Science.gov

Sample records for afm photoluminescence pl

  1. Low Temperature Photoluminescence (PL) from High Electron Mobility Transistors (HEMTs)

    DTIC Science & Technology

    2015-03-01

    temperature Photoluminescence (PL) from High Electron Mobility Transistor (HEMT) structures that have been modified by proton irradiation. The samples are...samples and exposed the structures to various levels of proton irradiation. For electronics operating in extreme environments where the parts...valence band, generating photons. This emission could be used to determine the effects of proton irradiation on a 2DEG. Exciting the HEMT samples

  2. From photoluminescence to thermal emission: Thermally-enhanced PL (TEPL) for efficient PV (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Manor, Assaf; Kruger, Nimrod; Martin, Leopoldo L.; Rotschild, Carmel

    2016-09-01

    The Shockley-Queisser efficiency limit of 40% for single-junction photovoltaic (PV) cells is mainly caused by the heat dissipation accompanying the process of electro-chemical potential generation. Concepts such as solar thermo-photovoltaics (STPV) aim to harvest this heat loss by the use of a primary absorber which acts as a mediator between the sun and the PV, spectrally shaping the light impinging on the cell. However, this approach is challenging to realize due to the high operating temperatures of above 2000K required in order to generate high thermal emission fluxes. After over thirty years of STPV research, the record conversion efficiency for STPV device stands at 3.2% for 1285K operating temperature. In contrast, we recently demonstrated how thermally-enhanced photoluminescence (TEPL) is an optical heat-pump, in which photoluminescence is thermally blue-shifted upon heating while the number of emitted photons is conserved. This process generates energetic photon-rates which are comparable to thermal emission in significantly reduced temperatures, opening the way for a TEPL based energy converter. In such a device, a photoluminescent low bandgap absorber replaces the STPV thermal absorber. The thermalization heat induces a temperature rise and a blue-shifted emission, which is efficiently harvested by a higher bandgap PV. We show that such an approach can yield ideal efficiencies of 70% at 1140K, and realistic efficiencies of almost 50% at moderate concentration levels. As an experimental proof-of-concept, we demonstrate 1.4% efficient TEPL energy conversion of an Nd3+ system coupled to a GaAs cell, at 600K.

  3. Photomagnetism and photoluminescence (PL) of (Pb-Fe-e(-)) complex in lead magnesium niobate-lead titanate (PMN-PT) crystals containing beta-PbO nanoclusters.

    PubMed

    Bairavarasu, Sundar R; Edwards, Matthew E; Sastry, Medury D; Kochary, Faris; Kommidi, Praveena; Reddy, B Rami; Lianos, Dimitrios; Aggarwal, Manmohan D

    2008-12-15

    We present electron paramagnetic resonance (EPR)--evidence of photomagnetism under the conditions of in situ green laser illumination (photo-EPR) in lead magnesium niobate-lead titanate, Pb(Mg,Nb)O3-PbTiO3 (PMN-PT), containing nanoparticles/wires of orthorhombic beta-PbO as identified by Raman spectroscopy. Photo-EPR studies of the sample containing beta-PbO, brownish red in color, have shown intense line at g=2.00, and its yield increased when produced in the presence of 7.5 kG external magnetic field suggesting the formation of magnetic polaron. This was identified as due to interaction between Fe3+, photoinduced Pb3+ and unpaired electron trapped at oxygen vacancies. The photoinduced growth and decay of magnetic polaron has shown a non-exponential behavior. Photoluminescence (PL) studies were conducted with excitation at 308 nm (XeCl laser) and also at 454.5, 488 and 514.5 nm using Ar+ laser. The excitation with 308 nm gave broad PL centered at 500 and 710 nm the latter being quite prominent in beta-PbO containing crystals, along with cooperative luminescence at 350 nm involving two emitting centers. The excitation with Ar+ laser lines, close to the electronic absorption in samples containing beta-PbO gave richer and sharp PL emission in red region from the constituents of the magnetic polaron and also intense anti-Stokes emission on excitation with 514.5 nm radiation. This appears to be due to phototransfer optically stimulated luminescence (PT-OSL) involving electron-hole recombination at photoinduced magnetic polaron site.

  4. Temperature dependent photoluminescence and micromapping of multiple stacks InAs quantum dots

    SciTech Connect

    Xu, Ming Jaffré, Alexandre Alvarez, José Kleider, Jean-Paul Boutchich, Mohamed; Jittrong, Apichat; Chokamnuai, Thitipong; Panyakeow, Somsak; Kanjanachuchai, Songphol

    2015-02-27

    We utilized temperature dependent photoluminescence (PL) techniques to investigate 1, 3 and 5 stack InGaAs quantum dots (QDs) grown on cross-hatch patterns. PL mapping can well reproduce the QDs distribution as AFM and position dependency of QD growth. It is possible to observe crystallographic dependent PL. The temperature dependent spectra exhibit the QDs energy distribution which reflects the size and shape. The inter-dot carrier coupling effect is observed and translated as a red shift of 120mV on the [1–10] direction peak is observed at 30K on 1 stack with regards to 3 stacks samples, which is assigned to lateral coupling.

  5. Photoluminescence of vapor and solution grown ZnTe single crystals

    NASA Astrophysics Data System (ADS)

    Biao, Y.; Azoulay, M.; George, M. A.; Burger, A.; Collins, W. E.; Silberman, E.; Su, C.-H.; Volz, M. E.; Szofran, F. R.; Gillies, D. C.

    1994-04-01

    ZnTe single crystals grown by horizontal physical vapor transport (PVT) and by vertical traveling heater method (THM) from a Te solution were characterized by photoluminescence (PL) at 10.6 K and by atomic force microscopy (AFM). Copper was identified by PL as a major impurity existing in both crystals, forming a substitutional acceptor, Cu Zn. The THM ZnTe crystals were found to contain more Cu impurity than the PVT ZnTe crystals. The formation of Cu Zn-V Te complexes and the effects of annealing, oxygen contamination and intentional Cu doping were also studied. Finally, the surface morphology analyzed by AFM was correlated to the PL results.

  6. Intercrystalline distal-effect on the afterglow phenomenon in photoluminescent SrAl2O4:Ce(III), Ln nanotube growth

    NASA Astrophysics Data System (ADS)

    Khaled Zurba, Nadia; Bdikin, Igor; Kholkin, Andrei; Golberg, Dmitri; Ferreira, José M. F.

    2010-08-01

    We report a new method for the synthesis of photoluminescent SrAl2O4:Ce3 + , Dy3 + , Eu2 + nanotubes, PL-SNT:Ce(III), Ln, using solid-state reaction and post-annealing approach. This new optical nanotubular structure was characterized by HRTEM, SEM, AFM, EDX, steady-state and time-resolved PL spectroscopy. A series of f-f and f-d-transitions with light emission in structured bands peaking at 488 nm arising from the polymorphism of the host lattice was correlated with an intercrystalline distal-effect on the afterglow phenomenon.

  7. Shape controlled synthesis of CaMoO 4 thin films and their photoluminescence property

    NASA Astrophysics Data System (ADS)

    Marques, Ana Paula de Azevedo; Longo, Valeria M.; de Melo, Dulce M. A.; Pizani, Paulo S.; Leite, Edson R.; Varela, José Arana; Longo, Elson

    2008-05-01

    CaMoO 4 (CMO) disordered and ordered thin films were prepared by the complex polymerization method (CPM). The films were annealed at different temperatures and time in a conventional resistive furnace (RF) and in a microwave (MW) oven. The microstructure and surface morphology of the structure were monitored by atomic force microscopy (AFM) and high-resolution scanning electron microscopy (HRSEM). Order and disorder were characterized by X-ray diffraction (XRD) and optical reflectance. A strong photoluminescence (PL) emission was observed in the disordered thin films and was attributed to complex cluster vacancies. The experimental results were compared with density functional and Hartree-Fock calculations.

  8. Anticorrelation of Photoluminescence from Gold Nanoparticle Dimers with Hot-Spot Intensity

    PubMed Central

    2016-01-01

    Bulk gold shows photoluminescence (PL) with a negligible quantum yield of ∼10–10, which can be increased by orders of magnitude in the case of gold nanoparticles. This bears huge potential to use noble metal nanoparticles as fluorescent and unbleachable stains in bioimaging or for optical data storage. Commonly, the enhancement of the PL yield is attributed to nanoparticle plasmons, specifically to the enhancements of scattering or absorption cross sections. Tuning the shape or geometry of gold nanostructures (e.g., via reducing the distance between two nanoparticles) allows for redshifting both the scattering and the PL spectra. However, while the scattering cross section increases with a plasmonic redshift, the PL yield decreases, indicating that the common simple picture of a plasmonically boosted gold luminescence needs more detailed consideration. In particular, precise experiments as well as numerical simulations are required. Hence, we systematically varied the distance between the tips of two gold bipyramids on the nanometer scale using AFM manipulation and recorded the PL and the scattering spectra for each separation. We find that the PL intensity decreases as the interparticle coupling increases. This anticorrelation is explained by a theoretical model where both the gold-intrinsic d-band hole recombination probabilities as well as the field strength inside the nanostructure are considered. The scattering cross section or the field strength in the hot-spot between the tips of the bipyramids are not relevant for the PL intensity. Besides, we not only observe PL supported by dipolar plasmon resonances, but also measure and simulate PL supported by higher order plasmonic modes. PMID:27700125

  9. Making Graphene Nanoribbons Photoluminescent.

    PubMed

    Senkovskiy, B V; Pfeiffer, M; Alavi, S K; Bliesener, A; Zhu, J; Michel, S; Fedorov, A V; German, R; Hertel, D; Haberer, D; Petaccia, L; Fischer, F R; Meerholz, K; van Loosdrecht, P H M; Lindfors, K; Grüneis, A

    2017-04-03

    We demonstrate the alignment-preserving transfer of parallel graphene nanoribbons (GNRs) onto insulating substrates. The photophysics of such samples is characterized by polarized Raman and photoluminescence (PL) spectroscopies. The Raman scattered light and the PL are polarized along the GNR axis. The Raman cross section as a function of excitation energy has distinct excitonic peaks associated with transitions between the one-dimensional parabolic subbands. We find that the PL of GNRs is intrinsically low but can be strongly enhanced by blue laser irradiation in ambient conditions or hydrogenation in ultrahigh vacuum. These functionalization routes cause the formation of sp(3) defects in GNRs. We demonstrate the laser writing of luminescent patterns in GNR films for maskless lithography by the controlled generation of defects. Our findings set the stage for further exploration of the optical properties of GNRs on insulating substrates and in device geometries.

  10. Graphitic carbon nitride/graphene oxide/reduced graphene oxide nanocomposites for photoluminescence and photocatalysis

    NASA Astrophysics Data System (ADS)

    Aleksandrzak, Malgorzata; Kukulka, Wojciech; Mijowska, Ewa

    2017-03-01

    The study presents a modification of graphitic carbon nitride (g-C3N4) with graphene oxide (GO) and reduced graphene oxide (rGO) and investigation of photoluminescent and photocatalytic properties. The influence of GO and rGO lateral sizes used for the modification was investigated. The nanomaterials were characterized with atomic force microscopy (AFM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), diffuse reflectance UV-vis spectroscopy (DR-UV-vis) and photoluminescence spectroscopy (PL). PL revealed that pristine graphitic carbon nitride and its nanocomposites with GO and rGO emitted up-converted photoluminescence (UCPL) which could contribute to the improvement of photocatalytic activity of the materials. The photoactivity was evaluated in a process of phenol decomposition under visible light. A hybrid composed of rGO nanoparticles (rGONPs, 4-135 nm) exhibited the highest photoactivity compared to rGO with size of 150 nm-7.2 μm and graphene oxide with the corresponding sizes. The possible reason of the superior photocatalytic activity is the most enhanced UCPL of rGONPs, contributing to the emission of light with higher energy than the incident light, resulting in improved photogeneration of electron-hole pairs.

  11. Spin–exciton interaction and related micro-photoluminescence spectra of ZnSe:Mn DMS nanoribbon

    NASA Astrophysics Data System (ADS)

    Hou, Lipeng; Zhou, Weichang; Zou, Bingsuo; Zhang, Yu; Han, Junbo; Yang, Xinxin; Gong, Zhihong; Li, Jingbo; Xie, Sishen; Shi, Li-Jie

    2017-03-01

    For their spintronic applications the magnetic and optical properties of diluted magnetic semiconductors (DMS) have been studied widely. However, the exact relationships between the magnetic interactions and optical emission behaviors in DMS are not well understood yet due to their complicated microstructural and compositional characters from different growth and preparation techniques. Manganese (Mn) doped ZnSe nanoribbons with high quality were obtained by using the chemical vapor deposition (CVD) method. Successful Mn ion doping in a single ZnSe nanoribbon was identified by elemental energy-dispersive x-ray spectroscopy mapping and micro-photoluminescence (PL) mapping of intrinsic d–d optical transition at 580 nm, i.e. the transition of 4 T 1(4 G) → 6 A 1(6 s),. Besides the d–d transition PL peak at 580 nm, two other PL peaks related to Mn ion aggregates in the ZnSe lattice were detected at 664 nm and 530 nm, which were assigned to the d–d transitions from the Mn2+–Mn2+ pairs with ferromagnetic (FM) coupling and antiferromagnetic (AFM) coupling, respectively. Moreover, AFM pair formation goes along with strong coupling with acoustic phonon or structural defects. These arguments were supported by temperature-dependent PL spectra, power-dependent PL lifetimes, and first-principle calculations. Due to the ferromagnetic pair existence, an exciton magnetic polaron (EMP) is formed and emits at 460 nm. Defect existence favors the AFM pair, which also can account for its giant enhancement of spin–orbital coupling and the spin Hall effect observed in PRL 97, 126603(2006) and PRL 96, 196404(2006). These emission results of DMS reflect their relation to local sp-d hybridization, spin–spin magnetic coupling, exciton–spin or phonon interactions covering structural relaxations. This kind of material can be used to study the exciton–spin interaction and may find applications in spin-related photonic devices besides spintronics.

  12. Impact of photoluminescence temperature and growth parameter on the exciton localized in BxGa1-xAs/GaAs epilayers grown by MOCVD

    NASA Astrophysics Data System (ADS)

    Hidouri, Tarek; Saidi, Faouzi; Maaref, Hassen; Rodriguez, Philippe; Auvray, Laurent

    2016-10-01

    In this work, BxGa1-xAs/GaAs epilayers with three different boron compositions were elaborated by metal organic chemical vapor deposition (MOCVD) on GaAs (001) substrate. Structural study using High resolution X-ray diffraction (HRXRD) spectroscopy and Atomic Force Microscopy (AFM) have been used to estimate the boron fraction. The luminescence keys were carried out as functions of temperature in the range 10-300 K, by the techniques of photoluminescence (PL). The low PL temperature has shown an abnormal emission appeared at low energy side witch attributed to the recombination through the deep levels. In all samples, the PL peak energy and the full width at half maximum (FWHM), present an anomalous behavior as a result of the competition process between localized and delocalized carriers. We propose the Localized-state Ensemble model to explain the unusual photoluminescence behaviors. Electrical carriers generation, thermal escape, recapture, radiative and non-radiative lifetime are taken into account. The temperature-dependent photoluminescence measurements were found to be in reasonable agreement with the model of localized states. We controlled the evolution of such parameters versus composition by varying the V/III ratio to have a quantitative and qualitative understanding of the recombination mechanisms. At high temperature, the model can be approximated to the band-tail-state emission.

  13. Photoinduced spectral changes of photoluminescent gold nanoclusters.

    PubMed

    Matulionytė, Marija; Marcinonytė, Raminta; Rotomskis, Ričardas

    2015-05-01

    Ultrasmall photoluminescent gold nanoclusters (Au NCs), composed of several atoms with sizes up to a few nanometers, have recently stimulated extensive interest. Unique molecule-like behaviors, low toxicity, and facile synthesis make photoluminescent Au NCs a very promising alternative to organic fluorophores and semiconductor quantum dots (QDs) in broad ranges of biomedical applications. However, using gold nanoparticles (Au NPs) for bioimaging might cause their degradation under continuous excitation with UV light, which might result in toxicity. We report spectral changes of photoluminescent 2-(N-morpholino) ethanesulfonic acid (MES)-coated (Au-MES) NCs under irradiation with UV/blue light. Photoluminescent water soluble Au- MES NCs with a photoluminescence (PL) band maximum at 476 nm (λex = 420 nm) were synthesized. Under irradiation with 402 nm wavelength light the size of photoluminescent Au-MES NCs decreased (λem = 430 nm). Irradiating the sample solution with 330 nm wavelength light, nonluminescent Au NPs were disrupted, and photoluminescent Au NCs (λem = 476 nm) were formed. Irradiation with 330 nm wavelength light did not directly affect photoluminescent Au-MES NCs, however, increase in PL intensity indicated the formation of photoluminescent Au NCs from the disrupted nonluminescent Au NPs. This study gives a good insight into the photostability of MES-coated Au NPs under continuous excitation with UV/blue light.

  14. Photoinduced spectral changes of photoluminescent gold nanoclusters

    NASA Astrophysics Data System (ADS)

    Matulionytė, Marija; Marcinonytė, Raminta; Rotomskis, Ričardas

    2015-05-01

    Ultrasmall photoluminescent gold nanoclusters (Au NCs), composed of several atoms with sizes up to a few nanometers, have recently stimulated extensive interest. Unique molecule-like behaviors, low toxicity, and facile synthesis make photoluminescent Au NCs a very promising alternative to organic fluorophores and semiconductor quantum dots (QDs) in broad ranges of biomedical applications. However, using gold nanoparticles (Au NPs) for bioimaging might cause their degradation under continuous excitation with UV light, which might result in toxicity. We report spectral changes of photoluminescent 2-(N-morpholino) ethanesulfonic acid (MES)-coated (Au-MES) NCs under irradiation with UV/blue light. Photoluminescent water soluble Au-MES NCs with a photoluminescence (PL) band maximum at 476 nm (λex=420 nm) were synthesized. Under irradiation with 402 nm wavelength light the size of photoluminescent Au-MES NCs decreased (λem=430 nm). Irradiating the sample solution with 330 nm wavelength light, nonluminescent Au NPs were disrupted, and photoluminescent Au NCs (λem=476 nm) were formed. Irradiation with 330 nm wavelength light did not directly affect photoluminescent Au-MES NCs, however, increase in PL intensity indicated the formation of photoluminescent Au NCs from the disrupted nonluminescent Au NPs. This study gives a good insight into the photostability of MES-coated Au NPs under continuous excitation with UV/blue light.

  15. Photoluminescence, ellipsometric, optical and morphological studies of sprayed Co-doped ZnO films

    NASA Astrophysics Data System (ADS)

    Gençyılmaz, O.; Atay, F.; Akyüz, I.

    2016-06-01

    In this study, undoped and cobalt (Co)-doped zinc oxide (ZnO) films were successfully produced by ultrasonic spray pyrolysis (USP) technique at low temperature (350°C). The optical and surface properties were investigated as a function of Co content. The optical parameters (thickness, refractive index and extinction coefficient) were determined using spectroscopic ellipsometry (SE) and it was seen that the refractive index and extinction coefficient values of Co-doped ZnO films decreased slightly depending on the increasing of Co doping. For investigation, the transmittance and photoluminescence (PL) spectra of the films, UV-Vis spectrophotometer and PL spectroscopy were used at room temperature. The transmittance spectra show that transmittance values decreased and Co+2 ions substitute Zn+2 ions of ZnO lattice. The optical band gap values decreased from 3.26 eV to 2.85 eV with the changing of Co content. The results of PL spectra exhibit the position of the different emission peaks unchanged but the intensity of peaks increased with increasing Co doping. Also, the surface properties of the films were obtained by atomic force microscopy (AFM) and these results indicated that the surface morphology and roughness values were prominently changed with Co doping.

  16. Photoluminescence observation from zinc oxide formed by magnetron sputtering at room temperature

    NASA Astrophysics Data System (ADS)

    Kudryashov, D.; Babichev, A.; Nikitina, E.; Gudovskikh, A.; Kladko, P.

    2015-11-01

    The photoluminescence (PL) of ZnO thin films grown by magnetron sputtering at room temperature has been observed. The PL spectra were measured using an instrument from Accent Optical Technologies with a solid state UV laser (λ = 266 nm) as the pumping source and at the temperature of 300 K. Samples grown at sputtering power of 100-200 W show a strong photoluminescence (PL) at wavelength of 377 nm and its intensity shows non-linear dependence with magnetron power. At values of sputtering power less then 100 W PL signal was not observed. A correlation between PL, XRD intensity and ZnO grain size was shown.

  17. Improved photoluminescence and sensing stability of porous silicon nanowires by surface passivation.

    PubMed

    Gan, Lu; He, Haiping; Sun, Luwei; Ye, Zhizhen

    2014-01-21

    Core-shell structured silicon nanowires (Si NWs) were obtained by coating Si NWs with an HfO2 layer. Enhanced photoluminescence (PL) and a slightly decreased PL lifetime are achieved by HfO2 coating. Furthermore, the sensing stability is strongly improved. The improvement of PL properties is interpreted in terms of surface passivation and the Purcell effect.

  18. AstroGrid-PL

    NASA Astrophysics Data System (ADS)

    Stachowski, Greg; Kundera, Tomasz; Ciecielag, Paweł; AstroGridPL Team

    2016-06-01

    We summarise the achievements AstroGrid-PL project, which aims to provide an infrastructure grid computing, distributed storage and Virtual Observatory services to the Polish astronomical community. It was developed from 2011-2015 as a domain grid component within the large PLGrid Plus project for scientific computing in Poland.

  19. Spin-exciton interaction and related micro-photoluminescence spectra of ZnSe:Mn DMS nanoribbon.

    PubMed

    Hou, Lipeng; Zhou, Weichang; Zou, Bingsuo; Zhang, Yu; Han, Junbo; Yang, Xinxin; Gong, Zhihong; Li, Jingbo; Xie, Sishen; Shi, Li-Jie

    2017-03-10

    For their spintronic applications the magnetic and optical properties of diluted magnetic semiconductors (DMS) have been studied widely. However, the exact relationships between the magnetic interactions and optical emission behaviors in DMS are not well understood yet due to their complicated microstructural and compositional characters from different growth and preparation techniques. Manganese (Mn) doped ZnSe nanoribbons with high quality were obtained by using the chemical vapor deposition (CVD) method. Successful Mn ion doping in a single ZnSe nanoribbon was identified by elemental energy-dispersive x-ray spectroscopy mapping and micro-photoluminescence (PL) mapping of intrinsic d-d optical transition at 580 nm, i.e. the transition of (4) T 1((4) G) → (6) A 1((6) s),. Besides the d-d transition PL peak at 580 nm, two other PL peaks related to Mn ion aggregates in the ZnSe lattice were detected at 664 nm and 530 nm, which were assigned to the d-d transitions from the Mn(2+)-Mn(2+) pairs with ferromagnetic (FM) coupling and antiferromagnetic (AFM) coupling, respectively. Moreover, AFM pair formation goes along with strong coupling with acoustic phonon or structural defects. These arguments were supported by temperature-dependent PL spectra, power-dependent PL lifetimes, and first-principle calculations. Due to the ferromagnetic pair existence, an exciton magnetic polaron (EMP) is formed and emits at 460 nm. Defect existence favors the AFM pair, which also can account for its giant enhancement of spin-orbital coupling and the spin Hall effect observed in PRL 97, 126603(2006) and PRL 96, 196404(2006). These emission results of DMS reflect their relation to local sp-d hybridization, spin-spin magnetic coupling, exciton-spin or phonon interactions covering structural relaxations. This kind of material can be used to study the exciton-spin interaction and may find applications in spin-related photonic devices besides spintronics.

  20. Substrate temperature dependent surface morphology and photoluminescence of germanium quantum dots grown by radio frequency magnetron sputtering.

    PubMed

    Samavati, Alireza; Othaman, Zulkafli; Ghoshal, Sib Krishna; Dousti, Mohammad Reza; Kadir, Mohammed Rafiq Abdul

    2012-10-09

    The visible luminescence from Ge nanoparticles and nanocrystallites has generated interest due to the feasibility of tuning band gap by controlling the sizes. Germanium (Ge) quantum dots (QDs) with average diameter ~16 to 8 nm are synthesized by radio frequency magnetron sputtering under different growth conditions. These QDs with narrow size distribution and high density, characterized using atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM) are obtained under the optimal growth conditions of 400 °C substrate temperature, 100 W radio frequency powers and 10 Sccm Argon flow. The possibility of surface passivation and configuration of these dots are confirmed by elemental energy dispersive X-ray (EDX) analysis. The room temperature strong visible photoluminescence (PL) from such QDs suggests their potential application in optoelectronics. The sample grown at 400 °C in particular, shows three PL peaks at around ~2.95 eV, 3.34 eV and 4.36 eV attributed to the interaction between Ge, GeO(x) manifesting the possibility of the formation of core-shell structures. A red shift of ~0.11 eV in the PL peak is observed with decreasing substrate temperature. We assert that our easy and economic method is suitable for the large-scale production of Ge QDs useful in optoelectronic devices.

  1. Nature of room-temperature photoluminescence in ZnO

    SciTech Connect

    Shan, W.; Walukiewicz, W.; Ager III, J.W.; Yu, K.M.; Yuan, H.B.; Xin, H.P.; Cantwell, G.; Song, J.J.

    2004-11-11

    The temperature dependence of the photoluminescence (PL) transitions associated with various excitons and their phonon replicas in high-purity bulk ZnO has been studied at temperatures from 12 K to above room temperature (320 K). Several strong PL emission lines associated with LO phonon replicas of free and bound excitons are clearly observed. The room temperature PL spectrum is dominated by the phonon replicas of the free exciton transition with the maximum at the first LO phonon replica. The results explain the discrepancy between the transition energy of free exciton determined by reflection measurement and the peak position obtained by the PL measurement.

  2. Strong photoluminescence emission from resonant Fibonacci quantum wells.

    PubMed

    Chang, C H; Chen, C H; Hsueh, W J

    2013-06-17

    Strong photoluminescence (PL) emission from a resonant Fibonacci quantum well (FQW) is demonstrated. The maximum PL intensity in the FQW is significantly stronger than that in a periodic QW under the Bragg or anti-Bragg conditions. Moreover, the peaks of the squared electric field in the FQW are located very near each of the QWs. The optimal PL spectrum in the FQW has an asymmetrical form rather than the symmetrical one in the periodic case. The maximum PL intensity and the corresponding thickness filling factor in the FQW become greater with increasing generation order.

  3. Photoluminescence decay dynamics of transparent silica glass prepared from nanometer-sized silica particles

    SciTech Connect

    Yamada, Tomoko; Uchino, Takashi

    2005-08-22

    The time-resolved photoluminescence (PL) decays are measured for transparent amorphous silica prepared from solid-phase sintering of nanometer-sized silica particles, which has recently been shown to exhibit a unique white PL emission under ultraviolet excitation [T. Uchino and T. Yamada, Appl. Phys. Lett. 85, 1164 (2004)]. Unlike usual PL processes observed in normal silica glass, it is shown that the present PL results from trapping-controlled migration of photoexcited carriers and their radiative recombination.

  4. Photoluminescence decay dynamics of transparent silica glass prepared from nanometer-sized silica particles

    NASA Astrophysics Data System (ADS)

    Yamada, Tomoko; Uchino, Takashi

    2005-08-01

    The time-resolved photoluminescence (PL) decays are measured for transparent amorphous silica prepared from solid-phase sintering of nanometer-sized silica particles, which has recently been shown to exhibit a unique white PL emission under ultraviolet excitation [T. Uchino and T. Yamada, Appl. Phys. Lett. 85, 1164 (2004)]. Unlike usual PL processes observed in normal silica glass, it is shown that the present PL results from trapping-controlled migration of photoexcited carriers and their radiative recombination.

  5. Shape controlled synthesis of CaMoO{sub 4} thin films and their photoluminescence property

    SciTech Connect

    Marques, Ana Paula de Azevedo Longo, Valeria M.; Melo, Dulce M.A. de; Pizani, Paulo S.; Leite, Edson R.; Varela, Jose Arana; Longo, Elson

    2008-05-15

    CaMoO{sub 4} (CMO) disordered and ordered thin films were prepared by the complex polymerization method (CPM). The films were annealed at different temperatures and time in a conventional resistive furnace (RF) and in a microwave (MW) oven. The microstructure and surface morphology of the structure were monitored by atomic force microscopy (AFM) and high-resolution scanning electron microscopy (HRSEM). Order and disorder were characterized by X-ray diffraction (XRD) and optical reflectance. A strong photoluminescence (PL) emission was observed in the disordered thin films and was attributed to complex cluster vacancies. The experimental results were compared with density functional and Hartree-Fock calculations. - Graphical abstract: CaMoO{sub 4} thin films were prepared by the complex polymerization method (CPM). The films were annealed at different temperatures and time in a conventional resistive furnace and in a microwave oven. A strong photoluminescence emission was observed in the disordered thin films and was attributed to complex cluster vacancies. The experimental results were confirmed by high level first principle calculations.

  6. Hydrogenation of the Cu{sub PL} center in silicon

    SciTech Connect

    Yarykin, Nikolai; Weber, Jörg

    2014-07-07

    The Cu{sub PL} center, a complex of four copper atoms in silicon with the zero-phonon photoluminescence line at 1014 meV and the donor level at 0.1 eV above the top of the valence band, is studied in the process of hydrogenation at 380 K. Complexes of a substitutional copper atom (Cu{sub s}) with one and two hydrogen atoms are observed to form in the hydrogenated region at the expense of Cu{sub PL}, while no isolated Cu{sub s} atoms are detected. Our results indicate that the addition of a single hydrogen atom induces the dissociation of all interstitial Cu atoms which decorate the Cu{sub s} core of the Cu{sub PL} center.

  7. Characterization of silicon-germanium epitaxial layer by photoluminescence intensity and reflectance measurement techniques.

    PubMed

    Back, Dohyun; Lee, Jaehyeong

    2014-12-01

    Si(1-x)Ge(x) epitaxial layers with various Ge fractions sample were characterized by photoluminescence intensity method at room temperature. Photoluminescence intensity was affected by minority carrier lifetime, defect density, and surface condition. PL intensity profile showed misfit dislocation on epitaxial layer for 15%, 21%, 24%, and 26%, since dislocations were one of minority carrier lifetime degradation parameters. It clearly showed misfit dislocation profiles, cross-hatch, and PL intensity was low at dislocation region.

  8. Photoluminescence studies in epitaxial CZTSe thin films

    NASA Astrophysics Data System (ADS)

    Sendler, Jan; Thevenin, Maxime; Werner, Florian; Redinger, Alex; Li, Shuyi; Hägglund, Carl; Platzer-Björkman, Charlotte; Siebentritt, Susanne

    2016-09-01

    Epitaxial Cu 2 ZnSnSe 4 (CZTSe) thin films were grown by molecular beam epitaxy on GaAs(001) using two different growth processes, one containing an in-situ annealing stage as used for solar cell absorbers and one for which this step was omitted. Photoluminescences (PL) measurements carried out on these samples show no dependence of the emission shape on the excitation intensity at different temperatures ranging from 4 K to 300 K . To describe the PL measurements, we employ a model with fluctuating band edges in which the density of states of the resulting tail states does not seem to depend on the excited charge carrier density. In this interpretation, the PL measurements show that the annealing stage removes a defect level, which is present in the samples without this annealing.

  9. Photoluminescent AuCu bimetallic nanoclusters as pH sensors and catalysts.

    PubMed

    Chen, Po-Cheng; Ma, Jia-Ying; Chen, Li-Yi; Lin, Guan-Lin; Shih, Chung-Chien; Lin, Tai-Yuan; Chang, Huan-Tsung

    2014-04-07

    A facile and one-pot approach to the preparation of gold (Au) and copper (Cu) bimetallic nanoclusters (NCs) is unveiled. AuCu NCs reveal features of orange photoluminescence (PL), reversible pH-dependent PL properties, and efficient catalytic activity for degradation of methylene blue (MB).

  10. Influence of cysteine doping on photoluminescence intensity from semiconducting single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Kurnosov, N. V.; Leontiev, V. S.; Linnik, A. S.; Karachevtsev, V. A.

    2015-03-01

    Photoluminescence (PL) from semiconducting single-walled carbon nanotubes can be applied for detection of cysteine. It is shown that cysteine doping (from 10-8 to 10-3 M) into aqueous suspension of nanotubes with adsorbed DNA leads to increase of PL intensity. The PL intensity was enhanced by 27% at 10-3 M cysteine concentration in suspension. Most likely, the PL intensity increases due to the passivation of p-defects on the nanotube by the cysteine containing reactive thiol group. The effect of doping with other amino acids without this group (methionine, serine, aspartic acid, lysine, proline) on the PL intensity is essentially weaker.

  11. Geometry modulated upconversion photoluminescence of individual NaYF4: Yb3+, Er3+ microcrystals

    NASA Astrophysics Data System (ADS)

    Wang, Bing; Wang, Jiao; Mei, Yongfeng

    2017-02-01

    Upconversion (UC) photoluminescence (PL) properties of individual β-NaYF4: Yb3+, Er3+ microcrystals are investigated on their crystal orientation and size by a confocal micro-photoluminescence (μ-PL) system. The UC PL intensities including red and green bands of individual microcrystals change nearly lineally with their diameter but in different slopes. The ratio of integrated PL intensities between red and green bands (R/G) of individual microcrystals can be modulated by the crystal geometry, which is attributed to the optical propagation path and optical loss coefficient α. PL emission mapping along the crystal surface reveals a typical characteristic of optical waveguide in our UC microcrystals. Importantly, the variation of anisotropy in (100) and (001) crystal plane influences the UC PL spectra in the single microcrystals. Our finding could help the basic understanding of UC luminescence in micro/nanocrystals and hint their optimized fabrication for enhanced light emission.

  12. Structural, FTIR and photoluminescence studies of Fe doped ZnO nanopowder by co-precipitation method.

    PubMed

    Raja, K; Ramesh, P S; Geetha, D

    2014-10-15

    An investigation on Fe-doped ZnO (Zn1-xFexO, x=0, 0.03, 0.06 and 0.09mM) nanopowder have been synthesized by co-precipitated method annealed at 550°C were reported. The structural, morphological and optical properties of the samples were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive spectra (EDS) analysis, Atomic Force Microscopy (AFM), UV-Visible spectroscopy, and photoluminescence (PL) techniques, Fourier transform infrared (FTIR) spectroscopy. The XRD spectrum shows all the samples are hexagonal wurtzite structure. The presence of functional groups and chemical bonding are confirmed by FT-IR. The PL spectra of the Zn1-xFexxO systems show that the shift in near band edge (NBE) UV emission from 344.54 to 364.21nm and a shift in green band (GB) emission from 484 to 540nm which conforms the substitution of Fe into the ZnO lattice. UV-Visible measurement showed a decrease in the energy gap with increasing Fe content, probably due to an increase in the lattice parameters. It is also found that these results are in good agreement with other calculated and experimental results.

  13. Tuning photoluminescence of reduced graphene oxide quantum dots from blue to purple

    SciTech Connect

    Liu, Fuchi; Tang, Tao; Feng, Qian; Li, Ming; Liu, Yuan; Tang, Nujiang Zhong, Wei; Du, Youwei

    2014-04-28

    Reduced graphene oxide quantum dots (rGOQDs) were synthesized by annealing GOQDs in H{sub 2} atmosphere. The photoluminescence (PL) properties of GOQDs and the rGOQDs samples were investigated. The results showed that compared to GOQDs, a blue to purple tunable PL of rGOQDs can be obtained by regulating the annealing temperature. The increase fraction of the newly formed isolated sp{sup 2} clusters may be responsible for the observed tunable PL.

  14. The emission wavelength dependent photoluminescence lifetime of the N-doped graphene quantum dots

    SciTech Connect

    Deng, Xingxia; Sun, Jing; Yang, Siwei; Ding, Guqiao; Shen, Hao; Zhou, Wei; Lu, Jian; Wang, Zhongyang

    2015-12-14

    Aromatic nitrogen doped graphene quantum dots were investigated by steady-state and time-resolved photoluminescence (PL) techniques. The PL lifetime was found to be dependent on the emission wavelength and coincident with the PL spectrum, which is different from most semiconductor quantum dots and fluorescent dyes. This result shows the synergy and competition between the quantum confinement effect and edge functional groups, which may have the potential to guide the synthesis and expand the applications of graphene quantum dots.

  15. Anticorrelation between Local Photoluminescence and Photocurrent Suggests Variability in Contact to Active Layer in Perovskite Solar Cells.

    PubMed

    Eperon, Giles E; Moerman, David; Ginger, David S

    2016-11-22

    We use high-resolution, spatially resolved, laser beam induced current, confocal photoluminescence, and photoconductive atomic force microscopy (pcAFM) measurements to correlate local solar cell performance with spatially heterogeneous local material properties in methylammonium lead triiodide (CH3NH3PbI3) perovskite solar cells. We find that, for this material and device architecture, the photocurrent heterogeneity measured via pcAFM on devices missing a top selective contact with traditional Au-coated tips is significantly larger than the photocurrent heterogeneity observed in full devices with both electron- and hole-selective extraction layers, indicating that extraction barriers at the Au/perovskite interface are ameliorated by deposition of the organic charge extraction layer. Nevertheless, in completed, efficient device structures (PCE ≈ 16%) with state-of-the-art nickel oxide and [6,6]-phenyl-C61-butyric acid (PCBM) methyl ester contacts, we observe that the local photoluminescence (PL) is weakly anticorrelated with local photocurrent at both short-circuit and open-circuit conditions. We determine that the contact materials are fairly homogeneous; thus the heterogeneity stems from the perovskite itself. We suggest a cause for the anticorrelation as being related to local carrier extraction heterogeneity. However, we find that the contacts are still the dominating source of losses in these devices, which minimizes the impact of the material heterogeneity on device performance at present. These results suggest that further steps to prevent recombination losses at the interfaces are needed to help perovskite-based cells approach theoretical efficiency limits; only at this point will material heterogeneity become crucial.

  16. Photoluminescence of zirconium hydroxide: Origin of a chemisorption-induced ‘red-stretch'

    NASA Astrophysics Data System (ADS)

    Watters, Evan J.; Sengupta, Sandip K.; Peterson, Gregory W.; Whitten, James E.

    2014-01-01

    Zirconium hydroxide particles are reactive and photoluminescent, emitting blue light under ultraviolet (UV) irradiation. Adsorption-induced changes in the photoluminescence (PL) offer opportunities for gas sensor/filtration applications. The PL of Zr(OH)4 is quenched in the presence of molecular oxygen, likely through trapping of surface electrons via the formation of O2-. Heating the powder high enough to desorb hydroxyl groups broadens the PL spectrum toward longer wavelengths. This 'red-stretch' also occurs upon reaction with sulfur dioxide, which replaces terminal hydroxyl groups with sulfite ones. Excessive UV irradiation correspondingly induces this effect. A mechanism is proposed to account for the red-stretch.

  17. Photoluminescence Properties Research on Graphene Quantum Dots/Silver Composites.

    PubMed

    Wang, Jun; Li, Yan; Zhang, Bo-Ping; Xie, Dan-Dan; Ge, Juan; Liu, Hui

    2016-04-01

    Graphene quantum dots (GQDs) possess unique properties of graphene and exhibit a series of new phenomena of 0 dimension (D) carbon materials. Thus, GQDs have attracted much attention from researchers and have shown great promise for many applications. Recently, many works focus on GQDs-metal ions and metal nanoparticles (NPs). Although, many researches point out that metal ions and metal NPs have significant effect on photoluminescence (PL) feature of GQDs, mainly focus on PL intensity. Here, for the first time, we reported that metal NPs also affected PL peak position which was dependent on the mix mechanism of metal and GQDs. When GQDs-silver (Ag) composite mixed by physical method and excited at a wavelength of 320 nm, PL peak position of composites first showed blue-shifted then red-shifted with increasing of Ag content. However, if GQDs-Ag composite prepared by chemical method, PL peak position of the composites blue-shifted. Furthermore, the shift of PL peak position of GQDs-Ag prepared both for physical and chemical method displayed excitation-dependent feature. When the excitation wavelength approached to Ag SPR peaks, no obvious PL shift was observed. The mechanism for different PL shifts and the phenomenon of excitation-dependent PL shift as well as the formation mechanism of GQDs-Ag composite by chemical method are discussed in detail in this paper.

  18. Using quantum dot photoluminescence for load detection

    NASA Astrophysics Data System (ADS)

    Moebius, M.; Martin, J.; Hartwig, M.; Baumann, R. R.; Otto, T.; Gessner, T.

    2016-08-01

    We propose a novel concept for an integrable and flexible sensor capable to visualize mechanical impacts on lightweight structures by quenching the photoluminescence (PL) of CdSe quantum dots. Considering the requirements such as visibility, storage time and high optical contrast of PL quenching with low power consumption, we have investigated a symmetrical and an asymmetrical layer stack consisting of semiconductor organic N,N,N',N'-Tetrakis(3-methylphenyl)-3,3'-dimethylbenzidine (HMTPD) and CdSe quantum dots with elongated CdS shell. Time-resolved series of PL spectra from layer stacks with applied voltages of different polarity and simultaneous observation of power consumption have shown that a variety of mechanisms such as photo-induced charge separation and charge injection, cause PL quenching. However, mechanisms such as screening of external field as well as Auger-assisted charge ejection is working contrary to that. Investigations regarding the influence of illumination revealed that the positive biased asymmetrical layer stack is the preferred sensor configuration, due to a charge carrier injection at voltages of 10 V without the need of coincident illumination.

  19. Surface characterization of InP using photoluminescence

    NASA Technical Reports Server (NTRS)

    Chang, R. R.; Iyer, R.; Lile, D. L.

    1987-01-01

    Photoluminescence (PL) measurements have been performed on InP samples in situ during various surface treatments including chemical etching, wet anodization, and low-pressure chemical vapor deposition. It was found, in agreement with previously published results, that the magnitude of the PL signal varies markedly with surface treatment due presumably to changes in either surface-state density, and/or surface potential. In an attempt to assess the effectiveness of this noninvasive method as a tool for characterizing and monitoring the progressive development of a semiconductor surface during processing, a number of experiments on InP have been performed. The results indicate that although some uncertainty may exist in assigning a mechanism for the PL change in any given experiment, the general trend appears to be that surface degradation results in a reduced signal. As a result, process steps which enhance the PL intensity are likely to be beneficial in the preparation of a high-quality interface.

  20. Photoluminescence structure, and composition of laterally anodized porous Si

    NASA Technical Reports Server (NTRS)

    Jung, K. H.; Shih, S.; Kwong, D. L.; George, T.; Lin, T. L.; Liu, H. Y.; Zavada, J.

    1992-01-01

    We have studied the photoluminescence (PL), structure, and composition of laterally anodized porous Si. Broad PL peaks were observed centered between about 620-720 nm with strong intensities measured from 500 to 860 nm. Macroscopic variations in PL intensities and peak positions are explained in terms of the structure and anodization process. Structural studies suggest that the PL appears to originate from a multilayered porous Si structure in which the top two layers are amorphous. X-ray diffraction spectra also suggest the presence of a significant amorphous phase. In addition to high concentrations of B and N, we have measured extremely high concentrations much greater than 10 exp 20 cu cm of H, C, O, and F. Our results indicate that laterally anodized porous Si does not fit the crystalline Si quantum wire model prevalent in the literature suggesting that some other structure is responsible for the observed luminescence.

  1. Photoluminescence Enhancement of Adsorbed Species on Si Nanoparticles

    NASA Astrophysics Data System (ADS)

    Matsumoto, Taketoshi; Maeda, Masanori; Kobayashi, Hikaru

    2016-01-01

    We have fabricated Si nanoparticles from Si swarf using the beads milling method. The mode diameter of produced Si nanoparticles was between 4.8 and 5.2 nm. Si nanoparticles in hexane show photoluminescence (PL) spectra with peaks at 2.56, 2.73, 2.91, and 3.09 eV. The peaked PL spectra are attributed to the vibronic structure of adsorbed dimethylanthracene (DMA) impurity in hexane. The PL intensity of hexane with DMA increases by ~3000 times by adsorption on Si nanoparticles. The PL enhancement results from an increase in absorption probability of incident light by DMA caused by adsorption on the surface of Si nanoparticles.

  2. Photoluminescence in erbium doped amorphous silicon oxycarbide thin films

    NASA Astrophysics Data System (ADS)

    Gallis, Spyros; Huang, Mengbing; Efstathiadis, Harry; Eisenbraun, Eric; Kaloyeros, Alain E.; Nyein, Ei Ei; Hommerich, Uwe

    2005-08-01

    Photoluminescence (PL) in Er-doped amorphous silicon oxycarbide (a-SiCxOy:Er) thin films, synthesized via thermal chemical vapor deposition, was investigated for carbon and oxygen concentrations in the range of 0-1.63. Intense room-temperature PL was observed at 1540 nm, with the PL intensity being dependent on the carbon and oxygen content. The strongest PL intensity was detected for a-SiC0.53O0.99:Er when pumped at 496.5 nm, with ˜20 times intensity enhancement as compared to a-SiO2:Er. Broadband excitation in the visible was observed for a-SiC0.53O0.99:Er. Fourier transform infrared spectroscopy and x-ray photoelectron spectroscopy analyses suggest that the formation of Si-C-O networks plays an important role in enhancing the Er optical activity in a-SiCxOy:Er films.

  3. Metallic-like photoluminescence and absorption in fused silica surface flaws

    SciTech Connect

    Laurence, T A; Bude, J D; Shen, N; Feldman, T; Miller, P; Steele, W A; Suratwala, T

    2008-09-11

    Using high-sensitivity confocal time-resolved photoluminescence (PL) techniques, we report an ultra-fast PL (40ps-5ns) from impurity-free surface flaws on fused silica, including polished, indented or fractured surfaces of fused silica, and from laser-heated evaporation pits. This PL is excited by the single photon absorption of sub-band gap light, and is especially bright in fractures. Regions which exhibit this PL are strongly absorptive well below the band gap, as evidenced by a propensity to damage with 3.5eV ns-scale laser pulses.

  4. Effect of reactive ion beam etching on the photoluminescence of CdTe epitaxial layers

    SciTech Connect

    Martinez-Pastor, J.; Fuster, D.; Abellan, M.; Anguita, J.; Sochinskii, N. V.

    2008-03-01

    We demonstrated the effect of reactive ion beam etching (RIBE) process on the PL properties of CdTe/sapphire metal organic vapor phase epitaxy layers. At optimum conditions, the RIBE attack does not make significant morphological changes but it results in an increase of the concentration of acceptor impurities. This was revealed by an increase of the overall photoluminescence (PL) intensity and, simultaneously, a decrease of the PL decay time, more important on the low energy side of PL spectrum due to the recombination of carriers in acceptor pairs.

  5. FT-PL analysis of CIGS/CdS/Zno interfaces

    SciTech Connect

    Webb, J.D.; Keyes, B.M.; Ramanathan, K.; Dippo, P.; Niles, D.W.; Noufi, R.

    1997-02-01

    High-quality copper indium gallium diselenide (CIGS) films were subjected to a variety of surface treatments attendant to and including deposition of CdS and/or ZnO junctions or buffer layers. The resulting devices were analyzed at 87 K using Fourier transform photoluminescence (FT-PL) spectroscopy as part of a battery of analytical procedures, including surface analysis, ellipsometry, and I{endash}V measurements, designed to elucidate the influences of the several interfaces on device performance. Our FT-PL system was upgraded with a miniature Joule-Thomson cryostat and a helium-neon laser excitation source to enable collection of highly-resolved, continuous PL spectra from 950{endash}1750 nm. The PL intensity enhancements measured with the upgraded FT-PL system for devices fabricated using chemical bath deposition (CBD) of CdS, with or without a ZnO electrode, are much greater than for devices incorporating physical vapor deposited (PVD) CdS or ZnO/CIGS interfaces. Exposure of the CIGS films to components of the CBD solution alone, without deposition of CdS, also increases PL intensity, implying a reduction in the rate of non-radiative recombination in the films. Application of CBD CdS or a CBD background solution to the CIGS shifted its PL spectrum to shorter wavelengths, while application of PVD CdS or ZnO to the CIGS broadened its PL spectrum at longer wavelengths. {copyright} {ital 1997 American Institute of Physics.}

  6. PREFACE: Non-contact AFM Non-contact AFM

    NASA Astrophysics Data System (ADS)

    Giessibl, Franz J.; Morita, Seizo

    2012-02-01

    This special issue is focussed on high resolution non-contact atomic force microscopy (AFM). Non-contact atomic force microscopy was established approximately 15 years ago as a tool to image conducting and insulating surfaces with atomic resolution. Since 1998, an annual international conference has taken place, and although the proceedings of these conferences are a useful source of information, several key developments warrant devoting a special issue to this subject. In the theoretic field, the possibility of supplementing established techniques such as scanning tunneling microscopy (STM) and Kelvin probe microscopy with atomically resolved force micrsoscopy poses many challenges in the calculation of contrast and contrast reversal. The surface science of insulators, self-assembled monolayers and adsorbates on insulators is a fruitful field for the application of non-contact AFM: several articles in this issue are devoted to these subjects. Atomic imaging and manipulation have been pioneered using STM, but because AFM allows the measurement of forces, AFM has had a profound impact in this field as well. Three-dimensional force spectroscopy has allowed many important insights into surface science. In this issue a combined 3D tunneling and force microscopy is introduced. Non-contact AFM typically uses frequency modulation to measure force gradients and was initially used mainly in a vacuum. As can be seen in this issue, frequency modulation is now also used in ambient conditions, allowing better spatial and force resolution. We thank all of the contributors for their time and efforts in making this special issue possible. We are also very grateful to the staff of IOP Publishing for handling the administrative aspects and for steering the refereeing process. Non-contact AFM contents Relation between the chemical force and the tunnelling current in atomic point contacts: a simple model Pavel Jelínek, Martin Ondrácek and Fernando Flores Theoretical simulation of

  7. Monitoring of photoluminescence decay by alkali and alkaline earth metal cations using a photoluminescent bolaamphiphile self-assembly as an optical probe.

    PubMed

    Kim, Sunhyung; Kwak, Jinyoung; Lee, Sang-Yup

    2014-05-01

    Photoluminescence (PL) decay induced by the displacement of an ionic fluorescence component, Tb(3+), with alkali and alkaline earth metal cations was investigated using photoluminescent spherical self-assemblies as optical probes. The photoluminescent spherical self-assembly was prepared by the self-organization of a tyrosine-containing bolaamphiphile molecule with a photosensitizer and Tb(3+) ion. The lanthanide ion, Tb(3+), electrically bound to the carboxyl group of the bolaamphiphile molecule, was displaced by alkali and alkaline earth metal cations that had stronger electrophilicity. The PL of the self-assembly decayed remarkably due to the substitution of lanthanide ions with alkali and alkaline earth metal cations. The PL decay showed a positive correlation with cation concentration and was sensitive to the cation valency. Generally, the PL decay was enhanced by the electrophilicity of the cations. However, Ca(2+) showed greater PL decay than Mg(2+) because Ca(2+) could create various complexes with the carboxyl groups of the bolaamphiphile molecule. Microscopic and spectroscopic investigations were conducted to study the photon energy transfer and displacement of Tb(3+) by the cation exchange. This study demonstrated that the PL decay by the displacement of the ionic fluorescent compound was applied to the detection of various cations in aqueous media and is applicable to the development of future optical sensors.

  8. Evidence for near-infrared photoluminescence of nitrogen vacancy centers in 4 H -SiC

    NASA Astrophysics Data System (ADS)

    Zargaleh, S. A.; Eble, B.; Hameau, S.; Cantin, J.-L.; Legrand, L.; Bernard, M.; Margaillan, F.; Lauret, J.-S.; Roch, J.-F.; von Bardeleben, H. J.; Rauls, E.; Gerstmann, U.; Treussart, F.

    2016-08-01

    We present evidence of near-infrared photoluminescence (PL) signature of nitrogen vacancy centers (NCVSi) - in silicon carbide (SiC). This center exhibits an S =1 ground state spin similar to the NV- center in diamond. We have performed photoluminescence excitation measurements at cryogenic temperature and demonstrated efficient photoexcitation of distinct photoluminescence from (NCVSi)- in 4 H -SiC. Furthermore, by correlating the energies of measured zero phonon lines (ZPLs) with theoretical values derived from hybrid density functional theory each of the ZPLs has been associated to the respective occupation of hexagonal (h ) and quasicubic (k ) lattice sites in close analogy to neutral divacancy centers (VCVSi) 0 in the same material. Finally, with the appropriate choice of excitation energy we demonstrated the selective excitation of (NCVSi) - PL with no contamination by (VCVSi) 0 PL, thereby opening the way towards the optical detection of (NCVSi) - electron spin resonance.

  9. Macromolecularly "Caged" Carbon Nanoparticles for Intracellular Trafficking via Switchable Photoluminescence.

    PubMed

    Misra, Santosh K; Srivastava, Indrajit; Tripathi, Indu; Daza, Enrique; Ostadhossein, Fatemeh; Pan, Dipanjan

    2017-02-08

    Reversible switching of photoluminescence (PL) of carbon nanoparticles (CNP) can be achieved with counterionic macromolecular caging and decaging at the nanoscale. A negatively charged uncoated, "bare" CNP with high luminescence loses its PL when positively charged macromolecules are wrapped around its surface. Prepared caged carbons could regain their emission only through interaction with anionic surfactant molecules, representing anionic amphiphiles of endocytic membranes. This process could be verified by gel electrophoresis, spectroscopically and in vitro confocal imaging studies. Results indicated for the first time that luminescence switchable CNPs can be synthesized for efficient intracellular tracking. This study further supports the origin of photoluminescence in CNP as a surface phenomenon correlated a function of characteristic charged macromolecules.

  10. Photoluminescence Imaging Characterization of Thin-Film InP

    SciTech Connect

    Johnston, Steve; Allende Motz, Alyssa; Moore, James; Zheng, Maxwell; Javey, Ali; Bermel, Peter

    2015-06-14

    Indium phosphide grown using a novel vapor-liquid-solid method is a promising low-cost material for III-V single-junction photovoltaics. In this work, we characterize the properties of these materials using photoluminescence (PL) imaging, time-resolved photoluminescence (TRPL), and microwave-reflection photoconductive decay (u-PCD). PL image data clearly shows the emergence of a self-similar dendritic growth network from nucleation sites, while zoomed-in images show grain structure and grain boundaries. Single photon TRPL data shows initial surface-dominated recombination, while two-photon excitation TRPL shows a lifetime of 10 ns. Bulk carrier lifetime may be as long as 35 ns as measured by u-PCD, which can be less sensitive to surface recombination.

  11. Enhancement of QDs photoluminescence by localized surface plasmon effect of Au-NPs

    NASA Astrophysics Data System (ADS)

    Heydari, Esmaeil; Greco, Tonino; Stumpe, Joachim

    2012-04-01

    Photoluminescence enhancement of CdSe/CdS/ZnS QDs by localized surface plasmon resonance of large Au-NPs has been investigated. The photoluminescence of the QDs with an emission wavelength at 620 nm in a PMMA matrix is enhanced by immobilized Au-NPs. By considering the lifetime and excitation dependent photoluminescence we realized that the emission and excitation rate enhancements both contributed to the total photoluminescence enhancement. PL measurements were carried out for different sizes of Au-NPs to find out their influences on the emission of QDs. The largest enhancement is achieved by applying 80 nm Au-NPs. Silanization method gives us the opportunity easily to prepare samples with different concentrations of Au-NPs. It is revealed that increasing the concentration of the Au-NPs layer provides higher scattering cross section which contributes in PL enhancement.

  12. The effect of residual stress on photoluminescence in multi-crystalline silicon wafers

    NASA Astrophysics Data System (ADS)

    Pogue, Vanessa; Melkote, Shreyes N.; Rounsaville, Brian; Danyluk, Steven

    2017-02-01

    This paper presents the results of an experiment designed to understand the effect of manufacturing-induced residual stress on photoluminescence (PL) in multi-crystalline silicon (mc-Si) wafers used for photovoltaic applications. The experiment relies on the use of near-infrared birefringence polariscopy and polarized micro-Raman spectroscopy to measure casting-induced residual stress present in mc-Si wafers. High temperature annealing was used to relieve the residual stress in the mc-Si wafers, and photoluminescence was used to evaluate the electrical performance to provide a correlation of residual stress to electrical activity. High temperature annealing produced a drastic improvement in photoluminescence. A decrease in the number of points of highest maximum shear stress correlated with an increase in photoluminescence. Additionally, a direct correlation was found between higher tensile residual stress and increased PL.

  13. Photoluminescence Imaging of Large-Grain CdTe for Grain Boundary Characterization

    SciTech Connect

    Johnston, Steve; Allende Motz, Alyssa; Reese, Matthew O.; Burst, James M.; Metzger, Wyatt K.

    2015-06-14

    In this work, we use photoluminescence (PL) imaging to characterize CdTe grain boundary recombination. We use a silicon megapixel camera and green (532 nm) laser diodes for excitation. A microscope objective lens system is used for high spatial resolution and a field of view down to 190 um x 190 um. PL images of large-grain (5 to 50 um) CdTe samples show grain boundary and grain interior features that vary with processing conditions. PL images of samples in the as-deposited state show distinct dark grain boundaries that suggest high excess carrier recombination. A CdCl2 treatment leads to PL images with very little distinction at the grain boundaries, which illustrates the grain boundary passivation properties. Other process conditions are also shown, along with comparisons of PL images to high spatial resolution time-resolved PL carrier lifetime maps.

  14. Practical photoluminescence and photoreflectance spectroscopic system for optical characterization of semiconductor devices.

    PubMed

    Ho, Ching-Hwa; Huang, Kuo-Wei; Lin, Yu-Shyan; Lin, Der-Yuh

    2005-05-30

    We present a practical experimental design for performing photoluminescence (PL) and photoreflectance (PR) measurements of semiconductors with only one PL spectroscopic system. The measurement setup is more cost efficient than typical PL-plus-PR systems. The design of the experimental setup of the PL-PR system is described in detail. Measurements of two actual device structures, a high-electron-mobility transistor (HEMT) and a double heterojunction-bipolar transistor (DHBT), are carried out by using this design. The experimental PL and PR spectra of the HEMT device, as well as polarized-photoreflectance (PPR) spectra of the DHBT structure, are analyzed in detailed and discussed. The experimental analyses demonstrate the well-behaved performance of this PL-PR design.

  15. Red photoluminescence BCNO synthesized from graphene oxide nanosheets

    NASA Astrophysics Data System (ADS)

    Kang, Yue; Chu, Zeng-yong; Ma, Tian; Li, Wei-ping; Zhang, Dong-jiu; Tang, Xiao-yu

    2016-01-01

    In this paper, we demonstrate the conversion of graphene oxide (GO) into boron carbon oxynitride (BCNO) hybrid nanosheets via a reaction with boric acid and urea, during which the boron and nitrogen atoms are incorporated into graphene nanosheets. The experimental results reveal that GO is important for the photoluminescence (PL) BCNO phosphor particles. More importantly, in this system, the prepared BCNO phosphors can be used to prepare the materials needed for red light emitting diodes (LEDs).

  16. Photoluminescent AuCu bimetallic nanoclusters as pH sensors and catalysts

    NASA Astrophysics Data System (ADS)

    Chen, Po-Cheng; Ma, Jia-Ying; Chen, Li-Yi; Lin, Guan-Lin; Shih, Chung-Chien; Lin, Tai-Yuan; Chang, Huan-Tsung

    2014-03-01

    A facile and one-pot approach to the preparation of gold (Au) and copper (Cu) bimetallic nanoclusters (NCs) is unveiled. AuCu NCs reveal features of orange photoluminescence (PL), reversible pH-dependent PL properties, and efficient catalytic activity for degradation of methylene blue (MB).A facile and one-pot approach to the preparation of gold (Au) and copper (Cu) bimetallic nanoclusters (NCs) is unveiled. AuCu NCs reveal features of orange photoluminescence (PL), reversible pH-dependent PL properties, and efficient catalytic activity for degradation of methylene blue (MB). Electronic supplementary information (ESI) available: Experimental section and Fig. S1-S16. See DOI: 10.1039/c3nr06123j

  17. Ionodeterioration of the silicon nanocrystal photoluminescence

    SciTech Connect

    Demarche, J.; Terwagne, G.; Barba, D.; Ross, G. G.

    2011-12-01

    The photoluminescence (PL) of Si nanocrystals (Si-nc) embedded in fused silica has been investigated under simultaneous excitations by laser and low energy proton beam. Ionodegradation of the sample, characterized by a rapid decrease and a spectral blueshift of the PL emission has been observed. These effects are associated with the creation of non-radiative centers in the Si-nc. Micro-Raman spectroscopy analysis shows that the proton beam has not changed the average size of Si-nc, but has disturbed a fraction of Si-Si bonds inside the Si-nc, which is consistent with both simulations and direct measurements. A post-annealing performed at 400 deg. C for 1 h can restore the structural properties of the Si-nc, but only a part of their nominal PL emission intensity is recovered. Characterization of the damage induced by low energy proton irradiation reported in this paper makes the use of light ion beams relevant for the experimental investigation of nanostructured systems, such as ionoluminescence measurements.

  18. Photoluminescence and electrochemical properties of transparent CeO2-ZnO nanocomposite thin films prepared by Pechini method

    NASA Astrophysics Data System (ADS)

    Sani, Z. Khosousi; Ghodsi, F. E.; Mazloom, J.

    2017-02-01

    Nanocomposite thin films of CeO2-ZnO with different molar ratios of Zn/Ce (=0, 0.25, 0.5, 0.75 and 1) were prepared by the Pechini sol-gel route. Various spectroscopic and electrochemical techniques were applied to investigate the films. XRD patterns of all the samples exhibited the peaks corresponding to cubic fluorite structure of ceria and the (101) and (103) peaks of ZnO with hexagonal structure was just observed in the sample with molar ratio of 1. EDS confirmed the presence of constituent of element in the samples. FESEM images of the films showed a surface composed of nanograins. AFM analysis revealed that root mean square roughness was enhanced as molar ratio of Zn/Ce increased. Moreover, fractal dimension of surfaces were calculated by cube counting approach. Optical measurements indicated that the film with molar ratio of 1 has the highest transmission and lowest reflectivity. The optical band gap values varied between 2.95 and 3.42 eV. The compositional dependence of refractive index and extinction coefficient were reported. The UV and blue emission appeared in PL spectra. The highest photoluminescence emission intensity was observed in the 1:1 molar ratio sample. The cyclic voltammetry measurements indicated the highest charge density (9.75 mC cm-2) and diffusion coefficient (3.507 × 10-17 cm2 s-1) belonged to the Ce/Zn (1:1) thin film.

  19. Growth orientation dependent photoluminescence of GaAsN alloys

    SciTech Connect

    Han, Xiuxun; Tanaka, Tomohiro; Kojima, Nobuaki; Ohshita, Yoshio; Yamaguchi, Masafumi; Sato, Shinichiro

    2012-01-16

    We report photoluminescence (PL) studies of both as-grown and electron-irradiated GaAsN epilayers on (311)A/B and (100) GaAs substrates. A long room-temperature (RT) PL lifetime, as well as an enhanced N incorporation, is observed in (311)B GaAsN epilayers as compared with (311)A and (100) samples. There is no direct correlation between the RT PL lifetime and the emission intensity from Ga vacancy complex detected at low temperature. The lifetime damage coefficient is relatively low for (311)B GaAsN. The irradiation-induced nonradiative recombination defects are suggested to be N- and/or As-related according to a geometrical analysis based on the tetrahedral coordination of GaAsN crystal.

  20. Ultraviolet photoluminescence from Gd-implanted AlN epilayers

    SciTech Connect

    Zavada, J. M.; Nepal, N.; Lin, J. Y.; Jiang, H. X.; Brown, E.; Hoemmerich, U.; Hite, J.; Thaler, G. T.; Abernathy, C. R.; Pearton, S. J.; Gwilliam, R.

    2006-10-09

    Deep ultraviolet emission from gadolinium (Gd)-implanted AlN thin films has been observed using photoluminescence (PL) spectroscopy. The AlN epilayers were ion implanted with Gd to a total dose of {approx}6x10{sup 14} cm{sup -2}. Using the output at 197 nm from a quadrupled Ti:sapphire laser, narrow PL emission was observed at 318 nm, characteristic of the trivalent Gd ion. A broader emission band, also centered at 318 nm, was measured with excitation at 263 nm. The PL emission intensity decreased by less than a factor of 3 over the sample temperature range of 10-300 K and decay transients were of the order of nanoseconds.

  1. Correlation of atomic structure and photoluminescence of the same quantum dot: pinpointing surface and internal defects that inhibit photoluminescence.

    PubMed

    Orfield, Noah J; McBride, James R; Keene, Joseph D; Davis, Lloyd M; Rosenthal, Sandra J

    2015-01-27

    In a size regime where every atom counts, rational design and synthesis of optimal nanostructures demands direct interrogation of the effects of structural divergence of individuals on the ensemble-averaged property. To this end, we have explored the structure-function relationship of single quantum dots (QDs) via precise observation of the impact of atomic arrangement on QD fluorescence. Utilizing wide-field fluorescence microscopy and atomic number contrast scanning transmission electron microscopy (Z-STEM), we have achieved correlation of photoluminescence (PL) data and atomic-level structural information from individual colloidal QDs. This investigation of CdSe/CdS core/shell QDs has enabled exploration of the fine structural factors necessary to control QD PL. Additionally, we have identified specific morphological and structural anomalies, in the form of internal and surface defects, that consistently vitiate QD PL.

  2. Photoluminescent conductor polymer holograms

    NASA Astrophysics Data System (ADS)

    Ruiz-Limón, B.; Olivares-Pérez, A.; Ponce-Lee, E. L.; Hernández-Garay, M. P.; Páez-Trujillo, G.; Fuentes-Tapia, I.

    2007-02-01

    An organic conductor polymer was doped with benzalkonium chloride to get a photoluminescent effect at 560 nm and it was used as holographic material. We used a digital image to generate a hologram in a computer and it was transferred by microlithography techniques to our polymer to get a phase hologram. The transference is successful by rubbing, the heat increment produce temperature gradients and the information in the mask is transferred to the material by the refraction index changes, thus the film is recorded. We recorded some gratings to observe the behavior of photoluminescent light with different frequencies when it is radiated with a green laser beam at 532 nm.

  3. astronomia.pl: Polish Astronomy Portal

    NASA Astrophysics Data System (ADS)

    Czart, K.

    2005-12-01

    Astronomia.pl is an educational internet service for students, teachers and all astronomy amateurs. It is the biggest and the most popular astronomical portal in Poland. Our main address is www.astronomia.pl, but we created additional services: Copernicus - biographies of famous astronomers (www.kopernik.pl), AstroWWW - a collection of interesting webpages created by amateur astronomers (www.astrowww. pl), AstroSHOP - an on-line shop (www.astronomia.com.pl), Planetarium - website about Polish planetaria (www.planetarium.pl). An English version of the portal is available at www.astronomia.pl/english. In this article we give a short introduction to many of the portal's projects.

  4. Crystal growth and photoluminescence characteristics of Ca{sub 2}MgSi{sub 2}O{sub 7}:Eu{sup 3+} thin films grown by pulsed laser deposition

    SciTech Connect

    Yang, Hyun Kyoung; Moon, Byung Kee; Choi, Byung Chun; Jeong, Jung Hyun; Kim, Kwang Ho

    2012-10-15

    Ca{sub 2}MgSi{sub 2}O{sub 7}:Eu{sup 3+} films were deposited on Al{sub 2}O{sub 3} (0 0 0 1) substrates by pulsed laser deposition. The films were grown at various oxygen pressures ranging from 100 to 400 mTorr. The crystallinity and surface morphology of the films were examined by X-ray diffraction (XRD) and atomic force microscopy (AFM), respectively. XRD and AFM respectively showed that the Ca{sub 2}MgSi{sub 2}O{sub 7}:Eu{sup 3+} films had a zircon structure and consisted of homogeneous grains ranging from 100 to 400 nm depending on the deposition conditions. The radiation emitted was dominated by a red emission peak at 620 nm. The maximum PL intensity of the Ca{sub 2}MgSi{sub 2}O{sub 7}:Eu{sup 3+} films grown at 300 mTorr was increased by a factor of 1.3 compared to that of Ca{sub 2}MgSi{sub 2}O{sub 7}:Eu{sup 3+} films grown at 100 mTorr. The crystallinity, surface roughness and photoluminescence of the thin-film phosphors were strongly dependent on the deposition conditions, in particular, the oxygen partial pressure.

  5. AFM-Based Mechanical Nanomanipulation

    NASA Astrophysics Data System (ADS)

    Landolsi, Fakhreddine

    2011-12-01

    Advances in several research areas increase the need for more sophisticated fabrication techniques and better performing materials. Tackling this problem from a bottom-up perspective is currently an active field of research. The bottom-up fabrication procedure offers sub-nanometer accurate manipulation. At this time, candidates to achieve nanomanipulation include chemical (self-assembly), biotechnology methods (DNA-based), or using controllable physical forces (e.g. electrokinetic forces, mechanical forces). In this thesis, new methods and techniques for mechanical nanomanipulation using probe force interaction are developed. The considered probes are commonly used in Atomic Force Microscopes (AFMs) for high resolution imaging. AFM-based mechanical nanomanipulation will enable arranging nanoscale entities such as nanotubes and molecules in a precise and controlled manner to assemble and produce novel devices and systems at the nanoscale. The novelty of this research stems from the development of new modeling of the physics and mechanics of the tip interaction with nanoscale entities, coupled with the development of new smart cantilevers with multiple degrees of freedom. The gained knowledge from the conducted simulations and analysis is expected to enable true precision and repeatability of nanomanipulation tasks which is not feasible with existing methods and technologies.

  6. Origin of deep level defect related photoluminescence in annealed InP

    NASA Astrophysics Data System (ADS)

    Zhao, Youwen; Dong, Zhiyuan; Miao, Shanshan; Deng, Aihong; Yang, Jun; Wang, Bo

    2006-12-01

    Deep level defects in annealed InP have been studied by using photoluminescence spectroscopy (PL), thermally stimulated current (TSC), deep level transient spectroscopy (DLTS), and positron annihilation lifetime (PAL). A noticeable broad PL peak centered at 1.3eV has been observed in the InP sample annealed in iron phosphide ambient. Both the 1.3eV PL emission and a defect at EC-0.18eV correlate with a divacancy detected in the annealed InP sample. The results make a divacancy defect and related property identified in the annealed InP.

  7. Influence of doping in InP buffer on photoluminescence behavior of InPBi

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Pan, Wenwu; Cao, Chunfang; Wu, Xiaoyan; Wang, Shumin; Gong, Qian

    2016-11-01

    InP1- x Bi x epilayers with 1.0% bismuth concentration were grown on InP(001) substrates by gas-source molecular beam epitaxy. Silicon and beryllium were doped into the InP buffer layer, and their influences on the photoluminescence (PL) emission of InPBi were investigated. The PL emission of InPBi was found to be intensified by beryllium doping into the InP buffer layer. However, there was no influence of silicon doping. To investigate the reason for the PL intensity enhancement of InPBi, the carrier transport behavior at the interface was also discussed.

  8. Effects of surface oxide formation on germanium nanowire band-edge photoluminescence

    SciTech Connect

    Minaye Hashemi, Fatemeh Sadat; Thombare, Shruti; Brongersma, Mark L.; Morral, Anna Fontcuberta i; McIntyre, Paul C.

    2013-06-24

    The effect of intentional surface oxide formation on band-edge photoluminescence (PL) of Ge nanowires was investigated. Thermal oxidation in molecular O{sub 2} was used to produce a surface oxide layer on assemblies of single crystal nanowires grown by the vapor-liquid-solid method. With increasing oxidation of the wires, the band-edge PL associated with the indirect gap transition becomes more intense. X-ray photoelectron spectroscopy confirms the formation of an increasingly GeO{sub 2}-like surface oxide under annealing conditions that enhance the indirect-gap PL, consistent with surface oxide passivation of nonradiative recombination centers initially present on the nanowire surface.

  9. Photoluminescence at room temperature of liquid-phase crystallized silicon on glass

    NASA Astrophysics Data System (ADS)

    Vetter, Michael; Schwuchow, Anka; Andrä, Gudrun

    2016-12-01

    The room temperature photoluminescence (PL) spectrum due band-to-band recombination in an only 8 μm thick liquid-phase crystallized silicon on glass solar cell absorber is measured over 3 orders of magnitude with a thin 400 μm thick optical fiber directly coupled to the spectrometer. High PL signal is achieved by the possibility to capture the PL spectrum very near to the silicon surface. The spectra measured within microcrystals of the absorber present the same features as spectra of crystalline silicon wafers without showing defect luminescence indicating the high electronic material quality of the liquid-phase multi-crystalline layer after hydrogen plasma treatment.

