Science.gov

Sample records for afm raman spectroscopy

  1. Confocal Raman spectroscopy and AFM for evaluation of sidewalls in type II superlattice FPAs

    NASA Astrophysics Data System (ADS)

    Rotter, T. J.; Busani, T.; Rathi, P.; Jaeckel, F.; Reyes, P. A.; Malloy, K. J.; Ukhanov, A. A.; Plis, E.; Krishna, S.; Jaime-Vasquez, M.; Baril, N. F.; Benson, J. D.; Tenne, D. A.

    2015-06-01

    We propose to utilize confocal Raman spectroscopy combined with high resolution atomic force microscopy (AFM) for nondestructive characterisation of the sidewalls of etched and passivated small pixel (24 μm×24 μm) focal plane arrays (FPA) fabricated using LW/LWIR InAs/GaSb type-II strained layer superlattice (T2SL) detector material. Special high aspect ratio Si and GaAs AFM probes, with tip length of 13 μm and tip aperture less than 7°, allow characterisation of the sidewall morphology. Confocal microscopy enables imaging of the sidewall profile through optical sectioning. Raman spectra measured on etched T2SL FPA single pixels enable us to quantify the non-uniformity of the mesa delineation process.

  2. Characterization of human ovarian teratoma hair by using AFM, FT-IR, and Raman spectroscopy.

    PubMed

    Kim, Kyung Sook; Lee, Jinwoo; Jung, Min-Hyung; Choi, Young Joon; Park, Hun-Kuk

    2011-12-01

    The structural, physical, and chemical properties of hair taken from an ovarian teratoma (teratoma hair) was first examined by atomic force microscopy (AFM), Fourier transform infrared (FT-IR), and Raman spectroscopy. The similarities and differences between the teratoma hair and scalp hair were also investigated. Teratoma hair showed a similar morphology and chemical composition to scalp hair. Teratoma hair was covered with a cuticle in the same manner as scalp hair and showed the same amide bonding modes as scalp hair according to FT-IR and Raman spectroscopy. On the other hand, teratoma hair showed different physical properties and cysteic acid bands from scalp hair: the surface was rougher and the adhesive force was lower than the scalp hair. The cystine oxides modes did not change with the position unlike scalp hair. These differences can be understood by environmental effects not by the intrinsic properties of the teratoma hair.

  3. Fourier Transform Infrared (FTIR) Spectroscopy, Ultraviolet Resonance Raman (UVRR) Spectroscopy, and Atomic Force Microscopy (AFM) for Study of the Kinetics of Formation and Structural Characterization of Tau Fibrils.

    PubMed

    Ramachandran, Gayathri

    2017-01-01

    Kinetic studies of tau fibril formation in vitro most commonly employ spectroscopic probes such as thioflavinT fluorescence and laser light scattering or negative stain transmission electron microscopy. Here, I describe the use of Fourier transform infrared (FTIR) spectroscopy, ultraviolet resonance Raman (UVRR) spectroscopy, and atomic force microscopy (AFM) as complementary probes for studies of tau aggregation. The sensitivity of vibrational spectroscopic techniques (FTIR and UVRR) to secondary structure content allows for measurement of conformational changes that occur when the intrinsically disordered protein tau transforms into cross-β-core containing fibrils. AFM imaging serves as a gentle probe of structures populated over the time course of tau fibrillization. Together, these assays help further elucidate the structural and mechanistic complexity inherent in tau fibril formation.

  4. Raman Spectroscopy.

    ERIC Educational Resources Information Center

    Gerrard, Donald L.

    1984-01-01

    Reviews literature on Raman spectroscopy from late 1981 to late 1983. Topic areas include: instrumentation and sampling; liquids and solutions; gases and matrix isolation; biological molecules; polymers; high-temperature and high-pressure studies; Raman microscopy; thin films and surfaces; resonance-enhanced and surface-enhanced spectroscopy; and…

  5. Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Gleeson, Helen F.

    Raman spectroscopy has been used as a tool to study liquid crystals for several decades. There are several features that make Raman spectroscopy an important characterisation method. It is bond-specific, so can provide information about the interaction of liquid crystals with colloidal systems and can offer an insight into phase transitions. The polarization dependence of the scattering can be used to determine order parameters in liquid crystal systems. Finally, the relatively high spatial resolution of the technique (∽1 μm) can be used to explore spatiallydependent order in soft matter systems. This chapter describes the most important ways in which Raman spectroscopy can be used to reveal information about liquid crystal systems, illustrated by examples. Both the theoretical background and experimental considerations are described, providing a comprehensive introduction to anybody interested in using the technique to understand liquid crystal systems.

  6. Raman spectroscopy

    SciTech Connect

    Gerrard, D.L.; Bowley, H.J.

    1988-06-15

    The period of this review is from late 1985 to late 1987. During this time over 6000 papers have been published in the scientific literature dealing with many applications of Raman spectroscopy and extending its use to new areas of study. This article covers only those papers that are relevant to the analytical chemist and this necessitates a highly selective approach. There are some areas that have been the subject of many papers with relatively few being of analytical interest. In such cases the reader is referred to appropriate reviews which are detailed in this section.

  7. Raman and AFM study of gamma irradiated plastic bottle sheets

    NASA Astrophysics Data System (ADS)

    Ali, Yasir; Kumar, Vijay; Sonkawade, R. G.; Dhaliwal, A. S.

    2013-02-01

    In this investigation, the effects of gamma irradiation on the structural properties of plastic bottle sheet are studied. The Plastic sheets were exposed with 1.25MeV 60Co gamma rays source at various dose levels within the range from 0-670 kGy. The induced modifications were followed by micro-Raman and atomic force microscopy (AFM). The Raman spectrum shows the decrease in Raman intensity and formation of unsaturated bonds with an increase in the gamma dose. AFM image displays rough surface morphology after irradiation. The detailed Raman analysis of plastic bottle sheets is presented here, and the results are correlated with the AFM observations.

  8. Near-Field Spectroscopy with Nanoparticles Deposited by AFM

    NASA Technical Reports Server (NTRS)

    Anderson, Mark S.

    2008-01-01

    An alternative approach to apertureless near-field optical spectroscopy involving an atomic-force microscope (AFM) entails less complexity of equipment than does a prior approach. The alternative approach has been demonstrated to be applicable to apertureless near-field optical spectroscopy of the type using an AFM and surface enhanced Raman scattering (SERS), and is expected to be equally applicable in cases in which infrared or fluorescence spectroscopy is used. Apertureless near-field optical spectroscopy is a means of performing spatially resolved analyses of chemical compositions of surface regions of nanostructured materials. In apertureless near-field spectroscopy, it is common practice to utilize nanostructured probe tips or nanoparticles (usually of gold) having shapes and dimensions chosen to exploit plasmon resonances so as to increase spectroscopic-signal strengths. To implement the particular prior approach to which the present approach is an alternative, it is necessary to integrate a Raman spectrometer with an AFM and to utilize a special SERS-active probe tip. The resulting instrumentation system is complex, and the tasks of designing and constructing the system and using the system to acquire spectro-chemical information from nanometer-scale regions on a surface are correspondingly demanding.

  9. Acquisition of a Modular, Multi-laser, Raman-AFM Instrument for Multdisciplinary Research

    DTIC Science & Technology

    2015-04-28

    vapor deposition on copper foils. The four lasers range from the blue to 785 nm and provides a unique handle to determine excitation dependence of...Acquisition of a Modular, Multi- laser , Raman- AFM Instrument for Multdisciplinary Research A four- laser , confocal Raman/Atomic Force Scanning... laser , Raman-AFM Instrument for Multdisciplinary Research Report Title A four- laser , confocal Raman/Atomic Force Scanning microscope (Raman-AFM

  10. Raman spectroscopy in astrobiology.

    PubMed

    Jorge Villar, Susana E; Edwards, Howell G M

    2006-01-01

    Raman spectroscopy is proposed as a valuable analytical technique for planetary exploration because it is sensitive to organic and inorganic compounds and able to unambiguously identify key spectral markers in a mixture of biological and geological components; furthermore, sample manipulation is not required and any size of sample can be studied without chemical or mechanical pretreatment. NASA and ESA are considering the adoption of miniaturised Raman spectrometers for inclusion in suites of analytical instrumentation to be placed on robotic landers on Mars in the near future to search for extinct or extant life signals. In this paper we review the advantages and limitations of Raman spectroscopy for the analysis of complex specimens with relevance to the detection of bio- and geomarkers in extremophilic organisms which are considered to be terrestrial analogues of possible extraterrestial life that could have developed on planetary surfaces.

  11. Resonance Raman spectroscopy.

    PubMed

    Robert, Bruno

    2009-01-01

    Resonance Raman spectroscopy may yield precise information on the conformation of, and on the interactions assumed by, the chromophores involved in the first steps of the photosynthetic process, whether isolated in solvents, embedded in soluble or membrane proteins, or, as shown recently, in vivo. By making use of this technique, it is possible, for instance, to relate the electronic properties of these molecules to their structure and/or the physical properties of their environment, or to determine subtle changes of their conformation associated with regulatory processes. After a short introduction to the physical principles that govern resonance Raman spectroscopy, the information content of resonance Raman spectra of chlorophyll and carotenoid molecules is described in this review, together with the experiments which helped in determining which structural parameter each Raman band is sensitive to. A selection of applications of this technique is then presented, in order to give a fair and precise idea of which type of information can be obtained from its use in the field of photosynthesis.

  12. Tip in-light on: Advantages, challenges, and applications of combining AFM and Raman microscopy on biological samples.

    PubMed

    Prats-Mateu, Batirtze; Gierlinger, Notburga

    2017-01-01

    Scanning probe microscopies and spectroscopies, especially AFM and Confocal Raman microscopy are powerful tools to characterize biological materials. They are both non-destructive methods and reveal mechanical and chemical properties on the micro and nano-scale. In the last years the interest for increasing the lateral resolution of optical and spectral images has driven the development of new technologies that overcome the diffraction limit of light. The combination of AFM and Raman reaches resolutions of about 50-150 nm in near-field Raman and 1.7-50 nm in tip enhanced Raman spectroscopy (TERS) and both give a molecular information of the sample and the topography of the scanned surface. In this review, the mentioned approaches are introduced, the main advantages and problems for application on biological samples discussed and some examples for successful experiments given. Finally the potential of colocated AFM and Raman measurements is shown on a case study of cellulose-lignin films: the topography structures revealed by AFM can be related to a certain chemistry by the colocated Raman scan and additionally the mechanical properties be revealed by using the digital pulsed force mode. Microsc. Res. Tech. 80:30-40, 2017. © 2016 Wiley Periodicals, Inc.

  13. Tip in–light on: Advantages, challenges, and applications of combining AFM and Raman microscopy on biological samples

    PubMed Central

    Gierlinger, Notburga

    2016-01-01

    Abstract Scanning probe microscopies and spectroscopies, especially AFM and Confocal Raman microscopy are powerful tools to characterize biological materials. They are both non‐destructive methods and reveal mechanical and chemical properties on the micro and nano‐scale. In the last years the interest for increasing the lateral resolution of optical and spectral images has driven the development of new technologies that overcome the diffraction limit of light. The combination of AFM and Raman reaches resolutions of about 50–150 nm in near‐field Raman and 1.7–50 nm in tip enhanced Raman spectroscopy (TERS) and both give a molecular information of the sample and the topography of the scanned surface. In this review, the mentioned approaches are introduced, the main advantages and problems for application on biological samples discussed and some examples for successful experiments given. Finally the potential of colocated AFM and Raman measurements is shown on a case study of cellulose‐lignin films: the topography structures revealed by AFM can be related to a certain chemistry by the colocated Raman scan and additionally the mechanical properties be revealed by using the digital pulsed force mode. Microsc. Res. Tech. 80:30–40, 2017. © 2016 Wiley Periodicals, Inc. PMID:27514318

  14. Raman spectroscopy of oral bacteria

    NASA Astrophysics Data System (ADS)

    Berger, Andrew J.; Zhu, Qingyuan; Quivey, Robert G.

    2003-10-01

    Raman spectroscopy has been employed to measure the varying concentrations of two oral bacteria in simple mixtures. Evaporated droplets of centrifuged mixtures of Streptococcus sanguis and Streptococcus mutans were analyzed via Raman microspectroscopy. The concentration of s. sanguis was determined based upon the measured Raman spectrum, using partial least squares cross-validation, with an r2 value of 0.98.

  15. Industrial applications of Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Grasselli, J. G.; Walder, F.; Petty, C.; Kemeny, G.

    1993-03-01

    In the last two decades, Raman spectroscopy has matured as an important method for the study of molecules and complex molecular systems. This is evident from the number of fine texts and the many review articles which have been published describing theory and applications of Raman spectroscopy over a very broad range of subjects (1-10). Raman spectroscopy is the essential partner to infrared spectroscopy for a complete vibrational analysis of a molecule in structure determinations. From the understanding developed on small molecules, theory was extended to interpret the spectra of larger systems such as polymers, biological molecules, and ordered condensed phases. The contribution of Raman spectroscopy to these areas has been significant. It was the development of commercial lasers in the 1960s which spurred the renewed interest in the Raman technique. But applications were still limited for highly fluorescing or intensely colored systems. In 1986, a breakthrough paper by Hirschfeld and Chase (11) described the use of near-infrared laser excitation and a commercial interferometer-based FT-IR spectrometer to record FT-Raman spectra. Significant advantages included the inherent multiplex, throughput and data processing features of the FT interferometers and the use of a ND:YAG laser (1.064 μm) which dramatically decreased problems with sample fluorescence and decomposition. A deluge of papers describing applications of FT-Raman spectroscopy can be found in the Journal of Raman Spectroscopy, Spectrochimica Acta (special issues 40A ad 47A), and Applied Spectroscopy since then.

  16. Femtosecond Stimulated Raman Spectroscopy.

    PubMed

    Dietze, Daniel R; Mathies, Richard A

    2016-05-04

    Femtosecond stimulated Raman spectroscopy (FSRS) is an ultrafast nonlinear optical technique that provides vibrational structural information with high temporal (sub-50 fs) precision and high spectral (10 cm(-1) ) resolution. Since the first full demonstration of its capabilities ≈15 years ago, FSRS has evolved into a mature technique, giving deep insights into chemical and biochemical reaction dynamics that would be inaccessible with any other technique. It is now being routinely applied to virtually all possible photochemical reactions and systems spanning from single molecules in solution to thin films, bulk crystals and macromolecular proteins. This review starts with an historic overview and discusses the theoretical and experimental concepts behind this technology. Emphasis is put on the current state-of-the-art experimental realization and several variations of FSRS that have been developed. The unique capabilities of FSRS are illustrated through a comprehensive presentation of experiments to date followed by prospects.

  17. Laser sources for Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Kilmer, J.; Iadevaia, A.; Yin, Y.

    2011-06-01

    While conventional Raman Spectroscopy (RS) has predominately used fixed wavelength cw lasers, advanced Raman spectroscopic techniques such as Stimulated Raman and some types of Raman Imaging typically need pulsed lasers with sufficient energy to induce the Raman process. In addition, pulsed lasers are beneficial for the following Raman techniques: Time Resolved Raman (TRR), Resonance Raman (RR), or non linear Raman techniques, such as Coherent anti-Stokes Raman spectroscopy (CARS). Here the naturally narrower linewidth of a ns pulse width laser is advantageous to a broader linewidth ultrafast pulsed laser. In this paper, we report on the development of a compact, highly efficient, high power solid-state Ti: Sapphire laser ideally suited for many Raman spectroscopic techniques. This laser produces nanosecond pulses at kHz repetition rates with a tunable output wavelength from ~1 micron to ~200 nm and pulse energies up to 1 mJ. The narrow bandwidth of this laser (<0.1cm-1) is ideally suited for applications such as Laser-induced fluorescence (LIF) measurement of OH free-radicals concentrations, atmospheric LIDAR and Raman spectroscopy. New KBBF and RBBF deep ultraviolet (DUV) and vacuum ultraviolet (VUV) crystals are now available that enable direct doubling of the SHG output of these tunable Ti: Sapphire lasers to directly achieve wavelengths as short as 175 nm without the need to generate the 3rd harmonic and utilize frequency mixing. This results in a highly efficient output in the DUV/VUV, enabling improved signal to noise ratios (S/N) in these previously difficult wavelength regions. Photonics Industries has recently achieved a few mW of power at 193nm with such direct doubling crystals.

  18. Raman spectroscopy in halophile research

    PubMed Central

    Jehlička, Jan; Oren, Aharon

    2013-01-01

    Raman spectroscopy plays a major role in robust detection of biomolecules and mineral signatures in halophile research. An overview of Raman spectroscopic investigations in halophile research of the last decade is given here to show advantages of the approach, progress made as well as limits of the technique. Raman spectroscopy is an excellent tool to monitor and identify microbial pigments and other biomolecules in extant and extinct halophile biomass. Studies of bottom gypsum crusts from salterns, native evaporitic sediments, halite inclusions, and endoliths as well as cultures of halophilic microorganisms permitted to understand the content, distribution, and behavior of important molecular species. The first papers describing Raman spectroscopic detection of microbiological and geochemical key markers using portable instruments are highlighted as well. PMID:24339823

  19. Laser crater enhanced Raman spectroscopy.

    PubMed

    Lednev, Vasily N; Sdvizhenskii, Pavel A; Grishin, Mikhail Ya; Filippov, Mikhail N; Shchegolikhin, Alexander N; Pershin, Sergey M

    2017-02-01

    Raman signal enhancement by multiple scattering inside laser crater cones was observed for the first time, to the best of our knowledge. Laser crater enhanced Raman spectroscopy (LCERS) yielded a 14-fold increase in the Raman spectra bands due to efficient multiple scattering of laser irradiation within the laser crater walls. The same pulsed Nd:YAG laser (532 nm, 10 ns) was used for both laser crater formation and Raman scattering experiments by varying the output pulse energy. First, powerful pulses are used to produce the laser crater; then low-energy pulses are used to perform Raman scattering measurements. The laser crater profile and its alignment with the laser beam waist were found to be the key parameters for the optimization of the Raman spectrum intensity enhancement. Raman intensity enhancement resulted from increased surface scattering area at the crater walls, rather than spatially offset Raman scattering. The increased signal-to-noise ratio resulted in limits of detection improvement for quantitative analysis using LCERS.

  20. Raman Spectroscopy of Microbial Pigments

    PubMed Central

    Edwards, Howell G. M.; Oren, Aharon

    2014-01-01

    Raman spectroscopy is a rapid nondestructive technique providing spectroscopic and structural information on both organic and inorganic molecular compounds. Extensive applications for the method in the characterization of pigments have been found. Due to the high sensitivity of Raman spectroscopy for the detection of chlorophylls, carotenoids, scytonemin, and a range of other pigments found in the microbial world, it is an excellent technique to monitor the presence of such pigments, both in pure cultures and in environmental samples. Miniaturized portable handheld instruments are available; these instruments can be used to detect pigments in microbiological samples of different types and origins under field conditions. PMID:24682303

  1. Raman spectroscopy of advanced materials.

    PubMed

    Huong, P V

    1996-06-01

    Many micro-structural aspects of advanced materials and the incidence on the physical properties have been elucidated by Raman micro-spectroscopy. The potential of this technique is demonstrated with new materials interesting in both academic and industrial developments: new carbons and diamonds, superconductors, semiconductors, superhards.

  2. Surface-Enhanced Raman Spectroscopy.

    ERIC Educational Resources Information Center

    Garrell, Robin L.

    1989-01-01

    Reviews the basis for the technique and its experimental requirements. Describes a few examples of the analytical problems to which surface-enhanced Raman spectroscopy (SERS) has been and can be applied. Provides a perspective on the current limitations and frontiers in developing SERS as an analytical technique. (MVL)

  3. Detection of viruses: atomic force microscopy and surface enhanced raman spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper demonstrated the capability of atomic force microscopy (AFM) and surface enhanced Raman spectroscopy (SERS) to function effectively as ultra-sensitive readout tools for chip-scale platforms designed for pathogen detection in complex biological media. AFM allows direct (i.e. label-free) vi...

  4. Crystallinity and compositional changes in carbonated apatites: Evidence from {sup 31}P solid-state NMR, Raman, and AFM analysis

    SciTech Connect

    McElderry, John-David P.; Zhu, Peizhi; Mroue, Kamal H.; Xu, Jiadi; Pavan, Barbara; Fang, Ming; Zhao, Guisheng; McNerny, Erin; Kohn, David H.; Franceschi, Renny T.; Holl, Mark M.Banaszak; Tecklenburg, Mary M.J.; Ramamoorthy, Ayyalusamy; Morris, Michael D.

    2013-10-15

    Solid-state (magic-angle spinning) NMR spectroscopy is a useful tool for obtaining structural information on bone organic and mineral components and synthetic model minerals at the atomic-level. Raman and {sup 31}P NMR spectral parameters were investigated in a series of synthetic B-type carbonated apatites (CAps). Inverse {sup 31}P NMR linewidth and inverse Raman PO{sub 4}{sup 3−}ν{sub 1} bandwidth were both correlated with powder XRD c-axis crystallinity over the 0.3–10.3 wt% CO{sub 3}{sup 2−} range investigated. Comparison with bone powder crystallinities showed agreement with values predicted by NMR and Raman calibration curves. Carbonate content was divided into two domains by the {sup 31}P NMR chemical shift frequency and the Raman phosphate ν{sub 1} band position. These parameters remain stable except for an abrupt transition at 6.5 wt% carbonate, a composition which corresponds to an average of one carbonate per unit cell. This near-binary distribution of spectroscopic properties was also found in AFM-measured particle sizes and Ca/P molar ratios by elemental analysis. We propose that this transition differentiates between two charge-balancing ion-loss mechanisms as measured by Ca/P ratios. These results define a criterion for spectroscopic characterization of B-type carbonate substitution in apatitic minerals. - Graphical abstract: Carbonated apatite shows an abrupt change in spectral (NMR, Raman) and morphological (AFM) properties at a composition of about one carbonate substitution per unit cell. Display Omitted - Highlights: • Crystallinity (XRD), particle size (AFM) of carbonated apatites and bone mineral. • Linear relationships among crystallinity, {sup 31}P NMR and Raman inverse bandwidths. • Low and high carbonated apatites use different charge-balancing ion-loss mechanism.

  5. Quantitative fiber-optic Raman spectroscopy for tissue Raman measurements

    NASA Astrophysics Data System (ADS)

    Duraipandian, Shiyamala; Bergholt, Mads; Zheng, Wei; Huang, Zhiwei

    2014-03-01

    Molecular profiling of tissue using near-infrared (NIR) Raman spectroscopy has shown great promise for in vivo detection and prognostication of cancer. The Raman spectra measured from the tissue generally contain fundamental information about the absolute biomolecular concentrations in tissue and its changes associated with disease transformation. However, producing analogues tissue Raman spectra present a great technical challenge. In this preliminary study, we propose a method to ensure the reproducible tissue Raman measurements and validated with the in vivo Raman spectra (n=150) of inner lip acquired using different laser powers (i.e., 30 and 60 mW). A rapid Raman spectroscopy system coupled with a ball-lens fiber-optic Raman probe was utilized for tissue Raman measurements. The investigational results showed that the variations between the spectra measured with different laser powers are almost negligible, facilitating the quantitative analysis of tissue Raman measurements in vivo.

  6. Interlaboratory round robin on cantilever calibration for AFM force spectroscopy.

    PubMed

    te Riet, Joost; Katan, Allard J; Rankl, Christian; Stahl, Stefan W; van Buul, Arend M; Phang, In Yee; Gomez-Casado, Alberto; Schön, Peter; Gerritsen, Jan W; Cambi, Alessandra; Rowan, Alan E; Vancso, G Julius; Jonkheijm, Pascal; Huskens, Jurriaan; Oosterkamp, Tjerk H; Gaub, Hermann; Hinterdorfer, Peter; Figdor, Carl G; Speller, Sylvia

    2011-12-01

    Single-molecule force spectroscopy studies performed by Atomic Force Microscopes (AFMs) strongly rely on accurately determined cantilever spring constants. Hence, to calibrate cantilevers, a reliable calibration protocol is essential. Although the thermal noise method and the direct Sader method are frequently used for cantilever calibration, there is no consensus on the optimal calibration of soft and V-shaped cantilevers, especially those used in force spectroscopy. Therefore, in this study we aimed at establishing a commonly accepted approach to accurately calibrate compliant and V-shaped cantilevers. In a round robin experiment involving eight different laboratories we compared the thermal noise and the Sader method on ten commercial and custom-built AFMs. We found that spring constants of both rectangular and V-shaped cantilevers can accurately be determined with both methods, although the Sader method proved to be superior. Furthermore, we observed that simultaneous application of both methods on an AFM proved an accurate consistency check of the instrument and thus provides optimal and highly reproducible calibration. To illustrate the importance of optimal calibration, we show that for biological force spectroscopy studies, an erroneously calibrated cantilever can significantly affect the derived (bio)physical parameters. Taken together, our findings demonstrated that with the pre-established protocol described reliable spring constants can be obtained for different types of cantilevers.

  7. Raman spectroscopy of bone metastasis

    NASA Astrophysics Data System (ADS)

    Esmonde-White, Karen A.; Sottnik, Joseph; Morris, Michael; Keller, Evan

    2012-02-01

    Raman spectroscopy of bone has been used to characterize chemical changes occurring in diseases such as osteoporosis, osteoarthritis and osteomyelitis. Metastasis of cancer into bone causes changes to bone quality that are similar to those observed in osteoporosis, such as decreased bone strength, but with an accelerated timeframe. In particular, osteolytic (bone degrading) lesions in bone metastasis have a marked effect on patient quality of life because of increased risk of fractures, pain, and hypercalcemia. We use Raman spectroscopy to examine bone from two different mouse models of osteolytic bone metastasis. Raman spectroscopy measures physicochemical information which cannot be obtained through standard biochemical and histological measurements. This study was reviewed and approved by the University of Michigan University Committee on the Care and Use of Animals. Two mouse models of prostate cancer bone metastasis, RM1 (n=3) and PC3-luc (n=4) were examined. Tibiae were injected with RM1 or PC3-luc cancer cells, while the contralateral tibiae received a placebo injection for use as controls. After 2 weeks of incubation, the mice were sacrificed and the tibiae were examined by Raman microspectroscopy (λ=785 nm). Spectroscopic markers corresponding to mineral stoichiometry, bone mineralization, and mineral crystallinity were compared in spectra from the cancerous and control tibiae. X-ray imaging of the tibia confirmed extensive osteolysis in the RM1 mice, with tumor invasion into adjoining soft tissue and moderate osteolysis in the PC3-luc mice. Raman spectroscopic markers indicate that osteolytic lesions are less mineralized than normal bone tissue, with an altered mineral stoichiometry and crystallinity.

  8. FT-Raman Spectroscopy: A Catalyst for the Raman Explosion?

    ERIC Educational Resources Information Center

    Chase, Bruce

    2007-01-01

    The limitations of Fourier transform (FT) Raman spectroscopy, which is used to detect and analyze the scattered radiation, are discussed. FT-Raman has served to revitalize a field that was lagging and the presence of Raman instrumentation as a routine analytical tool is established for the foreseeable future.

  9. Medical applications of atomic force microscopy and Raman spectroscopy.

    PubMed

    Choi, Samjin; Jung, Gyeong Bok; Kim, Kyung Sook; Lee, Gi-Ja; Park, Hun-Kuk

    2014-01-01

    This paper reviews the recent research and application of atomic force microscopy (AFM) and Raman spectroscopy techniques, which are considered the multi-functional and powerful toolkits for probing the nanostructural, biomechanical and physicochemical properties of biomedical samples in medical science. We introduce briefly the basic principles of AFM and Raman spectroscopy, followed by diagnostic assessments of some selected diseases in biomedical applications using them, including mitochondria isolated from normal and ischemic hearts, hair fibers, individual cells, and human cortical bone. Finally, AFM and Raman spectroscopy applications to investigate the effects of pharmacotherapy, surgery, and medical device therapy in various medicines from cells to soft and hard tissues are discussed, including pharmacotherapy--paclitaxel on Ishikawa and HeLa cells, telmisartan on angiotensin II, mitomycin C on strabismus surgery and eye whitening surgery, and fluoride on primary teeth--and medical device therapy--collagen cross-linking treatment for the management of progressive keratoconus, radiofrequency treatment for skin rejuvenation, physical extracorporeal shockwave therapy for healing of Achilles tendinitis, orthodontic treatment, and toothbrushing time to minimize the loss of teeth after exposure to acidic drinks.

  10. Raman spectroscopy of biomedical polyethylenes.

    PubMed

    Pezzotti, Giuseppe

    2017-03-27

    With the development of three-dimensional Raman algorithms for local mapping of oxidation and plastic strain, and the ability to resolve molecular orientation patterns with microscopic spatial resolution, there is an opportunity to re-examine many of the foundations on which our understanding of biomedical grade ultra-high molecular weight polyethylenes (UHMWPEs) are based. By implementing polarized Raman spectroscopy into an automatized tool with an improved precision in non-destructively resolving Euler angles, oxidation levels, and microscopic strain, we become capable to make accurate and traceable measurements of the in vitro and in vivo tribological responses of a variety of commercially available UHMWPE bearings for artificial hip and knee joints. In this paper, we first review the foundations and the main algorithms for Raman analyses of oxidation and strain of biomedical polyethylene. Then, we critically re-examine a large body of Raman data previously collected on different polyethylene joint components after in vitro testing or in vivo service, in order to shed new light on an area of particular importance to joint orthopedics: the microscopic nature of UHMWPE surface degradation in the human body. A complex scenario of physical chemistry appears from the Raman analyses, which highlights the importance of molecular-scale phenomena besides mere microstructural changes. The availability of the Raman microscopic probe for visualizing oxidation patterns unveiled striking findings related to the chemical contribution to wear degradation: chain-breaking and subsequent formation of carboxylic acid sites preferentially occur in correspondence of third-phase regions, and they are triggered by emission of dehydroxylated oxygen from ceramic oxide counterparts. These findings profoundly differ from more popular (and simplistic) notions of mechanistic tribology adopted in analyzing joint simulator data.

  11. Transcutaneous Raman Spectroscopy of Bone

    NASA Astrophysics Data System (ADS)

    Maher, Jason R.

    Clinical diagnoses of bone health and fracture risk typically rely upon measurements of bone density or structure, but the strength of a bone is also dependent upon its chemical composition. One technology that has been used extensively in ex vivo, exposed-bone studies to measure the chemical composition of bone is Raman spectroscopy. This spectroscopic technique provides chemical information about a sample by probing its molecular vibrations. In the case of bone tissue, Raman spectra provide chemical information about both the inorganic mineral and organic matrix components, which each contribute to bone strength. To explore the relationship between bone strength and chemical composition, our laboratory has contributed to ex vivo, exposed-bone animal studies of rheumatoid arthritis, glucocorticoid-induced osteoporosis, and prolonged lead exposure. All of these studies suggest that Raman-based predictions of biomechanical strength may be more accurate than those produced by the clinically-used parameter of bone mineral density. The utility of Raman spectroscopy in ex vivo, exposed-bone studies has inspired attempts to perform bone spectroscopy transcutaneously. Although the results are promising, further advancements are necessary to make non-invasive, in vivo measurements of bone that are of sufficient quality to generate accurate predictions of fracture risk. In order to separate the signals from bone and soft tissue that contribute to a transcutaneous measurement, we developed an overconstrained extraction algorithm that is based upon fitting with spectral libraries derived from separately-acquired measurements of the underlying tissue components. This approach allows for accurate spectral unmixing despite the fact that similar chemical components (e.g., type I collagen) are present in both soft tissue and bone and was applied to experimental data in order to transcutaneously detect, to our knowledge for the first time, age- and disease-related spectral

  12. Raman and Photoluminescence Spectroscopy in Mineral Identification

    NASA Astrophysics Data System (ADS)

    Kuehn, J. W.

    2014-06-01

    Raman spectroscopy is particularly useful for rapid identification of minerals and gemstones. Raman spectrometers also allow PL studies for authentication of samples and geological provenance, diamond type screening and detection of HPHT treatments.

  13. Raman Spectroscopy of Ocular Tissue

    NASA Astrophysics Data System (ADS)

    Ermakov, Igor V.; Sharifzadeh, Mohsen; Gellermann, Warner

    The optically transparent nature of the human eye has motivated numerous Raman studies aimed at the non-invasive optical probing of ocular tissue components critical to healthy vision. Investigations include the qualitative and quantitative detection of tissue-specific molecular constituents, compositional changes occurring with development of ocular pathology, and the detection and tracking of ocular drugs and nutritional supplements. Motivated by a better understanding of the molecular mechanisms leading to cataract formation in the aging human lens, a great deal of work has centered on the Raman detection of proteins and water content in the lens. Several protein groups and the hydroxyl response are readily detectable. Changes of protein compositions can be studied in excised noncataractous tissue versus aged tissue preparations as well as in tissue samples with artificially induced cataracts. Most of these studies are carried out in vitro using suitable animal models and conventional Raman techniques. Tissue water content plays an important role in optimum light transmission of the outermost transparent ocular structure, the cornea. Using confocal Raman spectroscopy techniques, it has been possible to non-invasively measure the water to protein ratio as a measure of hydration status and to track drug-induced changes of the hydration levels in the rabbit cornea at various depths. The aqueous humor, normally supplying nutrients to cornea and lens, has an advantageous anterior location for Raman studies. Increasing efforts are pursued to non-invasively detect the presence of glucose and therapeutic concentrations of antibiotic drugs in this medium. In retinal tissue, Raman spectroscopy proves to be an important tool for research into the causes of macular degeneration, the leading cause of irreversible vision disorders and blindness in the elderly. It has been possible to detect the spectral features of advanced glycation and advanced lipooxydation end products in

  14. Raman spectroscopy peer review report

    SciTech Connect

    Winkelman, W.D.; Eberlein, S.J.

    1994-09-01

    The Hanford Site in eastern Washington includes 177 underground storage tanks (UST), which contain waste materials produced during the production of nuclear fuels. The materials in the tanks must be characterized to support the retrieval, processing, and final disposition of the waste. Characterization is currently performed by removing waste samples for analyses in a hot cell or laboratory. A review of the Hanford Raman Spectroscopy Program was held in Richland on March 23 and 24, 1994. A team of principal investigators and researchers made presentations that covered both technical and programmatic aspects of the Hanford Site Raman work. After these presentations and discussions, the review panel met in a closed session to formalize a list of findings. The reviewers agreed that Raman spectroscopy is an excellent method to attack the tank waste characterization and screening problems that were presented. They agreed that there was a good chance that the method would be successful as presently envisioned. The reviewers provided the following primary recommendations: evaluation a laser with wavelength in the near infrared; provide optical filters at or near the sampling end of the fiber-optic probe; develop and implement a strategy for frequent calibration of the system; do not try to further increase Raman resolution at the expense of wavelength range; clearly identify and differentiate between requirements for providing a short-term operational system and requirements for optimizing a system for long-term field use; and determine the best optical configuration, which may include reduced fiber-optic diameter and/or short focal length and low F-number spectrographs.

  15. Optical fiber fluorescence spectroscopy for detecting AFM1 in milk

    NASA Astrophysics Data System (ADS)

    Mignani, A. G.; Cucci, C.; Ciaccheri, L.; Dall'Asta, C.; Galaverna, G.; Dossena, A.; Marchelli, R.

    2008-04-01

    Fluorescence spectroscopy carried out by means of optical fibers was used for the rapid screening of M1 aflatoxin in milk, enabling the detection of concentrations up to the legal limit, which is 50 ppt. A compact fluorometric device equipped with a LED source, a miniaturized spectrometer, and optical fibers for illumination/detection of the measuring micro-cell was tested for measuring threshold values of AFM1 in pre-treated milk samples. Multivariate processing of the spectral data made it possible to obtain a preliminary screening at the earlier stages of the industrial process, as well as to discard contaminated milk stocks before their inclusion in the production chain.

  16. Hydrocarbons in phlogopite from Kasenyi kamafugitic rocks (SW Uganda): cross-correlated AFM, confocal microscopy and Raman imaging

    NASA Astrophysics Data System (ADS)

    Moro, Daniele; Valdrè, Giovanni; Mesto, Ernesto; Scordari, Fernando; Lacalamita, Maria; Ventura, Giancarlo Della; Bellatreccia, Fabio; Scirè, Salvatore; Schingaro, Emanuela

    2017-01-01

    This study presents a cross-correlated surface and near surface investigation of two phlogopite polytypes from Kasenyi kamafugitic rocks (SW Uganda) by means of advanced Atomic Force Microscopy (AFM), confocal microscopy and Raman micro-spectroscopy. AFM revealed comparable nanomorphology and electrostatic surface potential for the two mica polytypes. A widespread presence of nano-protrusions located on the mica flake surface was also observed, with an aspect ratio (maximum height/maximum width) from 0.01 to 0.09. Confocal microscopy showed these features to range from few nm to several μm in dimension, and shapes from perfectly circular to ellipsoidic and strongly elongated. Raman spectra collected across the bubbles showed an intense and convolute absorption in the range 3000–2800 cm‑1, associated with weaker bands at 1655, 1438 and 1297 cm‑1, indicating the presence of fluid inclusions consisting of aliphatic hydrocarbons, alkanes and cycloalkanes, with minor amounts of oxygenated compounds, such as carboxylic acids. High-resolution Raman images provided evidence that these hydrocarbons are confined within the bubbles. This work represents the first direct evidence that phlogopite, a common rock-forming mineral, may be a possible reservoir for hydrocarbons.

  17. Hydrocarbons in phlogopite from Kasenyi kamafugitic rocks (SW Uganda): cross-correlated AFM, confocal microscopy and Raman imaging.

    PubMed

    Moro, Daniele; Valdrè, Giovanni; Mesto, Ernesto; Scordari, Fernando; Lacalamita, Maria; Ventura, Giancarlo Della; Bellatreccia, Fabio; Scirè, Salvatore; Schingaro, Emanuela

    2017-01-18

    This study presents a cross-correlated surface and near surface investigation of two phlogopite polytypes from Kasenyi kamafugitic rocks (SW Uganda) by means of advanced Atomic Force Microscopy (AFM), confocal microscopy and Raman micro-spectroscopy. AFM revealed comparable nanomorphology and electrostatic surface potential for the two mica polytypes. A widespread presence of nano-protrusions located on the mica flake surface was also observed, with an aspect ratio (maximum height/maximum width) from 0.01 to 0.09. Confocal microscopy showed these features to range from few nm to several μm in dimension, and shapes from perfectly circular to ellipsoidic and strongly elongated. Raman spectra collected across the bubbles showed an intense and convolute absorption in the range 3000-2800 cm(-1), associated with weaker bands at 1655, 1438 and 1297 cm(-1), indicating the presence of fluid inclusions consisting of aliphatic hydrocarbons, alkanes and cycloalkanes, with minor amounts of oxygenated compounds, such as carboxylic acids. High-resolution Raman images provided evidence that these hydrocarbons are confined within the bubbles. This work represents the first direct evidence that phlogopite, a common rock-forming mineral, may be a possible reservoir for hydrocarbons.

  18. Hydrocarbons in phlogopite from Kasenyi kamafugitic rocks (SW Uganda): cross-correlated AFM, confocal microscopy and Raman imaging

    PubMed Central

    Moro, Daniele; Valdrè, Giovanni; Mesto, Ernesto; Scordari, Fernando; Lacalamita, Maria; Ventura, Giancarlo Della; Bellatreccia, Fabio; Scirè, Salvatore; Schingaro, Emanuela

    2017-01-01

    This study presents a cross-correlated surface and near surface investigation of two phlogopite polytypes from Kasenyi kamafugitic rocks (SW Uganda) by means of advanced Atomic Force Microscopy (AFM), confocal microscopy and Raman micro-spectroscopy. AFM revealed comparable nanomorphology and electrostatic surface potential for the two mica polytypes. A widespread presence of nano-protrusions located on the mica flake surface was also observed, with an aspect ratio (maximum height/maximum width) from 0.01 to 0.09. Confocal microscopy showed these features to range from few nm to several μm in dimension, and shapes from perfectly circular to ellipsoidic and strongly elongated. Raman spectra collected across the bubbles showed an intense and convolute absorption in the range 3000–2800 cm−1, associated with weaker bands at 1655, 1438 and 1297 cm−1, indicating the presence of fluid inclusions consisting of aliphatic hydrocarbons, alkanes and cycloalkanes, with minor amounts of oxygenated compounds, such as carboxylic acids. High-resolution Raman images provided evidence that these hydrocarbons are confined within the bubbles. This work represents the first direct evidence that phlogopite, a common rock-forming mineral, may be a possible reservoir for hydrocarbons. PMID:28098185

  19. AFM-IR: Technology and Applications in Nanoscale Infrared Spectroscopy and Chemical Imaging.

    PubMed

    Dazzi, Alexandre; Prater, Craig B

    2016-12-13

    Atomic force microscopy-based infrared spectroscopy (AFM-IR) is a rapidly emerging technique that provides chemical analysis and compositional mapping with spatial resolution far below conventional optical diffraction limits. AFM-IR works by using the tip of an AFM probe to locally detect thermal expansion in a sample resulting from absorption of infrared radiation. AFM-IR thus can provide the spatial resolution of AFM in combination with the chemical analysis and compositional imaging capabilities of infrared spectroscopy. This article briefly reviews the development and underlying technology of AFM-IR, including recent advances, and then surveys a wide range of applications and investigations using AFM-IR. AFM-IR applications that will be discussed include those in polymers, life sciences, photonics, solar cells, semiconductors, pharmaceuticals, and cultural heritage. In the Supporting Information , the authors provide a theoretical section that reviews the physics underlying the AFM-IR measurement and detection mechanisms.

  20. Drug analysis by Raman and micro-Raman spectroscopy.

    PubMed

    Huong, P V

    1986-01-01

    The technique of Raman spectroscopy, resonance Raman spectroscopy and micro-Raman spectroscopy is described for application to drug analysis and investigation. Possibilities and limits are mentioned for qualitative and quantitative analyses as well as for studies of structure and interactions. Some principal interaction modes, such as hydrogen bonding, proton transfer, charge transfer and ion-molecule attraction, are shown to explain drug reactivity. Illustrations are given based on several drug families, in particular vitamins, anti-depressants, cardio-active and anticancer drugs.

  1. Surface-Enhanced Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Stiles, Paul L.; Dieringer, Jon A.; Shah, Nilam C.; van Duyne, Richard P.

    2008-07-01

    The ability to control the size, shape, and material of a surface has reinvigorated the field of surface-enhanced Raman spectroscopy (SERS). Because excitation of the localized surface plasmon resonance of a nanostructured surface or nanoparticle lies at the heart of SERS, the ability to reliably control the surface characteristics has taken SERS from an interesting surface phenomenon to a rapidly developing analytical tool. This article first explains many fundamental features of SERS and then describes the use of nanosphere lithography for the fabrication of highly reproducible and robust SERS substrates. In particular, we review metal film over nanosphere surfaces as excellent candidates for several experiments that were once impossible with more primitive SERS substrates (e.g., metal island films). The article also describes progress in applying SERS to the detection of chemical warfare agents and several biological molecules.

  2. Raman spectroscopy of transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Saito, R.; Tatsumi, Y.; Huang, S.; Ling, X.; Dresselhaus, M. S.

    2016-09-01

    Raman spectroscopy of transition metal dichalcogenides (TMDs) is reviewed based on our recent theoretical and experimental works. First, we discuss the semi-classical and quantum mechanical description for the polarization dependence of Raman spectra of TMDs in which the optical dipole transition matrix elements as a function of laser excitation energy are important for understanding the polarization dependence of the Raman intensity and Raman tensor. Overviewing the symmetry of TMDs, we discuss the dependence of the Raman spectra of TMDs on layer thickness, polarization, laser energy and the structural phase. Furthermore, we discuss the Raman spectra of twisted bilayer and heterostructures of TMDs. Finally, we give our perspectives on the Raman spectroscopy of TMDs.

  3. Raman spectroscopy of transition metal dichalcogenides.

    PubMed

    Saito, R; Tatsumi, Y; Huang, S; Ling, X; Dresselhaus, M S

    2016-09-07

    Raman spectroscopy of transition metal dichalcogenides (TMDs) is reviewed based on our recent theoretical and experimental works. First, we discuss the semi-classical and quantum mechanical description for the polarization dependence of Raman spectra of TMDs in which the optical dipole transition matrix elements as a function of laser excitation energy are important for understanding the polarization dependence of the Raman intensity and Raman tensor. Overviewing the symmetry of TMDs, we discuss the dependence of the Raman spectra of TMDs on layer thickness, polarization, laser energy and the structural phase. Furthermore, we discuss the Raman spectra of twisted bilayer and heterostructures of TMDs. Finally, we give our perspectives on the Raman spectroscopy of TMDs.

  4. Crystallinity and compositional changes in carbonated apatites: Evidence from 31P solid-state NMR, Raman, and AFM analysis

    PubMed Central

    McElderry, John-David P.; Zhu, Peizhi; Mroue, Kamal H.; Xu, Jiadi; Pavan, Barbara; Fang, Ming; Zhao, Guisheng; McNerny, Erin; Kohn, David H.; Franceschi, Renny T.; Holl, Mark M. Banaszak; Tecklenburg, Mary M.J.; Ramamoorthy, Ayyalusamy; Morris, Michael D.

    2013-01-01

    Solid-state (magic-angle spinning) NMR spectroscopy is a useful tool for obtaining structural information on bone organic and mineral components and synthetic model minerals at the atomic-level. Raman and 31P NMR spectral parameters were investigated in a series of synthetic B-type carbonated apatites (CAps). Inverse 31P NMR linewidth and inverse Raman PO43− ν1 bandwidth were both correlated with powder XRD c-axis crystallinity over the 0.3–10.3 wt% CO32− range investigated. Comparison with bone powder crystallinities showed agreement with values predicted by NMR and Raman calibration curves. Carbonate content was divided into two domains by the 31P NMR chemical shift frequency and the Raman phosphate ν1 band position. These parameters remain stable except for an abrupt transition at 6.5 wt% carbonate, a composition which corresponds to an average of one carbonate per unit cell. This near-binary distribution of spectroscopic properties was also found in AFM-measured particle sizes and Ca/P molar ratios by elemental analysis. We propose that this transition differentiates between two charge-balancing ion-loss mechanisms as measured by Ca/P ratios. These results define a criterion for spectroscopic characterization of B-type carbonate substitution in apatitic minerals. PMID:24273344

  5. Crystallinity and compositional changes in carbonated apatites: Evidence from (31)P solid-state NMR, Raman, and AFM analysis.

    PubMed

    McElderry, John-David P; Zhu, Peizhi; Mroue, Kamal H; Xu, Jiadi; Pavan, Barbara; Fang, Ming; Zhao, Guisheng; McNerny, Erin; Kohn, David H; Franceschi, Renny T; Holl, Mark M Banaszak; Tecklenburg, Mary M J; Ramamoorthy, Ayyalusamy; Morris, Michael D

    2013-10-01

    Solid-state (magic-angle spinning) NMR spectroscopy is a useful tool for obtaining structural information on bone organic and mineral components and synthetic model minerals at the atomic-level. Raman and (31)P NMR spectral parameters were investigated in a series of synthetic B-type carbonated apatites (CAps). Inverse (31)P NMR linewidth and inverse Raman PO4(3-) ν1 bandwidth were both correlated with powder XRD c-axis crystallinity over the 0.3-10.3 wt% CO3(2-) range investigated. Comparison with bone powder crystallinities showed agreement with values predicted by NMR and Raman calibration curves. Carbonate content was divided into two domains by the (31)P NMR chemical shift frequency and the Raman phosphate ν1 band position. These parameters remain stable except for an abrupt transition at 6.5 wt% carbonate, a composition which corresponds to an average of one carbonate per unit cell. This near-binary distribution of spectroscopic properties was also found in AFM-measured particle sizes and Ca/P molar ratios by elemental analysis. We propose that this transition differentiates between two charge-balancing ion-loss mechanisms as measured by Ca/P ratios. These results define a criterion for spectroscopic characterization of B-type carbonate substitution in apatitic minerals.

  6. Applications of Raman spectroscopy in life science

    NASA Astrophysics Data System (ADS)

    Martin, Airton A.; T. Soto, Cláudio A.; Ali, Syed M.; Neto, Lázaro P. M.; Canevari, Renata A.; Pereira, Liliane; Fávero, Priscila P.

    2015-06-01

    Raman spectroscopy has been applied to the analysis of biological samples for the last 12 years providing detection of changes occurring at the molecular level during the pathological transformation of the tissue. The potential use of this technology in cancer diagnosis has shown encouraging results for the in vivo, real-time and minimally invasive diagnosis. Confocal Raman technics has also been successfully applied in the analysis of skin aging process providing new insights in this field. In this paper it is presented the latest biomedical applications of Raman spectroscopy in our laboratory. It is shown that Raman spectroscopy (RS) has been used for biochemical and molecular characterization of thyroid tissue by micro-Raman spectroscopy and gene expression analysis. This study aimed to improve the discrimination between different thyroid pathologies by Raman analysis. A total of 35 thyroid tissues samples including normal tissue (n=10), goiter (n=10), papillary (n=10) and follicular carcinomas (n=5) were analyzed. The confocal Raman spectroscopy allowed a maximum discrimination of 91.1% between normal and tumor tissues, 84.8% between benign and malignant pathologies and 84.6% among carcinomas analyzed. It will be also report the application of in vivo confocal Raman spectroscopy as an important sensor for detecting advanced glycation products (AGEs) on human skin.

  7. Raman spectroscopy: the gateway into tomorrow's virology

    PubMed Central

    Lambert, Phelps J; Whitman, Audy G; Dyson, Ossie F; Akula, Shaw M

    2006-01-01

    In the molecular world, researchers act as detectives working hard to unravel the mysteries surrounding cells. One of the researchers' greatest tools in this endeavor has been Raman spectroscopy. Raman spectroscopy is a spectroscopic technique that measures the unique Raman spectra for every type of biological molecule. As such, Raman spectroscopy has the potential to provide scientists with a library of spectra that can be used to unravel the makeup of an unknown molecule. However, this technique is limited in that it is not able to manipulate particular structures without disturbing their unique environment. Recently, a novel technology that combines Raman spectroscopy with optical tweezers, termed Raman tweezers, evades this problem due to its ability to manipulate a sample without physical contact. As such, Raman tweezers has the potential to become an incredibly effective diagnostic tool for differentially distinguishing tissue, and therefore holds great promise in the field of virology for distinguishing between various virally infected cells. This review provides an introduction for a virologist into the world of spectroscopy and explores many of the potential applications of Raman tweezers in virology. PMID:16805914

  8. Raman spectroscopy: the gateway into tomorrow's virology.

    PubMed

    Lambert, Phelps J; Whitman, Audy G; Dyson, Ossie F; Akula, Shaw M

    2006-06-28

    In the molecular world, researchers act as detectives working hard to unravel the mysteries surrounding cells. One of the researchers' greatest tools in this endeavor has been Raman spectroscopy. Raman spectroscopy is a spectroscopic technique that measures the unique Raman spectra for every type of biological molecule. As such, Raman spectroscopy has the potential to provide scientists with a library of spectra that can be used to unravel the makeup of an unknown molecule. However, this technique is limited in that it is not able to manipulate particular structures without disturbing their unique environment. Recently, a novel technology that combines Raman spectroscopy with optical tweezers, termed Raman tweezers, evades this problem due to its ability to manipulate a sample without physical contact. As such, Raman tweezers has the potential to become an incredibly effective diagnostic tool for differentially distinguishing tissue, and therefore holds great promise in the field of virology for distinguishing between various virally infected cells. This review provides an introduction for a virologist into the world of spectroscopy and explores many of the potential applications of Raman tweezers in virology.

  9. Stress measurement in MEMS using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Animoto, Sherwin T.; Chang, Dick J.; Birkitt, Andra D.

    1998-09-01

    Raman spectroscopy is used as a non-contact method in measuring stresses at the surface of a crystalline structure or the crystalline-coated surface of an amorphous structure. The stress measurement capability is based on the relative frequency shift of Raman spectra when the crystal lattice is strained. The Raman spectroscopy has a resolution on the order of a few micrometer (micrometers ) which may be used to probe the local non-uniform stress distribution and thus address the material nonhomogeneity. This paper presents the Raman secular equation for general and cubic crystal systems and discusses the stress field effects to Raman frequency shifts and polarization. Experimental testing will include the calibration of the Raman signal versus mechanically applied stresses using single crystal strips, poly-silicon coatings deposited on different specimen configurations, and the stress measurements on a frequently used MEMS structure, cantilever beam, subject to electrostatic forces. Correlation of the experimental results with the analytical prediction will be addressed.

  10. Study of virus by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Moor, K.; Kitamura, H.; Hashimoto, K.; Sawa, M.; Andriana, B. B.; Ohtani, K.; Yagura, T.; Sato, H.

    2013-02-01

    Problem of viruses is very actual for nowadays. Some viruses, which are responsible for human of all tumors, are about 15 %. Main purposes this study, early detection virus in live cell without labeling and in the real time by Raman spectroscopy. Micro Raman spectroscopy (mRs) is a technique that uses a Raman spectrometer to measure the spectra of microscopic samples. According to the Raman spectroscopy, it becomes possible to study the metabolites of a live cultured cell without labeling. We used mRs to detect the virus via HEK 293 cell line-infected adenovirus. We obtained raman specters of lives cells with viruses in 24 hours and 7 days after the infection. As the result, there is some biochemical changing after the treatment of cell with virus. One of biochemical alteration is at 1081 cm-1. For the clarification result, we use confocal fluorescent microscopy and transmission electron microscopy (TEM).

  11. Scanning electron and atomic force microscopy, and raman and x-ray photoelectron spectroscopy characterization of near-isogenic soft and hard wheat kernels and corresponding flours

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Atomic force microscopy (AFM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) are used to investigate vitreous (hard) and non-vitreous (soft) wheat kernels and their corresponding wheat flours. AFM data reveal two different microstructures. The vitreous kernel reveals a granular text...

  12. Occlusal caries detection using polarized Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Ionita, I.; Bulou, A.

    2008-02-01

    The tooth enamel, because of its hydroxyapatite composition, must present a Raman spectrum with strong polarization anisotropy. Carious lesions of the enamel will produce an alteration of local symmetry and will increase much more scattering of light. This will reduce the anisotropy of the Raman spectra. Because of the difference between high sensitivity to polarization of the 959 cm -1 Raman peak in sound enamel and low sensitivity in carried enamel, Raman polarized spectroscopy could be a useful method to early detect teeth caries.

  13. Applications of Raman spectroscopy to gemology.

    PubMed

    Bersani, Danilo; Lottici, Pier Paolo

    2010-08-01

    Being nondestructive and requiring short measurement times, a low amount of material, and no sample preparation, Raman spectroscopy is used for routine investigation in the study of gemstone inclusions and treatments and for the characterization of mounted gems. In this work, a review of the use of laboratory Raman and micro-Raman spectrometers and of portable Raman systems in the gemology field is given, focusing on gem identification and on the evaluation of the composition, provenance, and genesis of gems. Many examples are shown of the use of Raman spectroscopy as a tool for the identification of imitations, synthetic gems, and enhancement treatments in natural gemstones. Some recent developments are described, with particular attention being given to the semiprecious stone jade and to two important organic materials used in jewelry, i.e., pearls and corals.

  14. Raman spectroscopy in pharmaceutical product design.

    PubMed

    Paudel, Amrit; Raijada, Dhara; Rantanen, Jukka

    2015-07-15

    Almost 100 years after the discovery of the Raman scattering phenomenon, related analytical techniques have emerged as important tools in biomedical sciences. Raman spectroscopy and microscopy are frontier, non-invasive analytical techniques amenable for diverse biomedical areas, ranging from molecular-based drug discovery, design of innovative drug delivery systems and quality control of finished products. This review presents concise accounts of various conventional and emerging Raman instrumentations including associated hyphenated tools of pharmaceutical interest. Moreover, relevant application cases of Raman spectroscopy in early and late phase pharmaceutical development, process analysis and micro-structural analysis of drug delivery systems are introduced. Finally, potential areas of future advancement and application of Raman spectroscopic techniques are discussed.

  15. Scanning angle Raman spectroscopy: Investigation of Raman scatter enhancement techniques for chemical analysis

    SciTech Connect

    Meyer, Matthew W.

