atomic force microscopy both in control of sensitive imaging and to provide correct nanomechanical property measurements. Conventional atomic force microscope (AFM) spring constant calibration techniques are usually performed in an AFM. They rely on significant handling and often require touching the cantilever probe tip to a surface to calibrate the optical lever sensitivity of the configuration. This can damage the tip. The thermal calibration technique developed for laser Doppler vibrometry (LDV) can be used to calibrate cantilevers without handling or touching the tip to a surface. Both flexural and torsional spring constants can be measured. Using both Euler-Bernoulli modeling and an SI traceable electrostatic force balance technique as a comparison we demonstrate that the LDV thermal technique is capable of providing rapid calibrations with a combination of ease, accuracy and precision beyond anything previously available.

  8. Molecular dynamics study on the mechanism of AFM-based nanoscratching process with water-layer lubrication

    NASA Astrophysics Data System (ADS)

    Ren, Jiaqi; Zhao, Jinsheng; Dong, Zeguang; Liu, Pinkuan

    2015-08-01

    The atomic force microscopy (AFM) based direct nanoscratching has been thoroughly studied but the mechanism of nanoscratching with water-layer lubrication is yet to be well understood. In current study, three-dimensional molecular dynamics (MD) simulations are conducted to evaluate the effects of the water-layer lubrication on the AFM-based nanoscratching process on monocrystalline copper. Comparisons of workpiece deformation, scratching forces, and friction coefficients are made between the water-lubricated and dry scratching under various thickness of water layer, scratching depth and scratching velocity. Simulation results reveal that the water layer has positive impact on the surface quality and significant influence on the scratching forces (normal forces and tangential forces). The friction coefficients of the tip in water-lubricated nanoscratching are significantly bigger than those in the dry process. Our simulation results shed lights on a promising AFM-based nanofabrication method, which can assist to get nanoscale surface morphologies with higher quality than traditional approaches.

  9. Viscoelastic Properties Measurement of Human Lymphocytes by Atomic Force Microscopy Based on Magnetic Beads Cell Isolation.

    PubMed

    Li, Mi; Liu, Lianqing; Xiao, Xiubin; Xi, Ning; Wang, Yuechao

    2016-03-28

    Cell mechanics has been proved to be an effective biomarker for indicating cellular states. The advent of atomic force microscopy (AFM) provides an exciting instrument for measuring the mechanical properties of single cells. However, current AFM single-cell mechanical measurements are commonly performed on cell lines cultured in vitro which are quite different from the primary cells in the human body. Investigating the mechanical properties of primary cells from clinical environments can help us to better understand cell behaviors. Here, by combining AFM with magnetic beads cell isolation, the viscoelastic properties of human primary B lymphocytes were quantitatively measured. B lymphocytes were isolated from the peripheral blood of healthy volunteers by density gradient centrifugation and CD19 magnetic beads cell isolation. The activity and specificity of the isolated cells were confirmed by fluorescence microscopy. AFM imaging revealed the surface topography and geometric parameters of B lymphocytes. The instantaneous modulus and relaxation time of living B lymphocytes were measured by AFM indenting technique, showing that the instantaneous modulus of human normal B lymphocytes was 2~3 kPa and the relaxation times were 0.03~0.06 s and 0.35~0.55 s. The differences in cellular visocoelastic properties between primary B lymphocytes and cell lines cultured in vitro were analyzed. The study proves the capability of AFM in quantifying the viscoelastic properties of individual specific primary cells from the blood sample of clinical patients, which will improve our understanding of the behaviors of cells in the human body.

  10. A phase 1 study of the bispecific anti-CD30/CD16A antibody construct AFM13 in patients with relapsed or refractory Hodgkin lymphoma

    PubMed Central

    Rothe, Achim; Sasse, Stephanie; Topp, Max S.; Eichenauer, Dennis A.; Hummel, Horst; Reiners, Katrin S.; Dietlein, Markus; Kuhnert, Georg; Kessler, Joerg; Buerkle, Carolin; Ravic, Miroslav; Knackmuss, Stefan; Marschner, Jens-Peter; Pogge von Strandmann, Elke; Borchmann, Peter

    2015-01-01

    AFM13 is a bispecific, tetravalent chimeric antibody construct (TandAb) designed for the treatment of CD30-expressing malignancies. AFM13 recruits natural killer (NK) cells via binding to CD16A as immune effector cells. In this phase 1 dose-escalation study, 28 patients with heavily pretreated relapsed or refractory Hodgkin lymphoma received AFM13 at doses of 0.01 to 7 mg/kg body weight. Primary objectives were safety and tolerability. Secondary objectives included pharmacokinetics, antitumor activity, and pharmacodynamics. Adverse events were generally mild to moderate. The maximum tolerated dose was not reached. Pharmacokinetics assessment revealed a half-life of up to 19 hours. Three of 26 evaluable patients achieved partial remission (11.5%) and 13 patients achieved stable disease (50%), with an overall disease control rate of 61.5%. AFM13 was also active in brentuximab vedotin–refractory patients. In 13 patients who received doses of ≥1.5 mg/kg AFM13, the overall response rate was 23% and the disease control rate was 77%. AFM13 treatment resulted in a significant NK-cell activation and a decrease of soluble CD30 in peripheral blood. In conclusion, AFM13 represents a well-tolerated, safe, and active targeted immunotherapy of Hodgkin lymphoma. A phase 2 study is currently planned to optimize the dosing schedule in order to further improve the therapeutic efficacy. This phase 1 study was registered at www.clinicaltrials.gov as #NCT01221571. PMID:25887777

  11. BOREAS AFM-2 Wyoming King Air 1994 Aircraft Sounding Data

    NASA Technical Reports Server (NTRS)

    Kelly, Robert D.; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The BOREAS AFM-2 team used the University of Wyoming King Air aircraft during IFCs 1, 2, and 3 in 1994 to collected pass-by-pass fluxes (and many other statistics) for the large number of level (constant altitude), straight-line passes used in a variety of flight patterns over the SSA and NSA and areas along the transect between these study areas. The data described here form a second set, namely soundings that were incorporated into nearly every research flight by the King Air in 1994. These soundings generally went from near the surface to above the inversion layer. Most were flown immediately after takeoff or immediately after finishing the last flux pattern of that particular day's flights. The parameters that were measured include wind direction, wind speed, west wind component (u), south wind component (v), static pressure, air dry bulb temperature, potential temperature, dewpoint, temperature, water vapor mixing ratio, and CO2 concentration. Data on the aircraft's location, attitude, and altitude during data collection are also provided. These data are stored in tabular ASCH files. The data files are available on a CD-ROM (see document number 20010000884) or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  12. New AFM Techniques for Investigating Molecular Growth Mechanisms of Protein Crystals

    NASA Technical Reports Server (NTRS)

    Li, Huayu; Nadarajah, Arunan; Konnert, John H.; Pusey, Marc L.

    1998-01-01

    Atomic Force Microscopy (AFM) has emerged as a powerful technique for investigating protein crystal growth. Earlier AFM studies were among the first to demonstrate that these crystals grew by dislocation and 2D nucleation growth mechanisms [1]. These investigations were restricted to the micron range where only surface features, such as dislocation hillocks and 2D islands are visible. Most AFM instruments can scan at higher resolutions and have the potential to resolve individual protein molecules at nanometer ranges. Such scans are essential for determining the molecular packing arrangements on crystal faces and for probing the growth process at the molecular level. However, at this resolution the AFM tip influences the image produced, with the resulting image being a convolution of the tip shape and the surface morphology [2]. In most studies this problem is resolved by deconvoluting the image to obtain the true surface morphology. Although deconvolution routines work reasonably well for simple one- dimensional shapes, for complex surfaces this approach does not produce accurate results. In this study we devised a new approach which takes advantage of the precise molecular order of crystal surfaces, combined with the knowledge of individual molecular shapes from the crystallographic data of the protein and the AFM tip shape. This information is used to construct expected theoretical AFM images by convoluting the tip shape with the constructed crystal surface shape for a given surface packing arrangement. By comparing the images from actual AFM scans with the constructed ones for different possible surface packing arrangements, the correct packing arrangement can be conclusively determined. This approach was used in this study to determine the correct one from two possible packing arrangements on (I 10) faces of tetragonal lysozyme crystals. Another novel AFM technique was also devised to measure the dimension of individual growth units of the crystal faces

  13. A novel dog-bone oscillating AFM probe with thermal actuation and piezoresistive detection.

    PubMed

    Xiong, Zhuang; Mairiaux, Estelle; Walter, Benjamin; Faucher, Marc; Buchaillot, Lionel; Legrand, Bernard

    2014-10-31

    In order to effectively increase the resonance frequency and the quality factor of atomic force microscope (AFM) probes, a novel oscillating probe based on a dog-bone shaped MEMS resonator was conceived, designed, fabricated and evaluated. The novel probe with 400 μm in length, 100 μm in width and 5 μm in thickness was enabled to feature MHz resonance frequencies with integrated thermal actuation and piezoresistive detection. Standard silicon micromachining was employed. Both electrical and optical measurements were carried out in air. The resonance frequency and the quality factor of the novel probe were measured to be 5.4 MHz and 4000 respectively, which are much higher than those (about several hundreds of kHz) of commonly used cantilever probes. The probe was mounted onto a commercial AFM set-up through a dedicated probe-holder and circuit board. Topographic images of patterned resist samples were obtained. It is expected that the resonance frequency and the measurement bandwidth of such probes will be further increased by a proper downscaling, thus leading to a significant increase in the scanning speed capability of AFM instruments.

  14. A Novel Dog-Bone Oscillating AFM Probe with Thermal Actuation and Piezoresistive Detection †

    PubMed Central

    Xiong, Zhuang; Mairiaux, Estelle; Walter, Benjamin; Faucher, Marc; Buchaillot, Lionel; Legrand, Bernard

    2014-01-01

    In order to effectively increase the resonance frequency and the quality factor of atomic force microscope (AFM) probes, a novel oscillating probe based on a dog-bone shaped MEMS resonator was conceived, designed, fabricated and evaluated. The novel probe with 400 μm in length, 100 μm in width and 5 μm in thickness was enabled to feature MHz resonance frequencies with integrated thermal actuation and piezoresistive detection. Standard silicon micromachining was employed. Both electrical and optical measurements were carried out in air. The resonance frequency and the quality factor of the novel probe were measured to be 5.4 MHz and 4000 respectively, which are much higher than those (about several hundreds of kHz) of commonly used cantilever probes. The probe was mounted onto a commercial AFM set-up through a dedicated probe-holder and circuit board. Topographic images of patterned resist samples were obtained. It is expected that the resonance frequency and the measurement bandwidth of such probes will be further increased by a proper downscaling, thus leading to a significant increase in the scanning speed capability of AFM instruments. PMID:25365463

  15. A study of water droplet between an AFM tip and a substrate using dissipative particle dynamics

    NASA Astrophysics Data System (ADS)

    Pal, Souvik; Lan, Chuanjin; Li, Zhen; Hirleman, E. Daniel; Ma, Yanbao

    2014-11-01

    Formation of a water droplet between a sharp AFM tip and a substrate due to capillary condensation affects the tip-substrate interaction. As a consequence, AFM measurements lose precision and often produce incorrect sample topology. Understanding the physics of liquid bridges is also important in the field of Dip-pen nanolithography (DPN). Significant research is being carried out to understand the mechanics of the formation of the liquid bridge and its dependence of surface properties, ambient conditions etc. The in-between length scale, i.e., mesoscale (~100 nm) associated with this phenomenon presents a steep challenge for experimental measurements. In addition, molecular dynamics (MD) can be computationally prohibitive to model the entire system, especially over microseconds to seconds. Theoretical analysis using Young Laplace equation has so far provided some qualitative insights only. We study this system using Dissipative Particle Dynamics (DPD) which is a simulation technique suitable for describing mesoscopic hydrodynamic behavior of fluids. In this work, we carry out simulations to improve understanding of the process of formation of the meniscus, the mechanics of manipulation and control of its shape, and better estimation of capillary forces. The knowledge gained through our study will help in correcting the AFM measurements affected by capillary condensation. Moreover, it will improve understanding of more accurate droplet manipulation in DPN.

  16. Seismic measurements to reveal short-term variations in the elastic properties of the Earth crust

    NASA Astrophysics Data System (ADS)

    Piccinini, Davide; Zaccarelli, Lucia; Pastori, Marina; Margheriti, Lucia; Pio Lucente, Francesco; De Gori, Pasquale; Faenza, Licia; Soldati, Gaia

    2013-04-01

    Since the late the late '60s-early '70s era seismologists started developed theories that included variations of the elastic property of the Earth crust and the state of stress and its evolution crust prior to the occurrence of a large earthquake. Among the others the theory of the dilatancy (Scholz et al., 1973): when a rock is subject to stress, the rock grains are shifted generating micro-cracks, thus the rock itself increases its volume. Inside the fractured rock, fluid saturation and pore pressure play an important role in earthquake nucleation, by modulating the effective stress. Thus measuring the variations of wave speed and of anisotropic parameter in time can be highly informative on how the stress leading to a major fault failure builds up. In 80s and 90s such kind of research on earthquake precursor slowed down and the priority was given to seismic hazard and ground motions studies, which are very important since these are the basis for the building codes in many countries. Today we have dense and sophisticated seismic networks to measure wave-fields characteristics: we archive continuous waveform data recorded at three components broad-band seismometers, we almost routinely obtain high resolution earthquake locations. Therefore we are ready to start to systematically look at seismic-wave propagation properties to possibly reveal short-term variations in the elastic properties of the Earth crust. One seismological quantity which, since the '70s, is recognized to be diagnostic of the level of fracturation and/or of the pore pressure in the rock, hence of its state of stress, is the ratio between the compressional (P-wave) and the shear (S-wave) seismic velocities, the Vp/Vs (Nur, 1972; Kisslinger and Engdahl, 1973). Variations of this ratio have been recently observed and measured during the preparatory phase of a major earthquake (Lucente et al. 2010). In active fault areas and volcanoes, tectonic stress variation influences fracture field orientation

  17. Absorption Spectroscopy and Imaging from the Visible through Mid-IR with 20 nm Resolution Using AFM probes

    NASA Astrophysics Data System (ADS)

    Centrone, Andrea

    2015-03-01

    Correlated nanoscale composition and optical property maps are important to engineer nanomaterials in applications ranging from photovoltaics to sensing and therapeutics. Wavelengths (λs) from the visible to near-IR probe electronic transitions in materials, providing information regarding band gap and defects while light in mid-IR probes vibrational transitions and provide chemical composition. However, light diffraction limits the lateral resolution of conventional micro-spectroscopic techniques to approximately λ/2, which is insufficient to image nanomaterials. Additionally, the λ-dependent resolution impedes direct comparison of spectral maps from different spectral ranges. Photo Thermal Induced Resonance (PTIR) is a novel technique that circumvents light diffraction by employing an AFM tip as a local detector for measuring light absorption with λ-independent nanoscale resolution. Our PTIR setup combines an AFM microscope with three lasers providing λ-tunability from 500 nm to 16000 nm continuously. The AFM tip transduces locally the sample thermal expansion induced by light absorption into large cantilever oscillations. Local absorption spectra (electronic or vibrational) and maps are obtained recording the amplitude of the tip deflection as a function of λ and position, respectively. The working principles of the PTIR technique will be described first, and nano-patterned polymer samples will be used to evaluate its lateral resolution, sensitivity and linearity. Results show that the PTIR signal intensity is proportional to the local absorbed energy suggesting applicability of this technique for quantitative chemical analysis at nanoscale, at least for thin (less than 1000 nm thick) samples. Additionally, a λ-independent resolution as high as 20 nm is demonstrated across the whole spectral range. In the second part of the talk, PTIR will be applied to image the dark plasmonic resonance of gold Asymmetric Split Ring Resonators (A-SRRs) in the mid

  18. APOBEC3G Interacts with ssDNA by Two Modes: AFM Studies

    NASA Astrophysics Data System (ADS)

    Shlyakhtenko, Luda S.; Dutta, Samrat; Banga, Jaspreet; Li, Ming; Harris, Reuben S.; Lyubchenko, Yuri L.

    2015-10-01

    APOBEC3G (A3G) protein has antiviral activity against HIV and other pathogenic retroviruses. A3G has two domains: a catalytic C-terminal domain (CTD) that deaminates cytidine, and a N-terminal domain (NTD) that binds to ssDNA. Although abundant information exists about the biological activities of A3G protein, the interplay between sequence specific deaminase activity and A3G binding to ssDNA remains controversial. We used the topographic imaging and force spectroscopy modalities of Atomic Force Spectroscopy (AFM) to characterize the interaction of A3G protein with deaminase specific and nonspecific ssDNA substrates. AFM imaging demonstrated that A3G has elevated affinity for deaminase specific ssDNA than for nonspecific ssDNA. AFM force spectroscopy revealed two distinct binding modes by which A3G interacts with ssDNA. One mode requires sequence specificity, as demonstrated by stronger and more stable complexes with deaminase specific ssDNA than with nonspecific ssDNA. Overall these observations enforce prior studies suggesting that both domains of A3G contribute to the sequence specific binding of ssDNA.

  19. Concentration-Discharge Patterns Revealed from High Resolution Nitrate Measurements in Agricultural Landscapes

    NASA Astrophysics Data System (ADS)

    Boland, S. J.; Basu, N. B.

    2012-12-01

    Riverine export of nutrients is a major component of nutrient cycles, particularly with respect to nitrogen; ~ 25 percent of terrestrially applied nitrogen (N) is removed via riverine export. Understanding the patterns in N export during a storm event is critical for developing a conceptual model of the dominant processes and pathways of N transformation, and designing appropriate management strategies to mitigate N pollution in streams and receiving water bodies. Most studies however, are limited by the lack of high-resolution water quality data to elucidate these pathways and mechanisms. We explored concentration-discharge relationships using high-resolution (15 minute) discharge (Q) and nitrate concentration (C) data (measured using an in-situ Nitratax Sonde) at multiple nested scales (from 151.3 km2 to 8900 km2) in two watersheds in Iowa: Clear Creek Watershed and the Raccoon River watershed. Three distinct regimes of nitrate transport were revealed: (1) a linear regime in which C increases with increasing Q, (2) a saturation regime in which C remains constant against increasing Q, and (3) a dilution regime in which concentration decreases as Q increases. The tight clustering of the data along these patterns is indicative of emergent behavior in such human-dominated systems. All three regimes were apparent in the Raccoon River Watershed, while only the saturation and dilution regimes were apparent in the Clear Creek Watershed. We hypothesize that surface flow is dominant in the Clear Creek Watershed leading to a saturation/dilution regimes, while subsurface flow is dominant in the more heavily tile-drained Raccoon River Watershed, leading to the occurrence of all three regimes. A parsimonious model was developed to test the hypothesis and develop C-Q patterns as a function of the partitioning of flow through the different pathways.

  20. The interior of 67P/C-G nucleus revealed by CONSERT measurements and simulations

    NASA Astrophysics Data System (ADS)

    Levasseur-Regourd, A.; Kofman, Wlodek; Herique, Alain; Ciarletti, Valérie; Heggy, Essam; Lasue, Jérémie

    2015-11-01

    The CONSERT bistatic radar onboard the Rosetta spacecraft and the Philae lander has begun to reveal the internal structure of Comet 67P/Churyumov-Gerasimenko, through radio tomographic mapping between the lander and main spacecraft. The small lobe was found to be structurally homogeneous, at the spatial scale of ten meters, corresponding to a few wavelengths of CONSERT instrument [1]. The real part of the relative permittivity has been derived from the travel time of the strongest signals obtained on 12-13 November 2014, from Philae final landing site. Since the final position of the lander was not accurately defined, numerous ray-tracing simulations were performed to constrain the ambiguities on Philae position using the known position of Rosetta and the propagation time and paths inside and outside the nucleus. A least square statistical analysis between measurements and simulations lead to deduce a bulk relative permittivity about (1.27 ± 0.1); meanwhile, the uncertainty in the lander location was reduced to an area of about 21 by 34 square meters [1].Ongoing theoretical and experimental simulations are providing more insights on the nucleus properties. Numerical ray-tracing simulations of the propagation at grazing angles have been performed for various subsurface permittivity models. They establish that a permittivity gradient in the shallow sub-surface would have a strong effect on the wave propagation. The permittivity probably decreases with depth, suggesting that a significant increase of dust/ice ratio with depth is unlikely [2]. Laboratory simulations of the permittivity of subsurface cometary analog materials [3], and of surface porous analog samples [4] have taken place. Results suggest 67P dielectric properties to be mainly controlled by porosity, the dust/ice volumetric ratio to range from 0.4 to 2.6 and the porosity to range from 75 to 85% [1]. Further on-going laboratory measurements will be discussed.Supports from CNES and NASA are acknowledged

  1. Confocal Raman spectroscopy and AFM for evaluation of sidewalls in type II superlattice FPAs

    NASA Astrophysics Data System (ADS)

    Rotter, T. J.; Busani, T.; Rathi, P.; Jaeckel, F.; Reyes, P. A.; Malloy, K. J.; Ukhanov, A. A.; Plis, E.; Krishna, S.; Jaime-Vasquez, M.; Baril, N. F.; Benson, J. D.; Tenne, D. A.

    2015-06-01

    We propose to utilize confocal Raman spectroscopy combined with high resolution atomic force microscopy (AFM) for nondestructive characterisation of the sidewalls of etched and passivated small pixel (24 μm×24 μm) focal plane arrays (FPA) fabricated using LW/LWIR InAs/GaSb type-II strained layer superlattice (T2SL) detector material. Special high aspect ratio Si and GaAs AFM probes, with tip length of 13 μm and tip aperture less than 7°, allow characterisation of the sidewall morphology. Confocal microscopy enables imaging of the sidewall profile through optical sectioning. Raman spectra measured on etched T2SL FPA single pixels enable us to quantify the non-uniformity of the mesa delineation process.

  2. Atom probe, AFM, and STM studies on vacuum-fired stainless steels.

    PubMed

    Stupnik, A; Frank, P; Leisch, M

    2009-04-01

    The surface morphology of grades 304L and 316LN stainless steels, after low-temperature bake-out process and vacuum annealing, has been studied by atomic force microscopy (AFM) and scanning tunnelling microscopy (STM). The local elemental composition on the surface before and after thermal treatment has been investigated by atom probe (AP) depth profiling measurements. After vacuum annealing, AFM and STM show significant changes in the surface structure and topology. Recrystallization and surface reconstruction is less pronounced on the 316LN stainless steel. AP depth profiling analyses result in noticeable nickel enrichment on the surface of grade 304L samples. Since hydrogen recombination is almost controlled by surface structure and composition, a strong influence on the outgassing behaviour by the particular surface microstructure can be deduced.

  3. Development of a novel nanoindentation technique by utilizing a dual-probe AFM system

    PubMed Central

    Sahin, Ferat; Yablon, Dalia

    2015-01-01

    Summary A novel instrumentation approach to nanoindentation is described that exhibits improved resolution and depth sensing. The approach is based on a multi-probe scanning probe microscopy (SPM) tool that utilizes tuning-fork based probes for both indentation and depth sensing. Unlike nanoindentation experiments performed with conventional AFM systems using beam-bounce technology, this technique incorporates a second probe system with an ultra-high resolution for depth sensing. The additional second probe measures only the vertical movement of the straight indenter attached to a tuning-fork probe with a high spring constant and it can also be used for AFM scanning to obtain an accurate profiling. Nanoindentation results are demonstrated on silicon, fused silica, and Corning Eagle Glass. The results show that this new approach is viable in terms of accurately characterizing mechanical properties of materials through nanoindentation with high accuracy, and it opens doors to many other exciting applications in the field of nanomechanical characterization. PMID:26665072

  4. Nano-Electrochemistry and Nano-Electrografting with an Original Combined AFM-SECM

    PubMed Central

    Ghorbal, Achraf; Grisotto, Federico; Charlier, Julienne; Palacin, Serge; Goyer, Cédric; Demaille, Christophe; Ben Brahim, Ammar

    2013-01-01

    This study demonstrates the advantages of the combination between atomic force microscopy and scanning electrochemical microscopy. The combined technique can perform nano-electrochemical measurements onto agarose surface and nano-electrografting of non-conducting polymers onto conducting surfaces. This work was achieved by manufacturing an original Atomic Force Microscopy-Scanning ElectroChemical Microscopy (AFM-SECM) electrode. The capabilities of the AFM-SECM-electrode were tested with the nano-electrografting of vinylic monomers initiated by aryl diazonium salts. Nano-electrochemical and technical processes were thoroughly described, so as to allow experiments reproducing. A plausible explanation of chemical and electrochemical mechanisms, leading to the nano-grafting process, was reported. This combined technique represents the first step towards improved nano-processes for the nano-electrografting.

  5. Characterization of the polycaprolactone melt crystallization: complementary optical microscopy, DSC, and AFM studies.

    PubMed

    Speranza, V; Sorrentino, A; De Santis, F; Pantani, R

    2014-01-01

    The first stages of the crystallization of polycaprolactone (PCL) were studied using several techniques. The crystallization exotherms measured by differential scanning calorimetry (DSC) were analyzed and compared with results obtained by polarized optical microscopy (POM), rheology, and atomic force microscope (AFM). The experimental results suggest a strong influence of the observation scale. In particular, the AFM, even if limited on time scale, appears to be the most sensitive technique to detect the first stages of crystallization. On the contrary, at least in the case analysed in this work, rheology appears to be the least sensitive technique. DSC and POM provide closer results. This suggests that the definition of induction time in the polymer crystallization is a vague concept that, in any case, requires the definition of the technique used for its characterization.

  6. Molecular Dynamic Simulations of Interaction of an AFM Probe with the Surface of an SCN Sample

    NASA Technical Reports Server (NTRS)

    Bune, Adris; Kaukler, William; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Molecular dynamic (MD) simulations is conducted in order to estimate forces of probe-substrate interaction in the Atomic Force Microscope (AFM). First a review of available molecular dynamic techniques is given. Implementation of MD simulation is based on an object-oriented code developed at the University of Delft. Modeling of the sample material - succinonitrile (SCN) - is based on the Lennard-Jones potentials. For the polystyrene probe an atomic interaction potential is used. Due to object-oriented structure of the code modification of an atomic interaction potential is straight forward. Calculation of melting temperature is used for validation of the code and of the interaction potentials. Various fitting parameters of the probe-substrate interaction potentials are considered, as potentials fitted to certain properties and temperature ranges may not be reliable for the others. This research provides theoretical foundation for an interpretation of actual measurements of an interaction forces using AFM.

  7. Magnetocaloric effect and negative thermal expansion in hexagonal Fe doped MnNiGe compounds with a magnetoelastic AFM-FM-like transition

    NASA Astrophysics Data System (ADS)

    Xu, Kun; Li, Zhe; Liu, Enke; Zhou, Haichun; Zhang, Yuanlei; Jing, Chao

    2017-01-01

    We report a detailed study of two successive first-order transitions, including a martensitic transition (MT) and an antiferromagnetic (AFM)-ferromagnetic (FM)-like transition, in Mn1-xFexNiGe (x = 0, 0.06, 0.11) alloys by X-ray diffraction, differential scanning calorimetry, magnetization and linear thermal expansion measurements. Such an AFM-FM-like transition occurring in the martensitic state has seldom been observed in the M(T) curves. The results of Arrott plot and linear relationship of the critical temperature with M2 provide explicit evidence of its first-order magnetoelastic nature. On the other hand, their performances as magnetocaloric and negative thermal expansion materials were characterized. The isothermal entropy change for a field change of 30 kOe reaches an impressive value of ‑25.8 J/kg K at 203 K for x = 0.11 compared to the other two samples. It demonstrates that the magneto-responsive ability has been significantly promoted since an appropriate amount of Fe doping can break the local Ni-6Mn AFM configuration. Moreover, the Fe-doped samples reveal both the giant negative thermal expansion and near-zero thermal expansion for different temperature ranges. For instance, the average thermal expansion coefficient ā of x = 0.06 reaches ‑60.7 × 10‑6/K over T = 231–338 K and 0.6 × 10‑6/K over T = 175–231 K during cooling.

  8. Magnetocaloric effect and negative thermal expansion in hexagonal Fe doped MnNiGe compounds with a magnetoelastic AFM-FM-like transition.

    PubMed

    Xu, Kun; Li, Zhe; Liu, Enke; Zhou, Haichun; Zhang, Yuanlei; Jing, Chao

    2017-01-30

    We report a detailed study of two successive first-order transitions, including a martensitic transition (MT) and an antiferromagnetic (AFM)-ferromagnetic (FM)-like transition, in Mn1-xFexNiGe (x = 0, 0.06, 0.11) alloys by X-ray diffraction, differential scanning calorimetry, magnetization and linear thermal expansion measurements. Such an AFM-FM-like transition occurring in the martensitic state has seldom been observed in the M(T) curves. The results of Arrott plot and linear relationship of the critical temperature with M(2) provide explicit evidence of its first-order magnetoelastic nature. On the other hand, their performances as magnetocaloric and negative thermal expansion materials were characterized. The isothermal entropy change for a field change of 30 kOe reaches an impressive value of -25.8 J/kg K at 203 K for x = 0.11 compared to the other two samples. It demonstrates that the magneto-responsive ability has been significantly promoted since an appropriate amount of Fe doping can break the local Ni-6Mn AFM configuration. Moreover, the Fe-doped samples reveal both the giant negative thermal expansion and near-zero thermal expansion for different temperature ranges. For instance, the average thermal expansion coefficient ā of x = 0.06 reaches -60.7 × 10(-6)/K over T = 231-338 K and 0.6 × 10(-6)/K over T = 175-231 K during cooling.

  9. Magnetocaloric effect and negative thermal expansion in hexagonal Fe doped MnNiGe compounds with a magnetoelastic AFM-FM-like transition

    PubMed Central

    Xu, Kun; Li, Zhe; Liu, Enke; Zhou, Haichun; Zhang, Yuanlei; Jing, Chao

    2017-01-01

    We report a detailed study of two successive first-order transitions, including a martensitic transition (MT) and an antiferromagnetic (AFM)-ferromagnetic (FM)-like transition, in Mn1-xFexNiGe (x = 0, 0.06, 0.11) alloys by X-ray diffraction, differential scanning calorimetry, magnetization and linear thermal expansion measurements. Such an AFM-FM-like transition occurring in the martensitic state has seldom been observed in the M(T) curves. The results of Arrott plot and linear relationship of the critical temperature with M2 provide explicit evidence of its first-order magnetoelastic nature. On the other hand, their performances as magnetocaloric and negative thermal expansion materials were characterized. The isothermal entropy change for a field change of 30 kOe reaches an impressive value of −25.8 J/kg K at 203 K for x = 0.11 compared to the other two samples. It demonstrates that the magneto-responsive ability has been significantly promoted since an appropriate amount of Fe doping can break the local Ni-6Mn AFM configuration. Moreover, the Fe-doped samples reveal both the giant negative thermal expansion and near-zero thermal expansion for different temperature ranges. For instance, the average thermal expansion coefficient ā of x = 0.06 reaches −60.7 × 10−6/K over T = 231–338 K and 0.6 × 10−6/K over T = 175–231 K during cooling. PMID:28134355

  10. On the determination of elastic moduli of cells by AFM based indentation

    PubMed Central

    Ding, Yue; Xu, Guang-Kui; Wang, Gang-Feng

    2017-01-01

    The atomic force microscopy (AFM) has been widely used to measure the mechanical properties of biological cells through indentations. In most of existing studies, the cell is supposed to be linear elastic within the small strain regime when analyzing the AFM indentation data. However, in experimental situations, the roles of large deformation and surface tension of cells should be taken into consideration. Here, we use the neo-Hookean model to describe the hyperelastic behavior of cells and investigate the influence of surface tension through finite element simulations. At large deformation, a correction factor, depending on the geometric ratio of indenter radius to cell radius, is introduced to modify the force-indent depth relation of classical Hertzian model. Moreover, when the indent depth is comparable with an intrinsic length defined as the ratio of surface tension to elastic modulus, the surface tension evidently affects the indentation response, indicating an overestimation of elastic modulus by the Hertzian model. The dimensionless-analysis-based theoretical predictions, which include both large deformation and surface tension, are in good agreement with our finite element simulation data. This study provides a novel method to more accurately measure the mechanical properties of biological cells and soft materials in AFM indentation experiments. PMID:28368053

  11. On the determination of elastic moduli of cells by AFM based indentation.

    PubMed

    Ding, Yue; Xu, Guang-Kui; Wang, Gang-Feng

    2017-04-03

    The atomic force microscopy (AFM) has been widely used to measure the mechanical properties of biological cells through indentations. In most of existing studies, the cell is supposed to be linear elastic within the small strain regime when analyzing the AFM indentation data. However, in experimental situations, the roles of large deformation and surface tension of cells should be taken into consideration. Here, we use the neo-Hookean model to describe the hyperelastic behavior of cells and investigate the influence of surface tension through finite element simulations. At large deformation, a correction factor, depending on the geometric ratio of indenter radius to cell radius, is introduced to modify the force-indent depth relation of classical Hertzian model. Moreover, when the indent depth is comparable with an intrinsic length defined as the ratio of surface tension to elastic modulus, the surface tension evidently affects the indentation response, indicating an overestimation of elastic modulus by the Hertzian model. The dimensionless-analysis-based theoretical predictions, which include both large deformation and surface tension, are in good agreement with our finite element simulation data. This study provides a novel method to more accurately measure the mechanical properties of biological cells and soft materials in AFM indentation experiments.

  12. Fractal properties of macrophage membrane studied by AFM.

    PubMed

    Bitler, A; Dover, R; Shai, Y

    2012-12-01

    Complexity of cell membrane poses difficulties to quantify corresponding morphology changes during cell proliferation and damage. We suggest using fractal dimension of the cell membrane to quantify its complexity and track changes produced by various treatments. Glutaraldehyde fixed mouse RAW 264.7 macrophage membranes were chosen as model system and imaged in PeakForce QNM (quantitative nanomechanics) mode of AFM (atomic force microscope). The morphology of the membranes was characterized by fractal dimension. The parameter was calculated for set of AFM images by three different methods. The same calculations were done for the AFM images of macrophages treated with colchicine, an inhibitor of the microtubule polymerization, and microtubule stabilizing agent taxol. We conclude that fractal dimension can be additional and useful parameter to characterize the cell membrane complexity and track the morphology changes produced by different treatments.

  13. Sub-diffraction nano manipulation using STED AFM.

    PubMed

    Chacko, Jenu Varghese; Canale, Claudio; Harke, Benjamin; Diaspro, Alberto

    2013-01-01

    In the last two decades, nano manipulation has been recognized as a potential tool of scientific interest especially in nanotechnology and nano-robotics. Contemporary optical microscopy (super resolution) techniques have also reached the nanometer scale resolution to visualize this and hence a combination of super resolution aided nano manipulation ineluctably gives a new perspective to the scenario. Here we demonstrate how specificity and rapid determination of structures provided by stimulated emission depletion (STED) microscope can aid another microscopic tool with capability of mechanical manoeuvring, like an atomic force microscope (AFM) to get topological information or to target nano scaled materials. We also give proof of principle on how high-resolution real time visualization can improve nano manipulation capability within a dense sample, and how STED-AFM is an optimal combination for this job. With these evidences, this article points to future precise nano dissections and maybe even to a nano-snooker game with an AFM tip and fluorospheres.

  14. Optimization of phase contrast in bimodal amplitude modulation AFM

    PubMed Central

    Damircheli, Mehrnoosh; Payam, Amir F

    2015-01-01

    Summary Bimodal force microscopy has expanded the capabilities of atomic force microscopy (AFM) by providing high spatial resolution images, compositional contrast and quantitative mapping of material properties without compromising the data acquisition speed. In the first bimodal AFM configuration, an amplitude feedback loop keeps constant the amplitude of the first mode while the observables of the second mode have not feedback restrictions (bimodal AM). Here we study the conditions to enhance the compositional contrast in bimodal AM while imaging heterogeneous materials. The contrast has a maximum by decreasing the amplitude of the second mode. We demonstrate that the roles of the excited modes are asymmetric. The operational range of bimodal AM is maximized when the second mode is free to follow changes in the force. We also study the contrast in trimodal AFM by analyzing the kinetic energy ratios. The phase contrast improves by decreasing the energy of second mode relative to those of the first and third modes. PMID:26114079

  15. Mounting of Escherichia coli spheroplasts for AFM imaging.

    SciTech Connect

    Sullivan, Claretta J; Morrell-Falvey, Jennifer L; Allison, David P; Doktycz, Mitchel John

    2005-11-01

    The cytoplasmic membrane of Escherichia coli (E. coli) is the location of numerous, chemically specific transporters and recognition elements. Investigation of this membrane in vivo by atomic force microscopy (AFM) requires removal of the cell wall and stable immobilization of the spheroplast. AFM images demonstrate that spheroplasts can be secured with warm gelatin applied to the mica substrate just before the addition of a spheroplast suspension. The resulting preparation can be repeatedly imaged by AFM over the course of several hours. Confocal fluorescence imaging confirms the association of the spheroplasts with the gelatin layer. Gelatin molecules are known to reorder into a network after heating. Entrapment within this gelatin network is believed to be responsible for the immobilization of spheroplasts on mica.

  16. The Emergence of AFM Applications to Cell Biology: How new technologies are facilitating investigation of human cells in health and disease at the nanoscale.

    PubMed

    Yang, Ruiguo; Xi, Ning; Fung, Carmen Kar Man; Seiffert-Sinha, Kristina; Lai, King Wai Chiu; Sinha, Animesh A

    2011-01-01

    Atomic Force Microscopy (AFM) based nanorobotics has been used for building nano devices in semiconductors for almost a decade. Leveraging the unparallel precision localization capabilities of this technology, high resolution imaging and mechanical property characterization is now increasingly being performed in biological settings. AFM also offers the prospect for handling and manipulating biological materials at nanometer scale. It has unique advantages over other methods, permitting experiments in the liquid phase where physiological conditions can be maintained. Taking advantage of these properties, our group has visualized membrane and cytoskeletal structures of live cells by controlling the interaction force of the AFM tip with cellular components at the nN or sub-nN range. Cell stiffness changes were observed by statistically analyzing the Young's modulus values of human keratinocytes before and after specific antibody treatment. Furthermore, we used the AFM cantilever as a robotic arm for mechanical pushing, pulling and cutting to perform nanoscale manipulations of cell-associated structures. AFM guided nano-dissection, or nanosurgery was enacted on the cell in order to sever intermediate filaments connecting neighboring keratinocytes via sub 100 nm resolution cuts. Finally, we have used a functionalized AFM tip to probe cell surface receptors to obtain binding force measurements. This technique formed the basis for Single Molecule Force Spectroscopy (SMFS). In addition to enhancing our basic understanding of dynamic signaling events in cell biology, these advancements in AFM based biomedical investigations can be expected to facilitate the search for biomarkers related to disease diagnosis progress and treatment.

  17. BOREAS AFM-3 NCAR Electra 1994 Aircraft Flux and Moving Window Data

    NASA Technical Reports Server (NTRS)

    Lenschow, Donald H.; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Shanot, Al; Oncley, Steven P.; Cooper, Al; Smith, David E. (Technical Monitor)

    2000-01-01

    The BOREAS AFM-3 team used the NCAR Electra aircraft data to make measurements of the fluxes of momentum, sensible and latent heat, carbon dioxide, and ozone over the entire BOREAS region to tie together measurements made in both the SSA and the NSA in 1994. These data were also used to study the planetary boundary layer using both in situ and remote sensing measurements. This data set contains both the aircraft flux and the moving window data. These data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884) or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  18. BOREAS AFM-04 Twin Otter Aircraft Flux Data

    NASA Technical Reports Server (NTRS)

    MacPherson, J. Ian; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Desjardins, Raymond L.; Smith, David E. (Technical Monitor)

    2000-01-01

    The BOREAS AFM-5 team collected and processed data from the numerous radiosonde flights during the project. The goals of the AFM-05 team were to provide large-scale definition of the atmosphere by supplementing the existing AES aerological network, both temporally and spatially. This data set includes basic upper-air parameters collected from the network of upper-air stations during the 1993, 1994, and 1996 field campaigns over the entire study region. The data are contained in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884) or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  19. GPIM AF-M315E Propulsion System

    NASA Technical Reports Server (NTRS)

    Spores, Ronald A.; Masse, Robert; Kimbrel, Scott; McLean, Chris

    2014-01-01

    The NASA Space Technology mission Directorate's (STMD) Green Propellant Infusion Mission (GPIM) Technology Demonstration Mission (TDM) will demonstrate an operational AF-M315E green propellant propulsion system. Aerojet-Rocketdyne is responsible for the development of the propulsion system payload. This paper statuses the propulsion system module development, including thruster design and system design; Initial test results for the 1N engineering model thruster are presented. The culmination of this program will be high-performance, green AF-M315E propulsion system technology at TRL 7+, with components demonstrated to TRL 9, ready for direct infusion to a wide range of applications for the space user community.

  20. A low-cost AFM setup with an interferometer for undergraduates and secondary-school students

    NASA Astrophysics Data System (ADS)

    Bergmann, Antje; Feigl, Daniela; Kuhn, David; Schaupp, Manuel; Quast, Günter; Busch, Kurt; Eichner, Ludwig; Schumacher, Jens

    2013-07-01

    Atomic force microscopy (AFM) is an important tool in nanotechnology. This method makes it possible to observe nanoscopic surfaces beyond the resolution of light microscopy. In order to provide undergraduate and secondary-school students with insights into this world, we have developed a very robust low-cost AFM setup with a Fabry-Perot interferometer as a detecting device. This setup is designed to be operated almost completely manually and its simplicity gives access to a profound understanding of the working principle. Our AFM is operated in a constant height mode, i.e. the topography of the sample surface is represented directly by the deflection of the cantilever. Thus, the measuring procedure can be understood even by secondary-school students; furthermore, it is the method with the lowest cost, totalling not more than 10-15 k Euros. Nevertheless, we are able to examine a large variety of sample topographies such as CD and DVD surfaces, IC structures, blood cells, butterfly wings or moth eyes. Furthermore, force-distance curves can be recorded and the tensile moduli of some materials can be evaluated. We present our setup in detail and describe its working principles. In addition, we show various experiments which have already been performed by students.

  1. Accurate, explicit formulae for higher harmonic force spectroscopy by frequency modulation-AFM.

    PubMed

    Kuchuk, Kfir; Sivan, Uri

    2015-01-01

    The nonlinear interaction between an AFM tip and a sample gives rise to oscillations of the cantilever at integral multiples (harmonics) of the fundamental resonance frequency. The higher order harmonics have long been recognized to hold invaluable information on short range interactions but their utilization has thus far been relatively limited due to theoretical and experimental complexities. In particular, existing approximations of the interaction force in terms of higher harmonic amplitudes generally require simultaneous measurements of multiple harmonics to achieve satisfactory accuracy. In the present letter we address the mathematical challenge and derive accurate, explicit formulae for both conservative and dissipative forces in terms of an arbitrary single harmonic. Additionally, we show that in frequency modulation-AFM (FM-AFM) each harmonic carries complete information on the force, obviating the need for multi-harmonic analysis. Finally, we show that higher harmonics may indeed be used to reconstruct short range forces more accurately than the fundamental harmonic when the oscillation amplitude is small compared with the interaction range.

  2. Single-cycle-PLL detection for real-time FM-AFM applications.

    PubMed

    Schlecker, Benedikt; Dukic, Maja; Erickson, Blake; Ortmanns, Maurits; Fantner, Georg; Anders, Jens

    2014-04-01

    In this paper we present a novel architecture for phase-locked loop (PLL) based high-speed demodulation of frequency-modulated (FM) atomic force microscopy (AFM) signals. In our approach, we use single-sideband (SSB) frequency upconversion to translate the AFM signal from the position sensitive detector to a fixed intermediate frequency (IF) of 10 MHz. In this way, we fully benefit from the excellent noise performance of PLL-based FM demodulators still avoiding the intrinsic bandwidth limitation of such systems. In addition, the upconversion to a fixed IF renders the PLL demodulator independent of the cantilever's resonance frequency, allowing the system to work with a large range of cantilever frequencies. To investigate if the additional noise introduced by the SSB upconverter degrades the system noise figure we present a model of the AM-to-FM noise conversion in PLLs incorporating a phase-frequency detector. Using this model, we can predict an upper corner frequency for the demodulation bandwidth above which the converted noise from the single-sideband upconverter becomes the dominant noise source and therefore begins to deteriorate the overall system performance. The approach is validated by both electrical and AFM measurements obtained with a PCB-based prototype implementing the proposed demodulator architecture.

  3. Topographical and electrical study of contact and intermittent contact mode InP AFM lithography

    NASA Astrophysics Data System (ADS)

    Tranvouez, E.; Budau, P.; Bremond, G.

    2006-01-01

    In order to fabricate nanoscale oxide patterns on an InP(001) surface, local anodization by atomic force microscopy (AFM) contact and intermittent contact modes has been performed. Contact mode results are similar to those obtained with the local anodization of silicon, and mainly limited by the effect of space charge that occurs during the oxide growth. The existence of this space charge associated with the poor dielectric quality of the obtained oxide has been verified by performing scanning capacitance microscopy (SCM) measurements. Results for oxidation using intermittent AFM contact mode associated with a modulated voltage are more specific. For a more than two decade variation of probe velocity (0.01-5 µm s-1), the AFM oxidation introduces no significant changes in the oxide pattern. Experiments on the influence of oxidation time give rise to two regimes. First, for times shorter than 100 ms, a high growth rate is found. Second, for oxidation times longer than 100 ms, we observe an oxide height saturation and a significant decrease of lateral growth rate. These results provide a way to easily control the oxide shape. The space charge neutralization in this mode has also been investigated by SCM. The interesting results for intermittent contact oxidation confirm the capability of this technique to modify a nanoscale InP surface.

  4. Multilayer silicon rich oxy-nitride films characterization by SIMS, VASE and AFM

    NASA Astrophysics Data System (ADS)

    Barozzi, M.; Vanzetti, L.; Iacob, E.; Bersani, M.; Anderle, M.; Pucker, G.; Kompocholis, C.; Ghulinyan, M.; Bellutti, P.

    2008-03-01

    In this work secondary ion mass spectrometry (SIMS), variable angle spectroscopy ellipsometry (VASE) and atomic force microscopy (AFM) are used to investigate the structure, composition and morphology of multilayer SRON films. Three/four SRON sequential layers were deposited on silicon wafers by PECVD and silicon, nitrogen and oxygen content was varied by changing the N2O/SiH4 ratio. The total thickness of the resulting SRON stack is about 50nm. SIMS analyses of NCs+, OCs+, SiCs+, in MCs+ methodology are performed by a Cameca SC-ultra instrument. Depth profiles are obtained at 500eV of primary beam impact energy with sample rotation. An approximate method to obtain silicon concentration is used. Total layer thickness are obtained from both SIMS and VASE measurements. In addition, we compare the thickness of the single layers obtained from VASE with the SIMS depth profiles. A detailed analysis of films morphology is obtained by AFM. The SRON stack is sputtered by SIMS until a certain layer is exposed, which is then analyzed by AFM. The sputtered layers are then etched in HF solution to better resolve the exposed nano-crystals.