  10. Photoluminescence enhancement of the single InAs quantum dots through plasmonic Au island films

    SciTech Connect

    Wang, H. Y.; Dou, X. M.; Yang, Sh.; Su, D.; Jiang, D. S.; Ni, H. Q.; Niu, Z. C.; Sun, B. Q.

    2014-03-28

    The approach of optical positioning the single InAs quantum dots (QDs) was used for investigating QD photoluminescence (PL) enhancement based on plasmonic effect of nanometer-sized Au island films. It is found that the maximum increase of QD PL intensity is about thirty-eight fold after 5-nm thick Au island films are evaporated on the QD sample surface. The enhanced localized excitation field and increased QD radiative decay rate are responsible for this PL enhancement. This provides an alternative way of preparing bright single photon sources based on the plasmonic effect.

  11. Effects of Au nanoparticles on photoluminescence emission from Si-vacancy in diamond

    NASA Astrophysics Data System (ADS)

    Orlanducci, S.; Cianchetta, I.; Tamburri, E.; Guglielmotti, V.; Terranova, M. L.

    2012-10-01

    We studied the coupling of diamond Si color centers with size-controlled Au nanoparticles obtained by chemical routes. The diamond samples, synthesized by Chemical Vapor Deposition, were polycrystalline films or isolated grains. The plasmonic responses of the Au nanoparticles were found to couple with the Ar+ laser frequency or with the frequency of the Si-defects photoluminescence (PL). When the PL of Si optical centers is resonant with the maximum of the Au extinction spectrum, a threshold behavior and a decrease of the PL band FWHM with increasing laser energy is detected, suggesting the transition from spontaneous to stimulated emission.

  12. Photoluminescence from semiconductor cadmium selenide nanocrystals

    NASA Astrophysics Data System (ADS)

    Nazzal, Amjad Yousef

    In this dissertation, the photoluminescence (PL) emission properties from different CdSe nanocrystals (NCs) dispersed in polymer thin films were investigated. The PL spectroscopy was used as a probing tool to study core and surface-related emission properties of the CdSe NCs under investigation. The results found in these studies are promising from the point of view of fundamental understanding as well as the possible employments of the emission properties of CdSe NCs in certain technological applications. The studies presented in this dissertation include the following: (i) PL polarization spectroscopy of single CdSe NCs was performed on a system of colloidal CdSe quantum rods (QRs). Our experimental measurements suggest a strong polarization dependence of both excitation and emission, and confirm the unique linear dipole in the QRs along the long axis of the rod, i.e. the c axis of wurtzite structure, which is in agreement with the previous theoretical predictions. These results are very important because it represents an experimental test to the available theoretical models used in exploring the rich electronic spectra of these NC systems. These results also show the importance of the shape anisotropy on the electronic spectrum of NCs. (ii) Environmental effects on the PL from highly luminescent bare-core CdSe and core/shell CdSe/ZnS NCs were systematically investigated under different atmospheric environments and photo-irradiation conditions. In this study, the PL was used as a probe to detect changes in the electronic spectrum of the NCs due to photo-induced interactions on the surface of the NCs with the local surrounding atmosphere. Such studies are very important to provide a good understanding of the optimum operational conditions for emission applications of NCs in solid-state devices and also give a simple way of studying the surface of the NCs indirectly by investigating the surface interactions with different molecular systems and their effects on the

  13. Preparation ways and photoluminescence of mesoporous alumina

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Liu, J.; Zhao, X.; Wu, G.

    2010-12-01

    High specific surface area (SSA) mesoporous alumina (MA) is synthesized by a sol-gel method using pelagic clay as the raw material. The MA synthesized with a (1-hexadecyl) trimethylammonium bromide (CTAB): utea mixed template shows a SSA of 385.56 m2/g and a mean pore size of 3.6 nm. And the SSA of the MA synthesized with the mixed template is increased compared with the MA synthesized with a CTAB single template. Simultaneously, the MA exhibits a blue photoluminescence which come from the defect F+ and F centers, and the higher PL emission of the MA synthesized with a CTAB: utea mixed template is attributed to the high defect center density in the MA.

  14. Photoluminescence properties of MgxZn1-xO films grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Wu, T. Y.; Huang, Y. S.; Hu, S. Y.; Lee, Y. C.; Tiong, K. K.; Chang, C. C.; Chou, W. C.; Shen, J. L.

    2017-02-01

    The optical properties of MgxZn1-xO films with x=0.03, 0.06, 0.08, and 0.11 grown by molecular beam epitaxy (MBE) have been studied by temperature-dependent photoluminescence (PL) measurement. It is presented that the full-width at half-maximum (FWHM) of the 12 K PL spectrum of MgZnO films increases with increasing Mg concentration and would deviate significantly from the simulation curve of Schubert model with higher Mg contents. The abnormal broader PL FWHM is inferred from larger compositional fluctuation by incorporating higher Mg contents, which results in larger effect of excitonic localization to induce more significant S-shaped behavior of the PL peak energy with temperature dependence. Additionally, the degree of localization increases as the linear proportion of the PL FWHM, indicating that the excitonic behavior in MgZnO films belong to the strong localization effect.

  15. Impact of cuticle photoluminescence on the color morphism of a male damselfly Ischnura senegalensis (Rambur, 1842)

    PubMed Central

    Chuang, Chin-Jung; Liu, Cheng-Der; Patil, Ranjit A.; Wu, Chi-Chung; Chang, Yao-Chih; Peng, Chih-Wen; Chao, Ting-Kwuan; Liou, Je-Wen; Liou, Yung; Ma, Yuan-Ron

    2016-01-01

    In this study the damselfly Ischnura senegalensis (Rambur, 1842) was first found to produce strong photoluminescence (PL) emissions from various colored-body portions, such as the eighth abdominal segment of the tail. The colors of the colored-body portions can be enhanced or modified by the PL emissions for assistance in reducing intrasexual and male harassment, and improving mature mating and conspecific identity. Therefore, the PL emissions that contribute to the color modification and coloration are involved in the cuticle evolution of the damselflies. The micro-PL confocal images verify that the PL emissions can strongly influence the surface colors of the cuticle, and demonstrate why the damselfly Ischnura senegalensis is called a bluetail. PMID:27966520

  16. Magneto-photoluminescence of InAs/InGaAs/InAlAs quantum well structures

    SciTech Connect

    Terent'ev, Ya. V.; Danilov, S. N.; Loher, J.; Schuh, D.; Bougeard, D.; Weiss, D.; Ganichev, S. D.; Durnev, M. V.; Tarasenko, S. A.; Mukhin, M. S.; Ivanov, S. V.

    2014-03-10

    Photoluminescence (PL) and highly circularly polarized magneto-PL (up to 50% at 6 T) from two-step bandgap InAs/InGaAs/InAlAs quantum wells (QWs) are studied. Bright PL is observed up to room temperature, indicating a high quantum efficiency of the radiative recombination in these QWs. The sign of the circular polarization indicates that it stems from the spin polarization of heavy holes caused by the Zeeman effect. Although in magnetic field the PL lines are strongly circularly polarized, no energy shift between the counter-polarized PL lines was observed. The results suggest the electron and the hole g-factor to be of the same sign and close magnitudes.

  17. Enhancement of Photoluminescence Intensity of CdSe Nanorods Doped in Cholesteric Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Huang, Chiu-Chang; Chou, Tsu-Ruey; Chen, Jun-Wei; Chao, Chih-Yu

    2015-02-01

    The enhancement of photoluminescence (PL) signals of CdSe nanorods caused by embedding in the cholesteric liquid crystals (CLCs) is demonstrated in this article. Three kinds of different CLCs have been used in this experiment, and the results have shown that the phenomenon of PL enhancement generally occurs in each sample. Moreover, the relations between the enhancement and the pitch of CLCs have been analyzed as well. It displays an inversely proportional property, that is, a greater enhancement of the PL signal is achieved in the samples with shorter pitches of CLCs. The highest PL amplification acquired in this study is 3.31 times. The enhancement phenomenon is attributed to the presence of oily streaks in CLCs, which possess advantages due to the excitation of CdSe nanorods. With the versatile properties that CLC have, this study suggests that the method could provide a potential way for PL signal manipulation in many optical fields.

  18. Low-temperature photoluminescence analysis of CdTeSe crystals for radiation-detector applications

    SciTech Connect

    YANG G.; Roy, U. N.; Bolotnikov, A. E.; Cui, Y.; Camarda, G.S.; Hossain, A.; and James, R. B.

    2015-10-05

    Goal: Understanding the changes of material defects in CdTeSe following annealing. Experimental results and discussions: Infrared (IR) transmission microscopy; current-voltage measurements (Highlight: Improvement of resistivity of un-doped crystals after annealing); low-temperature photoluminescence (PL) spectrum of as-grown and annealed samples.

  19. Structural Order-Disorder Transformations Monitored by X-Ray Diffraction and Photoluminescence

    ERIC Educational Resources Information Center

    Lima, R. C.; Paris, E. C.; Leite, E. R.; Espinosa, J. W. M.; Souza, A. G.; Longo, E.

    2007-01-01

    A study was conducted to examine the structural order-disorder transformation promoted by controlled heat treatment using X-ray diffraction technique (XRD) and photoluminescence (PL) techniques as tools to monitor the degree of structural order. The experiment was observed to be versatile and easily achieved with low cost which allowed producing…

  20. Synthesis and Photoluminescence Properties of Porous Silicon Nanowire Arrays.

    PubMed

    Lin, Linhan; Guo, Siping; Sun, Xianzhong; Feng, Jiayou; Wang, Yan

    2010-08-05

    Herein, we prepare vertical and single crystalline porous silicon nanowires (SiNWs) via a two-step metal-assisted electroless etching method. The porosity of the nanowires is restricted by etchant concentration, etching time and doping lever of the silicon wafer. The diffusion of silver ions could lead to the nucleation of silver nanoparticles on the nanowires and open new etching ways. Like porous silicon (PS), these porous nanowires also show excellent photoluminescence (PL) properties. The PL intensity increases with porosity, with an enhancement of about 100 times observed in our condition experiments. A "red-shift" of the PL peak is also found. Further studies prove that the PL spectrum should be decomposed into two elementary PL bands. The peak at 850 nm is the emission of the localized excitation in the nanoporous structure, while the 750-nm peak should be attributed to the surface-oxidized nanostructure. It could be confirmed from the Fourier transform infrared spectroscopy analyses. These porous SiNW arrays may be useful as the nanoscale optoelectronic devices.

  1. Raman and photoluminescence study of ion beam irradiated porous silicon: a case for the astrophysical extended red emission?

    NASA Astrophysics Data System (ADS)

    Baratta, G. A.; Strazzulla, G.; Compagnini, G.; Longo, P.

    2004-03-01

    We have measured photoluminescence (PL) and Raman spectra of porous silicon (PS) thin films subjected to irradiation with 30 keV He+ ion beams. Fluence has been changed between 1014 and 1016 ions/cm2. The results show a decrease of the photoluminescence intensity by increasing the ion fluence, probably due to the formation of induced non-radiative recombination centres. The increase of defects density and the partial amorphization of the samples have been studied through Raman spectroscopy and a comparison with the induced damage in single-crystalline silicon has been considered. The characteristic PL wavelength (600-800 nm) supports the hypothesis that silicon nanostructures are an attractive carrier for the so called "Extended Red Emission" (ERE) observed in many astronomical objects. However, the possibility to tune the PL quantum efficiency by ion irradiation indicates that silicon nanostructures in space could loss their photoluminescence capability in those environments where cosmic ion bombardment plays a relevant role.

  2. Thermally Engineered Blue Photoluminescence of Porous Anodic Alumina Membranes for Promising Optical Biosensors

    NASA Astrophysics Data System (ADS)

    Bu, Sang Don; Cho, Sam Yeon; Choi, Yong Chan; Kim, Jin Woo; Han, Jin Kyu; Kwak, Jin Ho; Yang, Sun A.

    Optical biosensors based on porous anodic alumina membranes (PAAMs) have shown to be an effective device because of their unique optical properties and biocompatibility. Among various optical properties, photoluminescence (PL) emission derived from PAAMs is one of the most suitable characteristics. However, the origin of PL from PAA is unclear and still in doubt. Therefore, it is essential for further potential practical applications to understand the origin of PL and PL variations. Here, we investigate the effects of post-annealing temperatures on the blue PL of amorphous PAAMs fabricated in oxalic acid. We find that the blue PL emission is strongly dependent on the thermal properties. A strong blue PL at a peak of ~460 nm is observed from the initial PAAM (not annealed PAAM) and this PL band can be divided into two Gaussian components at 458 ~ +/- ~ 4 nm (P1 band) and 517 ~ +/- 7nm (P2 band). As the temperature increases to 600 ° C , the intensities of two PL bands gradually increase. During temperature increases from 600 to 700 ° C , the P2 band increases but the P1 band decreases. The analyses of electron paramagnetic resonance, Fourier transform infrared spectroscopy, and ultraviolet-visible absorption spectroscopy show that the P1 and P2 bands originate from the unstable carboxylates and the stable carboxylates, respectively.

  3. Two types of photoluminescence blinking revealed by single quantum dot spectroelectrochemistry

    PubMed Central

    Galland, Christophe; Ghosh, Yagnaseni; Steinbrück, Andrea; Sykora, Milan; Hollingsworth, Jennifer A.; Klimov, Victor I.; Htoon, Han

    2012-01-01

    Photoluminescence (PL) intermittency (blinking), or random switching between states of high- (ON) and low (OFF) emissivities, is a universal property of molecular emitters exhibited by dyes1, polymers2, biological molecules3 and artificial nanostructures such as nanocrystal quantum dots, carbon nanotubes, and nanowires4,5,6. For the past fifteen years, colloidal nanocrystals have been used as a model system for studies of this phenomenon.5,6 The occurrence of OFF periods in nanocrystal emission has been commonly attributed to the presence of an additional charge7, which leads to PL quenching by nonradiative Auger recombination.8 However, the “charging” model was recently challenged in several reports.9,10 Here, to clarify the role of charging in PL intermittency, we perform time-resolved PL studies of individual nanocrystals while controlling electrochemically the degree of their charging. We find that two distinct mechanisms can lead to PL intermittency. We identify conventional blinking (A-type) due to charging/discharging of the nanocrystal core when lower PL intensities correlate with shorter PL lifetimes. Importantly, we observe a different blinking (B-type), when large changes in the PL intensity are not accompanied by significant changes in PL dynamics. We attribute this blinking behavior to charge fluctuations in the electron-accepting surface sites. When unoccupied, these sites intercept hot electrons before they relax into emitting core states. Both blinking mechanisms can be controlled electrochemically and under appropriate potential blinking can be completely suppressed. PMID:22071764

  4. Influence of Energetic Disorder on Exciton Lifetime and Photoluminescence Efficiency in Conjugated Polymers.

    PubMed

    Rörich, Irina; Mikhnenko, Oleksandr V; Gehrig, Dominik; Blom, Paul W M; Crăciun, N Irina

    2017-02-16

    Using time-resolved photoluminescence (TRPL) spectroscopy the exciton lifetime in a range of conjugated polymers is investigated. For poly(p-phenylenevinylene) (PPV)-based derivatives and a polyspirobifluorene copolymer (PSBF) we find that the exciton lifetime is correlated with the energetic disorder. Better ordered polymers exhibit a single exponential PL decay with exciton lifetimes of a few hundred picoseconds, whereas polymers with a larger degree of disorder show multiexponential PL decays with exciton lifetimes in the nanosecond regime. These observations are consistent with diffusion-limited exciton quenching at nonradiative recombination centers. The measured PL decay time reflects the time that excitons need to diffuse toward these quenching sites. Conjugated polymers with large energetic disorder and thus longer exciton lifetime also exhibit a higher photoluminescence quantum yield due to the slower exciton diffusion toward nonradiative quenching sites.

  5. Effects of indium and tin overlayers on the photoluminescence spectrum of mercuric iodide

    SciTech Connect

    James, R.B. ); Bao, X.J.; Schlesinger, T.E. ); Ortale, C.; Cheng, A.Y. )

    1990-03-01

    Mercuric iodide (HgI{sub 2} ) crystals with semitransparent metal overlayers of indium and tin were characterized using low-temperature photoluminescence (PL) spectroscopy. The PL spectra were found to differ for points beneath the thin metal overlayers and points that were masked off during each deposition. The photoluminescence data were compared with PL measurements taken on HgI{sub 2} photodetectors with indium-tin-oxide (ITO) entrance electrodes. The similarities of the spectra for the HgI{sub 2} samples with In, Sn, and ITO conducting overlayers indicate that the regions in the ITO-contacted photodetectors with relatively poor photoresponses are associated with the interaction of indium or tin with the mercuric iodide substrate.

  6. Blue photoluminescence enhancement in laser-irradiated 6H-SiC at room temperature

    SciTech Connect

    Wu, Yan; Ji, Lingfei Lin, Zhenyuan; Jiang, Yijian; Zhai, Tianrui

    2014-01-27

    Blue photoluminescence (PL) of 6H-SiC irradiated by an ultraviolet laser can be observed at room temperature in dark condition. PL spectra with Gaussian fitting curve of the irradiated SiC show that blue luminescence band (∼440 nm) is more pronounced than other bands. The blue PL enhancement is the combined result of the improved shallow N-donor energy level and the unique surface state with Si nanocrystals and graphene/Si composite due to the effect of photon energy input by the short-wavelength laser irradiation. The study can provide a promising route towards the preparation of well-controlled blue photoluminescence material for light-emitting devices.

  7. Photoluminescence study of ZnS and ZnS:Pb nanoparticles

    SciTech Connect

    Virpal, Hastir, Anita; Kaur, Jasmeet; Singh, Gurpreet; Singh, Ravi Chand

    2015-05-15

    Photoluminescence (PL) study of pure and 5wt. % lead doped ZnS prepared by co-precipitation method was conducted at room temperature. The prepared nanoparticles were characterized by X-ray Diffraction (XRD), UV-Visible (UV-Vis) spectrophotometer, Photoluminescence (PL) and Raman spectroscopy. XRD patterns confirm cubic structure of ZnS and PbS in doped sample. The band gap energy value increased in case of Pb doped ZnS nanoparticles. The PL spectrum of pure ZnS was de-convoluted into two peaks centered at 399nm and 441nm which were attributed to defect states of ZnS. In doped sample, a shoulder peak at 389nm and a broad peak centered at 505nm were observed. This broad green emission peak originated due to Pb activated ZnS states.

  8. Photoluminescence of Diamondoid Crystals

    SciTech Connect

    Clay, William; Sasagawa, Takao; Iwasa, Akio; Liu, Zhi; Dahl, Jeremy E.; Carlson, Robert M.K.; Kelly, Michael; Melos, Nicholas; Shen, Zhi-Xun; /Stanford U., Phys. Dept. /Stanford U., Appl. Phys. Dept. /Stanford U., Geballe Lab. /SIMES, Stanford

    2012-04-03

    The photoluminescence of diamondoids in the solid state is examined. All of the diamondoids are found to photoluminesce readily with initial excitation wavelengths ranging from 233 nm to 240 nm (5.3 eV). These excitation energies are more than 1 eV lower than any previously studied saturated hydrocarbon material. The emission is found to be heavily shifted from the absorption, with emission wavelengths of roughly 295 nm (4.2 eV) in all cases. In the dissolved state, however, no uorescence is observed for excitation wavelengths as short as 200 nm. We also discuss predictions and measurements of the quantum yield. Our predictions indicate that the maximum yield may be as high as 25%. Our measurement of one species, diamantane, gives a yield of 11%, the highest ever reported for a saturated hydrocarbon, even though it was likely not at the optimal excitation wavelength.

  9. Non-Monotonous Temperature Dependence of the Spectral Maximum of Photoluminescence in CdS/ZnSe Superlattices

    DTIC Science & Technology

    2000-06-23

    Karlsruhe University, D-76128 Karlsruhe, Germany Abstract. Macro- and micro-photoluminescence (PL) spectroscopy is applied to investigate exciton...excitons has been generalized from zero to finite temperatures allowing for exciton hopping from low- energy to high- energy localized sites as well as...spatially resolved (jt-PL) photolumninescence spectroscopy . The band alignment of this heterostructure is of type-II with the conduction and valence band

  10. Investigation of Photoluminescence and Photocurrent in InGaAsP/InP Strained Multiple Quantum Well Heterostructures

    NASA Technical Reports Server (NTRS)

    Raisky, O. Y.; Wang, W. B.; Alfano, R. R.; Reynolds, C. L., Jr.; Swaminathan, V.

    1997-01-01

    Multiple quantum well InGaAsP/InP p-i-n laser heterostructures with different barrier thicknesses have been investigated using photoluminescence (PL) and photocurrent (PC) measurements. The observed PL spectrum and peak positions are in good agreement with those obtained from transfer matrix calculations. Comparing the measured quantum well PC with calculated carrier escape rates, the photocurrent changes are found to be governed by the temperature dependence of the electron escape time.

  11. Photoluminescence, chemiluminescence and anodic electrochemiluminescence of hydrazide-modified graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Dong, Yongqiang; Dai, Ruiping; Dong, Tongqing; Chi, Yuwu; Chen, Guonan

    2014-09-01

    Single-layer graphene quantum dots (SGQDs) were refluxed with hydrazine (N2H4) to prepare hydrazide-modified SGQDs (HM-SGQDs). Compared with SGQDs, partial oxygen-containing groups have been removed from HM-SGQDs. At the same time, a lot of hydrazide groups have been introduced into HM-SGQDs. The introduced hydrazide groups provide HM-SGQDs with a new kind of surface state, and give HM-SGQDs unique photoluminescence (PL) properties such as blue-shifted PL emission and a relatively high PL quantum yield. More importantly, the hydrazide-modification made HM-SGQDs have abundant luminol-like units. Accordingly, HM-SGQDs exhibit unique and excellent chemiluminescence (CL) and anodic electrochemiluminescence (ECL). The hydrazide groups of HM-SGQDs can be chemically oxidized by the dissolved oxygen (O2) in alkaline solutions, producing a strong CL signal. The CL intensity is mainly dependent on the pH value and the concentration of O2, implying the potential applications of HM-SGQDs in pH and O2 sensors. The hydrazide groups of HM-SGQDs can also be electrochemically oxidized in alkaline solutions, producing a strong anodic ECL signal. The ECL intensity can be enhanced sensitively by hydrogen peroxide (H2O2). The enhanced ECL intensity is proportional to the concentration of H2O2 in a wide range of 3 μM to 500 μM. The detection limit of H2O2 was calculated to be about 0.7 μM. The results suggest the great potential applications of HM-SGQDs in the sensors of H2O2 and bio-molecules that are able to produce H2O2 in the presence of enzymes.Single-layer graphene quantum dots (SGQDs) were refluxed with hydrazine (N2H4) to prepare hydrazide-modified SGQDs (HM-SGQDs). Compared with SGQDs, partial oxygen-containing groups have been removed from HM-SGQDs. At the same time, a lot of hydrazide groups have been introduced into HM-SGQDs. The introduced hydrazide groups provide HM-SGQDs with a new kind of surface state, and give HM-SGQDs unique photoluminescence (PL) properties such

  12. Nano-XRF Analysis of Metal Impurities Distribution at PL Active Grain Boundaries During mc-Silicon Solar Cell Processing

    SciTech Connect

    Bernardini, Simone; Johnston, Steve; West, Bradley; Naerland, Tine U.; Stuckelberger, Michael; Lai, Barry; Bertoni, Mariana I.

    2017-01-01

    Metal impurities are known to hinder the performance of commercial Si-based solar cells by inducing bulk recombination, increasing leakage current, and causing direct shunting. Recently, a set of photoluminescence (PL) images of neighboring multicrystalline silicon wafers taken from a cell production line at different processing stages has been acquired. Both band-to-band PL and sub-bandgap PL (subPL) images showed various regions with different PL signal intensity. Interestingly, in several of these regions a reversal of the subPL intensity was observed right after the deposition of the antireflective coating. In this paper, we present the results of the synchrotron-based nano-X-ray fluorescence imaging performed in areas characterized by the subPL reversal to evaluate the possible role of metal decoration in this uncommon behavior. Furthermore, the acquisition of a statistically meaningful set of data for samples taken at different stages of the solar cell manufacturing allows us to shine a light on the precipitation and rediffusion mechanisms of metal impurities at these grain boundaries.

  13. Effects of Additives, Photodegradation, and Water-tree Degradation on the Photoluminescence in Polyethylene and Polypropylene

    NASA Astrophysics Data System (ADS)

    Ito, Toshihide; Fuse, Norikazu; Ohki, Yoshimichi

    Photoluminescence (PL) spectra induced by irradiation of ultraviolet photons are compared among low-density polyethylene (LDPE), crosslinked polyethylene (XLPE), and polypropylene (PP). Three PL bands appear around 4.2, 3.6, and 3.1 eV in LDPE and XLPE, while similar three PL bands are observed at similar energies in PP. The PL spectra and their decay profiles are independent of the presence of additives and are also independent of whether the samples were crosslinked or not. These results indicate that neither the additives nor the crosslinking has any significant effects on the respective three PLs in PE and PP. When the sample was pre-irradiated by the ultraviolet photons under different atmospheres (air, O2, and vacuum), all the PL intensities decrease with the progress of the pre-irradiation regardless of whether the sample is PE or PP. Therefore, all the PLs are considered to result from impurities. In all the pre-irradiated samples, a new PL band appears at 2.9 eV, of which intensity is stronger when the oxygen partial pressure during the pre-irradiation was lower. This PL is considered to be due to photo-induced conjugated double bonds. It has also been confirmed that water-tree degradation in LDPE or in XLPE does not contribute to PL.

  14. Giant photoluminescence emission in crystalline faceted Si grains

    PubMed Central

    Faraci, Giuseppe; Pennisi, Agata R.; Alberti, Alessandra; Ruggeri, Rosa; Mannino, Giovanni

    2013-01-01

    Empowering an indirect band-gap material like Si with optical functionalities, firstly light emission, represents a huge advancement constantly pursued in the realization of any integrated photonic device. We report the demonstration of giant photoluminescence (PL) emission by a newly synthesized material consisting of crystalline faceted Si grains (fg-Si), a hundred nanometer in size, assembled in a porous and columnar configuration, without any post processing. A laser beam with wavelength 632.8 nm locally produce such a high temperature, determined on layers of a given thickness by Raman spectra, to induce giant PL radiation emission. The optical gain reaches the highest value ever, 0.14 cm/W, representing an increase of 3 orders of magnitude with respect to comparable data recently obtained in nanocrystals. Giant emission has been obtained from fg-Si deposited either on glass or on flexible, low cost, polymeric substrate opening the possibility to fabricate new devices. PMID:24056300

  15. Growth and photoluminescence characteristics of AlGaAs nanowires

    NASA Astrophysics Data System (ADS)

    Wu, Z. H.; Sun, M.; Mei, X. Y.; Ruda, H. E.

    2004-07-01

    Growth of high-quality single-crystal AlGaAs nanowires was demonstrated using the vapor-liquid-solid (VLS) mechanism with molecular-beam epitaxy (MBE). Highly ordered AlGaAs nanowire arrays and GaAs /AlGaAs multilayer nanowires were also prepared. Photoluminescence (PL) from homogeneous AlGaAs and GaAs /AlGaAs multilayer nanowires was measured. The Al composition of the AlGaAs nanowires was found to be significantly lower than that for planar MBE films grown under the same conditions, as determined from PL and energy-dispersive x-ray spectroscopy measurements. This is explained in terms of the different growth mechanisms for VLS and normal MBE. Such AlGaAs nanowires are expected to have a wide range of applications in electronic and photonic devices.

  16. Exchange interactions in coupled quantum dots observed through polarized photoluminescence

    NASA Astrophysics Data System (ADS)

    Wijesundara, Kushal C.; Garrido, Mauricio; Ramanathan, Swati; Stinaff, Eric; Bracker, Allan; Gammon, Dan

    2009-03-01

    Identification and manipulation of the exchange interaction between different spin configurations may be useful for implementing quantum logic operations. Coupled quantum dots offer the possibility of controlling the exchange interaction by continuously tuning between direct and indirect excitonic configurations. The effect of the anisotropic part of the exchange energy was clearly identified from polarization dependent photoluminescence (PL) results arising from the direct and indirect configurations of the neutral exciton. We also observe direct experimental evidence of the isotropic exchange interaction via PL measurements from positive trion configurations. The isotropic exchange interactions observed to be an order of magnitude larger than the anisotropic splitting as expected. High resolution measurements of this charged exciton configurations are expected to reveal additional insight into the details of the exchange interaction.

  17. Influence of localized surface plasmons on carrier dynamics in InGaN/GaN quantum wells covered with Ag nanoparticles for enhanced photoluminescence

    NASA Astrophysics Data System (ADS)

    Sun, Ling; Zhang, Sishi; Liu, Fei; Han, Min

    2015-10-01

    An analysis of the complex mechanisms of enhanced photoluminescence (PL) from InGaN/GaN quantum wells (QWs) by surface plasmon (SP) coupling is reported. Silver nanoparticles were deposited on the QWs to generate a wide surface plasmon resonance (SPR) band covering both PL excitation and emission wavelengths. Significant enhancement of the integrated PL intensity, a blue shift of the PL peak wavelength, a suppression of the relative contribution of PL from In-rich quantum dot-like structures, and an increased PL decay time were observed in temperature-dependent and time-resolved PL spectroscopy. In addition to an enhanced radiative recombination rate by resonant coupling the spontaneous emissions to SPs, QW carrier dynamics can be significantly affected by SPR-enhanced, light-induced local fields. The latter occurs because of screening of the quantum-confined Stark effect and the enhanced localization of carriers.

  18. Temperature and Excitation Power-Density Dependences of the Photoluminescence of BaZrO2.9 Compound

    NASA Astrophysics Data System (ADS)

    Dhahri, Kh.; Bejar, M.; Dhahri, E.; Graça, M. F. P.

    2017-02-01

    Temperature- and excitation density-dependent photoluminescence are presented and discussed in detail for the BaZrO2.9 compound prepared from the non-luminescent BaZrO3 sample. The thermal-quenching behavior of the photoluminescence peak intensity is described with two activation energies, E a1 = 185 and E a2 = 139 meV. The variation of the integrated photoluminescence intensity with the excitation density shows a linear behavior with the slope close to α = 1.06, indicating that the PL signal is attributed to the excitonic recombination.

  19. Time-resolved photoluminescence properties of ion-beam-synthesized β-FeSi2 and Si-implanted Si

    NASA Astrophysics Data System (ADS)

    Terai, Yoshikazu; Maeda, Yoshihito

    2015-07-01

    Temporal decay characteristics of 1.54 µm photoluminescence (PL) were investigated in β-FeSi2 and Si-implanted Si samples grown by ion-beam-synthesis (IBS). In the samples, the band-edge PL of β-FeSi2 (A-band) and the dislocation-related PL (D1-band) of Si were both observed at ˜0.8 eV. Regarding the dependence of the PL decay curves on excitation power density (P), PL decay curves without extrinsic effects were obtained at a low P of P ≤ 4.3 mW/cm2. The PL decay times obtained at a low P showed clear differences between the A-band and the D1-line. The result showed that the band-edge PL of β-FeSi2 was distinguished from the dislocation-related PL of Si by the PL decay times. The intrinsic PL decay times of β-FeSi2 were determined to be τ1 = 70-100 ns and τ2 = 550-670 ns at 5 K.

  20. Unusual photoluminescence behavior of C[sub 70

    SciTech Connect

    Argentine, S.M.; Francis, A.H. ); Chen, C.C.; Lieber, C.M. ); Siegel, J.S. )

    1994-07-28

    Well-resolved photoluminescence (PL) spectra of C[sub 70] and [sup 13]C[sub 70] in a glassy methylcyclohexane matrix have been obtained over the range 10,000-16,000 cm[sup [minus]1] at temperatures between 4 and 77 K. The PL spectrum consists of a short-lived, red fluorescence system extending from 14 000 to 15 500 cm[sup [minus]1] and a longer-lived, IR phosphorescence system extending from 10,000 to 12,500 cm[sup [minus]1]. The PL spectrum is unusual in several aspects: the line widths are nearly 10-fold narrower than those of catacondensed hydrocarbons under similar conditions, and the temperature dependence suggests the presence of multiple emitting states (of the same spin multiplicity) or several emitting species in the highly dilute glassy matrix. To better understand the photophysical behavior of C[sub 70], we have attempted to correlate vibrational frequencies in the IR and Raman spectra of C[sub 70] and [sup 13]C[sub 70] with the vibronic intervals observed in the PL spectra. The study of [sup 13]C[sub 70] enabled a more detailed analysis of the vibronic structure of the fluorescence and phosphorescence spectra. 38 refs., 5 figs., 1 tab.

  1. Maximizing Photoluminescence Extraction in Silicon Photonic Crystal Slabs

    PubMed Central

    Mahdavi, Ali; Sarau, George; Xavier, Jolly; Paraïso, Taofiq K.; Christiansen, Silke; Vollmer, Frank

    2016-01-01

    Photonic crystal modes can be tailored for increasing light matter interactions and light extraction efficiencies. These PhC properties have been explored for improving the device performance of LEDs, solar cells and precision biosensors. Tuning the extended band structure of 2D PhC provides a means for increasing light extraction throughout a planar device. This requires careful design and fabrication of PhC with a desirable mode structure overlapping with the spectral region of emission. We show a method for predicting and maximizing light extraction from 2D photonic crystal slabs, exemplified by maximizing silicon photoluminescence (PL). Systematically varying the lattice constant and filling factor, we predict the increases in PL intensity from band structure calculations and confirm predictions in micro-PL experiments. With the near optimal design parameters of PhC, we demonstrate more than 500-fold increase in PL intensity, measured near band edge of silicon at room temperature, an enhancement by an order of magnitude more than what has been reported. PMID:27113674

  2. Maximizing Photoluminescence Extraction in Silicon Photonic Crystal Slabs.

    PubMed

    Mahdavi, Ali; Sarau, George; Xavier, Jolly; Paraïso, Taofiq K; Christiansen, Silke; Vollmer, Frank

    2016-04-26

    Photonic crystal modes can be tailored for increasing light matter interactions and light extraction efficiencies. These PhC properties have been explored for improving the device performance of LEDs, solar cells and precision biosensors. Tuning the extended band structure of 2D PhC provides a means for increasing light extraction throughout a planar device. This requires careful design and fabrication of PhC with a desirable mode structure overlapping with the spectral region of emission. We show a method for predicting and maximizing light extraction from 2D photonic crystal slabs, exemplified by maximizing silicon photoluminescence (PL). Systematically varying the lattice constant and filling factor, we predict the increases in PL intensity from band structure calculations and confirm predictions in micro-PL experiments. With the near optimal design parameters of PhC, we demonstrate more than 500-fold increase in PL intensity, measured near band edge of silicon at room temperature, an enhancement by an order of magnitude more than what has been reported.

  3. Photoluminescent nanocomposite materials based on SBMA copolymer and CdS

    NASA Astrophysics Data System (ADS)

    Iovu, M.; Enachescu, M.; Culeac, I.; Verlan, V.; Robu, S.; Bojin, D.; Nistor, Iu.; Cojocaru, I.

    2015-02-01

    We present experimental results on copolymer-based nanocomposite made of styrene with butyl methacrylate (SBMA) (1:1) and inorganic semiconductor CdS. Thin film composite samples have been characterized by UV-Vis absorption and photoluminescent spectroscopy, as well as by transmission electron microscopy. Transmission electron microscope (TEM) examination confirms a relatively narrow distribution of CdS nanoclusters in the SBMA matrix, which covers the range 2-10 nm. On the other side, the average CdS particles size estimated from the position of first excitonic peak in the UV-Vis absorption spectrum was found to be 2.8 nm and 4.4 nm for two samples with different duration of thermal treatment, which is in good agreement with photoluminescence (PL) experimental data. The PL spectrum for CdS nanocrystals is dominated by near-band-edge emission. The relatively narrow line width (40-45 nm) of the main PL band suggests the nanoparticles having narrow size distribution. On the other side, relatively low PL emission from surface trap states at longer wavelengths were observed in the region 500-750 nm indicating on recombination on defects. Key words: nanocomposite, polymer matrix, photoluminescence,

  4. Photoluminescence of porous silicon as an indicator of its interaction with nucleic acids

    NASA Astrophysics Data System (ADS)

    Shevchenko, Victoriya B.; Dacenko, Oleksandr; Makara, Volodymyr; Golovynskyi, Sergii L.; Golovynska, Iuliia

    2017-01-01

    Changes in photoluminescence (PL) of porous silicon (PS), induced by treatment of its surface with nucleic acid solutions, were studied. It was found that such a treatment lead to an increase in PS PL intensity and shift of its peak to shorter wavelengths; the changes were shown to be dependent on the nucleic acid concentration in solution. Treatment with the solution of double-stranded DNA resulted in stronger change in PL than that caused by solution of single-stranded molecules of polynucleotide poly(A). Changes in the surface states of PS produced by the PS treatment with DNA solutions were investigated by means of infrared and electron paramagnetic resonance spectroscopy. The observed changes were explained by the PS oxidation. The presence of the nucleic acids in the aqueous solution significantly accelerates the PS oxidation process. A possible mechanism of the polynucleotide effect on the PS PL was discussed.

  5. Photoluminescence of oxidized silicon nanoclusters deposited on the basal plane of graphite

    NASA Astrophysics Data System (ADS)

    Dinh, L. N.; Chase, L. L.; Balooch, M.; Terminello, L. J.; Wooten, F.

    1994-12-01

    Silicon (Si) nanoclusters, with an average size of 3-5 nm in diameter, have been deposited on the basal plane of highly oriented pyrolytic graphite in an ultrahigh vacuum chamber, and investigated by scanning tunneling microscopy. Clusters passivated in situ with hydrogen or oxygen showed no detectable visible photoluminescence (PL). Prolonged exposure of the clusters to ambient air, however, resulted in strong stable red to green-blue PL spectra. Further study of these clusters by x-ray photoelectron spectroscopy and Auger electron spectroscopy revealed the existence of only SiO2 for the prolonged air-exposed samples, and the existence of SiOx (x ranged from 0 to 2) for the in situ oxidized samples which did not exhibit any detectable visible PL. We believe that the observed visible PL originated from defects in SiO2.

  6. Photoluminescence intensity enhancement in SWNT aqueous suspensions due to reducing agent doping: Influence of adsorbed biopolymer

    NASA Astrophysics Data System (ADS)

    Kurnosov, N. V.; Leontiev, V. S.; Linnik, A. S.; Lytvyn, O. S.; Karachevtsev, V. A.

    2014-06-01

    The influence of biopolymer wrapped around nanotube on the enhancement of the semiconducting single-walled carbon nanotube (SWNT) photoluminescence (PL) in aqueous suspension which increases due to the reducing agent dithiothreitol (DTT) doping effect was revealed. The greatest enhancement of PL was observed for SWNTs covered with double- or single stranded DNA (above 170%) and DTT weak influence was revealed for SWNTs:polyC suspension (∼45%). The magnitude of the PL enhancement depends also on nanotube chirality and sample aging. The behavior of PL from SWNTs covered with various polymers is explained by the different biopolymers ordering on the nanotube surface. The ordered polymer conformation on the nanotube weakens the reducing agent doping effect. The method of reducing agent doping of nanotube:biopolymer aqueous suspension can serve as a sensitive luminescent probe of the biopolymer ordering on the carbon nanotube and can be used to increase the sensitivity of luminescent biosensors.

  7. CdSe nanocrystals: controlled growth and diameter-dependent photoluminescence

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Yang, Ping; Chen, Hsueh Shin; Huang, Baibiao; Shen, Jianxing

    2014-02-01

    Phosphonic and carboxylic acids were used as capping agents to fabricate CdSe nanocrystals (NCs) through organic synthesis, leading to a controlled growth of the NCs with adjustable morphologies from dots to rods. The binding energies and steric hindrance of ligands dramatically affected the growth kinetics of CdSe NCs, and therefore the resulting geometry of NCs. The detailed investigations of ligand effect on the growth of NCs and an efficient control over the NCs morphology were presented. CdSe nanorods (NRs) with various aspect ratios were created for studying relation between the diameter of NRs and photoluminescence (PL). Consequently, a synergic use of PL spectra and transmission electron microscopy images allowed us to systematically investigate the relationship between morphology and PL properties of as-prepared CdSe rods. The PL properties of CdSe NRs were finally found to be strongly diameter dependent and weakly related to their lengths.

  8. Photoluminescent nematic liquid crystalline elastomer with a thermomechanical emission variation function.

    PubMed

    Wei, Renbo; He, Yaning; Wang, Xiaogong; Keller, Patrick

    2014-09-01

    Nematic liquid crystalline elastomer (LCE) microactuators are developed, showing simultaneous thermomechanical deformation and photoluminescence (PL) emission variation functions. The microactuators are prepared by a method combining soft-lithography and photo-polymerization/crosslinking. 1,4-Bis(α-cyano-4-methoxystyryl)benzene as the PL dye is synthesized, characterized, and introduced into LCEs as a dopant in the preparation process. During the heating process, PL emission of the LCE micropillars under blue light excitation becomes significantly weak when the micropillars contract. When cooling down, the emission completely recovers as the micropillars stretches back to their original shape. The PL intensity variation at the transition is proved to be related to the thermomechanical deformation.

  9. Hydrophilicity and polarity of cubic silicon carbide nanocrystals identified from photoluminescence emissions in various solvents

    NASA Astrophysics Data System (ADS)

    Zhu, Jun; Hu, Shan; Xu, Rui; Xia, Weiwei; Fan, Li; Chen, Xiaobing

    2014-01-01

    Since the surface-structure-related state dominates the photoluminescence (PL) emissions of cubic silicon carbide (3C-SiC) nanocrystals (NCs) with a diameter lower than 3.0 nm, the PL lines of 3C-SiC NCs in deionized water with different pH values, methanol, ethanol, chloroform, and toluene are characterized at the excitation of 300 to 360 nm. The position and intensity of the PL peaks provide experimental evidence that the surface of 3C-SiC is hydrophilic and hydroxyl bonding on the surface decreases the energy gap of the NCs. The PL emission wavelength of 3C-SiC NCs can be adjusted by adjusting the pH value of the solvent. The polar 3C-SiC NCs prefer to precipitate in chloroform and toluene.

  10. Directional outcoupling of photoluminescence from Eu(III)-complex thin films by plasmonic array

    NASA Astrophysics Data System (ADS)

    Murai, S.; Saito, M.; Sakamoto, H.; Yamamoto, M.; Kamakura, R.; Nakanishi, T.; Fujita, K.; Verschuuren, M. A.; Hasegawa, Y.; Tanaka, K.

    2017-02-01

    A plasmonic array, consisting of metallic nanocylinders periodically arranged with a pitch comparable to the optical wavelength, is a system in which both the localized surface plasmon polaritons (SPPs) and diffraction in the plane of the array are simultaneously excitable. When combined with a phosphor film, the array acts as a photoluminescence (PL) director and enhancer. Since the array can modify both excitation and emission processes, the overall modification mechanism is generally complex and difficult to understand. Here, we examined the mechanism by simplifying the discussion using an emitter with a high quantum yield, large Stokes shift, and long PL lifetime. Directional PL enhancement as large as five-fold occurred, which is mainly caused by outcoupling, i.e., the PL trapped in the emitter film by total internal reflection is extracted into free space through the SPPs and diffraction. The present scheme is robust and applicable to arbitrary emitters, and it is useful for designing compact and efficient directional illumination devices.

  11. Color-Tunable Resonant Photoluminescence and Cavity-Mediated Multistep Energy Transfer Cascade.

    PubMed

    Okada, Daichi; Nakamura, Takashi; Braam, Daniel; Dao, Thang Duy; Ishii, Satoshi; Nagao, Tadaaki; Lorke, Axel; Nabeshima, Tatsuya; Yamamoto, Yohei

    2016-07-26

    Color-tunable resonant photoluminescence (PL) was attained from polystyrene microspheres doped with a single polymorphic fluorescent dye, boron-dipyrrin (BODIPY) 1. The color of the resonant PL depends on the assembling morphology of 1 in the microspheres, which can be selectively controlled from green to red by the initial concentration of 1 in the preparation process of the microspheres. Studies on intersphere PL propagation with multicoupled microspheres, prepared by micromanipulation technique, revealed that multistep photon transfer takes place through the microspheres, accompanying energy transfer cascade with stepwise PL color change. The intersphere energy transfer cascade is direction selective, where energy donor-to-acceptor down conversion direction is only allowed. Such cavity-mediated long-distance and multistep energy transfer will be advantageous for polymer photonics device application.

  12. An analysis of temperature dependent photoluminescence line shapes in InGaN

    NASA Astrophysics Data System (ADS)

    Teo, K. L.; Colton, J. S.; Yu, P. Y.; Weber, E. R.; Li, M. F.; Liu, W.; Uchida, K.; Tokunaga, H.; Akutsu, N.; Matsumoto, K.

    1998-09-01

    Photoluminescence (PL) line shapes in InGaN multiple quantum well structures have been studied experimentally and theoretically between 10 and 300 K. The higher temperature PL spectra can be fitted quantitatively with a thermalized carrier distribution and a broadened joint-density-of-states. The low temperature PL line shapes suggest that carriers are not thermalized, as a result of localization by band-gap fluctuations. We deduce a localization energy of ˜7 meV as compared with an activation energy of ˜63 meV from thermal quenching of the PL intensity. We thus conclude that this activation energy and the band-gap fluctuation most likely have different origins.

  13. Photon Emission and Reabsorption Processes in CH3NH3PbBr3 Single Crystals Revealed by Time-Resolved Two-Photon-Excitation Photoluminescence Microscopy

    NASA Astrophysics Data System (ADS)

    Yamada, Takumi; Yamada, Yasuhiro; Nakaike, Yumi; Wakamiya, Atsushi; Kanemitsu, Yoshihiko

    2017-01-01

    The dynamical processes of radiative recombination of photocarriers and reabsorption of emitted photons in CH3NH3PbBr3 single crystals are studied using time-resolved two-photon-excitation photoluminescence (PL) microscopy. We find that the PL spectrum and its decay dynamics depend on the excitation-depth profile. As the excitation depth increases, the PL spectrum becomes asymmetric, the peak energy redshifts, and the PL decay time becomes longer. These observations can be well explained by a simple model including photon recycling (photon emission and reabsorption) in thick samples with strong band-to-band transitions and high radiative recombination efficiencies.

  14. Influence of excitation wavelength on photoluminescence properties of CdSe/CdZnS colloidal quantum dots on micro-patterned silver films

    NASA Astrophysics Data System (ADS)

    Khan, Rizwan; Jeon, Ju-Won; Jang, Lee-Woon; Kim, Min-Kyu; Ko, Eun-Yee; Lee, Joo-In; Lee, In-Hwan

    2014-03-01

    We examined the excitation wavelength dependence of photoluminescence (PL) property in CdSe/CdZnS colloidal quantum dots (QDs) on micro-patterned silver (Ag) films (MPSFs). PL quenching of the fluorophore was observed when the excitation wavelength was out of the absorption range of MPSF substrates. In contrast, when the excitation wavelength was within the absorption spectrum range, the PL intensity on Ag films was markedly enhanced by a factor of two. It was expected that the principal causes on the PL properties of the fluorophore on Ag films would be the energy match between the incident light and the surface plasmon of Ag metal films.

  15. Photoluminescence emission spectra of Makrofol® DE 1-1 upon irradiation with ultraviolet radiation

    NASA Astrophysics Data System (ADS)

    El Ghazaly, M.; Aydarous, Abdulkadir

    Photoluminescence (PL) emission spectra of Makrofol® DE 1-1 (bisphenol-A based polycarbonate) upon irradiation with ultraviolet radiation of different wavelengths were investigated. The absorption-and attenuation coefficient measurements revealed that the Makrofol® DE 1-1 is characterized by high absorbance in the energy range 6.53-4.43 eV but for a lower energy than 4.43 eV, it is approximately transparent. Makrofol® DE 1-1 samples were irradiated with ultraviolet radiation of wavelength in the range from 250 (4.28 eV) to 400 (3.10 eV) nm in step of 10 nm and the corresponding photoluminescence (PL) emission spectra were measured with a spectrofluorometer. It is found that the integrated counts and the peak height of the photoluminescence emission (PL) bands are strongly correlated with the ultraviolet radiation wavelength. They are increased at the ultraviolet radiation wavelength 280 nm and have maximum at 290 nm, thereafter they decrease and diminish at 360 nm of ultraviolet wavelength. The position of the PL emission band peak was red shifted starting from 300 nm, which increased with the increase the ultraviolet radiation wavelength. The PL bandwidth increases linearly with the increase of the ultraviolet radiation wavelength. When Makrofol® DE 1-1 is irradiated with ultraviolet radiation of short wavelength (UVC), the photoluminescence emission spectra peaks also occur in the UVC but of a relatively longer wavelength. The current new findings should be considered carefully when using Makrofol® DE 1-1 in medical applications related to ultraviolet radiation.

  16. Enhancements of photoluminescence intensity in high-quality floating-zone Si by thermal annealing in vacuum

    NASA Astrophysics Data System (ADS)

    Kataoka, Keita; Hattori, Ken; Yamamoto, Aishi; Nakamoto Hattori, Azusa; Hatayama, Tomoaki; Kimoto, Yasuji; Endo, Katsuyoshi; Fuyuki, Takashi; Daimon, Hiroshi

    2016-11-01

    Inactivation of non-radiative defects by hydrogen and their thermal stabilities in a high-quality floating-zone Si wafer depending on annealing conditions have been studied using in-situ photoluminescence (PL) and thermal desorption under an ultra-high vacuum. The PL intensity increased to ∼400% of its initial value after annealing at 450 °C and decreased to ∼6% of its initial value after annealing at 600 °C due to inactivation and activation of non-radiative defects, respectively. Based on the annealing temperature- and duration-dependence of the PL intensity, we propose two types of hydrogenated defects with different thermal stabilities.

  17. Strong Enhancement of Near-Band-Edge Photoluminescence of ZnO Nanowires Decorated with Sputtered Metallic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Purahmad, Mohsen; Stroscio, Michael A.; Dutta, Mitra

    2013-12-01

    The effect of the Ar plasma during metal deposition on the photoluminescence (PL) of metal-coated ZnO nanowires (NWs) has been investigated. Strong enhancement of near-band-edge emission (NBE) is observed for ZnO NWs coated with Al and Ni nanoparticles (NPs) by radiofrequency magnetron sputtering, while the samples coated with NPs by e-beam evaporation show quenching of the PL intensity. A model is proposed that satisfies the observed experimental results and assigns the strong enhancement of the NBE PL of ZnO NWs to excitons bound to structural defects in the surface layer of the ZnO NWs.

  18. Point defect determination by photoluminescence and capacitance—voltage characterization in a GaN terahertz Gunn diode

    NASA Astrophysics Data System (ADS)

    Li, Liang; Yang, Lin-An; Zhou, Xiao-Wei; Zhang, Jin-Cheng; Hao, Yue

    2013-08-01

    Photoluminescence (PL) measurement is used to study the point defect distribution in a GaN terahertz Gunn diode, which is able to the degrade high-field transport characteristic during further device operation. PL, secondary ion mass spectroscopy (SIMS), transmission electron microscope (TEM), and capacitance—voltage (C—V) measurements are used to discuss the origin of point defects responsible for the yellow luminescence in structures. The point defect densities of about 1011 cm-2 in structures are extracted by analysis of C—V characterization. After thermal annealing treatment, diminishments of point defect densities in structures are efficiently demonstrated by PL and C—V results.

  19. Nano Mechanical Machining Using AFM Probe

    NASA Astrophysics Data System (ADS)

    Mostofa, Md. Golam

    Complex miniaturized components with high form accuracy will play key roles in the future development of many products, as they provide portability, disposability, lower material consumption in production, low power consumption during operation, lower sample requirements for testing, and higher heat transfer due to their very high surface-to-volume ratio. Given the high market demand for such micro and nano featured components, different manufacturing methods have been developed for their fabrication. Some of the common technologies in micro/nano fabrication are photolithography, electron beam lithography, X-ray lithography and other semiconductor processing techniques. Although these methods are capable of fabricating micro/nano structures with a resolution of less than a few nanometers, some of the shortcomings associated with these methods, such as high production costs for customized products, limited material choices, necessitate the development of other fabricating techniques. Micro/nano mechanical machining, such an atomic force microscope (AFM) probe based nano fabrication, has, therefore, been used to overcome some the major restrictions of the traditional processes. This technique removes material from the workpiece by engaging micro/nano size cutting tool (i.e. AFM probe) and is applicable on a wider range of materials compared to the photolithographic process. In spite of the unique benefits of nano mechanical machining, there are also some challenges with this technique, since the scale is reduced, such as size effects, burr formations, chip adhesions, fragility of tools and tool wear. Moreover, AFM based machining does not have any rotational movement, which makes fabrication of 3D features more difficult. Thus, vibration-assisted machining is introduced into AFM probe based nano mechanical machining to overcome the limitations associated with the conventional AFM probe based scratching method. Vibration-assisted machining reduced the cutting forces

  20. Silver nanoparticle film induced photoluminescence enhancement of near-infrared emitting PbS and PbS/CdS core/shell quantum dots: observation of different enhancement mechanisms

    NASA Astrophysics Data System (ADS)

    Liang, H. Y.; Zhao, H. G.; Li, Z. P.; Harnagea, C.; Ma, D. L.

    2016-02-01

    The photoluminescence (PL) enhancement of a Ag nanoparticle and near-infrared quantum dots (QD) plasmon/fluorophore system was investigated. Different enhancement mechanisms were obtained by tuning surface plasmon resonance of the Ag film and PL of the QDs. A maximum enhancement factor of 2.8 was achieved.The photoluminescence (PL) enhancement of a Ag nanoparticle and near-infrared quantum dots (QD) plasmon/fluorophore system was investigated. Different enhancement mechanisms were obtained by tuning surface plasmon resonance of the Ag film and PL of the QDs. A maximum enhancement factor of 2.8 was achieved. Electronic supplementary information (ESI) available: Experiments, SEM images, calculation results, typical PL spectra under different excitations and PL decay curves for PbS/CdS QDs with and without Ag#2 under different conditions. See DOI: 10.1039/c5nr05906b

  1. DLTS and PL studies of proton radiation defects in tin-doped FZ silicon

    NASA Astrophysics Data System (ADS)

    Simoen, E.; Claeys, C.; Privitera, V.; Coffa, S.; Kokkoris, M.; Kossionides, E.; Fanourakis, G.; Nylandsted Larsen, A.; Clauws, P.

    2002-01-01

    In this paper, deep level transient spectroscopy (DLTS) is applied to study the deep levels in tin-doped and high-energy proton irradiated n-type float-zone (FZ) silicon. The results will be compared with irradiated tin-free FZ reference material, in order to evaluate the hardening potential. It will be shown that in Sn-doped silicon (FZ:Sn), a number of additional deep levels can be observed, two of which have been identified as acceptors associated with Sn-V. Furthermore, optically active recombination centres have been probed by photoluminescence (PL) spectroscopy. The PL results confirm the reduction of electrically active radiation-defect formation in FZ:Sn. At the same time, no Sn-related optically active centres have been found so far.

  2. Studies of adsorbate effects on the photoluminescence of cadmium sulfide and cadmium selenide

    SciTech Connect

    Zhang, Zhongju

    1993-12-31

    The electronic properties of semiconductors and their surface and photoluminescence properties are introduced. A short introduction to chemisorption and the Langmuir adsorption isotherm model is presented. The properties of II-VI semiconductors are briefly reviewed. Adsorption from CH{sub 2}Cl{sub 2} solution of a family of ring-substituted, 7,7,8,8-tetracyanoquinodimethane (TCNQ) derivatives onto the surface of etched, single-crystal n-CdSe quenches the band gap photoluminescence (PL) intensity of the semiconductor. PL quenching increases with the electron-withdrawing ability of the ring substituent. The C{sub 60} and C{sub 70} fullerenes can also be adsorbed from toluene solution onto the surfaces of n-CdS, and n-CdSe, causing quenching of the PL intensity. Quantitiatively, the magnitude of the PL quenching can be fit to a dead-layer model, permitting an estimate of maximum expansions in dead-layer thickness caused by adsorption of TCNQ derivatives and C{sub 60} onto the n-CdSe surface to reach {approximately}140 {angstrom} and 130 {angstrom}, respectively. The PL intensity changes are concentration-dependent and give good fits to the Langmuir adsorption isotherm model, yielding equilibrium binding constants on the order of {approximately}10{sup 5} to 10{sup 6} M{sup {minus}1} for TCNQ derivatives and fullerenes, among the largest reported to date.

  3. Effect of Silica Nanoparticles on the Photoluminescence Properties of BCNO Phosphor

    NASA Astrophysics Data System (ADS)

    Nuryadin, Bebeh W.; Faryuni, Irfana Diah; Iskandar, Ferry; Abdullah, Mikrajuddin; Khairurrijal, Khairurrijal

    2011-12-01

    Effect of additional silica nanoparticles on the photoluminescence (PL) performance of boron carbon oxy-nitride (BCNO) phosphor was investigated. As a precursor, boric acid and urea were used as boron and nitrogen sources, respectively. The carbon sources was polyethylene glycol (PEG) with average molecule weight 20000 g/mol.. Precursor solutions were prepared by mixing these raw materials in pure water, followed by stirring to achieve homogeneous solutions. In this precursor, silica nanoparticles were added at various mass ratio from 0 to 7 %wt in the solution. The precursors were then heated at 750 °C for 60 min in a ceramic crucible under atmospheric pressure. The photoluminescence (PL) spectrum that characterized by spectrophotometer showed a single, distinct, and broad emission band varied from blue to near red color, depend on the PEG, boric acid and urea ratio in the precursor. The addition of silica nanoparticles caused the increasing of PL intensity as well as the shifting of peak wavelength of PL spectrum. The peak shifting of PL was affected by the concentration of silica nanoparticles that added into the precursor. We believe that the BCNO-silica composite phosphor becomes a promising material for the phosphor conversion-based white light-emitting diodes.

  4. The dual roles of functional groups in the photoluminescence of graphene quantum dots.

    PubMed

    Wang, Shujun; Cole, Ivan S; Zhao, Dongyuan; Li, Qin

    2016-04-14

    The photoluminescent properties of graphene nanoparticle (named graphene quantum dots) have attracted significant research attention in recent years owing to their profound application potential. However, the photoluminescence (PL) origin of this class of nanocarbons is still unclear. In this paper, combining direct experimental evidence enabled by a facile size-tunable oxygenated graphene quantum dots (GQDs) synthesis method and theoretical calculations, the roles of the aromatic core, functional groups and disordered structures (i.e. defects and sp(3) carbon) in the PL of oxygenated GQDs are elucidated in detail. In particular, we found that the functional groups on GQDs play dual roles in the overall emission: (1) they enable π* → n and σ* → n transitions, resulting in a molecular type of PL, spectrally invariable with change of particle size or excitation energy; (2) similar to defects and sp(3) carbon, functional groups also induce structural deformation to the aromatic core, leading to mid-gap states or, in other words, energy traps, causing π* → mid-gap states → π transitions. Therefore, functional groups contribute to both the blue edge and the red shoulder of GQDs' PL spectra. The new insights on the role of functional groups in PL of fluorescent nanocarbons will enable better designs of this new class of materials.

  5. Photoluminescence polarization anisotropy for studying long-range structural ordering within semiconductor multi-atomic alloys and organic crystals

    SciTech Connect

    Prutskij, T.; Percino, J.; Orlova, T.; Vavilova, L.

    2013-12-04

    Long-range structural ordering within multi-component semiconductor alloys and organic crystals leads to significant optical anisotropy and, in particular, to anisotropy of the photoluminescence (PL) emission. The PL emission of ternary and quaternary semiconductor alloys is polarized if there is some amount of the atomic ordering within the crystal structure. We analyze the polarization of the PL emission from the quaternary GaInAsP semiconductor alloy grown by Liquid Phase Epitaxy (LPE) and conclude that it could be caused by low degree atomic ordering within the crystal structure together with the thermal biaxial strain due to difference between the thermal expansion coefficients of the layer and the substrate. We also study the state of polarization of the PL from organic crystals in order to identify different features of the crystal PL spectrum.

  6. Role of C–N Configurations in the Photoluminescence of Graphene Quantum Dots Synthesized by a Hydrothermal Route

    PubMed Central

    Permatasari, Fitri Aulia; Aimon, Akfiny Hasdi; Iskandar, Ferry; Ogi, Takashi; Okuyama, Kikuo

    2016-01-01

    Graphene quantum dots (GQDs) containing N atoms were successfully synthesized using a facile, inexpensive, and environmentally friendly hydrothermal reaction of urea and citric acid, and the effect of the GQDs’ C–N configurations on their photoluminescence (PL) properties were investigated. High-resolution transmission electron microscopy (HR-TEM) images confirmed that the dots were spherical, with an average diameter of 2.17 nm. X-ray photoelectron spectroscopy (XPS) analysis indicated that the C–N configurations of the GQDs substantially affected their PL intensity. Increased PL intensity was obtained in areas with greater percentages of pyridinic-N and lower percentages of pyrrolic-N. This enhanced PL was attributed to delocalized π electrons from pyridinic-N contributing to the C system of the GQDs. On the basis of energy electron loss spectroscopy (EELS) and UV-Vis spectroscopy analyses, we propose a PL mechanism for hydrothermally synthesized GQDs. PMID:26876153

  7. Long-term improvements to photoluminescence and dispersion stability by flowing SDS-SWNT suspensions through microfluidic channels.

    PubMed

    Silvera-Batista, Carlos A; Weinberg, Philip; Butler, Jason E; Ziegler, Kirk J

    2009-09-09

    Shearing single-walled carbon nanotubes (SWNTs) coated with sodium dodecyl sulfate in microfluidic channels significantly increases the photoluminescence (PL) intensity and dispersion stability of SWNTs. The PL quantum yield (QY) of SWNTs improves by a factor of 3 for initially bright suspensions; on the other hand, SWNT QYs in a "poor" suspension improve by 2 orders of magnitude. In both cases, the QYs of the sheared suspensions are approximately 1%. The increases in PL intensity persist for months and are most prominent in larger diameter SWNTs. These improvements are attributed to surfactant reorganization rather than disaggregation of SWNTs bundles or shear-induced alignment. The results also highlight potential opportunities to eliminate discrepancies in the PL intensity of different suspensions and further improve the PL of SWNTs by tailoring the surfactant structure around SWNTs.

  8. Exciton Distribution between the Bright and Dark States in Single Carbon Nanotubes Studied by Magneto-Photoluminescence Spectroscopy

    NASA Astrophysics Data System (ADS)

    Matsunaga, Ryusuke; Matsuda, Kazunari; Kanemitsu, Yoshihiko

    2009-03-01

    We have performed micro-photoluminescence (PL) spectroscopy for single carbon nanotubes under magnetic fields at various temperatures. Sharp PL spectra of single carbon nanotubes allow us to directly observe the dark exciton PL peak a few meV below the bright exciton PL peak due to the Aharonov-Bohm effect [1]. From the PL intensity ratio of the dark to the bright excitons under magnetic fields, we found that the non-equilibrium (non-Boltzmann) distribution occurs between the bright and dark states, because phonons cannot scatter excitons between the two states with different parities [2]. Furthermore, we discuss the diameter dependence of the exciton population of the bright and dark states in single carbon nanotubes. [1] R. Matsunaga, K. Matsuda, and Y. Kanemitsu, Phys. Rev. Lett. 101, 147404 (2008). [2] V. Perebeinos, J. Tersoff, and Ph. Avouris, Nano Lett. 5, 2495 (2005).

  9. Polarization-resolved photoluminescence study of individual GaN nanowires grown by catalyst-free molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Schlager, John B.; Sanford, Norman A.; Bertness, Kris A.; Barker, Joy M.; Roshko, Alexana; Blanchard, Paul T.

    2006-05-01

    Polarization- and temperature-dependent photoluminescence (PL) measurements were performed on individual GaN nanowires. These were grown by catalyst-free molecular beam epitaxy on Si(111) substrates, ultrasonically removed, and subsequently dispersed on sapphire substrates. The wires were typically 5-10μm in length, c-axis oriented, and 30-100nm in diameter. Single wires produced sufficient emission intensity to enable high signal-to-noise PL data. Polarized PL spectra differed for the σ and π polarization cases, illustrating the polarization anisotropy of the exciton emission associated with high-quality wurtzite GaN. This anisotropy in PL emission persisted even up to room temperature (4-296K). Additionally, the nanowire PL varied with excitation intensity and with (325nm) pump exposure time.

  10. Silanization effect on the photoluminescence characteristics of crystalline and amorphous silicon nanoparticles.

    PubMed

    Caregnato, Paula; Dell'Arciprete, Maria Laura; Gonzalez, Mónica Cristina

    2013-09-01

    Silicon nanoparticles synthesized by two different methods were surface modified with 3-mercaptopropyltrimethoxysilane. The particles of ~2 nm size exhibit photoluminescence (PL) in the UV-Vis range of the spectrum. The most intense PL band at 430 nm with an emission lifetime of 1-2 ns is attributed to the presence of the surface defects Si-O-Si, generated after anchoring the organic molecule onto the interface. The excitation-emission matrix of this band is essentially independent of the technique of synthesis, crystalline structure, and size of the silicon nanoparticles.

  11. Quantification of C in Si by photoluminescence at liquid N temperature after electron irradiation

    NASA Astrophysics Data System (ADS)

    Tajima, Michio; Kiuchi, Hirotatsu; Higuchi, Fumito; Ogura, Atsushi

    2017-04-01

    We demonstrate practical great advantages of the photoluminescence (PL) measurement at liquid N temperature after electron irradiation for quantifying low-level C in Si compared with the measurement at liquid He temperature. The broadening of the C-related C- and G-lines enabled us to detect the lines rapidly with high sensitivity by using the optimized low-dispersion spectroscopic apparatus. Positive correlations were found between their intensity ratios to the band-edge emission and the C concentration estimated by PL measurement at 4.2 K. The disappearance of dopant-impurity-related lines simplifies the recombination process, suggesting the improvement of quantification accuracy.

  12. Photoluminescent carbon dots synthesized by microwave treatment for selective image of cancer cells.

    PubMed

    Yang, Xudong; Yang, Xue; Li, Zhenyu; Li, Shouying; Han, Yexuan; Chen, Yang; Bu, Xinyuan; Su, Chunyan; Xu, Hong; Jiang, Yingnan; Lin, Quan

    2015-10-15

    In this work, a simple, low-cost and one-step microwave approach has been demonstrated for the synthesis of water-soluble carbon dots (C-dots). The average size of the resulting C-dots is about 4 nm. From the photoluminescence (PL) measurements, the C-dots exhibit excellent biocompatibility and intense PL with the high quantum yield (QY) at Ca. 25%. Significantly, the C-dots have excellent biocompatibility and the capacity to specifically target the cells overexpressing the folate receptor (FR). These exciting results indicate the as-prepared C-dots are promising biocompatible probe for cancer diagnosis and treatment.

  13. Anomalous Photoluminescence of Weakly Confined Excitons including Radiative Correction in Nano-to-Bulk Crossover Regime

    NASA Astrophysics Data System (ADS)

    Matsuda, Takuya; Yokoshi, Nobuhiko; Ishihara, Hajime

    2015-06-01

    We develop a theoretical formalism to calculate photoluminescence (PL) spectrum of weakly confined excitons incorporating the microscopic nonlocal optical response. The nonlocality is caused by the center-of-mass (c. m.) motion of exciton and becomes remarkable in nano-to-bulk crossover regime. The theory successfully explains the characteristics of recently observed peculiar PL spectra in high quality CuCl films [5], wherein the signals appear at the exciton states with the very large radiative corrections not only for the lowest level but also for the higher ones including non-dipole types of excitons.

  14. Radiation-stimulated photoluminescence in electron irradiated 4H-SiC

    NASA Astrophysics Data System (ADS)

    Lebedev, A. A.; Ber, B. Ya; Seredova, N. V.; Kazantsev, D. Yu; Kozlovski, V. V.

    2015-12-01

    The photoluminescence (PL) arising in low doped CVD grown n- and p-type 4H-SiC upon electron irradiation (0,9 MeV) has been studied. After each doze of irradiation spectrum of PL was measured. The PL spectrum was dominated by a band peaked at hv  ≈  2,45 eV, commonly observed upon irradiation of SiC. The experiments demonstrated that, for samples with both types of conduction, the PL intensity approaches a constant value with increasing irradiation dose. A model was suggested, describing the PL characteristics in terms of the radiative recombination via a donor-acceptor pair constituted by nitrogen and a structural defect formed in the course of irradiation. Also, the concentration of nitrogen atoms was measured by the SIMS method. The experimental data were used to calculate in terms of the suggested model the dependence of the PL intensity on the irradiation dose. A good agreement between the calculated and experimental dependences was observed. A conclusion is made that the PL is activated by donor—acceptor pairs constituted by a nitrogen atom and a structural defect.

  15. Photoluminescence Intermittency and Photo-Bleaching of Single Colloidal Quantum Dot.

    PubMed

    Qin, Haiyan; Meng, Renyang; Wang, Na; Peng, Xiaogang

    2017-03-03

    Photoluminescence (PL) blinking of single colloidal quantum dot (QD)-PL intensity switching between different brightness states under constant excitation-and photo-bleaching are roadblocks for most applications of QDs. This progress report shall treat PL blinking and photo-bleaching both as photochemical events, namely, PL blinking as reversible and photo-bleaching being irreversible ones. Most studies on single-molecule spectroscopy of QDs in literature are related to PL blinking, which invites us to concentrate our discussions on the PL blinking, including its brief history in 20 years, analysis methods, competitive mechanisms and different strategies to battle it. In terms of suppression of the PL blinking, wavefunction confinement-confining photo-generated electron and hole within the core and inner portion of the shell of a core/shell QD-demonstrates significant advantages. This strategy yields nearly non-blinking QDs with their emission peaks covering most part of the visible window. As expected, the resulting QDs from this new strategy also show substantially improved anti-bleaching features.

  16. Spectral Behavior of Bias-Dependent Photocurrent and Photoluminescence in Sputtered ZnO Layers

    NASA Astrophysics Data System (ADS)

    Hong, K. J.; Jeong, T. S.; Kim, T. S.; Choi, C. J.; Youn, C. J.

    2017-01-01

    The bias-dependent behavior of the photocurrent (PC) and photoluminescence (PL) of sputtered ZnO layers has been investigated. Based on PC spectroscopy results, the PC intensity of the observed free exciton increased strongly up to electric field of 60 V/cm, after which its rate of increase slightly reduced due to disturbance of field-assisted dissociation of radical ion pairs, which leads to photocarrier generation. Thus, the energy of excitonic PC peaks showed a tendency to red-shift with increasing electric field, being attributed to the induced Stark effect. Therefore, it is concluded that the strong interaction between free excitons and photogenerated PC carriers leads to displacement or widening of the spectrum. In the PL measurements, near-band-edge (NBE) and violet emissions were observed. With increasing electric field, two PL emissions were progressively quenched. The combined PL/PC results reveal that the PL ions associated with the NBE and violet emissions readily interact with the PC carriers of photogenerated electrons and holes. This behavior reduces the recombination ratio and the lifetime of PL ions. So, the PL intensity quenching originates from a decrease in the number of carriers participating in recombination. Consequently, we find that the quenching mechanism of the NBE and violet emissions is strongly related to low external electric field.

  17. Negative thermal quenching of below-bandgap photoluminescence in InPBi

    NASA Astrophysics Data System (ADS)

    Chen, Xiren; Wu, Xiaoyan; Yue, Li; Zhu, Liangqing; Pan, Wenwu; Qi, Zhen; Wang, Shumin; Shao, Jun

    2017-01-01

    This paper reports a temperature-dependent (10-280 K) photoluminescence (PL) study of below-bandgap electron-hole recombinations and anomalous negative thermal quenching of PL intensity in InP1-xBix (x = 0.019 and 0.023). Four PL features are well resolved by curve-fitting of the PL spectra, of which the energies exhibit different temperature dependence. The integral intensities of the two high-energy features diminish monotonically as temperature rises up, while those of the two low-energy features decrease below but increase anomalously above 180 K. A phenomenological model is established that the residual electrons in the final state of the PL transition transfer into nonradiative state via thermal hopping, and the thermal hopping produces in parallel holes in the final state and hence enhances the radiative recombination significantly. A reasonable interpretation of the PL processes in InPBi is achieved, and the activation energies of the PL quenching and thermal hopping are deduced.