    2013-01-01

    This thesis outlines advancements in Raman scatter enhancement techniques by applying evanescent fields, standing-waves (waveguides) and surface enhancements to increase the generated mean square electric field, which is directly related to the intensity of Raman scattering. These techniques are accomplished by employing scanning angle Raman spectroscopy and surface enhanced Raman spectroscopy. A 1064 nm multichannel Raman spectrometer is discussed for chemical analysis of lignin. Extending dispersive multichannel Raman spectroscopy to 1064 nm reduces the fluorescence interference that can mask the weaker Raman scattering. Overall, these techniques help address the major obstacles in Raman spectroscopy for chemical analysis, which include the inherently weak Raman cross section and susceptibility to fluorescence interference.

  16. Online fluorescence suppression in modulated Raman spectroscopy.

    PubMed

    De Luca, Anna Chiara; Mazilu, Michael; Riches, Andrew; Herrington, C Simon; Dholakia, Kishan

    2010-01-15

    Label-free chemical characterization of single cells is an important aim for biomedical research. Standard Raman spectroscopy provides intrinsic biochemical markers for noninvasive analysis of biological samples but is often hindered by the presence of fluorescence background. In this paper, we present an innovative modulated Raman spectroscopy technique to filter out the Raman spectra from the fluorescence background. The method is based on the principle that the fluorescence background does not change whereas the Raman scattering is shifted by the periodical modulation of the laser wavelength. Exploiting this physical property and importantly the multichannel lock-in detection of the Raman signal, the modulation technique fulfills the requirements of an effective fluorescence subtraction method. Indeed, once the synchronization and calibration procedure is performed, minimal user intervention is required, making the method online and less time-consuming than the other fluorescent suppression methods. We analyze the modulated Raman signal and shifted excitation Raman difference spectroscopy (SERDS) signal of 2 mum-sized polystyrene beads suspended in a solution of fluorescent dye as a function of modulation rate. We show that the signal-to-noise ratio of the modulated Raman spectra at the highest modulation rate is 3 times higher than the SERDS one. To finally evaluate the real benefits of the modulated Raman spectroscopy, we apply our technique to Chinese hamster ovary cells (CHO). Specifically, by analyzing separate spectra from the membrane, cytoplasm, and nucleus of CHO cells, we demonstrate the ability of this method to obtain localized sensitive chemical information from cells, away from the interfering fluorescence background. In particular, statistical analysis of the Raman data and classification using PCA (principal component analysis) indicate that our method allows us to distinguish between different cell locations with higher sensitivity and

  17. Raman spectroscopy at the tritium laboratory Karlsruhe

    SciTech Connect

    Schloesser, M.; Bornschein, B.; Fischer, S.; Kassel, F.; Rupp, S.; Sturm, M.; James, T.M.; Telle, H.H.

    2015-03-15

    Raman spectroscopy is employed successfully for analysis of hydrogen isotopologues at the Tritium Laboratory Karlsruhe (TLK). Raman spectroscopy is based on the inelastic scattering of photons off molecules. Energy is transferred to the molecules as rotational/vibrational excitation being characteristic for each type of molecule. Thus, qualitative analysis is possible from the Raman shifted light, while quantitative information can be obtained from the signal intensities. After years of research and development, the technique is now well-advanced providing fast (< 10 s), precise (< 0.1%) and true (< 3%) compositional analysis of gas mixtures of hydrogen isotopologues. In this paper, we summarize the recent achievements in the further development on this technique, and the various applications for which it is used at TLK. Raman spectroscopy has evolved as a versatile, highly accurate key method for quantitative analysis complementing the port-folio of analytic techniques at the TLK.

  18. Using Raman spectroscopy to characterize biological materials.

    PubMed

    Butler, Holly J; Ashton, Lorna; Bird, Benjamin; Cinque, Gianfelice; Curtis, Kelly; Dorney, Jennifer; Esmonde-White, Karen; Fullwood, Nigel J; Gardner, Benjamin; Martin-Hirsch, Pierre L; Walsh, Michael J; McAinsh, Martin R; Stone, Nicholas; Martin, Francis L

    2016-04-01

    Raman spectroscopy can be used to measure the chemical composition of a sample, which can in turn be used to extract biological information. Many materials have characteristic Raman spectra, which means that Raman spectroscopy has proven to be an effective analytical approach in geology, semiconductor, materials and polymer science fields. The application of Raman spectroscopy and microscopy within biology is rapidly increasing because it can provide chemical and compositional information, but it does not typically suffer from interference from water molecules. Analysis does not conventionally require extensive sample preparation; biochemical and structural information can usually be obtained without labeling. In this protocol, we aim to standardize and bring together multiple experimental approaches from key leaders in the field for obtaining Raman spectra using a microspectrometer. As examples of the range of biological samples that can be analyzed, we provide instructions for acquiring Raman spectra, maps and images for fresh plant tissue, formalin-fixed and fresh frozen mammalian tissue, fixed cells and biofluids. We explore a robust approach for sample preparation, instrumentation, acquisition parameters and data processing. By using this approach, we expect that a typical Raman experiment can be performed by a nonspecialist user to generate high-quality data for biological materials analysis.

  19. Emerging technology: applications of Raman spectroscopy for prostate cancer.

    PubMed

    Kast, Rachel E; Tucker, Stephanie C; Killian, Kevin; Trexler, Micaela; Honn, Kenneth V; Auner, Gregory W

    2014-09-01

    There is a need in prostate cancer diagnostics and research for a label-free imaging methodology that is nondestructive, rapid, objective, and uninfluenced by water. Raman spectroscopy provides a molecular signature, which can be scaled from micron-level regions of interest in cells to macroscopic areas of tissue. It can be used for applications ranging from in vivo or in vitro diagnostics to basic science laboratory testing. This work describes the fundamentals of Raman spectroscopy and complementary techniques including surface enhanced Raman scattering, resonance Raman spectroscopy, coherent anti-Stokes Raman spectroscopy, confocal Raman spectroscopy, stimulated Raman scattering, and spatially offset Raman spectroscopy. Clinical applications of Raman spectroscopy to prostate cancer will be discussed, including screening, biopsy, margin assessment, and monitoring of treatment efficacy. Laboratory applications including cell identification, culture monitoring, therapeutics development, and live imaging of cellular processes are discussed. Potential future avenues of research are described, with emphasis on multiplexing Raman spectroscopy with other modalities.

  20. Surface-Enhanced Femtosecond Stimulated Raman Spectroscopy.

    PubMed

    Frontiera, Renee R; Henry, Anne-Isabelle; Gruenke, Natalie L; Van Duyne, Richard P

    2011-05-19

    Surface-enhanced Raman spectroscopy (SERS) and femtosecond stimulated Raman spectroscopy (FSRS) have revolutionized the Raman spectroscopy field. SERS provides spectroscopic detection of single molecules, and FSRS enables the acquisition of Raman spectra on the ultrafast time scale of molecular motion. Here, we present the first successful combination of these two techniques, demonstrating surface-enhanced femtosecond stimulated Raman spectroscopy (SE-FSRS) using gold nanoantennas with embedded reporter molecules. Using a picosecond Raman and femtosecond probe pulse, the time- and ensemble-averaged enhancement factor is estimated to be in the range of 10(4)-10(6). We report the line shapes, power dependence, and magnitude of the SE-FSRS signal and discuss contributions to sample degradation on the minute time scale. With these first successful proof-of-principle experiments, time-resolved SE-FSRS techniques can now be rationally attempted with the goals of investigating the dynamics of plasmonic materials as well as examining the contributions of environmental heterogeneities by probing more homogeneous molecular subsets.

  1. Raman spectroscopy of white wines.

    PubMed

    Martin, Coralie; Bruneel, Jean-Luc; Guyon, François; Médina, Bernard; Jourdes, Michael; Teissedre, Pierre-Louis; Guillaume, François

    2015-08-15

    The feasibility of exploiting Raman scattering to analyze white wines has been investigated using 3 different wavelengths of the incoming laser radiation in the near-UV (325 nm), visible (532 nm) and near infrared (785 nm). To help in the interpretation of the Raman spectra, the absorption properties in the UV-visible range of two wine samples as well as their laser induced fluorescence have also been investigated. Thanks to the strong intensity enhancement of the Raman scattered light due to electronic resonance with 325 nm laser excitation, hydroxycinnamic acids may be detected and analyzed selectively. Fructose and glucose may also be easily detected below ca. 1000 cm(-1). This feasibility study demonstrates the potential of the Raman spectroscopic technique for the analysis of white wines.

  2. Polymorph Discrimination using Low Wavenumber Raman Spectroscopy

    PubMed Central

    Roy, Saikat; Chamberlin, Brianna; Matzger, Adam J.

    2016-01-01

    Characterization of crystalline polymorphs and their quantitation has become an integral part of the pre-clinical drug development process. Raman spectroscopy is a powerful technique for the rapid identification of phases of pharmaceuticals. In the present work we demonstrate the use of low wavenumber Raman vibrational spectroscopy (including phonon measurement) for discrimination among polymorphs. A total of 10 polymorphic pharmaceuticals were employed to conduct a critical assessment. Raman scattering in the low frequency region (10–400 cm−1), which includes crystal lattice vibrations, has been analyzed and the results indicate lattice phonon Raman scattering can be used for rapid discrimination of polymorphic phases with additional discriminating power compared to conventional collection strategies. Moreover structural insight and conformational changes can be detected with this approach. PMID:27642248

  3. Multiplex coherent raman spectroscopy detector and method

    DOEpatents

    Chen, Peter; Joyner, Candace C.; Patrick, Sheena T.; Guyer, Dean R.

    2004-06-08

    A multiplex coherent Raman spectrometer (10) and spectroscopy method rapidly detects and identifies individual components of a chemical mixture separated by a separation technique, such as gas chromatography. The spectrometer (10) and method accurately identify a variety of compounds because they produce the entire gas phase vibrational Raman spectrum of the unknown gas. This is accomplished by tilting a Raman cell (20) to produce a high-intensity, backward-stimulated, coherent Raman beam of 683 nm, which drives a degenerate optical parametric oscillator (28) to produce a broadband beam of 1100-1700 nm covering a range of more than 3000 wavenumber. This broadband beam is combined with a narrowband beam of 532 nm having a bandwidth of 0.003 wavenumbers and focused into a heated windowless cell (38) that receives gases separated by a gas chromatograph (40). The Raman radiation scattered from these gases is filtered and sent to a monochromator (50) with multichannel detection.

  4. Multiplex coherent raman spectroscopy detector and method

    NASA Technical Reports Server (NTRS)

    Chen, Peter (Inventor); Joyner, Candace C. (Inventor); Patrick, Sheena T. (Inventor); Guyer, Dean R. (Inventor)

    2004-01-01

    A multiplex coherent Raman spectrometer (10) and spectroscopy method rapidly detects and identifies individual components of a chemical mixture separated by a separation technique, such as gas chromatography. The spectrometer (10) and method accurately identify a variety of compounds because they produce the entire gas phase vibrational Raman spectrum of the unknown gas. This is accomplished by tilting a Raman cell (20) to produce a high-intensity, backward-stimulated, coherent Raman beam of 683 nm, which drives a degenerate optical parametric oscillator (28) to produce a broadband beam of 1100-1700 nm covering a range of more than 3000 wavenumber. This broadband beam is combined with a narrowband beam of 532 nm having a bandwidth of 0.003 wavenumbers and focused into a heated windowless cell (38) that receives gases separated by a gas chromatograph (40). The Raman radiation scattered from these gases is filtered and sent to a monochromator (50) with multichannel detection.

  5. Raman spectroscopy under extreme conditions

    SciTech Connect

    Goncharov, A F; Crowhurst, J C

    2004-11-05

    We report the results of Raman measurements of various materials under simultaneous conditions of high temperature and high pressure in the diamond anvil cell (DAC). High temperatures are generated by laser heating or internal resistive (ohmic) heating or a combination of both. We present Raman spectra of cubic boron nitride (cBN) to 40 GPa and up to 2300 K that show a continuous pressure and temperature shift of the frequency of the transverse optical mode. We have also obtained high-pressure Raman spectra from a new noble metal nitride, which we synthesized at approximately 50 GPa and 2000 K. We have obtained high-temperature spectra from pure nitrogen to 39 GPa and up to 2000 K, which show the presence of a hot band that has previously been observed in CARS measurements. These measurements have also allowed us to constrain the melting curve and to examine changes in the intramolecular potential with pressure.

  6. Study of antibacterial mechanism of graphene oxide using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Nanda, Sitansu Sekhar; Yi, Dong Kee; Kim, Kwangmeyung

    2016-06-01

    Graphene oxide (GO) is extensively proposed as an effective antibacterial agent in commercial product packaging and for various biomedical applications. However, the antibacterial mode of action of GO is yet hypothetical and unclear. Here we developed a new and sensitive fingerprint approach to study the antibacterial activity of GO and underlying mechanism, using Raman spectroscopy. Spectroscopic signatures obtained from biomolecules such as Adenine and proteins from bacterial cultures with different concentrations of GO, allowed us to probe the antibacterial activity of GO with its mechanism at the molecular level. Escherichia coli (E. coli) and Enterococcus faecalis (E. faecalis) were used as model micro-organisms for all the experiments performed. The observation of higher intensity Raman peaks from Adenine and proteins in GO treated E. coli and E. faecalis; correlated with induced death, confirmed by Scanning electron Microscopy (SEM) and Biological Atomic Force Microscopy (Bio-AFM). Our findings open the way for future investigations of the antibacterial properties of different nanomaterial/GO composites using Raman spectroscopy.

  7. Study of antibacterial mechanism of graphene oxide using Raman spectroscopy

    PubMed Central

    Nanda, Sitansu Sekhar; Yi, Dong Kee; Kim, Kwangmeyung

    2016-01-01

    Graphene oxide (GO) is extensively proposed as an effective antibacterial agent in commercial product packaging and for various biomedical applications. However, the antibacterial mode of action of GO is yet hypothetical and unclear. Here we developed a new and sensitive fingerprint approach to study the antibacterial activity of GO and underlying mechanism, using Raman spectroscopy. Spectroscopic signatures obtained from biomolecules such as Adenine and proteins from bacterial cultures with different concentrations of GO, allowed us to probe the antibacterial activity of GO with its mechanism at the molecular level. Escherichia coli (E. coli) and Enterococcus faecalis (E. faecalis) were used as model micro-organisms for all the experiments performed. The observation of higher intensity Raman peaks from Adenine and proteins in GO treated E. coli and E. faecalis; correlated with induced death, confirmed by Scanning electron Microscopy (SEM) and Biological Atomic Force Microscopy (Bio-AFM). Our findings open the way for future investigations of the antibacterial properties of different nanomaterial/GO composites using Raman spectroscopy. PMID:27324288

  8. Coherent Raman spectroscopy for supersonic flow measurments

    NASA Technical Reports Server (NTRS)

    She, C. Y.

    1986-01-01

    In collaboration with NASA/Langley Research Center, a truly nonintrusive and nonseeding method for measuring supersonic molecular flow parameters was proposed and developed at Colorado State University. The feasibility of this Raman Doppler Velocimetry (RDV), currently operated in a scanning mode, was demonstrated not only in a laboratory environment at Colorado State University, but also in a major wind tunnel at NASA/Langley Research Center. The research progress of the RDV development is summarized. In addition, methods of coherent Rayleigh-Brillouin spectroscopy and single-pulse coherent Raman spectroscopy are investigated, respectively, for measurements of high-pressure and turbulent flows.

  9. Process analytical applications of Raman spectroscopy.

    PubMed

    Rantanen, Jukka

    2007-02-01

    There is an increasing demand for new approaches to understand the chemical and physical phenomena that occur during pharmaceutical unit operations. Obtaining real-time information from processes opens new perspectives for safer and more efficient manufacture of pharmaceuticals. Raman spectroscopy provides a molecular level insight into processing, and therefore it is a future process analytical tool. In this review, different applications of Raman spectroscopy in the field of process analysis of pharmaceutical solid dosage forms are summarized. In addition, pitfalls associated with interfacing to the process environment and challenges within data management are discussed.

  10. Raman spectroscopy of newberyite, hannayite and struvite

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Weier, Matt L.; Martens, Wayde N.; Henry, Dermot A.; Mills, Stuart J.

    2005-11-01

    The phosphate minerals hannayite, newberyite and struvite have been studied by Raman spectroscopy using a thermal stage. Hannayite and newberyite are characterised by an intense band at around 980 cm -1 assigned to the v symmetric stretching vibration of the HPO 4 units. In contrast the symmetric stretching mode is observed at 942 cm -1 for struvite. The Raman spectra are characterised by multiple v anti-symmetric stretching bands and v and v bending modes indicating strong distortion of the HPO 4 and PO 4 units. Hannayite and newberyite are defined by bands at 3382 and 3350 cm -1 attributed to HOPO 3 vibrations and hannayite and struvite by bands at 2990, 2973 and 2874 assigned to NH 4+ bands. Raman spectroscopy has proven most useful for the analysis of these 'cave' minerals where complex paragenetic relationships exist between the minerals.

  11. Raman Spectroscopy Cell-based Biosensors

    PubMed Central

    Notingher, Ioan

    2007-01-01

    One of the main challenges faced by biodetection systems is the ability to detect and identify a large range of toxins at low concentrations and in short times. Cell-based biosensors rely on detecting changes in cell behaviour, metabolism, or induction of cell death following exposure of live cells to toxic agents. Raman spectroscopy is a powerful technique for studying cellular biochemistry. Different toxic chemicals have different effects on living cells and induce different time-dependent biochemical changes related to cell death mechanisms. Cellular changes start with membrane receptor signalling leading to cytoplasmic shrinkage and nuclear fragmentation. The potential advantage of Raman spectroscopy cell-based systems is that they are not engineered to respond specifically to a single toxic agent but are free to react to many biologically active compounds. Raman spectroscopy biosensors can also provide additional information from the time-dependent changes of cellular biochemistry. Since no cell labelling or staining is required, the specific time dependent biochemical changes in the living cells can be used for the identification and quantification of the toxic agents. Thus, detection of biochemical changes of cells by Raman spectroscopy could overcome the limitations of other biosensor techniques, with respect to detection and discrimination of a large range of toxic agents. Further developments of this technique may also include integration of cellular microarrays for high throughput in vitro toxicological testing of pharmaceuticals and in situ monitoring of the growth of engineered tissues.

  12. Raman spectroscopy of saliva as a perspective method for periodontitis diagnostics Raman spectroscopy of saliva

    NASA Astrophysics Data System (ADS)

    Gonchukov, S.; Sukhinina, A.; Bakhmutov, D.; Minaeva, S.

    2012-01-01

    In view of its potential for biological tissues analyses at a molecular level, Raman spectroscopy in optical range has been the object of biomedical research for the last years. The main aim of this work is the development of Raman spectroscopy for organic content identifying and determination of biomarkers of saliva at a molecular level for periodontitis diagnostics. Four spectral regions were determined: 1155 and 1525 cm-1, 1033 and 1611 cm-1, which can be used as biomarkers of this widespread disease.

  13. Raman spectroscopy of Alzheimer's diseased tissue

    NASA Astrophysics Data System (ADS)

    Sudworth, Caroline D.; Krasner, Neville

    2004-07-01

    Alzheimer's disease is one of the most common forms of dementia, and causes steady memory loss and mental regression. It is also accompanied by severe atrophy of the brain. However, the pathological biomarkers of the disease can only be confirmed and examined upon the death of the patient. A commercial (Renishaw PLC, UK) Raman system with an 830 nm NIR diode laser was used to analyse brain samples, which were flash frozen at post-mortem. Ethical approval was sought for these samples. The Alzheimer's diseased samples contained a number of biomarkers, including neuritic plaques and tangles. The Raman spectra were examined by order to differentiate between normal and Alzheimer's diseased brain tissues. Preliminary results indicate that Alzheimer's diseased tissues can be differentiated from control tissues using Raman spectroscopy. The Raman spectra differ in terms of peak intensity, and the presence of a stronger amide I band in the 1667 cm-1 region which occurs more prominently in the Alzheimer's diseased tissue. These preliminary results indicate that the beta-amyloid protein originating from neuritic plaques can be identified with Raman spectroscopy.

  14. Detection Of Biochips By Raman And Surface Enhanced Raman Spectroscopies

    NASA Astrophysics Data System (ADS)

    Kantarovich, Keren; Tsarfati, Inbal; Gheber, Levi A.; Haupt, Karsten; Bar, Ilana

    2010-08-01

    Biochips constitute a rapidly increasing research field driven by the versatility of sensing devices and the importance of their applications in the bioanalytical field, drug development, environmental monitoring, food analysis, etc. Common strategies used for creating biochips and for reading them have extensive limitations, motivating development of miniature biochips and label-free formats. To achieve these goals we combined the nano fountain pen method, for printing microscale features with Raman spectroscopy or surface enhanced Raman spectroscopy (SERS) for reading droplets of synthetic receptors. These receptors include molecularly imprinted polymers (MIPs), which are obtained by polymerization of suitable functional and cross-linking monomers around molecular templates. MIPs are characterized by higher physical and chemical stability than biomacromolecules, and therefore are potentially very suitable as recognition elements for biosensors, or biochips. The monitored bands in the Raman and SERS spectra could be related to the taken up compound, allowing direct detection of the template, i.e., the β-blocking drug propranolol in the imprinted droplets, as well as imaging of individual and multiple dots in an array. This study shows that the combination of nanolithography techniques with SERS might open the possibility of miniaturized arrayed MIP sensors with label-free, specific and quantitative detection.

  15. Candida parapsilosis Biofilm Identification by Raman Spectroscopy

    PubMed Central

    Samek, Ota; Mlynariková, Katarina; Bernatová, Silvie; Ježek, Jan; Krzyžánek, Vladislav; Šiler, Martin; Zemánek, Pavel; Růžička, Filip; Holá, Veronika; Mahelová, Martina

    2014-01-01

    Colonies of Candida parapsilosis on culture plates were probed directly in situ using Raman spectroscopy for rapid identification of specific strains separated by a given time intervals (up to months apart). To classify the Raman spectra, data analysis was performed using the approach of principal component analysis (PCA). The analysis of the data sets generated during the scans of individual colonies reveals that despite the inhomogeneity of the biological samples unambiguous associations to individual strains (two biofilm-positive and two biofilm-negative) could be made. PMID:25535081

  16. Candida parapsilosis biofilm identification by Raman spectroscopy.

    PubMed

    Samek, Ota; Mlynariková, Katarina; Bernatová, Silvie; Ježek, Jan; Krzyžánek, Vladislav; Šiler, Martin; Zemánek, Pavel; Růžička, Filip; Holá, Veronika; Mahelová, Martina

    2014-12-22

    Colonies of Candida parapsilosis on culture plates were probed directly in situ using Raman spectroscopy for rapid identification of specific strains separated by a given time intervals (up to months apart). To classify the Raman spectra, data analysis was performed using the approach of principal component analysis (PCA). The analysis of the data sets generated during the scans of individual colonies reveals that despite the inhomogeneity of the biological samples unambiguous associations to individual strains (two biofilm-positive and two biofilm-negative) could be made.

  17. Blood proteins analysis by Raman spectroscopy method

    NASA Astrophysics Data System (ADS)

    Artemyev, D. N.; Bratchenko, I. A.; Khristoforova, Yu. A.; Lykina, A. A.; Myakinin, O. O.; Kuzmina, T. P.; Davydkin, I. L.; Zakharov, V. P.

    2016-04-01

    This work is devoted to study the possibility of plasma proteins (albumin, globulins) concentration measurement using Raman spectroscopy setup. The blood plasma and whole blood were studied in this research. The obtained Raman spectra showed significant variation of intensities of certain spectral bands 940, 1005, 1330, 1450 and 1650 cm-1 for different protein fractions. Partial least squares regression analysis was used for determination of correlation coefficients. We have shown that the proposed method represents the structure and biochemical composition of major blood proteins.

  18. Raman Spectroscopy of Soft Musculoskeletal Tissues

    PubMed Central

    Esmonde-White, Karen

    2015-01-01

    Tendon, ligament, and joint tissues are important in maintaining daily function. They can be affected by disease, age, and injury. Slow tissue turnover, hierarchical structure and function, and nonlinear mechanical properties present challenges to diagnosing and treating soft musculoskeletal tissues. Understanding these tissues in health, disease, and injury is important to improving pharmacologic and surgical repair outcomes. Raman spectroscopy is an important tool in the examination of soft musculoskeletal tissues. This article highlights exciting basic science and clinical/translational Raman studies of cartilage, tendon, and ligament. PMID:25286106

  19. Raman spectroscopy of triolein under high pressures

    NASA Astrophysics Data System (ADS)

    Tefelski, D. B.; Jastrzębski, C.; Wierzbicki, M.; Siegoczyński, R. M.; Rostocki, A. J.; Wieja, K.; Kościesza, R.

    2010-03-01

    This article presents results of the high pressure Raman spectroscopy of triolein. Triolein, a triacylglyceride (TAG) of oleic acid, is an unsaturated fat, present in natural oils such as olive oil. As a basic food component and an energy storage molecule, it has considerable importance for food and fuel industries. To generate pressure in the experiment, we used a high-pressure cylindrical chamber with sapphire windows, presented in (R.M. Siegoczyński, R. Kościesza, D.B. Tefelski, and A. Kos, Molecular collapse - modification of the liquid structure induced by pressure in oleic acid, High Press. Res. 29 (2009), pp. 61-66). Pressure up to 750 MPa was applied. A Raman spectrometer in "macro"-configuration was employed. Raman spectroscopy provides information on changes of vibrational modes related to structural changes of triolein under pressure. Interesting changes in the triglyceride C‒H stretching region at 2650-3100 cm-1 were observed under high-pressures. Changes were also observed in the ester carbonyl (C˭ O) stretching region 1700-1780 cm-1 and the C‒C stretching region at 1050-1150 cm-1. The overall luminescence of the sample decreased under pressure, making it possible to set longer spectrum acquisition time and obtain more details of the spectrum. The registered changes suggest that the high-pressure solid phase of triolein is organized as β-polymorphic, as was reported in (C. Akita, T. Kawaguchi, and F. Kaneko, Structural study on polymorphism of cis-unsaturated triacylglycerol: Triolein, J. Phys. Chem. B 110 (2006), pp. 4346-4353; E. Da Silva and D. Rousseau, Molecular order and thermodynamics of the solid-liquid transition in triglycerides via Raman spectroscopy, Phys. Chem. Chem. Phys. 10 (2008), pp. 4606-4613) (with temperature-induced phase transitions). The research has shown that Raman spectroscopy in TAGs under pressure reveals useful information about its structural changes.

  20. The effect of aqueous solution in Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Kang, Jian; Yuan, Xiaojuan; Dong, Xiao; Gu, Huaimin

    2009-08-01

    In Raman detection, the most popular solution for the samples is tri-distilled water. But the effect of aqueous solution is barely studied in Raman spectroscopy. In fact Raman spectroscopy of solid-state and liquid-state are obvious different. In addition, FWHM of Raman spectral peaks also change evidently. In this paper, several samples were selected for the experiment; including sodium nitrate, sodium nitrite, glucose and caffeine. By comparing the Raman spectroscopy of samples at different concentrations, it is found that the concentration of the sample can affect the strength of Raman spectroscopy, but it can hardly impact FWHM of Raman spectral peaks. By comparing the Raman spectroscopy of liquid-state with the Raman spectroscopy of solid-state, it is observed that the FWHM of some Raman spectral peaks varied obviously; that may be because when the sample was dissolved into the water, the crystal lattice structure was broken, and for some samples atom form became ion form in aqueous solution. Those structural variations caused the variation of the FWHM. The Raman spectroscopy of caffeine aqueous solution at very low concentration was also detected and analyzed. Compared with the Raman spectra of solid-state samples, it is found that some Raman spectral peaks disappeared when the sample was dissolved in water. It is possible that the low concentration of the sample result in the weakening of Raman signals and the disappearing of some weak Raman spectral peaks. Then Ag nanoparticles were added into the caffeine aqueous solution, the results suggest that surface enhanced Raman spectroscopy (SERS) not only can enhance the Raman spectral signal, but also can reduce the effect of aqueous solution. It is concluded that the concentration of sample only affects the strength of Raman spectroscopy; the aqueous solution can affect the FWHM of Raman spectral peaks; and SERS can reduce the effect of aqueous solution.

  1. Drug Stability Analysis by Raman Spectroscopy

    PubMed Central

    Shende, Chetan; Smith, Wayne; Brouillette, Carl; Farquharson, Stuart

    2014-01-01

    Pharmaceutical drugs are available to astronauts to help them overcome the deleterious effects of weightlessness, sickness and injuries. Unfortunately, recent studies have shown that some of the drugs currently used may degrade more rapidly in space, losing their potency before their expiration dates. To complicate matters, the degradation products of some drugs can be toxic. Here, we present a preliminary investigation of the ability of Raman spectroscopy to quantify mixtures of four drugs; acetaminophen, azithromycin, epinephrine, and lidocaine, with their primary degradation products. The Raman spectra for the mixtures were replicated by adding the pure spectra of the drug and its degradant to determine the relative percent contributions using classical least squares. This multivariate approach allowed determining concentrations in ~10 min with a limit of detection of ~4% of the degradant. These results suggest that a Raman analyzer could be used to assess drug potency, nondestructively, at the time of use to ensure crewmember safety. PMID:25533308

  2. Drug stability analysis by Raman spectroscopy.

    PubMed

    Shende, Chetan; Smith, Wayne; Brouillette, Carl; Farquharson, Stuart

    2014-12-22

    Pharmaceutical drugs are available to astronauts to help them overcome the deleterious effects of weightlessness, sickness and injuries. Unfortunately, recent studies have shown that some of the drugs currently used may degrade more rapidly in space, losing their potency before their expiration dates. To complicate matters, the degradation products of some drugs can be toxic. Here, we present a preliminary investigation of the ability of Raman spectroscopy to quantify mixtures of four drugs; acetaminophen, azithromycin, epinephrine, and lidocaine, with their primary degradation products. The Raman spectra for the mixtures were replicated by adding the pure spectra of the drug and its degradant to determine the relative percent contributions using classical least squares. This multivariate approach allowed determining concentrations in ~10 min with a limit of detection of ~4% of the degradant. These results suggest that a Raman analyzer could be used to assess drug potency, nondestructively, at the time of use to ensure crewmember safety.

  3. Remote adjustable focus Raman spectroscopy probe

    DOEpatents

    Schmucker, John E.; Blasi, Raymond J.; Archer, William B.

    1999-01-01

    A remote adjustable focus Raman spectroscopy probe allows for analyzing Raman scattered light from a point of interest external probe. An environmental barrier including at least one window separates the probe from the point of interest. An optical tube is disposed adjacent to the environmental barrier and includes a long working length compound lens objective next to the window. A beam splitter and a mirror are at the other end. A mechanical means is used to translated the prove body in the X, Y, and Z directions resulting in a variable focus optical apparatus. Laser light is reflected by the beam splitter and directed toward the compound lens objective, then through the window and focused on the point of interest. Raman scattered light is then collected by the compound lens objective and directed through the beam splitter to a mirror. A device for analyzing the light, such as a monochrometer, is coupled to the mirror.

  4. Characterization of Kevlar Using Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Washer, Glenn; Brooks, Thomas; Saulsberry, Regor

    2007-01-01

    This paper explores the characterization of Kevlar composite materials using Raman spectroscopy. The goal of the research is to develop and understand the Raman spectrum of Kevlar materials to provide a foundation for the development of nondestructive evaluation (NDE) technologies based on the interaction of laser light with the polymer Kevlar. The paper discusses the fundamental aspects of experimental characterization of the spectrum of Kevlar, including the effects of incident wavelength, polarization and laser power. The effects of environmental exposure of Kevlar materials on certain characteristics of its Raman spectrum are explored, as well as the effects of applied stress. This data may provide a foundation for the development of NDE technologies intended to detect the in-situ deterioration of Kevlar materials used for engineering applications that can later be extended to other materials such as carbon fiber composites.

  5. Remote Adjustable focus Raman Spectroscopy Probe

    SciTech Connect

    Schmucker, John E.; Blasi, Raymond J.; Archer, William B.

    1998-07-28

    A remote adjustable focus Raman spectroscopy probe allows for analyzing Raman scattered light from a point of interest external to the probe. An environmental barrier including at least one window separates the probe from the point of interest. An optical tube is disposed adjacent to the environmental barrier and includes along working length compound lens objective next to the window. A beam splitter and a mirror are at the other end. A mechanical means is used to translate the probe body in the X, Y, and Z directions resulting in a variable focus optical apparatus. Laser light is reflected by the beam splitter and directed toward the compound lens objective, then through the window and focused on the point of interest. Raman scattered light is then collected by the compound lens objective and directed through the beam splitter to a mirror. A device for analyzing the light, such as a monochrometer, is coupled to the mirror.

  6. Raman spectroscopy system with hollow fiber probes

    NASA Astrophysics Data System (ADS)

    Liu, Bing-hong; Shi, Yi-Wei

    2012-11-01

    A Raman remote spectroscopy system was realized using flexible hollow optical fiber as laser emittion and signal collection probes. A silver-coated hollow fiber has low-loss property and flat transmission characteristics in the visible wavelength regions. Compared with conventional silica optical fiber, little background fluorescence noise was observed with optical fiber as the probe, which would be of great advantages to the detection in low frequency Raman shift region. The complex filtering and focusing system was thus unnecessary. The Raman spectra of CaCO3 and PE were obtained by using the system and a reasonable signal to noise ratio was attained without any lens. Experiments with probes made of conventional silica optical fibers were also conducted for comparisons. Furthermore, a silver-coated hollow glass waveguide was used as sample cell to detect liquid phase sample. We used a 6 cm-long hollow fiber as the liquid cell and Butt-couplings with emitting and collecting fibers. Experiment results show that the system obtained high signal to noise ratio because of the longer optical length between sample and laser light. We also give the elementary theoretical analysis for the hollow fiber sample cell. The parameters of the fiber which would affect the system were discussed. Hollow fiber has shown to be a potential fiber probe or sample cell for Raman spectroscopy.

  7. Detecting changes during pregnancy with Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Vargis, Elizabeth; Robertson, Kesha; Al-Hendy, Ayman; Reese, Jeff; Mahadevan-Jansen, Anita

    2010-02-01

    Preterm labor is the second leading cause of neonatal mortality and leads to a myriad of complications like delayed development and cerebral palsy. Currently, there is no way to accurately predict preterm labor, making its prevention and treatment virtually impossible. While there are some at-risk patients, over half of all preterm births do not fall into any high-risk category. This study seeks to predict and prevent preterm labor by using Raman spectroscopy to detect changes in the cervix during pregnancy. Since Raman spectroscopy has been used to detect cancers in vivo in organs like the cervix and skin, it follows that spectra will change over the course of pregnancy. Previous studies have shown that fluorescence decreased during pregnancy and increased during post-partum exams to pre-pregnancy levels. We believe significant changes will occur in the Raman spectra obtained during the course of pregnancy. In this study, Raman spectra from the cervix of pregnant mice and women will be acquired. Specific changes that occur due to cervical softening or changes in hormonal levels will be observed to understand the likelihood that a female mouse or a woman will enter labor.

  8. Raman Spectroscopy for Analysis of Thorium Compounds

    SciTech Connect

    Su, Yin-Fong; Johnson, Timothy J.; Olsen, Khris B.

    2016-05-12

    The thorium fuel cycle is an alternative to the uranium fuel cycle in that when 232Th is irradiated with neutrons it is converted to 233U, another fissile isotope. There are several chemical forms of thorium which are used in the Th fuel cycle. Recently, Raman spectroscopy has become a very portable and facile analytical technique useful for many applications, including e.g. determining the chemical composition of different materials such as for thorium compounds. The technique continues to improve with the development of ever-more sensitive instrumentation and better software. Using a laboratory Fourier-transform (FT)-Raman spectrometer with a 785 nm wavelength laser, we were able to obtain Raman spectra from a series of thorium-bearing compounds of unknown origin. These spectra were compared to the spectra of in-stock-laboratory thorium compounds including ThO2, ThF4, Th(CO3)2 and Th(C2O4)2. The unknown spectra showed very good agreement to the known standards, demonstrating the applicability of Raman spectroscopy for detection and identification of these nuclear materials.

  9. Perspective: Two-dimensional resonance Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Molesky, Brian P.; Guo, Zhenkun; Cheshire, Thomas P.; Moran, Andrew M.

    2016-11-01

    Two-dimensional resonance Raman (2DRR) spectroscopy has been developed for studies of photochemical reaction mechanisms and structural heterogeneity in complex systems. The 2DRR method can leverage electronic resonance enhancement to selectively probe chromophores embedded in complex environments (e.g., a cofactor in a protein). In addition, correlations between the two dimensions of the 2DRR spectrum reveal information that is not available in traditional Raman techniques. For example, distributions of reactant and product geometries can be correlated in systems that undergo chemical reactions on the femtosecond time scale. Structural heterogeneity in an ensemble may also be reflected in the 2D spectroscopic line shapes of both reactive and non-reactive systems. In this perspective article, these capabilities of 2DRR spectroscopy are discussed in the context of recent applications to the photodissociation reactions of triiodide and myoglobin. We also address key differences between the signal generation mechanisms for 2DRR and off-resonant 2D Raman spectroscopies. Most notably, it has been shown that these two techniques are subject to a tradeoff between sensitivity to anharmonicity and susceptibility to artifacts. Overall, recent experimental developments and applications of the 2DRR method suggest great potential for the future of the technique.

  10. The Impact of Array Detectors on Raman Spectroscopy

    ERIC Educational Resources Information Center

    Denson, Stephen C.; Pommier, Carolyn J. S.; Denton, M. Bonner

    2007-01-01

    The impact of array detectors in the field of Raman spectroscopy and all low-light-level spectroscopic techniques is examined. The high sensitivity of array detectors has allowed Raman spectroscopy to be used to detect compounds at part per million concentrations and to perform Raman analyses at advantageous wavelengths.

  11. Raman Spectroscopy: Incorporating the Chemical Dimension into Dermatological Diagnosis

    PubMed Central

    Sharma, Amit; Sharma, Shruti; Zarrow, Anna; Schwartz, Robert A; Lambert, W Clark

    2016-01-01

    Raman spectroscopy provides chemical analysis of tissue in vivo. By measuring the inelastic interactions of light with matter, Raman spectroscopy can determine the chemical composition of a sample. Diseases that are visually difficult to visually distinguish can be delineated based on differences in chemical composition of the affected tissue. Raman spectroscopy has successfully found spectroscopic signatures for skin cancers and differentiated those of benign skin growths. With current and on-going advances in optics and computing, inexpensive and effective Raman systems may soon be available for clinical use. Raman spectroscopy provides direct analyses of skin lesions, thereby improving both disease diagnosis and management. PMID:26955087

  12. Evolution of the graphite surface in phosphoric acid: an AFM and Raman study

    PubMed Central

    Brambilla, Luigi; Bussetti, Gianlorenzo; Tommasini, Matteo; Li Bassi, Andrea; Casari, Carlo Spartaco; Passoni, Matteo; Ciccacci, Franco; Duò, Lamberto; Castiglioni, Chiara

    2016-01-01

    Phosphoric acid is an inorganic acid used for producing graphene sheets by delaminating graphite in (electro-)chemical baths. The observed phenomenology during the electrochemical treatment in phosphoric acid solution is partially different from other acidic solutions, such as sulfuric and perchloric acid solutions, where the graphite surface mainly forms blisters. In fact, the graphite surface is covered by a thin layer of modified (oxidized) material that can be observed when an electrochemical potential is swept in the anodic current regime. We characterize this particular surface evolution by means of a combined electrochemical, atomic force microscopy and Raman spectroscopy investigation. PMID:28144537

  13. Raman and infrared spectroscopy of selected vanadates.

    PubMed

    Frost, Ray L; Erickson, Kristy L; Weier, Matt L; Carmody, Onuma

    2005-03-01

    Raman and infrared spectroscopy has been used to study the structure of selected vanadates including pascoite, huemulite, barnesite, hewettite, metahewettite, hummerite. Pascoite, rauvite and huemulite are examples of simple salts involving the decavanadates anion (V10O28)6-. Decavanadate consists of four distinct VO6 units which are reflected in Raman bands at the higher wavenumbers. The Raman spectra of these minerals are characterised by two intense bands at 991 and 965 cm(-1). Four pascoite Raman bands are observed at 991, 965, 958 and 905 cm(-1) and originate from four distinct VO6 sites. The other minerals namely barnesite, hewettite, metahewettite and hummerite have similar layered structures to the decavanadates but are based upon (V5O14)3- units. Barnesite is characterised by a single Raman band at 1010 cm(-1), whilst hummerite has Raman bands at 999 and 962 cm(-1). The absence of four distinct bands indicates the overlap of the vibrational modes from two of the VO6 sites. Metarossite is characterised by a strong band at 953 cm(-1). These bands are assigned to nu1 symmetric stretching modes of (V6O16)2- units and terminal VO3 units. In the infrared spectra of these minerals, bands are observed in the 837-860 cm(-1) and in the 803-833 cm(-1) region. In some of the Raman spectra bands are observed for pascoite, hummerite and metahewettite in similar positions. These bands are assigned to nu3 antisymmetric stretching of (V10O28)6- units or (V5O14)3- units. Because of the complexity of the spectra in the low wavenumber region assignment of bands is difficult. Bands are observed in the 404-458 cm(-1) region and are assigned to the nu2 bending modes of (V10O28)6- units or (V5O14)3- units. Raman bands are observed in the 530-620 cm(-1) region and are assigned to the nu4 bending modes of (V10O28)6- units or (V5O14)3- units. The Raman spectra of the vanadates in the low wavenumber region are complex with multiple overlapping bands which are probably due to VO

  14. Raman and infrared spectroscopy of selected vanadates

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Erickson, Kristy L.; Weier, Matt L.; Carmody, Onuma

    2005-03-01

    Raman and infrared spectroscopy has been used to study the structure of selected vanadates including pascoite, huemulite, barnesite, hewettite, metahewettite, hummerite. Pascoite, rauvite and huemulite are examples of simple salts involving the decavanadates anion (V 10O 28) 6-. Decavanadate consists of four distinct VO 6 units which are reflected in Raman bands at the higher wavenumbers. The Raman spectra of these minerals are characterised by two intense bands at 991 and 965 cm -1. Four pascoite Raman bands are observed at 991, 965, 958 and 905 cm -1 and originate from four distinct VO 6 sites. The other minerals namely barnesite, hewettite, metahewettite and hummerite have similar layered structures to the decavanadates but are based upon (V 5O 14) 3- units. Barnesite is characterised by a single Raman band at 1010 cm -1, whilst hummerite has Raman bands at 999 and 962 cm -1. The absence of four distinct bands indicates the overlap of the vibrational modes from two of the VO 6 sites. Metarossite is characterised by a strong band at 953 cm -1. These bands are assigned to ν1 symmetric stretching modes of (V 6O 16) 2- units and terminal VO 3 units. In the infrared spectra of these minerals, bands are observed in the 837-860 cm -1 and in the 803-833 cm -1 region. In some of the Raman spectra bands are observed for pascoite, hummerite and metahewettite in similar positions. These bands are assigned to ν 3 antisymmetric stretching of (V 10O 28) 6- units or (V 5O 14) 3- units. Because of the complexity of the spectra in the low wavenumber region assignment of bands is difficult. Bands are observed in the 404-458 cm -1 region and are assigned to the ν2 bending modes of (V 10O 28) 6- units or (V 5O 14) 3- units. Raman bands are observed in the 530-620 cm -1 region and are assigned to the ν4 bending modes of (V 10O 28) 6- units or (V 5O 14) 3- units. The Raman spectra of the vanadates in the low wavenumber region are complex with multiple overlapping bands which are

  15. Applications of Raman Spectroscopy to Virology and Microbial Analysis

    NASA Astrophysics Data System (ADS)

    Harz, Michaela; Stöckel, Stephan; Ciobotă, Valerian; Cialla, Dana; Rösch, Petra; Popp, Jürgen

    This chapter reports from the utilization of Raman spectroscopic techniques like Raman microscopy, Raman optical activity (ROA), UV-resonance Raman (UVRR)-spectroscopy, surface enhanced Raman spectroscopy (SERS), and tip-enhanced Raman spectroscopy (TERS) for the investigation of viruses and microorganisms, especially bacteria and yeasts for medical and pharmaceutical applications. The application of these Raman techniques allows for the analysis of chemical components of cells and subcellular regions, as well as the monitoring of chemical differences occurring as a result of the growth of microorganisms. In addition, the interaction of microorganisms with active pharmaceutical agents can be investigated. In combination with chemometric methods Raman spectroscopy can also be applied to identify microorganisms both in micro colonies and even on single cells.

  16. Electronic resonances in broadband stimulated Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Batignani, G.; Pontecorvo, E.; Giovannetti, G.; Ferrante, C.; Fumero, G.; Scopigno, T.

    2016-01-01

    Spontaneous Raman spectroscopy is a formidable tool to probe molecular vibrations. Under electronic resonance conditions, the cross section can be selectively enhanced enabling structural sensitivity to specific chromophores and reaction centers. The addition of an ultrashort, broadband femtosecond pulse to the excitation field allows for coherent stimulation of diverse molecular vibrations. Within such a scheme, vibrational spectra are engraved onto a highly directional field, and can be heterodyne detected overwhelming fluorescence and other incoherent signals. At variance with spontaneous resonance Raman, however, interpreting the spectral information is not straightforward, due to the manifold of field interactions concurring to the third order nonlinear response. Taking as an example vibrational spectra of heme proteins excited in the Soret band, we introduce a general approach to extract the stimulated Raman excitation profiles from complex spectral lineshapes. Specifically, by a quantum treatment of the matter through density matrix description of the third order nonlinear polarization, we identify the contributions which generate the Raman bands, by taking into account for the cross section of each process.

  17. Noninvasive glucose sensing by transcutaneous Raman spectroscopy

    PubMed Central

    Shih, Wei-Chuan; Bechtel, Kate L.; Rebec, Mihailo V.

    2015-01-01

    Abstract. We present the development of a transcutaneous Raman spectroscopy system and analysis algorithm for noninvasive glucose sensing. The instrument and algorithm were tested in a preclinical study in which a dog model was used. To achieve a robust glucose test system, the blood levels were clamped for periods of up to 45 min. Glucose clamping and rise/fall patterns have been achieved by injecting glucose and insulin into the ear veins of the dog. Venous blood samples were drawn every 5 min and a plasma glucose concentration was obtained and used to maintain the clamps, to build the calibration model, and to evaluate the performance of the system. We evaluated the utility of the simultaneously acquired Raman spectra to be used to determine the plasma glucose values during the 8-h experiment. We obtained prediction errors in the range of ∼1.5−2  mM. These were in-line with a best-case theoretical estimate considering the limitations of the signal-to-noise ratio estimates. As expected, the transition regions of the clamp study produced larger predictive errors than the stable regions. This is related to the divergence of the interstitial fluid (ISF) and plasma glucose values during those periods. Two key contributors to error beside the ISF/plasma difference were photobleaching and detector drift. The study demonstrated the potential of Raman spectroscopy in noninvasive applications and provides areas where the technology can be improved in future studies. PMID:25688542

  18. Diagnosing breast cancer by using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Haka, Abigail S.; Shafer-Peltier, Karen E.; Fitzmaurice, Maryann; Crowe, Joseph; Dasari, Ramachandra R.; Feld, Michael S.

    2005-08-01

    We employ Raman spectroscopy to diagnose benign and malignant lesions in human breast tissue based on chemical composition. In this study, 130 Raman spectra are acquired from ex vivo samples of human breast tissue (normal, fibrocystic change, fibroadenoma, and infiltrating carcinoma) from 58 patients. Data are fit by using a linear combination model in which nine basis spectra represent the morphologic and chemical features of breast tissue. The resulting fit coefficients provide insight into the chemical/morphological makeup of the tissue and are used to develop diagnostic algorithms. The fit coefficients for fat and collagen are the key parameters in the resulting diagnostic algorithm, which classifies samples according to their specific pathological diagnoses, attaining 94% sensitivity and 96% specificity for distinguishing cancerous tissues from normal and benign tissues. The excellent results demonstrate that Raman spectroscopy has the potential to be applied in vivo to accurately classify breast lesions, thereby reducing the number of excisional breast biopsies that are performed. Author contributions: M.F., J.C., R.R.D., and M.S.F. designed research; A.S.H. and K.E.S.-P. performed research; A.S.H. and M.F. analyzed data; and A.S.H. wrote the paper.This paper was submitted directly (Track II) to the PNAS office.Abbreviations: DEH, ductal epithelial hyperplasia; ROC, receiver operating characteristic; N/C, nuclear-to-cytoplasm.

  19. Noninvasive glucose sensing by transcutaneous Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Shih, Wei-Chuan; Bechtel, Kate L.; Rebec, Mihailo V.

    2015-05-01

    We present the development of a transcutaneous Raman spectroscopy system and analysis algorithm for noninvasive glucose sensing. The instrument and algorithm were tested in a preclinical study in which a dog model was used. To achieve a robust glucose test system, the blood levels were clamped for periods of up to 45 min. Glucose clamping and rise/fall patterns have been achieved by injecting glucose and insulin into the ear veins of the dog. Venous blood samples were drawn every 5 min and a plasma glucose concentration was obtained and used to maintain the clamps, to build the calibration model, and to evaluate the performance of the system. We evaluated the utility of the simultaneously acquired Raman spectra to be used to determine the plasma glucose values during the 8-h experiment. We obtained prediction errors in the range of ˜1.5-2 mM. These were in-line with a best-case theoretical estimate considering the limitations of the signal-to-noise ratio estimates. As expected, the transition regions of the clamp study produced larger predictive errors than the stable regions. This is related to the divergence of the interstitial fluid (ISF) and plasma glucose values during those periods. Two key contributors to error beside the ISF/plasma difference were photobleaching and detector drift. The study demonstrated the potential of Raman spectroscopy in noninvasive applications and provides areas where the technology can be improved in future studies.

  20. Raman Spectroscopy as a Probe of Surface Oxides and Hydrides on Niobium

    SciTech Connect

    J. Zasadzinski, B. Albee, S. Bishnoi, C. Cao, G. Ciovati, L.D. Cooley, D.C. Ford, Th. Proslier

    2011-07-01

    Raman microscopy/spectroscopy has been used in conjunction with AFM, tunneling and magnetic susceptibility to identify surface oxides and hydrides on annealed, recrystallized foils of high purity Nb and on single crystals of cavity grade Nb. Cold worked regions of the Nb foil as well as rough regions near grain boundaries showed clear evidence of ordered hydride phases which were identified by VASP phonon calculations. Cold worked regions also displayed enhanced surface paramagnetism. Surface enhanced Raman spectra have also been obtained using 1.0 nm Au depositon. The SERS spectra reveal hydride molecular species which are not observable by conventional Raman. These results indicate that Raman is a useful probe of Nb surfaces relevant for cavity performance

  1. Laser tweezers Raman spectroscopy of single cells

    NASA Astrophysics Data System (ADS)

    Chen, De

    Raman scattering is an inelastic collision between the vibrating molecules inside the sample and the incident photons. During this process, energy exchange takes place between the photon and the scattering molecule. By measuring the energy change of the photon, the molecular vibration mode can be probed. The vibrational spectrum contains valuable information about the disposition of atomic nuclei and chemical bonds within a molecule, the chemical compositions and the interactions between the molecule and its surroundings. In this dissertation, laser tweezers Raman spectroscopy (LTRS) technique is applied for the analysis of biological cells and human cells at single cell level. In LTRS, an individual cell is trapped in aqueous medium with laser tweezers, and Raman scattering spectra from the trapped cell are recorded in real-time. The Raman spectra of these cells can be used to reveal the dynamical processes of cell growth, cell response to environment changes, and can be used as the finger print for the identification of a bacterial cell species. Several biophysical experiments were carried out using LTRS: (1) the dynamic germination process of individual spores of Bacillus thuringiensis was detected via Ca-DPA, a spore-specific biomarker molecule; (2) inactivation and killing of Bacillus subtilis spores by microwave irradiation and wet heat were studied at single cell level; (3) the heat shock activation process of single B. subtilis spores were analyzed, in which the reversible transition from glass-like state at low temperature to liquid-like state at high temperature in spore was revealed at the molecular level; (4) the kinetic processes of bacterial cell lysis of E. coli by lysozyme and by temperature induction of lambda phage were detected real-time; (5) the fixation and rehydration of human platelets were quantitatively evaluated and characterized with Raman spectroscopy method, which provided a rapid way to quantify the quality of freeze-dried therapeutic

  2. Quantitating membrane bleb stiffness using AFM force spectroscopy and an optical sideview setup.

    PubMed

    Gonnermann, Carina; Huang, Chaolie; Becker, Sarah F; Stamov, Dimitar R; Wedlich, Doris; Kashef, Jubin; Franz, Clemens M

    2015-03-01

    AFM-based force spectroscopy in combination with optical microscopy is a powerful tool for investigating cell mechanics and adhesion on the single cell level. However, standard setups featuring an AFM mounted on an inverted light microscope only provide a bottom view of cell and AFM cantilever but cannot visualize vertical cell shape changes, for instance occurring during motile membrane blebbing. Here, we have integrated a mirror-based sideview system to monitor cell shape changes resulting from motile bleb behavior of Xenopus cranial neural crest (CNC) cells during AFM elasticity and adhesion measurements. Using the sideview setup, we quantitatively investigate mechanical changes associated with bleb formation and compared cell elasticity values recorded during membrane bleb and non-bleb events. Bleb protrusions displayed significantly lower stiffness compared to the non-blebbing membrane in the same cell. Bleb stiffness values were comparable to values obtained from blebbistatin-treated cells, consistent with the absence of a functional actomyosin network in bleb protrusions. Furthermore, we show that membrane blebs forming within the cell-cell contact zone have a detrimental effect on cell-cell adhesion forces, suggesting that mechanical changes associated with bleb protrusions promote cell-cell detachment or prevent adhesion reinforcement. Incorporating a sideview setup into an AFM platform therefore provides a new tool to correlate changes in cell morphology with results from force spectroscopy experiments.

  3. Simultaneous Conoscopic Holography and Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Schramm, Harry F.; Kaiser, Bruce

    2005-01-01

    A new instrument was developed for chemical characterization of surfaces that combines the analytical power of Raman spectroscopy with the three-dimensional topographic information provided by conoscopic holography. The figure schematically depicts the proposed hybrid instrument. The output of the conoscopic holographic portion of the instrument is a topographical map of the surface; the output of the Raman portion of the instrument is hyperspectral Raman data, from which the chemical and/or biological composition of the surface would be deduced. By virtue of the basic principles of design and operation of the instrument, the hyperspectral image data would be inherently spatially registered with the topographical data. In conoscopic holography, the object and reference beams of classical holography are replaced by the ordinary and extraordinary components generated by a single beam traveling through a birefringent, uniaxial crystal. In the basic conoscopic configuration, a laser light is projected onto a specimen and the resulting illuminated spot becomes a point source of diffuse light that propagates in every direction. The laser beam is rasterscanned in two dimensions (x and y) perpendicular to the beam axis (z), and at each x,y location, the pattern of interference between the ordinary and extraordinary rays is recorded. The recorded interferogram constitutes the conoscopic hologram. Of particular significance for the proposed instrument is that the conoscopic hologram contains information on the z coordinate (height) of the illuminated surface spot. Hence, a topographical map of the specimen is constructed point-by-point by rastering the laser beam in the x and y directions and correlating the x and y coordinates with the z information obtained from the interferograms. Conoscopic imaging is an established method, and conoscopic laboratory instruments for surface metrology are commercially available. In Raman spectroscopy of a surface, one measures the spectrum

  4. Noise autocorrelation spectroscopy with coherent Raman scattering

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoji G.; Konorov, Stanislav O.; Hepburn, John W.; Milner, Valery

    2008-02-01

    Coherent anti-Stokes Raman scattering (CARS) with femtosecond laser pulses has become a widespread method in nonlinear optical spectroscopy and microscopy. As a third-order nonlinear process, femtosecond CARS exhibits high efficiency at low average laser power. High sensitivity to molecular structure enables detection of small quantities of complex molecules and non-invasive biological imaging. Temporal and spectral resolution of CARS is typically limited by the duration of the excitation pulses and their frequency bandwidth, respectively. Broadband femtosecond pulses are advantageous for time-resolved CARS spectroscopy, but offer poor spectral resolution. The latter can be improved by invoking optical or quantum interference at the expense of increasing complexity of instrumentation and susceptibility to noise. Here, we present a new approach to coherent Raman spectroscopy in which high resolution is achieved by means of deliberately introduced noise. The proposed method combines the efficiency of a coherent process with the robustness of incoherent light. It does require averaging over different noise realizations, but no temporal scanning or spectral pulse shaping as commonly used by frequency-resolved spectroscopic methods with ultrashort pulses.