  5. High-speed AFM images of thermal motion provide stiffness map of interfacial membrane protein moieties.

    PubMed

    Preiner, Johannes; Horner, Andreas; Karner, Andreas; Ollinger, Nicole; Siligan, Christine; Pohl, Peter; Hinterdorfer, Peter

    2015-01-14

    The flexibilities of extracellular loops determine ligand binding and activation of membrane receptors. Arising from fluctuations in inter- and intraproteinaceous interactions, flexibility manifests in thermal motion. Here we demonstrate that quantitative flexibility values can be extracted from directly imaging the thermal motion of membrane protein moieties using high-speed atomic force microscopy (HS-AFM). Stiffness maps of the main periplasmic loops of single reconstituted water channels (AqpZ, GlpF) revealed the spatial and temporal organization of loop-stabilizing intraproteinaceous H-bonds and salt bridges.

  6. High-Speed AFM Images of Thermal Motion Provide Stiffness Map of Interfacial Membrane Protein Moieties

    PubMed Central

    2014-01-01

    The flexibilities of extracellular loops determine ligand binding and activation of membrane receptors. Arising from fluctuations in inter- and intraproteinaceous interactions, flexibility manifests in thermal motion. Here we demonstrate that quantitative flexibility values can be extracted from directly imaging the thermal motion of membrane protein moieties using high-speed atomic force microscopy (HS-AFM). Stiffness maps of the main periplasmic loops of single reconstituted water channels (AqpZ, GlpF) revealed the spatial and temporal organization of loop-stabilizing intraproteinaceous H-bonds and salt bridges. PMID:25516527

  7. XPS and AFM Study of GaAs Surface Treatment

    SciTech Connect

    Contreras-Guerrero, R.; Wallace, R. M.; Aguirre-Francisco, S.; Herrera-Gomez, A.; Lopez-Lopez, M.

    2008-11-13

    Obtaining smooth and atomically clean surfaces is an important step in the preparation of a surface for device manufacturing. In this work different processes are evaluated for cleaning a GaAs surface. A good surface cleaning treatment is that which provides a high level of uniformity and controllability of the surface. Different techniques are useful as cleaning treatments depending on the growth process to be used. The goal is to remove the oxygen and carbon contaminants and then form a thin oxide film to protect the surface, which is easy to remove later with thermal desorption mechanism like molecular beam epitaxy (MBE) with minimal impact to the surface. In this study, atomic force microscopy (AFM), x-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS) were used to characterize the structure of the surface, the composition, as well as detect oxygen and carbon contaminant on the GaAs surface. This study consists in two parts. The first part the surface was subjected to different chemical treatments. The chemical solutions were: (a)H{sub 2}SO{sub 4}:H{sub 2}O{sub 2}:H{sub 2}O(4:1:100), (b) HCl: H{sub 2}O(1:3), (c)NH{sub 4}OH 29%. The treatments (a) and (b) reduced the oxygen on the surface. Treatment (c) reduces carbon contamination. In the second part we made MOS devices on the surfaces treated. They were characterized by CV and IV electrical measurements. They show frequency dispersion.

  8. 3D Color Digital Elevation Map of AFM Sample

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This color image is a three dimensional (3D) view of a digital elevation map of a sample collected by NASA's Phoenix Mars Lander's Atomic Force Microscope (AFM).

    The image shows four round pits, only 5 microns in depth, that were micromachined into the silicon substrate, which is the background plane shown in red. This image has been processed to reflect the levelness of the substrate.

    A Martian particle only one micrometer, or one millionth of a meter, across is held in the upper left pit.

    The rounded particle shown at the highest magnification ever seen from another world is a particle of the dust that cloaks Mars. Such dust particles color the Martian sky pink, feed storms that regularly envelop the planet and produce Mars' distinctive red soil.

    The particle was part of a sample informally called 'Sorceress' delivered to the AFM on the 38th Martian day, or sol, of the mission (July 2, 2008). The AFM is part of Phoenix's microscopic station called MECA, or the Microscopy, Electrochemistry, and Conductivity Analyzer.

    The AFM was developed by a Swiss-led consortium, with Imperial College London producing the silicon substrate that holds sampled particles.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  9. Probing the Double Layer: Effect of Image Forces on AFM

    PubMed Central

    Sachs, Frederick

    2006-01-01

    Force probes such as AFM tips or laser trap latex beads have a dielectric constant much less than that of the water that they displace. Thus when a probe approaches a charged surface under water it will be repelled simply based upon the image forces, and these can be of nN magnitude. PMID:16714346

  10. Cantilever's behavior in the AC mode of an AFM

    SciTech Connect

    Nunes, V.B.; Zanette, S.I.; Caride, A.O.; Prioli, R.; Rivas, A.M.F

    2003-03-15

    In this paper, a model with a small number of parameters is used to simulate the motion of a cantilever in the AC mode of an atomic force microscope (AFM). The results elucidate the transition dependence-from noncontact to tapping operating mode-on the height of the contamination layer and on the stiffness of the sample.

  11. Force measurement reveals structure of a confined liquid: Observation of the impenetrable space

    NASA Astrophysics Data System (ADS)

    Amano, Ken-ichi; Tanaka, Eisuke; Kobayashi, Kazuya; Onishi, Hiroshi; Nishi, Naoya; Sakka, Tetsuo

    2015-11-01

    Understanding of the structure of a confined liquid is an important subject for developments in surface science, tribology, biophysics, etc. In this study, we propose its measurement theory and conduct a test of the theory. The measurement theory uses a force curve obtained by surface force apparatus and transforms the force curve into the confined liquid structure. To check the validity of the measurement theory, we perform a verification test in a computer. It is found that the theory can semi-quantitatively reproduce the confined liquid structure. The theory will lead to the first step toward measuring a liquid structure confined between optically impenetrable substrates.

  12. Scanning hall probe microscopy (SHPM) using quartz crystal AFM feedback.

    PubMed

    Dede, M; Urkmen, K; Girişen, O; Atabak, M; Oral, A; Farrer, I; Ritchie, D

    2008-02-01

    Scanning Hall Probe Microscopy (SHPM) is a quantitative and non-invasive technique for imaging localized surface magnetic field fluctuations such as ferromagnetic domains with high spatial and magnetic field resolution of approximately 50 nm and 7 mG/Hz(1/2) at room temperature. In the SHPM technique, scanning tunneling microscope (STM) or atomic force microscope (AFM) feedback is used to keep the Hall sensor in close proximity of the sample surface. However, STM tracking SHPM requires conductive samples; therefore the insulating substrates have to be coated with a thin layer of gold. This constraint can be eliminated with the AFM feedback using sophisticated Hall probes that are integrated with AFM cantilevers. However it is very difficult to micro fabricate these sensors. In this work, we have eliminated the difficulty in the cantilever-Hall probe integration process, just by gluing a Hall Probe chip to a quartz crystal tuning fork force sensor. The Hall sensor chip is simply glued at the end of a 32.768 kHz or 100 kHz Quartz crystal, which is used as force sensor. An LT-SHPM system is used to scan the samples. The sensor assembly is dithered at the resonance frequency using a digital Phase Locked Loop circuit and frequency shifts are used for AFM tracking. SHPM electronics is modified to detect AFM topography and the frequency shift, along with the magnetic field image. Magnetic domains and topography of an Iron Garnet thin film crystal, NdFeB demagnetised magnet and hard disk samples are presented at room temperature. The performance is found to be comparable with the SHPM using STM feedback.

  13. Sharp high-aspect-ratio AFM tips fabricated by a combination of deep reactive ion etching and focused ion beam techniques.

    PubMed

    Caballero, David; Villanueva, Guillermo; Plaza, Jose Antonio; Mills, Christopher A; Samitier, Josep; Errachid, Abdelhamid

    2010-01-01

    The shape and dimensions of an atomic force microscope tip are crucial factors to obtain high resolution images at the nanoscale. When measuring samples with narrow trenches, inclined sidewalls near 90 degrees or nanoscaled structures, standard silicon atomic force microscopy (AFM) tips do not provide satisfactory results. We have combined deep reactive ion etching (DRIE) and focused ion beam (FIB) lithography techniques in order to produce probes with sharp rocket-shaped silicon AFM tips for high resolution imaging. The cantilevers were shaped and the bulk micromachining was performed using the same DRIE equipment. To improve the tip aspect ratio we used FIB nanolithography technique. The tips were tested on narrow silicon trenches and over biological samples showing a better resolution when compared with standard AFM tips, which enables nanocharacterization and nanometrology of high-aspect-ratio structures and nanoscaled biological elements to be completed, and provides an alternative to commercial high aspect ratio AFM tips.

  14. A tetravalent bispecific TandAb (CD19/CD3), AFM11, efficiently recruits T cells for the potent lysis of CD19+ tumor cells

    PubMed Central

    Reusch, Uwe; Duell, Johannes; Ellwanger, Kristina; Herbrecht, Carmen; Knackmuss, Stefan HJ; Fucek, Ivica; Eser, Markus; McAleese, Fionnuala; Molkenthin, Vera; Le Gall, Fabrice; Topp, Max; Little, Melvyn; Zhukovsky, Eugene A

    2015-01-01

    To harness the potent tumor-killing capacity of T cells for the treatment of CD19+ malignancies, we constructed AFM11, a humanized tetravalent bispecific CD19/CD3 tandem diabody (TandAb) consisting solely of Fv domains. The molecule exhibits good manufacturability and stability properties. AFM11 has 2 binding sites for CD3 and 2 for CD19, an antigen that is expressed from early B cell development through differentiation into plasma cells, and is an attractive alternative to CD20 as a target for the development of therapeutic antibodies to treat B cell malignancies. Comparison of the binding and cytotoxicity of AFM11 with those of a tandem scFv bispecific T cell engager (BiTE) molecule targeting the same antigens revealed that AFM11 elicited more potent in vitro B cell lysis. Though possessing high affinity to CD3, the TandAb mediates serial-killing of CD19+ cells with little dependence of potency or efficacy upon effector:target ratio, unlike the BiTE. The advantage of the TandAb over the BiTE was most pronounced at lower effector:target ratios. AFM11 mediated strictly target-dependent T cell activation evidenced by CD25 and CD69 induction, proliferation, and cytokine release, notwithstanding bivalent CD3 engagement. In a NOD/scid xenograft model, AFM11 induced dose-dependent growth inhibition of Raji tumors in vivo, and radiolabeled TandAb exhibited excellent localization to tumor but not to normal tissue. After intravenous administration in mice, half-life ranged from 18.4 to 22.9 h. In a human ex vivo B-cell chronic lymphocytic leukemia study, AFM11 exhibited substantial cytotoxic activity in an autologous setting. Thus, AFM11 may represent a promising therapeutic for treatment of CD19+ malignancies with an advantageous safety risk profile and anticipated dosing regimen. PMID:25875246

  15. A tetravalent bispecific TandAb (CD19/CD3), AFM11, efficiently recruits T cells for the potent lysis of CD19(+) tumor cells.

    PubMed

    Reusch, Uwe; Duell, Johannes; Ellwanger, Kristina; Herbrecht, Carmen; Knackmuss, Stefan Hj; Fucek, Ivica; Eser, Markus; McAleese, Fionnuala; Molkenthin, Vera; Gall, Fabrice Le; Topp, Max; Little, Melvyn; Zhukovsky, Eugene A

    2015-01-01

    To harness the potent tumor-killing capacity of T cells for the treatment of CD19(+) malignancies, we constructed AFM11, a humanized tetravalent bispecific CD19/CD3 tandem diabody (TandAb) consisting solely of Fv domains. The molecule exhibits good manufacturability and stability properties. AFM11 has 2 binding sites for CD3 and 2 for CD19, an antigen that is expressed from early B cell development through differentiation into plasma cells, and is an attractive alternative to CD20 as a target for the development of therapeutic antibodies to treat B cell malignancies. Comparison of the binding and cytotoxicity of AFM11 with those of a tandem scFv bispecific T cell engager (BiTE) molecule targeting the same antigens revealed that AFM11 elicited more potent in vitro B cell lysis. Though possessing high affinity to CD3, the TandAb mediates serial-killing of CD19(+) cells with little dependence of potency or efficacy upon effector:target ratio, unlike the BiTE. The advantage of the TandAb over the BiTE was most pronounced at lower effector:target ratios. AFM11 mediated strictly target-dependent T cell activation evidenced by CD25 and CD69 induction, proliferation, and cytokine release, notwithstanding bivalent CD3 engagement. In a NOD/scid xenograft model, AFM11 induced dose-dependent growth inhibition of Raji tumors in vivo, and radiolabeled TandAb exhibited excellent localization to tumor but not to normal tissue. After intravenous administration in mice, half-life ranged from 18.4 to 22.9 h. In a human ex vivo B-cell chronic lymphocytic leukemia study, AFM11 exhibited substantial cytotoxic activity in an autologous setting. Thus, AFM11 may represent a promising therapeutic for treatment of CD19(+) malignancies with an advantageous safety risk profile and anticipated dosing regimen.

  16. Pb electrodeposition on polycrystalline Cu in the presence and absence of Cl -: A combined oblique incidence reflectivity difference and in situ AFM study

    NASA Astrophysics Data System (ADS)

    Wu, Guang Yu; Bae, S.-E.; Gewirth, A. A.; Gray, J.; Zhu, X. D.; Moffat, T. P.; Schwarzacher, W.

    2007-04-01

    Oblique incidence reflectivity difference (OI-RD) measurements reveal differences in the earliest stages of overpotential-deposited (OPD) growth between Pb electrodeposition on polycrystalline Cu surfaces in the presence and absence of Cl -. At moderate overpotentials, when only 100 mM ClO4- is present, the magnitude of the real part of the OI-RD signal continues to increase after completion of the first underpotential-deposited (UPD) Pb monolayer, but with the addition of 20 mM KCl the magnitude decreases after the UPD monolayer forms. In situ atomic force microscopy (AFM) shows that in the former case the island density is much greater than in the latter. Using OI-RD as a probe, we show additionally that when the substrate potential is returned to a more positive potential in the presence of Cl -, the UPD Pb monolayer dissolves after the Pb islands disappear.

  17. Noninvasive neutron scattering measurements reveal slower cholesterol transport in model lipid membranes.

    PubMed

    Garg, S; Porcar, L; Woodka, A C; Butler, P D; Perez-Salas, U

    2011-07-20

    Proper cholesterol transport is essential to healthy cellular activity and any abnormality can lead to several fatal diseases. However, complete understandings of cholesterol homeostasis in the cell remains elusive, partly due to the wide variability in reported values for intra- and intermembrane cholesterol transport rates. Here, we used time-resolved small-angle neutron scattering to measure cholesterol intermembrane exchange and intramembrane flipping rates, in situ, without recourse to any external fields or compounds. We found significantly slower transport kinetics than reported by previous studies, particularly for intramembrane flipping where our measured rates are several orders of magnitude slower. We unambiguously demonstrate that the presence of chemical tags and extraneous compounds employed in traditional kinetic measurements dramatically affect the system thermodynamics, accelerating cholesterol transport rates by an order of magnitude. To our knowledge, this work provides new insights into cholesterol transport process disorders, and challenges many of the underlying assumptions used in most cholesterol transport studies to date.

  18. Noninvasive Neutron Scattering Measurements Reveal Slower Cholesterol Transport in Model Lipid Membranes

    PubMed Central

    Garg, S.; Porcar, L.; Woodka, A.C.; Butler, P.D.; Perez-Salas, U.

    2011-01-01

    Proper cholesterol transport is essential to healthy cellular activity and any abnormality can lead to several fatal diseases. However, complete understandings of cholesterol homeostasis in the cell remains elusive, partly due to the wide variability in reported values for intra- and intermembrane cholesterol transport rates. Here, we used time-resolved small-angle neutron scattering to measure cholesterol intermembrane exchange and intramembrane flipping rates, in situ, without recourse to any external fields or compounds. We found significantly slower transport kinetics than reported by previous studies, particularly for intramembrane flipping where our measured rates are several orders of magnitude slower. We unambiguously demonstrate that the presence of chemical tags and extraneous compounds employed in traditional kinetic measurements dramatically affect the system thermodynamics, accelerating cholesterol transport rates by an order of magnitude. To our knowledge, this work provides new insights into cholesterol transport process disorders, and challenges many of the underlying assumptions used in most cholesterol transport studies to date. PMID:21767489

  19. Insulated Conducting Cantilevered Nanotips and Two-Chamber Recording System for High Resolution Ion Sensing AFM

    PubMed Central

    Meckes, Brian; Arce, Fernando Teran; Connelly, Laura S.; Lal, Ratnesh

    2014-01-01

    Biological membranes contain ion channels, which are nanoscale pores allowing controlled ionic transport and mediating key biological functions underlying normal/abnormal living. Synthetic membranes with defined pores are being developed to control various processes, including filtration of pollutants, charge transport for energy storage, and separation of fluids and molecules. Although ionic transport (currents) can be measured with single channel resolution, imaging their structure and ionic currents simultaneously is difficult. Atomic force microscopy enables high resolution imaging of nanoscale structures and can be modified to measure ionic currents simultaneously. Moreover, the ionic currents can also be used to image structures. A simple method for fabricating conducting AFM cantilevers to image pore structures at high resolution is reported. Tungsten microwires with nanoscale tips are insulated except at the apex. This allows simultaneous imaging via cantilever deflections in normal AFM force feedback mode as well as measuring localized ionic currents. These novel probes measure ionic currents as small as picoampere while providing nanoscale spatial resolution surface topography and is suitable for measuring ionic currents and conductance of biological ion channels. PMID:24663394

  20. Pipken Award: Nuclear physics mysteries revealed by precision ion trap measurements

    NASA Astrophysics Data System (ADS)

    Dilling, Jens

    2017-01-01

    Nuclear Physics is a fundamental science discipline for over 100 years, and started with precision measurements by Rutherford. Much has been learned and understood in the meantime, but some questions remain and also new nuclear phenomena have been discovered. Precision experiments open new venue to address these. Ion trap technologies, originally conceived for atomic and molecular physics have been adapted to the specific requirements stemming from nuclear physics, for example, to couple ion traps to accelerators and achieve very high speed and efficiencies. In this talk I will show some recent examples and technical developments pertaining to nuclear physics questions and phenomena and how they are addressed with precision ion trap measurements.

  1. Your Mind Wanders Weakly, Your Mind Wanders Deeply: Objective Measures Reveal Mindless Reading at Different Levels

    ERIC Educational Resources Information Center

    Schad, Daniel J.; Nuthmann, Antje; Engbert, Ralf

    2012-01-01

    Time Factors (Learning);When the mind wanders, attention turns away from the external environment and cognitive processing is decoupled from perceptual information. Mind wandering is usually treated as a dichotomy (dichotomy-hypothesis), and is often measured using self-reports. Here, we propose the levels of inattention hypothesis, which…

  2. Characterization of Pebax angioplasty balloon surfaces with AFM, SEM, TEM, and SAXS.

    PubMed

    Warner, Jacob A; Forsyth, Bruce; Zhou, Fang; Myers, Jason; Frethem, Chris; Haugstad, Greg

    2016-04-01

    In the medical device industry, angioplasty balloons have been widely used in the less invasive treatment of heart disease by expanding and relieving clogged structures in various arterial segments. However, new applications using thin coatings on the balloon surface have been explored to enhance therapeutic value in the delivery of pharmaceuticals (drug-elution) or control thermal energy output (RF ablation). In this study, angioplasty balloon materials comprised of poly(ether-block-amide) (Pebax) were investigated via atomic force microscopy (AFM), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and small-angle X-ray scattering (SAXS) to characterize physical properties at the balloon surface that may affect coating adhesion. The soft segment of this Pebax 1074 material is polyethylene oxide (PEO) and the hard segment is nylon-12. The morphology of the hard segments of this block co-polymer are found via AFM stiffness measurements to be (40 ± 20) nm by (300 ± 150) nm and are oriented parallel to the surface of the balloon. SAXS measurements found the lamellar spacing to be (18.5 ± 0.5) nm, and demonstrate a preferential orientation in agreement with TEM and AFM measurements. Fixation of this balloon in resin, followed by cryo-sectioning is shown to provide a novel manner in which to investigate surface characteristics on the balloon such as material or coating thickness as well as uniformity in comparison to the bulk structure. These outputs were deemed critical to improve overall balloon processing such as molding and surface treatment options for robust designs toward better procedural outcomes targeting new therapeutic areas.

  3. Quantum criticality at the superconductor-insulator transition revealed by specific heat measurements

    PubMed Central

    Poran, S.; Nguyen-Duc, T.; Auerbach, A.; Dupuis, N.; Frydman, A.; Bourgeois, Olivier

    2017-01-01

    The superconductor–insulator transition (SIT) is considered an excellent example of a quantum phase transition that is driven by quantum fluctuations at zero temperature. The quantum critical point is characterized by a diverging correlation length and a vanishing energy scale. Low-energy fluctuations near quantum criticality may be experimentally detected by specific heat, cp, measurements. Here we use a unique highly sensitive experiment to measure cp of two-dimensional granular Pb films through the SIT. The specific heat shows the usual jump at the mean field superconducting transition temperature marking the onset of Cooper pairs formation. As the film thickness is tuned towards the SIT, is relatively unchanged, while the magnitude of the jump and low-temperature specific heat increase significantly. This behaviour is taken as the thermodynamic fingerprint of quantum criticality in the vicinity of a quantum phase transition. PMID:28224994

  4. Geochemistry of the lunar highlands as revealed by measurements of thermal neutrons

    PubMed Central

    Beck, Andrew W.; Lawrence, David J.

    2016-01-01

    Abstract Thermal neutron emissions from the lunar surface provide a direct measure of bulk elemental composition that can be used to constrain the chemical properties of near‐surface (depth <1 m) lunar materials. We present a new calibration of the Lunar Prospector thermal neutron map, providing a direct link between measured count rates and bulk elemental composition. The data are used to examine the chemical and mineralogical composition of the lunar surface, with an emphasis on constraining the plagioclase concentration across the highlands. We observe that the regions of lowest neutron absorption, which correspond to estimated plagioclase concentrations of >85%, are generally associated with large impact basins and are colocated with clusters of nearly pure plagioclase identified with spectral reflectance data. PMID:27830110

  5. Geochemistry of the lunar highlands as revealed by measurements of thermal neutrons.

    PubMed

    Peplowski, Patrick N; Beck, Andrew W; Lawrence, David J

    2016-03-01

    Thermal neutron emissions from the lunar surface provide a direct measure of bulk elemental composition that can be used to constrain the chemical properties of near-surface (depth <1 m) lunar materials. We present a new calibration of the Lunar Prospector thermal neutron map, providing a direct link between measured count rates and bulk elemental composition. The data are used to examine the chemical and mineralogical composition of the lunar surface, with an emphasis on constraining the plagioclase concentration across the highlands. We observe that the regions of lowest neutron absorption, which correspond to estimated plagioclase concentrations of >85%, are generally associated with large impact basins and are colocated with clusters of nearly pure plagioclase identified with spectral reflectance data.

  6. Long-term thermal activity revealed by magnetic measurements at Kusatsu-Shirane volcano, Japan

    NASA Astrophysics Data System (ADS)

    Takahashi, Kosuke; Fujii, Ikuko

    2014-09-01

    Repeated geomagnetic measurements commenced around the three summit crater lakes of Kusatsu-Shirane volcano (Yugama, Mizugama and Karegama lakes) in 1976 and continuous measurements commenced in 1990. We reviewed and analyzed these geomagnetic data acquired over the 34 years starting in 1978. Changes in the geomagnetic field related to eruptions during 1982-1983 were recorded in the repeated geomagnetic measurements from 1982 to 1985. A thermal-demagnetization source was estimated to be 400 m below Mizugama crater lake during this period. Although there were no eruptions from 1988 to 1991, there were numerous volcanic earthquakes. Thermomagnetic signals due to demagnetization of the material beneath the crater lakes were recorded by the repeated magnetic measurements during this period. The demagnetized body was estimated to be 600 m below Mizugama crater lake at this time. Previous seismological and geochemical studies attributed these demagnetization events to the ascent of hydrothermal water and volcanic gas. The difference between the depths of demagnetized bodies during these two periods of demagnetization may provide important information about the mechanism of the 1982-1983 eruptions. In contrast, magnetization associated with cooling of rocks beneath the crater lakes was recorded from 1996 to 2012. According to our thermomagnetic modeling of this period, the source of the magnetization was 400 to 700 m below an area immediately northeast of Yugama crater lake and the cooling migrated gradually to shallower depths during this period. Based on our modeling, seismological data, and geochemical monitoring of Yugama lake water, we consider that the flux of hydrothermal fluid from depth decreased after 1992 and rock magnetization due to cooling began in 1996.

  7. Gas Nonideality at One Atmosphere Revealed through Speed of Sound Measurements and Heat Capacity Determinations

    ERIC Educational Resources Information Center

    Halpern, Arthur M.; Liu, Allen

    2008-01-01

    Using an easy-to-make cylindrical resonator, students can measure the speed of sound in a gas, u, with sufficiently high precision (by locating standing-wave Lissajous patterns on an oscilloscope) to observe real gas properties at one atmosphere and 300 K. For CO[subscript 2] and SF[subscript 6], u is found to be 268.83 and 135.25 m s[superscript…

  8. Environmental controls of frost cracking revealed through in situ acoustic emission measurements in steep bedrock

    NASA Astrophysics Data System (ADS)

    Girard, Lucas; Gruber, Stephan; Weber, Samuel; Beutel, Jan

    2013-05-01

    Frost cracking, the breakdown of rock by freezing, is one of the most important mechanical weathering processes acting on Earth's surface. Insights on the mechanisms driving frost cracking stem mainly from laboratory and theoretical studies. Transferring insights from such studies to natural conditions, involving jointed bedrock and heterogeneous thermal and hydrological properties, is a major challenge. We address this problem with simultaneous in situ measurements of acoustic emissions, used as proxy of rock damage, and rock temperature/moisture content. The 1 year data set acquired in an Alpine rock wall shows that (1) liquid water content has an important impact on freezing-induced rock damage, (2) sustained freezing can yield much stronger damage than repeated freeze-thaw cycling, and (3) that frost cracking occurs over the full range of temperatures measured extending from 0 down to -15°C. These new measurements yield a slightly different picture than previous field studies where ice segregation appears to play an important role.

  9. Eigencentrality based on dissimilarity measures reveals central nodes in complex networks

    PubMed Central

    Alvarez-Socorro, A. J.; Herrera-Almarza, G. C.; González-Díaz, L. A.

    2015-01-01

    One of the most important problems in complex network’s theory is the location of the entities that are essential or have a main role within the network. For this purpose, the use of dissimilarity measures (specific to theory of classification and data mining) to enrich the centrality measures in complex networks is proposed. The centrality method used is the eigencentrality which is based on the heuristic that the centrality of a node depends on how central are the nodes in the immediate neighbourhood (like rich get richer phenomenon). This can be described by an eigenvalues problem, however the information of the neighbourhood and the connections between neighbours is not taken in account, neglecting their relevance when is one evaluates the centrality/importance/influence of a node. The contribution calculated by the dissimilarity measure is parameter independent, making the proposed method is also parameter independent. Finally, we perform a comparative study of our method versus other methods reported in the literature, obtaining more accurate and less expensive computational results in most cases. PMID:26603652

  10. Eigencentrality based on dissimilarity measures reveals central nodes in complex networks

    NASA Astrophysics Data System (ADS)

    Alvarez-Socorro, A. J.; Herrera-Almarza, G. C.; González-Díaz, L. A.

    2015-11-01

    One of the most important problems in complex network’s theory is the location of the entities that are essential or have a main role within the network. For this purpose, the use of dissimilarity measures (specific to theory of classification and data mining) to enrich the centrality measures in complex networks is proposed. The centrality method used is the eigencentrality which is based on the heuristic that the centrality of a node depends on how central are the nodes in the immediate neighbourhood (like rich get richer phenomenon). This can be described by an eigenvalues problem, however the information of the neighbourhood and the connections between neighbours is not taken in account, neglecting their relevance when is one evaluates the centrality/importance/influence of a node. The contribution calculated by the dissimilarity measure is parameter independent, making the proposed method is also parameter independent. Finally, we perform a comparative study of our method versus other methods reported in the literature, obtaining more accurate and less expensive computational results in most cases.

  11. Eigencentrality based on dissimilarity measures reveals central nodes in complex networks.

    PubMed

    Alvarez-Socorro, A J; Herrera-Almarza, G C; González-Díaz, L A

    2015-11-25

    One of the most important problems in complex network's theory is the location of the entities that are essential or have a main role within the network. For this purpose, the use of dissimilarity measures (specific to theory of classification and data mining) to enrich the centrality measures in complex networks is proposed. The centrality method used is the eigencentrality which is based on the heuristic that the centrality of a node depends on how central are the nodes in the immediate neighbourhood (like rich get richer phenomenon). This can be described by an eigenvalues problem, however the information of the neighbourhood and the connections between neighbours is not taken in account, neglecting their relevance when is one evaluates the centrality/importance/influence of a node. The contribution calculated by the dissimilarity measure is parameter independent, making the proposed method is also parameter independent. Finally, we perform a comparative study of our method versus other methods reported in the literature, obtaining more accurate and less expensive computational results in most cases.

  12. AFM Manipulation of Viruses: Substrate Interactions and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Falvo, M. R.; Superfine, R.; Washburn, S.; Finch, M.; Taylor, R. M.; Chi, V.; Brooks, F. P.; Ferrari, F.; Samulski, R.

    1996-03-01

    Using an AFM tip as a manipulation tool, we have translated, rotated, and dissected individual Tobacco Mosaic Virus (TMV) and Adenovirus particles. We have implemented a teleoperation system which allows manual control of the relative tip-sample position while also allowing conventional AFM operation for imaging resulting structure. Using simple tip trajectories to bend the rod-shaped TMV, we observed a variety of resulting structures and mechanical failures. The distributed adhesive interaction between the virus and the sample surface, as well as the local tip-virus interaction affect the distortion in the shape of the virus. Experiments were performed in air as well as in liquid on graphite and Si substrates. The in-liquid experiments allow tuning of the environmental conditions, including osmolarity and pH, which are known to profoundly affect the virus structure. A continuum mechanical model relating mechanical properties to observations provides insight into the constraints for successful nondestructive manipulation.

  13. Nano-Bio-Mechanics of Neuroblastoma Cells Using AFM

    NASA Astrophysics Data System (ADS)

    Bastatas, Lyndon; Matthews, James; Kang, Min; Park, Soyeun

    2011-10-01

    We have conducted an in vitro study to determine the elastic moduli of neurobalstoma cell lines using atomic force microscopy. Using a panel of cell lines established from neuroblastoma patients at different stages of disease progress and treatment, we have investigated the differences in elastic moduli during a course of cancer progression and chemotherapy. The cells were grown on the hard substrates that are chemically functionalized to enhance adhesion. We have performed the AFM indentation experiments with different applied forces from the AFM probe. For the purpose of the comparison between cell lines, the indentations were performed only on cell centers. The obtained force-distance curves were analyzed using the Hertz model in order to extract the elastic moduli. We have found that the elastic moduli of human neuroblastoma cells significantly varied during the disease progression. We postulate that the observed difference might be affected by the treatment and chemotherapy.

  14. BOREAS AFM-5 Level-1 Upper Air Network Data

    NASA Technical Reports Server (NTRS)

    Barr, Alan; Hrynkiw, Charmaine; Newcomer, Jeffrey A. (Editor); Hall, Forrest G. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-5 team collected and processed data from the numerous radiosonde flights during the project. The goals of the AFM-05 team were to provide large-scale definition of the atmosphere by supplementing the existing Atmospheric Environment Service (AES) aerological network, both temporally and spatially. This data set includes basic upper-air parameters collected from the network of upper-air stations during the 1993, 1994, and 1996 field campaigns over the entire study region. The data are contained in tabular ASCII files. The level-1 upper-air network data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files also are available on a CD-ROM (see document number 20010000884).

  15. Automated assembly of holder chips to AFM probes

    NASA Astrophysics Data System (ADS)

    Reinhart, Gunther; Jacob, Dirk; Fouchier, Marc

    2001-10-01

    At the Belgian institute IMEC techniques for the production of electrically conductive atomic force microscope (AFM) probes are developed. To facilitate handling of the fragile probes, holder chips are required. The assembly of such holder chips, which can be split up into the application of solder paste, the positioning of the holder chip and the soldering of the chip, is a crucial manufacturing step, that, until now, was performed manually for economic reasons. With the help of a modular micro assembly tool, developed by the Institute for Machine Tools and Industrial Management (iwb) of the Technische Universitaet Muenchen, an economical automated assembly of the holder chips was developed. Thanks to our integrated sensor technology, even the automated assembly onto the extremely fragile membranes of moulded AFM probes was possible. In particular, the dispensing process of the solder paste onto the membranes was improved by the integration of a non-contact sensor for the needle clearance.

  16. Revealing Amphiphilic Nanodornains of Anti-Biofouling Polymer Coatings

    SciTech Connect

    Amadei, CA; Yang, R; Chiesa, M; Gleason, KK; Santos, S

    2014-04-09

    Undesired bacterial adhesion and biofilm formation on wetted surfaces leads to significant economic and environmental costs in various industries. Amphiphilic coatings with molecular hydrophilic and hydrophobic patches can mitigate such biofouling effectively in an environmentally friendly manner. The coatings are synthesized by copolymerizing (Hydroxyethyl)methacrylate and perfluorodecylacrylate via initiated chemical vapor deposition (iCVD). In previous studies, the size of the patches was estimated to be similar to 1.4-1.75 nm by fitting protein adsorption data to a theoretical model. However, no direct observations of the molecular heterogeneity exist and therefore the origin of the fouling resistance of amphiphilic coatings remains unclear. Here, the amphiphilic nature is investigated by amplitude modulation atomic force microscopy (AM-AFM). High-resolution images obtained by penetrating and oscillating the AFM tip under the naturally present water layer with sub-nanometer amplitudes reveal, for the first time, the existence of amphiphilic nanodomains (1-2 nm(2)). Compositional heterogeneity at the nanoscale is further corroborated by a statistical analysis on the data obtained with dynamic AM-AFM force spectroscopy. Variations in the long range attractive forces, responsible for water affinity, are also identified. These nanoscopic results on the polymers wettability are also confirmed by contact angle measurements (i.e., static and dynamic). The unprecedented ability to visualize the amphiphilic nanodomains as well as sub-nanometer crystalline structures provides strong evidence for the existence of previously postulated nanostructures, and sheds light on the underlying antifouling mechanism of amphiphilic chemistry.

  17. Lateral Tip Control Effects in CD-AFM Metrology: The Large Tip Limit.

    PubMed

    Dixson, Ronald G; Orji, Ndubuisi G; Goldband, Ryan S

    2016-01-25

    Sidewall sensing in critical dimension atomic force microscopes (CD-AFMs) usually involves continuous lateral dithering of the tip or the use of a control algorithm and fast response piezo actuator to position the tip in a manner that resembles touch-triggering of coordinate measuring machine (CMM) probes. All methods of tip position control, however, induce an effective tip width that may deviate from the actual geometrical tip width. Understanding the influence and dependence of the effective tip width on the dither settings and lateral stiffness of the tip can improve the measurement accuracy and uncertainty estimation for CD-AFM measurements. Since CD-AFM typically uses tips that range from 15 nm to 850 nm in geometrical width, the behavior of effective tip width throughout this range should be understood. The National Institute of Standards and Technology (NIST) has been investigating the dependence of effective tip width on the dither settings and lateral stiffness of the tip, as well as the possibility of material effects due to sample composition. For tip widths of 130 nm and lower, which also have lower lateral stiffness, the response of the effective tip width to lateral dither is greater than for larger tips. However, we have concluded that these effects will not generally result in a residual bias, provided that the tip calibration and sample measurement are performed under the same conditions. To validate that our prior conclusions about the dependence of effective tip width on lateral stiffness are valid for large CD-tips, we recently performed experiments using a very large non-CD tip with an etched plateau of approximately 2 μm width. The effective lateral stiffness of these tips is at least 20 times greater than typical CD-AFM tips, and these results supported our prior conclusions about the expected behavior for larger tips. The bottom-line importance of these latest observations is that we can now reasonably conclude that a dither slope of 3 nm

  18. Force and function: probing proteins with AFM-based force spectroscopy.

    PubMed

    Puchner, Elias M; Gaub, Hermann E

    2009-10-01

    Forces play a pivotal role in life, and the response of live systems to forces requires molecules and molecular interactions with adequate properties to counteract both in a passive and also, if needed, in an active, dynamic manner. However, at the level of individual molecules these forces are so minute, that the development of sophisticated experiments to measure and control them was required. With the maturation of these techniques, particularly the AFM-based single-molecule force spectroscopy into commercial instruments, the scope has widened considerably and more and more studies shed light onto the different aspects of biomolecular mechanics. Many surprises turned up and more are waiting for us.

  19. Leading Change: Transitioning the AFMS into a High Reliability Organization

    DTIC Science & Technology

    2016-02-16

    AIR WAR COLLEGE AIR UNIVERSITY LEADING CHANGE: TRANSITIONING THE AFMS INTO A HIGH RELIABILTY ORGANIZATION by Robert K. Bogart...academic research paper are those of the author and do not reflect the official policy or position of the US government, the Department of Defense, or Air ...University. In accordance with Air Force Instruction 51-303, it is not copyrighted, but is the property of the United States government. iii

  20. Adiabatic Compression Sensitivity of AF-M315E

    DTIC Science & Technology

    2015-07-01

    the development of green rocket propellants . The Air Force Research Laboratory’s (AFRL) monopropellant, AF-M315E, has been selected for...art rocket fuels and propellants . A known quantity of liquid propellant is placed in a metal U-tube and held isothermally in a preheated mixture of... Propellant Infusion Mission (GPIM) program. As the propulsion system developed by Aerojet- Rocketdyne for this propellant advances in maturity, studies

  1. Biophysical properties of cardiomyocyte surface explored by multiparametric AFM.

    PubMed

    Smolyakov, Georges; Cauquil, Marie; Severac, Childerick; Lachaize, Véronique; Guilbeau-Frugier, Céline; Sénard, Jean-Michel; Galés, Céline; Dague, Etienne

    2017-03-02

    PeakForce Quantitative Nanomechanical Mapping (PeakForce QNM) multiparametric AFM mode was adapted to qualitative and quantitative study of the lateral membrane of cardiomyocytes (CMs), extending this powerful mode to the study of soft cells. On living CM, PeakForce QNM depicted the crests and hollows periodic alternation of cell surface architecture previously described using AFM Force Volume (FV) mode. PeakForce QNM analysis provided better resolution in terms of pixel number compared to FV mode and reduced acquisition time, thus limiting the consequences of spontaneous living adult CM dedifferentiation once isolated from the cardiac tissue. PeakForce QNM mode on fixed CMs clearly visualized subsarcolemmal mitochondria (SSM) and their loss following formamide treatment, concomitant with the interfibrillar mitochondria climbing up and forming heaps at the cell surface. Interestingly, formamide-promoted SSM loss allowed visualization of the sarcomeric apparatus ultrastructure below the plasma membrane. High PeakForce QNM resolution led to better contrasted mechanical maps than FV mode and provided correlation between adhesion, dissipation, mechanical and topographical maps. Modified hydrophobic AFM tip enhanced contrast on adhesion and dissipation maps and suggested that CM surface crests and hollows exhibit distinct chemical properties. Finally, two-dimensional Fast Fourier Transform to objectively quantify AFM maps allowed characterization of periodicity of both sarcomeric Z-line and M-band. Overall, this study validated PeakForce QNM as a valuable and innovative mode for the exploration of living and fixed CMs. In the future, it could be applied to depict cell membrane architectural, mechanical and chemical defects as well as sarcomeric abnormalities associated with cardiac diseases.

  2. Stable isotopes measurements reveal dual carbon pools contributing to organic matter enrichment in marine aerosol

    PubMed Central

    Ceburnis, Darius; Masalaite, Agne; Ovadnevaite, Jurgita; Garbaras, Andrius; Remeikis, Vidmantas; Maenhaut, Willy; Claeys, Magda; Sciare, Jean; Baisnée, Dominique; O’Dowd, Colin D.

    2016-01-01

    Stable carbon isotope ratios in marine aerosol collected over the Southern Indian Ocean revealed δ13C values ranging from −20.0‰ to −28.2‰. The isotope ratios exhibited a strong correlation with the fractional organic matter (OM) enrichment in sea spray aerosol. The base-level isotope ratio of −20.0‰ is characteristic of an aged Dissolved Organic Matter (DOM) pool contributing a relatively homogeneous background level of DOM to oceanic waters. The range of isotope ratios, extending down to −28.2‰, is characteristic of more variable, stronger, and fresher Particulate Organic Matter (POM) pool driven by trophic level interactions. We present a conceptual dual-pool POM-DOM model which comprises a ‘young’ and variable POM pool which dominates enrichment in sea-spray and an ‘aged’ but invariant DOM pool which is, ultimately, an aged end-product of processed ‘fresh’ POM. This model is harmonious with the preferential enrichment of fresh colloidal and nano-gel lipid-like particulate matter in sea spray particles and the observed depleted δ13C ratio resulting from isotope equilibrium fractionation coupled with enhanced plankton photosynthesis in cold water (−2 °C to +8 °C). These results re-assert the hypothesis that OM enrichment in sea-spray is directly linked to primary production and, consequently, can have implications for climate-aerosol-cloud feedback systems. PMID:27819297

  3. Stable isotopes measurements reveal dual carbon pools contributing to organic matter enrichment in marine aerosol

    NASA Astrophysics Data System (ADS)

    Ceburnis, Darius; Masalaite, Agne; Ovadnevaite, Jurgita; Garbaras, Andrius; Remeikis, Vidmantas; Maenhaut, Willy; Claeys, Magda; Sciare, Jean; Baisnée, Dominique; O’Dowd, Colin D.

    2016-11-01

    Stable carbon isotope ratios in marine aerosol collected over the Southern Indian Ocean revealed δ13C values ranging from ‑20.0‰ to ‑28.2‰. The isotope ratios exhibited a strong correlation with the fractional organic matter (OM) enrichment in sea spray aerosol. The base-level isotope ratio of ‑20.0‰ is characteristic of an aged Dissolved Organic Matter (DOM) pool contributing a relatively homogeneous background level of DOM to oceanic waters. The range of isotope ratios, extending down to ‑28.2‰, is characteristic of more variable, stronger, and fresher Particulate Organic Matter (POM) pool driven by trophic level interactions. We present a conceptual dual-pool POM-DOM model which comprises a ‘young’ and variable POM pool which dominates enrichment in sea-spray and an ‘aged’ but invariant DOM pool which is, ultimately, an aged end-product of processed ‘fresh’ POM. This model is harmonious with the preferential enrichment of fresh colloidal and nano-gel lipid-like particulate matter in sea spray particles and the observed depleted δ13C ratio resulting from isotope equilibrium fractionation coupled with enhanced plankton photosynthesis in cold water (‑2 °C to +8 °C). These results re-assert the hypothesis that OM enrichment in sea-spray is directly linked to primary production and, consequently, can have implications for climate-aerosol-cloud feedback systems.

  4. Nanoscale rippling on polymer surfaces induced by AFM manipulation

    PubMed Central

    2015-01-01

    Summary Nanoscale rippling induced by an atomic force microscope (AFM) tip can be observed after performing one or many scans over the same area on a range of materials, namely ionic salts, metals, and semiconductors. However, it is for the case of polymer films that this phenomenon has been widely explored and studied. Due to the possibility of varying and controlling various parameters, this phenomenon has recently gained a great interest for some technological applications. The advent of AFM cantilevers with integrated heaters has promoted further advances in the field. An alternative method to heating up the tip is based on solvent-assisted viscoplastic deformations, where the ripples develop upon the application of a relatively low force to a solvent-rich film. An ensemble of AFM-based procedures can thus produce nanoripples on polymeric surfaces quickly, efficiently, and with an unprecedented order and control. However, even if nanorippling has been observed in various distinct modes and many theoretical models have been since proposed, a full understanding of this phenomenon is still far from being achieved. This review aims at summarizing the current state of the art in the perspective of achieving control over the rippling process on polymers at a nanoscale level. PMID:26733086

  5. Near-Field Spectroscopy with Nanoparticles Deposited by AFM

    NASA Technical Reports Server (NTRS)

    Anderson, Mark S.

    2008-01-01

    An alternative approach to apertureless near-field optical spectroscopy involving an atomic-force microscope (AFM) entails less complexity of equipment than does a prior approach. The alternative approach has been demonstrated to be applicable to apertureless near-field optical spectroscopy of the type using an AFM and surface enhanced Raman scattering (SERS), and is expected to be equally applicable in cases in which infrared or fluorescence spectroscopy is used. Apertureless near-field optical spectroscopy is a means of performing spatially resolved analyses of chemical compositions of surface regions of nanostructured materials. In apertureless near-field spectroscopy, it is common practice to utilize nanostructured probe tips or nanoparticles (usually of gold) having shapes and dimensions chosen to exploit plasmon resonances so as to increase spectroscopic-signal strengths. To implement the particular prior approach to which the present approach is an alternative, it is necessary to integrate a Raman spectrometer with an AFM and to utilize a special SERS-active probe tip. The resulting instrumentation system is complex, and the tasks of designing and constructing the system and using the system to acquire spectro-chemical information from nanometer-scale regions on a surface are correspondingly demanding.

  6. Tissue section AFM: In situ ultrastructural imaging of native biomolecules

    PubMed Central

    Graham, Helen K.; Hodson, Nigel W.; Hoyland, Judith A.; Millward-Sadler, Sarah J.; Garrod, David; Scothern, Anthea; Griffiths, Christopher E.M.; Watson, Rachel E.B.; Cox, Thomas R.; Erler, Janine T.; Trafford, Andrew W.; Sherratt, Michael J.