  18. Absence of quantum confinement effects in the photoluminescence of Si3N4-embedded Si nanocrystals

    NASA Astrophysics Data System (ADS)

    Hiller, D.; Zelenina, A.; Gutsch, S.; Dyakov, S. A.; López-Conesa, L.; López-Vidrier, J.; Estradé, S.; Peiró, F.; Garrido, B.; Valenta, J.; Kořínek, M.; Trojánek, F.; Malý, P.; Schnabel, M.; Weiss, C.; Janz, S.; Zacharias, M.

    2014-05-01

    Superlattices of Si-rich silicon nitride and Si3N4 are prepared by plasma-enhanced chemical vapor deposition and, subsequently, annealed at 1150 °C to form size-controlled Si nanocrystals (Si NCs) embedded in amorphous Si3N4. Despite well defined structural properties, photoluminescence spectroscopy (PL) reveals inconsistencies with the typically applied model of quantum confined excitons in nitride-embedded Si NCs. Time-resolved PL measurements demonstrate 105 times faster time-constants than typical for the indirect band structure of Si NCs. Furthermore, a pure Si3N4 reference sample exhibits a similar PL peak as the Si NC samples. The origin of this luminescence is discussed in detail on the basis of radiative defects and Si3N4 band tail states in combination with optical absorption measurements. The apparent absence of PL from the Si NCs is explained conclusively using electron spin resonance data from the Si/Si3N4 interface defect literature. In addition, the role of Si3N4 valence band tail states as potential hole traps is discussed. Most strikingly, the PL peak blueshift with decreasing NC size, which is often observed in literature and typically attributed to quantum confinement (QC), is identified as optical artifact by transfer matrix method simulations of the PL spectra. Finally, criteria for a critical examination of a potential QC-related origin of the PL from Si3N4-embedded Si NCs are suggested.

  19. Anomalies in nanostructure size measurements by AFM

    NASA Astrophysics Data System (ADS)

    Mechler, Ádám; Kopniczky, Judit; Kokavecz, János; Hoel, Anders; Granqvist, Claes-Göran; Heszler, Peter

    2005-09-01

    Anomalies in atomic force microscopy (AFM) based size determination of nanoparticles were studied via comparative analysis of experiments and numerical calculations. Single tungsten oxide nanoparticles with a mean diameter of 3nm were deposited on mica and graphite substrates and were characterised by AFM. The size (height) of the nanoparticles, measured by tapping mode AFM, was found to be sensitive to the free amplitude of the oscillating tip, thus indicating that the images were not purely topographical. By comparing the experimental results to model calculations, we demonstrate that the dependence of the nanoparticle size on the oscillation amplitude of the tip is an inherent characteristic of the tapping mode AFM; it is also a function of physical properties such as elasticity and surface energy of the nanoparticle and the sample surface, and it depends on the radius of curvature of the tip. We show that good approximation of the real size can easily be obtained from plots of particle height vs free amplitude of the oscillating tip, although errors might persist for individual experiments. The results are valid for size (height) determination of any nanometer-sized objects imaged by tapping mode AFM.

  20. Spontaneous circular polarization of photoluminescence from WS2 single layers

    NASA Astrophysics Data System (ADS)

    Scrace, Thomas; Tsai, Yutsung; Barman, Biplob; Zhang, Peiyao; Petrou, Athos; Kioseoglou, George; Korkusinski, Marek; Ozfidan, Isil; Hawrylak, Pawel

    2015-03-01

    We have carried out a magnetoluminescence study of WS2 single layer crystals excited with linearly polarized light. The photoluminescence (PL) contains two features. The first is associated with the neutral exciton (X0) ; the second feature is due to the recombination of negatively charged excitons (X-) in the presence of a two-dimensional electron gas (2DEG). The X- - 2 DEG feature has a non-zero circular polarization up to 19% at zero magnetic field even though the PL excitation light is linearly polarized. The circular polarization is effected by an external magnetic field applied perpendicular to the crystal plane at 2 % / Tesla . The zero field circular polarization of the X- - 2 DEG photoluminescence feature is interpreted as due to the existence of a spontaneously valley polarized 2DEG. This is a new state possible in WS2 due to valley and spin locking and a strong electron-electron interaction. Work at SUNY Buffalo has been supported by ONR. I.O., M.K. and P.H. acknowledge support of NRC QPSS program and of NSERC.

  1. Hydration states of AFm cement phases

    SciTech Connect

    Baquerizo, Luis G.; Matschei, Thomas; Scrivener, Karen L.; Saeidpour, Mahsa; Wadsö, Lars

    2015-07-15

    The AFm phase, one of the main products formed during the hydration of Portland and calcium aluminate cement based systems, belongs to the layered double hydrate (LDH) family having positively charged layers and water plus charge-balancing anions in the interlayer. It is known that these phases present different hydration states (i.e. varying water content) depending on the relative humidity (RH), temperature and anion type, which might be linked to volume changes (swelling and shrinkage). Unfortunately the stability conditions of these phases are insufficiently reported. This paper presents novel experimental results on the different hydration states of the most important AFm phases: monocarboaluminate, hemicarboaluminate, strätlingite, hydroxy-AFm and monosulfoaluminate, and the thermodynamic properties associated with changes in their water content during absorption/desorption. This data opens the possibility to model the response of cementitious systems during drying and wetting and to engineer systems more resistant to harsh external conditions.

  2. Excitons Bound to Nitrogen Pairs in GaAs as Seen by Photoluminescence of High Spectral and Spatial Resolution

    SciTech Connect

    Karaiskaj, D.; Mascarenhas, A.; Klem, J. F.; Volz, K.; Stolz, W.; Adamcyk, M.; Tiedje, T.

    2007-01-01

    High resolution photoluminescence (PL) spectroscopy was performed on high quality bulk GaAs, lightly doped with the nitrogen isoelectronic impurity. The shallowest nitrogen pair bound exciton center labeled as X{sub 1} revealed a total of six transitions. The photoluminescence lines from a small ensemble of nitrogen centers showed polarization dependent intensity. High spectral resolution PL spectroscopy was combined with confocal spectroscopy experiments performed on a GaAs:N/AlGaAs heterostructure. The high spatial resolution achieved by this technique enables us to localize and examine individual nitrogen bound excitons. Similar spectral structure and polarization dependence was observed for individual N-pair centers in GaAs. Both techniques support the C{sub 2v} symmetry of such isoelectronic impurity centers. The comparison between the PL spectra from an ensemble of nitrogen pairs and individual centers demonstrate the ability of the single impurity technique to lift the orientational degeneracy.

  3. Graphene MEMS: AFM probe performance improvement.

    PubMed

    Martin-Olmos, Cristina; Rasool, Haider Imad; Weiller, Bruce H; Gimzewski, James K

    2013-05-28

    We explore the feasibility of growing a continuous layer of graphene in prepatterned substrates, like an engineered silicon wafer, and we apply this as a mold for the fabrication of AFM probes. This fabrication method proves the fabrication of SU-8 devices coated with graphene in a full-wafer parallel technology and with high yield. It also demonstrates that graphene coating enhances the functionality of SU-8 probes, turning them conductive and more resistant to wear. Furthermore, it opens new experimental possibilities such as studying graphene-graphene interaction at the nanoscale with the precision of an AFM or the exploration of properties in nonplanar graphene layers.

  4. The correlation of blue shift of photoluminescence and morphology of silicon nanoporous

    NASA Astrophysics Data System (ADS)

    Al-Jumaili, Batool E. B.; Talib, Zainal A.; Josephine L., Y.; Paiman, Suriati B.; Ahmed, Naser M.; Al-Jumaily, Abdulmajeed H. J.; Ramizy, Asmiet; Abdulateef, Sinan A.; Muh'd, Ibrahim B.; Mofdal, Manahil E. E.

    2016-07-01

    Porous silicon with diameters ranging from 6.41 to 7.12 nm were synthesized via electrochemical etching by varied anodization current density in ethanoic solutions containing aqueous hydrofluoric acid up to 65mA/cm2.The luminescence properties of the nanoporous at room temperature were analyzed via photoluminescence spectroscopy. Photoluminescence PL spectra exhibit a broad emission band in the range of 360-700 nm photon energy. The PL spectrum has a blue shift in varied anodization current density; the blue shift incremented as the existing of anodization although the intensity decreased. The current blue shift is owning to alteration of silicon nanocrystal structure at the superficies. The superficial morphology of the PS layers consists of unified and orderly distribution of nanocrystalline Si structures, have high porosity around (93.75%) and high thickness 39.52 µm.

  5. Electric Field Dependent Photoluminescence in Atomically Thin Transition Metal Dichalcogenides van der Waals Heterostructures

    NASA Astrophysics Data System (ADS)

    Jauregui, Luis A.; High, Alex A.; Dibos, Alan; Joe, Andrew; Gulpinar, Elgin; Park, Hongkun; Kim, Philip

    uregui, Alex A. High, Alan Dibos, Andrew Joe, Elgin Gulpinar, Hongkun Park, Philip Kim Harvard University, Physics Department -abstract- Single layer transition metal dichalcogenides (TMDC) are 2-dimensional (2D) semiconductors characterized by a direct optical bandgap and large exciton binding energies (>100 meV). We fabricate CQW heterostructures made of 2D TMDCs with hexagonal Boron nitride (BN) as atomically thin barrier and gate dielectric, with top and bottom gate electrodes. We study the evolution of photoluminescence (PL) spectrum with varying BN barrier thickness, electric field, temperature and polarization. Our measured low-temperature (T = 3K) PL peaks show full width at half maxima on the order of ~3meV. We identify the photoluminescence peaks, corresponding to the charged exciton emission, which red shifts and its brightness increases while the neutral exciton emission becomes darker for increasing electric field.

  6. Photoluminescence lifetime of Al-doped ZnO films in visible region

    NASA Astrophysics Data System (ADS)

    Sharma, Bhupendra K.; Khare, Neeraj; Haranath, D.

    2010-12-01

    ZnO and Al-doped ZnO films have been deposited on quartz substrates by ultrasonically assisted chemical vapor deposition technique. Photoluminescence (PL) spectra of the films reveal that Al doping leads to suppression of defect related visible band. Time resolved photoluminescence studies have been carried out for the measurement of lifetime of deep level luminescence. The decay of PL intensity with time has been found to follow biexponential behavior. The relative contributions of fast decay component (τ1) and slow decay component (τ2) in total decay process are found to be ˜99% and ˜1% respectively. The values of τ1 and τ2 are found to decrease with Al doping in ZnO film. The decrease of both τ1 and τ2 is attributed to increase in non-radiative recombination due to reduction in grain sizes and the decrease in radiative recombination due to suppression of defects.

  7. On the origin of the spatial inhomogeneity of photoluminescence in thin-film CIGS solar devices

    NASA Astrophysics Data System (ADS)

    El-Hajje, Gilbert; Ory, Daniel; Guillemoles, Jean-François; Lombez, Laurent

    2016-07-01

    In this letter, we investigate the origin of the spatial inhomogeneity of the photoluminescence (PL) intensity maps obtained on thin-film solar cells. Based on a hyperspectral imager setup, we record an absolute map of the quasi-Fermi level splitting Δμ by applying the generalized Planck's law. Then, using scanning confocal microscopy, we perform spatially and time-resolved photoluminescence measurements. This allowed us to quantify and map the micrometric fluctuations of the trapping defect density within these solar cells. Finally, we demonstrate the existence of a direct correlation between the spatial fluctuations of the quasi-Fermi level splitting and the trapping defect density. The latter was found to be correlated with the frequently reported spatially inhomogeneous PL maps of thin-film solar cells. Based on the observed correlation, we can quantify the local losses in quasi-Fermi level splitting induced by the spatial distribution of the trapping defects.

  8. Photoluminescence in disordered Zn{sub 2}TiO{sub 4}

    SciTech Connect

    Chaves, Alexsandra C.; Lima, Severino J.G.; Araujo, Regiane C.M.U.; Maurera, Maria Aldeiza M.A.; Longo, Elson; Pizani, Paulo S.; Simoes, Luiz G.P.; Soledade, Luiz E.B.; Souza, Antonio G.; Santos, Ieda Maria Garcia dos . E-mail: ieda@quimica.ufpb.br

    2006-04-15

    In this work, the polymeric precursor method was used to obtain disordered Zn{sub 2}TiO{sub 4} powders, either undoped or doped with Sn{sup 4+}, Cr{sup 3+} and V{sup 5+}, to be applied as photoluminescent material. The characterization was undertaken by means of thermal analysis (TG and DTA), X-ray diffraction (XRD), infrared spectroscopy (IR) and photoluminescence (PL). Previous works stated that titanate octahedra containing a short Ti-O distance show efficient luminescence at room temperature if these octahedra are isolated from each other. In the present work, the phenomenon was observed in condensed octahedra, sharing edges. The room temperature PL noticed in undoped Zn{sub 2}TiO{sub 4} had its intensity increased by the dopant addition-the increase was of about 300% for V{sup 5+} doping, 400% for Cr{sup 3+} and 800% for Sn{sup 4+}.

  9. Structural and photoluminescence properties of Ce, Dy, Er-doped ZnO nanoparticles

    SciTech Connect

    Jayachandraiah, C.; Kumar, K. Siva; Krishnaiah, G.

    2015-06-24

    Undoped ZnO and rare earth elements (Ce, Dy and Er with 2 at. %) doped nanoparticles were synthesized by wet chemical co-precipitation method at 90°C with Polyvinylpyrrolidone (PVP) as capping agent. The structural, morphological, compositional and photoluminescence studies were performed with X-ray diffraction (XRD), Transmission electron microscopy (TEM), Energy dispersive spectroscopy (EDS), FTIR spectroscopy and Photoluminescence (PL) respectively. XRD results revealed hexagonal wurtzite structure with average particle size around 18 nm - 14 nm and are compatible with TEM results. EDS confirm the incorporation of Ce, Dy and Er elements into the host ZnO matrix and is validated by FTIR analysis. PL studies showed a broad intensive emission peak at 558 nm in all the samples. The intensity for Er- doped ZnO found maximum with additional Er shoulder peaks at 516nm and 538 nm. No Ce, Dy emission centers were found in spectra.

  10. Photoluminescence and thermoluminescence studies of CaAl2O4:Dy(3+) phosphor.

    PubMed

    Ziyauddin, Mohammad; Tigga, Shalinta; Brahme, Nameeta; Bisen, D P

    2016-02-01

    Calcium aluminate phosphors activated by Dy(3+) have been prepared by a combustion method at a temperature of 600°C. Photoluminescence (PL) and thermoluminescence (TL) properties of gamma-irradiated Dy-doped calcium aluminate were investigated. The PL spectrum shows a broad peak around 488 nm and 573 nm, under 347 nm excitation. Thermoluminescence studies were performed for different concentrations of Dy. Optimum intensity of photoluminescence was found for 0.02 mol% concentration of Dy. It was found that initially the peak TL intensity increases with increasing concentration of Dy in the CaAl2O4 host, attains a maximum value for 0.05 mol% concentration and decreases with further increase in the doping concentration due to concentration quenching.

  11. Photoluminescence changes of III-Nitride lateral polarity structures after chemical functionalization

    NASA Astrophysics Data System (ADS)

    Berg, Nora G.; Franke, Alexander; Kirste, Ronny; Collazo, Ramon; Ivanisevic, Albena

    2016-12-01

    The photoluminescence changes of a III-Nitride semiconductor with various surface topographies were studied after chemical functionalization. Al x Ga1-x N with a composition of 70% aluminum was used and the surfaces were functionalized with a fluorophore dye-terminated peptide using a linker molecule. The stability of the wafers in water was studied using inductively coupled plasma mass spectrometry prior to modifying the material. The leaching data demonstrated that the AlGaN material in highly stable in biological conditions over 7 d. The attachment of the dye to the wafer was investigated using x-ray photoelectron spectroscopy and photoluminescence spectroscopy (PL). The PL spectrum showed a clear signature of the dye with a pronounced emission peak at approximately 260 nm, indicating a successful attachment to the surface.

  12. Room Temperature Pressure-induced Photoluminescence in MnF2

    NASA Astrophysics Data System (ADS)

    Hernandez, Ignacio; Hochheimer, Hans D.; Rodriguez, Fernando

    2003-10-01

    In previous works we have demonstrated the occurrence of photoluminescence (PL) in slightly Mn2+-doped systems depending only on the host site volume [1]. Thus, we have been able to induce room temperature (RT) PL in non-luminescent Mn2+ containing fluorites BaF2 and SrF2 by means of pressure [2]. The irrelevance of the coordination geometry for the Mn2+ complex is stressed by the fact that the occurrence of the fluorite to cotunnite phase transition (PT) only affects the PL transition probability rate in terms of the approx. 10% volume reduction and the loss of inversion centre that take place. On the other side, non-doped MnF2 is photoluminescent at low temperatures but PL is quenched at temperatures above 100 K [3] and it is not luminescent at RT. This is due to excitation migration mechanisms that take Frenkel excitons to non-radiative excitation traps. This migration is favoured by temperature so that at RT no luminescent Mn2+ complexes can retain excitation [4]. In this work we deal with the occurrence of PL in non-doped MnF2 at room temperature. Rutile-structure MnF2 is pressurized and undergoes two PTs. There exists a strong correlation between the occurrence of the PL and the induced structural changes. We observe two photoluminescent centres at P > 14 GPa placed at 2.34 eV and 1.87 eV, that are likely associated to Mn2+ intrinsic PL and perturbed Mn2+ complexes, respectively. Therefore, we demonstrate that pressure is an efficient tool to reduce the excitation migration so that excitons can be retained in Mn2+ traps and, thus, increase the PL efficiency of the material at a given temperature or induce PL beyond a critical volume. This is particularly interesting in cases such as the present, in which the PT show hysteresis. References: [1] to be published: F. Rodriguez, I. Hernandez, M. Moreno and R. Alcala, J. Chem. Phys., Vol. 119, No. 16, 22 October 2003 [2] I. Hernandez and F. Rodriguez, Phys. Rev. B 67, 012101 (2003) [3] W.W. Holloway, Jr, M

  13. [Effects of different annealing conditions on the photoluminescence of nanoporous alumina film].

    PubMed

    Xie, Ning; Ma, Kai-Di; Shen, Yi-Fan; Wang, Qian

    2013-12-01

    The nanoporous alumina films were prepared by two-step anodic oxidation in 0.5 mol L-1 oxalic acid electrolyte at 40 V. Photoluminescence (PL) of nanoporous alumina films was investigated under different annealing atmosphere and different temperature. The authors got three results about the PL measurements. In the same annealing atmosphere, when the annealling temperature T< or =600 degreeC, the intensity of the PL peak increases with elevated annealing temperature and reaches a maximum value at 500 degreeC, but the intensity decreases with a further increase in the annealing temperature, and the PL peak intensity of samples increases with the increase in the annealing temperature when the annealling temperature T> or =800 degreeC. In the different annealling atmosphere, the change in the photoluminescence peak position for nanoporous alumina films with the increase in the annealing temperature is different: With the increase in the annealling temperature, the PL peak position for the samples annealed in air atmosphere is blue shifted, while the PL peak position for the samples annealed in vacuum atmosphere will not change. The PL spectra of nanoporous alumina films annealed at 1100 degreeC in air atmosphere can be de-convoluted by three Gaussian components at an excitation wavelength of 350 nm, with bands centered at 387, 410 and 439 nm, respectively. These results suggest that there might be three luminescence centers for the PL of annealed alumina films. At the same annealling temperature, the PL peak intensity of samples annealed in air atmosphere is stronger than that annealed in the vacuum. Based on the experimental results and the X-ray dispersive energy spectrum (EDS) combined with infrared reflect spectra, the luminescence mechanisms of nanoporous alumina films are discussed. There are three luminescence centers in the annealed nanoporous alumina films, which originate from the F center, F+ center and the center associated with the oxalic impurities. The

  14. Photoluminescence of Electrospun Poly-Methyl-Methacrylate:Alq3 Composite Fibres

    NASA Astrophysics Data System (ADS)

    Tong, Ke-Qin; Xu, Chun-Xian; Wang, Qiong; Gu, Bao-Xiang; Zheng, Ke; Ye, Li-Hua; Li, Xin-Song

    2008-12-01

    Tris(8-hydroxyquinoline) aluminium doped poly-methyl-methacrylate (PMMA:Alq3) composite nanofibres are fabricated by electrospinning. The morphology of fibres is characterized by scanning electron microscopy. The photoluminescence of a series of the nanofibres with various contents of Alqs to PMMA is investigated. UV-visible absorption and the PL spectra analysis are employed to analyse the interaction between the polymer and the luminescent molecule.

  15. Photoluminescence properties of polynaphthalisoimides and polynapththalimides in solutions and thin layers

    NASA Astrophysics Data System (ADS)

    Wanic, Andrzej; Mazurak, Zbigniew; Cisowski, Jan

    2011-09-01

    A series of polynaphthalsoimides and polynaphthalimides from 1,4,5,8-naphthalene dianhydride and 4,4'-methylene-bis(2,6-diisopropylaniline) or its hydrochloride in HMPA were synthesized in one-step high temperature polycondensation process. The different temperatures of the reaction from 125°C to 180°C were applied. The products were investigated using PL techniques in both solutions and thin layers. The observed changes in all investigated spectra and photochemical properties were presented. The remarkable changes in emission wavelength in photoluminescence was observed together with the increase of the reaction temperature. This work presents novel approach to the class of polymers well known to literature worldwide trying to explain of some surprising aspects of photoluminescence of these compounds. When investigated in solution, the polymer synthesized at 125°C exhibit almost no photoluminescence. The increase of the temperature to 150°C causes the strong increase in the photoluminescence intensity at 545 nm. When the reaction temperature increase to 180°C the intensity of photoluminescence exhibits moderate increase at 546.5 nm, however, remarkable increase was observed for 476.5 nm and 440 nm. The photoluminescence analysis of the polymers synthesized shows that depending on reaction temperature products emitting at different wavelengths may be obtained. Investigations were repeated for thin layers of the polymers. The obtained results and their comparison with the results in solution were also presented and discussed.

  16. Photoluminescence properties of polynaphthalisoimides and polynapththalimides in solutions and thin layers

    NASA Astrophysics Data System (ADS)

    Wanic, Andrzej; Mazurak, Zbigniew; Cisowski, Jan

    2012-02-01

    A series of polynaphthalsoimides and polynaphthalimides from 1,4,5,8-naphthalene dianhydride and 4,4'-methylene-bis(2,6-diisopropylaniline) or its hydrochloride in HMPA were synthesized in one-step high temperature polycondensation process. The different temperatures of the reaction from 125°C to 180°C were applied. The products were investigated using PL techniques in both solutions and thin layers. The observed changes in all investigated spectra and photochemical properties were presented. The remarkable changes in emission wavelength in photoluminescence was observed together with the increase of the reaction temperature. This work presents novel approach to the class of polymers well known to literature worldwide trying to explain of some surprising aspects of photoluminescence of these compounds. When investigated in solution, the polymer synthesized at 125°C exhibit almost no photoluminescence. The increase of the temperature to 150°C causes the strong increase in the photoluminescence intensity at 545 nm. When the reaction temperature increase to 180°C the intensity of photoluminescence exhibits moderate increase at 546.5 nm, however, remarkable increase was observed for 476.5 nm and 440 nm. The photoluminescence analysis of the polymers synthesized shows that depending on reaction temperature products emitting at different wavelengths may be obtained. Investigations were repeated for thin layers of the polymers. The obtained results and their comparison with the results in solution were also presented and discussed.

  17. Conductance of AFM Deformed Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexei; Maiti, Amitesh; Anatram, M. P.; Biegel, Bryan (Technical Monitor)

    2002-01-01

    This viewgraph presentation provides information on the electrical conductivity of carbon nanotubes upon deformation by atomic force microscopy (AFM). The density of states and conductance were computed using four orbital tight-binding method with various parameterizations. Different chiralities develop bandgap that varies with chirality.

  18. Contact nanomechanical measurements with the AFM

    NASA Astrophysics Data System (ADS)

    Geisse, Nicholas

    2013-03-01

    The atomic force microscope (AFM) has found broad use in the biological sciences largely due to its ability to make measurements on unfixed and unstained samples under liquid. In addition to imaging at multiple spatial scales ranging from micro- to nanometer, AFMs are commonly used as nanomechanical probes. This is pertinent for cell biology, as it has been demonstrated that the geometrical and mechanical properties of the extracellular microenvironment are important in such processes as cancer, cardiovascular disease, muscular dystrophy, and even the control of cell life and death. Indeed, the ability to control and quantify these external geometrical and mechanical parameters arises as a key issue in the field. Because AFM can quantitatively measure the mechanical properties of various biological samples, novel insights to cell function and to cell-substrate interactions are now possible. As the application of AFM to these types of problems is widened, it is important to understand the performance envelope of the technique and its associated data analyses. This talk will discuss the important issues that must be considered when mechanical models are applied to real-world data. Examples of the effect of different model assumptions on our understanding of the measured material properties will be shown. Furthermore, specific examples of the importance of mechanical stimuli and the micromechanical environment to the structure and function of biological materials will be presented.

  19. Photoluminescence of monovalent indium centres in phosphate glass

    PubMed Central

    Masai, Hirokazu; Yamada, Yasuhiro; Okumura, Shun; Yanagida, Takayuki; Fujimoto, Yutaka; Kanemitsu, Yoshihiko; Ina, Toshiaki

    2015-01-01

    Valence control of polyvalent cations is important for functionalization of various kinds of materials. Indium oxides have been used in various applications, such as indium tin oxide in transparent electrical conduction films. However, although metastable In+ (5 s2 configuration) species exhibit photoluminescence (PL), they have attracted little attention. Valence control of In+ cations in these materials will be important for further functionalization. Here, we describe In+ species using PL and X-ray absorption fine structure (XAFS) analysis. Three absorption bands in the UV region are attributed to the In+ centre: two weak forbidden bands (1S0 → 3P1, 1S0 → 3P2) and a strong allowed band (1S0 → 1P1). The strongest PL excitation band cannot be attributed to the conventional allowed transition to the singlet excited state. Emission decay of the order of microseconds suggests that radiative relaxation occurs from the triplet excitation state. The XAFS analysis suggests that these In+ species have shorter In–O distances with lower coordination numbers than in In2O3. These results clearly demonstrate that In+ exists in a metastable amorphous network, which is the origin of the observed luminescent properties.

  20. Energy transfer and depolarization in the photoluminescence of a plasmonic molecule.

    PubMed

    Yin, Tingting; Jiang, Liyong; Dong, Zhaogang; Yang, Joel K W; Shen, Ze Xiang

    2017-02-02

    We report a comprehensive experimental study of the polarization dependence between excitation and photoluminescence (PL) emission from single dolmen-like metallic nanostructures that exhibit both Fano-like and Lorentz-like plasmon resonances. Though the PL spectra of this plasmonic "molecule" also exhibit the Fano and Lorentz signature, the emitted photons do not maintain the same polarization as the excitation. Surprisingly, the degree of depolarization correlates closely to the resonant excitation of the constituent atoms (single nanorod). More specifically, the excitation of a transverse plasmon mode results in a depolarized emission through the longitudinal plasmon modes of the constituent nanorods. In view of the recent evidence of on-resonant plasmon induced excitations in generating hot electrons, our results suggest that depolarized PL emissions could be enhanced through hot-electron decay. Both macroscopic and microscopic mechanisms are proposed to well-understand the excitation wavelength dependent depolarized photoluminescence behaviors in the plasmonic molecule. Our results lay a foundation for applying the depolarized photoluminescence of complex plasmonic nanostructures in polarization engineering.

  1. Photoluminescence of dense nanocrystalline titanium dioxide thin films: effect of doping and thickness and relation to gas sensing.

    PubMed

    Mercado, Candy; Seeley, Zachary; Bandyopadhyay, Amit; Bose, Susmita; McHale, Jeanne L

    2011-07-01

    The photoluminescence (PL) of dense nanocrystalline (anatase) TiO(2) thin films is reported as a function of calcination temperature, thickness, and tungsten and nickel doping. The dependence of the optical absorption, Raman spectra, and PL spectra on heat treatment and dopants reveals the role of oxygen vacancies, crystallinity, and phase transformation in the performance of TiO(2) films used as gas sensors. The broad visible PL from defect states of compact and undoped TiO(2) films is found to be much brighter and less sensitive to the presence of oxygen than that of mesoporous films. The dense nanocrystalline grains and the nanoparticles comprising the mesoporous film are comparable in size, demonstrating the importance of film morphology and carrier transport in determining the intensity of defect photoluminescence. At higher calcination temperatures, the transformation to rutile results in the appearance of a dominant near-infrared peak. This characteristic change in the shape of the PL spectra demonstrates efficient capture of conduction band electrons by the emerging rutile phase. The W-doped samples show diminished PL with quenching on the red side of the emission spectrum occurring at lower concentration and eventual disappearance of the PL at higher W concentration. The results are discussed within the context of the performance of the TiO(2) thin films as CO gas sensors and the chemical nature of luminescent defects.

  2. Photoluminescence properties of Jahn-Teller transition-metal ions

    NASA Astrophysics Data System (ADS)

    Sanz-Ortiz, Marta N.; Rodríguez, Fernando

    2009-09-01

    This work investigates the influence of electron-phonon coupling associated with E ⊗e and T ⊗e Jahn-Teller (JT) effect in different transition-metal (TM) ions on de-excitation phenomena through nonradiative multiphonon relaxation, i.e., photoluminescence (PL) quenching. We developed a configurational curve model which is able to predict from the absorption spectrum whether a given JT-TM ion is PL or quenched. The prediction is made on the basis of an adapted Dexter-Klick-Russell parameter for JT systems, defined in terms of spectroscopic parameters through ΛJT=αΔeabs/Eabs, where Δeabs refers to the splitting of the parent octahedral Eg states by the JT distortion in E ⊗e (α =3/4) or T ⊗e (α =1/4), and Eabs is the energy of the first absorption band involving electronic transition between Eg and T2g. We show that PL in any JT-TM ion occurs whenever ΛJT<0.1 or is quenched if ΛJT>0.2. This result is noteworthy since it allows us to establish structural requirements for the JT-TM ion and the host crystal to be PL. Although PL properties of materials containing TM ions depend on a variety of structural factors such as the electronic configuration, the site symmetry, and the crystal field produced by neighboring atoms, the present model achieves this goal through a simple spectroscopic parameter: ΛJT. In this work we correlated the PL properties of different sixfold-coordinated JT systems such as Ti3+, Cu2+, Mn3+, Cr2+, Fe2+, Co3+, and Ni3+ in halides and oxides with ΛJT obtained from their respective absorption spectra. From this analysis we conclude that depending on the nature of the JT coupling and its strength, PL is either strongly favored or quenched in T ⊗e while it is mostly quenched in E ⊗e systems due to the larger JT distortion.

  3. Self-assembly and photoluminescence evolution of hydrophilic and hydrophobic quantum dots in sol–gel processes

    SciTech Connect

    Yang, Ping; Matras-Postolek, Katarzyna; Song, Xueling; Zheng, Yan; Liu, Yumeng; Ding, Kun; Nie, Shijie

    2015-10-15

    Graphical abstract: Highly luminescent quantum dots (QDs) with tunable photoluminescence (PL) wavelength were assembled into various morphologies including chain, hollow spheres, fibers, and ring structures through sol–gel processes. The PL properties during assembly as investigated. - Highlights: • Highly luminescent quantum dots (QDs) were synthesized from several ligands. • The evolution of PL in self-assembly via sol–gel processes was investigated. • CdTe QDs were assembled into a chain by controlling hydrolysis and condensation reactions. • Hollow spheres, fibers, and ring structures were created via CdSe/ZnS QDs in sol–gel processes. - Abstract: Highly luminescent quantum dots (QDs) with tunable photoluminescence (PL) wavelength were synthesized from several ligands to investigate the PL evolution in QD self-assembly via sol–gel processes. After ligand exchange, CdTe QDs were assembled into a chain by controlling the hydrolysis and condensation reaction of 3-mercaptopropyl-trimethoxysilane. The chain was then coated with a SiO{sub 2} shell from tetraethyl orthosilicate (TEOS). Hollow spheres, fibers, and ring structures were created from CdSe/ZnS QDs via various sol–gel processes. CdTe QDs revealed red-shifted and narrowed PL spectrum after assembly compared with their initial one. In contrast, the red-shift of PL spectra of CdSe/ZnS QDs is small. By optimizing experimental conditions, SiO{sub 2} spheres with multiple CdSe/ZnS QDs were fabricated using TEOS and MPS. The QDs in these SiO{sub 2} spheres retained their initial PL properties. This result is useful for application because of their high stability and high PL efficiency of 33%.

  4. Stimuli-responsive photoluminescent liquid crystals.

    PubMed

    Yamane, Shogo; Tanabe, Kana; Sagara, Yoshimitsu; Kato, Takashi

    2012-01-01

    We describe mechanochromic and thermochromic photoluminescent liquid crystals. In particular, mechanochromic photoluminescent liquid crystals found recently, which are new stimuli-responsive materials are reported. For example, photoluminescent liquid crystals having bulky dendritic moieties with long alkyl chains change their photoluminescent colors by mechanical stimuli associated with isothermal phase transitions. The photoluminescent properties of molecular assemblies depend on their assembled structures. Therefore, controlling the structures of molecular assemblies with external stimuli leads to the development of stimuli-responsive luminescent materials. Mechanochromic photoluminescent properties are also observed for a photoluminescent metallomesogen and a liquid-crystalline polymer. We also show thermochromic photoluminescent liquid crystals based on origo-(p-phenylenevinylene) and anthracene moieties and a thermochromic photoluminescent metallocomplex.

  5. Unique photoluminescence degradation/recovery phenomena in trivalent ion-activated phosphors

    SciTech Connect

    Sawada, Kenji; Adachi, Sadao

    2015-09-14

    Photo-induced luminescence intensity degradation in red-emitting Tb{sub 3}Ga{sub 5}O{sub 12}:Eu{sup 3+} (TGG:Eu{sup 3+}) phosphor is observed and studied using x-ray diffraction measurement, photoluminescence (PL) analysis, PL excitation spectroscopy, and PL decay analysis. The red-emitting TGG:Eu{sup 3+} phosphor exhibits remarkable degradation in the PL intensity under weak UV light (λ < 350 nm) exposure in the seconds time scale. The PL degradation characteristics can be well expressed by the exponential formulation with respect to exposure time. Interestingly, the PL intensity recovers after a few minutes when the phosphor is stored in a dark room or exposed to the long-wavelength (λ > 350 nm) light. The luminescence decay dynamics measured by excitation at λ{sub ex} = 355 and 266 nm suggest that the present degradation/recovery processes are caused by the electron traps formed in the TGG:Eu{sup 3+} phosphor. The Tb{sup 3+} emission in TGG shows the essentially same degradation characteristics as those observed in the TGG:Eu{sup 3+} phosphor. The present luminescence degradation/recovery phenomena of the trivalent ions (4f → 4f transitions) may universally occur in various oxide phosphors such as TGG (Tb{sup 3+} emission) and CaTiO{sub 3}:Eu{sup 3+}.

  6. Photoluminescence Studies of Point Defects in ZnGeP_2

    NASA Astrophysics Data System (ADS)

    Giles, N. C.; Halliburton, L. E.; Schunemann, P. G.; Pollak, T. M.

    1996-03-01

    Zinc germanium diphosphide (ZnGeP_2) is a II-IV-V2 ternary chalcopyrite sem iconductor, and is a prime candidate for frequency-conversion applications in th e mid-infrared. Device performance at high powers has been hampered by a near-i nfrared absorption band. We present a photoluminescence (PL) study performed on a series of bulk ZnGeP2 single crystals grown by the horizontal gradient-fre eze technique. Two broad overlapping emission bands are observed at about 1.4 e V and 1.6 eV. PL data have been recorded as a function of temperature, excitati on power density, and excitation wavelength. An analysis of the polarization of the emitted PL reveals two distinct transitions. The PL data are correlated wi th electron paramagnetic resonance data, which identified zinc vacancies and pho sphorus vacancies as the dominant acceptor and donor centers in these samples. The PL data thus provide electronic energy levels related to these defect center s and give the crucial tie between defect identification and ab sorption measurements. A comparison between PL and paramagnetic defects in self -nucleated crystals will also be presented. Work supported by NSF (DMR-9409276) and NASA (NCCW-0051).

  7. A Label-Free Photoluminescence Genosensor Using Nanostructured Magnesium Oxide for Cholera Detection.

    PubMed

    Patel, Manoj Kumar; Ali, Md Azahar; Krishnan, Sadagopan; Agrawal, Ved Varun; Al Kheraif, AbdulAziz A; Fouad, H; Ansari, Z A; Ansari, S G; Malhotra, Bansi D

    2015-11-27

    Nanomaterial-based photoluminescence (PL) diagnostic devices offer fast and highly sensitive detection of pesticides, DNA, and toxic agents. Here we report a label-free PL genosensor for sensitive detection of Vibrio cholerae that is based on a DNA hybridization strategy utilizing nanostructured magnesium oxide (nMgO; size >30 nm) particles. The morphology and size of the synthesized nMgO were determined by transmission electron microscopic (TEM) studies. The probe DNA (pDNA) was conjugated with nMgO and characterized by X-ray photoelectron and Fourier transform infrared spectroscopic techniques. The target complementary genomic DNA (cDNA) isolated from clinical samples of V. cholerae was subjected to DNA hybridization studies using the pDNA-nMgO complex and detection of the cDNA was accomplished by measuring changes in PL intensity. The PL peak intensity measured at 700 nm (red emission) increases with the increase in cDNA concentration. A linear range of response in the developed PL genosensor was observed from 100 to 500 ng/μL with a sensitivity of 1.306 emi/ng, detection limit of 3.133 ng/μL and a regression coefficient (R(2)) of 0.987. These results show that this ultrasensitive PL genosensor has the potential for applications in the clinical diagnosis of cholera.

  8. Probing the Influence of Amino Acids on Photoluminescence from Carbon Nanotubes Suspended with DNA.

    PubMed

    Kurnosov, N V; Leontiev, V S; Karachevtsev, V A

    2016-11-01

    The quantitative analysis of amino acid levels in the human organism is required for the early clinical diagnosis of a variety of diseases. In this work the influence of 13 amino acid doping on the photoluminescence (PL) from the semiconducting single-walled carbon nanotubes (SWNTs) suspended with single-stranded DNA (ssDNA) in water has been studied. Amino acid doping leads to the PL enhancement and the strongest increase was found after cysteine doping of the nanotube suspension while addition of other amino acids yielded the significantly smaller effect. The emphasis of cysteine molecules is attributed to presence of the reactive thiol group that turns cysteine into reducing agent that passivates the p-defects on the nanotube sidewall and increases the PL intensity. The reasons of PL enhancement after doping with other amino acids are discussed. The response of nanotube PL to cysteine addition depends on the nanotube aqueous suspension preparation with tip or bath sonication treatment. The enhancement of the emission from different nanotube species after cysteine doping was analyzed too. It was shown that the increase of the carbon nanotube PL at addition of cysteine allows successful monitoring of the cysteine concentration in aqueous solution in the range of 50-1000 μM.

  9. Photoluminescence Blinking of Single-Crystal Methylammonium Lead Iodide Perovskite Nanorods Induced by Surface Traps

    PubMed Central

    2016-01-01

    Photoluminescence (PL) of organometal halide perovskite materials reflects the charge dynamics inside of the material and thus contains important information for understanding the electro-optical properties of the material. Interpretation of PL blinking of methylammonium lead iodide (MAPbI3) nanostructures observed on polycrystalline samples remains puzzling owing to their intrinsic disordered nature. Here, we report a novel method for the synthesis of high-quality single-crystal MAPbI3 nanorods and demonstrate a single-crystal study on MAPbI3 PL blinking. At low excitation power densities, two-state blinking was found on individual nanorods with dimensions of several hundred nanometers. A super-resolution localization study on the blinking of individual nanorods showed that single crystals of several hundred nanometers emit and blink as a whole, without showing changes in the localization center over the crystal. Moreover, both the blinking ON and OFF times showed power-law distributions, indicating trapping–detrapping processes. This is further supported by the PL decay times of the individual nanorods, which were found to correlate with the ON/OFF states. Furthermore, a strong environmental dependence of the nanorod PL blinking was revealed by comparing the measurements in vacuum, nitrogen, and air, implying that traps locate close to crystal surfaces. We explain our observations by proposing surface charge traps that are likely related to under-coordinated lead ions and methylammonium vacancies to result in the PL blinking observed here. PMID:27617323

  10. Structure and photoluminescence properties of carbon nanotip-vertical graphene nanohybrids

    SciTech Connect

    Wang, B. B.; Zhu, K.; Ostrikov, K.; Shao, R. W.; Zheng, K.

    2016-01-14

    We report on the effective enhancement and tuning of photoluminescence (PL) by combining vertical graphene nanoflakes (VGs) and carbon nanotips (CNTPs). The VGs are grown on the vertical CNTPs by hot filament chemical vapor deposition in the methane environment, where the CNTPs are synthesized on silicon substrates by CH{sub 4}-H{sub 2}-N{sub 2} plasma-enhanced hot filament chemical vapor deposition. The results of field emission scanning electron microscopy, transmission electron microscopy, micro-Raman spectroscopy, and X-ray photoelectron spectroscopy indicate that the VGs can be grown on the CNTP and silicon substrate surfaces with the orientation perpendicular to the surfaces of CNTPs and silicon substrates. The PL properties of VG, CNTP, and CNTP-VG structures are studied using a 325 nm line of He-Cd laser as the excitation source. The PL results indicate that the PL of VGs is enhanced by the CNTPs due to the increasing density of PL emitters, while the PL properties of the nanohybrid system can be tuned. Furthermore, the potential applications of CNTP-VG structures in optoelectronic devices are analyzed. These results contribute to the design of functional graphene-based materials and the development of next-generation optoelectronic devices.

  11. A Label-Free Photoluminescence Genosensor Using Nanostructured Magnesium Oxide for Cholera Detection

    NASA Astrophysics Data System (ADS)

    Patel, Manoj Kumar; Ali, Md. Azahar; Krishnan, Sadagopan; Agrawal, Ved Varun; Al Kheraif, Abdulaziz A.; Fouad, H.; Ansari, Z. A.; Ansari, S. G.; Malhotra, Bansi D.

    2015-11-01

    Nanomaterial-based photoluminescence (PL) diagnostic devices offer fast and highly sensitive detection of pesticides, DNA, and toxic agents. Here we report a label-free PL genosensor for sensitive detection of Vibrio cholerae that is based on a DNA hybridization strategy utilizing nanostructured magnesium oxide (nMgO; size >30 nm) particles. The morphology and size of the synthesized nMgO were determined by transmission electron microscopic (TEM) studies. The probe DNA (pDNA) was conjugated with nMgO and characterized by X-ray photoelectron and Fourier transform infrared spectroscopic techniques. The target complementary genomic DNA (cDNA) isolated from clinical samples of V. cholerae was subjected to DNA hybridization studies using the pDNA-nMgO complex and detection of the cDNA was accomplished by measuring changes in PL intensity. The PL peak intensity measured at 700 nm (red emission) increases with the increase in cDNA concentration. A linear range of response in the developed PL genosensor was observed from 100 to 500 ng/μL with a sensitivity of 1.306 emi/ng, detection limit of 3.133 ng/μL and a regression coefficient (R2) of 0.987. These results show that this ultrasensitive PL genosensor has the potential for applications in the clinical diagnosis of cholera.

  12. On the role of the pore filling medium in photoluminescence from photochemically etched porous silicon

    NASA Astrophysics Data System (ADS)

    Kolasinski, Kurt W.; Barnard, John C.; Ganguly, Santanu; Koker, Lynne; Wellner, Anja; Aindow, Mark; Palmer, Richard E.; Field, Christian N.; Hamley, Paul A.; Poliakoff, Martyn

    2000-09-01

    Porous silicon thin films created under laser illumination in fluoride solutions without biasing have been studied by a variety of techniques to investigate the film structure and photoluminescence (PL). The use of ultrathin silicon wafers allows us to perform plan view transmission electron microscopy studies without recourse to thinning procedures that might adversely affect the film structure. Supercritically dried samples are compared to air dried samples and clearly demonstrate the deleterious effects of air drying on film structure. PL studies were performed (a) while the sample is submerged in aqueous HF, (b) in Ar after rinsing in ethanol, and (c) in air after rinsing in ethanol. The wavelength of light used to fabricate the film is found to correlate strongly with the peak PL wavelength when measured in solution. Little correlation is found in Ar or in air. Exposure to air can change the PL spectrum dramatically on a time scale of just seconds. We demonstrate that samples can exhibit essentially identical PL spectra in one medium but have spectra that differ from one another when the samples are placed in a different medium. The PL results indicate that band-to-band recombination cannot explain photon emission under all circumstances, and that surface states must also be involved in radiative processes under those conditions in which the bands are sufficiently separated to allow for the appearance of gap states.

  13. Photoluminescence study of self-interstitial clusters and extended defects in ion-implanted silicon

    NASA Astrophysics Data System (ADS)

    Giri, P. K.

    2003-12-01

    We report on the photoluminescence (PL) studies of self-interstitial (I) clustering in ion-implanted Si at various stages of post-implantation annealing. Low-temperature PL measurements on as-implanted and low-temperature annealed (up to 450°C) samples show sharp X and W bands at 1200 and 1218 nm which are attributed to I4 and I3 clusters, respectively. Annealing at 600°C shows a drastic change in the PL spectra. In case of high-energy self-ion-implanted samples, 600°C annealing produces several peaks in the range 1250-1400 nm. For longer duration annealing, two broad bands form at 1322 and 1392 nm irrespective of the ion fluence. These PL signatures are attributed to I8 clusters and/or (1 0 0) I-chains, and they are believed to be the precursor of {3 1 1} rod-like defects. For annealing above 600°C and for fluence ⩾1×1013 cm-2, a sharp PL band is observed at 1376 nm and it is attributed to {3 1 1} rod-like defects. At higher fluences, an additional broad band appears in the PL spectrum at ∼1576 nm which is related to residual ion-damage or extended defect formation. These results illustrate the potential of silicon I-clusters as a possible source of light emission from Si.

  14. A Label-Free Photoluminescence Genosensor Using Nanostructured Magnesium Oxide for Cholera Detection

    PubMed Central

    Patel, Manoj Kumar; Ali, Md. Azahar; Krishnan, Sadagopan; Agrawal, Ved Varun; Al Kheraif, AbdulAziz A.; Fouad, H.; Ansari, Z.A.; Ansari, S. G.; Malhotra, Bansi D.

    2015-01-01

    Nanomaterial-based photoluminescence (PL) diagnostic devices offer fast and highly sensitive detection of pesticides, DNA, and toxic agents. Here we report a label-free PL genosensor for sensitive detection of Vibrio cholerae that is based on a DNA hybridization strategy utilizing nanostructured magnesium oxide (nMgO; size >30 nm) particles. The morphology and size of the synthesized nMgO were determined by transmission electron microscopic (TEM) studies. The probe DNA (pDNA) was conjugated with nMgO and characterized by X-ray photoelectron and Fourier transform infrared spectroscopic techniques. The target complementary genomic DNA (cDNA) isolated from clinical samples of V. cholerae was subjected to DNA hybridization studies using the pDNA-nMgO complex and detection of the cDNA was accomplished by measuring changes in PL intensity. The PL peak intensity measured at 700 nm (red emission) increases with the increase in cDNA concentration. A linear range of response in the developed PL genosensor was observed from 100 to 500 ng/μL with a sensitivity of 1.306 emi/ng, detection limit of 3.133 ng/μL and a regression coefficient (R2) of 0.987. These results show that this ultrasensitive PL genosensor has the potential for applications in the clinical diagnosis of cholera. PMID:26611737

  15. The characteristic photoluminescence and EPR features of superdeep diamonds (São-Luis, Brazil)

    NASA Astrophysics Data System (ADS)

    Yuryeva, Olga P.; Rakhmanova, Mariana I.; Nadolinny, Vladimir A.; Zedgenizov, Dmitry A.; Shatsky, Vladislav S.; Kagi, Hiroyuki; Komarovskikh, Andrey Yu.

    2015-10-01

    Photoluminescence (PL) spectroscopy and electron paramagnetic resonance (EPR) were used for the first time to characterize properties of superdeep diamonds from the São-Luis alluvial deposits (Brazil). The infrared measurements showed the low nitrogen content (>50 of 87 diamonds from this locality were nitrogen free and belonged to type IIa) and simultaneously the extremely high level of nitrogen aggregation (pure type IaB being predominant), which indicates that diamonds under study might have formed under high pressure and temperature conditions. In most cases, PL features excited at various wavelengths (313, 473, and 532 nm) were indicative of different growth and post-growth processes during which PL centers could be formed via interaction between vacancies and nitrogen atoms. The overall presence of the 490.7 nm, H3, and H4 centers in the luminescence spectra attests to strong plastic deformations in these diamonds. The neutral vacancy known as the GR1 center has probably occurred in a number of crystals due to radiation damage in the post-growth period. The 558.5 nm PL center is found to be one of the most common defects in type IIa samples which is accompanied by the EPR center with g-factor of 2.00285. The 536 and 576 nm vibronic systems totally dominated the PL spectra of superdeep diamonds, while none of "normal" diamonds from the Mir pipe (Yakutia) with similar nitrogen characteristics showed the latter three PL centers.

  16. Changing interfaces: Photoluminescent ZnO nanoparticle powders in different aqueous environments

    NASA Astrophysics Data System (ADS)

    Kocsis, Krisztina; Niedermaier, Matthias; Bernardi, Johannes; Berger, Thomas; Diwald, Oliver

    2016-10-01

    We transformed vapor phase grown ZnO nanoparticle powders into aqueous ZnO nanoparticle dispersions and studied the impact of associated microstructure and interface property changes on their spectroscopic properties. With photoluminescence (PL) spectroscopy, we probed oxygen interstitials Oi2 - in the near surface region and tracked their specific PL emission response at hvEM = 2.1 eV during the controlled conversion of the solid-vacuum into the solid-liquid interface. While oxygen adsorption via the gas phase does affect the intensity of the PL emission bands, the O2 contact with ZnO nanoparticles across the solid-liquid interface does not. Moreover, we found that the near band edge emission feature at hvEM = 3.2 eV gains relative intensity with regard to the PL emission features in the visible light region. Searching for potential PL indicators that are specific to early stages of particle dissolution, we addressed for aqueous ZnO nanoparticle dispersions the effect of formic acid adsorption. In the absence of related spectroscopic features, we were able to consistently track ZnO nanoparticle dissolution and the concomitant formation of solvated Zinc formate species by means of PL and FT-IR spectroscopy, dynamic light scattering, and zeta potential measurements. For a more consistent and robust assessment of nanoparticle properties in different continuous phases, we discuss characterization challenges and potential pitfalls that arise upon replacing the solid-gas with the solid-liquid interface.

  17. Photoluminescence of pulsed ruby laser annealed crystalline and ion implanted GaAs

    NASA Astrophysics Data System (ADS)

    Lowndes, D. H.; Feldman, B. J.

    1981-11-01

    In an effort to understand the origin of effects earlier found to be present in p-n junctions formed by pulsed laser annealing (PLA) of ion implanted semiconducting GaAs, photoluminescence (PL) studies were carried out. PL spectra have been obtained at 4K, 77K and 300K, for both n- and p-type GaAs, for laser energy densities 0 equal to or less than E/sub 1/ equal to or less than 0.6 J/sq cm. It is found that PLA of c-GaAs alters the PL spectrum and decreases the PL intensity, corresponding to an increase in density of non-radiative recombination centers with increasing E/sub 1/. The variation of PL intensity with E/sub 1/ is found to be different for n- and p-type material. No PL is observed from high dose (1 or 5 x 10 to the 15th power ions/sq cm) Si- or Zn- implanted GaAs, either before or after laser annealing. The results suggest that the ion implantation step is primarily responsible for formation of defects associated with the loss of radiative recombination, with pulsed annealing contributing only secondarily.

  18. Effects of photon reabsorption phenomena in confocal micro-photoluminescence measurements in crystalline silicon

    NASA Astrophysics Data System (ADS)

    Roigé, A.; Alvarez, J.; Jaffré, A.; Desrues, T.; Muñoz, D.; Martín, I.; Alcubilla, R.; Kleider, J.-P.

    2017-02-01

    Confocal micro-photoluminescence (PL) spectroscopy has become a powerful characterization technique for studying novel photovoltaic (PV) materials and structures at the micrometer level. In this work, we present a comprehensive study about the effects and implications of photon reabsorption phenomena on confocal micro-PL measurements in crystalline silicon (c-Si), the workhorse material of the PV industry. First, supported by theoretical calculations, we show that the level of reabsorption is intrinsically linked to the selected experimental parameters, i.e., focusing lens, pinhole aperture, and excitation wavelength, as they define the spatial extension of the confocal detection volume, and therefore, the effective photon traveling distance before collection. Second, we also show that certain sample properties such as the reflectance and/or the surface recombination velocity can also have a relevant impact on reabsorption. Due to the direct relationship between the reabsorption level and the spectral line shape of the resulting PL emission signal, reabsorption phenomena play a paramount role in certain types of micro-PL measurements. This is demonstrated by means of two practical and current examples studied using confocal PL, namely, the estimation of doping densities in c-Si and the study of back-surface and/or back-contacted Si devices such as interdigitated back contact solar cells, where reabsorption processes should be taken into account for the proper interpretation and quantification of the obtained PL data.

  19. Absorption and photoluminescence properties of Er-doped and Er/Yb codoped soda-silicate laser glasses

    SciTech Connect

    Li, S.F.; Zhang, Q.Y.; Lee, Y.P.

    2004-11-01

    Er-doped and Er/Yb codoped soda-silicate laser glasses with various concentrations of Er and Yb were fabricated. The absorption and the photoluminescence (PL) spectra were measured and analyzed. For the Er- doped soda-slilicate glasses, the optimum Er concentration for the PL intensity at 1536 nm turns out to be 0.5 at. %, and the full width at half maximum (FWHM) of PL spectrum increases from 18 to 26 nm, with the increase of the concentration from 0.1 to 0.8 at. %. The PL intensity of Er/Yb codoped soda-silicate glasses with an Er concentration of 0.5 at. % is enhanced approximately by four times, and the optimum Yb concentration for the PL intensity at 1536 nm is analyzed to be 3.0 at. %. The PL spectrum becomes broader with increasing the Yb concentration, up to a FWHM of 80 nm at 6.0 at. %. Yb. The relation between the absorption and PL spectra, together with the mechanism of PL broadening, has also been addressed.

  20. Colloidal Spherical Quantum Wells with Near-Unity Photoluminescence Quantum Yield and Suppressed Blinking.

    PubMed

    Jeong, Byeong Guk; Park, Young-Shin; Chang, Jun Hyuk; Cho, Ikjun; Kim, Jai Kyeong; Kim, Heesuk; Char, Kookheon; Cho, Jinhan; Klimov, Victor I; Park, Philip; Lee, Doh C; Bae, Wan Ki

    2016-10-02

    Thick inorganic shell endows colloidal nanocrystals (NCs) with enhanced photochemical stability and suppression of photoluminescence intermittency (also known as blinking). However, the progress of using thick-shell heterostructure NCs in applications has been limited, due to low photoluminescence quantum yield (PL QY  60%) at room temperature. Here, we demonstrate thick-shell NCs with CdS/CdSe/CdS seed/spherical quantum well/shell (SQW) geometry that exhibit near-unity PL QY at room temperature and suppression of blinking. In SQW NCs, the lattice mismatch is diminished between the emissive CdSe layer and the surrounding CdS layers as a result of coherent strain, which suppresses the formation of misfit defects and consequently permits ~ 100% PL QY for SQW NCs with thick CdS shell (≥ 5 nm). High PL QY of thick-shell SQW NCs are preserved even in concentrated dispersion and in film under thermal stress, which makes them promising candidates for applications in solid-state lightings and luminescent solar concentrators.

  1. Quality Characterization of Silicon Bricks using Photoluminescence Imaging and Photoconductive Decay: Preprint

    SciTech Connect

    Johnston, S.; Yan, F.; Zaunbrecher, K.; Al-Jassim, M.; Sidelkheir, O.; Ounadjela, K.

    2012-06-01

    Imaging techniques can be applied to multicrystalline silicon solar cells throughout the production process, which includes as early as when the bricks are cut from the cast ingot. Photoluminescence (PL) imaging of the band-to-band radiative recombination is used to characterize silicon quality and defects regions within the brick. PL images of the brick surfaces are compared to minority-carrier lifetimes measured by resonant-coupled photoconductive decay (RCPCD). Photoluminescence images on silicon bricks can be correlated to lifetime measured by photoconductive decay and could be used for high-resolution characterization of material before wafers are cut. The RCPCD technique has shown the longest lifetimes of any of the lifetime measurement techniques we have applied to the bricks. RCPCD benefits from the low-frequency and long-excitation wavelengths used. In addition, RCPCD is a transient technique that directly monitors the decay rate of photoconductivity and does not rely on models or calculations for lifetime. The measured lifetimes over brick surfaces have shown strong correlations to the PL image intensities; therefore, this correlation could then be used to transform the PL image into a high-resolution lifetime map.

  2. Facile route to highly photoluminescent carbon nanodots for ion detection, pH sensors and bioimaging

    NASA Astrophysics Data System (ADS)

    Shen, Chen; Sun, Yupeng; Wang, Jing; Lu, Yun

    2014-07-01

    Carbon nanodots (CDs) of uniform size were prepared simply by the hydrothermal decomposition of folic acid (FA) precursor at various reaction temperatures. The CDs formed via dehydration of FA at 260 °C contributed the strongest photoluminescence (PL) signal and the highest quantum yield at about 68%, without assistance of any passivation agent. The effects of preparation conditions on PL behavior of CDs have been investigated in detail, and the quantum yield of the CDs was found to be associated strongly with sample crystallinity. Moreover, because the obtained CDs also exhibited high luminescence stability, abundant surface functional groups and good biocompatibility, there are many promising applications in printing ink, ion detection, pH sensors and cell imaging.Carbon nanodots (CDs) of uniform size were prepared simply by the hydrothermal decomposition of folic acid (FA) precursor at various reaction temperatures. The CDs formed via dehydration of FA at 260 °C contributed the strongest photoluminescence (PL) signal and the highest quantum yield at about 68%, without assistance of any passivation agent. The effects of preparation conditions on PL behavior of CDs have been investigated in detail, and the quantum yield of the CDs was found to be associated strongly with sample crystallinity. Moreover, because the obtained CDs also exhibited high luminescence stability, abundant surface functional groups and good biocompatibility, there are many promising applications in printing ink, ion detection, pH sensors and cell imaging. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr02154a

  3. Tuning photoluminescence and surface properties of carbon nanodots for chemical sensing

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaomin; Pan, Yi; Fang, Yaning; Zhang, Lulu; Chen, Junying; Yi, Changqing

    2015-12-01

    Obtaining tunable photoluminescence (PL) with improved emission properties is crucial for successfully implementing fluorescent carbon nanodots (fCDs) in all practical applications such as multicolour imaging and multiplexed detection by a single excitation wavelength. In this study, we report a facile hydrothermal approach to adjust the PL peaks of fCDs from blue, green to orange by controlling the surface passivation reaction during the synthesis. This is achieved by tuning the passivating reagents in a step-by-step manner. The as-prepared fCDs with narrow size distribution show improved PL properties with different emission wavelengths. Detailed characterization of fCDs using elemental analysis, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy suggested that the surface chemical composition results in this tunable PL emission. Surface passivation significantly alters the surface status, resulting in fCDs with either stronger surface oxidation or N element doping that ultimately determine their PL properties. Further experiments suggested that the as-prepared orange luminescent fCDs (O-fCDs) were sensitive and specific nanosensing platforms towards Fe3+ determination in a complex biological environment, emphasizing their potential practical applications in clinical and biological fields.Obtaining tunable photoluminescence (PL) with improved emission properties is crucial for successfully implementing fluorescent carbon nanodots (fCDs) in all practical applications such as multicolour imaging and multiplexed detection by a single excitation wavelength. In this study, we report a facile hydrothermal approach to adjust the PL peaks of fCDs from blue, green to orange by controlling the surface passivation reaction during the synthesis. This is achieved by tuning the passivating reagents in a step-by-step manner. The as-prepared fCDs with narrow size distribution show improved PL properties with different emission wavelengths. Detailed

  4. Three-dimensional optical memory using photoluminescence change in Sm-doped sodium borate glass

    SciTech Connect

    Lim, Jinhyong; Lee, Myeongkyu; Kim, Eunkyoung

    2005-05-09

    The feasibility of three-dimensional (3D) optical memory has been demonstrated by utilizing the photoluminescence (PL) spectrum change in a Sm-doped fluoride glass [K. Miura, J. Qiu, S. Fujiwara, S. Sakasuchi, and K. Hirao, Appl. Phys. Lett. 80 2263 (2002)]. We here report on a femtosecond laser-induced PL change in a Sm-doped sodium borate glass that is easier to synthesize and its potential application to 3D memory. Irradiation with a femtosecond pulsed laser (800 nm, 1 kHz, 100 fs) induced a PL peak near 682 nm, resulting from the photoreduction of the Sm ions. A multilayer pattern (bit size=1 {mu}m,layer separation=8 {mu}m) formed by femtosecond laser irradiation was read out by a reflection-type fluorescent confocal microscope, which detected the emission at 682 nm as a signal. High-contrast pattern images were obtained without crosstalk.

  5. Pulsed laser excitation power dependence of photoluminescence peak energies in bulk ZnO

    NASA Astrophysics Data System (ADS)

    Dang, Giang T.; Kanbe, Hiroshi; Kawaharamura, Toshiyuki; Taniwaki, Masafumi

    2011-10-01

    Photoluminescence (PL) spectra of hydrothermal bulk ZnO were measured in the temperature range from 5 to 298 K. The sample was excited by means of the 266-nm line of an Nd3+: YAG Q-switched pulsed laser with numerous average excitation powers in the range from 0.33 to 7.50 mW. At constant temperatures, the most intense PL peak red-shifts with average excitation power, whereas positions of other near-band-edge peaks remain unchanged. It was experimentally proven that the red-shift is not due to local heating at the excited spot. Rather, it is due to relaxation of photoexcited carriers to lower energy transitions as the most intense transition is saturated by high excitation photon density. Furthermore, the temperature dependence of energy of the most intense PL peak was fitted with the Varshni equation. The Varshni coefficients α and β decrease with increasing pulsed laser excitation power.

  6. Light-emitting device with organic electroluminescent material and photoluminescent materials

    DOEpatents

    McNulty, Thomas Francis; Duggal, Anil Raj; Turner, Larry Gene; Shiang, Joseph John

    2005-06-07

    A light-emitting device comprises a light-emitting member, which comprises two electrodes and an organic electroluminescent material disposed between the electrodes, and at least one organic photoluminescent ("PL") material. The light-emitting member emits light having a first spectrum in response to a voltage applied across the two electrodes. The organic PL material absorbs a portion of the light emitted by the light-emitting member and emits light having second spectrum different than the first spectrum. The light-emitting device can include an inorganic PL material that absorbs another portion of the light emitted from the light-emitting member and emits light having a third spectrum different than both the first and the second spectra.

  7. Tip enhancement of upconversion photoluminescence from rare earth ion doped nanocrystals.

    PubMed

    Mauser, Nina; Piatkowski, Dawid; Mancabelli, Tobia; Nyk, Marcin; Mackowski, Sebastian; Hartschuh, Achim

    2015-04-28

    We present tip-enhanced upconversion photoluminescence (PL) images of Er(3+)- and Yb(3+)-doped NaYF4 nanocrystals on glass substrates with subdiffraction spatial resolution. Tip-sample distance dependent measurements clearly demonstrate the near-field origin of the image contrast. Time-resolved PL measurements show that the tip increases the spontaneous emission rate of the two emission channels of Er(3+) in the visible region. Very efficient enhancement of upconversion PL is discussed in the context of the two-photon nature of the excitation process and homoenergy transfer between the ions within the nanocrystals. Comparison between different nanocrystals and tips shows a strong influence of the tip shape on the image contrast that becomes particularly relevant for the larger dimensions of the investigated nanocrystals.

  8. Energy transfer and dynamics studies of photoluminescence of polythiophene derivative in blend thin films

    NASA Astrophysics Data System (ADS)

    Wang, Zi-Han; Lee, Haiwon; Cui, Hai-Ning

    2012-01-01

    Thin films of the blend luminescent poly 3-(2-(5-chlorobenzotriazolo)ethyl) thiophene (PCBET) with poly-(p-(methyl)-phenylmethacrylate) (PMPMA), polyvinylcarzole (PVK), and poly (methyl methacrylate) (PMMA) were deposited by spin coating. Systematic studies on optical properties, the concentration effect, and energy transfer of these conjugated polymers within the blend films are discussed. Fluorescence lifetimes of excited state in the blend films were investigated by nanosecond time-resolved spectroscopy, UV-vis, photoluminescence (PL), synchronous PL spectra. These results and analysis suggest that energy transfer, from good matrix material (PMPMA and PVK) with active chromophores to PCBET, leads to the enhancement of PL emission of PCBET in a blend system.

  9. Revealing Defect-State Photoluminescence in Monolayer WS2 by Cryogenic Laser Processing.

    PubMed

    He, Zhengyu; Wang, Xiaochen; Xu, Wenshuo; Zhou, Yingqiu; Sheng, Yuewen; Rong, Youmin; Smith, Jason M; Warner, Jamie H

    2016-06-28

    Understanding the stability of monolayer transition metal dichalcogenides in atmospheric conditions has important consequences for their handling, life-span, and utilization in applications. We show that cryogenic photoluminescence spectroscopy (PL) is a highly sensitive technique to the detection of oxidation induced degradation of monolayer tungsten disulfide (WS2) caused by exposure to ambient conditions. Although long-term exposure to atmospheric conditions causes massive degradation from oxidation that is optically visible, short-term exposure produces no obvious changes to the PL or Raman spectra measured at either room temperature or even cryogenic environment. Laser processing was employed to remove the surface adsorbents, which enables the defect states to be detected via cryogenic PL spectroscopy. Thermal cycling to room temperature and back down to 77 K shows the process is reversible. We also monitor the degradation process of WS2 using this method, which shows that the defect related peak can be observed after one month aging in ambient conditions.

  10. Time-resolved photoluminescence studies of InGaN epilayers

    NASA Astrophysics Data System (ADS)

    Smith, M.; Chen, G. D.; Lin, J. Y.; Jiang, H. X.; Asif Khan, M.; Chen, Q.

    1996-11-01

    Time-resolved photoluminescence (PL) has been employed to study the optical transitions and their dynamic processes and to evaluate materials quality of InGaN epilayers grown by metalorganic chemical vapor deposition. Our results suggest that the PL emissions in InGaN epilayers result primarily from localized exciton recombination. The localization energies of these localized excitons have been obtained. In relatively lower quality epilayers, the localized exciton recombination lifetime τ, decreases monotonically with an increase of temperature. In high quality epilayers, τ increases with temperature at low temperatures, which is a well-known indication of radiative exciton recombination. Our results demonstrate that time-resolved PL measurements uniquely provide opportunities for the understanding of basic optical processes as well as for identifying high quality materials.

  11. Photoluminescence enhancement of Ca1-xSrxF2:Mn2 under pressure

    NASA Astrophysics Data System (ADS)

    Gutiérrez, R. E.; Rodríguez, F.; Moreno, M.; Alcal&Á, R.

    This work investigates the surprising disappearance of the Mn2+ green photoluminescence (PL) observed at room temperature on passing from CaF2 to SrF2 along the Ca1-xSrxF2:Mn2+ fluorite series. The aim is to understand the microscopic origin of the excited-state relaxation phenomena leading to radiationless processes in these crystals. High-pressure experiments performed on Ca0.25Sr0.75F2:Mn2+ show that PL can gradually recover by application of pressure. The increase of intensity and lifetime with pressure is explained by a reduction of the fluorite lattice parameter, a. The variation of Mn2+ PL lifetime with pressure and x is described through the same equation by renormalising these parameters to a.

  12. Visible to infrared low temperature photoluminescence of rare earth doped bismuth germanate crystals.

    PubMed

    Canimoglu, A; Ayvacikli, M; Karabulut, Y; Karali, T; Can, N

    2016-05-01

    In this paper, the influence of a series of rare earth (Eu, Tm, Nd) and Cr ion doping on the optical properties of BGO was investigated by means of photoluminescence (PL) from visible to IR region in the 10-300K temperature range using different types of detectors, namely, photomultiplier tube (PMT), InGaAs (IGA), and Si. Several samples were investigated having dopants concentrations of 0.3wt%Nd, 0.4wt%Tm, 0.06wt% Cr and 3ppm Eu. The PL spectra of the samples showed different luminescence behaviour which is assigned to the 4f intra shell transition from rare earth ions. The temperature dependence of the PL from rare earth doped BGO crystals is also examined.

  13. Strong photoluminescence from ultrathin silicon (110) quantum wells at room temperature

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaodong; Lu, Jiwu; Gao, Yuhan; Yuan, Shuai; Zhou, Ning; Xie, Min; Zheng, Zejie; Zhao, Yi

    2017-02-01

    Strong room-temperature photoluminescence (PL) from SiO2/Si(110)/SiO2 quantum wells (QWs) is observed, for the first time. The PL intensity increases with the decrease of the Si(110) well thickness. Furthermore, when the upper SiO2 layer is removed, no PL peaks could be observed. But the luminescence is recovered when the samples were exposed to air for several months with the re-formation of Si-SiO x interface, and slightly dependent of temperature. These results indicate that both of the quantum confinement effect and the interface effect play an important role in the luminescence properties of Si(110) QWs.

  14. Deep ultraviolet photoluminescence of Tm-doped AlGaN alloys

    SciTech Connect

    Nepal, N.; Zavada, J. M.; Lee, D. S.; Steckl, A. J.; Sedhain, A.; Lin, J. Y.; Jiang, H. X.

    2009-03-16

    The ultraviolet (UV) photoluminescence (PL) properties of Tm-doped Al{sub x}Ga{sub 1-x}N (0.39{<=}x{<=}1) alloys grown by solid-source molecular beam epitaxy were probed using above-bandgap excitation from a laser source at 197 nm. The PL spectra show dominant UV emissions at 298 and 358 nm only for samples with x=1 and 0.81. Temperature dependence of the PL intensities of these emission lines reveals exciton binding energies of 150 and 57 meV, respectively. The quenching of these UV emissions appears related to the thermal activation of the excitons bound to rare-earth structured isovalent (RESI) charge traps, which transfer excitonic energy to Tm{sup 3+} ions resulting in the UV emissions. A model of the RESI trap levels in AlGaN alloys is presented.

  15. High-temperature photoluminescence and photoluminescence excitation spectroscopy of Al0.60Ga0.40N/Al0.70Ga0.30N multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Murotani, Hideaki; Nakamura, Katsuto; Fukuno, Tomonori; Miyake, Hideto; Hiramatsu, Kazumasa; Yamada, Yoichi

    2017-02-01

    The excitonic optical properties of an Al0.60Ga0.40N/Al0.70Ga0.30N multiple quantum well (MQW) structure were studied using photoluminescence (PL) and PL excitation (PLE) spectroscopy at high temperatures. Clear excitonic PL was observed at temperatures up to 750 K. Biexciton luminescence was clearly observed even at this high temperature. These observations unambiguously demonstrated the extremely high thermal stability of biexcitons in this MQW. Furthermore, additional PL peaks were observed on the low-energy side of the biexciton luminescence. The observation of biexciton two-photon resonance in the PLE spectra of these peaks indicates that these peaks can be explained by processes involving inelastic scattering of excitons and biexcitons.

  16. Detection of Pathogens Using AFM and SPR

    NASA Astrophysics Data System (ADS)

    Vaseashta, Ashok

    2005-03-01

    A priori detection of pathogens in food and water has become a subject of paramount importance. Several recent incidents have resulted in the government passing stringent regulations for tolerable amounts of contamination of food products. Identification and/or monitoring of bacterial contamination in food are critical. The conventional methods of pathogen detection require time-consuming steps to arrive disembark at meaningful measurement in a timely manner as the detection time exceeds the time in which perishable food recycles through the food chain distribution. The aim of this presentation is to outline surface plasmon resonance (SPR) and atomic force microscopy (AFM) as two methods for fast detect6ion of pathogens. Theoretical basis of SPR and experimental results of SPR and AFM on E. coli O157:H7 and prion are presented.

  17. Charge separation in subcells of triple-junction solar cells revealed by time-resolved photoluminescence spectroscopy.