  5. Exploring many body interactions with Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Tian, Yao

    Many-body interactions are cornerstones of contemporary solid state physics research. Especially, phonon related interactions such as phonon-phonon coupling, spin-phonon coupling and electron-phonon coupling constantly present new challenges. To study phonon related many-body interactions, temperature dependent Raman spectroscopy is employed. Firstly, a new design and construction of a Raman microscope aimed at high collection eciency, positional and thermal stability is discussed. The application of the home-built Raman microscope is shown in the context of two types of novel materials; Cr2Ge2Te6 (spin-phonon coupling) and Bi2Te3-xSex (phonon-phonon coupling). Cr2Ge2Te6 is one of the rare class of ferromagnetic semiconductors and recent thermal transport studies suggest the spin and lattice are strongly coupled in its cousin compound Cr2Si2Te6. In this work, the spin-phonon coupling in Cr2Ge2Te6 has been revealed in multiple ways: we observed a split of two phonon modes due to the breaking of time reversal symmetry; the anomalous hardening of an additional three modes; and a dramatic enhancement of the phonon lifetimes. It is well-known that the phonon-phonon interaction plays a signicant role in determining the thermal transport properties of thermoelectrics. A comprehensive study of the phonon dynamics of Bi2Te3-xSex has been performed. We found that the unusual temperature dependence of dierent phonon modes originates from both cubic and quartic anharmonicity. These results are consistent with the resonance bonding mechanism, suggesting that the resonance bonding may be a common feature for conventional thermoelectrics. In the Raman spectra of Bi2Te2Se, the origin of the extra Raman feature has been debated for decades. Through a temperature dependent Raman study, we were able to prove the feature is generated by a Te-Se antisite induced local mode. The anomalous linewidth of the local mode as well as the anharmonic behavior were explained through a statistical

  6. Measuring Rocket Engine Temperatures with Hydrogen Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Wehrmeyer, Joseph A.

    2002-01-01

    Laser-based combustion diagnostics, such as single-pulse UV Raman spectroscopy and visible Raman spectroscopy, have been successfully applied to optically-accessible rocket-like test articles. If an independent pressure measurement is available, Raman major species concentration measurements can also provide a temperature measurement. However it is desirable to obtain a Raman-derived temperature measurement without the need for simultaneous pressure measurement, especially when chamber pressure may vary spatially. This report describes Raman temperature measurements obtained by exploiting the variation in shape of the H2 Raman spectrum. Hydrogen is advantageous since it is ubiquitous in H2-O2 systems and its Raman spectrum is simpler than for other diatomics. However the influence of high pressure on the H2 Raman spectrum must be investigated. At moderate pressures, well below those of rocket engines, the Raman spectra of O2 and N2 are known to become featureless due to collisional broadening.

  7. Raman Spectroscopy Of Glass-Crystalline Transformations

    NASA Astrophysics Data System (ADS)

    Haro, E.; Balkanski, M.

    1988-01-01

    Glass-crystalline transition is induced by laser irradiation on a GeSe bulk glass sample. The structural changes are detected by Raman spectroscopy. The speed of the crystallization process depends on the laser irradiation intensity. We have studied this crystallization process for three different powers of irradiation. It is found that the speed of crystallization increases with power. Stokes and anti-Stokes spectra were recorded during the transformation. From this data temperature was inferred at different stages of crystallization. The significance of this temperature is discussed.

  8. Characterization of amino acids using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Jenkins, Amanda L.; Larsen, Richard A.; Williams, Timothy B.

    2005-05-01

    A key process in the development of new drugs is elucidation of the interaction between the drug molecule and the target protein. Such knowledge then makes it possible to make systematic structural modifications of the drug molecule to optimize the interaction. Many analytical techniques can be applied to proteins in solution such as circular dichroism, ultraviolet, and fluorescence spectroscopy but these all have limitations. In this paper, we investigate the feasibility of using relatively simple, visible light Raman spectroscopic methods to investigate amino acids and related biopolymers.

  9. Characterization of Thalidomide using Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Cipriani, Penelope; Smith, Candace Y.

    2008-02-01

    Thalidomide is a potent anticancer therapeutic drug whose mechanism of action has not yet been elucidated. In this report, experimental Raman spectroscopy is used to determine and characterize the vibrational frequencies of the drug. These normal modes are then compared to their quantum mechanical counterparts, which have been computed using density functional theory. Upon analysis of the spectra, we found that there was a high level of agreement between the wavenumbers. As such, this spectroscopic technique may be a viable tool for examining the way in which this drug interacts with its target molecules.

  10. Role of Raman spectroscopy and surface enhanced Raman spectroscopy in colorectal cancer

    PubMed Central

    Jenkins, Cerys A; Lewis, Paul D; Dunstan, Peter R; Harris, Dean A

    2016-01-01

    Colorectal cancer (CRC) is the fourth most common cancer in the United Kingdom and is the second largest cause of cancer related death in the United Kingdom after lung cancer. Currently in the United Kingdom there is not a diagnostic test that has sufficient differentiation between patients with cancer and those without cancer so the current referral system relies on symptomatic presentation in a primary care setting. Raman spectroscopy and surface enhanced Raman spectroscopy (SERS) are forms of vibrational spectroscopy that offer a non-destructive method to gain molecular information about biological samples. The techniques offer a wide range of applications from in vivo or in vitro diagnostics using endoscopic probes, to the use of micro-spectrometers for analysis of biofluids. The techniques have the potential to detect molecular changes prior to any morphological changes occurring in the tissue and therefore could offer many possibilities to aid the detection of CRC. The purpose of this review is to look at the current state of diagnostic technology in the United Kingdom. The development of Raman spectroscopy and SERS in clinical applications relation for CRC will then be discussed. Finally, future areas of research of Raman/SERS as a clinical tool for the diagnosis of CRC are also discussed. PMID:27190582

  11. The importance of correcting for variable probe-sample interactions in AFM-IR spectroscopy: AFM-IR of dried bacteria on a polyurethane film.

    PubMed

    Barlow, Daniel E; Biffinger, Justin C; Cockrell-Zugell, Allison L; Lo, Michael; Kjoller, Kevin; Cook, Debra; Lee, Woo Kyung; Pehrsson, Pehr E; Crookes-Goodson, Wendy J; Hung, Chia-Suei; Nadeau, Lloyd J; Russell, John N

    2016-08-02

    AFM-IR is a combined atomic force microscopy-infrared spectroscopy method that shows promise for nanoscale chemical characterization of biological-materials interactions. In an effort to apply this method to quantitatively probe mechanisms of microbiologically induced polyurethane degradation, we have investigated monolayer clusters of ∼200 nm thick Pseudomonas protegens Pf-5 bacteria (Pf) on a 300 nm thick polyether-polyurethane (PU) film. Here, the impact of the different biological and polymer mechanical properties on the thermomechanical AFM-IR detection mechanism was first assessed without the additional complication of polymer degradation. AFM-IR spectra of Pf and PU were compared with FTIR and showed good agreement. Local AFM-IR spectra of Pf on PU (Pf-PU) exhibited bands from both constituents, showing that AFM-IR is sensitive to chemical composition both at and below the surface. One distinct difference in local AFM-IR spectra on Pf-PU was an anomalous ∼4× increase in IR peak intensities for the probe in contact with Pf versus PU. This was attributed to differences in probe-sample interactions. In particular, significantly higher cantilever damping was observed for probe contact with PU, with a ∼10× smaller Q factor. AFM-IR chemical mapping at single wavelengths was also affected. We demonstrate ratioing of mapping data for chemical analysis as a simple method to cancel the extreme effects of the variable probe-sample interactions.

  12. UTI diagnosis and antibiogram using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Kastanos, Evdokia; Kyriakides, Alexandros; Hadjigeorgiou, Katerina; Pitris, Constantinos

    2009-07-01

    Urinary tract infection diagnosis and antibiogram require a 48 hour waiting period using conventional methods. This results in ineffective treatments, increased costs and most importantly in increased resistance to antibiotics. In this work, a novel method for classifying bacteria and determining their sensitivity to an antibiotic using Raman spectroscopy is described. Raman spectra of three species of gram negative Enterobacteria, most commonly responsible for urinary tract infections, were collected. The study included 25 samples each of E.coli, Klebsiella p. and Proteus spp. A novel algorithm based on spectral ratios followed by discriminant analysis resulted in classification with over 94% accuracy. Sensitivity and specificity for the three types of bacteria ranged from 88-100%. For the development of an antibiogram, bacterial samples were treated with the antibiotic ciprofloxacin to which they were all sensitive. Sensitivity to the antibiotic was evident after analysis of the Raman signatures of bacteria treated or not treated with this antibiotic as early as two hours after exposure. This technique can lead to the development of new technology for urinary tract infection diagnosis and antibiogram with same day results, bypassing urine cultures and avoiding all undesirable consequences of current practice.

  13. Spontaneous transient ultrafast coherent raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Meiselman, Seth

    I explore the application of Transient Coherent Ultrafast Phonon Spectroscopy (TCUPS) to the measurement of vibrational coherence dynamics of liquid alcohols. The demonstrated technique is complementary to and, in some cases, simpler than traditional stimulated spectroscopy techniques in that it does not require more than one laser and is free of non-resonant background. I demonstrate coherence measurements of single-photon-level collective excitations: a single vibrational state at 1033 (1/cm) in; a pair of simultaneous excited vibrational states at 2834 and 2944 (1/cm) in methanol; and three simultaneous excited states at 2885, ˜2930, and 2976 (1/cm) in isopropanol. I develop a Fourier-transform-based analysis of the TCUPS data that overcomes poor signal-to-noise ratio and signal degradation due to etaloning and fluorescence. The coherence lifetimes and oscillation frequencies agree with frequency-domain line-shape measurements and femtosecond Coherent anti-Stokes Raman Scattering (CARS) measurements.

  14. Coronagraphic Notch Filter for Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Cohen, David; Stirbl, Robert

    2004-01-01

    A modified coronagraph has been proposed as a prototype of improved notch filters in Raman spectrometers. Coronagraphic notch filters could offer alternatives to both (1) the large and expensive double or triple monochromators in older Raman spectrometers and (2) holographic notch filters, which are less expensive but are subject to environmental degradation as well as to limitations of geometry and spectral range. Measurement of a Raman spectrum is an exercise in measuring and resolving faint spectral lines close to a bright peak: In Raman spectroscopy, a monochromatic beam of light (the pump beam) excites a sample of material that one seeks to analyze. The pump beam generates a small flux of scattered light at wavelengths slightly greater than that of the pump beam. The shift in wavelength of the scattered light from the pump wavelength is known in the art as the Stokes shift. Typically, the flux of scattered light is of the order of 10 7 that of the pump beam and the Stokes shift lies in the wave-number range of 100 to 3,000 cm 1. A notch filter can be used to suppress the pump-beam spectral peak while passing the nearby faint Raman spectral lines. The basic principles of design and operation of a coronagraph offer an opportunity for engineering the spectral transmittance of the optics in a Raman spectrometer. A classical coronagraph may be understood as two imaging systems placed end to end, such that the first system forms an intermediate real image of a nominally infinitely distant object and the second system forms a final real image of the intermediate real image. If the light incident on the first telescope is collimated, then the intermediate image is a point-spread function (PSF). If an appropriately tailored occulting spot (e.g., a Gaussian-apodized spot with maximum absorption on axis) is placed on the intermediate image plane, then the instrument inhibits transmission of light from an on-axis source. However, the PSFs of off-axis light sources are

  15. In vivo Raman spectroscopy of cervix cancers

    NASA Astrophysics Data System (ADS)

    Rubina, S.; Sathe, Priyanka; Dora, Tapas Kumar; Chopra, Supriya; Maheshwari, Amita; Krishna, C. Murali

    2014-03-01

    Cervix-cancer is the third most common female cancer worldwide. It is the leading cancer among Indian females with more than million new diagnosed cases and 50% mortality, annually. The high mortality rates can be attributed to late diagnosis. Efficacy of Raman spectroscopy in classification of normal and pathological conditions in cervix cancers on diverse populations has already been demonstrated. Our earlier ex vivo studies have shown the feasibility of classifying normal and cancer cervix tissues as well as responders/non-responders to Concurrent chemoradiotherapy (CCRT). The present study was carried out to explore feasibility of in vivo Raman spectroscopic methods in classifying normal and cancerous conditions in Indian population. A total of 182 normal and 132 tumor in vivo Raman spectra, from 63 subjects, were recorded using a fiberoptic probe coupled HE-785 spectrometer, under clinical supervision. Spectra were acquired for 5 s and averaged over 3 times at 80 mW laser power. Spectra of normal conditions suggest strong collagenous features and abundance of non-collagenous proteins and DNA in case of tumors. Preprocessed spectra were subjected to Principal Component-Linear Discrimination Analysis (PCLDA) followed by leave-one-out-cross-validation. Classification efficiency of ~96.7% and 100% for normal and cancerous conditions respectively, were observed. Findings of the study corroborates earlier studies and suggest applicability of Raman spectroscopic methods in combination with appropriate multivariate tool for objective, noninvasive and rapid diagnosis of cervical cancers in Indian population. In view of encouraging results, extensive validation studies will be undertaken to confirm the findings.

  16. Characterization and identification of contraband using UV resonant Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Lacey, Richard J.; Hayward, Ian P.; Sands, H. S.; Batchelder, David N.

    1997-02-01

    A range of explosives and narcotics have been examined using Raman spectroscopy with 244 nm excitation. This wavelength of excitation eliminates the fluorescence problems associated with excitation at visible wavelengths. Comparison with spectra obtained using visible excitation reveals that resonance Raman scattering is occurring. This results in simplified spectra, and enhanced Raman scattering efficiencies.

  17. Resonant Raman spectroscopy of twisted multilayer graphene

    NASA Astrophysics Data System (ADS)

    Wu, Jiang-Bin; Zhang, Xin; Ijäs, Mari; Han, Wen-Peng; Qiao, Xiao-Fen; Li, Xiao-Li; Jiang, De-Sheng; Ferrari, Andrea C.; Tan, Ping-Heng

    2014-11-01

    Graphene and other two-dimensional crystals can be combined to form various hybrids and heterostructures, creating materials on demand with properties determined by the interlayer interaction. This is the case even for a single material, where multilayer stacks with different relative orientation have different optical and electronic properties. Probing and understanding the interface coupling is thus of primary importance for fundamental science and applications. Here we study twisted multilayer graphene flakes with multi-wavelength Raman spectroscopy. We find a significant intensity enhancement of the interlayer coupling modes (C peaks) due to resonance with new optically allowed electronic transitions, determined by the relative orientation of the layers. The interlayer coupling results in a Davydov splitting of the C peak in systems consisting of two equivalent graphene multilayers. This allows us to directly quantify the interlayer interaction, which is much smaller compared with Bernal-stacked interfaces. This paves the way to the use of Raman spectroscopy to uncover the interface coupling of two-dimensional hybrids and heterostructures.

  18. Combined force spectroscopy, AFM and calorimetric studies to reveal the nanostructural organization of biomimetic membranes.

    PubMed

    Suárez-Germà, C; Morros, A; Montero, M T; Hernández-Borrell, J; Domènech, Ò

    2014-10-01

    In this work we studied a binary lipid matrix of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG), a composition that mimics the inner membrane of Escherichia coli. More specifically, liposomes with varying fractions of POPG were analysed by differential scanning calorimetry (DSC) and a binary phase diagram of the system was created. Additionally, we performed atomic force microscopy (AFM) imaging of supported lipid bilayers (SLBs) of similar compositions at different temperatures, in order to create a pseudo-binary phase diagram specific to this membrane model. AFM study of SLBs is of particular interest, as it is conceived as the most adequate technique not only for studying lipid bilayer systems but also for imaging and even nanomanipulating inserted membrane proteins. The construction of the above-mentioned phase diagram enabled us to grasp better the thermodynamics of the thermal lipid transition from a gel-like POPE:POPG phase system to a more fluid phase system. Finally, AFM force spectroscopy (FS) was used to determine the nanomechanics of these two lipid phases at 27°C and at different POPG fractions. The resulting data correlated with the specific composition of each phase was calculated from the AFM phase diagram obtained. All the experiments were done in the presence of 10 mM of Ca(2+), as this ion is commonly used when performing AFM with negatively charged phospholipids.

  19. Combined fiber probe for fluorescence lifetime and Raman spectroscopy

    PubMed Central

    Dochow, Sebastian; Ma, Dinglong; Latka, Ines; Bocklitz, Thomas; Hartl, Brad; Bec, Julien; Fatakdawala, Hussain; Marple, Eric; Urmey, Kirk; Wachsmann-Hogiu, Sebastian; Schmitt, Michael; Marcu, Laura; Popp, Jürgen

    2016-01-01

    In this contribution we present a dual modality fiber optic probe combining fluorescence lifetime imaging (FLIm) and Raman spectroscopy for in vivo endoscopic applications. The presented multi-spectroscopy probe enables efficient excitation and collection of fluorescence lifetime signals for FLIm in the UV/visible wavelength region, as well as of Raman spectra in the near-IR for simultaneous Raman/FLIm imaging. The probe was characterized in terms of its lateral resolution and distance dependency of the Raman and FLIm signals. In addition, the feasibility of the probe for in vivo FLIm and Raman spectral characterization of tissue was demonstrated. PMID:26093843

  20. Determining the Authenticity of Gemstones Using Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Aponick, Aaron; Marchozzi, Emedio; Johnston, Cynthia R.; Wigal, Carl T.

    1998-04-01

    The benefits of laser spectroscopy in the undergraduate curriculum have been the focus of several recent articles in this journal. Raman spectroscopy has been of particular interest since the similarities of Raman to conventional infrared spectroscopy make the interpretation of spectral data well within undergraduate comprehension. In addition, the accessibility to this technology is now within the reach of most undergraduate institutions. This paper reports the development of an experiment using Raman spectroscopy which determines the authenticity of both diamonds and pearls. The resulting spectra provide an introduction to vibrational spectroscopy and can be used in a variety of laboratory courses ranging from introductory chemistry to instrumental analysis.

  1. Single-Molecule Studies of Integrins by AFM-Based Force Spectroscopy on Living Cells

    NASA Astrophysics Data System (ADS)

    Eibl, Robert H.

    The characterization of cell adhesion between two living cells at the single-molecule level, i.e., between one adhesion receptor and its counter-receptor, appears to be an experimental challenge. Atomic force microscopy (AFM) can be used in its force spectroscopy mode to determine unbinding forces of a single pair of adhesion receptors, even with a living cell as a probe. This chapter provides an overview of AFM force measurements of the integrin family of cell adhesion receptors and their ligands. A focus is given to major integrins expressed on leukocytes, such as lymphocyte function-associated antigen 1 (LFA-1) and very late antigen 4 (VLA-4). These receptors are crucial for leukocyte trafficking in health and disease. LFA-1 and VLA-1 can be activated within the bloodstream from a low-affinity to a high-affinity receptor by chemokines in order to adhere strongly to the vessel wall before the receptor-bearing leukocytes extravasate. The experimental considerations needed to provide near-physiological conditions for a living cell and to be able to measure adequate forces at the single-molecule level are discussed in detail. AFM technology has been developed into a modern and extremely sensitive tool in biomedical research. It appears now that AFM force spectroscopy could enter, within a few years, medical applications in diagnosis and therapy of cancer and autoimmune diseases.

  2. In-line interferometric femtosecond stimulated Raman scattering spectroscopy.

    PubMed

    Dobner, Sven; Groß, Petra; Fallnich, Carsten

    2013-06-28

    We present in-line interferometric femtosecond stimulated Raman scattering (II-FSRS), a new method to measure the spectral Raman intensity and phase over a broad spectral range, potentially in a single shot. An analytic model is developed, that excellently reproduces the measured spectra. Additionally, the performance of II-FSRS is directly compared in experiments to two established techniques, namely femtosecond stimulated Raman scattering and femtosecond Raman induced Kerr-effect spectroscopy.

  3. Evaluating internal maturity of tomatoes using spatially offset Raman spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spatially offset Raman spectroscopy technique was investigated for evaluating internal maturity of intact tomatoes. A Raman spectroscopy system was assembled to acquire spatially offset spectra in the wavenumber range of 200–2500 cm–1. A 785-nm laser was used as the excitation source and the measure...

  4. Understanding the TERS Effect with On-line Tunneling and Force Feedback Using Multiprobe AFM/NSOM with Raman Integration

    NASA Astrophysics Data System (ADS)

    Lewis, Aaron; Dekhter, Rimma; Hamra, Patricia; Bar-David, Yossi; Taha, Hesham

    Tip enhanced Raman scattering (TERS) has evolved in several directions over the past years. The data from this variety of methodologies has now accumulated to the point that there is a reasonable possibility of evolving an understanding of the underlying cause of the resulting effects that could be the origin of the various TERS enhancement processes. The objective of this presentation is to use the results thus far with atomic force microscopy (AFM) probes with noble metal coating, etching, transparent gold nanoparticles with and without a second nanoparticle [Wang and Schultz, ANALYST 138, 3150 (2013)] and tunneling feedback probes [R. Zhang et. al., NATURE 4 9 8, 8 2 (2013)]. We attempt at understanding this complex of results with AFM/NSOM multiprobe techniques. Results indicate that TERS is dominated by complex quantum interactions. This produces a highly confined and broadband plasmon field with all k vectors for effective excitation. Normal force tuning fork feedback with exposed tip probes provides an excellent means to investigate these effects with TERS probes that we have shown can circumvent the vexing problem of jump to contact prevalent in conventional AFM methodology and permit on-line switching between tunneling and AFM feedback modes of operation.

  5. Plume Characterization of a Laboratory Model 22 N GPIM Thruster via High-Frequency Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Williams, George J.; Kojima, Jun J.; Arrington, Lynn A.; Deans, Matthew C.; Reed, Brian D.; Kinzbach, McKenzie I.; McLean, Christopher H.

    2015-01-01

    The Green Propellant Infusion Mission (GPIM) will demonstrate the capability of a green propulsion system, specifically, one using the monopropellant, AF-M315E. One of the risks identified for GPIM is potential contamination of sensitive areas of the spacecraft from the effluents in the plumes of AF-M315E thrusters. Plume characterization of a laboratory-model 22 N thruster via optical diagnostics was conducted at NASA GRC in a space-simulated environment. A high-frequency pulsed laser was coupled with an electron-multiplied ICCD camera to perform Raman spectroscopy in the near-field, low-pressure plume. The Raman data yielded plume constituents and temperatures over a range of thruster chamber pressures and as a function of thruster (catalyst) operating time. Schlieren images of the near-field plume enabled calculation of plume velocities and revealed general plume structure of the otherwise invisible plume. The measured velocities are compared to those predicted by a two-dimensional, kinetic model. Trends in data and numerical results are presented from catalyst mid-life to end-of-life. The results of this investigation were coupled with the Raman and Schlieren data to provide an anchor for plume impingement analysis presented in a companion paper. The results of both analyses will be used to improve understanding of the nature of AF-M315E plumes and their impacts to GPIM and other future missions.

  6. Study of relaxation and transport processes by means of AFM based dielectric spectroscopy

    SciTech Connect

    Miccio, Luis A.

    2014-05-15

    Since its birth a few years ago, dielectric spectroscopy studies based on atomic force microscopy (AFM) have gained a growing interest. Not only the frequency and temperature ranges have become broader since then but also the kind of processes that can be studied by means of this approach. In this work we analyze the most adequate experimental setup for the study of several dielectric processes with a spatial resolution of a few nanometers by using force mode AFM based dielectric spectroscopy. Proof of concept experiments were performed on PS/PVAc blends and PMMA homopolymer films, for temperatures ranging from 300 to 400 K. Charge transport processes were also studied by this approach. The obtained results were analyzed in terms of cantilever stray contribution, film thickness and relaxation strength. We found that the method sensitivity is strongly coupled with the film thickness and the relaxation strength, and that it is possible to control it by using an adequate experimental setup.

  7. The hallmarks of breast cancer by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Abramczyk, H.; Surmacki, J.; Brożek-Płuska, B.; Morawiec, Z.; Tazbir, M.

    2009-04-01

    This paper presents new biological results on ex vivo breast tissue based on Raman spectroscopy and demonstrates its power as diagnostic tool with the key advantage in breast cancer research. The results presented here demonstrate the ability of Raman spectroscopy to accurately characterize cancer tissue and distinguish between normal, malignant and benign types. The goal of the paper is to develop the diagnostic ability of Raman spectroscopy in order to find an optical marker of cancer in the breast tissue. Applications of Raman spectroscopy in breast cancer research are in the early stages of development in the world. To the best of our knowledge, this paper is one of the most statistically reliable reports (1100 spectra, 99 patients) on Raman spectroscopy-based diagnosis of breast cancers among the world women population.

  8. Nano-mechanical and biochemical characterization of different subtypes of breast cells using atomic force microscopy and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Zeng, Jinshu; Wang, Yuhua; Ruan, Qiuyong; Xu, Chaoxian; Jiang, Ningcheng; Xie, Shusen; Yang, Hongqin; Lin, Juqiang

    2016-11-01

    Combining atomic force microscopy (AFM) with Raman spectroscopy (RS), three different subtypes of breast cell lines, including metastatic cancer cells (MDA-MB-231), non-malignant cancer cells (MCF-7) and benign cells (MCF-10A), were studied to compare their differences in nano-mechanical and biochemical properties. Based on AFM measurements, two cancerous cells were found to have a close elasticity modulus, but were significantly softer than that of their benign counterparts. Raman spectral analysis revealed that the data points for two cancerous cells were distinct with completely separated clusters. The results demonstrate that combined AFM and RS techniques could obtain information about the biomechanical and biochemical properties necessary to distinguish different subtypes of breast cancer cells. This will hold great promise for cancer detection at the single cell level.

  9. Raman spectroscopy explores molecular structural signatures of hidden materials in depth: Universal Multiple Angle Raman Spectroscopy

    PubMed Central

    Sil, Sanchita; Umapathy, Siva

    2014-01-01

    Non-invasive 3D imaging in materials and medical research involves methodologies such as X-ray imaging, MRI, fluorescence and optical coherence tomography, NIR absorption imaging, etc., providing global morphological/density/absorption changes of the hidden components. However, molecular information of such buried materials has been elusive. In this article we demonstrate observation of molecular structural information of materials hidden/buried in depth using Raman scattering. Typically, Raman spectroscopic observations are made at fixed collection angles, such as, 90°, 135°, and 180°, except in spatially offset Raman scattering (SORS) (only back scattering based collection of photons) and transmission techniques. Such specific collection angles restrict the observations of Raman signals either from or near the surface of the materials. Universal Multiple Angle Raman Spectroscopy (UMARS) presented here employs the principle of (a) penetration depth of photons and then diffuse propagation through non-absorbing media by multiple scattering and (b) detection of signals from all the observable angles. PMID:24930768

  10. Measurement of clathrate hydrates via Raman spectroscopy

    USGS Publications Warehouse

    Sum, A.K.; Burruss, R.C.; Sloan, E.D.

    1997-01-01

    Raman spectra of clathrate hydrate guest molecules are presented for three known structures (I (sI), II (sII), and H (sH)) in the following systems: CH4 (sI), CO2 (sI), C3H8 (sII), CH4 + CO2 (sI), CD4 + C3H8 (sII), CH4 + N2 (sI), CH4 + THF-d8 (sII), and CH4 + C7D14 (sH). Relative occupancy of CH4 in the large and small cavities of sI were determined by deconvoluting the ??1 symmetric bands, resulting in hydration numbers of 6.04 ?? 0.03. The frequency of the ??1 bands for CH4 in structures I, II, and H differ statistically, so that Raman spectroscopy is a potential tool to identify hydrate crystal structure. Hydrate guest compositions were also measured for two vapor compositions of the CH4 + CO2 system, and they compared favorably with predictions. The large cavities were measured to be almost fully occupied by CH4 and CO2, whereas only a small fraction of the small cavities are occupied by CH4. No CO2 was found in the small cavities. Hydration numbers from 7.27 to 7.45 were calculated for the mixed hydrate.

  11. Raman spectroscopy of ion irradiated diamond

    NASA Astrophysics Data System (ADS)

    Brunetto, R.; Baratta, G. A.; Strazzulla, G.

    2004-07-01

    Ion irradiation experiments of diamond samples at room temperature have been performed by using in situ Raman spectroscopy as diagnostic technique. Different ions are used with energies of 200 or 400 keV. The area of virgin diamond Raman band (at 1332 cm-1) decreases exponentially as the ion fluence increases. This is due to changes in the optical properties of the damaged samples in the visible spectral range. Results from different ions demonstrate that this effect is correlated with the number of displacements/cm2, i.e., with the energy lost by ions through elastic collisions with target nuclei. Amorphous carbon (sp2) is formed after a threshold of about 2×1022 vacancies/cm3, or about 16 eV/C-atom deposited by elastic collisions. The peak position and full width at half maximum of the D line and G line of the synthesized amorphous carbon are studied. In particular, the G-line peak position shifts from the initial 1545 cm-1 to about 1515 cm-1 at the higher doses. The results are also discussed in view of their relevance in astrophysical environments.

  12. Combined fiber probe for fluorescence lifetime and Raman spectroscopy.

    PubMed

    Dochow, Sebastian; Ma, Dinglong; Latka, Ines; Bocklitz, Thomas; Hartl, Brad; Bec, Julien; Fatakdawala, Hussain; Marple, Eric; Urmey, Kirk; Wachsmann-Hogiu, Sebastian; Schmitt, Michael; Marcu, Laura; Popp, Jürgen

    2015-11-01

    In this contribution we present a dual modality fiber optic probe combining fluorescence lifetime imaging (FLIm) and Raman spectroscopy for in vivo endoscopic applications. The presented multi-spectroscopy probe enables efficient excitation and collection of fluorescence lifetime signals for FLIm in the UV/visible wavelength region, as well as of Raman spectra in the near-IR for simultaneous Raman/FLIm imaging. The probe was characterized in terms of its lateral resolution and distance dependency of the Raman and FLIm signals. In addition, the feasibility of the probe for in vivo FLIm and Raman spectral characterization of tissue was demonstrated. Graphical Abstract An image comparison between FLIm and Raman spectroscopy acquired with the bimodal probe onseveral tissue samples.

  13. Low-concentration chemical sensing using surface-enhanced coherent anti-Stokes Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Hua, Xia; Sinyukov, Alexander; Traverso, Andrew; Veronine, Dmitri; Wang, Kai; Xia, Hui; Yang, Wenlong; Yuan, Luqi; Sokolov, Alexei; Scully, Marlan

    2010-10-01

    Measurements of surface enhanced coherent anti-Stokes Raman spectra (CARS) of cyclohexane are carried out. Random aggregates of gold nanoparticles for field enhancement were deposited on a glass substrate and were characterized using atomic force microscopy (AFM). Surface enhancement of the CARS signal by gold nanoparticles is observed. This technique can be used to detect low amounts of chemicals with a higher sensitivity compared to the conventional surface-enhanced Raman spectroscopy (SERS). The lowest detected concentration of cyclohexane in a thin film of methanol was 1%. However, it was not possible to detect any signal from the same sample of cyclohexane without gold nanoparticles using conventional CARS technique. Therefore, surface enhancement is necessary to achieve higher spectroscopy sensitivity. Further studies of nanostructure-enhanced electrical fields are required to quantitatively understand the observed effects and will be performed in the future.

  14. Raman Spectroscopy of Optically Trapped Single Biological Micro-Particles.

    PubMed

    Redding, Brandon; Schwab, Mark; Pan, Yong-le

    2015-08-04

    The combination of optical trapping with Raman spectroscopy provides a powerful method for the study, characterization, and identification of biological micro-particles. In essence, optical trapping helps to overcome the limitation imposed by the relative inefficiency of the Raman scattering process. This allows Raman spectroscopy to be applied to individual biological particles in air and in liquid, providing the potential for particle identification with high specificity, longitudinal studies of changes in particle composition, and characterization of the heterogeneity of individual particles in a population. In this review, we introduce the techniques used to integrate Raman spectroscopy with optical trapping in order to study individual biological particles in liquid and air. We then provide an overview of some of the most promising applications of this technique, highlighting the unique types of measurements enabled by the combination of Raman spectroscopy with optical trapping. Finally, we present a brief discussion of future research directions in the field.

  15. Raman Spectroscopy of Optically Trapped Single Biological Micro-Particles

    PubMed Central

    Redding, Brandon; Schwab, Mark J.; Pan, Yong-le

    2015-01-01

    The combination of optical trapping with Raman spectroscopy provides a powerful method for the study, characterization, and identification of biological micro-particles. In essence, optical trapping helps to overcome the limitation imposed by the relative inefficiency of the Raman scattering process. This allows Raman spectroscopy to be applied to individual biological particles in air and in liquid, providing the potential for particle identification with high specificity, longitudinal studies of changes in particle composition, and characterization of the heterogeneity of individual particles in a population. In this review, we introduce the techniques used to integrate Raman spectroscopy with optical trapping in order to study individual biological particles in liquid and air. We then provide an overview of some of the most promising applications of this technique, highlighting the unique types of measurements enabled by the combination of Raman spectroscopy with optical trapping. Finally, we present a brief discussion of future research directions in the field. PMID:26247952

  16. Raman spectroscopy of human saliva for acute myocardial infarction detection

    NASA Astrophysics Data System (ADS)

    Chen, Maowen; Chen, Yuanxiang; Wu, Shanshan; Huang, Wei; Lin, Jinyong; Weng, Guo-Xing; Chen, Rong

    2014-09-01

    Raman spectroscopy is a rapidly non-invasive technique with great potential for biomedical research. The aim of this study was to evaluate the feasibility of using Raman spectroscopy of human saliva for acute myocardial infarction (AMI) detection. Raman spectroscopy measurements were performed on two groups of saliva samples: one group from patients (n=30) with confirmed AMI and the other group from healthy controls (n=31). The diagnostic performance for differentiating AMI saliva from normal saliva was evaluated by multivariate statistical analysis. The combination of principal component analysis (PCA) and linear discriminate analysis (LDA) of the measured Raman spectra separated the spectral features of the two groups into two distinct clusters with little overlaps, rendering the sensitivity of 80.0% and specificity of 80.6%. The results from this exploratory study demonstrated that Raman spectroscopy of human saliva can serve as a potentially clinical tool for rapid AMI detection and screening.

  17. In situ cellular level Raman spectroscopy of the thyroid.

    PubMed

    Law, Alan Wing Lun; Ahmed, Rafay; Cheung, Tsz Wing; Mak, Chun Yu; Lau, Condon

    2017-02-01

    We report a novel Raman spectroscopy method for in situ cellular level analysis of the thyroid. Thyroids are harvested from control and lithium treated mice. Lithium is used to treat bipolar disorder, but affects thyroid function. Raman spectra are acquired with a confocal setup (514 nm laser, 20 µm spot) focused on a follicular lumen. Raman peaks are observed at 1440, 1656, and 1746 cm(-1), corresponding to tyrosine, an important amino acid for protein synthesis. Peaks are also observed at 563, 1087, 1265 and 1301 cm(-1). With lithium, the tyrosine peaks increase, indicating tyrosine buildup. Raman spectroscopy can study the impact of many exogenous treatments on thyroid biochemistry.

  18. Raman spectroscopy for optical diagnosis of laryngeal cancer

    NASA Astrophysics Data System (ADS)

    Teh, Seng Khoon; Zheng, Wei; Lau, David P.; Huang, Zhiwei

    2008-02-01

    In this report, the diagnostic ability of near-infrared (NIR) Raman spectroscopy for identifying the malignant tumors from normal tissues in the larynx was studied. A rapid NIR Raman system was utilized. Multivariate statistical techniques were employed to develop effective diagnostic algorithms. Raman spectra in the range of 800-1,800 cm-1 differed significantly between normal and malignant tumor tissues. The diagnostic algorithms can yielded a diagnostic sensitivity of 92.9% and specificity 83.3% for separating malignant tumors from normal laryngeal tissues. NIR Raman spectroscopy with multivariate statistical techniques has a potential for the non-invasive detection of malignant tumors in the larynx.

  19. In situ cellular level Raman spectroscopy of the thyroid

    PubMed Central

    Law, Alan Wing Lun; Ahmed, Rafay; Cheung, Tsz Wing; Mak, Chun Yu; Lau, Condon

    2017-01-01

    We report a novel Raman spectroscopy method for in situ cellular level analysis of the thyroid. Thyroids are harvested from control and lithium treated mice. Lithium is used to treat bipolar disorder, but affects thyroid function. Raman spectra are acquired with a confocal setup (514 nm laser, 20 µm spot) focused on a follicular lumen. Raman peaks are observed at 1440, 1656, and 1746 cm−1, corresponding to tyrosine, an important amino acid for protein synthesis. Peaks are also observed at 563, 1087, 1265 and 1301 cm−1. With lithium, the tyrosine peaks increase, indicating tyrosine buildup. Raman spectroscopy can study the impact of many exogenous treatments on thyroid biochemistry. PMID:28270975

  20. In vivo characterization of protein uptake by yeast cell envelope: single cell AFM imaging and μ-tip-enhanced Raman scattering study.

    PubMed

    Naumenko, Denys; Snitka, Valentinas; Serviene, Elena; Bruzaite, Ingrida; Snopok, Boris

    2013-09-21

    Direct detection of biological transformations of single living cells in vivo has been performed by the advanced combination of local topographic imaging by Atomic Force Microscopy (AFM) and label-free sub-surface chemical characterization using new μ-Tip-Enhanced Raman Spectroscopy (μ-TERS). The enhancing mechanism for μ-TERS tips with micrometre range radius differs significantly to that of the conventional tapered structures terminated by a sharp apex and conditioned by the effects of propagating instead of localizing surface plasmon resonance phenomena. Sub-wavelength light confinement in the form of a nonradiative evanescent wave near the tip surface with penetration depth in the sub-micrometre range opens the way for monitoring of subsurface processes near or within the cell wall, inaccessible by other methods. The efficiency of the approach has been demonstrated by the analysis of the cell envelope of genetically modified (by glucose dehydrogenase (GDH) gene bearing Kluyveromyces lactis toxin signal sequence) yeast cells enriched by GDH protein. The presence of trans-membrane fragments in GDH together with the tendency to form active dimers and tetramers causes the accumulation of the proteins within the periplasmic space. These results demonstrate that the advanced combination of AFM imaging and subsurface chemical characterization by the novel μ-TERS technique provides a new analytical tool for the investigation of single living cells in vivo.

  1. From Femtosecond Dynamics to Breast Cancer Diagnosis by Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Abramczyk, H.; Placek, I.; BroŻek-Płuska, B.; Kurczewski, K.; Morawiec, Z.; Tazbir, M.

    2007-12-01

    This paper presents new results based on Raman spectroscopy and demonstrates its utilisation as a diagnostic and development tool with the key advantage in breast cancer research. Applications of Raman spectroscopy in cancer research are in the early stages of development. However, research presented here as well as performed in a few other laboratories demonstrate the ability of Raman spectroscopy to accurately characterize cancer tissue and distinguish between normal, malignant and benign types. The main goals of bio-Raman spectroscopy at this stage are threefold. Firstly, the aim is to develop the diagnostic ability of Raman spectroscopy so it can be implemented in a clinical environment, producing accurate and rapid diagnoses. Secondly, the aim is to optimize the technique as a diagnostic tool for the non-invasive real time medical applications. Thirdly, the aim is to formulate some hypothesis based on Raman spectroscopy on the molecular mechanism which drives the transformation of normal human cells into highly malignant derivatives. To the best of our knowledge, this is the most statistically reliable report on Raman spectroscopy-based diagnosis of breast cancers among the world women population.

  2. From Femtosecond Dynamics to Breast Cancer Diagnosis by Raman Spectroscopy

    SciTech Connect

    Abramczyk, H.; Placek, I.; Brozek-Pluska, B.; Kurczewski, K.; Morawiec, Z.; Tazbir, M.

    2007-12-26

    This paper presents new results based on Raman spectroscopy and demonstrates its utilisation as a diagnostic and development tool with the key advantage in breast cancer research. Applications of Raman spectroscopy in cancer research are in the early stages of development. However, research presented here as well as performed in a few other laboratories demonstrate the ability of Raman spectroscopy to accurately characterize cancer tissue and distinguish between normal, malignant and benign types. The main goals of bio-Raman spectroscopy at this stage are threefold. Firstly, the aim is to develop the diagnostic ability of Raman spectroscopy so it can be implemented in a clinical environment, producing accurate and rapid diagnoses. Secondly, the aim is to optimize the technique as a diagnostic tool for the non-invasive real time medical applications. Thirdly, the aim is to formulate some hypothesis based on Raman spectroscopy on the molecular mechanism which drives the transformation of normal human cells into highly malignant derivatives. To the best of our knowledge, this is the most statistically reliable report on Raman spectroscopy-based diagnosis of breast cancers among the world women population.

  3. The many facets of Raman spectroscopy for biomedical analysis.

    PubMed

    Krafft, Christoph; Popp, Jürgen

    2015-01-01

    A critical review is presented on the use of linear and nonlinear Raman microspectroscopy in biomedical diagnostics of bacteria, cells, and tissues. This contribution is combined with an overview of the achievements of our research group. Linear Raman spectroscopy offers a wealth of chemical and molecular information. Its routine clinical application poses a challenge due to relatively weak signal intensities and confounding overlapping effects. Nonlinear variants of Raman spectroscopy such as coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) have been recognized as tools for rapid image acquisition. Imaging applications benefit from the fact that contrast is based on the chemical composition and molecular structures in a label-free and nondestructive manner. Although not label-free, surface enhanced Raman scattering (SERS) has also been recognized as a complementary biomedical tool to increase sensitivity. The current state of the art is evaluated, illustrative examples are given, future developments are pointed out, and important reviews and references from the current literature are selected. The topics are identification of bacteria and single cells, imaging of single cells, Raman activated cell sorting, diagnosis of tissue sections, fiber optic Raman spectroscopy, and progress in coherent Raman scattering in tissue diagnosis. The roles of networks-such as Raman4clinics and CLIRSPEC on a European level-and early adopters in the translation, dissemination, and validation of new methods are discussed.

  4. Raman spectroscopy of gliomas: an exploratory study

    NASA Astrophysics Data System (ADS)

    Shenoy, Mahesh; Hole, Arti R.; Shridhar, E.; Moiyadi, Aliasgar V.; Krishna, C. Murali

    2014-03-01

    Gliomas are extremely infiltrative type of brain cancers, the borders of which are difficult to locate. Gliomas largely consist of tumors of astrocytic or oligodendroglial lineage. Usually stereotactic surgery is performed to obtain tumor tissue sample. Complete excision of these tumors with preservation of uninvolved normal areas is important during brain tumor surgeries. The present study was undertaken to explore feasibility of classifying abnormal and normal glioma tissues with Raman spectroscopy (RS). RS is a nondestructive vibrational spectroscopic technique, which provides information about molecular composition, molecular structures and molecular interactions in tissue. Postoperated 33 (20-abnormal and 13-normal) gliomas tissue samples of different grades were collected under clinical supervision. Five micron section from tissue sample was used for confirmatory histopathological diagnosis while the remaining tissue was placed on CaF2 window and spectra were acquired using a fiberoptic-probe-coupled HE-785 Raman-spectrometer. Spectral acquisition parameters were laser power-80mW, integration-20s and averaged over 3 accumulations. Spectra were pre-processed and subjected to unsupervised Principal-Component Analysis (PCA) to identify trends of classification. Supervised PC-LDA (Principal-Component-Linear-Discriminant Analysis) was used to develop standard-models using spectra of 12 normal and abnormal specimens each. Leave-one-out crossvalidation yielded classification-efficiency of 90% and 80% for normal and abnormal conditions, respectively. Evaluation with an independent-test data-set comprising of 135 spectra of 9 samples provided sensitivity of 100% and specificity of 70%. Findings of this preliminary study may pave way for objective tumor margin assessment during brain surgery.

  5. Forensic and homeland security applications of modern portable Raman spectroscopy.

    PubMed

    Izake, Emad L

    2010-10-10

    Modern detection and identification of chemical and biological hazards within the forensic and homeland security contexts may well require conducting the analysis in field while adapting a non-contact approach to the hazard. Technological achievements on both surface and resonance enhancement Raman scattering re-developed Raman spectroscopy to become the most adaptable spectroscopy technique for stand-off and non-contact analysis of hazards. On the other hand, spatially offset Raman spectroscopy proved to be very valuable for non-invasive chemical analysis of hazards concealed within non-transparent containers and packaging.

  6. Periodontitis diagnostics using resonance Raman spectroscopy on saliva

    NASA Astrophysics Data System (ADS)

    Gonchukov, S.; Sukhinina, A.; Bakhmutov, D.; Biryukova, T.; Tsvetkov, M.; Bagratashvily, V.

    2013-07-01

    In view of its wealth of molecular information, Raman spectroscopy has been the subject of active biomedical research. The aim of this work is Raman spectroscopy (RS) application for the determination of molecular biomarkers in saliva with the objective of early periodontitis detection. As was shown in our previous study, carotenoids contained in saliva can be molecular fingerprint information for the periodontitis level. It is shown here that the carotenoid RS lines at wavenumbers of 1156 and 1524 cm-1 can be easily detected and serve as reliable biomarkers of periodontitis using resonance Raman spectroscopy of dry saliva.

  7. Nanoparticle Based Surface-Enhanced Raman Spectroscopy

    SciTech Connect

    Talley, C E; Huser, T R; Hollars, C W; Jusinski, L; Laurence, T; Lane, S M

    2005-01-03

    Surface-enhanced Raman scattering is a powerful tool for the investigation of biological samples. Following a brief introduction to Raman and surface-enhanced Raman scattering, several examples of biophotonic applications of SERS are discussed. The concept of nanoparticle based sensors using SERS is introduced and the development of these sensors is discussed.

  8. Investigation of biomineralization by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Fatscher, Robert William

    Biomineralization is a process in which living organism grow composite materials consisting of inorganic and organic materials. This produces a composite material consisting of both inorganic and organic components, with superior mechanical properties. In the human body bone and dentin are both examples of biominerals. In this research Raman spectroscopy was used to characterize dentin from mice and human teeth, to determine composition. In the mouse tooth samples areas of irregular dentin were found, along the inside of the tooth, to be in the process of mineralization. By analyzing the samples along these areas we were able to determine the composition of dentin and track how it changed in these area. By analysis of the mineral to matrix ratio the areas of irregular dentin were determined to have less mineral present. Observations of other organic components and collagen in increased concentrations in this area suggested these area were in the process of biomineralization. The understanding of the structure of dentin and its biomineralization process is of crucial importance when trying reproduce dentin. Scientists and engineers are able to produce dentin minerals in vitro by culturing various dental stem cells. The ability to create dentin mineral from cells could lead to methods of repairing dentin in patients, or even lead to the creation of a completely engineered tooth. While dentin-like materials can be produced in a laboratory environment, analysis and comparison of the composition of these materials must be performed to ensure the mineral produced is consistent with dentin. Mineralized nodules from six different dental stem cell lines were cultured to produce a mineralized deposit. Utilizing Raman spectroscopy, we were able to determine cell source dependent differences in a variety of dental stem cells, and compare the mineral produced to native dentin. Orthopedic implants are implants used to replace damaged bone, examples include knee, hip and dental

  9. Sensitivity of Raman spectroscopy to normal patient variability

    PubMed Central

    Vargis, Elizabeth; Byrd, Teresa; Logan, Quinisha; Khabele, Dineo; Mahadevan-Jansen, Anita

    2011-01-01

    Many groups have used Raman spectroscopy for diagnosing cervical dysplasia; however, there have been few studies looking at the effect of normal physiological variations on Raman spectra. We assess four patient variables that may affect normal Raman spectra: Race/ethnicity, body mass index (BMI), parity, and socioeconomic status. Raman spectra were acquired from a diverse population of 75 patients undergoing routine screening for cervical dysplasia. Classification of Raman spectra from patients with a normal cervix is performed using sparse multinomial logistic regression (SMLR) to determine if any of these variables has a significant effect. Results suggest that BMI and parity have the greatest impact, whereas race/ethnicity and socioeconomic status have a limited effect. Incorporating BMI and obstetric history into classification algorithms may increase sensitivity and specificity rates of disease classification using Raman spectroscopy. Studies are underway to assess the effect of these variables on disease. PMID:22112136

  10. Sensitivity of Raman spectroscopy to normal patient variability

    NASA Astrophysics Data System (ADS)

    Vargis, Elizabeth; Byrd, Teresa; Logan, Quinisha; Khabele, Dineo; Mahadevan-Jansen, Anita

    2011-11-01

    Many groups have used Raman spectroscopy for diagnosing cervical dysplasia; however, there have been few studies looking at the effect of normal physiological variations on Raman spectra. We assess four patient variables that may affect normal Raman spectra: Race/ethnicity, body mass index (BMI), parity, and socioeconomic status. Raman spectra were acquired from a diverse population of 75 patients undergoing routine screening for cervical dysplasia. Classification of Raman spectra from patients with a normal cervix is performed using sparse multinomial logistic regression (SMLR) to determine if any of these variables has a significant effect. Results suggest that BMI and parity have the greatest impact, whereas race/ethnicity and socioeconomic status have a limited effect. Incorporating BMI and obstetric history into classification algorithms may increase sensitivity and specificity rates of disease classification using Raman spectroscopy. Studies are underway to assess the effect of these variables on disease.

  11. Real-time in vivo cancer diagnosis using Raman spectroscopy.

    PubMed

    Wang, Wenbo; Zhao, Jianhua; Short, Michael; Zeng, Haishan

    2015-07-01

    Raman spectroscopy has becoming a practical tool for rapid in vivo tissue diagnosis. This paper provides an overview on the latest development of real-time in vivo Raman systems for cancer detection. Instrumentation, data handling, as well as oncology applications of Raman techniques were covered. Optic fiber probes designs for Raman spectroscopy were discussed. Spectral data pre-processing, feature extraction, and classification between normal/benign and malignant tissues were surveyed. Applications of Raman techniques for clinical diagnosis for different types of cancers, including skin cancer, lung cancer, stomach cancer, oesophageal cancer, colorectal cancer, cervical cancer, and breast cancer, were summarized. Schematic of a real-time Raman spectrometer for skin cancer detection. Without correction, the image captured on CCD camera for a straight entrance slit has a curvature. By arranging the optic fiber array in reverse orientation, the curvature could be effectively corrected.

  12. Application of Raman Spectroscopy for Nondestructive Evaluation of Composite Materials

    NASA Technical Reports Server (NTRS)

    Washer, Glenn A.; Brooks, Thomas M. B.; Saulsberry, Regor

    2007-01-01

    This paper will present an overview of efforts to investigate the application of Raman spectroscopy for the characterization of Kevlar materials. Raman spectroscopy is a laser technique that is sensitive to molecular interactions in materials such as Kevlar, graphite and carbon used in composite materials. The overall goal of this research reported here is to evaluate Raman spectroscopy as a potential nondestructive evaluation (NDE) tool for the detection of stress rupture in Kevlar composite over-wrapped pressure vessels (COPVs). Characterization of the Raman spectra of Kevlar yarn and strands will be presented and compared with analytical models provided in the literature. Results of testing to investigate the effects of creep and high-temperature aging on the Raman spectra will be presented.

  13. Application of Raman spectroscopy to forensic fibre cases.

    PubMed

    Lepot, L; De Wael, K; Gason, F; Gilbert, B

    2008-09-01

    Five forensic fibre cases in which Raman spectroscopy proved to be a good complementary method for microspectrophotometry (MSP) are described. Absorption spectra in the visible range are indeed sometimes characteristic ofa certain dye but this one can be subsequently identified unambiguously by Raman spectroscopy using a spectral library. In other cases the comparison of Raman spectra of reference fibres and suspect fibres led to an improvement of the discrimination power. The Raman measurements have been performed directly on mounted fibres and the spectra showed only little interference from the mounting resin and glass. Raman spectroscopy is therefore a powerful method that can be applied in routine fibre analysis following optical microscopy and MSP measurements.

  14. Clinical instrumentation and applications of Raman spectroscopy

    PubMed Central

    Pence, Isaac

    2016-01-01

    Clinical diagnostic devices provide new sources of information that give insight about the state of health which can then be used to manage patient care. These tools can be as simple as an otoscope to better visualize the ear canal or as complex as a wireless capsule endoscope to monitor the gastrointestinal tract. It is with tools such as these that medical practitioners can determine when a patient is healthy and to make an appropriate diagnosis when he/she is not. The goal of diagnostic medicine then is to efficiently determine the presence and cause of disease in order to provide the most appropriate intervention. The earliest form of medical diagnostics relied on the eye – direct visual observation of the interaction of light with the sample. This technique was espoused by Hippocrates in his 5th century BCE work Epidemics, in which the pallor of a patient’s skin and the coloring of the bodily fluids could be indicative of health. In the last hundred years, medical diagnosis has moved from relying on visual inspection to relying on numerous technological tools that are based on various types of interaction of the sample with different types of energy – light, ultrasound, radio waves, X-rays etc. Modern advances in science and technology have depended on enhancing technologies for the detection of these interactions for improved visualization of human health. Optical methods have been focused on providing this information in the micron to millimeter scale while ultrasound, X-ray, and radio waves have been key in aiding in the millimeter to centimeter scale. While a few optical technologies have achieved the status of medical instruments, many remain in the research and development phase despite persistent efforts by many researchers in the translation of these methods for clinical care. Of these, Raman spectroscopy has been described as a sensitive method that can provide biochemical information about tissue state while maintaining the capability of

  15. Clinical instrumentation and applications of Raman spectroscopy.

    PubMed

    Pence, Isaac; Mahadevan-Jansen, Anita

    2016-04-07

    Clinical diagnostic devices provide new sources of information that give insight about the state of health which can then be used to manage patient care. These tools can be as simple as an otoscope to better visualize the ear canal or as complex as a wireless capsule endoscope to monitor the gastrointestinal tract. It is with tools such as these that medical practitioners can determine when a patient is healthy and to make an appropriate diagnosis when he/she is not. The goal of diagnostic medicine then is to efficiently determine the presence and cause of disease in order to provide the most appropriate intervention. The earliest form of medical diagnostics relied on the eye - direct visual observation of the interaction of light with the sample. This technique was espoused by Hippocrates in his 5th century BCE work Epidemics, in which the pallor of a patient's skin and the coloring of the bodily fluids could be indicative of health. In the last hundred years, medical diagnosis has moved from relying on visual inspection to relying on numerous technological tools that are based on various types of interaction of the sample with different types of energy - light, ultrasound, radio waves, X-rays etc. Modern advances in science and technology have depended on enhancing technologies for the detection of these interactions for improved visualization of human health. Optical methods have been focused on providing this information in the micron to millimeter scale while ultrasound, X-ray, and radio waves have been key in aiding in the millimeter to centimeter scale. While a few optical technologies have achieved the status of medical instruments, many remain in the research and development phase despite persistent efforts by many researchers in the translation of these methods for clinical care. Of these, Raman spectroscopy has been described as a sensitive method that can provide biochemical information about tissue state while maintaining the capability of delivering

  16. Applications of spatially offset Raman spectroscopy to defense and security

    NASA Astrophysics Data System (ADS)

    Guicheteau, Jason; Hopkins, Rebecca

    2016-05-01

    Spatially offset Raman spectroscopy (SORS) allows for sub-surface and through barrier detection and has applications in drug analysis, cancer detection, forensic science, as well as defense and security. This paper reviews previous efforts in SORS and other through barrier Raman techniques and presents a discussion on current research in defense and security applications.

  17. [Identification of B jade by Raman spectroscopy].