    2010-01-01

    Conventional approaches for ultrastructural high-resolution imaging of biological specimens induce profound changes in bio-molecular structures. By combining tissue cryo-sectioning with non-destructive atomic force microscopy (AFM) imaging we have developed a methodology that may be applied by the non-specialist to both preserve and visualize bio-molecular structures (in particular extracellular matrix assemblies) in situ. This tissue section AFM technique is capable of: i) resolving nm–µm scale features of intra- and extracellular structures in tissue cryo-sections; ii) imaging the same tissue region before and after experimental interventions; iii) combining ultrastructural imaging with complimentary microscopical and micromechanical methods. Here, we employ this technique to: i) visualize the macro-molecular structures of unstained and unfixed fibrillar collagens (in skin, cartilage and intervertebral disc), elastic fibres (in aorta and lung), desmosomes (in nasal epithelium) and mitochondria (in heart); ii) quantify the ultrastructural effects of sequential collagenase digestion on a single elastic fibre; iii) correlate optical (auto fluorescent) with ultrastructural (AFM) images of aortic elastic lamellae. PMID:20144712

  7. Interlaboratory round robin on cantilever calibration for AFM force spectroscopy.

    PubMed

    te Riet, Joost; Katan, Allard J; Rankl, Christian; Stahl, Stefan W; van Buul, Arend M; Phang, In Yee; Gomez-Casado, Alberto; Schön, Peter; Gerritsen, Jan W; Cambi, Alessandra; Rowan, Alan E; Vancso, G Julius; Jonkheijm, Pascal; Huskens, Jurriaan; Oosterkamp, Tjerk H; Gaub, Hermann; Hinterdorfer, Peter; Figdor, Carl G; Speller, Sylvia

    2011-12-01

    Single-molecule force spectroscopy studies performed by Atomic Force Microscopes (AFMs) strongly rely on accurately determined cantilever spring constants. Hence, to calibrate cantilevers, a reliable calibration protocol is essential. Although the thermal noise method and the direct Sader method are frequently used for cantilever calibration, there is no consensus on the optimal calibration of soft and V-shaped cantilevers, especially those used in force spectroscopy. Therefore, in this study we aimed at establishing a commonly accepted approach to accurately calibrate compliant and V-shaped cantilevers. In a round robin experiment involving eight different laboratories we compared the thermal noise and the Sader method on ten commercial and custom-built AFMs. We found that spring constants of both rectangular and V-shaped cantilevers can accurately be determined with both methods, although the Sader method proved to be superior. Furthermore, we observed that simultaneous application of both methods on an AFM proved an accurate consistency check of the instrument and thus provides optimal and highly reproducible calibration. To illustrate the importance of optimal calibration, we show that for biological force spectroscopy studies, an erroneously calibrated cantilever can significantly affect the derived (bio)physical parameters. Taken together, our findings demonstrated that with the pre-established protocol described reliable spring constants can be obtained for different types of cantilevers.

  8. One-neutron removal measurement reveals 24O as a new doubly magic nucleus.

    PubMed

    Kanungo, R; Nociforo, C; Prochazka, A; Aumann, T; Boutin, D; Cortina-Gil, D; Davids, B; Diakaki, M; Farinon, F; Geissel, H; Gernhäuser, R; Gerl, J; Janik, R; Jonson, B; Kindler, B; Knöbel, R; Krücken, R; Lantz, M; Lenske, H; Litvinov, Y; Lommel, B; Mahata, K; Maierbeck, P; Musumarra, A; Nilsson, T; Otsuka, T; Perro, C; Scheidenberger, C; Sitar, B; Strmen, P; Sun, B; Szarka, I; Tanihata, I; Utsuno, Y; Weick, H; Winkler, M

    2009-04-17

    The first measurement of the momentum distribution for one-neutron removal from (24)O at 920A MeV performed at GSI, Darmstadt is reported. The observed distribution has a width (FWHM) of 99 +/- 4 MeV/c in the projectile rest frame and a one-neutron removal cross section of 63 +/- 7 mb. The results are well explained with a nearly pure 2s_{1/2} neutron spectroscopic factor of 1.74 +/- 0.19 within the eikonal model. This large s-wave probability shows a spherical shell closure thereby confirming earlier suggestions that (24)O is a new doubly magic nucleus.

  9. Electronic correlations in vanadium revealed by electron-positron annihilation measurements

    NASA Astrophysics Data System (ADS)

    Weber, Josef Andreas; Benea, Diana; Appelt, Wilhelm H.; Ceeh, Hubert; Kreuzpaintner, Wolfgang; Leitner, Michael; Vollhardt, Dieter; Hugenschmidt, Christoph; Chioncel, Liviu

    2017-02-01

    The electronic structure of vanadium measured by angular correlation of electron-positron annihilation radiation (ACAR) is compared with the predictions of the combined density functional and dynamical mean-field theory (DMFT). Reconstructing the momentum density from five two-dimensional projections we were able to determine the full Fermi surface and found excellent agreement with the DMFT calculations. In particular, we show that the local, dynamic self-energy corrections contribute to the anisotropy of the momentum density and need to be included to explain the experimental results.

  10. Assembly of live micro-organisms on microstructured PDMS stamps by convective/capillary deposition for AFM bio-experiments.

    PubMed

    Dague, E; Jauvert, E; Laplatine, L; Viallet, B; Thibault, C; Ressier, L

    2011-09-30

    Immobilization of live micro-organisms on solid substrates is an important prerequisite for atomic force microscopy (AFM) bio-experiments. The method employed must immobilize the cells firmly enough to enable them to withstand the lateral friction forces exerted by the tip during scanning but without denaturing the cell interface. In this work, a generic method for the assembly of living cells on specific areas of substrates is proposed. It consists in assembling the living cells within the patterns of microstructured, functionalized poly-dimethylsiloxane (PDMS) stamps using convective/capillary deposition. This versatile approach is validated by applying it to two systems of foremost importance in biotechnology and medicine: Saccharomyces cerevisiae yeasts and Aspergillus fumigatus fungal spores. We show that this method allows multiplexing AFM nanomechanical measurements by force spectroscopy on S. cerevisiae yeasts and high-resolution AFM imaging of germinated Aspergillus conidia in buffer medium. These two examples clearly demonstrate the immense potential of micro-organism assembly on functionalized, microstructured PDMS stamps by convective/capillary deposition for performing rigorous AFM bio-experiments on living cells.

  11. Assembly of live micro-organisms on microstructured PDMS stamps by convective/capillary deposition for AFM bio-experiments

    NASA Astrophysics Data System (ADS)

    Dague, E.; Jauvert, E.; Laplatine, L.; Viallet, B.; Thibault, C.; Ressier, L.

    2011-09-01

    Immobilization of live micro-organisms on solid substrates is an important prerequisite for atomic force microscopy (AFM) bio-experiments. The method employed must immobilize the cells firmly enough to enable them to withstand the lateral friction forces exerted by the tip during scanning but without denaturing the cell interface. In this work, a generic method for the assembly of living cells on specific areas of substrates is proposed. It consists in assembling the living cells within the patterns of microstructured, functionalized poly-dimethylsiloxane (PDMS) stamps using convective/capillary deposition. This versatile approach is validated by applying it to two systems of foremost importance in biotechnology and medicine: Saccharomyces cerevisiae yeasts and Aspergillus fumigatus fungal spores. We show that this method allows multiplexing AFM nanomechanical measurements by force spectroscopy on S. cerevisiae yeasts and high-resolution AFM imaging of germinated Aspergillus conidia in buffer medium. These two examples clearly demonstrate the immense potential of micro-organism assembly on functionalized, microstructured PDMS stamps by convective/capillary deposition for performing rigorous AFM bio-experiments on living cells.

  12. Measuring Pavlovian fear with conditioned freezing and conditioned suppression reveals different roles for the basolateral amygdala.

    PubMed

    McDannald, Michael A; Galarce, Ezequiel M

    2011-02-16

    In Pavlovian fear conditioning, pairing a neutral cue with aversive foot shock endows a cue with fear-eliciting properties. Studies of Pavlovian fear conditioning measuring freezing have demonstrated the basolateral amygdala (BLA) to be critical to both fear learning and memory. The nucleus accumbens core (NAc), while not important to freezing, is important to the enhancement of instrumental responding by cues paired with food reward. In the present study we investigated the role of the BLA and the NAc in another property of fear cues, the ability to suppress instrumental responding for food rewards (conditioned suppression). Sham, BLA and NAc-lesioned rats received a fear discrimination procedure in which one visual cue (CS+) predicted foot shock while a second cue (CS-) did not. Conditioning took place over a baseline of instrumental responding, allowing for concurrent measure of freezing and instrumental suppression. NAc lesions left fear conditioning fully intact. BLA lesions impaired acquisition and discrimination of fear when assessed with conditioned freezing. However, BLA lesions only altered fear acquisition and left discrimination completely intact when assessed with conditioned suppression. These findings suggest a critical role for the BLA in fear when assessed with conditioned freezing but a diminished role when assessed with conditioned suppression.

  13. Present-day crustal thinning in the southern and northern Tibetan Plateau revealed by GPS measurements

    NASA Astrophysics Data System (ADS)

    Ge, Wei-Peng; Molnar, Peter; Shen, Zheng-Kang; Li, Qiang

    2015-07-01

    GPS measurements from sites within the Tibetan Plateau show not only east-southeast-west-northwest extension but also, more importantly, horizontal dilation throughout the interior of the plateau. Assuming conservation of volume, vertical (thinning) strain rates equal horizontal dilation rates, and they, 8.9 ± 0.8 nanostrain a-1 and 7.4 ± 1.2 nanostrain a-1 in northern and southern Tibet, and 12.0 ± 3.2 nanostrain a-1 in its southwestern part, suggest no measureable difference. Principal extensional strain rates also are similar in magnitude and orientation. If crustal thinning began at 10-15 Ma and the current rates of horizontal dilation applied both to the entire crust and to that period, the crust should have thinned by 5.5-8.5 km. If isostatic equilibrium applied, the mean elevation of the plateau would have dropped ~1 km. The similar rates for northern, southern, and southwestern Tibet suggest that the processes dictating crustal extension, normal faulting, and crustal thinning in the three regions differ little from one another.

  14. Extended carrier lifetimes and diffusion in hybrid perovskites revealed by Hall effect and photoconductivity measurements

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Yi, H. T.; Wu, X.; Haroldson, R.; Gartstein, Y. N.; Rodionov, Y. I.; Tikhonov, K. S.; Zakhidov, A.; Zhu, X.-Y.; Podzorov, V.

    2016-08-01

    Impressive performance of hybrid perovskite solar cells reported in recent years still awaits a comprehensive understanding of its microscopic origins. In this work, the intrinsic Hall mobility and photocarrier recombination coefficient are directly measured in these materials in steady-state transport studies. The results show that electron-hole recombination and carrier trapping rates in hybrid perovskites are very low. The bimolecular recombination coefficient (10-11 to 10-10 cm3 s-1) is found to be on par with that in the best direct-band inorganic semiconductors, even though the intrinsic Hall mobility in hybrid perovskites is considerably lower (up to 60 cm2 V-1 s-1). Measured here, steady-state carrier lifetimes (of up to 3 ms) and diffusion lengths (as long as 650 μm) are significantly longer than those in high-purity crystalline inorganic semiconductors. We suggest that these experimental findings are consistent with the polaronic nature of charge carriers, resulting from an interaction of charges with methylammonium dipoles.

  15. Extended carrier lifetimes and diffusion in hybrid perovskites revealed by Hall effect and photoconductivity measurements

    DOE PAGES

    Chen, Y.; Yi, H. T.; Wu, X.; ...

    2016-08-01

    Impressive performance of hybrid perovskite solar cells reported in recent years still awaits a comprehensive understanding of its microscopic origins. In this work, the intrinsic Hall mobility and photocarrier recombination coefficient are directly measured in these materials in steady-state transport studies. The results show that electron-hole recombination and carrier trapping rates in hybrid perovskites are very low. The bimolecular recombination coefficient (10–11 to 10–10 cm3 s–1) is found to be on par with that in the best direct-band inorganic semiconductors, even though the intrinsic Hall mobility in hybrid perovskites is considerably lower (up to 60 cm2 V–1 s–1). Measured here,more » steady-state carrier lifetimes (of up to 3 ms) and diffusion lengths (as long as 650 μm) are significantly longer than those in high-purity crystalline inorganic semiconductors. As a result, we suggest that these experimental findings are consistent with the polaronic nature of charge carriers, resulting from an interaction of charges with methylammonium dipoles.« less

  16. Extended carrier lifetimes and diffusion in hybrid perovskites revealed by Hall effect and photoconductivity measurements

    PubMed Central

    Chen, Y.; Yi, H. T.; Wu, X.; Haroldson, R.; Gartstein, Y. N.; Rodionov, Y. I.; Tikhonov, K. S.; Zakhidov, A.; Zhu, X. -Y.; Podzorov, V.

    2016-01-01

    Impressive performance of hybrid perovskite solar cells reported in recent years still awaits a comprehensive understanding of its microscopic origins. In this work, the intrinsic Hall mobility and photocarrier recombination coefficient are directly measured in these materials in steady-state transport studies. The results show that electron-hole recombination and carrier trapping rates in hybrid perovskites are very low. The bimolecular recombination coefficient (10−11 to 10−10 cm3 s−1) is found to be on par with that in the best direct-band inorganic semiconductors, even though the intrinsic Hall mobility in hybrid perovskites is considerably lower (up to 60 cm2 V−1 s−1). Measured here, steady-state carrier lifetimes (of up to 3 ms) and diffusion lengths (as long as 650 μm) are significantly longer than those in high-purity crystalline inorganic semiconductors. We suggest that these experimental findings are consistent with the polaronic nature of charge carriers, resulting from an interaction of charges with methylammonium dipoles. PMID:27477058

  17. Extended carrier lifetimes and diffusion in hybrid perovskites revealed by Hall effect and photoconductivity measurements

    SciTech Connect

    Chen, Y.; Yi, H. T.; Wu, X.; Haroldson, R.; Gartstein, Y. N.; Rodionov, Y. I.; Tikhonov, K. S.; Zakhidov, A.; Zhu, X. -Y.; Podzorov, V.

    2016-08-01

    Impressive performance of hybrid perovskite solar cells reported in recent years still awaits a comprehensive understanding of its microscopic origins. In this work, the intrinsic Hall mobility and photocarrier recombination coefficient are directly measured in these materials in steady-state transport studies. The results show that electron-hole recombination and carrier trapping rates in hybrid perovskites are very low. The bimolecular recombination coefficient (10–11 to 10–10 cm3 s–1) is found to be on par with that in the best direct-band inorganic semiconductors, even though the intrinsic Hall mobility in hybrid perovskites is considerably lower (up to 60 cm2 V–1 s–1). Measured here, steady-state carrier lifetimes (of up to 3 ms) and diffusion lengths (as long as 650 μm) are significantly longer than those in high-purity crystalline inorganic semiconductors. As a result, we suggest that these experimental findings are consistent with the polaronic nature of charge carriers, resulting from an interaction of charges with methylammonium dipoles.

  18. Water revealed as molecular mirror when measuring low concentrations of sugar with near infrared light.

    PubMed

    Bázár, György; Kovacs, Zoltan; Tanaka, Mariko; Furukawa, Akane; Nagai, Airi; Osawa, Manami; Itakura, Yukari; Sugiyama, Hiroshi; Tsenkova, Roumiana

    2015-10-08

    Near infrared spectroscopy is an overtone spectroscopy regarded as a quick and non-destructive method that provides analytical solutions for components that represent approximately 1% or more of the total mass of the investigated composite samples. Aquaphotomics offers the possibility for disentanglement of information remaining hidden in the spectra when conventional data evaluation methods are used, since this concept utilizes changes of the water structure induced by the measured solute as specific molecular vibrations at water bands. Here, near infrared technique and aquaphotomics are applied for non-destructive identification and quantification of mono- and di-saccharide solutes at 100-0.02 mM concentration that is accepted as unachievable with near infrared spectroscopy. The results presented in this study support the aquaphotomics' water molecular mirror concept that explores spectral changes related to water molecular rearrangements caused by minute changes of the solutes in the aqueous systems. The method provides quick and accurate alternative for classical analytical measurements of saccharides even at millimolar concentration levels.

  19. Carbon-depleted outer core revealed by sound velocity measurements of liquid iron-carbon alloy

    NASA Astrophysics Data System (ADS)

    Nakajima, Yoichi; Imada, Saori; Hirose, Kei; Komabayashi, Tetsuya; Ozawa, Haruka; Tateno, Shigehiko; Tsutsui, Satoshi; Kuwayama, Yasuhiro; Baron, Alfred Q. R.

    2015-11-01

    The relative abundance of light elements in the Earth's core has long been controversial. Recently, the presence of carbon in the core has been emphasized, because the density and sound velocities of the inner core may be consistent with solid Fe7C3. Here we report the longitudinal wave velocity of liquid Fe84C16 up to 70 GPa based on inelastic X-ray scattering measurements. We find the velocity to be substantially slower than that of solid iron and Fe3C and to be faster than that of liquid iron. The thermodynamic equation of state for liquid Fe84C16 is also obtained from the velocity data combined with previous density measurements at 1 bar. The longitudinal velocity of the outer core, about 4% faster than that of liquid iron, is consistent with the presence of 4-5 at.% carbon. However, that amount of carbon is too small to account for the outer core density deficit, suggesting that carbon cannot be a predominant light element in the core.

  20. Intracellular Impedance Measurements Reveal Non-ohmic Properties of the Extracellular Medium around Neurons

    PubMed Central

    Gomes, Jean-Marie; Bédard, Claude; Valtcheva, Silvana; Nelson, Matthew; Khokhlova, Vitalia; Pouget, Pierre; Venance, Laurent; Bal, Thierry; Destexhe, Alain

    2016-01-01

    Determining the electrical properties of the extracellular space around neurons is important for understanding the genesis of extracellular potentials, as well as for localizing neuronal activity from extracellular recordings. However, the exact nature of these extracellular properties is still uncertain. Here, we introduce a method to measure the impedance of the tissue, one that preserves the intact cell-medium interface using whole-cell patch-clamp recordings in vivo and in vitro. We find that neural tissue has marked non-ohmic and frequency-filtering properties, which are not consistent with a resistive (ohmic) medium, as often assumed. The amplitude and phase profiles of the measured impedance are consistent with the contribution of ionic diffusion. We also show that the impact of such frequency-filtering properties is possibly important on the genesis of local field potentials, as well as on the cable properties of neurons. These results show non-ohmic properties of the extracellular medium around neurons, and suggest that source estimation methods, as well as the cable properties of neurons, which all assume ohmic extracellular medium, may need to be reevaluated. PMID:26745426

  1. Leaf Phenology of Amazonian Canopy Trees as Revealed by Spectral and Physiochemical Measurements

    NASA Astrophysics Data System (ADS)

    Chavana-Bryant, C.; Gerard, F. F.; Malhi, Y.; Enquist, B. J.; Asner, G. P.

    2013-12-01

    The phenological dynamics of terrestrial ecosystems reflect the response of the Earth's biosphere to inter- and intra-annual dynamics of climatic and hydrological regimes. Some Dynamic Global Vegetation Models (GDVMs) have predicted that by 2050 the Amazon rainforest will begin to dieback (Cox et al. 2000, Nature) or that the ecosystem will become unsustainable (Salazar et al. 2007, GRL). One major component in DGVMs is the simulation of vegetation phenology, however, modelers are challenged with the estimation of tropical phenology which is highly complex. Current modeled phenology is based on observations of temperate vegetation and accurate representation of tropical phenology is long overdue. Remote sensing (RS) data are a key tool in monitoring vegetation dynamics at regional and global scales. Of the many RS techniques available, time-series analysis of vegetation indices (VIs) has become the most common approach in monitoring vegetation phenology (Samanta et al. 2010, GRL; Bradley et al. 2011, GCB). Our research focuses on investigating the influence that age related variation in the spectral reflectance and physiochemical properties of leaves may have on VIs of tropical canopies. In order to do this, we collected a unique leaf and canopy phenological dataset at two different Amazonian sites: Inselberg, French Guyana (FG) and Tambopata, Peru (PE). Hyperspectral reflectance measurements were collected from 4,102 individual leaves sampled to represent different leaf ages and vertical canopy positions (top, mid and low canopy) from 20 different canopy tree species (8 in FG and 12 in PE). These leaf spectra were complemented with 1) leaf physical measurements: fresh and dry weight, area and thickness, LMA and LWC and 2) leaf chemical measurements: %N, %C, %P, C:N and d13C. Canopy level observations included top-of-canopy reflectance measurements obtained using a multispectral 16-band radiometer, leaf demography (tot. number and age distribution) and branch

  2. Glucocorticoid Receptor-DNA Dissociation Kinetics Measured in Vitro Reveal Exchange on the Second Time Scale.

    PubMed

    De Angelis, Rolando W; Maluf, Nasib K; Yang, Qin; Lambert, James R; Bain, David L

    2015-09-01

    The glucocorticoid receptor (GR) is a member of the steroid receptor family of ligand-activated transcription factors. Recent live cell imaging studies have revealed that interactions of GR with chromatin are highly dynamic, with average receptor residence times of only seconds. These findings were surprising because early kinetic studies found that GR-DNA interactions in vitro were much slower, having calculated residence times of minutes to hours. However, these latter analyses were conducted at a time when it was possible to work with only either partially purified holoreceptor or its purified but isolated DNA binding domain. Noting these limitations, we reexamined GR-DNA dissociation kinetics using a highly purified holoreceptor shown to be amenable to rigorous study. We first observe that GR-DNA interactions in vitro are not slow as previously thought but converge with in vivo behavior, having residence times of only seconds to tens of seconds. This rapid exchange is seen at six individual response elements and the multisite MMTV promoter used in live cell imaging. Second, GR dissociation rates are identical for all response elements. Thus, previously observed differences in receptor affinity toward these sequences are not due to differences in off rate but in on rate. Finally, dissociation kinetics are biphasic in character. A minimal kinetic model consistent with the data is that in which DNA-bound GR interconverts between states on a second time scale, with dissociation occurring via a multistep process. We speculate that receptor interconversion in this time frame can be recognized by the coregulatory proteins that interact with GR, leading to unique transcriptional responses.

  3. Single-molecule measurements of replisome composition and function reveal the mechanism of polymerase exchange

    NASA Astrophysics Data System (ADS)

    Loparo, Joseph

    2011-03-01

    A complete understanding of the molecular mechanisms underlying the functioning of large, multiprotein complexes requires experimental tools capable of simultaneously visualizing molecular architecture and enzymatic activity in real time. I will describe a novel single-molecule assay that combines the flow-stretching of individual DNA molecules to measure the activity of the DNA-replication machinery with the visualization of fluorescently labeled DNA polymerases at the replication fork. By correlating polymerase stoichiometry with DNA synthesis of T7 bacteriophage replisomes, we are able to quantitatively describe the mechanism of polymerase exchange. We find that even at relatively modest polymerase concentration (2 nM), soluble polymerases are recruited to an actively synthesizing replisome, dramatically increasing local polymerase concentration. These excess polymerases remain passively associated with the replisome through electrostatic interactions with the T7 helicase for 50 seconds until a stochastic and transient dissociation of the synthesizing polymerase from the primer-template allows for a polymerase exchange event to occur.

  4. Low-altitude magnetic field measurements by MESSENGER reveal Mercury’s ancient crustal field

    NASA Astrophysics Data System (ADS)

    Johnson, Catherine L.; Phillips, Roger J.; Purucker, Michael E.; Anderson, Brian J.; Byrne, Paul K.; Denevi, Brett W.; Feinberg, Joshua M.; Hauck, Steven A.; Head, James W.; Korth, Haje; James, Peter B.; Mazarico, Erwan; Neumann, Gregory A.; Philpott, Lydia C.; Siegler, Matthew A.; Tsyganenko, Nikolai A.; Solomon, Sean C.

    2015-05-01

    Magnetized rocks can record the history of the magnetic field of a planet, a key constraint for understanding its evolution. From orbital vector magnetic field measurements of Mercury taken by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft at altitudes below 150 kilometers, we have detected remanent magnetization in Mercury’s crust. We infer a lower bound on the average age of magnetization of 3.7 to 3.9 billion years. Our findings indicate that a global magnetic field driven by dynamo processes in the fluid outer core operated early in Mercury’s history. Ancient field strengths that range from those similar to Mercury’s present dipole field to Earth-like values are consistent with the magnetic field observations and with the low iron content of Mercury’s crust inferred from MESSENGER elemental composition data.

  5. Measurement of Gene Regulation in Individual Cells Reveals Rapid Switching Between Promoter States

    PubMed Central

    Sepúlveda, Leonardo A.; Xu, Heng; Zhang, Jing; Wang, Mengyu; Golding, Ido

    2016-01-01

    In vivo mapping of transcription-factor binding to the transcriptional output of the regulated gene is hindered by probabilistic promoter occupancy, the presence of multiple gene copies, and cell-to-cell variability. We demonstrate how to overcome these obstacles in the lysogeny maintenance promoter of bacteriophage lambda, PRM. We simultaneously measured the concentration of the lambda repressor CI and the number of mRNAs from PRM in individual E. coli cells, and used a theoretical model to identify the stochastic activity corresponding to different CI binding configurations. We found that switching between promoter configurations is faster than mRNA lifetime, and that individual gene copies within the same cell act independently. The simultaneous quantification of transcription factor and promoter activity, followed by stochastic theoretical analysis, provides a tool that can be applied to other genetic circuits. PMID:26965629

  6. One-Neutron Removal Measurement Reveals {sup 24}O as a New Doubly Magic Nucleus

    SciTech Connect

    Kanungo, R.; Perro, C.; Nociforo, C.; Aumann, T.; Geissel, H.; Gerl, J.; Kindler, B.; Litvinov, Y.; Lommel, B.; Mahata, K.; Scheidenberger, C.; Sun, B.; Weick, H.; Winkler, M.; Prochazka, A.; Farinon, F.; Knoebel, R.; Boutin, D.; Lenske, H.; Cortina-Gil, D.

    2009-04-17

    The first measurement of the momentum distribution for one-neutron removal from {sup 24}O at 920A MeV performed at GSI, Darmstadt is reported. The observed distribution has a width (FWHM) of 99{+-}4 MeV/c in the projectile rest frame and a one-neutron removal cross section of 63{+-}7 mb. The results are well explained with a nearly pure 2s{sub 1/2} neutron spectroscopic factor of 1.74{+-}0.19 within the eikonal model. This large s-wave probability shows a spherical shell closure thereby confirming earlier suggestions that {sup 24}O is a new doubly magic nucleus.

  7. Static deflection measurements of cantilever arrays reveal polymer film expansion and contraction.

    PubMed

    Snow, David; Weeks, Brandon L; Kim, Dae Jung; Loui, Albert; Hart, Bradley R; Hope-Weeks, Louisa J

    2007-12-15

    An optical static method of detection is used to interpret surface stress induced bending related to cantilevers coated on one side with poly(vinyl alcohol), poly(vinyl butyral-co-vinyl alcohol-co-vinyl acetate), and poly(vinyl chloride-co-vinyl acetate-co-2-hydroxypropyl acrylate), or respectively, PVA, PVB, and PVC, and exposed to various solvent vapors. Results indicate that the adsorption and surface interactions of the different solvent vapors that cause polymer swelling and shrinking lead to rearrangements, which have been shown to change the elastic properties of the polymer film, and subsequently, the spring constant of the polymer coated cantilever. Static deflection measurements allow the direction of cantilever bending to be determined, which adds a new dimension of usefulness for surface functionalized cantilevers as transducers in the development of novel microelectromechanical systems (MEMS).

  8. Planetary science. Low-altitude magnetic field measurements by MESSENGER reveal Mercury's ancient crustal field.

    PubMed

    Johnson, Catherine L; Phillips, Roger J; Purucker, Michael E; Anderson, Brian J; Byrne, Paul K; Denevi, Brett W; Feinberg, Joshua M; Hauck, Steven A; Head, James W; Korth, Haje; James, Peter B; Mazarico, Erwan; Neumann, Gregory A; Philpott, Lydia C; Siegler, Matthew A; Tsyganenko, Nikolai A; Solomon, Sean C

    2015-05-22

    Magnetized rocks can record the history of the magnetic field of a planet, a key constraint for understanding its evolution. From orbital vector magnetic field measurements of Mercury taken by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft at altitudes below 150 kilometers, we have detected remanent magnetization in Mercury's crust. We infer a lower bound on the average age of magnetization of 3.7 to 3.9 billion years. Our findings indicate that a global magnetic field driven by dynamo processes in the fluid outer core operated early in Mercury's history. Ancient field strengths that range from those similar to Mercury's present dipole field to Earth-like values are consistent with the magnetic field observations and with the low iron content of Mercury's crust inferred from MESSENGER elemental composition data.

  9. Classical and quantum phase transitions revealed using transport and x-ray measurements

    NASA Astrophysics Data System (ADS)

    Banerjee, Arnab

    I present the experimental studies of phase transitions in three different compounds in this thesis. The first one, SrCu2(BO3)2 is a physical realization of the Shastry-Sutherland model where, using precise lattice measurements, we examined the pressure-dependent phase diagram. We found two separate quantum phase transitions in the compound, the first one being a second order transition from a dimer to an intermediate magnetic state, and the second being a first order monoclinic distortion from the intermediate state to a presumed magnetically ordered state. In the second compound, NiS2, using a combination of transport and x-ray diffraction we proved that neither magnetism nor lattice symmetry, but rather electron-electron correlations, plays an active role in the insulator-metal phase transition in pure NiS2 under high pressure. Following this we make an attempt to delve the critical scaling laws using high pressure transport measurements in a helium dilution refrigerator. We observed a resistivity drop of over five orders and an effective of mass enhancement near the critical region. I detail the technical endeavors adopted for leading us to the critical behavior. The third compound, TbTe3, was believed to show only one charge density wave (CDW). We discovered a second CDW, but at a much lower transition temperature to the first one. Our results pointed to bidirectional ordering in TbTe3, a compound that has been otherwise considered a canonical model for one-dimensional CDW physics. The order parameter for this new CDW appears to deviate from standard mean-field behavior. This is only the second rare-earth telluride for which a q-vector has been determined for a second CDW, and the first for which the temperature dependence of that q-vector was characterized.

  10. Cellular pH measurements in Emiliania huxleyi reveal pronounced membrane proton permeability.

    PubMed

    Suffrian, K; Schulz, K G; Gutowska, M A; Riebesell, U; Bleich, M

    2011-05-01

    • To understand the influence of changing surface ocean pH and carbonate chemistry on the coccolithophore Emiliania huxleyi, it is necessary to characterize mechanisms involved in pH homeostasis and ion transport. • Here, we measured effects of changes in seawater carbonate chemistry on the fluorescence emission ratio of BCECF (2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein) as a measure of intracellular pH (pH(i)). Out of equilibrium solutions were used to differentiate between membrane permeation pathways for H(+), CO(2) and HCO(3)(-). • Changes in fluorescence ratio were calibrated in single cells, resulting in a ratio change of 0.78 per pH(i) unit. pH(i) acutely followed the pH of seawater (pH(e)) in a linear fashion between pH(e) values of 6.5 and 9 with a slope of 0.44 per pH(e) unit. pH(i) was nearly insensitive to changes in seawater CO(2) at constant pH(e) and HCO(3)(-). An increase in extracellular HCO(3)(-) resulted in a slight intracellular acidification. In the presence of DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid), a broad-spectrum inhibitor of anion exchangers, E. huxleyi acidified irreversibly. DIDS slightly reduced the effect of pH(e) on pH(i). • The data for the first time show the occurrence of a proton permeation pathway in E. huxleyi plasma membrane. pH(i) homeostasis involves a DIDS-sensitive mechanism.

  11. Simple pain measures reveal psycho-social pathology in patients with Crohn’s disease

    PubMed Central

    Odes, Shmuel; Friger, Michael; Sergienko, Ruslan; Schwartz, Doron; Sarid, Orly; Slonim-Nevo, Vered; Singer, Terri; Chernin, Elena; Vardi, Hillel; Greenberg, Dan; Israel IBD Research Nucleus

    2017-01-01

    AIM To determine whether pain has psycho-social associations in adult Crohn’s disease (CD) patients. METHODS Patients completed demographics, disease status, Patient Harvey-Bradshaw Index (P-HBI), Short Form Health Survey (SF-36), Short Inflammatory Bowel Disease Questionnaire (SIBDQ), and five socio-psychological questionnaires: Brief Symptom Inventory, Brief COPE Inventory, Family Assessment Device, Satisfaction with Life Scale, and Work Productivity and Activity Impairment Questionnaire. Pain sub-scales in P-HBI, SF-36 and SIBDQ measures were recoded into 4 identical scores for univariate and multinomial logistic regression analysis of associations with psycho-social variables. RESULTS The cohort comprised 594 patients, mean age 38.6 ± 14.8 years, women 52.5%, P-HBI 5.76 ± 5.15. P-HBI, SF-36 and SIBDQ broadly agreed in their assessment of pain intensity. More severe pain was significantly associated with female gender, low socio-economic status, unemployment, Israeli birth and smoking. Higher pain scores correlated positively with psychological stress, dysfunctional coping strategies, poor family relationships, absenteeism, presenteeism, productivity loss and activity impairment and all WPAI sub-scores. Patients exhibiting greater satisfaction with life had less pain. The regression showed increasing odds ratios for psychological stress (lowest 2.26, highest 12.17) and female gender (highest 3.19) with increasing pain. Internet-recruited patients were sicker and differed from hardcopy questionnaire patients in their associations with pain. CONCLUSION Pain measures in P-HBI, SF-36 and SIBDQ correlate with psycho-social pathology in CD. Physicians should be aware also of these relationships in approaching CD patients with pain. PMID:28246482

  12. Adsorption Studies with AFM of Human Plasma Fibrinogen on Silicon Surfaces

    NASA Astrophysics Data System (ADS)

    Gause, Sheena; Kong, Wendy; Rowe

    2007-11-01

    Fibrinogen (FGN) plays an important role in the clotting of blood. Human plasma fibrinogen (HPF) is a protein that readily adsorbs on biomaterial surfaces. The purpose of this experiment was to use the Atomic Force Microscope to study the adsorption of HPF molecules or FGN onto several silicon surfaces with different orientations and resistivities. The size of the FGN molecules found to be somewhat different of Si(111), (100) and (110) were compared to the size of the FGN molecules in solution (45 nm in length, the end dynodes measures to be 6.5 nm in diameter, and the middle dynode measures to be 5 nm in diameter. For this study, the CPR (Thermo-microscope) Atomic Force Microscope (AFM) was used to observe the amount of fibrinogen molecules adsorbed by Si (111) with a resistance of .0281-.0261 φ cm, Si (111) with a resistance of 1 φ cm, Si (100), and Si (110) surfaces. In finding any single fibrinogen molecules, the appropriate image scans and measurements were taken. After collection and analysis of the data, it was found from AFM that the fibrinogen molecules found on Si (110) mostly resembled fibrinogen molecules found in solution. The other images showed that the fibrinogen molecules adsorbed on Silicon substrates is significantly greater (˜10-20 %) than those in solution.

  13. AFM study of the effects of laser surface remelting on the morphology of Al-Fe aerospace alloys

    SciTech Connect

    Pariona, Moises Meza; Teleginski, Viviane; Santos, Kelly dos; Leandro Ribeiro dos Santos, Everton; Aparecida de Oliveira Camargo de Lima, Angela; Riva, Rudimar

    2012-12-15

    Laser beam welding has recently been incorporated into the fabrication process of aircraft and automobile structures. Surface roughness is an important parameter of product quality that strongly affects the performance of mechanical parts, as well as production costs. This parameter influences the mechanical properties such as fatigue behavior, corrosion resistance, creep life, etc., and other functional characteristics such as friction, wear, light reflection, heat transmission, lubrification, electrical conductivity, etc. The effects of laser surface remelting (LSR) on the morphology of Al-Fe aerospace alloys were examined before and after surface treatments, using optical microscopy (OM), scanning electron microscopy (SEM), low-angle X-ray diffraction (LA-XRD), atomic force microscopy (AFM), microhardness measurements (Vickers hardness), and cyclic voltammetry. This analysis was performed on both laser-treated and untreated sanded surfaces, revealing significant differences. The LA-XRD analysis revealed the presence of alumina, simple metals and metastable intermetallic phases, which considerably improved the microhardness of laser-remelted surfaces. The morphology produced by laser surface remelting enhanced the microstructure of the Al-Fe alloys by reducing their roughness and increasing their hardness. The treated surfaces showed passivity and stability characteristics in the electrolytic medium employed in this study. - Highlights: Black-Right-Pointing-Pointer The samples laser-treated and untreated showed significant differences. Black-Right-Pointing-Pointer The La-XRD revealed the presence of alumina in Al-1.5 wt.% Fe. Black-Right-Pointing-Pointer The laser-treated reducing the roughness and increasing the hardness. Black-Right-Pointing-Pointer The laser-treated surfaces showed characteristic passive in the electrolytic medium. Black-Right-Pointing-Pointer The laser-treated is a promising technique for applications technological.

  14. Comparison of Dolphins' Body and Brain Measurements with Four Other Groups of Cetaceans Reveals Great Diversity.

    PubMed

    Ridgway, Sam H; Carlin, Kevin P; Van Alstyne, Kaitlin R; Hanson, Alicia C; Tarpley, Raymond J

    2016-01-01

    We compared mature dolphins with 4 other groupings of mature cetaceans. With a large data set, we found great brain diversity among 5 different taxonomic groupings. The dolphins in our data set ranged in body mass from about 40 to 6,750 kg and in brain mass from 0.4 to 9.3 kg. Dolphin body length ranged from 1.3 to 7.6 m. In our combined data set from the 4 other groups of cetaceans, body mass ranged from about 20 to 120,000 kg and brain mass from about 0.2 to 9.2 kg, while body length varied from 1.21 to 26.8 m. Not all cetaceans have large brains relative to their body size. A few dolphins near human body size have human-sized brains. On the other hand, the absolute brain mass of some other cetaceans is only one-sixth as large. We found that brain volume relative to body mass decreases from Delphinidae to a group of Phocoenidae and Monodontidae, to a group of other odontocetes, to Balaenopteroidea, and finally to Balaenidae. We also found the same general trend when we compared brain volume relative to body length, except that the Delphinidae and Phocoenidae-Monodontidae groups do not differ significantly. The Balaenidae have the smallest relative brain mass and the lowest cerebral cortex surface area. Brain parts also vary. Relative to body mass and to body length, dolphins also have the largest cerebellums. Cortex surface area is isometric with brain size when we exclude the Balaenidae. Our data show that the brains of Balaenidae are less convoluted than those of the other cetaceans measured. Large vascular networks inside the cranial vault may help to maintain brain temperature, and these nonbrain tissues increase in volume with body mass and with body length ranging from 8 to 65% of the endocranial volume. Because endocranial vascular networks and other adnexa, such as the tentorium cerebelli, vary so much in different species, brain size measures from endocasts of some extinct cetaceans may be overestimates. Our regression of body length on endocranial

  15. Microvascular pressure measurement reveals a coronary vascular waterfall in arterioles larger than 110 microm.

    PubMed

    Versluis, J P; Heslinga, J W; Sipkema, P; Westerhof, N

    2001-11-01

    Pressure-flow relationships at the entrance of the coronary circulation in the diastolic myocardium exhibit a zero-flow pressure intercept (P(int)). We tested whether this intercept is the same throughout the vascular bed. Microvascular pressure-flow relationships were therefore measured in vessels of various sizes of the maximally dilated vasculature of perfused unstimulated papillary muscle using the servo-null technique. From these relationships, P(int) were calculated with nonlinear regression. The P(int) at the level of the septal artery (diameter, 150-250 microm) was 23.2 +/- 4.4 cmH2O (n = 12). In arterioles with a diameter range between 24 and 110 microm, P(int) was 1.7 +/- 0.5 cmH2O (n = 6, P < 0.01), significantly lower than in the septal artery but significantly higher than zero, and not dependent on vessel size. In venules with the same diameters, P(int) was 1.1 +/- 1.1 cmH2O (n = 4), which was not different from zero. We conclude that, in the dilated vascular bed of the papillary muscle, two vascular waterfalls are found. The first waterfall is located in arterioles between 150 and 110 microm. The second waterfall is probably located in the small postcapillary venules.

  16. Gel-expanded to gel-condensed transition in neurofilament networks revealed by direct force measurements

    NASA Astrophysics Data System (ADS)

    Beck, Roy; Deek, Joanna; Jones, Jayna B.; Safinya, Cyrus R.

    2010-01-01

    Neurofilaments (NF)-the principal cytoskeletal constituent of myelinated axons in vertebrates-consist of three molecular-weight subunit proteins NF-L (low), NF-M (medium) and NF-H (high), assembled to form mature filaments with protruding unstructured C-terminus side arms. Liquid-crystal gel networks of side-arm-mediated neurofilament assemblies have a key role in the mechanical stability of neuronal processes. Disruptions of the neurofilament network, owing to neurofilament over-accumulation or incorrect side-arm interactions, are a hallmark of motor-neuron diseases including amyotrophic lateral sclerosis. Using synchrotron X-ray scattering, we report on a direct measurement of forces in reconstituted neurofilament gels under osmotic pressure (P). With increasing pressure near physiological salt and average phosphorylation conditions, NF-LMH, comprising the three subunits near in vivo composition, or NF-LH gels, undergo for P>Pc~10kPa, an abrupt non-reversible gel-expanded to gel-condensed transition. The transition indicates side-arm-mediated attractions between neurofilaments consistent with an electrostatic model of interpenetrating chains. In contrast, NF-LM gels remain in a collapsed state for PPc. These findings, which delineate the distinct roles of NF-M and NF-H in regulating neurofilament interactions, shed light on possible mechanisms for disruptions of optimal mechanical network properties.

  17. In God we trust? Neural measures reveal lower social conformity among non-religious individuals.

    PubMed

    Thiruchselvam, Ravi; Gopi, Yashoda; Kilekwang, Leonard; Harper, Jessica; Gross, James J

    2017-02-21

    Even in predominantly religious societies, there are substantial individual differences in religious commitment. Why is this? One possibility is that differences in social conformity (i.e., the tendency to think and behave as others do) underlie inclination towards religiosity. However, the link between religiosity and conformity has not yet been directly examined. In this study, we tested the notion that non-religious individuals show dampened social conformity, using both self-reported and neural (EEG-based ERPs) measures of sensitivity to others' influence. Non-religious versus religious undergraduate subjects completed an experimental task that assessed levels of conformity in a domain unrelated to religion (i.e., in judgments of facial attractiveness). Findings showed that, although both groups yielded to conformity pressures at the self-report level, non-religious individuals did not yield to such pressures in their neural responses. These findings highlight a novel link between religiosity and social conformity, and hold implications for prominent theories about the psychological functions of religion.

  18. Gas-driven lava lake fluctuations at Erta 'Ale volcano (Ethiopia) revealed by MODIS measurements

    NASA Astrophysics Data System (ADS)

    Vergniolle, Sylvie; Bouche, Emmanuella

    2016-09-01

    The long-lived lava lake of Erta 'Ale volcano (Ethiopia) is remotely monitored by moderate resolution imaging spectroradiometers (MODIS) installed on satellites. The Normalised Thermal Index (NTI) (Wright et al. Remote Sens Environ 82:135-155 2002) is shown to be proportional to the volume of the lava lake based on visual observations. The lava lake's variable level can be plausibly related to a stable foam, i.e. a mixture composed of densely packed non-coalescing bubbles in suspension within a liquid. This foam is trapped at the top of the magma reservoir, and its thickness changes in response to the gas flux feeding the foam being successively turned on and off. The temporal evolution of the foam thickness, and the resulting variation of the volume of the lava lake, is calculated numerically by assuming that the gas flux feeding the foam, initially constant and homogeneous since December 9, 2002, is suddenly stopped on December 13, 2002 and not restarted before May 2003. The best fit between the theoretical foam thickness and the level of the lava lake deduced from the NTI provides an estimate of both the reservoir radius, 155-170 m, and the gas flux feeding the foam, 5.5×10-3-7.2×10-3 m 3 s -1 when existing. This is in agreement with previous estimates from acoustic measurements (Bouche et al. Earth Planet Sci Lett 295:37-48 2010). The very good agreement between the theoretical foam thickness and that deduced from MODIS data shows for the first time the existence of a regime based on the behaviour of a stable foam, whose spreading towards the conduit ("wide" conduit condition), can explain the long-lived activity. Our predictive model, which links the gas flux at the vent to the foam spreading, could potentially be used on any volcano with a long-lived activity. The underlying gas flux and the horizontal surface area of the magma reservoir can then be deduced by combining modelling to continuous measurements of gas flux. The lava lake, when high, often shows

  19. Airborne methane remote measurements reveal heavy-tail flux distribution in Four Corners region

    PubMed Central

    Thorpe, Andrew K.; Thompson, David R.; Hulley, Glynn; Kort, Eric Adam; Vance, Nick; Borchardt, Jakob; Krings, Thomas; Gerilowski, Konstantin; Sweeney, Colm; Conley, Stephen; Bue, Brian D.; Aubrey, Andrew D.; Hook, Simon; Green, Robert O.

    2016-01-01

    Methane (CH4) impacts climate as the second strongest anthropogenic greenhouse gas and air quality by influencing tropospheric ozone levels. Space-based observations have identified the Four Corners region in the Southwest United States as an area of large CH4 enhancements. We conducted an airborne campaign in Four Corners during April 2015 with the next-generation Airborne Visible/Infrared Imaging Spectrometer (near-infrared) and Hyperspectral Thermal Emission Spectrometer (thermal infrared) imaging spectrometers to better understand the source of methane by measuring methane plumes at 1- to 3-m spatial resolution. Our analysis detected more than 250 individual methane plumes from fossil fuel harvesting, processing, and distributing infrastructures, spanning an emission range from the detection limit ∼ 2 kg/h to 5 kg/h through ∼ 5,000 kg/h. Observed sources include gas processing facilities, storage tanks, pipeline leaks, and well pads, as well as a coal mine venting shaft. Overall, plume enhancements and inferred fluxes follow a lognormal distribution, with the top 10% emitters contributing 49 to 66% to the inferred total point source flux of 0.23 Tg/y to 0.39 Tg/y. With the observed confirmation of a lognormal emission distribution, this airborne observing strategy and its ability to locate previously unknown point sources in real time provides an efficient and effective method to identify and mitigate major emissions contributors over a wide geographic area. With improved instrumentation, this capability scales to spaceborne applications [Thompson DR, et al. (2016) Geophys Res Lett 43(12):6571–6578]. Further illustration of this potential is demonstrated with two detected, confirmed, and repaired pipeline leaks during the campaign. PMID:27528660

  20. Airborne methane remote measurements reveal heavy-tail flux distribution in Four Corners region.

    PubMed

    Frankenberg, Christian; Thorpe, Andrew K; Thompson, David R; Hulley, Glynn; Kort, Eric Adam; Vance, Nick; Borchardt, Jakob; Krings, Thomas; Gerilowski, Konstantin; Sweeney, Colm; Conley, Stephen; Bue, Brian D; Aubrey, Andrew D; Hook, Simon; Green, Robert O

    2016-08-30

    Methane (CH4) impacts climate as the second strongest anthropogenic greenhouse gas and air quality by influencing tropospheric ozone levels. Space-based observations have identified the Four Corners region in the Southwest United States as an area of large CH4 enhancements. We conducted an airborne campaign in Four Corners during April 2015 with the next-generation Airborne Visible/Infrared Imaging Spectrometer (near-infrared) and Hyperspectral Thermal Emission Spectrometer (thermal infrared) imaging spectrometers to better understand the source of methane by measuring methane plumes at 1- to 3-m spatial resolution. Our analysis detected more than 250 individual methane plumes from fossil fuel harvesting, processing, and distributing infrastructures, spanning an emission range from the detection limit [Formula: see text] 2 kg/h to 5 kg/h through [Formula: see text] 5,000 kg/h. Observed sources include gas processing facilities, storage tanks, pipeline leaks, and well pads, as well as a coal mine venting shaft. Overall, plume enhancements and inferred fluxes follow a lognormal distribution, with the top 10% emitters contributing 49 to 66% to the inferred total point source flux of 0.23 Tg/y to 0.39 Tg/y. With the observed confirmation of a lognormal emission distribution, this airborne observing strategy and its ability to locate previously unknown point sources in real time provides an efficient and effective method to identify and mitigate major emissions contributors over a wide geographic area. With improved instrumentation, this capability scales to spaceborne applications [Thompson DR, et al. (2016) Geophys Res Lett 43(12):6571-6578]. Further illustration of this potential is demonstrated with two detected, confirmed, and repaired pipeline leaks during the campaign.