    PubMed

    Tex, David M; Imaizumi, Mitsuru; Kanemitsu, Yoshihiko

    2015-11-30

    We measure the excitation-wavelength and power dependence of time-resolved photoluminescence (PL) from the top InGaP subcell in a InGaP/GaAs/Ge triple-junction solar cell. The wavelength-dependent data reveals that the PL decays are governed by charge separation. A fast single-exponential PL decay is observed at low excitation power densities, which is the charge separation under short-circuit condition. Under strong excitation a bi-exponential PL decay is observed. Its slow component appears at early times, followed by a faster component at late times. The slow decay is the carrier recombination of the subcell. The following fast component is the charge separation process under reduced built-in potential near the operating point. The subcells electrical conversion efficiency close to the operating point is evaluated using this decay time constant.

  18. Photoluminescence studies of polycrystalline Cu(In,Ga)Se{sub 2}: Lateral inhomogeneities beyond Abbe's diffraction limit

    SciTech Connect

    Neumann, Oliver; Brüggemann, Rudolf Bauer, Gottfried H.; Hariskos, Dimitrios; Witte, Wolfram

    2015-11-14

    We analyze Cu(In,Ga)Se{sub 2} absorbers with a scanning near-field optical microscope (SNOM) by photoluminescence (PL). Such measurements allow one to extract local fluctuations of the integral PL yield, the quasi-Fermi level splitting, and the material composition in the submicron range. However, the experimental findings depend strongly on the surface roughness of the absorber: If the surface is rough, artifact-prone correlations between surface contour and PL features measured by SNOM can be found that complicate the study of recombination effects. For smooth surfaces, such correlations no longer exist and the influence of grain boundaries on the integral PL yield and the quasi-Fermi level splitting is revealed. The method also allows a detailed determination of the local band gaps in neighboring grains and their spatial variation inside, and thus of possibly local changes in chemical composition of different grains.

  19. The photoluminescence and structural properties of (Ce, Yb) co-doped silicon oxides after high temperature annealing

    SciTech Connect

    Heng, C. L. Li, J. T.; Su, W. Y.; Yin, P. G.; Finstad, T. G.

    2015-01-28

    We studied the photoluminescence (PL) and structural properties of Ce and Yb co-doped silicon oxide films after high temperature annealing. The PL spectra of Ce{sup 3+} and Yb{sup 3+} ions were sensitive to the structural variation of the films, and the Yb PL intensities were significantly enhanced especially upon 1200 °C annealing. X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy, indicated that rare earth silicates and the CeO{sub 2} phase had formed in the oxides. The proportions of the phases varied with the “nominal Si-richness” of the films. Energy transfer from the excited Ce{sup 3+} to Yb{sup 3+} can be inferred from both PL excitation and decay spectra.

  20. Distinct photoluminescence and Raman spectroscopy signatures for identifying highly crystalline WS2 monolayers produced by different growth methods

    DOE PAGES

    McCreary, Amber; Berkdemir, Ayse; Wang, Junjie; ...

    2016-03-08

    We report that transition metal dichalcogenides (TMDs) such as WS2 show exciting promise in electronic and optoelectronic applications. Significant variations in the transport, Raman, and photoluminescence (PL) can be found in the literature, yet it is rarely addressed why this is. In this report, Raman and PL of monolayered WS2 produced via different methods are studied and distinct features that indicate the degree of crystallinity of the material are observed. While the intensity of the LA(M) Raman mode is found to be a useful indicator to assess the crystallinity, PL is drastically more sensitive to the quality of the materialmore » than Raman spectroscopy. We also show that even exfoliated crystals, which are usually regarded as the most pristine material, can contain large amounts of defects that would not be apparent without Raman and PL measurements. Ultimately, these findings can be applied to the understanding of other two-dimensional heterostructured systems.« less

  1. Distinct photoluminescence and Raman spectroscopy signatures for identifying highly crystalline WS2 monolayers produced by different growth methods

    SciTech Connect

    McCreary, Amber; Berkdemir, Ayse; Wang, Junjie; Nguyen, Minh An; Elías, Ana Laura; Perea-López, Néstor; Fujisawa, Kazunori; Kabius, Bernd; Carozo, Victor; Cullen, David A.; Mallouk, Thomas E.; Zhu, J.; Terrones, Mauricio

    2016-03-08

    We report that transition metal dichalcogenides (TMDs) such as WS2 show exciting promise in electronic and optoelectronic applications. Significant variations in the transport, Raman, and photoluminescence (PL) can be found in the literature, yet it is rarely addressed why this is. In this report, Raman and PL of monolayered WS2 produced via different methods are studied and distinct features that indicate the degree of crystallinity of the material are observed. While the intensity of the LA(M) Raman mode is found to be a useful indicator to assess the crystallinity, PL is drastically more sensitive to the quality of the material than Raman spectroscopy. We also show that even exfoliated crystals, which are usually regarded as the most pristine material, can contain large amounts of defects that would not be apparent without Raman and PL measurements. Ultimately, these findings can be applied to the understanding of other two-dimensional heterostructured systems.

  2. Temperature-dependent photoluminescence emission and Raman scattering from Mo1-x W x S2 monolayers

    NASA Astrophysics Data System (ADS)

    Chen, Yanfeng; Wen, Wen; Zhu, Yiming; Mao, Nannan; Feng, Qingliang; Zhang, Mei; Hsu, Hung-Pin; Zhang, Jin; Huang, Ying-Sheng; Xie, Liming

    2016-11-01

    2D transition metal dichalcogenide (TMD) alloys with tunable band gaps have recently gained wide interest due to their potential applications in future nanoelectronics and optoelectronics. Here, we report the temperature-dependent photoluminescence (PL) and Raman spectra of Mo1-x W x S2 monolayers with W composition x = 0, 0.29, 0.53, 0.66 and 1 in the temperature range 93-493 K. We observed a linear temperature dependence of PL emission energy and Raman frequency. The PL intensity is enhanced at high temperature (>393 K). The temperature coefficients are negative for both PL and Raman bands, which may result from anharmonicity, thermal expansion and composition disorder.

  3. Temperature dependence of photoluminescence spectra for green light emission from InGaN/GaN multiple wells.

    PubMed

    Liu, W; Zhao, D G; Jiang, D S; Chen, P; Liu, Z S; Zhu, J J; Shi, M; Zhao, D M; Li, X; Liu, J P; Zhang, S M; Wang, H; Yang, H; Zhang, Y T; Du, G T

    2015-06-15

    Three green light emitting InGaN/GaN multiple quantum well (MQW) structures with different In composition grown by metal-organic chemical vapor deposition are investigated by the X-ray diffraction and the temperature-dependent photoluminescence (PL) measurements. It is found that when the In composition increases in the InGaN/GaN MQWs, the PL spectral bandwidth may anomalously decrease with increasing temperature. The reduction of PL spectral bandwidth may be ascribed to the enhanced non-radiative recombination process which may lower the light emission efficiency of the localized luminescent centers with shallow localization energy in the high-In-content InGaN quantum wells and also cause a reduction of integrated PL intensity.

  4. Electric Field Modulation of Semiconductor Quantum Dot Photoluminescence: Insights Into the Design of Robust Voltage-Sensitive Cellular Imaging Probes.

    PubMed

    Rowland, Clare E; Susumu, Kimihiro; Stewart, Michael H; Oh, Eunkeu; Mäkinen, Antti J; O'Shaughnessy, Thomas J; Kushto, Gary; Wolak, Mason A; Erickson, Jeffrey S; Efros, Alexander L; Huston, Alan L; Delehanty, James B

    2015-10-14

    The intrinsic properties of quantum dots (QDs) and the growing ability to interface them controllably with living cells has far-reaching potential applications in probing cellular processes such as membrane action potential. We demonstrate that an electric field typical of those found in neuronal membranes results in suppression of the QD photoluminescence (PL) and, for the first time, that QD PL is able to track the action potential profile of a firing neuron with millisecond time resolution. This effect is shown to be connected with electric-field-driven QD ionization and consequent QD PL quenching, in contradiction with conventional wisdom that suppression of the QD PL is attributable to the quantum confined Stark effect.

  5. Characterizing Cell Mechanics with AFM and Microfluidics

    NASA Astrophysics Data System (ADS)

    Walter, N.; Micoulet, A.; Suresh, S.; Spatz, J. P.

    2007-03-01

    Cell mechanical properties and functionality are mainly determined by the cytoskeleton, besides the cell membrane, the nucleus and the cytosol, and depend on various parameters e.g. surface chemistry and rigidity, surface area and time available for cell spreading, nutrients and drugs provided in the culture medium. Human epithelial pancreatic and mammary cancer cells and their keratin intermediate filaments are the main focus of our work. We use Atomic Force Microscopy (AFM) to study cells adhering to substrates and Microfluidic Channels to probe cells in suspension, respectively. Local and global properties are extracted by varying AFM probe tip size and the available adhesion area for cells. Depth-sensing, instrumented indentation tests with AFM show a clear difference in contact stiffness for cells that are spread of controlled substrates and those that are loosely attached. Microfluidic Channels are utilized in parallel to evaluate cell deformation and ``flow resistance'', which are dependent on channel cross section, flow rate, cell nucleus size and the mechanical properties of cytoskeleton and membrane. The results from the study are used to provide some broad and quantitative assessments of the connections between cellular/subcellular mechanics and biochemical origins of disease states.

  6. Vibration signature analysis of AFM images

    SciTech Connect

    Joshi, G.A.; Fu, J.; Pandit, S.M.

    1995-12-31

    Vibration signature analysis has been commonly used for the machine condition monitoring and the control of errors. However, it has been rarely employed for the analysis of the precision instruments such as an atomic force microscope (AFM). In this work, an AFM was used to collect vibration data from a sample positioning stage under different suspension and support conditions. Certain structural characteristics of the sample positioning stage show up as a result of the vibration signature analysis of the surface height images measured using an AFM. It is important to understand these vibration characteristics in order to reduce vibrational uncertainty, improve the damping and structural design, and to eliminate the imaging imperfections. The choice of method applied for vibration analysis may affect the results. Two methods, the data dependent systems (DDS) analysis and the Welch`s periodogram averaging method were investigated for application to this problem. Both techniques provide smooth spectrum plots from the data. Welch`s periodogram provides a coarse resolution as limited by the number of samples and requires a choice of window to be decided subjectively by the user. The DDS analysis provides sharper spectral peaks at a much higher resolution and a much lower noise floor. A decomposition of the signal variance in terms of the frequencies is provided as well. The technique is based on an objective model adequacy criterion.

  7. Nanomechanics of Yeast Surfaces Revealed by AFM

    NASA Astrophysics Data System (ADS)

    Dague, Etienne; Beaussart, Audrey; Alsteens, David

    Despite the large and well-documented characterization of the microbial cell wall in terms of chemical composition, the determination of the mechanical properties of surface molecules in relation to their function remains a key challenge in cell biology.The emergence of powerful tools allowing molecular manipulations has already revolutionized our understanding of the surface properties of fungal cells. At the frontier between nanophysics and molecular biology, atomic force microscopy (AFM), and more specifically single-molecule force spectroscopy (SMFS), has strongly contributed to our current knowledge of the cell wall organization and nanomechanical properties. However, due to the complexity of the technique, measurements on live cells are still at their infancy.In this chapter, we describe the cell wall composition and recapitulate the principles of AFM as well as the main current methodologies used to perform AFM measurements on live cells, including sample immobilization and tip functionalization.The current status of the progress in probing nanomechanics of the yeast surface is illustrated through three recent breakthrough studies. Determination of the cell wall nanostructure and elasticity is presented through two examples: the mechanical response of mannoproteins from brewing yeasts and elasticity measurements on lacking polysaccharide mutant strains. Additionally, an elegant study on force-induced unfolding and clustering of adhesion proteins located at the cell surface is also presented.

  8. Carrier redistribution between different potential sites in semipolar (202{sup ¯}1) InGaN quantum wells studied by near-field photoluminescence

    SciTech Connect

    Marcinkevičius, S.; Gelžinytė, K.; Zhao, Y.; Nakamura, S.; DenBaars, S. P.; Speck, J. S.

    2014-09-15

    Scanning near-field photoluminescence (PL) spectroscopy at different excitation powers was applied to study nanoscale properties of carrier localization and recombination in semipolar (202{sup ¯}1) InGaN quantum wells (QWs) emitting in violet, blue, and green-yellow spectral regions. With increased excitation power, an untypical PL peak energy shift to lower energies was observed. The shift was attributed to carrier density dependent carrier redistribution between nm-scale sites of different potentials. Near-field PL scans showed that in (202{sup ¯}1) QWs the in-plane carrier diffusion is modest, and the recombination properties are uniform, which is advantageous for photonic applications.

  9. 3D assembly of upconverting NaYF4 nanocrystals by AFM nanoxerography: creation of anti-counterfeiting microtags

    NASA Astrophysics Data System (ADS)

    Sangeetha, Neralagatta M.; Moutet, Pierre; Lagarde, Delphine; Sallen, Gregory; Urbaszek, Bernhard; Marie, Xavier; Viau, Guillaume; Ressier, Laurence

    2013-09-01

    Formation of 3D close-packed assemblies of upconverting NaYF4 colloidal nanocrystals (NCs) on surfaces, by Atomic Force Microscopy (AFM) nanoxerography is presented. The surface potential of the charge patterns, the NC concentration, the polarizability of the NCs and the polarity of the dispersing solvent are identified as the key parameters controlling the assembly of NaYF4 NCs into micropatterns of the desired 3D architecture. This insight allowed us to fabricate micrometer sized Quick Response (QR) codes encoded in terms of upconversion luminescence intensity or color. Topographically hidden messages could also be readily incorporated within these microtags. This work demonstrates that AFM nanoxerography has enormous potential for generating high-security anti-counterfeiting microtags.Formation of 3D close-packed assemblies of upconverting NaYF4 colloidal nanocrystals (NCs) on surfaces, by Atomic Force Microscopy (AFM) nanoxerography is presented. The surface potential of the charge patterns, the NC concentration, the polarizability of the NCs and the polarity of the dispersing solvent are identified as the key parameters controlling the assembly of NaYF4 NCs into micropatterns of the desired 3D architecture. This insight allowed us to fabricate micrometer sized Quick Response (QR) codes encoded in terms of upconversion luminescence intensity or color. Topographically hidden messages could also be readily incorporated within these microtags. This work demonstrates that AFM nanoxerography has enormous potential for generating high-security anti-counterfeiting microtags. Electronic supplementary information (ESI) available: Detailed experimental procedures for the synthesis of upconverting NaYF4 nanocrystals and their transmission electron microscopy images. KFM and AFM images corresponding to the assembly of positively charged β-NaYF4:Er3+,Yb3+ nanocrystals from water suspensions by AFM nanoxerography. Photoluminescence spectra of β-NaYF4:Er3+,Yb3+ nanocrystals

  10. Pressure-dependent photoluminescence study of ZnO nanowires

    SciTech Connect

    Shan, W.; Walukiewicz, W.; Ager III, J.W.; Yu, K.M.; Zhang, Y.; Mao, S.S.; Kling, R.

    2004-09-13

    The pressure dependence of the photoluminescence (PL) transition associated with the fundamental band gap of ZnO nanowires has been studied at pressures up to 15 GPa. ZnO nanowires are found to have a higher structural phase transition pressure around 12 GPa as compared to 9.0 GPa for bulk ZnO. The pressure-induced energy shift of the near band-edge luminescence emission yields a linear pressure coefficient of 29.6 meV/GPa with a small sublinear term of -0.43 meV/GPa{sup 2}. An effective hydrostatic deformation potential -3.97 eV for the direct band gap of the ZnO nanowires is derived from the result.

  11. Temperature dependence of photoluminescence spectra of nondoped and electron-doped SrTiO3: crossover from auger recombination to single-carrier trapping.

    PubMed

    Yamada, Yasuhiro; Yasuda, Hideki; Tayagaki, Takeshi; Kanemitsu, Yoshihiko

    2009-06-19

    We report unusual photoluminescence (PL) behaviors in highly photoexcited SrTiO(3) crystals at low temperatures. The PL spectrum and dynamics show abrupt changes below 150 K in both nondoped and electron-doped SrTiO(3) samples. We clarified that the PL dynamics in both nondoped and electron-doped SrTiO(3) is well described by the same simple model involving single-carrier trapping, radiative bimolecular recombination, and nonradiative Auger recombination. The unusual temperature dependence of PL dynamics is caused by the crossover from Auger recombination at high temperatures to single-carrier trapping at low temperatures. We discuss the temperature-dependent PL dynamics in conjunction with the high carrier mobility of SrTiO(3) at low temperatures.

  12. Evidence for adduct formation at the semiconductor-solution interface. Photoluminescent properties of cadmium selenide in the presence of lanthanide. beta. -diketonate complexes

    SciTech Connect

    Murphy, C.J.; Ellis, A.B. )

    1990-04-05

    Photoluminescence (PL) measurements of etched, single-crystal n-CdSe demonstrate that the semiconductor surface engages in adduct formation with a family of lanthanide {beta}-diketonate complexes, Ln(fod){sub 3} (Ln = lanthanide; fod = 6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedionato anion), in isooctane ambient.

  13. Improving stability of photoluminescence of ZnSe thin films grown by molecular beam epitaxy by incorporating Cl dopant

    SciTech Connect

    Wang, J. S.; Shen, J. L.; Chen, W. J.; Tsai, Y. H.; Wang, H. H.; Yang, C. S.; Chen, R. H.; Tsai, C. D.

    2011-01-10

    This investigation studies the effect of chlorine (Cl) dopant in ZnSe thin films that were grown by molecular beam epitaxy on their photoluminescence (PL) and the stability thereof. Free excitonic emission was observed at room-temperature in the Cl-doped sample. Photon irradiation with a wavelength of 404 nm and a power density of 9.1 W/cm{sup 2} has a much stronger effect on PL degradation than does thermal heating to a temperature of 150 deg. C. Additionally, this study shows that the generation of nonradiative centers by both photon irradiation and thermal heating can be greatly inhibited by incorporating Cl dopant.

  14. Effect of Pressure-Assisted Heat Treatment on Photoluminescence Emission of α-Bi2O3 Needles.

    PubMed

    Schmidt, Samara; Kubaski, Evaldo T; Volanti, Diogo P; Sequinel, Thiago; Bezzon, Vinicius Danilo N; Beltrán, Armando; Tebcherani, Sergio M; Varela, José A

    2015-11-02

    Materials with high photoluminescence (PL) intensity can potentially be used in optical and electronic devices. Although the PL properties of bismuth(III) oxide with a monoclinic crystal structure (α-Bi2O3) have been explored in the past few years, methods of increasing PL emission intensity and information relating PL emission to structural defects are scarce. This research evaluated the effect of a pressure-assisted heat treatment (PAHT) on the PL properties of α-Bi2O3 with a needlelike morphology, which was synthesized via a microwave-assisted hydrothermal (MAH) method. PAHT caused an angular increase between the [BiO6]-[BiO6] clusters of α-Bi2O3, resulting in a significant increase in the PL emission intensity. The Raman and XPS spectra also showed that the α-Bi2O3 PL emissions in the low-energy region (below ∼2.1 eV) are attributed to oxygen vacancies that form defect donor states. The experimental results are in good agreement with first-principles total-energy calculations that were carried out within periodic density functional theory (DFT).

  15. Time-resolved photoluminescence studies of annealed 1.3-μm GaInNAsSb quantum wells

    PubMed Central

    2014-01-01

    Time-resolved photoluminescence (PL) was applied to study the dynamics of carrier recombination in GaInNAsSb quantum wells (QWs) emitting near 1.3 μm and annealed at various temperatures. It was observed that the annealing temperature has a strong influence on the PL decay time, and hence, it influences the optical quality of GaInNAsSb QWs. At low temperatures, the PL decay time exhibits energy dependence (i.e., the decay times change for different energies of emitted photons), which can be explained by the presence of localized states. This energy dependence of PL decay times was fitted by a phenomenological formula, and the average value of E0, which describes the energy distribution of localized states, was extracted from this fit and found to be smallest (E0 = 6 meV) for the QW annealed at 700°C. In addition, the value of PL decay time at the peak energy was compared for all samples. The longest PL decay time (600 ps) was observed for the sample annealed at 700°C. It means that based on the PL dynamics, the optimal annealing temperature for this QW is approximately 700°C. PMID:24533740

  16. Photoluminescence of hydrogenated amorphous carbons. Wavelength-dependent yield and implications for the extended red emission

    NASA Astrophysics Data System (ADS)

    Godard, M.; Dartois, E.

    2010-09-01

    Context. Hydrogenated amorphous carbons (a-C:H or HAC) have proved to be excellent analogs of interstellar dust observed in galaxies diffuse interstellar medium (DISM) through infrared vibrational absorption bands (3.4 μm, 6.8 μm, and 7.2 μm bands). They exhibit photoluminescence (PL) after excitation by UV-visible photons, and are possible carriers for the extended red emission (ERE), a broad red emission band observed in various interstellar environments. Aims: As many candidate materials/molecules can photoluminesce in the visible, along with the carrier abundance, the PL efficiency represents one of the strongest constraints set by such ERE observations. We wish to precisely characterize the PL behavior of a-C:H as a family of materials. Methods: The a-C:H samples are produced in the form of films deposited on substrates by plasma-enhanced chemical vapor deposition. The produced films were analyzed in transmission by UV-visible and IR spectroscopy, and the wavelength dependent PL spectra were recorded. The intrinsic absolute quantum yield η was then rigorously calculated taking self-absorption of the PL by the film and interfaces effects into account. Results: A wide range of different laboratory synthesized a-C:H were analyzed. Their PL properties are dependent on the optical gap E_04: when E_04 decreases from 4.3 eV to 2.8 eV, the a-C:H vary from highly (η ˜ 1%) yellow photoluminescent soft materials to hard materials that emit a wider PL band in the red spectral range, with a lower efficiency (η ~ 0.01-0.1%). For any given a-C:H, the PL characteristics (central wavelength, band width and efficiency) are found to be essentially constant over the explored excitation range (λ_exc ⪆ 250 nm). We compared the characteristics of the produced interstellar dust analog to the constraints imposed by the ERE observations. Conclusions: As for ERE observations, PL efficiencies and band widths of a-C:H are both correlated to the PL central wavelengths. The

  17. BOREAS AFM-6 Surface Meteorological Data

    NASA Technical Reports Server (NTRS)

    Wilczak, James; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-6 team from the National Oceanic and Atmospheric Adminsitration/Environment Technology Laboratory (NOAA/ETL) collected surface meteorological data from 21 May to 20 Sep 1994 near the Southern Study Area-Old Jack Pine (SSA-OJP) tower site. The data are in tabular ASCII files. The surface meteorological data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  18. Enhanced Organo-Metal Halide Perovskite Photoluminescence from Nanosized Defect-Free Crystallites and Emitting Sites.

    PubMed

    Tian, Yuxi; Merdasa, Aboma; Unger, Eva; Abdellah, Mohamed; Zheng, Kaibo; McKibbin, Sarah; Mikkelsen, Anders; Pullerits, Tõnu; Yartsev, Arkady; Sundström, Villy; Scheblykin, Ivan G

    2015-10-15

    Photoluminescence (PL) of organo-metal halide perovskite semiconductors can be enhanced by several orders of magnitude by exposure to visible light. We applied PL microscopy and super-resolution optical imaging to investigate this phenomenon with spatial resolution better than 10 nm using films of CH3NH3PbI3 prepared by the equimolar solution-deposition method, resulting in crystals of different sizes. We found that PL of ∼100 nm crystals enhances much faster than that of larger, micrometer-sized ones. This crystal-size dependence of the photochemical light passivation of charge traps responsible for PL quenching allowed us to conclude that traps are present in the entire crystal volume rather than at the surface only. Because of this effect, "dark" micrometer-sized perovskite crystals can be converted into highly luminescent smaller ones just by mechanical grinding. Super-resolution optical imaging shows spatial inhomogeneity of the PL intensity within perovskite crystals and the existence of <100 nm-sized localized emitting sites. The possible origin of these sites is discussed.

  19. Surface-plasmon-enhanced photoluminescence of quantum dots based on open-ring nanostructure array

    NASA Astrophysics Data System (ADS)

    Kannegulla, Akash; Liu, Ye; Cheng, Li-Jing

    2016-03-01

    Enhanced photoluminescence (PL) of quantum dots (QD) in visible range using plasmonic nanostructures has potential to advance several photonic applications. The enhancement effect is, however, limited by the light coupling efficiency to the nanostructures. Here we demonstrate experimentally a new open-ring nanostructure (ORN) array 100 nm engraved into a 200 nm thick silver thin film to maximize light absorption and, hence, PL enhancement at a broadband spectral range. The structure is different from the traditional isolated or through-hole split-ring structures. Theoretical calculations based on FDTD method show that the absorption peak wavelength can be adjusted by their period and dimension. A broadband absorption of about 60% was measured at the peak wavelength of 550 nm. The emission spectrum of CdSe/ZnS core-shell quantum dots was chosen to match the absorption band of the ORN array to enhance its PL. The engraved silver ORN array was fabricated on a silver thin film deposited on a silicon substrate using focus ion beam (FIB) patterning. The device was characterized by using a thin layer of QD water dispersion formed between the ORN substrate and a cover glass. The experimental results show the enhanced PL for the QD with emission spectrum overlapping the absorption band of ORN substrate and quantum efficiency increases from 50% to 70%. The ORN silver substrate with high absorption over a broadband spectrum enables the PL enhancement and will benefit applications in biosensing, wavelength tunable filters, and imaging.

  20. Mechanism of photoluminescence investigation of Si nano-crystals embedded in SiOx

    NASA Astrophysics Data System (ADS)

    Vivas Hernández, A.; Torchynska, T. V.; Guerrero Moreno, I.

    2010-05-01

    Nanoscaled Si (Ge) systems continue to be of interest for their potential application as Si (Ge) based light emiting materials and photonic structures. Optical properties of such systems are sensitive to nanocrystallite (NC) size fluctuations as well as to defects effects due to large surface to volume ratio in small NCs. Intensive research of Si (Ge) NCs is focused on the elucidation of the mechanism of radiative recombination with the aim to provide high efficient emission at room temperature in different spectral range. The bright visible photoluminescence (PL) of the Si (Ge)-SiOX system was investigated during last 15 years and several models were proposed. It was shown that blue (~2.64 eV) and green (~2.25 eV) PL are caused by various emitting centers in silicon oxide [1], while the nature of the more intensive red (1.70-2.00 eV) and infrared (0.80-1.60 eV) PL bands steel is no clear. These include PL model connected whit quantum confinement effects in Si (Ge) nanocrystallites [2-4], surface states on Si (Ge) nanocrystallites, as well as defects at the Si/SiOX (Ge/SiOX) interface and in the SiO2 layer [5-11]. It should be noted, that even investigation of PL on single Si quantum dots [12] cannot undoubtedly confirm the quantum confinement nature of red emission.

  1. Photoluminescence characteristics of polariton condensation in a CuBr microcavity

    SciTech Connect

    Nakayama, Masaaki Murakami, Katsuya; Furukawa, Yoshiaki; Kim, DaeGwi

    2014-07-14

    We have investigated the photoluminescence (PL) properties of a CuBr microcavity at 10 K, including the temporal profiles, from the viewpoint of cavity-polariton condensation. The excitation energy density dependence of the PL intensity (band width) of the lower polariton branch at an in-plane wave vector of k{sub //} = 0 exhibits a threshold-like increase (decrease). A large blueshift in the PL energy of ∼10 meV caused by the cavity-polariton renormalization is correlated with the excitation energy density dependence of the PL intensity. The estimated density of photogenerated electron-hole pairs at the threshold is two orders lower than the Mott transition density. These results consistently demonstrate the occurrence of cavity-polariton condensation. In addition, we found that the PL rise and decay times are shortened dramatically by the cavity-polariton condensation, which reflects the bosonic final state stimulation in the relaxation process and the intrinsic cavity-polariton lifetime in the decay process.

  2. Limiting factors of room-temperature nonradiative photoluminescence lifetime in polar and nonpolar GaN studied by time-resolved photoluminescence and slow positron annihilation techniques

    NASA Astrophysics Data System (ADS)

    Chichibu, S. F.; Uedono, A.; Onuma, T.; Sota, T.; Haskell, B. A.; DenBaars, S. P.; Speck, J. S.; Nakamura, S.

    2005-01-01

    Room-temperature nonradiative lifetime (τnr) of the near-band-edge excitonic photoluminescence (PL) peak in {0001} polar, (112¯0), (11¯00), and (001) nonpolar GaN was shown to increase with the decrease in density or size of Ga vacancies (VGa) and with the decrease in gross density of point defects including complexes, leading to the increase in the PL intensity. As the edge threading dislocation density decreased, density or size of VGa tended to decrease and τnr tended to increase. However, there existed remarkable exceptions. The results indicate that nonradiative recombination process is governed not by single point defects, but by certain defects introduced with the incorporation of VGa, such as VGa-defect complexes.

  3. Synthesis and photoluminescence studies on YAl3(BO3)4:Tb3+ phosphor

    NASA Astrophysics Data System (ADS)

    Satheesh Kumar, Ranganathan; Ponnusamy, Velladurai; Jose, Mundiyanikal Thomas; Sivakumar, Vairan

    2014-12-01

    Terbium (Tb3+) doped yttrium aluminium borate phosphors (YAl3(BO3)4) with different compositions such as YAl3(BO3)4:Tb3+, Y1-xAl3(BO3)4:Tbx3+ and YAl(3-x)(BO3)4:Tbx3+ (x = 1-8 mol.%) were synthesized using modified solid state reaction technique. The synthesized phosphor was studied using powder X-ray diffraction analysis (XRD), photoluminescence spectroscopy (PL), high resolution-scanning electron microscope (HR-SEM). Lattice parameters are calculated for the Tb3+ doped and substituted YAB phosphors using XRD analysis. The phosphor exhibits green emission at 572 nm with 375 nm of excitation. It is found that the Tb3+ ions substitution in the sites Y3+ and Al3+ ions in Y1-xAl3(BO3)4:Tbx3+ and YAl(3-x)(BO3)4:Tbx3+ leads to overlapping of energy levels which affects the PL intensity of the phosphor significantly. Thus, phosphor synthesized with the composition YAl3(BO3)4:Tb3+, acquires higher photoluminescence (PL) intensity when compared to Y1-xAl3(BO3)4:Tbx3+ and YAl(3-x)(BO3)4:Tbx3+ phosphors. Temperature dependent PL property (thermal quenching studies) of YAl3(BO3)4:Tb3+ was also performed up to 250 °C. Further, it is found that the PL intensity of the studied phosphor is comparable with commercial green phosphor. HR-SEM analysis demonstrates that the phosphors are grown as nanorods with an average diameter of 50-80 nm and length 250-500 nm.

  4. AFM Structural Characterization of Drinking Water Biofilm ...

    EPA Pesticide Factsheets

    Due to the complexity of mixed culture drinking water biofilm, direct visual observation under in situ conditions has been challenging. In this study, atomic force microscopy (AFM) revealed the three dimensional morphology and arrangement of drinking water relevant biofilm in air and aqueous solution. Operating parameters were optimized to improve imaging of structural details for a mature biofilm in liquid. By using a soft cantilever (0.03 N/m) and slow scan rate (0.5 Hz), biofilm and individual bacterial cell’s structural topography were resolved and continuously imaged in liquid without loss of spatial resolution or sample damage. The developed methodology will allow future in situ investigations to temporally monitor mixed culture drinking water biofilm structural changes during disinfection treatments. Due to the complexity of mixed culture drinking water biofilm, direct visual observation under in situ conditions has been challenging. In this study, atomic force microscopy (AFM) revealed the three dimensional morphology and arrangement of drinking water relevant biofilm in air and aqueous solution. Operating parameters were optimized to improve imaging of structural details for a mature biofilm in liquid. By using a soft cantilever (0.03 N/m) and slow scan rate (0.5 Hz), biofilm and individual bacterial cell’s structural topography were resolved and continuously imaged in liquid without loss of spatial resolution or sample damage. The developed methodo

  5. Competition between auger recombination and hot-carrier trapping in PL intensity fluctuations of type II nanocrystals.

    PubMed

    Mangum, Benjamin D; Wang, Feng; Dennis, Allison M; Gao, Yongqian; Ma, Xuedan; Hollingsworth, Jennifer A; Htoon, Han

    2014-07-23

    Performing time-tagged, time-correlated, single-photon-counting studies on individual colloidal nanocrystal quantum dots (NQDs), the evolution of photoluminescence (PL) intensity-fluctuation behaviors in near-infrared (NIR) emitting type II, InP/CdS core-shell NQDs is investigated as a function of shell thickness. It is observed that Auger recombination and hot-carrier trapping compete in defining the PL intensity-fluctuation behavior for NQDs with thin shells, whereas the role of hot-carrier trapping dominates for NQDs with thick shells. These studies further reveal the distinct ramifications of altering either the excitation fluence or repetition rate. Specifically, an increase in laser pump fluence results in the creation of additional hot-carrier traps. Alternately, higher repetition rates cause a saturation in hot-carrier traps, thus activating Auger-related PL fluctuations. Furthermore, it is shown that Auger recombination of negatively charged excitons is suppressed more strongly than that of positively charged excitons because of the asymmetry in the electron-hole confinement in type II NQDs. Thus, this study provides new understanding of how both NQD structure (shell thickness and carrier-separation characteristics) and excitation conditions can be used to tune the PL stability, with important implications for room-temperature single-photon generation. Specifically, the first non-blinking NQD capable of single-photon emission in the near-infrared spectral regime is described.

  6. Time-integrated photoluminescence and pump-probe reflection spectroscopy of Si doped InN thin films

    SciTech Connect

    Mohanta, Antaryami; Jang, Der-Jun Wang, Ming-Sung; Tu, L. W.

    2014-01-28

    Temperature and excitation power dependent time-integrated photoluminescence of Si doped InN thin films are investigated. Photoluminescence (PL) spectra at low temperatures are described by single emission peak ensued due to “free-to-bound” recombination; whereas PL spectra at higher temperatures above 150 K are characterized by both “band-to-band” and “free-to-bound” transition. Carrier dynamics of Si doped InN thin films is studied using pump-probe reflection spectroscopy at room temperature. The hot electron cooling process is well described by electron-electron scattering. The dependence of the hot electron cooling rate on total electron density shows sublinear to linear behavior with increase of background electron density. The variation of the carrier recombination lifetime with total electron density implicates the dominance of the defect-related nonradiative recombination channel over other recombination processes.

  7. Sol–gel synthesis and photoluminescence of SiO2–Si:Er3+ nanocomposite films

    NASA Astrophysics Data System (ADS)

    Tuan, P. V.; Khiem, T. N.; Huy, P. T.

    2017-03-01

    In this work, we report on sol–gel synthesis and photoluminescence of SiO2–Si:Er3+ nanocomoposite films. The films were characterized by x-ray diffraction, field emission scanning electron microscope and photoluminescence measurements. We demonstrate that the incorporation of Si nanocrystals with sizes of 10–20 nm into the silica matrix resulted in strong Er-related PL in the infrared region peaking at 1535 nm and that the film can be well excited by non-resonant wavelengths (250–260 nm). The role of Si nanocrystals as sensitizers and the dependence of the Er-related PL on Er-doping concentration and annealing temperature are also discussed.

  8. EPR, thermo and photoluminescence properties of ZnO nanopowders.

    PubMed

    Jagannatha Reddy, A; Kokila, M K; Nagabhushana, H; Rao, J L; Shivakumara, C; Nagabhushana, B M; Chakradhar, R P S

    2011-10-15

    Nanocrystalline ZnO powders have been synthesized by a low temperature solution combustion method. The photoluminescence (PL) spectrum of as-formed and heat treated ZnO shows strong violet (402, 421, 437, 485 nm) and weak green (520 nm) emission peaks respectively. The PL intensities of defect related emission bands decrease with calcinations temperature indicating the decrease of Zn(i) and V(o)(+) caused by the chemisorptions of oxygen. The results are correlated with the electron paramagnetic resonance (EPR) studies. Thermoluminescence (TL) glow curves of gamma irradiated ZnO nanoparticles exhibit a single broad glow peak at ∼343°C. This can be attributed to the recombination of charge carriers released from the surface states associated with oxygen defects, mainly interstitial oxygen ion centers. The trapping parameters of ZnO irradiated with various γ-doses are calculated using peak shape method. It is observed that the glow peak intensity increases with increase of gamma dose without changing glow curve shape. These two characteristic properties such as TL intensity increases with gamma dose and simple glow curve structure is an indication that the synthesized ZnO nanoparticles might be used as good TL dosimeter for high temperature application.

  9. EPR, thermo and photoluminescence properties of ZnO nanopowders

    NASA Astrophysics Data System (ADS)

    Jagannatha Reddy, A.; Kokila, M. K.; Nagabhushana, H.; Rao, J. L.; Shivakumara, C.; Nagabhushana, B. M.; Chakradhar, R. P. S.

    2011-10-01

    Nanocrystalline ZnO powders have been synthesized by a low temperature solution combustion method. The photoluminescence (PL) spectrum of as-formed and heat treated ZnO shows strong violet (402, 421, 437, 485 nm) and weak green (520 nm) emission peaks respectively. The PL intensities of defect related emission bands decrease with calcinations temperature indicating the decrease of Zn i and V o+ caused by the chemisorptions of oxygen. The results are correlated with the electron paramagnetic resonance (EPR) studies. Thermoluminescence (TL) glow curves of gamma irradiated ZnO nanoparticles exhibit a single broad glow peak at ˜343 °C. This can be attributed to the recombination of charge carriers released from the surface states associated with oxygen defects, mainly interstitial oxygen ion centers. The trapping parameters of ZnO irradiated with various γ-doses are calculated using peak shape method. It is observed that the glow peak intensity increases with increase of gamma dose without changing glow curve shape. These two characteristic properties such as TL intensity increases with gamma dose and simple glow curve structure is an indication that the synthesized ZnO nanoparticles might be used as good TL dosimeter for high temperature application.

  10. Bleaching of Sm 2+ during photoluminescence and cathodoluminescence

    NASA Astrophysics Data System (ADS)

    Mikhail, P.; Ramseyer, K.; Frei, G.; Budde, F.; Hulliger, J.

    2001-02-01

    Photoluminescence (PL) can trace Sm 2+ and Sm 3+ in different host lattices. Reversible bleaching of the Sm 2+ luminescence is reported for high intensity excited PL, leaving the Sm 3+ luminescence unchanged. The power dependent bleaching efficiency of the Sm 2+ luminescence was investigated for single crystals of CaF 2, SrF 2, BaFCl, SrFCl, SrFCl 0.85Br 0.15, SrB 4O 7 and ceramic samples of BaCl 2, SrSO 4. Photoconductivity of SrFCl:Sm 2+ bears evidence for an excited state absorption (ESA) to the conduction band of electrons originating from the 5d level of Sm 2+. We assume a nonradiative decay of these electrons to the ground state of Sm 2+. This process may prohibit a Sm 2+ luminescence for 5DJ→ 7FJ. By Cathodoluminescence (CL) predominantly Sm 3+ was observed, because the excitation by electrons converted Sm 2+ into Sm 3+. Among investigated host lattices some showed an almost complete transformation into Sm 3+ and others featured a residual Sm 2+ CL intensity.

  11. Photoluminescence properties of cerium oxide nanoparticles as a function of lanthanum content

    SciTech Connect

    Deus, R.C.; Cortés, J.A.; Ramirez, M.A.; Ponce, M.A.; Andres, J.; Rocha, L.S.R.; and others

    2015-10-15

    Highlights: • CeO{sub 2} nanoparticles were obtained by microwave-hydrothermal method. • Rietveld refinement reveals a cubic structure. • KOH mineralizer agent exhibit weak agglomeration at low temperature and shorter time. - Abstract: The structural and photoluminescent properties at room temperature of CeO{sub 2} and La-doped CeO{sub 2} particles were undertaken. The obtained particles were synthesized by a microwave-assisted hydrothermal method (MAH) under different lanthanum contents. X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Fourier transform Raman (FT-Raman), Ultra-violet spectroscopy (UV–vis) and photoluminescence (PL) measurements were carried out. XRD revealed that the powders are free of secondary phases and crystallize in the cubic structure. Raman data show that increasing La doping content increase oxygen vacancies due to lattice expansion. The UV/vis absorption spectroscopy suggested the presence of intermediate energy levels in the band gap of structurally ordered powders. Lanthanum addition creates oxygen vacancies and shifts the photoluminescence in the low energy range leading to intense PL emission.

  12. Enhanced photoluminescence from CdS with SiO2 nanopillar arrays

    PubMed Central

    Li, Wei; Wang, Shaolei; He, Sufeng; Wang, Jing; Guo, Yanyan; Guo, Yufeng

    2015-01-01

    In this paper, the enhanced photoluminescence from CdS thin film with SiO2 nanopillar array (NPA) was demonstrated. The CdS was prepared using chemical bath deposition in a solution bath containing CdSO4, SC(NH2)2, and NH4OH. The SiO2 NPA was fabricated by the nanosphere lithography (NSL) techniques. The nanopillar is about 50 nm in diameter, and the height is 150 nm. As a result, the sample with NPA shows an obvious improvement of photoluminescence (PL), compared with the one without NPA. In addition, we also observed that the PL intensity is increased ~5 times if the active layer is deposited on the nanopillar arrays and covered by a thin metal film of Al. It is noteworthy that the enhancement of photoluminescence could be attributed to the roughness of the surface, the 2D photonic band gap (PBG) effect and the surface plasmon resonance (SPR) effects. PMID:26077552

  13. Examination of electronic structure differences between CIGSSe and CZTSSe by photoluminescence study

    SciTech Connect

    Tai, Kong Fai; Huan, Cheng Hon Alfred; Gershon, Talia; Gunawan, Oki

    2015-06-21

    In this paper, we elaborate on the interpretation and use of photoluminescence (PL) measurements as they relate to the “donor/acceptor” and “electrostatic potential fluctuations” models for compensated semiconductors. Low-temperature (7 K) PL measurements were performed on high-efficiency Cu(In,Ga)(S,Se){sub 2} and two Cu{sub 2}ZnSn(S,Se){sub 4} solar cells with high- and low-S/(S + Se) ratio, all fabricated by a hydrazine solution-processing method. From excitation-dependent PL, the total defect density (which include radiative and non-radiative defects) within the band gap (E{sub g}) was estimated for each material and the consequent depth of the electrostatic potential fluctuation (γ) was calculated. The quasi-donor-acceptor pair (QDAP) density was estimated from the blue-shift magnitude of the QDAP PL peak position in power-dependent PL spectra. As a further verification, we show that the slope of the lifetime as a function of photon energies (dτ/dE) is consistent with our estimate for the magnitude of γ. Lastly, the energetic depth of the QDAP defects is examined by studying the spectral evolution of the PL as a function of temperature. The shallow defect levels in CIGSSe resulted in a significant blue-shift of the PL peak with temperature, whereas no obvious shift was observed for either CZTSSe sample, indicating an increase in the depth of the defects. Further improvement on Cu{sub 2}ZnSn(S,Se){sub 4} solar cell should focus on reducing the sub-E{sub g} defect density and avoiding the formation of deep defects.

  14. Studies on optical absorption and photoluminescence of thioglycerol-stabilized CdS quantum dots

    NASA Astrophysics Data System (ADS)

    Unni, C.; Philip, Daizy; Gopchandran, K. G.

    2008-12-01

    Nanoparticles of CdS were prepared at 303 K by aqueous precipitation method using CdSO 4 and (NH 4) 2S in presence of the stabilizing agent thioglycerol. Adjustment of the thioglycerol (T) to ammonium sulphide (A) ratio (T:A) from 1:25 to 1:3.3 was done during synthesis and nanoparticles of different size were obtained. The prepared colloids were characterized by UV-vis and photoluminescence (PL) spectroscopic studies. Prominent first and second excitonic transitions are observed in the UV-vis spectrum of the colloid prepared with a T:A ratio of 1:3.3. Particle size analysis was done using XRD, high resolution TEM and dynamic light scattering and found to be ˜3 nm. UV-vis and PL spectral features also agree with this particle size in colloid with T:A of 1:3.3. The band gap of CdS quantum dots has increased from the bulk value 2.4-2.9 eV. PL spectra show quantum size effect and the peak is shifted from 628 to 556 nm when the ratio of T:A was changed from 1:25 to 1:3.3. Doping of CdS with Zn 2+ and Cu 2+ is found to enhance the PL intensity. PL band shows blue-shift and red-shift on doping with Zn 2+ and Cu 2+, respectively. UV and PL spectral features of the CdS/Au hybrid nanoparticles obtained by a physical mixing of CdS and Au nanoclusters in various volume ratios is also discussed. Au red-shifts and rapidly quenches the PL of CdS. An additional low energy band ˜650 nm is observed in the UV visible spectrum of the hybrid nanoparticles.

  15. A deconvoluted PL approach to probe the charge carrier dynamics of the grain interior and grain boundary of a perovskite film for perovskite solar cell applications.

    PubMed

    Mamun, Abdullah Al; Ava, Tanzila Tasnim; Jeong, Hyeon Jun; Jeong, Mun Seok; Namkoong, Gon

    2017-03-29

    We explore a new characterization approach capable of probing the grain interior (GI) and grain boundary (GB) of a CH3NH3PbI3-xClx perovskite thin film. In particular, we have found that the photoluminescence (PL) spectrum observed for a CH3NH3PbI3-xClx perovskite thin film is asymmetric, and can be deconvoluted using a bi-Gaussian function, representing the ordered and disordered phases of the perovskite film. In order to understand the origin of the ordered and disordered phases of the perovskite film, two-dimensional (2D) PL mapping was performed to resolve the PL spectra at the nanoscale level. Quantitative analysis of the local PL spectra revealed that the ordered phase originated from the GIs while the disordered phase mainly came from the GBs. In particular, power-dependent PL measurements of the deconvoluted PL spectra revealed that smaller grained perovskites showed defect-mediated recombination at GBs but exciton-like transitions at GIs. In contrast, perovskite films with large grains followed an excellent power law, showing exciton-like recombination at both GIs and GBs. As expected, perovskite solar cells fabricated with large grains showed an increased efficiency with higher light absorption and higher charge extraction efficiency.

  16. Photoluminescence in the Ca{sub x}Sr{sub 1-x}WO{sub 4} system at room temperature

    SciTech Connect

    Porto, S.L.; Longo, E.; Simoes, L.G.P.; Lima, S.J.G.; Ferreira, J.M.; Soledade, L.E.B.; Espinoza, J.W.M.; Cassia-Santos, M.R.; Maurera, M.A.M.A.; Paskocimas, C.A.; Santos, I.M.G. Souza, A.G.

    2008-08-15

    In this work, a study was undertaken about the structural and photoluminescent properties, at room temperature, of powder samples from the Ca{sub x}Sr{sub 1-x}WO{sub 4} (x=0-1.0) system, synthesized by a soft chemical method and heat treated between 400 and 700 deg. C. The material was characterized using Infrared, UV-vis and Raman spectroscopy and XRD. The most intense PL emission was obtained for the sample calcined at 600 deg. C, which is neither highly disordered (400-500 deg. C), nor completely ordered (700 deg. C). Corroborating the role of disorder in the PL phenomenon, the most intense PL response was not observed for pure CaWO{sub 4} or SrWO{sub 4}, but for Ca{sub 0.6}Sr{sub 0.4}WO{sub 4}. The PL emission spectra could be separated into two Gaussian curves. The lower wavelength peak is placed around 530 nm, and the higher wavelength peak at about 690 nm. Similar results were reported in the literature for both CaWO{sub 4} and SrWO{sub 4}. - Graphical abstract: The structural and room temperature photoluminescence of Ca{sub x}Sr{sub 1-x}WO4 synthesized by a soft chemical method was studied. The most intense PL emission was obtained for the sample calcined at 600 deg. C, that is neither highly disordered (400-500 deg. C), nor completely ordered (700 deg. C). Corroborating the role of disorder in the PL phenomenon, the most intense PL response was not observed for pure CaWO{sub 4} or SrWO{sub 4}, but for Ca{sub 0.6}Sr{sub 0.4}WO{sub 4}.

  17. Investigation of Oxidation Profile in PMR-15 Polyimide using Atomic Microscope (AFM)

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Johnson, Lili L.; Eby, R. K.

    2002-01-01

    Nanoindentation measurements are made on thermosetting materials using cantiever deflection vs. piezoelectric scanner position behavior determined by AFM. The spring model is used to determine mechanical properties of materials. The generalized Sneddon's equation is utilized to calculate Young's moduli for thermosetting materials at ambient conditions. Our investigations show that the force-penetration depth curves during unloading in these materials can be described accurately by a power law relationship. The results show that the accuracy of the measurements can be controlled within 7%. The above method is used to study oxidation profiles in Pl\\1R-15 polyimide. The thermo-mechanical profiles ofPNIR-15 indicate that the elastic modulus at the surface portion of the specimen is different from that at the interior of the material. It is also shown that there are two zones within the oxidized portion of the samples. Results confirm that the surface layer and the core material have substantially different properties.

  18. Photoluminescence properties of lead selenide produced by selenization and a solvothermal method.

    PubMed

    Kim, Jungdong; Ahn, Hak-Young; Kim, Seung Gi; Oh, Eunsoon; Ju, Byeong-Kwon; Choi, Won Jun; Cho, So-Hye

    2017-01-06

    We studied temperature-dependent photoluminescence (PL) spectra of lead selenide (PbSe) dendrites and cubes grown by a solvothermal method. Their PL peaks were located at ∼8 μm at 10 K with a full width at half maximum (FWHM) of 10 meV. Using the temperature-dependent FWHM values, we obtained carrier-phonon coupling coefficients for PbSe. We also demonstrated mechanochemical synthesis of polycrystalline PbS nanoparticles and their successful conversion into a PbSe layer composed of nanocrystals by a selenization process with thermal treatment. The nanocrystals were found to be formed by the orientation alignment of small grains in the process. The PL peak energies of the PbSe layers as well as the PbSe dendrites and the cubes agreed well with their absorption edges in the transmission spectra, indicating that the photoluminescence originates from the band-edge emission. The band-edge emissions hold promise for the development of potential mid-infrared light sources using PbSe fabricated by these methods.

  19. Chemically modulated graphene quantum dot for tuning the photoluminescence as novel sensory probe

    NASA Astrophysics Data System (ADS)

    Hwang, Eunhee; Hwang, Hee Min; Shin, Yonghun; Yoon, Yeoheung; Lee, Hanleem; Yang, Junghee; Bak, Sora; Lee, Hyoyoung

    2016-12-01

    A band gap tuning of environmental-friendly graphene quantum dot (GQD) becomes a keen interest for novel applications such as photoluminescence (PL) sensor. Here, for tuning the band gap of GQD, a hexafluorohydroxypropanyl benzene (HFHPB) group acted as a receptor of a chemical warfare agent was chemically attached on the GQD via the diazonium coupling reaction of HFHPB diazonium salt, providing new HFHPB-GQD material. With a help of the electron withdrawing HFHPB group, the energy band gap of the HFHPB-GQD was widened and its PL decay life time decreased. As designed, after addition of dimethyl methyl phosphonate (DMMP), the PL intensity of HFHPB-GQD sensor sharply increased up to approximately 200% through a hydrogen bond with DMMP. The fast response and short recovery time was proven by quartz crystal microbalance (QCM) analysis. This HFHPB-GQD sensor shows highly sensitive to DMMP in comparison with GQD sensor without HFHPB and graphene. In addition, the HFHPB-GQD sensor showed high selectivity only to the phosphonate functional group among many other analytes and also stable enough for real device applications. Thus, the tuning of the band gap of the photoluminescent GQDs may open up new promising strategies for the molecular detection of target substrates.

  20. Photoluminescence properties of lead selenide produced by selenization and a solvothermal method

    NASA Astrophysics Data System (ADS)

    Kim, Jungdong; Ahn, Hak-Young; Kim, Seung Gi; Oh, Eunsoon; Ju, Byeong-Kwon; Choi, Won Jun; Cho, So-Hye

    2017-01-01

    We studied temperature-dependent photoluminescence (PL) spectra of lead selenide (PbSe) dendrites and cubes grown by a solvothermal method. Their PL peaks were located at ˜8 μm at 10 K with a full width at half maximum (FWHM) of 10 meV. Using the temperature-dependent FWHM values, we obtained carrier-phonon coupling coefficients for PbSe. We also demonstrated mechanochemical synthesis of polycrystalline PbS nanoparticles and their successful conversion into a PbSe layer composed of nanocrystals by a selenization process with thermal treatment. The nanocrystals were found to be formed by the orientation alignment of small grains in the process. The PL peak energies of the PbSe layers as well as the PbSe dendrites and the cubes agreed well with their absorption edges in the transmission spectra, indicating that the photoluminescence originates from the band-edge emission. The band-edge emissions hold promise for the development of potential mid-infrared light sources using PbSe fabricated by these methods.

  1. Chemically modulated graphene quantum dot for tuning the photoluminescence as novel sensory probe

    PubMed Central

    Hwang, Eunhee; Hwang, Hee Min; Shin, Yonghun; Yoon, Yeoheung; Lee, Hanleem; Yang, Junghee; Bak, Sora; Lee, Hyoyoung

    2016-01-01

    A band gap tuning of environmental-friendly graphene quantum dot (GQD) becomes a keen interest for novel applications such as photoluminescence (PL) sensor. Here, for tuning the band gap of GQD, a hexafluorohydroxypropanyl benzene (HFHPB) group acted as a receptor of a chemical warfare agent was chemically attached on the GQD via the diazonium coupling reaction of HFHPB diazonium salt, providing new HFHPB-GQD material. With a help of the electron withdrawing HFHPB group, the energy band gap of the HFHPB-GQD was widened and its PL decay life time decreased. As designed, after addition of dimethyl methyl phosphonate (DMMP), the PL intensity of HFHPB-GQD sensor sharply increased up to approximately 200% through a hydrogen bond with DMMP. The fast response and short recovery time was proven by quartz crystal microbalance (QCM) analysis. This HFHPB-GQD sensor shows highly sensitive to DMMP in comparison with GQD sensor without HFHPB and graphene. In addition, the HFHPB-GQD sensor showed high selectivity only to the phosphonate functional group among many other analytes and also stable enough for real device applications. Thus, the tuning of the band gap of the photoluminescent GQDs may open up new promising strategies for the molecular detection of target substrates. PMID:27991584

  2. Photoluminescent and Electroluminescent Properties of Cd sub 0.95 Mn sub 0.05 Se Electrodes.

    DTIC Science & Technology

    1984-09-28

    electroluminescence, cadmium manganese selenide electrodes, photoelectrochemistry, dead-layer model 10. ABSTRACT (Contlave on Fvors&a side 110080080Y d...to map the electric field in theme solids, grown by a modified Bridgman method. , DD P1’H"I. 1473 CITION Of I NOV 66 IS OSSOLCTE nlssfe 012.L.014501...used to map the electric field in these solids, grown by a modified Bridgman method. 1. INTRODUCTION Photoluminescence (PL) and electroluminescence (EL

  3. BOREAS AFM-6 Boundary Layer Height Data

    NASA Technical Reports Server (NTRS)

    Wilczak, James; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-6 team from National Oceanic and Atmospheric Adminsitration/Environment Technology Laboratory (NOAA/ETL) operated a 915-MHz wind/Radio Acoustic Sounding System (RASS) profiler system in the Southern Study Area (SSA) near the Old Jack Pine (OJP) site. This data set provides boundary layer height information over the site. The data were collected from 21 May 1994 to 20 Sep 1994 and are stored in tabular ASCII files. The boundary layer height data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  4. BOREAS AFM-06 Mean Wind Profile Data

    NASA Technical Reports Server (NTRS)

    Wilczak, James; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-6 team from the National Oceanic and Atmospheric Administration/Environment Technology Laboratory (NOAA/ETL) operated a 915-MHz wind/Radio Acoustic Sounding System (RASS) profiler system in the Southern Study Area (SSA) near the Old Jack Pine (OJP) tower from 21 May 1994 to 20 Sep 1994. The data set provides wind profiles at 38 heights, containing the variables of wind speed; wind direction; and the u-, v-, and w-components of the total wind. The data are stored in tabular ASCII files. The mean wind profile data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  5. BOREAS AFM-06 Mean Temperature Profile Data

    NASA Technical Reports Server (NTRS)

    Wilczak, James; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-6 team from the National Oceanic and Atmospheric Adminsitration/Environment Technology Laboratory (NOAA/ETL) operated a 915-MHz wind/Radio Acoustic Sounding System (RASS) profiler system in the Southern Study Area (SSA) near the Old Jack Pine (OJP) tower from 21 May 1994 to 20 Sep 1994. The data set provides temperature profiles at 15 heights, containing the variables of virtual temperature, vertical velocity, the speed of sound, and w-bar. The data are stored in tabular ASCII files. The mean temperature profile data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  6. Cryogenic AFM-STM for mesoscopic physics

    NASA Astrophysics Data System (ADS)

    Le Sueur, H.

    Electronic spectroscopy based on electron tunneling gives access to the electronic density of states (DOS) in conductive materials, and thus provides detailed information about their electronic properties. During this thesis work, we have developed a microscope in order to perform spatially resolved (10 nm) tunneling spectroscopy, with an unprecedented energy resolution (10 μeV), on individual nanocircuits. This machine combines an Atomic Force Microscope (AFM mode) together with a Scanning Tunneling Spectroscope (STS mode) and functions at very low temperatures (30 mK). In the AFM mode, the sample topography is recorded using a piezoelectric quartz tuning fork, which allows us to locate and image nanocircuits. Tunneling can then be performed on conductive areas of the circuit. With this microscope, we have measured the local DOS in a hybrid Superconductor-Normal metal-Superconductor (S-N-S) structure. In such circuit, the electronic properties of N and S are modified by the superconducting proximity effect. In particular, for short N wires, we have observed a minigap independent of position in the DOS of the N wire, as was previously predicted. Moreover, when varying the superconducting phase difference between the S electrodes, we have measured the modification of the minigap and its disappearance when the phase difference equals π. Our experimental results for the DOS, and its dependences (on phase, position, N length), are quantitatively accounted for by the quasiclassical theory of superconductivity. Some predictions of this theory are observed for the first time. La spectroscopie électronique basée sur l'effet tunnel donne accès à la densité d'états des électrons (DOS) dans les matériaux conducteurs, et renseigne ainsi en détail sur leurs propriétés électroniques. Au cours de cette thèse, nous avons développé un microscope permettant d'effectuer la spectroscopie tunnel résolue spatialement (10 nm) de nanocircuits individuels, avec une r

  7. The microstructure and photoluminescence of ZnO–MoS2 core shell nano-materials

    NASA Astrophysics Data System (ADS)

    Yu, H.; Liu, C. M.; Huang, X. Y.; Lei, M. Y.

    2017-01-01

    In this paper, ZnO–MoS2-FT (FT is the fabrication temperature of MoS2) core shell nano-material samples (with ZnO as a core and MoS2 as a shell material) were fabricated on ITO substrate using hydrothermal method. The crystal structure, morphology, optical absorption and photoluminescence (PL) of samples were investigated. Compared with that of pure ZnO nanorods, ZnO–MoS2-FT samples show an enhanced light absorption. In addition, ultraviolet (UV) and visible (Vis) PL intensity of ZnO–MoS2-FT samples excited by 325 nm laser are greatly weakened. The UV PL peak position is not changed obviously. However, the Vis PL peak position is changed visibly. The Vis PL of ZnO–MoS2-FT samples under UV excitation indicates that the ratio of oxygen interstitial to oxygen vacancy is decreased. The suppression of UV PL of ZnO–MoS2-FT samples may be related to the weakening of crystal quality of ZnO, easier separation of electron–hole pairs, enhancement of light absorption, and newly introduced defects in the interface between ZnO and MoS2. Under 514 nm laser excitation, the PL peak position of ZnO–MoS2-FT samples has a red shift with FT being increased from 80 to 160 °C. The influence of excitation power (EP) on the PL of ZnO–MoS2-FT samples was also investigated. The PL of ZnO–MoS2-FT samples have a red shift with EP being increased. This may be due to the sample temperature is increased with EP, resulting an enhancement of electron–phonon interaction. A schematic diagram of charge generation and transfer is presented to understand the mechanism of PL of ZnO–MoS2 under UV and Vis excitation.

  8. Photoluminescence and photoreflectance study of InGaAs/AlAsSb quantum wells grown by molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Mozume, T.; Kasai, J.

    2004-02-01

    We report here on a photoluminescence (PL) and photoreflectance (PR) study in which we examined InGaAs/AlAsSb multiple quantum wells (MQWs) with both arsenic- and antimony-terminated interfaces that were grown by molecular-beam epitaxy. The PL spectra of the As-terminated MQWs are dominated by near-band-edge PL peaks over the temperature range between 8 and 300 K. The PL line shape and the temperature evolution of their PL peak energy show clear evidence of a feature that is characteristic of a band-tail localized exciton emission below 40 K. Conversely, the PL spectra of the Sb-terminated MQWs show broad spectra and also show excitation power dependence. Both samples show clear features that are characteristic of QW-related interband transitions in the PR spectra. The observed QW transition energies correspond well with the calculated interband transition energies. The temperature evolutions of the PR peak energies for both samples correspond well with the temperature dependence of the InGaAs bandgap. Although the PL peak energies correspond well with the PR peak energies at high temperature, Stokes shifts of 20 to 30 meV were observed at lower temperature, indicating strong localization of excitons due to potential fluctuations. The broad PL peak and the low activation energy that we observed for the PL integrated intensity quenching process suggest that enhanced incorporation of nonradiative centers at the InGaAs/AlAsSb interfaces was induced by the Sb interface termination.

  9. Tough photoluminescent hydrogels doped with lanthanide.

    PubMed

    Wang, Mei Xiang; Yang, Can Hui; Liu, Zhen Qi; Zhou, Jinxiong; Xu, Feng; Suo, Zhigang; Yang, Jian Hai; Chen, Yong Mei

    2015-03-01

    Photoluminescent hydrogels have emerged as novel soft materials with potential applications in many fields. Although many photoluminescent hydrogels have been fabricated, their scope of usage has been severely limited by their poor mechanical performance. Here, a facile strategy is reported for preparing lanthanide (Ln)-alginate/polyacrylamide (PAAm) hydrogels with both high toughness and photoluminescence, which has been achieved by doping Ln(3+) ions (Ln = Eu, Tb, Eu/Tb) into alginate/PAAm hydrogel networks, where Ln(3+) ions serve as both photoluminescent emitters and physical cross-linkers. The resulting hydrogels exhibit versatile advantages including excellent mechanical properties (∼ MPa strength, ≈ 20 tensile strains, ≈ 10(4) kJ m(-3) energy dissipation), good photoluminescent performance, tunable emission color, excellent processability, and cytocompatibility. The developed tough photoluminescent hydrogels hold great promises for expanding the usage scope of hydrogels.

  10. Power density and temperature effects on the photoluminescence spectra of InAlAs/GaAlAs quantum dots

    NASA Astrophysics Data System (ADS)

    Ben Daly, A.; Riahi, H.; Bernardot, F.; Barisien, T.; Galopin, E.; Lemaître, A.; Maaref, M. A.; Testelin, C.

    2017-04-01

    Photoluminescence (PL) and time-resolved photoluminescence (TRPL) measurement techniques are used to characterize the size and the density of In1-xAlxAs/Ga0.67Al0.33As quantum dots (QDs) for different QD aluminium compositions. The integrated photoluminescence intensity (IPL) depends on an excitation light power, decreases with increasing the aluminium proportion emphasizing the QDs surface density decreasing. In TRPL experiments, the influence of QD lateral coupling is evidence in high QD density sample, the radiative lifetime increases with increasing temperatures for sample with a low aluminium proportion, instead, the observed radiative lifetime keep constant for samples with a high aluminium proportions in agreement with the QD zero-dimensional confinement.

  11. Doped Semiconductor-Nanocrystal Emitters with Optimal Photoluminescence Decay Dynamics in Microsecond to Millisecond Range: Synthesis and Applications

    PubMed Central

    2015-01-01

    Transition metal doped semiconductor nanocrystals (d-dots) possess fundamentally different emission properties upon photo- or electroexcitation, which render them as unique emitters for special applications. However, in comparison with intrinsic semiconductor nanocrystals, the potential of d-dots has been barely realized, because many of their unique emission properties mostly rely on precise control of their photoluminescence (PL) decay dynamics. Results in this work revealed that it would be possible to obtain bright d-dots with nearly single-exponential PL decay dynamics. By tuning the number of Mn2+ ions per dot from ∼500 to 20 in Mn2+ doped ZnSe nanocrystals (Mn:ZnSe d-dots), the single-exponential PL decay lifetime was continuously tuned from ∼50 to 1000 μs. A synthetic scheme was further developed for uniform and epitaxial growth of thick ZnS shell, ∼7 monolayers. The resulting Mn:ZnSe/ZnS core/shell d-dots were found to be essential for necessary environmental durability of the PL properties, both steady-state and transient ones, for the d-dot emitters. These characteristics combined with intense absorption and high PL quantum yields (70 ± 5%) enabled greatly simplified schemes for various applications of PL lifetime multiplexing using Mn:ZnSe/ZnS core/shell d-dots. PMID:27163024

  12. Initial process of photoluminescence dynamics of self-trapped excitons in a β -Ga2O3 single crystal

    NASA Astrophysics Data System (ADS)

    Yamaoka, Suguru; Furukawa, Yoshiaki; Nakayama, Masaaki

    2017-03-01

    We investigate the photoluminescence (PL) dynamics of self-trapped excitons (STEs) in a β -Ga2O3 single crystal from the viewpoint of the transition process from the free exciton to the STE. We succeed in measuring the PL rise time (˜24 ps) at 8 K corresponding to the tunneling time through the barrier between the free exciton and STE states in the adiabatic potential. From the analysis of the PL rise time of the STE based on perturbation theory for the tunneling time considering exciton-phonon interactions, we obtain the following results. Acoustic phonons near the Brillouin zone center contribute to the tunneling process. This suggests that the wave function of the STE is still spatially extended at the final state in the tunneling process. Furthermore, we investigate temperature dependence of the PL rise time of the STE. It is found that the PL rise time decreases with increasing temperature. The PL rise times in the temperature range from 8 to 100 K can be quantitatively explained by an adiabatic theory for the tunneling process. Consequently, the self-trapping process is dominated by the tunneling process at low temperatures.

  13. Origin of photoluminescence from silicon nanowires prepared by metal induced etching (MIE)

    SciTech Connect

    Saxena, Shailendra K. Rai, Hari. M.; Late, Ravikiran; Sagdeo, Pankaj R.; Kumar, Rajesh

    2015-05-15

    In this present study the origin of luminescence from silicon nanowires (SiNws) has been studied. SiNWs are fabricated on Si substrate by metal induced chemical etching (MIE). Here it is found that the band gap of SiNWs is higher than the gap of luminescent states in SiNWs which leads to the effect of Si=O bond. The band gap is estimated from diffuse reflectance analysis. Here we observe that band gap can be tailored depending on size (quantum confinement) but photoluminescence (PL) from all the sample is found to be fixed at 1.91 eV. This study is important for the understanding of origin of photoluminescence.

  14. Functional Exploration of the Polysaccharide Lyase Family PL6

    PubMed Central

    Mathieu, Sophie; Henrissat, Bernard; Labre, Flavien; Skjåk-Bræk, Gudmund; Helbert, William

    2016-01-01

    Alginate, the main cell-wall polysaccharide of brown algae, is composed of two residues: mannuronic acid (M-residues) and, its C5-epimer, guluronic acid (G-residues). Alginate lyases define a class of enzymes that cleave the glycosidic bond of alginate by β-elimination. They are classified according to their ability to recognize the distribution of M- and G-residues and are named M-, G- or MG-lyases. In the CAZy database, alginate lyases have been grouped by sequence similarity into seven distinct polysaccharide lyase families. The polysaccharide lyase family PL6 is subdivided into three subfamilies. Subfamily PL6_1 includes three biochemically characterized enzymes (two alginate lyases and one dermatan sulfatase lyase). No characterized enzymes have been described in the two other subfamilies (PL6_2 and PL6_3). To improve the prediction of polysaccharide-lyase activity in the PL6 family, we re-examined the classification of the PL6 family and biochemically characterized a set of enzymes reflecting the diversity of the protein sequences. Our results show that subfamily PL6_1 includes two dermatan sulfates lyases and several alginate lyases that have various substrate specificities and modes of action. In contrast, subfamilies PL6_2 and PL6_3 were found to contain only endo-poly-MG-lyases. PMID:27438604

  15. An unambiguous identification of 2D electron gas features in the photoluminescence spectrum of AlGaN/GaN heterostructures

    NASA Astrophysics Data System (ADS)

    Jana, Dipankar; Sharma, T. K.

    2016-07-01

    A fast and non-destructive method for probing the true signatures of 2D electron gas (2DEG) states in AlGaN/GaN heterostructures is presented. Two broad features superimposed with interference oscillations are observed in the low temperature photoluminescence (PL) spectrum. The two features are identified as the ground and excited 2DEG states which are confirmed by comparing the PL spectra of as-grown and top barrier layer etched samples. Broad PL features disappear at a certain temperature along with the associated interference oscillations. Furthermore, the two broad PL features depicts specific temperature and excitation intensity dependencies which make them easily distinguishable from the bandedge excitonic or defect related PL features. The presence of strong interference oscillations associated with the 2DEG PL features is explained by considering the localized generation of PL signal at the AlGaN/GaN heterointerface. Finally, a large value of the polarization induced electric field of ~1.01 MV cm-1 is reported from PL measurements for AlGaN/GaN HEMT structures. It became possible only when the true identification of 2DEG features was made possible by the proposed method.

  16. Photoluminescent Properties of Composites Based on the Liquid Crystal 5CB with Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Bezrodna, T. V.; Klishevich, G. V.; Nesprava, V. V.; Melnyk, V. I.; Roshchin, A. N.; Skryshevskyi, Yu. A.

    2017-01-01

    We have studied the influence of inorganic particles on the photoluminescent properties of the nematic liquid crystal 5CB in composites based on carbon nanotubes (CNTs) and hybrid nanoparticles consisting of carbon nanotubes and platelets of the organically modified mineral montmorillonite (MMT). We show that the photoluminescence (PL) of 5CB + CNT composites is characterized by excimer emission of the 5CB molecules. Adding carbon nanotubes to the liquid crystal medium leads to a considerable decrease in the photoluminescence intensity, but has practically no effect on the bulk structural alignment in the organic matrix. Hybrid CNT-MMT particles form a uniform coagulation network in the composite with 5CB and significantly disrupt the nematic structure of the liquid crystal. Bent conformations of the 5CB molecules appear which are typical of the liquid crystal monomers. The presence of the indicated 5CB conformers in the system and also the weaker interaction between the liquid crystal and the inorganic filler explain the increase in the photoluminescence intensity for the composite 5CB + CNT-MMT compared with the emission characteristics for the original liquid crystal.

  17. Design And Ground Testing For The Expert PL4/PL5 'Natural And Roughness Induced Transition'

    NASA Astrophysics Data System (ADS)

    Masutti, Davie; Chazot, Olivier; Donelli, Raffaele; de Rosa, Donato

    2011-05-01

    Unpredicted boundary layer transition can impact dramatically the stability of the vehicle, its aerodynamic coefficients and reduce the efficiency of the thermal protection system. In this frame, ESA started the EXPERT (European eXPErimental Reentry Testbed) program to pro- vide and perform in-flight experiments in order to obtain aerothermodynamic data for the validation of numerical models and of ground-to-flight extrapolation methodologies. Considering the boundary layer transition investigation, the EXPERT vehicle is equipped with two specific payloads, PL4 and PL5, concerning respectively the study of the natural and roughness induced transition. The paper is a survey on the design process of these two in-flight experiments and it covers the major analyses and findings encountered during the development of the payloads. A large amount of transition criteria have been investigated and used to estimate either the dangerousness of the height of the distributed roughness, arising due to nose erosion, or the effectiveness of height of the isolated roughness element forcing the boundary layer transition. Supporting the PL4 design, linear stability computations and CFD analyses have been performed by CIRA on the EXPERT flight vehicle to determine the amplification factor of the boundary layer instabilities at different point of the re-entry trajectory. Ground test experiments regarding the PL5 are carried on in the Mach 6 VKI H3 Hypersonic Wind Tunnel with a Reynolds numbers ranging from 18E6/m to 26E6/m. Infrared measurements (Stanton number) and flow visualization are used on a 1/16 scaled model of the EXPERT vehicle and a flat plate to validate the Potter and Whitfield criterion as a suitable methodology for ground-to-flight extrapolation and the payload design.