    PubMed

    Zu, En-dong; Chen, Da-peng; Zhang, Peng-xiang

    2003-02-01

    Raman spectroscopy has been found to be a useful tool for identification of bleached and polymer-impregnated jadeites (so-called B jade). The major advantage of this system over classical methods of gem testing is the non-destructive identification of inclusions in gemstones and the determination of organic fracture filling in jade. Fissures in jadeites have been filled with oils and various resins to enhance their clarity, such as paraffin wax, paraffin oil, AB glue and epoxy resins. They show different peaks depending on their chemical composition. The characteristic spectrum ranges from 1,200-1,700 cm-1 to 2,800-3,100 cm-1. The spectra of resins show that they all have four strongest peaks related with phenyl: two C-C stretching modes at 1,116 and 1,609 cm-1, respectively, one C-H stretching mode at 3,069 cm-1, and a in-plane C-H bending mode at 1,189 cm-1. In addition, other two -CH2, -CH3 stretching modes at 2,906 and 2,869 cm-1, respectively, are very similar to paraffin. Therefore, the peaks at 1,116, 1,609, 1,189 and 3,069 cm-1 are important in distinguishing resin from paraffin, and we can identify B jade depending on them.

  18. Wavelength dependent resonance Raman band intensity of broadband stimulated Raman spectroscopy of malachite green in ethanol

    NASA Astrophysics Data System (ADS)

    Cen, Qiongyan; He, Yuhan; Xu, Mei; Wang, Jingjing; Wang, Zhaohui

    2015-03-01

    Resonance broadband stimulated Raman spectroscopy of malachite green in ethanol has been performed. With a tuning picosecond visible laser source and a broadband Raman probe, the Raman gain and loss spectra have been measured simultaneously. By scanning the Raman pump across the first absorption band of the molecule, we found that the resonant Raman bands could be only seen when the pump laser tuned in the range of the red edge of the S1←S0 transition. Dispersive lineshapes of resonant Raman bands have been observed in the Raman loss spectra, while the line shape is normal (same as spontaneous Raman) in the Raman gain spectra. Although, the resonant bands in the loss spectrum are usually stronger than that in the gain spectrum, the band intensities of both loss and gain linearly increase with the pump energy. The relative magnitude of each corresponding resonant band in the Raman loss and gain varies with the pump wavelength. Mode specified Raman excitation profiles have been obtained through broadband stimulated Raman measurement.

  19. Force and function: probing proteins with AFM-based force spectroscopy.

    PubMed

    Puchner, Elias M; Gaub, Hermann E

    2009-10-01

    Forces play a pivotal role in life, and the response of live systems to forces requires molecules and molecular interactions with adequate properties to counteract both in a passive and also, if needed, in an active, dynamic manner. However, at the level of individual molecules these forces are so minute, that the development of sophisticated experiments to measure and control them was required. With the maturation of these techniques, particularly the AFM-based single-molecule force spectroscopy into commercial instruments, the scope has widened considerably and more and more studies shed light onto the different aspects of biomolecular mechanics. Many surprises turned up and more are waiting for us.

  20. Comparison of Fresh and Aged TNT with Multiwavelength Raman Spectroscopy

    DTIC Science & Technology

    2014-12-04

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6730--14-9572 Comparison of Fresh and Aged TNT with Multiwavelength Raman Spectroscopy...NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Comparison of Fresh and Aged TNT with Multiwavelength Raman Spectroscopy Robert Lunsford, Jacob Grun, and...fresh and aged variants. This is particularly true of UV aging which had the greater effect on the sample of the two aging processes tested

  1. Spatially offset Raman spectroscopy based on a line-scan hyperspectral Raman system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spatially offset Raman spectroscopy (SORS) is a technique that can obtain subsurface layered information by collecting Raman spectra from a series of surface positions laterally offset from the excitation laser. The current methods of SORS measurement are typically either slow due to mechanical move...

  2. Approximate chemical analysis of volcanic glasses using Raman spectroscopy

    PubMed Central

    Morgavi, Daniele; Hess, Kai‐Uwe; Neuville, Daniel R.; Borovkov, Nikita; Perugini, Diego; Dingwell, Donald B.

    2015-01-01

    The effect of chemical composition on the Raman spectra of a series of natural calcalkaline silicate glasses has been quantified by performing electron microprobe analyses and obtaining Raman spectra on glassy filaments (~450 µm) derived from a magma mingling experiment. The results provide a robust compositionally‐dependent database for the Raman spectra of natural silicate glasses along the calcalkaline series. An empirical model based on both the acquired Raman spectra and an ideal mixing equation between calcalkaline basaltic and rhyolitic end‐members is constructed enabling the estimation of the chemical composition and degree of polymerization of silicate glasses using Raman spectra. The model is relatively insensitive to acquisition conditions and has been validated using the MPI‐DING geochemical standard glasses1 as well as further samples. The methods and model developed here offer several advantages compared with other analytical and spectroscopic methods such as infrared spectroscopy, X‐ray fluorescence spectroscopy, electron and ion microprobe analyses, inasmuch as Raman spectroscopy can be performed with a high spatial resolution (1 µm2) without the need for any sample preparation as a nondestructive technique. This study represents an advance in efforts to provide the first database of Raman spectra for natural silicate glasses and yields a new approach for the treatment of Raman spectra, which allows us to extract approximate information about the chemical composition of natural silicate glasses using Raman spectroscopy. We anticipate its application in handheld in situ terrestrial field studies of silicate glasses under extreme conditions (e.g. extraterrestrial and submarine environments). © 2015 The Authors Journal of Raman Spectroscopy Published by John Wiley & Sons Ltd PMID:27656038

  3. [Surface-enhanced Raman spectroscopy analysis of thiabendazole pesticide].

    PubMed

    Lin, Lei; Wu, Rui-mei; Liu, Mu-hua; Wang, Xiao-bin; Yan, Lin-yuan

    2015-02-01

    Surface-enhanced Raman spectroscopy (SERS) technique was used to analyze the Raman peaks of thiabendazole pesticides in the present paper. Surface enhanced substrates of silver nanoparticle were made based on microwave technology. Raman signals of thiabendazole were collected by laser Micro-Raman spectrometer with 514. 5 and 785 nm excitation wavelengths, respectively. The Raman peaks at different excitation wavelengths were analyzed and compared. The Raman peaks 782 and 1 012 at 785 nm excitation wavelength were stronger, which were C--H out-of-plane vibrations. While 1284, 1450 and 1592 cm(-1) at 514.5 nm excitation wavelength were stronger, which were vng and C==N stretching. The study results showed that the intensity of Raman peak and Raman shift at different excitation wavelengths were different And strong Raman signals were observed at 782, 1012, 1284, 1450 and 1592 cm(-1) at 514.5 and 785 nm excitation wavelengths. These characteristic vibrational modes are characteristic Raman peaks of carbendazim pesticide. The results can provide basis for the rapid screening of pesticide residue in agricultural products and food based on Raman spectrum.

  4. Rapid monitoring of benzylpenicillin sodium using Raman and surface enhanced Raman spectroscopy.

    PubMed

    Jiang, Xin; Qin, Xiaoyu; Yin, Di; Gong, Mengdi; Yang, Libin; Zhao, Bing; Ruan, Weidong

    2015-04-05

    At present, fluorescence spectroscopy, ultraviolet spectroscopy and infrared spectroscopy are usually used to detect drug molecules, however the information about using Raman spectroscopy to detect drug molecules is very few. In this work normal Raman spectroscopy and surface-enhanced Raman spectroscopy were utilized to study benzylpenicillin sodium (NaBP). The results show that NaBP is close to the surface of silver substrate through the carboxyl group, and the detection limit of NaBP is reduced to 1×10(-7) mol/L. Accordingly, the quantitative analysis of NaBP can be carried out in the range of 1×10(-4)-1×10(-7) mol/L concentration. And it is proved that NaBP is not stable in acid and alkali conditions and the decomposition reaction is very complex.

  5. Micro-Raman spectroscopy for meat type detection

    NASA Astrophysics Data System (ADS)

    De Biasio, M.; Stampfer, P.; Leitner, R.; Huck, C. W.; Wiedemair, V.; Balthasar, D.

    2015-06-01

    The recent horse meat scandal in Europe increased the demand for optical sensors that can identify meat type. Micro-Raman spectroscopy is a promising technique for the discrimination of meat types. Here, we present micro-Raman measurements of chicken, pork, turkey, mutton, beef and horse meat test samples. The data was analyzed with different combinations of data normalization and classification approaches. Our results show that Raman spectroscopy can discriminate between different meat types. Red and white meat are easily discriminated, however a sophisticated chemometric model is required to discriminate species within these groups.

  6. Gaseous trace analysis using pulsed photoacoustic Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Siebert, D. R.; West, G. A.; Barrett, J. J.

    1980-01-01

    The paper describes a method for the trace analysis of gases, based on the pulsed photoacoustic Raman spectroscopy (PARS) technique. It is reported that the method has been applied to the analysis of mixtures of CH4 in N2, CO2 in N2, and N2O in N2 at concentrations near 1 ppm. Attention is given to the apparatus used and means of improving the method's sensitivity as well as sensitivity-limiting processes are evaluated. Finally, the analytical capabilities of this technique are compared with both direct (IR) absorption and other Raman techniques such as CARS and stimulated Raman gain spectroscopy (SRGS).

  7. Raman Spectroscopy as an Accurate Probe of Defects in Graphene

    NASA Astrophysics Data System (ADS)

    Rodriguez-Nieva, Joaquin; Barros, Eduardo; Saito, Riichiro; Dresselhaus, Mildred

    2014-03-01

    Raman Spectroscopy has proved to be an invaluable non-destructive technique that allows us to obtain intrinsic information about graphene. Furthermore, defect-induced Raman features, namely the D and D' bands, have previously been used to assess the purity of graphitic samples. However, quantitative studies of the signatures of the different types of defects on the Raman spectra is still an open problem. Experimental results already suggest that the Raman intensity ratio ID /ID' may allow us to identify the nature of the defects. We study from a theoretical point of view the power and limitations of Raman spectroscopy in the study of defects in graphene. We derive an analytic model that describes the Double Resonance Raman process of disordered graphene samples, and which explicitly shows the role played by both the defect-dependent parameters as well as the experimentally-controlled variables. We compare our model with previous Raman experiments, and use it to guide new ways in which defects in graphene can be accurately probed with Raman spectroscopy. We acknowledge support from NSF grant DMR1004147.

  8. Raman spectroscopy in the analysis of food and pharmaceutical nanomaterials.

    PubMed

    Li, Ying-Sing; Church, Jeffrey S

    2014-03-01

    Raman scattering is an inelastic phenomenon. Although its cross section is very small, recent advances in electronics, lasers, optics, and nanotechnology have made Raman spectroscopy suitable in many areas of application. The present article reviews the applications of Raman spectroscopy in food and drug analysis and inspection, including those associated with nanomaterials. Brief overviews of basic Raman scattering theory, instrumentation, and statistical data analysis are also given. With the advent of Raman enhancement mechanisms and the progress being made in metal nanomaterials and nanoscale metal surfaces fabrications, surface enhanced Raman scattering spectroscopy has become an extra sensitive method, which is applicable not only for analysis of foods and drugs, but also for intracellular and intercellular imaging. A Raman spectrometer coupled with a fiber optics probe has great potential in applications such as monitoring and quality control in industrial food processing, food safety in agricultural plant production, and convenient inspection of pharmaceutical products, even through different types of packing. A challenge for the routine application of surface enhanced Raman scattering for quantitative analysis is reproducibility. Success in this area can be approached with each or a combination of the following methods: (1) fabrication of nanostructurally regular and uniform substrates; (2) application of statistic data analysis; and (3) isotopic dilution.

  9. Snapshot depth sensitive Raman spectroscopy in layered tissues.

    PubMed

    Liu, Wei; Ong, Yi Hong; Yu, Xiao Jun; Ju, Jian; Perlaki, Clint Michael; Liu, Lin Bo; Liu, Quan

    2016-12-12

    Depth sensitive Raman spectroscopy has been shown effective in the detection of depth dependent Raman spectra in layered tissues. However, the current techniques for depth sensitive Raman measurements based on fiber-optic probes suffer from poor depth resolution and significant variation in probe-sample contact. In contrast, those lens based techniques either require the change in objective-sample distance or suffer from slow spectral acquisition. We report a snapshot depth-sensitive Raman technique based on an axicon lens and a ring-to-line fiber assembly to simultaneously acquire Raman signals emitted from five different depths in the non-contact manner without moving any component. A numerical tool was developed to simulate ray tracing and optimize the snapshot depth sensitive setup to achieve the tradeoff between signal collection efficiency and depth resolution for Raman measurements in the skin. Moreover, the snapshot system was demonstrated to be able to acquire depth sensitive Raman spectra from not only transparent and turbid skin phantoms but also from ex vivo pork tissues and in vivo human thumbnails when the excitation laser power was limited to the maximum permissible exposure for human skin. The results suggest the great potential of snapshot depth sensitive Raman spectroscopy in the characterization of the skin and other layered tissues in the clinical setting or other similar applications such as quality monitoring of tablets and capsules in pharmaceutical industry requiring the rapid measurement of depth dependent Raman spectra.

  10. Coherent anti-Stokes Raman spectroscopy: Understanding the essentials

    NASA Astrophysics Data System (ADS)

    Ariunbold, Gombojav O.; Altangerel, Narangerel

    2016-12-01

    This paper is a brief overview to coherent anti- Stokes Raman spectroscopic technique and introduces the strengths and barriers to its use all based on the interpretation of simple theoretical formulae. The use of the Gaussian ultrashort pulses is highlighted as a practical elucidatory reconstruction tool of coherent Raman spectra. The paper presents the integral formulae for coherent anti-Stokes and Stokes Raman scattering, and discusses the closed-form solutions, its complex error function, and the delay time formula for enhancement of the inferred pure coherent Raman spectra. As an example, the timeresolved coherent Stokes Raman scattering experimental observations are quantitatively elucidated.Understanding the essentials of coherent Raman spectroscopy, therefore, promotes the importance of a number of experiments including the ones utilizing a broadband excitation with a narrowband delayed probing for successful background suppression.

  11. Micro-Raman spectroscopy on oral tissues

    NASA Astrophysics Data System (ADS)

    Zenone, F.; Lepore, M.; Perna, G.; Carmone, P.; Riccio, R.; Gaeta, G. M.; Capozzi, V.

    2006-02-01

    Micro-Raman Spectroscopy (μ-RS) provides a unique tool in medicine for a not invasive and real time analysis of biological tissue for biopsy and "in vivo" investigation. Based on the evaluation of molecular vibration frequencies, the μ-RS is able to detect the main molecular bonds of protein constituents, as the C-H and C-C ones. Changes in frequency or in the relative intensity of the vibration modes revealed by μ-RS can be related to changes of chemical bond and of protein structure induced by pathology. The μ-RS has been performed on samples of oral tissue from informed patients, affected by pemphigus vulgaris (an oral pathology) in an advanced regression state. The biopsies were thin slices (about 1mm thick) with 6mm diameter. The sample was measured through a 170 μm thick cover-glass. The experimental set-up was mainly composed by a He-Ne laser and a monochromator equipped with a Peltier cell and with a grating of 1800 grooves/mm. The laser light was focused on the sample surface by means of a long focal length 50X optical objective. The main protein bonds are clearly detectable in the considered samples and this give important information on the integrity and on the state of tissue components (lipids and proteins), and consequently on the occurrence of pathology. The potential application of this method for in vivo analysis is an invaluable alternative to biopsy and pathological examinations for many medical application as screening diagnostic, therapy progress examination, and surgical support.

  12. Raman and surface-enhanced Raman spectroscopy for renal condition monitoring

    NASA Astrophysics Data System (ADS)

    Li, Jingting; Li, Ming; Du, Yong; Santos, Greggy M.; Mohan, Chandra; Shih, Wei-Chuan

    2016-03-01

    Non- and minimally-invasive techniques can provide advantages in the monitoring and clinical diagnostics in renal diseases. Although renal biopsy may be useful in establishing diagnosis in several diseases, it is an invasive approach and impractical for longitudinal disease monitoring. To address this unmet need, we have developed two techniques based on Raman spectroscopy. First, we have investigated the potential of diagnosing and staging nephritis by analyzing kidney tissue Raman spectra using multivariate techniques. Secondly, we have developed a urine creatinine sensor based on surface-enhanced Raman spectroscopy with performance near commercial assays which require relatively laborious sample preparation and longer time.

  13. Simultaneous rotational coherent anti-Stokes Raman spectroscopy and coherent Stokes Raman spectroscopy with arbitrary pump-Stokes spectral separation.

    PubMed

    Eckbreth, A C; Anderson, T J

    1986-08-01

    A new approach to pure rotational coherent anti-Stokes Raman spectroscopy (CARS) and coherent Stokes Raman spectroscopy (CSRS) is demonstrated in which the pump and broadband Stokes lasers that are mixed have a large and arbitrary spectral separation. In this method, the rotational Raman coherences are established by different frequency components within the single, broadband Stokes source. The narrow band then scatters from the excited coherences, producing CARS and CSRS simultaneously. We discuss phase matching for this new technique and its inherent advantages relative to pure rotational CARS as normally implemented.

  14. Mode-dependent dispersion in Raman line shapes: Observation and implications from ultrafast Raman loss spectroscopy

    SciTech Connect

    Umapathy, S.; Mallick, B.; Lakshmanna, A.

    2010-07-14

    Ultrafast Raman loss spectroscopy (URLS) enables one to obtain the vibrational structural information of molecular systems including fluorescent materials. URLS, a nonlinear process analog to stimulated Raman gain, involves a narrow bandwidth picosecond Raman pump pulse and a femtosecond broadband white light continuum. Under nonresonant condition, the Raman response appears as a negative (loss) signal, whereas, on resonance with the electronic transition the line shape changes from a negative to a positive through a dispersive form. The intensities observed and thus, the Franck-Condon activity (coordinate dependent), are sensitive to the wavelength of the white light corresponding to a particular Raman frequency with respect to the Raman pump pulse wavelength, i.e., there is a mode-dependent response in URLS.

  15. Raman spectroscopy for planetary exploration and characterization of extraterrestrial materials

    NASA Astrophysics Data System (ADS)

    Acosta-Maeda, Tayro E.

    The sharp spectral features of Raman spectra are widely recognized to provide unequivocal and accurate chemical characterization of organic and inorganic compounds. Therefore Raman spectroscopy can be used to detect minerals, water bearing minerals, organic and biological materials and biomarkers in the context of planetary science. This dissertation extends the applicability of the Raman technique both laboratory based micro-Raman and remote Raman sensing ahead of planetary exploration missions to Mars employing Raman spectrometers. The interpretation of Raman imaging from a meteorite taken with a micro-Raman system revealed a close correlation between the blue color in natural ringwoodite and a new observed Raman peak that shows strong resonance Raman enhancement. The data suggest that ringwoodite exists both in the spinel structure and in the partially inverse spinel structure. In the field of remote Raman, this dissertation provides carefully derived Raman cross-section values for various organic liquids and inorganic polyatomic ions in aqueous solutions that will be useful for estimating detection capabilities of 532 nm excitation remote Raman systems for planetary exploration. Suitability of remote 532 nm Raman systems for future applications is explored. A portable, compact time-resolved instrument using a 3-inch diameter telescope is used it to demonstrate daytime detection of amino acids and nucleobases from a distance of 8 m. The measurements with a larger 8-inch Raman system demonstrate that it is possible to acquire good quality Raman spectra of various materials from a 430 meter remote distance during daylight with detection times of 10 seconds, and in some cases as short as 1 second, during daylight and in a realistic outdoor context. To my knowledge, these are the only remote Raman spectra at this distance that provide unambiguous detection of compounds important for planetary science, such as water and water ice, dry ice, sulfur, sulfates, various

  16. Resonance Raman spectroscopy study of protonated porphyrin

    NASA Astrophysics Data System (ADS)

    Gorski, A.; Starukhin, A.; Stavrov, S.; Gawinkowski, S.; Waluk, J.

    2017-02-01

    Resonance Raman microscopy was used to study the resonance Raman scattering of the diacid (diprotonated form) of free-base porphyrin (21H,23H-porphine) in a crystal powder and KBr pellets. Intensive lines in the spectral range between 100 ÷ 1000 cm- 1 have been detected and assigned as spectral manifestation of out-of-plane modes. The Raman spectra were simulated by means of DFT methods and compared with the experimental data. It is evident from experimental and theoretical results that the activation of out-of-plane modes arises from saddle distortion of the porphyrin macrocycle upon formation of its diprotonated form.

  17. Shining light on neurosurgery diagnostics using Raman spectroscopy.

    PubMed

    Broadbent, Brandy; Tseng, James; Kast, Rachel; Noh, Thomas; Brusatori, Michelle; Kalkanis, Steven N; Auner, Gregory W

    2016-10-01

    Surgical excision of brain tumors provides a means of cytoreduction and diagnosis while minimizing neurologic deficit and improving overall survival. Despite advances in functional and three-dimensional stereotactic navigation and intraoperative magnetic resonance imaging, delineating tissue in real time with physiological confirmation is challenging. Raman spectroscopy is a promising investigative and diagnostic tool for neurosurgery, which provides rapid, non-destructive molecular characterization in vivo or in vitro for biopsy, margin assessment, or laboratory uses. The Raman Effect occurs when light temporarily changes a bond's polarizability, causing change in the vibrational frequency, with a corresponding change in energy/wavelength of the scattered photon. The recorded inelastic scattering results in a "fingerprint" or Raman spectrum of the constituent under investigation. The amount, location, and intensity of peaks in the fingerprint vary based on the amount of vibrational bonds in a molecule and their ensemble interactions with each other. Distinct differences between various pathologic conditions are shown as different intensities of the same peak, or shifting of a peak based on the binding conformation. Raman spectroscopy has potential for integration into clinical practice, particularly in distinguishing normal and diseased tissue as an adjunct to standard pathologic diagnosis. Further, development of fiber-optic Raman probes that fit through the instrument port of a standard endoscope now allows researchers and clinicians to utilize spectroscopic information for evaluation of in vivo tissue. This review highlights the need for such an instrument, summarizes neurosurgical Raman work performed to date, and discusses the future applications of neurosurgical Raman spectroscopy.

  18. [Current views on surface enhanced Raman spectroscopy in microbiology].

    PubMed

    Jia, Xiaoxiao; Li, Jing; Qin, Tian; Deng, Aihua; Liu, Wenjun

    2015-05-01

    Raman spectroscopy has generated many branches during the development for more than 90 years. Surface enhanced Raman spectroscopy (SERS) improves SNR by using the interaction between tested materials and the surface of rough metal, as to quickly get higher sensitivity and precision spectroscopy without sample pretreatment. This article describes the characteristic and classification of SERS, and updates the theory and clinical application of SERS. It also summarizes the present status and progress of SERS in various disciplines and illustrates the necessity and urgency of its research, which provides rationale for the application for SERS in microbiology.

  19. Approximate chemical analysis of volcanic glasses using Raman spectroscopy.

    PubMed

    Di Genova, Danilo; Morgavi, Daniele; Hess, Kai-Uwe; Neuville, Daniel R; Borovkov, Nikita; Perugini, Diego; Dingwell, Donald B

    2015-12-01

    The effect of chemical composition on the Raman spectra of a series of natural calcalkaline silicate glasses has been quantified by performing electron microprobe analyses and obtaining Raman spectra on glassy filaments (~450 µm) derived from a magma mingling experiment. The results provide a robust compositionally-dependent database for the Raman spectra of natural silicate glasses along the calcalkaline series. An empirical model based on both the acquired Raman spectra and an ideal mixing equation between calcalkaline basaltic and rhyolitic end-members is constructed enabling the estimation of the chemical composition and degree of polymerization of silicate glasses using Raman spectra. The model is relatively insensitive to acquisition conditions and has been validated using the MPI-DING geochemical standard glasses1 as well as further samples. The methods and model developed here offer several advantages compared with other analytical and spectroscopic methods such as infrared spectroscopy, X-ray fluorescence spectroscopy, electron and ion microprobe analyses, inasmuch as Raman spectroscopy can be performed with a high spatial resolution (1 µm(2)) without the need for any sample preparation as a nondestructive technique. This study represents an advance in efforts to provide the first database of Raman spectra for natural silicate glasses and yields a new approach for the treatment of Raman spectra, which allows us to extract approximate information about the chemical composition of natural silicate glasses using Raman spectroscopy. We anticipate its application in handheld in situ terrestrial field studies of silicate glasses under extreme conditions (e.g. extraterrestrial and submarine environments).

  20. Unspecific membrane protein-lipid recognition: combination of AFM imaging, force spectroscopy, DSC and FRET measurements.

    PubMed

    Borrell, Jordi H; Montero, M Teresa; Morros, Antoni; Domènech, Òscar

    2015-11-01

    In this work, we will describe in quantitative terms the unspecific recognition between lactose permease (LacY) of Escherichia coli, a polytopic model membrane protein, and one of the main components of the inner membrane of this bacterium. Supported lipid bilayers of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) (3:1, mol/mol) in the presence of Ca(2+) display lateral phase segregation that can be distinguished by atomic force microscopy (AFM) as well as force spectroscopy. LacY shows preference for fluid (Lα) phases when it is reconstituted in POPE : POPG (3:1, mol/mol) proteoliposomes at a lipid-to-protein ratio of 40. When the lipid-to-protein ratio is decreased down to 0.5, two domains can be distinguished by AFM. While the upper domain is formed by self-segregated units of LacY, the lower domain is constituted only by phospholipids in gel (Lβ) phase. On the one hand, classical differential scanning calorimetry (DSC) measurements evidenced the segregation of a population of phospholipids and point to the existence of a boundary region at the lipid-protein interface. On the other hand, Förster Resonance Energy Transfer (FRET) measurements in solution evidenced that POPE is selectively recognized by LacY. A binary pseudophase diagram of POPE : POPG built from AFM observations enables to calculate the composition of the fluid phase where LacY is inserted. These results are consistent with a model where POPE constitutes the main component of the lipid-LacY interface segregated from the fluid bulk phase where POPG predominates.

  1. Evaluation of thyroid tissue by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Teixeira, C. S. B.; Bitar, R. A.; Santos, A. B. O.; Kulcsar, M. A. V.; Friguglietti, C. U. M.; Martinho, H. S.; da Costa, R. B.; Martin, A. A.

    2010-02-01

    Thyroid gland is a small gland in the neck consisting of two lobes connected by an isthmus. Thyroid's main function is to produce the hormones thyroxine (T4), triiodothyronine (T3) and calcitonin. Thyroid disorders can disturb the production of these hormones, which will affect numerous processes within the body such as: regulating metabolism and increasing utilization of cholesterol, fats, proteins, and carbohydrates. The gland itself can also be injured; for example, neoplasias, which have been considered the most important, causing damage of to the gland and are difficult to diagnose. There are several types of thyroid cancer: Papillary, Follicular, Medullary, and Anaplastic. The occurrence rate, in general is between 4 and 7%; which is on the increase (30%), probably due to new technology that is able to find small thyroid cancers that may not have been found previously. The most common method used for thyroid diagnoses are: anamnesis, ultrasonography, and laboratory exams (Fine Needle Aspiration Biopsy- FNAB). However, the sensitivity of those test are rather poor, with a high rate of false-negative results, therefore there is an urgent need to develop new diagnostic techniques. Raman spectroscopy has been presented as a valuable tool for cancer diagnosis in many different tissues. In this work, 27 fragments of the thyroid were collected from 18 patients, comprising the following histologic groups: goitre adjacent tissue, goitre nodular tissue, follicular adenoma, follicular carcinoma, and papillary carcinoma. Spectral collection was done with a commercial FTRaman Spectrometer (Bruker RFS100/S) using a 1064 nm laser excitation and Ge detector. Principal Component Analysis, Cluster Analysis, and Linear Discriminant Analysis with cross-validation were applied as spectral classification algorithm. Comparing the goitre adjacent tissue with the goitre nodular region, an index of 58.3% of correct classification was obtained. Between goitre (nodular region and

  2. Surface Raman spectroscopy as a probe of surface chemistry

    NASA Astrophysics Data System (ADS)

    Child, Craig M.; Foster, Michelle; Ivanecky, J. E., III; Perry, Scott S.; Campion, Alan

    1995-09-01

    Unenhanced surface Raman spectroscopy has been used to study the chemistry of polymers adsorbed on solid surfaces and the chemical enhancement mechanism of surface-enhanced Raman scattering. The adsorption and reactions of the polyimide monomers pyromellitic dianhydride (PMDA) and oxydianiline on silver, copper and silicon surfaces under ultrahigh vacuum have been investigated. These include both nondissociative physisorption and dissociative chemisorption of the monomers, and the condensation polymerization to form adsorbed polyimide. The intermediate polyamic acid is detected for the first time in a surface experiment. PMDA adsorbed on Cu(111) shows chemical enhancement in the absence of electromagnetic enhancement. High resolution electron energy loss spectroscopy has revealed a strong charge transfer absorption near the Raman excitation frequency. This observation provides strong support for a proposed resonance Raman chemical enhancement mechanism.

  3. Histochemical analysis of biological tissues using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Manoharan, Ramasamy; Wang, Yang; Feld, Michael S.

    1996-02-01

    This paper reviews the application of the Raman spectroscopic technique for analysis of biological tissue. The advantages and disadvantages of visible, near-IR and UV excitations are described, and the problems and prospects of using these methodologies for disease diagnosis are addressed. In situ analysis of tissue proteins, lens, cornea, blood constituents, biological stones and several hard tissues is reviewed, and the potentials for diagnosing arterial disease, and cancer in gynecological tissues, soft tissues, breast, colon, bladder and brain are also presented. Recent technological advances in instrumentation allow the use of Raman spectroscopy for real time histochemical analysis of tissues. The capability of Raman microspectroscopy for providing spatial information about the distribution of biochemical constituents in tissues has been demonstrated. The work reviewed indicates the promise of Raman spectroscopy for endoscopic imaging and real-time quantitation of biochemical constituents in clinical situations.

  4. Developing fibre optic Raman probes for applications in clinical spectroscopy.

    PubMed

    Stevens, Oliver; Iping Petterson, Ingeborg E; Day, John C C; Stone, Nick

    2016-04-07

    Raman spectroscopy has been shown by various groups over the last two decades to have significant capability in discriminating disease states in bodily fluids, cells and tissues. Recent development in instrumentation, optics and manufacturing approaches has facilitated the design and demonstration of various novel in vivo probes, which have applicability for myriad of applications. This review focusses on key considerations and recommendations for application specific clinical Raman probe design and construction. Raman probes can be utilised as clinical tools able to provide rapid, non-invasive, real-time molecular analysis of disease specific changes in tissues. Clearly the target tissue location, the significance of spectral changes with disease and the possible access routes to the region of interest will vary for each clinical application considered. This review provides insight into design and construction considerations, including suitable probe designs and manufacturing materials compatible with Raman spectroscopy.

  5. Remote cure monitoring of polymeric resins by laser Raman spectroscopy

    SciTech Connect

    Hong, K.C.; Vess, T.M.; Lyon, R.E.; Myrick, M.L.

    1993-05-01

    The validity of using Raman spectroscopy to monitor the cure chemistries of amine-cured epoxy is demonstrated by correlating NIR absorbance measurements with Raman measurements for a concentration series of bisphenol-A diglycidylether in its own reaction product with diethylamine. The intensity of a normalized Raman peak at 1240 cm{sup {minus}l}, assigned to the epoxide functionality, was found to be linearly related to the concentration of epoxide groups in the resin mixtures. Also, it is shown that the Ciba-Geigy Matrimid 5292 system can be monitored by ex-situ FT-Raman spectroscopy by observing changes in the carbonyl stretching (1773 cm{sup {minus}1}) or the C=C stretching of maleimide (1587 cm{sup {minus}1}) during the cure reaction.

  6. Proximal and point detection of contaminated surfaces using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Guicheteau, Jason A.; Christesen, Steven D.; Tripathi, Ashish; Emmons, Erik D.; Wilcox, Phillip G.; Emge, Darren K.; Pardoe, Ian J.; Fountain, Augustus W., III

    2011-11-01

    We are actively investigating the use of Raman spectroscopy for proximal standoff detection of chemicals and explosive materials on surfaces. These studies include Raman Chemical Imaging of contaminated fingerprints for forensic attribution and the assessments of commercial handheld or portable Raman instruments operating with near-infrared (IR) as well as ultraviolet (UV) laser excitation specifically developed for on-the-move reconnaissance of chemical contamination. As part of these efforts, we have measured the Raman cross sections of chemical agents, toxic industrial chemicals, and explosives from the UV to NIR. We have also measured and modeled the effect interrogation angle has on the Raman return from droplets on man-made surfaces. Realistic droplet distributions have been modeled and tested against variations in surface scan patterns and laser spot size for determining the optimum scan characteristics for detection of relevant surface contamination.

  7. Monitoring the influence of antibiotic exposure using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Samek, Ota; Zemanek, Pavel; Bernatova, Silvie; Jezek, Jan; Sery, Mojmir; Jakl, Petr; Siler, Martin; Ruzicka, Filip

    2014-03-01

    Here we report on combination of the data obtained from MICs (minimum inhibitory concentrations) with infor- mation of microoragnisms fingerprint provided by Raman spectroscopy. In our feasibility study we could follow mechanisms of the bacteriostatic versus bactericidal action on biofilm-positive Staphylococcus epidermidis simply by monitoring Raman bands corresponding to DNA translating the changes introduced by selected antibiotics. The Raman spectra of Staphylococcus epidermidis treated with a bacteriostatic agent show little effect on DNA which is in contrast with the action of a bactericidal agent where decreased in dedicated Raman spectra signal strength suggests DNA fragmentation. Moreover, we demonstrate that Raman tweezers are indeed able to distinguish strains of biofilm-forming (biofilm-positive) and biofilm-negative Staphylococcus epidermidis strains using principal component analysis (PCA).

  8. Remote Raman spectroscopy for planetary exploration: a review.

    PubMed

    Angel, S Michael; Gomer, Nathaniel R; Sharma, Shiv K; McKay, Chris

    2012-02-01

    In this review, we discuss the current state of standoff Raman spectroscopy as it applies to remote planetary applications, including standoff instrumentation, the technique's ability to identify biologically and geologically important analytes, and the feasibility to make standoff Raman measurements under various planetary conditions. This is not intended to be an exhaustive review of standoff Raman and many excellent papers are not mentioned. Rather it is intended to give the reader a quick review of the types of standoff Raman systems that are being developed and that might be suitable for astrospectroscopy, a look at specific analytes that are of interest for planetary applications, planetary measurement opportunities and challenges that need to be solved, and a brief discussion of the feasibility of making surface and plume planetary Raman measurements from an orbiting spacecraft.

  9. Single Molecule Raman Spectroscopy Under High Pressure

    NASA Astrophysics Data System (ADS)

    Fu, Yuanxi; Dlott, Dana

    2014-06-01

    Pressure effects on surface-enhanced Raman scattering spectra of Rhdoamine 6G adsorbed on silver nanoparticle surfaces was studied using a confocal Raman microscope. Colloidal silver nanoparticles were treated with Rhodamine 6G (R6G) and its isotopically substituted partner, R6G-d4. Mixed isotopomers let us identify single-molecule spectra, since multiple-molecule spectra would show vibrational transitions from both species. The nanoparticles were embedded into a poly vinyl alcohol film, and loaded into a diamond anvil cell for the high-pressure Raman scattering measurement. Argon was the pressure medium. Ambient pressure Raman scattering spectra showed few single-molecule spectra. At moderately high pressure ( 1GPa), a surprising effect was observed. The number of sites with observable spectra decreased dramatically, and most of the spectra that could be observed were due to single molecules. The effects of high pressure suppressed the multiple-molecule Raman sites, leaving only the single-molecule sites to be observed.

  10. Single bacteria identification by Raman spectroscopy.

    PubMed

    Strola, Samy Andrea; Baritaux, Jean-Charles; Schultz, Emmanuelle; Simon, Anne Catherine; Allier, Cédric; Espagnon, Isabelle; Jary, Dorothée; Dinten, Jean-Marc

    2014-01-01

    We report on rapid identification of single bacteria using a low-cost, compact, Raman spectroscope. We demonstrate that a 60-s procedure is sufficient to acquire a comprehensive Raman spectrum in the range of 600 to 3300 cm⁻¹. This time includes localization of small bacteria aggregates, alignment on a single individual, and spontaneous Raman scattering signal collection. Fast localization of small bacteria aggregates, typically composed of less than a dozen individuals, is achieved by lensfree imaging over a large field of view of 24 mm². The lensfree image also allows precise alignment of a single bacteria with the probing beam without the need for a standard microscope. Raman scattered light from a 34-mW continuous laser at 532 nm was fed to a customized spectrometer (prototype Tornado Spectral Systems). Owing to the high light throughput of this spectrometer, integration times as low as 10 s were found acceptable. We have recorded a total of 1200 spectra over seven bacterial species. Using this database and an optimized preprocessing, classification rates of ~90% were obtained. The speed and sensitivity of our Raman spectrometer pave the way for high-throughput and nondestructive real-time bacteria identification assays. This compact and low-cost technology can benefit biomedical, clinical diagnostic, and environmental applications.

  11. Single bacteria identification by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Strola, Samy Andrea; Baritaux, Jean-Charles; Schultz, Emmanuelle; Simon, Anne Catherine; Allier, Cédric; Espagnon, Isabelle; Jary, Dorothée; Dinten, Jean-Marc

    2014-11-01

    We report on rapid identification of single bacteria using a low-cost, compact, Raman spectroscope. We demonstrate that a 60-s procedure is sufficient to acquire a comprehensive Raman spectrum in the range of 600 to 3300. This time includes localization of small bacteria aggregates, alignment on a single individual, and spontaneous Raman scattering signal collection. Fast localization of small bacteria aggregates, typically composed of less than a dozen individuals, is achieved by lensfree imaging over a large field of view of 24. The lensfree image also allows precise alignment of a single bacteria with the probing beam without the need for a standard microscope. Raman scattered light from a 34-mW continuous laser at 532 nm was fed to a customized spectrometer (prototype Tornado Spectral Systems). Owing to the high light throughput of this spectrometer, integration times as low as 10 s were found acceptable. We have recorded a total of 1200 spectra over seven bacterial species. Using this database and an optimized preprocessing, classification rates of ˜90% were obtained. The speed and sensitivity of our Raman spectrometer pave the way for high-throughput and nondestructive real-time bacteria identification assays. This compact and low-cost technology can benefit biomedical, clinical diagnostic, and environmental applications.

  12. Identification and discrimination of polycyclic aromatic hydrocarbons using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Cloutis, Edward; Szymanski, Paul; Applin, Daniel; Goltz, Douglas

    2016-08-01

    Polycyclic aromatic hydrocarbons (PAHs) are widely present throughout the Solar System and beyond. They have been implicated as a contributor to unidentified infrared emission bands in the interstellar medium, comprise a substantial portion of the insoluble organic matter in carbonaceous chondrites, are expected stable components of organic matter on Mars, and are present in a wide range of terrestrial hydrocarbons and as components of biomolecules. However, PAH structures can be very complicated, making their identification challenging. Raman spectroscopy is known to be especially sensitive to the highly polarizable C-C and C=C bonds found in PAHs, and therefore, can be a powerful tool for PAH structural and compositional elucidation. This study examined Raman spectra of 48 different PAHs to determine the degree to which Raman spectroscopy could be used to uniquely identify different species, factors that control the positions of major Raman peaks, the degree to which induced fluorescence affects the intensity of Raman peaks, its usefulness for PAH discrimination, and the effects of varying excitation wavelength on some PAH Raman spectra. It was found that the arrangement and composition of phenyl (benzene) rings, and the type and position of functional groups can greatly affect fluorescence, positions and intensities of Raman peaks associated with the PAH backbone, and the introduction of new Raman peaks. Among the functional groups found on many of the PAHs that were analyzed, only a few Raman peaks corresponding to the molecular vibrations of these groups could be clearly distinguished. Comparison of the PAH Raman spectra that were acquired with both 532 and 785 nm excitation found that the longer wavelength resulted in reduced fluorescence, consistent with previous studies.

  13. Raman spectroscopy of polyhedral carbon nano-onions

    NASA Astrophysics Data System (ADS)

    Codorniu Pujals, Daniel; Arias de Fuentes, Olimpia; Desdín García, Luis F.; Cazzanelli, Enzo; Caputi, Lorenzo S.

    2015-09-01

    The Raman spectra of polyhedral carbon nano-onions (PCO), obtained by underwater arc discharge of graphite electrodes, are studied. While the general Raman spectrum of PCO is very similar to those of other carbon nanostructures, including spherical nano-onions, the fine structure of the G and 2D bands gives valuable information that allows using Raman spectroscopy for differentiating the PCO from other carbon structures. The interpretation of the features of the fine structure of the spectra is supported by evidences obtained by TEM.

  14. Time-resolved Raman spectroscopy for in situ planetary mineralogy.

    PubMed

    Blacksberg, Jordana; Rossman, George R; Gleckler, Anthony

    2010-09-10

    Planetary mineralogy can be revealed through a variety of remote sensing and in situ investigations that precede any plans for eventual sample return. We briefly review those techniques and focus on the capabilities for on-surface in situ examination of Mars, Venus, the Moon, asteroids, and other bodies. Over the past decade, Raman spectroscopy has continued to develop as a prime candidate for the next generation of in situ planetary instruments, as it provides definitive structural and compositional information of minerals in their natural geological context. Traditional continuous-wave Raman spectroscopy using a green laser suffers from fluorescence interference, which can be large (sometimes saturating the detector), particularly in altered minerals, which are of the greatest geophysical interest. Taking advantage of the fact that fluorescence occurs at a later time than the instantaneous Raman signal, we have developed a time-resolved Raman spectrometer that uses a streak camera and pulsed miniature microchip laser to provide picosecond time resolution. Our ability to observe the complete time evolution of Raman and fluorescence spectra in minerals makes this technique ideal for exploration of diverse planetary environments, some of which are expected to contain strong, if not overwhelming, fluorescence signatures. We discuss performance capability and present time-resolved pulsed Raman spectra collected from several highly fluorescent and Mars-relevant minerals. In particular, we have found that conventional Raman spectra from fine grained clays, sulfates, and phosphates exhibited large fluorescent signatures, but high quality spectra could be obtained using our time-resolved approach.

  15. Power Budget Analysis for Waveguide-Enhanced Raman Spectroscopy.

    PubMed

    Wang, Zilong; Pearce, Stuart J; Lin, Yung-Chun; Zervas, Michalis N; Bartlett, Philip N; Wilkinson, James S

    2016-08-01

    Waveguide-enhanced Raman spectroscopy (WERS) is emerging as an attractive alternative to plasmonic surface-enhanced Raman spectroscopy approaches as it can provide more reproducible quantitative spectra on a robust chip without the need for nanostructured plasmonic materials. Realizing portable WERS systems with high sensitivity using low-cost laser diodes and compact spectrometers requires a detailed analysis of the power budget from laser to spectrometer chip. In this paper, we describe theoretical optimization of planar waveguides for maximum Raman excitation efficiency, demonstrate WERS for toluene on a silicon process compatible high index contrast tantalum pentoxide waveguide, measure the absolute conversion efficiency from pump power to received power in an individual Raman line, and compare this with a power budget analysis of the complete system including collection with an optical fiber and interfacing to a compact spectrometer. Optimized 110 nm thick Ta2O5 waveguides on silica substrates excited at a wavelength of 637 nm are shown experimentally to yield overall system power conversion efficiency of ∼0.5 × 10(-12) from the pump power in the waveguide to the collected Raman power in the 1002 cm(-1) Raman line of toluene, in comparison with a calculated efficiency of 3.9 × 10(-12) Collection efficiency is dictated by the numerical and physical apertures of the spectral detection system but may be improved by further engineering the spatial and angular Raman scattering distributions.

  16. Fiber-optic Raman Spectroscopy of Joint Tissues

    PubMed Central

    Esmonde-White, Karen A.; Esmonde-White, Francis W.L.; Morris, Michael D.

    2011-01-01

    In this study, we report adaptation of Raman spectroscopy for arthroscopy of joint tissues using a custom-built fiber optic probe. Differentiation of healthy and damaged tissue or examination of subsurface tissue, such as subchondral bone, is a challenge in arthroscopy because visual inspection may not provide sufficient contrast. Discrimination of healthy versus damaged tissue may be improved by incorporating point spectroscopy or hyperspectral imaging into arthroscopy where contrast is based on molecular structure or chemical composition. Articular joint surfaces of knee cadaveric human tissue and tissue phantoms were examined using a custom-designed Raman fiber optic probe. Fiber-optic Raman spectra were compared against reference spectra of cartilage, subchondral bone and cancellous bone collected using Raman microspectroscopy. In fiber-optic Raman spectra of the articular surface, there was an effect of cartilage thickness on recovery of signal from subchondral bone. At sites with intact cartilage, the bone mineralization ratio decreased but there was a minimal effect in the bone mineral chemistry ratios. Tissue phantoms were prepared as experimental models of the osteochondral interface. Raman spectra of tissue phantoms suggested that optical scattering of cartilage has a large effect on the relative cartilage and bone signal. Finite element analysis modeling of light fluence in the osteochondral interface confirmed experimental findings in human cadaveric tissue and tissue phantoms. These first studies demonstrate proof of principle for Raman arthroscopic measurement of joint tissues and provide a basis for future clinical or animal model studies. PMID:21359366

  17. The substrate matters in the Raman spectroscopy analysis of cells.

    PubMed

    Mikoliunaite, Lina; Rodriguez, Raul D; Sheremet, Evgeniya; Kolchuzhin, Vladimir; Mehner, Jan; Ramanavicius, Arunas; Zahn, Dietrich R T

    2015-08-27

    Raman spectroscopy is a powerful analytical method that allows deposited and/or immobilized cells to be evaluated without complex sample preparation or labeling. However, a main limitation of Raman spectroscopy in cell analysis is the extremely weak Raman intensity that results in low signal to noise ratios. Therefore, it is important to seize any opportunity that increases the intensity of the Raman signal and to understand whether and how the signal enhancement changes with respect to the substrate used. Our experimental results show clear differences in the spectroscopic response from cells on different surfaces. This result is partly due to the difference in spatial distribution of electric field at the substrate/cell interface as shown by numerical simulations. We found that the substrate also changes the spatial location of maximum field enhancement around the cells. Moreover, beyond conventional flat surfaces, we introduce an efficient nanostructured silver substrate that largely enhances the Raman signal intensity from a single yeast cell. This work contributes to the field of vibrational spectroscopy analysis by providing a fresh look at the significance of the substrate for Raman investigations in cell research.

  18. The substrate matters in the Raman spectroscopy analysis of cells

    PubMed Central

    Mikoliunaite, Lina; Rodriguez, Raul D.; Sheremet, Evgeniya; Kolchuzhin, Vladimir; Mehner, Jan; Ramanavicius, Arunas; Zahn, Dietrich R.T.

    2015-01-01

    Raman spectroscopy is a powerful analytical method that allows deposited and/or immobilized cells to be evaluated without complex sample preparation or labeling. However, a main limitation of Raman spectroscopy in cell analysis is the extremely weak Raman intensity that results in low signal to noise ratios. Therefore, it is important to seize any opportunity that increases the intensity of the Raman signal and to understand whether and how the signal enhancement changes with respect to the substrate used. Our experimental results show clear differences in the spectroscopic response from cells on different surfaces. This result is partly due to the difference in spatial distribution of electric field at the substrate/cell interface as shown by numerical simulations. We found that the substrate also changes the spatial location of maximum field enhancement around the cells. Moreover, beyond conventional flat surfaces, we introduce an efficient nanostructured silver substrate that largely enhances the Raman signal intensity from a single yeast cell. This work contributes to the field of vibrational spectroscopy analysis by providing a fresh look at the significance of the substrate for Raman investigations in cell research. PMID:26310910

  19. Potential of Raman and Infrared Spectroscopy for Plant Analysis

    NASA Astrophysics Data System (ADS)

    Schulz, H.

    2008-11-01

    Various mid-infrared (MIR) and Raman spectroscopic methods applied to the analysis of valuable plant substances or quality parameters in selected horticultural and agricultural crops are presented. Generally, both spectroscopy techniques allow to identify simultaneously characteristic key bands of individual plant components (e.g. carotenoids, alkaloids, polyacetylenes, fatty acids, amino acids, terpenoids). In contrast to MIR methods Raman spectroscopy mostly does not need any sample pre-treatment; even fresh plant material can be analysed without difficulty because water shows only weak Raman scattering properties. In some cases a significant sensivity enhancement of Raman signals can be achieved if the exciting laser wavelength is adjusted to the absorption range of particular plant chromophores such as carotenoids (Resonance Raman effect). Applying FT-IR or FT Raman micro-spectroscopy the distribution of certain plant constituents in the cell wall can be identified without the need for any physical separation. Furthermore it is also possible to analyse secondary metabolites occurring in the cell vacuoles if significant key bands do not coincide with the spectral background of the plant matrix.

  20. Raman spectroscopy of blood in-vitro

    NASA Astrophysics Data System (ADS)

    Villanueva-Luna, A. E.; Castro-Ramos, J.; Vazquez-Montiel, S.; Flores-Gil, A.; Ortiz-Lima, C. M.; Delgado-Atencio, J. A.

    2012-03-01

    We present Raman spectra from a sample of 8 volunteers that have different type of blood. The experimental data were carried out using a 785 nm excitation laser and an ocean optics spectrometer of 6 cm-1 resolution, with a used spectral region from 1000 to 1800 cm-1. We find Raman features at 1000 and 1542 cm-1 regarded with hemoglobin and its derivatives. Also we find Raman features at 1248 and 1342 cm-1 that are now regarded with pure fibrin. In this work, we use Principal Component analysis (PCA) to determine all variations of our samples, which allows us to define a classification of the influence of the blood type. Finally, we found vibrational lines of cholesterol, glucose and triglycerides that are reported in literature.

  1. Studies on structure and Raman spectroscopy of Ni-doped copper phthalocyanine thin films

    NASA Astrophysics Data System (ADS)

    Wang, XueYan; Zheng, JianBang; Qiao, Kai; Qu, JunRong; Cao, ChongDe

    2014-04-01

    Ni-doped copper phthalocyanine (CuPc) organic films with different mixing ratios were prepared in high vacuum (HV) chamber. The results of AFM, XRD, UV-vis and Raman spectroscopy indicated that the surface morphologies of the films were found to be flater and the structures of the CuPc films still kept their original α-phase crystal, with only the crystallinity or crystallite sizes being changed and the versatile structure or charge transport being modified with the increase of Ni-doping ratios. Moreover, 514 nm-visible-light-excited normal Raman spectra (NRS), 325 nm-ultraviolet-excited and 633 nm-excited resonance Raman spectra (RRS) were analyzed by comparison and by density functional theory (DFT) calculations of the amorphous nickel atoms clusters, confirming that there were no chemical changes between CuPc molecules and nickel atoms; and the amorphous nickel atoms clusters had a noticeable light absorption loss, offering us an insightful structural understanding of the Raman effect of the different concentrations of Ni-doped CuPc films.

  2. Characterization of oil-producing microalgae using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Samek, O.; Zemánek, P.; Jonáš, A.; Telle, H. H.

    2011-10-01

    Raman spectroscopy offers a powerful alternative analytical method for the detection and identification of lipids/oil in biological samples, such as algae and fish. Recent research in the authors' groups, and experimental data only very recently published by us and a few other groups suggest that Raman spectroscopy can be exploited in instances where fast and accurate determination of the iodine value (associated with the degree of lipid unsaturation) is required. Here the current status of Raman spectroscopy applications on algae is reviewed, and particular attention is given to the efforts of identifying and selecting oil-rich algal strains for the potential mass production of commercial biofuels and for utilization in the food industry.

  3. Two-dimensional Raman-terahertz spectroscopy of water

    PubMed Central

    Savolainen, Janne; Ahmed, Saima; Hamm, Peter

    2013-01-01

    Two-dimensional Raman-terahertz (THz) spectroscopy is presented as a multidimensional spectroscopy directly in the far-IR regime. The method is used to explore the dynamics of the collective intermolecular modes of liquid water at ambient temperatures that emerge from the hydrogen-bond networks water forming. Two-dimensional Raman-THz spectroscopy interrogates these modes twice and as such can elucidate couplings and inhomogeneities of the various degrees of freedoms. An echo in the 2D Raman-THz response is indeed identified, indicating that a heterogeneous distribution of hydrogen-bond networks exists, albeit only on a very short 100-fs timescale. This timescale appears to be too short to be compatible with more extended, persistent structures assumed within a two-state model of water. PMID:24297930

  4. Dengue blood analysis by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Rehman, A.; Anwar, S.; Firdous, S.; Ahmed, M.; Rasheed, R.; Nawaz, M.

    2012-06-01

    In this work Raman spectra of normal and dengue infected serum and whole blood were analyzed. In normal whole blood and serum characteristic peaks were observed when excited at 442 and 532 nm. In dengue whole blood and serum all peaks found to be blue shifted with reduced Raman intensity. Dengue whole blood and serum shows two peaks at 1614 and 1750 cm-1 which are due to presence of Immunoglobulin antibodies IgG and IgM. Whole study provides a route of information for diagnosis of dengue viral infection.

  5. Metallized Capillaries as Probes for Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Pelletier, Michael

    2003-01-01

    A class of miniature probes has been proposed to supplant the fiber-optic probes used heretofore in some Raman and fluorescence spectroscopic systems. A probe according to the proposal would include a capillary tube coated with metal on its inside to make it reflective. A microlens would be hermetically sealed onto one end of the tube. A spectroscopic probe head would contain a single such probe, which would both deliver laser light to a sample and collect Raman or fluorescent light emitted by the sample.

  6. Characterization of propellants under thermal stress by Raman Spectroscopy

    SciTech Connect

    Fell, N.F. Jr.; McNesby, K.L.

    1995-12-31

    Raman spectroscopy is used in the characterization of propellant temperatures. Both FT-Raman grains during exposure to elevate with NIR (1064 nm, Nd:YAG) excitation and a dispersive system with visible (514.5 nm, Ar+ laser) excitation are used and compared. Raman spectroscopy permits the in situ examination of propellants during the heating process. By looking at the Raman spectra of the various propellants as a function of temperature, it is possible to evaluate effects of binders and plasticizers on the thermal behavior of the propellants. Such information may be useful for estimating the effective shelf lives of propellants. The scattering intensity decreases as a function of temperature as a result of the loss in crystallinity of the principal component of the formulation as it is heated above its melting point. Since the gas-phase decomposition products are not observed and therefore do not interfere with the collection of the scattered emission from the condensed-phase products, Raman spectroscopy also allows the examination of only the condensed-phase decomposition products. This is a significant advantage over absorption spectroscopies, such as FTIR and UV-VIS absorption, which are sensitive to all of the components in the beam path. The use of visible wavelength excitation should prevent thermal damage to the sample observed with the NIR laser. A slight red shift of the features below 500 cm-1, especially in the feature at 150 cm-1, is observed. The peaks also broaden with increasing temperature, as would be expected.

  7. Characterization of uranium tetrafluoride (UF4) with Raman spectroscopy

    DOE PAGES

    Villa-Aleman, Eliel; Wellons, Matthew S.

    2016-03-22

    The Raman spectrum of uranium tetrafluoride (UF4) is unambiguously characterized with multiple Raman excitation laser sources for the first time. Across different laser excitation wavelengths, UF4 demonstrates 16 distinct Raman bands within the 50-400 cm-1 region. The observed Raman bands are representative of various F-F vibrational modes. UF4 also shows intense fluorescent bands in the 325 – 750 nm spectral region. Comparison of the UF4 spectrum with the ZrF4 spectrum, its crystalline analog, demonstrates a similar Raman band structure consistent with group theory predictions for expected Raman bands. Additionally, a demonstration of combined scanning electron microscopy (SEM) and in situmore » Raman spectroscopy microanalytical measurements of UF4 particulates shows that despite the inherent weak intensity of Raman bands, identification and characterization are possible for micron-sized particulates with modern instrumentation. The published well characterized UF4 spectrum is extremely relevant to nuclear materials and nuclear safeguard applications.« less

  8. Compact metal probes: a solution for atomic force microscopy based tip-enhanced Raman spectroscopy.

    PubMed

    Rodriguez, R D; Sheremet, E; Müller, S; Gordan, O D; Villabona, A; Schulze, S; Hietschold, M; Zahn, D R T

    2012-12-01

    There are many challenges in accomplishing tip-enhanced Raman spectroscopy (TERS) and obtaining a proper tip is probably the greatest one. Since tip size, composition, and geometry are the ultimate parameters that determine enhancement of intensity and lateral resolution, the tip becomes the most critical component in a TERS experiment. However, since the discovery of TERS the cantilevers used in atomic force microscopy (AFM) have remained basically the same: commercial silicon (or silicon nitride) tips covered by a metallic coating. The main issues of using metal-coated silicon cantilevers, such as wearing off of the metal layer or increased tip radius, can be completely overcome by using all-metal cantilevers. Until now in TERS experiments such probes have only been used in a scanning tunneling microscope or in a tuning fork-based shear force microscope but not in AFM. In this work for the first time, we show the use of compact silver cantilevers that are fully compatible with contact and tapping modes in AFM demonstrating their superb performance in TERS experiments.