  1. Tearing of the Indian lithospheric slab beneath southern Tibet revealed by SKS-wave splitting measurements

    NASA Astrophysics Data System (ADS)

    Chen, Yun; Li, Wei; Yuan, Xiaohui; Badal, José; Teng, Jiwen

    2015-03-01

    Shear wave birefringence is a direct diagnostic of seismic anisotropy. It is often used to infer the northern limit of the underthrusting Indian lithosphere, based on the seismic anisotropy contrast between the Indian and Eurasian plates. Most studies have been made through several near north-south trending passive-source seismic experiments in southern Tibet. To investigate the geometry and the nature of the underthrusting Indian lithosphere, an east-west trending seismic array consisting of 48 seismographs was operated in the central Lhasa block from September 2009 to November 2010. Splitting of SKS waves was measured and verified with different methods. Along the profile, the direction of fast wave polarization is about 60° in average with small fluctuations. The delay time generally increases from east to west between 0.2 s and 1.0 s, and its variation correlates spatially with north-south oriented rifts in southern Tibet. The SKS wave arrives 1.0-2.0 s later at stations in the eastern part of the profile than in the west. The source of the anisotropy, estimated by non-overlapped parts of the Fresnel zones at stations with different splitting parameters, is concentrated above ca. 195 km depth. All the first-order features suggest that the geometry of the underthrusting Indian lithospheric slab in the Himalayan-Tibetan collision zone beneath southern Tibet is characterized by systematic lateral variations. A slab tearing and/or breakoff model of Indian lithosphere with different subduction angles is likely a good candidate to explain the observations.

  2. Nanomechanics of new materials — AFM and computer modelling studies of trichoptera silk

    NASA Astrophysics Data System (ADS)

    Strzelecki, Janusz; Strzelecka, Joanna; Mikulska, Karolina; Tszydel, Mariusz; Balter, Aleksander; Nowak, Wiesław

    2011-04-01

    Caddisfly (Trichopera) can glue diverse material underwater with a silk fiber. This makes it a particularly interesting subject for biomimetcs. Better understanding of silk composition and structure could lead to an adhesive capable to close bleeding wounds or to new biomaterials. However, while spiderweb or silkworm secretion is well researched, caddisfly silk is still poorly understood. Here we report a first nanomechanical analysis of H. Angustipennis caddisfly silk fiber. An Atomic Force Microscope (AFM) imaging shows dense 150 nm bumps on silk surface, which can be identified as one of features responsible for its outstanding adhesive properties. AFM force spectroscopy at the fiber surface showed, among others, characteristic saw like pattern. This pattern is attributed to sacrificial bond stretching and enhances energy dissipation in mechanical deformation. Similarities of some force curves observed on Tegenaria domestica spiderweb and caddisfly silk are also discussed. Steered Molecular Dynamics simulations revealed that the strength of short components of Fib-H HA species molecules, abundant in Trichoptera silk is critically dependent on calcium presence.

  3. Structural changes of polysulfone membrane use for hemodialysis in the consecutive regime: nanometric analysis by AFM

    NASA Astrophysics Data System (ADS)

    Batina, Nikola; Acosta García, Ma. Cristina; Avalos Pérez, Angélica; Alberto Ramírez, Mario; Franco, Martha; Pérez Gravas, Héctor; Cadena Méndez, Miguel

    2013-08-01

    Nowadays, the hemodialytic treatment of patients with either acute or chronic renal failure has been improved by promoting biocompatibility in the use of new materials and improve membrane surface characteristics. Low and high flux polysulfone membranes (PM) used in dialysis and ultra filtration have been studied in order to understand the geometry and surface chemistry of the pores at inner (nanometric) and outer (micrometric) membrane parts. The surface changes of polysulfone cartridge membrane (PM) during different number of consecutive reuse trials: after 1st, 10th and 23th times of use. The morphology of the hollow fibers surfaces was studied by means of the atomic force microscopy (AFM) imaging and the surface roughness analysis. The roughness of both inner and outer part of PM surface increases with numbers of reuse trails. Thus, small and medium size pores were wiped out when the number of uses changed from zero to 23 on the outer surface. The pore density decreases. The inner part of membrane shows some nanometric size deformation in forms of new openings and raptures. The AFM analysis show differences in the PM morphology at the nanometric level, not previously revealed, which could be important in the evaluation of the PM.

  4. Investigation of the influence of UV irradiation on collagen thin films by AFM imaging.

    PubMed

    Stylianou, Andreas; Yova, Dido; Alexandratou, Eleni

    2014-12-01

    Collagen is the major fibrous extracellular matrix protein and due to its unique properties, it has been widely used as biomaterial, scaffold and cell-substrate. The aim of the paper was to use Atomic Force Microscopy (AFM) in order to investigate well-characterized collagen thin films after ultraviolet light (UV) irradiation. The films were also used as in vitro culturing substrates in order to investigate the UV-induced alterations to fibroblasts. A special attention was given in the alteration on collagen D-periodicity. For short irradiation times, spectroscopy (fluorescence/absorption) studies demonstrated that photodegradation took place and AFM imaging showed alterations in surface roughness. Also, it was highlighted that UV-irradiation had different effects when it was applied on collagen solution than on films. Concerning fibroblast culturing, it was shown that fibroblast behavior was affected after UV irradiation of both collagen solution and films. Furthermore, after a long irradiation time, collagen fibrils were deformed revealing that collagen fibrils are consisting of multiple shells and D-periodicity occurred on both outer and inner shells. The clarification of the effects of UV light on collagen and the induced modifications of cell behavior on UV-irradiated collagen-based surfaces will contribute to the better understanding of cell-matrix interactions in the nanoscale and will assist in the appropriate use of UV light for sterilizing and photo-cross-linking applications.

  5. AFM Studies of Salt Concentration Effects on the (110) Surface Structure of Tetragonal Lysozyme Crystals

    NASA Technical Reports Server (NTRS)

    Pusey, Marc Lee; Gorti, Sridhar; Forsythe, Elizabeth; Konnert, John

    2002-01-01

    Previous high resolution AFM studies of the (110) surface of tetragonal chicken egg white lysozyme crystals had shown that only one of two possible molecular surfaces is present, those constituting the completed 43 helices. These suggested that the crystal growth process was by the solution-phase assembly of the growth units, which then attach to the surface. However, the best fit for the imaged surfaces, vs. those predicted based upon the bulk crystallographic coordinates, were obtained when the packing about the 43 helices was "tightened up", while maintaining the underlying crystallographic unit cell spacing. This results in a widening of the gap between adjacent helices, and the top- most layer(s) may no longer be in contact. We postulated that the tightened packing about the helices is a result of the high salt concentrations in the bulk solution, used to crystallize the protein, driving hydrophobic interactions. Once the crystal surface is sufficiently buried by subsequent growth layers the ratio of salt to protein molecules decreases and the helices relax to their bulk crystallographic coordinates. The crystal surface helix structure is thus a reflection of the solution structure, and the tightness of the packing about the 43 helices would be a function of the bulk salt concentration. AFM images of the (110) surface of tetragonal lysozyme crystals grown under low (2%) and high (5%) NaCl concentrations reveal differences in the packing about the 43 helices consistent with the above proposal.

  6. Microhardness, chemical etching, SEM, AFM and SHG studies of novel nonlinear optical crystal -L-threonine formate

    SciTech Connect

    Hanumantha Rao, Redrothu; Kalainathan, S.

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Microhardness studies of novel LTF crystal reported first time in the literature. Black-Right-Pointing-Pointer Surface studies are done by AFM, chemical etching and SEM. Black-Right-Pointing-Pointer From SHG studies, it is known that LTF is potential NLO crystal. -- Abstract: The crystal L-threonine formate, an organic NLO crystal was synthesized from aqueous solution by slow evaporation technique. The grown crystal surface has been analyzed by scanning electron microscopy (SEM), chemical etching and atomic force microscopy (AFM). SEM analysis reveals pyramidal shaped minute crystallites on the growth surface. The etching study indicates the occurrence of etch pit patterns like striations and step like pattern. The mechanical properties of LTF crystals were evaluated by mechanical testing which reveals certain mechanical characteristics like elastic stiffness constant (C{sub 11}) and young's modulus (E). The Vickers and Knoop microhardness studies have been carried out on LTF crystals over a range of 10-50 g. Hardness anisotropy has been observed in accordance with the orientation of the crystal. AFM image shows major hillock on growth surface. The second harmonic generation (SHG) efficiency has been tested by the Kurtz powder technique using Nd:YAG laser and found to be about 1.21 times in comparison with standard potassium dihydrogen phosphate (KDP) crystals.

  7. AFM observation of monatomic step movements on NaCl(001) with the help of adsorbed water

    NASA Astrophysics Data System (ADS)

    Shindo, H.; Ohashi, M.; Baba, K.; Seo, A.

    1996-06-01

    AFM observation of cleaved NaCl(001) surface in air at room temperature revealed spontaneous motion of monatomic steps, depending on relative humidity, to minimize one-dimensional surface free energy. While step motion was recognized only at the parts having large positive curvature at 52% humidity, even straight steps moved at 57%. The motion was accelerated toward higher humidity. It is suggested that adsorbed water having 2-dimensional nature transports ions at the surface. By holding the AFM tip at one place, salt solution was collected beneath the tip by capillary action. Upon removal of the tip, the solution droplet turned into a bell-shaped hillock of salt as high as 78 nm. Although the hillocks gradually flattened spontaneously, the method has potential application in pattern formation.

  8. Low and high cycle fatigue -- A continuum supported by AFM observations

    SciTech Connect

    Gerberich, W.W.; Harvey, S.E.; Kramer, D.E.; Hoehn, J.W.

    1998-09-01

    It is proposed that fatigue damage evolution is controlled by surface displacements and these can be accurately measured by atomic force microscopy (AFM). As these displacements can be followed throughout the history of a fatigued component, the fatigue process in general represents a continuum of behavior. In 10 and 200 {micro}m grain size titanium, AFM measurements demonstrate that the fraction of plasticity contributing to surface damage can be expressed as a single function over nearly five decades of cycles. Regarding this function, the effect of grain size appears to be small. In terms of damage accumulation rates, cyclic hardening parameters, and the threshold stress intensity, the proposed model represents a microstructurally-sensitive Manson-Coffin law for fatigue initiation. Coupling this with a more standard fracture mechanics approach for the latter stage of life allows a simple expression for life prediction. Over the range of 10{sup 3}--10{sup 6} cycles, this expression predicts fatigue life of titanium exposed to air and saline environments to first order.

  9. Piezoresistive AFM cantilevers surpassing standard optical beam deflection in low noise topography imaging

    PubMed Central

    Dukic, Maja; Adams, Jonathan D.; Fantner, Georg E.

    2015-01-01

    Optical beam deflection (OBD) is the most prevalent method for measuring cantilever deflections in atomic force microscopy (AFM), mainly due to its excellent noise performance. In contrast, piezoresistive strain-sensing techniques provide benefits over OBD in readout size and the ability to image in light-sensitive or opaque environments, but traditionally have worse noise performance. Miniaturisation of cantilevers, however, brings much greater benefit to the noise performance of piezoresistive sensing than to OBD. In this paper, we show both theoretically and experimentally that by using small-sized piezoresistive cantilevers, the AFM imaging noise equal or lower than the OBD readout noise is feasible, at standard scanning speeds and power dissipation. We demonstrate that with both readouts we achieve a system noise of ≈0.3 Å at 20 kHz measurement bandwidth. Finally, we show that small-sized piezoresistive cantilevers are well suited for piezoresistive nanoscale imaging of biological and solid state samples in air. PMID:26574164

  10. Enamel crystals of mice susceptible or resistant to dental fluorosis: an AFM study

    PubMed Central

    BUZALAF, Marília Afonso Rabelo; BARBOSA, Carolina Silveira; LEITE, Aline de Lima; CHANG, Sywe-Ren; LIU, Jun; CZAJKA-JAKUBOWSKA, Agata; CLARKSON, Brian

    2014-01-01

    Objective This study aimed to assess the overall apatite crystals profile in the enamel matrix of mice susceptible (A/J strain) or resistant (129P3/J strain) to dental fluorosis through analyses by atomic force microscopy (AFM). Material and Methods Samples from the enamel matrix in the early stages of secretion and maturation were obtained from the incisors of mice from both strains. All detectable traces of matrix protein were removed from the samples by a sequential extraction procedure. The purified crystals (n=13 per strain) were analyzed qualitatively in the AFM. Surface roughness profile (Ra) was measured. Results The mean (±SD) Ra of the crystals of A/J strain (0.58±0.15 nm) was lower than the one found for the 129P3/J strain (0.66±0.21 nm) but the difference did not reach statistical significance (t=1.187, p=0.247). Crystals of the 129P3/J strain (70.42±6.79 nm) were found to be significantly narrower (t=4.013, p=0.0013) than the same parameter measured for the A/J strain (90.42±15.86 nm). Conclusion Enamel crystals of the 129P3/J strain are narrower, which is indicative of slower crystal growth and could interfere in the occurrence of dental fluorosis. PMID:25025555

  11. Piezoresistive AFM cantilevers surpassing standard optical beam deflection in low noise topography imaging

    NASA Astrophysics Data System (ADS)

    Dukic, Maja; Adams, Jonathan D.; Fantner, Georg E.

    2015-11-01

    Optical beam deflection (OBD) is the most prevalent method for measuring cantilever deflections in atomic force microscopy (AFM), mainly due to its excellent noise performance. In contrast, piezoresistive strain-sensing techniques provide benefits over OBD in readout size and the ability to image in light-sensitive or opaque environments, but traditionally have worse noise performance. Miniaturisation of cantilevers, however, brings much greater benefit to the noise performance of piezoresistive sensing than to OBD. In this paper, we show both theoretically and experimentally that by using small-sized piezoresistive cantilevers, the AFM imaging noise equal or lower than the OBD readout noise is feasible, at standard scanning speeds and power dissipation. We demonstrate that with both readouts we achieve a system noise of ≈0.3 Å at 20 kHz measurement bandwidth. Finally, we show that small-sized piezoresistive cantilevers are well suited for piezoresistive nanoscale imaging of biological and solid state samples in air.

  12. Piezoresistive AFM cantilevers surpassing standard optical beam deflection in low noise topography imaging.

    PubMed

    Dukic, Maja; Adams, Jonathan D; Fantner, Georg E

    2015-11-17

    Optical beam deflection (OBD) is the most prevalent method for measuring cantilever deflections in atomic force microscopy (AFM), mainly due to its excellent noise performance. In contrast, piezoresistive strain-sensing techniques provide benefits over OBD in readout size and the ability to image in light-sensitive or opaque environments, but traditionally have worse noise performance. Miniaturisation of cantilevers, however, brings much greater benefit to the noise performance of piezoresistive sensing than to OBD. In this paper, we show both theoretically and experimentally that by using small-sized piezoresistive cantilevers, the AFM imaging noise equal or lower than the OBD readout noise is feasible, at standard scanning speeds and power dissipation. We demonstrate that with both readouts we achieve a system noise of ≈0.3 Å at 20 kHz measurement bandwidth. Finally, we show that small-sized piezoresistive cantilevers are well suited for piezoresistive nanoscale imaging of biological and solid state samples in air.

  13. Dynamic response of AFM cantilevers to dissimilar functionalized silica surfaces in aqueous electrolyte solutions.

    PubMed

    Wu, Yan; Misra, Sambit; Karacor, M Basar; Prakash, Shaurya; Shannon, Mark A

    2010-11-16

    The dynamic response of an oscillating microcantilever with a gold-coated tip interacting with dissimilar functionalized silica surfaces was studied in electrolyte solutions with pH ranging from 4 to 9. Silica surfaces were chemically modified, yielding dissimilar surfaces with -Br, -NH(2), and -CH(3) functional group terminations. The relative hydrophobicity of the surfaces was characterized by contact angle measurements. The surface charge of the functionalized surfaces was first probed with commonly used static AFM measurements and serves as a reference to the dynamic response data. The amplitude and phase of the cantilever oscillation were monitored and used to calculate the effective interaction stiffness and damping coefficient, which relate to the electrical double layer interactions and also to distance-dependent hydrodynamic damping at the solid/water interface. The data for the dynamic response of the AFM over silica surfaces as a function of chemical functionalization and electrolyte pH show that the effective stiffness has a distinctive dependence on the surface charge of functionalized silica surfaces. The hydrodynamic damping also correlates strongly with the relative hydrophobicity of the surface. The data reported here indicate that interfacial properties can be strongly affected by changing the chemical composition of surfaces.

  14. Study on effects of scan parameters on the image quality and tip wear in AFM tapping mode.

    PubMed

    Xue, Bo; Yan, Yongda; Hu, Zhenjiang; Zhao, Xuesen

    2014-01-01

    Due to the tip-sample interaction which is the measurement principle of Atomic Force Microscope (AFM), tip wear constantly occurs during scanning. The blunt tip caused by the wear process makes more tip geometry information involved in the image, and correspondingly it increases the measurement error. In the present study, the scan parameters of AFM in tapping mode which affect the wear of single crystal silicon tips, such as the approaching rate, the scan rate, the scan amplitude, and the integral gain are investigated. By proposing a parameter reflecting the imaging quality, the tip state tracing the sample surface is evaluated quantitatively. The influences of scan parameters on this imaging quality parameter are obtained by experiments. Finally, in order to achieve the perfect images with little tip wear influence, tip wear experiments are carried out and then the optimal parameter settings which can lighten the tip wear are obtained.

  15. Theoretical modelling of AFM for bimetallic tip-substrate interactions

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Ferrante, John

    1991-01-01

    Recently, a new technique for calculating the defect energetics of alloys based on Equivalent Crystal Theory was developed. This new technique successfully predicts the bulk properties for binary alloys as well as segregation energies in the dilute limit. The authors apply this limit for the calculation of energy and force as a function of separation of an atomic force microscope (AFM) tip and substrate. The study was done for different combinations of tip and sample materials. The validity of the universality discovered for the same metal interfaces is examined for the case of different metal interactions.

  16. The Advancing State of AF-M315E Technology

    NASA Technical Reports Server (NTRS)

    Masse, Robert; Spores, Ronald A.; McLean, Chris

    2014-01-01

    The culmination of twenty years of applied research in hydroxyl ammonium nitrate (HAN)-based monopropellants, the NASA Space Technology mission Directorate's (STMD) Green Propellant Infusion Mission (GPIM) will achieve the first on-orbit demonstration of an operational AF-M315E green propellant propulsion system by the end of 2015. Following an contextual overview of the completed flight design of the GPIM propellant storage and feed system, results of first operation of a flight-representative heavyweight 20-N engineering model thruster (to be conducted in mid-2014) are presented with performance comparisons to prior lab model (heavyweight) test articles.

  17. DNA-coated AFM cantilevers for the investigation of cell adhesion and the patterning of live cells

    SciTech Connect

    Hsiao, Sonny C.; Crow, Ailey K.; Lam, Wilbur A.; Bertozzi, Carolyn R.; Fletcher, Daniel A.; Francis, Matthew B.

    2008-08-01

    Measurement of receptor adhesion strength requires the precise manipulation of single cells on a contact surface. To attach live cells to a moveable probe, DNA sequences complementary to strands displayed on the plasma membrane are introduced onto AFM cantilevers (see picture, bp=base pairs). The strength of the resulting linkages can be tuned by varying the length of DNA strands, allowing for controlled transport of the cells.

  18. AFM review study on pox viruses and living cells.

    PubMed

    Ohnesorge, F M; Hörber, J K; Häberle, W; Czerny, C P; Smith, D P; Binnig, G

    1997-10-01

    Single living cells were studied in growth medium by atomic force microscopy at a high--down to one image frame per second--imaging rate over time periods of many hours, stably producing hundreds of consecutive scans with a lateral resolution of approximately 30-40 nm. The cell was held by a micropipette mounted onto the scanner-piezo as shown in Häberle, W., J. K. H. Hörber, and G. Binnig. 1991. Force microscopy on living cells. J. Vac. Sci. Technol. B9:1210-0000. To initiate specific processes on the cell surface the cells had been infected with pox viruses as reported earlier and, most likely, the liberation of a progeny virion by the still-living cell was observed, hence confirming and supporting earlier results (Häberle, W., J. K. H. Hörber, F. Ohnesorge, D. P. E. Smith, and G. Binnig. 1992. In situ investigations of single living cells infected by viruses. Ultramicroscopy. 42-44:1161-0000; Hörber, J. K. H., W. Häberle, F. Ohnesorge, G. Binnig, H. G. Liebich, C. P. Czerny, H. Mahnel, and A. Mayr. 1992. Investigation of living cells in the nanometer regime with the atomic force microscope. Scanning Microscopy. 6:919-930). Furthermore, the pox viruses used were characterized separately by AFM in an aqueous environment down to the molecular level. Quasi-ordered structural details were resolved on a scale of a few nm where, however, image distortions and artifacts due to multiple tip effects are probably involved--just as in very high resolution (<15-20 nm) images on the cells. Although in a very preliminary manner, initial studies on the mechanical resonance properties of a single living (noninfected) cell, held by the micropipette, have been performed. In particular, frequency response spectra were recorded that indicate elastic properties and enough stiffness of these cells to make the demonstrated rapid scanning of the imaging tip plausible. Measurements of this kind, especially if they can be proven to be cell-type specific, may perhaps have a large

  19. The Emergence of AFM Applications to Cell Biology: How new technologies are facilitating investigation of human cells in health and disease at the nanoscale

    PubMed Central

    Yang, Ruiguo; Xi, Ning; Fung, Carmen Kar Man; Seiffert-Sinha, Kristina; Lai, King Wai Chiu; Sinha, Animesh A.

    2013-01-01

    Atomic Force Microscopy (AFM) based nanorobotics has been used for building nano devices in semiconductors for almost a decade. Leveraging the unparallel precision localization capabilities of this technology, high resolution imaging and mechanical property characterization is now increasingly being performed in biological settings. AFM also offers the prospect for handling and manipulating biological materials at nanometer scale. It has unique advantages over other methods, permitting experiments in the liquid phase where physiological conditions can be maintained. Taking advantage of these properties, our group has visualized membrane and cytoskeletal structures of live cells by controlling the interaction force of the AFM tip with cellular components at the nN or sub-nN range. Cell stiffness changes were observed by statistically analyzing the Young’s modulus values of human keratinocytes before and after specific antibody treatment. Furthermore, we used the AFM cantilever as a robotic arm for mechanical pushing, pulling and cutting to perform nanoscale manipulations of cell-associated structures. AFM guided nano-dissection, or nanosurgery was enacted on the cell in order to sever intermediate filaments connecting neighboring keratinocytes via sub 100 nm resolution cuts. Finally, we have used a functionalized AFM tip to probe cell surface receptors to obtain binding force measurements. This technique formed the basis for Single Molecule Force Spectroscopy (SMFS). In addition to enhancing our basic understanding of dynamic signaling events in cell biology, these advancements in AFM based biomedical investigations can be expected to facilitate the search for biomarkers related to disease diagnosis progress and treatment. PMID:24416719

  20. Nitric oxide densities and their diurnal asymmetry in the upper middle atmosphere as revealed by ionospheric measurements

    NASA Astrophysics Data System (ADS)

    Laštovička, J.

    2001-01-01

    The nitric oxide (NO) density is of principal importance for the lower ionosphere as it is the source of the main ionized component. The mesospheric NO density climatology based on HALOE//UARS measurements (Siskind et al., Advances in Space Research 21 (1998) 1353-1362) and a comparison of the HALOE NO density data with some ionospheric data (Friedrich et al., Journal of Atmospheric and Solar-Terrestrial Physics 60 (1998) 1445-1457) revealed, among others, a large ``puzzling'' diurnal asymmetry of the NO density. In this paper, the existence of a diurnal asymmetry of the NO density is confirmed by independent data and is extended from the sunrise//sunset HALOE data to the entire daytime. We analyzed multi-frequency radio wave absorption measurements in the lower ionosphere over Central Europe, partly together with solar Lyman-/α and X-ray fluxes, in order to estimate the NO density. The results show that our ``ionospheric'' NO densities are comparable to, or somewhat higher than, the climatological NO densities of Siskind et al. (1998). They also show that the diurnal asymmetry in summer is a stable and regular feature of the lower ionosphere throughout the daytime, and that there is a substantial diurnal asymmetry in the NO density in the upper middle atmosphere that coincides with that revealed by the HALOE data and which is responsible for the asymmetry in the lower ionosphere.

  1. UV laser ablation of intraocular lenses: SEM and AFM microscopy examination of the biomaterial surface

    NASA Astrophysics Data System (ADS)

    Spyratou, E.; Asproudis, I.; Tsoutsi, D.; Bacharis, C.; Moutsouris, K.; Makropoulou, M.; Serafetinides, A. A.

    2010-02-01

    Several new materials and patterns are studied for the formation and etching of intraocular lenses (IOLs), in order to improve their optical properties, to reduce the diffractive aberrations and to decrease the incidence of posterior capsular opacification. The aim of this study is to investigate the use of UV ( λ = 266 nm) laser pulses to ablate the intraocular lenses materials, and thus to provide an alternative to conventional surface shaping techniques for IOLs fabrication. Ablation experiments were conducted using various polymer substrates of hydrophobic acrylic IOLs and PMMA IOLs. We investigated the ablation efficiency and the morphology of the ablated area by imaging the surface modification with atomic force microscopy (AFM) and scanning electron microscopy (SEM). The morphological appearance of IOL samples reveals the effect of a photochemical and photothermal ablation mechanism.

  2. [AFM study on microtopography of NOM and newly formed hydrous manganese dioxide adsorbed on mica].

    PubMed

    Guo, Jin; Ma, Jun; Shi, Xue-hua

    2006-05-01

    With the methods of mica adsorbing, the microtopography of the newly formed hydrous manganese dioxide was perfectly captured. The tapping mode AFM study results revealed that the newly formed hydrous manganese dioxide possesses a perforated sheet (with a thickness of 0-1.75 nm) as well as some spheric particle structures compared with the hydrous manganese dioxide with 2 h aging time, which demonstrated that the newly formed hydrous manganese dioxide have a large surface area and adsorption capacity. When 1 mmol/L newly formed hydrous manganese dioxide was added, the microtopography of NOM molecules shifted from loosely dispersed pancake shape (with adsorption height of 5-8.5 nm) to densely dispersed and uniform spheric structure. NOM was prone to adsorb on the surface of the newly formed hydrous manganese dioxide, which provided a valid proof for the coagulation-aid mechanism of permanganate preoxidation.

  3. AFM nano-plough planar YBCO micro-bridges: critical currents and magnetic field effects.

    PubMed

    Elkaseh, A A O; Perold, W J; Srinivasu, V V

    2010-10-01

    The critical current (Ic) of YBa2Cu3O7-x (YBCO) AFM plough micro-constrictions is measured as a function of temperature, width and the magnetic flux density (B), which was applied perpendicular to the YBCO ab-plane and surface of the bridges. C-axis oriented thin films of YBa2Cu3O7-x were deposited on MgO substrates using an inverted cylindrical magnetron (ICM) sputtering technique. The films were then patterned into 8-10 micron size strips, using standard photolithography and dry etching processes. Micro-bridges with widths between 1.9 microm to 4.1 microm were fabricated by using atomic force microscope (AFM) nanolithography techniques. Critical current versus temperature data shows a straight-line behavior, which is typical of constriction type Josephson junctions. The Ic versus B characteristics exhibited a modulation, and a suppression of the critical current of up to 84%. It was also found that the critical current increases with increasing constriction width.

  4. Adsorption of albumin and sodium hyaluronate on UHMWPE: a QCM-D and AFM study.

    PubMed

    Serro, A P; Degiampietro, K; Colaço, R; Saramago, B

    2010-06-15

    The biotribological properties of artificial joints, in particular the efficiency of the lubrication, strongly determine their lifetime. The most commonly used artificial joints combine a metallic or ceramic part articulating against a ultra high molecular weight polyethylene (UHMWPE) counterface, and are lubricated by the periprosthetic fluid. This fluid contains several macromolecules, namely albumin and sodium hyaluronate (NaHA), that are known to be involved in the lubrication process. There are several studies in the literature concerning the interaction of the referred macromolecules with ceramic or metallic prosthetic materials. However, to our knowledge, information about their binding to the polymeric surface is practically inexistent. The objective of this work is to contribute to clarify the role played by albumin and NaHA on the biolubrication process, through the investigation of their interaction with the UHMWPE surface. The study involves adsorption measurements using a quartz crystal microbalance with dissipation (QCM-D), the characterization of the adsorbed films by atomic force microscopy (AFM) and wettability determinations. Albumin was found to adsorb strongly and extensively to the polymer, while NaHA led to a very low adsorption. In both cases rigid films were obtained, but with different morphology and porosity. The high binding affinity of the protein to the polymer was demonstrated both by the results of the fittings to Langmuir and Freundlich models and by the values of the adhesion forces determined by AFM. In the simultaneous adsorption of albumin and NaHA, protein adsorption is predominant and determines the surface properties.

  5. Comparison of the Identation and Elasticity of E.coli and its Spheroplasts by AFM

    SciTech Connect

    Sullivan, Claretta J; Venkataraman, Sankar; Retterer, Scott T; Allison, David P; Doktycz, Mitchel John

    2007-01-01

    Atomic force microscopy (AFM) provides a unique opportunity to study live individual bacteria at the nanometer scale. In addition to providing accurate morphological information, AFM can be exploited to investigate membrane protein localization and molecular interactions on the surface of living cells. A prerequisite for these studies is the development of robust procedures for sample preparation. While such procedures are established for intact bacteria, they are only beginning to emerge for bacterial spheroplasts. Spheroplasts are useful research models for studying mechanosensitive ion channels, membrane transport, lipopolysaccharide translocation, solute uptake, and the effects of antimicrobial agents on membranes. Furthermore, given the similarities between spheroplasts and cell wall-deficient (CWD) forms of pathogenic bacteria, spheroplast research could be relevant in biomedical research. In this paper, a new technique for immobilizing spheroplasts on mica pretreated with aminopropyltriethoxysilane (APTES) and glutaraldehyde is described. Using this mounting technique, the indentation and cell elasticity of glutaraldehyde-fixed and untreated spheroplasts of E. coli in liquid were measured. These values are compared to those of intact E. coli. Untreated spheroplasts were found to be much softer than the intact cells and the silicon nitride cantilevers used in this study.

  6. Magnetoelectric versus thermal actuation characteristics of shear force AFM probes with piezoresistive detection

    NASA Astrophysics Data System (ADS)

    Sierakowski, Andrzej; Kopiec, Daniel; Majstrzyk, Wojciech; Kunicki, Piotr; Janus, Paweł; Dobrowolski, Rafał; Grabiec, Piotr; Rangelow, Ivo W.; Gotszalk, Teodor

    2017-03-01

    In this paper the authors compare methods used for piezoresistive microcantilevers actuation for the atomic force microscopy (AFM) imaging in the dynamic shear force mode. The piezoresistive detection is an attractive technique comparing the optical beam detection of deflection. The principal advantage is that no external alignment of optical source and detector are needed. When the microcantilever is deflected, the stress is transferred into a change of resistivity of piezoresistors. The integration of piezoresistive read-out provides a promising solution in realizing a compact non-contact AFM. Resolution of piezoresistive read-out is limited by three main noise sources: Johnson, 1/f and thermomechanical noise. In the dynamic shear force mode measurement the method used for cantilever actuation will also affect the recorded noise in the piezoresistive detection circuit. This is the result of a crosstalk between an aluminium path (current loop used for actuation) and piezoresistors located near the base of the beam. In this paper authors described an elaborated in ITE (Institute of Electron Technology) technology of fabrication cantilevers with piezoresistive detection of deflection and compared efficiency of two methods used for cantilever actuation.

  7. Spin Dynamics and Quantum Tunneling in Fe8 Nanomagnet and in AFM Rings by NMR

    SciTech Connect

    Ho-Baek, Seung

    2004-01-01

    In this thesis, our main interest has been to investigate the spin dynamics and quantum tunneling in single molecule magnets (SMMs), For this we have selected two different classes of SMMs: a ferrimagnetic total high spin S = 10 cluster Fe8 and antiferromagnetic (AFM) ring-type clusters. For Fe8, our efforts have been devoted to the investigation of the quantum tunneling of magnetization in the very low temperature region. The most remarkable experimental finding in Fe8 is that the nuclear spin-lattice relaxation rate (1/T{sub l}) at low temperatures takes place via strong collision mechanism, and thus it allows to measure directly the tunneling rate vs T and H for the first time. For AFM rings, we have shown that 1/T{sub l} probes the thermal fluctuations of the magnetization in the intermediate temperature range. We find that the fluctuations are dominated by a single characteristic frequency which has a power law T-dependence indicative of fluctuations due to electron-acoustic phonon interactions.

  8. AFM Studies on Liquid Superlubricity between Silica Surfaces Achieved with Surfactant Micelles.

    PubMed

    Li, Jinjin; Zhang, Chenhui; Cheng, Peng; Chen, Xinchun; Wang, Weiqi; Luo, Jianbin

    2016-06-07

    By using atomic force microscopy (AFM), we showed that the liquid superlubricity with a superlow friction coefficient of 0.0007 can be achieved between two silica surfaces lubricated by hexadecyltrimethylammonium bromide (C16TAB) solution. There exists a critical load that the lubrication state translates from superlow friction to high friction reversibly. To analyze the superlow friction mechanism and the factors influencing the critical load, we used AFM to measure the structure of adsorbed C16TAB molecules and the normal force between two silica surfaces. Experimental results indicate that the C16TAB molecules are firmly adsorbed on the two silica surfaces by electrostatic interaction, forming cylinder-like micelles. Meanwhile, the positively charged headgroups exposed to solution produce the hydration and double layer repulsion to bear the applied load. By controlling the concentration of C16TAB solution, it is confirmed that the critical load of superlow friction is determined by the maximal normal force produced by the hydration layer. Finally, the superlow friction mechanism was proposed that the adsorbed micellar layer forms the hydration layer, making the two friction surfaces be in the repulsive region and meanwhile providing excellent fluidity without adhesion between micelles.

  9. Iron oxide mineral-water interface reactions studied by AFM

    SciTech Connect

    Hawley, M.E.; Rogers, P.S.Z.

    1994-07-01

    Natural iron mineral surfaces have been examined in air by atomic force (AFM) and scanning tunneling (STM) microscopies. A number of different surface features were found to be characteristic of the native surface. Even surfaces freshly exposed by crushing larger crystals were found to have a pebbly surface texture caused by the presence of thin coatings of what might be surface precipitates. This finding is interpreted as evidence for previous exposure to water, probably through an extensive network of microfractures. Surface reactions on the goethite crystals were studied by AFM at size resolutions ranging from microns to atomic resolution before, during, and after reaction with distilled water and 0.lN HCl. Immediate and extensive surface reconfiguration occurred on contact with water. In one case, after equilibration with water for 3 days, surface reprecipitation, etching and pitting were observed. Atomic resolution images taken under water were found to be disordered. The result of surface reaction was generally to increase the surface area substantially through the extension of surface platelet arrays, present prior to reaction. This work is being done in support of the site characterization project at Yucca Mountain.

  10. AFM analysis of bleaching effects on dental enamel microtopography

    NASA Astrophysics Data System (ADS)

    Pedreira de Freitas, Ana Carolina; Espejo, Luciana Cardoso; Botta, Sergio Brossi; Teixeira, Fernanda de Sa; Luz, Maria Aparecida A. Cerqueira; Garone-Netto, Narciso; Matos, Adriana Bona; Salvadori, Maria Cecilia Barbosa da Silveira

    2010-02-01

    The purpose of this in vitro study was to test a new methodology to evaluate the effects of 35% hydrogen peroxide agent on the microtopography of sound enamel using an atomic force microscope (AFM). The buccal sound surfaces of three extracted human lower incisors were used, without polishing the surfaces to maintain them with natural morphology. These unpolished surfaces were subjected to bleaching procedure with 35% hydrogen peroxide that consisted of 4 applications of the bleaching agent on enamel surfaces for 10 min each application. Surface images were obtained in a 15 μm × 15 μm area using an AFM. The roughness (Ra and RMS) and the power spectral density (PSD) were obtained before and after the bleaching treatment. As results we could inquire that the PSD analyses were very suitable to identifying the morphological changes on the surfaces, while the Ra and RMS parameters were insufficient to represent the morphological alterations promoted by bleaching procedure on enamel. The morphological wavelength in the range of visible light spectrum (380-750 nm) was analyzed, showing a considerable increase of the PSD with the bleaching treatment.

  11. Pathogen identification using peptide nanotube biosensors and impedance AFM

    NASA Astrophysics Data System (ADS)

    Maccuspie, Robert I.

    Pathogen identification at highly sensitive levels is crucial to meet urgent needs in fighting the spread of disease or detecting bioterrorism events. Toward that end, a new method for biosensing utilizing fluorescent antibody nanotubes is proposed. Fundamental studies on the self-assembly of these peptide nanotubes are performed, as are applications of aligning these nanotubes on surfaces. As biosensors, these nanotubes incorporate recognition units with antibodies at their ends and fluorescent signaling units at their sidewalls. When viral pathogens were mixed with these antibody nanotubes in solution, the nanotubes rapidly aggregated around the viruses. The size of the aggregates increased as the concentration of viruses increased, as detected by flow cytometry on the order of attomolar concentrations by changes in fluorescence and light scattering intensities. This enabled determination of the concentrations of viruses at trace levels (102 to 106 pfu/mL) within 30 minutes from the receipt of samples to the final quantitative data analysis, as demonstrated on Adenovirus, Herpes Simplex Virus, Influenza, and Vaccinia virus. As another separate approach, impedance AFM is used to study the electrical properties of individual viruses and nanoparticles used as model systems. The design, development, and implementation of the impedance AFM for an Asylum Research platform is described, as well as its application towards studying the impedance of individual nanoparticles as a model system for understanding the fundamental science of how the life cycle of a virus affects its electrical properties. In combination, these approaches fill a pressing need to quantify viruses both rapidly and sensitively.

  12. An implicit measure of olfactory performance for non-human primates reveals aversive and pleasant odor conditioning.

    PubMed

    Livneh, Uri; Paz, Rony

    2010-09-30

    We have little understanding of how odorants are processed in neural networks of the primate brain. Because chemo-stimuli are harder to control than physical stimuli (e.g. vision, audition), such research was limited by the temporal resolution, accuracy, and reliability of olfactometers (odor producing machines). Recent advances were able to create olfactometers that overcome these limitations, allowing their use together with neuroimaging techniques in humans. From the behavioral point of view, olfaction research requires a behavioral measure that can be used to quantify olfactory performance. This becomes a real problem when working with animals, where, unlike humans, explicit measures are harder to obtain. Furthermore, because odorants are powerful primitive reinforcers, such implicit measures can be beneficial to use in learning paradigms. Here we describe an olfactometer suitable for use in non-human primates, and an end-port design that allows the accurate measure of real-time respiratory modulations that are elicited in response to odor presentation. We demonstrate that this implicit measure is differentially modulated when experiencing pleasant or aversive odors. We then present an experimental paradigm in which monkeys learn to associate tones with odors, and show that the time delay from the conditioned stimuli to the next breath can be used to measure learning and memory expression in this paradigm. Using this construct, we reveal olfactory performance during acquisition and extinction of odor conditioning. These techniques can be used in electrophysiological recordings from relevant brain areas to shed light on neural networks involved in odor processing and reinforcement-learning.

  13. AFM-based study of fullerenol (C60(OH)24)-induced changes of elasticity in living SMCC-7721 cells.

    PubMed

    Liu, Yang; Wang, Zuobin; Wang, Xinyue

    2015-05-01

    In this study, the alterations of the morphology and biomechanical properties of living SMCC-7721 cancer cells treated with fullerenol (C60(OH)24) for 24, 48, and 72h were investigated using an atomic force microscope (AFM). Comparative analyses show that the elastic moduli of the SMCC-7721 cells exposed to fullerenol decrease significantly with the increase of the treatment periods. Furthermore, in different phases of the treatment, a global decrease in elasticity is accompanied by cellular morphological changes, and the time-dependent effect of the fullerenol can be observed using AFM and optical microscope. In addition, as the treatment duration increases, the indentation force and depth penetrated into the cell membrane by the AFM tip are in a declining trend. The reduction in the stiffness of the cells exposed to fullerenol could be associated with the disruption of the cellular cytoskeleton network. The investigation indicates that the elastic modulus of single living cells can be a useful biomarker to evaluate the effects of fullerenol or other anticancer agents on the cells and reveal instructive information for cellular dynamic behaviors.

  14. Morphological and Structural Changes on Human Dental Enamel After Er:YAG Laser Irradiation: AFM, SEM, and EDS Evaluation

    PubMed Central

    Rodríguez-Vilchis, Laura Emma; Olea-Mejìa, Oscar Fernando; Sánchez-Flores, Ignacio; Centeno-Pedraza, Claudia

    2011-01-01

    Abstract Objective: The purpose of this study was to evaluate, using atomic force microscopy (AFM), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS), the morphological and structural changes of the enamel after irradiation with the Er:YAG laser. Background data: A previous study showed that subablative Er:YAG laser irradiation produced undesirable morphological changes on the enamel surface, such as craters and cracks; however, the enamel acid resistance was not increased. Methods: Fifty-two samples of human enamel were divided into four groups (n = 13): Group I was the control (no laser irradiation), whereas Groups II, III, and IV were irradiated with the Er:YAG 100 mJ (12.7 J/cm2), 100 mJ (7.5 J/cm2), and 150 mJ (11 J/cm2), respectively, at 10 Hz with water spray. The morphological changes were observed by AFM and SEM. The weight percentages (wt%) of calcium (Ca), phosphorus (P), oxygen (O) and chlorine (Cl) were determined in the resultant craters and their periphery using EDS. Kruskal–Wallis and Mann–Whitney U tests were performed (p ≤ 0.05) to distinguish significant differences among the groups. Results: The AFM images showed cracks with depths between 250 nm and 750 nm for Groups II and IV, respectively, and the widths of these cracks were 5.37 μm and 2.58 μm. The interior of the cracks showed a rough surface. The SEM micrographs revealed morphological changes. Significant differences were detected in Ca, P, and Cl in the crater and its periphery. Conclusions: AFM observations showed triangular-shaped cracks, whereas craters and cracks were evident by SEM in all irradiated samples. It was not possible to establish a characteristic chemical pattern in the craters. PMID:21417912

  15. Nanomechanical characterization of nanostructured bainitic steel: Peak Force Microscopy and Nanoindentation with AFM

    PubMed Central

    Morales-Rivas, Lucia; González-Orive, Alejandro; Garcia-Mateo, Carlos; Hernández-Creus, Alberto; Caballero, Francisca G.; Vázquez, Luis

    2015-01-01

    The full understanding of the deformation mechanisms in nanostructured bainite requires the local characterization of its mechanical properties, which are expected to change from one phase, bainitic ferrite, to another, austenite. This study becomes a challenging process due to the bainitic nanostructured nature and high Young’s modulus. In this work, we have carried out such study by means of the combination of AFM-based techniques, such as nanoindentation and Peak Force Quantitative Nanomechanical Mapping (PF-QNM) measurements. We have addressed critically the limits and advantages of these techniques and been able to measure some elastoplastic parameters of both phases. Specifically, we have analyzed by PF-QNM two nanostructured bainitic steels, with a finer and a coarser structure, and found that both phases have a similar Young’s modulus. PMID:26602631

  16. Investigation of Oxidation Profile in PMR-15 Polyimide using Atomic Microscope (AFM)

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Johnson, Lili L.; Eby, R. K.

    2002-01-01

    Nanoindentation measurements are made on thermosetting materials using cantiever deflection vs. piezoelectric scanner position behavior determined by AFM. The spring model is used to determine mechanical properties of materials. The generalized Sneddon's equation is utilized to calculate Young's moduli for thermosetting materials at ambient conditions. Our investigations show that the force-penetration depth curves during unloading in these materials can be described accurately by a power law relationship. The results show that the accuracy of the measurements can be controlled within 7%. The above method is used to study oxidation profiles in Pl\\1R-15 polyimide. The thermo-mechanical profiles ofPNIR-15 indicate that the elastic modulus at the surface portion of the specimen is different from that at the interior of the material. It is also shown that there are two zones within the oxidized portion of the samples. Results confirm that the surface layer and the core material have substantially different properties.

  17. The importance of correcting for variable probe-sample interactions in AFM-IR spectroscopy: AFM-IR of dried bacteria on a polyurethane film.

    PubMed

    Barlow, Daniel E; Biffinger, Justin C; Cockrell-Zugell, Allison L; Lo, Michael; Kjoller, Kevin; Cook, Debra; Lee, Woo Kyung; Pehrsson, Pehr E; Crookes-Goodson, Wendy J; Hung, Chia-Suei; Nadeau, Lloyd J; Russell, John N

    2016-08-02

    AFM-IR is a combined atomic force microscopy-infrared spectroscopy method that shows promise for nanoscale chemical characterization of biological-materials interactions. In an effort to apply this method to quantitatively probe mechanisms of microbiologically induced polyurethane degradation, we have investigated monolayer clusters of ∼200 nm thick Pseudomonas protegens Pf-5 bacteria (Pf) on a 300 nm thick polyether-polyurethane (PU) film. Here, the impact of the different biological and polymer mechanical properties on the thermomechanical AFM-IR detection mechanism was first assessed without the additional complication of polymer degradation. AFM-IR spectra of Pf and PU were compared with FTIR and showed good agreement. Local AFM-IR spectra of Pf on PU (Pf-PU) exhibited bands from both constituents, showing that AFM-IR is sensitive to chemical composition both at and below the surface. One distinct difference in local AFM-IR spectra on Pf-PU was an anomalous ∼4× increase in IR peak intensities for the probe in contact with Pf versus PU. This was attributed to differences in probe-sample interactions. In particular, significantly higher cantilever damping was observed for probe contact with PU, with a ∼10× smaller Q factor. AFM-IR chemical mapping at single wavelengths was also affected. We demonstrate ratioing of mapping data for chemical analysis as a simple method to cancel the extreme effects of the variable probe-sample interactions.