  18. Highly enhanced photoluminescence of AgInS2/ZnS quantum dots by hot-injection method

    NASA Astrophysics Data System (ADS)

    Liao, Shenghua; Huang, Yu; Zhang, Ying; Shan, Xiaohui; Yan, Zhengyu; Shen, Weiyang

    2015-01-01

    Highly photoluminescent and air-stable AgInS2 quantum dots (AIS QDs) were synthesized by a hot-injection route in N2 atmosphere and dark environment. The as-synthesized AIS QDs were further capped with ZnS shell by one-pot method in order to enhance the photoluminescence (PL) intensity. The photo-electronic property and the morphology of AIS QDs and AIS/ZnS QDs were characterized by ultraviolet-visible spectroscopy (UV), PL spectroscopy and transmission electronic microscopy (TEM). The results indicated that the narrow and symmetrical PL spectra of AIS QDs was time-dependent, and the emission wavelength of AIS QDs could be tunable within 436-610 nm by altering the initial Ag/In ratios. After being capped with ZnS shell, the AIS QDs showed excellent optical characteristics, including PL QYs up to 15%. The TEM results indicated that the spherical AIS/ZnS QDs were nearly monodispersed and homogeneous with an average particle size of 8 nm. The heavy metal free and high luminous AIS/ZnS QDs have great potential in biological application.

  19. Photoassisted photoluminescence fine-tuning of gold nanodots through free radical-mediated ligand-assembly

    NASA Astrophysics Data System (ADS)

    Tseng, Yu-Ting; Cherng, Rochelle; Harroun, Scott G.; Yuan, Zhiqin; Lin, Tai-Yuan; Wu, Chien-Wei; Chang, Huan-Tsung; Huang, Chih-Ching

    2016-05-01

    In this study, we have developed a simple photoassisted ligand assembly to fine-tune the photoluminescence (PL) of (11-mercaptoundecyl)-N,N,N-trimethylammonium bromide-capped gold nanodots (11-MUTAB-Au NDs). The 11-MUTAB-Au NDs (size: ca. 1.8 nm), obtained from the reaction of gold nanoparticles (ca. 3 nm) and 11-MUTAB, exhibited weak, near-infrared (NIR) PL at 700 nm with a quantum yield (QY) of 0.37% upon excitation at 365 nm. The PL QY of the Au NDs increased to 11.43% after reaction with 11-mercaptoundecanoic acid (11-MUA) for 30 min under ultraviolet (UV) light, which was accompanied by a PL wavelength shift to the green region (~520 nm). UV-light irradiation accelerates 11-MUA assembly on the 11-MUTABAu NDs (11-MUA/11-MUTAB-Au NDs) through a radical-mediated reaction. Furthermore, the PL wavelength of the 11-MUA/11-MUTAB-Au NDs can be switched to 640 nm via cysteamine under UV-light irradiation. We propose that the PL of the Au NDs with NIR and visible emissions was originally from the surface thiol-Au complexes and the Au core, respectively. These dramatically different optical properties of the Au NDs were due to variation in the surface ligands, as well as the densities and surface oxidant states of the surface Au atoms/ions. These effects can be controlled by assembling surface thiol ligands and accelerated by UV irradiation.In this study, we have developed a simple photoassisted ligand assembly to fine-tune the photoluminescence (PL) of (11-mercaptoundecyl)-N,N,N-trimethylammonium bromide-capped gold nanodots (11-MUTAB-Au NDs). The 11-MUTAB-Au NDs (size: ca. 1.8 nm), obtained from the reaction of gold nanoparticles (ca. 3 nm) and 11-MUTAB, exhibited weak, near-infrared (NIR) PL at 700 nm with a quantum yield (QY) of 0.37% upon excitation at 365 nm. The PL QY of the Au NDs increased to 11.43% after reaction with 11-mercaptoundecanoic acid (11-MUA) for 30 min under ultraviolet (UV) light, which was accompanied by a PL wavelength shift to the green region

  20. Tunable photoluminescence of self-assembled GeSi quantum dots by B{sup +} implantation and rapid thermal annealing

    SciTech Connect

    Chen, Yulu; Wu, Shan; Ma, Yinjie; Fan, Yongliang; Yang, Xinju; Zhong, Zhenyang; Jiang, Zuimin

    2014-06-21

    The layered GeSi quantum dots (QDs) are grown on (001) Si substrate by molecular beam epitaxy. The photoluminescence (PL) peak of the as-grown GeSi quantum dots has obvious blue shift and enhancement after processed by ion implantation and rapid thermal annealing. It is indicated that the blue shift is originated from the interdiffusion of Ge and Si at the interface between QDs and the surrounding matrix. The dependence of PL intensity on the excitation power shows that there are the nonradiative centers of shallow local energy levels from the point defects caused by the ion implantation, but not removed by the rapid thermal annealing. The tunable blue shift of the PL position from the 1300 nm to 1500 nm region may have significant application value in the optical communication.

  1. Impurity Studies of Cd(0.8)Zn(0.2)Te Crystals Using Photoluminescence and Glow Discharge Mass Spectroscopy

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Lehoczky, Sandor L.; Scripa, Rosalie N.

    2005-01-01

    Cd(1-x)Zn(x)Te semiconductor crystal is a highly promising material for room temperature x- and gamma-ray detector applications because of its high resistivity, long carrier lifetime, and relatively high hole and electron mobilities. This paper reports the investigation of the impurities in several Cd(1-x)Zn(x)Te (x = 0.20) crystals grown using the vertical Bridgman method under a Cd overpressure. The impurity concentrations were measured using glow discharge mass spectroscopy (GDMS). The energy states of the impurities were studied using photoluminescence (PL) spectroscopy at liquid helium temperature. The PL spectra showed a series of sharp high energy lines which are associated with free excitons and excitons bound to impurities as donors and acceptors in the crystals. The impurities also contributed to donor-acceptor pair recombination. The correlation between the GDMS and PL results will be reported.

  2. The photoluminescence properties of QWs with asymmetrical step-like InGaN/GaN quantum barriers

    NASA Astrophysics Data System (ADS)

    Rajabi, Kamran; Yang, Wei; Li, Ding; He, Juan; Zong, Hua; Ji, Qingbin; Shen, Bingran; Yan, Tongxin; Hu, Xiaodong

    2015-04-01

    The asymmetrical structures were created by inserting a low-indium-content layer between the QW and barrier to form a step-like quantum barrier (QB) at one side of QW. The optical effects of the inserting layer on QW emission were investigated with low-temperature photoluminescence (PL) and time-resolved PL (TRPL). The inserted layer partially relaxed the strain within QW layer and induced about 25 nm red-shift in the PL emission compared with conventional QW, while the presence of localization centers around QW affected the emission mechanism and increased the radiative decay time. Furthermore, the position of the inserted layer played different roles in the changed structures, and whilst the n-side step-barrier exhibited strong localization in the energy levels of the inserted layer, the p-side step-barrier showed stronger localization center for the QW levels.

  3. Very strong photoluminescence emission from GaN grown on amorphous silica substrate by gas source MBE

    NASA Astrophysics Data System (ADS)

    Asahi, H.; Iwata, K.; Tampo, H.; Kuroiwa, R.; Hiroki, M.; Asami, K.; Nakamura, S.; Gonda, S.

    1999-05-01

    Polycrystalline GaN layers showing very strong photoluminescence (PL) intensities are successfully grown on amorphous fused silica (SiO 2) substrates by gas source molecular beam epitaxy (MBE) using an ion removed electron cyclotron resonance radical cell. The PL intensity is larger than that of undoped single crystalline GaN grown on sapphire by gas source MBE and is comparable to that of Si-doped single crystalline GaN grown on sapphire by metalorganic vapor-phase epitaxy at Nichia Chemical. The PL peak emission is considered to be excitonic. Undoped GaN layers grown on silica substrates exhibit n-type conduction and both n- and p-type conductions are achieved by impurity doping. These results open up the area of "Polycrystalline Semiconductor Photonics".

  4. Photoinduced magnetization effect in a p -type Hg1 -xMnxTe single crystal investigated by infrared photoluminescence

    NASA Astrophysics Data System (ADS)

    Zhu, Liangqing; Shao, Jun; Chen, Xiren; Li, Yanqiu; Zhu, Liang; Qi, Zhen; Lin, Tie; Bai, Wei; Tang, Xiaodong; Chu, Junhao

    2016-10-01

    Photoinduced magnetization (PIM) effect of Hg1 -xMnxTe provides an attractive solution for realizing the quantum anomalous Hall effect in quantum wells with a light field. In this paper, the PIM effect of p -type Hg0.74Mn0.26Te single crystal was investigated by power-, polarization- and temperature-dependent photoluminescence (PL) measurements in both reflection and transmission geometries. Giant Zeeman splitting and polarization of PL spectra were observed without an external magnetic field evolving with excitation-power density of the pumping laser and temperature, which were accounted for by the PIM effect. The occurrence of the PIM was qualitatively understandable by the carrier-mediated mean-field theory known as the Zener model. The results indicate that infrared PL measurements with enhanced sensitivity and signal-to-noise ratio can serve as a convenient pathway for clarifying the PIM effect of semimagnetic semiconductors.

  5. Investigation to the deep center related properties of low temperature grown InPBi with Hall and photoluminescence

    SciTech Connect

    Wang, Peng; Pan, Wenwu; Wu, Xiaoyan; Wang, Kai; Yue, Li; Gong, Qian; Wang, Shumin

    2015-12-15

    InP{sub 1-x}Bi{sub x} epilayers with bismuth (Bi) concentration x= 1.0% were grown on InP by gas source molecular beam epitaxy (GS-MBE) at low temperature (LT). Bi incorporation decreased the intrinsic free electron concentration of low temperature grown InP indicated by hall analysis. It is concluded that deep level center was introduced by Bi. Influence of Si doping on the InP{sub 1-x}Bi{sub x} films Photoluminescence (PL) was investigated. N-type doping in the InP{sub 1-x}Bi{sub x} epilayers was found to be effective at PL enhancement. Blue shift of InPBi PL emission wavelength was observed as the Si doping concentration increasing. Two independent peaks were fitted and their temperature dependence behavior was observed to be distinct obviously. Two individual radiative recombination processes were expected to be involved.

  6. Observations of unusual temperature dependent photoluminescence anti-quenching in two-dimensional nanosheets of ZnS/ZnO composites and polarization dependent photoluminescence enhancement in fungi-like ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Kole, A. K.; Kumbhakar, P.; Ganguly, T.

    2014-06-01

    Hybrid semiconductor nanostructures which integrate the favourable characteristics of both the component materials are found recently to be attractive candidate materials for research investigations having interesting optical properties. Considering the fact that the temperature of the materials used in photo-luminescent devices may vary while using them in a real device, it is essential to study the performances of such materials at variable temperatures. But the photoluminescence (PL) emission capabilities of such materials above room temperatures have not been well investigated, yet. However, in this work we have reported temperature dependent unusual PL emission characteristics of 2D nanosheets of ZnS/ZnO composite in the temperature range of 273-333 K. The composite sample has been produced by annealing the organic-inorganic ZnS(ethylenediamine)0.5 nanosheets, which are obtained by solvothermal technique. The as-synthesized nanosheets and another thermally annealed product of ZnO nanostructures showed usual thermally quenched PL emissions, whereas luminescence temperature anti-quenching (LTAQ) effect has been found in the ZnS/ZnO composite nanosheets. The PL emission intensity has been enhanced up to 242% with a small temperature variation of 60 K. The LTAQ effect has been explained by using the Berthelot-type model. It has been found that the diffused oxygen present in the composite nanostructures is acting as trap centre and played the major role in LTAQ effect. The analyses of time resolved PL emission spectroscopy data also confirmed the presence of oxygen trap level within the band gap of the material. Further, enhanced PL emission from the synthesized fungi-like ZnO samples has also been reported under the excitation of polarised ultraviolet light.

  7. Improved photoluminescence property of CTAB assisted polyaniline-AlZnO nanocomposite

    SciTech Connect

    Mitra, Mousumi; Banerjee, Dipali; Kargupta, Kajari; Ganguly, Saibal

    2015-06-24

    Polyaniline-Al doped ZnO ((PANI-AlZnO:: 70:30) nanocomposite was prepared via in situ chemical oxidative polymerization, while the hexagonal powder of AlZnO was synthesized via sol-gel technique, using Hexadecyltrimethylammonium bromide (CTAB) as a capping agent. The prepared nanocomposite was characterized by High resolution transmission electron microscopy (HRTEM), EDAX, X-ray diffraction (XRD) and Fourier transforms infrared (FTIR) spectra. The optical property of the nanomaterials is examined by photoluminescence (PL) spectra analysis. The XRD pattern confirms the formation of Al doped ZnO as well as PANI. The HRTEM images of the composite showed the formation of hexagonal AlZnO embedded in polyaniline matrix. EDAX spectrum shows the compositional analysis of the nanocomposite. FTIR spectra confirm the formation of nanocomposite of PANI and hexagonal AlZnO. The PL intensity of the nanocomposite is improved as compared to pure AlZnO.

  8. Photoluminescence study of high density Si quantum dots with Ge core

    SciTech Connect

    Kondo, K. Makihara, K.; Ikeda, M.; Miyazaki, S.

    2016-01-21

    Si quantum dots (Si-QDs) with Ge core were self-assembled on thermally grown SiO{sub 2} from alternate thermal decomposition of pure SiH{sub 4} and GeH{sub 4} diluted with He. When the sample was excited by the 979 nm line of a semiconductor laser, fairly broad photoluminescence (PL) spectra in the region of 0.6–0.8 eV were observed at room temperature. The observed PL spectra suggested that radiative recombination of photo-generated carriers through quantized states of Ge core is the dominant pathway for the emission from the dots, reflecting the type II energy band discontinuity between the Si clad and Ge core. We also found that P-δ doping to Ge core plays an important role in recombination through the quantized states in the valence band of Ge core and P donor levels.

  9. Thermoluminescence and photoluminescence studies on gamma irradiated CsI : Pb2+ crystals

    NASA Astrophysics Data System (ADS)

    Selvasekarapandian, S.; Brahmanandhan, G. M.; Malathi, J.; Joseph, V.

    2006-09-01

    Pure and Pb2+-doped CsI crystals have been grown by the Bridgemann technique. Optical absorption, thermoluminescence (TL) and photoluminescence (PL) measurements have been performed. In undoped and Pb2+-doped cesium iodide crystals, F-centers and V-centers have been produced at 770 nm and 350 nm, respectively. In Pb2+-doped crystals, additional centers at 373 nm, 290 nm and 258 nm bands have been produced. In undoped samples, only two glow peaks at 343 K and 373 K have been produced, and in Pb2+-doped samples additional glow peaks at 383 K and 423 K have been produced. For all the samples, TL emission, PL and excitation measurements have been performed.

  10. Convenient synthesis of stable silver quantum dots with enhanced photoluminescence emission by laser fragmentation

    NASA Astrophysics Data System (ADS)

    Shuang, Li; Ming, Chen

    2016-04-01

    A new strategy for the facile synthesis of very stable and mono-dispersed silver (Ag) quantum dots (QDs) is developed by laser fragmentation of bulk Ag in water using polysorbate 80 as a dispersing and stabilizing agent. The surfactant plays an important role in the formation of size-controlled Ag nano-structures. The Ag QDs have excellent photo-stability of ∼500 h and enhanced photoluminescence (PL) at 510 nm. This has significant implications for selective and ultrasensitive PL probes. Based on laser fragmentation in the biocompatible surfactant solution, our results have opened up a novel paradigm to obtain stable metal QDs directly from bulk targets. This is a breakthrough in the toxicity problems that arise from standard chemical fabrication. Project supported by the National Natural Science Foundation of China (Grant Nos. 11575102, 11105085, 11275116, and 11375108) and the Fundamental Research Funds of Shandong University, China (Grant No. 2015JC007).

  11. Formation and dynamics of "waterproof" photoluminescent complexes of rare earth ions in crowded environment.

    PubMed

    Ignatova, Tetyana; Blades, Michael; Duque, Juan G; Doorn, Stephen K; Biaggio, Ivan; Rotkin, Slava V

    2014-12-28

    Understanding behavior of rare-earth ions (REI) in crowded environments is crucial for several nano- and bio-technological applications. Evolution of REI photoluminescence (PL) in small compartments inside a silica hydrogel, mimic to a soft matter bio-environment, has been studied and explained within a solvation model. The model uncovered the origin of high PL efficiency to be the formation of REI complexes, surrounded by bile salt (DOC) molecules. Comparative study of these REI-DOC complexes in bulk water solution and those enclosed inside the hydrogel revealed a strong correlation between an up to 5×-longer lifetime of REIs and appearance of the DOC ordered phase, further confirmed by dynamics of REI solvation shells, REI diffusion experiments and morphological characterization of microstructure of the hydrogel.

  12. Enhanced photoluminescence of Si nanocrystals-doped cellulose nanofibers by plasmonic light scattering

    SciTech Connect

    Sugimoto, Hiroshi; Zhang, Ran; Reinhard, Björn M.; Fujii, Minoru; Perotto, Giovanni; Marelli, Benedetto; Omenetto, Fiorenzo G.; Dal Negro, Luca

    2015-07-27

    We report the development of bio-compatible cellulose nanofibers doped with light emitting silicon nanocrystals and Au nanoparticles via facile electrospinning. By performing photoluminescence (PL) spectroscopy as a function of excitation wavelength, we demonstrate plasmon-enhanced PL by a factor of 2.2 with negligible non-radiative quenching due to plasmon-enhanced scattering of excitation light from Au nanoparticles to silicon nanocrystals inside the nanofibers. These findings provide an alternative approach for the development of plasmon-enhanced active systems integrated within the compact nanofiber geometry. Furthermore, bio-compatible light-emitting nanofibers prepared by a cost-effective solution-based processing are very promising platforms for biophotonic applications such as fluorescence sensing and imaging.

  13. Mid-IR photoluminescence and lasing of chromium doped II-VI quantum dots

    NASA Astrophysics Data System (ADS)

    Martyshkin, D. V.; Kim, C.; Moskalev, I. S.; Fedorov, V. V.; Mirov, S. B.

    2008-02-01

    Here we report a new method for transition-metal (TM) doped II-VI Quantum Dots (QD) fabrication and first mid-IR (2-3 μm) lasing at 77K of Cr 2+:ZnS QD powder (~ 27 nm grain size). Cr 2+:ZnS nanocrystalline dots (NCDs) were prepared using laser ablation. The mid-IR photoluminescence (PL) and lasing were studied. The dependence of PL spectrum profile on pump energy demonstrated a threshold behavior accompanied by the appearance of a sharp stimulated emission band around 2230 nm. The stimulated emission band is shifted to the longer wavelength with respect to the spontaneous emission and corresponds to the peak of the Cr:ZnS gain spectrum. This was also accompanied by a considerable lifetime shortening.

  14. Enhanced photocatalytic activity of C@ZnO core-shell nanostructures and its photoluminescence property

    NASA Astrophysics Data System (ADS)

    Chen, Tao; Yu, Shanwen; Fang, Xiaoxin; Huang, Honghong; Li, Lun; Wang, Xiuyuan; Wang, Huihu

    2016-12-01

    An ultrathin layer of amorphous carbon coated C@ZnO core-shell nanostructures were synthesized via a facile hydrothermal carbonization process using glucose as precursor in this work. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and diffuse reflectance UV-vis spectroscopy (DRS) were used for the characterization of as-prepared samples. Photoluminescence (PL) properties of C@ZnO samples were investigated using PL spectroscopy. The microstructure analysis results show that the glucose content has a great influence on the size, morphology, crystallinity and surface chemical states of C@ZnO nanostructures. Moreover, the as-prepared C@ZnO core-shell nanostructures exhibit the enhanced photocatalytic activity and good photostability for methyl orange dye degradation due to its high adsorption ability and its improved optical characteristics.

  15. Photoluminescence and energy transfer process in Gd2O3:Eu3+, Tb3+

    NASA Astrophysics Data System (ADS)

    Selvalakshmi, T.; Bose, A. Chandra

    2016-05-01

    Variation in photoluminescence (PL) properties of Eu3+ and Tb3+ as a function of co-dopant (Tb3+) concentration are studied for Gd2-x-yO3: Eu3+x Tb3+y (x = 0.02, y = 0.01, 0.03, 0.05). The crystal structure analysis is carried out by X-ray Diffraction (XRD). Absence of addition peaks corresponding europium or terbium phase confirms the phase purity. Diffuse reflectance spectroscopy (DRS) reveals the absorption peaks corresponding to host matrix, Eu3+ and Tb3+. The bandgap calculated from Kubelka - Munk function is also reported. PL spectra are recorded at the excitation wavelength of 307 nm and the emission peak corresponding to Eu3+ confirms the energy transfer from Tb3+ to Eu3+. The agglomeration of particles acts as quenching centres for energy transfer at higher concentrations.

  16. Photoluminescence studies of growth-sector dependence of nitrogen distribution in synthetic Ib diamond

    SciTech Connect

    Wang, Kaiyue; Steeds, John W.; Li, Zhihong; Tian, Yuming

    2014-08-15

    The photoluminescence technology previously employed to investigate the boron distribution of type IIb diamond has now been applied to study the nitrogen distribution of type Ib diamond. All growth sectors were clearly distinguished by the characteristic colors and the brightness of the synthetic Ib diamond's cathodoluminescence topography. As a measure of the concentration of nitrogen impurity, the nitrogen-vacancy luminescence gave relative concentrations in different growth sectors as: the (111) sector was the highest, followed by the (311), (100) and (511) sectors. The results were reconfirmed by the evidence of the broadened and strengthened zero phonon lines of nitrogen-vacancy center with the increase of nitrogen concentration of type Ib diamond. - Highlights: • The growth sectors were clearly distinguished by CL technology. • The N distribution was investigated by the examination of PL spectroscopy. • Results showed that (111) has the highest N, followed by (311), (100) and (511). • The conclusion was reconfirmed by the PL results of NV center.

  17. Enhanced Er3+ photoluminescence in TeO2-ZnO glass containing silicon nanocrystals

    NASA Astrophysics Data System (ADS)

    da Silva, Diego S.; de Assumpção, Thiago A. A.; de Simone, Giordano B. C.; Kassab, Luciana R. P.; de Araújo, Cid B.

    2015-11-01

    Enhanced photoluminescence (PL) in a tellurite glass (TeO2-ZnO) doped with erbium ions (Er3+) and containing silicon nanocrystals (Si-NCs) is reported. The PL increase is mainly attributed to energy transfer from excited Si-NCs to the Er3+ located in the vicinity of the nanocrystals although the contribution of active defects in the glass cannot be completely excluded. Enhancement of ≈300 % was observed in the visible and in the near-infrared regions. In particular, the fourfold enhancement observed for the broad emission centered at ≈1530 nm, corresponding to the Er3+ transition 4I3/2 → 4I15/2, indicates large potential of the composite material for interface with existing telecommunication devices.

  18. Excitation dependent photoluminescence study of Si-rich a-SiNx:H thin films

    NASA Astrophysics Data System (ADS)

    Kumar Bommali, Ravi; Preet Singh, Sarab; Rai, Sanjay; Mishra, P.; Sekhar, B. R.; Vijaya Prakash, G.; Srivastava, P.

    2012-12-01

    We report photoluminescence (PL) investigations on Si-rich amorphous hydrogenated silicon nitride (a-SiNx:H) thin films of different compositions, using three different excitation lasers, viz., 325 nm, 410 nm, and 532 nm. The as-deposited films contain amorphous Si quantum dots (QDs) as evidenced in high resolution transmission electron microscopy images. The PL spectral shape is in general seen to change with the excitation used, thus emphasizing the presence of multiple luminescence centres in these films. It is found that all the spectra so obtained can be deconvoluted assuming Gaussian contributions from defects and quantum confinement effect. Further strength to this assignment is provided by low temperature (300 °C) hydrogen plasma annealing of these samples, wherein a preferential enhancement of the QD luminescence over defect luminescence is observed.

  19. Anomalous photoluminescence in InP1−xBix

    PubMed Central

    Wu, Xiaoyan; Chen, Xiren; Pan, Wenwu; Wang, Peng; Zhang, Liyao; Li, Yaoyao; Wang, Hailong; Wang, Kai; Shao, Jun; Wang, Shumin

    2016-01-01

    Low temperature photoluminescence (PL) from InP1−xBix thin films with Bi concentrations in the 0–2.49% range reveals anomalous spectral features with strong and very broad (linewidth of 700 nm) PL signals compared to other bismide alloys. Multiple transitions are observed and their energy levels are found much smaller than the band-gap measured from absorption measurements. These transitions are related to deep levels confirmed by deep level transient spectroscopy, which effectively trap free holes and enhance radiative recombination. The broad luminescence feature is beneficial for making super-luminescence diodes, which can theoretically enhance spatial resolution beyond 1 μm in optical coherent tomography (OCT). PMID:27291823

  20. Defect-Band Emission Photoluminescence Imaging on Multi-Crystalline Si Solar Cells: Preprint

    SciTech Connect

    Yan, F.; Johnston, S.; Zaunbrecher, K.; Al-Jassim, M.; Sidelkheir, O.; Blosse, A.

    2011-07-01

    Defect-band photoluminescence (PL) imaging with an InGaAs camera was applied to multicrystalline silicon (mc-Si) wafers, which were taken from different heights of different Si bricks. Neighboring wafers were picked at six different processing steps, from as-cut to post-metallization. By using different cut-off filters, we were able to separate the band-to-band emission images from the defect-band emission images. On the defect-band emission images, the bright regions that originate from the grain boundaries and defect clusters were extracted from the PL images. The area fraction percentage of these regions at various processing stages shows a correlation with the final cell electrical parameters.

  1. Defect-Band Emission Photoluminescence Imaging on Multi-Crystalline Si Solar Cells

    SciTech Connect

    Yan, F.; Johnston, S.; Zaunbrecher, K.; Al-Jassim, M.; Sidelkheir, O.; Blosse, A.

    2011-01-01

    Defect-band photoluminescence (PL) imaging with an InGaAs camera was applied to multicrystalline silicon (mc-Si) wafers, which were taken from different heights of different Si bricks. Neighboring wafers were picked at six different processing steps, from as-cut to post-metallization. By using different cut-off filters, we were able to separate the band-to-band emission images from the defect-band emission images. On the defect-band emission images, the bright regions that originate from the grain boundaries and defect clusters were extracted from the PL images. The area fraction percentage of these regions at various processing stages shows a correlation with the final cell electrical parameters.

  2. Electron irradiated liquid encapsulated Czochralski grown undoped gallium antimonide studied by positron lifetime spectroscopy and photoluminescence

    NASA Astrophysics Data System (ADS)

    Ma, S. K.; Lui, M. K.; Ling, C. C.; Fung, S.; Beling, C. D.; Li, K. F.; Cheah, K. W.; Gong, M.; Hang, H. S.; Weng, H. M.

    2004-09-01

    Electron irradiated undoped liquid encapsulated Czochralski (LEC) grown GaSb samples were studied by positron lifetime spectroscopy (PLS) and photoluminescence (PL). In addition to the 315 ps component reported in the previous studies, another defect with a lifetime of 280 ps was also identified in the present electron irradiated samples. The bulk lifetime of the GaSb material was found to be 258 ps. The VGa,280 ps and the VGa,315 ps defects were associated with two independent Ga vacancy related defects having different microstructures. The well known 777 meV PL signal (usually band A) was also observed in the electron irradiated undoped GaSb samples. The band A intensity decreases with increasing electron irradiation dosage and it disappears after the 300 °C annealing regardless of the irradiation dosage. The origin of the band A signal is also discussed.

  3. Using Low Temperature Photoluminescence Spectroscopy to Investigate CH₃NH₃PbI₃ Hybrid Perovskite Degradation.

    PubMed

    Jemli, Khaoula; Diab, Hiba; Lédée, Ferdinand; Trippé-Allard, Gaelle; Garrot, Damien; Geffroy, Bernard; Lauret, Jean-Sébastien; Audebert, Pierre; Deleporte, Emmanuelle

    2016-07-08

    Investigating the stability and evaluating the quality of the CH₃NH₃PbI₃ perovskite structures is quite critical both to the design and fabrication of high-performance perovskite devices and to fundamental studies of the photophysics of the excitons. In particular, it is known that, under ambient conditions, CH₃NH₃PbI₃ degrades producing some PbI₂. We show here that low temperature Photoluminescence (PL) spectroscopy is a powerful tool to detect PbI₂ traces in hybrid perovskite layers and single crystals. Because PL spectroscopy is a signal detection method on a black background, small PbI₂ traces can be detected, when other methods currently used at room temperature fail. Our study highlights the extremely high stability of the single crystals compared to the thin layers and defects and grain boundaries are thought to play an important role in the degradation mechanism.

  4. Probing the photoluminescence properties of gold nanoclusters by fluorescence lifetime correlation spectroscopy

    SciTech Connect

    Yuan, C. T. Lin, T. N.; Shen, J. L.; Lin, C. A.; Chang, W. H.; Cheng, H. W.; Tang, J.

    2013-12-21

    Gold nanoclusters (Au NCs) have attracted much attention for promising applications in biological imaging owing to their tiny sizes and biocompatibility. So far, most efforts have been focused on the strategies for fabricating high-quality Au NCs and then characterized by conventional ensemble measurement. Here, a fusion single-molecule technique combining fluorescence correlation spectroscopy and time-correlated single-photon counting can be successfully applied to probe the photoluminescence (PL) properties for sparse Au NCs. In this case, the triplet-state dynamics and diffusion process can be observed simultaneously and the relevant time constants can be derived. This work provides a complementary insight into the PL mechanism at the molecular levels for Au NCs in solution.

  5. Defect induced photoluminescence and ferromagnetic properties of bio-compatible SWCNT/Ni hybrid bundles.

    PubMed

    Gupta, Vinay; Gupta, Bipin Kumar; Kotnala, R K; Narayanan, T N; Grover, Vaneet; Shah, Jyoti; Agrawal, Vikash; Chand, Suresh; Shanker, Virendra

    2011-10-15

    Designing of bio-compatible nanomagnets with multiple functionalities receives immense scientific attention due to their potential applications in bio-labeling, medical diagnosis and treatment. Here we report the synthesis of Nickel (Ni) incorporated single-walled carbon nanotube (SWCNT) hybrid and bio-compatible bundles having interesting magnetic and photoluminescence (PL) properties. The SWCNT exhibits a high-crystallinity and it has an average diameter of ∼1.7 nm. Ni particles of 10-20 nm were incorporated within the SWCNT bundles. These hybrid bundles exhibit PL and it is attributed to the presence of delocalized π electrons and their recombination at the defective sites of SWCNT. Magnetic characterization revealed that the SWCNT/Ni hybrid bundle possesses a high (50 Oe) coercivity compared to bulk Ni and a long range ferromagnetic ordering at room temperature. MTT-assay has been conducted to study the cytotoxicity of these hybrid nanostructures.

  6. Photoluminescence quantum yield of PbS nanocrystals in colloidal suspensions

    SciTech Connect

    Greben, M.; Fucikova, A.; Valenta, J.

    2015-04-14

    The absolute photoluminescence (PL) quantum yield (QY) of oleic acid-capped colloidal PbS quantum dots (QDs) in toluene is thoroughly investigated as function of QD size, concentration, excitation photon energy, and conditions of storage. We observed anomalous decrease of QY with decreasing concentration for highly diluted suspensions. The ligand desorption and QD-oxidation are demonstrated to be responsible for this phenomenon. Excess of oleic acid in suspensions makes the QY values concentration-independent over the entire reabsorption-free range. The PL emission is shown to be dominated by surface-related recombinations with some contribution from QD-core transitions. We demonstrate that QD colloidal suspension stability improves with increasing the concentration and size of PbS QDs.

  7. Enhanced photoluminescence of Si nanocrystals-doped cellulose nanofibers by plasmonic light scattering

    NASA Astrophysics Data System (ADS)

    Sugimoto, Hiroshi; Zhang, Ran; Reinhard, Björn M.; Fujii, Minoru; Perotto, Giovanni; Marelli, Benedetto; Omenetto, Fiorenzo G.; Dal Negro, Luca

    2015-07-01

    We report the development of bio-compatible cellulose nanofibers doped with light emitting silicon nanocrystals and Au nanoparticles via facile electrospinning. By performing photoluminescence (PL) spectroscopy as a function of excitation wavelength, we demonstrate plasmon-enhanced PL by a factor of 2.2 with negligible non-radiative quenching due to plasmon-enhanced scattering of excitation light from Au nanoparticles to silicon nanocrystals inside the nanofibers. These findings provide an alternative approach for the development of plasmon-enhanced active systems integrated within the compact nanofiber geometry. Furthermore, bio-compatible light-emitting nanofibers prepared by a cost-effective solution-based processing are very promising platforms for biophotonic applications such as fluorescence sensing and imaging.

  8. Effect of Zn doping on the photoluminescence properties of LiNbO3 single crystals

    NASA Astrophysics Data System (ADS)

    Murillo, J. G.; Herrera, G.; Vega-Rios, A.; Flores-Gallardo, S.; Duarte-Moller, A.; Castillo-Torres, J.

    2016-12-01

    An extraordinary violet luminescence at 418 nm together with the intrinsic blue band at 440 nm with excitation in the UV region (380 nm) was observed in a series of LiNbO3 single crystals doped with Zn. Structural and photoluminescence properties were studied by Raman, UV reflectance, and fluorospectrometry, respectively. The emission peaks in PL spectra varied in amplitude according to the level of concentration of Zn in LiNbO3 crystals. It was found, from Raman spectroscopy studies, a connection between the appearance of the new emission band centered at 418 nm and a diminishing in the Li concentration in crystals, which suggest the displacement of the Li ions from their regular sites by the Zn ions. The maximum peak intensity of each one of the three PL emission components found from a deconvolution process shows a linear dependence on the Zn concentration present in the crystals studied.

  9. Diameter Control and Photoluminescence of ZnO Nanorods from Trialkylamines

    DOE PAGES

    Andelman, Tamar; Gong, Yinyan; Neumark, Gertrude; ...

    2007-01-01

    A novel solution method to control the diameter of ZnO nanorods is reported. Small diameter (2-3 nm) nanorods were synthesized from trihexylamine, and large diameter (50–80 nm) nanorods were synthesized by increasing the alkyl chain length to tridodecylamine. The defect (green) emission of the photoluminescence (PL) spectra of the nanorods varies with diameter, and can thus be controlled by the diameter control. The small ZnO nanorods have strong green emission, while the large diameter nanorods exhibit a remarkably suppressed green band. We show that this observation supports surface oxygen vacancies as the defect that gives rise to the green emission.

  10. DNA detection using plasmonic enhanced near-infrared photoluminescence of gallium arsenide.

    PubMed

    Tang, Longhua; Chun, Ik Su; Wang, Zidong; Li, Jinghong; Li, Xiuling; Lu, Yi

    2013-10-15

    Efficient near-infrared detection of specific DNA with single nucleotide polymorphism selectivity is important for diagnostics and biomedical research. Herein, we report the use of gallium arsenide (GaAs) as a sensing platform for probing DNA immobilization and targeting DNA hybridization, resulting in ∼8-fold enhanced GaAs photoluminescence (PL) at ∼875 nm. The new signal amplification strategy, further coupled with the plasmonic effect of Au nanoparticles, is capable of detecting DNA molecules with a detection limit of 0.8 pM and selectivity against single base mismatches. Such an ultrasensitive near-infrared sensor can find a wide range of biochemical and biomedical applications.

  11. Defect States in Copper Indium Gallium Selenide Solar Cells from Two-Wavelength Excitation Photoluminescence Spectroscopy

    SciTech Connect

    Jensen, Soren A.; Dippo, Patricia; Mansfield, Lorelle M.; Glynn, Stephen; Kuciauskas, Darius

    2016-11-21

    We use two-wavelength excitation photoluminescence spectroscopy to probe defect states in CIGS thin films. Above-Eg excitation is combined with a tunable IR bias light that modulates the population of the defect states. We find that IR illumination in the range of 1400-2000 nm (0.62-0.89 eV) causes a reduction of the PL intensity, the magnitude of which scales linearly with IR power. Further, KF post deposition treatment has only a modest influence on the effect of the IR excitation. Initial data suggest that we have developed an optical characterization tool for band-gap defect states.

  12. Water soluble reduced graphene oxide as an efficient photoluminescence quencher for semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Tang, Haiping; Sun, Luwei; He, Haiping

    2017-02-01

    Chemically derived water soluble reduced graphene oxide (rGO) is synthesized via a two-step reduction approach assisted with sulfonation. X-ray photoelectron spectroscopy confirms the removal of oxygen-related groups from GO. The obtained rGO can effectively quench the photoluminescence (PL) of CdTe quantum dots. Concentration- and volume-dependent quenching behaviors are investigated to reveal the quenching mechanism. The Stern-Volmer plot shows exponential dependence on the rGO concentration, indicating that "sphere of action" model works when the extent of quenching is large.

  13. Photoluminescence of Conjugated Star Polymers

    NASA Astrophysics Data System (ADS)

    Ferguson, J. B.; Prigodin, N. V.; Epstein, A. J.; Wang, F.

    2000-10-01

    Higher dimensionality "star" polymers provide new properties beyond those found in their linear analogs. They have been used to improving electronic properties for nonlinear optics through exciton transfer and molecular antenna structures for example (M. Kawa, J. M. J. Frechet, Chem. Mater. 10, 286 (1998).). We report on photoluminescence properties of star polymers with a hyperbranched core (both hyperbranched phenlyene and hyperbranched triphenylamine) and polyhexylthiophene arms. The arm is a conjugated oligomer of polythiophene that has been investigated extensively for metallic like conductivity when doped as well as utilized in field effect transistors in its undoped form (A. Tsumara, H. Koezuka, T. Ando, Appl. Phys. Lett. 49, 1210 (1986).). The cores are respectively, a nonconjugated polymer in the case of hyperbranched phenlyene and a conjugated polymer in the case of hyperbranched triphenylamine. The photoluminesce spectrum (λ_max at 575 nm) is identical for both star polymers with the two electronically different hyperbranched cores and for linear polythiophene alone. We conclude the wave functions of the core and arms do not strongly interact to form states different from their individual states and excitons formed on the hyperbranched cores migrate to the lower bandgap polythiophene before recombining.

  14. Preparation of DNA and nucleoprotein samples for AFM imaging

    PubMed Central

    Lyubchenko, Yuri L.

    2010-01-01

    Sample preparation techniques allowing reliable and reproducible imaging of DNA with various structures, topologies and complexes with proteins are reviewed. The major emphasis is given to methods utilizing chemical functionalization of mica, enabling preparation of the surfaces with required characteristics. The methods are illustrated by examples of imaging of different DNA structures. Special attention is given to the possibility of AFM to image the dynamics of DNA at the nanoscale. The capabilities of time-lapse AFM in aqueous solutions are illustrated by imaging of dynamic processes as transitions of local alternative structures (transition of DNA between H and B forms). The application of AFM to studies of protein-DNA complexes is illustrated by a few examples of imaging site-specific complexes, as well as such systems as chromatin. The time-lapse AFM studies of protein-DNA complexes including very recent advances with the use of high-speed AFM are reviewed. PMID:20864349

  15. Oxygen and relative humidity monitoring with films tailored for enhanced photoluminescence

    SciTech Connect

    Cui, Weipan; Liu, Rui; Manna, Eeshita; Park, Joong -Mok; Fungura, Fadzai; Shinar, Joseph; Shinar, Ruth

    2014-10-31

    In this study, approaches to generate porous or doped sensing films, which significantly enhance the photoluminescence (PL) of oxygen optical sensors, and thus improve the signal-to-noise (S/N) ratio, are presented. Tailored films, which enable monitoring the relative humidity (RH) as well, are also presented. Effective porous structures, in which the O2-sensitive dye Pt octaethylporphyrin (PtOEP) or the Pd analog PdOEP was embedded, were realized by first generating blend films of polyethylene glycol (PEG) with polystyrene (PS) or with ethyl cellulose (EC), and then immersing the dried films in water to remove the water-soluble PEG. This approach creates pores (voids) in the sensing films. The dielectric contrast between the films’ constituents and the voids increases photon scattering, which in turn increases the optical path of the excitation light within the film, and hence light absorption by the dye, and its PL. Optimized sensing films with a PEG:PS ratio of 1:4 (PEG’s molecular weight Mw ~8000) led to ~4.4× enhancement in the PL (in comparison to PS films). Lower Mw ~200 PEG with a PEG:EC ratio of 1:1 led to a PL enhancement of ~4.7×. Film-dependent PL enhancements were observed at all oxygen concentrations. The strong PL enhancement enables (i) using lower dye (luminophore) concentrations, (ii) reducing power consumption and enhancing the sensor’s operational lifetime when using organic light emitting diodes (OLEDs) as excitation sources, (iii) improving performance when using compact photodetectors with no internal gain, and (iv) reliably extending the dynamic range.

  16. Oxygen and relative humidity monitoring with films tailored for enhanced photoluminescence

    DOE PAGES

    Cui, Weipan; Liu, Rui; Manna, Eeshita; ...

    2014-10-31

    In this study, approaches to generate porous or doped sensing films, which significantly enhance the photoluminescence (PL) of oxygen optical sensors, and thus improve the signal-to-noise (S/N) ratio, are presented. Tailored films, which enable monitoring the relative humidity (RH) as well, are also presented. Effective porous structures, in which the O2-sensitive dye Pt octaethylporphyrin (PtOEP) or the Pd analog PdOEP was embedded, were realized by first generating blend films of polyethylene glycol (PEG) with polystyrene (PS) or with ethyl cellulose (EC), and then immersing the dried films in water to remove the water-soluble PEG. This approach creates pores (voids) inmore » the sensing films. The dielectric contrast between the films’ constituents and the voids increases photon scattering, which in turn increases the optical path of the excitation light within the film, and hence light absorption by the dye, and its PL. Optimized sensing films with a PEG:PS ratio of 1:4 (PEG’s molecular weight Mw ~8000) led to ~4.4× enhancement in the PL (in comparison to PS films). Lower Mw ~200 PEG with a PEG:EC ratio of 1:1 led to a PL enhancement of ~4.7×. Film-dependent PL enhancements were observed at all oxygen concentrations. The strong PL enhancement enables (i) using lower dye (luminophore) concentrations, (ii) reducing power consumption and enhancing the sensor’s operational lifetime when using organic light emitting diodes (OLEDs) as excitation sources, (iii) improving performance when using compact photodetectors with no internal gain, and (iv) reliably extending the dynamic range.« less

  17. Luminescent photoelectrochemical cells. 6. Spatial aspects of the photoluminescence and electroluminescence of cadmium selenide electrodes

    SciTech Connect

    Streckert, H.H.; Tong, J.; Ellis, A.B.

    1982-01-27

    Samples of single-crystal, n-type CdSe emit when excited with ultraband gap excitation. The emission band (lambda/sub max/ approx. = 720 nm) is near the band gap of CdSe (approx. 1.7 eV); its energy, decay time, and temperature dependence are consistent with its description as edge emission. Photoluminescence (PL) spectra can be dependent on excitation wavelength and show evidence of self-absorption effects: PL spectra obtained with 457.9-nm excitation are broadened in the high-energy portion of the band relative to spectra obtained with more deeply penetrating 632.9-nm excitation. Measured PL efficiencies, theta/sub r/, are approx.10/sup -4/ in air at 295 K. When CdSe is used as the photoanode of photoelectrochemical cells employing aqueous polychalcogenide electrolytes, emission is quenched by the passage of photocurrent resulting from ultraband gap excitation. Electroluminescence (EL) can be observed from CdSe when the semiconductor is used as a dark cathode in aqueous, alkaline peroxydisulfate electrolyte. The EL spectrum is similar to the PL spectrum, suggesting the involvement of a common emissive excited state. Differences in the breadths of the spectra, however, indicate that, on average, EL is produced nearer to the semiconductor-electrolyte interface than PL under comparable experimental conditions. Measured EL efficiencies, theta/sub EL/, approaching 10/sup -3/ at -1.50 V vs SCE are comparable to PL efficiencies measured at this potential in hydroxide solution and provide evidence that the emissive excited state can be efficiently populated in an EL experiment; these lower-limit estimates of theta/sub EL/ and theta/sub r/ decline in passing to potentials near the onset of EL, approx.-0.9 V vs SCE. Spatial features of these comparisons are discussed.

  18. Temperature- and field-dependent energy transfer in CdSe nanocrystal aggregates studied by magneto-photoluminescence spectroscopy.

    PubMed

    Blumling, Daniel E; Tokumoto, Takahisa; McGill, Stephen; Knappenberger, Kenneth L

    2012-08-21

    The influence of temperature and applied magnetic fields on photoluminescence (PL) emission and electronic energy transfer (ET) of both isolated and aggregated CdSe nanocrystals was investigated. Following 400-nm excitation, temperature-dependent, intensity-integrated and energy-resolved PL measurements were used to quantify the emission wavelength and amplitude of isolated CdSe nanocrystals. The results indicated an approximately three-fold increase in PL intensity upon decreasing the temperature from 300 K to 6 K; this was attributed to a reduction of charge carrier access to nanocrystal surface trap states and suppression of thermal loss channels. Temperature-dependent PL measurements of aggregated CdSe nanocrystals, which included both energy-donating and -accepting particles, were analyzed using a modified version of Förster theory. Temperature-dependent ET efficiency increased from 0.55 to 0.75 upon decreasing the sample temperature from 225 K to 6 K, and the ET data contained the same trend observed for the PL of isolated nanoclusters. The application of magnetic fields to increase nanocrystal ET efficiency was studied using magneto-photoluminescence measurements recorded at a sample temperature of 1.6 K. We demonstrated that the exciton fine structure population of the donor was varied using applied magnetic fields, which in turn dictated the PL yield and the resultant ET efficiency of the CdSe nanocrystal aggregate system. The experimental data indicated an ET efficiency enhancement of approximately 7%, which was limited by the random orientation of the spherical nanocrystals in the thin film.

  19. Influence of inhomogeneous porosity on silicon nanowire Raman enhancement and leaky mode modulated photoluminescence.

    PubMed

    Ratchford, Daniel; Yeom, Junghoon; Long, James P; Pehrsson, Pehr E

    2015-03-07

    Metal-assisted chemical etching (MACE) offers an inexpensive, massively parallel fabrication process for producing silicon nanowires (SiNWs). These nanowires can possess a degree of porosity depending on etch conditions. Because the porosity is often spatially inhomogeneous, there is a need to better understand its nature if applications exploiting the porosity are to be pursued. Here, the resolution afforded by micro-Raman and micro-photoluminescence (PL) is used to elucidate the effects of porosity heterogeneity on the optical properties of individual SiNWs produced in large arrays with MACE, while also determining the spatial character of the heterogeneity. For highly porous SiNWs, there is a dramatic reduction in Raman signal and an increase in PL near the SiNW tips. PL spectra collected along the SiNW length exhibit peaks due to leaky mode resonances. Analysis of the PL resonance peaks, Raman spectrum line shape, SEM images, and EDS spectra indicate that the SiNWs possess both radial and axial heterogeneity wherein, from base to SiNW tip, the SiNWs comprise a shell of increasingly thick porous Si surrounding a tapering core of bulk Si. This work describes how structural porosity variation shapes SiNW optical properties, which will influence the design of new SiNW-based photonic devices and chemical/biological sensors.

  20. Temperature-Dependent Photoluminescence of g-C3N4: Implication for Temperature Sensing.

    PubMed

    Das, Debanjan; Shinde, S L; Nanda, K K

    2016-01-27

    We report the temperature-dependent photoluminescence (PL) properties of polymeric graphite-like carbon nitride (g-C3N4) and a methodology for the determination of quantum efficiency along with the activation energy. The PL is shown to originate from three different pathways of transitions: σ*-LP, π*-LP, and π*-π, respectively. The overall activation energy is found to be ∼73.58 meV which is much lower than the exciton binding energy reported theoretically but ideal for highly sensitive wide-range temperature sensing. The quantum yield derived from the PL data is 23.3%, whereas the absolute quantum yield is 5.3%. We propose that the temperature-dependent PL can be exploited for the evaluation of the temperature dependency of quantum yield as well as for temperature sensing. Our analysis further indicates that g-C3N4 is well-suited for wide-range temperature sensing.

  1. Hydrogen plasma induced modification of photoluminescence from a-SiNx:H thin films

    NASA Astrophysics Data System (ADS)

    Bommali, R. K.; Ghosh, S.; Vijaya Prakash, G.; Gao, K.; Zhou, S.; Khan, S. A.; Srivastava, P.

    2014-02-01

    Low temperature (250-350 °C) hydrogen plasma annealing (HPA) treatments have been performed on amorphous hydrogenated silicon nitride (a-SiNx:H) thin films having a range of compositions and subsequent modification of photoluminescence (PL) is investigated. The PL spectral shape and peak positions for the as deposited films could be tuned with composition and excitation energies. HPA induced modification of PL of these films is found to depend on the N/Si ratio (x). Upon HPA, the PL spectra show an emergence of a red emission band for x ≤ 1, whereas an overall increase of intensity without change in the spectral shape is observed for x > 1. The emission observed in the Si rich films is attributed to nanoscale a-Si:H inclusions. The enhancement is maximum for off-stoichiometric films (x ˜ 1) and decreases as the compositions of a-Si (x = 0) and a-Si3N4 (x = 1.33) are approached, implying high density of non-radiative defects around x = 1. The diffusion of hydrogen in these films is also analyzed by Elastic Recoil Detection Analysis technique.

  2. Photocorrosion metrology of photoluminescence emitting GaAs/AlGaAs heterostructures

    NASA Astrophysics Data System (ADS)

    Aithal, Srivatsa; Liu, Neng; Dubowski, Jan J.

    2017-01-01

    High sensitivity of the photoluminescence (PL) effect to surface states and chemical reactions on surfaces of PL emitting semiconductors has been attractive in monitoring photo-induced microstructuring of such materials. To address the etching at nano-scale removal rates, we have investigated mechanisms of photocorrosion of GaAs/Al0.35Ga0.65As heterostructures immersed either in deionized water or aqueous solution of NH4OH and excited with above-bandgap radiation. The difference in photocorrosion rates of GaAs and Al0.35Ga0.65As appeared weakly dependent on the bandgap energy of these materials, and the intensity of an integrated PL signal from GaAs quantum wells or a buried GaAs epitaxial layer was found dominated by the surface states and chemical reactivity of heterostructure surfaces revealed during the photocorrosion process. Under optimized photocorrosion conditions, the method allowed resolving a 1 nm thick GaAs sandwiched between Al0.35Ga0.65As layers. We demonstrate that this approach can be used as an inexpensive, and simple room temperature tool for post-growth diagnostics of interface locations in PL emitting quantum wells and other nano-heterostructures.

  3. Visible photoluminescence of porous Si(1-x)Ge(x) obtained by stain etching

    NASA Technical Reports Server (NTRS)

    Ksendzov, A.; Fathauer, R. W.; George, T.; Pike, W. T.; Vasquez, R. P.; Taylor, A. P.

    1993-01-01

    We have investigated visible photoluminescence (PL) from thin porous Si(1-x)Ge(x) alloy layers prepared by stain etching of molecular-beam-epitaxy-grown material. Seven samples with nominal Ge fraction x varying from 0.04 to 0.41 were studied at room temperature and 80 K. Samples of bulk stain etched Si and Ge were also investigated. The composition of the porous material was determined using X-ray photoemission spectroscopy and Rutherford backscattering techniques to be considerably more Ge-rich than the starting epitaxial layers. While the luminescence intensity drops significantly with the increasing Ge fraction, we observe no significant variation in the PL wavelength at room temperature. This is clearly in contradiction to the popular model based on quantum confinement in crystalline silicon which predicts that the PL energy should follow the bandgap variation of the starting material. However, our data are consistent with small active units containing only a few Si atoms that are responsible for the light emission. Such units are present in many compounds proposed in the literature as the cause of the visible PL in porous Si.

  4. Full-color tunable photoluminescent ionic liquid crystals based on tripodal pyridinium, pyrimidinium, and quinolinium salts.

    PubMed

    Tanabe, Kana; Suzui, Yuko; Hasegawa, Miki; Kato, Takashi

    2012-03-28

    Color-tunable luminescent ionic liquid crystals have been designed as a new series of luminescent materials. To achieve tuning of emission colors, intramolecular charge transfer (ICT) character has been incorporated into tripodal molecules. A series of the compounds has three chromophores in each molecule, incorporated with both electron-donating moieties such as alkylaminobenzene and alkoxybenzene, and electron-accepting moieties such as pyridinium, pyrimidinium, and quinolinium parts. These C(3)-symmetrical molecules self-assemble into liquid-crystalline (LC) columnar (Col) structures over wide temperature ranges through nanosegregation between ionic moieties and nonionic aliphatic chains. Photoluminescent (PL) emissions of these tripodal molecules are observed in the visible region both in the self-assembled condensed states and in solutions. For example, a pyrimidinium salt with didodecylaminobenzene moieties exhibits yellowish orange emission (λ(em) = 586 nm in a thin film). Multicolor PL emissions are successfully achieved by simple tuning of changing electron-donating and electron-accepting moieties of the compounds, covering the visible region from blue-green to red. It has been revealed that ICT processes in the excited states and weak intermolecular interactions play important roles in the determination of the PL properties of the materials, by measurements of UV-vis absorption and emission spectra, fluorescence lifetimes, and PL quantum yields.

  5. Photoluminescence of polydiacetylene membranes on porous silicon utilized for chemical sensors

    NASA Astrophysics Data System (ADS)

    Sabatani, Eyal; Kalisky, Yehoshua; Berman, Amir; Golan, Yuval; Gutman, Nadav; Urbach, Benayahu; Sa'ar, Amir

    2008-07-01

    Langmuir-Blodgett (LB) films of the conjugated polydiacetylene (PDA) exhibit spectroscopic behavior, which is dependent on the type of the supporting substrate. While on polished silicon surfaces the photoluminescence (PL) of PDA is quenched, it is preserved on top of 2D patterned macro-porous silicon (2D-MPS). 2D-MPS, prepared by electrochemical etching of photo-lithographically pre-patterned silicon, is a 2D array of ca. 10 μm deep pores with lateral 2-4 μm repeating unit cells in orthogonal or hexagonal arrangements. LB films of PDA on such surfaces form membranes with continuous domains of the size sufficient to cover laterally many cell units. Apparently, the PL from this film results exclusively from the portion of the PDA membrane which is suspended over pore openings, while portions of the film which are attached to the silicon on top of the pores walls does not exhibit PL at all. We have used these membranes in different configurations and exposed them to different chemical and biological agents and followed the PL intensity change. This report demonstrates the effectiveness of the combined system: LB films of PDA on top of 2D-MPS as sensing probe for a variety of chemicals including, Cd ions and TNT explosives. In addition, the use of films of PDA, in which glycol-lipid were embedded, for binding and recognition of lectin protein, mimicking the cell membrane interaction with its environment, is also demonstrated.

  6. Metal-particle-induced enhancement of the photoluminescence from biomolecule-functionalized carbon nanotubes

    PubMed Central

    2014-01-01

    The effect of metal particles on the photoluminescence (PL) and the Raman spectra of functionalized SWCNTs in aqueous solutions was systematically investigated by studying three different metal particles (gold, cobalt, and nickel) on three different SWCNT suspensions (DNA-, RNA-, and sodium deoxycholate salt (DOC)-functionalized SWCNTs). Substantial enhancement of the PL intensities was observed, while the Raman spectra remained unchanged, after gold, cobalt, or nickel particles were introduced into RNA-SWCNT aqueous suspensions. Almost the same results were obtained after the same metal particles were added to DNA-SWCNT aqueous suspensions. However, both the PL and the Raman spectra did not exhibit any change at all after the same metal particles were introduced into DOC-SWCNT aqueous suspensions. The unusual PL enhancements observed in this work cannot be accounted for by the three well-known mechanisms in the literature: surface-enhanced Raman scattering effect, Förster resonance energy transfer in a rebundling of isolated SWCNTs, and pH changes of the aqueous solutions. PMID:24548588

  7. Temperature-dependent photoluminescence studies of GdTiO3 thin films

    NASA Astrophysics Data System (ADS)

    Verma, Amit; Raghavan, Santosh; Protasenko, Vladimir; Stemmer, Susanne; Jena, Debdeep

    2013-03-01

    GdTiO3 (GTO), a Mott-insulator, has acquired increased prominence in last few years since the discovery of a 2-dimensional electron gas (2DEG) at its heterojunction with the band-insulator SrTiO3. These 2DEGs have very large electron densities (~3x1014 cm-2) amounting to half electron per unit cell. To realize many possible applications of this large 2DEG, an understanding of the GTO bandstructure is needed. With this goal in mind, in this work we present photoluminescence (PL) studies of GTO thin films (10nm and 20nm) grown by molecular beam epitaxy (MBE) on (001) LSAT substrates. When pumped with a 325 nm He-Cd laser, we observe a red PL (~683 nm at 300K) from both GTO thin films at RT. Upon lowering the temperature from 300K to 80K, the PL peak blue shifts by ~0.14eV. Interestingly, the reported activation energy of the resistivity of MBE-grown GTO thin films is also ~0.14eV (Moetakef et al., J. Crystal Growth 355, 166 (2012)). We connect the observed temperature-dependent PL data with the expected electronic bandstructure and electrical resistivity, and explain the sharp transition in the peak that occurs between 120K-200K from ~636nm to ~683nm. Office of Naval Research through grant number (N00014-12-1-0976).

  8. Plasmon-gating photoluminescence in graphene/GeSi quantum dots hybrid structures

    PubMed Central

    Chen, Yulu; Wu, Qiong; Ma, Yingjie; Liu, Tao; Fan, Yongliang; Yang, Xinju; Zhong, Zhenyang; Xu, Fei; Lu, Jianping; Jiang, Zuimin

    2015-01-01

    The ability to control light-matter interaction is central to several potential applications in lasing, sensing, and communication. Graphene plasmons provide a way of strongly enhancing the interaction and realizing ultrathin optoelectronic devices. Here, we find that photoluminescence (PL) intensities of the graphene/GeSi quantum dots hybrid structures are saturated and quenched under positive and negative voltages at the excitation of 325 nm, respectively. A mechanism called plasmon-gating effect is proposed to reveal the PL dependence of the hybrid structures on the external electric field. On the contrary, the PL intensities at the excitation of 405 and 795 nm of the hybrid structures are quenched due to the charge transfer by tuning the Fermi level of graphene or the blocking of the excitons recombination by excitons separation effect. The results also provide an evidence for the charge transfer mechanism. The plasmon gating effect on the PL provides a new way to control the optical properties of graphene/QD hybrid structures. PMID:26631498

  9. Photoluminescence and the exciton-phonon coupling in hydrothermally grown ZnO

    NASA Astrophysics Data System (ADS)

    Mendelsberg, R. J.; Allen, M. W.; Durbin, S. M.; Reeves, R. J.

    2011-05-01

    Near band-edge photoluminescence (PL) from hydrothermally grown bulk ZnO was studied as a function of temperature along with the effects of simultaneous excitation with below-gap photons, allowing for accurate assignment of the emission features not possible from low-temperature data alone. Free exciton emission was clearly observed at low temperatures and dominated the PL spectrum above 100 K. Emission from A excitons bound to three neutral donors dominated the low-temperature PL spectrum. Recombination of B excitons bound to these same neutral donors were also identified along with A excitons bound to the donors in their ionized state. A clear difference in the redshift of free and bound excitons with increasing temperature was observed and attributed to reduced exciton-phonon coupling for the bound excitons. Additionally, Fano resonance of the 1-LO replica of the dominant bound A exciton was observed to reduce its PL intensity which can lead to the misidentification of the 2-LO replica as a donor-acceptor-pair transition.

  10. Photoluminescence and photocatalytic activities of Ag/ZnO metal-semiconductor heterostructure

    NASA Astrophysics Data System (ADS)

    Sarma, Bikash; Deb, Sujit Kumar; Sarma, Bimal K.

    2016-10-01

    Present article focuses on the photocatalytic activities of ZnO nanorods and Ag/ZnO heterostructure deposited on polyethylene terephthalate (PET) substrate. ZnO nanorods are synthesized by thermal decomposition technique and Ag nanoparticles deposition is done by photo-deposition technique using UV light. X-ray diffraction studies reveal that the ZnO nanorods are of hexagonal wurtzite structure. Further, as-prepared samples are characterized by Scanning Electron Microscopy (SEM), Photoluminescence (PL) spectroscopy and UV-Vis spectroscopy. The surface plasmon resonance response of Ag/ZnO is found at 420 nm. The photocatalytic activities of the samples are evaluated by photocatalytic decolorization of methyl orange (MO) dye with UV irradiation. The degradation rate of MO increases with increase in irradiation time. The degradation of MO follows the first order kinetics. The photocatalytic activity of Ag/ZnO heterostructure is found to be more than that of ZnO nanorods. The PL intensity of ZnO nanorods is stronger than that of the Ag/ZnO heterostructure. The strong PL intensity indicates high recombination rate of photoinduced charge carriers which lowers the photocatalytic activity of ZnO nanorods. The charge carrier recombination is effectively suppressed by introducing Ag nanoparticles on the surface of the ZnO nanorods. This study demonstrates a strong relationship between PL intensity and photocatalytic activity.

  11. Structural and photoluminescence properties of terbium-doped zinc oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Ningthoujam Surajkumar, Singh; Shougaijam Dorendrajit, Singh; Sanoujam Dhiren, Meetei

    2014-05-01

    We present in this paper a study of the structural and photoluminescence (PL) properties of terbium (Tb) doped zinc oxide (ZnO) nanoparticles synthesized by a simple low temperature chemical precipitation method, using zinc acetate and terbium nitrate in an isopropanol medium with diethanolamine (DEA) as the capping agent at 60 °C. The as-prepared samples were heat treated and the PL of the annealed samples were studied. The prepared nanoparticles were characterized with X-ray diffraction (XRD). The XRD patterns show the pattern of typical ZnO nanoparticles and correspond with the standard XRD pattern given by JCPDS card No. 36-1451, showing the hexagonal phase structure. The PL intensity was enhanced due to Tb3+ doping, and it decreased at higher concentrations of Tb3+ doping after reaching a certain optimum concentration. The PL spectra of Tb3+ doped samples exhibited blue, bluish green, and green emissions at 460 nm (5D3 - 7F3), 484 nm (5D4 - 7F6), and 530 nm (5D4 - 7F5), respectively, which were more intense than the emissions for the undoped ZnO sample. Based on the results, an energy level schematic diagram was proposed to explain the possible electron transition processes.

  12. Temperature- and excitation intensity-dependent photoluminescence in TlInSeS single crystals

    NASA Astrophysics Data System (ADS)

    Gasanly, N. M.; Aydinli, A.; Yuksek, N. S.

    2002-12-01

    Photoluminescence (PL) spectra of TlInSeS layered single crystals were investigated in the wavelength region 460-800 nm and in the temperature range 10-65 K. We observed one wide PL band centred at 584 nm (2.122 eV) at T = 10 K and an excitation intensity of 7.5 W cm-2. We have also studied the variation of the PL intensity versus excitation laser intensity in the range from 0.023 to 7.5 W cm-2. The red shift of this band with increasing temperature and blue shift with increasing laser excitation intensity was observed. The PL was found to be due to radiative transitions from the moderately deep donor level located at 0.243 eV below the bottom of the conduction band to the shallow acceptor level at 0.023 eV located above the top of the valence band. The proposed energy-level diagram permits us to interpret the recombination processes in TlInSeS layered single crystals.

  13. Photoluminescence shift in frustules of two pennate diatoms and nanostructural changes to their pores.

    PubMed

    Arteaga-Larios, Nubia V; Nahmad, Yuri; Navarro-Contreras, Hugo R; Encinas, Armando; Viridiana García-Meza, J

    2014-12-01

    The diatom silicified cell wall (frustule) contains pore arrays at the micro- to nanometer scale that display efficient luminescence within the visible spectrum. Morphometric analysis of the size and arrangement of pores was conducted to observe whether any correlation exists with the photoluminescence (PL) of two diatom species of different ages. UV-excited PL displays four clearly defined peaks within the blue-region spectrum, on top of the broad PL characteristic of synthetic porous silicon dioxide, recorded for reference and where discrete lines are absent. A set of shifted emission lines was observed when diatom cultures reached adulthood. These discrete line shifts correlate with structural changes observed in adult frustules: reduction in pore diameter; appearance of pores within pores, 10 nm in size; an increase in the gap distance between stria; and the deposition of several girdle bands with a concomitant increase in the diatom waist length, as well as the appearance of pores on such bands. Destruction of the pores results in the disappearance of all discrete emission lines. The PL shifts are correlated with a substantial increment of Si-OH groups adsorbed on the frustule surface, as revealed by Fourier transform infrared spectroscopy.

  14. Change point analysis of matrix dependent photoluminescence intermittency of single CdSe/ZnS quantum dots with intermediate intensity levels

    NASA Astrophysics Data System (ADS)

    Schmidt, Robert; Krasselt, Cornelius; von Borczyskowski, Christian

    2012-10-01

    Blinking dynamics of single CdSe/ZnS quantum dots are analyzed by change point analysis, which gives access to intermediate photoluminescence (PL) intensities observed during PL intermittency. The on-times show systematic deviations from a (truncated) power law. This deviation is manifested in variations of the PL intensity distribution and is related with well defined PL intensity jumps. Varying the matrix from polystyrene (PS) to polyvinyl alcohol (PVA) changes the on-time blinking dynamics and reveals coupling of the QDs either to OH-groups of the SiOx interface or to OH-groups of PVA. Analysis of dwell times in respective intensity correlated traps reveals that OH-related traps are strongly stabilized with much longer dwell times as compared to otherwise broadly distributed trap states.

  15. Hybrid type-I InAs/GaAs and type-II GaSb/GaAs quantum dot structure with enhanced photoluminescence

    SciTech Connect

    Ji, Hai-Ming; Liang, Baolai Simmonds, Paul J.; Juang, Bor-Chau; Yang, Tao; Young, Robert J.; Huffaker, Diana L.

    2015-03-09

    We investigate the photoluminescence (PL) properties of a hybrid type-I InAs/GaAs and type-II GaSb/GaAs quantum dot (QD) structure grown in a GaAs matrix by molecular beam epitaxy. This hybrid QD structure exhibits more intense PL with a broader spectral range, compared with control samples that contain only InAs or GaSb QDs. This enhanced PL performance is attributed to additional electron and hole injection from the type-I InAs QDs into the adjacent type-II GaSb QDs. We confirm this mechanism using time-resolved and power-dependent PL. These hybrid QD structures show potential for high efficiency QD solar cell applications.

  16. Hybrid type-I InAs/GaAs and type-II GaSb/GaAs quantum dot structure with enhanced photoluminescence

    NASA Astrophysics Data System (ADS)

    Ji, Hai-Ming; Liang, Baolai; Simmonds, Paul J.; Juang, Bor-Chau; Yang, Tao; Young, Robert J.; Huffaker, Diana L.

    2015-03-01

    We investigate the photoluminescence (PL) properties of a hybrid type-I InAs/GaAs and type-II GaSb/GaAs quantum dot (QD) structure grown in a GaAs matrix by molecular beam epitaxy. This hybrid QD structure exhibits more intense PL with a broader spectral range, compared with control samples that contain only InAs or GaSb QDs. This enhanced PL performance is attributed to additional electron and hole injection from the type-I InAs QDs into the adjacent type-II GaSb QDs. We confirm this mechanism using time-resolved and power-dependent PL. These hybrid QD structures show potential for high efficiency QD solar cell applications.

  17. Carrier-density dependence of photoluminescence from localized states in InGaN/GaN quantum wells in nanocolumns and a thin film

    SciTech Connect

    Shimosako, N. Inose, Y.; Satoh, H.; Kinjo, K.; Nakaoka, T.; Oto, T.; Kishino, K.; Ema, K.

    2015-11-07

    We have measured and analyzed the carrier-density dependence of photoluminescence (PL) spectra and the PL efficiency of InGaN/GaN multiple quantum wells in nanocolumns and in a thin film over a wide excitation range. The localized states parameters, such as the tailing parameter, density and size of the localized states, and the mobility edge density are estimated. The spectral change and reduction of PL efficiency are explained by filling of the localized states and population into the extended states around the mobility edge density. We have also found that the nanocolumns have a narrower distribution of the localized states and a higher PL efficiency than those of the film sample although the In composition of the nanocolumns is higher than that of the film.

  18. Magneto-Optical Study of Defect Induced Sharp Photoluminescence in LaAlO3 and SrTiO3

    PubMed Central

    Sarkar, Soumya; Saha, Surajit; Motapothula, M. R.; Patra, Abhijeet; Cao, Bing-Chen; Prakash, Saurav; Cong, Chun Xiao; Mathew, Sinu; Ghosh, Siddhartha; Yu, Ting; Venkatesan, T.

    2016-01-01

    Strongly correlated electronic systems such as Transition Metal Oxides often possess various mid-gap states originating from intrinsic defects in these materials. In this paper, we investigate an extremely sharp Photoluminescence (PL) transition originating from such defect states in two widely used perovskites, LaAlO3 and SrTiO3. A detailed study of the PL as a function of temperature and magnetic field has been conducted to understand the behavior and origin of the transition involved. The temperature dependence of the PL peak position for SrTiO3 is observed to be opposite to that in LaAlO3. Our results reveal the presence of a spin/orbital character in these transitions which is evident from the splitting of these defect energy levels under a high magnetic field. These PL transitions have the potential for enabling non-contact thermal and field sensors. PMID:27619076

  19. Development of Intrinsically Photoluminescent and Photostable Polylactones

    PubMed Central

    Xie, Zhiwei; Zhang, Yi; Liu, Li; Weng, Hong; Mason, Ralph P.; Tang, Liping; Nguyen, Kytai T.; Hsieh, Jer-Tsong

    2014-01-01

    A method of introducing intrinsically photoluminescent properties to biodegradable polymer was introduced, exemplified by the synthesis of intrinsically photoluminescent polylactones that enable non-invasively monitoring and tracking material degradation in vivo in real-time and the formation of theranostic nanoparticles for cancer imaging and drug delivery. PMID:24668888

  20. Manufacturing process of nanofluidics using afm probe

    NASA Astrophysics Data System (ADS)

    Karingula, Varun Kumar

    A new process for fabricating a nano fluidic device that can be used in medical application is developed and demonstrated. Nano channels are fabricated using a nano tip in indentation mode on AFM (Atomic Force Microscopy). The nano channels are integrated between the micro channels and act as a filter to separate biomolecules. Nano channels of 4 to7 m in length, 80nm in width, and at varying depths from 100nm to 850 nm allow the resulting device to separate selected groups of lysosomes and other viruses. Sharply developed vertical micro channels are produced from a deep reaction ion etching followed by deposition of different materials, such as gold and polymers, on the top surface, allowing the study of alternative ways of manufacturing a nanofluidic device. PDMS (Polydimethylsiloxane) bonding is performed to close the top surface of the device. An experimental setup is used to test and validate the device by pouring fluid through the channels. A detailed cost evaluation is conducted to compare the economical merits of the proposed process. It is shown that there is a 47:7% manufacturing time savings and a 60:6% manufacturing cost savings.

  1. Microrheology using a custom-made AFM

    NASA Astrophysics Data System (ADS)

    Kosgodagan Acharige, Sebastien; Benzaquen, Michael; Steinberger, Audrey

    In the past few years, a new method was developed to measure local properties of liquids (X. Xiong et al., Phys. Rev. E 80, 2009). This method consists of gluing a micron-sized glass fiber at the tip of an AFM cantilever and probing the liquid with it. In ENS Lyon, this method was perfected (C. Devailly et al., EPL, 106 5, 2014) with the help of an interferometer developped in the same laboratory (L. Bellon et al., Opt. Commun. 207 49, 2002 and P. Paolino et al., Rev. Sci. Instrum. 84, 2013), which background noise can reach 10-14 m /√{ Hz } . This method allows us to measure a wide range of viscosities (1 mPa . s to 500 mPa . s) of transparent and opaque fluids using a small sample volume ( 5 mL). In this presentation, I will briefly describe the interferometer developped in ENS Lyon, then explain precisely the microrheology measurements and then compare the experimental results to a model developped by M. Benzaquen. This work is supported financially by the ANR project NANOFLUIDYN (Grant Number ANR-13-BS10-0009).

  2. BOREAS AFM-07 SRC Surface Meteorological Data

    NASA Technical Reports Server (NTRS)

    Osborne, Heather; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Young, Kim; Wittrock, Virginia; Shewchuck, Stan; Smith, David E. (Technical Monitor)

    2000-01-01

    The Saskatchewan Research Council (SRC) collected surface meteorological and radiation data from December 1993 until December 1996. The data set comprises Suite A (meteorological and energy balance measurements) and Suite B (diffuse solar and longwave measurements) components. Suite A measurements were taken at each of ten sites, and Suite B measurements were made at five of the Suite A sites. The data cover an approximate area of 500 km (North-South) by 1000 km (East-West) (a large portion of northern Manitoba and northern Saskatchewan). The measurement network was designed to provide researchers with a sufficient record of near-surface meteorological and radiation measurements. The data are provided in tabular ASCII files, and were collected by Aircraft Flux and Meteorology (AFM)-7. The surface meteorological and radiation data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  3. Effect of high energy proton irradiation on InAs/GaAs quantum dots: Enhancement of photoluminescence efficiency (up to {approx}7 times) with minimum spectral signature shift

    SciTech Connect

    Sreekumar, R.; Mandal, A.; Gupta, S.K.; Chakrabarti, S.