  9. Raman spectroscopy of garnet-group minerals

    USGS Publications Warehouse

    Mingsheng, P.; Mao, Ho-kwang; Dien, L.; Chao, E.C.T.

    1994-01-01

    The Raman spectra of the natural end members of the garnet-group minerals, which include pyrope, almandine and spessarite of Fe-Al garnet series and grossularite, andradite and uvarovite of Ca-Fe garnet series, have been studied. Measured Raman spectra of these minerals are reasonably and qualitatively assigned to the internal modes, translational and rotatory modes of SiO4 tetrahedra, as well as the translational motion of bivalent cations in the X site. The stretch and rotatory Alg modes for the Fe-Al garnet series show obvious Raman shifts as compared with those for the Ca-Fe garnet series, owing to the cations residing in the X site connected with SiO4 tetrahedra by sharing the two edges. The Raman shifts of all members within either of the series are attributed mainly to the properties of cations in the X site for the Fe-Al garnet series and in the Y site for the Ca-Fe garnet series. ?? 1994 Institute of Geochemistry, Chinese Academy of Sciences.

  10. Interferometric background reduction for femtosecond stimulated Raman scattering loss spectroscopy.

    PubMed

    Dobner, Sven; Cleff, Carsten; Fallnich, Carsten; Groß, Petra

    2012-11-07

    We present a purely optical method for background suppression in nonlinear spectroscopy based on linear interferometry. Employing an unbalanced Sagnac interferometer, an unprecedented background reduction of 17  dB over a broad bandwidth of 60  THz (2000  cm(-1)) is achieved and its application to femtosecond stimulated Raman scattering loss spectroscopy is demonstrated. Apart from raising the signal-to-background ratio in the measurement of the Raman intensity spectrum, this interferometric method grants access to the spectral phase of the resonant χ(3) contribution. The spectral phase becomes apparent as a dispersive lineshape and is reproduced numerically with a simple oscillator model.

  11. Development and biological applications of optical tweezers and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Xie, Chang'an

    Optical tweezers is a three-dimensional manipulation tool that employs a gradient force that originates from the single highly focused laser beam. Raman spectroscopy is a molecular analytical tool that can give a highly unique "fingerprint" for each substance by measuring the unique vibrations of its molecules. The combination of these two optical techniques offers a new tool for the manipulation and identification of single biological cells and microscopic particles. In this thesis, we designed and implemented a Laser-Tweezers-Raman-Spectroscopy (LTRS) system, also called the Raman-tweezers, for the simultaneous capture and analysis of both biological particles and non-biological particles. We show that microparticles can be conveniently captured at the focus of a laser beam and the Raman spectra of trapped particles can be acquired with high quality. The LTRS system overcomes the intrinsic Brownian motion and cell motility of microparticles in solution and provides a promising tool for in situ identifying suspicious agents. In order to increase the signal to noise ratio, several schemes were employed in LTRS system to reduce the blank noise and the fluorescence signal coming from analytes and the surrounding background. These techniques include near-infrared excitation, optical levitation, confocal microscopy, and frequency-shifted Raman difference. The LTRS system has been applied for the study in cell biology at the single cell level. With the built Raman-tweezers system, we studied the dynamic physiological processes of single living cells, including cell cycle, the transcription and translation of recombinant protein in transgenic yeast cells and the T cell activation. We also studied cell damage and associated biochemical processes in optical traps, UV radiations, and evaluated heating by near-infrared Raman spectroscopy. These studies show that the Raman-tweezers system is feasible to provide rapid and reliable diagnosis of cellular disorders and can be

  12. Condition Assessment of Kevlar Composite Materials Using Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Washer, Glenn; Brooks, Thomas; Saulsberry, Regor

    2007-01-01

    This viewgraph presentation includes the following main concepts. Goal: To evaluate Raman spectroscopy as a potential NDE tool for the detection of stress rupture in Kevlar. Objective: Test a series of strand samples that have been aged under various conditions and evaluate differences and trends in the Raman response. Hypothesis: Reduction in strength associated with stress rupture may manifest from changes in the polymer at a molecular level. If so, than these changes may effect the vibrational characteristics of the material, and consequently the Raman spectra produced from the material. Problem Statement: Kevlar composite over-wrapped pressure vessels (COPVs) on the space shuttles are greater than 25 years old. Stress rupture phenomena is not well understood for COPVs. Other COPVs are planned for hydrogen-fueled vehicles using Carbon composite material. Raman spectroscopy is being explored as an non-destructive evaluation (NDE) technique to predict the onset of stress rupture in Kevlar composite materials. Test aged Kevlar strands to discover trends in the Raman response. Strength reduction in Kevlar polymer will manifest itself on the Raman spectra. Conclusions: Raman spectroscopy has shown relative changes in the intensity and FWHM of the 1613 cm(exp -1) peak. Reduction in relative intensity for creep, fleet leader, and SIM specimens compared to the virgin strands. Increase in FWHM has been observed for the creep and fleet leader specimens compared to the virgin strands. Changes in the Raman spectra may result from redistributing loads within the material due to the disruption of hydrogen bonding between crystallites or defects in the crystallites from aging the Kevlar strands. Peak shifting has not been observed to date. Analysis is ongoing. Stress measurements may provide a tool in the short term.

  13. Kerr-gated picosecond Raman spectroscopy and Raman photon migration of equine bone tissue with 400-nm excitation

    NASA Astrophysics Data System (ADS)

    Morris, Michael D.; Goodship, Allen E.; Draper, Edward R. C.; Matousek, Pavel; Towrie, Michael; Parker, Anthony W.

    2004-07-01

    We show that Raman spectroscopy with visible lasers, even in the deep blue is possible with time-gated Raman spectroscopy. A 4 picosec time gate allows efficient fluorescence rejection, up to 1000X, and provides almost background-free Raman spectra with low incident laser power. The technology enables spectroscopy with better than 10X higher scattering efficiency than is possible with the NIR (785 nm and 830 nm) lasers that are conventionally used. Raman photon migration is shown to allow depth penetration. We show for the first time that Kerr-gated Raman spectra of bone tissue with blue laser excitation enables both fluorescence rejection and depth penetration.

  14. Application of the Raman Spectroscopy to Identification of Titanomagnetites

    NASA Astrophysics Data System (ADS)

    Tatsumi-Petrochilos, L.; Gilder, S. A.; Zinin, P.; Hammer, J. E.; Fuller, M. D.

    2008-12-01

    The titanomagnetite-magnetite series serves as important magnetic carriers in paleomagnetic studies. Commonly Curie points are used to determine the composition of these magnetic phases. However, Curie points generally reflect bulk rock properties and do not provide insight for individual grains. Determination of individual Fe-Ti oxide grains can be done by petrography or with electron microprobe techniques. In contrast to these methods, which require special sample preparation, Raman spectroscopy can be done with minimal preparation. We have therefore investigated the Raman spectra for magnetite, TM20, TM40, and TM60, so that we can identify titanomagnetites with different Ti content in rocks. The samples were prepared following methods of Wanamaker and Moskovitz (1994). The Ti concentrations were verified by thermomagnetic analysis (Gilder and LeGoff, 2005). The Raman spectra were obtained with WITec Raman Confocal Microscope 200 using a green laser. Slight shifts and changes in relative intensities of the peaks at the characteristic wavelengths of the Raman spectra that correspond to different molecular vibrations were observed. These changes can serve to identify the composition of individual titanomagnetite grains. It also enables mapping of the variation of the composition within grains and the distribution of compositions of grains within a rock. We have applied the technique to synthetic Martian samples and found relatively uniform compositions between different grains. In contrast, variable oxide compositions are discerned using the Raman spectroscopy in natural basalts erupted from East Maui volcano.

  15. Vibrational characterization of pheomelanin and trichochrome F by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Galván, Ismael; Jorge, Alberto; Solano, Francisco; Wakamatsu, Kazumasa

    2013-06-01

    We characterize for the first time the vibrational state of natural pheomelanin using Raman spectroscopy and model pigment synthesized from 5-S-cysteinyldopa. The shape of the Raman spectrum was very different from that of eumelanin. Four Raman bands were visible in the 500-2000 cm-1 wavenumber region about 500, 1150, 1490 and 2000 cm-1, which we assigned to the out-of-plane deformation and the stretching vibration of the phenyl rings, to the stretching vibration of C-N bonds or the stretching and wagging vibration of CH2, and to overtone or combination bands. Interestingly, we also show that the Raman spectrum of synthetic trichochrome F, a pigment that may be produced along with pheomelanin during pheomelanogenesis, is different from that of pheomelanin and similar to the spectrum of eumelanin. We could detect Raman signal of both eumelanin and pheomelanin in feathers and hairs where both pigments simultaneously occur without the need of isolating the pigment. This indicates that Raman spectroscopy represents a non-invasive method to detect pheomelanin and distinguish it from other pigments. This may be especially relevant to detect pheomelanin in animal skin including humans, where it has been associated with animal appearance and classification, human phototypes, prevention of skin diseases and cancer risk.

  16. [Study on the treatment turquoise using Raman spectroscopy].

    PubMed

    Chen, Quan-li; Yuan, Xin-qiang; Chen, Jing-zhong; Qi, Li-jian

    2010-07-01

    Due to a variety of the enhancement and treatment turquoises discovered in gem markets, the identification of turquoise is becoming more and more difficult. By using laser Raman spectroscopy analysis, the characteristics of Raman spectra of the pressed and filled turquoises were studied. The results show that laser Raman spectroscopy is an effective technique to identify the enhancement and treatment turquoises and the natural ones, moreover, it's a non-destructive testing method. The Raman spectra of the enhancement and treatment turquoises are resulted mainly from the vibrational mode and frequency of water, hydroxyl units, PO4 tetrahedron and CH2 units. Besides, they have the characteristic Raman spectra peaks at 2,937, 2,883 and 1,451 cm(-1) which are attributed to the stretching vibration and the bending vibration of CH2, respectively. These characteristic Raman vibration bands, it will help to distinguish the natural turquoises and the treatment ones. The study provides a new train of thought on the rapid, accurate, and non-destructive identification of turquoise.

  17. Raman Spectroscopy Study of Prostatic Adenocarcinoma Bulk Tissues

    NASA Astrophysics Data System (ADS)

    Devpura, S.; Dai, H.; Thakur, J. S.; Naik, R.; Cao, A.; Pandya, A.; Auner, G. W.; Sarkar, F.; Sakr, W.; Naik, V.

    2009-03-01

    Prostate cancer is one of the most common types of cancer among men. The mortality rate for this disease can be dramatically reduced if it can be diagnosed in its early stages. Raman spectroscopy is one of the optical techniques which can provide fingerprints of a disease in terms of its molecular composition which changes due to the onset of disease. The aim of this project is to investigate the differences in the Raman spectra to identify benign epithelium (BE), prostatic intraepithelial neoplasia (PIN) and adenocarcinoma of various Gleason grades in archived bulk tissues embedded in paraffin wax. For each tissue, two adjacent tissue sections were cut and dewaxed, where one of the sections was stained using haematoxylin and eosin for histological examination and the other unstained adjacent section was used for Raman spectroscopic studies. We have collected Raman spectra from 10 prostatic adenocarcinoma dewaxed tissue sections using Raman microscope (785 nm excitation laser). The data were analyzed using statistical methods of principal component analysis and discriminant function analysis to classify the tissue regions. The results indicate that Raman Spectroscopy can differentiate between BE, PIN and Cancer regions.

  18. Resonance Raman spectroscopy in twisted bilayer graphene

    NASA Astrophysics Data System (ADS)

    Righi, A.; Venezuela, P.; Chacham, H.; Costa, S. D.; Fantini, C.; Ruoff, R. S.; Colombo, L.; Bacsa, W. S.; Pimenta, M. A.

    2013-12-01

    In this work we study the Raman spectra of twisted bilayer graphene samples, with different twisting angles, by changing the incident laser energy between 2.54 and 4.14 eV. The spectra exhibit a number of extra peaks, classified in different families, each one associated with bilayer graphenes with different twisting rotational angles. We theoretically analyze the laser energy dependence of these extra peaks considering a set of discrete wavevectors within the interior of the Brillouin zone of graphene, which activate special double-resonance Raman processes. Our result show a nice qualitative agreement between the experimental and simulated spectra, demonstrating that these extra peaks are indeed ascribed to an umklapp double-resonance process in graphene systems.

  19. Raman spectroscopy for bacterial identification and characterization

    NASA Astrophysics Data System (ADS)

    Bernatová, Silvie; Samek, Ota; Pilát, Zdeněk.; Šerý, Mojmír.; Ježek, Jan; Krzyžánek, Vladislav; Zemánek, Pavel; Ružička, Filip

    2012-01-01

    The main goal of our investigation is to use Raman tweezers technique so that the responce of Raman scattering on microorganisms suspended in liquid media (bacteria, algae and yeast cells in microfluidic chips) can be used to identify different species. The investigations presented here include identification of different bacteria strains (biofilm-positive and biofilm-negative) and yeast cells by using principal component analysis (PCA). The main driving force behind our investigation was a common problem in the clinical microbiology laboratory - how to distinguish between contaminant and invasive isolates. Invasive bacterial/yeast isolates can be assumed to form a biofilm, while isolates which do not form a biofilm can be treated as contaminant. Thus, the latter do not represent an important virulence factor.

  20. Raman spectroscopy: Caution when interpreting organic carbon from oxidising environments

    NASA Astrophysics Data System (ADS)

    Brolly, Connor; Parnell, John; Bowden, Stephen

    2016-02-01

    Oxidation on Mars is primarily caused by the high influx of cosmic and solar radiation which interacts with the Martian surface. The evidence of this can be seen in the ubiquitous red colouration of the Martian sediment. This radiation will destroy most signals of life in the top few metres of the Martian surface. If organic carbon (one of the building blocks of life) is present within the accessible Martian sediments, it is very likely that it will have experienced some oxidation. ESA's ExoMars mission set to fly in 2018, has on board a miniaturised Raman spectrometer. As Raman spectroscopy is sensitive to carbonaceous material and will be primarily used to characterise organics, it is essential that the effect oxidation has on the Raman carbon signal is assessed. Oxidised carbonaceous shales were analysed using Raman spectroscopy to assess this issue. Results show that haematite has a band which occurs in the same frequency as the carbon D band, which cannot be distinguished from each other. This can lead to a misidentification of the carbon D band and a misinterpretation of the carbon order. Consequently, caution must be taken when applying Raman spectroscopy for organic carbon analysis in oxidised terrestrial and extraterrestrial environments, including on Mars.

  1. Remote temperature monitoring in ocular tissue using confocal Raman spectroscopy.

    PubMed

    Bauer, Noel J C; Motamedi, Massoud; Hendrikse, Fred; Wicksted, James P

    2005-01-01

    We demonstrated the feasibility of Raman spectroscopy for remote temperature monitoring within the aqueous humor of the rabbit eye in vivo. Using a confocal Raman spectroscopy system, Raman spectra from 2580 to 3800 cm(-1) were recorded in HPLC-grade water and in the aqueous humor of the rabbit eye under in vivo and ex vivo conditions within a temperature range of 14-34 degrees C. The ratio between the integrated Raman intensities of two temperature dependent OH-vibrational regions (OH2/OH1) in the spectra of water showed high linear dependence on temperature both in pure water [0.0049(+/-1.2%)T+0.4522(+/-0.5%), R2=0.99, n=50, p<0.05], as well as in the rabbit aqueous humor [0.0036(+/-2.8%)T+0.4966(+/-0.6%), R2=0.98, n=162, p<0.05] with a high degree of reproducibility and sensitivity ( approximately 0.2-0.7 degrees C). Raman spectroscopy can be used for high resolution and remote monitoring of temperature in the aqueous humor under in vivo conditions.

  2. Probing Nanoscale Ferroelectricity by Ultraviolet Raman Spectroscopy

    DTIC Science & Technology

    2006-09-15

    gap materials because the visible photon energy is much smaller than the band gap (10). Consequently, the absorption is extremely weak and the...UV ex- citation, the photon energy is above the band gaps of ferroelectrics, leading to a much stronger absorption and a shorter penetration depth...preventing light from entering the substrate. UV excitation near the band gap also leads to strong resonance enhancement of Raman sig- nals. This is

  3. Raman spectroscopy and oral exfoliative cytology

    NASA Astrophysics Data System (ADS)

    Sahu, Aditi; Shah, Nupur; Mahimkar, Manoj; Garud, Mandavi; Pagare, Sandeep; Nair, Sudhir; Krishna, C. Murali

    2014-03-01

    Early detection of oral cancers can substantially improve disease-free survival rates. Ex vivo and in vivo Raman spectroscopic (RS) studies on oral cancer have demonstrated the applicability of RS in identifying not only malignant and premalignant conditions but also cancer-field-effects: the earliest events in oral carcinogenesis. RS has also been explored for cervical exfoliated cells analysis. Exfoliated cells are associated with several advantages like non-invasive sampling, higher patient compliance, transportation and analysis at a central facility: obviating need for on-site instrumentation. Thus, oral exfoliative cytology coupled with RS may serve as a useful adjunct for oral cancer screening. In this study, exfoliated cells from healthy controls with and without tobacco habits, premalignant lesions (leukoplakia and tobacco-pouch-keratosis) and their contralateral mucosa were collected using a Cytobrush. Cells were harvested by vortexing and centrifugation at 6000 rpm. The cellular yield was ascertained using Neubauer's chamber. Cell pellets were placed on a CaF2 window and Raman spectra were acquired using a Raman microprobe (40X objective) coupled HE-785 Raman spectrometer. Approximately 7 spectra were recorded from each pellet, following which pellet was smeared onto a glass slide, fixed in 95% ethanol and subjected to Pap staining for cytological diagnosis (gold standard). Preliminary PC-LDA followed by leave-one-out cross validation indicate delineation of cells from healthy and all pathological conditions. A tendency of classification was also seen between cells from contralateral, healthy tobacco and site of premalignant lesions. These results will be validated by cytological findings, which will serve as the basis for building standard models of each condition.

  4. Combined coherent anti-Stokes Raman spectroscopy and linear Raman spectroscopy for simultaneous temperature and multiple species measurements.

    PubMed

    Weikl, Markus C; Beyrau, Frank; Kiefer, Johannes; Seeger, Thomas; Leipertz, Alfred

    2006-06-15

    The simultaneous application of pure rotational coherent anti-Stokes Raman spectroscopy (CARS) and vibrational linear Raman spectroscopy (LRS) for the measurement of temperature and species concentrations in combustion systems is demonstrated. In addition to the standard rotational CARS experimental setup, only one detection system (spectrometer and intensified CCD camera) for the collection of the LRS signals was applied. The emission of the broadband dye laser used for CARS was shifted to the deep red to avoid interferences with the LRS signals located in the visible region. First experimental results from a vaporizing propane spray using an engine injection system are shown.

  5. X-ray resonant Raman spectroscopy

    SciTech Connect

    Cowan, P.L.; LeBrun, T.; Deslattes, R.D.

    1995-08-01

    X-ray resonant Raman scattering presents great promise as a high-resolution spectroscopic probe of the electronic structure of matter. Unlike other methods, the technique avoids the loss of energy resolution resulting from the lifetime broadening of short-lived core-excited states. In addition, measurements of polarization and angular anisotropies yield information on the symmetries of electronic states of atoms and molecules. We studied the L{sub 3} edge of xenon, where the lifetime broadening is a major feature of the spectra recorded previously. X-ray fluorescence spectra were taken of both the L{alpha}{sub l,2} and L{beta}{sub 2,15} peaks over a range of energies from 10 eV below the edge to 40 eV above. These spectra show the evolution of resonant Raman scattering into characteristic fluorescence as the photon energy is scanned across the edge, and confirm several features of these spectra such as asymmetries in resonant peak shapes due to the onset of the ionization continuum. These results constitute the most comprehensive study of X-ray resonant Raman scattering to date, and were submitted for publication. Studies of other cases are under way, and new instruments that would match the unique characteristics of the APS - and thus render a new range of experiments possible - are under consideration.

  6. Gradient temperature Raman spectroscopy identifies flexible sites in proline and alanine peptides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Continuous thermo dynamic Raman spectroscopy (TDRS) applies the temperature gradients utilized in differential scanning calorimetry (DSC) to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements that occur just prior to phase transitions. Herein we apply TDRS...

  7. Remote sensing of subsurface water temperature by laser Raman spectroscopy

    NASA Technical Reports Server (NTRS)

    Leonard, D. A.; Caputo, B.; Guagliardo, J. L.; Hoge, F. E.

    1980-01-01

    This paper describes experimental remote sensing of subsurface water temperature using the Raman spectroscopic technique. By the use of a pulsed laser and range gating detection techniques, Raman scattering is analyzed as a function of depth in a radar-like echo mode, and thus subsurface profiles of temperature and transmission are obtained. Experiments are described in which Raman data using polarization spectroscopy has been obtained from a ship as a function of depth in ocean water near Grand Bahama Island. A spectral temperature accuracy of + or - 1 C has been obtained from this data in the first two optical attenuation lengths. Raman data obtained from ocean water using the NASA airborne oceanographic lidar is also presented.

  8. Tip Enhanced Raman Spectroscopy and Imaging: an Apical Illumination Geometry

    PubMed Central

    Schultz, Zachary D.; Stranick, Stephan J.; Levin, Ira W.

    2009-01-01

    Results are presented illustrating the use of tip enhanced Raman spectroscopy and imaging in a top-illumination geometry. A radially polarized beam is used to generate an electric field component in the direction of beam propagation, normal to the surface, resulting in a 5× increased enhancement compared to a linearly polarized beam. This multiplicative enhancement facilitates a discrimination of the near field signal from the far field Raman background. The top illumination configuration facilitates the application of TERS for investigating molecules on a variety of surfaces, such as Au, glass, and Si. The near field Raman spectrum is presented of Si(100), rhodamine B, brilliant cresyl blue, and single wall carbon nanotubes. Sufficient enhancement is obtained to permit a sub-diffraction limited resolution Raman imaging of the surface distribution of large bundles of carbon nanotubes of various diameters. PMID:19007457

  9. Optimal algorithm for fluorescence suppression of modulated Raman spectroscopy.

    PubMed

    Mazilu, Michael; De Luca, Anna Chiara; Riches, Andrew; Herrington, C Simon; Dholakia, Kishan

    2010-05-24

    Raman spectroscopy permits probing of the molecular and chemical properties of the analyzed sample. However, its applicability has been seriously limited to specific applications by the presence of a strong fluorescence background. In our recent paper [Anal. Chem. 82, 738 (2010)], we reported a new modulation method for separating Raman scattering from fluorescence. By continuously changing the excitation wavelength, we demonstrated that it is possible to continuously shift the Raman peaks while the fluorescence background remains essentially constant. In this way, our method allows separation of the modulated Raman peaks from the static fluorescence background with important advantages when compared to previous work using only two [Appl. Spectrosc. 46, 707 (1992)] or a few shifted excitation wavelengths [Opt. Express 16, 10975 (2008)]. The purpose of the present work is to demonstrate a significant improvement of the efficacy of the modulated method by using different processing algorithms. The merits of each algorithm (Standard Deviation analysis, Fourier Filtering, Least-Squares fitting and Principal Component Analysis) are discussed and the dependence of the modulated Raman signal on several parameters, such as the amplitude and the modulation rate of the Raman excitation wavelength, is analyzed. The results of both simulation and experimental data demonstrate that Principal Component Analysis is the best processing algorithm. It improves the signal-to-noise ratio in the treated Raman spectra, reducing required acquisition times. Additionally, this approach does not require any synchronization procedure, reduces user intervention and renders it suitable for real-time applications.

  10. Fluorescence suppression using micro-scale spatially offset Raman spectroscopy.

    PubMed

    Conti, Claudia; Botteon, Alessandra; Colombo, Chiara; Realini, Marco; Matousek, Pavel

    2016-09-21

    We present a new concept of fluorescence suppression in Raman microscopy based on micro-spatially offset Raman spectroscopy which is applicable to thin stratified turbid (diffusely scattering) matrices permitting the retrieval of the Raman signals of sublayers below intensely fluorescing turbid over-layers. The method is demonstrated to yield good quality Raman spectra with dramatically suppressed fluorescence backgrounds enabling the retrieval of Raman sublayer signals even in situations where conventional Raman microscopy spectra are fully overwhelmed by intense fluorescence. The concept performance was studied theoretically using Monte Carlo simulations indicating the potential of up to an order or two of magnitude suppression of overlayer fluorescence backgrounds relative to the Raman sublayer signals. The technique applicability was conceptually demonstrated on layered samples involving paints, polymers and stones yielding fluorescence suppression factors between 12 to above 430. The technique has potential applications in a number of analytical areas including cultural heritage, archaeology, polymers, food, pharmaceutical, biological, biomedical, forensics and catalytic sciences and quality control in manufacture.

  11. RAMAN spectroscopy imaging improves the diagnosis of papillary thyroid carcinoma

    NASA Astrophysics Data System (ADS)

    Rau, Julietta V.; Graziani, Valerio; Fosca, Marco; Taffon, Chiara; Rocchia, Massimiliano; Crucitti, Pierfilippo; Pozzilli, Paolo; Onetti Muda, Andrea; Caricato, Marco; Crescenzi, Anna

    2016-10-01

    Recent investigations strongly suggest that Raman spectroscopy (RS) can be used as a clinical tool in cancer diagnosis to improve diagnostic accuracy. In this study, we evaluated the efficiency of Raman imaging microscopy to discriminate between healthy and neoplastic thyroid tissue, by analyzing main variants of Papillary Thyroid Carcinoma (PTC), the most common type of thyroid cancer. We performed Raman imaging of large tissue areas (from 100 × 100 μm2 up to 1 × 1 mm2), collecting 38 maps containing about 9000 Raman spectra. Multivariate statistical methods, including Linear Discriminant Analysis (LDA), were applied to translate Raman spectra differences between healthy and PTC tissues into diagnostically useful information for a reliable tissue classification. Our study is the first demonstration of specific biochemical features of the PTC profile, characterized by significant presence of carotenoids with respect to the healthy tissue. Moreover, this is the first evidence of Raman spectra differentiation between classical and follicular variant of PTC, discriminated by LDA with high efficiency. The combined histological and Raman microscopy analyses allow clear-cut integration of morphological and biochemical observations, with dramatic improvement of efficiency and reliability in the differential diagnosis of neoplastic thyroid nodules, paving the way to integrative findings for tumorigenesis and novel therapeutic strategies.

  12. RAMAN spectroscopy imaging improves the diagnosis of papillary thyroid carcinoma

    PubMed Central

    Rau, Julietta V.; Graziani, Valerio; Fosca, Marco; Taffon, Chiara; Rocchia, Massimiliano; Crucitti, Pierfilippo; Pozzilli, Paolo; Onetti Muda, Andrea; Caricato, Marco; Crescenzi, Anna

    2016-01-01

    Recent investigations strongly suggest that Raman spectroscopy (RS) can be used as a clinical tool in cancer diagnosis to improve diagnostic accuracy. In this study, we evaluated the efficiency of Raman imaging microscopy to discriminate between healthy and neoplastic thyroid tissue, by analyzing main variants of Papillary Thyroid Carcinoma (PTC), the most common type of thyroid cancer. We performed Raman imaging of large tissue areas (from 100 × 100 μm2 up to 1 × 1 mm2), collecting 38 maps containing about 9000 Raman spectra. Multivariate statistical methods, including Linear Discriminant Analysis (LDA), were applied to translate Raman spectra differences between healthy and PTC tissues into diagnostically useful information for a reliable tissue classification. Our study is the first demonstration of specific biochemical features of the PTC profile, characterized by significant presence of carotenoids with respect to the healthy tissue. Moreover, this is the first evidence of Raman spectra differentiation between classical and follicular variant of PTC, discriminated by LDA with high efficiency. The combined histological and Raman microscopy analyses allow clear-cut integration of morphological and biochemical observations, with dramatic improvement of efficiency and reliability in the differential diagnosis of neoplastic thyroid nodules, paving the way to integrative findings for tumorigenesis and novel therapeutic strategies. PMID:27725756

  13. Low wavenumber Raman spectroscopy using atomic filters (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Xue, Xiaobo; Janisch, Corey; Chen, Yizhu; Liu, Zhiwen; Chen, Jingbiao

    2016-10-01

    Low-wavenumber Raman spectroscopy has long been demonstrated as a method of optical characterization in a variety of applications, such as thermal detection and semiconductor analysis. However, accessing low-wavenumber Raman shifts remains a challenge, usually requiring an expensive and complex multi-stage spectrographic system to measure several cm-1 Raman shifts. In this work, we demonstrate a method to measure low-wavenumber Raman shifts down to 1 cm-1 using atomic filters. By using a narrow-band Faraday anomalous dispersion optical filter to remove spontaneous emission noise from the laser cavity and a heated atomic cell as a notch filter to remove the excitation laser, the system is able to measure low Raman shifts (down to 1 cm-1). To demonstrate the capabilities, we measure the broadband Raman spectrum from a silica optical fiber with approximately 0.3 cm-1 resolution, detecting both Stokes and Anti-Stokes Raman shift as low as 0.7 cm-1.

  14. THz-Raman spectroscopy for explosives, chemical, and biological detection

    NASA Astrophysics Data System (ADS)

    Carriere, James T. A.; Havermeyer, Frank; Heyler, Randy A.

    2013-05-01

    Raman and Terahertz spectroscopy are both widely used for their ability to safely and remotely identify unknown materials. Each approach has its advantages and disadvantages. Traditional Raman spectroscopy typically measures molecular energy transitions in the 200-5000cm-1 region corresponding to sub-molecular stretching or bending transitions, while Terahertz spectroscopy measures molecular energy transitions in the 1-200cm-1 region (30GHz - 6THz) that correspond to low energy rotational modes or vibrational modes of the entire molecule. Many difficult to detect explosives and other hazardous chemicals are known to have multiple relatively strong transitions in this "Terahertz" (<200cm-1, <6THz) regime, suggesting this method as a powerful complementary approach for identification. However, THz signal generation is often expensive, many THz spectroscopy systems are limited to just a few THz range, and strong water absorption bands in this region can act to mask certain transitions if great care isn't taken during sample preparation. Alternatively, low-frequency or "THz-Raman" spectroscopy, which covers the ~5cm-1 to 200cm-1 (150GHz - 6 THz) regions and beyond, offers a powerful, compact and economical alternative to probe these low energy transitions. We present results from a new approach for extending the range of Raman spectroscopy into the Terahertz regime using an ultra-narrow-band volume holographic grating (VHG) based notch filter system. An integrated, compact Raman system is demonstrated utilizing a single stage spectrometer to show both Stokes and anti-Stokes measurements down to <10cm-1 on traditionally difficult to detect explosives, as well as other chemical and biological samples.

  15. Novel microfluidic devices for Raman spectroscopy and optical trapping

    NASA Astrophysics Data System (ADS)

    Ottevaere, Heidi; Liu, Qing; de Coster, Diane; Van Erps, Jürgen; Vervaeke, Michael; Thienpont, Hugo

    2016-09-01

    Traditionally, Raman spectroscopy is done in a specialized lab, with considerable requirements in terms of equipment, time and manual sampling of substances of interest. We present the modeling, the design and the fabrication process of a microfluidic device incorporation Raman spectroscopy, from which one enables confocal Raman measurements on-chip. The latter is fabricated using ultra precision diamond tooling and is tested in a proof-of-concept setup, by for example measuring Raman spectra of urea solutions with various concentrations. If one wants to analyze single cells instead of a sample solution, precautions need to be taken. Since Raman scattering is a weak process, the molecular fingerprint of flowing particles would be hard to measure. One method is to stably position the cell under test in the detection area during acquisition of the Raman scattering such that the acquisition time can be increased. Positioning of cells can be done through optical trapping and leads to an enhanced signal-to-noise ratio and thus a more reliable cell identification. Like Raman spectroscopy, optical trapping can also be miniaturized. We present the modeling, design process and fabrication of a mass-manufacturable polymer microfluidic device for dual fiber optical trapping using two counterpropagating singlemode beams. We use a novel fabrication process that consists of a premilling step and ultraprecision diamond tooling for the manufacturing of the molds and double-sided hot embossing for replication, resulting in a robust microfluidic chip for optical trapping. In a proof-of-concept demonstration, we characterize the trapping capabilities of the hot embossed chip.

  16. Raman-spectroscopy-based biosensing for applications in ophthalmology

    NASA Astrophysics Data System (ADS)

    Rusciano, Giulia; Capriglione, Paola; Pesce, Giuseppe; Zito, Gianluigi; Del Prete, Antonio; Cennamo, Giovanni; Sasso, Antonio

    2013-05-01

    Cell-based biosensors rely on the detection and identification of single cells as well as monitoring of changes induced by interaction with drugs and/or toxic agents. Raman spectroscopy is a powerful tool to reach this goal, being non-destructive analytical technique, allowing also measurements of samples in aqueous environment. In addition, micro-Raman measurements do not require preliminary sample preparation (as in fluorescence spectroscopy), show a finger-print spectral response, allow a spatial resolution below typical cell sizes, and are relatively fast (few s or even less). All these properties make micro-Raman technique particularly promising for high-throughput on-line analysis integrated in lab-on-a-chip devices. Herein, we demonstrate some applications of Raman analysis in ophthalmology. In particular, we demonstrate that Raman analysis can provide useful information for the therapeutic treatment of keratitis caused by Acanthamoeba Castellanii (A.), an opportunistic protozoan that is widely distributed in the environment and is known to produce blinding keratitis and fatal encephalitis. In particular, by combining Raman analysis with Principal Component Analysis (PCA), we have demonstrated that is possible to distinguish between live and dead cells, enabling, therefore to establish the effectiveness of therapeutic strategies to vanquish the protozoa. As final step, we have analyzed the presence of biochemical differences in the conjunctival epithelial tissues of patients affected by keratitis with respect to healthy people. As a matter of facts, it is possible to speculate some biochemical alterations of the epithelial tissues, rendering more favorable the binding of the protozoan. The epithelial cells were obtained by impression cytology from eyes of both healthy and keratitis-affected individuals. All the samples were analyzed by Raman spectroscopy within a few hours from cells removal from eyes. The results of this analysis are discussed.

  17. Cone penetrometer fiber optic raman spectroscopy probe assembly

    DOEpatents

    Kyle, Kevin R.; Brown, Steven B.

    2000-01-01

    A chemically and mechanically robust optical Raman spectroscopy probe assembly that can be incorporated in a cone penetrometer (CPT) for subsurface deployment. This assembly consists of an optical Raman probe and a penetrometer compatible optical probe housing. The probe is intended for in-situ chemical analysis of chemical constituents in the surrounding environment. The probe is optically linked via fiber optics to the light source and the detection system at the surface. A built-in broadband light source provides a strobe method for direct measurement of sample optical density. A mechanically stable sapphire window is sealed directly into the side-wall of the housing using a metallic, chemically resistant, hermetic seal design. This window permits transmission of the interrogation light beam and the resultant signal. The spectroscopy probe assembly is capable of accepting Raman, Laser induced Fluorescence, reflectance, and other optical probes with collimated output for CPT deployment.

  18. Noninvasive detection of filaggrin gene mutations using Raman spectroscopy

    PubMed Central

    González, Francisco J.; Valdes-Rodríguez, Rodrigo; Ramírez-Elías, Miguel G.; Castillo-Martínez, Claudio; Saavedra-Alanis, Victor M.; Moncada, Benjamín

    2011-01-01

    Knowledge of the existence of filaggrin (FLG) gene mutations might be helpful for a subclassification of patients with atopic dermatitis (AD) which can be used to introduce individualized treatments. In this work the filaggrin content in the skin is assessed using Raman spectroscopy and the results are compared to FLG genotyping of Mexican-mestizo patients. Results showed that the 2282del4 and R501X mutations present in the European population but absent in people of Asian or African descent are also present in the Mexican-mestizo population. The results also showed that patients with filaggrin gene mutations presented lower filaggrin concentrations measured using the vector correlation of their skin Raman spectra and a fixed spectrum of pure human recombinant filaggrin, these results indicate that Raman spectroscopy may be used as a noninvasive tool to detect FLG gene mutations. PMID:22162825

  19. Noninvasive detection of filaggrin gene mutations using Raman spectroscopy.

    PubMed

    González, Francisco J; Valdes-Rodríguez, Rodrigo; Ramírez-Elías, Miguel G; Castillo-Martínez, Claudio; Saavedra-Alanis, Victor M; Moncada, Benjamín

    2011-12-01

    Knowledge of the existence of filaggrin (FLG) gene mutations might be helpful for a subclassification of patients with atopic dermatitis (AD) which can be used to introduce individualized treatments. In this work the filaggrin content in the skin is assessed using Raman spectroscopy and the results are compared to FLG genotyping of Mexican-mestizo patients. Results showed that the 2282del4 and R501X mutations present in the European population but absent in people of Asian or African descent are also present in the Mexican-mestizo population. The results also showed that patients with filaggrin gene mutations presented lower filaggrin concentrations measured using the vector correlation of their skin Raman spectra and a fixed spectrum of pure human recombinant filaggrin, these results indicate that Raman spectroscopy may be used as a noninvasive tool to detect FLG gene mutations.

  20. Imaging EGFR distribution using surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Lucas, L.; Chen, X. K.; Smith, A.; Korbelik, M.; Zeng, H.; Lee, P. W. K.; Hewitt, K. C.

    2009-02-01

    The purpose of this study is to explore the feasibility of using Surface Enhanced Raman Spectroscopy (SERS) to image the distribution of Epidermal Growth Factor Receptor (EGFR) in cells. To accomplish this task, 30 nm gold nanoparticles (AuNPs) tagged with antibodies to EGFR (1012 per ml) are incubated with cells (106 per ml) of the A431 human epidermoid carcinoma cell line and normal human bronchial epithelial (NHBE) cells. Using the 632.8 nm excitation line of a He-Ne laser, Raman spectroscopy measurements are performed using a point mapping scheme. SERS signals are observed with an overall enhancement of 4-7 orders of magnitude. Raman intensity maps of the 1480 and 1583 cm-1 peaks correlate well with the expected distribution of AuNPs and EGFR. Normal cells show little to no enhancement. The results therefore present a simple yet effective means to image EGFR over-expression.

  1. Analysis of milk by FT-Raman spectroscopy.

    PubMed

    Mazurek, Sylwester; Szostak, Roman; Czaja, Tomasz; Zachwieja, Andrzej

    2015-06-01

    Fat, protein, carbohydrates and dry matter were quantified in commercial bovine milk samples, with the relative standard errors of prediction (RSEP) in the 3.4-6.1% range, using the partial least squares (PLS) method based on Raman spectra of liquid milk samples. Results of a better quality were obtained from a PLS model derived from IR spectra registered using single reflection ATR diamond accessory, which yielded RSEP values of 2.4-4.4%. The data indicated IR single reflection ATR spectroscopy and Raman spectroscopy in combination with multivariate modelling using the PLS method, allowed for the reliable, simultaneous quantitative determination of macronutrients in milk. The low signal to noise ratio of Raman spectra affects the quality of fat quantification especially for strongly defatted milk samples.

  2. Monitoring lignocellulosic bioethanol production processes using Raman spectroscopy.

    PubMed

    Iversen, Jens A; Ahring, Birgitte K

    2014-11-01

    Process control automation in the emerging biorefinery industry may be achieved by applying effective methods for monitoring compound concentrations during the production processes. This study examines the application of Raman spectroscopy with an excitation wavelength of 785nm and an immersion probe for in situ monitoring the progression of pretreatment, hydrolysis and fermentation processes in the production of lignocellulosic ethanol. Raman signals were attenuated by light scattering cells and lignocellulosic particulates, which the quantification method to some degree could correct for by using an internal standard in the spectra. Allowing particulates to settle by using a slow stirring speed further improved results, suggesting that Raman spectroscopy should be used in combination with continuous separation when used to monitor process mixtures with large amounts of particulates. The root mean square error of prediction (RMSE) of ethanol and glucose measured in real-time was determined to be 0.98g/L and 1.91g/L respectively.

  3. Raman spectroscopy for in-situ monitoring of electrode processes

    SciTech Connect

    Varma, R; Cook, G M; Yao, N P

    1982-04-01

    The theoretical and experimental applications of Raman spectroscopic techniques to the study of battery electrode processes are described. In particular, the potential of Raman spectroscopy as an in-situ analytical tool for the characterization of the structure and composition of electrode surface layers at electrode-electrolyte interfaces during electrolysis is examined. It is anticipated that this understanding of the battery electrode processes will be helpful in designing battery active material with improved performance. The applications of Raman spectroscopy to the in-situ study of electrode processes has been demonstrated in a few selected areas, including: (1) the anodic corrosion of lead in sulfuric acid and (2) the anodization and sulfation of tetrabasicleadsulfate in sulfuric acid. Preliminary results on the anodization of iron and on the electrochemical behavior of nickel positive-electrode active material in potassium hydroxide electrolytes are presented in the Appendix.

  4. Stress Analysis of SiC MEMS Using Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ness, Stanley J.; Marciniak, M. A.; Lott, J. A.; Starman, L. A.; Busbee, J. D.; Melzak, J. M.

    2003-03-01

    During the fabrication of Micro-Electro-Mechanical Systems (MEMS), residual stress is often induced in the thin films that are deposited to create these systems. These stresses can cause the device to fail due to buckling, curling, or fracture. Industry is looking for ways to characterize the stress during the deposition of thin films in order to reduce or eliminate device failure. Micro-Raman spectroscopy has been successfully used to characterize poly-Si MEMS devices made with the MUMPS® process. Raman spectroscopy was selected because it is nondestructive, fast and has the potential for in situ stress monitoring. This research attempts to use Raman spectroscopy to analyze the stress in SiC MEMS made with the MUSiC® process. Raman spectroscopy is performed on 1-2-micron-thick SiC thin films deposited on silicon, silicon nitride, and silicon oxide substrates. The most common poly-type of SiC found in thin film MEMS made with the MUSiC® process is 3C-SiC. Research also includes baseline spectra of 6H, 4H, and 15R poly-types of bulk SiC.

  5. Raman spectroscopy towards clinical application: drug monitoring and pathogen identification.

    PubMed

    Neugebauer, Ute; Rösch, Petra; Popp, Jürgen

    2015-12-01

    Raman spectroscopy is a label-free method that measures quickly and contactlessly, providing detailed information from the sample, and has proved to be an ideal tool for medical and life science research. In this review, recent advances of the technique towards drug monitoring and pathogen identification by the Jena Research Groups are reviewed. Surface-enhanced Raman spectroscopy (SERS) and ultraviolet resonance Raman spectroscopy in hollow-core optical fibres enable the detection of drugs at low concentrations as shown for the metabolites of the immunosuppressive drug 6-mercaptopurine as well as antimalarial agents. Furthermore, Raman spectroscopy can be used to characterise pathogenic bacteria in infectious diseases directly from body fluids, making time-consuming cultivation processes dispensable. Using the example of urinary tract infection, it is shown how bacteria can be identified from patients' urine samples within <1 h. The methods cover both single-cell analysis and dielectrophoretic capturing of bacteria in suspension. The latter method could also be used for fast (<3.5 h) identification of antibiotic resistance as shown exemplarily for vancomycin-resistant enterococci.

  6. Raman spectroscopy for monitoring protein structure in muscle food systems.

    PubMed

    Herrero, Ana M

    2008-06-01

    Raman spectroscopy offers structural information about complex solid systems such as muscle food proteins. This spectroscopic technique is a powerful and a non-invasive method for the study of protein changes in secondary structure, mainly quantified, analysing the amide I (1650-1680 cm(- 1)) and amide III (1200-1300 cm(- 1)) regions and C-C stretching band (940 cm(- 1)), as well as modifications in protein local environments (tryptophan residues, tyrosil doublet, aliphatic aminoacids bands) of muscle food systems. Raman spectroscopy has been used to determine structural changes in isolated myofibrillar and connective tissue proteins by the addition of different compounds and by the effect of the conservation process such as freezing and frozen storage. It has been also shown that Raman spectroscopy is particularly useful for monitoring in situ protein structural changes in muscle food during frozen storage. Besides, the possibilities of using protein structural changes of intact muscle to predict the protein functional properties and the sensory attributes of muscle foods have been also investigated. In addition, the application of Raman spectroscopy to study changes in the protein structure during the elaboration of muscle food products has been demonstrated.

  7. Raman spectroscopy and imaging: promising optical diagnostic tools in pediatrics.

    PubMed

    Beleites, C; Bonifacio, A; Codrich, D; Krafft, C; Sergo, V

    2013-01-01

    This review focuses on the use of Raman spectroscopy, an analytical technique based on the inelastic scattering of harmless laser light with biological tissues, as an innovative diagnostic tool in pediatrics. After a brief introduction to explain the fundamental concepts behind Raman spectroscopy and imaging, a short summary is given of the most important and common issues arising when handling spectral data with multivariate statistics. Then, the most relevant papers in which Raman spectroscopy or imaging has been applied with diagnostic purposes to pediatric patients are reviewed, and grouped according to the type of pathology: neoplastic, inflammatory, allergic, malformative as well as other kinds. Raman spectroscopy has been used both in vivo, mostly using optical fibers for tissue illumination, as well as on ex vivo tissue sections in a microscopic imaging approach defined as "spectral histopathology". According to the results reported so far, this technique showed a huge potential for mini- or non-invasive real-time, bedside and intra-operatory diagnosis, as well as for an ex vivo imaging tool in support to pathologists. Despite many studies are limited by the small sample size, this technique is extremely promising in terms of sensitivity and specificity.

  8. Analysis of scorpion venom composition by Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Martínez-Zérega, Brenda E.; González-Solís, José L.

    2015-01-01

    In this work we study the venom of two Centruroides scorpion species using Raman spectroscopy. The spectra analysis allows to determine the venoms chemical composition and to establish the main differences and similarities among the species. It is also shown that the use of Principal Component Analysis may help to tell apart between the scorpion species.

  9. Determination of the degree of cure of dental resins using Raman and FT-Raman spectroscopy.

    PubMed

    Shin, W S; Li, X F; Schwartz, B; Wunder, S L; Baran, G R

    1993-09-01

    FT-IR spectroscopy has traditionally been used to determine the degree of conversion of dental resins. FT-Raman scattering provided an alternate method of obtaining degrees of conversion for these systems and was particularly useful for measuring spectra of materials without any sample preparation. Raman and FT-Raman spectroscopy gave identical results, but the latter technique was preferred for the highly fluorescent samples often encountered in commercial composites. Linear calibration curves were obtained for the aromatic mixtures Bis-GMA/TEGDMA and Bisphenol-A/TEGDMA using C = C/phi, and for the wholly aliphatic mixture EGDMA/EGDA using C = C/C = O, over a wide range of mole ratios. If both the mole and intensity ratios [C = C/phi or C = C/C = O] were known for an uncured dental resin, then the degrees of conversion could be obtained for the cured materials using Raman spectroscopy. However, if the mole ratios for the uncured resin were unknown, then the degree of conversion depended on the calibration curve, since the Raman scattering cross section of the vibrational modes depended on the molecules to which they were attached.

  10. Fabricating a UV-Vis and Raman Spectroscopy Immunoassay Platform.

    PubMed

    Hanson, Cynthia; Israelsen, Nathan D; Sieverts, Michael; Vargis, Elizabeth

    2016-11-10

    Immunoassays are used to detect proteins based on the presence of associated antibodies. Because of their extensive use in research and clinical settings, a large infrastructure of immunoassay instruments and materials can be found. For example, 96- and 384-well polystyrene plates are available commercially and have a standard design to accommodate ultraviolet-visible (UV-Vis) spectroscopy machines from various manufacturers. In addition, a wide variety of immunoglobulins, detection tags, and blocking agents for customized immunoassay designs such as enzyme-linked immunosorbent assays (ELISA) are available. Despite the existing infrastructure, standard ELISA kits do not meet all research needs, requiring individualized immunoassay development, which can be expensive and time-consuming. For example, ELISA kits have low multiplexing (detection of more than one analyte at a time) capabilities as they usually depend on fluorescence or colorimetric methods for detection. Colorimetric and fluorescent-based analyses have limited multiplexing capabilities due to broad spectral peaks. In contrast, Raman spectroscopy-based methods have a much greater capability for multiplexing due to narrow emission peaks. Another advantage of Raman spectroscopy is that Raman reporters experience significantly less photobleaching than fluorescent tags(1). Despite the advantages that Raman reporters have over fluorescent and colorimetric tags, protocols to fabricate Raman-based immunoassays are limited. The purpose of this paper is to provide a protocol to prepare functionalized probes to use in conjunction with polystyrene plates for direct detection of analytes by UV-Vis analysis and Raman spectroscopy. This protocol will allow researchers to take a do-it-yourself approach for future multi-analyte detection while capitalizing on pre-established infrastructure.

  11. THz-Raman: accessing molecular structure with Raman spectroscopy for enhanced chemical identification, analysis, and monitoring

    NASA Astrophysics Data System (ADS)

    Heyler, Randy A.; Carriere, James T. A.; Havermeyer, Frank

    2013-05-01

    Structural analysis via spectroscopic measurement of rotational and vibrational modes is of increasing interest for many applications, since these spectra can reveal unique and important structural and behavioral information about a wide range of materials. However these modes correspond to very low frequency (~5cm-1 - 200cm-1, or 150 GHz-6 THz) emissions, which have been traditionally difficult and/or expensive to access through conventional Raman and Terahertz spectroscopy techniques. We report on a new, inexpensive, and highly efficient approach to gathering ultra-low-frequency Stokes and anti-Stokes Raman spectra (referred to as "THz-Raman") on a broad range of materials, opening potential new applications and analytical tools for chemical and trace detection, identification, and forensics analysis. Results are presented on explosives, pharmaceuticals, and common elements that show strong THz-Raman spectra, leading to clear discrimination of polymorphs, and improved sensitivity and reliability for chemical identification.

  12. A line-scan hyperspectral Raman system for spatially offset Raman spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conventional methods of spatially offset Raman spectroscopy (SORS) typically use single-fiber optical measurement probes to slowly and incrementally collect a series of spatially offset point measurements moving away from the laser excitation point on the sample surface, or arrays of multiple fiber ...

  13. Noninvasive Scanning Raman Spectroscopy and Tomography for Graphene Membrane Characterization.

    PubMed

    Wagner, Stefan; Dieing, Thomas; Centeno, Alba; Zurutuza, Amaia; Smith, Anderson D; Östling, Mikael; Kataria, Satender; Lemme, Max C

    2017-03-08

    Graphene has extraordinary mechanical and electronic properties, making it a promising material for membrane-based nanoelectromechanical systems (NEMS). Here, chemical-vapor-deposited graphene is transferred onto target substrates to suspend it over cavities and trenches for pressure-sensor applications. The development of such devices requires suitable metrology methods, i.e., large-scale characterization techniques, to confirm and analyze successful graphene transfer with intact suspended graphene membranes. We propose fast and noninvasive Raman spectroscopy mapping to distinguish between free-standing and substrate-supported graphene, utilizing the different strain and doping levels. The technique is expanded to combine two-dimensional area scans with cross-sectional Raman spectroscopy, resulting in three-dimensional Raman tomography of membrane-based graphene NEMS. The potential of Raman tomography for in-line monitoring is further demonstrated with a methodology for automated data analysis to spatially resolve the material composition in micrometer-scale integrated devices, including free-standing and substrate-supported graphene. Raman tomography may be applied to devices composed of other two-dimensional materials as well as silicon micro- and nanoelectromechanical systems.

  14. Noninvasive Scanning Raman Spectroscopy and Tomography for Graphene Membrane Characterization

    PubMed Central

    2017-01-01

    Graphene has extraordinary mechanical and electronic properties, making it a promising material for membrane-based nanoelectromechanical systems (NEMS). Here, chemical-vapor-deposited graphene is transferred onto target substrates to suspend it over cavities and trenches for pressure-sensor applications. The development of such devices requires suitable metrology methods, i.e., large-scale characterization techniques, to confirm and analyze successful graphene transfer with intact suspended graphene membranes. We propose fast and noninvasive Raman spectroscopy mapping to distinguish between free-standing and substrate-supported graphene, utilizing the different strain and doping levels. The technique is expanded to combine two-dimensional area scans with cross-sectional Raman spectroscopy, resulting in three-dimensional Raman tomography of membrane-based graphene NEMS. The potential of Raman tomography for in-line monitoring is further demonstrated with a methodology for automated data analysis to spatially resolve the material composition in micrometer-scale integrated devices, including free-standing and substrate-supported graphene. Raman tomography may be applied to devices composed of other two-dimensional materials as well as silicon micro- and nanoelectromechanical systems. PMID:28140595

  15. Spatially offset Raman spectroscopy (SORS) for liquid screening

    NASA Astrophysics Data System (ADS)

    Loeffen, Paul W.; Maskall, Guy; Bonthron, Stuart; Bloomfield, Matthew; Tombling, Craig; Matousek, Pavel

    2011-11-01

    Recently, Spatially Offset Raman Spectroscopy (SORS) has been discussed as a novel method for the screening of liquids, aerosols and gels (LAGs) at airports and for other security applications. SORS is an optical spectroscopic method which enables the precise chemical identification of substances from a reference list and, due to the rich spectral information, has an inherently high probability of detection and low false alarm rate. The method is generally capable of screening substances inside non-metallic containers such as plastic and glass bottles. SORS is typically successful through opaque plastic and coloured glass, which are often challenging for conventional backscatter Raman spectroscopy. SORS is performed in just a few seconds by shining a laser light onto the container and then measuring the Raman signal at the excitation point but also at one or more offset positions. Each measurement has different relative orthogonal contributions from the container and contents Raman spectra, so that, with no prior knowledge, the pure Raman spectra of both the container and contents can be extracted - either by scaled subtraction or via multivariate statistical methods in an automated process. In this paper, the latest results will be described from a prototype SORS device designed for aviation security and the advantages and limitations of SORS will be discussed.

  16. Noninvasive Scanning Raman Spectroscopy and Tomography for Graphene Membrane Characterization

    NASA Astrophysics Data System (ADS)

    Wagner, Stefan; Dieing, Thomas; Centeno, Alba; Zurutuza, Amaia; Smith, Anderson D.; Östling, Mikael; Kataria, Satender; Lemme, Max C.

    2017-03-01

    Graphene has extraordinary mechanical and electronic properties, making it a promising material for membrane based nanoelectromechanical systems (NEMS). Here, chemical-vapor-deposited graphene is transferred onto target substrates to suspend it over cavities and trenches for pressure-sensor applications. The development of such devices requires suitable metrology methods, i.e., large-scale characterization techniques, to confirm and analyze successful graphene transfer with intact suspended graphene membranes. We propose fast and noninvasive Raman spectroscopy mapping to distinguish between freestanding and substrate-supported graphene, utilizing the different strain and doping levels. The technique is expanded to combine two-dimensional area scans with cross-sectional Raman spectroscopy, resulting in three-dimensional Raman tomography of membrane-based graphene NEMS. The potential of Raman tomography for in-line monitoring is further demonstrated with a methodology for automated data analysis to spatially resolve the material composition in micrometer-scale integrated devices, including free-standing and substrate-supported graphene. Raman tomography may be applied to devices composed of other two-dimensional materials as well as silicon micro- and nanoelectromechanical systems.

  17. Characterization of a superlubricity nanometer interface by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Shi, Yunsheng; Yang, Xing; Liu, Bingqi; Dong, Hualai; Zheng, Quanshui

    2016-08-01

    Despite being known for almost two decades, the use of micro-/nano-electromechanical systems in commercial applications remains a challenge because of stiction, friction, and the wear of the interface. Superlubricity may be the solution to these challenges. In this paper, we study factors affecting the realization of superlubricity. Raman spectroscopy and other methods were used to characterize a graphite interface which can realize superlubricity and another graphite interface which cannot realize superlubricity. Raman spectra of the interfaces were obtained with the mapping mode and then processed to obtain the Raman images of the characteristic peaks. The Raman spectra provided the distribution of the surface defects and probed defects. Combined with atomic force microscopy and x-ray photoelectron spectroscopy, the Raman spectra show that the sp3 carbons and carbon-oxygen bond stuck at the edge of the graphite mesa are some of the determinants of large-area superlubricity realization. The characterization results can also be used to understand the friction and wear of large-area superlubricity, which are important for development and application of superlubricity. Furthermore, the methods used in this study are useful techniques and tools for the mechanism analysis of other nanometer interfaces.