  18. In situ Electrochemical-AFM Study of LiFePO4 Thin Film in Aqueous Electrolyte.

    PubMed

    Wu, Jiaxiong; Cai, Wei; Shang, Guangyi

    2016-12-01

    Lithium-ion (Li-ion) batteries have been widely used in various kinds of electronic devices in our daily life. The use of aqueous electrolyte in Li-ion battery would be an alternative way to develop low cost and environmentally friendly batteries. In this paper, the lithium iron phosphate (LiFePO4) thin film cathode for the aqueous rechargeable Li-ion battery is prepared by radio frequency magnetron sputtering deposition method. The XRD, SEM, and AFM results show that the film is composed of LiFePO4 grains with olivine structure and the average size of 100 nm. Charge-discharge measurements at current density of 10 μAh cm(-2) between 0 and 1 V show that the LiFePO4 thin film electrode is able to deliver an initial discharge capacity of 113 mAh g(-1). Specially, the morphological changes of the LiFePO4 film electrode during charge and discharge processes were investigated in aqueous environment by in situ EC-AFM, which is combined AFM with chronopotentiometry method. The changes in grain area are measured, and the results show that the size of the grains decreases and increases during the charge and discharge, respectively; the relevant mechanism is discussed.

  19. In situ Electrochemical-AFM Study of LiFePO4 Thin Film in Aqueous Electrolyte

    NASA Astrophysics Data System (ADS)

    Wu, Jiaxiong; Cai, Wei; Shang, Guangyi

    2016-04-01

    Lithium-ion (Li-ion) batteries have been widely used in various kinds of electronic devices in our daily life. The use of aqueous electrolyte in Li-ion battery would be an alternative way to develop low cost and environmentally friendly batteries. In this paper, the lithium iron phosphate (LiFePO4) thin film cathode for the aqueous rechargeable Li-ion battery is prepared by radio frequency magnetron sputtering deposition method. The XRD, SEM, and AFM results show that the film is composed of LiFePO4 grains with olivine structure and the average size of 100 nm. Charge-discharge measurements at current density of 10 μAh cm-2 between 0 and 1 V show that the LiFePO4 thin film electrode is able to deliver an initial discharge capacity of 113 mAh g-1. Specially, the morphological changes of the LiFePO4 film electrode during charge and discharge processes were investigated in aqueous environment by in situ EC-AFM, which is combined AFM with chronopotentiometry method. The changes in grain area are measured, and the results show that the size of the grains decreases and increases during the charge and discharge, respectively; the relevant mechanism is discussed.

  20. Hydrodynamic effects of the tip movement on surface nanobubbles: a combined tapping mode, lift mode and force volume mode AFM study.

    PubMed

    Walczyk, Wiktoria; Hain, Nicole; Schönherr, Holger

    2014-08-28

    We report on an Atomic Force Microscopy (AFM) study of AFM tip-nanobubble interactions in experiments conducted on argon surface nanobubbles on HOPG (highly oriented pyrolytic graphite) in water in tapping mode, lift mode and Force Volume (FV) mode AFM. By subsequent data acquisition on the same nanobubbles in these three different AFM modes, we could directly compare the effect of different tip-sample interactions. The tip-bubble interaction strength was found to depend on the vertical and horizontal position of the tip on the bubble with respect to the bubble center. The interaction forces measured experimentally were in good agreement with the forces calculated using the dynamic interaction model. The strength of the hydrodynamic effect was also found to depend on the direction of the tip movement. It was more pronounced in the FV mode, in which the tip approaches the bubble from the top, than in the lift mode, in which the tip approaches the bubble from the side. This result suggests that the direction of tip movement influences the bubble deformation. The effect should be taken into account when nanobubbles are analysed by AFM in various scanning modes.

  1. Intrinsically High-Q Dynamic AFM Imaging in Liquid with a Significantly Extended Needle Tip

    PubMed Central

    Minary-Jolandan, Majid; Tajik, Arash; Wang, Ning; Yu, Min-Feng

    2012-01-01

    Atomic force microscope (AFM) probe with a long and rigid needle tip was fabricated and studied for high Q factor dynamic (tapping mode) AFM imaging of samples submersed in liquid. The extended needle tip over a regular commercially-available tapping mode AFM cantilever was sufficiently long to keep the AFM cantilever from submersed in liquid, which significantly minimized the hydrodynamic damping involved in dynamic AFM imaging of samples in liquid. Dynamic AFM imaging of samples in liquid at an intrinsic Q factor of over 100 and an operation frequency of over 200 kHz was demonstrated. The method has the potential to be extended to acquire viscoelastic materials properties and provide truly gentle imaging of soft biological samples in physiological environments. PMID:22595833

  2. Compositional variability on the surface of 4 Vesta revealed through GRaND measurements of high-energy gamma rays

    NASA Astrophysics Data System (ADS)

    Peplowski, Patrick N.; Lawrence, David J.; Prettyman, Thomas H.; Yamashita, Naoyuki; Bazell, Dave; Feldman, William C.; Le Corre, Lucille; McCoy, Timothy J.; Reddy, Vishnu; Reedy, Robert C.; Russell, Chris T.; Toplis, Michael J.

    2013-11-01

    Measurements of the high-energy gamma-ray flux emanating from asteroid 4 Vesta by the Dawn Gamma-Ray and Neutron Detector (GRaND) have revealed variability in the near-surface elemental composition of the Vestan surface. These observations are consistent with the presence of large (≥8 × 104 km2) regions with distinct, HED-like elemental compositions. The results agree broadly with other global measurements, such as the macroscopic neutron absorption cross section and spectral reflectance-derived mineralogic maps. Two distinct regions with eucrite-like elemental compositions have been identified, the first located primarily within the Lucaria and Marcia quadrangles and the second within Oppia quadrangle. The former region is collocated with some of the oldest, most heavily cratered terrain on Vesta. The interior of the 500 km diameter Rheasilvia impact basin is found to have a composition that is consistent with diogenite-like material. Taken together, these observations support the hypothesis that Vesta's original crust was composed of basaltic outflows in the form of eucritic-like material and that the Rheasilvia-basin-forming impact exposed lower-crustal, diogenite-like material. These measurements also constrain the maximum amount of mesosiderite-like material to <10% for each 15 × 15° surface element.

  3. Revealing the surface and bulk regimes of isothermal graphene growth on Ni with in situ kinetic measurements and modeling

    SciTech Connect

    Puretzky, Alexander A; Merkulov, Igor A; Rouleau, Christopher M; Eres, Gyula; Geohegan, David B

    2014-01-01

    In situ optical diagnostics are used to reveal the isothermal nucleation and growth mechanisms of graphene on Ni across a wide temperature range (560 C < T < 840 C) by chemical vapor deposition from single, sub-second pulses of acetylene. An abrupt, two-orders of magnitude change in growth times (~ 100s to 1s) is revealed at T = 680 C. Below and above this temperature, similar sigmoidal kinetics are measured and attributed to autocatalytic growth reactions but by two different mechanisms, surface assembly and dissolution/precipitation, respectively. These data are used to develop a simple and general kinetic model for graphene growth that includes the nucleation phase and includes the effects of carbon solubility in metals, describes delayed nucleation, and allows the interpretation of the competition between surface and bulk growth modes. The sharp transition in growth kinetics at T = 680 C is explained by a change in defect site density required for nucleation due to a transition in the carbon-induced mobility of the Ni surface. The easily-implemented optical reflectivity diagnostics and the simple kinetic model described here allow a pathway to optimize the growth of graphene on metals with arbitrary carbon solubility.

  4. Revealing the hidden faults in the SE flank of Mt. Etna using radon in-soil gas measurement.

    PubMed

    Johnová, K; Thinová, L; Giammanco, S

    2014-07-01

    Although there are many methods for investigating tectonic structures, many faults remain hidden, and they can endanger the life and property of people living along them. The slopes of volcanoes are covered with such hidden faults, near which strong earthquakes and gas releases can appear. Revealing hidden faults can therefore contribute significantly to the protection of people living in volcanic areas. In the study, seven different techniques were used for making measurements of in-soil radon concentrations in order to search for hidden faults on the SE flank of the Mt. Etna volcano. These reported methods had previously been proved to be useful tools for investigating fault structures. The main aim of the experiment presented here was to evaluate the usability of these methods in the geological conditions of the Mt. Etna region, and to find the best place for continual radon monitoring using a permanent station in the near future.

  5. Bright and dark triplet states of the negatively charged magnetoexcitons revealed in photoluminescence and time-resolved measurements

    NASA Astrophysics Data System (ADS)

    Munteanu, F. M.; Rickel, D. G.; Perry, C. H.; Kim, Yongmin; Simmons, J. A.; Reno, J. L.

    2000-12-01

    Continuous and time-resolved magnetophotoluminescence measurements of three GaAs/AlxGa1-xAs heterostructures have been made in high magnetic fields. The spectra revealed the presence of a singlet and two triplet states (the so-called ``bright'' and ``dark'' states) of the negatively charged magnetoexciton, in addition to the neutral exciton. For an asymmetrically doped single quantum well sample, the singlet and the dark triplet states converge (and possibly cross) at a field of about 40 T. The two single heterojunction samples on the other hand show no such convergence, and the singlet remains the fundamental state at least in fields to 60 T. The lifetimes of the charged magnetoexcitons increased linearly with field, whereas the neutral exciton was essentially field independent. The results clarify earlier experimental studies, and provide a confirmation of a recent theory of the behavior of charged magnetoexcitons in magnetic fields by Wojs et al. [Phys Rev. B 62, 4630 (2000)].

  6. In-Plane Electronic Anisotropy of Underdoped ___122___ Fe-Arsenide Superconductors Revealed by Measurements of Detwinned Single Crystals

    SciTech Connect

    Fisher, Ian Randal

    2012-05-08

    The parent phases of the Fe-arsenide superconductors harbor an antiferromagnetic ground state. Significantly, the Neel transition is either preceded or accompanied by a structural transition that breaks the four fold symmetry of the high-temperature lattice. Borrowing language from the field of soft condensed matter physics, this broken discrete rotational symmetry is widely referred to as an Ising nematic phase transition. Understanding the origin of this effect is a key component of a complete theoretical description of the occurrence of superconductivity in this family of compounds, motivating both theoretical and experimental investigation of the nematic transition and the associated in-plane anisotropy. Here we review recent experimental progress in determining the intrinsic in-plane electronic anisotropy as revealed by resistivity, reflectivity and ARPES measurements of detwinned single crystals of underdoped Fe arsenide superconductors in the '122' family of compounds.

  7. Dispersion and Fixation of Adeno-Associated Virus with Glutaraldehyde for Afm Studies

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Wang, Xinyan; Yang, Haijun; Lü, Junhong

    Sample preparation is an important procedure for atomic force microscope (AFM) studies. However, flexible virus particles have a tendency to aggregate together and are easily compressed during sample preparation or by AFM tip that subsequently hamper studying of virus by AFM. Herein, low concentration chemical reagent of glutaraldehyde (2%, v/v) is pre-mixed in virus suspension that facilitates the dispersion and observation of recombinant serotype 2 adeno-associated virus particles deposited on mica surface with little deformation.

  8. Acquisition of a Modular, Multi-laser, Raman-AFM Instrument for Multdisciplinary Research

    DTIC Science & Technology

    2015-04-28

    vapor deposition on copper foils. The four lasers range from the blue to 785 nm and provides a unique handle to determine excitation dependence of...Acquisition of a Modular, Multi- laser , Raman- AFM Instrument for Multdisciplinary Research A four- laser , confocal Raman/Atomic Force Scanning... laser , Raman-AFM Instrument for Multdisciplinary Research Report Title A four- laser , confocal Raman/Atomic Force Scanning microscope (Raman-AFM

  9. Seven Years (2004-2011) of Cassini Measurements Reveal Strong Local Time Asymmetry of the Saturnian Ring Current

    NASA Astrophysics Data System (ADS)

    Sergis, N.; Krimigis, S.; Thomsen, M.; Roelof, E.; Mitchell, D.; Hamilton, D.; Krupp, N.; Dougherty, M.; Crary, F.

    2012-04-01

    The Saturnian ring current, initially inferred from magnetic field and particle measurements after the Voyager 1 and 2 flybys, has been studied in substantial detail via in-situ and remote measurements since the July 2004 Cassini orbit insertion. The ring current of Saturn, located between 7 and 15 RS and primarily composed of O+ ions, is characterized by increased suprathermal (> 3 keV) particle pressure with high (> 1) plasma β values and intense dynamic behavior, as revealed by the analysis of combined particle data from the Cassini Magnetospheric Imaging Instrument (MIMI) and the Cassini Plasma Spectrometer instrument (CAPS), and magnetic field measurements from the Cassini magnetometer (MAG). Among the most important findings so far is that the azimuthal ring current flows primarily to balance inertial centrifugal forces inside ~8 RS, but increasingly it is driven by the non-thermal pressure gradient beyond its maximum region (8-12 RS, 100-150 pA/m2) and certainly it dominates farther out. Beyond ~ 10RS, the non-thermal pressure decreases with radial distance faster than the previously assumed 1/r rate and results in a magnetic perturbation of 10-15 nT. In this work we present the most complete (2004-2011) and up-to-date results, focusing on the local time asymmetry of the ring current properties (e.g. particle pressure, current density), and the relative contribution of different components to the radial force balance. The comprehensive spatial and local time coverage provided by the Cassini orbits has revealed that the suprathermal pressure and its corresponding pressure gradient is higher by a factor of 3 to 8 on the night side, in agreement with the observed distribution of energetic particle injections and energetic neutral atom (ENA) emissions. In addition to in-situ measurements, ENA images from the Ion and Neutral Camera (INCA) of Cassini, offer a unique overview of large parts of the Saturnian magnetosphere, depicting the rotation and dynamics of the

  10. Formation of sensor array on the AFM chip surface by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Shumov, I. D.; Kanashenko, S. L.; Ziborov, V. S.; Ivanov, Yu D.; Archakov, A. I.; Pleshakova, T. O.

    2017-01-01

    Development of atomic force microscopy (AFM)-based nanotechnological approaches to highly sensitive detection of proteins is a perspective direction in biomedical research. These approaches use AFM chips to concentrate the target proteins from the test solution volume (buffer solution, diluted biological fluid) onto the chip surface for their subsequent registration on the chip surface by AFM. Atomic force microscope is a molecular detector that enables protein detection at ultra-low (subfemtomolar) concentrations in single-molecule counting mode. Due to extremely high sensitivity of AFM, its application for multiplexed protein detection is of great interest for use in proteomics and diagnostic applications. In this study, AFM chips containing an array of sensor areas have been fabricated. Magnetron sputtering of chromium and tungsten nanolayers has been used to form optically visible metallic marks on the AFM chip surface to provide necessary precision of AFM probe positioning against each sensor area for scanning. It has been demonstrated that the marks formed by magnetron sputtering of Cr and W are stable on the surface of the AFM chips during the following activation and intensive washing of this surface. The results obtained in our present study allow application of the developed chips for multiplexed protein analysis by AFM.

  11. High-Throughput Sequencing Reveals Circulating miRNAs as Potential Biomarkers for Measuring Puberty Onset in Chicken (Gallus gallus)

    PubMed Central

    Su, Yijun; Li, Guohui; Qu, Liang; Zhang, Huiyong; Wang, Kehua; Zou, Jianmin; Liu, Honglin

    2016-01-01

    There are still no highly sensitive and unique biomarkers for measurement of puberty onset. Circulating miRNAs have been shown to be promising biomarkers for diagnosis of various diseases. To identify circulating miRNAs that could be served as biomarkers for measuring chicken (Gallus gallus) puberty onset, the Solexa deep sequencing was performed to analyze the miRNA expression profiles in serum and plasma of hens from two different pubertal stages, before puberty onset (BO) and after puberty onset (AO). 197 conserved and 19 novel miRNAs (reads > 10) were identified as serum/plasma-expressed miRNAs in the chicken. The common miRNA amounts and their expression changes from BO to AO between serum and plasma were very similar, indicating the different treatments to generate serum and plasma had quite small influence on the miRNAs. 130 conserved serum-miRNAs were showed to be differentially expressed (reads > 10, P < 0.05) from BO to AO, with 68 up-regulated and 62 down-regulated. 4829 putative genes were predicted as the targets of the 40 most differentially expressed miRNAs (|log2(fold-change)|>1.0, P < 0.01). Functional analysis revealed several pathways that were associated with puberty onset. Further quantitative real-time PCR (RT-qPCR) test found that a seven-miRNA panel, including miR-29c, miR-375, miR-215, miR-217, miR-19b, miR-133a and let-7a, had great potentials to serve as novel biomarkers for measuring puberty onset in chicken. Due to highly conserved nature of miRNAs, the findings could provide cues for measurement of puberty onset in other animals as well as humans. PMID:27149515

  12. AFM, SEM and TEM Studies on Porous Anodic Alumina

    PubMed Central

    2010-01-01

    Porous anodic alumina (PAA) has been intensively studied in past decade due to its applications for fabricating nanostructured materials. Since PAA’s pore diameter, thickness and shape vary too much, a systematical study on the methods of morphology characterization is meaningful and essential for its proper development and utilization. In this paper, we present detailed AFM, SEM and TEM studies on PAA and its evolvements with abundant microstructures, and discuss the advantages and disadvantages of each method. The sample preparation, testing skills and morphology analysis are discussed, especially on the differentiation during characterizing complex cross-sections and ultrasmall nanopores. The versatility of PAAs is also demonstrated by the diversity of PAAs’ microstructure. PMID:20672104

  13. AFM, SEM and TEM Studies on Porous Anodic Alumina

    NASA Astrophysics Data System (ADS)

    Zhu, Yuan Yuan; Ding, Gu Qiao; Ding, Jian Ning; Yuan, Ning Yi

    2010-04-01

    Porous anodic alumina (PAA) has been intensively studied in past decade due to its applications for fabricating nanostructured materials. Since PAA’s pore diameter, thickness and shape vary too much, a systematical study on the methods of morphology characterization is meaningful and essential for its proper development and utilization. In this paper, we present detailed AFM, SEM and TEM studies on PAA and its evolvements with abundant microstructures, and discuss the advantages and disadvantages of each method. The sample preparation, testing skills and morphology analysis are discussed, especially on the differentiation during characterizing complex cross-sections and ultrasmall nanopores. The versatility of PAAs is also demonstrated by the diversity of PAAs’ microstructure.

  14. SPR and AFM study of engineered biomolecule immobilisation techniques.

    PubMed

    Craig, Ian; McLaughlin, James A

    2006-01-01

    A comparative study into two novel and diverse schemes designed to improve immobilization of biomolecules for biosensing purposes is presented. In the first method a silicon rich matrix is created using PECVD. The second method involves creating nano-patterns on the sensor surface to create a large number of surface discontinuities to which the proteins will bind preferentially. The basic theory of SPR is provided to show the importance of the surface sensitive nature of this optical transduction technique. The present work suggests that both may prove both for SPR and other biosensing applications. Of the two schemes proposed, the results for nano-patterning seem to suggest that it is promoting better surface attachment of biomolecules. The results of SPR and AFM studies are presented that have shown that each of these schemes promotes improved binding of various proteins.

  15. GaN nanowire tip for high aspect ratio nano-scale AFM metrology (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Behzadirad, Mahmoud; Dawson, Noel; Nami, Mohsen; Rishinaramangalam, Ashwin K.; Feezell, Daniel F.; Busani, Tito L.

    2016-09-01

    In this study we introduce Gallium Nitride (GaN) nanowire (NW) as high aspect ratio tip with excellent durability for nano-scale metrology. GaN NWs have superior mechanical property and young modulus compare to commercial Si and Carbon tips which results in having less bending issue during measurement. The GaN NWs are prepared via two different methods: i) Catalyst-free selected area growth, using Metal Organic Chemical Vapor Deposition (MOCVD), ii) top-down approach by employing Au nanoparticles as the mask material in dry-etch process. To achieve small diameter tips, the semipolar planes of the NWs grown by MOCVD are etched using AZ400k. The diameter of the NWs fabricated using the top down process is controlled by using different size of nanoparticles and by Inductively Coupled Plasma etching. NWs with various diameters were manipulated on Si cantilevers using Focus Ion Beam (FIB) to make tips for AFM measurement. A Si (110) substrate containing nano-scale grooves with vertical 900 walls were used as a sample for inspection. AFM measurements were carried out in tapping modes for both types of nanowires (top-down and bottom-up grown nanowires) and results are compared with conventional Si and carbon nanotube tips. It is shown our fabricated tips are robust and have improved edge resolution over conventional Si tips. GaN tips made with NW's fabricated using our top down method are also shown to retain the gold nanoparticle at tip, which showed enhanced field effects in Raman spectroscopy.

  16. Hematite/silver nanoparticle bilayers on mica--AFM, SEM and streaming potential studies.

    PubMed

    Morga, Maria; Adamczyk, Zbigniew; Oćwieja, Magdalena; Bielańska, Elżbieta

    2014-06-15

    Bilayers of hematite/silver nanoparticles were obtained in the self-assembly process and thoroughly characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM), and in situ streaming potential measurements. The hematite nanoparticles, forming a supporting layer, were 22 nm in diameter, exhibiting an isoelectric point at pH 8.9. The silver nanoparticles, used to obtain an external layer, were 29 nm in diameter, and remained negative within the pH range 3 to 11. In order to investigate the particle deposition, mica sheets were used as a model solid substrate. The coverage of the supporting layer was adjusted by changing the bulk concentration of the hematite suspension and the deposition time. Afterward, silver nanoparticle monolayers of controlled coverage were deposited under the diffusion-controlled transport. The coverage of bilayers was determined by a direct enumeration of deposited particles from SEM micrographs and AFM images. Additionally, the formation of the hematite/silver bilayers was investigated by streaming potential measurements carried out under in situ conditions. The effect of the mica substrate and the coverage of a supporting layer on the zeta potential of bilayers was systematically studied. It was established that for the coverage exceeding 0.20, the zeta potential of bilayers was independent on the substrate and the supporting layer coverage. This behavior was theoretically interpreted in terms of the 3D electrokinetic model. Beside significance for basic sciences, these measurements allowed to develop a robust method of preparing nanoparticle bilayers of controlled properties, having potential applications in catalytic processes.

  17. AFM tip effect on a thin liquid film.

    PubMed

    Ledesma-Alonso, R; Legendre, D; Tordjeman, Ph

    2013-06-25

    We study the interaction between an AFM probe and a liquid film deposited over a flat substrate. We investigate the effects of the physical and geometrical parameters, with a special focus on the film thickness E, the probe radius R, and the distance D between the probe and the free surface. Deformation profiles have been calculated from the numerical simulations of the Young-Laplace equation by taking into account the probe/liquid and the liquid/substrate interactions, characterized by the Hamaker constants, Hpl and Hls. We demonstrate that the deformation of a shallow film is determined by a particular characteristic length λF = (2πγE(4)/Hls)(1/2), resulting from the balance between the capillary force (γ is the surface tension) and the van der Waals liquid/substrate attraction. For the case of a bulk liquid, the extent of the interface deformation is simply controlled by the capillary length λC = (γ/Δρg)(1/2). These trends point out two asymptotic regimes, which in turn are bounded by two characteristic film thicknesses Eg = (Hls/2πΔρg)(1/4) and Eγ = (R(2)Hls/2πγ)(1/4). For E > Eg, the bulk behavior is recovered, and for E < Eγ, we show the existence of a particular shallow film regime in which a localized tip effect is observed. This tip effect is characterized by the small magnitude of the deformation and an important restriction of its radial extent λF localized below the probe. In addition, we have found that the film thickness has a significant effect on the threshold separation distance Dmin below which the irreversible jump-to-contact process occurs: Dmin is probe radius-dependent for the bulk whereas it is film-thickness-dependent for shallow films. These results have an important impact on the optimal AFM scanning conditions.

  18. Time Series Measurements of Diffuse Hydrothermal Flow at the ASHES Vent Field Reveal Tidally Modulated Heat and Volume Flux

    NASA Astrophysics Data System (ADS)

    Mittelstaedt, E. L.; Fornari, D. J.; Crone, T. J.

    2015-12-01

    Existing time-series measurements of temperature and velocity of diffuse hydrothermal fluids exhibit variability over a range of periods from seconds to days. Frequency analysis of these measurements reveals differences between studies and field locations including nearly white spectra, as well as spectra with peaks at tidal and inertial periods. Based upon these results, previous authors have suggested several processes that may control diffuse flow rates, including tidally induced currents and 'tidal pumping', and have also suggested that there are no systematic controls. To further investigate the processes that control variability in diffuse flow, we use data from a new, deep-sea camera and temperature measurement system, the Diffuse Effluent Measurement System (DEMS), deployed during the July, 2014 cruise of the R/V Atlantis. The DEMS was deployed with DSV Alvin above a fracture network at the Phoenix vent within the ASHES vent field (Axial Seamount, 1541 mbsl). The system collected 20 seconds of imagery at 20 Hz and 24 seconds of temperature measurements at 1 Hz each hour over the period between July 22 and August 2nd. Velocities of the upwelling fluids were calculated using Diffuse Fluid Velocimetry (DFV; Mittelstaedt et al., 2010). DFV is a cross correlation technique that tracks moving index of refraction anomalies (i.e., hot parcels of fluid) through time. Over the ~12 day deployment, median flow rates ranged from 0.5 cm/s to 6 cm/s and mean fluid temperature anomalies from 0°C up to ~6.5°C, yielding an average heat flux density of 0.23 MW/m2. Spectral analysis of both the measured temperatures and calculated velocities yield a peak in normalized power at the semi-diurnal lunar period (M2, 12.4hrs), but no other spectral peaks above the 95% confidence level. Here, we present these results and discuss their implications for the tidal current and tidal pressure models of diffuse flow variability at the ASHES vent field.

  19. Fundamental aspects of electric double layer force-distance measurements at liquid-solid interfaces using atomic force microscopy

    PubMed Central

    Black, Jennifer M.; Zhu, Mengyang; Zhang, Pengfei; Unocic, Raymond R.; Guo, Daqiang; Okatan, M. Baris; Dai, Sheng; Cummings, Peter T.; Kalinin, Sergei V.; Feng, Guang; Balke, Nina

    2016-01-01

    Atomic force microscopy (AFM) force-distance measurements are used to investigate the layered ion structure of Ionic Liquids (ILs) at the mica surface. The effects of various tip properties on the measured force profiles are examined and reveal that the measured ion position is independent of tip properties, while the tip radius affects the forces required to break through the ion layers as well as the adhesion force. Force data is collected for different ILs and directly compared with interfacial ion density profiles predicted by molecular dynamics. Through this comparison it is concluded that AFM force measurements are sensitive to the position of the ion with the larger volume and mass, suggesting that ion selectivity in force-distance measurements are related to excluded volume effects and not to electrostatic or chemical interactions between ions and AFM tip. The comparison also revealed that at distances greater than 1 nm the system maintains overall electroneutrality between the AFM tip and sample, while at smaller distances other forces (e.g., van der waals interactions) dominate and electroneutrality is no longer maintained. PMID:27587276

  20. Fundamental aspects of electric double layer force-distance measurements at liquid-solid interfaces using atomic force microscopy

    DOE PAGES

    Black, Jennifer M.; Zhu, Mengyang; Zhang, Pengfei; ...

    2016-09-02

    In this paper, atomic force microscopy (AFM) force-distance measurements are used to investigate the layered ion structure of Ionic Liquids (ILs) at the mica surface. The effects of various tip properties on the measured force profiles are examined and reveal that the measured ion position is independent of tip properties, while the tip radius affects the forces required to break through the ion layers as well as the adhesion force. Force data is collected for different ILs and directly compared with interfacial ion density profiles predicted by molecular dynamics. Through this comparison it is concluded that AFM force measurements aremore » sensitive to the position of the ion with the larger volume and mass, suggesting that ion selectivity in force-distance measurements are related to excluded volume effects and not to electrostatic or chemical interactions between ions and AFM tip. Finally, the comparison also revealed that at distances greater than 1 nm the system maintains overall electroneutrality between the AFM tip and sample, while at smaller distances other forces (e.g., van der waals interactions) dominate and electroneutrality is no longer maintained.« less

  1. Fundamental aspects of electric double layer force-distance measurements at liquid-solid interfaces using atomic force microscopy

    SciTech Connect

    Black, Jennifer M.; Zhu, Mengyang; Zhang, Pengfei; Unocic, Raymond R.; Guo, Daqiang; Okatan, M. Baris; Dai, Sheng; Cummings, Peter T.; Kalinin, Sergei V.; Feng, Guang; Balke, Nina

    2016-09-02

    In this paper, atomic force microscopy (AFM) force-distance measurements are used to investigate the layered ion structure of Ionic Liquids (ILs) at the mica surface. The effects of various tip properties on the measured force profiles are examined and reveal that the measured ion position is independent of tip properties, while the tip radius affects the forces required to break through the ion layers as well as the adhesion force. Force data is collected for different ILs and directly compared with interfacial ion density profiles predicted by molecular dynamics. Through this comparison it is concluded that AFM force measurements are sensitive to the position of the ion with the larger volume and mass, suggesting that ion selectivity in force-distance measurements are related to excluded volume effects and not to electrostatic or chemical interactions between ions and AFM tip. Finally, the comparison also revealed that at distances greater than 1 nm the system maintains overall electroneutrality between the AFM tip and sample, while at smaller distances other forces (e.g., van der waals interactions) dominate and electroneutrality is no longer maintained.

  2. Fundamental aspects of electric double layer force-distance measurements at liquid-solid interfaces using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Black, Jennifer M.; Zhu, Mengyang; Zhang, Pengfei; Unocic, Raymond R.; Guo, Daqiang; Okatan, M. Baris; Dai, Sheng; Cummings, Peter T.; Kalinin, Sergei V.; Feng, Guang; Balke, Nina

    2016-09-01

    Atomic force microscopy (AFM) force-distance measurements are used to investigate the layered ion structure of Ionic Liquids (ILs) at the mica surface. The effects of various tip properties on the measured force profiles are examined and reveal that the measured ion position is independent of tip properties, while the tip radius affects the forces required to break through the ion layers as well as the adhesion force. Force data is collected for different ILs and directly compared with interfacial ion density profiles predicted by molecular dynamics. Through this comparison it is concluded that AFM force measurements are sensitive to the position of the ion with the larger volume and mass, suggesting that ion selectivity in force-distance measurements are related to excluded volume effects and not to electrostatic or chemical interactions between ions and AFM tip. The comparison also revealed that at distances greater than 1 nm the system maintains overall electroneutrality between the AFM tip and sample, while at smaller distances other forces (e.g., van der waals interactions) dominate and electroneutrality is no longer maintained.

  3. Color-Doppler sonographic tissue perfusion measurements reveal significantly diminished renal cortical perfusion in kidneys with vesicoureteral reflux

    PubMed Central

    Scholbach, T. M.; Sachse, C.

    2016-01-01

    Vesicoureteral reflux (VUR) and its sequelae may lead to reduced renal perfusion and loss of renal function. Methods to describe and monitor tissue perfusion are needed. We investigated dynamic tissue perfusion measurement (DTPM) with the PixelFlux-software to measure microvascular changes in the renal cortex in 35 children with VUR and 28 healthy children. DTPM of defined horizontal slices of the renal cortex was carried out. A kidney was assigned to the “low grade reflux”-group if the reflux grade of the voiding cystourethrogram was 1 to 3 and to the “high grade reflux”-group if the reflux grade was 4 to 5. Kidneys with VUR showed a significantly reduced cortical perfusion. Compared to healthy kidneys, this decline reached in low and high grade refluxes within the proximal 50% of the cortex: 3% and 12 %, in the distal 50% of the cortex: 21% and 44 % and in the most distal 20 % of the cortex 41% and 44%. DTPM reveals a perfusion loss in kidneys depending on the degree of VUR, which is most pronounced in the peripheral cortex. Thus, DTPM offers the tool to evaluate microvascular perfusion, to help planning treatment decisions in children with VUR. PMID:27051133

  4. Negative differential mobility for negative carriers as revealed by space charge measurements on crosslinked polyethylene insulated model cables

    NASA Astrophysics Data System (ADS)

    Teyssedre, G.; Vu, T. T. N.; Laurent, C.

    2015-12-01

    Among features observed in polyethylene materials under relatively high field, space charge packets, consisting in a pulse of net charge that remains in the form of a pulse as it crosses the insulation, are repeatedly observed but without complete theory explaining their formation and propagation. Positive charge packets are more often reported, and the models based on negative differential mobility(NDM) for the transport of holes could account for some charge packets phenomenology. Conversely, NDM for electrons transport has never been reported so far. The present contribution reports space charge measurements by pulsed electroacoustic method on miniature cables that are model of HVDC cables. The measurements were realized at room temperature or with a temperature gradient of 10 °C through the insulation under DC fields on the order 30-60 kV/mm. Space charge results reveal systematic occurrence of a negative front of charges generated at the inner electrode that moves toward the outer electrode at the beginning of the polarization step. It is observed that the transit time of the front of negative charge increases, and therefore the mobility decreases, with the applied voltage. Further, the estimated mobility, in the range 10-14-10-13 m2 V-1 s-1 for the present results, increases when the temperature increases for the same condition of applied voltage. The features substantiate the hypothesis of negative differential mobility used for modelling space charge packets.

  5. Upwelling characteristics in the Gulf of Finland (Baltic Sea) as revealed by Ferrybox measurements in 2007-2013

    NASA Astrophysics Data System (ADS)

    Kikas, Villu; Lips, Urmas

    2016-07-01

    Ferrybox measurements have been carried out between Tallinn and Helsinki in the Gulf of Finland (Baltic Sea) on a regular basis since 1997. The system measures autonomously water temperature, salinity, chlorophyll a fluorescence and turbidity and takes water samples for further analyses at a predefined time interval. We aimed to show how the Ferrybox technology could be used to study the coastal upwelling events in the Gulf of Finland. Based on the introduced upwelling index and related criteria, 33 coastal upwelling events were identified in May-September 2007-2013. The number of events, as well as the frequency of their occurrence and intensity expressed as a sum of daily average temperature deviations in the 20 km wide coastal area, were almost equal near the northern and southern coasts. Nevertheless, the wind impulse, which was needed to generate upwelling events of similar intensity, differed between the northern and southern coastal areas. It is suggested that the general thermohaline structure adapted to the prevailing forcing and the estuarine character of the basin weaken the upwelling created by the westerly to southwesterly (up-estuary) winds and strengthen the upwelling created by the easterly to northeasterly (down-estuary) winds. Two types of upwelling events were identified - one characterized by a strong temperature front and the other revealing gradual decrease in temperature from the open sea to the coastal area, with maximum temperature deviation close to the shore.

  6. Increased imaging speed and force sensitivity for bio-applications with small cantilevers using a conventional AFM setup

    PubMed Central

    Leitner, Michael; Fantner, Georg E.; Fantner, Ernest J.; Ivanova, Katerina; Ivanov, Tzvetan; Rangelow, Ivo; Ebner, Andreas; Rangl, Martina; Tang, Jilin; Hinterdorfer, Peter

    2012-01-01

    In this study, we demonstrate the increased performance in speed and sensitivity achieved by the use of small AFM cantilevers on a standard AFM system. For this, small rectangular silicon oxynitride cantilevers were utilized to arrive at faster atomic force microscopy (AFM) imaging times and more sensitive molecular recognition force spectroscopy (MRFS) experiments. The cantilevers we used had lengths between 13 and 46 μm, a width of about 11 μm, and a thickness between 150 and 600 nm. They were coated with chromium and gold on the backside for a better laser reflection. We characterized these small cantilevers through their frequency spectrum and with electron microscopy. Due to their small size and high resonance frequency we were able to increase the imaging speed by a factor of 10 without any loss in resolution for images from several μm scansize down to the nanometer scale. This was shown on bacterial surface layers (s-layer) with tapping mode under aqueous, near physiological conditions and on nuclear membranes in contact mode in ambient environment. In addition, we showed that single molecular forces can be measured with an up to 5 times higher force sensitivity in comparison to conventional cantilevers with similar spring constants. PMID:22721963

  7. AFM and SEM study of the effects of etching on IPS-Empress 2 TM dental ceramic

    NASA Astrophysics Data System (ADS)

    Luo, X.-P.; Silikas, N.; Allaf, M.; Wilson, N. H. F.; Watts, D. C.

    2001-10-01

    The aim of this study was to investigate the effects of increasing etching time on the surface of the new dental material, IPS-Empress 2 TM glass ceramic. Twenty one IPS-Empress 2 TM glass ceramic samples were made from IPS-Empress 2 TM ingots through lost-wax, hot-pressed ceramic fabrication technology. All samples were highly polished and cleaned ultrasonically for 5 min in acetone before and after etching with 9.6% hydrofluoric acid gel. The etching times were 0, 10, 20, 30, 60, 90 and 120 s respectively. Microstructure was analysed by scanning electron microscopy (SEM) and atomic force microscopy (AFM) was used to evaluate the surface roughness and topography. Observations with SEM showed that etching with hydrofluoric acid resulted in preferential dissolution of glass matrix, and that partially supported crystals within the glass matrix were lost with increasing etching time. AFM measurements indicated that etching increased the surface roughness of the glass-ceramic. A simple least-squares linear regression was used to establish a relationship between surface roughness parameters ( Ra, RMS), and etching time, for which r2>0.94. This study demonstrates the benefits of combining two microscopic methods for a better understanding of the surface. SEM showed the mode of action of hydrofluoric acid on the ceramic and AFM provided valuable data regarding the extent of surface degradation relative to etching time.

  8. Poly(N-isopropylacrylamide) thin films densely grafted onto gold surface: preparation, characterization, and dynamic AFM study of temperature-induced chain conformational changes.

    PubMed

    Montagne, Franck; Polesel-Maris, Jérome; Pugin, Raphael; Heinzelmann, Harry

    2009-01-20

    Thermally responsive poly(N-isopropylacrylamide) (PNIPAM) films are attracting considerable attention since they offer the possibility to achieve reversible control over surface wettability and biocompatibility. In this paper, we first report a new and simple method for the grafting under melt of amine-terminated PNIPAM chains onto gold surfaces modified with a self-assembled monolayer (SAM) of reactive thiols. The formation of homogeneous tethered PNIPAM films, whose thickness can be tuned by adjusting polymer molecular weight or SAM reactivity, is evidenced by using the combination of ellipsometry, X-ray photon spectroscopy, infrared spectroscopy (PM-IRRAS), and atomic force microscopy. The calculation of grafting parameters from experimental measurements indicated the synthesis of densely grafted PNIPAM films and allowed us to predict a "brushlike" regime for the chains in good solvent. In a second part, the temperature-induced responsive properties are studied in situ by conducting dynamic AFM measurements using the amplitude modulation technique. Imaging in water environment first revealed the reversible modification of surface morphology below and above the theoretical lower critical solution temperature (LCST) of PNIPAM. Then, the determination of amplitude and phase approach curves at various temperatures provided direct measurement of the evolution of the damping factor, or similarly the dissipated energy, as a function of the probe indentation into the PNIPAM film. Most interestingly, we clearly showed the subtle and progressive thermally induced chain conformational change occurring at the scale of several nanometers around the expected LCST.

  9. Fabrication of YBCO-LSMO-YBCO Lateral Structure with AFM Lithography

    NASA Astrophysics Data System (ADS)

    Ishii, K.; Tachiki, M.; Ooi, S.; Hirata, K.

    We have tried to make the superconductor/half metal/superconductor (SC/HF/SC) Josephson junction to make clear a long range proximity effect. The structure was consisted of high-Tc superconductor YBa2Cu3O7-x and half metallic ferromagnet La0.7Sr0.3MnO3 thin films deposited by pulse laser deposition on SrTiO3(100) single crystal substrates. The SC/HF/SC lateral structure was made by scratching with the atomic force microscope (AFM) probe. We could cut the ditch which has 30 nm width and 50 nm depth. We have investigated the I-V and R-T measurements of the structure. The structure after the fabrication did not show the superconducting state and we could not find the Josephson current.

  10. Membrane Surface Nanostructures and Adhesion Property of T Lymphocytes Exploited by AFM

    NASA Astrophysics Data System (ADS)

    Wu, Yangzhe; Lu, Hongsong; Cai, Jiye; He, Xianhui; Hu, Yi; Zhao, Hongxia; Wang, Xiaoping

    2009-08-01

    The activation of T lymphocytes plays a very important role in T-cell-mediated immune response. Though there are many related literatures, the changes of membrane surface nanostructures and adhesion property of T lymphocytes at different activation stages have not been reported yet. However, these investigations will help us further understand the biophysical and immunologic function of T lymphocytes in the context of activation. In the present study, the membrane architectures of peripheral blood T lymphocytes were obtained by AFM, and adhesion force of the cell membrane were measured by acquiring force-distance curves. The results indicated that the cell volume increased with the increases of activation time, whereas membrane surface adhesion force decreased, even though the local stiffness for resting and activated cells is similar. The results provided complementary and important data to further understand the variation of biophysical properties of T lymphocytes in the context of in vitro activation.

  11. Nearly-uniform internal rotation of solar-like main sequence stars revealed by asteroseismology and spectroscopic measurements

    NASA Astrophysics Data System (ADS)

    Benomar, Othman Michel; Takata, Masao; Shibahashi, Hiromoto; Ceillier, Tugdual; Garcia, Rafael

    2015-08-01

    Stellar pulsations, which can be trapped acoustic waves (p modes), internal gravity waves (g modes) or a mixture of two, have frequencies that depend on the properties of the stellar interior, such as the internal rotation.Helioseismology extensively exploited these pulsations and, by the means of seismic inversion, has revealed a nearly uniform rotation profile, with variations that do not exceed 30% in the radial direction (e.g. Thompson et al. 2003). To conciliate models with observations, an efficient mechanism of transport of angular momentum from the core to the envelope is required.The necessity of an efficient angular momentum transport was also revealed on two main-sequence stars showing p modes and g modes (Kurtz et al. 2014, Saio et al. 2015) and on several evolved stars solar-like showing mixed modes (Deheuvels et al. 2012, 2014).However, the number of stars with a measured internal rotation structure is still limited. For low-mass main-sequence stars showing solar-like oscillations, the measure of the internal rotation profile is limited because only the low degree p modes can be observed by unresolved photometry.Yet, by comparing the average surface rotation with the average of the internal rotation, it is possible to evaluate the degree of differential rotation between deep layers and the surface. The surface rotation can be derived by spectroscopic vsin(i) or by the periodic luminosity variation due to surface spots, while the average internal rotation is determined by asteroseismology, using the so-called rotational splitting.We performed this comparison on 22 solar-like stars of the main sequence. We show that the rotation at the surface and in the interior are generally close to each other. For 10 stars, the difference is clearly too small to be explained by simple evolutionary models that assume local conservation of angular momentum. Furthermore, by adopting a simple two-zone model, we show that 20 out of the 22 stars have a rotation rate in

  12. Proceedings of the 2010 AFMS Medical Research Symposium. Volume 5. Nursing Track: Abstracts and Presentations

    DTIC Science & Technology

    2011-03-15

    will include hematocrit, hemoglobin , mean corpuscle volume, iron , total iron binding capacity, Ferritin , and soluble transferring receptor. The...Iraq/Afghanistan ........ 2  Iron Status of Deployed Military Members...2010 AFMS Medical Research Symposium Volume 5 Nursing 8 Proceedings of the 2010 AFMS Medical Research Symposium Volume 5 Nursing 9 Iron

  13. Negative differential mobility for negative carriers as revealed by space charge measurements on crosslinked polyethylene insulated model cables

    SciTech Connect

    Teyssedre, G. Laurent, C.; Vu, T. T. N.

    2015-12-21

    Among features observed in polyethylene materials under relatively high field, space charge packets, consisting in a pulse of net charge that remains in the form of a pulse as it crosses the insulation, are repeatedly observed but without complete theory explaining their formation and propagation. Positive charge packets are more often reported, and the models based on negative differential mobility(NDM) for the transport of holes could account for some charge packets phenomenology. Conversely, NDM for electrons transport has never been reported so far. The present contribution reports space charge measurements by pulsed electroacoustic method on miniature cables that are model of HVDC cables. The measurements were realized at room temperature or with a temperature gradient of 10 °C through the insulation under DC fields on the order 30–60 kV/mm. Space charge results reveal systematic occurrence of a negative front of charges generated at the inner electrode that moves toward the outer electrode at the beginning of the polarization step. It is observed that the transit time of the front of negative charge increases, and therefore the mobility decreases, with the applied voltage. Further, the estimated mobility, in the range 10{sup −14}–10{sup −13} m{sup 2} V{sup −1} s{sup −1} for the present results, increases when the temperature increases for the same condition of applied voltage. The features substantiate the hypothesis of negative differential mobility used for modelling space charge packets.

  14. Behavioral manifestations of audiometrically-defined "slight" or "hidden" hearing loss revealed by measures of binaural detection.

    PubMed

    Bernstein, Leslie R; Trahiotis, Constantine

    2016-11-01

    This study assessed whether audiometrically-defined "slight" or "hidden" hearing losses might be associated with degradations in binaural processing as measured in binaural detection experiments employing interaurally delayed signals and maskers. Thirty-one listeners participated, all having no greater than slight hearing losses (i.e., no thresholds greater than 25 dB HL). Across the 31 listeners and consistent with the findings of Bernstein and Trahiotis [(2015). J. Acoust. Soc. Am. 138, EL474-EL479] binaural detection thresholds at 500 Hz and 4 kHz increased with increasing magnitude of interaural delay, suggesting a loss of precision of coding with magnitude of interaural delay. Binaural detection thresholds were consistently found to be elevated for listeners whose absolute thresholds at 4 kHz exceeded 7.5 dB HL. No such elevations were observed in conditions having no binaural cues available to aid detection (i.e., "monaural" conditions). Partitioning and analyses of the data revealed that those elevated thresholds (1) were more attributable to hearing level than to age and (2) result from increased levels of internal noise. The data suggest that listeners whose high-frequency monaural hearing status would be classified audiometrically as being normal or "slight loss" may exhibit substantial and perceptually meaningful losses of binaural processing.

  15. Measurement of solution viscosity by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Ahmed, Nabil; Nino, Diego F.; Moy, Vincent T.

    2001-06-01

    We report on studies aimed at employing the atomic force microscope (AFM) to measure the viscosity of aqueous solutions. At ambient temperature, the AFM cantilever undergoes thermal fluctuations that are highly sensitive to the local environment. Here, we present measurements of the cantilever's resonant frequency in aqueous solutions of glycerol, sucrose, ethanol, sodium chloride, polyethylene glycol, and bovine plasma albumin. The measurements revealed that variations in the resonant frequency of the cantilever in the different solutions are largely dependent on the viscosity of the medium. An application of this technique is to monitor the progression of a chemical reaction where a change in viscosity is expected to occur. An example is demonstrated through monitoring of the hydrolysis of double stranded deoxyribonucleic acid by DNase I.