    2011-11-15

    Graphical abstract: Authors demonstrate enhancement in photoluminescence efficiency (7 times) in single layer InAs/GaAs quantum dots using proton irradiation without any post-annealing treatment via either varying proton energy (a) or fluence (b). The increase in PL efficiency is explained by a proposed model before (c) and after irradiation (d). Highlights: {yields} Proton irradiation improved PL efficiency in InAs/GaAs quantum dots (QDs). {yields} Proton irradiation favoured defect and strain annihilation in InAs/GaAs QDs. {yields} Reduction in defects/non-radiative recombination improved PL efficiency. {yields} Protons could be used to improve PL efficiency without spectral shift. {yields} QD based devices will be benefited by this technique to improve device performance. -- Abstract: We demonstrate 7-fold increase of photoluminescence efficiency in GaAs/(InAs/GaAs) quantum dot hetero-structure, employing high energy proton irradiation, without any post-annealing treatment. Protons of energy 3-5 MeV with fluence in the range (1.2-7.04) x 10{sup 12} ions/cm{sup 2} were used for irradiation. X-ray diffraction analysis revealed crystalline quality of the GaAs cap layer improves on proton irradiation. Photoluminescence study conducted at low temperature and low laser excitation density proved the presence of non-radiative recombination centers in the system which gets eliminated on proton irradiation. Shift in photoluminescence emission towards higher wavelength upon irradiation substantiated the reduction in strain field existed between GaAs cap layer and InAs/GaAs quantum dots. The enhancement in PL efficiency is thus attributed to the annihilation of defects/non-radiative recombination centers present in GaAs cap layer as well as in InAs/GaAs quantum dots induced by proton irradiation.

  4. Precision Landing and Hazard Avoidance (PL&HA) Domain

    NASA Technical Reports Server (NTRS)

    Robertson, Edward A.; Carson, John M., III

    2016-01-01

    The Precision Landing and Hazard Avoidance (PL&HA) domain addresses the development, integration, testing, and spaceflight infusion of sensing, processing, and GN&C (Guidance, Navigation and Control) functions critical to the success and safety of future human and robotic exploration missions. PL&HA sensors also have applications to other mission events, such as rendezvous and docking.

  5. Ultraviolet and blue photoluminescence from sputter deposited Ge nanocrystals embedded in SiO{sub 2} matrix

    SciTech Connect

    Giri, P. K.; Bhattacharyya, S.; Kumari, Satchi; Das, Kaustuv; Ray, S. K.; Panigrahi, B. K.; Nair, K. G. M.

    2008-05-15

    Ge nanocrystals (NCs) embedded in silicon dioxide (SiO{sub 2}) matrix are grown by radio-frequency magnetron sputtering and studied in order to understand the origin of ultraviolet (UV) and blue photoluminescence (PL) from the NC-SiO{sub 2} system. Ge NCs of diameter 7-8 nm are formed after postdeposition annealing, as confirmed by transmission electron microscopy and Raman scattering studies. Optical Raman studies indicate the presence of strain in the embedded Ge NCs. Polarization dependent low frequency Raman studies reveal surface symmetrical and surface quadrupolar acoustic phonon modes of Ge NCs. PL studies with 488 nm excitation shows a broad emission band peaked at {approx}545 nm, which is attributed to oxygen deficient defects in the SiO{sub 2} matrix. PL studies with 325 nm excitation show additional strong peaks in the 377-400 nm region. Time resolved PL studies in the UV-blue range show double exponential decay dynamics in the nanosecond time scale, irrespective of the NC size. Comparative studies of PL emission from SiO{sub 2} layers with no Ge content and with Ge content show that the {approx}400 nm PL emission is originated from a defective NC/SiO{sub 2} interface and the band is not unique to the presence of Ge. PL excitation spectroscopy measurements show large Stokes shift for the UV emission bands. We propose that the intense UV peaks at {approx}377 nm is originated from the twofold coordinated silicon defect at the interface between NC and SiO{sub 2} matrix and it is not necessarily specific to the presence of Ge in the oxide matrix. It is believed that due to the influence of strain on the NCs and interface states, PL from quantum confined carriers may be partially quenched for the embedded Ge NCs.

  6. Photoluminescence probing of interface evolution with annealing in InGa(N)As/GaAs single quantum wells

    SciTech Connect

    Shao, Jun Qi, Zhen; Zhu, Liang; Chen, Xiren; Guo, Shaoling; Zhao, H.; Song, Yuxin; Zha, F.-X.; Wang, S. M.

    2015-10-28

    The effects of thermal annealing on the interfaces of InGa(N)As/GaAs single quantum wells (SQWs) are investigated by excitation-, temperature-, and magnetic field-dependent photoluminescence (PL). The annealing at 750 °C results in more significant blueshift and narrowing to the PL peak than that at 600 °C. Each of the PL spectra can be reproduced with two PL components: (i) the low-energy component (LE) keeps energetically unchanged, while the high-energy component (HE) moves up with excitation and shows at higher energy for the In{sub 0.375}Ga{sub 0.625}As/GaAs but crosses over with the LE at a medium excitation power for the In{sub 0.375}Ga{sub 0.625}N{sub 0.012}As{sub 0.988}/GaAs SQWs. The HE is broader than the corresponding LE, the annealing at 750 °C narrows the LE and HE and shrinks their energetic separation; (ii) the PL components are excitonic, and the InGaNAs shows slightly enhanced excitonic effects relative to the InGaAs SQW; (iii) no typical S-shape evolution of PL energy with temperature is detectable, and similar blueshift and narrowing are identified for the same annealing. The phenomena are mainly from the interfacial processes. Annealing improves the intralayer quality, enhances the interfacial In-Ga interdiffusion, and reduces the interfacial fluctuation. The interfacial interdiffusion does not change obviously by the small N content and hence similar PL-component narrowing and blueshift are observed for the SQWs after a nominally identical annealing. Comparison with previous studies is made and the PL measurements under different conditions are shown to be effective for probing the interfacial evolution in QWs.

  7. Propagation of PL and implications for the structure of Tibet

    NASA Astrophysics Data System (ADS)

    Shaw, Peter; Orcutt, John

    1984-05-01

    PL is a long-period (20 s or more) wave train beginning just after the P arrival in seismograms and continuing until the S arrival or the Rayleigh wave. The wave train can be observed at epicentral distances of about 5°-20° with instruments sensitive to these low frequencies. PL propagates as a partially trapped P-SV wave in the crust; S wave energy is lost to the mantle during propagation making PL a "leaky mode." We study PL propagation for a variety of earth models using the synthetic seismogram algorithm wave number integration and find that the vertical travel time in the crust is the most important parameter controlling PL's oscillation period. This period can vary by more than a factor of two between oceanic and continental paths. P-SV leaky mode propagation includes many different modes; the low-frequency motion termed "PL" is only the first, or fundamental mode, in this family. A second, higher-frequency mode roughly equal in amplitude to the fundamental appears for models without a net positive velocity gradient in the crust. We use these results to match an observed PL wave train whose propagation path consisted almost entirely of the Tibetan Plateau. By considering first and second PL mode behavior we find that the Tibetan crust is about 85 km thick, with an uncertainty of about 20 km, and possesses a significant (≥0.01 s-1) positive velocity gradient. The presence of a large, low-velocity zone in the lower Tibetan crust thus seems unlikely. Much higher-frequency PL modes also appear in the Green's functions for layer over half space models and appear to be responsible for the high-frequency Pg phase, making PL and Pg different members of the same type of leaky mode propagation.

  8. A Complete System For Semiconductor Characterization Incorporating Both Photoluminescence And Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Purcell, F. J.; Kaminski, Raymond

    1987-04-01

    The characterization of materials for semiconductor applications has been significantly advanced by the use of photoluminescence and laser-Raman spectroscopy. Photoluminescence is particularly sensitive for identifying impurities and mapping wafers to determine the distribution of dislocation densities over the surface of a wafer. Direct correlation with the threshold voltages of finished devices is one of the practical applications of such data. Laser-Raman spectroscopy can identify surface contaminants and determine lattice disorders, residual strain and free-carrier density. beparate, dedicated systems are normally required for each analytical technique. In this paper, the authors describe a new and totally automated system that incorporates both photoluminescence and Raman capabilities. Wafers up to 4 inches in diameter were characterized at room temperature and while cooled by liquid helium. Sample materials included 8i, GaAs, LiNb0 and InP. Information from spectra, wafer maps and peak shifts is presented and discussed. The efficiency or semiconductor device designs and their mass production depends largely on the quality of information charcterizing the materials from which devices are fabricated. In recent years, spectroscpy has emerged as a primary source of such information for both fundamental research and quality control in manufacturing. There are many reasons for this expanding recognition, not the least of which is the non-contact and non-destructive nature of spectroscopic analysis. Capable of being fully automated through microprocessor control, spectroscopy also generates a range of data unmatched by other methods. And among the spectroscopic techniques currently available, photoluminescence and Raman spectroscopy are especially effective for characterizing semiconductor materials like silicon, gallium arsenide or indium phosphide. basically, photoluminescence (PL) involves exciting a sample with laser light and observing any t'!mission, Besides

  9. AFM imaging of fenestrated liver sinusoidal endothelial cells.

    PubMed

    Braet, F; Wisse, E

    2012-12-01

    Each microscope with its dedicated sample preparation technique provides the investigator with a specific set of data giving an instrument-determined (or restricted) insight into the structure and function of a tissue, a cell or parts thereof. Stepwise improvements in existing techniques, both instrumental and preparative, can sometimes cross barriers in resolution and image quality. Of course, investigators get really excited when completely new principles of microscopy and imaging are offered in promising new instruments, such as the AFM. The present paper summarizes a first phase of studies on the thin endothelial cells of the liver. It describes the preparation-dependent differences in AFM imaging of these cells after isolation. Special point of interest concerned the dynamics of the fenestrae, thought to filter lipid-carrying particles during their transport from the blood to the liver cells. It also describes the attempts to image the details of these cells when alive in cell cultures. It explains what physical conditions, mainly contributed to the scanning stylus, are thought to play a part in the limitations in imaging these cells. The AFM also offers promising specifications to those interested in cell surface details, such as membrane-associated structures, receptors, coated pits, cellular junctions and molecular aggregations or domains. The AFM also offers nano-manipulation possibilities, strengths and elasticity measurements, force interactions, affinity measurements, stiffness and other physical aspects of membranes and cytoskeleton. The potential for molecular approaches is there. New developments in cantilever construction and computer software promise to bring real time video imaging to the AFM. Home made accessories for the first generation of AFM are now commodities in commercial instruments and make the life of the AFM microscopist easier. Also, the combination of different microscopies, such as AFM and TEM, or AFM and SEM find their way to the

  10. [Application of atomic force microscopy (AFM) in ophthalmology].

    PubMed

    Milka, Michał; Mróz, Iwona; Jastrzebska, Maria; Wrzalik, Roman; Dobrowolski, Dariusz; Roszkowska, Anna M; Moćko, Lucyna; Wylegała, Edward

    2012-01-01

    Atomic force microscopy (AFM) allows to examine surface of different biological objects in the nearly physiological conditions at the nanoscale. The purpose of this work is to present the history of introduction and the potential applications of the AFM in ophthalmology research and clinical practice. In 1986 Binnig built the AFM as a next generation of the scanning tunnelling microscope (STM). The functional principle of AFM is based on the measurement of the forces between atoms on the sample surface and the probe. As a result, the three-dimensional image of the surface with the resolution on the order of nanometres can be obtained. Yamamoto used as the first the AFM on a wide scale in ophthalmology. The first investigations used the AFM method to study structure of collagen fibres of the cornea and of the sclera. Our research involves the analysis of artificial intraocular lenses (IOLs). According to earlier investigations, e.g. Lombardo et al., the AFM was used to study only native IOLs. Contrary to the earlier investigations, we focused our measurements on lenses explanted from human eyes. The surface of such lenses is exposed to the influence of the intraocular aqueous environment, and to the related impacts of biochemical processes. We hereby present the preliminary results of our work in the form of AFM images depicting IOL surface at the nanoscale. The images allowed us to observe early stages of the dye deposit formation as well as local calcinosis. We believe that AFM is a very promising tool for studying the structure of IOL surface and that further observations will make it possible to explain the pathomechanism of artificial intraocular lens opacity formation.

  11. Structural changes and self-activated photoluminescence in reductively annealed Sr{sub 3}AlO{sub 4}F

    SciTech Connect

    Green, Robert; Avdeev, Maxim; Vogt, Thomas

    2015-08-15

    White light emission of self-activated photoluminescence (PL) in Sr{sub 3}AlO{sub 4}F under 254 nm light is only observed after annealing in a reducing atmosphere of 5%H{sub 2}/95%Ar. High-resolution neutron powder diffraction reveals that the FSr{sub 6} octahedrons and AlO{sub 4} tetrahedrons in this anti-perovskite structure are closer packed in reduced than in air-annealed samples which show no PL. Careful analysis of temperature-dependent neutron powder diffraction data establishes smaller isotropic displacement parameters for Sr(1) and O in Sr{sub 3}AlO{sub 4}F annealed in a reducing atmosphere indicating that the denser packing of the polyhedral sub-units leads to a slightly deeper potential for the Sr(1) and O atoms. Both the air- and reductively-annealed samples have identical thermal expansion within the temperature range between 3 and 350 K. The Debye temperatures were calculated using the atomic displacement parameters and show no significant differences between the air and reductively annealed samples making the Debye temperature a bad proxy for self-activated PL. - Graphical abstract: Annealing Sr{sub 3}AlO{sub 4}F under reducing conditions results in an intense self-activated photoluminescence which is correlated with a denser packing of FSr{sub 6} and AlO{sub 4} polyhedra. - Highlights: • Sr{sub 3}AlO{sub 4}F made in air does not show self-activated photoluminescence. • Only when annealing Sr{sub 3}AlO{sub 4}F in a reducing gas is photoluminescence observed. • FSr{sub 6} and AlO{sub 4} polyhedra in reduced Sr{sub 3}AlO{sub 4}F structure are packed more efficient. • Smaller displacement parameters are found for under-bonded Sr(1) and O sites.

  12. High-speed AFM of human chromosomes in liquid

    NASA Astrophysics Data System (ADS)

    Picco, L. M.; Dunton, P. G.; Ulcinas, A.; Engledew, D. J.; Hoshi, O.; Ushiki, T.; Miles, M. J.

    2008-09-01

    Further developments of the previously reported high-speed contact-mode AFM are described. The technique is applied to the imaging of human chromosomes at video rate both in air and in water. These are the largest structures to have been imaged with high-speed AFM and the first imaging in liquid to be reported. A possible mechanism that allows such high-speed contact-mode imaging without significant damage to the sample is discussed in the context of the velocity dependence of the measured lateral force on the AFM tip.

  13. Raman and AFM study of gamma irradiated plastic bottle sheets

    NASA Astrophysics Data System (ADS)

    Ali, Yasir; Kumar, Vijay; Sonkawade, R. G.; Dhaliwal, A. S.

    2013-02-01

    In this investigation, the effects of gamma irradiation on the structural properties of plastic bottle sheet are studied. The Plastic sheets were exposed with 1.25MeV 60Co gamma rays source at various dose levels within the range from 0-670 kGy. The induced modifications were followed by micro-Raman and atomic force microscopy (AFM). The Raman spectrum shows the decrease in Raman intensity and formation of unsaturated bonds with an increase in the gamma dose. AFM image displays rough surface morphology after irradiation. The detailed Raman analysis of plastic bottle sheets is presented here, and the results are correlated with the AFM observations.

  14. Effect of erbium fluoride doping on the photoluminescence of SiO{sub x} films

    SciTech Connect

    Vlasenko, N. A. Sopinskii, N. V.; Gule, E. G.; Strelchuk, V. V.; Oleksenko, P. F.; Veligura, L. I.; Nikolenko, A. S.; Mukhlyo, M. A.

    2012-03-15

    The photoluminescence of SiO{sub x} films deposited on c-Si wafers by the thermal evaporation of SiO in a vacuum and, for the first time, doped with ErF{sub 3} by coevaporation is studied. It is shown that, like undoped SiO{sub x} films, the unannealed SiO{sub x}:ErF{sub 3} films passivate the surface of the Si wafers and, thus, increase their edge photoluminescence intensity almost fivefold. A similar increase is observed after annealing of the doped films in air at 750 Degree-Sign C. Doping with ErF{sub 3} suppresses the photoluminescence of Si nanoclusters, if the films have been subjected to high-temperature annealing (at 750 Degree-Sign C). In this case, the PL intensity of the band with a peak at {approx}890 nm decreases as well. The {approx}890 nm band is observed for the first time and, due to its features, is attributed to transitions in SiO{sub x} matrix defects. The experimentally observed effect of ErF{sub 3} doping on SiO{sub x} film photoluminescence is interpreted. An intense photoluminescence signal from Er{sup 3+} ions in the nearinfrared spectral region (the {sup 4}I{sub 11/2} {yields} {sup 4}I{sub 15/2} and {sup 4}I{sub 13/2} {yields} {sup 4}I{sub 15/2} transitions) is observed in the SiO{sub x}:ErF{sub 3} films annealed in air at 750 Degree-Sign C. This finding shows that 1.54 {mu}m luminescent emitters, which are currently in popular demand, can be produced by a simple low-cost method.

  15. Photoluminescence spectroscopy of D(-) states in gallium arsenide

    NASA Astrophysics Data System (ADS)

    Harrison, Dale Andrew

    1998-12-01

    D-- states in single-valley semiconductors, formed when a shallow neutral hydrogenic donor (Do) binds a second electron, are the solid state analog of the negatively charged hydrogen ion (H--). Such systems are of great interest, to a large extent, because their small electron effective masses and large dielectric constants allow one, at least in principle, to investigate the plenitude of magnetic bound states predicted for the H-- ion at much higher (by >104) fields. In this thesis, a new type of near-infrared photoluminescence (PL) transition in epitaxial GaAs involving the recombination of an electron bound at a D -- center with a hole trapped on a neutral acceptor (A o) is conclusively identified. Both the spectral position and thermal activation energy of this process, denoted as D-- -Ao, are found to be consistent with this assignment and in good agreement with existing theoretical predictions for the binding energy of D-- centers in bulk GaAs. In high purity material at low temperatures and excitation densities recombination via D---Ao becomes the dominant radiative decay channel and exhibits line widths on the order of 1 cm--1 (0.12 meV). The ability to study these narrow spectral features, without the significant magnetic field binding energy enhancements required in FIR investigations, has made possible the first experimental determination of the D-- binding energy in unperturbed GaAs. By recording the PL signal from the D---A o process as a function of applied magnetic field, the first conclusive identification of the D-- triplet center has been realized. In addition, the magnetic field dependence of the binding energies of both D-- singlet and triplet states have been determined with high accuracy over the entire range of field values from 0 to 15 T which enables the first ever comparison between experimental and theoretical results over this wide region.

  16. Shift in room-temperature photoluminescence of low-fluence Si(+)-implanted SiO2 films subjected to rapid thermal annealing.

    PubMed

    Fu, Ming-Yue; Tsai, Jen-Hwan; Yang, Cheng-Fu; Liao, Chih-Hsiung

    2008-12-01

    We experimentally demonstrate the effect of the rapid thermal annealing (RTA) in nitrogen flow on photoluminescence (PL) of SiO2 films implanted by different doses of Si(+) ions. Room-temperature PL from 400-nm-thick SiO2 films implanted to a dose of 3×10(16) cm(-2) shifted from 2.1 to 1.7 eV upon increasing RTA temperature (950-1150 °C) and duration (5-20 s). The reported approach of implanting silicon into SiO2 films followed by RTA may be effective for tuning Si-based photonic devices.

  17. Simple chemical aqueous synthesis of dahlia nanoflower consisting of finger-like ZnO nanorods and observation of stable ultraviolet photoluminescence emission

    NASA Astrophysics Data System (ADS)

    Chakraborty, S.; Tiwary, C. S.; Kumbhakar, P.

    2015-03-01

    In this work, we have reported the synthesis of dahlia flower-like ZnO nanostructures consisting of human finger-like nanorods by the hydrothermal method at 120 °C and without using any capping agent. Optical properties of the samples, including UV-vis absorption and photoluminescence (PL) emission characteristics are determined by dispersing the samples in water as well as in ethanol media. The quenching of PL emission intensity along-with the red shifting of the PL emission peak are observed when the samples are dispersed in water in comparison to those obtained after dispersing the samples in ethanol. It has been found that PL emission characteristic, particularly the spectral nature of PL emission, of the samples remains almost unaltered (except some improvement in UV PL emission) even after thermally annealing it for 2 h at the temperature of 300 °C. Also the synthesized powder samples, kept in a plastic container, showed a very stable PL emission even after 15 months of synthesis. Therefore, the synthesized samples might be useful for their applications in future optoelectronics devices.

  18. Pumping-power-dependent photoluminescence angular distribution from an opal photonic crystal composed of monodisperse Eu3+/SiO2 core/shell nanospheres.

    PubMed

    Tuyen, Le Dac; Lin, Jian Hung; Wu, Cheng Yi; Tai, Po-Tse; Tang, Jau; Minh, Le Quoc; Kan, Hung-Chih; Hsu, Chia Chen

    2012-07-02

    High quality opal photonic crystals (PhCs) were successfully fabricated by self-assembling of monodisperse Eu(3+)/SiO(2) core/shell nanospheres. Angular resolved photoluminescence (PL) spectra of a PhC sample were measured with different pumping powers, and its PL emission strongly depended on spectroscopic position of the photonic stop band and the optical pumping power. Suppression of the PL occurred in the directions where the emission lines aligned with the center of the photonic stop band. Suppression and enhancement of the PL were observed at low- and high-pumping powers, respectively, in the directions where the emission lines were located at the edges of the photonic stop band. When pumping power exceeded 6 µJ/pulse, a super-linear dependence was found between the pumping power and PL intensity. The dramatic enhancement of PL was attributed to the amplification of spontaneous emission resulted from the creation of large population inversion and the slow group velocity of the emitted light inside the PhC. The opal PhC provided highly angular-selective quasi-monochromatic PL output, which can be useful for a variety of optical applications.

  19. Polyvinyl alcohol as photoluminescent conductive polymer

    NASA Astrophysics Data System (ADS)

    Ruiz-Limón, B.; Wetzel, G. B. J.; Olivares-Pérez, A.; Ponce-Lee, E. L.; Hernández-Garay, M. P.; Páez-Trujillo, G.; Toxqui-López, S.; Fuentes-Tapia, I.

    2007-02-01

    We synthesized a photoluminescent conductor polymer composed of polyvinyl alcohol, which was doped with nickel chloride to decrease its resistivity (300 Ωcm) and benzalkonium chloride to obtain photoluminescence properties, when it is radiated with a green laser beam (532 nm). We compared its absorbance curve and its energy emitted curve to observe the amount energy that is taken advantage of this process. Besides we research the photoluminescence behavior when an electric currant is applied in our conductor polymer, obtaining a modulation capacity.

  20. Introduction to atomic force microscopy (AFM) in biology.

    PubMed

    Goldsbury, Claire S; Scheuring, Simon; Kreplak, Laurent

    2009-11-01

    The atomic force microscope (AFM) has the unique capability of imaging biological samples with molecular resolution in buffer solution. In addition to providing topographical images of surfaces with nanometer- to angstrom-scale resolution, forces between single molecules and mechanical properties of biological samples can be investigated from the nanoscale to the microscale. Importantly, the measurements are made in buffer solutions, allowing biological samples to "stay alive" within a physiological-like environment while temporal changes in structure are measured-e.g., before and after addition of chemical reagents. These qualities distinguish AFM from conventional imaging techniques of comparable resolution, e.g., electron microscopy (EM). This unit provides an introduction to AFM on biological systems and describes specific examples of AFM on proteins, cells, and tissues. The physical principles of the technique and methodological aspects of its practical use and applications are also described.

  1. Synthesis, Photoluminescence and Bio-Targeting Applications of Blue Graphene Quantum Dots.

    PubMed

    Wang, Jigang; Zhou, Ji; Zhou, Wenhua; Shi, Jilong; Ma, Lun; Chen, Wei; Wang, Yongsheng; He, Dawei; Fu, Ming; Zhang, Yongna

    2016-04-01

    Chemical derived graphene oxide, an atomically thin sheet of graphite with two-dimensional construction, offers interesting physical, electronic, thermal, chemical, and mechanical properties that are currently being explored for advanced physics electronics, membranes, and composites. Herein, we study graphene quantum dots (GQD) with the blue photoluminescence under various parameters. The GQD samples were prepared at different temperatures, and the blue photoluminescence intensity of the solution improved radically as the heating temperatures increased. Concerning PL peak and intensity of the quantum dots, the results demonstrated dependence on time under heating, temperature of heating, and pH adjusted by the addition of sodium hydroxide. After hydrothermal synthesis routes, the functional groups of graphene oxide were altered the morphology showed the stacking configuration, and self-assembled structure of the graphene sheets with obvious wrinkles appeared at the edge structures. In addition, absorption, PL, and PLE spectra of the graphene quantum dots increase with different quantities of sodium hydroxide added. Finally, using GQD to target PNTIA cells was carried out successfully. High uptake efficiency and no cytotoxic effects indicate graphene quantum dots can be suitable for bio-targeting.

  2. Green synthesis of magnesium ion incorporated nanocrystalline hydroxyapatite and their mechanical, dielectric and photoluminescence properties

    SciTech Connect

    Arul, K. Thanigai; Kolanthai, Elayaraja; Manikandan, E.; Bhalerao, G.M.; Chandra, V. Sarath; Ramya, J. Ramana; Mudali, U. Kamachi; Nair, K.G.M.; Kalkura, S.Narayana

    2015-07-15

    Highlights: • Rapid technique to synthesize nanorods of magnesium ion incorporated hydroxyapatite. • Enhanced electrical and mechanical properties. • Improved photoluminescence and wettability on magnesium incorporation. • Increased in vitro bioactivity. - Abstract: Nanocrystalline hydroxyapatite (HAp-Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2,} 35 nm) and magnesium (Mg{sup 2+}) ion incorporated HAp were synthesized by microwave technique. XRD (X-ray diffraction), FTIR (Fourier transform infrared spectroscopy), FE-HRTEM (Field emission high resolution transmission electron microscopy), DLS (dynamic light scattering), EDXRF (energy dispersive X-ray fluorescence spectrometry), microhardness, permittivity and alternating current (ac) conductivity, besides the PL (photoluminescence), wettability and in vitro bioactivity of the samples were analysed. EDXRF revealed the Mg{sup 2+} ion incorporation in HAp. The Mg{sup 2+} ion incorporation did not alter the phase but drastically reduced the crystallite size and particle size respectively by 48% and 32%. There was enhanced microhardness (24%) at low level (<13%) and decreased zeta potential of Mg{sup 2+} ion incorporation. The permittivity, ac conductivity, PL, wettability and in vitro bioactivity were enhanced on Mg{sup 2+} ion incorporation. These properties enable them to be a promising candidate for wound healing, bone replacement applications and also as a biosensor.

  3. Excitonic-type polaron states: photoluminescence in SBN and in other ferroelectric oxides

    NASA Astrophysics Data System (ADS)

    Vikhnin, V. S.; Kislova, I.; Kutsenko, A. B.; Kapphan, S. E.

    2002-07-01

    A theoretical model for two characteristic photoluminescence (PL) bands in SBN, 'green luminescence' and 'red luminescence' is proposed on the basis of the extended photoluminescence experiments in SBN:Cr, and also in SBN:Ce and in nominally pure SBN systems under different conditions. While the RL-band is suggested to be connected with charge transfer vibronic exciton (CTVE) clusters induced by Cr3+ impurities in the Nb-sites, the GL- band is connected with Nb4+ electronic polarons in a new, charge transfer excited states. Here Nb4+ centers are the cores of the CTVE clusters induced by these charged scores. The PL mechanism is the in-cluster CTVE recombination for both bands under discussion. But the CTVE states are quasi-resonantly mixed here with 4T2 states of the Cr3+ core in the RL-band case, and with 5s-states of the Nb4+ core in the GL-band case. The role of excitonic polarons of CTVE nature is also discussed in connection with 'green' luminescence origin in KTaO3 and KNbO3 crystals.

  4. XANES, EXAFS and photoluminescence investigations on the amorphous Eu:HfO2

    NASA Astrophysics Data System (ADS)

    Sharma, Aditya; Varshney, Mayora; Shin, Hyun-Joon; Chae, KeunHwa; Won, Sung Ok

    2017-02-01

    We report detailed investigations on the local electronic/atomic structure and photoluminescence properties of chemically synthesized Eu:HfO2 powders. X-ray diffraction (XRD), X-ray absorption near edge structure (XANES), extended X-ray absorption fine structure (EXAFS) and photoluminescence (PL) measurements were performed to analyze the crystal structure, local atomic/electronic structure and luminescence properties of the samples. No crystalline phases were detected with Cu Kα (λ = 1.5418 Å) based XRD; however, local monoclinic structure was confirmed by the Hf L-edge XANES and EXAFS. O K-edge XANES spectral features could be deconvoluted with doublets and triplets in eg and t2g orbitals, respectively, which ascribed to the local monoclinic structure for all of the samples. Eu M5,4-edge XANES confirmed the pre-dominancy of Eu3 + ions in the HfO2 samples with a fractional amount of Eu2 + ions. PL spectra revealed the electric dipole allowed (5D0-7F0,2,4) emission properties of Eu:HfO2 samples. The orange-red emission is ascribed to the Eu interstitial/surface segregation induced defects.

  5. Photoluminescence study on heavily donor and acceptor impurity doped GaAs layers grown by molecular-beam epitaxy

    SciTech Connect

    Islam, A. Z. M. Touhidul; Jung, D. W.; Noh, J. P.; Otsuka, N.

    2009-05-01

    Gallium arsenide layers doped with high concentrations of Be and Si by molecular-beam epitaxy are studied by photoluminescence (PL) spectroscopy. PL peaks from doped layers are observed at energies significantly lower than the band-gap of GaAs. The growth and doping conditions suggest that the origin of these peaks is different from that of low energy PL peaks, which were observed in earlier studies and attributed to impurity-vacancy complexes. The dependence of the peak energy on the temperature and the annealing is found to differ from that of the peaks attributed to impurity-vacancy complexes. On the basis of these observations, it is suggested that the low energy peaks are attributed to short range ordered arrangements of impurity ions. This possibility is examined by calculations of the PL spectra with models of pairs of acceptor and donor delta-doped layers and PL experiments of a superlattice of pairs of Be and Si delta-doped layers.

  6. Magnetic field induced extraordinary photoluminescence enhancement in Er{sup 3+}:YVO{sub 4} single crystal

    SciTech Connect

    Zhang, Junpei; Wang, Xia; Tang, Chaoqun; Zhong, Zhiqiang; Ma, Zongwei; Wang, Shaoliang; Han, Yibo; Han, Jun-Bo Li, Liang

    2015-08-28

    A bright green photoluminescence (PL) from {sup 4}S{sub 3∕2} → {sup 4}I{sub 15∕2} emission band in Er{sup 3+}:YVO{sub 4} single crystal has been observed with the excitation of an argon laser at 488.0 nm. More than two orders of PL enhancement have been obtained under the effect of magnetic fields, and the enhancement factor f reaches 170 when the applied magnetic field is 7.7 T under the sample temperature of 4.2 K. Unusually, the PL enhancements only happen at some certain magnetic fields (B{sub c}s), and a decrease of sample temperature will lead to the increase of f and decrease of B{sub c}. The results confirm that this PL enhancement originates from the resonance excitation of the electron transitions induced by the cross of the laser energy and the absorption energy modulated by both the magnetic field and temperature. This special PL enhancement in Er{sup 3+}:YVO{sub 4} single crystal can be applied in the calibration of pulsed high magnetic field, detection of material fine energy structures, and modulation of magneto-optical devices.

  7. Facile synthesis and step by step enhancement of blue photoluminescence from Ag-doped ZnS quantum dots.

    PubMed

    Sahai, Sonal; Husain, Mushahid; Shanker, Virendra; Singh, Nahar; Haranath, D

    2011-05-15

    Our results pertaining to the step by step enhancement of photoluminescence (PL) intensity from ZnS:Ag,Al quantum dots (QDs) are presented. Initially, these QDs were synthesized using a simple co-precipitation technique involving a surfactant, polyvinylpyrrolidone (PVP), in de-ionised water. It was observed that the blue PL originated from ZnS:Ag,Al QDs was considerably weak and not suitable for any practical display application. Upon UV (365 nm) photolysis, the PL intensity augmented to ~170% and attained a saturation value after ~100 min of exposure. This is attributed to the photo-corrosion mechanism exerted by high-flux UV light on ZnS:Ag,Al QDs. Auxiliary enhancement of PL intensity to 250% has been evidenced by subjecting the QDs to high temperatures (200 °C) and pressures (~120 bars) in a sulphur-rich atmosphere, which is due to the improvement in crystallanity of ZnS QDs. The origin of the bright-blue PL has been discussed. The results were supported by X-ray phase analysis, high-resolution electron microscopy and compositional evaluation.

  8. SiV center photoluminescence induced by C=O termination in nanocrystalline diamond and graphite loops hybridized films

    NASA Astrophysics Data System (ADS)

    Mei, Yingshuang; Fan, Dong; Lu, Shaohua; Shen, Yaogen; Hu, Xiaojun

    2016-12-01

    We performed a series of thermal oxidation at different temperatures on nanocrystalline diamond (NCD) films to construct various surface termination states of NCD grains and investigated their effects on silicon-vacancy (SiV) photoluminescence (PL) at 738 nm. Experiments and first principles calculations show that the negative electron affinity surface induced by C-H bond termination quenches the SiV PL, while the positive electron affinity surface originating from C=O bond termination removes this quenching. Moreover, oxidation at 600 °C results in the transition from amorphous carbon to graphite loops with an interlayer space of 0.4 nm, so that NCD and graphite loops' hybridized structure is formed. This allows oxygen atoms to contact with inside NCD grains to form more C=O bonds on the surface, producing much larger positive electron affinity in the surface. It traps the excited state electrons, lets them scatter back to the ground state, and emits SiV PL. These results reveal that C=O bonds play a crucial role in SiV PL of NCD grains and well explain the experimentally observed quenching effect. A novel way by changing the surface termination states is proposed to control the PL of NCD grains with SiV centers for potential quantum information processing and biological sensing.

  9. Semiconductor-olefin adducts. Photoluminescent properties of cadmium sulfide and cadmium selenide in the presence of butenes

    SciTech Connect

    Meyer, G.J.; Leung, L.K.; Ellis, A.B. ); Yu, J.C. ); Lisensky, G.C. )

    1989-07-05

    Direct evidence for adduct formation between butenes and etched, single-crystal n-CdS and n-CdSe (CdS(e)) surfaces has been obtained from photoluminescence (PL) measurements. Exposure of CdS(e) to butenes causes enhancement of the solids' band edge PL relative to a N{sub 2} ambient. For 30% mixtures of the olefins in N{sub 2}, the magnitude of the enhancement follows the order 1,3-butadiene > cis-2-butene {approximately} trans-2-butene > isobutylene {approximately} 1-butene and correlates with the olefin basicities, on the basis of photoionization potentials. Enhancements in PL intensity can be fit to a dead-layer model, allowing the determination of the reduction in depletion width in the semiconductor resulting from olefin exposure; depletion width reductions reach a few hundred angstroms for adducts of 1,3-butadiene with CdS(e). The PL changes were used in conjunction with the Langmuir adsorption isotherm model to yield equilibrium constants for adduct formation of 1,3-butadiene with CdS(e) of 9 {plus minus} 4 atm{sup {minus}1} at 293 K. Surface interactions that may contribute to the observed PL changes are discussed.

  10. Characterization of photoluminescence spectra from poly allyl diglycol carbonate (CR-39) upon excitation with the ultraviolet radiation of various wavelengths

    NASA Astrophysics Data System (ADS)

    El Ghazaly, M.; Al-Thomali, Talal A.

    2013-04-01

    The induced photoluminescence (PL) from the π-conjugated polymer poly allyl diglycol carbonate (PADC) (CR-39) upon excitation with the ultraviolet radiation of different wavelengths was investigated. The absorption and attenuation coefficients of PADC (CR-39) were recorded using a UV-visible spectrometer. It was found that the absorption and attenuation coefficients of the PADC (CR-39) exhibit a strong dependence on the wavelength of ultraviolet radiation. The PL spectra were measured with a Flormax-4 spectrofluorometer (Horiba). PADC (CR-39) samples were excited by ultraviolet radiation with wavelengths in the range from 260 to 420 nm and the corresponding PL emission bands were recorded. The obtained results show a strong correlation between the PL and the excitation wavelength of ultraviolet radiation. The position of the fluorescence emission band peak was red shifted starting from 300 nm, which was increased with the increase in the excitation wavelength. The PL yield and its band peak height were increased with the increase in the excitation wavelength till 290 nm, thereafter they decreased exponentially with the increase in the ultraviolet radiation wavelength. These new findings should be considered carefully during the use of the PADC (CR-39) in the scientific applications and in using PADC (CR-39) in eyeglasses.

  11. Charge generation in PbS quantum dot solar cells characterized by temperature-dependent steady-state photoluminescence.

    PubMed

    Gao, Jianbo; Zhang, Jianbing; van de Lagemaat, Jao; Johnson, Justin C; Beard, Matthew C

    2014-12-23

    Charge-carrier generation and transport within PbS quantum dot (QD) solar cells is investigated by measuring the temperature-dependent steady-state photoluminescence (PL) concurrently during in situ current-voltage characterization. We first compare the temperature-dependent PL quenching for PbS QD films where the PbS QDs retain their original oleate ligand to that of PbS QDs treated with 1,2-ethanedithiol (EDT), producing a conductive QD layer, either on top of glass or on a ZnO nanocrystal film. We then measure and analyze the temperature-dependent PL in a completed QD-PV architecture with the structure Al/MoO3/EDT-PbS/ZnO/ITO/glass, collecting the PL and the current simultaneously. We find that at low temperatures excitons diffuse to the ZnO interface, where PL is quenched via interfacial charge transfer. At high temperatures, excitons dissociate in the bulk of the PbS QD film via phonon-assisted tunneling to nearby QDs, and that dissociation is in competition with the intrinsic radiative and nonradiative rates of the individual QDs. The activation energy for exciton dissociation in the QD-PV devices is found to be ∼40 meV, which is considerably lower than that of the electrodeless samples, and suggests unique interactions between injected and photogenerated carriers in devices.

  12. Nanoscale structural features determined by AFM for single virus particles

    NASA Astrophysics Data System (ADS)

    Chen, Shu-Wen W.; Odorico, Michael; Meillan, Matthieu; Vellutini, Luc; Teulon, Jean-Marie; Parot, Pierre; Bennetau, Bernard; Pellequer, Jean-Luc

    2013-10-01

    In this work, we propose ``single-image analysis'', as opposed to multi-image averaging, for extracting valuable information from AFM images of single bio-particles. This approach allows us to study molecular systems imaged by AFM under general circumstances without restrictions on their structural forms. As feature exhibition is a resolution correlation, we have performed AFM imaging on surfaces of tobacco mosaic virus (TMV) to demonstrate variations of structural patterns with probing resolution. Two AFM images were acquired with the same tip at different probing resolutions in terms of pixel width, i.e., 1.95 and 0.49 nm per pixel. For assessment, we have constructed an in silico topograph based on the three-dimensional crystal structure of TMV as a reference. The prominent artifacts observed in the AFM-determined shape of TMV were attributed to tip convolutions. The width of TMV rod was systematically overestimated by ~10 nm at both probing resolutions of AFM. Nevertheless, the effects of tip convolution were less severe in vertical orientation so that the estimated height of TMV by AFM imaging was in close agreement with the in silico X-ray topograph. Using dedicated image processing algorithms, we found that at low resolution (i.e., 1.95 nm per pixel), the extracted surface features of TMV can be interpreted as a partial or full helical repeat (three complete turns with ~7.0 nm in length), while individual protein subunits (~2.5 nm) were perceivable only at high resolution. The present study shows that the scales of revealed structural features in AFM images are subject to both probing resolution and processing algorithms for image analysis.

  13. Synthesis, photoluminescence and magnetic properties of barium vanadate nanoflowers

    SciTech Connect

    Xu, Jing; Hu, Chenguo; Xi, Yi; Peng, Chen; Wan, Buyong; He, Xiaoshan

    2011-06-15

    Graphical abstract: The flower-shaped barium vanadate was obtained for the first time. The photoluminescence and magnetic properties of the barium vanadate nanoflowers were investigated at room temperature. Research highlights: {yields} In the paper, the flower-shaped barium vanadate were obtained for the first time. The CHM method used here is new and simple for preparation of barium vanadate. {yields} The photoluminescence and magnetic properties of the barium vanadate nanoflowers were investigated at room temperature. The strong bluish-green emission was observed. {yields} The ferromagnetic behavior of the barium vanadate nanoflowers was found with saturation magnetization of about 83.50 x 10{sup -3} emu/g, coercivity of 18.89 Oe and remnant magnetization of 4.63 x 10{sup -3} emu/g. {yields} The mechanisms of PL and magnetic property of barium vanadate nanoflowers have been discussed. -- Abstract: The flower-shaped barium vanadate has been obtained by the composite hydroxide mediated (CHM) method from V{sub 2}O{sub 5} and BaCl{sub 2} at 200 {sup o}C for 13 h. XRD and XPS spectrum of the as-synthesized sample indicate it is hexagonal Ba{sub 3}V{sub 2}O{sub 8} with small amount of Ba{sub 3}VO{sub 4.8} coexistence. Scan electron microscope and transmission electron microscope display that the flower-shaped crystals are composed of nanosheets with thickness of {approx}20 nm. The UV-visible spectrum shows that the barium vanadate sample has two optical gaps (3.85 eV and 3.12 eV). Photoluminescence spectrum of the barium vanadate flowers exhibits a visible light emission centered at 492 and 525 nm which might be attributed to VO{sub 4} tetrahedron with T{sub d} symmetry in Ba{sub 3}V{sub 2}O{sub 8}. The ferromagnetic behavior of the barium vanadate nanoflowers has been found with saturation magnetization of about 83.50 x 10{sup -3} emu/g, coercivity of 18.89 Oe and remnant magnetization of 4.63 x 10{sup -3} emu/g, which is mainly due to the presence of a non

  14. Effects of thermal annealing on photoluminescence of Si+/C+ implanted SiO2 films

    NASA Astrophysics Data System (ADS)

    Chen, Yin-Yu; Chao, Der-Sheng; Tsai, Hsu-Sheng; Liang, Jenq-Horng

    2016-04-01

    The mechanisms of photoluminescence (PL) originating from Si+/C+ implanted SiO2 are still unclear and need to be clarified. Thus, the purpose of this study is to thoroughly investigate the effects of ion implantation and post-annealing temperature on microstructures and PL characteristics of the Si+/C+ implanted SiO2 films. A comparative analysis was also conducted to clarify the different optical properties between the Si+ and Si+/C+ implanted SiO2 films. In this study, thermally-grown SiO2 films on Si substrates were used as the matrix materials. The Si+ ions and C+ ions were separately implanted into the SiO2 films at room temperature. After ion implantation, the post-annealing treatments were carried out using the furnace annealing (FA) method at various temperatures (600-1100 °C) for 1 h in a N2 ambient. The PL characteristics of the implanted SiO2 films were analyzed using a fluorescence spectrophotometer. The results revealed that the distinct PL peaks were observed at approximately 310, 450 and 650 nm in the Si+-implanted SiO2 films, which can be attributed to the defects, the so-called oxygen deficiency centers (ODCs) and non-bridging oxygen hole centers (NBOHCs), in the materials. In contrast to the Si+ ion implantation, the SiO2 films which were sequentially implanted with Si+ and C+ ions and annealed at 1100 °C can emit white light corresponding to the PL peaks located at around 420, 520 and 720 nm, those can be assigned to the Si-C bonding, C-C graphite-like structure (sp2), and Si nanocrystals, respectively. Moreover, a correlation between the optical properties, microstructures, and bonding configurations of the Si+/C+ implanted SiO2 films was also established in this study.

  15. Sol gel synthesis and photoluminescence of AlP nanocrystals embedded in silica glasses

    NASA Astrophysics Data System (ADS)

    Yang, Heqing; Yao, Xi; Huang, Daming

    2007-03-01

    AlP nanocrystals embedded in silica glasses were prepared via an easy sol-gel process. The gels synthesized by the hydrolysis of a complex solution of Si(OC2H5)4, Al(NO3)3 · 9H2O and PO(OC2H5)3 were heated at 600 °C for 10 h in an air atmosphere to form an Al2O3-P2O5-SiO2 gel glass. The gel glasses were then heated in the presence of H2-N2 mixed gas, in which the P(V) are reduced by the H2 gas, and react with Al(III) to form fine cubic AlP crystallites embedded in silica glasses. The X-ray diffraction patterns showed (1 1 1), (2 2 0), and (3 1 1) diffraction lines from cubic AlP crystals. The AlP (2 2 0), (3 1 1), (4 2 2), and (4 4 0) diffraction lines were observed in the electron diffraction pattern. The size of AlP nanocrystals was found to be from 5 to 10 nm in diameter by transmission electron microscopy. A strong room temperature photoluminescence (PL) with peaks at 533, 582, 649, and 688 nm was observed from AlP/SiO2 nanocomposites. The PL is suggested to originate from the hydrogen-related species (PL band at 533 nm), the small "peroxy radical" (PL band at 582 nm), and the nonbridging oxygens (PL bands at 649 and 688 nm), respectively.

  16. Achieving highly-enhanced UV photoluminescence and its origin in ZnO nanocrystalline films

    NASA Astrophysics Data System (ADS)

    Thapa, Dinesh; Huso, Jesse; Morrison, John L.; Corolewski, Caleb D.; McCluskey, Matthew D.; Bergman, Leah

    2016-08-01

    ZnO is an efficient luminescent material in the UV-range ∼3.4 eV with a wide range of applications in optical technologies. Sputtering is a cost-effective and relatively straightforward growth technique for ZnO films; however, most as-grown films are observed to contain intrinsic defects which can significantly diminish the desirable UV-emission. In this research the defect dynamics and optical properties of ZnO sputtered films were studied via post-growth annealing in Ar or O2 ambient, with X-ray diffraction (XRD), imaging, transmission and Urbach analysis, Raman scattering, and photoluminescence (PL). The imaging, XRD, Raman and Urbach analyses indicate significant improvement in crystal morphology and band-edge characteristics upon annealing, which is nearly independent of the annealing environment. The native defects specific to the as-grown films, which were analyzed via PL, are assigned to Zni related centers that luminesce at 2.8 eV. Their presence is attributed to the nature of the sputtering growth technique, which supports Zn-rich growth conditions. After annealing, in either environment the 2.8 eV center diminished accompanied by morphology improvement, and the desirable UV-PL significantly increased. The O2 ambient was found to introduce nominal Oi centers while the Ar ambient was found to be the ideal environment for the enhancement of the UV-light emission: an enhancement of ∼40 times was achieved. The increase in the UV-PL is attributed to the reduction of Zni-related defects, the presence of which in ZnO provides a competing route to the UV emission. Also, the effect of the annealing was to decrease the compressive stress in the films. Finally, the dominant UV-PL at the cold temperature regime is attributed to luminescent centers not associated with the usual excitons of ZnO, but rather to structural defects.

  17. Plasmonically enhanced photoluminescence of nanoscale semiconductors

    NASA Astrophysics Data System (ADS)

    Abraham, Gabrielle; Tejerina, Alejandro; Churchill, Hugh; Bajwa, Pooja; Heyes, Collin; Herzog, Joseph B.

    2016-03-01

    Recent work has shown that plasmonic structures enhance the emitted light of nanoscale semiconductor materials, such as the photoluminescence of colloidal quantum dots (QDs) and MoS2 2D materials. This project will compare the photoluminescence of CdSe colloidal quantum dots and MoS2. A variety of studies will be performed such as photobleaching effects, how photoluminescence relates to lifetime of sample, and polarization studies. In addition, this project will further the understanding of plasmonically enhanced photoluminescence between these semiconductor nanostructures and metal nanostructures. Initial studies will drop cast colloidal metal nanospheres onto quantum dots and MoS2, while future work will fabricate gold structures with electron beam lithography.

  18. Time-Resolved Photoluminescence and Photovoltaics

    SciTech Connect

    Metzger, W. K.; Ahrenkiel, R. K.; Dippo, P.; Geisz, J.; Wanlass, M. W.; Kurtz, S.

    2005-01-01

    The time-resolved photoluminescence (TRPL) technique and its ability to characterize recombination in bulk photovoltaic semiconductor materials are reviewed. Results from a variety of materials and a few recent studies are summarized and compared.

  19. Investigations on optoelectronic transition mechanisms of silicon nanoporous pillar array by using surface photovoltage spectroscopy and photoluminescence spectroscopy

    SciTech Connect

    Hu, Zhen-Gang Tian, Yong-Tao; Li, Xin-Jian

    2014-03-28

    We report the electronic transition mechanisms for hydrothermally prepared silicon nanoporous pillar array (Si-NPA), investigated by surface photovoltage (SPV) spectroscopy and photoluminescence (PL) spectroscopy. By comparing the SPV spectra of single crystal silicon (sc-Si) with that of Si-NPA, the silicon nano-crystallites (nc-Si)/SiO{sub x} nanostructure in the Si-NPA could produce SPV in the wavelength range of 300–580 nm. And 580 nm (∼2.14 eV) was considered as the absorption edge of the nc-Si/SiO{sub x} nanostructure. After the sample was annealed and oxidized in air at different temperatures, both the SPV in the wavelength range of 300–580 nm and the PL emission band around 690 nm from the nc-Si/SiO{sub x} nanostructure weakened and disappeared as the annealing temperature increased from 100 to 500 °C. But both the red-infrared PL band (>710 nm) and the violet-blue PL band were enhanced by increasing the annealing temperature. After 2 years of natural oxidation in air, the SPV features for sc-Si disappeared completely, and the SPV characteristics of the nc-Si/SiO{sub x} nanostructure could be clearly observed. After analysis, the Si–O structure related localized states at the nc-Si/SiO{sub x} interface dominated the electronic transitions during the red PL emission and the SPV for the nc-Si/SiO{sub x} nanostructure in Si-NPA, the red–infrared PL was due to the Si=O structure related electronic transitions, and the violet-blue PL emission could attribute to the oxygen-related defect related recombination of the photo induced carriers.

  20. Photoluminescence of annealed biomimetic apatites.

    PubMed

    Zollfrank, Cordt; Müller, Lenka; Greil, Peter; Müller, Frank A

    2005-11-01

    Biomimetic apatite coatings are widely used in orthopaedic applications to provide bioinert material surfaces with bioactive behaviour by means of initiating bone growth at the implant surface. In this study we manufactured biomimetic calcium phosphate coatings consisting of a calcium deficient carbonated apatite by immersing activated titanium platelets into simulated body fluid. The development of the crystal phases was monitored by X-ray diffractometry in addition to Fourier-transform infrared spectroscopy. The microstructure of the biomimetic apatites and phase composition was analysed using scanning and transmission electron microscopy as well as attached energy dispersive X-ray spectrometry. The samples were annealed in air yielding in an inherent luminescence of the biomimetic apatite up to temperatures of 600 degrees C. The photo-induced emission spectra were recorded in the range from 400 to 750 nm at excitation wavelengths ranging 310-450 nm. A blue (437 nm) and a green (561 nm) emission were found between 200 and 600 degrees C visually appearing white. Photoluminescence of annealed biomimetic apatites might be of interest for histological probing and monitoring of bone re-modelling. The results are discussed in terms of chemical and crystallographic changes in the calcium phosphate layer during heat treatment.

  1. Room-temperature photoluminescence in amorphous SrTiO3- the influence of acceptor-type dopants

    NASA Astrophysics Data System (ADS)

    Soledade, L. E. B.; Longo, E.; Leite, E. R.; Pontes, F. M.; Lanciotti, F., Jr.; Campos, C. E. M.; Pizani, P. S.; Varela, J. A.

    Room-temperature photoluminescence (PL) was observed in undoped and 2 mol% Cr-, Al- and Y-doped amorphous SrTiO3 thin films. Doping increased the PL, and in the case of Cr significantly reduced the associated PL wavelength. The optical bandgaps, calculated by means of UV-vis absorption spectra, increased with crystallinity and decreased with the doping level. It was considered that yttrium and aluminum substituted Sr2+, whereas chromium replaced Ti4+. It is believed that luminescence centers are oxygen-deficient BO6 complexes, or the same centers with some other defects, such as oxygen or strontium vacancies, or BO6 complexes with some other defects placed in their neighborhood. The character of excitation and the competition for negatively charged non-bridging oxygen (NBO) among numerous types of BO6 defect complexes in doped SrTiO3 results in various broadband luminescence peak positions. The results herein reported are an indicative that amorphous titanates are sensitive to doping, which is important for the control of the electro-optic properties of these materials. The probable incorporation of Cr into the Ti site suggests that the existence of a double network former can lead to materials displaying a more intense photoluminescence.

  2. Temperature-dependent photoluminescence of cadmium-free Cu-Zn-In-S quantum dot thin films as temperature probes.

    PubMed

    Wang, Lan; Kang, Xiaojiao; Huang, Lijian; Pan, Daocheng

    2015-12-21

    We reported temperature-dependent photoluminescence (PL) studies on Cu-Zn-In-S quantum dot (QD) thin films. In this paper, cadmium-free and luminescent Cu-Zn-In-S quantum dot thin films were in situ formed by thermal decomposition of molecular-based precursors in the open air, without need of the complicated quantum dot synthesis. Molecular-based precursor solutions were prepared by dissolving Cu2O, ZnO, and In(OH)3 in the ethanol solution of butylamine and carbon disulfide. The effects of sintering temperature, sintering time, and the concentration of capping agents on the photoluminescence properties of Cu-Zn-In-S QD thin films have been systematically investigated. It was found that alkali metal ions play an important role in enhancing the PL quantum yield of quantum dot thin films. The as-prepared QD thin films show composition-tunable emission in the range of 535 nm to 677 nm, and the absolute PL quantum yields can reach as high as 22.1%. All of the as-deposited QD thin films show a single-exponential decay to temperature, indicating that these cadmium-free QD thin films have high potential as temperature probes.

  3. Effect of solvents on the photoluminescence emission of a few novel, light emitting, segmented block copolymers and hybrid polymers

    NASA Astrophysics Data System (ADS)

    Varma, Sreekanth J.; Mohan, Ranjini R.; Vidya, G.; Jayalekshmi, S.; Prathapan, S.

    2014-01-01

    Numerous light emitting polymers and copolymers with excellent luminescence characteristics and thermal stability are being synthesized and extensively investigated for applications as emissive layers in polymer light emitting diodes. In the present study, three novel, thermally stable, segmented block copolymers (SBC) and two hybrid polymers with excellent photoluminescence (PL) and electroluminescence emission (EL) characteristics were subjected to spectroscopic investigations to explore the effect of various aromatic and non-aromatic solvents on the photoluminescence emission characteristics. Dilute solutions of the SBCs and the hybrid polymers were made from various solvents like dichloromethane, chlorobenzene, tetrahydrofuran, xylene, chloroform, etc. UV-Vis absorption and PL emission spectra of these polymer solutions were recorded simultaneously. No significant changes in the PL emission peaks were observed, depending on the nature of solvents. The effect of solvents in terms of aggregation effects in these polymers was studied. The low aggregation effects and solvent independent nature of the polymers offer very high prospects in various optoelectronic device applications. The present study can be of great use in designing efficient polymer LEDs based on these SBCs and hybrid polymers as emissive layers. The efficiency and stability of the polymer LEDs can be considerably improved by suitably choosing the solvent for the emissive polymers.

  4. Photoluminescence and electronic transitions in cubic silicon nitride.

    PubMed

    Museur, Luc; Zerr, Andreas; Kanaev, Andrei

    2016-01-04

    A spectroscopic study of cubic silicon nitride (γ-Si3N4) at cryogenic temperatures of 8 K in the near IR - VUV range of spectra with synchrotron radiation excitation provided the first experimental evidence of direct electronic transitions in this material. The observed photoluminescence (PL) bands were assigned to excitons and excited and centers formed after the electron capture by neutral structural defects. The excitons are weakly quenched on neutral and strongly on charged defects. The fundamental band-gap energy of 5.05 ± 0.05 eV and strong free exciton binding energy ~0.65 eV were determined. The latter value suggests a high efficiency of the electric power transformation in light in defect-free crystals. Combined with a very high hardness and exceptional thermal stability in air, our results indicate that γ-Si3N4 has a potential for fabrication of robust and efficient photonic emitters.

  5. Photoluminescence and electronic transitions in cubic silicon nitride

    PubMed Central

    Museur, Luc; Zerr, Andreas; Kanaev, Andrei

    2016-01-01

    A spectroscopic study of cubic silicon nitride (γ-Si3N4) at cryogenic temperatures of 8 K in the near IR - VUV range of spectra with synchrotron radiation excitation provided the first experimental evidence of direct electronic transitions in this material. The observed photoluminescence (PL) bands were assigned to excitons and excited and centers formed after the electron capture by neutral structural defects. The excitons are weakly quenched on neutral and strongly on charged defects. The fundamental band-gap energy of 5.05 ± 0.05 eV and strong free exciton binding energy ~0.65 eV were determined. The latter value suggests a high efficiency of the electric power transformation in light in defect-free crystals. Combined with a very high hardness and exceptional thermal stability in air, our results indicate that γ-Si3N4 has a potential for fabrication of robust and efficient photonic emitters. PMID:26725937

  6. Photoluminescent properties of SPAN-80 coated intrinsic and extrinsic ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Kavita; Kumar, Dinesh; Singh, Karamjit; Kumar, Sunil; Bhatti, H. S.

    2016-05-01

    Semiconductor nanostructures catch the attention due to morphology tunable properties. SPAN-80-Capped intrinsic and extrinsic ZnO nanostructures have been synthesized by the simple wet-chemical synthesis route. Structural behavior (morphology and crystallography) and photoluminescence performance of synthesized nanomaterials have been explored as a function of variable SPAN-80 concentration (0.05-0.125%). Crystallographic studies reveal that the prepared products possess wurtzite structure. Electron microscopy infers that the quantum dots are bunched together to form multifaceted morphology for 0.05% SPAN-80 concentration, whereas rectangular shape has been observed for extreme capping concentration. Photoluminescence properties have affected drastically with the introduction of SPAN-80 during the precipitation reaction. Photoluminescent properties of the synthesized nanostructures are strongly dependent on SPAN-80 concentration. Augmentation of capping concentration from 0.05% to 0.075% diminishes the luminescence quantum yield due to increased surface passivation whereas further addition of capping agent beyond the optimum capping concentration (0.075%) enhances the PL intensity due to increased energy transfer from capping shell to the nanostructure core.

  7. From stimuli-responsive polymorphic organic dye crystals to photoluminescent cationic open-framework metal phosphate.

    PubMed

    Chang, Yu-Chuan; Wang, Sue-Lein

    2012-06-20

    Four photoluminescent dye crystals, TPB-n (n = 1-3) and TPCH, have been synthesized in isolation from carbon-carbon coupling of 4,4'-trimethylene-dipyridine (tmdp) in the absence of organic solvent and catalyst via in situ one-pot metal/ligand oxidative-dehydrogenation reactions. Large crystals have been obtained and readily separated from reaction products without the need for purification. Their structures were characterized: TPB and TPCH represent two dissimilar oxidized forms of tmdp dimers; TPCH was less oxidized but accompanied with partial hydrolysis with molecular formula further confirmed by FAB-MASS analysis. They exhibit distinct photoluminescence (PL) with quantum efficiency measured up to 42%. TPB-2 and TPB-3 are two polymorphic dihydrates, stimuli-responsive toward photoluminescence color changes; both can transform to TPB-1 upon gentle heating. Importantly, the three TPB-n crystals establish the first tetrapyridyl-type ligands adapted by metal phosphates to create a cationic luminescent framework, NTHU-12. This study serves as an inspiring route beyond conventional C-C bond formation reactions and has generated four tmdp dimers in isolation. The facile syntheses have resulted in ample production of a rare type of tetrapyridyl ligands, leading to the discovery of the first positively charged hybrid topology in nanoporous solids. The features of the four luminescent tmdp dimers and NTHU-12 embodied in synthesis, structure, and optical property are reported.

  8. Micro-Photoluminescence Confocal Mapping of Single V-Grooved GaAs Quantum Wire

    NASA Astrophysics Data System (ADS)

    Huang, Shao-Hua; Chen, Zhang-Hai; Bai, Li-Hui; Shen, Xue-Chu; Tan H., H.; L., Fu; Fraser, M.; Jagadish, C.

    2006-12-01

    We perform the micro-photoluminescence measurement at low temperatures and a scanning optical mapping with high spatial resolution of a single V-grooved GaAs quantum wire modified by the selective ion-implantation and rapid thermally annealing. While the mapping shows the luminescences respectively from the quantum wires and from quantum well areas between quantum wires in general, the micro-photoluminescence at liquid He temperatures reveals a plenty of spectral structures of the PL band for a single quantum wire. The spectral structures are attributed to the inhomogeneity and non-uniformity of both the space structure and compositions of real wires as well as the defects nearby the interface between quantum wire and surrounding quantum well structures. All these make the excitons farther localized in quasi-zero-dimensional quantum potential boxes related to these non-uniformity and/or defects. The results also demonstrate the ability of micro-photoluminescence measurement and mapping for the characterization of both opto-electronic and structural properties of real quantum wires.

  9. Raman and Photoluminescence Spectroscopy in Mineral Identification

    NASA Astrophysics Data System (ADS)

    Kuehn, J. W.

    2014-06-01

    Raman spectroscopy is particularly useful for rapid identification of minerals and gemstones. Raman spectrometers also allow PL studies for authentication of samples and geological provenance, diamond type screening and detection of HPHT treatments.

  10. Multiple Trans-Sensing Interactions Affect Meiotically Heritable Epigenetic States at the Maize pl1 Locus

    PubMed Central

    Gross, Stephen M.; Hollick, Jay B.

    2007-01-01

    Interactions between specific maize purple plant1 (pl1) alleles result in heritable changes of gene regulation that are manifested as differences in anthocyanin pigmentation. Transcriptionally repressed states of Pl1-Rhoades alleles (termed Pl′) are remarkably stable and invariably facilitate heritable changes of highly expressed states (termed Pl-Rh) in Pl′/Pl-Rh plants. However, Pl′ can revert to Pl-Rh when hemizygous, when heterozygous with pl1 alleles other than Pl1-Rhoades, or in the absence of trans-acting factors required to maintain repressed states. Cis-linked features of Pl1-Rhoades responsible for these trans-sensing behaviors remain unknown. Here, genetic tests of a pl1 allelic series identify two potentially separate cis-linked features: one facilitating repression of Pl-Rh and another stabilizing Pl′ in trans. Neither function is affected in ethyl-methanesulfonate-induced Pl1-Rhoades derivatives that produce truncated PL1 peptides, indicating that PL1 is unlikely to mediate trans interactions. Both functions, however, are impaired in a spontaneous Pl1-Rhoades derivative that fails to produce detectable pl1 RNA. Pl′-like states can also repress expression of a pl1-W22 allele, but this repression is not meiotically heritable. As the Pl′ state is not associated with unique small RNA species representing the pl1-coding region, the available data suggest that interactions between elements required for transcription underlie Pl1-Rhoades epigenetic behaviors. PMID:17435245

  11. A dioxaborine cyanine dye as a photoluminescence probe for sensing carbon nanotubes.

    PubMed

    Al Araimi, Mohammed; Lutsyk, Petro; Verbitsky, Anatoly; Piryatinski, Yuri; Shandura, Mykola; Rozhin, Aleksey

    2016-01-01

    The unique properties of carbon nanotubes have made them the material of choice for many current and future industrial applications. As a consequence of the increasing development of nanotechnology, carbon nanotubes show potential threat to health and environment. Therefore, development of efficient method for detection of carbon nanotubes is required. In this work, we have studied the interaction of indopentamethinedioxaborine dye (DOB-719) and single-walled carbon nanotubes (SWNTs) using absorption and photoluminescence (PL) spectroscopy. In the mixture of the dye and the SWNTs we have revealed new optical features in the spectral range of the intrinsic excitation of the dye due to resonance energy transfer from DOB-719 to SWNTs. Specifically, we have observed an emergence of new PL peaks at the excitation wavelength of 735 nm and a redshift of the intrinsic PL peaks of SWNT emission (up to 40 nm) in the near-infrared range. The possible mechanism of the interaction between DOB-719 and SWNTs has been proposed. Thus, it can be concluded that DOB-719 dye has promising applications for designing efficient and tailorable optical probes for the detection of SWNTs.

  12. Structure, nanohardness and photoluminescence of ZnO ceramics based on nanopowders

    NASA Astrophysics Data System (ADS)

    Muktepavela, Faina; Grigorjeva, Larisa; Kundzins, Karlis; Gorokhova, Elena; Rodnyi, Piotr

    2015-09-01

    ZnO ceramics obtained from grained powders with different grain size by hot pressing and ceramics from tetrapods nanopowders obtained by press-less sintering have been investigated under identical conditions. Ceramics obtained by hot pressing were optically transparent but were composed of large inhomogeneous grains (d = 8-35 μm) exhibiting a substructure. Decreased values of elastic modulus within a grain and a wide defect-associated (‘green’) photoluminescence (PL) band at 2.2-2.8 eV in conjunction with a weak excitonic band indicate a high concentration of residual point defects in hot pressed ZnO ceramics. Utilization of more small-grained powders contributes to the formation of more uniform microstructure (d = 5-15 μm) and extraction of point defects. This reflects as a substantially decreased defect PL band and increased excitonic band. Ceramics obtained by press-less sintering from tetrapods had fine-grained structure (d = 1-4 μm) with no signs of a substructure. PL spectrum has a narrow excitonic band with phonon replicas (1LO_ExD0), whereas the defect ‘green’ luminescence is negligible. The effects of powders morphologies have been explained in terms of a hereditary influence of interaction processes between initial particles on the formation of a microstructure and kinetic of defect distribution on the grain growth stages during the sintering of ZnO ceramics.

  13. Photoluminescence properties of hybrid SiO2-coated CdTe/CdSe quantum dots.

    PubMed

    Liu, Ning; Yang, Ping

    2014-09-01

    Hybrid SiO2-coated CdTe/CdSe quantum dots (QDs) were prepared using CdTe/CdSe QDs prepared by hydrothermal synthesis. A CdSe interlayer made CdTe/CdSe cores with unique type II heterostructures. The hybrid SiO2-coated CdTe/CdSe QDs revealed excellent photoluminescence (PL) properties compared with hybrid SiO2-coated CdTe QDs. Because of the existence of spatial separations of carriers in the type II CdTe/CdSe core/shell QDs, the hybrid QDs had a relatively extended PL lifetime and high stability in phosphate-buffered saline buffer solutions. This is ascribed to the unique components and stable surface state of hybrid SiO2-coated CdTe/CdSe QDs. During the stabilization test in phosphate-buffered saline buffer solutions, both static and dynamic quenching occurred. The quenching mechanism of the hybrid QDs was not suited with the Stern–Volmer equation. However, the relative stable surface of CdTe/CdSe QDs resulted in lower degradation and relative high PL quantum yields compared with hybrid SiO2-coated CdTe QDs. As a result, hybrid SiO2-coated CdTe/CdSe QDs can be used in bioapplications.

  14. Suppression of UV photoluminescence in sandwich-structured Si/C composite films

    NASA Astrophysics Data System (ADS)

    Zhu, Y.; Yuan, C. L.; Liu, R.; Ong, P. P.

    2002-10-01

    Thin films of composite silicon/carbon (Si/C) were prepared by pulsed-laser ablation alternately on C and Si materials on a rotary target, followed by vacuum deposition of the ablated materials on an ultra-clean glass substrate. The film structure consisted of alternate nanolayers of Si nanocrystals and amorphous C, with a fairly sharp demarcation boundary between adjacent layers forming well-defined sandwich structures. At room temperature, this composite nanolayered structure was found to yield much lower photoluminescent (PL) emission in the ultra violet region (300 390 nm) in comparison with that obtained for pure Si or for Si/Al2O3 thin films (see Zhu Y., Wang H. and Ong P. P. J. Phys. D, 33 (2000) 1965, and Zhu Y. and Ong P. P. J. Phys. Condens. Matter, 13 (2001) L1). The suppression mechanism of the UV PL emission appeared to occur in the interfacial surfaces between adjacent crystalline Si and amorphous C layers. It provides a possible way to selectively filter out the usually undesirable UV component of the PL emission from the silicon nanoparticles.

  15. Enhanced photoluminescence in air-suspended carbon nanotubes by oxygen doping

    NASA Astrophysics Data System (ADS)

    Chen, Jihan; Dhall, Rohan; Hou, Bingya; Yang, Sisi; Wang, Bo; Kang, Daejing; Cronin, Stephen B.

    2016-10-01

    We report photoluminescence (PL) imaging and spectroscopy of air-suspended carbon nanotubes (CNTs) before and after exposure to a brief (20 s) UV/ozone treatment. These spectra show enhanced PL intensities in 10 out of 11 nanotubes that were measured, by as much as 5-fold. This enhancement in the luminescence efficiency is caused by oxygen defects which trap excitons. We also observe an average 3-fold increase in the D-band Raman intensity further indicating the creation of defects. Previous demonstrations of oxygen doping have been carried out on surfactant-coated carbon nanotubes dissolved in solution, thus requiring substantial longer ozone/UV exposure times (˜15 h). Here, the ozone treatment is more efficient because of the surface exposure of the air-suspended CNTs. In addition to enhanced PL intensities, we observe narrowing of the emission linewidth by 3-10 nm. This ability to control and engineer defects in CNTs is important for realizing several optoelectronic applications such as light-emitting diodes and single photon sources.

  16. Photoluminescence Studies of ZnSe Starting Materials and Vapor Grown Bulk Crystals

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Feth, S.; Wang, Ling Jun; Lehoczky, S. L.

    2001-01-01

    Low-temperature photoluminescence (PL) spectra were measured on ZnSe starting materials provided by various vendors and on bulk crystals grown from these starting materials by physical vapor transport (PVT) to study the effects of purification and contamination during PVT process. The impurity levels in one set of starting material/grown crystal were also measured by glow discharge mass spectroscopy (GDMS). The purification effect of pre-growth heat treatments and the PVT process is evidenced from the GDMS results which showed orders of magnitude reduction in the Li and Na concentration and a factor of 3 reduction in the O content after growth. The PL spectra showed that the strong emissions associated with Li (or Na) in one of the starting materials disappeared after growth. The GDMS results also showed increases in the At and Si contents by orders of magnitude after growth. To evaluate the contamination of the crystal during the high temperature growth process, three growth runs were processed using similar growth parameters but different furnace environments. The PL spectra suggest that the At contamination originated from the fused silica ampoule and that the Inconel cartridge might have been the cause of the broad Cu green and Cu red bands observed in one of the grown crystals.

  17. Photoluminescence properties of silica-based mesoporous materials similar to those of nanoscale silicon

    NASA Astrophysics Data System (ADS)

    Glinka, Yu. D.; Zyubin, A. S.; Mebel, A. M.; Lin, S. H.; Hwang, L. P.; Chen, Y. T.

    Photoluminescence (PL) from composites of 7- and 15-nm sized silica nanoparticles (SNs) and mesoporous silicas (MSs) induced by 266- (4.66-) and 532-nm (2.33-eV) laser light has been studied at room temperature. The multiband PL from MSs in the range of 1.0-2.1 eV is evidenced to originate from isolated bulk and surface non-bridging oxygens (NBOs) and from NBOs combined with variously placed 1-nm sized pore wall oxygen vacancies (OVs). The nature and diversity of NBO light-emitters are confirmed by ab initio calculations. The PL from SNs exhibits only a short wavelength part of the bands (1.5-2.1 eV) originated from isolated bulk and surface NBOs. This fact indicates that the highly OV-bearing structures occur only in extremely thin ( 1 nm) silica layers. The similarity of spectroscopic properties of silica-based nanoscale materials to those of surface-oxidized silicon nanocrystals and porous silicon, containing silica-passivating layers of the same width, is discussed.

  18. Photoluminescence of Cu-related states in CdTe and CdS

    NASA Astrophysics Data System (ADS)

    Price, K. J.