  18. Raman spectroscopy for the characterization of algal cells

    NASA Astrophysics Data System (ADS)

    Samek, Ota; Jonáš, Alexandr; Pilát, Zdeněk; Zemánek, Pavel; Nedbal, Ladislav; Tříska, Jan; Kotas, Petr; Trtílek, Martin

    2010-12-01

    Raman spectroscopy can elucidate fundamental questions about intercellular variability and what governs it. Moreover, knowing the metabolic response on single cell level this can significantly contribute to the study and use of microalgae in systems biology and biofuel technology. Raman spectroscopy is capable to measure nutrient dynamics and metabolism in vivo, in real-time, label free making it possible to monitor/evaluate population variability. Also, degree of unsaturation of the algae oil (iodine value) can be measured using Raman spectra obtained from single microalgae. The iodine value is the determination of the amount of unsaturation contained in fatty acids (in the form of double bonds). Here we demonstrate the capacity of the spatially resolved Raman microspectroscopy to determine the effective iodine value in lipid storage bodies of individual living algal cells. We employed the characteristic peaks in the Raman scattering spectra at 1,656 cm-1 (cis C=C stretching mode) and 1,445 cm-1 (CH2 scissoring mode) as the markers defining the ratio of unsaturated-to-saturated carbon-carbon bonds of the fatty acids in the algal lipids.

  19. Exploring Raman spectroscopy for the evaluation of glaucomatous retinal changes

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Grozdanic, Sinisa D.; Harper, Matthew M.; Hamouche, Nicolas; Kecova, Helga; Lazic, Tatjana; Yu, Chenxu

    2011-10-01

    Glaucoma is a chronic neurodegenerative disease characterized by apoptosis of retinal ganglion cells and subsequent loss of visual function. Early detection of glaucoma is critical for the prevention of permanent structural damage and irreversible vision loss. Raman spectroscopy is a technique that provides rapid biochemical characterization of tissues in a nondestructive and noninvasive fashion. In this study, we explored the potential of using Raman spectroscopy for detection of glaucomatous changes in vitro. Raman spectroscopic imaging was conducted on retinal tissues of dogs with hereditary glaucoma and healthy control dogs. The Raman spectra were subjected to multivariate discriminant analysis with a support vector machine algorithm, and a classification model was developed to differentiate disease tissues versus healthy tissues. Spectroscopic analysis of 105 retinal ganglion cells (RGCs) from glaucomatous dogs and 267 RGCs from healthy dogs revealed spectroscopic markers that differentiated glaucomatous specimens from healthy controls. Furthermore, the multivariate discriminant model differentiated healthy samples and glaucomatous samples with good accuracy [healthy 89.5% and glaucomatous 97.6% for the same breed (Basset Hounds); and healthy 85.0% and glaucomatous 85.5% for different breeds (Beagles versus Basset Hounds)]. Raman spectroscopic screening can be used for in vitro detection of glaucomatous changes in retinal tissue with a high specificity.

  20. Raman spectroscopy of Bacillus thuringiensis physiology and inactivation

    NASA Astrophysics Data System (ADS)

    Morrow, J. B.; Almeida, J.; Cole, K. D.; Reipa, V.

    2012-12-01

    The ability to detect spore contamination and inactivation is relevant to developing and determining decontamination strategy success for food and water safety. This study was conducted to develop a systematic comparison of nondestructive vibrational spectroscopy techniques (Surface-Enhanced Raman Spectroscopy, SERS, and normal Raman) to determine indicators of Bacillus thuringiensis physiology (spore, vegetative, outgrown, germinated and inactivated spore forms). SERS was found to provide better resolution of commonly utilized signatures of spore physiology (dipicolinic acid at 1006 cm-1 and 1387 cm-1) compared to normal Raman and native fluorescence indigenous to vegetative and outgrown cell samples was quenched in SERS experiment. New features including carotenoid pigments (Raman features at 1142 cm-1, 1512 cm-1) were identified for spore cell forms. Pronounced changes in the low frequency region (300 cm-1 to 500 cm-1) in spore spectra occurred upon germination and inactivation (with both free chlorine and by autoclaving) which is relevant to guiding decontamination and detection strategies using Raman techniques.

  1. Characterization of a superlubricity nanometer interface by Raman spectroscopy.

    PubMed

    Shi, Yunsheng; Yang, Xing; Liu, Bingqi; Dong, Hualai; Zheng, Quanshui

    2016-08-12

    Despite being known for almost two decades, the use of micro-/nano-electromechanical systems in commercial applications remains a challenge because of stiction, friction, and the wear of the interface. Superlubricity may be the solution to these challenges. In this paper, we study factors affecting the realization of superlubricity. Raman spectroscopy and other methods were used to characterize a graphite interface which can realize superlubricity and another graphite interface which cannot realize superlubricity. Raman spectra of the interfaces were obtained with the mapping mode and then processed to obtain the Raman images of the characteristic peaks. The Raman spectra provided the distribution of the surface defects and probed defects. Combined with atomic force microscopy and x-ray photoelectron spectroscopy, the Raman spectra show that the sp(3) carbons and carbon-oxygen bond stuck at the edge of the graphite mesa are some of the determinants of large-area superlubricity realization. The characterization results can also be used to understand the friction and wear of large-area superlubricity, which are important for development and application of superlubricity. Furthermore, the methods used in this study are useful techniques and tools for the mechanism analysis of other nanometer interfaces.

  2. Measuring Rocket Engine Temperatures with Hydrogen Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wehrmeyer, Joseph A.; Osborne, Robin J.; Trinh, Huu P.

    2003-09-01

    Optically accessible, high-pressure, hot-fire test articles are available at NASA-Marshall for use in development of advanced rocket-engine propellant injectors. Single laser-pulse UV Raman spectroscopy has been used, in the past, in these devices for analysis of high pressure H2- and CH4-fueled combustion, but relies on an independent pressure measurement in order to provide temperature information. A variation of UV Raman (High Resolution Hydrogen Raman Spectroscopy) is under development and will allow temperature measurement without the need for an independent pressure measurement, useful for flows where local pressure may not be accurately known. The technique involves the use of a spectrometer with good spectral resolution, requiring a small entrance slit for the spectrometer. The H2 Raman spectrum, when created by a narrow-linewidth laser source and obtained from a good spectral resolution spectrograph, has a spectral shape related to temperature. By best-fit matching an experimental spectrum to theoretical spectra at various temperatures, a temperature measurement is obtained. The spectral model accounts for collisional narrowing, collisional broadening, Doppler broadening, and collisional line shifting of each Raman line making up the H2 Stokes vibrational Q-branch spectrum. At pressures from atmospheric up to those associated with advanced preburner components (5500 psia), collisional broadening, though present, does not cause significant overlap of the Raman lines, allowing high resolution H2 Raman to be used for temperature measurements in plumes and in high pressure test articles. Experimental demonstrations of the technique are performed for rich H2-air flames at atmospheric pressure. Spectrometer imaging quality is identified as being critical for successful implementation of the technique.

  3. Measuring Rocket Engine Temperatures with Hydrogen Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Wehrmeyer, Joseph A.; Osborne, Robin J.; Trinh, Huu P.; Turner, James (Technical Monitor)

    2001-01-01

    Optically accessible, high pressure, hot fire test articles are available at NASA Marshall for use in development of advanced rocket engine propellant injectors. Single laser-pulse ultraviolet (UV) Raman spectroscopy has been used in the past in these devices for analysis of high pressure H2- and CH4-fueled combustion, but relies on an independent pressure measurement in order to provide temperature information. A variation of UV Raman (High Resolution Hydrogen Raman Spectroscopy) is under development and will allow temperature measurement without the need for an independent pressure measurement, useful for flows where local pressure may not be accurately known. The technique involves the use of a spectrometer with good spectral resolution, requiring a small entrance slit for the spectrometer. The H2 Raman spectrum, when created by a narrow linewidth laser source and obtained from a good spectral resolution spectrograph, has a spectral shape related to temperature. By best-fit matching an experimental spectrum to theoretical spectra at various temperatures, a temperature measurement is obtained. The spectral model accounts for collisional narrowing, collisional broadening, Doppler broadening, and collisional line shifting of each Raman line making up the H2 Stokes vibrational Q-branch spectrum. At pressures from atmospheric up to those associated with advanced preburner components (5500 psia), collisional broadening though present does not cause significant overlap of the Raman lines, allowing high resolution H2 Raman to be used for temperature measurements in plumes and in high pressure test articles. Experimental demonstrations of the technique are performed for rich H2-air flames at atmospheric pressure and for high pressure, 300 K H2-He mixtures. Spectrometer imaging quality is identified as being critical for successful implementation of technique.

  4. Transcutaneous Raman Spectroscopy of Murine Bone In Vivo

    PubMed Central

    Schulmerich, Matthew V.; Cole, Jacqueline H.; Kreider, Jaclynn M.; Esmonde-White, Francis; Dooley, Kathryn A.; Goldstein, Steven A.; Morris, Michael D.

    2009-01-01

    Raman spectroscopy can provide valuable information about bone tissue composition in studies of bone development, biomechanics, and health. In order to study the Raman spectra of bone in vivo, instrumentation that enhances the recovery of subsurface spectra must be developed and validated. Five fiber-optic probe configurations were considered for transcutaneous bone Raman spectroscopy of small animals. Measurements were obtained from the tibia of sacrificed mice, and the bone Raman signal was recovered for each probe configuration. The configuration with the optimal combination of bone signal intensity, signal variance, and power distribution was then evaluated under in vivo conditions. Multiple in vivo transcutaneous measurements were obtained from the left tibia of 32 anesthetized mice. After collecting the transcutaneous Raman signal, exposed bone measurements were collected and used as a validation reference. Multivariate analysis was used to recover bone spectra from transcutaneous measurements. To assess the validity of the transcutaneous bone measurements cross-correlations were calculated between standardized spectra from the recovered bone signal and the exposed bone measurements. Additionally, the carbonate-to-phosphate height ratios of the recovered bone signals were compared to the reference exposed bone measurements. The mean cross-correlation coefficient between the recovered and exposed measurements was 0.96, and the carbonate-to-phosphate ratios did not differ significantly between the two sets of spectra (p > 0.05). During these first systematic in vivo Raman measurements, we discovered that probe alignment and animal coat color influenced the results and thus should be considered in future probe and study designs. Nevertheless, our noninvasive Raman spectroscopic probe accurately assessed bone tissue composition through the skin in live mice. PMID:19281644

  5. FT-Raman spectroscopy study of human breast tissue

    NASA Astrophysics Data System (ADS)

    Bitar Carter, Renata A.; Martin, Airton A.; Netto, Mario M.; Soares, Fernando A.

    2004-07-01

    Optical spectroscopy has been extensively studied as a potential in vivo diagnostic tool to provide information about the chemical and morphologic structure of tissue. Raman Spectroscpy is an inelastic scattering process that can provide a wealth of spectral features that can be related to the specific molecular structure of the sample. This article reports results of an in vitro study of the FT-Raman human breast tissue spectra. An Nd:YAG laser at 1064nm was used as the excitation source in the FT-Raman Spectrometer. The neoplastic human breast samples, both Fibroadenoma and ICD, were obtained during therapeutical routine medical procedures required by the primary disease, and the non-diseased human tissue was obtained in plastic surgery. No sample preparation was needed for the FT-Raman spectra collection. The FT-Raman spectra were recorded from normal, benign (Fibroadenomas) and malignant (IDC-Intraductal Carcinoma) samples, adding up 51 different areas. The main spectral differences of a typical FT-Raman spectra of a Normal (Non-diseased), Fibroadenoma, and Infiltrating Ductal Carcinoma (IDC) breast tissue at the interval of 600 to 1800cm-1, which may differentiate diagnostically the sample, were found in the bands of 1230 to 1295cm-1, 1440 to 1460 cm-1 and 1650 to 1680 cm-1, assigned to the vibrational bands of the carbohydrate-amide III, proteins and lipids, and carbohydrate-amide I, respectively.

  6. Quantitative polarized Raman spectroscopy in highly turbid bone tissue

    PubMed Central

    Raghavan, Mekhala; Sahar, Nadder D.; Wilson, Robert H.; Mycek, Mary-Ann; Pleshko, Nancy; Kohn, David H.; Morris, Michael D.

    2010-01-01

    Polarized Raman spectroscopy allows measurement of molecular orientation and composition and is widely used in the study of polymer systems. Here, we extend the technique to the extraction of quantitative orientation information from bone tissue, which is optically thick and highly turbid. We discuss multiple scattering effects in tissue and show that repeated measurements using a series of objectives of differing numerical apertures can be employed to assess the contributions of sample turbidity and depth of field on polarized Raman measurements. A high numerical aperture objective minimizes the systematic errors introduced by multiple scattering. We test and validate the use of polarized Raman spectroscopy using wild-type and genetically modified (oim∕oim model of osteogenesis imperfecta) murine bones. Mineral orientation distribution functions show that mineral crystallites are not as well aligned (p<0.05) in oim∕oim bones (28±3 deg) compared to wild-type bones (22±3 deg), in agreement with small-angle X-ray scattering results. In wild-type mice, backbone carbonyl orientation is 76±2 deg and in oim∕oim mice, it is 72±4 deg (p>0.05). We provide evidence that simultaneous quantitative measurements of mineral and collagen orientations on intact bone specimens are possible using polarized Raman spectroscopy. PMID:20615030

  7. Quantitative polarized Raman spectroscopy in highly turbid bone tissue

    NASA Astrophysics Data System (ADS)

    Raghavan, Mekhala; Sahar, Nadder D.; Wilson, Robert H.; Mycek, Mary-Ann; Pleshko, Nancy; Kohn, David H.; Morris, Michael D.

    2010-05-01

    Polarized Raman spectroscopy allows measurement of molecular orientation and composition and is widely used in the study of polymer systems. Here, we extend the technique to the extraction of quantitative orientation information from bone tissue, which is optically thick and highly turbid. We discuss multiple scattering effects in tissue and show that repeated measurements using a series of objectives of differing numerical apertures can be employed to assess the contributions of sample turbidity and depth of field on polarized Raman measurements. A high numerical aperture objective minimizes the systematic errors introduced by multiple scattering. We test and validate the use of polarized Raman spectroscopy using wild-type and genetically modified (oim/oim model of osteogenesis imperfecta) murine bones. Mineral orientation distribution functions show that mineral crystallites are not as well aligned (p<0.05) in oim/oim bones (28+/-3 deg) compared to wild-type bones (22+/-3 deg), in agreement with small-angle X-ray scattering results. In wild-type mice, backbone carbonyl orientation is 76+/-2 deg and in oim/oim mice, it is 72+/-4 deg (p>0.05). We provide evidence that simultaneous quantitative measurements of mineral and collagen orientations on intact bone specimens are possible using polarized Raman spectroscopy.

  8. Raman spectroscopy and immunohistochemistry for schwannoma characterization: a case study

    NASA Astrophysics Data System (ADS)

    Neto, Lazaro P. M.; das Chagas, Maurilio J.; Carvalho, Luis Felipe C. S.; Ferreira, Isabelle; dos Santos, Laurita; Haddad, Marcelo; Loddi, Vinicius; Martin, Airton A.

    2016-03-01

    The schwannomas is a tumour of the tissue that covers nerves, called the nerve sheath. Schwannomas are often benign tumors of the Schwan cells, which are the principal glia of the peripheral nervous system (PNS). Preoperative diagnosis of this lesion usually is difficult, therefore, new techniques are being studied as pre surgical evaluation. Among these, Raman spectroscopy, that enables the biochemical identification of the tissue analyzed by their optical properties, may be used as a tool for schwannomas diagnosis. The aim of this study was to discriminate between normal nervous tissue and schwannoma through the confocal Raman spectroscopy and Raman optical fiber-based techniques combined with immunohistochemical analysis. Twenty spectra were analyzed from a normal nerve tissue sample (10) and schwannoma (10) by Holospec f / 1.8 (Kayser Optical Systems) coupled to an optical fiber with a 785nm laser line source. The data were pre-processed and vector normalized. The average analysis and standard deviation was performed associated with cluster analysis. AML, 1A4, CD34, Desmin and S-100 protein markers were used for immunohistochemical analysis. Immunohistochemical analysis was positive only for protein S-100 marker which confirmed the neural schwanomma originality. The immunohistochemistry analysis were important to determine the source of the injury, whereas Raman spectroscopy were able to differentiated tissues types indicating important biochemical changes between normal and benign neoplasia.

  9. Commercial anesthetic-respiratory gas monitor utilizing Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Gregonis, Donald E.; Van Wagenen, Richard A.; Coleman, D.; Mitchell, John R.

    1990-11-01

    A commercial gas monitor which utilizes Raman Spectroscopy has been developed to monitor anesthetic and respiratory gases in the hospital operating room. The instrument measures all molecular gases administered by the anesthesiologist in real time with fast response of breath waveform. These gases include carbon dioxide, nitrous oxide, oxygen, nitrogen and various volatile halogenated organic anesthetics, e.g. halothane, isoflurane, enflurane, sevoflurane and desflurane. The key feature of this instrument which allows it to produce adequate Raman signals with a low cost argon ion laser is measuring these gases inside the laser resonant cavity.

  10. Near-field enhanced Raman spectroscopy using side illumination optics

    NASA Astrophysics Data System (ADS)

    Hayazawa, Norihiko; Tarun, Alvarado; Inouye, Yasushi; Kawata, Satoshi

    2002-12-01

    We demonstrate near-field enhanced Raman spectroscopy with the use of a metallized cantilever tip and highly p-polarized light directed onto the tip with side illumination optics using a long working distance objective lens. The highly p-polarized light field excites surface plasmon polaritons localized at the tip apex, which results in the enhanced near-field Raman scattering. In this article, we achieved an enhancement factor of 4000 for Rhodamine 6G molecules adsorbed on a silver island film. The side illumination is also applicable to an opaque sample and to near-field photolithography.

  11. [Laser Raman Spectroscopy and Its Application in Gas Hydrate Studies].

    PubMed

    Fu, Juan; Wu, Neng-you; Lu, Hai-long; Wu, Dai-dai; Su, Qiu-cheng

    2015-11-01

    Gas hydrates are important potential energy resources. Microstructural characterization of gas hydrate can provide information to study the mechanism of gas hydrate formation and to support the exploitation and application of gas hydrate technology. This article systemly introduces the basic principle of laser Raman spectroscopy and summarizes its application in gas hydrate studies. Based on Raman results, not only can the information about gas composition and structural type be deduced, but also the occupancies of large and small cages and even hydration number can be calculated from the relative intensities of Raman peaks. By using the in-situ analytical technology, laser Raman specstropy can be applied to characterize the formation and decomposition processes of gas hydrate at microscale, for example the enclathration and leaving of gas molecules into/from its cages, to monitor the changes in gas concentration and gas solubility during hydrate formation and decomposition, and to identify phase changes in the study system. Laser Raman in-situ analytical technology has also been used in determination of hydrate structure and understanding its changing process under the conditions of ultra high pressure. Deep-sea in-situ Raman spectrometer can be employed for the in-situ analysis of the structures of natural gas hydrate and their formation environment. Raman imaging technology can be applied to specify the characteristics of crystallization and gas distribution over hydrate surface. With the development of laser Raman technology and its combination with other instruments, it will become more powerful and play a more significant role in the microscopic study of gas hydrate.

  12. Theoretical analysis of anharmonic coupling and cascading Raman signals observed with femtosecond stimulated Raman spectroscopy.

    PubMed

    Mehlenbacher, Randy D; Lyons, Brendon; Wilson, Kristina C; Du, Yong; McCamant, David W

    2009-12-28

    We present a classical theoretical treatment of a two-dimensional Raman spectroscopy based on the initiation of vibrational coherence with an impulsive Raman pump and subsequent probing by two-pulse femtosecond stimulated Raman spectroscopy (FSRS). The classical model offers an intuitive picture of the molecular dynamics initiated by each laser pulse and the generation of the signal field traveling along the probe wave vector. Previous reports have assigned the observed FSRS signals to anharmonic coupling between the impulsively driven vibration and the higher-frequency vibration observed with FSRS. However, we show that the observed signals are not due to anharmonic coupling, which is shown to be a fifth-order coherent Raman process, but instead due to cascades of coherent Raman signals. Specifically, the observed vibrational sidebands are generated by parallel cascades in which a coherent anti-Stokes or Stokes Raman spectroscopy (i.e., CARS or CSRS) field generated by the coherent coupling of the impulsive pump and the Raman pump pulses participates in a third-order FSRS transition. Additional sequential cascades are discussed that will give rise to cascade artifacts at the fundamental FSRS frequencies. It is shown that the intended fifth-order FSRS signals, generated by an anharmonic coupling mechanism, will produce signals of approximately 10(-4) DeltaOD (change in the optical density). The cascading signals, however, will produce stimulated Raman signal of approximately 10(-2) DeltaOD, as has been observed experimentally. Experiments probing deuterochloroform find significant sidebands of the CCl(3) bend, which has an E type symmetry, shifted from the A(1) type C-D and C-Cl stretching modes, despite the fact that third-order anharmonic coupling between these modes is forbidden by symmetry. Experiments probing a 50:50 mixture of chloroform and d-chloroform find equivalent intensity signals of low-frequency CDCl(3) modes as sidebands shifted from both the C

  13. [Joint Analyses of Na2SO4 Solution by Laser Induced Breakdown Spectroscopy and Raman Spectroscopy].

    PubMed

    Guo, Jin-jia; Lu, Yuan; Liu, Chun-hao; Zheng, Rong-er

    2016-01-01

    Spectroscopic sensor is becoming an important issue for the deep-sea exploration due to the advantages of multi-specie, multi-phases and stand-off detection. Different approach have been developing in recent years based on LIBS (Laser Induced Breakdown Spectroscopy) and Raman spectroscopy since Raman-LIBS are complementary techniques with the similar components and the capability of molecular and elementary analysis. In this work, we built a LIBS-Raman system and detected Na2SO4 in aqueous solution to evaluate the potential ocean application. With the same laser, spectrometer and detector, a hybrid of Raman and LIBS system was developed to realize the detection of anions and cations in the seawater. The optics was composed by two parts. Raman channel and LIBS channel, and the signal was collected by a Y type optical fiber bundle. The signal from two channels was separated by imaging on different arrays of the CCD detector. The Raman spectra of SO4(2-) and LIBS spectra of Na was successfully detected simultaneously when the pulse energy was above 3.6 mJ. However, due to the strong bremsstrahlung radiation of LIBS, the signal to noise ratio of Raman was significantly decreased as the laser energy increasing. The results manifested the great potential of Raman-LIBS combination for the underwater detection.

  14. Raman Spectroscopy of Mineral Inclusions in Diamonds from Yakutia

    NASA Astrophysics Data System (ADS)

    Ugap'eva, Sargylana; Goryainov, Sergey; Afanasiev, Valentine

    2016-10-01

    New data on the study of residual pressure in mineral inclusions in diamonds from kimberlite pipes and placers of Yakutia obtained using Raman Spectroscopy are presented. Calculated values of residual pressure in olivine and coesite inclusions in kimberlite diamonds according to works of Israeli et al [1] and Sobolev et al [2] indicate that the host crystal crystallized at the depth not less than 165 km, at pressure of 4.8-5.0 GPa and temperature T=1200 °C. Comparative analysis of Raman spectra of olivine inclusions in diamonds from placers of Ebelyakh river on inclusions, contained in diamond and then brought to the surface, showed that olivine inclusions are less stressed. The structural orientation of olivine inclusions in diamonds from placers of Ebelyakh river possibly plays a role in these differences of Raman spectra.

  15. Optical Coherence Tomography and Raman Spectroscopy of the retina

    SciTech Connect

    Evans, J W; Zawadzki, R J; Liu, R; Chan, J; Lane, S; Werner, J S

    2009-01-16

    Imaging the structure and correlating it with the biochemical content of the retina holds promise for fundamental research and for clinical applications. Optical coherence tomography (OCT) is commonly used to image the 3D structure of the retina and while the added functionality of biochemical analysis afforded by Raman scattering could provide critical molecular signatures for clinicians and researchers, there are many technical challenges to combining these imaging modalities. We present an ex vivo OCT microscope combined with Raman spectroscopy capable of collecting morphological and molecular information about a sample simultaneously. The combined instrument will be used to investigate remaining technical challenges to combine these imaging modalities, such as the laser power levels needed to achieve a Raman signal above the noise level without damaging the sample.

  16. Influence of Culture Media on Microbial Fingerprints Using Raman Spectroscopy

    PubMed Central

    Mlynáriková, Katarína; Samek, Ota; Bernatová, Silvie; Růžička, Filip; Ježek, Jan; Hároniková, Andrea; Šiler, Martin; Zemánek, Pavel; Holá, Veronika

    2015-01-01

    Raman spectroscopy has a broad range of applications across numerous scientific fields, including microbiology. Our work here monitors the influence of culture media on the Raman spectra of clinically important microorganisms (Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis and Candida albicans). Choosing an adequate medium may enhance the reproducibility of the method as well as simplifying the data processing and the evaluation. We tested four different media per organism depending on the nutritional requirements and clinical usage directly on a Petri dish. Some of the media have a significant influence on the microbial fingerprint (Roosvelt-Park Institute Medium, CHROMagar) and should not be used for the acquisition of Raman spectra. It was found that the most suitable medium for microbiological experiments regarding these organisms was Mueller-Hinton agar. PMID:26610516

  17. Development of Raman Spectroscopy as a Clinical Diagnostic Tool

    NASA Astrophysics Data System (ADS)

    Borel, Santa

    Raman spectroscopy is the collection of inelastically scattered light in which the spectra contain biochemical information of the probed cells or tissue. This work presents both targeted and untargeted ways that the technique can be exploited in biological samples. First, surface enhanced Raman scattering (SERS) gold nanoparticles conjugated to targeting antibodies were shown to be successful for multiplexed detection of overexpressed surface antigens in lung cancer cell lines. Further work will need to optimize the conjugation technique to preserve the strong binding affinity of the antibodies. Second, untargeted Raman microspectroscopy combined with multivariate statistical analysis was able to successfully differentiate mouse ovarian surface epithelial (MOSE) cells and spontaneously transformed ovarian surface epithelial (STOSE) cells with high accuracy. The differences between the two groups were associated with increased nucleic acid content in the STOSE cells. This shows potential for single cell detection of ovarian cancer.

  18. Comparison of Raman spectroscopy equipment for tissues and biofluids analysis

    NASA Astrophysics Data System (ADS)

    Khristoforova, Yu. A.; Bratchenko, I. A.; Myakinin, O. O.; Artemyev, D. N.; Zakharov, V. P.

    2016-04-01

    In this study we demonstrate a comparative analysis of blood serum and normal human skin by Raman spectroscopy with application of different spectroscopic equipment. For serum analysis we measure a total concentration of proteins and compared it with intensity of 1002 cm-1 Raman peak. Standard deviation for protein control in blood serum differed from 7.4% to 19% for different spectroscopic setups. For human skin control we used three Raman peaks near 1340, 1450 and 1650 cm-1. Measurements of different skin samples were analyzed on the phase plane to find areas corresponding to the normal skin. Taking into account the different sensitivities of the detected signal with different detectors in the spectral range 810-950 nm we calculated correction coefficients allowed for making comparison of spectral measurements made on different spectrometers with ranging not exceeding 21%.

  19. Pre-Resonance Raman Spectroscopy-Based Explosives Detector

    NASA Astrophysics Data System (ADS)

    Gupta, S.; Kumar, A.; Gambhir, V.; Reddy, M. N.

    2017-01-01

    A pre-resonance Raman spectroscopy based explosives detection system has been developed using UV laser at wavelength 266 nm having pulse energy of 30 mJ and repetition rate of 20 Hz. A 4-inch UV-enhanced collection optics and back-thinned UV-enhanced charged coupled device (CCD) coupled spectrometer has been used for analysis of the Raman signal. Spectral peak matching software has been developed indigenously for identification of explosives. A compact, tripod mounted and man-portable Raman system is developed for field applications. The system has capability to detect explosives and explosive derivatives over a range up to 40 m and has a sensitivity of 0.1% weight/volume.

  20. Optimally shaped narrowband picosecond pulses for femtosecond stimulated Raman spectroscopy.

    PubMed

    Hoffman, David P; Valley, David; Ellis, Scott R; Creelman, Mark; Mathies, Richard A

    2013-09-09

    A comparison between a Fabry-Pérot etalon filter and a conventional grating filter for producing the picosecond (ps) Raman pump pulses for femtosecond stimulated Raman spectroscopy (FSRS) is presented. It is shown that for pulses of equal energy the etalon filter produces Raman signals twice as large as that of the grating filter while suppressing the electronically resonant background signal. The time asymmetric profile of the etalon-generated pulse is shown to be responsible for both of these observations. A theoretical discussion is presented which quantitatively supports this hypothesis. It is concluded that etalons are the ideal method for the generation of narrowband ps pulses for FSRS because of the optical simplicity, efficiency, improved FSRS intensity and reduced backgrounds.

  1. Influence of Culture Media on Microbial Fingerprints Using Raman Spectroscopy.

    PubMed

    Mlynáriková, Katarína; Samek, Ota; Bernatová, Silvie; Růžička, Filip; Ježek, Jan; Hároniková, Andrea; Šiler, Martin; Zemánek, Pavel; Holá, Veronika

    2015-11-24

    Raman spectroscopy has a broad range of applications across numerous scientific fields, including microbiology. Our work here monitors the influence of culture media on the Raman spectra of clinically important microorganisms (Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis and Candida albicans). Choosing an adequate medium may enhance the reproducibility of the method as well as simplifying the data processing and the evaluation. We tested four different media per organism depending on the nutritional requirements and clinical usage directly on a Petri dish. Some of the media have a significant influence on the microbial fingerprint (Roosvelt-Park Institute Medium, CHROMagar) and should not be used for the acquisition of Raman spectra. It was found that the most suitable medium for microbiological experiments regarding these organisms was Mueller-Hinton agar.

  2. Amino acid quantification in bulk soybeans by transmission Raman spectroscopy.

    PubMed

    Schulmerich, Matthew V; Gelber, Matthew K; Azam, Hossain M; Harrison, Sandra K; McKinney, John; Thompson, Dennis; Owen, Bridget; Kull, Linda S; Bhargava, Rohit

    2013-12-03

    Soybeans are a commodity crop of significant economic and nutritional interest. As an important source of protein, buyers of soybeans are interested in not only the total protein content but also in the specific amino acids that comprise the total protein content. Raman spectroscopy has the chemical specificity to measure the twenty common amino acids as pure substances. An unsolved challenge, however, is to quantify varying levels of amino acids mixed together and bound in soybeans at relatively low concentrations. Here we report the use of transmission Raman spectroscopy as a secondary analytical approach to nondestructively measure specific amino acids in intact soybeans. With the employment of a transmission-based Raman instrument, built specifically for nondestructive measurements from bulk soybeans, spectra were collected from twenty-four samples to develop a calibration model using a partial least-squares approach with a random-subset cross validation. The calibration model was validated on an independent set of twenty-five samples for oil, protein, and amino acid predictions. After Raman measurements, the samples were reduced to a fine powder and conventional wet chemistry methods were used for quantifying reference values of protein, oil, and 18 amino acids. We found that the greater the concentrations (% by weight component of interest), the better the calibration model and prediction capabilities. Of the 18 amino acids analyzed, 13 had R(2) values greater than 0.75 with a standard error of prediction c.a. 3-4% by weight. Serine, histidine, cystine, tryptophan, and methionine showed poor predictions (R(2) < 0.75), which were likely a result of the small sampling range and the low concentration of these components. It is clear from the correlation plots and root-mean-square error of prediction that Raman spectroscopy has sufficient chemical contrast to nondestructively quantify protein, oil, and specific amino acids in intact soybeans.

  3. Raman Spectroscopy-Compatible Inactivation Method for Pathogenic Endospores▿

    PubMed Central

    Stöckel, S.; Schumacher, W.; Meisel, S.; Elschner, M.; Rösch, P.; Popp, J.

    2010-01-01

    Micro-Raman spectroscopy is a fast and sensitive tool for the detection, classification, and identification of biological organisms. The vibrational spectrum inherently serves as a fingerprint of the biochemical composition of each bacterium and thus makes identification at the species level, or even the subspecies level, possible. Therefore, microorganisms in areas susceptible to bacterial contamination, e.g., clinical environments or food-processing technology, can be sensed. Within the scope of point-of-care-testing also, detection of intentionally released biosafety level 3 (BSL-3) agents, such as Bacillus anthracis endospores, or their products is attainable. However, no Raman spectroscopy-compatible inactivation method for the notoriously resistant Bacillus endospores has been elaborated so far. In this work we present an inactivation protocol for endospores that permits, on the one hand, sufficient microbial inactivation and, on the other hand, the recording of Raman spectroscopic signatures of single endospores, making species-specific identification by means of highly sophisticated chemometrical methods possible. Several physical and chemical inactivation methods were assessed, and eventually treatment with 20% formaldehyde proved to be superior to the other methods in terms of sporicidal capacity and information conservation in the Raman spectra. The latter fact has been verified by successfully using self-learning machines (such as support vector machines or artificial neural networks) to identify inactivated B. anthracis-related endospores with adequate accuracies within the range of the limited model database employed. PMID:20208030

  4. Advances in Raman spectroscopy for explosive identification in aviation security

    NASA Astrophysics Data System (ADS)

    Santillán, Javier D.; Brown, Christopher D.; Jalenak, Wayne

    2007-04-01

    In the operational airport environment, the rapid identification of potentially hazardous materials such as improvised explosive devices, chemical warfare agents and flammable and explosive liquids is increasingly critical. Peroxide-based explosives pose a particularly insidious threat because they can be made from commonly available and relatively innocuous household chemicals, such as bleach and hydrogen peroxide. Raman spectroscopy has been validated as a valuable tool for rapid identification of chemicals, explosives, and narcotics and their precursors while allowing "line-of-sight" interrogation through bottles or other translucent containers. This enables safe identification of both precursor substances, such as acetone, and end-products, such as TATP, without direct sampling, contamination and exposure by security personnel. To date, Raman systems have been laboratory-based, requiring careful operation and maintenance by technology experts. The capital and ongoing expenses of these systems is also significant. Recent advances in Raman component technologies have dramatically reduced the footprint and cost, while improving the reliability and ease of use of Raman spectroscopy systems. Such technologies are not only bringing the lab to the field, but are also protecting civilians and security personnel in the process.

  5. Using Raman Spectroscopy to Study Diamond Thin Films

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Hsuan; Zwicker, Andrew

    2011-10-01

    Diamond thin films (DTF), due to their extreme hardness, low electrical conductivity and chemical inertness, have various applications in semiconductor and machining industry. DTF strengthen machining and cutting tools that demand more precision and resist chemical corrosions as electrodes. The DTF created in this investigation were produced using a hybrid physical-chemical vapor deposition process in an electron cyclotron resonance sputter source. The samples formed can be amorphous carbon, graphite, or diamond. A method to test whether the sputter source successfully created diamond is Raman spectroscopy, a non-invasive technique that utilizes photo excitation and Raman scattering of monochromatic light. A sharp peak at 1332 inverse cm indicates the signature Raman shift of the sp3 C-C bond of pure diamond in these spectra. Graphite and amorphous carbon have their signature peaks near 1580 inverse cm and 1343 inverse cm. The technique is used to study wafer quality as a function of plasma parameters. Results will ultimately be benchmarked against Raman spectroscopy system at The College of New Jersey, and more samples will be produced to ensure the uniformity of the sputter source.

  6. Raman spectroscopy: troubleshooting in the manufacture of Nadolol

    NASA Astrophysics Data System (ADS)

    Melton, Jack; Collazo, Luis; Rodriguez, Christiane; Findlay, Paul

    1999-04-01

    The manufacture of Nadalol at our facilities in Humacao, Puerto Rico, poses a difficult challenge for process analysis because the highly toxic epichlorohydrin makes routine analysis of the chemistry very hazardous. Raman spectroscopy enables us to gather potentially quantifiable and irrefutable data from samples without exposing manufacturing personnel to any hazard. The reaction of epichlorohydrin and sodium (CTA) phenolate monitored by Raman spectroscopy measures both the presence of CTA, epichlorohydrin and tert-butylamine. The Raman shifts of epichlorohydrin at 400-350 cm-1 and sodium at 1630- 1560 cm-1 were easily discernible and useful. On one occasion, the increase of moisture in this mixture alerted plant operators to verify the extent of this unexpected contamination. In a short time, optimization of these three aspects with one technique resulted in reliable performance for this stage of the process. The final stage of the process is isolation of the drug substance by crystallization and we learned that this step is strongly influenced by residual tert-butylamine. Using the Raman technique, the presence of this amine is easily detected and accommodated in real time prior to crystallization.

  7. Rapid Identification of Biotherapeutics with Label-Free Raman Spectroscopy.

    PubMed

    Paidi, Santosh Kumar; Siddhanta, Soumik; Strouse, Robert; McGivney, James B; Larkin, Christopher; Barman, Ishan

    2016-04-19

    Product identification is a critical and required analysis for biotheraputics. In addition to regulatory requirements for identity testing on final drug products, in-process identity testing is implemented to reduce business risks associated with fill operations and can also be used as a tool against counterfeiting. Biotherapeutics, in particular monoclonal antibodies, represent a challenging cohort for identity determination because of their similarity in chemical structure. Traditional methods used for product identification can be time and labor intensive, creating a need for quick, inexpensive and reliable methods of drug identification. Here, driven by its molecular-specific and nonperturbative nature, we present Raman spectroscopy as an alternate analytical tool for identity testing. By exploiting subtle differences in vibrational modes of the biologics, we have developed partial least-squares-discriminant analysis derived decision algorithms that offer excellent differentiation capability using spontaneous Raman spectra as well as label-free plasmon-enhanced Raman spectra. Coupled with the robustness to spurious correlations due to its high information content, our results highlight the potential of Raman spectroscopy as a powerful method for rapid, on-site biotherapeutic product identification.

  8. Breast cancer diagnosis using FT-RAMAN spectroscopy

    NASA Astrophysics Data System (ADS)

    Bitar, Renata A.; Martin, Airton A.; Criollo, Carlos J. T.; Ramalho, Leandra N. Z.

    2005-04-01

    In this study FT-RAMAN spectra of breast tissue from 35 patients were obtained and separated into nine groups for histopathologic analysis, which are as follows: normal breast tissue, fibrocystic condition, in situ ductal carcinoma, in situ ductal carcinoma with necrosis, infiltrate ductal carcinoma, infiltrate inflammatory ductal carcinoma, infiltrate medullar ductal carcinoma, infiltrate colloid ductal carcinoma, and infiltrate lobular carcinoma. Using spectrum averages taken from each group a qualitative analysis was performed to compare these molecular compositions to those known to be present in abnormal concentrations in pathological situations, e.g. the development of desmoplastic lesions with a stroma of dense collagen in tumoral breast tissues which substitute adipose stroma of non-diseased breast tissue. The band identified as amino acids, offered basis for observation in the existence of alterations in the proteins, thus proving Raman Spectroscopic capacity in identification of primary structures of proteins; secondary protein structure was also identified through the peptic links, Amide I and Amide III, which have also been identified by various authors. Alterations were also identified in the peaks and bandwidths of nucleic acids demonstrating the utilization of Raman Spectroscopy in the analysis of the cells nucleus manifestations. All studies involving Raman Spectroscopy and breast cancer have shown excellent result reliability and therefore a basis for the technical theory.

  9. Screening and classification of ordinary chondrites by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Pittarello, Lidia; Baert, Kitty; Debaille, Vinciane; Claeys, Philippe

    2015-10-01

    Classification of ordinary chondrite meteorites generally implies (1) determining the chemical group by the composition in endmembers of olivine and pyroxene, and (2) identifying the petrologic group by microstructural features. The composition of olivine and pyroxene is commonly obtained by microprobe analyses or oil immersion of mineral separates. We propose Raman spectroscopy as an alternative technique to determine the endmember content of olivine and pyroxene in ordinary chondrites, by using the link between the wavelength shift of selected characteristic peaks in the spectra of olivine and pyroxene and the Mg/Fe ratio in these phases. The existing correlation curve has been recalculated from the Raman spectrum of reference minerals of known composition and further refined for the range of chondritic compositions. Although the technique is not as accurate as the microprobe for determining the composition of olivine and pyroxene, for most of the samples the chemical group can be easily determined by Raman spectroscopy. Blind tests with ordinary chondrites of different provenance, weathering, and shock stages have confirmed the potential of the method. Therefore, we suggest that a preliminary screening and the classification of most of the equilibrated ordinary chondrites can be carried out using an optical microscope equipped with a Raman spectrometer.

  10. Challenges Analyzing Gypsum on Mars by Raman Spectroscopy.

    PubMed

    Marshall, Craig P; Olcott Marshall, Alison

    2015-09-01

    Raman spectroscopy can provide chemical information about organic and inorganic substances quickly and nondestructively with little to no sample preparation, thus making it an ideal instrument for Mars rover missions. The ESA ExoMars planetary mission scheduled for launch in 2018 will contain a miniaturized Raman spectrometer (RLS) as part of the Pasteur payload operating with a continuous wave (CW) laser emitting at 532 nm. In addition, NASA is independently developing two miniaturized Raman spectrometers for the upcoming Mars 2020 rover mission, one of which is a remote (stand-off) Raman spectrometer that uses a pulse-gated 532 nm excitation system (SuperCam). The other is an in situ Raman spectrometer that employs a CW excitation laser emitting at 248.6 nm (SHERLOC). Recently, it has been shown with analyses by Curiosity that Gale Crater contains significantly elevated concentrations of transition metals such as Cr and Mn. Significantly, these transition metals are known to undergo fluorescence emission in the visible portion of the electromagnetic spectrum. Consequently, samples containing these metals could be problematic for the successful acquisition of fluorescence-free Raman spectra when using a CW 532 nm excitation source. Here, we investigate one analog environment, with a similar mineralogy and sedimentology to that observed in martian environments, as well as elevated Cr contents, to ascertain the best excitation wavelength to successfully collect fluorescence-free spectra from Mars-like samples. Our results clearly show that CW near-infrared laser excitation emitting at 785 nm is better suited to the collection of fluorescence-free Raman spectra than would be a CW laser emitting at 532 nm.

  11. Surface enhanced Raman spectroscopy in breast cancer cells

    PubMed Central

    González-Solís, JL; Luévano-Colmenero, GH; Vargas-Mancilla, J

    2013-01-01

    Background and aims: Raman spectroscopy is a vibrational technique which provides information about the chemical structure. Nevertheless, since many chemicals are present in a cell at very low concentration, the Raman signal observed from a single cell is extremely weak. In surface enhanced Raman scattering (SERS), Raman signals can be enhanced by many orders of magnitude when nanoparticles are incorporated into the cell. Materials (subjects) and methods: The tumor biopsies were obtained from 5 patients who were clinically diagnosed with breast cancer. Breast cancer cells isolated from the biopsy were washed, centrifuged and seeded out. Cultivation took place in DMEM at 37°C in a humidified of 5% CO2 in air with addition of colloidal silver nanoparticles of 40 nm into the cell by sonication. Immediately, the washed cells were analyzed in phosphate buffered saline (PBS) at pH 7. Raman analysis was carried out on the Jobin-Yvon LabRAM HR800 microscope system, with a NIR 830 nm laser excitation source. Results: The strongly enhanced Raman signals allow Raman measurements of a single cell in the 200–1800 cm−1 range in relatively short collection times (5 second) using 17 mW near-infrared excitation. Observed spectral features differed across the cell, but chemical constituents in the cell nucleus and cytoplasm, such as DNA, RNA, and amino acids tyrosine and phenylalanine can be identified. Conclusions: Particularly strong field enhancement can be observed when nanoparticles form colloidal clusters. The results suggest that SERS could be a new technique for the identification of breast cancer cell. PMID:24155548

  12. Non-label immune cell state prediction using Raman spectroscopy

    PubMed Central

    Ichimura, Taro; Chiu, Liang-da; Fujita, Katsumasa; Machiyama, Hiroaki; Yamaguchi, Tomoyuki; Watanabe, Tomonobu M.; Fujita, Hideaki

    2016-01-01

    The acquired immune system, mainly composed of T and B lymphocytes, plays a key role in protecting the host from infection. It is important and technically challenging to identify cell types and their activation status in living and intact immune cells, without staining or killing the cells. Using Raman spectroscopy, we succeeded in discriminating between living T cells and B cells, and visualized the activation status of living T cells without labeling. Although the Raman spectra of T cells and B cells were similar, they could be distinguished by discriminant analysis of the principal components. Raman spectra of activated T cells with anti-CD3 and anti-CD28 antibodies largely differed compared to that of naïve T cells, enabling the prediction of T cell activation status at a single cell level. Our analysis revealed that the spectra of individual T cells gradually change from the pattern of naïve T cells to that of activated T cells during the first 24 h of activation, indicating that changes in Raman spectra reflect slow changes rather than rapid changes in cell state during activation. Our results indicate that the Raman spectrum enables the detection of dynamic changes in individual cell state scattered in a heterogeneous population. PMID:27876845

  13. Determining Gender by Raman Spectroscopy of a Bloodstain.

    PubMed

    Sikirzhytskaya, Aliaksandra; Sikirzhytski, Vitali; Lednev, Igor K

    2017-02-07

    The development of novel methods for forensic science is a constantly growing area of modern analytical chemistry. Raman spectroscopy is one of a few analytical techniques capable of nondestructive and nearly instantaneous analysis of a wide variety of forensic evidence, including body fluid stains, at the scene of a crime. In this proof-of-concept study, Raman microspectroscopy was utilized for gender identification based on dry bloodstains. Raman spectra were acquired in mapping mode from multiple spots on a bloodstain to account for intrinsic sample heterogeneity. The obtained Raman spectroscopic data showed highly similar spectroscopic features for female and male blood samples. Nevertheless, support vector machines (SVM) and artificial neuron network (ANN) statistical methods applied to the spectroscopic data allowed for differentiating between male and female bloodstains with high confidence. More specifically, the statistical approach based on a genetic algorithm (GA) coupled with an ANN classification showed approximately 98% gender differentiation accuracy for individual bloodstains. These results demonstrate the great potential of the developed method for forensic applications, although more work is needed for method validation. When this method is fully developed, a portable Raman instrument could be used for the infield identification of traces of body fluids and to obtain phenotypic information about the donor, including gender and race, as well as for the analysis of a variety of other types of forensic evidence.

  14. Biophysical basis for noninvasive skin cancer detection using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Feng, Xu; Moy, Austin J.; Markey, Mia K.; Fox, Matthew C.; Reichenberg, Jason S.; Tunnell, James W.

    2016-03-01

    Raman spectroscopy (RS) is proving to be a valuable tool for real time noninvasive skin cancer detection via optical fiber probe. However, current methods utilizing RS for skin cancer diagnosis rely on statistically based algorithms to provide tissue classification and do not elucidate the underlying biophysical changes of skin tissue. Therefore, we aim to use RS to explore skin biochemical and structural characteristics and then correlate the Raman spectrum of skin tissue with its disease state. We have built a custom confocal micro-Raman spectrometer system with an 830nm laser light. The high resolution capability of the system allows us to measure spectroscopic features from individual tissue components in situ. Raman images were collected from human skin samples from Mohs surgical biopsy, which were then compared with confocal laser scanning, two-photon fluorescence and hematoxylin and eosin-stained images to develop a linear model of skin tissue Raman spectra. In this model, macroscopic tissue spectra obtained from RS fiber probe were fit into a linear combination of individual basis spectra of primary skin constituents. The fit coefficient of the model explains the biophysical changes spanning a range of normal and various disease states. The model allows for determining parameters similar to that a pathologist is familiar reading and will be a significant guidance in developing RS diagnostic decision schemes.

  15. NIR Raman spectroscopy in medicine and biology: results and aspects

    NASA Astrophysics Data System (ADS)

    Schrader, B.; Dippel, B.; Erb, I.; Keller, S.; Löchte, T.; Schulz, H.; Tatsch, E.; Wessel, S.

    1999-05-01

    Analyses of biomaterial by 'classical' Raman spectroscopy with excitation in the visible range has not been possible since the fluorescence of many essential constituents of all animal and plant cells and tissues overlays the Raman spectra completely. Fluorescence, however, is virtually avoided, when Raman spectra are excited with the Nd : YAG laser line at 1064 nm. Within seven dissertations we explored different fields of potential applications to medical diagnostics. Identification and qualification of tissues and cells is possible. Tumors show small but significant differences to normal tissues; in order to develop a reliable tool for tumor diagnostics more research is necessary, especially a collection of reference spectra in a data bank is needed. Raman spectra of biomineralization structures in teeth and bones show pathological tissues as well as the development of new mineralized structures. NIR Raman spectra of flowers, leaves, and fruit show, without special preparation, their constituents: alkaloids, the essential oils, natural dyes, flavors, spices and drugs. They allow application to taxonomy, optimizing plant breeding and control of food.

  16. Determination of butter adulteration with margarine using Raman spectroscopy.

    PubMed

    Uysal, Reyhan Selin; Boyaci, Ismail Hakki; Genis, Hüseyin Efe; Tamer, Ugur

    2013-12-15

    In this study, adulteration of butter with margarine was analysed using Raman spectroscopy combined with chemometric methods (principal component analysis (PCA), principal component regression (PCR), partial least squares (PLS)) and artificial neural networks (ANNs). Different butter and margarine samples were mixed at various concentrations ranging from 0% to 100% w/w. PCA analysis was applied for the classification of butters, margarines and mixtures. PCR, PLS and ANN were used for the detection of adulteration ratios of butter. Models were created using a calibration data set and developed models were evaluated using a validation data set. The coefficient of determination (R(2)) values between actual and predicted values obtained for PCR, PLS and ANN for the validation data set were 0.968, 0.987 and 0.978, respectively. In conclusion, a combination of Raman spectroscopy with chemometrics and ANN methods can be applied for testing butter adulteration.

  17. Crystallographic Transitions in Perovskite Crystals Observed with Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Castillo-Andaeta, F.; Mura-Mardones, J.; Cabrera, G. B.; Cabrera, A. L.; Altamirano-Busschots, L. A.

    2001-03-01

    We have studied the interaction of carbon dioxide with the surface of ferroelectric oxides such as barium titanate and potassium niobate. The surface chemistry of KNbO3 towards CO2 changes when the oxide particles become smaller than 100 microns. We have used Micro-Raman spectroscopy to determine if the structure of the grains change depending on their size and temperature. We have been able of observing crystallographic transition in small grains of the Perovskite with Raman spectroscopy. Small grains of 50 microns BaTiO3 undergo a transition at 133 degree C and small grains of 50 microns KNbO3 undergo a transition around 224 and 408 degrees C. A correlation between CO2 desorption and crystallographic changes can be observed. References: [1] A. L. Cabrera, F. Vargas and R. Zarate J. Phys. Chem. Sol. 55 (1994) 1303. [2] A. L. Cabrera, F. Vargas and J. J. Albers, Surf. Sci. 336 (1995) 280.

  18. Identification of active fluorescence stained bacteria by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Krause, Mario; Beyer, Beatrice; Pietsch, Christian; Radt, Benno; Harz, Michaela; Rösch, Petra; Popp, Jürgen

    2008-04-01

    Microorganisms can be found everywhere e.g. in food both as useful ingredients or harmful contaminations causing food spoilage. Therefore, a fast and easy to handle analysis method is needed to detect bacteria in different kinds of samples like meat, juice or air to decide if the sample is contaminated by harmful microorganisms. Conventional identification methods in microbiology require always cultivation and therefore are time consuming. In this contribution we present an analysis approach to identify fluorescence stained bacteria on strain level by means of Raman spectroscopy. The stained bacteria are highlighted and can be localized easier against a complex sample environment e.g. in food. The use of Raman spectroscopy in combination with chemometrical methods allows the identification of single bacteria within minutes.

  19. Tip-enhanced Raman spectroscopy: From concepts to practical applications

    NASA Astrophysics Data System (ADS)

    Jiang, Nan; Kurouski, Dmitry; Pozzi, Eric A.; Chiang, Naihao; Hersam, Mark C.; Van Duyne, Richard P.

    2016-08-01

    Tip-enhanced Raman spectroscopy (TERS) is a powerful technique that integrates the vibrational fingerprinting of Raman spectroscopy and the sub-nanometer resolution of scanning probe microscopy (SPM). As a result, TERS is capable of obtaining chemical maps of analyzed specimens with exceptional lateral resolution. This is extremely valuable for the study of interactions between molecules and substrates, in addition to structural characterization of biological objects, such as viruses and amyloid fibrils, 2D polymeric materials, and monitoring electrochemical and photo-catalytic processes. In this mini-review, we discuss the most significant advances of TERS, including: super high resolution chemical imaging, monitoring of catalytic processes, incorporation of pulsed-excitation techniques, single-site electrochemistry, biosensing, and art conservation. We begin with a short overview of TERS, comparing it with other surface analytical techniques, followed by an overview of recent developments and future applications in TERS.

  20. Surface- and Tip-Enhanced Raman Spectroscopy in Catalysis

    PubMed Central

    2016-01-01

    Surface- and tip-enhanced Raman spectroscopy (SERS and TERS) techniques exhibit highly localized chemical sensitivity, making them ideal for studying chemical reactions, including processes at catalytic surfaces. Catalyst structures, adsorbates, and reaction intermediates can be observed in low quantities at hot spots where electromagnetic fields are the strongest, providing ample opportunities to elucidate reaction mechanisms. Moreover, under ideal measurement conditions, it can even be used to trigger chemical reactions. However, factors such as substrate instability and insufficient signal enhancement still limit the applicability of SERS and TERS in the field of catalysis. By the use of sophisticated colloidal synthesis methods and advanced techniques, such as shell-isolated nanoparticle-enhanced Raman spectroscopy, these challenges could be overcome. PMID:27075515

  1. Surface-enhanced Raman spectroscopy applied to food safety.

    PubMed

    Craig, Ana Paula; Franca, Adriana S; Irudayaraj, Joseph

    2013-01-01

    Surface-enhanced Raman spectroscopy (SERS) is an advanced Raman technique that enhances the vibrational spectrum of molecules adsorbed on or in the vicinity of metal particles and/or surfaces. Because of its readiness, sensitivity, and minimum sample preparation requirements, SERS is being considered as a powerful technique for food inspection. Key aspects of food-safety assurance, spectroscopy methods, and SERS are briefly discussed in an extended introduction of this review. The recent and potential advances in SERS are highlighted in sections that deal with the (a) detection of food-borne pathogenic microorganisms and (b) the detection of food contaminants and adulteration, concentrated specifically on antibiotics, drugs, hormones, melamine, and pesticides. This review provides an outlook of the work done and a perspective on the future directions of SERS as a reliable tool for food-safety assessment.

  2. Carbon Raman Spectroscopy of 36 Inter-Planetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Busemann, H.; Nittler, L. R.; Davidson, J.; Franchi, I. A.; Messenger, S.; Nakamura-Messenger, K.; Palma, R. L.; Pepin, R. O.

    2009-01-01

    Carbon Raman spectroscopy is a useful tool to determine the degree of order of organic material (OM) in extra-terrestrial matter. As shown for meteoritic OM [e.g., 2], peak parameters of D and G bands are a measure of thermal alteration, causing graphitization (order), and amorphization, e.g. during protoplanetary irradiation, causing disorder. Th e most pristine interplanetary dust particles (IDPs) may come from comets. However, their exact provenance is unknown. IDP collection during Earth?s passage through comet Grigg-Skjellerup?s dust stream ("GSC" collectors) may increase the probability of collecting fresh IDPs from a known, cometary source. We used Raman spectroscopy to compare 21 GSC-IDPs with 15 IDPs collected at different periods, and found that the variation among GSC-IDPs is larger than among non-GSC IDPs, with the most primitive IDPs being mostly GSC-IDPs.

  3. Optimizing the Laser-Pulse Configuration for Coherent Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Pestov, Dmitry; Murawski, Robert K.; Ariunbold, Gombojav O.; Wang, Xi; Zhi, Miaochan; Sokolov, Alexei V.; Sautenkov, Vladimir A.; Rostovtsev, Yuri V.; Dogariu, Arthur; Huang, Yu; Scully, Marlan O.