  16. BOREAS AFM-12 1-km AVHRR Seasonal Land Cover Classification

    NASA Technical Reports Server (NTRS)

    Steyaert, Lou; Hall, Forrest G.; Newcomer, Jeffrey A. (Editor); Knapp, David E. (Editor); Loveland, Thomas R.; Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-12 team's efforts focused on regional scale Surface Vegetation and Atmosphere (SVAT) modeling to improve parameterization of the heterogeneous BOREAS landscape for use in larger scale Global Circulation Models (GCMs). This regional land cover data set was developed as part of a multitemporal one-kilometer Advanced Very High Resolution Radiometer (AVHRR) land cover analysis approach that was used as the basis for regional land cover mapping, fire disturbance-regeneration, and multiresolution land cover scaling studies in the boreal forest ecosystem of central Canada. This land cover classification was derived by using regional field observations from ground and low-level aircraft transits to analyze spectral-temporal clusters that were derived from an unsupervised cluster analysis of monthly Normalized Difference Vegetation Index (NDVI) image composites (April-September 1992). This regional data set was developed for use by BOREAS investigators, especially those involved in simulation modeling, remote sensing algorithm development, and aircraft flux studies. Based on regional field data verification, this multitemporal one-kilometer AVHRR land cover mapping approach was effective in characterizing the biome-level land cover structure, embedded spatially heterogeneous landscape patterns, and other types of key land cover information of interest to BOREAS modelers.The land cover mosaics in this classification include: (1) wet conifer mosaic (low, medium, and high tree stand density), (2) mixed coniferous-deciduous forest (80% coniferous, codominant, and 80% deciduous), (3) recent visible bum, vegetation regeneration, or rock outcrops-bare ground-sparsely vegetated slow regeneration bum (four classes), (4) open water and grassland marshes, and (5) general agricultural land use/ grasslands (three classes). This land cover mapping approach did not detect small subpixel-scale landscape

  17. Characterization of mineral-associated organic matter: a combined approach of AFM and NanoSIMS

    NASA Astrophysics Data System (ADS)

    Pohl, Lydia; Schurig, Christian; Eusterhues, Karin; Mueller, Carsten W.; Höschen, Carmen; Totsche, Kai-Uwe; Kögel-Knabner, Ingrid

    2016-04-01

    The heterogeneous spatial distribution and amount of organic matter (OM) in soils, especially at the micro- or submicron-scale, has major consequences for the soil microstructure and for the accessibility of OM to decomposing microbial communities. Processes occurring at the microscale control soil properties and processes at larger scales, such as macro-aggregation and carbon turnover. Since OM acts as substrate and most important driver for biogeochemical processes, particular attention should be paid to its spatial interaction with soil minerals. In contrast to bulk analysis, Nanoscale Secondary Ion Mass Spectrometry (NanoSIMS) offers the possibility to examine the composition and spatial distribution of OM within the intact organo-mineral matrix. Nevertheless, the yield of secondary electrons is influenced by the individual topography of the analysed particles, which aggravated the quantitative interpretation of the data. A combination of NanoSIMS and Atomic Force Microscopy (AFM), enabled us to visualize and quantify the topographical features of individual particles and correct the NanoSIMS data for this effect. We performed adsorption experiments with water-soluble soil OM in 6 concentration steps, which was extracted from forest floor layer of a Podzol, and adsorbed to illite. Upon the end of the sorption experiments the liquid phase and the solid phase were separated and the carbon content was analysed with TOC- and C/N-measurement, respectively. For the spatially resolved analyses, the samples were applied as thin layers onto silicon wafers and individual particles were chosen by means of the AFM. Subsequently, the identical particles were analysed with NanoSIMS to investigate the distribution of C, N, O, Si, P and Al. The recorded data were analysed for differences in elemental distribution between the different concentration steps. Additionally, we performed a correlation of the detectable counts with the topography of the particle within one

  18. A holistic metrology approach: hybrid metrology utilizing scatterometry, CD-AFM, and CD-SEM

    NASA Astrophysics Data System (ADS)

    Vaid, Alok; Yan, Bin Bin; Jiang, Yun Tao; Kelling, Mark; Hartig, Carsten; Allgair, John; Ebersbach, Peter; Sendelbach, Matthew; Rana, Narender; Katnani, Ahmad; Mclellan, Erin; Archie, Chas; Bozdog, Cornel; Kim, Helen; Sendler, Michael; Ng, Susan; Sherman, Boris; Brill, Boaz; Turovets, Igor; Urensky, Ronen

    2011-03-01

    Shrinking design rules and reduced process tolerances require tight control of CD linewidth, feature shape, and profile of the printed geometry. The Holistic Metrology approach consists of utilizing all available information from different sources like data from other toolsets, multiple optical channels, multiple targets, etc. to optimize metrology recipe and improve measurement performance. Various in-line critical dimension (CD) metrology toolsets like Scatterometry OCD (Optical CD), CD-SEM (CD Scanning Electron Microscope) and CD-AFM (CD Atomic Force Microscope) are typically utilized individually in fabs. Each of these toolsets has its own set of limitations that are intrinsic to specific measurement technique and algorithm. Here we define "Hybrid Metrology" to be the use of any two or more metrology toolsets in combination to measure the same dataset. We demonstrate the benefits of the Hybrid Metrology on two test structures: 22nm node Gate Develop Inspect (DI) & 32nm node FinFET Gate Final Inspect (FI). We will cover measurement results obtained using typical BKM as well as those obtained by utilizing the Hybrid Metrology approach. Measurement performance will be compared using standard metrology metrics for example accuracy and precision.

  19. Imaging and measuring the biophysical properties of Fc gamma receptors on single macrophages using atomic force microscopy

    SciTech Connect

    Li, Mi; Liu, Lianqing; Xi, Ning; Wang, Yuechao; Xiao, Xiubin; Zhang, Weijing

    2013-09-06

    Highlights: •Nanoscale cellular ultra-structures of macrophages were observed. •The binding affinities of FcγRs were measured directly on macrophages. •The nanoscale distributions of FcγRs were mapped on macrophages. -- Abstract: Fc gamma receptors (FcγR), widely expressed on effector cells (e.g., NK cells, macrophages), play an important role in clinical cancer immunotherapy. The binding of FcγRs to the Fc portions of antibodies that are attached to the target cells can activate the antibody-dependent cell-mediated cytotoxicity (ADCC) killing mechanism which leads to the lysis of target cells. In this work, we used atomic force microscopy (AFM) to observe the cellular ultra-structures and measure the biophysical properties (affinity and distribution) of FcγRs on single macrophages in aqueous environments. AFM imaging was used to obtain the topographies of macrophages, revealing the nanoscale cellular fine structures. For molecular interaction recognition, antibody molecules were attached onto AFM tips via a heterobifunctional polyethylene glycol (PEG) crosslinker. With AFM single-molecule force spectroscopy, the binding affinities of FcγRs were quantitatively measured on single macrophages. Adhesion force mapping method was used to localize the FcγRs, revealing the nanoscale distribution of FcγRs on local areas of macrophages. The experimental results can improve our understanding of FcγRs on macrophages; the established approach will facilitate further research on physiological activities involved in antibody-based immunotherapy.

  20. Combined quantitative ultrasonic and time-resolved interaction force AFM imaging

    NASA Astrophysics Data System (ADS)

    Parlak, Z.; Degertekin, F. L.

    2011-01-01

    The authors describe a method where quantitative ultrasonic atomic force microscopy (UAFM) is achieved during time-resolved interaction force (TRIF) imaging in intermittent contact mode. The method uses a calibration procedure for quantitative UAFM. It improves elasticity measurements of stiff regions of surfaces while retaining the capabilities of the TRIF mode for topography, adhesion, dissipation, and elasticity measurements on soft regions of sample surfaces. This combination is especially advantageous when measuring and imaging samples with broad stiffness range in a nondestructive manner. The experiments utilize an active AFM probe with high bandwidth and the UAFM calibration is performed by measuring the magnitude of the time-resolved UAFM signal at a judiciously chosen frequency for different contact stiffness values during individual taps. Improved sensitivity to stiff surface elasticity is demonstrated on a special sample. The results show that combining UAFM with TRIF provides 2.5 GPa (5%) standard deviation on the silicon surface reduced Young's modulus, representing 5× improvement over using only TRIF mode imaging.

  1. Electrical characterization of FIB processed metal layers for reliable conductive-AFM on ZnO microstructures

    NASA Astrophysics Data System (ADS)

    Pea, M.; Maiolo, L.; Giovine, E.; Rinaldi, A.; Araneo, R.; Notargiacomo, A.

    2016-05-01

    We report on the conductive-atomic force microscopy (C-AFM) study of metallic layers in order to find the most suitable configuration for electrical characterization of individual ZnO micro-pillars fabricated by focused ion beam (FIB). The electrical resistance between the probe tip and both as deposited and FIB processed metal layers (namely, Cr, Ti, Au and Al) has been investigated. Both chromium and titanium evidenced a non homogenous and non ohmic behaviour, non negligible scanning probe induced anodic oxidation associated to electrical measurements, and after FIB milling they exhibited significantly higher tip-sample resistance. Aluminium had generally a more apparent non conductive behaviour. Conversely, gold films showed very good tip-sample conduction properties being less sensitive to FIB processing than the other investigated metals. We found that a reliable C-AFM electrical characterization of ZnO microstructures obtained by FIB machining is feasible by using a combination of metal films as top contact layer. An Au/Ti bilayer on top of ZnO was capable to sustain the FIB fabrication process and to form a suitable ohmic contact to the semiconductor, allowing for reliable C-AFM measurement. To validate the consistency of this approach, we measured the resistance of ZnO micropillars finding a linear dependence on the pillar height, as expected for an ohmic conductor, and evaluated the resistivity of the material. This procedure has the potential to be downscaled to nanometer size structures by a proper choice of metal films type and thickness.

  2. PREFACE: NC-AFM 2006: Proceedings of the 9th International Conference on Non-contact Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Tomitori, Masahiko; Onishi, Hiroshi

    2007-02-01

    The advent of scanning probe microscopy (SPM) in the 1980s has significantly promoted nanoscience and nanotechnology. In particular, non-contact atomic force microscopy (NC-AFM), one of the SPM family, has unique capabilities with high spatial resolution for nanoscale measurements in vacuum, air and liquids. In the last decade we have witnessed the rapid progress of NC-AFM with improved performance and increasing applications. A series of NC-AFM international conferences have greatly contributed to this field. Initiated in Osaka in 1998, the NC-AFM meeting has been followed by annual conferences at Pontresina, Hamburg, Kyoto, Montreal, Dingle, Seattle and Bad Essen. The 9th conference was held in Kobe, Japan, 16-20 July 2006. This special issue of Nanotechnology contains the outstanding contributions of the conference. During the meeting delegates learnt about a number of significant advances. Topics covered atomic resolution imaging of metals, semiconductors, insulators, ionic crystals, oxides, molecular systems, imaging of biological materials in various environments and novel instrumentation. Work also included the characterization of electronic and magnetic properties, tip and cantilever fabrication and characterization, atomic distinction based on analysis of tip-sample interaction, atomic scale manipulation, fabrication of nanostructures using NC-AFM, and related theories and simulations. We are greatly impressed by the increasing number of applications, and convinced that NC-AFM and related techniques are building a bridge to a future nano world, where quantum phenomena will dominate and nano devices will be realized. In addition, a special session on SPM road maps was held as a first trial in the field, where the future prospects of SPM were discussed enthusiastically. The overall success of the NC-AFM 2006 conference was due to the efforts of many individuals and groups with respect to scientific and technological progress, as well as the international

  3. PREFACE: NC-AFM 2005: Proceedings of the 8th International Conference on Non-Contact Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Reichling, M.; Mikosch, W.

    2006-04-01

    formation allow the highly resolved measurement of a number of physical properties far beyond the determination of surface topography. The development of techniques allowing atomic resolution dynamic mode imaging in liquids pushes the door open for an atomic precision analysis of biological samples under physiological conditions. In each of these fields, the conference demonstrated cutting-edge results and also provided perspectives for the next steps on the roadmap of NC-AFM towards the development of its full extent. The conference in Bad Essen was made possible by the continuous dedication of the local management and we are most grateful to Frauke Riemann, Joachim Fontaine and the members of the supporting team for the smooth organization. We gratefully appreciate the financial support of the exhibitors, namely Anfatec, HALCYONICS, JEOL, LOT-Oriel, NanoMagnetics, NT-MDT, Omicron, Schaefer Technology, SURFACE, UNISOKU and the local sponsors which enabled us to provide free participation at the conference for ten promising young researchers who had submitted excellent contributions. It was a great pleasure for us to continue our most successful collaboration with Nanotechnology as our partner for the proceedings publication and we would like to thank Ian Forbes and the publishing team for the professional handling of the peer review and all production matters.

  4. USAF Bioenvironmental Noise Data Handbook. Volume 166. AF/M32T-1 Tester, Pressurized Cabin Leakage, Aircraft,

    DTIC Science & Technology

    1982-07-01

    OPERATOR NOISE MEASUREMENTS AF/M32T-1 Tester, Pressurized Cabin Leakage, Aircraft Tyndall AFB, 19 June 1980 NSN 4920-00- 347 -9455, Field * J108...a- a a o a af .4a a0 1 P ,? o4 o1 01 ao aD Nh s 1AA a ~ ~ a naaa .4 a aif CL O va I am wEj r .M PO -ODM.a)a D aa CDo NW)N 4 % ma a a. . 9 w ao N~ a I

  5. AF-M315E Propulsion System Advances and Improvements

    NASA Technical Reports Server (NTRS)

    Masse, Robert K.; Allen, May; Driscoll, Elizabeth; Spores, Ronald A.; Arrington, Lynn A.; Schneider, Steven J.; Vasek, Thomas E.

    2016-01-01

    Even as for the GR-1 awaits its first on-orbit demonstration on the planned 2017 launch of NASA's Green Propulsion Infusion Mission (GPIM) program, ongoing efforts continue to advance the technical state-of-the-art through improvements in the performance, life capability, and affordability of both Aerojet Rocketdyne's 1-N-class GR-1 and 20-N-class GR-22 green monopropellant thrusters. Hot-fire testing of a design upgrade of the GR-22 thruster successfully demonstrated resolution of a life-limiting thermo-structural issue encountered during prototype testing on the GPIM program, yielding both an approximately 2x increase in demonstrating life capability, as well as fundamental insights relating to how ionic liquid thrusters operate, thruster scaling, and operational factors affecting catalyst bed life. Further, a number of producibility improvements, related to both materials and processes and promising up to 50% unit cost reduction, have been identified through a comprehensive Design for Manufacturing and Assembly (DFMA) assessment activity recently completed at Aerojet Rocketdyne. Focused specifically on the GR-1 but applicable to the common-core architecture of both thrusters, ongoing laboratory (heavyweight) thruster testing being conducted under a Space Act Agreement at NASA Glenn Research Center has already validated a number of these proposed manufacturability upgrades, additionally achieving a greater than 40% increase in thruster life. In parallel with technical advancements relevant to conventional large spacecraft, a joint effort between NASA and Aerojet Rocketdyne is underway to prepare 1-U CubeSat AF-M315E propulsion module for first flight demonstration in 2018.

  6. Comparison of the cohesion-adhesion balance approach to colloidal probe atomic force microscopy and the measurement of Hansen partial solubility parameters by inverse gas chromatography for the prediction of dry powder inhalation performance.

    PubMed

    Jones, Matthew D; Buckton, Graham

    2016-07-25

    The abilities of the cohesive-adhesive balance approach to atomic force microscopy (AFM) and the measurement of Hansen partial solubility parameters by inverse gas chromatography (IGC) to predict the performance of carrier-based dry powder inhaler (DPI) formulations were compared. Five model drugs (beclometasone dipropionate, budesonide, salbutamol sulphate, terbutaline sulphate and triamcinolone acetonide) and three model carriers (erythritol, α-lactose monohydrate and d-mannitol) were chosen, giving fifteen drug-carrier combinations. Comparison of the AFM and IGC interparticulate adhesion data suggested that they did not produce equivalent results. Comparison of the AFM data with the in vitro fine particle delivery of appropriate DPI formulations normalised to account for particle size differences revealed a previously observed pattern for the AFM measurements, with a slightly cohesive AFM CAB ratio being associated with the highest fine particle fraction. However, no consistent relationship between formulation performance and the IGC data was observed. The results as a whole highlight the complexity of the many interacting variables that can affect the behaviour of DPIs and suggest that the prediction of their performance from a single measurement is unlikely to be successful in every case.

  7. The formation of liquid bridge in different operating modes of AFM

    NASA Astrophysics Data System (ADS)

    Wei, Zheng; Sun, Yan; Ding, WenXuan; Wang, ZaiRan

    2016-09-01

    The liquid bridge is one of the principal factors that cause artifacts in ambient-pressure atomic force microscope (AFM) images. Additionally, it is the main component of the adhesion force in ambient conditions. To understand the AFM imaging mechanism and the sample characteristics, it is essential to study the liquid bridge. This study interprets the physical mechanism involved in liquid bridge formation, which is composed of three different physical processes: the squeezing process, capillary condensation, and liquid film flow. We discuss the contributions of these three mechanisms to the volume and the capillary force of the liquid bridge in different AFM operation modes.

  8. Contrast mechanisms on nanoscale subsurface imaging in ultrasonic AFM: scattering of ultrasonic waves and contact stiffness of the tip-sample.

    PubMed

    Sharahi, Hossein Jiryaei; Shekhawat, Gajendra; Dravid, Vinayak; Park, Simon; Egberts, Philip; Kim, Seonghwan

    2017-02-09

    Ultrasonic atomic force microscopy (AFM) and its associated derivatives are nondestructive techniques that can elucidate subsurface nanoscale structures and properties. Despite the usefulness of these techniques, the physical contrast mechanisms responsible for the reported subsurface features observed in ultrasonic AFM are not well defined. In this study, we present a comprehensive model combining ultrasonic wave scattering and tip-sample contact stiffness to better reproduce the experimentally measured phase variations over subsurface features in two model systems. These model systems represent the two extreme sample types typically imaged by ultrasonic AFM, one being a hard material and the other a soft polymeric material. The theoretical analysis presented and associated comparisons with experimental results suggest that the image contrast depends on the combination of two contrast mechanisms: the perturbation of the scattered ultrasonic waves and the local variation of the contact stiffness at the tip-sample contact. The results of this study open up a new door for the depth estimation of buried nanoscale features into hard (engineering structures) and soft (polymers and biological structures) materials, and eventually lead to non-invasive, high-resolution 3D nano-tomography by ultrasonic AFM.

  9. Reversible wetting of NaCl nanoparticles at relative humidities below deliquescence observed by environmental non-contact AFM

    SciTech Connect

    Bruzewicz, D.A.; Lewis, E.; Ocko, B. M.; McGraw, R. L.; Schwartz, S. E.

    2009-12-14

    The behavior of NaCl nanoparticles as a function of relative humidity (RH) was characterized by depositing particles on a prepared hydrophobic surface and measuring their height via non-contact environmental atomic force microscopy (AFM). Non-contact AFM allows greater sensitivity to changes in the size of particles than does contact AFM or scanning electron microscopy, and greater sensitivity to changes in shape than do mass-based techniques. Crystalline cubic NaCl nanoparticles with sides of 35 to 150 nm were found to reversibly take up water with increasing RH, and to form a liquid-like surface layer of thickness 2 to 4 nm at humidities well below the deliquescence point of 75.0% at 20°C. Measurable uptake begins at 70% RH. The maximum thickness of the layer increases with increasing RH for a given particle size and, for a given RH, increases with increasing particle size over the range studied. The liquid-like behavior of the layer is indicated by a reversible “rounding” at the tops of the particles, where the ratio of particle height to radius of curvature increases from zero (flat top) at 68% RH to 0.7 at 74% RH. These observations suggest that a reorganization of mass occurs on the solid NaCl nanoparticle, and hence that the behavior of NaCl aerosol nanoparticles at RH between 70 and 75% RH is more complex than an abrupt first-order phase transition. Theoretical treatments of the phase transition should therefore account for both the presence of a liquid-like layer prior to deliquescence, and the RH-dependent thickness of the layer.

  10. Crystallinity and compositional changes in carbonated apatites: Evidence from {sup 31}P solid-state NMR, Raman, and AFM analysis

    SciTech Connect

    McElderry, John-David P.; Zhu, Peizhi; Mroue, Kamal H.; Xu, Jiadi; Pavan, Barbara; Fang, Ming; Zhao, Guisheng; McNerny, Erin; Kohn, David H.; Franceschi, Renny T.; Holl, Mark M.Banaszak; Tecklenburg, Mary M.J.; Ramamoorthy, Ayyalusamy; Morris, Michael D.

    2013-10-15

    Solid-state (magic-angle spinning) NMR spectroscopy is a useful tool for obtaining structural information on bone organic and mineral components and synthetic model minerals at the atomic-level. Raman and {sup 31}P NMR spectral parameters were investigated in a series of synthetic B-type carbonated apatites (CAps). Inverse {sup 31}P NMR linewidth and inverse Raman PO{sub 4}{sup 3−}ν{sub 1} bandwidth were both correlated with powder XRD c-axis crystallinity over the 0.3–10.3 wt% CO{sub 3}{sup 2−} range investigated. Comparison with bone powder crystallinities showed agreement with values predicted by NMR and Raman calibration curves. Carbonate content was divided into two domains by the {sup 31}P NMR chemical shift frequency and the Raman phosphate ν{sub 1} band position. These parameters remain stable except for an abrupt transition at 6.5 wt% carbonate, a composition which corresponds to an average of one carbonate per unit cell. This near-binary distribution of spectroscopic properties was also found in AFM-measured particle sizes and Ca/P molar ratios by elemental analysis. We propose that this transition differentiates between two charge-balancing ion-loss mechanisms as measured by Ca/P ratios. These results define a criterion for spectroscopic characterization of B-type carbonate substitution in apatitic minerals. - Graphical abstract: Carbonated apatite shows an abrupt change in spectral (NMR, Raman) and morphological (AFM) properties at a composition of about one carbonate substitution per unit cell. Display Omitted - Highlights: • Crystallinity (XRD), particle size (AFM) of carbonated apatites and bone mineral. • Linear relationships among crystallinity, {sup 31}P NMR and Raman inverse bandwidths. • Low and high carbonated apatites use different charge-balancing ion-loss mechanism.

  11. High resolution spectroscopy reveals fibrillation inhibition pathways of insulin

    NASA Astrophysics Data System (ADS)

    Deckert-Gaudig, Tanja; Deckert, Volker

    2016-12-01

    Fibril formation implies the conversion of a protein’s native secondary structure and is associated with several neurodegenerative diseases. A better understanding of fibrillation inhibition and fibril dissection requires nanoscale molecular characterization of amyloid structures involved. Tip-enhanced Raman scattering (TERS) has already been used to chemically analyze amyloid fibrils on a sub-protein unit basis. Here, TERS in combination with atomic force microscopy (AFM), and conventional Raman spectroscopy characterizes insulin assemblies generated during inhibition and dissection experiments in the presence of benzonitrile, dimethylsulfoxide, quercetin, and β-carotene. The AFM topography indicates formation of filamentous or bead-like insulin self-assemblies. Information on the secondary structure of bulk samples and of single aggregates is obtained from standard Raman and TERS measurements. In particular the high spatial resolution of TERS reveals the surface conformations associated with the specific agents. The insulin aggregates formed under different inhibition and dissection conditions can show a similar morphology but differ in their β-sheet structure content. This suggests different aggregation pathways where the prevention of the β-sheet stacking of the peptide chains plays a major role. The presented approach is not limited to amyloid-related reasearch but can be readily applied to systems requiring extremely surface-sensitive characterization without the need of labels.

  12. High resolution spectroscopy reveals fibrillation inhibition pathways of insulin

    PubMed Central

    Deckert-Gaudig, Tanja; Deckert, Volker

    2016-01-01

    Fibril formation implies the conversion of a protein’s native secondary structure and is associated with several neurodegenerative diseases. A better understanding of fibrillation inhibition and fibril dissection requires nanoscale molecular characterization of amyloid structures involved. Tip-enhanced Raman scattering (TERS) has already been used to chemically analyze amyloid fibrils on a sub-protein unit basis. Here, TERS in combination with atomic force microscopy (AFM), and conventional Raman spectroscopy characterizes insulin assemblies generated during inhibition and dissection experiments in the presence of benzonitrile, dimethylsulfoxide, quercetin, and β-carotene. The AFM topography indicates formation of filamentous or bead-like insulin self-assemblies. Information on the secondary structure of bulk samples and of single aggregates is obtained from standard Raman and TERS measurements. In particular the high spatial resolution of TERS reveals the surface conformations associated with the specific agents. The insulin aggregates formed under different inhibition and dissection conditions can show a similar morphology but differ in their β-sheet structure content. This suggests different aggregation pathways where the prevention of the β-sheet stacking of the peptide chains plays a major role. The presented approach is not limited to amyloid-related reasearch but can be readily applied to systems requiring extremely surface-sensitive characterization without the need of labels. PMID:28008970

  13. Imaging and measuring the biophysical properties of Fc gamma receptors on single macrophages using atomic force microscopy.

    PubMed

    Li, Mi; Liu, Lianqing; Xi, Ning; Wang, Yuechao; Xiao, Xiubin; Zhang, Weijing

    2013-09-06

    Fc gamma receptors (FcγR), widely expressed on effector cells (e.g., NK cells, macrophages), play an important role in clinical cancer immunotherapy. The binding of FcγRs to the Fc portions of antibodies that are attached to the target cells can activate the antibody-dependent cell-mediated cytotoxicity (ADCC) killing mechanism which leads to the lysis of target cells. In this work, we used atomic force microscopy (AFM) to observe the cellular ultra-structures and measure the biophysical properties (affinity and distribution) of FcγRs on single macrophages in aqueous environments. AFM imaging was used to obtain the topographies of macrophages, revealing the nanoscale cellular fine structures. For molecular interaction recognition, antibody molecules were attached onto AFM tips via a heterobifunctional polyethylene glycol (PEG) crosslinker. With AFM single-molecule force spectroscopy, the binding affinities of FcγRs were quantitatively measured on single macrophages. Adhesion force mapping method was used to localize the FcγRs, revealing the nanoscale distribution of FcγRs on local areas of macrophages. The experimental results can improve our understanding of FcγRs on macrophages; the established approach will facilitate further research on physiological activities involved in antibody-based immunotherapy.

  14. Adiabatic Compression Sensitivity of AF-M315E (Briefing Charts)

    DTIC Science & Technology

    2015-07-27

    dynamic response • Waterhammer effect Distribution A: Approved for public release; distribution unlimited Hydroxyethylhydrazinium Nitrate ...Hydroxylammonium Nitrate (HEHN) (HAN) [ ]-NO3 + [ ]HOCH2CH2N2H4 [ ]-+[ ]NH3OH NO3 AF-M315E

  15. Hydrocarbons in phlogopite from Kasenyi kamafugitic rocks (SW Uganda): cross-correlated AFM, confocal microscopy and Raman imaging

    NASA Astrophysics Data System (ADS)

    Moro, Daniele; Valdrè, Giovanni; Mesto, Ernesto; Scordari, Fernando; Lacalamita, Maria; Ventura, Giancarlo Della; Bellatreccia, Fabio; Scirè, Salvatore; Schingaro, Emanuela

    2017-01-01

    This study presents a cross-correlated surface and near surface investigation of two phlogopite polytypes from Kasenyi kamafugitic rocks (SW Uganda) by means of advanced Atomic Force Microscopy (AFM), confocal microscopy and Raman micro-spectroscopy. AFM revealed comparable nanomorphology and electrostatic surface potential for the two mica polytypes. A widespread presence of nano-protrusions located on the mica flake surface was also observed, with an aspect ratio (maximum height/maximum width) from 0.01 to 0.09. Confocal microscopy showed these features to range from few nm to several μm in dimension, and shapes from perfectly circular to ellipsoidic and strongly elongated. Raman spectra collected across the bubbles showed an intense and convolute absorption in the range 3000–2800 cm‑1, associated with weaker bands at 1655, 1438 and 1297 cm‑1, indicating the presence of fluid inclusions consisting of aliphatic hydrocarbons, alkanes and cycloalkanes, with minor amounts of oxygenated compounds, such as carboxylic acids. High-resolution Raman images provided evidence that these hydrocarbons are confined within the bubbles. This work represents the first direct evidence that phlogopite, a common rock-forming mineral, may be a possible reservoir for hydrocarbons.

  16. Inhibition of cold rolled steel corrosion by Tween-20 in sulfuric acid: weight loss, electrochemical and AFM approaches.

    PubMed

    Mu, Guannan; Li, Xianghong

    2005-09-01

    The inhibiting action of a nonionic surfactant of Tween-20 on the corrosion of cold rolled steel (CRS) in 0.5-7.0 M sulfuric acid (H(2)SO(4)) was studied by weight loss and potentiodynamic polarization methods. Atomic force microscope (AFM) provided the surface conditions. The results show that inhibition efficiency increases with the inhibitor concentration, while it decreases with the sulfuric acid concentration. The adsorption of inhibitor on the cold rolled steel surface obeys the Langmuir adsorption isotherm equation. Effect of immersion time was studied and discussed. The effect of temperature on the corrosion behavior of cold rolled steel was also studied at four temperatures ranging from 30 to 60 degrees C, the thermodynamic parameters such as adsorption heat, adsorption free energy, and adsorption entropy were calculated. The results revealed that the adsorption was physisorption mechanism. A kinetic study of cold rolled steel in uninhibited and inhibited acid was also discussed. The kinetic parameters such as apparent activation energy, pre-exponential factor, rate constant, and reaction constant were calculated for the reactions of corrosion. The inhibition effect is satisfactorily explained by both thermodynamic and kinetic models. Polarization curves show that Tween-20 is a cathodic-type inhibitor in sulfuric acid. The results obtained from weight loss and potentiodynamic polarization are in good agreement, and the Tween-20 inhibition action could also be evidenced by surface AFM images.

  17. Non-contact AFM investigation of influence of freezing process on the surface structure of potato starch granule

    NASA Astrophysics Data System (ADS)

    Krok, F.; Szymońska, J.; Tomasik, P.; Szymoński, M.

    2000-04-01

    To assess the influence of the freezing process on the surface structure of a potato starch granule, a non-contact Atomic Force Microscopy (NC-AFM) investigation at ambient conditions has been undertaken. The observations were carried out for dried (oven-dried) and native (air-dried) starch. The obtained AFM images of the native starch granule surface demonstrated it as not uniformly smooth and having rough undulating appearance with layers of adsorbed water which could be removed by oven drying in 130°C. After freezing, the dried starch granule surface still consisted of nodules of about 100 nm in diameter. Significant changes in the granule surface appearance can be seen for dried starch samples frozen with some excess of water as well as for native starch samples frozen with its original water. Then the aggregation and polishing of the granules was observed and their surface revealed a microstructure with distinct ring-like protrusions of about 300 nm in diameter. Our observations tally with the amylopectine "blocket" starch granule structure model proposed in the literature and allowed to conclude that freezing may be a useful tool, among other methods, for modifying starch granule properties.

  18. Hydrocarbons in phlogopite from Kasenyi kamafugitic rocks (SW Uganda): cross-correlated AFM, confocal microscopy and Raman imaging.

    PubMed

    Moro, Daniele; Valdrè, Giovanni; Mesto, Ernesto; Scordari, Fernando; Lacalamita, Maria; Ventura, Giancarlo Della; Bellatreccia, Fabio; Scirè, Salvatore; Schingaro, Emanuela

    2017-01-18

    This study presents a cross-correlated surface and near surface investigation of two phlogopite polytypes from Kasenyi kamafugitic rocks (SW Uganda) by means of advanced Atomic Force Microscopy (AFM), confocal microscopy and Raman micro-spectroscopy. AFM revealed comparable nanomorphology and electrostatic surface potential for the two mica polytypes. A widespread presence of nano-protrusions located on the mica flake surface was also observed, with an aspect ratio (maximum height/maximum width) from 0.01 to 0.09. Confocal microscopy showed these features to range from few nm to several μm in dimension, and shapes from perfectly circular to ellipsoidic and strongly elongated. Raman spectra collected across the bubbles showed an intense and convolute absorption in the range 3000-2800 cm(-1), associated with weaker bands at 1655, 1438 and 1297 cm(-1), indicating the presence of fluid inclusions consisting of aliphatic hydrocarbons, alkanes and cycloalkanes, with minor amounts of oxygenated compounds, such as carboxylic acids. High-resolution Raman images provided evidence that these hydrocarbons are confined within the bubbles. This work represents the first direct evidence that phlogopite, a common rock-forming mineral, may be a possible reservoir for hydrocarbons.

  19. Hydrocarbons in phlogopite from Kasenyi kamafugitic rocks (SW Uganda): cross-correlated AFM, confocal microscopy and Raman imaging

    PubMed Central

    Moro, Daniele; Valdrè, Giovanni; Mesto, Ernesto; Scordari, Fernando; Lacalamita, Maria; Ventura, Giancarlo Della; Bellatreccia, Fabio; Scirè, Salvatore; Schingaro, Emanuela

    2017-01-01

    This study presents a cross-correlated surface and near surface investigation of two phlogopite polytypes from Kasenyi kamafugitic rocks (SW Uganda) by means of advanced Atomic Force Microscopy (AFM), confocal microscopy and Raman micro-spectroscopy. AFM revealed comparable nanomorphology and electrostatic surface potential for the two mica polytypes. A widespread presence of nano-protrusions located on the mica flake surface was also observed, with an aspect ratio (maximum height/maximum width) from 0.01 to 0.09. Confocal microscopy showed these features to range from few nm to several μm in dimension, and shapes from perfectly circular to ellipsoidic and strongly elongated. Raman spectra collected across the bubbles showed an intense and convolute absorption in the range 3000–2800 cm−1, associated with weaker bands at 1655, 1438 and 1297 cm−1, indicating the presence of fluid inclusions consisting of aliphatic hydrocarbons, alkanes and cycloalkanes, with minor amounts of oxygenated compounds, such as carboxylic acids. High-resolution Raman images provided evidence that these hydrocarbons are confined within the bubbles. This work represents the first direct evidence that phlogopite, a common rock-forming mineral, may be a possible reservoir for hydrocarbons. PMID:28098185

  20. The morphological and biomechanical changes of keratocytes cultured on modified p (HEMA-MMA) hydrogel studied by AFM.

    PubMed

    Yan, Tuo; Sun, Rong; Deng, Hua; Tan, Baihua; Ao, Ningjian

    2009-01-01

    The poor integration with host cornea tissue and the low mechanical properties of pHEMA hydrogel for artificial cornea remains a difficult problem to solve. A modified pHEMA hydrogel, MMA copolymerized and type-I collagen and bFGF immobilized, was previously prepared in an attempt to solve the problems. In this study, the cytotoxicity of Col/bFGF-p (HEMA-MMA) and p (HEMA-MMA) was studied by cell adhesion assay and atomic force microscopy (AFM). The results of cell adhesion assay show that the attachment of keratocytes on the modified membrane is much higher than that of the unmodified membrane. This indicates that the material after modification have better cell-material interaction. The AFM images reveal that the morphology of keratocytes cultured on different substrate is obviously different. The cell cultured on modified membrane presented a completely elongated and spindle-shape morphology. The force-distance indicates that the biomechanical of keratocytes changes significantly after culturing on different substrates. The adhesion force (2328+/-523 pN) and Young's modulus (0.51+/-0.125 kPa) of the cell cultured on modified membrane are much higher, and the stiffness (0.08+/-0.022 mN/m) is lower than those of the cell cultured on unmodified membrane. These results show that the cytotoxicity of Col/bFGF-p (HEMA-MMA) for keratocytes is much improved.

  1. Investigation of mussel adhesive protein adsorption on polystyrene and poly(octadecyl methacrylate) using angle dependent XPS, ATR-FTIR, and AFM

    SciTech Connect

    Baty, A.M.; Suci, P.A.; Tyler, B.J.; Geesey, G.G.

    1996-02-10

    Despite many years of research effort, the molecular interactions that are responsible for microbial adhesion and fouling of surfaces remain obscure. An understanding of these interactions would contribute to the development of surfaces that resist colonization of microorganisms. The irreversible adsorption of mussel adhesive proteins (MAP) from the marine mussel Mytilus edulis has been investigated on polystyrene (PS) and poly(octadecyl methacrylate) (POMA) surfaces using angle resolved X-ray photoelectron spectroscopy (XPS), attenuated total reflection Fourier transform infrared (ATR-FTIR) spectrometry, and atomic force microscopy (AFM). Angle resolved XPS was used to quantify the elemental composition with depth of the upper 90 {angstrom} of the surface, and AFM was used to obtain the surface topography. The adsorption pattern of MAP, revealed by AFM images, is distinctly different on the two polymer surfaces and suggests that the substratum influences protein adhesion. The depth profiles of MAP, obtained from angle resolved XPS, show differences in nitrogen composition with depth for MAP adsorbed to PS and POMA. Infrared spectra of hydrated adsorbed MAP revealed significant differences in the amide III region and in two bands which may originate from residues in the tandemly repeated sequences of MAP. This data demonstrates that the chemistry of the polymer film that is present at the protein-polymer interface can influence protein-protein and protein-surface interactions.

  2. Leveraging Air Force Medical Service (AFMS) Senior Leadership Corps Diversity to Improve Efficiency

    DTIC Science & Technology

    2013-04-01

    commanders and AFMS senior leadership; • Set a single PME standard for AFMS officers; • Shift provider billets to patient care roles and establish...single PME standard, and by realigning human resources to increase clinical currency, medical readiness and resource efficiency. Some structural...organizational entity. Like running a surgical service or a medical service. . . . It’s much bigger than that, because you’re dealing with finance and

  3. Surface Microstructure of Mo(C)N Coatings Investigated by AFM

    NASA Astrophysics Data System (ADS)

    Kuznetsova, T.; Zubar, T.; Chizhik, S.; Gilewicz, A.; Lupicka, O.; Warcholinski, B.

    2016-12-01

    MoCN coatings have been formed by cathodic arc evaporation using the mixture of acetylene and nitrogen and pure molybdenum target. The surface structure, in conjunction with x-ray data, was analyzed by atomic force microscopy (AFM). The AFM results show differently shaped grain forms on the surface of coatings investigated. The increase in carbon in chemical coatings composition results in the reduction in surface grain size and the increase in roughness of the coatings.

  4. Using XAFS, EDAX and AFM in comparative study of various natural and synthetic emeralds

    NASA Astrophysics Data System (ADS)

    Parikh, P.; Saini, N. L.; Dalela, S.; Bhardwaj, D. M.; Fernandes, S.; Gupta, R. P.; Garg, K. B.

    2003-01-01

    We have performed XAFS, EDAX and AFM studies on some natural and synthetic emeralds. While the XAFS results yield information on changes in the valence of the Cr ion and the n-n distance the AFM is used to determine the areal atomic density on surface of the crystals. It is a pilot study to explore if the three techniques can offer a possible way of distinguishing between the natural and synthetic emeralds and the results are promising.

  5. AFM study of forces between silicon oil and hydrophobic-hydrophilic surfaces in aqueous solutions.

    PubMed

    Zbik, Marek S; Frost, Ray L

    2010-09-15

    An investigation has been made of the interactions between silicone oil and various solid substrates immersed in aqueous solutions. Measurements were made using an atomic force microscope (AFM) using the colloid-probe method. The silicone oil drop is simulated by coating a small silica sphere with the oil, and measuring the force as this coated sphere is brought close to contact with a flat solid surface. It is found that the silicone oil surface is negatively charged, which causes a double-layer repulsion between the oil drop and another negatively charged surface such as mica. With hydrophilic solids, this repulsion is strong enough to prevent attachment of the drop to the solid. However, with hydrophobic surfaces there is an additional attractive force which overcomes the double-layer repulsion, and the silicone oil drop attaches to the solid. There is circumstantial evidence that linear and nonlinear effect take part in force results from compression of the silicone oil film coated on the glass sphere.

  6. BOREAS AFM-1 NOAA/ATDD Long-EZ Aircraft Flux data Over the SSA

    NASA Technical Reports Server (NTRS)

    Crawford, Timothy L.; Baldocchi, Dennis; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Gunter, Laureen; Dumas, Ed; Smith, David E. (Technical Monitor)

    2000-01-01

    This data set contains measurements from the Airborne Flux and Meteorology (AFM)-1 National Oceanographic and Atmospheric Administration/Atmospheric Turbulence and Diffusion Division (NOAA/ATDD) Long-EZ Aircraft collected during the 1994 Intensive Field Campaigns (IFCs) at the southern study area (SSA). These measurements were made from various instruments mounted on the aircraft. The data that were collected include aircraft altitude, wind direction, wind speed, air temperature, potential temperature, water mixing ratio, U and V components of wind velocity, static pressure, surface radiative temperature, downwelling and upwelling total radiation, downwelling and upwelling longwave radiation, net radiation, downwelling and upwelling photosynthectically active radiation (PAR), greenness index, CO2 concentration, O3 concentration, and CH4 concentration. There are also various columns that indicate the standard deviation, skewness, kurtosis, and trend of some of these data. The data are stored in tabular ASCII files. The NOAA/ATDD Long-EZ aircraft flux data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  7. AFM investigations of the morphology features and local mechanical properties of HTS YBCO thin films

    NASA Astrophysics Data System (ADS)

    Soifer, Yakov M.; Verdyan, Armen; Lapsker, Igor; Azoulay, Jacob

    2004-08-01

    In the paper presented here the application of the atomic force microscope (AFM) is considered for evaluation of hardness and Young's modulus of high Tc superconducting YBCO thin films of different thickness (from 0.05 to 1 μm) grown on unbuffered SrTiO 3 (film I) and on sapphire with a buffer layer of CeO 2 (film II). The best film features a transition temperature Tc of 90 K, critical current density Jc ( H=0) of 3 × 10 7 A/cm 2 at 4.2 K and 2 × 10 6 A/cm 2 at 77 K. The relationship between mechanical properties and microstructure of these films was investigated. It was found that all the films comprised well-defined Cu-rich precipitates of different size and with different density on their surface. For both type of films the hardness was measured to be in the range of 12-18 GPa. The Young's modulus of the films was about 180-200 GPa. The nanoindentation and nanoscratching measurements showed that the mechanical strength of the films studied was determined mainly by mechanical failure and surface defects (secondary phases).

  8. Fabrication and measurement of nanostructures on the micro ball surface using a modified atomic force microscope.

    PubMed

    Zhao, X S; Geng, Y Q; Li, W B; Yan, Y D; Hu, Z J; Sun, T; Liang, Y C; Dong, S

    2012-11-01

    In order to machine and measure nanostructures on the micro ball surface, a modified atomic force microscope (AFM) combining a commercial AFM system with a home built precision air bearing spindle is established. Based on this system, motions of both the AFM scanner and the air bearing spindle are controlled to machine nanostructures on the micro ball based on the AFM tip-based nano mechanical machining approach. The eccentric error between the axis of the micro ball and the axis of the spindle is reduced to 3-4 μm by the provided fine adjusting method. A 1000 nano lines array, 36 square pits structure, 10 square pits structure, and a zig-zag structure on the circumference of the micro ball with the diameter of 1.5 mm are machined successfully. The measurement results achieved by the same system reveal that the profiles and mode-power spectra curves of the micro ball are influenced by the artificially machined nanostructures significantly according to their distributions. This work is an useful attempt for modifying the micro ball profile and manufacture of the spherical modulation targets to study the experimental performance of the micro ball in implosion.

  9. Fabrication and measurement of nanostructures on the micro ball surface using a modified atomic force microscope

    NASA Astrophysics Data System (ADS)

    Zhao, X. S.; Geng, Y. Q.; Li, W. B.; Yan, Y. D.; Hu, Z. J.; Sun, T.; Liang, Y. C.; Dong, S.

    2012-11-01

    In order to machine and measure nanostructures on the micro ball surface, a modified atomic force microscope (AFM) combining a commercial AFM system with a home built precision air bearing spindle is established. Based on this system, motions of both the AFM scanner and the air bearing spindle are controlled to machine nanostructures on the micro ball based on the AFM tip-based nano mechanical machining approach. The eccentric error between the axis of the micro ball and the axis of the spindle is reduced to 3-4 μm by the provided fine adjusting method. A 1000 nano lines array, 36 square pits structure, 10 square pits structure, and a zig-zag structure on the circumference of the micro ball with the diameter of 1.5 mm are machined successfully. The measurement results achieved by the same system reveal that the profiles and mode-power spectra curves of the micro ball are influenced by the artificially machined nanostructures significantly according to their distributions. This work is an useful attempt for modifying the micro ball profile and manufacture of the spherical modulation targets to study the experimental performance of the micro ball in implosion.

  10. Ultra-large scale AFM of lipid droplet arrays: investigating the ink transfer volume in dip pen nanolithography.

    PubMed

    Förste, Alexander; Pfirrmann, Marco; Sachs, Johannes; Gröger, Roland; Walheim, Stefan; Brinkmann, Falko; Hirtz, Michael; Fuchs, Harald; Schimmel, Thomas

    2015-05-01

    There are only few quantitative studies commenting on the writing process in dip-pen nanolithography with lipids. Lipids are important carrier ink molecules for the delivery of bio-functional patters in bio-nanotechnology. In order to better understand and control the writing process, more information on the transfer of lipid material from the tip to the substrate is needed. The dependence of the transferred ink volume on the dwell time of the tip on the substrate was investigated by topography measurements with an atomic force microscope (AFM) that is characterized by an ultra-large scan range of 800 × 800 μm(2). For this purpose arrays of dots of the phospholipid1,2-dioleoyl-sn-glycero-3-phosphocholine were written onto planar glass substrates and the resulting pattern was imaged by large scan area AFM. Two writing regimes were identified, characterized of either a steady decline or a constant ink volume transfer per dot feature. For the steady state ink transfer, a linear relationship between the dwell time and the dot volume was determined, which is characterized by a flow rate of about 16 femtoliters per second. A dependence of the ink transport from the length of pauses before and in between writing the structures was observed and should be taken into account during pattern design when aiming at best writing homogeneity. The ultra-large scan range of the utilized AFM allowed for a simultaneous study of the entire preparation area of almost 1 mm(2), yielding good statistic results.

  11. Surface structure of CdSe Nanorods revealed by combined X-rayabsorption fine structure measurements and ab-initio calculations

    SciTech Connect

    Aruguete, Deborah A.; Marcus, Matthew A.; Li, Liang-shi; Williamson, Andrew; Fakra, Sirine; Gygi, Francois; Galli, Giulia; Alivisatos, A. Paul

    2006-01-27

    We report orientation-specific, surface-sensitive structural characterization of colloidal CdSe nanorods with extended X-ray absorption fine structure spectroscopy and ab-initio density functional theory calculations. Our measurements of crystallographically-aligned CdSe nanorods show that they have reconstructed Cd-rich surfaces. They exhibit orientation-dependent changes in interatomic distances which are qualitatively reproduced by our calculations. These calculations reveal that the measured interatomic distance anisotropy originates from the nanorod surface.

  12. Optic Nerve Head Measurements With Optical Coherence Tomography: A Phantom-Based Study Reveals Differences Among Clinical Devices

    PubMed Central

    Agrawal, Anant; Baxi, Jigesh; Calhoun, William; Chen, Chieh-Li; Ishikawa, Hiroshi; Schuman, Joel S.; Wollstein, Gadi; Hammer, Daniel X.