    2000-10-01

    We present results of Cu-related photoluminescence (PL) in CdTe and CdS single crystals, and CdS/CdTe polycrystalline devices, doped by diffusion of thermally evaporated Cu. In crystalline CdTe:Cu our results are consistent with some Cu atoms occupying substitutional positions on the Cd sublattice and with others forming pairs involving an interstitial Cu and a Cd vacancy. In addition, we find that Cu-related states in CdTe:Cu samples exhibit a reversible "aging" behavior. In crystalline CdS:Cu, the main effect of Cu diffusion is a quenching of the PL intensity. We also show evidence of an exciton bound to a Cu-related site that is stable under short-term light illumination. In addition, a donor-acceptor pair transition may be observed in CdS:Cu using excitation energies below the transition emission energy. We find that PL from polycrystalline CdS/CdTe solar cells with Cu back contacts is qualitatively similar to that in crystalline CdTe:Cu and CdS:Cu. We relate the results to stability behavior of CdS/CdTe solar cells with Cu contacts. This work is supported by NREL.

  19. Enhanced photoluminescence from condensed electron-hole pairs in trenched Si

    NASA Astrophysics Data System (ADS)

    Cheng, Yung-Chen; Sun, Chi-Yuan; Sun, Edward; Chen, Miin-Jang

    2010-12-01

    In this paper, we report the characteristics of low-temperature photoluminescence (PL) from condensed electron-hole (e-h) pairs in p-type silicon substrates with and without high-aspect-ratio trench structures. The average hole diameters of trenches were 140 and 170 nm, and the depth of trenches were about 5 μm. An Al2O3 surface passivation layer with thickness of 10 nm was grown by atomic layer deposition on surfaces of all samples to reduce nonradiative recombination and provide nucleation centers of condensed e-h pairs at Si/Al2O3 interface. Significant enhancement of PL intensity from e-h liquid/droplet (EHL/EHD) was observed in the trenched silicon at temperature below 30 K. Dominant PL from EHL/EHD at 14 K in the trenched silicon with larger hole diameters may be attributed to stronger spatial confinement of condensed e-h pairs in a smaller volume.

  20. Photoluminescent C-dots@RGO for sensitive detection of hydrogen peroxide and glucose.

    PubMed

    Yeh, Ting-Yin; Wang, Chen-I; Chang, Huan-Tsung

    2013-10-15

    We have demonstrated sensitive detections of hydrogen peroxide (H2O2) and glucose using reduced graphene oxide decorated with carbon dots (C-dots@RGO). The C-dots@RGO prepared from catechin (reducing agent and carbon source) and graphene oxide via hydrothermal routes possesses excitation-wavelength-dependence photoluminescence (PL) characteristics, with maximum excitation and emission wavelengths of 365 and 440 nm, respectively. The C-dots@RGO is stable in solution containing NaCl up to 350 mM, but is quenched by reactive oxygen species (ROS). ROS reacts with H2O2 and thus its PL quenching toward the C-dots@RGO is minimized. When using C-dots@RGO and glucose oxidase (GOx), the PL assay allows detection of glucose in the presence of 10 µM of bovine serum albumin, with linearity over a concentration range from 1 to 60 µM (r=0.99) and a limit of detection (at a signal-to-noise ratio of 3) of 140 nM. The practicality of this assay has been validated by determining the concentrations of glucose in serum and saliva samples, with results of 5.1 ± 0.6mM (n=3) and 117.9 ± 8.1 μM (n=3), respectively. Our simple and sensitive assay opens a new avenue of developing assays for various analytes using C-dots@RGO in conjunction with different enzymes.

  1. Facile synthesis and photoluminescence characteristics of blue-emitting nitrogen-doped graphene quantum dots.

    PubMed

    Gu, Jian; Zhang, Xiaoping; Pang, Aimin; Yang, Jun

    2016-04-22

    A one-step hydrothermal method for synthesizing nitrogen-doped graphene quantum dots (N-GQDs) from organic carbon sources is presented in this paper. The high-quality N-GQDs can be obtained via tuning the degree of dehydration/carbonization of citric acid and doping of nitrogen atoms into the graphene lattice. The micromorphology, chemical structure, composition and photoluminescence (PL) characteristics of the N-GQDs were characterized systematically. The size of the obtained N-GQDs is about 5-10 nm with typical topographic heights of 0.8-2.5 nm. There is intense blue emission and excitation-independent PL behavior when the N-GQDs are in aqueous solution. The most remarkable innovation is that the fluorescence quantum yield (FL QY) of our N-GQDs is up to 75.2%, which is much higher than that of most reported GQDs (less than 25%). Thus, it is initially believed that synthesis parameters, hydrothermal process and nitrogen doping may greatly influence the surface state and bandgap of the GQDs, which are important in determining the PL characteristics of the N-GQDs.

  2. Facile synthesis and photoluminescence characteristics of blue-emitting nitrogen-doped graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Gu, Jian; Zhang, Xiaoping; Pang, Aimin; Yang, Jun

    2016-04-01

    A one-step hydrothermal method for synthesizing nitrogen-doped graphene quantum dots (N-GQDs) from organic carbon sources is presented in this paper. The high-quality N-GQDs can be obtained via tuning the degree of dehydration/carbonization of citric acid and doping of nitrogen atoms into the graphene lattice. The micromorphology, chemical structure, composition and photoluminescence (PL) characteristics of the N-GQDs were characterized systematically. The size of the obtained N-GQDs is about 5-10 nm with typical topographic heights of 0.8-2.5 nm. There is intense blue emission and excitation-independent PL behavior when the N-GQDs are in aqueous solution. The most remarkable innovation is that the fluorescence quantum yield (FL QY) of our N-GQDs is up to 75.2%, which is much higher than that of most reported GQDs (less than 25%). Thus, it is initially believed that synthesis parameters, hydrothermal process and nitrogen doping may greatly influence the surface state and bandgap of the GQDs, which are important in determining the PL characteristics of the N-GQDs.

  3. Photoluminescence detection of alpha particle using DAM-ADC nuclear detector

    NASA Astrophysics Data System (ADS)

    Abdalla, Ayman M.; Harraz, Farid A.; Ali, Atif M.; Al-Sayari, S. A.; Al-Hajry, A.

    2016-09-01

    The photoluminescence (PL) and UV-vis spectral analysis of DAM-ADC (diallyl maleate: DAM, polyallyl diglycol carbonate: ADC) nuclear detector are demonstrated for the first time. The DAM-ADC surfaces were exposed to thin 241Am disk source that emits alpha particles with activity 333 kBq. It is found that the track density of the irradiated samples remarkably influences the PL characteristics of the DAM-ADC detector. The spectral peak heights and the integrated intensities under the peaks exhibit linear correlations with correlation coefficient R2=0.9636 and 0.9806, respectively for different alpha particle fluences ranging from 8.16-40.82×107 particles/cm2. Additionally, a correlation coefficient R2=0.9734 was achieved for the UV-vis spectral analysis. The linear fitting functions, along with the corresponding fitting parameters were evaluated in each case. Both the PL and the UV-vis data of the irradiated DAM-ADC samples showed considerable spectral differences, and hence they would be used to offer sensitive approaches for alpha particle detection.

  4. Au/SiO2/QD core/shell/shell nanostructures with plasmonic-enhanced photoluminescence

    NASA Astrophysics Data System (ADS)

    Yang, Ping; Kawasaki, Kazunori; Ando, Masanori; Murase, Norio

    2012-09-01

    A sol-gel method has been developed to fabricate Au/SiO2/quantum dot (QD) core-shell-shell nanostructures with plasmonic-enhanced photoluminescence (PL). Au nanoparticle (NP) was homogeneously coated with a SiO2 shell with adjusted thickness through a Stöber synthesis. When the toluene solution of hydrophobic CdSe/ZnS QDs was mixed with partially hydrolyzed 3-aminopropyltrimethoxysilane (APS) sol, the ligands on the QDs were replaced by a thin functional SiO2 layer because the amino group in partially hydrolyzed APS has strong binding interaction with the QDs. Partially hydrolyzed APS plays an important role as a thin functional layer for the transfers of QDs to water phase and the subsequent connection to aqueous SiO2-coated Au NPs. Although Au NPs were demonstrated as efficient PL quenchers when the SiO2 shell on the Au NPs is thin (less than 5 nm), we found that precise control of the spacing between the Au NP core and the QD shell resulted in QDs with an enhancement of 30 % of PL efficiency. The Au/SiO2/QD core/shell/shell nanostructures also reveal strong surface plasmon scattering, which makes the Au/SiO/QD core-shell-shell nanostructures an excellent dual-modality imaging probe. This technology can serve as a general route for encapsulating a variety of discrete nanomaterials because monodispersed nanostructures often have a similar surface chemistry.

  5. Origin of blue photoluminescence from colloidal silicon nanocrystals fabricated by femtosecond laser ablation in solution.

    PubMed

    Hao, H L; Wu, W S; Zhang, Y; Wu, L K; Shen, W Z

    2016-08-12

    We present a detailed investigation into the origin of blue emission from colloidal silicon (Si) nanocrystals (NCs) fabricated by femtosecond laser ablation of Si powder in 1-hexene. High resolution transmission electron microscopy and Raman spectroscopy observations confirm that Si NCs with average size 2.7 nm are produced and well dispersed in 1-hexene. Fourier transform infrared spectrum and x-ray photoelectron spectra have been employed to reveal the passivation of Si NCs surfaces with organic molecules. On the basis of the structural characterization, UV-visible absorption, temperature-dependent photoluminescence (PL), time-resolved PL, and PL excitation spectra investigations, we deduce that room-temperature blue luminescence from colloidal Si NCs originates from the following two processes: (i) under illumination, excitons first form within colloidal Si NCs by direct transition at the X or Γ (Γ25 → Γ'2) point; (ii) and then some trapped excitons migrate to the surfaces of colloidal Si NCs and further recombine via the surface states associated with the Si-C or Si-C-H2 bonds.

  6. Photoluminescence Studies of ZnSe Starting Materials and Vapor Grown Bulk Crystals

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Feth, Shari; Wang, Ling Jun; Lehoczky, Sandor L.

    1999-01-01

    Low-temperature photoluminescence (PL) spectra and glow discharge mass spectroscopy (GDMS) were measured on ZnSe starting materials provided by various vendors and on bulk crystals grown from these starting materials by physical vapor transport (PVT) to study the effects of purification and contamination during crystal growth process. The purification effect of pre-growth heat treatments and the PVT process is evidenced from the GDMS results which showed orders of magnitude reduction in the Li and Na concentration and a factor of 3 reduction in the 0 content after growth. The PL spectra showed that the strong emissions associated with Li (or Na) in one of the starting materials disappeared after growth. To evaluate the contamination of the crystal during the high temperature growth process three growth runs were processed using similar growth parameters but with different furnace environments. The GDMS results showed orders of magnitude increase in the Al and Si contents after growth. The PL spectra suggest that the Al contamination was originated from the fused silica ampoule and the Inconel cartridge might have been the cause for the broad Cu green and Cu red bands observed in one of the grown crystal.

  7. Time-Resolved Photoluminescence Studies of InGaN/AlGaN Multiple Quantum Wells

    NASA Astrophysics Data System (ADS)

    Zeng, K. C.; Smith, M.; Lin, J. Y.; Jiang, H. X.; Robert, J. C.; Piner, E. L.; McIntosh, F. G.; Bahbahani, M.; Bedair, S. M.; Zavada, J.

    1997-03-01

    Picosecond time-resolved photoluminescence (PL) spectroscopy has been employed to study the dynamic processes of optical transitions in InGaN/AlGaN multiple quantum wells (MQW) grown by metal-organic chemical vapor deposition (MOCVD). The dynamical behavior of the PL emission reveals that the main emission line in these MQW is the combination of the localized exciton and a band-to-impurity emission lines. The spectral lineshape and the recombination dynamics of the localized exciton and of the band-to-impurity transitions have been systematically investigated at different temperatures and excitation intensities and for MQW with different structures and growth conditions. From these studies, important parameters, including the localization energy and the recombination lifetimes of the localized excitons in InGaN/AlGaN quantum wells, the well width fluctuation, alloy compositions in the well and the barrier materials, and the band offset between InGaN and AlGaN can be deduced. Comparing with time-resolved PL results of InGaN/GaN and GaN/AlGaN MQW, important effects of interface on the optical properties of the III-nitride MQW have been evaluated. Implications of our results to device applications will be discussed.

  8. Origin of blue photoluminescence from colloidal silicon nanocrystals fabricated by femtosecond laser ablation in solution

    NASA Astrophysics Data System (ADS)

    Hao, H. L.; Wu, W. S.; Zhang, Y.; Wu, L. K.; Shen, W. Z.

    2016-08-01

    We present a detailed investigation into the origin of blue emission from colloidal silicon (Si) nanocrystals (NCs) fabricated by femtosecond laser ablation of Si powder in 1-hexene. High resolution transmission electron microscopy and Raman spectroscopy observations confirm that Si NCs with average size 2.7 nm are produced and well dispersed in 1-hexene. Fourier transform infrared spectrum and x-ray photoelectron spectra have been employed to reveal the passivation of Si NCs surfaces with organic molecules. On the basis of the structural characterization, UV-visible absorption, temperature-dependent photoluminescence (PL), time-resolved PL, and PL excitation spectra investigations, we deduce that room-temperature blue luminescence from colloidal Si NCs originates from the following two processes: (i) under illumination, excitons first form within colloidal Si NCs by direct transition at the X or Γ (Γ25 → Γ‧2) point; (ii) and then some trapped excitons migrate to the surfaces of colloidal Si NCs and further recombine via the surface states associated with the Si-C or Si-C-H2 bonds.

  9. A dioxaborine cyanine dye as a photoluminescence probe for sensing carbon nanotubes

    PubMed Central

    Lutsyk, Petro; Verbitsky, Anatoly; Piryatinski, Yuri; Shandura, Mykola

    2016-01-01

    The unique properties of carbon nanotubes have made them the material of choice for many current and future industrial applications. As a consequence of the increasing development of nanotechnology, carbon nanotubes show potential threat to health and environment. Therefore, development of efficient method for detection of carbon nanotubes is required. In this work, we have studied the interaction of indopentamethinedioxaborine dye (DOB-719) and single-walled carbon nanotubes (SWNTs) using absorption and photoluminescence (PL) spectroscopy. In the mixture of the dye and the SWNTs we have revealed new optical features in the spectral range of the intrinsic excitation of the dye due to resonance energy transfer from DOB-719 to SWNTs. Specifically, we have observed an emergence of new PL peaks at the excitation wavelength of 735 nm and a redshift of the intrinsic PL peaks of SWNT emission (up to 40 nm) in the near-infrared range. The possible mechanism of the interaction between DOB-719 and SWNTs has been proposed. Thus, it can be concluded that DOB-719 dye has promising applications for designing efficient and tailorable optical probes for the detection of SWNTs. PMID:28144547

  10. Ultrabroad Photoluminescence and Electroluminescence at New Wavelengths from Doped Organometal Halide Perovskites.

    PubMed

    Zhou, Yang; Yong, Zi-Jun; Zhang, Kai-Cheng; Liu, Bo-Mei; Wang, Zhao-Wei; Hou, Jing-Shan; Fang, Yong-Zheng; Zhou, Yi; Sun, Hong-Tao; Song, Bo

    2016-07-21

    Doping of semiconductors by introducing foreign atoms enables their widespread applications in microelectronics and optoelectronics. We show that this strategy can be applied to direct bandgap lead-halide perovskites, leading to the realization of ultrawide photoluminescence (PL) at new wavelengths enabled by doping bismuth (Bi) into lead-halide perovskites. Structural and photophysical characterization reveals that the PL stems from one class of Bi doping-induced optically active center, which is attributed to distorted [PbI6] units coupled with spatially localized bipolarons. Additionally, we find that compositional engineering of these semiconductors can be employed as an additional way to rationally tune the PL properties of doped perovskites. Finally, we accomplished the electroluminescence at cryogenic temperatures by using this system as an emissive layer, marking the first electrically driven devices using Bi-doped photonic materials. Our results suggest that low-cost, earth-abundant, solution-processable Bi-doped perovskite semiconductors could be promising candidate materials for developing optical sources operating at new wavelengths.

  11. Observation of Redshifts of Photoluminescence from Thin Films Assembled by CuCl Nanoclusters

    NASA Astrophysics Data System (ADS)

    Miao, Bingyou; Hong, Jianmin; Chen, Pingping; Yuan, Xiaoli; Han, Min; Wang, Guanghou

    Two samples of thin films, assembled by CuCl nanoclusters, have been prepared by the gas evaporation technique. The CuCl nanoclusters were deposited on monocrystalline silicon and quartz substrates and then coated with a layer of NaCl to prevent oxidation of the CuCl nanoclusters. From transmission electron microscope and selected area diffraction, it is clear that the two samples consist of CuCl nanocrystals and Cu aggregates and the mean diameters are about 3 nm and 6 nm. From the absorption and photoluminescence (PL) spectra of the two samples carried out at ~300 K, we found that the peaks of exciton absorption do not show up and luminescence peaks shift to lower energies, possibly due to the strong coupling between exciton and phonon. At 77 K, the PL peaks of excitons broadened by exciton-phonon coupling have been observed, in approximate agreement with the values calculated by the quantum confinement model. The broad peaks of emission from trapped states or bands have also been observed at 77 K. In addition, the interaction between exciton and phonon is stronger in the sample with mean diameter about 3 nm according to a larger broadening and redshift of the PL peak from excitons, in qualitative agreement with theoretical prediction.

  12. The down-conversion and up-conversion photoluminescence properties of Na{sub 0.5}Bi{sub 0.5}TiO{sub 3}:Yb{sup 3+}/Pr{sup 3+} ceramics

    SciTech Connect

    Huang, Yinpeng; Luo, Laihui Wang, Jia; Zuo, Qianghui; Yao, Yongjie; Li, Weiping

    2015-07-28

    Na{sub 0.5}Bi{sub 0.5−x−y}Yb{sub x}Pr{sub y}TiO{sub 3} (NBT:xYb/yPr) ceramics with different Yb and Pr contents are prepared. Both the down-conversion (DC) and up-conversion (UC) photoluminescence (PL) of the ceramics via 453 and 980 nm excitation, respectively, are investigated. The effect of Yb{sup 3+} and Pr{sup 3+} doping contents on the DC and UC PL is significantly different from each other. Furthermore, the UC PL of the ceramics as a function of temperatures is measured to investigate the UC process in detail. Based on energy level diagram of Pr{sup 3+} and Yb{sup 3+} ions and the DC and UC PL spectra, the DC and UC PL mechanisms of Pr{sup 3+} and Yb{sup 3+} ions are discussed. Especially, the UC PL mechanism is clarified, which is different from the previously reported literature. Also, the temperature sensing properties of the ceramics are studied based on the photoluminescence ratio technique, using the thermal coupling energy levels of Pr{sup 3+}.

  13. Photoluminescence characterization of polythiophene films incorporated with highly functional molecules such as metallophthalocyanine

    SciTech Connect

    Kobe, Hiroaki; Ohnaka, Kazumasa; Kato, Hitoshi; Takemura, Susumu; Shimada, Kazuhiro; Hiramatsu, Tomoyasu; Matsui, Kazunori

    2013-01-15

    The photoluminescence (PL) of conducting polymer polythiophene (PT) films incorporated with metallophthalocyanines (PcMs) such as CuPc, MgPc, FePc, Li{sub 2}Pc, and CoPc was studied by PL and time-correlated single photon counting (TCSPC) measurements. Polymer films were prepared by electrochemical polymerization and PcMs migrated into the polymer films by a diffusion method using acetonitrile or toluene as a solvent to dissolve the PcMs. The wavelength of PL emission peaks changed significantly depending on the solvent used in the doping process. Using acetonitrile, the observed PL emission peaks originated from the Q band, whereas they were assigned to the Soret band in the case of toluene. TCSPC measurements showed that PL emission took place through a ligand-ligand transition process when using acetonitrile because the average lifetimes were comparable and independent of the central metal ions for CoPc-, Li{sub 2}Pc-, and MgPc-doped polymer films. Conversely, using toluene, it was found that ligand-ligand emission occurred for Li{sub 2}Pc-, MgPc-, and FePc-doped films. To identify the cause of the drastic change in PL emission pattern, x-ray photoelectron spectroscopy measurements were obtained. A lower binding energy component appeared in the C 1s core-level spectra of acetonitrile-processed PcM-doped PT films, whereas this component shifted to higher energy and overlapped with the main peak for toluene-processed PcM-doped PT films. The lower binding energy component corresponded to photoelectrons due to the C atoms in the benzene rings of the ligand. Lower binding energy components also appeared in the N 1s core-level spectra of acetonitrile-processed PcM-doped PT films, and this component shifted to higher energy for toluene-processed PcM-doped PT films. These lower energy components were assigned to the core-level peaks due to the N atoms at the meso position bridging between pyrrole rings. This suggests that the electron charge at the N sites of the meso

  14. Low tip damage AFM technique development for nano structures characterization

    NASA Astrophysics Data System (ADS)

    Liu, Biao; Wang, Charles C.; Huang, Po-Fu; Uritsky, Yuri

    2010-06-01

    Ambient dynamic mode (tapping mode or intermittent-contact mode) AFM imaging has been used extensively for the characterization of the topography of nano structures. However, the results are beset with artifacts, because hard tapping of the AFM tip on sample surface usually causes premature tip damage. Through careful study of the cantilever amplitude and phase signals as functions of tip-to-sample distance, principle of non-contact AFM operation was discovered to enable high resolution and low tip damage AFM image acquisition [1, 2]. However, current study discovers that the conventional way of acquiring amplitude and phase versus distance curves gives erroneous non-contact operating range, because the tip gets damaged during the data acquisition process. A new technique is developed to reliably map the operating parameters of an intact tip that ensures the AFM be operated with the correct non-contact settings. Two examples are given to illustrate the successful applications of this new technique. The first example involves the size characterization of polystyrene latex (PSL) nano particles used for light scattering tool calibration. The second example is the development of robust recipes for the measurement of the depth of phase-shift mask trenches.

  15. Order of magnitude enhancement of monolayer MoS2 photoluminescence due to near-field energy influx from nanocrystal films

    NASA Astrophysics Data System (ADS)

    Guo, Tianle; Sampat, Siddharth; Zhang, Kehao; Robinson, Joshua A.; Rupich, Sara M.; Chabal, Yves J.; Gartstein, Yuri N.; Malko, Anton V.

    2017-02-01

    Two-dimensional transition metal dichalcogenides (TMDCs) like MoS2 are promising candidates for various optoelectronic applications. The typical photoluminescence (PL) of monolayer MoS2 is however known to suffer very low quantum yields. We demonstrate a 10-fold increase of MoS2 excitonic PL enabled by nonradiative energy transfer (NRET) from adjacent nanocrystal quantum dot (NQD) films. The understanding of this effect is facilitated by our application of transient absorption (TA) spectroscopy to monitor the energy influx into the monolayer MoS2 in the process of ET from photoexcited CdSe/ZnS nanocrystals. In contrast to PL spectroscopy, TA can detect even non-emissive excitons, and we register an order of magnitude enhancement of the MoS2 excitonic TA signatures in hybrids with NQDs. The appearance of ET-induced nanosecond-scale kinetics in TA features is consistent with PL dynamics of energy-accepting MoS2 and PL quenching data of the energy-donating NQDs. The observed enhancement is attributed to the reduction of recombination losses for excitons gradually transferred into MoS2 under quasi-resonant conditions as compared with their direct photoproduction. The TA and PL data clearly illustrate the efficacy of MoS2 and likely other TMDC materials as energy acceptors and the possibility of their practical utilization in NRET-coupled hybrid nanostructures.

  16. Origin of the Photoluminescence Quantum Yields Enhanced by Alkane-Termination of Freestanding Silicon Nanocrystals: Temperature-Dependence of Optical Properties

    PubMed Central

    Ghosh, Batu; Takeguchi, Masaki; Nakamura, Jin; Nemoto, Yoshihiro; Hamaoka, Takumi; Chandra, Sourov; Shirahata, Naoto

    2016-01-01

    On the basis of the systematic study on temperature dependence of photoluminescence (PL) properties along with relaxation dynamics we revise a long-accepted mechanism for enhancing absolute PL quantum yields (QYs) of freestanding silicon nanocrystals (ncSi). A hydrogen-terminated ncSi (ncSi:H) of 2.1 nm was prepared by thermal disproportination of (HSiO1.5)n, followed by hydrofluoric etching. Room-temperature PL QY of the ncSi:H increased twentyfold only by hydrosilylation of 1-octadecene (ncSi-OD). A combination of PL spectroscopic measurement from cryogenic to room temperature with structural characterization allows us to link the enhanced PL QYs with the notable difference in surface structure between the ncSi:H and the ncSi-OD. The hydride-terminated surface suffers from the presence of a large amount of nonradiative relaxation channels whereas the passivation with alkyl monolayers suppresses the creation of the nonradiative relaxation channels to yield the high PL QY. PMID:27830771

  17. Order of magnitude enhancement of monolayer MoS2 photoluminescence due to near-field energy influx from nanocrystal films.

    PubMed

    Guo, Tianle; Sampat, Siddharth; Zhang, Kehao; Robinson, Joshua A; Rupich, Sara M; Chabal, Yves J; Gartstein, Yuri N; Malko, Anton V

    2017-02-03

    Two-dimensional transition metal dichalcogenides (TMDCs) like MoS2 are promising candidates for various optoelectronic applications. The typical photoluminescence (PL) of monolayer MoS2 is however known to suffer very low quantum yields. We demonstrate a 10-fold increase of MoS2 excitonic PL enabled by nonradiative energy transfer (NRET) from adjacent nanocrystal quantum dot (NQD) films. The understanding of this effect is facilitated by our application of transient absorption (TA) spectroscopy to monitor the energy influx into the monolayer MoS2 in the process of ET from photoexcited CdSe/ZnS nanocrystals. In contrast to PL spectroscopy, TA can detect even non-emissive excitons, and we register an order of magnitude enhancement of the MoS2 excitonic TA signatures in hybrids with NQDs. The appearance of ET-induced nanosecond-scale kinetics in TA features is consistent with PL dynamics of energy-accepting MoS2 and PL quenching data of the energy-donating NQDs. The observed enhancement is attributed to the reduction of recombination losses for excitons gradually transferred into MoS2 under quasi-resonant conditions as compared with their direct photoproduction. The TA and PL data clearly illustrate the efficacy of MoS2 and likely other TMDC materials as energy acceptors and the possibility of their practical utilization in NRET-coupled hybrid nanostructures.

  18. Redox properties of a single (7,5)single-walled carbon nanotube determined by an in situ photoluminescence spectroelectrochemical method

    NASA Astrophysics Data System (ADS)

    Hong, Liu; Mouri, Shinichiro; Miyauchi, Yuhei; Matsuda, Kazunari; Nakashima, Naotoshi

    2014-10-01

    The determination of electronic states of single-walled carbon nanotubes (SWNTs) has been a central issue in science and nanotechnology of carbon nanotubes. We here describe the oxidation and reduction potentials of a single SWNT determined by in situ photoluminescence (PL) spectroelectrochemical measurements. By PL imaging and single SWNT PL spectroscopy, the stepwise quenching behavior of the PL from a single (7,5)SWNT was detected as the outer-applied potentials increased. Based on the analysis of the obtained potential-dependent PL plots using the Nernst equation, the oxidation and reduction potentials of the (7,5) tube are successfully determined as 0.41 V and -0.38 V vs. Ag/AgCl, respectively, which shift from those of the bulk (7,5)SWNTs. We further observed a PL blueshift and narrowing of the line width as the external-applied potential to the single SWNT increases. The present results are important for understanding the electronic properties of a single (n,m)SWNT and its applications.

  19. Order of magnitude enhancement of monolayer MoS2 photoluminescence due to near-field energy influx from nanocrystal films

    PubMed Central

    Guo, Tianle; Sampat, Siddharth; Zhang, Kehao; Robinson, Joshua A.; Rupich, Sara M.; Chabal, Yves J.; Gartstein, Yuri N.; Malko, Anton V.

    2017-01-01

    Two-dimensional transition metal dichalcogenides (TMDCs) like MoS2 are promising candidates for various optoelectronic applications. The typical photoluminescence (PL) of monolayer MoS2 is however known to suffer very low quantum yields. We demonstrate a 10-fold increase of MoS2 excitonic PL enabled by nonradiative energy transfer (NRET) from adjacent nanocrystal quantum dot (NQD) films. The understanding of this effect is facilitated by our application of transient absorption (TA) spectroscopy to monitor the energy influx into the monolayer MoS2 in the process of ET from photoexcited CdSe/ZnS nanocrystals. In contrast to PL spectroscopy, TA can detect even non-emissive excitons, and we register an order of magnitude enhancement of the MoS2 excitonic TA signatures in hybrids with NQDs. The appearance of ET-induced nanosecond-scale kinetics in TA features is consistent with PL dynamics of energy-accepting MoS2 and PL quenching data of the energy-donating NQDs. The observed enhancement is attributed to the reduction of recombination losses for excitons gradually transferred into MoS2 under quasi-resonant conditions as compared with their direct photoproduction. The TA and PL data clearly illustrate the efficacy of MoS2 and likely other TMDC materials as energy acceptors and the possibility of their practical utilization in NRET-coupled hybrid nanostructures. PMID:28155920

  20. Order of magnitude enhancement of monolayer MoS2 photoluminescence due to near-field energy influx from nanocrystal films

    DOE PAGES

    Guo, Tianle; Sampat, Siddharth; Zhang, Kehao; ...

    2017-02-03

    Two-dimensional transition metal dichalcogenides (TMDCs) like MoS2 are promising candidates for various optoelectronic applications. The typical photoluminescence (PL) of monolayer MoS2 is however known to suffer very low quantum yields. We demonstrate a 10-fold increase of MoS2 excitonic PL enabled by nonradiative energy transfer (NRET) from adjacent nanocrystal quantum dot (NQD) films. The understanding of this effect is facilitated by our application of transient absorption (TA) spectroscopy to monitor the energy influx into the monolayer MoS2 in the process of ET from photoexcited CdSe/ZnS nanocrystals. In contrast to PL spectroscopy, TA can detect even non-emissive excitons, and we register anmore » order of magnitude enhancement of the MoS2 excitonic TA signatures in hybrids with NQDs. The appearance of ET-induced nanosecond-scale kinetics in TA features is consistent with PL dynamics of energy-accepting MoS2 and PL quenching data of the energy-donating NQDs. The observed enhancement is attributed to the reduction of recombination losses for excitons gradually transferred into MoS2 under quasi-resonant conditions as compared with their direct photoproduction. Furthermore, the TA and PL data clearly illustrate the efficacy of MoS2 and likely other TMDC materials as energy acceptors and the possibility of their practical utilization in NRET-coupled hybrid nanostructures.« less

  1. Origin of the Photoluminescence Quantum Yields Enhanced by Alkane-Termination of Freestanding Silicon Nanocrystals: Temperature-Dependence of Optical Properties

    NASA Astrophysics Data System (ADS)

    Ghosh, Batu; Takeguchi, Masaki; Nakamura, Jin; Nemoto, Yoshihiro; Hamaoka, Takumi; Chandra, Sourov; Shirahata, Naoto

    2016-11-01

    On the basis of the systematic study on temperature dependence of photoluminescence (PL) properties along with relaxation dynamics we revise a long-accepted mechanism for enhancing absolute PL quantum yields (QYs) of freestanding silicon nanocrystals (ncSi). A hydrogen-terminated ncSi (ncSi:H) of 2.1 nm was prepared by thermal disproportination of (HSiO1.5)n, followed by hydrofluoric etching. Room-temperature PL QY of the ncSi:H increased twentyfold only by hydrosilylation of 1-octadecene (ncSi-OD). A combination of PL spectroscopic measurement from cryogenic to room temperature with structural characterization allows us to link the enhanced PL QYs with the notable difference in surface structure between the ncSi:H and the ncSi-OD. The hydride-terminated surface suffers from the presence of a large amount of nonradiative relaxation channels whereas the passivation with alkyl monolayers suppresses the creation of the nonradiative relaxation channels to yield the high PL QY.

  2. Fractal properties of macrophage membrane studied by AFM.

    PubMed

    Bitler, A; Dover, R; Shai, Y

    2012-12-01

    Complexity of cell membrane poses difficulties to quantify corresponding morphology changes during cell proliferation and damage. We suggest using fractal dimension of the cell membrane to quantify its complexity and track changes produced by various treatments. Glutaraldehyde fixed mouse RAW 264.7 macrophage membranes were chosen as model system and imaged in PeakForce QNM (quantitative nanomechanics) mode of AFM (atomic force microscope). The morphology of the membranes was characterized by fractal dimension. The parameter was calculated for set of AFM images by three different methods. The same calculations were done for the AFM images of macrophages treated with colchicine, an inhibitor of the microtubule polymerization, and microtubule stabilizing agent taxol. We conclude that fractal dimension can be additional and useful parameter to characterize the cell membrane complexity and track the morphology changes produced by different treatments.

  3. AFM of biological complexes: what can we learn?

    PubMed Central

    Gaczynska, Maria; Osmulski, Pawel A.

    2009-01-01

    The term “biological complexes” broadly encompasses particles as diverse as multisubunit enzymes, viral capsids, transport cages, molecular nets, ribosomes, nucleosomes, biological membrane components and amyloids. The complexes represent a broad range of stability and composition. Atomic force microscopy offers a wealth of structural and functional data about such assemblies. For this review, we choose to comment on the significance of AFM to study various aspects of biology of selected nonmembrane protein assemblies. Such particles are large enough to reveal many structural details under the AFM probe. Importantly, the specific advantages of the method allow for gathering dynamic information about their formation, stability or allosteric structural changes critical for their function. Some of them have already found their way to nanomedical or nanotechnological applications. Here we present examples of studies where the AFM provided pioneering information about the biology of complexes, and examples of studies where the simplicity of the method is used toward the development of potential diagnostic applications. PMID:19802337

  4. Sub-diffraction nano manipulation using STED AFM.

    PubMed

    Chacko, Jenu Varghese; Canale, Claudio; Harke, Benjamin; Diaspro, Alberto

    2013-01-01

    In the last two decades, nano manipulation has been recognized as a potential tool of scientific interest especially in nanotechnology and nano-robotics. Contemporary optical microscopy (super resolution) techniques have also reached the nanometer scale resolution to visualize this and hence a combination of super resolution aided nano manipulation ineluctably gives a new perspective to the scenario. Here we demonstrate how specificity and rapid determination of structures provided by stimulated emission depletion (STED) microscope can aid another microscopic tool with capability of mechanical manoeuvring, like an atomic force microscope (AFM) to get topological information or to target nano scaled materials. We also give proof of principle on how high-resolution real time visualization can improve nano manipulation capability within a dense sample, and how STED-AFM is an optimal combination for this job. With these evidences, this article points to future precise nano dissections and maybe even to a nano-snooker game with an AFM tip and fluorospheres.

  5. Optimization of phase contrast in bimodal amplitude modulation AFM

    PubMed Central

    Damircheli, Mehrnoosh; Payam, Amir F

    2015-01-01

    Summary Bimodal force microscopy has expanded the capabilities of atomic force microscopy (AFM) by providing high spatial resolution images, compositional contrast and quantitative mapping of material properties without compromising the data acquisition speed. In the first bimodal AFM configuration, an amplitude feedback loop keeps constant the amplitude of the first mode while the observables of the second mode have not feedback restrictions (bimodal AM). Here we study the conditions to enhance the compositional contrast in bimodal AM while imaging heterogeneous materials. The contrast has a maximum by decreasing the amplitude of the second mode. We demonstrate that the roles of the excited modes are asymmetric. The operational range of bimodal AM is maximized when the second mode is free to follow changes in the force. We also study the contrast in trimodal AFM by analyzing the kinetic energy ratios. The phase contrast improves by decreasing the energy of second mode relative to those of the first and third modes. PMID:26114079

  6. Mounting of Escherichia coli spheroplasts for AFM imaging.

    SciTech Connect

    Sullivan, Claretta J; Morrell-Falvey, Jennifer L; Allison, David P; Doktycz, Mitchel John

    2005-11-01

    The cytoplasmic membrane of Escherichia coli (E. coli) is the location of numerous, chemically specific transporters and recognition elements. Investigation of this membrane in vivo by atomic force microscopy (AFM) requires removal of the cell wall and stable immobilization of the spheroplast. AFM images demonstrate that spheroplasts can be secured with warm gelatin applied to the mica substrate just before the addition of a spheroplast suspension. The resulting preparation can be repeatedly imaged by AFM over the course of several hours. Confocal fluorescence imaging confirms the association of the spheroplasts with the gelatin layer. Gelatin molecules are known to reorder into a network after heating. Entrapment within this gelatin network is believed to be responsible for the immobilization of spheroplasts on mica.

  7. Mechanisms behind blue, green, and red photoluminescence emissions in CaWO4 and CaMoO4 powders

    NASA Astrophysics Data System (ADS)

    Campos, A. B.; Simões, A. Z.; Longo, E.; Varela, J. A.; Longo, V. M.; de Figueiredo, A. T.; De Vicente, F. S.; Hernandes, A. C.

    2007-07-01

    A combined experimental and theoretical study was conducted to analyze the photoluminescence (PL) properties of ordered and disordered CaWO4 (CW) and CaMoO4 (CM) powders. Two mechanisms were found to be responsible for photoluminescence emission in CW and CM powders. The first one, in the disordered powders, was caused by oxygen complex vacancies [MO3•VOx], [MO3•VO•] and [MO3•VO••], where M =W or Mo, which leads to additional levels in the band gap. The second mechanism, in ordered powders, was caused by an intrinsic slight distortion of the [WO4] or [MoO4] tetrahedral in the short range.

  8. White-light photoluminescence and photoactivation in cadmium sulfide embedded in mesoporous silicon dioxide templates studied by confocal laser scanning microscopy.

    PubMed

    Pellicer, E; Rossinyol, E; Rosado, M; Guerrero, M; Domingo-Roca, R; Suriñach, S; Castell, O; Baró, M D; Roldán, M; Sort, J

    2013-10-01

    SBA-15 and SBA-16 silica templates have been infiltrated with CdS by means of nanocasting using a hybrid precursor. The morphology and structure of both the SiO2@CdS nanocomposites and the silica-free CdS replicas have been characterized. The three-dimensional nanocrystalline CdS networks embedded in SBA-15 and SBA-16 silica templates exhibit broad photoluminescence (PL) spectra over the entire visible range, together with enhanced PL intensity compared to silica-free CdS replicas. These effects result from the role silica plays in passivating the surface of the CdS mesostructures. Furthermore, photoactivation is eventually observed during continuous illumination because of both structural and chemical surface modifications. Owing to this combination of properties, these materials could be appealing for solid-state lighting, where ultra-bright near-white PL emission is indispensable.

  9. Systematic study of surface morphology, photoluminescence efficiency, and spin-detection sensitivity in (110)-oriented GaAs/AlGaAs quantum wells

    NASA Astrophysics Data System (ADS)

    Iba, Satoshi; Saito, Hidekazu; Watanabe, Ken; Ohno, Yuzo; Yuasa, Shinji

    2016-11-01

    We prepared (110)-oriented GaAs/AlGaAs multiple-quantum-well (MQW) samples by molecular beam epitaxy (MBE) under different growth conditions, and conducted systematic measurements of surface morphology, photoluminescence (PL), and spin-detection sensitivity at room temperature. Excellent surface flatness and high PL intensity were observed for the samples grown at temperatures ≥450 °C and As4/Ga flux ratios ≥40. It was found that the PL intensity of (110) MQWs was higher than that of the conventional (100) MQWs grown using the same MBE system. At the same time, we confirmed that the spin-detection sensitivity of (110) MQWs we obtained was an order of magnitude higher than that of the (100) MQWs. These results suggest that the newly developed (110) MQWs indeed have greater advantages than the conventional (100) MQWs for use in emerging spin-optical devices such as spin-controlled lasers.

  10. Quasiphase Transition in a Single File of Water Molecules Encapsulated in (6,5) Carbon Nanotubes Observed by Temperature-Dependent Photoluminescence Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ma, Xuedan; Cambré, Sofie; Wenseleers, Wim; Doorn, Stephen K.; Htoon, Han

    2017-01-01

    Molecules confined inside single-walled carbon nanotubes (SWCNTs) behave quite differently from their bulk analogues. In this Letter we present temperature-dependent (4.2 K up to room temperature) photoluminescence (PL) spectra of water-filled and empty single-chirality (6,5) SWCNTs. Superimposed on a linear temperature-dependent PL spectral shift of the empty SWCNTs, an additional stepwise PL spectral shift of the water-filled SWCNTs is observed at ˜150 K . With the empty SWCNTs serving as an ideal reference system, we assign this shift to temperature-induced changes occurring in the single-file chain of water molecules encapsulated in the tubes. Our molecular dynamics simulations further support the occurrence of a quasiphase transition of the orientational order of the water dipoles in the single-file chain.

  11. Determination of the electron-capture coefficients and the concentration of free electrons in GaN from time-resolved photoluminescence.

    PubMed

    Reshchikov, M A; McNamara, J D; Toporkov, M; Avrutin, V; Morkoç, H; Usikov, A; Helava, H; Makarov, Yu

    2016-11-30

    Point defects in high-purity GaN layers grown by hydride vapor phase epitaxy are studied by steady-state and time-resolved photoluminescence (PL). The electron-capture coefficients for defects responsible for the dominant defect-related PL bands in this material are found. The capture coefficients for all the defects, except for the green luminescence (GL1) band, are independent of temperature. The electron-capture coefficient for the GL1 band significantly changes with temperature because the GL1 band is caused by an internal transition in the related defect, involving an excited state acting as a giant trap for electrons. By using the determined electron-capture coefficients, the concentration of free electrons can be found at different temperatures by a contactless method. A new classification system is suggested for defect-related PL bands in undoped GaN.

  12. Electrostatic effect of Au nanoparticles on near-infrared photoluminescence from Si/SiGe due to nanoscale metal/semiconductor contact

    NASA Astrophysics Data System (ADS)

    Yin, Yefei; Wang, Ze; Wang, Shuguang; Bai, Yujie; Jiang, Zuimin; Zhong, Zhenyang

    2017-04-01

    Photoluminescence (PL) from Si and SiGe is comprehensively modified by Au NPs under excitation without surface plasmon resonance. Moreover, the PL sensitively depends on the size of the Au NPs, the excitation power and the thickness of the Si layer between the Au NPs and SiGe. A model is proposed in terms of the electrostatic effects of Au NPs naturally charged by electron transfer through the nanoscale metal/semiconductor Schottky junction without an external bias or external injection of carriers. The model accounts well for all the unique PL features. It also reveals that Au NPs can substantially modify the energy band structures, distribution and transition of carriers in the nanoscale region below the Au NPs. Our results demonstrate that Au NPs on semiconductors can efficiently modulate light–matter interaction.

  13. Quasiphase Transition in a Single File of Water Molecules Encapsulated in (6,5) Carbon Nanotubes Observed by Temperature-Dependent Photoluminescence Spectroscopy.

    PubMed

    Ma, Xuedan; Cambré, Sofie; Wenseleers, Wim; Doorn, Stephen K; Htoon, Han

    2017-01-13

    Molecules confined inside single-walled carbon nanotubes (SWCNTs) behave quite differently from their bulk analogues. In this Letter we present temperature-dependent (4.2 K up to room temperature) photoluminescence (PL) spectra of water-filled and empty single-chirality (6,5) SWCNTs. Superimposed on a linear temperature-dependent PL spectral shift of the empty SWCNTs, an additional stepwise PL spectral shift of the water-filled SWCNTs is observed at ∼150  K. With the empty SWCNTs serving as an ideal reference system, we assign this shift to temperature-induced changes occurring in the single-file chain of water molecules encapsulated in the tubes. Our molecular dynamics simulations further support the occurrence of a quasiphase transition of the orientational order of the water dipoles in the single-file chain.

  14. Analysis of the factors governing the enhanced photoluminescence brightness of Li-doped Y2O3:Eu thin-film phosphors

    NASA Astrophysics Data System (ADS)

    Cho, Jun Yeol; Do, Young Rag; Huh, Young-Duk

    2006-09-01

    The authors studied the Li concentration dependence of the internal efficiency and extraction efficiency contributions to the enhanced photoluminescence (PL) brightness of the Li-doped Y2O3:Eu thin films. Experiments conducted with excitation at a wavelength of 254nm showed that adding 20mol% Li2CO3 to conventional Y2O3:Eu thin films improved their PL brightness by a factor of over 7.0. This improvement is attributed to enhanced internal factors (crystallinity, grains, and substitution of interstitial oxygen) and the increased optical volume (thickness), as well as the reduction of photon trapping in the high-index guiding layers of the Y2O3:Eu thin films. They also discuss how to quantitatively determine the contributions of the internal efficiency, the extraction efficiency, and the optical volume to the enhanced PL brightness of the Li-doped Y2O3:Eu thin-film phosphors.

  15. Electrostatic effect of Au nanoparticles on near-infrared photoluminescence from Si/SiGe due to nanoscale metal/semiconductor contact.

    PubMed

    Yin, Yefei; Wang, Ze; Wang, Shuguang; Bai, Yujie; Jiang, Zuimin; Zhong, Zhenyang

    2017-04-18

    Photoluminescence (PL) from Si and SiGe is comprehensively modified by Au NPs under excitation without surface plasmon resonance. Moreover, the PL sensitively depends on the size of the Au NPs, the excitation power and the thickness of the Si layer between the Au NPs and SiGe. A model is proposed in terms of the electrostatic effects of Au NPs naturally charged by electron transfer through the nanoscale metal/semiconductor Schottky junction without an external bias or external injection of carriers. The model accounts well for all the unique PL features. It also reveals that Au NPs can substantially modify the energy band structures, distribution and transition of carriers in the nanoscale region below the Au NPs. Our results demonstrate that Au NPs on semiconductors can efficiently modulate light-matter interaction.

  16. Determination of the electron-capture coefficients and the concentration of free electrons in GaN from time-resolved photoluminescence

    PubMed Central

    Reshchikov, M. A.; McNamara, J. D.; Toporkov, M.; Avrutin, V.; Morkoç, H.; Usikov, A.; Helava, H.; Makarov, Yu.

    2016-01-01

    Point defects in high-purity GaN layers grown by hydride vapor phase epitaxy are studied by steady-state and time-resolved photoluminescence (PL). The electron-capture coefficients for defects responsible for the dominant defect-related PL bands in this material are found. The capture coefficients for all the defects, except for the green luminescence (GL1) band, are independent of temperature. The electron-capture coefficient for the GL1 band significantly changes with temperature because the GL1 band is caused by an internal transition in the related defect, involving an excited state acting as a giant trap for electrons. By using the determined electron-capture coefficients, the concentration of free electrons can be found at different temperatures by a contactless method. A new classification system is suggested for defect-related PL bands in undoped GaN. PMID:27901025

  17. Mapping individual cosmid DNAs by direct AFM imaging.

    PubMed

    Allison, D P; Kerper, P S; Doktycz, M J; Thundat, T; Modrich, P; Larimer, F W; Johnson, D K; Hoyt, P R; Mucenski, M L; Warmack, R J

    1997-05-01

    Individual cosmid clones have been restriction mapped by directly imaging, with the atomic force microscope (AFM), a mutant EcoRI endonuclease site-specifically bound to DNA. Images and data are presented that locate six restriction sites, predicted from gel electrophoresis, on a 35-kb cosmid isolated from mouse chromosome 7. Measured distances between endonuclease molecules bound to lambda DNA, when compared to known values, demonstrate the accuracy of AFM mapping to better than 1%. These results may be extended to identify other important site-specific protein-DNA interactions, such as transcription factor and mismatch repair enzyme binding, difficult to resolve by current techniques.

  18. BOREAS AFM-04 Twin Otter Aircraft Flux Data

    NASA Technical Reports Server (NTRS)

    MacPherson, J. Ian; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Desjardins, Raymond L.; Smith, David E. (Technical Monitor)

    2000-01-01

    The BOREAS AFM-5 team collected and processed data from the numerous radiosonde flights during the project. The goals of the AFM-05 team were to provide large-scale definition of the atmosphere by supplementing the existing AES aerological network, both temporally and spatially. This data set includes basic upper-air parameters collected from the network of upper-air stations during the 1993, 1994, and 1996 field campaigns over the entire study region. The data are contained in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884) or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  19. Determining surface properties with bimodal and multimodal AFM.

    PubMed

    Forchheimer, D; Borysov, Stanislav S; Platz, D; Haviland, David B

    2014-12-05

    Conventional dynamic atomic force microscopy (AFM) can be extended to bimodal and multimodal AFM in which the cantilever is simultaneously excited at two or more resonance frequencies. Such excitation schemes result in one additional amplitude and phase images for each driven resonance, and potentially convey more information about the surface under investigation. Here we present a theoretical basis for using this information to approximate the parameters of a tip-surface interaction model. The theory is verified by simulations with added noise corresponding to room-temperature measurements.

  20. GPIM AF-M315E Propulsion System

    NASA Technical Reports Server (NTRS)

    Spores, Ronald A.; Masse, Robert; Kimbrel, Scott; McLean, Chris

    2014-01-01

    The NASA Space Technology mission Directorate's (STMD) Green Propellant Infusion Mission (GPIM) Technology Demonstration Mission (TDM) will demonstrate an operational AF-M315E green propellant propulsion system. Aerojet-Rocketdyne is responsible for the development of the propulsion system payload. This paper statuses the propulsion system module development, including thruster design and system design; Initial test results for the 1N engineering model thruster are presented. The culmination of this program will be high-performance, green AF-M315E propulsion system technology at TRL 7+, with components demonstrated to TRL 9, ready for direct infusion to a wide range of applications for the space user community.

  1. Influence of inhomogeneous porosity on silicon nanowire Raman enhancement and leaky mode modulated photoluminescence

    NASA Astrophysics Data System (ADS)

    Ratchford, Daniel; Yeom, Junghoon; Long, James P.; Pehrsson, Pehr. E.

    2015-02-01

    Metal-assisted chemical etching (MACE) offers an inexpensive, massively parallel fabrication process for producing silicon nanowires (SiNWs). These nanowires can possess a degree of porosity depending on etch conditions. Because the porosity is often spatially inhomogeneous, there is a need to better understand its nature if applications exploiting the porosity are to be pursued. Here, the resolution afforded by micro-Raman and micro-photoluminescence (PL) is used to elucidate the effects of porosity heterogeneity on the optical properties of individual SiNWs produced in large arrays with MACE, while also determining the spatial character of the heterogeneity. For highly porous SiNWs, there is a dramatic reduction in Raman signal and an increase in PL near the SiNW tips. PL spectra collected along the SiNW length exhibit peaks due to leaky mode resonances. Analysis of the PL resonance peaks, Raman spectrum line shape, SEM images, and EDS spectra indicate that the SiNWs possess both radial and axial heterogeneity wherein, from base to SiNW tip, the SiNWs comprise a shell of increasingly thick porous Si surrounding a tapering core of bulk Si. This work describes how structural porosity variation shapes SiNW optical properties, which will influence the design of new SiNW-based photonic devices and chemical/biological sensors.Metal-assisted chemical etching (MACE) offers an inexpensive, massively parallel fabrication process for producing silicon nanowires (SiNWs). These nanowires can possess a degree of porosity depending on etch conditions. Because the porosity is often spatially inhomogeneous, there is a need to better understand its nature if applications exploiting the porosity are to be pursued. Here, the resolution afforded by micro-Raman and micro-photoluminescence (PL) is used to elucidate the effects of porosity heterogeneity on the optical properties of individual SiNWs produced in large arrays with MACE, while also determining the spatial character of the

  2. Freestanding carbon nanodots/poly (vinyl alcohol) films with high photoluminescent quantum yield realized by inverted-pyramid structure

    NASA Astrophysics Data System (ADS)

    Pang, Linna; Ba, Lixiang; Pan, Wei; Shen, Wenzhong

    2017-02-01

    Carbon nanodots (C-dots) have attracted great attention for their biocompatibility and strong tunable photoluminescence (PL). However, aggregation-induced PL quenching blocks their practical application in solid-state optoelectronics. Here, we report a luminescent C-dots freestanding film with a substantially enhanced high quantum yield (QY) of 72.3%. A facile template method, rather than complicate lithography and etching technique is proposed to fabricate the C-dots composite films with large-area (8 inch × 8 inch) ordered micro-scale inverted-pyramid patterns on the surface. The control experiment and theoretical analysis demonstrate the key success to QY enhancement lies in the separation of C-dots and the pattern of surface inverted-pyramid structure. This work realizes the QY enhancement simply by geometrical optics, not the chemical treatment of luminescent particles. It provides a general approach to fabricate large-area freestanding luminescent composite film with high QY.

  3. Monitoring annealing via carbon dioxide laser heating of defect populations in fused silica surfaces using photoluminescence microscopy

    SciTech Connect

    Raman, R N; Matthews, M J; Adams, J J; Demos, S G

    2010-02-01

    Photoluminescence (PL) microscopy and spectroscopy under 266 nm and 355 nm laser excitation are explored as a means of monitoring defect populations in laser-modified sites on the surface of fused silica and their subsequent response to heating to different temperatures via exposure to a CO{sub 2} laser beam. Laser-induced temperature changes were estimated using an analytic solution to the heat flow equation and compared to changes in the PL emission intensity. The results indicate that the defect concentrations decrease significantly with increasing CO{sub 2} laser exposure and are nearly eliminated when the peak surface temperature exceeds the softening point of fused silica ({approx}1900K), suggesting that this method might be suitable for in situ monitoring of repair of defective sites in fused silica optical components.

  4. 2D nano-Y2O3:Eu3+ photoluminescence with different preparation methods and annealing temperatures

    NASA Astrophysics Data System (ADS)

    Zhou, Jun; Zhu, Yanhua; Liu, Huangqing; Chai, Yifeng; Yang, Yibo; Zhang, Qingjun; Wang, Lingling

    2017-03-01

    Y2O3:Eu3+ (YOE) material is an important photoluminescence (PL) material. In this paper, YOE nano-powder was prepared by the low-temperature combustion method (LTC) and sol-gel method (SG), and annealed with different temperatures, respectively. The influence of the preparation methods and annealing temperature on the optical properties of YOE were well studied. The as-synthesized nano-YOE samples were characterized by x-ray diffraction (XRD), PL spectra, and Fourier transform infrared spectroscopy (FTIR). Results show that with the increase in annealing temperature, the charge transfer band (CTB) of samples blue-shifts and shows higher intensity. FTIR results indicate that low emission intensity decreases luminescence intensity and deteriorates the optical properties of nano-YOE. We also studied the spectral intensity changes before and after laser-induced, which shows the intensity of significant changes over time.

  5. Transmission electron microscopy, photoluminescence, and capacitance spectroscopy on GaAs/Si grown by metal organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Bremond, Georges E.; Said, Hicham; Guillot, Gerard; Meddeb, Jaafar; Pitaval, M.; Draidia, Nasser; Azoulay, Rozette

    1991-03-01

    We present a complete characterization study of GaAs/Si heteroepitaxial layers grown by metalorganic chemical vapor deposition (MOCVD) at 750C using the two-step method. High resolution transmission electron microscopy secondary ion mass spectroscopy deep level transient spectroscopy (DLTS) and photoluminescence (PL) spectroscopy have been performed to study the initial stage of growth misfit and threading dislocations Si diffusion and the deep levels in the GaAs layer. We describe the influence of GaAs/AlAs superlattices in the buffer layer on the decrease of dislocation density and on Si diffusion from the substrate and the existence of deep electron traps induced by the heteroepitaxy. DLTS reveals hole traps attributed to Si incorporation on the basis of PL measurements which could contribute to the reduction of the minority carrier lifetime. We also show an improvement of the layer quality by the use of selective epitaxy.

  6. Parallel Synthesis of photoluminescent π-conjugated polymers by polymer reactions of an organotitanium polymer with a titanacyclopentadiene unit.

    PubMed

    Matsumura, Yoshimasa; Fukuda, Katsura; Inagi, Shinsuke; Tomita, Ikuyoshi

    2015-04-01

    A regioregular organometallic polymer with titanacyclopentadiene unit, obtained by the reaction of a 2,7-diethynylfluorene derivative and a low-valent titanium complex, is subjected to the reaction with three kinds of electrophiles (i.e., sulfur monochloride, hydrochloric acid, and dichlorophenylphosphine) to give π-conjugated polymers possessing both fluorene and building blocks originated from the transformation of the titanacycles in the main chain. For example, a phosphole-containing polymer whose number-average molecular weight is estimated as 5000 is obtained in 50% yield. The obtained thiophene, butadiene, and phosphole-containing polymers exhibit efficient photoluminescence (PL) with emission colors of blue, green, and yellow, respectively. For example, the phosphole-containing polymer exhibits yellow PL with an emission maximum (Emax ) of 533 nm and a quantum yield (Φ) of 0.37.

  7. Freestanding carbon nanodots/poly (vinyl alcohol) films with high photoluminescent quantum yield realized by inverted-pyramid structure.

    PubMed

    Pang, Linna; Ba, Lixiang; Pan, Wei; Shen, Wenzhong

    2017-02-24

    Carbon nanodots (C-dots) have attracted great attention for their biocompatibility and strong tunable photoluminescence (PL). However, aggregation-induced PL quenching blocks their practical application in solid-state optoelectronics. Here, we report a luminescent C-dots freestanding film with a substantially enhanced high quantum yield (QY) of 72.3%. A facile template method, rather than complicate lithography and etching technique is proposed to fabricate the C-dots composite films with large-area (8 inch × 8 inch) ordered micro-scale inverted-pyramid patterns on the surface. The control experiment and theoretical analysis demonstrate the key success to QY enhancement lies in the separation of C-dots and the pattern of surface inverted-pyramid structure. This work realizes the QY enhancement simply by geometrical optics, not the chemical treatment of luminescent particles. It provides a general approach to fabricate large-area freestanding luminescent composite film with high QY.

  8. Visible photoluminescence in polycrystalline terbium doped aluminum nitride (Tb:AlN) ceramics with high thermal conductivity

    SciTech Connect

    Wieg, A. T.; Kodera, Y.; Wang, Z.; Garay, J. E.; Imai, T.; Dames, C.

    2012-09-10

    Thermal management continues to be one of the major challenges in the development of high powered light sources such as solid state lasers. In particular, the relatively low thermal conductivity of standard photoluminescent (PL) materials limits the overall power output and/or duty cycle. We present a method based on current activated pressure assisted densification for the fabrication of high thermal conductivity PL materials: rare earth doped polycrystalline bulk aluminum nitride. Specifically, the ceramics are translucent and are doped with Tb{sup 3+}, allowing for emission in the visible. Remarkably, the ceramics have a room temperature thermal conductivity of 94 W/(m K) which is almost seven times higher than that of the state of the art host material, Nd-doped yttrium aluminum garnet. These light emitting properties coupled with very high thermal conductivity should enable the development of a wide variety of more powerful light sources.

  9. Dependence of the photoluminescence of Tl 2InGaS 4 layered crystal on temperature and excitation intensity

    NASA Astrophysics Data System (ADS)

    Gasanly, N. M.; Serpengüzel, A.; Gürlü, O.; Aydınlı, A.; Yılmaz, İ.

    1998-10-01

    The emission band spectra of Tl 2InGaS 4 layered crystals were investigated in the 10-120 K temperature range and in the 540-860 nm wavelength range using photoluminescence (PL). The peak energy position of the emission band is located at 1.754 eV (707 nm) at 10 K. The emission band has a half-width of 0.28 eV and an asymmetric Gaussian lineshape. The increase of the half-width of the emission band, the blue shift of the emission band peak energy and the quenching of the PL with increasing temperature is explained using the configuration coordinate model. The blue shift of the emission band peak energy and the sublinear increase of the emission band intensity with increasing excitation intensity is explained using the inhomogenously spaced donor-acceptor pair recombination model.

  10. The photoluminescence, drug delivery and imaging properties of multifunctional Eu3+/Gd3+ dual-doped hydroxyapatite nanorods.

    PubMed

    Chen, Feng; Huang, Peng; Zhu, Ying-Jie; Wu, Jin; Zhang, Chun-Lei; Cui, Da-Xiang

    2011-12-01

    The design and synthesis of multifunctional systems with high biocompatibility are very significant for the future of clinical applications. Herein, we report a microwave-assisted rapid synthesis of multifunctional Eu(3+)/Gd(3+) dual-doped hydroxyapatite (HAp) nanorods, and the photoluminescence (PL), drug delivery and in vivo imaging of as-prepared Eu(3+)/Gd(3+) doped HAp nanorods. The photoluminescent and magnetic multifunctions of HAp nanorods are realized by the dual-doping with Eu(3+) and Gd(3+). The PL intensity of doped HAp nanorods can be adjusted by varying Eu(3+) and Gd(3+) concentrations. The magnetization of doped HAp nanorods increases with the concentration of doped Gd(3+). The as-prepared Eu(3+)/Gd(3+)-doped HAp nanorods exhibit inappreciable toxicity to the cells in vitro. More importantly, the Eu(3+)/Gd(3+)-doped HAp nanorods show a high drug adsorption capacity and sustained drug release using ibuprofen as a model drug, and the drug release is governed by a diffusion process. Furthermore, the noninvasive visualization of nude mice with subcutaneous injection indicates that the Eu(3+)/Gd(3+)-doped HAp nanorods with the photoluminescent function are suitable for in vivo imaging. In vitro and in vivo imaging tests indicate that Eu(3+)/Gd(3+)-doped HAp nanorods have a potential in applications such as a multiple-model imaging agent for magnetic resonance (MR) imaging, photoluminescence imaging and computed tomography (CT) imaging. The Eu(3+)/Gd(3+) dual-doped HAp nanorods are promising for applications in the biomedical fields such as multifunctional drug delivery systems with imaging guidance.

  11. Structure and photoluminescence of ultrathin films of SnO2 nanoparticles synthesized by means of pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Gaidi, M.; Hajjaji, A.; Smirani, R.; Bessais, B.; El Khakani, M. A.

    2010-09-01

    Tin oxide (SnO2) ultrathin films were deposited by pulsed laser deposition (PLD) onto SiO2/Si and quartz substrates, at various nominal thicknesses ranging from isolated nanoparticles (NPs) to ˜300 nm-thick films, under an oxygen background pressure of 10 mTorr. The microstructural and surface morphologies of the NP-based SnO2 films were characterized by x-ray diffraction and atomic force microscopy, as a function of their nominal film thickness. The PLD-SnO2 films were found to be composed of NPs (in the 1-6 nm range), whose size increases with the film thickness. The energy band gap, as determined from the absorption edge, was found to shift to higher values with decreasing the film thickness (i.e., decreasing the NPs size). It was found that an annealing at 700 °C under O2 ambient is a prerequisite to get a photoluminescence (PL) emission from the PLD-SnO2 films. The PL of the annealed SnO2 films was found to consist of two broad emission bands, regardless of the SnO2 film thickness. The first band is composed of 3 PL subbands peaking at 3.20, 3.01, and 2.90 eV, while the second one is centered on 2.48 eV. In spite of the observed band-gap widening (as confirmed by theoretical calculation), we show that surface state (e.g., oxygen vacancies) dominate completely the PL emission of SnO2 NPs, which becomes more luminescent as the NPs size decreases while the PL energy remains unchanged. The PL properties of the PLD-SnO2 NPs are discussed in terms of defects and/or oxygen vacancies related transitions.

  12. Photoluminescence properties of Tb3Al5O12:Ce3+ garnet synthesized by the metal organic decomposition method

    NASA Astrophysics Data System (ADS)

    Onishi, Yuya; Nakamura, Toshihiro; Adachi, Sadao

    2017-02-01

    Tb3Al5O12:Ce3+ garnet (TAG:Ce3+) phosphor was synthesized by the metal organic decomposition (MOD) method and subsequent calcination at Tc = 800-1200°C for 1 h in air. The effects of Ce3+ concentration on the phosphor properties were investigated in detail using X-ray diffraction (XRD) analysis, photoluminescence (PL) analysis, PL excitation (PLE) spectroscopy, and PL decay measurements. The maximum intensity in the Ce3+ yellow emission was observed at the Ce3+ concentration of ∼0.20%. PLE and PL decay measurements suggested an evidence of the energy transfer from Tb3+ to Ce3+. Calcination temperature dependence of the XRD and PL intensities yielded an energy of ∼1.5 eV both for the TAG formation in the MOD process and for the optical activation of Ce3+ in its lattice sites. Temperature dependences of the PL intensity for the TAG:Ce3+ yellow-emitting and K2SiF6:Mn4+ red-emitting phosphors were also examined for the future solid-state lighting applications at T = 20-500 K in 10-K steps. The data of TAG:Ce3+ were analyzed using a theoretical model with considering a reservoir level of Et ∼9 meV, yielding a quenching energy of Eq ∼0.35 eV, whereas the K2SiF6:Mn4+ red-emitting phosphor data yielded a value of Eq ∼1.0 eV. The schematic energy-level diagrams for Tb3+ and Ce3+ were proposed for the sake of a better understanding of these ions in the TAG host.

  13. Glycine-coated photoluminescent silver nanoclusters

    NASA Astrophysics Data System (ADS)

    Kravets, Vira V.; Culhane, Kyle; Dmitruk, Igor M.; Pinchuk, Anatoliy O.

    2012-03-01

    We present experimental results on the multicolor (blue and green) photoluminescence from glycine-coated silver nanoclusters and small nanoparticles which can be used as novel probes for bio-imaging. Glycine-coated silver nanoclusters and nanoparticles were synthesized using thermal reduction of silver nitrate in a glycine matrix, according to a modified procedure described in literature. The size characterization with mass spectrometry, scanning electron microscopy and dynamic light scattering showed that the diameters of luminescent silver nanoclusters and small nanoparticles vary from 0.5 nm to 17 nm. Extinction spectroscopy revealed that the absorption band of the luminescent nanoclusters and nanoparticles was blue-shifted as compared to the nonluminescent larger silver nanoparticles. This effect indicated the well-known size dependence of the surface plasmon resonance in silver. The most pronounced photoluminescence peak was observed around 410 nm (characteristic SPR wavelength for silver) which strongly suggests the enhancement of the photoluminescence from silver nanoparticles by the SPR. The relative quantum yield of the photoluminescence of silver nanoclusters and nanoparticles was evaluated to be 0.09. In terms of their small size, brightness and photostability, noble metal nanoclusters and nanoparticles hold the most promise as candidates for biological cell imaging, competing with commonly used semiconductor quantum dots, fluorescent proteins and organic dyes. When applied to the problem of intracellular imaging, metal nanoclusters and small nanoparticles offer advantages over their much larger sized semiconductor counterparts in terms of ease of biological delivery. In addition, noble metal nanoparticles and nanoclusters are photostable. The high quantum yield (QY) of the photoluminescence emission signal enables the isolation of their photoluminescence from the cellular autofluorescence in cell imaging, improving the image contrast.

  14. Syndrome in question: antisynthetase syndrome (anti-PL-7)*

    PubMed Central

    Esposito, Ana Cláudia Cavalcante; Gige, Tatiana Cristina; Miot, Hélio Amante

    2016-01-01

    Antisynthetase syndrome is a rare autoimmune disease characterized by interstitial lung disease and/or inflammatory myositis, with positive antisynthetase antibodies (anti-Jo-1, anti-PL-7, anti-PL-12, ZO, OJ, anti-KE or KS). Other symptoms described include: non-erosive arthritis, fever, Raynaud's phenomenon, and "mechanic's hands." The first therapeutic option is corticotherapy, followed by other immunosuppressants. The prognosis of the disease is quite limited when compared to other inflammatory myopathies with negative antisynthetase antibodies. PMID:27828653

  15. Integrated smartphone imaging of quantum dot photoluminescence and Förster resonance energy transfer

    NASA Astrophysics Data System (ADS)

    Petryayeva, Eleonora; Algar, W. Russ

    2015-06-01

    Smartphones and other mobile devices are emerging as promising analytical platforms for point-of-care diagnostics, particularly when combined with nanotechnology. For example, we have shown that the optical properties of semiconductor quantum dots (QDs) are well suited to photoluminescence (PL) detection with a smartphone camera. However, this previous work has utilized an external excitation source for interrogation of QD PL. In this proceeding, we demonstrate that the white-light LED photographic flashes built into smartphones can be optically filtered to yield blue light suitable for excitation of QD PL. Measurements were made by recording video with filtered flash illumination and averaging the frames of the video to obtain images with good signal-to-background ratios. These images permitted detection of green-emitting and red-emitting QDs at levels comparable to those possible with excitation using an external long-wave UV lamp. The optical properties of QDs proved to be uniquely suited to smartphone PL imaging, exhibiting emission that was 1-2 orders magnitude brighter than that of common fluorescent dyes under the same conditions. Excitation with the smartphone flash was also suitable for imaging of FRET between green-emitting QD donors and Alexa Fluor 555 (A555) fluorescent dye acceptors. No significant difference in FRET imaging capability was observed between excitation with the smartphone flash and a long-wave UV lamp. Although the smartphone flash did have some disadvantages compared to an external UV lamp, these disadvantages are potentially offset by the benefit of having excitation and detection integrated into the smartphone.

  16. On the pH-dependent quenching of quantum dot photoluminescence by redox active dopamine.

    PubMed

    Ji, Xin; Palui, Goutam; Avellini, Tommaso; Na, Hyon Bin; Yi, Chongyue; Knappenberger, Kenneth L; Mattoussi, Hedi

    2012-04-04

    We investigated the charge transfer interactions between luminescent quantum dots (QDs) and redox active dopamine. For this, we used pH-insensitive ZnS-overcoated CdSe QDs rendered water-compatible using poly (ethylene glycol)-appended dihydrolipoic acid (DHLA-PEG), where a fraction of the ligands was amine-terminated to allow for controlled coupling of dopamine-isothiocyanate onto the nanocrystal. Using this sample configuration, we probed the effects of changing the density of dopamine and the buffer pH on the fluorescence properties of these conjugates. Using steady-state and time-resolved fluorescence, we measured a pronounced pH-dependent photoluminescence (PL) quenching for all QD-dopamine assemblies. Several parameters affect the PL loss. First, the quenching efficiency strongly depends on the number of dopamines per QD-conjugate. Second, the quenching efficiency is substantially increased in alkaline buffers. Third, this pH-dependent PL loss can be completely eliminated when oxygen-depleted buffers are used, indicating that oxygen plays a crucial role in the redox activity of dopamine. We attribute these findings to charge transfer interactions between QDs and mainly two forms of dopamine: the reduced catechol and oxidized quinone. As the pH of the dispersions is changed from acidic to basic, oxygen-catalyzed transformation progressively reduces the dopamine potential for oxidation and shifts the equilibrium toward increased concentration of quinones. Thus, in a conjugate, a QD can simultaneously interact with quinones (electron acceptors) and catechols (electron donors), producing pH-dependent PL quenching combined with shortening of the exciton lifetime. This also alters the recombination kinetics of the electron and hole of photoexcited QDs. Transient absorption measurements that probed intraband transitions supported those findings where a simultaneous pronounced change in the electron and hole relaxation rates was measured when the pH was changed from

  17. Near-field scanning photoluminescence microscopy of InGaN/GaN quantum structures

    NASA Astrophysics Data System (ADS)

    Tripathy, Sudhiranjan; Chua, Soo Jin

    2004-08-01

    Nanoluminescence spectroscopy and imaging techniques are becoming popular to investigate optical properties of semiconductor nanomaterials. Conventional micro-photoluminescence (PL) techniques are affected by diffraction phenomenon, which limits the lateral resolution to approximately 0.6 μm and thus, they cannot provide information of luminescence features with dimension below the classical diffraction limit. This limitation can be overcome by near-field scanning optical microscopy (NSOM) where it is possible to achieve spatial resolution of the order of 50 - 100 nm. InGaN based material has attracted great interest since it plays a key role in the group III-Nitride optoelectronic devices, such as high-brightness blue/green light emitting diodes and laser diodes. In order to retrieve information on the spatial inhomogeneities of the emission patterns in InGaN based materials, we have carried out NSOM-PL measurements on InGaN/GaN multi-quantum wells (MQWs) and InGaN quantum dots (QDs) grown by metal organic chemical vapor deposition (MOCVD). The near-field PL intensity from these samples is found to be spatially inhomogeneous on a sub-micron scale. In the NSOM-PL intensity images, bright island-like features are observed. After deconvolution with the spatial resolution of the NSOM, the size of these features is estimated to be in the range of 100 to 200 nm. The spatially resolved improved optical emission from these InGaN/GaN quantum structures is associated with strain-induced clusters formed at the interface of the multi-layers.

  18. New developments at PTB in 3D-AFM with tapping and torsion AFM mode and vector approach probing strategy

    NASA Astrophysics Data System (ADS)

    Dai, G.; Hässler-Grohne, W.; Hüser, D.; Wolff, H.; Fluegge, J.; Bosse, H.