    2007-04-01

    We introduce a hybrid technique that combines the robustness of frequency-resolved coherent anti-Stokes Raman scattering (CARS) with the advantages of time-resolved CARS spectroscopy. Instantaneous coherent broadband excitation of several characteristic molecular vibrations and the subsequent probing of these vibrations by an optimally shaped time-delayed narrowband laser pulse help to suppress the nonresonant background and to retrieve the species-specific signal. We used this technique for coherent Raman spectroscopy of sodium dipicolinate powder, which is similar to calcium dipicolinate (a marker molecule for bacterial endospores, such as Bacillus subtilis and Bacillus anthracis), and we demonstrated a rapid and highly specific detection scheme that works even in the presence of multiple scattering.

  4. Optimizing the laser-pulse configuration for coherent Raman spectroscopy.

    PubMed

    Pestov, Dmitry; Murawski, Robert K; Ariunbold, Gombojav O; Wang, Xi; Zhi, Miaochan; Sokolov, Alexei V; Sautenkov, Vladimir A; Rostovtsev, Yuri V; Dogariu, Arthur; Huang, Yu; Scully, Marlan O

    2007-04-13

    We introduce a hybrid technique that combines the robustness of frequency-resolved coherent anti-Stokes Raman scattering (CARS) with the advantages of time-resolved CARS spectroscopy. Instantaneous coherent broadband excitation of several characteristic molecular vibrations and the subsequent probing of these vibrations by an optimally shaped time-delayed narrowband laser pulse help to suppress the nonresonant background and to retrieve the species-specific signal. We used this technique for coherent Raman spectroscopy of sodium dipicolinate powder, which is similar to calcium dipicolinate (a marker molecule for bacterial endospores, such as Bacillus subtilis and Bacillus anthracis), and we demonstrated a rapid and highly specific detection scheme that works even in the presence of multiple scattering.

  5. Raman/FTIR spectroscopy of oil shale retort gases

    SciTech Connect

    Richardson, J H; Monaco, S B; Sanborn, R H; Hirschfeld, T B; Taylor, J R

    1982-08-01

    A Raman facility was assembled in order to aid in the evaluation of the feasibility of using Raman or FTIR spectroscopy for analyzing gas mixtures of interest in oil shale. Applications considered in oil shale research included both retort monitoring and laboratory kinetic studies. Both techniques gave limits of detection between 10 and 1000 ppM for ten representative pertinent gases. Both techniques are inferior as a general analytical technique for oil shale gas analysis in comparison with mass spectroscopy, which had detection limits between 1 and 50 ppM for the same gases. The conclusion of the feasibility study was to recommend that mass spectroscopic techniques be used for analyzing gases of interest to oil shale.

  6. Modulated Raman Spectroscopy for Enhanced Cancer Diagnosis at the Cellular Level.

    PubMed

    De Luca, Anna Chiara; Dholakia, Kishan; Mazilu, Michael

    2015-06-11

    Raman spectroscopy is emerging as a promising and novel biophotonics tool for non-invasive, real-time diagnosis of tissue and cell abnormalities. However, the presence of a strong fluorescence background is a key issue that can detract from the use of Raman spectroscopy in routine clinical care. The review summarizes the state-of-the-art methods to remove the fluorescence background and explores recent achievements to address this issue obtained with modulated Raman spectroscopy. This innovative approach can be used to extract the Raman spectral component from the fluorescence background and improve the quality of the Raman signal. We describe the potential of modulated Raman spectroscopy as a rapid, inexpensive and accurate clinical tool to detect the presence of bladder cancer cells. Finally, in a broader context, we show how this approach can greatly enhance the sensitivity of integrated Raman spectroscopy and microfluidic systems, opening new prospects for portable higher throughput Raman cell sorting.

  7. Modulated Raman Spectroscopy for Enhanced Cancer Diagnosis at the Cellular Level

    PubMed Central

    De Luca, Anna Chiara; Dholakia, Kishan; Mazilu, Michael

    2015-01-01

    Raman spectroscopy is emerging as a promising and novel biophotonics tool for non-invasive, real-time diagnosis of tissue and cell abnormalities. However, the presence of a strong fluorescence background is a key issue that can detract from the use of Raman spectroscopy in routine clinical care. The review summarizes the state-of-the-art methods to remove the fluorescence background and explores recent achievements to address this issue obtained with modulated Raman spectroscopy. This innovative approach can be used to extract the Raman spectral component from the fluorescence background and improve the quality of the Raman signal. We describe the potential of modulated Raman spectroscopy as a rapid, inexpensive and accurate clinical tool to detect the presence of bladder cancer cells. Finally, in a broader context, we show how this approach can greatly enhance the sensitivity of integrated Raman spectroscopy and microfluidic systems, opening new prospects for portable higher throughput Raman cell sorting. PMID:26110401

  8. Two-dimensional femtosecond stimulated Raman spectroscopy: Observation of cascading Raman signals in acetonitrile.

    PubMed

    Wilson, Kristina C; Lyons, Brendon; Mehlenbacher, Randy; Sabatini, Randy; McCamant, David W

    2009-12-07

    A new methodology for two-dimensional Raman spectroscopy-termed two-dimensional femtosecond stimulated Raman spectroscopy (2D-FSRS)-is presented and experimental results for acetonitrile are discussed. 2D-FSRS can potentially observe molecular anharmonicity by measuring the modulation of the frequency of a probed Raman mode, at frequency omega(hi), by the coherent motion of an impulsively driven mode, at frequency omega(low). In acetonitrile, the signal is generated by driving the CCN bend (379 cm(-1)) and CC stretch (920 cm(-1)) into coherence via impulsive stimulated Raman scattering and subsequently probing the stimulated Raman spectrum of the CC stretch, the CN stretch (2250 cm(-1)) and the CH stretch (2942 cm(-1)). The resultant signal can be generated by two alternative mechanisms: a fifth-order Raman process that would directly probe anharmonic coupling between the two modes, or a third-order cascade in which a third-order coherent Raman process produces a field that goes on to participate in a third-order stimulated Raman transition. The third-order cascade is shown to dominate the 2D-FSRS spectrum as determined by comparison with the predicted magnitude of the two signals, the 2D spectrum of a mixed isotope experiment, and the concentration dependence of the signal. In acetonitrile, theoretical calculations of the vibrational anharmonicity indicate that the third-order cascade signal should be 10(4) times larger than the fifth-order Raman signal. 2D-FSRS signals are observed between acetonitrile's CCN bend, of E symmetry, and several different A(1) modes but are forbidden by symmetry in the fifth-order pathway. A 2D-FSRS spectrum of a 50:50 mixture of acetonitrile and d(3)-acetonitrile shows equivalent intensity for intramolecular coupling peaks and intermolecular coupling peaks, indicating that the observed signal cannot be probing molecular anharmonicity. Finally, the magnitudes of the 2D-FSRS peaks are observed to be proportional to the square of the

  9. Assessment of Raman Spectroscopy as a Silicone Pad Production Diagnostic

    SciTech Connect

    Saab, A P; Balazs, G B; Maxwell, R S

    2005-05-05

    Silicone pressure pads are currently deployed in the W80. The mechanical properties of these pads are largely based on the degree of crosslinking between the polymer components that comprise the raw gumstock from which they are formed. Therefore, it is desirable for purposes of both production and systematic study of these materials to have a rapid, reliable means of assaying the extent of crosslinking. The present report describes the evaluation of Raman spectroscopy in this capacity.

  10. Testing of Raman spectroscopy method for assessment of skin implants

    NASA Astrophysics Data System (ADS)

    Timchenko, E. V.; Timchenko, P. E.; Volova, L. T.; Pershutkina, S. V.; Shalkovskaya, P. Y.

    2016-11-01

    Results of studies of testing of Raman spectroscopy (RS) method for assessment of skin implants are presented. As objects of study were used samples of rat's skin material. The main spectral differences of implants using various types of their processing appear at wavenumbers 1062 cm-1, 1645 cm-1, 1553 cm-1, 851 cm-1, 863 cm-1, 814 cm-1 and 1410 cm-1. Optical coefficients for assessment of skin implants were introduced. The research results are confirmed by morphological analysis.

  11. Studies of cartilaginous tissue using Raman spectroscopy method

    NASA Astrophysics Data System (ADS)

    Timchenko, Pavel E.; Timchenko, Elena V.; Volova, Larisa T.; Dolgyshkin, Dmitry A.; Markova, Maria D.; Kylabyhova, A. Y.; Kornilin, Dmitriy V.

    2016-10-01

    The work presents the results of studies of samples of human articular surface of the knee joint, obtained by Raman spectroscopy implementedduring endoprosthesis replacement surgery . The main spectral characteristics of articular surface areas with varying degrees of cartilage damage were detected at 956 cm-1, 1066 cm-1 wavenumbers, corresponding to phosphate and carbonate, and at 1660 cm-1, 1271 cm-1 wavenumbers, corresponding to amide I and amide III. Criteria allowing to identify the degree of articular hyaline cartilage damage were introduced.

  12. Application of Raman spectroscopy method for analysis of biopolymer materials

    NASA Astrophysics Data System (ADS)

    Timchenko, Elena V.; Timchenko, Pavel E.; Volchkov, S. E.; Mahortova, Alexsandra O.; Asadova, Anna A.; Kornilin, Dmitriy V.

    2016-10-01

    This work presents the results of spectral analysis of biopolymer materials that are implemented in medical sphere. Polymer samples containing polycaprolactone and iron oxides of different valence were used in the studies. Raman spectroscopy method was used as a main control method. Relative content of iron and polycaprolactone in studied materials was assessed using ratio of RS intensities values at 604 cm-1 and 1726 cm-1 wavenumbers to intensity value of 1440 cm-1 line.

  13. Fourier-Transform Raman Spectroscopy Of Biological Assemblies

    NASA Astrophysics Data System (ADS)

    Levin, Ira W.; Lewis, E. Neil

    1989-12-01

    Although the successful coupling of Raman scattered near-infrared radiation to a Michelson interferometer has recently created an outburst of intense interest in Fourier-transform (FT) Raman spectrometry," extended applications of the technique to macromolecular assemblies of biochemical and biophysical relevance have not progressed as rapidly as studies directed primarily at more conventional chemical characterizations. Since biological materials sampled with visible laser excitation sources typically emit a dominant fluorescence signal originating either from the intrinsic fluorescence of the molecular scatterer or from unrelenting contaminants, the use of near-infrared Nd:YAG laser excitation offers a convenient approach for avoiding this frequently overwhelming effect. In addition, the FT-Raman instrumentation provides a means of eliminating the deleterious resonance and decomposition effects often observed with the more accessible green and blue laser emissions. However, in choosing the incident near-infrared wavelength at, for example, 1064nm, the Raman scattered intensity decreases by factors of eighteen to forty from the Raman emissions induced by the shorter, visible excitations. Depending upon the experiment, this disadvantage is offset by the throughput and multiplex advantages afforded by the interferometric design. Thus, for most chemical systems, near-infrared FT-Raman spectroscopy, clearly provides a means for obtaining vibrational Raman spectra from samples intractable to the use of visible laser sources. In particular, for neat liquids, dilute solutions or polycrystalline materials, the ability to achieve high quality, reproducible spectra is, with moderate experience and perhaps relatively high laser powers, as straightforward as the conventional methods used to obtain Raman spectra with visible excitation and dispersive monochromators. In using near-infrared FT techniques to determine the Raman spectra of biological samples, one encounters new

  14. Infrared and NIR Raman spectroscopy in medical microbiology

    NASA Astrophysics Data System (ADS)

    Naumann, Dieter

    1998-04-01

    FTIR and FT-NIR Raman spectra of intact microbial cells are highly specific, fingerprint-like signatures which can be used to (i) discriminate between diverse microbial species and strains, (ii) detect in situ intracellular components or structures such as inclusion bodies, storage materials or endospores, (iii) detect and quantify metabolically released CO2 in response to various different substrate, and (iv) characterize growth-dependent phenomena and cell-drug interactions. The characteristic information is extracted from the spectral contours by applying resolution enhancement techniques, difference spectroscopy, and pattern recognition methods such as factor-, cluster-, linear discriminant analysis, and artificial neural networks. Particularly interesting applications arise by means of a light microscope coupled to the spectrometer. FTIR spectra of micro-colonies containing less than 103 cells can be obtained from colony replica by a stamping technique that transfers micro-colonies growing on culture plates to a special IR-sample holder. Using a computer controlled x, y- stage together with mapping and video techniques, the fundamental tasks of microbiological analysis, namely detection, enumeration, and differentiation of micro- organisms can be integrated in one single apparatus. FTIR and NIR-FT-Raman spectroscopy can also be used in tandem to characterize medically important microorganisms. Currently novel methodologies are tested to take advantage of the complementary information of IR and Raman spectra. Representative examples on medically important microorganisms will be given that highlight the new possibilities of vibrational spectroscopies.

  15. Detection of propofol concentrations in blood by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Wróbel, M. S.; Gnyba, M.; UrniaŻ, R.; Myllylä, T. S.; Jedrzejewska-Szczerska, M.

    2015-07-01

    In this paper we present a proof-of-concept of a Raman spectroscopy-based approach for measuring the content of propofol, a common anesthesia drug, in whole human blood, and plasma, which is intended for use during clinical procedures. This method utilizes the Raman spectroscopy as a chemically-sensitive method for qualitative detection of the presence of a drug and a quantitative determination of its concentration. A number of samples from different patients with added various concentrations of propofol IV solution were measured. This is most equivalent to a real in-vivo situation. Subsequent analysis of a set of spectra was carried out to extract qualitative and quantitative information. We conclude, that the changes in the spectra of blood with propofol, overlap with the most prominent lines of the propofol solution, especially at spectral regions: 1450 cm-1, 1250- 1260 cm-1, 1050 cm-1, 875-910 cm-1, 640 cm-1. Later, we have introduced a quantitative analysis program based on correlation matrix closest fit, and a LOO cross-validation. We have achieved 36.67% and 60% model precision when considering full spectra, or specified bands, respectively. These results prove the possibility of using Raman spectroscopy for quantitative detection of propofol concentrations in whole human blood.

  16. Summary report of FY 1995 Raman spectroscopy technology development

    SciTech Connect

    Douglas, J.G.

    1995-11-01

    US DOE is sponsoring development of remote, fiber-optic Raman spectroscopy for rapid chemical characterization of Hanford high-level radioactive tank waste. Deployment targets for this technology are analytical hot cells and, via the Light-Duty Utility Arm and cone penetrometer, the waste tanks themselves. Perceived benefits of fiber-optic Raman spectroscopy are (1) rapid generation of tank-waste safety-related data, (2) reduced personnel exposure to highly radioactive waste, (3) reduced tank-waste sampling and analysis costs, and (4) reduced radioactive analytical waste. This document presents the results from the investigation of two dispersive, transmission-grating Raman systems and four fiber-optic Raman probe designs with non-radioactive tank waste simulants. One Raman system used a 532-nm, 400 mW, solid-state laser; the other used a 785-nm, 500 mW, solid-state diode laser. We found (1) the transmission-grating systems had better wavelength stability than previously tried Czerny-Turner-Based systems and (2) the 785-nm system`s specie detection limits in the spectral fingerprint regiion were at least as good as those for the 532-nm system. Based on these results, and the fact that some tank wastes luminesce with 514.5nm excitation, we selected the 785-nm system for hot-cell use. Of the four probes tested, three had a ``six-around-on`` fiber probe design; the fourth probe was a one-fiber-in-one-fiber-out, diffuse-relectance design. Comparison of the four probes` signal-to-noise rations, rations, transmission/collection efficiencies, and probe-silica Raman backgrounds showed that the best probe for use with Hanford-Site tank waste should (1) be filtered as close to the probe tip as possible to reduce the probe-silica Raman background and (2) have multiple collection fibers. The responses of all the probes tested showed a strong dependence on probe-sample distance, and the presence of a probe window appeared to increase the probe`s silica Raman background.

  17. Raman Spectroscopy and instrumentation for monitoring soil carbon systems.

    SciTech Connect

    Stokes, D.L.

    2003-12-08

    This work describes developments in the application of Raman scattering and surface-enhanced Raman scattering (SERS) towards the assessment/characterization of carbon in soil. In the past, the nonspecific total carbon mass content of soil samples has generally been determined through mass loss techniques and elemental analysis. However, because of the concern over CO{sub 2} buildup in the atmosphere and its possible role in the ''Greenhouse Effect,'' there is a need for better-defined models of global cycling of carbon. As a means towards this end, there is a need to know more about the structure and functionality of organic materials in soil. Raman spectroscopy may therefore prove to be an exceptional tool in soil carbon analysis. Based on vibrational transitions of irradiated molecules, it provides structural information that is often suitable for sample identification. Furthermore, Raman scattering yields very fine spectral features which offer the potential for multicomponent sample analysis with minimal or no sample pretreatment. Although the intensity of Raman scattering is generally extremely low, the surface-enhanced Raman scattering (SERS) effect can greatly enhance Raman signals (10{sup 6}-10{sup 8} range) through the adsorption of compounds on specially roughened metal surfaces. In our laboratory, we have investigated copper, gold and silver as possible substrate metals in the fabrication of SERS substrates. These substrates have included metal-coated microparticles, metal island films, and redox-roughened metal foils. We have evaluated several laser excitation sources spanning the 515-785 nm range for both Raman and SERS analysis. For this particular study, we have selected fulvic and humic acids as models for establishing the feasibility of using Raman and SERS in soil carbon analysis. Our studies thus far have demonstrated that copper substrates perform best in the SERS detection of humic and fulvic acids, particularly when coupled to electrochemical

  18. Raman spectroscopy - in situ characterization of growth and surface processes

    NASA Astrophysics Data System (ADS)

    Perkins, James Robert

    The goal of this thesis is to expand on the usefulness of Raman spectroscopy as an in situ probe to aid in the growth and implementation of electronic, optical, and biodetection materials. We accomplish this goal by developing two diverse optical characterization projects. In the first project, an autoclave similar to those used in solvothermal growth which has been outfitted with an optical window is used to collect vibrational spectra of solvents and mineralizers commonly used in the ammonothermal growth of gallium nitride. Secondly, novel silver nanowires created by ferroelectric lithography are evaluated by surface enhanced micro-Raman spectroscopy for use as surface enhanced substrates for low detection limit or single molecule bio-detectors. Raman spectroscopy is already a widely accepted method to characterize and identify a wide variety of materials. Vibrational spectra can yield much information on the presence of chemical species as well as information regarding the phase and interactive properties. Because Raman spectroscopy is a generally non-intrusive technique it is ideal for analysis of hazardous or far-from-ambient liquids, gases, or solids. This technique is used in situ to characterize crystal growth and surface enhanced photochemistry. The phenomenon of Surface Enhanced Raman Spectroscopy (SERS) has been observed in many systems but some fundamental understanding is still lacking and the technique has been slow to transition from the laboratory to the industry. Aggregated colloids and lithographically created islands have shown the best success as reproducible substrates for SERS detection. These techniques, however, lack control over shape, size, and position of the metal nanoparticles which leave them reliant on hotspots. Because of the potential for control of the position of aggregates, ferroelectric lithographically created silver nanowires are evaluated as a potential SERS substrate using pyridine, benzoic acid, and Rhodamine 6g. Surface

  19. Secondary Structure and Glycosylation of Mucus Glycoproteins by Raman Spectroscopies

    PubMed Central

    2016-01-01

    The major structural components of protective mucus hydrogels on mucosal surfaces are the secreted polymeric gel-forming mucins. The very high molecular weight and extensive O-glycosylation of gel-forming mucins, which are key to their viscoelastic properties, create problems when studying mucins using conventional biochemical/structural techniques. Thus, key structural information, such as the secondary structure of the various mucin subdomains, and glycosylation patterns along individual molecules, remains to be elucidated. Here, we utilized Raman spectroscopy, Raman optical activity (ROA), circular dichroism (CD), and tip-enhanced Raman spectroscopy (TERS) to study the structure of the secreted polymeric gel-forming mucin MUC5B. ROA indicated that the protein backbone of MUC5B is dominated by unordered conformation, which was found to originate from the heavily glycosylated central mucin domain by isolation of MUC5B O-glycan-rich regions. In sharp contrast, recombinant proteins of the N-terminal region of MUC5B (D1-D2-D′-D3 domains, NT5B), C-terminal region of MUC5B (D4-B-C-CK domains, CT5B) and the Cys-domain (within the central mucin domain of MUC5B) were found to be dominated by the β-sheet. Using these findings, we employed TERS, which combines the chemical specificity of Raman spectroscopy with the spatial resolution of atomic force microscopy to study the secondary structure along 90 nm of an individual MUC5B molecule. Interestingly, the molecule was found to contain a large amount of α-helix/unordered structures and many signatures of glycosylation, pointing to a highly O-glycosylated region on the mucin. PMID:27791356

  20. Photonic-Crystal-Fiber Raman Spectroscopy for Real-Time, Gas-Composition Analysis

    SciTech Connect

    Buric, M.P.; Chen, K.P.; Falk, J.; Woodruff, S.D.

    2008-01-01

    Raman spectroscopy in a hollow-core, photonic crystal fiber is reported. The fiber is used as the sample cell and the Stokes light collector. Raman signals were observed for major species in air and natural gas.

  1. Core-Shell Nanoparticle-Enhanced Raman Spectroscopy.

    PubMed

    Li, Jian-Feng; Zhang, Yue-Jiao; Ding, Song-Yuan; Panneerselvam, Rajapandiyan; Tian, Zhong-Qun

    2017-03-08

    Core-shell nanoparticles are at the leading edge of the hot research topics and offer a wide range of applications in optics, biomedicine, environmental science, materials, catalysis, energy, and so forth, due to their excellent properties such as versatility, tunability, and stability. They have attracted enormous interest attributed to their dramatically tunable physicochemical features. Plasmonic core-shell nanomaterials are extensively used in surface-enhanced vibrational spectroscopies, in particular, surface-enhanced Raman spectroscopy (SERS), due to the unique localized surface plasmon resonance (LSPR) property. This review provides a comprehensive overview of core-shell nanoparticles in the context of fundamental and application aspects of SERS and discusses numerous classes of core-shell nanoparticles with their unique strategies and functions. Further, herein we also introduce the concept of shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) in detail because it overcomes the long-standing limitations of material and morphology generality encountered in traditional SERS. We then explain the SERS-enhancement mechanism with core-shell nanoparticles, as well as three generations of SERS hotspots for surface analysis of materials. To provide a clear view for readers, we summarize various approaches for the synthesis of core-shell nanoparticles and their applications in SERS, such as electrochemistry, bioanalysis, food safety, environmental safety, cultural heritage, materials, catalysis, and energy storage and conversion. Finally, we exemplify about the future developments in new core-shell nanomaterials with different functionalities for SERS and other surface-enhanced spectroscopies.

  2. New techniques in antibiotic discovery and resistance: Raman spectroscopy.

    PubMed

    Carey, Paul R; Heidari-Torkabadi, Hossein

    2015-09-01

    Raman spectroscopy can play a role in both antibiotic discovery and understanding the molecular basis of resistance. A major challenge in drug development is to measure the population of the drug molecules inside a cell line and to follow the chemistry of their reactions with intracellular targets. Recently, a protocol based on Raman microscopy has been developed that achieves these goals. Drug candidates are soaked into live bacterial cells and subsequently the cells are frozen and freeze-dried. The samples yield exemplary (nonresonance) Raman data that provide a measure of the number of drug molecules within each cell, as well as details of drug-target interactions. Results are discussed for two classes of compounds inhibiting either β-lactamase or dihydrofolate reductase enzymes in a number of Gram-positive or Gram-negative cell lines. The advantages of the present protocol are that it does not use labels and it can measure the kinetics of cell-compound uptake on the time scale of minutes. Spectroscopic interpretation is supported by in vitro Raman experiments. Studying drug-target interactions in aqueous solution and in single crystals can provide molecular level insights into drug-target interactions, which, in turn, provide the underpinnings of our understanding of data from bacterial cells. Thus, the applicability of X-ray crystallographic-derived data to in-cell chemistry can be tested.

  3. Femtosecond stimulated Raman spectroscopy of flavin after optical excitation.

    PubMed

    Weigel, A; Dobryakov, A; Klaumünzer, B; Sajadi, M; Saalfrank, P; Ernsting, N P

    2011-04-07

    In blue-light photoreceptors using flavin (BLUF), the signaling state is formed already within several 100 ps after illumination, with only small changes of the absorption spectrum. The accompanying structural evolution can, in principle, be monitored by femtosecond stimulated Raman spectroscopy (FSRS). The method is used here to characterize the excited-state properties of riboflavin and flavin adenine dinucleotide in polar solvents. Raman modes are observed in the range 90-1800 cm(-1) for the electronic ground state S(0) and upon excitation to the S(1) state, and modes >1000 cm(-1) of both states are assigned with the help of quantum-chemical calculations. Line shapes are shown to depend sensitively on resonance conditions. They are affected by wavepacket motion in any of the participating electronic states, resulting in complex amplitude modulation of the stimulated Raman spectra. Wavepackets in S(1) can be marked, and thus isolated, by stimulated-emission pumping with the picosecond Raman pulses. Excited-state absorption spectra are obtained from a quantitative comparison of broadband transient fluorescence and absorption. In this way, the resonance conditions for FSRS are determined. Early differences of the emission spectrum depend on excess vibrational energy, and solvation is seen as dynamic Stokes shift of the emission band. The nπ* state is evidenced only through changes of emission oscillator strength during solvation. S(1) quenching by adenine is seen with all methods in terms of dynamics, not by spectral intermediates.

  4. Laser Raman Spectroscopy in studies of corrosion and electrocatalysis

    SciTech Connect

    Melendres, C.A.

    1988-01-01

    Laser Raman Spectroscopy (LRS) has become an important tool for the in-situ structural study of electrochemical systems and processes in recent years. Following a brief introduction of the experimental techniques involved in applying LRS to electrochemical systems, we survey the literature for examples of studies in the inhibition of electrode reactions by surface films (e.g., corrosion and passivation phenomena) as well as the acceleration of reactions by electro-sorbates (electrocatalysis). We deal mostly with both normal and resonance Raman effects on fairly thick surface films in contrast to surface-enhanced Raman investigations of monolayer adsorbates, which is covered in another lecture. Laser Raman spectroelectrochemical studies of corrosion and film formation on such metals as Pb, Ag, Fe, Ni, Co, Cr, Au, stainless steel, etc. in various solution conditions are discussed. Further extension of the technique to studies in high-temperature and high-pressure aqueous environments is demonstrated. Results of studies of the structure of corrosion inhibitors are also presented. As applications of the LRS technique in the area of electrocatalysis, we cite studies of the structure of transition metal macrocyclic compounds, i.e., phthalocyanines and porphyrins, used for catalysis of the oxygen reduction reaction. 104 refs., 20 figs.

  5. Reductive unfolding of serum albumins uncovered by Raman spectroscopy.

    PubMed

    David, Catalina; Foley, Sarah; Mavon, Christophe; Enescu, Mironel

    2008-07-01

    The reductive unfolding of bovine serum albumin (BSA) and human serum albumin (HSA) induced by dithiothreitol (DTT) is investigated using Raman spectroscopy. The resolution of the S-S Raman band into both protein and oxidized DTT contributions provides a reliable basis for directly monitoring the S-S bridge exchange reaction. The related changes in the protein secondary structure are identified by analyzing the protein amide I Raman band. For the reduction of one S-S bridge of BSA, a mean Gibbs free energy of -7 kJ mol(-1) is derived by studying the reaction equilibrium. The corresponding value for the HSA S-S bridge reduction is -2 kJ mol(-1). The reaction kinetics observed via the S-S or amide I Raman bands are identical giving a reaction rate constant of (1.02 +/- 0.11) M(-1) s(-1) for BSA. The contribution of the conformational Gibbs free energy to the overall Gibbs free energy of reaction is further estimated by combining experimental data with ab initio calculations.

  6. Line-scanning Raman imaging spectroscopy for detection of fingerprints.

    PubMed

    Deng, Sunan; Liu, Le; Liu, Zhiyi; Shen, Zhiyuan; Li, Guohua; He, Yonghong

    2012-06-10

    Fingerprints are the best form of personal identification for criminal investigation purposes. We present a line-scanning Raman imaging system and use it to detect fingerprints composed of β-carotene and fish oil on different substrates. Although the line-scanning Raman system has been used to map the distribution of materials such as polystyrene spheres and minerals within geological samples, this is the first time to our knowledge that the method is used in imaging fingerprints. Two Raman peaks of β-carotene (501.2, 510.3 nm) are detected and the results demonstrate that both peaks can generate excellent images with little difference between them. The system operates at a spectra resolution of about 0.4 nm and can detect β-carotene signals in petroleum ether solution with the limit of detection of 3.4×10(-9) mol/L. The results show that the line-scanning Raman imaging spectroscopy we have built has a high accuracy and can be used in the detection of latent fingerprints in the future.

  7. Fourier transform infrared spectroscopy and Raman spectroscopy as tools for identification of steryl ferulates.

    PubMed

    Mandak, Eszter; Zhu, Dan; Godany, Tamas A; Nyström, Laura

    2013-03-13

    Steryl ferulates are a mixture of minor bioactive compounds, possessing well-established health benefits. However, individual steryl ferulate species show structural differences, which seem to substantially influence their health-promoting potential. In this study, we tested Fourier transform infrared (FTIR) spectroscopy and Raman spectroscopy, as potential tools in the identification of steryl ferulates. On the basis of our spectral data obtained from various individual steryl ferulates and steryl ferulate mixtures extracted from rice (γ-oryzanol), corn bran, and wheat bran, we provide comprehensive peak assignment tables for both FTIR and Raman. With the help of FTIR spectroscopy, structural differences between individual steryl ferulates were possible to identify, such as the presence of the cyclopropane ring and additional differences in the side chain of the sterane skeleton. Data obtained with Raman spectroscopy provided us with a control for FTIR peak assignment and also with some additional information on the samples. However, detecting structural differences between steryl ferulates was not possible with this method. We consider that FTIR spectroscopy alone or combined with Raman provides detailed data on the structures of steryl ferulates. Moreover, thorough peak assignment tables presented in this study could prove to be helpful tools when identifying steryl ferulates, especially as a group, in future studies.

  8. Probing single cells of purple sulfur bacteria with Raman spectroscopy: carotenoids and elemental sulfur.

    PubMed

    Oren, Aharon; Mana, Lily; Jehlička, Jan

    2015-03-01

    We explored the use of Raman spectroscopy to simultaneously monitor the presence of different biomarkers (carotenoids, elemental sulfur) within single cells of the purple sulfur photosynthetic bacteria Allochromatium vinosum and A. warmingii. Raman microspectrometry using excitation at 532 nm allowed the detection of different carotenoids. Raman signals of elemental sulfur appeared soon after feeding starved cells with sulfide. Raman spectroscopy is thus a convenient and sensitive technique to qualitatively and semiquantitatively assess the presence of different compounds of interest within single bacterial cells.

  9. Endoscopic Raman Spectroscopy for Molecular Fingerprinting of Gastric Cancer: Principle to Implementation.

    PubMed

    Kim, Hyung Hun

    2015-01-01

    Currently, positive endoscopic biopsy is the standard criterion for gastric cancer diagnosis but is invasive, often inconsistent, and delayed although early detection and early treatment is the most important policy. Raman spectroscopy is a spectroscopic technique based on inelastic scattering of monochromatic light. Raman spectrum represents molecular composition of the interrogated volume providing a direct molecular fingerprint. Several investigations revealed that Raman spectroscopy can differentiate normal, dysplastic, and adenocarcinoma gastric tissue with high sensitivity and specificity. Moreover, this technique can indentify malignant ulcer and showed the capability to analyze the carcinogenesis process. Automated on-line Raman spectral diagnostic system raised possibility to use Raman spectroscopy in clinical field. Raman spectroscopy can be applied in many fields such as guiding a target biopsy, optical biopsy in bleeding prone situation, and delineating the margin of the lesion. With wide field technology, Raman spectroscopy is expected to have specific role in our future clinical field.

  10. Characterization of alunite supergroup minerals by Raman spectroscopy.

    PubMed

    Maubec, N; Lahfid, A; Lerouge, C; Wille, G; Michel, K

    2012-10-01

    Raman spectroscopy has been used to study the molecular structure of different natural minerals of the alunite supergroup (AB(3)(XO(4))(2)(OH)(6)), with A=K(+), Na(+), Ca(2+), Sr(2+), Ba(2+), B=Al(3+), Fe(3+) and X=S(6+), P(5+). The influence of the ions, in A-, B- and X-sites, is highlighted in the Raman spectra by variations in the position of certain vibrations and is discussed in association with published crystallographic data in order to describe the observed differences. It was found that A-site substitutions are characterized by wavenumber shifts of the vibrations involving hydroxyl groups. The positions of these vibrational bands vary linearly with the ionic radius of the ions in this site. B-site substitutions induce shifts of all bands due to structural modifications that lead to differences in the chemical environment around the hydroxyl and XO(4) groups and changes in B-O bond lengths. A correlation showed that these shifts correlate well with the ionic radii of the B-ions. The spectra of compounds containing both sulfate and phosphate groups are described by numerous vibration bands caused by a complex elemental composition and a symmetry change of the XO(4) groups. This study has also made it possible to generalize substitution effects on the wavenumbers of several vibrations and show that Raman spectroscopy could be a powerful tool for identifying and distinguishing minerals of the alunite supergroup.

  11. In vivo lipidomics using single-cell Raman spectroscopy

    PubMed Central

    Wu, Huawen; Volponi, Joanne V.; Oliver, Ann E.; Parikh, Atul N.; Simmons, Blake A.; Singh, Seema

    2011-01-01

    We describe a method for direct, quantitative, in vivo lipid profiling of oil-producing microalgae using single-cell laser-trapping Raman spectroscopy. This approach is demonstrated in the quantitative determination of the degree of unsaturation and transition temperatures of constituent lipids within microalgae. These properties are important markers for determining engine compatibility and performance metrics of algal biodiesel. We show that these factors can be directly measured from a single living microalgal cell held in place with an optical trap while simultaneously collecting Raman data. Cellular response to different growth conditions is monitored in real time. Our approach circumvents the need for lipid extraction and analysis that is both slow and invasive. Furthermore, this technique yields real-time chemical information in a label-free manner, thus eliminating the limitations of impermeability, toxicity, and specificity of the fluorescent probes common in currently used protocols. Although the single-cell Raman spectroscopy demonstrated here is focused on the study of the microalgal lipids with biofuel applications, the analytical capability and quantitation algorithms demonstrated are applicable to many different organisms and should prove useful for a diverse range of applications in lipidomics. PMID:21310969

  12. Surface-enhanced Raman spectroscopy for homeland defense

    NASA Astrophysics Data System (ADS)

    Spencer, Kevin M.; Sylvia, James M.; Marren, Peter J.; Bertone, Jane F.; Christesen, Steven D.

    2004-03-01

    Surface-enhanced Raman spectroscopy (SERS) is a spectroscopic technique that enables trace detection of analytes of relevance using fieldable equipment. SERS uses the enhanced Raman signals observed when an analyte adsorbs to a roughened metal substrate, generally gold, silver, or copper. Coupled to a microscope, single molecule detection has been demonstrated. With a fieldable instrument, enhancements of 108 compared to unenhanced Raman spectroscopy are expected, allowing trace detection in the field. Proper development of the metal substrate will optimize the sensitivity and selectivity towards the analytes of interest. In this presentation, we will discuss applications under development at EIC Laboratories that are of importance to Homeland Defense. We will review the capabilities of SERS to detect buried explosives, explosives associated with nuclear weaponry and chemicals involved in the nuclear enrichment process. We will discuss the detection of chemical and biological warfare agents in the water supply in research performed under the Joint Service Agent Water Monitor. We will demonstrate the current detection limits, the reproducibility of the signal, and results collected using actual chemical warfare agents, and show how the results can be extended to vapor detection. We will also discuss the current state-of-the art for fieldable instrumentation. The emphasis on portability and speed will be stressed; SERS acquisitions are restricted to 30 s or less.

  13. Detection of hazardous chemicals using field-portable Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Wright, Cherylyn W.; Harvey, Scott D.; Wright, Bob W.

    2003-07-01

    A major challenge confronting emergency response, border control, and other security-related functions is the accurate, rapid, and safe identification of potentially hazardous chemicals outside a laboratory environment. Raman spectroscopy is a rapid, non-intrusive technique that can be used to confidently identify many classes of hazardous and potentially explosive compounds based on molecular vibration information. Advances in instrumentation now allow reliable field - portable measurements to be made. Before the Raman technique can be effectively applied and be accepted within the scientific community, realistic studies must be performed to develop methods, define limitations, and rigorously evaluate its effectiveness. Examples of a variety of chemicals (including neat and diluted chemical warfare [CW] agents, a CW agent precursor, a biological warfare (BW)-related compound, an illicit drug, and explosives) identified using Raman spectroscopy in various types of containers and on surfaces are given, as well as results from a blind field test of 29 unknown samples which included CW agent precursors and/or degradation products, solvents associated with CW agent production, pesticides, explosives, and BW toxins (mostly mycotoxins). Additionally, results of experimental studies to evaluate the analysis of flammable organic solvents, propellants, military explosives, mixtures containing military explosives, shock-sensitive explosives, and gun powders are described with safety guidelines. Spectral masks for screening unknown samples for explosives and nerve agents are given.

  14. Raman spectroscopy study of calcium oxalate extracted from cacti stems.

    PubMed

    Frausto-Reyes, Claudio; Loza-Cornejo, Sofia; Terrazas, Teresa; Terrazas, Tania; Miranda-Beltrán, María de la Luz; Aparicio-Fernández, Xóchitl; López-Macías, Brenda M; Morales-Martínez, Sandra E; Ortiz-Morales, Martín

    2014-01-01

    To find markers that distinguish the different Cactaceae species, by using near infrared Raman spectroscopy and scanning electron microscopy, we studied the occurrence, in the stem, of solid deposits in five Cactaceae species (Coryphantha clavata, Ferocactus latispinus, Opuntia ficus-indica, O. robusta, and O. strepthacantha) collected from their natural habitats from a region of México. The deposits in the tissues usually occurred as spheroidal aggregates, druses, or prismatic crystals. From the Raman spectra, the crystals were identified either as calcium oxalate monohydrate (CaC2O4·H2O) or calcium oxalate dihydrate (CaC2O4·2H2O). Opuntia species (subfamily Opuntioideae) showed the presence of CaC2O4·H2O, and the deposition of CaC2O4·2H2O was present in C. clavata and F. latispinus (subfamily Cactoideae, Cacteae tribe). As a punctual technique, Raman spectroscopy seems to be a useful tool to identify crystal composition. In addition to allowing the analysis of crystal morphology, this spectroscopic technique can be used to identify Cactaceae species and their chemotaxonomy.

  15. Surface-enhanced Raman spectroscopy: substrate-related issues.

    PubMed

    Lin, Xiu-Mei; Cui, Yan; Xu, Yan-Hui; Ren, Bin; Tian, Zhong-Qun

    2009-08-01

    After over 30 years of development, surface-enhanced Raman spectroscopy (SERS) is now facing a very important stage in its history. The explosive development of nanoscience and nanotechnology has assisted the rapid development of SERS, especially during the last 5 years. Further development of surface-enhanced Raman spectroscopy is mainly limited by the reproducible preparation of clean and highly surface enhanced Raman scattering (SERS) active substrates. This review deals with some substrate-related issues. Various methods will be introduced for preparing SERS substrates of Ag and Au for analytical purposes, from SERS substrates prepared by electrochemical or vacuum methods, to well-dispersed Au or Ag nanoparticle sols, to nanoparticle thin film substrates, and finally to ordered nanostructured substrates. Emphasis is placed on the analysis of the advantages and weaknesses of different methods in preparing SERS substrates. Closely related to the application of SERS in the analysis of trace sample and unknown systems, the existing cleaning methods for SERS substrates are analyzed and a combined chemical adsorption and electrochemical oxidation method is proposed to eliminate the interference of contaminants. A defocusing method is proposed to deal with the laser-induced sample decomposition problem frequently met in SERS measurement to obtain strong signals. The existing methods to estimate the surface enhancement factor, a criterion to characterize the SERS activity of a substrate, are analyzed and some guidelines are proposed to obtain the correct enhancement factor.

  16. Raman spectroscopy of PIN hydrogenated amorphous silicon solar cells

    NASA Astrophysics Data System (ADS)

    Keya, Kimitaka; Torigoe, Yoshihiro; Toko, Susumu; Yamashita, Daisuke; Seo, Hyunwoong; Itagaki, Naho; Koga, Kazunori; Shiratani, Masaharu

    2015-09-01

    Light-induced degradation of hydrogenated amorphous silicon (a-Si:H) is a key issue for enhancing competitiveness in solar cell market. A-Si:H films with a lower density of Si-H2 bonds shows higher stability. Here we identified Si-H2 bonds in PIN a-Si:H solar cells fabricated by plasma CVD using Raman spectroscopy. A-Si:H solar cell has a structure of B-doped μc-SiC:H (12.5 nm)/ non-doped a-Si:H (250nm)/ P-doped μc-Si:H (40 nm) on glass substrates (Asahi-VU). By irradiating HeNe laser light from N-layer, peaks correspond to Si-H2 bonds (2100 cm-1) and Si-H bonds (2000 cm-1) have been identified in Raman scattering spectra. The intensity ratio of Si-H2 and Si-H ISiH2/ISiH is found to correlate well to light induced degradation of the cells Therefore, Raman spectroscopy is a promising method for studying origin of light-induced degradation of PIN solar cells.

  17. Raman spectroscopy for DNA quantification in cell nucleus.

    PubMed

    Okotrub, K A; Surovtsev, N V; Semeshin, V F; Omelyanchuk, L V

    2015-01-01

    Here we demonstrate the feasibility of a novel approach to quantify DNA in cell nuclei. This approach is based on spectroscopy analysis of Raman light scattering, and avoids the problem of nonstoichiometric binding of dyes to DNA, as it directly measures the signal from DNA. Quantitative analysis of nuclear DNA contribution to Raman spectrum could be reliably performed using intensity of a phosphate mode at 1096 cm(-1) . When compared to the known DNA standards from cells of different animals, our results matched those values at error of 10%. We therefore suggest that this approach will be useful to expand the list of DNA standards, to properly adjust the duration of hydrolysis in Feulgen staining, to assay the applicability of fuchsines for DNA quantification, as well as to measure DNA content in cells with complex hydrolysis patterns, when Feulgen densitometry is inappropriate.

  18. Rapid Classification of Ordinary Chondrites Using Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Fries, M.; Welzenbach, L.

    2014-01-01

    Classification of ordinary chondrites is typically done through measurements of the composition of olivine and pyroxenes. Historically, this measurement has usually been performed via electron microprobe, oil immersion or other methods which can be costly through lost sample material during thin section preparation. Raman microscopy can perform the same measurements but considerably faster and with much less sample preparation allowing for faster classification. Raman spectroscopy can facilitate more rapid classification of large amounts of chondrites such as those retrieved from North Africa and potentially Antarctica, are present in large collections, or are submitted to a curation facility by the public. With development, this approach may provide a completely automated classification method of all chondrite types.

  19. Surface enhanced raman spectroscopy studies on triglycine sulphate single crystals

    NASA Astrophysics Data System (ADS)

    Parameswari, A.; Mohamed Asath, R.; Premkumar, R.; Milton Franklin Benial, A.

    2017-01-01

    Adsorption characteristics of triglycine sulphate (TGS) on silver (Ag) surface were investigated based on density functional theory calculations and surface enhanced Raman spectroscopy (SERS) technique. The single crystals of TGS were grown by slow evaporation method. Ag nanoparticles (Ag NPs) were prepared by solution combustion method and characterized. The calculated and observed structural parameters of TGS molecule were compared. Raman and SERS spectra for TGS single crystal were studied experimentally and validated theoretically. Frontier molecular orbitals (FMOs) analysis was carried out for TGS and TGS adsorbed on Ag surface. The second harmonic generation measurements confirm the nonlinear optical (NLO) activity of the TGS molecule. SERS spectral analysis reveals that the TGS adsorbed as tilted orientation on the silver surface. The theoretical and experimental results evidence the suitability of the grown TGS single crystal for optoelectronic applications.

  20. Towards field malaria diagnosis using surface enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Keren; Xiong, Aoli; Yuen, Clement; Preiser, Peter; Liu, Quan

    2016-04-01

    We report three strategies of surface enhanced Raman spectroscopy (SERS) for β-hematin and hemozoin detection in malaria infected human blood, which can be potentially developed for field malaria diagnosis. In the first strategy, we used silver coated magnetic nanoparticles (Fe3O4@Ag) in combination with an external magnetic field to enhance the Raman signal of β-hematin. Then we developed two SERS methods without the requirement of magnetic field for malaria infection diagnosis. In Method 1, silver nanoparticles were synthesized separately and then mixed with lysed blood just like in traditional SERS measurements; while in Method 2, we developed an ultrasensitive SERS method by synthesizing silver nanoparticles directly inside the parasites of Plasmodium falciparum. Method 2 can be also used to detect single parasites in the ring stage.

  1. Controlling protected designation of origin of wine by Raman spectroscopy.

    PubMed

    Mandrile, Luisa; Zeppa, Giuseppe; Giovannozzi, Andrea Mario; Rossi, Andrea Mario

    2016-11-15

    In this paper, a Fourier Transform Raman spectroscopy method, to authenticate the provenience of wine, for food traceability applications was developed. In particular, due to the specific chemical fingerprint of the Raman spectrum, it was possible to discriminate different wines produced in the Piedmont area (North West Italy) in accordance with i) grape varieties, ii) production area and iii) ageing time. In order to create a consistent training set, more than 300 samples from tens of different producers were analyzed, and a chemometric treatment of raw spectra was applied. A discriminant analysis method was employed in the classification procedures, providing a classification capability (percentage of correct answers) of 90% for validation of grape analysis and geographical area provenance, and a classification capability of 84% for ageing time classification. The present methodology was applied successfully to raw materials without any preliminary treatment of the sample, providing a response in a very short time.

  2. The assessment of human skin biomatrixes using raman spectroscopy method

    NASA Astrophysics Data System (ADS)

    Timchenko, E. V.; Timchenko, P. E.; Volova, L. T.; Dolgushkin, D. A.; Shalkovskaya, P. Y.; Pershutkina, S. V.; Nefedova, I. F.

    2017-01-01

    There are presented the results of the analysis of the implants made of human skin by Raman scattering method. The main spectral distinctions of bioimplants by using various methods for their manufacture are shown at wavenumbers 1062 cm-1, 1645 cm-1, 1260 cm-1, 850 cm-1, 863 cm-1, corresponding to components that are important for the quality of implant: glycosaminoglycans, amide type I, amide type III, asymmetrical association C-O-S of vibration of glycosaminoglycans GAGs, tyrosine and a C-C stretching of proline ring, ribose. Has been carried out two-dimensional analysis of optical coefficients providing an opportunity to control the quality of cutaneous implants in the process of manufacturing it, and detailed analysis of Raman scattering spectroscopy.

  3. Raman Spectroscopy: an essential tool for future IODP expeditions

    NASA Astrophysics Data System (ADS)

    Andò, Sergio; Garzanti, Eduardo; Kulhanek, Denise K.

    2016-04-01

    The scientific drilling of oceanic sedimentary sequences plays a fundamental part in provenance studies, paleoclimate recostructions, and source-to-sink investigations (e.g., France-Lanord et al., 2015; Pandey et al., 2015). When studying oceanic deposits, Raman spectroscopy can and does represent an essential flexible tool for the multidisciplinary approach necessary to integrate the insight provided by different disciplines. This new user-friendly technique opens up an innovative avenue to study in real time the composition of detrital mineral grains of any origin, complementing traditional methods of provenance analysis (e.g., sedimentary petrography, heavy minerals; Andò and Garzanti, 2014). Raman spectra can readily reveal the chemistry of foraminiferal tests, nannofossils and other biogenic debris for the study of ecosystem evolution and paleoclimate, or the Ca/Mg ratio in biogenic or terrigenous carbonates for geological or marine biological applications and oil exploration (Borromeo et al., 2015). For the study of pelagic or turbiditic muds, which represent the bulk of the deep-marine sedimentary record, Raman spectroscopy allows us to identify silt-sized grains down to the size of a few microns with the same precision level required in quantitative provenance analysis of sand-sized sediments (Andò et al., 2011). Silt and siltstone also represent a very conspicuous part of the stratigraphic record onshore and usually preserve original mineralogical assemblages better than more permeable interbedded sand and sandstone (Blatt, 1985). Raman spectra can be obtained on sample volumes of only a few cubic microns by a confocal micro-Raman coupled with a standard polarizing light microscope using a 50× objective. The size of this apparatus can be easily placed onboard an IODP vessel to provide crucial information and quickly solve identification problems for the benefit of a wide range of scientists during future expeditions. Cited references Andò, S., Vignola

  4. Stochastic Liouville equations for femtosecond stimulated Raman spectroscopy

    PubMed Central

    Agarwalla, Bijay Kumar; Ando, Hideo; Dorfman, Konstantin E.; Mukamel, Shaul

    2015-01-01

    Electron and vibrational dynamics of molecules are commonly studied by subjecting them to two interactions with a fast actinic pulse that prepares them in a nonstationary state and after a variable delay period T, probing them with a Raman process induced by a combination of a broadband and a narrowband pulse. This technique, known as femtosecond stimulated Raman spectroscopy (FSRS), can effectively probe time resolved vibrational resonances. We show how FSRS signals can be modeled and interpreted using the stochastic Liouville equations (SLE), originally developed for NMR lineshapes. The SLE provide a convenient simulation protocol that can describe complex dynamics caused by coupling to collective bath coordinates at much lower cost than a full dynamical simulation. The origin of the dispersive features that appear when there is no separation of timescales between vibrational variations and the dephasing time is clarified. PMID:25591346

  5. Heating Isotopically Labeled Bernal Stacked Graphene: A Raman Spectroscopy Study.

    PubMed

    Ek-Weis, Johan; Costa, Sara; Frank, Otakar; Kalbac, Martin

    2014-02-06

    One of the greatest issues of nanoelectronics today is how to control the heating of the components. Graphene is a promising material in this area, and it is essential to study its thermal properties. Here, the effect of heating a bilayer structure was investigated using in situ Raman spectroscopy. In order to observe the effects on each individual layer, an isotopically labeled bilayer graphene was synthesized where the two layers were composed of different carbon isotopes. Therefore, the frequency of the phonons in the Raman spectra was shifted in relation to each other. This technique was used to investigate the influence of different stacking order. It was found that in bilayer graphene grown by chemical vapor deposition (CVD), the two layers behave very similarly for both Bernal stacking and randomly oriented structures, while for transferred samples, the layers act more independently. This highlights a significant dependence on the sample preparation procedure.

  6. Identifying bacterial spores and anthrax hoax materials by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Farquharson, Stuart; Brouillette, Carl R.; Smith, Wayne

    2004-12-01

    The distribution of Bacillus anthracis spores through the US postal system in the autumn of 2001, initiated a secondary form of terror, the mailing of hoax materials. In the past three years nearly 20,000 letters containing harmless powders have been mailed, creating additional anxiety. Thus, there is a need for analyzers that can not only identify anthrax-causing spores to save lives, but also identify hoax materials to eliminate time-consuming and costly shutdowns. Recently, we established that Raman spectroscopy has the ability to identify both Bacilli endospores and hoax materials. Here we present Raman spectra of several Bacilli spores along with the dipicolinate salts, to further define the abilities of this technology to not only identify hoax materials, but also identify spores at the genus and species level.

  7. Stochastic Liouville equations for femtosecond stimulated Raman spectroscopy

    SciTech Connect

    Agarwalla, Bijay Kumar; Ando, Hideo; Dorfman, Konstantin E.; Mukamel, Shaul

    2015-01-14

    Electron and vibrational dynamics of molecules are commonly studied by subjecting them to two interactions with a fast actinic pulse that prepares them in a nonstationary state and after a variable delay period T, probing them with a Raman process induced by a combination of a broadband and a narrowband pulse. This technique, known as femtosecond stimulated Raman spectroscopy (FSRS), can effectively probe time resolved vibrational resonances. We show how FSRS signals can be modeled and interpreted using the stochastic Liouville equations (SLE), originally developed for NMR lineshapes. The SLE provide a convenient simulation protocol that can describe complex dynamics caused by coupling to collective bath coordinates at much lower cost than a full dynamical simulation. The origin of the dispersive features that appear when there is no separation of timescales between vibrational variations and the dephasing time is clarified.

  8. Stochastic Liouville equations for femtosecond stimulated Raman spectroscopy.

    PubMed

    Agarwalla, Bijay Kumar; Ando, Hideo; Dorfman, Konstantin E; Mukamel, Shaul

    2015-01-14

    Electron and vibrational dynamics of molecules are commonly studied by subjecting them to two interactions with a fast actinic pulse that prepares them in a nonstationary state and after a variable delay period T, probing them with a Raman process induced by a combination of a broadband and a narrowband pulse. This technique, known as femtosecond stimulated Raman spectroscopy (FSRS), can effectively probe time resolved vibrational resonances. We show how FSRS signals can be modeled and interpreted using the stochastic Liouville equations (SLE), originally developed for NMR lineshapes. The SLE provide a convenient simulation protocol that can describe complex dynamics caused by coupling to collective bath coordinates at much lower cost than a full dynamical simulation. The origin of the dispersive features that appear when there is no separation of timescales between vibrational variations and the dephasing time is clarified.

  9. Raman spectroscopy and imaging of whole functional cells

    NASA Astrophysics Data System (ADS)

    McNaughton, Don; Lim, Janelle; Hammer, Larissa; Langford, Steven J.; Collie, Jocelyn; Wood, Bayden R.

    2005-02-01

    With the advent of Raman spectrometers based on CCD array detectors, instruments have been coupled to optical microscopes leading to all the advantages of bright field microscopy with the added advantage of a direct chemical probe. The primary biological solvent, water, is a weak Raman scatterer and so these instruments can now be used to investigate the chemistry of living systems at spatial resolutions of 1 μm and below. We have developed techniques that allow us to study functional red blood cells and monitor the exchange of ligands and the development and chemistry of disease processes. These techniques take advantage of Aggregated Enhanced Raman Spectroscopy, which enables us to use the haem group of the haemoglobins and related haem pigments, such as the malarial pigment haemozoin, as a sensitive probe for changes in oxidation state, spin state and electronic structure. We have used the Raman microprobe to investigate the effect of drugs such as quinoline on the food vacuole of the malarial parasite in vivo. Sickle cell disease affects 1 out of 600 African American births and is caused by a mutant form (β6 glu-->val) of haemoglobin (HbS). HbS polymerizes and forms higher order aggregates under hypoxic conditions, leading to distortion and rigidity of the erythrocyte. These rigid cells can block the microvasculature resulting in tissue ischaemia, organ damage, and ultimately death. The sensitivity of the Raman technique to haem aggregation provides a tool with which we can analyse the changes that occur between normal and sickle cells.

  10. [Application of depth-analysis of confocal Raman micro-spectroscopy to chirography identification].

    PubMed

    Lin, Hai-Bo; Xu, Xiao-Xuan; Wang, Bin; Yang, Yan-Yong; Yu, Gang; Zhang, Cun-Zhou; Li, Jie

    2005-01-01

    Depth analysis of confocal Raman micro-spectroscopy was applied to chirography identification. The result indicated that depth analysis has potential application to forensic science field, especially in longitudinal identification of ink and inkpad. No matter what the spatial distributions of the signature pen and inkpad are, confocal Raman micro-spectroscopy can longitudinally distinguish those spatial differences. All those suggested that confocal Raman micro-spectroscopy is a fast, simple, high sensitive and non-destructive technique.