    2016-01-01

    Purpose Optical coherence tomography (OCT) can monitor for glaucoma by measuring dimensions of the optic nerve head (ONH) cup and disc. Multiple clinical studies have shown that different OCT devices yield different estimates of retinal dimensions. We developed phantoms mimicking ONH morphology as a new way to compare ONH measurements from different clinical OCT devices. Methods Three phantoms were fabricated to model the ONH: One normal and two with glaucomatous anatomies. Phantoms were scanned with Stratus, RTVue, and Cirrus clinical devices, and with a laboratory OCT system as a reference. We analyzed device-reported ONH measurements of cup-to-disc ratio (CDR) and cup volume and compared them with offline measurements done manually and with a custom software algorithm, respectively. Results The mean absolute difference between clinical devices with device-reported measurements versus offline measurements was 0.082 vs. 0.013 for CDR and 0.044 mm3 vs. 0.019 mm3 for cup volume. Statistically significant differences between devices were present for 16 of 18 comparisons of device-reported measurements from the phantoms. Offline Cirrus measurements tended to be significantly different from those from Stratus and RTVue. Conclusions The interdevice differences in CDR and cup volume are primarily caused by the devices' proprietary ONH analysis algorithms. The three devices yield more similar ONH measurements when a consistent offline analysis technique is applied. Scan pattern on the ONH also may be a factor in the measurement differences. This phantom-based study has provided unique insights into characteristics of OCT measurements of the ONH. PMID:27409500

  13. Comparative studies of thin film growth on aluminium by AFM, TEM and GDOES characterization

    NASA Astrophysics Data System (ADS)

    Qi, Jiantao; Thompson, George E.

    2016-07-01

    In this present study, comparative studies of trivalent chromium conversion coating formation, associated with aluminium dissolution process, have been investigated using atomic force microscopy (AFM), transmission electron microscopy (TEM) and glow-discharge optical emission spectroscopy (GDOES). High-resolution electron micrographs revealed the evident and uniform coating initiation on the whole surface after conversion treatment for only 30 s, although a network of metal ridges was created by HF etching pre-treatment. In terms of conversion treatment process on electropolished aluminium, constant kinetics of coating growth, ∼0.30 ± 0.2 nm/s, were found after the prolonged conversion treatment for 600 s. The availability of electrolyte anions for coating deposition determined the growth process. Simultaneously, a proceeding process of aluminium dissolution during conversion treatment, of ∼0.11 ± 0.02 nm/s, was found for the first time, indicating constant kinetics of anodic reactions. The distinct process of aluminium consumption was assigned with loss of corrosion protection of the deposited coating material as evidenced in the electrochemical impedance spectroscopy. Based on the present data, a new mechanism of coating growth on aluminium was proposed, and it consisted of an activation period (0-30 s), a linear growth period (0.30 nm/s, up for 600 s) and limited growth period (0.17 nm/s, 600-1200 s). In addition, the air-drying post-treatment and a high-vacuum environment in the microscope revealed a coating shrinkage, especially in the coatings after conversion treatments for longer time.

  14. Direct electrochemical and AFM detection of amyloid-β peptide aggregation on basal plane HOPG

    NASA Astrophysics Data System (ADS)

    Lopes, Paula; Xu, Meng; Zhang, Min; Zhou, Ting; Yang, Yanlian; Wang, Chen; Ferapontova, Elena E.

    2014-06-01

    Amyloidogenesis is associated with more than 30 human diseases, including Alzheimer's which is related to aggregation of β-amyloid peptide (Aβ). Here, consecutive stages of Aβ42 aggregation and amyloid fibril formation were followed electrochemically via oxidation of tyrosines in Aβ42 adsorbed on the basal plane graphite electrode and directly correlated with Aβ42 morphological changes observed by atomic force microscopy of the same substrate. The results offer new tools for analysis of mechanisms of Aβ aggregation.Amyloidogenesis is associated with more than 30 human diseases, including Alzheimer's which is related to aggregation of β-amyloid peptide (Aβ). Here, consecutive stages of Aβ42 aggregation and amyloid fibril formation were followed electrochemically via oxidation of tyrosines in Aβ42 adsorbed on the basal plane graphite electrode and directly correlated with Aβ42 morphological changes observed by atomic force microscopy of the same substrate. The results offer new tools for analysis of mechanisms of Aβ aggregation. Electronic supplementary information (ESI) available: Experimental details: procedures for Aβ42 aggregation and electrode modification, DPV/AFM measurements and analysis. See DOI: 10.1039/c4nr02413c

  15. Experimental evidence of ultrathin polymer film stratification by AFM force spectroscopy.

    PubMed

    Delorme, Nicolas; Chebil, Mohamed Souheib; Vignaud, Guillaume; Le Houerou, Vincent; Bardeau, Jean-François; Busselez, Rémi; Gibaud, Alain; Grohens, Yves

    2015-06-01

    By performing Atomic Force Microscopy measurements of pull-off force as a function of the temperature, we were able to probe the dynamic of supported thin polystyrene (PS) films. Thermal transitions induce modifications in the surface energy, roughness and surface modulus that are clearly detected by AFM and related to PS chain relaxation mechanisms. We demonstrated the existence of three transition temperatures that can be associated to the relaxation of polymer chains located at different depth regions within the polymer film. Independently of the film thickness, we have confirmed the presence of a region of high mobility for the polymer chains at the free interface. The thickness of this region is estimated to be above 7nm. The detection of a transition only present for film thicker than the gyration radius Rg is linked to the dynamics of polymer chains in a bulk conformation (i.e. not in contact with the free interface). We claim here that our results demonstrate, in agreement with other techniques, the stratification of thin polymer film depth profile in terms of relaxation behavior.

  16. AFM in mode Peak Force applied to the study of un-worn contact lenses.

    PubMed

    Torrent-Burgués, J; Sanz, F

    2014-09-01

    Contact lenses (CLs) are of common use and the biocompatibility, topography and mechanical properties of the used materials are of major importance. The objective of this contribution is to apply the AFM in mode Peak Force to obtain surface topography and mechanical characteristics of un-worn CLs of different materials. One material of hydrogel, two of siloxane-hydrogel and one of rigid gas-permeable were used in the study. The results obtained with different materials have been compared, at a nanoscopic level, and the conclusions are diverse. There is no significant influence of the two environments used to measure the characteristics of the CLs, either water or saline solution. The pHEMA hydrogel CL (Polymacon of Soflens) shows the highest values of roughness, adhesion and elastic modulus. The siloxane-hydrogel CL named Asmofilcon A of PremiO presents the lowest values of mean roughness (Ra), root-mean-square roughness (RMS or Rq), adhesion (Adh) and elastic modulus (Ym), meanwhile the siloxane-hydrogel CL named Lotrafilcon B of Air Optix presents the lowest value of skewness (Rsk) and the rigid gas-permeable CL, named RXD, presents the lowest values of kurtosis (Rku) and maximum roughness (Rmax).

  17. Mechanical properties of complex biological systems using AFM-based force spectroscopy

    NASA Astrophysics Data System (ADS)

    Graham, John Stephen

    An atomic force microscope (AFM) was designed and built to study the mechanical properties of small collagen fibrils and the plasma membrane of living cells. Collagen is a major component of bone, skin and connective tissues, and is abundant in the extracellular matrix (ECM). Because of its abundance, an understanding of how disease affects collagen mechanics is crucial in disease prevention efforts. Two levels of type I collagen structure were investigated, subfibrils (on the order of 1 mum in length) and longer fibrils. Comparisons were made between measurements of wild-type (wt) collagen and collagen from the mouse model of osteogenesis imperfecta (OI). Significant differences between OI and wt collagen were observed, primarily that intermolecular bonds in OI collagen fibrils are weaker than in wt, or not ruptured, as in the case of OI subfibrils. As cells interact with collagen in the ECM, the mechanical properties of the plasma membrane are also of great interest. Membrane tethers were extracted from living cells under varied conditions in order to assess the contributions of membrane-associated macromolecules such as the actin cytoskeleton and the glycocalyx, and intracellular signaling. Tether extraction force was found to be sensitive to all of these altered conditions, suggesting that tether extraction may be used to monitor various cellular processes.

  18. Zeta potential, contact angles, and AFM imaging of protein conformation adsorbed on hybrid nanocomposite surfaces.

    PubMed

    Pinho, Ana C; Piedade, Ana P

    2013-08-28

    The sputtering deposition of gold (Au) and poly(tetrafluoroethylene) (PTFE) was used to prepare a nanocomposite hybrid thin film suitable for protein adsorption while maintaining the native conformation of the biological material. The monolithic PTFE and the nanocomposite PTFE/Au thin films, with Au content up to 1 at %, were co-deposited by r.f. magnetron sputtering using argon as a discharge gas and deposited onto 316L stainless steel substrates, the most commonly used steel in biomaterials. The deposited thin films, before and after bovine serum albumin (BSA) adsorption, were thoroughly characterized with special emphasis on the surface properties/characteristics by atomic force microscopy (AFM), zeta potential, and static and dynamic contact angle measurements, in order to assess the relationship between structure and conformational changes. The influence of a pre-adsorbed peptide (RGD) was also evaluated. The nanotopographic and chemical changes induced by the presence of gold in the nanocomposite thin films enable RGD bonding, which is critical for the maintenance of the BSA native conformation after adsorption.

  19. Observation of Spin-flop Transition in Antiferromagnetic Organic Molecular Conductors using AFM Micro-cantilever

    NASA Astrophysics Data System (ADS)

    Tokumoto, Madoka; Otsuka, Takeo; Kobayashi, Akiko

    2005-03-01

    A series of (BETS)2Fe1-xGaxCl1-yBry salts is a good candidate for a systematic study of π-d interaction between the conduction electrons and local magnetic moments in organic conductors. Some of them show antiferromagnetic ground state at low temperatures. A torque magnetometry is useful for precise determination of the easy axis as well as the spin-flop field. In this work we will report on the measurements of spin-flop transitions in antiferromagnetic organic molecular conductors including λ-(BETS)2FeCl4[1], using a commercial self-sensing piezo-resistive microcantilever for Atomic Force Microscopy (AFM) developed by Seiko Instruments Inc. We have succeeded in observation of spin-flop transitions of tiny single crystals including λ-(BETS)2FeCl4 as small as less than 1μg[2]. The results are consistent with the capacitive magnetic torque study[3]. [1] M. Tokumoto et al. Synth. Metals 86, 2161 (1997). [2] M. Tokumoto et al., ICMM2004, Polyhedron in press. [3] T. Sasaki et al., Synth. Metals 120, 759 (2001).

  20. A rapid and automated relocation method of an AFM probe for high-resolution imaging.

    PubMed

    Zhou, Peilin; Yu, Haibo; Shi, Jialin; Jiao, Niandong; Wang, Zhidong; Wang, Yuechao; Liu, Lianqing

    2016-09-30

    The atomic force microscope (AFM) is one of the most powerful tools for high-resolution imaging and high-precision positioning for nanomanipulation. The selection of the scanning area of the AFM depends on the use of the optical microscope. However, the resolution of an optical microscope is generally no larger than 200 nm owing to wavelength limitations of visible light. Taking into consideration the two determinants of relocation-relative angular rotation and positional offset between the AFM probe and nano target-it is therefore extremely challenging to precisely relocate the AFM probe to the initial scan/manipulation area for the same nano target after the AFM probe has been replaced, or after the sample has been moved. In this paper, we investigate a rapid automated relocation method for the nano target of an AFM using a coordinate transformation. The relocation process is both simple and rapid; moreover, multiple nano targets can be relocated by only identifying a pair of reference points. It possesses a centimeter-scale location range and nano-scale precision. The main advantages of this method are that it overcomes the limitations associated with the resolution of optical microscopes, and that it is label-free on the target areas, which means that it does not require the use of special artificial markers on the target sample areas. Relocation experiments using nanospheres, DNA, SWCNTs, and nano patterns amply demonstrate the practicality and efficiency of the proposed method, which provides technical support for mass nanomanipulation and detection based on AFM for multiple nano targets that are widely distributed in a large area.

  1. High resolution Hall measurements across the VO2 metal-insulator transition reveal impact of spatial phase separation

    PubMed Central

    Yamin, Tony; Strelniker, Yakov M.; Sharoni, Amos

    2016-01-01

    Many strongly correlated transition metal oxides exhibit a metal-insulator transition (MIT), the manipulation of which is essential for their application as active device elements. However, such manipulation is hindered by lack of microscopic understanding of mechanisms involved in these transitions. A prototypical example is VO2, where previous studies indicated that the MIT resistance change correlate with changes in carrier density and mobility. We studied the MIT using Hall measurements with unprecedented resolution and accuracy, simultaneously with resistance measurements. Contrast to prior reports, we find that the MIT is not correlated with a change in mobility, but rather, is a macroscopic manifestation of the spatial phase separation which accompanies the MIT. Our results demonstrate that, surprisingly, properties of the nano-scale spatially-separated metallic and semiconducting domains actually retain their bulk properties. This study highlights the importance of taking into account local fluctuations and correlations when interpreting transport measurements in highly correlated systems. PMID:26783076

  2. The in situ characterization and structuring of electrografted polyphenylene films on silicon surfaces. An AFM and XPS study.

    PubMed

    Ghorbal, Achraf; Grisotto, Federico; Laudé, Marion; Charlier, Julienne; Palacin, Serge

    2008-12-15

    An atomic force microscope was used so as to structure by nanofriction films of polynitrophenylene electrografted on substrates of n-type silicon (100) with the native oxide on the top of the surface. AFM measurements of thin films thickness have been carried out in the electrolytic solution for different applied potentials during the electrografting. This investigation allows (i) to determine the relationship between the applied potential and the final thickness of electrografted polyphenylene films and (ii) to specify how the thin layers grow. XPS analysis confirmed the AFM observations on (i) the effective shaving of the grafted polymer chains under mechanical stress and (ii) the existence of a potential threshold for electrografting a polyphenylene film on silicon oxide surfaces. The presence of a residual film in the rubbed zone was attributed to stronger interactions between the first electrografted layer and the native oxide of silicon (through Si-C or/and Si-O-C bonds) than those insuring the cohesion of the multilayer (C-C and C-N bonds).

  3. Characterization of microscale wear in a ploysilicon-based MEMS device using AFM and PEEM-NEXAFS spectromicroscopy.

    SciTech Connect

    Grierson, D. S.; Konicek, A. R.; Wabiszewski, G. E.; Sumant, A. V.; de Boer, M. P.; Corwin, A. D.; Carpick, R. W.

    2009-12-01

    Mechanisms of microscale wear in silicon-based microelectromechanical systems (MEMS) are elucidated by studying a polysilicon nanotractor, a device specifically designed to conduct friction and wear tests under controlled conditions. Photoelectron emission microscopy (PEEM) was combined with near-edge X-ray absorption fine structure (NEXAFS) spectroscopy and atomic force microscopy (AFM) to quantitatively probe chemical changes and structural modification, respectively, in the wear track of the nanotractor. The ability of PEEM-NEXAFS to spatially map chemical variations in the near-surface region of samples at high lateral spatial resolution is unparalleled and therefore ideally suited for this study. The results show that it is possible to detect microscopic chemical changes using PEEM-NEXAFS, specifically, oxidation at the sliding interface of a MEMS device. We observe that wear induces oxidation of the polysilicon at the immediate contact interface, and the spectra are consistent with those from amorphous SiO{sub 2}. The oxidation is correlated with gouging and debris build-up in the wear track, as measured by AFM and scanning electron microscopy (SEM).

  4. Revealing of the transition from n- to p-type conduction of InN:Mg by photoconductivity effect measurement

    NASA Astrophysics Data System (ADS)

    Guo, L.; Wang, X. Q.; Zheng, X. T.; Yang, X. L.; Xu, F. J.; Tang, N.; Lu, L. W.; Ge, W. K.; Shen, B.; Dmowski, L. H.; Suski, T.

    2014-03-01

    We report evidence of the transition from n- to p-type conduction of InN with increasing Mg dopant concentration by using photoconductivity (PC) measurement at room temperature. This transition is depicted as a conversion from negative to positive PC under above-bandgap optical excitation. The n- to p-type transition in InN:Mg is further confirmed by thermopower measurements. PC detection method is a bulk effect since the optical absorption of the surface electron accumulation is negligibly low due to its rather small thickness, and thus shows advantage to detect p-type conduction. This technique is certainly helpful to study p-type doping of InN, which is still a subject of discussions.

  5. Revealing of the transition from n- to p-type conduction of InN:Mg by photoconductivity effect measurement.

    PubMed

    Guo, L; Wang, X Q; Zheng, X T; Yang, X L; Xu, F J; Tang, N; Lu, L W; Ge, W K; Shen, B; Dmowski, L H; Suski, T

    2014-03-13

    We report evidence of the transition from n- to p-type conduction of InN with increasing Mg dopant concentration by using photoconductivity (PC) measurement at room temperature. This transition is depicted as a conversion from negative to positive PC under above-bandgap optical excitation. The n- to p-type transition in InN:Mg is further confirmed by thermopower measurements. PC detection method is a bulk effect since the optical absorption of the surface electron accumulation is negligibly low due to its rather small thickness, and thus shows advantage to detect p-type conduction. This technique is certainly helpful to study p-type doping of InN, which is still a subject of discussions.

  6. Revealing of the transition from n- to p-type conduction of InN:Mg by photoconductivity effect measurement

    PubMed Central

    Guo, L.; Wang, X. Q.; Zheng, X. T.; Yang, X. L.; Xu, F. J.; Tang, N.; Lu, L. W.; Ge, W. K.; Shen, B.; Dmowski, L. H.; Suski, T.

    2014-01-01

    We report evidence of the transition from n- to p-type conduction of InN with increasing Mg dopant concentration by using photoconductivity (PC) measurement at room temperature. This transition is depicted as a conversion from negative to positive PC under above-bandgap optical excitation. The n- to p-type transition in InN:Mg is further confirmed by thermopower measurements. PC detection method is a bulk effect since the optical absorption of the surface electron accumulation is negligibly low due to its rather small thickness, and thus shows advantage to detect p-type conduction. This technique is certainly helpful to study p-type doping of InN, which is still a subject of discussions. PMID:24621830

  7. Dual origins of measured phase-amplitude coupling reveal distinct neural mechanisms underlying episodic memory in the human cortex.

    PubMed

    Vaz, Alex P; Yaffe, Robert B; Wittig, John H; Inati, Sara K; Zaghloul, Kareem A

    2017-03-01

    Phase-amplitude coupling (PAC) is hypothesized to coordinate neural activity, but its role in successful memory formation in the human cortex is unknown. Measures of PAC are difficult to interpret, however. Both increases and decreases in PAC have been linked to memory encoding, and PAC may arise due to different neural mechanisms. Here, we use a waveform analysis to examine PAC in the human cortex as participants with intracranial electrodes performed a paired associates memory task. We found that successful memory formation exhibited significant decreases in left temporal lobe and prefrontal cortical PAC, and these two regions exhibited changes in PAC within different frequency bands. Two underlying neural mechanisms, nested oscillations and sharp waveforms, were responsible for the changes in these regions. Our data therefore suggest that decreases in measured cortical PAC during episodic memory reflect two distinct underlying mechanisms that are anatomically segregated in the human brain.

  8. 146Sm-142Nd systematics measured in enstatite chondrites reveals a heterogeneous distribution of 142Nd in the solar nebula.

    PubMed

    Gannoun, Abdelmouhcine; Boyet, Maud; Rizo, Hanika; El Goresy, Ahmed

    2011-05-10

    The short-lived (146)Sm-(142)Nd chronometer (T(1/2) = 103 Ma) is used to constrain the early silicate evolution of planetary bodies. The composition of bulk terrestrial planets is then considered to be similar to that of primitive chondrites that represent the building blocks of rocky planets. However for many elements chondrites preserve small isotope differences. In this case it is not always clear to what extent these variations reflect the isotope heterogeneity of the protosolar nebula rather than being produced by the decay of parent isotopes. Here we present Sm-Nd isotopes data measured in a comprehensive suite of enstatite chondrites (EC). The EC preserve (142)Nd/(144)Nd ratios that range from those of ordinary chondrites to values similar to terrestrial samples. The EC having terrestrial (142)Nd/(144)Nd ratios are also characterized by small (144)Sm excesses, which is a pure p-process nuclide. The correlation between (144)Sm and (142)Nd for chondrites may indicate a heterogeneous distribution in the solar nebula of p-process matter synthesized in supernovae. However to explain the difference in (142)Nd/(144)Nd ratios, 20% of the p-process contribution to (142)Nd is required, at odds with the value of 4% currently proposed in stellar models. This study highlights the necessity of obtaining high-precision (144)Sm measurements to interpret properly measured (142)Nd signatures. Another explanation could be that the chondrites sample material formed in different pulses of the lifetime of asymptotic giant branch stars. Then the isotope signature measured in SiC presolar would not represent the unique s-process signature of the material present in the solar nebula during accretion.

  9. Transient release kinetics of rod bipolar cells revealed by capacitance measurement of exocytosis from axon terminals in rat retinal slices

    PubMed Central

    Oltedal, Leif; Hartveit, Espen

    2010-01-01

    Presynaptic transmitter release has mostly been studied through measurements of postsynaptic responses, but a few synapses offer direct access to the presynaptic terminal, thereby allowing capacitance measurements of exocytosis. For mammalian rod bipolar cells, synaptic transmission has been investigated in great detail by recording postsynaptic currents in AII amacrine cells. Presynaptic measurements of the dynamics of vesicular cycling have so far been limited to isolated rod bipolar cells in dissociated preparations. Here, we first used computer simulations of compartmental models of morphologically reconstructed rod bipolar cells to adapt the ‘Sine + DC’ technique for capacitance measurements of exocytosis at axon terminals of intact rod bipolar cells in retinal slices. In subsequent physiological recordings, voltage pulses that triggered presynaptic Ca2+ influx evoked capacitance increases that were proportional to the pulse duration. With pulse durations ≤100 ms, the increase saturated at ∼10 fF, corresponding to the size of a readily releasable pool of vesicles. Pulse durations ≥400 ms evoked additional capacitance increases, probably reflecting recruitment from additional pools of vesicles. By using Ca2+ tail current stimuli, we separated Ca2+ influx from Ca2+ channel activation kinetics, allowing us to estimate the intrinsic release kinetics of the readily releasable pool, yielding a time constant of ∼1.1 ms and a maximum release rate of 2–3 vesicles (release site)−1 ms−1. Following exocytosis, we observed endocytosis with time constants ranging from 0.7 to 17 s. Under physiological conditions, it is likely that release will be transient, with the kinetics limited by the activation kinetics of the voltage-gated Ca2+ channels. PMID:20211976

  10. Heat-denatured lysozyme aggregation and gelation as revealed by combined dielectric relaxation spectroscopy and light scattering measurements.

    PubMed

    Giugliarelli, A; Sassi, P; Paolantoni, M; Onori, G; Cametti, C

    2012-09-06

    The dielectric behavior of native and heat-denatured lysozyme in ethanol-water solutions was examined in the frequency range from 1 MHz to 2 GHz, using frequency-domain dielectric relaxation spectroscopy. Because of the conformational changes on unfolding, dielectric methods provide information on the denaturation process of the protein and, at protein concentration high enough, on the subsequent aggregation and gelation. Moreover, the time evolution of the protein aggregation and gelation was monitored measuring, by means of dynamic light scattering methods, the diffusion coefficient of micro-sized polystyrene particles, deliberately added to the protein solution, which act as a probe of the viscosity of the microenvironment close to the particle surface. All together, our measurements indicate that heat-induced denaturation favors, at high concentrations, a protein aggregation process which evolves up to the full gelation of the system. These findings have a direct support from IR measurements of the absorbance of the amide I band that, because of the unfolding, indicate that proteins entangle each other, producing a network structure which evolves, in long time limit, in the gel.

  11. AFM1 in Milk: Physical, Biological, and Prophylactic Methods to Mitigate Contamination

    PubMed Central

    Giovati, Laura; Magliani, Walter; Ciociola, Tecla; Santinoli, Claudia; Conti, Stefania; Polonelli, Luciano

    2015-01-01

    Aflatoxins (AFs) are toxic, carcinogenic, immunosuppressive secondary metabolites produced by some Aspergillus species which colonize crops, including many dietary staple foods and feed components. AFB1 is the prevalent and most toxic among AFs. In the liver, it is biotransformed into AFM1, which is then excreted into the milk of lactating mammals, including dairy animals. AFM1 has been shown to be cause of both acute and chronic toxicoses. The presence of AFM1 in milk and dairy products represents a worldwide concern since even small amounts of this metabolite may be of importance as long-term exposure is concerned. Contamination of milk may be mitigated either directly, decreasing the AFM1 content in contaminated milk, or indirectly, decreasing AFB1 contamination in the feed of dairy animals. Current strategies for AFM1 mitigation include good agricultural practices in pre-harvest and post-harvest management of feed crops (including storage) and physical or chemical decontamination of feed and milk. However, no single strategy offers a complete solution to the issue. PMID:26512694

  12. Mutant AFM 2 of Alcaligenes faecalis for phenol biodegradation using He-Ne laser irradiation.

    PubMed

    Jiang, Yan; Wen, Jianping; Caiyin, Qinggele; Lin, Liangcai; Hu, Zongding

    2006-11-01

    He-Ne laser technology was utilized in this study to investigate the response of Alcaligenes faecalis to laser stimulation. The irradiation experiments were conducted by the adjustment of the output power from 5 to 25 mW and the exposure time from 5 to 25 min. The results showed that the survival rate changed regularly with the variety of irradiation dose, and high positive mutation frequency was determined by both the energy density and the output power. The mutant strain AFM 2 was obtained. Phenol biodegradation assay demonstrated that AFM 2 possessed a more prominent phenol-degrading potential than its parent strain, which presumably attributed to the improvements of phenol hydroxylase and catechol 1,2-dioxygenase activities. The phenol of 2000 mgl(-1) was completely degraded by AFM 2 within 85.5h at 30 degrees C. In addition, the cell growth and phenol degradation kinetics of the mutant strain AFM 2 and its parent strain in batch cultures were also investigated at the wide initial phenol concentration ranging from 0 to 2000 mgl(-1) by Haldane model. The results of these experiments further demonstrated that the mutant strain AFM 2 possessed a higher capacity to resist phenol.

  13. The ReactorAFM: Non-contact atomic force microscope operating under high-pressure and high-temperature catalytic conditions

    SciTech Connect

    Roobol, S. B.; Cañas-Ventura, M. E.; Bergman, M.; Spronsen, M. A. van; Onderwaater, W. G.; Tuijn, P. C. van der; Koehler, R.; Frenken, J. W. M.; Ofitserov, A.; Baarle, G. J. C. van

    2015-03-15

    An Atomic Force Microscope (AFM) has been integrated in a miniature high-pressure flow reactor for in-situ observations of heterogeneous catalytic reactions under conditions similar to those of industrial processes. The AFM can image model catalysts such as those consisting of metal nanoparticles on flat oxide supports in a gas atmosphere up to 6 bar and at a temperature up to 600 K, while the catalytic activity can be measured using mass spectrometry. The high-pressure reactor is placed inside an Ultrahigh Vacuum (UHV) system to supplement it with standard UHV sample preparation and characterization techniques. To demonstrate that this instrument successfully bridges both the pressure gap and the materials gap, images have been recorded of supported palladium nanoparticles catalyzing the oxidation of carbon monoxide under high-pressure, high-temperature conditions.

  14. Fourier Transform Infrared (FTIR) Spectroscopy, Ultraviolet Resonance Raman (UVRR) Spectroscopy, and Atomic Force Microscopy (AFM) for Study of the Kinetics of Formation and Structural Characterization of Tau Fibrils.

    PubMed

    Ramachandran, Gayathri

    2017-01-01

    Kinetic studies of tau fibril formation in vitro most commonly employ spectroscopic probes such as thioflavinT fluorescence and laser light scattering or negative stain transmission electron microscopy. Here, I describe the use of Fourier transform infrared (FTIR) spectroscopy, ultraviolet resonance Raman (UVRR) spectroscopy, and atomic force microscopy (AFM) as complementary probes for studies of tau aggregation. The sensitivity of vibrational spectroscopic techniques (FTIR and UVRR) to secondary structure content allows for measurement of conformational changes that occur when the intrinsically disordered protein tau transforms into cross-β-core containing fibrils. AFM imaging serves as a gentle probe of structures populated over the time course of tau fibrillization. Together, these assays help further elucidate the structural and mechanistic complexity inherent in tau fibril formation.

  15. E/N effects on K0 values revealed by high precision measurements under low field conditions

    NASA Astrophysics Data System (ADS)

    Hauck, Brian C.; Siems, William F.; Harden, Charles S.; McHugh, Vincent M.; Hill, Herbert H.

    2016-07-01

    Ion mobility spectrometry (IMS) is used to detect chemical warfare agents, explosives, and narcotics. While IMS has a low rate of false positives, their occurrence causes the loss of time and money as the alarm is verified. Because numerous variables affect the reduced mobility (K0) of an ion, wide detection windows are required in order to ensure a low false negative response rate. Wide detection windows, however, reduce response selectivity, and interferents with similar K0 values may be mistaken for targeted compounds and trigger a false positive alarm. Detection windows could be narrowed if reference K0 values were accurately known for specific instrumental conditions. Unfortunately, there is a lack of confidence in the literature values due to discrepancies in the reported K0 values and their lack of reported error. This creates the need for the accurate control and measurement of each variable affecting ion mobility, as well as for a central accurate IMS database for reference and calibration. A new ion mobility spectrometer has been built that reduces the error of measurements affecting K0 by an order of magnitude less than ±0.2%. Precise measurements of ±0.002 cm2 V-1 s-1 or better have been produced and, as a result, an unexpected relationship between K0 and the electric field to number density ratio (E/N) has been discovered in which the K0 values of ions decreased as a function of E/N along a second degree polynomial trend line towards an apparent asymptote at approximately 4 Td.

  16. E/N effects on K0 values revealed by high precision measurements under low field conditions.

    PubMed

    Hauck, Brian C; Siems, William F; Harden, Charles S; McHugh, Vincent M; Hill, Herbert H

    2016-07-01

    Ion mobility spectrometry (IMS) is used to detect chemical warfare agents, explosives, and narcotics. While IMS has a low rate of false positives, their occurrence causes the loss of time and money as the alarm is verified. Because numerous variables affect the reduced mobility (K0) of an ion, wide detection windows are required in order to ensure a low false negative response rate. Wide detection windows, however, reduce response selectivity, and interferents with similar K0 values may be mistaken for targeted compounds and trigger a false positive alarm. Detection windows could be narrowed if reference K0 values were accurately known for specific instrumental conditions. Unfortunately, there is a lack of confidence in the literature values due to discrepancies in the reported K0 values and their lack of reported error. This creates the need for the accurate control and measurement of each variable affecting ion mobility, as well as for a central accurate IMS database for reference and calibration. A new ion mobility spectrometer has been built that reduces the error of measurements affecting K0 by an order of magnitude less than ±0.2%. Precise measurements of ±0.002 cm(2) V(-1) s(-1) or better have been produced and, as a result, an unexpected relationship between K0 and the electric field to number density ratio (E/N) has been discovered in which the K0 values of ions decreased as a function of E/N along a second degree polynomial trend line towards an apparent asymptote at approximately 4 Td.

  17. High frequency measurements using in situ sensors in a coupled watershed-estuary reveal factors driving DOC variability

    NASA Astrophysics Data System (ADS)

    Mulukutla, G. K.; Carey, R. O.; Wollheim, W. M.; Salisbury, J.

    2012-12-01

    Estuaries are recipients of large inputs of organic matter and nutrients from coastal river systems and together form a vital link between two of the largest pools of carbon, the terrestrial and ocean environment, at the same time actively cycling carbon. The Great Bay situated in New Hampshire/Maine is a nitrogen(N)-impaired estuary with a suburbanizing watershed of the Lamprey River its largest source of DOC. Long term deployment of continuously monitoring sensors are changing the way biogeochemical studies of rivers, streams and estuaries are conducted. We linked simultaneous and continuous in situ measurements of CDOM and associated measures of DOC quality (e.g. absorption coefficient, spectral slope ) in both the Great Bay estuary and its largest source of DOC the Lamprey River between April and December 2011. These sensors allowed us to examine the continuous dynamics of CDOM from inland to the coastal waters not only in short-term hydrologically varying (storm pulses) conditions, but also the longer term seasonal variability. We also collected a suite of other relevant parameters in both the watershed and estuary, including NO3, PO4, Turbidity, Chlorophyll, Conductivity/Salinity to help understand the dynamics of DOC in the river and estuary. Preliminary time series analysis indicates that DOC in the Great Bay estuary co-varies with discharge of the Lamprey River, especially in spring and fall. Freshwater discharges and its variations explained the variability in estuarine DOC. UV- absorbance at 254 nm (the precursor to SUVA) co-varies in periods of high flow during spring and fall, consistent with the bulk DOC results This suggests that hydrology is the more important driver of variability of coastal CDOM. In light of climate change, suburbanization and changing land use patterns this emphasizes the need to examine continuous measurements of DOC quantity and quality in coupled watershed-estuarine systems.

  18. Characterization of Involuntary Contractions after Spinal Cord Injury Reveals Associations between Physiological and Self-Reported Measures of Spasticity.

    PubMed

    Mayo, Meagan; DeForest, Bradley A; Castellanos, Mabelin; Thomas, Christine K

    2017-01-01

    Correlations between physiological, clinical and self-reported assessments of spasticity are often weak. Our aims were to quantify functional, self-reported and physiological indices of spasticity in individuals with thoracic spinal cord injury (SCI; 3 women, 9 men; 19-52 years), and to compare the strength and direction of associations between these measures. The functional measure we introduced involved recording involuntary electromyographic activity during a transfer from wheelchair to bed which is a daily task necessary for function. High soleus (SL) and tibialis anterior (TA) F-wave/M-wave area ratios were the only physiological measures that distinguished injured participants from the uninjured (6 women, 13 men, 19-67 years). Hyporeflexia (decreased SL H/M ratio) was unexpectedly present in older participants after injury. During transfers, the duration and intensity of involuntary electromyographic activity varied across muscles and participants, but coactivity was common. Wide inter-participant variability was seen for self-reported spasm frequency, severity, pain and interference with function, as well as tone (resistance to imposed joint movement). Our recordings of involuntary electromyographic activity during transfers provided evidence of significant associations between physiological and self-reported measures of spasticity. Reduced low frequency H-reflex depression in SL and high F-wave/M-wave area ratios in TA, physiological indicators of reduced inhibition and greater motoneuron excitability, respectively, were associated with long duration SL and biceps femoris (BF) electromyographic activity during transfers. In turn, participants reported high spasm frequency when transfers involved short duration TA EMG, decreased co-activation between SL and TA, as well as between rectus femoris (RF) vs. BF. Thus, the duration of muscle activity and/or the time of agonist-antagonist muscle coactivity may be used by injured individuals to count spasms. Intense

  19. Characterization of Involuntary Contractions after Spinal Cord Injury Reveals Associations between Physiological and Self-Reported Measures of Spasticity

    PubMed Central

    Mayo, Meagan; DeForest, Bradley A.; Castellanos, Mabelin; Thomas, Christine K.

    2017-01-01

    Correlations between physiological, clinical and self-reported assessments of spasticity are often weak. Our aims were to quantify functional, self-reported and physiological indices of spasticity in individuals with thoracic spinal cord injury (SCI; 3 women, 9 men; 19–52 years), and to compare the strength and direction of associations between these measures. The functional measure we introduced involved recording involuntary electromyographic activity during a transfer from wheelchair to bed which is a daily task necessary for function. High soleus (SL) and tibialis anterior (TA) F-wave/M-wave area ratios were the only physiological measures that distinguished injured participants from the uninjured (6 women, 13 men, 19–67 years). Hyporeflexia (decreased SL H/M ratio) was unexpectedly present in older participants after injury. During transfers, the duration and intensity of involuntary electromyographic activity varied across muscles and participants, but coactivity was common. Wide inter-participant variability was seen for self-reported spasm frequency, severity, pain and interference with function, as well as tone (resistance to imposed joint movement). Our recordings of involuntary electromyographic activity during transfers provided evidence of significant associations between physiological and self-reported measures of spasticity. Reduced low frequency H-reflex depression in SL and high F-wave/M-wave area ratios in TA, physiological indicators of reduced inhibition and greater motoneuron excitability, respectively, were associated with long duration SL and biceps femoris (BF) electromyographic activity during transfers. In turn, participants reported high spasm frequency when transfers involved short duration TA EMG, decreased co-activation between SL and TA, as well as between rectus femoris (RF) vs. BF. Thus, the duration of muscle activity and/or the time of agonist-antagonist muscle coactivity may be used by injured individuals to count spasms

  20. Measuring microelastic properties of stratum corneum.

    PubMed

    Yuan, Yonghui; Verma, Ritu

    2006-03-01

    We explore the compression moduli of a thin biological tissue through probe microscopy. The elastic modulus (E') of isolated stratum corneum is measured at varying depths through the use of an atomic force microscope (AFM) as well as a nano-indentor (Hysitron Triboscope). In addition, a nano-DMA is used to measure visco-elastic properties. Measurements on dry and hydrated stratum corneum show an order of magnitude difference in E' and the measured tandelta (E''/E') is seen to increase from approximately 0.1 to 0.25. In addition, extensive validation of the experiments is conducted with different indentation probes at different force ranges to reveal the effects of indentor geometry and indentation depth on the measured elastic modulus. The sensitivity of the measurements is tested with applying known treatments to stratum corneum and exploring their effects on biomechanical parameters.

  1. Custom AFM for X-ray beamlines: in situ biological investigations under physiological conditions

    PubMed Central

    Gumí-Audenis, B.; Carlà, F.; Vitorino, M. V.; Panzarella, A.; Porcar, L.; Boilot, M.; Guerber, S.; Bernard, P.; Rodrigues, M. S.; Sanz, F.; Giannotti, M. I.; Costa, L.

    2015-01-01

    A fast atomic force microscope (AFM) has been developed that can be installed as a sample holder for grazing-incidence X-ray experiments at solid/gas or solid/liquid interfaces. It allows a wide range of possible investigations, including soft and biological samples under physiological conditions (hydrated specimens). The structural information obtained using the X-rays is combined with the data gathered with the AFM (morphology and mechanical properties), providing a unique characterization of the specimen and its dynamics in situ during an experiment. In this work, lipid monolayers and bilayers in air or liquid environment have been investigated by means of AFM, both with imaging and force spectroscopy, and X-ray reflectivity. In addition, this combination allows the radiation damage induced by the beam on the sample to be studied, as has been observed on DOPC and DPPC supported lipid bilayers under physiological conditions. PMID:26524300

  2. Multiparametric high-resolution imaging of native proteins by force-distance curve-based AFM.

    PubMed

    Pfreundschuh, Moritz; Martinez-Martin, David; Mulvihill, Estefania; Wegmann, Susanne; Muller, Daniel J

    2014-05-01

    A current challenge in the life sciences is to understand how the properties of individual molecular machines adjust in order to meet the functional requirements of the cell. Recent developments in force-distance (FD) curve-based atomic force microscopy (FD-based AFM) enable researchers to combine sub-nanometer imaging with quantitative mapping of physical, chemical and biological properties. Here we present a protocol to apply FD-based AFM to the multiparametric imaging of native proteins under physiological conditions. We describe procedures for experimental FD-based AFM setup, high-resolution imaging of proteins in the native unperturbed state with simultaneous quantitative mapping of multiple parameters, and data interpretation and analysis. The protocol, which can be completed in 1-3 d, enables researchers to image proteins and protein complexes in the native unperturbed state and to simultaneously map their biophysical and biochemical properties at sub-nanometer resolution.

  3. High-precision refractive index measurements revealing order parameter fluctuations in KMnF3 and NiO

    NASA Astrophysics Data System (ADS)

    Schäfer, F. J.; Kleemann, W.

    1985-04-01

    The temperature dependence of the refractive index n of cubic crystals undergoing phase transitions (PT) is measured with an accuracy of the order δn=10-6 at temperatures between 3.5 and 1000 K with a computer-controlled Jamin-Lebedeff interferometer. Microscopic monitoring for in situ sample orientation and single domain work is provided. Results are presented for KMnF3 (antiferrodistortive PT) and NiO (antiferromagnetic PT) and discussed within the framework of a generalized phenomenological indicatrix perturbation theory. It predicts the proportionality between the order parameter autocorrelation function <δη2> and the refractive index anomaly preceding the PT. Comparison with recent theoretical predictions is performed.

  4. Single Molecule Measurements of F1-ATPase Reveal an Interdependence between the Power Stroke and the Dwell Duration

    PubMed Central

    Spetzler, David; Ishmukhametov, Robert; Hornung, Tassilo; Day, Lixia Jin; Martin, James; Frasch, Wayne D.

    2009-01-01

    Increases in the power stroke and dwell durations of single molecules of E. coli F1-ATPase were measured in response to viscous loads applied to the motor and inhibition of ATP hydrolysis. The load was varied using different sizes of gold nanorods attached to the rotating γ subunit and/or by increasing the viscosity of the medium using PEG-400, a noncompetitive inhibitor of ATPase activity. Conditions that increase the duration of the power stroke were found to cause 20-fold increases in the length of the dwell. These results suggest that the order of hydrolysis, product release, and substrate binding may change as the result of external load on the motor or inhibition of hydrolysis. PMID:19610671

  5. Satellite-based measurements of surface deformation reveal fluid flow associated with the geological storage of carbon dioxide

    SciTech Connect

    Vasco, D.W.; Rucci, A.; Ferretti, A.; Novali, F.; Bissell, R.; Ringrose, P.; Mathieson, A.; Wright, I.

    2009-10-15

    Interferometric Synthetic Aperture Radar (InSAR), gathered over the In Salah CO{sub 2} storage project in Algeria, provides an early indication that satellite-based geodetic methods can be effective in monitoring the geological storage of carbon dioxide. An injected volume of 3 million tons of carbon dioxide, from one of the first large-scale carbon sequestration efforts, produces a measurable surface displacement of approximately 5 mm/year. Using geophysical inverse techniques we are able to infer flow within the reservoir layer and within a seismically detected fracture/ fault zone intersecting the reservoir. We find that, if we use the best available elastic Earth model, the fluid flow need only occur in the vicinity of the reservoir layer. However, flow associated with the injection of the carbon dioxide does appear to extend several kilometers laterally within the reservoir, following the fracture/fault zone.

  6. Electrical Conductivity of Ferritin Proteins by Conductive AFM

    NASA Technical Reports Server (NTRS)

    Xu, Degao; Watt, Gerald D.; Harb, John N.; Davis, Robert C.

    2005-01-01

    Electrical conductivity measurements were performed on single apoferritin and holoferritin molecules by conductive atomic force microscopy. Conductivity of self-assembled monolayer films of ferritin molecules on gold surfaces was also measured. Holoferritin was 5-25 times more conductive than apoferritin, indicating that for holoferritin most electron-transfer goes through the ferrihydrite core. With 1 V applied, the average electrical currents through single holoferritin and apoferritin molecules were 2.6 PA and 0.19 PA, respectively.

  7. Measuring citalopram in blood and central nervous system: revealing a distribution pattern that differs from other antidepressants.

    PubMed

    Paulzen, Michael; Lammertz, Sarah E; Gründer, Gerhard; Veselinovic, Tanja; Hiemke, Christoph; Tauber, Simone C

    2016-05-01

    The aim of this study was to measure blood and cerebrospinal fluid concentrations of citalopram and its weakly active N-demethylated metabolite desmethylcitalopram to account for the distribution between the two compartments. The findings are discussed in the context with own preceding studies on the distribution pattern of different antidepressants. Concentrations of citalopram were measured in blood serum and cerebrospinal fluid of 18 patients treated with daily doses of 10-40 mg. Daily doses were correlated with serum and cerebrospinal fluid concentrations, and serum concentrations were correlated with concentrations in cerebrospinal fluid. Serum concentrations of citalopram and desmethylcitalopram showed no significant correlation to the daily dose, r=0.164, P=0.515, and r=0.174, P=0.505, respectively, whereas citalopram concentrations in serum and cerebrospinal fluid were highly correlated (r=0.763, P<0.001). The cerebrospinal fluid/serum ratio for citalopram (total=bound+unbound concentration) varied between 0.14 and 0.86 (mean 0.35, SD 0.16). By correcting the mean cerebrospinal fluid/serum ratio for 80% plasma protein binding, cerebrospinal fluid concentrations of citalopram were on average 77% higher than the calculated unbound serum concentration with a ratio of 1.77 (SD 0.81, range 0.68-4.29). Findings indicate a very good ability of citalopram to cross the blood-brain and cerebrospinal fluid barrier. High concentrations of citalopram in the cerebrospinal fluid are indicative of active transport of citalopram into or missing active transport out of the cerebrospinal fluid. The results suggest a high ability of citalopram to enter the brain with sufficiently high drug concentrations at the target sites within the brain, contributing toward clinical efficacy.

  8. Thermoelastic properties of liquid Fe-C revealed by sound velocity and density measurements at high pressure

    NASA Astrophysics Data System (ADS)

    Shimoyama, Yuta; Terasaki, Hidenori; Urakawa, Satoru; Takubo, Yusaku; Kuwabara, Soma; Kishimoto, Shunpachi; Watanuki, Tetsu; Machida, Akihiko; Katayama, Yoshinori; Kondo, Tadashi

    2016-11-01

    Carbon is one of the possible light elements in the cores of the terrestrial planets. The P wave velocity (VP) and density (ρ) are important factors for estimating the chemical composition and physical properties of the core. We simultaneously measured the VP and ρ of Fe-3.5 wt % C up to 3.4 GPa and 1850 K by using ultrasonic pulse-echo method and X-ray absorption methods. The VP of liquid Fe-3.5 wt % C decreased linearly with increasing temperature at constant pressure. The addition of carbon decreased the VP of liquid Fe by about 2% at 3 GPa and 1700 K and decreased the Fe density by about 2% at 2 GPa and 1700 K. The bulk modulus of liquid Fe-C and its pressure (P) and temperature (T) effects were precisely determined from directly measured ρ and VP data to be K0,1700 K = 83.9 GPa, dKT/dP = 5.9(2), and dKT/dT = -0.063 GPa/K. The addition of carbon did not affect the isothermal bulk modulus (KT) of liquid Fe, but it decreased the dK/dT of liquid Fe. In the ρ-VP relationship, VP increases linearly with ρ and can be approximated as VP (m/s) = -6786(506) + 1537(71) × ρ (g/cm3), suggesting that Birch's law is valid for liquid Fe-C at the present P-T conditions. Our results imply that at the conditions of the lunar core, the elastic properties of an Fe-C core are more affected by temperature than those of Fe-S core.

  9. High Precision Xenon Measurements Reveal the Presence of Solar Xenon in the Mantle Source of Mid Ocean Ridge Basalts

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, S.; Langmuir, C. H.