    2011-06-01

    A new 3D-AFM for true 3D measurements of nano structures has been developed at Physikalisch Technische-Bundesanstalt, the national metrology institute of Germany. In its configuration, two piezo actuators are applied to drive the AFM cantilever near its vertical and torsional resonant frequencies. In such a way, the AFM tip can probe the surface with a vertical and/or a lateral oscillation, offering high 3D probing sensitivity. For enhancing measurement flexibility as well as reducing tip wear, a so called "vector approach probing" (VAP) method has been applied. The sample is measured point by point using this method. At each probing point, the tip is approached towards the surface in its normal direction until the desired tip-sample interaction is detected and then immediately withdrawn from the surface. Preliminary experimental results show promising performance of the developed system. The measurement of a line structure of 800 nm height employing a super sharp AFM tip is performed, showing a repeatability of its 3D profiles of better than 1 nm (p-v). A single crystal critical dimension reference material (SCCDRM) having features with almost vertical sidewall is measured using a flared AFM tip. Results show that the feature has averaged left and right sidewall angles of 88.64° and 88.67deg;, respectively. However, the feature width non-uniformity may reach 10 nm within the measurement range of 1 μm. The standard deviation of the averaged middle CD values of 7 repeated measurements reaches 0.35 nm. In addition, an investigation of long term measurement stability is performed on a PTB photomask. The results shows that the 3D-AFM has a drift rate of about 0.00033 nm per line, which confirms the high measurement stability and the very low tip wear.

  19. Midinfrared Photoluminescence up to 290 K Reveals Radiative Mechanisms and Substrate Doping-Type Effects of InAs Nanowires.

    PubMed

    Chen, Xiren; Zhuang, Qiandong; Alradhi, H; Jin, Zh M; Zhu, Liangqing; Chen, Xin; Shao, Jun

    2017-03-08

    Photoluminescence (PL) as a conventional yet powerful optical spectroscopy may provide crucial insight into the mechanism of carrier recombination and bandedge structure in semiconductors. In this study, mid-infrared PL measurements on vertically aligned InAs nanowires (NWs) are realized for the first time in a wide temperature range of up to 290 K, by which the radiative recombinations are clarified in the NWs grown on n- and p-type Si substrates, respectively. A dominant PL feature is identified to be from the type-II optical transition across the interfaces between the zinc-blend (ZB) and the wurtzite (WZ) InAs, a lower-energy feature at low temperatures is ascribed to impurity-related transition, and a higher-energy feature at high temperatures originates in the interband transition of the WZ InAs being activated by thermal-induced electron transfer. The optical properties of the ZB-on-WZ and WZ-on-ZB interfaces are asymmetric, and stronger nonradiative recombination and weaker carrier-phonon interaction show up in the NWs on p-type substrate in which built-in electric field forms and leads to carrier assembling around the WZ-on-ZB interface. The results indicate that wide temperature-range infrared PL analysis can serve as efficient vehicle for clarifying optical properties and bandedge processes of the crystal-phase interfaces in vertically aligned InAs NWs.

  20. Temperature dependence of Er³⁺ ionoluminescence and photoluminescence in Gd₂O₃:Bi nanopowder.

    PubMed

    Boruc, Zuzanna; Gawlik, Grzegorz; Fetliński, Bartosz; Kaczkan, Marcin; Malinowski, Michał

    2014-06-01

    Ionoluminescence (IL) and photoluminescence (PL) of trivalent erbium ions (Er(3+)) in Gd2O3 nanopowder host activated with Bi(3+) ions has been studied in order to establish the link between changes in luminescent spectra and temperature of the sample material. IL measurements have been performed with H2 (+) 100 keV ion beam bombarding the target material for a few seconds, while PL spectra have been collected for temperatures ranging from 20 °C to 700 °C. The PL data was used as a reference in determining the temperature corresponding to IL spectra. The collected data enabled the definition of empirical formula based on the Boltzmann distribution, which allows the temperature to be determined with a maximum sensitivity of 9.7 × 10(-3) °C(-1). The analysis of the Er(3+) energy level structure in terms of tendency of the system to stay in thermal equilibrium, explained different behaviors of the line intensities. This work led to the conclusion that temperature changes during ion excitation can be easily defined with separately collected PL spectra. The final result, which is empirical formula describing dependence of fluorescence intensity ratio on temperature, raises the idea of an application of method in temperature control, during processes like ion implantation and some nuclear applications.

  1. Analyzing the Electrical Performance of a Solar Cell with Time-Resolved Photoluminescence: Methodology for Fast Optical Screening

    NASA Astrophysics Data System (ADS)

    Tex, David M.; Imaizumi, Mitsuru; Kanemitsu, Yoshihiko

    2017-01-01

    The performance of solar-cell devices is conventionally analyzed electrically by current-voltage measurements. To access the physics of the current generation process at the operating point, the analysis of fast optical responses from devices is highly beneficial. However, the optical responses from p -n junctions exhibit a complex photoluminescence (PL) decay behavior due to their time-dependent electric fields. Here, we propose a method to systematically assign the physical meanings of the PL decay time constants by recording the complete excitation power dependence and voltage dependence of the time-resolved PL from a GaAs single junction. The experimentally obtained PL curves are in agreement with numerical predictions of dominant charge separation. We conclude that the charge separation can be directly observed in state-of-the-art devices. The experimental data set enables assignment of the effective separation time constant for the maximum output power condition, which is the most important number for understanding the carrier dynamics during device operation. The technique developed in this work constitutes a contactless characterization technique for solar cells.

  2. Effect of the Nd content on the structural and photoluminescence properties of silicon-rich silicon dioxide thin films

    PubMed Central

    2011-01-01

    In this article, the microstructure and photoluminescence (PL) properties of Nd-doped silicon-rich silicon oxide (SRSO) are reported as a function of the annealing temperature and the Nd concentration. The thin films, which were grown on Si substrates by reactive magnetron co-sputtering, contain the same Si excess as determined by Rutherford backscattering spectrometry. Fourier transform infrared (FTIR) spectra show that a phase separation occurs during the annealing because of the condensation of the Si excess resulting in the formation of silicon nanoparticles (Si-np) as detected by high-resolution transmission electron microscopy and X-ray diffraction (XRD) measurements. Under non-resonant excitation at 488 nm, our Nd-doped SRSO films simultaneously exhibited PL from Si-np and Nd3+ demonstrating the efficient energy transfer between Si-np and Nd3+ and the sensitizing effect of Si-np. Upon increasing the Nd concentration from 0.08 to 4.9 at.%, our samples revealed a progressive quenching of the Nd3+ PL which can be correlated with the concomitant increase of disorder within the host matrix as shown by FTIR experiments. Moreover, the presence of Nd-oxide nanocrystals in the highest Nd-doped sample was established by XRD. It is, therefore, suggested that the Nd clustering, as well as disorder, are responsible for the concentration quenching of the PL of Nd3+. PMID:21711673

  3. Infrared photoluminescence of high In-content InN/InGaN multiple-quantum-wells

    DOE PAGES

    Valdueza-Felip, Sirona; Naranjo, Fernando B.; Gonzalez-Herraez, Miguel; ...

    2012-01-15

    We report on the thermal evolution of the photoluminescence (PL) from high In-content InN/In{sub 0.9}Ga{sub 0.1}N multiple-quantum wells (MQWs) synthesized by plasma-assisted molecular-beam epitaxy on GaN-on-sapphire templates. The structural quality and the well/barrier thickness uniformity in the MQW structure are assessed by X-ray diffraction and transmission electron microscopy measurements. PL results are compared with the luminescence from a 1-{mu}m-thick InN reference sample. In both cases, the dominant low-temperature (5 K) PL emission peaks at {proportional_to}0.73 eV with a full width at half maximum of {proportional_to}86 meV. The InN layer displays an S-shape evolution of the emission peak energy with temperature,more » explained in terms of carrier localization. A carrier localization energy of {proportional_to}12 meV is estimated for the InN layer, in good agreement with the expected carrier concentration. In the case of the MQW structure, an enhancement of the carrier localization associated to the piezoelectric field results in an improved thermal stability of the PL intensity, reaching an internal quantum efficiency of {proportional_to}16%. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)« less

  4. Infrared photoluminescence of high In-content InN/InGaN multiple-quantum-wells

    DOE PAGES

    Valdueza-Felip, Sirona; Naranjo, Fernando B.; Gonzalez-Herraez, Miguel; ...

    2012-01-15

    We report on the thermal evolution of the photoluminescence (PL) from high In-content InN/In{sub 0.9}Ga{sub 0.1}N multiple-quantum wells (MQWs) synthesized by plasma-assisted molecular-beam epitaxy on GaN-on-sapphire templates. The structural quality and the well/barrier thickness uniformity in the MQW structure are assessed by X-ray diffraction and transmission electron microscopy measurements. PL results are compared with the luminescence from a 1-{mu}m-thick InN reference sample. In both cases, the dominant low-temperature (5 K) PL emission peaks at {proportional{sub to}}0.73 eV with a full width at half maximum of {proportional{sub to}}86 meV. The InN layer displays an S-shape evolution of the emission peak energymore » with temperature, explained in terms of carrier localization. A carrier localization energy of {proportional{sub to}}12 meV is estimated for the InN layer, in good agreement with the expected carrier concentration. In the case of the MQW structure, an enhancement of the carrier localization associated to the piezoelectric field results in an improved thermal stability of the PL intensity, reaching an internal quantum efficiency of {proportional{sub to}}16%. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)« less

  5. Excitation power dynamics of photoluminescence in InGaN /GaN quantum wells with enhanced carrier localization

    NASA Astrophysics Data System (ADS)

    Kazlauskas, K.; Tamulaitis, G.; Mickevičius, J.; Kuokštis, E.; Žukauskas, A.; Cheng, Yung-Chen; Wang, Hsiang-Cheng; Huang, Chi-Feng; Yang, C. C.

    2005-01-01

    Excitation-power dynamics of near-band-edge photoluminescence (PL) peak position in InxGa1-xN/GaN multiple quantum wells (x˜0.15) was analyzed as a function of well width. The analysis was based on energy reference provided by photoreflectance (PR) spectra. The difference in spectral position of the PR feature and low-excitation PL band (the Stokes Shift) revealed carrier localization energy, which exhibited a remarkable sensitivity to the well width, increasing from 75meV in 2nm wells to about 250meV in 4nm wells. Meanwhile collating of the PR data with the flat-band model for the optical transition energy in quantum wells rendered a relatively weak (0.5MV/cm) built-in piezoelectric field. The blueshift of the PL peak position with increasing photoexcitation power density was shown to be in qualitative agreement with the model of filling of the band-tail states with some contribution from screening of built-in field in the thickest (4nm) wells. Increased incident photon energy resulted in an additional blueshift of the PL peak, which was explained by a nonthermalized distribution of localized carriers and/or carrier localization in the interface region. Our results are consistent with a concept of emission from partially relaxed large In-rich regions with internal band potential fluctuations, which are enhanced with increasing the growth time.

  6. Explanations of the unusual photoluminescence observed in annealed InGaN/GaN multi quantum well

    SciTech Connect

    Biswas, Dipankar Bera, Partha Pratim Mistry, Apu

    2015-05-15

    During growth and fabrication of devices, InGaN/GaN QWs undergo several thermal cyclings which causes redistribution of the elements, particularly In in the QW structures. This causes significant changes in the optical properties of the QWs. The thermal cyclings are often accompanied by alloy clustering and phase separation. So in order to have a deep knowledge of how the nano structures behave with thermal cyclings the process is simulated through successive annealing at high temperatures which are accompanied by photoluminescence (PL) measurements to obtain the optical properties at each stage. III-V nanostructures, in most usual cases, on annealing lead to a monotonic blue shift of the PL peak energy and goes into saturation. Recently there were reports in which the PL peak initially had a red shift which was followed by an increase in energy, a blue shift i.e. the PL peak goes through an inflexion. These unusual observations have been explained in this paper through quantum mechanical models and computations, which remained unexplained.

  7. Photoluminescence from ultrathin Ge-rich multiple quantum wells observed up to room temperature: Experiments and modeling

    NASA Astrophysics Data System (ADS)

    Wendav, T.; Fischer, I. A.; Virgilio, M.; Capellini, G.; Oliveira, F.; Cerqueira, M. F.; Benedetti, A.; Chiussi, S.; Zaumseil, P.; Schwartz, B.; Busch, K.; Schulze, J.

    2016-12-01

    Employing a low-temperature growth mode, we fabricated ultrathin S i1 -xG ex /Si multiple quantum well structures with a well thickness of less than 1.5 nm and a Ge concentration above 60% directly on a Si substrate. We identified an unusual temperature-dependent blueshift of the photoluminescence (PL) and exceptionally low thermal quenching. We find that this behavior is related to the relative intensities of the no-phonon (NP) peak and a phonon-assisted replica that are the main contributors to the total PL signal. To investigate these aspects in more detail, we developed a strategy to calculate the PL spectrum employing a self-consistent multivalley effective mass model, in combination with second-order perturbation theory. Through our investigation, we find that while the phonon-assisted feature decreases with temperature, the NP feature shows a strong increase in the recombination rate. Besides leading to the observed robustness against thermal quenching, this causes the observed blueshift of the total PL signal.

  8. Boron-doped graphene quantum dots for selective glucose sensing based on the "abnormal" aggregation-induced photoluminescence enhancement.

    PubMed

    Zhang, Li; Zhang, Zhi-Yi; Liang, Ru-Ping; Li, Ya-Hua; Qiu, Jian-Ding

    2014-05-06

    A hydrothermal approach for the cutting of boron-doped graphene (BG) into boron-doped graphene quantum dots (BGQDs) has been proposed. Various characterizations reveal that the boron atoms have been successfully doped into graphene structures with the atomic percentage of 3.45%. The generation of boronic acid groups on the BGQDs surfaces facilitates their application as a new photoluminescence (PL) probe for label free glucose sensing. It is postulated that the reaction of the two cis-diol units in glucose with the two boronic acid groups on the BGQDs surfaces creates structurally rigid BGQDs-glucose aggregates, restricting the intramolecular rotations and thus resulting in a great boost in the PL intensity. The present unusual "aggregation-induced PL increasing" sensing process excludes any saccharide with only one cis-diol unit, as manifested by the high specificity of BGQDs for glucose over its close isomeric cousins fructose, galactose, and mannose. It is believed that the doping of boron can introduce the GQDs to a new kind of surface state and offer great scientific insights to the PL enhancement mechanism with treatment of glucose.

  9. Temperature dependence of photoluminescence spectra of bilayer two-dimensional electron gases in LaAlO{sub 3}/SrTiO{sub 3} superlattices: coexistence of Auger recombination and single-carrier trapping

    SciTech Connect

    Ma, H. J. Harsan Ariando; Venkatesan, T.; Wang, S. J.

    2015-06-15

    We report emerging photoluminescence (PL) of bilayer two-dimensional electron gases (2DEG) in LaAlO{sub 3}/SrTiO{sub 3} (LAO/STO) systems. A strong blue PL emerges in bilayer-2DEGs in LAO/STO/LAO/STO which doesn’t show in LAO/STO. PL band in bilayer-2DEGs includes both nearly temperature independent Auger recombination and temperature dependent free electron trapping while it crossovers from Auger recombination to single carrier trapping in LAO/STO. The PL signal of free electron trapping appears at high temperatures and it is much stronger than Auger recombination in the conducting channel in bilayer 2DEGs. This observation shows that high mobility carriers dominate the carrier dynamics in bilayer-2DEGs in LAO/STO superlattices.

  10. AFM-IR: Technology and Applications in Nanoscale Infrared Spectroscopy and Chemical Imaging.

    PubMed

    Dazzi, Alexandre; Prater, Craig B

    2016-12-13

    Atomic force microscopy-based infrared spectroscopy (AFM-IR) is a rapidly emerging technique that provides chemical analysis and compositional mapping with spatial resolution far below conventional optical diffraction limits. AFM-IR works by using the tip of an AFM probe to locally detect thermal expansion in a sample resulting from absorption of infrared radiation. AFM-IR thus can provide the spatial resolution of AFM in combination with the chemical analysis and compositional imaging capabilities of infrared spectroscopy. This article briefly reviews the development and underlying technology of AFM-IR, including recent advances, and then surveys a wide range of applications and investigations using AFM-IR. AFM-IR applications that will be discussed include those in polymers, life sciences, photonics, solar cells, semiconductors, pharmaceuticals, and cultural heritage. In the Supporting Information , the authors provide a theoretical section that reviews the physics underlying the AFM-IR measurement and detection mechanisms.

  11. 3D Color Digital Elevation Map of AFM Sample

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This color image is a three dimensional (3D) view of a digital elevation map of a sample collected by NASA's Phoenix Mars Lander's Atomic Force Microscope (AFM).

    The image shows four round pits, only 5 microns in depth, that were micromachined into the silicon substrate, which is the background plane shown in red. This image has been processed to reflect the levelness of the substrate.

    A Martian particle only one micrometer, or one millionth of a meter, across is held in the upper left pit.

    The rounded particle shown at the highest magnification ever seen from another world is a particle of the dust that cloaks Mars. Such dust particles color the Martian sky pink, feed storms that regularly envelop the planet and produce Mars' distinctive red soil.

    The particle was part of a sample informally called 'Sorceress' delivered to the AFM on the 38th Martian day, or sol, of the mission (July 2, 2008). The AFM is part of Phoenix's microscopic station called MECA, or the Microscopy, Electrochemistry, and Conductivity Analyzer.

    The AFM was developed by a Swiss-led consortium, with Imperial College London producing the silicon substrate that holds sampled particles.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  12. AFM Structural Characterization of Drinking Water Biofilm under Physiological Conditions

    EPA Science Inventory

    Due to the complexity of mixed culture drinking water biofilm, direct visual observation under in situ conditions has been challenging. In this study, atomic force microscopy (AFM) revealed the three dimensional morphology and arrangement of drinking water relevant biofilm in air...

  13. Probing the Double Layer: Effect of Image Forces on AFM

    PubMed Central

    Sachs, Frederick

    2006-01-01

    Force probes such as AFM tips or laser trap latex beads have a dielectric constant much less than that of the water that they displace. Thus when a probe approaches a charged surface under water it will be repelled simply based upon the image forces, and these can be of nN magnitude. PMID:16714346

  14. Structural investigations on native collagen type I fibrils using AFM

    SciTech Connect

    Strasser, Stefan; Zink, Albert; Janko, Marek; Heckl, Wolfgang M.; Thalhammer, Stefan . E-mail: stefan.thalhammer@gsf.de

    2007-03-02

    This study was carried out to determine the elastic properties of single collagen type I fibrils with the use of atomic force microscopy (AFM). Native collagen fibrils were formed by self-assembly in vitro characterized with the AFM. To confirm the inner assembly of the collagen fibrils, the AFM was used as a microdissection tool. Native collagen type I fibrils were dissected and the inner core uncovered. To determine the elastic properties of collagen fibrils the tip of the AFM was used as a nanoindentor by recording force-displacement curves. Measurements were done on the outer shell and in the core of the fibril. The structural investigations revealed the banding of the shell also in the core of native collagen fibrils. Nanoindentation experiments showed the same Young's modulus on the shell as well as in the core of the investigated native collagen fibrils. In addition, the measurements indicate a higher adhesion in the core of the collagen fibrils compared to the shell.

  15. Cantilever's behavior in the AC mode of an AFM

    SciTech Connect

    Nunes, V.B.; Zanette, S.I.; Caride, A.O.; Prioli, R.; Rivas, A.M.F

    2003-03-15

    In this paper, a model with a small number of parameters is used to simulate the motion of a cantilever in the AC mode of an atomic force microscope (AFM). The results elucidate the transition dependence-from noncontact to tapping operating mode-on the height of the contamination layer and on the stiffness of the sample.

  16. Surface plasmon resonance induced Er{sup 3+} photoluminescence enhancement in tellurite glass

    SciTech Connect

    Fares, Hssen Férid, Mokhtar; Elhouichet, Habib; Gelloz, Bernard

    2015-05-21

    The melt quenching method is used to prepare tellurite glasses co-activated with erbium ions and silver nanoparticles (Ag NPs). The glass samples are characterized by x-ray diffraction, UV-vis-NIR absorption, transmission electron microscopy (TEM) imaging, and photoluminescence spectroscopy. The XRD pattern shows no sharp peak indicating an amorphous nature of the glasses. The presence of Ag NPs is confirmed from TEM micrograph. The absorption spectra reveal not only the peaks due to Er{sup 3+} ions, but also the surface plasmon resonance band of silver NPs in the 510–535 nm range. The J-O model has been applied to the room temperature absorption intensities of Er{sup 3+} (4f{sup 11}) transitions to establish the so-called J-O intensity parameters: Ω{sub 2}, Ω{sub 4}, and Ω{sub 6}. The intensity parameters are used to determine the radiative decay rates (emission probabilities of transitions) and branching ratios of the Er{sup 3+} transitions from the excited state J manifolds to the lower-lying J' manifolds. Intensified of 1.53 μm band is obtained for the sample containing 0.5 mol. % of AgNO{sub 3} (Ag0.5 glass) using for excitation a laser operating at 980 nm. The simultaneous influence of the Ag NPs → Er{sup 3+} energy transfer and the contribution of the intensified local field effect due to the silver NPs give origin to the enhancement of both the Photoluminescence (PL) intensity and the PL lifetime relative to the {sup 4}I{sub 13/2} → {sup 4}I{sub 15/2} transition, whereas the quenching is ascribed to the energy transfer from Er{sup 3+} ions to silver NPs. Based on the analysis of the temperature dependence of the PL intensity and decay time, we identified a weak back transfer process from Er to the glass host that makes the quenching of the PL intensity weak. Large magnitudes of calculated emission cross-section (σ{sub e}), effective bandwidth (Δλ{sub eff}), and bandwidth quality factor (FWHM × σ{sub e}) relatives to {sup 4}I{sub 13

  17. Scanning hall probe microscopy (SHPM) using quartz crystal AFM feedback.

    PubMed

    Dede, M; Urkmen, K; Girişen, O; Atabak, M; Oral, A; Farrer, I; Ritchie, D

    2008-02-01

    Scanning Hall Probe Microscopy (SHPM) is a quantitative and non-invasive technique for imaging localized surface magnetic field fluctuations such as ferromagnetic domains with high spatial and magnetic field resolution of approximately 50 nm and 7 mG/Hz(1/2) at room temperature. In the SHPM technique, scanning tunneling microscope (STM) or atomic force microscope (AFM) feedback is used to keep the Hall sensor in close proximity of the sample surface. However, STM tracking SHPM requires conductive samples; therefore the insulating substrates have to be coated with a thin layer of gold. This constraint can be eliminated with the AFM feedback using sophisticated Hall probes that are integrated with AFM cantilevers. However it is very difficult to micro fabricate these sensors. In this work, we have eliminated the difficulty in the cantilever-Hall probe integration process, just by gluing a Hall Probe chip to a quartz crystal tuning fork force sensor. The Hall sensor chip is simply glued at the end of a 32.768 kHz or 100 kHz Quartz crystal, which is used as force sensor. An LT-SHPM system is used to scan the samples. The sensor assembly is dithered at the resonance frequency using a digital Phase Locked Loop circuit and frequency shifts are used for AFM tracking. SHPM electronics is modified to detect AFM topography and the frequency shift, along with the magnetic field image. Magnetic domains and topography of an Iron Garnet thin film crystal, NdFeB demagnetised magnet and hard disk samples are presented at room temperature. The performance is found to be comparable with the SHPM using STM feedback.

  18. Pupil Personnel Services and PL 94-142.

    ERIC Educational Resources Information Center

    Noble, Vicente N.; Kampwirth, Thomas J.

    P.L. 94-142 is the most significant federal legislation ever passed in regard to exceptional children. It mandates a free and appropriate education, including related services such as counseling (as needed), for every exceptional child up to age 21. The counselor's role may include direct work with children referred for behavioral social adaptive…

  19. 3PL: A Useful Model with a Mild Estimation Problem

    ERIC Educational Resources Information Center

    Partchev, Ivailo

    2009-01-01

    This author has always felt a bit uneasy about the three parameter logistic (3PL) model because it seems about as prone to discovering guessing when guessing does not take place, as the Rasch model is reluctant to admit that guessing might ever take place at all. However, the author has attributed this to the prior "magic" employed when estimating…

  20. Blue photoluminescent carbon nanodots from limeade.

    PubMed

    Suvarnaphaet, Phitsini; Tiwary, Chandra Sekhar; Wetcharungsri, Jutaphet; Porntheeraphat, Supanit; Hoonsawat, Rassmidara; Ajayan, Pulickel Madhavapanicker; Tang, I-Ming; Asanithi, Piyapong

    2016-12-01

    Carbon-based photoluminescent nanodot has currently been one of the promising materials for various applications. The remaining challenges are the carbon sources and the simple synthetic processes that enhance the quantum yield, photostability and biocompatibility of the nanodots. In this work, the synthesis of blue photoluminescent carbon nanodots from limeade via a single-step hydrothermal carbonization process is presented. Lime carbon nanodot (L-CnD), whose the quantum yield exceeding 50% for the 490nm emission in gram-scale amounts, has the structure of graphene core functionalized with the oxygen functional groups. The micron-sized flake of the as-prepared L-CnD powder exhibits multicolor emission depending on an excitation wavelength. The L-CnDs are demonstrated for rapidly ferric-ion (Fe(3+)) detection in water compared to Fe(2+), Cu(2+), Co(2+), Zn(2+), Mn(2+) and Ni(2+) ions. The photoluminescence quenching of L-CnD solution under UV light is used to distinguish the Fe(3+) ions from others by naked eyes as low concentration as 100μM. Additionally, L-CnDs provide exceptional photostability and biocompatibility for imaging yeast cell morphology. Changes in morphology of living yeast cells, i.e. cell shape variation, and budding, can be observed in a minute-period until more than an hour without the photoluminescent intensity loss.

  1. Decontamination of Escherichia coli O157:H7 on green onions using pulsed light (PL) and PL-surfactant-sanitizer combinations.

    PubMed

    Xu, Wenqing; Chen, Haiqiang; Huang, Yaoxin; Wu, Changqing

    2013-08-16

    Imported green onion has been associated with three large outbreaks in the USA. Contamination has been found on both domestic and imported green onions. The objective of our study was to investigate Escherichia coli O157:H7 inactivation efficacy of pulsed light (PL) as well as its combination with surfactant and/or sanitizers on green onions. Green onions were cut into two segments, stems and leaves, to represent two different matrixes. Stems were more difficult to be decontaminated. Spot and dip inoculation methods were compared and dipped inoculated green onions were found to be more difficult to be decontaminated. Results showed that 5s dry PL (samples were not immersed in water during PL treatment) and 60s wet PL (samples were immersed in water and stirred during PL treatment) treatments provided promising inactivation efficacy (>4log10CFU/g) for spot inoculated stems and leaves. For dip inoculated green onions, 60s wet PL treatment was comparable with 100ppm chlorine washing, demonstrating that PL could be used as an alternative to chlorine. To further increase the degree of microbial inactivation, combined treatments were applied. PL combined with surfactant (SDS) was found to be more effective than single treatments of PL, SDS, chlorine, citric acid, thymol, and hydrogen peroxide, and binary combined treatments of PL with one of those chemicals. Addition of chlorine or hydrogen peroxide to the PL-SDS combination did not further enhanced its microbial inactivation efficacy. The combination of PL and 1000ppm of SDS reduced the E. coli O157:H7 populations dip inoculated on the stems and leaves of green onions by 1.4 and 3.1log10CFU/g, respectively. Our findings suggest that PL could potentially be used for decontamination of E. coli O157:H7 on green onions, with wet PL added with SDS being the most effective PL treatment.

  2. Photoluminescence of cellulose acetate and silica sphere composite

    NASA Astrophysics Data System (ADS)

    Kang, Kwang-Sun

    2014-08-01

    Strong blue and green light emission has been observed from the cellulose acetate (CA) and silica sphere composite. Two different amounts of silica spheres were mixed in the CA solution to fabricate large area super-hydrophobic films. The silica spheres and CA solution ratios were 0.07:4.0 (SSCA-A) and 0.14:4.0 (SSCA-B). The milky color solution of SSCA-A and SSCA-B slowly turned to light yellow and red, respectively, with the time passed. The colors became intense yellow and red for the SSCA-A and SSCA-B, respectively, after 38 days. FTIR spectra show more absorption at 3478 cm-1 corresponding sbnd OH stretching vibration, at 2963 cm-1 caused by sbnd CH stretching vibration, at 1746 and 1713 cm-1 representing the Cdbnd O stretching vibration, and at 1100 cm-1 corresponding sbnd Rsbnd OH and Sisbnd Osbnd Si stretching vibration for CA and silica. Therefore, aged SSCA-A and SSCA-B have more sbnd OH, sbnd CH, sbnd Cdbnd O, and Sisbnd Osbnd Si groups than pure CA. UV-visible spectra show the absorption peaks at 410 nm for both SSCA-A and SSCA-B. Photoluminescence (PL) peaks were shifted toward longer wavelength with the increase of the excitation wavelength and became maximum at approximately 470 nm with excitation wavelength at 400 nm for the SSCA-A. There were two maximum luminescence peaks at 470 and 530 nm with the excitation wavelength at 400 and 470 nm, respectively, for the SSCA-B. The luminescence peak shift was due to the multiple emission center proved by the different excitation energy.

  3. Effect of silicon resistivity on its porosification using metal induced chemical etching: morphology and photoluminescence studies

    NASA Astrophysics Data System (ADS)

    Saxena, Shailendra K.; Sahu, Gayatri; Kumar, Vivek; Sahoo, P. K.; Sagdeo, Pankaj R.; Kumar, Rajesh

    2015-03-01

    The structure and light-emitting properties of porous Si nanowires (Si NWs) fabricated by metal induced chemical etching (MIE) process on two different Si substrates of different resistivities have been investigated here. The surface morphological studies have been carried out using scanning electron microscopy. It is observed that porous Si containing well aligned Si NWs is formed from high resistivity (1-20 Ωcm) Si wafer, whereas interconnected pores or cheese-like structures are formed from low resistivity (0.2 Ωcm) Si wafers after MIE. An explanation for the different porosification processes has been proposed based on the initial doping level, where number of dopants seems to be playing an important role in the etching process. Visible photoluminescence (PL) has been observed from all the porous Si samples, that are attributed due to quantum confinement effect.

  4. Photoluminescence spectra of CdSe/ZnS quantum dots in solution.

    PubMed

    Ibnaouf, K H; Prasad, Saradh; Hamdan, A; Alsalhi, M; Aldwayyan, A S; Zaman, M B; Masilamani, V

    2014-01-01

    The spectral properties of CdSe/ZnS core-shell quantum dots (QDs) of 3 nm size have been studied under different organic solvents, concentrations and temperatures. Our results showed that the absorption spectra of CdSe/ZnS in benzene have two humps; one around 420 nm and another at 525 nm, with a steady increase in absorption along UV region, and the absorption spectral profile under a wide range of concentrations did not change. On the other hand, the photoluminescence (PL) spectra of CdSe/ZnS in benzene showed two bands one around 375 nm and the other around 550 nm. It could be seen that the band at 375 nm is due to the interaction between the shell (ZnS) with the solvent species in high excited state, and the band at 550 nm is due to core alone (CdSe).

  5. Combustion synthesis of MgO nanoparticles using plant extract: Structural characterization and photoluminescence studies

    SciTech Connect

    Kumar, Danith; Chikkahanumantharayappa; Yadav, L. S. Reddy; Nagaraju, G.; Lingaraju, K.; Naika, H. Raja; Manjunath, K.; Suresh, D.; Prasad, Daruka; Nagabhushana, H.; Sharma, S. C.

    2015-06-24

    Magnesium oxide nanoparticles (MgO Nps) have been successfully synthesized via solution combustion method using Parthenium plant extract as fuel for the first time. Powder X-ray diffraction (PXRD) pattern reveal that product belongs to the cubic phase (Periclase). FTIR spectrum shows the band at 822 cm{sup −1} indicates the formation of cubic periclase MgO. The optical band gap of MgO Nps estimated from UV –Vis spectrum was found to be in the range 5.40–5.45 eV. SEM images showed that, the product is agglomerated and particle in nature. Photoluminescence (PL) studies shows violet emission at 390 nm, blue emission at 470 nm and green emission at 550 nm. MgO Nps shows good photocatalytic activity for the degradation of methylene blue (MB) dye under UV/Sun light irradiation.

  6. Thermal-treatment effect on the photoluminescence and gas-sensing properties of tungsten oxide nanowires

    SciTech Connect

    Sun, Shibin; Chang, Xueting; Li, Zhenjiang

    2010-09-15

    Single-crystalline non-stoichiometric tungsten oxide nanowires were initially prepared using a simple solvothermal method. High resolution transmission electron microscopy (HRTEM) investigations indicate that the tungsten oxide nanowires exhibit various crystal defects, including stacking faults, dislocations, and vacancies. A possible defect-induced mechanism was proposed to account for the temperature-dependent morphological evolution of the tungsten oxide nanowires under thermal processing. Due to the high specific surface areas and non-stoichiometric crystal structure, the original tungsten oxide nanowires were highly sensitive to ppm level ethanol at room temperature. Thermal treatment under dry air condition was found to deteriorate the selectivity of room-temperature tungsten oxide sensors, and 400 {sup o}C may be considered as the top temperature limit in sensor applications for the solvothermally-prepared nanowires. The photoluminescence (PL) characteristics of tungsten oxide nanowires were also strongly influenced by thermal treatment.

  7. Size-dependent photoluminescent property of hybrid nanoparticlesconsisted with YVO4:Eu3+ and gold

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Yan, Y. L.; Guo, F. Q.; Zhong, L. S.; Wang, J.; Wang, Y.; Xu, Y. H.

    2017-03-01

    The hydrothermally synthesizedYVO4:Eu3+nanophosphors were mixed with gold nanoparticles with different sizes to form hybrid nanoparticles. The microstructure and luminescent properties of all hybrid nanoparticles were charaterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-Visible absorption spectrum (UV-Vis), and photoluminescence (PL) spectroscopy. The growth process of gold nanoparticles prepared by seeding growth method was discussed firstly. Furthermore, the effects of grain size of gold nanoparticles on the fluorescent property of hybrid nanoparticles were investigated in detail. All the emission spectra presented the characteristic red emission of Eu3+. The emission intensity of hybrid nanoparticles was increasing with the growing of gold nanoparticles. The influential mechanism was discussed as well.

  8. Electronic states and photoluminescence of TiO2 nanotubes with adsorbed surface oxygen

    NASA Astrophysics Data System (ADS)

    Liu, L. Z.; Xu, W.; Wu, X. L.; Zhang, Y. Y.; Chen, T. H.; Chu, Paul K.

    2012-03-01

    The electronic states associated with enhanced photocatalytic activity of anodic anatase TiO2 nanotubes (NTs) annealed in N2 and O2 are investigated by photoluminescence (PL). The NTs annealed in N2 show a green peak related to oxygen vacancies and its position blueshifts with deceasing temperature, whereas those annealed in O2 show a double peak at 475-600 nm and the energy separation increases with decreasing temperature. Spectral analysis and density function theory calculation disclose that the double peak results from residual oxygen vacancies and oxygen atoms on the NT wall and the increased energy separation arises from the larger difference between the inner and outer NT stress at low temperature.

  9. Effect of dopant concentration on photoluminescence properties of Gd2O3:Eu3+

    NASA Astrophysics Data System (ADS)

    Selvalakshmi, T.; Bose, A. Chandra

    2013-02-01

    Red-emitting Gd2-xO3:Eux3+(x = 2,4,6at%) was synthesized by sol-gel method and its optical properties were studied. The formation of Gd2O3 and the presence of metal oxygen bond were confirmed from X-ray diffraction (XRD) and fourier transform infrared (FTIR) spectroscopy studies. Incorporation of Eu3+ in Gd3+ site was proved qualitatively by Energy dispersive X-ray analysis (EDX). A strong charge transfer band (CTB) at 254 nm was observed in the excitation spectra with varying intensity for different dopant concentrations. Photoluminescence (PL) spectra reported red emission peak at 611 nm corresponding to 5D0-7F2 transition between Eu3+ energy levels. Concentration quenching occurred at 2 at % and its critical distance was calculated. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) studies was carried out to study the morphological variations.

  10. Photoluminescence enhancement through vertical stacking of defect-engineered Ge on Si quantum dots

    NASA Astrophysics Data System (ADS)

    Groiss, Heiko; Spindlberger, Lukas; Oberhumer, Peter; Schäffler, Friedrich; Fromherz, Thomas; Grydlik, Martyna; Brehm, Moritz

    2017-02-01

    In this work, we show that the room-temperature photoluminescence intensity from Ge ion-bombarded (GIB) epitaxial Ge on Si quantum dots (QD) can be improved by their vertical stacking. We stress that the growth of GIB-QD multilayers is more demanding compared to all-crystalline epitaxial QDs, as a consequence of local amorphous regions within the GIB-QDs required during their genesis. We show that in spite of those amorphous regions, for accurately chosen growth temperatures of the Si spacer layers separating the GIB-QD layers, multiple GIB-QD layers can be stacked without detrimental break-down of epitaxial growth. Compared to a single GIB-QD layer, we observe a 650% increase in PL intensity for an eleven-layer GIB-QD stack, indicating that such multilayers are promising candidates as gain material for all-group-IV nano-photonic lasers.

  11. Characterization of semi-insulating GaAs by photoreflectance and photoluminescence

    SciTech Connect

    Durbin, C.M.

    1992-12-31

    Semi-insulating (SI) GaAs was characterized using photoreflectance, a modulation spectroscopy technique. Anomalous splitting was observed in the photoreflectance (PR) response of SI:GaAs in the vicinity of the exciton at 78 K. Recent photoluminescence (PL) measurements suggest the splitting is correlated with the EL2 content of the samples. Separation between the two peaks in PR measurements range from about 2 to 4 meV. A striking effect is that each peak is maximized by a different phase setting of the lock-in. The splitting is sample dependent and is also affected by several other factors including surface conditions, temperature, pump beam intensity and modulation frequency.

  12. Fluorescein dye intercalated layered double hydroxides for chemically stabilized photoluminescent indicators on inorganic surfaces.

    PubMed

    Lee, Jong Hyeon; Jung, Duk-Young; Kim, Eunchul; Ahn, Tae Kyu

    2014-06-14

    A new photoactive thin film of layered double hydroxide (LDH) nanocrystals containing fluorescein dyes (LDH-F) has been developed by self-assembly of the LDH nanocrystals and well-controlled intercalation of the dyes in organic media. XRD results and absorption spectra confirmed the highly oriented interlayer arrangement of the dianionic form of the fluorescein dyes in the LDH interlayers, in which the dye molecules were electrostatically immobilized between the positively charged LDH layers with a monolayer packing structure. An intensity weighted average PL lifetime was estimated to be 1.45 ns and fluorescence lifetime imaging microscopy revealed that the individual LDH nanocrystals on the LDH-F film had largely similar lifetimes, which were ascribed to the uniform loading of fluorescein dyes onto the LDH matrix without photoluminescence quenching.

  13. Time-resolved photoluminescence and photostability of single semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Chae, Weon-Sik; Dieu Thuy Ung, Thi; Liem Nguyen, Quang

    2013-12-01

    Time-resolved photoluminescence (TRPL) and photostability were studied for several core/shell-type semiconductor quantum dots (QDs) of CdTe/CdS, In(Zn)P/ZnS and CdZnS/ZnS using a TRPL microscopy at a single QD level, of which results were compared to that of CdSe/ZnS QD. The CdTe/CdS and In(Zn)P/ZnS QDs show unstable PL at a single QD level on both bare and polymer-coated glass coverslips, so that they mostly lose emissions within a few seconds. The CdZnS/ZnS QD shows better emission stability than those of the former two QDs, but still less stable than the case of the CdSe/ZnS.

  14. Strong photoluminescence emission from GaN grown on amorphous silica substrates by gas source MBE

    NASA Astrophysics Data System (ADS)

    Iwata, K.; Asahi, H.; Asami, K.; Kuroiwa, R.; Gonda, S.

    1998-06-01

    GaN layers are grown on amorphous fused silica glass substrates by gas source MBE using an ion removed electron cyclotron resonance (ECR) radical cell. Reflection high-energy electron diffraction (RHEED) and X-ray diffraction measurements reveal that they are polycrystalline. However, they show a strong photoluminescence emission peak without deep level emission. The emission peak is red-shifted by about 150 meV from that of the excitonic emission peak of GaN grown on a sapphire substrate and has wide spectral half-width (˜250 meV at 77 K). The peak is not corresponding to the donor-acceptor pair (DAP) emission but is excitonic from the excitation power and temperature dependence of PL spectrum. These optical properties indicate that GaN layers grown on a glass substrate are promising for fabrication of large area and low cost light emitting devices and solar cells.

  15. Minority Carrier Lifetime and Photoluminescence Studies of Antimony-Based Superlattices

    NASA Technical Reports Server (NTRS)

    Hoglund, Linda; Soibel, Alexander; Ting, David Z.; Khoshakhlagh, Arezou; Hill, Cory J.; Gunapala, Sarath D.

    2012-01-01

    In this paper, we have used the OMR technique to study the minority carrier lifetimes in three InAs/GaSb-photoluminescence (PL) structures with different number of periods in the absorber: 300, 400 and 600 periods respectively. The feasibility of using a visible 643 nm laser source with short penetration depth for lifetime measurements was studied by comparing the achieved results to measurements performed on the same samples with a 1550 nm IR laser source, which penetrates much deeper into the sample. Despite the differences in excitation wavelengths and penetration depths, the results from both measurements were very similar. This indicates that the diffusion length is long enough to facilitate a homogeneous distribution of excess carriers in the material.

  16. Thermoluminescence and photoluminescence of cerium doped CaSO 4 nanosheets

    NASA Astrophysics Data System (ADS)

    Zahedifar, M.; Mehrabi, M.

    2010-12-01

    Thermoluminescence (TL) and photoluminescence (PL) characteristics of CaSO 4:Ce nanocrystalline prepared by hydrothermal method has been studied. Its TL glow curve contains three overlapping glow peaks at around 490, 505 and 521 K. Emission spectra band at 303 and 324 nm were observed for the orthorhombic phase of nanosheets. TL response of the prepared nanocrystalline to β and γ radiation was studied and the sensitivity of the nanosheets was found much more than that of analogous microcrystalline and is around 10 times higher than the well known high sensitive TL dosimeter LiF:Mg, Cu, P (GR-200) hot-pressed chips. TL kinetic parameters of this nanocrystalline are also presented.

  17. Antiphospholipid antibodies (aPL) in systemic lupus erythematosus. Are they specific tools for the diagnosis of aPL syndrome?

    PubMed Central

    Ghirardello, A; Doria, A; Ruffatti, A; Rigoli, A M; Vesco, P; Calligaro, A; Gambari, P F

    1994-01-01

    OBJECTIVE--Antiphospholipid antibody (aPL) specificity for aPL-related events was evaluated in systemic lupus erythematosus (SLE). METHODS--A study was carried out on 105 patients affected with SLE comparing the prevalence of lupus anticoagulant (LA) and IgG and IgM anticardiolipin antibodies (aCL) between patients with and without features of antiphospholipid syndrome (APS). Antiphospholipid antibody profile was subsequently evaluated in the aPL positive patients with and without aPL-related events, thus excluding the patients with complications of APS possibly due to factors other than aPL. RESULTS--LA showed a strong association with thrombosis and livedo reticularis, and IgG aCL with thrombosis and neurological disorders, while no clinical features were associated with IgM aCL. A considerable number of aPL positive patients with no aPL-related manifestations was also observed, suggesting the low specificity of aPL assays (54.4%). When studying the 60 aPL positive patients, LA was specific (91.3%) for the diagnosis of aPL-related thrombosis, whereas aCL were not specific, although IgG aCL mean levels were higher in patients with arterial thrombosis than in those without APS features. CONCLUSIONS--LA but not aCL positivity is a specific tool for the diagnosis of thrombotic complications due to aPL in SLE. PMID:8129460

  18. TOF SIMS analysis and generation of white photoluminescence from strontium silicate codoped with europium and terbium

    SciTech Connect

    Tshabalala, Modiehi A.; Swart, Hendrik C.; Ntwaeaborwa, Odireleng M.

    2014-03-15

    White light emitting terbium (Tb{sup 3+}) and europium (Eu{sup 3+}) codoped strontium silicate (Sr{sub 2}SiO{sub 4}) phosphors were prepared by a solid state reaction process. The structure, particle morphology, chemical composition, ion distribution, photoluminescence (PL), and decay characteristics of the phosphors were analyzed by x-ray diffraction (XRD), scanning electron microscopy (SEM), time-of-flight secondary ion mass spectrometry (TOF-SIMS), and PL spectroscopy, respectively. The XRD data showed that our Sr{sub 2}SiO{sub 4} composed of two phases, namely, β-Sr{sub 2}SiO{sub 4} and α′-Sr{sub 2}SiO{sub 4}, and the α′-Sr{sub 2}SiO{sub 4} phase was more prominent than the β-Sr{sub 2}SiO{sub 4} phase. The SEM micrographs showed that the particles were agglomerated together and they did not have definite shapes. All ions (i.e., negative and positive) present in our materials were identified by TOF-SIMS. In addition, the chemical imaging performed with the TOF-SIMS demonstrated how the individual ions including the dopants (Eu{sup 3+} and Tb{sup 3+}) were distributed in the host lattice. White photoluminescence was observed when the Sr{sub 2}SiO{sub 4}:Tb{sup 3+}, Eu{sup 3+} phosphor was excited at 239 nm using a monochromatized xenon lamp as the excitation source. The phosphor exhibited fast decay lifetimes implying that it is not a good candidate for long afterglow applications.

  19. Presence of photoluminescent carbon dots in Nescafe® original instant coffee: applications to bioimaging.

    PubMed

    Jiang, Chengkun; Wu, Hao; Song, Xiaojie; Ma, Xiaojun; Wang, Jihui; Tan, Mingqian

    2014-09-01

    The presence of the carbon dots (C-dots) in food is a hotly debated topic and our knowledge about the presence and the use of carbon dots (C-dots) in food is still in its infancy. We report the finding of the presence of photoluminescent (PL) C-dots in commercial Nescafe instant coffee. TEM analysis reveals that the extracted C-dots have an average size of 4.4 nm. They were well-dispersed in water and strongly photoluminescent under the excitation of ultra-violet light with a quantum yield (QY) about 5.5%, which were also found to possess clear upconversion PL properties. X-ray photoelectron spectroscopy characterization demonstrates that the C-dots contain C, O and N three elements with the relative contents ca. 30.1, 62.2 and 7.8%. The X-ray diffraction (XRD) analysis indicates that the C-dots are amorphous. Fourier-transform infrared (FTIR) spectra were employed to characterize the surface groups of the C-dots. The C-dots show a pH independent behavior by varying the pH value from 2 to 11. The cytotoxicity study revealed that the C-dots did not cause any toxicity to cells at a concentration as high as 20 mg/mL. The C-dots have been directly applied in cells and fish imaging, which suggested that the C-dots present in commercial coffee may have more potential biological applications.

  20. Influence of Nd dopant amount on microstructure and photoluminescence of TiO2:Nd thin films

    NASA Astrophysics Data System (ADS)

    Wojcieszak, Damian; Mazur, Michal; Kaczmarek, Danuta; Morgiel, Jerzy; Zatryb, Grzegorz; Domaradzki, Jaroslaw; Misiewicz, Jan

    2015-10-01

    TiO2 and TiO2:Nd thin films were deposited using reactive magnetron sputtering process from mosaic Ti-Nd targets with various Nd concentration. The thin films were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM) and spectroscopic techniques. Photoluminescence (PL) in the near infrared obtained upon 514.5 nm excitation was also examined. The relationship between the Nd concentration, structural, optical and photoluminescence properties of prepared thin films was investigated and discussed. XRD and TEM measurements showed that an increase in the Nd concentration in the thin films hinders the crystal growth in the deposited coatings. Depending on the Nd amount in the thin films, TiO2 with the rutile, mixed rutile-amorphous or amorphous phase was obtained. Transmittance measurements revealed that addition of Nd dopant to titania matrix did not deteriorate optical transparency of the coatings, however it influenced on the position of the fundamental absorption edge and therefore on the width of optical band gap energy. All TiO2:Nd thin films exhibited PL emission that occurred at ca. 0.91, 1.09 and 1.38 μm. Finally, results obtained for deposited coatings showed that titania with the rutile structure and 1.0 at.% of Nd was the most efficient in VIS to NIR photon conversion.

  1. Photoluminescence and photothermal effect of Fe{sub 3}O{sub 4} nanoparticles for medical imaging and therapy

    SciTech Connect

    Sadat, M. E.; Kaveh Baghbador, Masoud; Wagner, H. P.; Mast, David B. E-mail: donglu.shi@uc.edu; Dunn, Andrew W.; Ewing, Rodney C.; Zhang, Jiaming; Xu, Hong; Pauletti, Giovanni M.; Shi, Donglu E-mail: donglu.shi@uc.edu

    2014-09-01

    Photoluminescence (PL) of Fe{sub 3}O{sub 4} nanoparticle was observed from the visible to near-infrared (NIR) range by laser irradiation at 407 nm. PL spectra of ∼10 nm diameter Fe{sub 3}O{sub 4} nanoparticles organized in different spatial configuration, showed characteristic emissions with a major peak near 560 nm, and two weak peaks near 690 nm and 840 nm. Different band gap energies were determined for these Fe{sub 3}O{sub 4} nanoparticle samples corresponding to, respectively, the electron band structures of the octahedral site (2.2 eV) and the tetrahedral site (0.9 eV). Photothermal effect of Fe{sub 3}O{sub 4} nanoparticles was found to be associated with the photoluminescence emissions in the NIR range. Also discussed is the mechanism responsible for the photothermal effect of Fe{sub 3}O{sub 4} nanoparticles in medical therapy.

  2. Spectroelectrochemical photoluminescence spectroscopy and imaging of reactive surface defects in titanium dioxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Rex, Riley Elliot

    Titanium dioxide (TiO2) nanoparticles have shown promise as a low-cost and effective material for a wide range of applications including batteries, photovoltaics, and photocatalysis. To optimize TiO2 nanoparticles in these applications, it is necessary to understand the nature of surface defect states which influence device efficiencies by their role in electron transport and surface reactivity. In this work, the solvent-dependent energies and spatial locations of surface defect states of TiO2 nanoparticles are investigated using spectroelectrochemical photoluminescence (SEPL) and single-particle photoluminescence spectroscopy and imaging. In the SEPL work, anatase nanoparticles, anatase nanosheets, and rutile nanowires are examined in aqueous and nonaqueous environments. Trap state photoluminescence of nanocrystalline TiO2 in aqueous environment under Fermi level control reveals the pH-dependent redox Fermi levels of the surface Ti 3+/4+ couple associated with five-fold coordinated titanium. In aqueous environment there is an overvoltage for occupying surface electron traps in rutile and anatase samples. For anatase, this overvoltage is larger on (101) nanoparticles than on (001) nanosheets. Electron traps in acetonitrile are occupied at potentials consistent with their energetic position within the band gap as determined by the photoluminescence spectrum. The anatase SEPL results lend insight into the effects of contacting solvent on performance of nano-TiO2 in applications such as dye-sensitized solar cells. The rutile SEPL results indicate that the near-IR PL of rutile nanowires, identical to that of bulk and conventional nanocrystalline rutile, arises from the radiative recombination of trapped electrons with valence band holes, and that valence band holes, rather than trapped holes, are more likely responsible for water oxidation. The single-particle photoluminescence experiments investigate microcrystals with well-defined {001} and {101} facets before and

  3. Evolution of the electron localization in a nonconventional alloy system GaAs1-xNx probed by high-magnetic-field photoluminescence

    NASA Astrophysics Data System (ADS)

    Wang, Y. J.; Wei, X.; Zhang, Y.; Mascarenhas, A.; Xin, H. P.; Hong, Y. G.; Tu, C. W.

    2003-06-01

    We demonstrate that a high magnetic field can be used effectively not only to probe the nature of the photoluminescence (PL) in a semiconductor, but also to reveal emission peaks that are unobservable at zero field since the magnetic field can alter energy relaxation processes and the statistical distribution of the photocarriers. Our systematic magneto-PL study of GaAs1-xNx (0.1%⩽x<2.5%) in fields up to 30 T indicates that the character of the low-temperature PL in this system changes drastically with varying nitrogen composition x and exhibits transitions with applying strong magnetic fields. For x<0.7%, the PL spectrum shows many discrete features whose energies remain nearly stationary up to the highest applied field. However, the magnetic confinement gives rise to a feature emerging on the higher energy side of the zero-field spectrum. This feature does show a diamagnetic shift, but it is much slower that that of the GaAs band-edge transition. For x>1%, the PL spectrum evolves into a broad band, and its diamagnetic shift resembles the band-edge transition in a conventional semiconductor, and the rate of shift is comparable to that of GaAs. From the diamagnetic shift of the band, the reduced effective masses for different composition of nitrogen have been derived for this system using the standard theory for the magneto-exciton in a three dimensional semiconductor.

  4. Direct evidence of molecular aggregation and degradation mechanism of organic light-emitting diodes under joule heating: an STM and photoluminescence study.

    PubMed

    Gong, Jian-Ru; Wan, Li-Jun; Lei, Sheng-Bin; Bai, Chun-Li; Zhang, Xiao-Hong; Lee, Shuit-Tong

    2005-02-10

    The Joule heating effect on electroluminescent efficiency is important in the degradation origin of organic light-emitting diodes (OLED). Scanning tunneling microscopy (STM) and photoluminescence (PL) measurements were performed on the guest molecule BT (1,4-bis(benzothiazole-vinyl) benzene), host molecule TPBI (2, 2',2' '-(1,3,5-phenylene)tris-[1-phenyl-1H-benzimidazole]), and their mixture deposited on an HOPG surface to study the OLED degradation mechanism due to thermal heating. At room temperature, BT and TPBI in the mixed layer show good compatibility and high PL intensity, but at higher temperatures, they show phase separation and aggregation into their own domains and a concomitant decrease in PL intensity. The PL intensity loss suggests ineffective energy transfer from TPBI to BT due to phase separation, which may cause OLED degradation. Scanning tunneling spectroscopy (STS) results show that the band gaps of TPBI and BT remain unchanged with the annealing temperature, suggesting that the heat-induced decay of OLED is related to the interfacial structural change rather than the respective molecular band gap. The results provide direct evidence showing how the molecular structures of the mixed layer vary and affect the PL intensity due to temperature.

  5. Spatial density profile of electrons near the LaAlO{sub 3}/SrTiO{sub 3} heterointerface revealed by time-resolved photoluminescence spectroscopy

    SciTech Connect

    Yamada, Yasuhiro Kanemitsu, Yoshihiko; Sato, Hiroki K.; Hikita, Yasuyuki; Hwang, Harold Y.

    2014-04-14

    The depth profile of the electron density near the LaAlO{sub 3}/SrTiO{sub 3} heterointerface has been studied by means of time-resolved photoluminescence (PL) spectroscopy. A broad blue PL band is observed at 2.9 eV, originating from the two-carrier radiative recombination of interface-induced electrons and photoexcited holes. The PL lifetime of LaAlO{sub 3}/SrTiO{sub 3} heterointerface is dominated by the three-carrier Auger recombination of electrons and holes and is sensitive to electron density. We tuned the probing depth by changing the excitation photon energy and evaluated the carrier-density profile using the relation between the carrier density and the PL lifetime. Our non-contact probe method based on PL spectroscopy indicates that the carriers are confined within several nanometers in depth near the LaAlO{sub 3}/SrTiO{sub 3} heterostructures.

  6. Photoluminescence in the characterization and early detection of biomimetic bone-like apatite formation on the surface of alkaline-treated titanium implant: state of the art.

    PubMed

    Sepahvandi, Azadeh; Moztarzadeh, Fathollah; Mozafari, Masoud; Ghaffari, Maryam; Raee, Nahid

    2011-09-01

    Photoluminescence (PL) property is particularly important in the characterization of materials that contain significant proportions of noncrystalline components, multiple phases, or low concentrations of mineral phases. In this research, the ability of biomimetic bone-like apatite deposition on the surface of titanium alloy (Ti6Al4V) substrates in simulated body fluid (SBF) right after alkaline-treatment and subsequent heat-treatment was studied by the inherent luminescence properties of apatite. For this purpose, the metallic substrates were treated in 5 M NaOH solution at 60 °C. Subsequently, the substrates were heat-treated at 600 °C for 1 h for consolidation of the sodium titanate hydrogel layer. Then, they were soaked in SBF for different periods of time. Finally, the possibility to use of PL monitoring as an effective method and early detection tool is discussed. According to the obtained results, it was concluded that the PL emission peak did not have any significant shift to the shorter or higher wavelengths, and the PL intensity increased as the exposure time increased. This research proved that the observed inherent PL of the newly formed apatite coatings might be of specific interest for histological probing and bone remodelling monitoring.

  7. Impact of ion-implantation-induced band gap engineering on the temperature-dependent photoluminescence properties of InAs/InP quantum dashes

    SciTech Connect

    Hadj Alouane, M. H.; Ilahi, B.; Maaref, H.; Salem, B.; Aimez, V.; Morris, D.; Turala, A.; Regreny, P.; Gendry, M.

    2010-07-15

    We report on the effects of the As/P intermixing induced by phosphorus ion implantation in InAs/InP quantum dashes (QDas) on their photoluminescence (PL) properties. For nonintermixed QDas, usual temperature-dependent PL properties characterized by a monotonic redshift in the emission band and a continual broadening of the PL linewidth as the temperature increases, are observed. For intermediate ion implantation doses, the inhomogeneous intermixing enhances the QDas size dispersion and the enlarged distribution of carrier confining potential depths strongly affects the temperature-dependent PL properties below 180 K. An important redshift in the PL emission band occurs between 10 and 180 K which is explained by a redistribution of carriers among the different intermixed QDas of the ensemble. For higher implantation doses, the homogeneous intermixing reduces the broadening of the localized QDas state distribution and the measured linewidth temperature behavior matches that of the nonintermixed QDas. An anomalous temperature-dependent emission energy behavior has been observed for extremely high implantation doses, which is interpreted by a possible QDas dissolution.

  8. Incorporation of lanthanide (Eu(3+)) ions in ZnS semiconductor quantum dots with a trapped-dopant model and their photoluminescence spectroscopy study.

    PubMed

    Wang, Yongbo; Liang, Xuhua; Liu, Enzhou; Hu, Xiaoyun; Fan, Jun

    2015-09-18

    Doping quantum dots (QDs) with lanthanide (Ln) ions is promising to modify the optical properties of QDs, but incorporating Ln(3+) ions into QD hosts remains a challenge. In this work, we adopt the trapped-dopant model for fabricating Eu-doped ZnS QDs via direct wet chemical synthesis. Sharp Eu dopant photoluminescence (PL) was observed in the PL spectra of the as-prepared Eu-doped ZnS QDs and the bands at ~590, ~618 and ~695 nm were assigned to transitions from (5)D0 to (7)F1, (7)F2 and (7)F4, respectively. Quenching of the ZnS bandgap PL and enhancement of the Eu dopant PL were observed with increasing Eu(3+) doping concentration, and also, the excitation spectra for Eu emission (618 nm) were similar to the typical excitonic features of the ZnS host. These spectroscopic results, as well as the XRD and EDS data, demonstrated that Eu(3+) ions were incorporated in the ZnS host rather than just on the surface, and the Eu dopant PL was derived from energy transfer from the QD host to Eu(3+) rather than direct excitation of Eu(3+). By surface passivation, the sharp Eu emission was well-separated from the ZnS bandgap emission, which led to a good signal-to-noise ratio for more sensitive detection.

  9. AFM Manipulation of Viruses: Substrate Interactions and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Falvo, M. R.; Superfine, R.; Washburn, S.; Finch, M.; Taylor, R. M.; Chi, V.; Brooks, F. P.; Ferrari, F.; Samulski, R.

    1996-03-01

    Using an AFM tip as a manipulation tool, we have translated, rotated, and dissected individual Tobacco Mosaic Virus (TMV) and Adenovirus particles. We have implemented a teleoperation system which allows manual control of the relative tip-sample position while also allowing conventional AFM operation for imaging resulting structure. Using simple tip trajectories to bend the rod-shaped TMV, we observed a variety of resulting structures and mechanical failures. The distributed adhesive interaction between the virus and the sample surface, as well as the local tip-virus interaction affect the distortion in the shape of the virus. Experiments were performed in air as well as in liquid on graphite and Si substrates. The in-liquid experiments allow tuning of the environmental conditions, including osmolarity and pH, which are known to profoundly affect the virus structure. A continuum mechanical model relating mechanical properties to observations provides insight into the constraints for successful nondestructive manipulation.

  10. Nano-Bio-Mechanics of Neuroblastoma Cells Using AFM

    NASA Astrophysics Data System (ADS)

    Bastatas, Lyndon; Matthews, James; Kang, Min; Park, Soyeun

    2011-10-01

    We have conducted an in vitro study to determine the elastic moduli of neurobalstoma cell lines using atomic force microscopy. Using a panel of cell lines established from neuroblastoma patients at different stages of disease progress and treatment, we have investigated the differences in elastic moduli during a course of cancer progression and chemotherapy. The cells were grown on the hard substrates that are chemically functionalized to enhance adhesion. We have performed the AFM indentation experiments with different applied forces from the AFM probe. For the purpose of the comparison between cell lines, the indentations were performed only on cell centers. The obtained force-distance curves were analyzed using the Hertz model in order to extract the elastic moduli. We have found that the elastic moduli of human neuroblastoma cells significantly varied during the disease progression. We postulate that the observed difference might be affected by the treatment and chemotherapy.

  11. BOREAS AFM-5 Level-1 Upper Air Network Data

    NASA Technical Reports Server (NTRS)

    Barr, Alan; Hrynkiw, Charmaine; Newcomer, Jeffrey A. (Editor); Hall, Forrest G. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-5 team collected and processed data from the numerous radiosonde flights during the project. The goals of the AFM-05 team were to provide large-scale definition of the atmosphere by supplementing the existing Atmospheric Environment Service (AES) aerological network, both temporally and spatially. This data set includes basic upper-air parameters collected from the network of upper-air stations during the 1993, 1994, and 1996 field campaigns over the entire study region. The data are contained in tabular ASCII files. The level-1 upper-air network data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files also are available on a CD-ROM (see document number 20010000884).

  12. Automated assembly of holder chips to AFM probes

    NASA Astrophysics Data System (ADS)

    Reinhart, Gunther; Jacob, Dirk; Fouchier, Marc

    2001-10-01

    At the Belgian institute IMEC techniques for the production of electrically conductive atomic force microscope (AFM) probes are developed. To facilitate handling of the fragile probes, holder chips are required. The assembly of such holder chips, which can be split up into the application of solder paste, the positioning of the holder chip and the soldering of the chip, is a crucial manufacturing step, that, until now, was performed manually for economic reasons. With the help of a modular micro assembly tool, developed by the Institute for Machine Tools and Industrial Management (iwb) of the Technische Universitaet Muenchen, an economical automated assembly of the holder chips was developed. Thanks to our integrated sensor technology, even the automated assembly onto the extremely fragile membranes of moulded AFM probes was possible. In particular, the dispensing process of the solder paste onto the membranes was improved by the integration of a non-contact sensor for the needle clearance.

  13. Influence of annealing temperature on Raman and photoluminescence spectra of electron beam evaporated TiO₂ thin films.

    PubMed

    Vishwas, M; Narasimha Rao, K; Chakradhar, R P S

    2012-12-01

    Titanium dioxide (TiO(2)) thin films were deposited on fused quartz substrates by electron beam evaporation method at room temperature. The films were annealed at different temperatures in ambient air. The surface morphology/roughness at different annealing temperatures were analyzed by atomic force microscopy (AFM). The crystallinity of the film has improved with the increase of annealing temperature. The effect of annealing temperature on optical, photoluminescence and Raman spectra of TiO(2) films were investigated. The refractive index of TiO(2) films were studied by envelope method and reflectance spectra and it is observed that the refractive index of the films was high. The photoluminescence intensity corresponding to green emission was enhanced with increase of annealing temperature. The peaks in Raman spectra depicts that the TiO(2) film is of anatase phase after annealing at 300°C and higher. The films show high refractive index, good optical quality and photoluminescence characteristics suggest that possible usage in opto-electronic and optical coating applications.

  14. Leading Change: Transitioning the AFMS into a High Reliability Organization

    DTIC Science & Technology

    2016-02-16

    AIR WAR COLLEGE AIR UNIVERSITY LEADING CHANGE: TRANSITIONING THE AFMS INTO A HIGH RELIABILTY ORGANIZATION by Robert K. Bogart...academic research paper are those of the author and do not reflect the official policy or position of the US government, the Department of Defense, or Air ...University. In accordance with Air Force Instruction 51-303, it is not copyrighted, but is the property of the United States government. iii

  15. Investigation of biopolymer networks by means of AFM

    NASA Astrophysics Data System (ADS)

    Keresztes, Z.; Rigó, T.; Telegdi, J.; Kálmán, E.

    Natural hydrogel alginate was investigated by means of atomic force microscopy (AFM) to gain microscale information on the morphological and rheological properties of the biopolymer network cross-linked by various cations. Local rheological properties of the gels measured by force spectroscopy gave correlation between increasing ion selectivity and increasing polymer elasticity. Adhesive forces acting between the surface of the gel and the probe, and also the intrinsic rheological properties of bulk polymers affect the microscopical image formation.

  16. LET Spectrum Measurements In CR-39 PNTD With AFM

    SciTech Connect

    Johnson, C. E.; DeWitt, J. M.; Benton, E. R.; Yasuda, N.; Benton, E. V.

    2011-06-01

    Energetic protons, neutrons, and heavy ions undergoing collisions with target nuclei of varying Z can produce residual heavy recoil fragments via intra-nuclear cascade/evaporation reactions. The particles produced in these non-elastic collisions generally have such extremely short range ({approx}<10 {mu}m) that they cannot be directly observed by conventional detection methods including CR-39 plastic nuclear track detector (PNTD) that has been chemically etched for analysis by standard visible light microscopy. However, high-LET recoil fragments having range on the order of several cell diameters can be produced in tissue during radiotherapy using proton and carbon beams. We have developed a method to analyze short-range, high-LET tracks in CR-39 plastic nuclear track detector (PNTD) using short duration chemical etching ({approx}<1 {mu}m) following by automated atomic force microscope (AFM) scanning. The post-scan data processing used in this work was based on semi-automated matrix analysis opposed to traditional grey-scale image analysis. This method takes advantage of the 3-D data obtained via AFM to achieve robust discrimination of nuclear tracks from other features inherently present in the post-etch detector surface. Through automation of AFM scanning, sufficient AFM scan frames were obtained to attain an LET spectrum spanning the LET range from 200-1500 keV/{mu}m. In addition to our experiments, simulations were carried out with the Monte Carlo transport code, FLUKA. To demonstrate this method, CR-39 PNTD was exposed to the proton therapy beam at Loma Linda University Medical Center (LLUMC) at 60 and 230 MeV. Additionally, detectors were exposed to 1 GeV protons at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL). For these exposures CR-39 PNTD, Al and Cu target foils were used between detector layers.

  17. Adiabatic Compression Sensitivity of AF-M315E

    DTIC Science & Technology

    2015-07-01

    the development of green rocket propellants . The Air Force Research Laboratory’s (AFRL) monopropellant, AF-M315E, has been selected for...art rocket fuels and propellants . A known quantity of liquid propellant is placed in a metal U-tube and held isothermally in a preheated mixture of... Propellant Infusion Mission (GPIM) program. As the propulsion system developed by Aerojet- Rocketdyne for this propellant advances in maturity, studies

  18. Quantitative nano-mechanics of biological cells with AFM

    NASA Astrophysics Data System (ADS)

    Sokolov, Igor

    2013-03-01

    The importance of study of living cells is hard to overestimate. Cell mechanics is a relatively young, yet not a well-developed area. Besides just a fundamental interest, large practical need has emerged to measure cell mechanics quantitatively. Recent studies revealed a significant correlation between stiffness of biological cells and various human diseases, such as cancer, malaria, arthritis, and even aging. However, really quantitative studies of mechanics of biological cells are virtually absent. It is not even clear if the cell, being a complex and heterogeneous object, can be described by the elastic modulus at all. Atomic force microscopy (AFM) is a natural instrument to study properties of cells in their native environments. Here we will demonstrate that quantitative measurements of elastic modulus of cells with AFM are possible. Specifically, we will show that the ``cell body'' (cell without ``brush'' surface layer, a non-elastic layer surrounding cells) typically demonstrates the response of a homogeneous elastic medium up to the deformation of 10-20%, but if and only if a) the cellular brush layer is taken into account, b) rather dull AFM probes are used. This will be justified with the help of the strong condition of elastic behavior of material: the elastic modulus is shown to be independent on the indentation depth. We will also demonstrate that an attempt either to ignore the brush layer or to use sharp AFM probes will result in the violation of the strong condition, which implies impossibility to use the concept of the elastic modulus to describe cell mechanics in such experiments. Examples of quantitative measurements of the Young's modulus of the cell body and the cell brush parameters will be given for various cells. Address when submitting: Clarkson University, Potsdam, NY 13699

  19. LET Spectrum Measurements In CR-39 PNTD With AFM

    NASA Astrophysics Data System (ADS)

    Johnson, C. E.; DeWitt, J. M.; Benton, E. R.; Yasuda, N.; Benton, E. V.

    2011-06-01

    Energetic protons, neutrons, and heavy ions undergoing collisions with target nuclei of varying Z can produce residual heavy recoil fragments via intra-nuclear cascade/evaporation reactions. The particles produced in these non-elastic collisions generally have such extremely short range (˜<10 μm) that they cannot be directly observed by conventional detection methods including CR-39 plastic nuclear track detector (PNTD) that has been chemically etched for analysis by standard visible light microscopy. However, high-LET recoil fragments having range on the order of several cell diameters can be produced in tissue during radiotherapy using proton and carbon beams. We have developed a method to analyze short-range, high-LET tracks in CR-39 plastic nuclear track detector (PNTD) using short duration chemical etching (˜<1 μm) following by automated atomic force microscope (AFM) scanning. The post-scan data processing used in this work was based on semi-automated matrix analysis opposed to traditional grey-scale image analysis. This method takes advantage of the 3-D data obtained via AFM to achieve robust discrimination of nuclear tracks from other features inherently present in the post-etch detector surface. Through automation of AFM scanning, sufficient AFM scan frames were obtained to attain an LET spectrum spanning the LET range from 200-1500 keV/μm. In addition to our experiments, simulations were carried out with the Monte Carlo transport code, FLUKA. To demonstrate this method, CR-39 PNTD was exposed to the proton therapy beam at Loma Linda University Medical Center (LLUMC) at 60 and 230 MeV. Additionally, detectors were exposed to 1 GeV protons at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL). For these exposures CR-39 PNTD, Al and Cu target foils were used between detector layers.

  20. LET spectrum measurements in Cr-39 PNTD with AFM

    SciTech Connect

    Johnson, Carl Edward; De Witt, Joel M; Benton, Eric R; Yasuda, Nakahiro; Benton, Eugene V

    2010-01-01

    Energetic protons, neutrons, and heavy ions undergoing collisions with target nuclei of varying Z can produce residual heavy recoil fragments via intra-nuclear cascade/evaporation reactions. The particles produced in these non-elastic collisions generally have such extremely short range ({approx}< 10 {mu}m) that they cannot be directly observed by conventional detection methods including CR-39 plastic nuclear track detector (PNTD) that has been chemically etched for analysis by standard visible light microscopy. However, high-LET recoil fragments having range on the order of several cell diameters can be produced in tissue during radiotherapy using proton and carbon beams. We have developed a method to analyze short-range, high-LET tracks in CR-39 plastic nuclear track detector (PNTD) using short duration chemical etching ({approx}< 1 {mu}m) followed by automated atomic force microscope (AFM) scanning. The post-scan data processing used in this work was based on semi-automated matrix analysis opposed to traditional grey-scale image analysis. This method takes advantage of the 3-D data obtained via AFM to achieve robust discrimination of nuclear tracks from other features. Through automation of AFM scanning, sufficient AFM scan frames were obtained to attain an LET spectrum spanning the LET range from 200-1500 keV/{mu}m. In addition to our experiments, simulations were carried out with the Monte Carlo transport code, FLUKA. To demonstrate this method, CR-39 PNTD was exposed to the proton therapy beam at Loma Linda University Medical Center (LLUMC) at 60 and 230 MeV. Additionally, detectors were exposed to I GeV protons at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL). For these exposures CR-39 PNTD, Al and Cu target foils were used between detector layers.