    2006-12-01

    Xenon isotopes provide unique insights into the sources of volatile material for planet Earth, the degassing of the mantle, and the chemical evolution of the mantle. Whether the Earth's mantle has solar or planetary heavy noble gases has remained a fundamental and outstanding question. Resolving this issue is crucial for planet accretion models and understanding how volatiles were incorporated into the solid Earth. Here we report the detection of solar, or possibly chondritic (Q), xenon in a gas-rich basalt glass. The sample was collected from the Hotu Matua seamount chain, located south of the Sojourn Ridge, during the 2001 Cook16MV expedition. Xenon was extracted by step crushing fresh basalt glass in vacuum, and xenon isotopes were measured using the Nu multicollector noble gas mass spectrometer at Harvard. Based on reproducibility of standards run over a period of 3 days, which were similar in size (3.5 x 10^{-14}cc of ^{130}Xe) to the sample, external precision for ^{124,126}Xe/^{130}Xe ratios are better than 2%, for ^{128}Xe/^{130}Xe is 7‰, and for ^{129}Xe/^{130}Xe and ^{136}Xe/^{130}Xe ratios are 4‰. These uncertainties are only marginally larger than predicted from counting statistics. A clear excess in ^{124,126,128}Xe was observed. The anomalies in non-radiogenic isotopes of xenon cannot result from instrumental mass fractionation or other experimental artifacts since excesses in ^{128}Xe are correlated with excesses in ^{129}Xe. In addition, the ^{129}Xe/^{130}Xe and ^{136}Xe/^{130}Xe ratios fall on the MORB line. Thus, we conclude that the anomalies in the non-radiogenic isotopes of xenon are a real feature of the mantle source of MORBs. Excesses in ^{124,126,128}Xe/^{130}Xe ratios plot on the air solar mixing line and indicate the presence of a solar xenon component in the MORB source. Since the non-radiogenic isotopic composition of solar and Q xenon are similar, a chondritic xenon component cannot be ruled out. Krypton isotopes can potentially

  10. An Evaluation of the Impacts of AF-M315E Propulsion Systems for Varied Mission Applications

    NASA Technical Reports Server (NTRS)

    Deans, Matthew C.; Oleson, Steven R.; Fittje, James; Colozza, Anthony; Packard, Tom; Gyekenyesi, John; McLean, Christopher H.; Spores, Ronald A.

    2015-01-01

    The purpose of the AF-M315E COMPASS study is to identify near-term (3-5 years) and long term (5 years +) opportunities for infusion, specifically the thruster and associated component technologies being developed as part of the GPIM project. Develop design reference missions which show the advantages of the AF-M315E green propulsion system. Utilize a combination of past COMPASS designs and selected new designs to demonstrate AF-M315E advantages. Use the COMPASS process to show the puts and takes of using AF-M315E at the integrated system level.

  11. Drivers of nitrogen dynamics in ecologically based agriculture revealed by long-term, high-frequency field measurements.

    PubMed

    Finney, Denise M; Eckert, Sara E; Kaye, Jason P

    2015-12-01

    Nitrogen (N) loss from agriculture impacts ecosystems worldwide. One strategy to mitigate these losses, ecologically based nutrient management (ENM), seeks to recouple carbon (C) and N cycles to reduce environmental losses and supply N to cash crops. However, our capacity to apply ENM is limited by a lack of field-based high-resolution data on N dynamics in actual production contexts. We used data from a five-year study of organic cropping systems to investigate soil inorganic N (SIN) variability and nitrate (NO3-) leaching in ENM. Four production systems initiated in 2007 and 2008 in central Pennsylvania varied in crop rotation, timing and intensity of tillage, inclusion of fallow periods, and N inputs. Extractable SIN was measured fortnightly from March through November throughout the experiment, and NO3- N concentration below the rooting zone was sampled with lysimeters during the first year of the 2008 start. We used recursive partitioning models to assess the importance of management and environmental factors to SIN variability and NO3- leaching and identify interactions between influential variables. Air temperature and tillage were the most important drivers of SIN across systems. The highest SIN concentrations occurred when the average air temperature three weeks prior to measurement was above 21 degrees C. Above this temperature and within 109 days of moldboard plowing, average SIN concentrations were 22.1 mg N/kg soil; 109 days or more past plowing average SIN dropped to 7.7 mg N/kg soil. Other drivers of SIN dynamics were N available from manure and cover crops. Highest average leachate NO3- N concentrations (15.2 ppm) occurred in fall and winter when SIN was above 4.9 mg/kg six weeks prior to leachate collection. Late season tillage operations leading to elevated SIN and leachate NO3- N concentrations were a strategy to reduce weeds while meeting consumer demand for organic products. Thus, while tillage that incorporates organic N inputs preceding cash

  12. Studying post-etching silicon crystal defects on 300mm wafer by automatic defect review AFM

    NASA Astrophysics Data System (ADS)

    Zandiatashbar, Ardavan; Taylor, Patrick A.; Kim, Byong; Yoo, Young-kook; Lee, Keibock; Jo, Ahjin; Lee, Ju Suk; Cho, Sang-Joon; Park, Sang-il

    2016-03-01

    Single crystal silicon wafers are the fundamental elements of semiconductor manufacturing industry. The wafers produced by Czochralski (CZ) process are very high quality single crystalline materials with known defects that are formed during the crystal growth or modified by further processing. While defects can be unfavorable for yield for some manufactured electrical devices, a group of defects like oxide precipitates can have both positive and negative impacts on the final device. The spatial distribution of these defects may be found by scattering techniques. However, due to limitations of scattering (i.e. light wavelength), many crystal defects are either poorly classified or not detected. Therefore a high throughput and accurate characterization of their shape and dimension is essential for reviewing the defects and proper classification. While scanning electron microscopy (SEM) can provide high resolution twodimensional images, atomic force microscopy (AFM) is essential for obtaining three-dimensional information of the defects of interest (DOI) as it is known to provide the highest vertical resolution among all techniques [1]. However AFM's low throughput, limited tip life, and laborious efforts for locating the DOI have been the limitations of this technique for defect review for 300 mm wafers. To address these limitations of AFM, automatic defect review AFM has been introduced recently [2], and is utilized in this work for studying DOI on 300 mm silicon wafer. In this work, we carefully etched a 300 mm silicon wafer with a gaseous acid in a reducing atmosphere at a temperature and for a sufficient duration to decorate and grow the crystal defects to a size capable of being detected as light scattering defects [3]. The etched defects form a shallow structure and their distribution and relative size are inspected by laser light scattering (LLS). However, several groups of defects couldn't be properly sized by the LLS due to the very shallow depth and low

  13. Quantitative measurement of histone tail acetylation reveals stage-specific regulation and response to environmental changes during Drosophila development

    PubMed Central

    Henry, Ryan A.; Singh, Tanu; Kuo, Yin-Ming; Biester, Alison; O’Keefe, Abigail; Lee, Sandy; Andrews, Andrew J.; O’Reilly, Alana M.

    2016-01-01

    Histone modification plays a major role in regulating gene transcription and ensuring the healthy development of an organism. Numerous studies have suggested that histones are dynamically modified during developmental events to control gene expression levels in a temporal and spatial manner. However, the study of histone acetylation dynamics using currently available techniques is hindered by the difficulty of simultaneously measuring acetylation of the numerous potential sites of modification present in histones. Here, we present a methodology that allows us to combine mass spectrometry-based histone analysis with Drosophila developmental genetics. Using this system, we characterized histone acetylation patterns during multiple developmental stages of the fly. Additionally, we utilized this analysis to characterize how treatments with pharmacological agents or environmental changes such as gamma-irradiation altered histone acetylation patterns. Strikingly, gamma-irradiation dramatically increased acetylation at H3K18, a site linked to DNA repair via non-homologous end joining. In mutant fly strains deficient in DNA repair proteins, however, this increase in H3K18 acetylation was lost. These results demonstrate the efficacy of our combined mass spectrometry system with a Drosophila model system, and provide interesting insight into the changes in histone acetylation during development, as well as the effects of both pharmacological and environmental agents on global histone acetylation. PMID:26836402

  14. Prominent conjugate processes in the PCI recapture of photoelectrons revealed by high resolution Auger electron measurements of Xe

    NASA Astrophysics Data System (ADS)

    Azuma, Yoshiro; Kosugi, Satoshi; Suzuki, Norihiro; Shigemasa, Eiji; Iwayama, Hiroshi; Koike, Fumihiro

    2016-05-01

    The Xe (N5O2 , 3O2 , 3) Auger electron spectrum originating from 4d5/ 2 - 1 photoionization was measured with the photon energy tuned very close above the ionization threshold. As the photon energy approached the 4d5/ 2 - 1 photoionization threshold, Rydberg series structures including several angular momentum components were formed within the Auger profile by the recapture of the photoelectrons into high-lying final ion orbitals. Our spectrum with resolution much narrower than the lifetime width of the corresponding core excited state allowed us to resolve detailed structures due to the orbital angular momenta very clearly. Unexpectedly, conjugate peaks originating from the exchange of angular momentum between the photoelectron and the Auger electron through Post-Collision-Interaction were found to dominate the spectrum. The new assignments were in accord with the quantum defect values obtained for the high Rydberg series for singly charged ionic Xe + 5 p(1S0) ml. This work was supported by Japan Society for the Promotion of Science through Grants-in-Aid for Scientific Research No. 23600009.

  15. Concurrent measurements of change in the bark and xylem diameters of trees reveal a phloem-generated turgor signal.

    PubMed

    Mencuccini, Maurizio; Hölttä, Teemu; Sevanto, Sanna; Nikinmaa, Eero

    2013-06-01

    · Currently, phloem transport in plants under field conditions is not well understood. This is largely the result of the lack of techniques suitable for the measurement of the physiological properties of phloem. · We present a model that interprets the changes in xylem diameter and live bark thickness and separates the components responsible for such changes. We test the predictions from this model on data from three mature Scots pine trees in Finland. The model separates the live bark thickness variations caused by bark water capacitance from a residual signal interpreted to indicate the turgor changes in the bark. · The predictions from the model are consistent with processes related to phloem transport. At the diurnal scale, this signal is related to patterns of photosynthetic activity and phloem loading. At the seasonal scale, bark turgor showed rapid changes during two droughts and after two rainfall events, consistent with physiological predictions. Daily cumulative totals of this turgor term were related to daily cumulative totals of canopy photosynthesis. Finally, the model parameter representing radial hydraulic conductance between phloem and xylem showed a temperature dependence consistent with the temperature-driven changes in water viscosity. · We propose that this model has potential for the continuous field monitoring of tree phloem function.

  16. Tidal and flood signatures of settling particles in the Gaoping submarine canyon (SW Taiwan) revealed from radionuclide and flow measurements

    USGS Publications Warehouse

    Huh, C.-A.; Liu, J.T.; Lin, H.-L.; Xu, J. P.

    2009-01-01

    Sediment transport and sedimentation processes in the Gaoping submarine canyon were studied using sediment trap and current meter moorings deployed at a location during the winter (January-March) and the summer (July-September) months in 2008. At the end of each deployment, sediment cores were also collected from the canyon floor at the mooring site. Samples from sediment traps and sediment cores were analyzed for 210Pb and 234Th by gamma spectrometry. In conjunction with particle size and flow measurements, the datasets suggest that sediment transport in the canyon is tidally-modulated in the drier winter season and flood (river)-dominated in the wetter summer season. From the magnitude and temporal variation of sediment flux in the canyon with respect to the burial flux and sediment budget on the open shelf and slope region, we reaffirm that, on annual or longer timescales, the Gaoping submarine canyon is an effective conduit transporting sediments from the Gaoping River's drainage basin (the source) to the deep South China Sea (the ultimate sink). ?? 2009 Elsevier B.V.

  17. Simple measurements reveal the feeding history, the onset of reproduction, and energy conversion efficiencies in captive bluefin tuna

    NASA Astrophysics Data System (ADS)

    Jusup, Marko; Klanjšček, Tin; Matsuda, Hiroyuki

    2014-11-01

    We present a numerical approach that, in conjunction with a fully set up Dynamic Energy Budget (DEB) model, aims at consistently approximating the feeding history of cultivated fish from the commonly measured aquaculture data (body length, body mass, or the condition factor). We demonstrate the usefulness of the approach by performing validation of a DEB-based model for Pacific bluefin tuna (Thunnus orientalis) on an independent dataset and exploring the implied bioenergetics of this species in captivity. In the context of validation, the results indicate that the model successfully accounts for more than 75% of the variance in actual fish feed. At the 5% significance level, predictions do not underestimate nor overestimate observations and there is no bias. The overall model accuracy of 87.6% is satisfactory. In the context of tuna bioenergetics, we offer an explanation as to why the first reproduction in the examined case occurred only after the fish reached seven years of age, whereas it takes five years in the wild and sometimes as little as three years in captivity. Finally, we calculate energy conversion efficiencies and the supply stress throughout the entire lifetime to theoretically underpin the relatively low contribution of growth to aerobic metabolism implied by respirometry and high feed conversion ratio observed in bluefin tuna aquaculture.

  18. Hybrid Metrology and 3D-AFM Enhancement for CD Metrology Dedicated to 28 nm Node and Below Requirements

    SciTech Connect

    Foucher, J.; Faurie, P.; Dourthe, L.

    2011-11-10

    The measurement accuracy is becoming one of the major components that have to be controlled in order to guarantee sufficient production yield. Already at the R and D level, we have to come up with the accurate measurements of sub-40 nm dense trenches and contact holes coming from 193 immersion lithography or E-Beam lithography. Current production CD (Critical Dimension) metrology techniques such as CD-SEM (CD-Scanning Electron Microscope) and OCD (Optical Critical Dimension) are limited in relative accuracy for various reasons (i.e electron proximity effect, outputs parameters correlation, stack influence, electron interaction with materials...). Therefore, time for R and D is increasing, process windows degrade and finally production yield can decrease because you cannot manufactured correctly if you are unable to measure correctly. A new high volume manufacturing (HVM) CD metrology solution has to be found in order to improve the relative accuracy of production environment otherwise current CD Metrology solution will very soon get out of steam.In this paper, we will present a potential Hybrid CD metrology solution that smartly tuned 3D-AFM (3D-Atomic Force Microscope) and CD-SEM data in order to add accuracy both in R and D and production. The final goal for 'chip makers' is to improve yield and save R and D and production costs through real-time feedback loop implement on CD metrology routines. Such solution can be implemented and extended to any kind of CD metrology solution. In a 2{sup nd} part we will discuss and present results regarding a new AFM3D probes breakthrough with the introduction of full carbon tips made will E-Beam Deposition process. The goal is to overcome the current limitations of conventional flared silicon tips which are definitely not suitable for sub-32 nm nodes production.

  19. Hybrid Metrology & 3D-AFM Enhancement for CD Metrology Dedicated to 28 nm Node and Below Requirements

    NASA Astrophysics Data System (ADS)

    Foucher, J.; Faurie, P.; Dourthe, L.; Irmer, B.; Penzkofer, C.

    2011-11-01

    The measurement accuracy is becoming one of the major components that have to be controlled in order to guarantee sufficient production yield. Already at the R&D level, we have to come up with the accurate measurements of sub-40 nm dense trenches and contact holes coming from 193 immersion lithography or E-Beam lithography. Current production CD (Critical Dimension) metrology techniques such as CD-SEM (CD-Scanning Electron Microscope) and OCD (Optical Critical Dimension) are limited in relative accuracy for various reasons (i.e electron proximity effect, outputs parameters correlation, stack influence, electron interaction with materials…). Therefore, time for R&D is increasing, process windows degrade and finally production yield can decrease because you cannot manufactured correctly if you are unable to measure correctly. A new high volume manufacturing (HVM) CD metrology solution has to be found in order to improve the relative accuracy of production environment otherwise current CD Metrology solution will very soon get out of steam. In this paper, we will present a potential Hybrid CD metrology solution that smartly tuned 3D-AFM (3D-Atomic Force Microscope) and CD-SEM data in order to add accuracy both in R&D and production. The final goal for "chip makers" is to improve yield and save R&D and production costs through real-time feedback loop implement on CD metrology routines. Such solution can be implemented and extended to any kind of CD metrology solution. In a 2nd part we will discuss and present results regarding a new AFM3D probes breakthrough with the introduction of full carbon tips made will E-Beam Deposition process. The goal is to overcome the current limitations of conventional flared silicon tips which are definitely not suitable for sub-32 nm nodes production.

  20. Real time drift measurement for colloidal probe atomic force microscope: a visual sensing approach

    SciTech Connect

    Wang, Yuliang Bi, Shusheng; Wang, Huimin

    2014-05-15

    Drift has long been an issue in atomic force microscope (AFM) systems and limits their ability to make long time period measurements. In this study, a new method is proposed to directly measure and compensate for the drift between AFM cantilevers and sample surfaces in AFM systems. This was achieved by simultaneously measuring z positions for beads at the end of an AFM colloidal probe and on sample surface through an off-focus image processing based visual sensing method. The working principle and system configuration are presented. Experiments were conducted to validate the real time drift measurement and compensation. The implication of the proposed method for regular AFM measurements is discussed. We believe that this technique provides a practical and efficient approach for AFM experiments requiring long time period measurement.

  1. Electrical conductivity of ferritin proteins by conductive AFM.

    PubMed

    Xu, Degao; Watt, Gerald D; Harb, John N; Davis, Robert C

    2005-04-01

    Electrical conductivity measurements were performed on single apoferritin and holoferritin molecules by conductive atomic force microscopy. Conductivity of self-assembled monolayer films of ferritin molecules on gold surfaces was also measured. Holoferritin was 5-15 times more conductive than apoferritin, indicating that for holoferritin most electron-transfer goes through the ferrihydrite core. With 1 V applied, the average electrical currents through single holoferritin and apoferritin molecules were 2.6 pA and 0.19 pA, respectively.

  2. Mechanistic differences in permeation behavior of supersaturated and solubilized solutions of carbamazepine revealed by nuclear magnetic resonance measurements.

    PubMed

    Ueda, Keisuke; Higashi, Kenjirou; Limwikrant, Waree; Sekine, Shuichi; Horie, Toshiharu; Yamamoto, Keiji; Moribe, Kunikazu

    2012-11-05

    A solid dispersion (SPD) of carbamazepine (CBZ) with hydroxypropyl methylcellulose acetate succinate (HPMC-AS) was prepared by the spray drying method. The apparent solubility (37 °C, pH 7.4) of CBZ observed with the SPD was over 3 times higher than the solubility of unprocessed CBZ. The supersaturated solution was stable for 7 days. A higher concentration of CBZ in aqueous medium was also achieved by mixing with Poloxamer 407 (P407), a solubilizing agent. From permeation studies of CBZ using Caco-2 monolayers and dialysis membranes, we observed improved CBZ permeation across the membrane in the supersaturated solution of CBZ/HPMC-AS SPD. On the contrary, the CBZ-solubilized P407 solution exhibited poor permeation by CBZ. The chemical shifts of CBZ on the (1)H NMR spectrum from CBZ/HPMC-AS SPD solution were not altered significantly by coexistence with HPMC-AS. In contrast, an upfield shift of CBZ was observed in the CBZ/P407 solution. The spin-lattice relaxation time (T(1)) over spin-spin relaxation time (T(2)) indicated that the mobility of CBZ in the HPMC-AS solution was much lower than that in water. Meanwhile, the mobility of CBZ in P407 solution was significantly higher than that in water. NMR data indicate that CBZ does not strongly interact with HPMC-AS. CBZ mobility was suppressed due to self-association and microviscosity around CBZ, which do not affect permeation behavior. Most of the CBZ molecules in the CBZ/P407 solution were solubilized in the hydrophobic core of P407, and a few were free to permeate the membrane. The molecular state of CBZ, as evaluated by NMR measurements, directly correlated with permeation behavior.

  3. Continuous gravity measurements reveal a low-density lava lake at Kīlauea Volcano, Hawai‘i

    USGS Publications Warehouse

    Carbone, Daniele; Poland, Michael P.; Patrick, Matthew R.; Orr, Tim R.

    2013-01-01

    On 5 March 2011, the lava lake within the summit eruptive vent at Kīlauea Volcano, Hawai‘i, began to drain as magma withdrew to feed a dike intrusion and fissure eruption on the volcanoʼs east rift zone. The draining was monitored by a variety of continuous geological and geophysical measurements, including deformation, thermal and visual imagery, and gravity. Over the first ∼14 hours of the draining, the ground near the eruptive vent subsided by about 0.15 m, gravity dropped by more than 100 μGal, and the lava lake retreated by over 120 m. We used GPS data to correct the gravity signal for the effects of subsurface mass loss and vertical deformation in order to isolate the change in gravity due to draining of the lava lake alone. Using a model of the eruptive vent geometry based on visual observations and the lava level over time determined from thermal camera data, we calculated the best-fit lava density to the observed gravity decrease — to our knowledge, the first geophysical determination of the density of a lava lake anywhere in the world. Our result, 950 +/- 300 kg m-3, suggests a lava density less than that of water and indicates that Kīlaueaʼs lava lake is gas-rich, which can explain why rockfalls that impact the lake trigger small explosions. Knowledge of such a fundamental material property as density is also critical to investigations of lava-lake convection and degassing and can inform calculations of pressure change in the subsurface magma plumbing system.

  4. Micrometeorological measurements over 3 years reveal differences in N2 O emissions between annual and perennial crops.

    PubMed

    Abalos, Diego; Brown, Shannon E; Vanderzaag, Andrew C; Gordon, Robert J; Dunfield, Kari E; Wagner-Riddle, Claudia

    2016-03-01

    Perennial crops can deliver a wide range of ecosystem services compared to annual crops. Some of these benefits are achieved by lengthening the growing season, which increases the period of crop water and nutrient uptake, pointing to a potential role for perennial systems to mitigate soil nitrous oxide (N2 O) emissions. Employing a micrometeorological method, we tested this hypothesis in a 3-year field experiment with a perennial grass-legume mixture and an annual corn monoculture. Given that N2 O emissions are strongly dependent on the method of fertilizer application, two manure application options commonly used by farmers for each crop were studied: injection vs. broadcast application for the perennial; fall vs. spring application for the annual. Across the 3 years, lower N2 O emissions (P < 0.001) were measured for the perennial compared to the annual crop, even though annual N2 O emissions increased tenfold for the perennial after ploughing. The percentage of N2 O lost per unit of fertilizer applied was 3.7, 3.1 and 1.3 times higher for the annual for each consecutive year. Differences in soil organic matter due to the contrasting root systems of these crops are probably a major factor behind the N2 O reduction. We found that a specific manure management practice can lead to increases or reductions in annual N2 O emissions depending on environmental variables. The number of freeze-thaw cycles during winter and the amount of rainfall after fertilization in spring were key factors. Therefore, general manure management recommendations should be avoided because interannual weather variability has the potential to determine if a specific practice is beneficial or detrimental. The lower N2 O emissions of perennial crops deserve further research attention and must be considered in future land-use decisions. Increasing the proportion of perennial crops in agricultural landscapes may provide an overlooked opportunity to regulate N2 O emissions.

  5. Direct force measurements reveal that protein Tau confers short-range attractions and isoform-dependent steric stabilization to microtubules

    PubMed Central

    Chung, Peter J.; Choi, Myung Chul; Miller, Herbert P.; Feinstein, H. Eric; Raviv, Uri; Li, Youli; Wilson, Leslie; Feinstein, Stuart C.; Safinya, Cyrus R.

    2015-01-01

    Microtubules (MTs) are hollow cytoskeletal filaments assembled from αβ-tubulin heterodimers. Tau, an unstructured protein found in neuronal axons, binds to MTs and regulates their dynamics. Aberrant Tau behavior is associated with neurodegenerative dementias, including Alzheimer’s. Here, we report on a direct force measurement between paclitaxel-stabilized MTs coated with distinct Tau isoforms by synchrotron small-angle X-ray scattering (SAXS) of MT-Tau mixtures under osmotic pressure (P). In going from bare MTs to MTs with Tau coverage near the physiological submonolayer regime (Tau/tubulin-dimer molar ratio; ΦTau = 1/10), isoforms with longer N-terminal tails (NTTs) sterically stabilized MTs, preventing bundling up to PB ∼ 10,000–20,000 Pa, an order of magnitude larger than bare MTs. Tau with short NTTs showed little additional effect in suppressing the bundling pressure (PB ∼ 1,000–2,000 Pa) over the same range. Remarkably, the abrupt increase in PB observed for longer isoforms suggests a mushroom to brush transition occurring at 1/13 < ΦTau < 1/10, which corresponds to MT-bound Tau with NTTs that are considerably more extended than SAXS data for Tau in solution indicate. Modeling of Tau-mediated MT–MT interactions supports the hypothesis that longer NTTs transition to a polyelectrolyte brush at higher coverages. Higher pressures resulted in isoform-independent irreversible bundling because the polyampholytic nature of Tau leads to short-range attractions. These findings suggest an isoform-dependent biological role for regulation by Tau, with longer isoforms conferring MT steric stabilization against aggregation either with other biomacromolecules or into tight bundles, preventing loss of function in the crowded axon environment. PMID:26542680

  6. Effect of chain lengths of PEO-PPO-PEO on small unilamellar liposome morphology and stability: an AFM investigation.

    PubMed

    Liang, Xuemei; Mao, Guangzhao; Ng, K Y Simon

    2005-05-01

    The morphology and stability of small unilamellar egg yolk phosphatidylcholine (EggPC) liposomes modified with the Pluronic copolymer (poly (oxyethylene)-poly (oxypropylene)-poly (oxyethylene) (PEO-PPO-PEO)) with different compositions on mica surface have been investigated using atomic force microscopy. Morphology studies reveal significant morphological changes of liposomes upon incorporating the Pluronic copolymer. Bilayers are observed for Pluronic with small hydrophilic (PEO) chain lengths such as L81 [(PEO)2(PPO)40(PEO)2] and L121 [(PEO)4(PPO)60(PEO)4]; bilayer and vesicle coexistence is observed for P85 [(PEO)26(PPO)39.5(PEO)26] and F87 [(PEO)61.1(PPO)39.7(PEO)61.1]; and stable vesicles are observed for F88 [(PEO)103.5(PPO)39.2(PEO)103.5], F127 [(PEO)100(PPO)65(PEO)100], and F108 [(PEO)132.6(PPO)50.3(PEO)132.6]. The micromechanical properties of Pluronic-modified EggPC vesicles were studied by analyzing AFM approaching force curve. The bending modulus (k(c)) of the Pluronic-modified EggPC vesicles increased several-fold compared with that of the pure EggPC vesicles. The significant difference is due to the enhanced rigidity of the EggPC vesicles as a result of the incorporation of PPO molecules and PEO chains. Based on the analysis of onset point by AFM and diameters of vesicles by light scattering, it was concluded that the favorable model to describe the polymer-bilayer interaction is the membrane-spanning model.

  7. Combination of ToF-SIMS imaging and AFM to study the early stages of corrosion in Al-Cu thin films

    SciTech Connect

    Seyeux, A.; Missert, Nancy; Frankel, Gerald; Unocic, Kinga A; Klein, L. H.; Galtayries, A.; Marcus, P

    2011-01-01

    The pitting corrosion of Al-Cu thin film alloys was investigated using samples that were heat treated in air to form through-thickness Al2Cu particles within an Al-0.5%Cu matrix. Time-of-Flight SIMS (ToF-SIMS) analysis revealed Cu-rich regions 250 - 800 nm in lateral extent near the metal/oxide interface. Following exposure that generated pitting corrosion, secondary electron, secondary ion, and AFM images showed pits with size and density similar to those of the Cu-rich regions. The role of the Cu-rich regions is addressed.

  8. Nanotribological properties and mechanisms of alkylthiol and biphenyl thiol self-assembled monolayers studied by AFM

    NASA Astrophysics Data System (ADS)

    Bhushan, Bharat; Liu, Huiwen

    2001-06-01

    Five kinds of alkylthiol and biphenyl thiol monolayers with different surface terminals, spacer chains, and head groups were prepared using a self-assembly method. The adhesion, friction, and wear properties were measured using atomic force microscopy (AFM). It is found that hexadecane thiol (HDT) with a-CH3 terminal exhibits the smallest adhesive force and friction force because of the terminal group with its low work of adhesion and high-compliance long carbon chain. Experimental results and a meniscus analysis indicate that the adhesive force varies linearly with work of adhesion of self-assembled monolayers (SAMs). A molecular spring model is presented to clarify the lubrication mechanisms of SAMs. The molecular spring constant, as well as the inter molecular forces, dictates the magnitude of the coefficients of friction of SAMs. 4,4'-dihydroxybiphenyl (DHBp) on Si(111), due to its rigid biphenyl spacer chains, stronger interface bonds, and a hard substrate, has the best wear resistance. For all of the SAMs, the wear depth with normal load curves show critical normal loads. Below the critical normal load, SAMs undergo orientation, while at the critical normal load SAMs undergo severe wear at the interface due to the weak interfacial bond strengths. The influence of relative humidity on adhesive and frictional forces of SAMs can be mainly understood by comparing their terminal polarization properties and work of adhesion. At higher humidity, water capillary condensation can either increase friction through increased adhesion in the contact zone or reduce friction through an enhanced water-lubricating effect.

  9. Nano-palpation AFM and its quantitative mechanical property mapping.

    PubMed

    Nakajima, Ken; Ito, Makiko; Wang, Dong; Liu, Hao; Nguyen, Hung Kim; Liang, Xiaobin; Kumagai, Akemi; Fujinami, So

    2014-06-01

    We review nano-palpation atomic force microscopy, which offers quantitative mechanical property mapping especially for soft materials. The method measures force-deformation curves on the surfaces of soft materials. The emphasis is placed on how both Hertzian and Derjaguin-Muller-Toporov contact mechanics fail to reproduce the experimental curves and, alternatively, how the Johnson-Kendall-Roberts model does. We also describe the force-volume technique for obtaining a two-dimensional map of mechanical properties, such as the elastic modulus and adhesive energy, based on the above-mentioned analysis. Finally, we conclude with several counterpart measurements, which describe the viscoelastic nature of soft materials, and give examples, including vulcanized isoprene rubber and the current status of ISO standardization.

  10. Investigation of Molecular Interactions between AFM-Tip and Thiol Films

    NASA Astrophysics Data System (ADS)

    Touhami, Ahmed; Moore, Justin; Lee, T. Randall

    Among various self-assembly processes, the formation of a self-assembled monolayer (SAM) is one of the most elegant ways for making an organic film with specific surface properties. Recently, much effort has been devoted in using AFM-based single-molecule force spectroscopy (SMFS) to understanding the formation of alkanethiol SAMs on gold surfaces. Investigating the factors that affect the AFM tip-SAMs interactions is necessary to clarify the controversial results of these studies. Here, we investigated the interactions between bare AFM-tips and several SAMs thiols-gold surfaces under controlled humidity conditions. Our results demonstrate that the Tip-SAM interactions can be used to precisely determine the length of the thiol chains, the adhesion force between thiols head groups and the AFM tip, and the strength of the thiol-gold contact. Our findings on the dynamics and the structure of the SAMs of alkanethiols on gold are useful for detail understanding of the thermodynamics, kinetics and mechanisms of SAM technology assembly. NSF.

  11. Formation of hierarchical molecular assemblies from poly(oxypropylene)-segmented amido acids under AFM tapping.

    PubMed

    Lin, Jiang-Jen; Tsai, Wei-Cheng; Wang, Chi-He

    2007-04-10

    Molecular self-aligning of amphiphilic molecules into bundles with a constant width of 7-13 nm was observed under tapping-mode atomic force microscopy (TM-AFM). The requisite amphiphile, a poly(oxypropylene)-trimellitic amido acid sodium salt, is constituted of a symmetric amido acid structure with potential noncovalent forces of ionic charges, hydrogen bonds, pi-pi aromatic stacking, and hydrophobic interactions for intermolecular interaction. The amphiphiles are able to self-align into orderly hierarchical assemblies after simply being dissolved in water and dried under spin-coated evaporation. Under the TM-AFM tapping process, the bundles increased their length from an initial 20 to 600 nm. A sequential TM-AFM scanning and interval heating process was designed to probe the morphological transformations from the molecular bundles to lengthy strips (nearly micrometer scale) and to columns (with 5-7 nm spacing between the parallel strips). The formation of hierarchical arrays via molecular stretching, aligning, and connecting to each other was simultaneously observed and accelerated under the TM-AFM vibration energy. The molecular self-alignment caused by vibrations is envisioned to be a potential methodology for manipulating molecules into assembled templates, sensors, and optoelectronic devices.

  12. Combined AFM nano-machining and reactive ion etching to fabricate high aspect ratio structures.

    PubMed

    Peng, Ping; Shi, Tielin; Liao, Guanglan; Tang, Zirong

    2010-11-01

    In this paper, a new combined method of sub-micron high aspect ratio structure fabrication is developed which can be used for production of nano imprint template. The process includes atomic force microscope (AFM) scratch nano-machining and reactive ion etching (RIE) fabrication. First, 40 nm aluminum film was deposited on the silicon substrate by magnetron sputtering, and then sub-micron grooves were fabricated on the aluminum film by nano scratch using AFM diamond tip. As aluminum film is a good mask for etching silicon, high aspect ratio structures were finally fabricated by RIE process. The fabricated structures were studied by SEM, which shows that the grooves are about 400 nm in width and 5 microm in depth. To obtain sub-micron scale groove structures on the aluminum film, experiments of nanomachining on aluminum films under various machining conditions were conducted. The depths of the grooves fabricated using different scratch loads were also studied by the AFM. The result shows that the material properties of the film/substrate are elastic-plastic following nearly a bilinear law with isotropic strain hardening. Combined AFM nanomachining and RIE process provides a relative lower cost nano fabrication technique than traditional e-beam lithography, and it has a good prospect in nano imprint template fabrication.

  13. Fracture Mechanics Testing of Titanium 6AL-4V in AF-M315E

    NASA Technical Reports Server (NTRS)

    Sampson, J. W.; Martinez, J.; McLean, C.

    2016-01-01

    The Green Propellant Infusion Mission (GPIM) will demonstrate the performance of AF-M315E monopropellant on orbit. Flight certification requires a safe-life analysis of the titanium alloy fuel tank to ensure inherent processing flaws will not cause failure during the design life of the tank. Material property inputs for this analysis require testing to determine the stress intensity factor for environment-assisted cracking (KEAC) of Ti 6Al-4V in combination with the AF-M315E monopropellant. Testing of single-edge notched, or SE(B), specimens representing the bulk tank membrane and weld material were performed in accordance with ASTM E1681. Specimens with fatigue pre-cracks were loaded into test fixtures so that the crack tips were exposed to AF-M315E at 50 C for a duration of 1,000 hours. Specimens that did not fail during exposure were opened to inspect the crack surfaces for evidence of crack growth. The threshold stress intensity value, KEAC, is the highest applied stress intensity that produced neither a failure of the specimen during the exposure nor showed evidence of crack growth. The threshold stress intensity factor for environment-assisted cracking of the Ti 6Al-4V forged tank material was found to be at least 22 ksivin and at least 31 ksivin for the weld material when exposed to AF-M315E monopropellant.

  14. [AFM-based technologies as the way towards the reverse Avogadro number].

    PubMed

    Pleshakova, T O; Shumov, I D; Ivanov, Yu D; Malsagova, K A; Kaysheva, A L; Archakov, A I

    2015-01-01

    Achievement of the concentration detection limit for proteins at the level of the reverse Avogadro number determines the modern development of proteomics. In this review, the possibility of approximating the reverse Avogadro number by using nanotechnological methods (AFM-based fishing with mechanical and electrical stimulation, nanowire detectors, and other methods) are discussed. The ability of AFM to detect, count, visualize and characterize physico-chemical properties of proteins at concentrations up to 10(-17)-10(-18) M is demonstrated. The combination of AFM-fishing with mass-spectrometry allows the identification of proteins not only in pure solutions, but also in multi-component biological fluids (serum). The possibilities to improve the biospecific fishing efficiency by use of SOMAmers in both AFM and nanowire systems are discussed. The paper also provides criteria for evaluation of the sensitivity of fishing-based detection systems. The fishing efficiency depending on the detection system parameters is estimated. The practical implementation of protein fishing depending on the ratio of the sample solution volume and the surface of the detection system is discussed. The advantages and disadvantages of today's promising nanotechnological protein detection methods implemented on the basis of these schemes.

  15. First-principles AFM image simulation with frozen density embedding theory

    NASA Astrophysics Data System (ADS)

    Sakai, Yuki; Lee, Alex J.; Chelikowsky, James R.

    We present efficient first-principles method of non-contact atomic force microscopy (nc-AFM). Ordinary nc-AFM simulations based on density functional theory (DFT) require exhaustive computational cost because it involves thousands of total energy calculations. Regarding the sample as a fixed external potential can reduce the computational cost, and we adopt frozen density embedding theory (FDET) for this purpose. Simulated nc-AFM images with FDET using a carbon monoxide tip well reproduces the full DFT images of benzene, pentacene, and graphene, although optimized tip-sample distances and interaction energies in FDET are underestimated and overestimated, respectively. The FDET-based simulation method is promising for AFM image simulation of surfaces and two-dimensional materials. This work was supported by U.S. DOE under Grant No. DE-FG02-06ER46286 and Award No. DE-SC0008877, and by Welch Foundation under Grant F-1837. Computational resources are provided by NERSC and TACC.

  16. High-speed AFM for 1x node metrology and inspection: Does it damage the features?

    NASA Astrophysics Data System (ADS)

    Sadeghian, Hamed; van den Dool, Teun C.; Uziel, Yoram; Bar Or, Ron

    2015-03-01

    This paper aims at unraveling the mystery of damage in high speed AFMs for 1X node and below. With the device dimensions moving towards the 1X node and below, the semiconductor industry is rapidly approaching the point where existing metrology, inspection and review tools face huge challenges in terms of resolution, the ability to resolve 3D, and throughput. In this paper, we critically asses the important issue of damage in high speed AFM for metrology and inspection of semiconductor wafers. The issues of damage in four major scanning modes (contact mode, tapping mode, non-contact mode, and peak force tapping mode) are described to show which modes are suitable for which applications and which conditions are damaging. The effects of all important scanning parameters on resulting damage are taken into account for materials such as silicon, photoresists and low K materials. Finally, we recommend appropriate scanning parameters and conditions for several use cases (FinFET, patterned photoresist, HAR structures) that avoid exceeding a critical contact stress such that sample damage is minimized. In conclusion, we show using our theoretical analysis that selecting parameters that exceed the target contact stress, indeed leads to significant damage. This method provides AFM users for metrology with a better understanding of contact stresses and enables selection of AFM cantilevers and experimental parameters that prevent sample damage.

  17. SEM and AFM imaging of solar cells defects

    NASA Astrophysics Data System (ADS)

    Škarvada, Pavel; Macků, Robert; Dallaeva, Dinara S.; Sedlák, Petr; Grmela, Lubomír.; Tománek, Pavel

    2015-01-01

    The paper deals with the successive localization and imaging of solar cell defects, going from macroscale to microscale. For the purpose of localization, the light emission from reversed bias samples is used. After rough macroscopic localization, microscopic localization by scanning probe microscopy combined with a photomultiplier (shadow mapping) is performed. The type of microscopic defects are discernable from their current-voltage plot or from noise measurements. Two specific defects, both of the avalanche type, with different voltage threshold, are presented in this paper. Current voltage plots and radiant flux versus voltage characteristics for two temperatures, topography, shadow map and corresponding SEM micrographs are shown for both samples.

  18. Colony-live —a high-throughput method for measuring microbial colony growth kinetics— reveals diverse growth effects of gene knockouts in Escherichia coli

    PubMed Central

    2014-01-01

    Background Precise quantitative growth measurements and detection of small growth changes in high-throughput manner is essential for fundamental studies of bacterial cell. However, an inherent tradeoff for measurement quality in high-throughput methods sacrifices some measurement quality. A key challenge has been how to enhance measurement quality without sacrificing throughput. Results We developed a new high-throughput measurement system, termed Colony-live. Here we show that Colony-live provides accurate measurement of three growth values (lag time of growth (LTG), maximum growth rate (MGR), and saturation point growth (SPG)) by visualizing colony growth over time. By using a new normalization method for colony growth, Colony-live gives more precise and accurate growth values than the conventional method. We demonstrated the utility of Colony-live by measuring growth values for the entire Keio collection of Escherichia coli single-gene knockout mutants. By using Colony-live, we were able to identify subtle growth defects of single-gene knockout mutants that were undetectable by the conventional method quantified by fixed time-point camera imaging. Further, Colony-live can reveal genes that influence the length of the lag-phase and the saturation point of growth. Conclusions Measurement quality is critical to achieving the resolution required to identify unique phenotypes among a diverse range of phenotypes. Sharing high-quality genome-wide datasets should benefit many researchers who are interested in specific gene functions or the architecture of cellular systems. Our Colony-live system provides a new powerful tool to accelerate accumulation of knowledge of microbial growth phenotypes. PMID:24964927

  19. Versatile method for AFM-tip functionalization with biomolecules: fishing a ligand by means of an in situ click reaction.

    PubMed

    Kumar, Rakesh; Ramakrishna, Shivaprakash N; Naik, Vikrant V; Chu, Zonglin; Drew, Michael E; Spencer, Nicholas D; Yamakoshi, Yoko

    2015-04-21

    A facile and universal method for the functionalization of an AFM tip has been developed for chemical force spectroscopy (CFS) studies of intermolecular interactions of biomolecules. A click reaction between tripod-acetylene and an azide-linker-ligand molecule was successfully carried out on the AFM tip surface and used for the CFS study of ligand-receptor interactions.

  20. High throughput nanofabrication of silicon nanowire and carbon nanotube tips on AFM probes by stencil-deposited catalysts.

    PubMed

    Engstrom, Daniel S; Savu, Veronica; Zhu, Xueni; Bu, Ian Y Y; Milne, William I; Brugger, Juergen; Boggild, Peter

    2011-04-13

    A new and versatile technique for the wafer scale nanofabrication of silicon nanowire (SiNW) and multiwalled carbon nanotube (MWNT) tips on atomic force microscope (AFM) probes is presented. Catalyst material for the SiNW and MWNT growth was deposited on prefabricated AFM probes using aligned wafer scale nanostencil lithography. Individual vertical SiNWs were grown epitaxially by a catalytic vapor-liquid-solid (VLS) process and MWNTs were grown by a plasma-enhanced chemical vapor (PECVD) process on the AFM probes. The AFM probes were tested for imaging micrometers-deep trenches, where they demonstrated a significantly better performance than commercial high aspect ratio tips. Our method demonstrates a reliable and cost-efficient route toward wafer scale manufacturing of SiNW and MWNT AFM probes.

  1. Optical Measurements Reveal Interplay Between Surface and Bottom Processes Involving Phytoplankton, Organic Carbon, Iron, Light, and Oxygen in Two Stratified Mesotrophic Lakes

    NASA Astrophysics Data System (ADS)

    Hargreaves, B. R.; Vaidya, A.; Wiles, K. A.

    2009-12-01

    Water column distribution of phytoplankton, organic carbon, particulate and dissolved iron are described through detailed vertical optical measurements that include downwelling cosine irradiance, turbidity, dissolved oxygen, fluorescence by CDOM, Chl-a, phycobilin pigments, and diffuse attenuation for several UV wavebands, plus pH, temperature, and specific conductance. These measurements were completed with a group of profiling instruments during summer in two mid-latitude small lakes. Special calibration allowed for correcting the impact of CDOM and turbidity on the pigment fluorescence signals. These in situ data were combined with laboratory analysis of discrete water column samples for methanol-extracted chlorophyll-a, spectral absorbance of particles, concentration of particulates (dry mass and ash-free mass), total particulate and "dissolved" iron, DOC and CDOM (the "dissolved fraction" passes through a GF/F filter). Surface processes revealed by these measurement include solar heating and photobleaching of CDOM (partly distributed by wind-driven mixing), and nonphotochemical quenching of phytoplankton chlorophyll-a fluorescence. Bottom processes revealed by these measurements include oxygen consumption by net heterotrophic metabolism, release of DOC, CDOM, and iron from anoxic bottom sediments, and the development of a biological community structured by the light and temperature gradients and absence or scarcity of dissolved oxygen near the bottom. The iron associated with CDOM and particles in the deep samples substantially increased the latter's DOC-specific absorption once there was an opportunity for oxidation. A model for mass-specific spectral absorption of particulates accounts for the contribution of organic matter and iron associated with the particles. A detailed hydrologic budget for one of the lakes will allow the water column processes to be explored further by accounting for inputs and outputs of water and organic carbon (via precipitation

  2. Elastic Properties of the Annular Ligament of the Human Stapes--AFM Measurement.

    PubMed

    Kwacz, Monika; Rymuza, Zygmunt; Michałowski, Marcin; Wysocki, Jarosław

    2015-08-01

    Elastic properties of the human stapes annular ligament were determined in the physiological range of the ligament deflection using atomic force microscopy and temporal bone specimens. The annular ligament stiffness was determined based on the experimental load-deflection curves. The elastic modulus (Young's modulus) for a simplified geometry was calculated using the Kirchhoff-Love theory for thin plates. The results obtained in this study showed that the annular ligament is a linear elastic material up to deflections of about 100 nm, with a stiffness of about 120 N/m and a calculated elastic modulus of about 1.1 MPa. These parameters can be used in numerical and physical models of the middle and/or inner ear.

  3. AFM force spectroscopy reveals how subtle structural differences affect the interaction strength between Candida albicans and DC-SIGN.

    PubMed

    te Riet, Joost; Reinieren-Beeren, Inge; Figdor, Carl G; Cambi, Alessandra

    2015-11-01

    The fungus Candida albicans is the most common cause of mycotic infections in immunocompromised hosts. Little is known about the initial interactions between Candida and immune cell receptors, such as the C-type lectin dendritic cell-specific intracellular cell adhesion molecule-3 (ICAM-3)-grabbing non-integrin (DC-SIGN), because a detailed characterization at the structural level is lacking. DC-SIGN recognizes specific Candida-associated molecular patterns, that is, mannan structures present in the cell wall of Candida. The molecular recognition mechanism is however poorly understood. We postulated that small differences in mannan-branching may result in considerable differences in the binding affinity. Here, we exploit atomic force microscope-based dynamic force spectroscopy with single Candida cells to gain better insight in the carbohydrate recognition capacity of DC-SIGN. We demonstrate that slight differences in the N-mannan structure of Candida, that is, the absence or presence of a phosphomannan side chain, results in differences in the recognition by DC-SIGN as follows: (i) it contributes to the compliance of the outer cell wall of Candida, and (ii) its presence results in a higher binding energy of 1.6 kB T. The single-bond affinity of tetrameric DC-SIGN for wild-type C. albicans is ~10.7 kB T and a dissociation constant kD of 23 μM, which is relatively strong compared with other carbohydrate-protein interactions described in the literature. In conclusion, this study shows that DC-SIGN specifically recognizes mannan patterns on C. albicans with high affinity. Knowledge on the binding pocket of DC-SIGN and its pathogenic ligands will lead to a better understanding of how fungal-associated carbohydrate structures are recognized by receptors of