  11. Rapid chemical agent identification by surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Lee, Yuan-Hsiang; Farquharson, Stuart

    2001-08-01

    Although the Chemical Weapons Convention prohibits the development, production, stockpiling, and use of chemical warfare agents (CWAs), the use of these agents persists due to their low cost, simplicity in manufacturing and ease of deployment. These attributes make these weapons especially attractive to low technology countries and terrorists. The military and the public at large require portable, fast, sensitive, and accurate analyzers to provide early warning of the use of chemical weapons. Traditional laboratory analyzers such as the combination of gas chromatography and mass spectroscopy, although sensitive and accurate, are large and require up to an hour per analysis. New, chemical specific analyzers, such as immunoassays and molecular recognition sensors, are portable, fast, and sensitive, but are plagued by false-positives (response to interferents). To overcome these limitations, we have been investigating the potential of surface-enhanced Raman spectroscopy (SERS) to identify and quantify chemical warfare agents in either the gas or liquid phase. The approach is based on the extreme sensitivity of SERS demonstrated by single molecule detection, a new SERS material that we have developed to allow reproducible and reversible measurements, and the molecular specific information provided by Raman spectroscopy. Here we present SER spectra of chemical agent simulants in both the liquid and gas phase, as well as CWA hydrolysis phase.

  12. Photoluminescence and Raman spectroscopy of photoelectrochemical solar cells

    SciTech Connect

    Garuthara, R.K.A.

    1986-01-01

    The CdSe/polysulfide system was studied in order to produce low-cost liquid-junction solar cells. Three basic area were investigated: (1) space-charge-layer effects, (2) aging of photoanodes due to slow chemical changes on electrode surface, and (3) the effect of photoetching and the impurity centers in photoanodes. Relaxation spectrum analysis, photoluminescence, modulated photoluminescence, and Raman spectroscopy were utilized to study these areas. The potential distribution at the interface of n-type CdSe/polysulfide was examined. At reverse bias and at electrode potential, the modulated photoluminescence is described by the dead layer model. The electrical characterization of the interface, based on modulated photoluminescence, agrees with the relaxation spectrum-analysis measurements. The slow chemical changes on the CdSe/polysulfide liquid-junction solar cells, as a function of aging procedures, were studied using photoluminescence and Raman spectroscopy. For the first time, it is reported that cells do age under open-circuit conditions. The effect of photoetching on single crystal n-type CdSe was investigated, using photoluminescence spectroscopy. A blue-shift is observed in the photoluminescence spectrum of crystals when the doping density is decreased.

  13. Detection and Quantitative Analysis of Chemical Species in Hanford Tank Materials Using Raman Spectroscopy Technology: FY94Florida State University Raman Spectroscopy Report

    SciTech Connect

    Reich, F.R.

    1997-08-11

    This report provides a summary of work completed in FY-94 by FSU to develop and investigate the feasibility of using Raman spectroscopy with Hanford tank waste materials. Raman performance impacts from sample morphology, including the effects of absorption, particle size, density, color and refractive index, are discussed. An algorithm for relative species concentration measurement from Raman data is presented. An Algorithm for applying Raman to tank waste core screening is presented and discussed. A library of absorption and Raman spectra are presented that support this work.

  14. Transcutaneous Measurement of Blood Analyte Concentration Using Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Barman, Ishan; Singh, Gajendra P.; Dasari, Ramachandra R.; Feld, Michael S.

    2008-11-01

    Diabetes mellitus is a chronic disorder, affecting nearly 200 million people worldwide. Acute complications, such as hypoglycemia, cardiovascular disease and retinal damage, may occur if the disease is not adequately controlled. As diabetes has no known cure, tight control of glucose levels is critical for the prevention of such complications. Given the necessity for regular monitoring of blood glucose, development of non-invasive glucose detection devices is essential to improve the quality of life in diabetic patients. The commercially available glucose sensors measure the interstitial fluid glucose by electrochemical detection. However, these sensors have severe limitations, primarily related to their invasive nature and lack of stability. This necessitates the development of a truly non-invasive glucose detection technique. NIR Raman Spectroscopy, which combines the substantial penetration depth of NIR light with the excellent chemical specificity of Raman spectroscopy, provides an excellent tool to meet the challenges involved. Additionally, it enables simultaneous determination of multiple blood analytes. Our laboratory has pioneered the use of Raman spectroscopy for blood analytes' detection in biological media. The preliminary success of our non-invasive glucose measurements both in vitro (such as in serum and blood) and in vivo has provided the foundation for the development of feasible clinical systems. However, successful application of this technology still faces a few hurdles, highlighted by the problems of tissue luminescence and selection of appropriate reference concentration. In this article we explore possible avenues to overcome these challenges so that prospective prediction accuracy of blood analytes can be brought to clinically acceptable levels.

  15. Near-infrared-excited confocal Raman spectroscopy advances in vivo diagnosis of cervical precancer.

    PubMed

    Duraipandian, Shiyamala; Zheng, Wei; Ng, Joseph; Low, Jeffrey J H; Ilancheran, Arunachalam; Huang, Zhiwei

    2013-06-01

    Raman spectroscopy is a unique optical technique that can probe the changes of vibrational modes of biomolecules associated with tissue premalignant transformation. This study evaluates the clinical utility of confocal Raman spectroscopy over near-infrared (NIR) autofluorescence (AF) spectroscopy and composite NIR AF/Raman spectroscopy for improving early diagnosis of cervical precancer in vivo at colposcopy. A rapid NIR Raman system coupled with a ball-lens fiber-optic confocal Raman probe was utilized for in vivo NIR AF/Raman spectral measurements of the cervix. A total of 1240 in vivo Raman spectra [normal (n=993), dysplasia (n=247)] were acquired from 84 cervical patients. Principal components analysis (PCA) and linear discriminant analysis (LDA) together with a leave-one-patient-out, cross-validation method were used to extract the diagnostic information associated with distinctive spectroscopic modalities. The diagnostic ability of confocal Raman spectroscopy was evaluated using the PCA-LDA model developed from the significant principal components (PCs) [i.e., PC4, 0.0023%; PC5, 0.00095%; PC8, 0.00022%, (p<0.05)], representing the primary tissue Raman features (e.g., 854, 937, 1095, 1253, 1311, 1445, and 1654 cm(-1)). Confocal Raman spectroscopy coupled with PCA-LDA modeling yielded the diagnostic accuracy of 84.1% (a sensitivity of 81.0% and a specificity of 87.1%) for in vivo discrimination of dysplastic cervix. The receiver operating characteristic curves further confirmed that the best classification was achieved using confocal Raman spectroscopy compared to the composite NIR AF/Raman spectroscopy or NIR AF spectroscopy alone. This study illustrates that confocal Raman spectroscopy has great potential to improve early diagnosis of cervical precancer in vivo during clinical colposcopy.

  16. Near-infrared-excited confocal Raman spectroscopy advances in vivo diagnosis of cervical precancer

    NASA Astrophysics Data System (ADS)

    Duraipandian, Shiyamala; Zheng, Wei; Ng, Joseph; Low, Jeffrey J. H.; Ilancheran, Arunachalam; Huang, Zhiwei

    2013-06-01

    Raman spectroscopy is a unique optical technique that can probe the changes of vibrational modes of biomolecules associated with tissue premalignant transformation. This study evaluates the clinical utility of confocal Raman spectroscopy over near-infrared (NIR) autofluorescence (AF) spectroscopy and composite NIR AF/Raman spectroscopy for improving early diagnosis of cervical precancer in vivo at colposcopy. A rapid NIR Raman system coupled with a ball-lens fiber-optic confocal Raman probe was utilized for in vivo NIR AF/Raman spectral measurements of the cervix. A total of 1240 in vivo Raman spectra [normal (n=993), dysplasia (n=247)] were acquired from 84 cervical patients. Principal components analysis (PCA) and linear discriminant analysis (LDA) together with a leave-one-patient-out, cross-validation method were used to extract the diagnostic information associated with distinctive spectroscopic modalities. The diagnostic ability of confocal Raman spectroscopy was evaluated using the PCA-LDA model developed from the significant principal components (PCs) [i.e., PC4, 0.0023% PC5, 0.00095% PC8, 0.00022%, (p<0.05)], representing the primary tissue Raman features (e.g., 854, 937, 1095, 1253, 1311, 1445, and 1654 cm-1). Confocal Raman spectroscopy coupled with PCA-LDA modeling yielded the diagnostic accuracy of 84.1% (a sensitivity of 81.0% and a specificity of 87.1%) for in vivo discrimination of dysplastic cervix. The receiver operating characteristic curves further confirmed that the best classification was achieved using confocal Raman spectroscopy compared to the composite NIR AF/Raman spectroscopy or NIR AF spectroscopy alone. This study illustrates that confocal Raman spectroscopy has great potential to improve early diagnosis of cervical precancer in vivo during clinical colposcopy.

  17. The physics of pulling polyproteins: a review of single molecule force spectroscopy using the AFM to study protein unfolding

    NASA Astrophysics Data System (ADS)

    Hughes, Megan L.; Dougan, Lorna

    2016-07-01

    One of the most exciting developments in the field of biological physics in recent years is the ability to manipulate single molecules and probe their properties and function. Since its emergence over two decades ago, single molecule force spectroscopy has become a powerful tool to explore the response of biological molecules, including proteins, DNA, RNA and their complexes, to the application of an applied force. The force versus extension response of molecules can provide valuable insight into its mechanical stability, as well as details of the underlying energy landscape. In this review we will introduce the technique of single molecule force spectroscopy using the atomic force microscope (AFM), with particular focus on its application to study proteins. We will review the models which have been developed and employed to extract information from single molecule force spectroscopy experiments. Finally, we will end with a discussion of future directions in this field.

  18. Spectroscopic characterization of biological agents using FTIR, normal Raman and surface-enhanced Raman spectroscopies

    NASA Astrophysics Data System (ADS)

    Luna-Pineda, Tatiana; Soto-Feliciano, Kristina; De La Cruz-Montoya, Edwin; Pacheco Londoño, Leonardo C.; Ríos-Velázquez, Carlos; Hernández-Rivera, Samuel P.

    2007-04-01

    FTIR, Raman spectroscopy and Surface Enhanced Raman Scattering (SERS) requires a minimum of sample allows fast identification of microorganisms. The use of this technique for characterizing the spectroscopic signatures of these agents and their stimulants has recently gained considerable attention due to the fact that these techniques can be easily adapted for standoff detection from considerable distances. The techniques also show high sensitivity and selectivity and offer near real time detection duty cycles. This research focuses in laying the grounds for the spectroscopic differentiation of Staphylococcus spp., Pseudomonas spp., Bacillus spp., Salmonella spp., Enterobacter aerogenes, Proteus mirabilis, Klebsiella pneumoniae, and E. coli, together with identification of their subspecies. In order to achieve the proponed objective, protocols to handle, cultivate and analyze the strains have been developed. Spectroscopic similarities and marked differences have been found for Spontaneous or Normal Raman spectra and for SERS using silver nanoparticles have been found. The use of principal component analysis (PCA), discriminate factor analysis (DFA) and a cluster analysis were used to evaluate the efficacy of identifying potential threat bacterial from their spectra collected on single bacteria. The DFA from the bacteria Raman spectra show a little discrimination between the diverse bacterial species however the results obtained from the SERS demonstrate to be high discrimination technique. The spectroscopic study will be extended to examine the spores produced by selected strains since these are more prone to be used as Biological Warfare Agents due to their increased mobility and possibility of airborne transport. Micro infrared spectroscopy as well as fiber coupled FTIR will also be used as possible sensors of target compounds.

  19. Polarized Raman spectroscopy unravels the biomolecular structural changes in cervical cancer.

    PubMed

    Daniel, Amuthachelvi; Prakasarao, Aruna; Dornadula, Koteeswaran; Ganesan, Singaravelu

    2016-01-05

    Polarized Raman spectroscopy has emerged as a promising technique giving a wealth of information about the orientation and symmetry of bond vibrations in addition to the general chemical information from the conventional Raman spectroscopy. In this regard, polarized Raman Spectroscopic technique was employed to study the changes in the orientation of biomolecules in normal and cancerous conditions. This technique was compared to the conventional Raman spectroscopic technique and was found to yield additional information about the orientation of tyrosine, collagen and DNA. The statistically analyzed depolarization ratios by Linear Discriminant Analysis yielded better accuracy than the statistical results of conventional Raman spectroscopy. Thus, this study reveals that polarized Raman spectroscopy has better diagnostic potential than the conventional Raman spectroscopic technique.

  20. Polarized Raman spectroscopy unravels the biomolecular structural changes in cervical cancer

    NASA Astrophysics Data System (ADS)

    Daniel, Amuthachelvi; Prakasarao, Aruna; Dornadula, Koteeswaran; Ganesan, Singaravelu

    2016-01-01

    Polarized Raman spectroscopy has emerged as a promising technique giving a wealth of information about the orientation and symmetry of bond vibrations in addition to the general chemical information from the conventional Raman spectroscopy. In this regard, polarized Raman Spectroscopic technique was employed to study the changes in the orientation of biomolecules in normal and cancerous conditions. This technique was compared to the conventional Raman spectroscopic technique and was found to yield additional information about the orientation of tyrosine, collagen and DNA. The statistically analyzed depolarization ratios by Linear Discriminant Analysis yielded better accuracy than the statistical results of conventional Raman spectroscopy. Thus, this study reveals that polarized Raman spectroscopy has better diagnostic potential than the conventional Raman spectroscopic technique.

  1. Recent advances in the development of Raman spectroscopy for deep non-invasive medical diagnosis.

    PubMed

    Matousek, Pavel; Stone, Nicholas

    2013-01-01

    Raman spectroscopy has recently undergone major advances in the area of deep non-invasive characterisation of biological tissues. The progress stems from the development of spatially offset Raman spectroscopy (SORS) and renaissance of transmission Raman spectroscopy permitting the assessment of diffusely scattering samples at depths several orders of magnitude deeper than possible with conventional Raman spectroscopy. Examples of emerging applications include non-invasive diagnosis of bone disease, cancer and monitoring of glucose levels. This article reviews this fast moving field focusing on recent developments within the medical area.

  2. Development of deep subsurface Raman spectroscopy for medical diagnosis and disease monitoring.

    PubMed

    Matousek, Pavel; Stone, Nicholas

    2016-04-07

    The recently developed array of Raman spectroscopy techniques for deep subsurface analysis of biological tissues unlocks new prospects for medical diagnosis and monitoring of various biological conditions. The central pillars of these methods comprise spatially offset Raman spectroscopy (SORS) and Transmission Raman Spectroscopy facilitating penetration depths into tissue up to two orders of magnitude greater than those achievable with conventional Raman spectroscopy. This article reviews these concepts and discusses their emerging medical applications including non-invasive breast cancer diagnosis, cancer margin evaluation, bone disorder detection and glucose level determination.

  3. Photodissociation dynamics of dimethylnitrosamine studied by resonance Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Lenderink, Egbert; Wiersma, Douwe A.

    1994-02-01

    The initial molecular dynamics in the dissociative S 1 (n, π *) state of dimethylnitrosamine (DMN) is investigated using resonance Raman spectroscopy. We find that photochemical N-N bond cleavage in DMN proceeds via a bent conformation around the amine N atom, which supports the outcome of ab initio and classical trajectory calculations [M. Persico, I. Cacelli and A. Ferretti, J. Chem. Phys. 94 (1991) 5508]. Additional information is obtained about the other motions that accompany the photodissociation: a stretch of the N-N bond and a change of the NNO angle.

  4. Chemotaxonomy of mints of genus Mentha by applying Raman spectroscopy.

    PubMed

    Rösch, P; Kiefer, W; Popp, J

    2002-01-01

    The characterization of mints is often problematic because Mentha is a taxonomically complex genus. In order to provide a fast and easy characterization method, we use a combination of micro-Raman spectroscopy and hierarchical cluster analysis. A classification trial of different mint taxa is possible for one collection time. For spectra measured at different points during the growing season, a more sophisticated pretreatment of the data is necessary to receive good discrimination between the species, as well as between the subspecies and varieties of the mints.

  5. A Survey of Olivine Alteration Products Using Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Kuebler, K.; Jolliff, B. L.; Wang, A.; Haskin, L. A.

    2004-01-01

    Identification of mineral alteration products will aid in the crucial task of interpreting past Martian environmental conditions, especially aqueous environments. Olivine has been identified at the surface of Mars and is readily altered in aqueous environments. Using Raman spectroscopy, we studied three rocks with altered olivine and compared the data with mineral chemistry from electron microprobe analysis. Although the alteration in all three samples has loosely been called iddingsite their appearances and modes of occurrences differ as described. Alteration products in all three samples are likely fine-grained mixtures.

  6. Transcutaneous monitoring of steroid-induced osteoporosis with Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Maher, Jason R.; Inzana, Jason; Takahata, Masahiko; Awad, Hani A.; Berger, Andrew J.

    2012-01-01

    Although glucocorticoids are among the most frequently prescribed anti-inflammatory agents used in the treatment of rheumatoid arthritis, extended exposure to this steroid hormone is the leading cause of iatrogenic osteoporosis. Recently, Raman spectroscopy has been utilized to exploit biochemical differences between osteoporotic and normal bones in order to predict fracture risk. In this presentation, we report the results of ongoing research in our laboratory towards the clinical translation of this technique. We will discuss strategies for the transcutaneous acquisition of spectra from the tibiae of mice that are of sufficient quality to generate accurate predictions of fracture risk.

  7. Development of a rapid macro-Raman spectroscopy system for nasopharyngeal cancer detection based on surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Lin, Duo; Chen, Guannan; Feng, Shangyuan; Pan, Jianji; Lin, Juqiang; Huang, Zufang; Chen, Rong

    2015-01-01

    This study aims to evaluate the utility of a home-made surface-enhanced Raman spectroscopy (SERS) system for detection of nasopharyngeal cancer (NPC). A Raman spectral system with a special probe and a millimeter order excitation laser spot size was developed to acquire SERS signals of blood plasma. High quality SERS spectra can be recorded from blood plasma samples belonging to 60 healthy volunteers and 96 NPC patients, and the diagnostic sensitivity and specificity of 95.8% and 91.7%, respectively, can be achieved for classification between normal and cancer blood groups by principal component analysis combined with linear discriminant analysis (PCA-LDA). This exploratory study demonstrates that SERS based on a larger laser spot together with PCA-LDA has the potential for detection of nasopharyngeal cancer, and even for further in vivo cancer detection in the future.

  8. Raman spectroscopy as a process analytical technology for pharmaceutical manufacturing and bioprocessing.

    PubMed

    Esmonde-White, Karen A; Cuellar, Maryann; Uerpmann, Carsten; Lenain, Bruno; Lewis, Ian R

    2017-01-01

    Adoption of Quality by Design (QbD) principles, regulatory support of QbD, process analytical technology (PAT), and continuous manufacturing are major factors effecting new approaches to pharmaceutical manufacturing and bioprocessing. In this review, we highlight new technology developments, data analysis models, and applications of Raman spectroscopy, which have expanded the scope of Raman spectroscopy as a process analytical technology. Emerging technologies such as transmission and enhanced reflection Raman, and new approaches to using available technologies, expand the scope of Raman spectroscopy in pharmaceutical manufacturing, and now Raman spectroscopy is successfully integrated into real-time release testing, continuous manufacturing, and statistical process control. Since the last major review of Raman as a pharmaceutical PAT in 2010, many new Raman applications in bioprocessing have emerged. Exciting reports of in situ Raman spectroscopy in bioprocesses complement a growing scientific field of biological and biomedical Raman spectroscopy. Raman spectroscopy has made a positive impact as a process analytical and control tool for pharmaceutical manufacturing and bioprocessing, with demonstrated scientific and financial benefits throughout a product's lifecycle.

  9. Tackling field-portable Raman spectroscopy of real world samples

    NASA Astrophysics Data System (ADS)

    Shand, Neil C.

    2008-10-01

    A major challenge confronting first responders, customs authorities and other security-related organisations is the accurate, rapid, and safe identification of potentially hazardous chemicals outside a laboratory environment. Currently, a range of hand portable Raman equipment is commercially available that is low cost and increasingly more sophisticated. These systems are generally based on the 785nm Stokes shifted Raman technique with many using dispersive grating spectrometers. This technique offers a broad range of capabilities including the ability to analyse illicit drugs, explosives, chemical weapons and pre-cursors but still has some fundamental constraints. 'Real world' samples, such as those found at a crime scene, will often not be presented in the most accessible manner. Simple issues such as glass fluorescence can make an otherwise tractable sample impossible to analyse in-situ. A new generation of portable Raman equipment is currently being developed to address these issues. Consideration is given to the use of longer wavelength for fluorescence reduction. Alternative optical designs are being tested to compensate for the signal reduction incurred by moving to longer wavelengths. Furthermore, the use of anti-Stokes spectroscopy is being considered as well as investigating the robustness and portability of traditional Fourier Transform interferometer designs along with future advances in detector technology and ultra small spectrometers.

  10. Characterization of decavanadate and decaniobate solutions by Raman spectroscopy.

    PubMed

    Aureliano, Manuel; Ohlin, C André; Vieira, Michele O; Marques, M Paula M; Casey, William H; Batista de Carvalho, Luís A E

    2016-04-25

    The decaniobate ion, (Nb10 = [Nb10O28](6-)) being isoelectronic and isostructural with the decavanadate ion (V10 = [V10O28](6-)), but chemically and electrochemically more inert, has been useful in advancing the understanding of V10 toxicology and pharmacological activities. In the present study, the solution chemistry of Nb10 and V10 between pH 4 and 12 is studied by Raman spectroscopy. The Raman spectra of V10 show that this vanadate species dominates up to pH 6.45 whereas it remains detectable until pH 8.59, which is an important range for biochemistry. Similarly, Nb10 is present between pH 5.49 and 9.90 and this species remains detectable in solution up to pH 10.80. V10 dissociates at most pH values into smaller tetrahedral vanadate oligomers such as V1 and V2, whereas Nb10 dissociates into Nb6 under mildly (10 > pH > 7.6) or highly alkaline conditions. Solutions of V10 and Nb10 are both kinetically stable under basic pH conditions for at least two weeks and at moderate temperature. The Raman method provides a means of establishing speciation in the difficult niobate system and these findings have important consequences for toxicology activities and pharmacological applications of vanadate and niobate polyoxometalates.

  11. In vivo Raman spectroscopy for oral cancers diagnosis

    NASA Astrophysics Data System (ADS)

    Singh, S. P.; Deshmukh, Atul; Chaturvedi, Pankaj; Krishna, C. Murali

    2012-01-01

    Oral squamous cell carcinoma is sixth among the major malignancies worldwide. Tobacco habits are known as major causative factor in tumor carcinogenesis in oral cancer. Optical spectroscopy methods, including Raman, are being actively pursued as alternative/adjunct for cancer diagnosis. Earlier studies have demonstrated the feasibility of classifying normal, premalignant and malignant oral ex-vivo tissues. In the present study we have recorded in vivo spectra from contralateral normal and diseased sites of 50 subjects with pathologically confirmed lesions of buccal mucosa using fiber-optic-probe-coupled HE-785 Raman spectrometer. Spectra were recorded on similar points as per teeth positions with an average acquisition time of 8 seconds. A total of 215 and 225 spectra from normal and tumor sites, respectively, were recorded. Finger print region (1200-1800 cm-1) was utilized for classification using LDA. Standard-model was developed using 125 normal and 139 tumor spectra from 27 subjects. Two separate clusters with an efficiency of ~95% were obtained. Cross-validation with leave-one-out yielded ~90% efficiency. Remaining 90 normal and 86 tumor spectra were used as test data and predication efficiency of model was evaluated. Findings of the study indicate that Raman spectroscopic methods in combination with appropriate multivariate tool can be used for objective, noninvasive and rapid diagnosis.

  12. Cryoprotectant redistribution along the frozen straw probed by Raman spectroscopy.

    PubMed

    Karpegina, Yu A; Okotrub, K A; Brusentsev, E Yu; Amstislavsky, S Ya; Surovtsev, N V

    2016-04-01

    The distribution of cryoprotectant (10% glycerol) and ice along the frozen plastic straw (the most useful container for freezing mammalian semen, oocytes and embryos) was studied by Raman scattering technique. Raman spectroscopy being a contactless, non-invasive tool was applied for the straws filled with the cryoprotectant solution and frozen by controlled rate programs commonly used for mammalian embryos freezing. Analysis of Raman spectra measured at different points along the straw reveals a non-uniform distribution of the cryoprotectant. The ratio between non-crystalline solution and ice was found to be increased by several times at the bottom side of the solution column frozen by the standard freezing program. The increase of the cryoprotectant fraction occurs in the area where embryos or oocytes are normally placed during their freezing. Possible effects of the cooling rate and the ice nucleation temperature on the cryoprotectant fraction at the bottom side of the solution column were considered. Our findings highlight that the ice fraction around cryopreserved embryos or oocytes can differ significantly from the averaged one in the frozen plastic straws.

  13. Ultraviolet surface-enhanced Raman spectroscopy using aluminum plasmonic gratings

    NASA Astrophysics Data System (ADS)

    Roberts, Adam T.; Butun, Serkan; Aydin, Koray; Everitt, Henry O.; Bloemer, Mark; D'Aguanno, Giuseppe; Mattiucci, Nadia

    2013-03-01

    Surface-enhanced Raman scattering (SERS) has been widely studied both theoretically and experimentally for chemical and biological sensing, primarily in the visible and near-infrared wavelengths. Although in the ultraviolet (UV) plasmonic behavior is limited by metallic dampening, we have theoretically shown that SERS enhancement factors as large as 105 can be achieved when the laser is tuned to the plasmonic band edge of an Al metallic grating grown on a sapphire substrate. Using electron beam lithography, aluminum gratings were fabricated whose pitch (150-300 nm), slit widths (64 nm), and thickness (50 nm) were chosen to produce large enhancement factors at wavelengths in the UV. Analytes such as thiophenol were then deposited on the gratings, and UV-SERS spectroscopy was performed to measure the enhancement factors and compare with theoretical estimates. Enhancement factors were measured by comparing the strength of the Raman signal from the grating region with the strength of the Raman signal from adjacent regions without a grating. The dependence of the enhancement factor on laser wavelength relative to the plasmonic band edge for a given grating pitch was explored, as was the effect of using a tapered slit geometry that focuses the local field on the nanoscale.

  14. Water monitoring by optofluidic Raman spectroscopy for in situ applications.

    PubMed

    Persichetti, Gianluca; Bernini, Romeo

    2016-08-01

    The feasibility of water monitoring by Raman spectroscopy with a portable optofluidic system for in-situ applications has been successfully demonstrated. In the proposed approach, the sample under analysis is injected into a capillary nozzle in order to produce a liquid jet that acts as an optical waveguide. This jet waveguide provides an effective strategy to excite and collect the Raman signals arising from water contaminants due to the high refractive index difference between air and water. The proposed approach avoids any necessity of liquid container or flow cell and removes any background signal coming from the sample container commonly affects Raman measurements. Furthermore, this absence is a significant advantage for in situ measurements where fouling problems can be relevant and cleaning procedures are troublesome. The extreme simplicity and efficiency of the optical scheme adopted in our approach result in highly sensitive and rapid measurements that have been performed on different representative water pollutants. The experimental results demonstrate the high potentiality of our device in water quality monitoring and analysis. In particular, nitrate and sulfate are detected below the maximum contamination level allowed for drinking water, whereas a limit of detection of 40mg/l has been found for benzene.

  15. Identification of microbial pigments in evaporitic matrices using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Vítek, Petr; Jehlička, Jan; Edwards, Howell G. M.; Wierzchos, Jacek

    2010-05-01

    An evaporitic environment is considered as one of the possible habitats for life on Mars. From terrestrial geological scenarios we know that microorganisms inhabiting such an extreme environment (halophiles) are rich in protective pigments, depending on the metabolic pathways and specific adaptation to the harsh environmental conditions. Carotenoids typically occur within the cells of halophiles (bacteria, archaea as well as eukaryotic algae) in large amounts as part of their photosystem and protective adaptation to high doses of UV radiation that are typical for most recent evaporitic environments. Chlorophyll occurs in halophilic cyanobacteria together with carotenoids and possibly other pigments which are synthetised in response to the high UV radiation insolation. Here we present the results of Raman spectroscopic investigations of a) beta-carotene in experimentally prepared mixtures with halite, gypsum and epsomite; and b) cyanobacterial colonies inhabiting real halite and gypsum matrices in the Atacama Desert. Our results demonstrate the possibility of detection of beta-carotene - a typical carotenoid - in relatively low concentrations within the evaporitic powdered mixtures; the lowest concentration of carotenoid signal detected was 0,1 mg kg-1, which represents 100 ppb. Raman spectroscopic analyses of natural specimens (endolithic cyanobacteria) from the Atacama desert revealed the presence of scytonemin, an extremely efficient UV protective pigment, carotenoids of various types and chlorophyll. The detection potential as well as limitations of Raman spectroscopy as a part of a payload within future robotic space missions focused on the search for life on Mars is discussed.

  16. In-situ fabrication of gold nanoparticle functionalized probes for tip-enhanced Raman spectroscopy by dielectrophoresis

    NASA Astrophysics Data System (ADS)

    Sweetenham, Claire S.; Woolley, Richard A. J.; Notingher, Ioan

    2016-07-01

    We report the use of dielectrophoresis to fabricate in-situ probes for tip-enhanced Raman spectroscopy (TERS) based on Au nanoparticles. A typical conductive atomic force microscope (AFM) was used to functionalize iridium-coated conductive silicon probes with Au nanoparticles of 10-nm diameter. Suitable TERS probes can be rapidly produced (30 to 120 s) by applying a voltage of 10 Vpp at a frequency of 1 MHz. The technique has the advantage that the Au-based probes are ready for immediate use for TERS measurements, minimizing the risks of tip contamination and damage during handling. Scanning electron microscopy and energy dispersive x-ray spectroscopy were used to confirm the quality of the probes, and used samples of p-ATP monolayers on silver substrates were used to demonstrate experimentally TERS measurements.

  17. Noninvasive Monitoring of Blood Glucose with Raman Spectroscopy.

    PubMed

    Pandey, Rishikesh; Paidi, Santosh Kumar; Valdez, Tulio A; Zhang, Chi; Spegazzini, Nicolas; Dasari, Ramachandra Rao; Barman, Ishan

    2017-02-21

    The successful development of a noninvasive blood glucose sensor that can operate reliably over sustained periods of time has been a much sought after but elusive goal in diabetes management. Since diabetes has no well-established cure, control of elevated glucose levels is critical for avoiding severe secondary health complications in multiple organs including the retina, kidney and vasculature. While fingerstick testing continues to be the mainstay of blood glucose detection, advances in electrochemical sensing-based minimally invasive approaches have opened the door for alternate methods that would considerably improve the quality of life for people with diabetes. In the quest for better sensing approaches, optical technologies have surfaced as attractive candidates as researchers have sought to exploit the endogenous contrast of glucose, notably its absorption, scattering, and polarization properties. Vibrational spectroscopy, especially spontaneous Raman scattering, has exhibited substantial promise due to its exquisite molecular specificity and minimal interference of water in the spectral profiles acquired from the blood-tissue matrix. Yet, it has hitherto been challenging to leverage the Raman scattering signatures of glucose for prediction in all but the most basic studies and under the least demanding conditions. In this Account, we discuss the newly developed array of methodologies that address the key challenges in measuring blood glucose accurately using Raman spectroscopy and unlock new prospects for translation to sustained noninvasive measurements in people with diabetes. Owing to the weak intensity of spontaneous Raman scattering, recent research has focused on enhancement of signals from the blood constituents by designing novel excitation-collection geometries and tissue modulation methods while our attempts have led to the incorporation of nonimaging optical elements. Additionally, invoking mass transfer modeling into chemometric algorithms has

  18. THE ROLE OF RAMAN SPECTROSCOPY IN THE ANALYTICAL CHEMISTRY OF POTABLE WATER

    EPA Science Inventory

    Advances in instrumentation are making Raman spectroscopy the tool of choice for an increasing number of chemical applications. For example, many recalcitrant industrial-process monitoring problems have been solved in recent years with in-line Raman spectrometers. Raman is attr...

  19. THE ROLE OF RAMAN SPECTROSCOPY IN THE ANALYTICAL CHEMISTRY OF POTABLE WATER

    EPA Science Inventory

    Advances in instrumentation are making Raman spectroscopy the tool of choice for an increasing number of chemical applications. For example, many recalcitrant industrial process monitoring problems have been solved in recent years with in-line Raman spectrometers. Raman is attr...

  20. Rapid quantitative analysis of Dimethoate pesticide using surface enhanced raman spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A method for rapid quantitative detection of dimethoate pesticide by using surface-enhanced Raman spectroscopy (SERS) has been described. Significantly enhanced Raman signals of pesticide in low concentrations of 0.5 ~ 10 ug/mL were acquired by confocal raman micro-spectrometry with renishaw diagno...

  1. Raman Spectroscopy Applied to Mars Water Cycle Studies

    NASA Astrophysics Data System (ADS)

    Nikolakakos, G.; Whiteway, J. A.

    2014-12-01

    One of the key findings during the Phoenix and Mars Science Laboratory landed Mars missions has been the detection of perchlorate, a highly deliquescent salt. Perchlorates are of great interest on Mars due to their high affinity for water vapour as well as their ability to greatly depress the freezing point of water when in solution. This has intriguing biological implications as resulting brines could potentially provide a habitable environment for living organisms. Additionally, it has been speculated that these salts may play a significant role in influencing the hydrological cycle on Mars. In order to experimentally study brine formation on Mars and assess the feasibility of a future landed detection tool, a stand-off Raman spectroscopy instrument and environmental simulation chamber have been developed at York University. A sample of magnesium perchlorate has been subjected to the water vapour pressure, background pressure and temperatures found at polar Martian latitudes. Results indicate that at a water vapour pressure of ~20 Pa, Raman spectroscopy is able to detect the onset of brine formation and provide an estimate of the quantity of water taken up by the sample. At the lower water vapour pressures typically found on Mars ( ~1 Pa), it appears that slower dynamics inhibit the onset of water uptake over relevant time scales. The experimental setup and current results will be presented.

  2. Raman Spectroscopy of Poly-Urea Formaldehyde Microcapsules

    NASA Astrophysics Data System (ADS)

    Espino, Omar; Chipara, Dorina; Chipara, Mircea; Martinez, Melissa

    2015-03-01

    The objective of this research project was to add self-healing capabilities to polymeric nanocomposites. We used the ``classical'' method to obtain self-healing polymers with the addition of TiO2 nanoparticles in the self-healing system. Self-healing polymers are obtained by dispersion of first generation Grubbs catalysts and microcapsules filled with monomers (typically DCPD). These kind of ``smart materials'' are able to survive to high mechanical stress via the ignition of the so called ``autonomous self-healing mechanism'' which is actually a ring opening methatesis polymerization (ROMP) reaction triggered by mechanical stresses in excess over a threshold limit through the rupture of microcapsules and the release of the monomeric content. As a preliminary step for adding self-healing capabilities in nanocomposites, the synthesis of microcapsules filled with dicyclopentadiene (DCPD) is vital for the addition of self-healing capabilities to polymeric matrices. We synthesized polyurea-formaldehyde (PUF) microcapsules filled with monomer (DCPD) using the in-situ polymerization. The synthesis was monitored by Raman spectroscopy, optical microscopy, and pH measurements that has been extensively used as a non-invasive techniques in the characterization of polymers and monitoring of organic reactions. The goal of this research was to assess the formation of the microcapsules during synthesis and the presence of the DCPD in the microcapsules. Samples were taken during the synthesis every 30 minutes and analyzed by Raman spectroscopy, and optical microscopy keeping a control over the pH of the solution.

  3. Femtosecond laser induced nanostructuring for surface enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Messaoudi, H.; Das, S. K.; Lange, J.; Heinrich, F.; Schrader, S.; Frohme, M.; Grunwald, R.

    2014-03-01

    The formation of periodical nanostructures with femtosecond laser pulses was used to create highly efficient substrates for surface-enhanced Raman spectroscopy (SERS). We report about the structuring of silver and copper substrates and their application to the SERS of DNA (herring sperm) and protein molecules (egg albumen). The maximum enhancement factors were found on Ag substrates processed with the second harmonic generation (SHG) of a 1-kHz Ti:sapphire laser and structure periods near the SHG wavelength. In the case of copper, however, the highest enhancement was obtained with long-period ripples induced with at fundamental wavelength. This is explained by an additional significant influence of nanoparticles on the surface. Nanostructured areas in the range of 1.25 mm2 were obtained in 10 s. The surfaces were characterized by scanning electron microscopy, Fast Fourier Transform and Raman spectroscopy. Moreover, the role of the chemical modification of the metal structures is addressed. Thin oxide layers resulting from working in atmosphere which improve the biocompatibility were indicated by vibration spectra. It is expected that the detailed study of the mechanisms of laser-induced nanostructure formation will stimulate further applications of functionalized surfaces like photocatalysis, selective chemistry and nano-biology.

  4. Accurate, explicit formulae for higher harmonic force spectroscopy by frequency modulation-AFM.

    PubMed

    Kuchuk, Kfir; Sivan, Uri

    2015-01-01

    The nonlinear interaction between an AFM tip and a sample gives rise to oscillations of the cantilever at integral multiples (harmonics) of the fundamental resonance frequency. The higher order harmonics have long been recognized to hold invaluable information on short range interactions but their utilization has thus far been relatively limited due to theoretical and experimental complexities. In particular, existing approximations of the interaction force in terms of higher harmonic amplitudes generally require simultaneous measurements of multiple harmonics to achieve satisfactory accuracy. In the present letter we address the mathematical challenge and derive accurate, explicit formulae for both conservative and dissipative forces in terms of an arbitrary single harmonic. Additionally, we show that in frequency modulation-AFM (FM-AFM) each harmonic carries complete information on the force, obviating the need for multi-harmonic analysis. Finally, we show that higher harmonics may indeed be used to reconstruct short range forces more accurately than the fundamental harmonic when the oscillation amplitude is small compared with the interaction range.

  5. Measuring protein isoelectric points by AFM-based force spectroscopy using trace amounts of sample

    NASA Astrophysics Data System (ADS)

    Guo, Shifeng; Zhu, Xiaoying; Jańczewski, Dominik; Lee, Serina Siew Chen; He, Tao; Teo, Serena Lay Ming; Vancso, G. Julius

    2016-09-01

    Protein charge at various pH and isoelectric point (pI) values is important in understanding protein function. However, often only trace amounts of unknown proteins are available and pI measurements cannot be obtained using conventional methods. Here, we show a method based on the atomic force microscope (AFM) to determine pI using minute quantities of proteins. The protein of interest is immobilized on AFM colloidal probes and the adhesion force of the protein is measured against a positively and a negatively charged substrate made by layer-by-layer deposition of polyelectrolytes. From the AFM force-distance curves, pI values with an estimated accuracy of ±0.25 were obtained for bovine serum albumin, myoglobin, fibrinogen and ribonuclease A over a range of 4.7-9.8. Using this method, we show that the pI of the ‘footprint’ of the temporary adhesive proteins secreted by the barnacle cyprid larvae of Amphibalanus amphitrite is in the range 9.6-9.7.

  6. Measuring protein isoelectric points by AFM-based force spectroscopy using trace amounts of sample.

    PubMed

    Guo, Shifeng; Zhu, Xiaoying; Jańczewski, Dominik; Lee, Serina Siew Chen; He, Tao; Teo, Serena Lay Ming; Vancso, G Julius

    2016-09-01

    Protein charge at various pH and isoelectric point (pI) values is important in understanding protein function. However, often only trace amounts of unknown proteins are available and pI measurements cannot be obtained using conventional methods. Here, we show a method based on the atomic force microscope (AFM) to determine pI using minute quantities of proteins. The protein of interest is immobilized on AFM colloidal probes and the adhesion force of the protein is measured against a positively and a negatively charged substrate made by layer-by-layer deposition of polyelectrolytes. From the AFM force-distance curves, pI values with an estimated accuracy of ±0.25 were obtained for bovine serum albumin, myoglobin, fibrinogen and ribonuclease A over a range of 4.7-9.8. Using this method, we show that the pI of the 'footprint' of the temporary adhesive proteins secreted by the barnacle cyprid larvae of Amphibalanus amphitrite is in the range 9.6-9.7.

  7. UV photostability of insect repellents evaluated through Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Bório, Viviane G.; Fernandes, Adjaci U.; Silveira, Landulfo

    2016-02-01

    The use of insect repellents either indoors or at places with incidence of solar radiation has been common due to dengue epidemics in Brazil. The lack of studies on the photostability of these substances has motivated this study, where the main goal was to verify the photostability and photodegradation of some of the commercially insect repellents available under the simulated ultraviolet (UV) radiation, by evaluating the molecular changes using dispersive Raman spectroscopy (830 nm excitation). A laboratory-made chamber was used for irradiating the repellents, where UV-A + UV-B radiations (UV-A: 5.5 mW/cm2 and UV-B 1.5 mW/cm2) can be obtained. The chamber internal temperature did not exceed 31 °C during experiments. The compounds n,n-diethyl-m-toluamide (DEET), IR-3535, andiroba and citronella oils, used as active ingredients in insect repellents, and commercial formula containing DEET (14.5% in ethanol and isopropyl myristate) and IR-3535 (16% in carbopol) were continuously irradiated for 8 h. The Raman spectrum of each sample was obtained before and after UV exposure. The compounds and the commercial formula containing IR-3535 showed photo-stability when irradiated, since no changes in the peaks were found. The commercial formula containing DEET showed spectral decrease at 524, 690, 1003 and 1606 cm-1, assigned to the DEET, and increase at 884 cm-1, assigned to the ethanol. These results indicate that the excipient could influence the photostability of the active ingredient. The Raman spectroscopy can be suitable to monitor the photodegradation under UV irradiation rapidly and reliably.

  8. Electrochemical tip-enhanced Raman spectroscopy (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Zeng, Zhicong; Huang, Shengchao; Huang, Tengxiang; Li, Maohua; Ren, Bin

    2015-08-01

    Tip-enhanced Raman spectroscopy (TERS) can not only provide very high sensitivity but also high spatial resolution, and has found applications in various fields, including surface science, materials, and biology. Most of previous TERS studies were performed in air or in the ultrahigh vacuum. If TERS study can be performed in the electrochemical environment, the electronic properties of the surface can be well controlled so that the interaction of the molecules with the substrate and the configuration of the molecules on the surface can also be well controlled. However, the EC-TERS is not just a simple combination of electrochemistry with TERS, or the combination of EC-STM with Raman. It is a merge of STM, electrochemistry and Raman spectroscopy, and the mutual interference among these techniques makes the EC-TERS particularly challenge: the light distortion in EC system, the sensitivity, the tip coating to work under EC-STM and retain the TERS activity and cleanliness. We designed a special spectroelectrochemical cell to eliminate the distortion of the liquid layer to the optical path and obtain TER spectra of reasonably good signal to noise ratio for surface adsorbed molecules under electrochemical potential control. For example, potential dependent TERS signal have been obtained for adsorbed aromatic thiol molecule, and much obvious signal change compared with SERS has been found, manifesting the importance of EC-TERS to reveal the interfacial structure of an electrochemical system. We further extended EC-TERS to electrochemical redox system, and clear dependence of the species during redox reaction can be identified.

  9. Probing non-adiabatic conical intersections using absorption, spontaneous Raman, and femtosecond stimulated Raman spectroscopy

    SciTech Connect

    Patuwo, Michael Y.; Lee, Soo-Y.

    2013-12-21

    We present the time-frame calculated photoabsorption spectrum (ABS), spontaneous Raman excitation profile (REP), femtosecond stimulated Raman spectroscopy (FSRS) spectrum, and femtosecond stimulated Raman excitation profile (FSREP) results of a two-mode and three-mode, three-electronic-states model Hamiltonians containing conical intersections (CIs) along its two upper diabatic electronic states, e{sub 1} (dark) and e{sub 2} (bright), with and without coupling (nonadiabatic dynamics) along an asymmetric mode. For every electronic state in each model, there is one coupling mode and the rest of the modes are symmetric tuning modes. The CI appears in the Hamiltonian as off-diagonal entries to the potential term that couple the two upper states, in the form of a linear function of the coupling mode. We show that: (a) the ABS, REP, and FSREP for Stokes and anti-Stokes lines contain similar information about the e{sub 1} and e{sub 2} vibrational bands, (b) the FSRS spectra feature narrow stationary peaks and broader moving peaks contributed by the different resonant components of the third-order polarization terms from perturbation theory, and (c) a relatively strong and narrow stationary band of the allowed first overtone of the asymmetric coupling mode is observed in the Stokes FSREP in the e{sub 1} energy region with coupling to e{sub 2}.

  10. Probing non-adiabatic conical intersections using absorption, spontaneous Raman, and femtosecond stimulated Raman spectroscopy.

    PubMed

    Patuwo, Michael Y; Lee, Soo-Y

    2013-12-21

    We present the time-frame calculated photoabsorption spectrum (ABS), spontaneous Raman excitation profile (REP), femtosecond stimulated Raman spectroscopy (FSRS) spectrum, and femtosecond stimulated Raman excitation profile (FSREP) results of a two-mode and three-mode, three-electronic-states model Hamiltonians containing conical intersections (CIs) along its two upper diabatic electronic states, e1 (dark) and e2 (bright), with and without coupling (nonadiabatic dynamics) along an asymmetric mode. For every electronic state in each model, there is one coupling mode and the rest of the modes are symmetric tuning modes. The CI appears in the Hamiltonian as off-diagonal entries to the potential term that couple the two upper states, in the form of a linear function of the coupling mode. We show that: (a) the ABS, REP, and FSREP for Stokes and anti-Stokes lines contain similar information about the e1 and e2 vibrational bands, (b) the FSRS spectra feature narrow stationary peaks and broader moving peaks contributed by the different resonant components of the third-order polarization terms from perturbation theory, and (c) a relatively strong and narrow stationary band of the allowed first overtone of the asymmetric coupling mode is observed in the Stokes FSREP in the e1 energy region with coupling to e2.

  11. [Application of Raman Spectroscopy Technique to Agricultural Products Quality and Safety Determination].

    PubMed

    Liu, Yan-de; Jin, Tan-tan

    2015-09-01

    The quality and safety of agricultural products and people health are inseparable. Using the conventional chemical methods which have so many defects, such as sample pretreatment, complicated operation process and destroying the samples. Raman spectroscopy as a powerful tool of analysing and testing molecular structure, can implement samples quickly without damage, qualitative and quantitative detection analysis. With the continuous improvement and the scope of the application of Raman spectroscopy technology gradually widen, Raman spectroscopy technique plays an important role in agricultural products quality and safety determination, and has wide application prospects. There have been a lot of related research reports based on Raman spectroscopy detection on agricultural product quality safety at present. For the understanding of the principle of detection and the current development situation of Raman spectroscopy, as well as tracking the latest research progress both at home and abroad, the basic principles and the development of Raman spectroscopy as well as the detection device were introduced briefly. The latest research progress of quality and safety determination in fruits and vegetables, livestock and grain by Raman spectroscopy technique were reviewed deeply. Its technical problems for agricultural products quality and safety determination were pointed out. In addition, the text also briefly introduces some information of Raman spectrometer and the application for patent of the portable Raman spectrometer, prospects the future research and application.

  12. Multi-excitation Raman difference spectroscopy based on modified multi-energy constrained iterative deconvolution algorithm

    NASA Astrophysics Data System (ADS)

    Zou, Wenlong; Cai, Zhijian; Zhou, Hongwu; Wu, Jianhong

    2013-12-01

    Raman spectroscopy is fast and nondestructive, and it is widely used in chemistry, biomedicine, food safety and other areas. However, Raman spectroscopy is often hampered by strong fluorescence background, especially in food additives detection and biomedicine researching. In this paper, one efficient technique was the multi-excitation Raman difference spectroscopy (MERDS) which incorporated a series of small wavelength-shift wavelengths as excitation sources. A modified multi-energy constrained iterative deconvolution (MMECID) algorithm was proposed to reconstruct the Raman Spectroscopy. Computer simulation and experiments both demonstrated that the Raman spectrum can be well reconstructed from large fluorescence background. The more excitation sources used, the better signal to noise ratio got. However, many excitation sources were equipped on the Raman spectrometer, which increased the complexity of the experimental system. Thus, a trade-off should be made between the number of excitation frequencies and experimental complexity.

  13. [Characterization of pure and doped amorphous WO3 films by Raman spectroscopy].

    PubMed

    Lü, Gang; Wu, Yong-Gang; Wu, He-Yun; Xia, Zi-Huan; Liu, Ren-Chen

    2012-11-01

    Pure, TiO2-doped and TiO2/Ag-doped WO3 films were prepared by evaporation and electron beam evaporating. Raman spectroscopy and chronoamperometry were used to characterize the electrochromic properties of the samples. The correlation between the relative intensity of the Raman peaks, corresponding to the Raman sharp peak of the crystalline phase at 810 cm(-1) is negative, that is to say the higher the relative intensity of the Raman peaks, the smaller the coloration efficiency.

  14. Nondestructive evaluation of internal maturity of tomatoes using spatially offset Raman spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This research explored the use of spatially offset Raman spectroscopy (SORS) for nondestructive evaluation of internal maturity of tomatoes. A Raman spectroscopy system using a 785 nm laser was developed to collect spatially-offset spectra in the wavenumber range of 200 – 2500. The SORS measuremen...

  15. The 14th Annual James L. Waters Symposium at Pittcon: Raman Spectroscopy

    ERIC Educational Resources Information Center

    Gardner, Charles W.

    2007-01-01

    Raman Spectroscopy was the main topic of the 14th Annual James L. Waters Symposium, which was held in March 2003 at Pittcon. The development of the enabling technologies that have made Raman spectroscopy a routine analysis tool in many laboratories worldwide is discussed.

  16. Analysis of dissolved C2H2 in transformer oils using laser Raman spectroscopy.

    PubMed

    Somekawa, Toshihiro; Kasaoka, Makoto; Kawachi, Fumio; Nagano, Yoshitomo; Fujita, Masayuki; Izawa, Yasukazu

    2013-04-01

    We have developed a laser Raman spectroscopy technique for assessing the working conditions of transformers by measuring dissolved C2H2 gas concentrations present in transformer oils. A frequency doubled Q-switched Nd:YAG laser (532 nm) was used as a laser source, and Raman signals at ~1972 cm(-1) originating from C2H2 gas dissolved in oil were detected. The results show that laser Raman spectroscopy is a useful alternative method for detecting transformer faults.

  17. Process spectroscopy in microemulsions—Raman spectroscopy for online monitoring of a homogeneous hydroformylation process

    NASA Astrophysics Data System (ADS)

    Paul, Andrea; Meyer, Klas; Ruiken, Jan-Paul; Illner, Markus; Müller, David-Nicolas; Esche, Erik; Wozny, Günther; Westad, Frank; Maiwald, Michael

    2017-03-01

    A major industrial reaction based on homogeneous catalysis is hydroformylation for the production of aldehydes from alkenes and syngas. Hydroformylation in microemulsions, which is currently under investigation at Technische Universität Berlin on a mini-plant scale, was identified as a cost efficient approach which also enhances product selectivity. Herein, we present the application of online Raman spectroscopy on the reaction of 1-dodecene to 1-tridecanal within a microemulsion. To achieve a good representation of the operation range in the mini-plant with regard to concentrations of the reactants a design of experiments was used. Based on initial Raman spectra partial least squares regression (PLSR) models were calibrated for the prediction of 1-dodecene and 1-tridecanal. Limits of predictions arise from nonlinear correlations between Raman intensity and mass fractions of compounds in the microemulsion system. Furthermore, the prediction power of PLSR models becomes limited due to unexpected by-product formation. Application of the lab-scale derived calibration spectra and PLSR models on online spectra from a mini-plant operation yielded promising estimations of 1-tridecanal and acceptable predictions of 1-dodecene mass fractions suggesting Raman spectroscopy as a suitable technique for process analytics in microemulsions.

  18. Identification of anisodamine tablets by Raman and near-infrared spectroscopy with chemometrics.

    PubMed

    Li, Lian; Zang, Hengchang; Li, Jun; Chen, Dejun; Li, Tao; Wang, Fengshan

    2014-06-05

    Vibrational spectroscopy including Raman and near-infrared (NIR) spectroscopy has become an attractive tool for pharmaceutical analysis. In this study, effective calibration models for the identification of anisodamine tablet and its counterfeit and the distinguishment of manufacturing plants, based on Raman and NIR spectroscopy, were built, respectively. Anisodamine counterfeit tablets were identified by Raman spectroscopy with correlation coefficient method, and the results showed that the predictive accuracy was 100%. The genuine anisodamine tablets from 5 different manufacturing plants were distinguished by NIR spectroscopy using partial least squares discriminant analysis (PLS-DA) models based on interval principal component analysis (iPCA) method. And the results showed the recognition rate and rejection rate were 100% respectively. In conclusion, Raman spectroscopy and NIR spectroscopy combined with chemometrics are feasible and potential tools for rapid pharmaceutical tablet discrimination.

  19. Determination of glucose and ethanol after enzymatic hydrolysis and fermentation of biomass using Raman spectroscopy.

    PubMed

    Shih, Chien-Ju; Smith, Emily A

    2009-10-27

    Raman spectroscopy has been used for the quantitative determination of the conversion efficiency at each step in the production of ethanol from biomass. The method requires little sample preparation; therefore, it is suitable for screening large numbers of biomass samples and reaction conditions in a complex sample matrix. Dilute acid or ammonia-pretreated corn stover was used as a model biomass for these studies. Ammonia pretreatment was suitable for subsequent measurements with Raman spectroscopy, but dilute acid-pretreated corn stover generated a large background signal that surpassed the Raman signal. The background signal is attributed to lignin, which remains in the plant tissue after dilute acid pretreatment. A commercial enzyme mixture was used for the enzymatic hydrolysis of corn stover, and glucose levels were measured with a dispersive 785 nm Raman spectrometer. The glucose detection limit in hydrolysis liquor by Raman spectroscopy was 8 g L(-1). The mean hydrolysis efficiency for three replicate measurements obtained with Raman spectroscopy (86+/-4%) was compared to the result obtained using an enzymatic reaction with UV-vis spectrophotometry detection (78+/-8%). The results indicate good accuracy, as determined using a Student's t-test, and better precision for the Raman spectroscopy measurement relative to the enzymatic detection assay. The detection of glucose in hydrolysis broth by Raman spectroscopy showed no spectral interference, provided the sample was filtered to remove insoluble cellulose prior to analysis. The hydrolysate was further subjected to fermentation to yield ethanol. The detection limit for ethanol in fermentation broth by Raman spectroscopy was found to be 6 g L(-1). Comparison of the fermentation efficiencies measured by Raman spectroscopy (80+/-10%) and gas chromatography-mass spectrometry (87+/-9%) were statistically the same. The work demonstrates the utility of Raman spectroscopy for screening the entire conversion process to

  20. Surface-enhanced Raman spectroscopy as a tool for characterizing nanostructures containing molecular components

    NASA Astrophysics Data System (ADS)

    Xu, Ke; Abell, Justin; Zhao, Yiping; Qian, Jun; Brenneman, Kimber; Meshik, Xenia; Dutta, Mitra; Stroscio, Michael

    2012-12-01

    Raman spectroscopy, which is based on inelastic scattering of light that interacts with phonons or molecular vibrations in the nanostructure, has been widely used to identify chemical and biological molecules. Surface-Enhanced Raman Spectroscopy (SERS) greatly enhanced the sensitivity of conventional Raman spectroscopy by a factor of >106 through the use of a plasmon-generating substrate [1, 2]. This study investigated the use of Raman spectroscopy/SERS to verify that synthesized nanostructures contain active molecular components critical to their functioning. In particular, this study uses SERS to identify the signature spectrum of Methylene Blue (MB) and uses standard Raman spectroscopy to verify the fictionalization of a DNA aptamer terminated with MB.

  1. Continuous gradient temperature Raman spectroscopy of oleic and linoleic acids from -100 to 50°C

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gradient Temperature Raman spectroscopy (GTRS) applies the temperature gradients utilized in differential scanning calorimetry (DSC) to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements that occur near and at phase transitions. Herein we apply GTRS and DS...

  2. Doping, Strain, Orientation and Disorder of Graphene by Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ferrari, Andrea C.

    2009-03-01

    Raman spectroscopy is a fast and non-destructive method for the characterization of carbons [1]. These show two features: the G and D peaks, around 1580 and 1350cm-1 respectively. The G peak corresponds to the doubly degenerate E2g phonon at the Brillouin zone centre. The D peak is due to the breathing modes of sp^2 atoms and requires a defect for its activation [1-5]. It is common for as-prepared graphene not to have enough structural defects for the D peak to be seen [4,6], so that it can only be detected at the edges [6]. The most prominent feature in graphene is the second order 2D peak [6]. This is always seen, since no defects are required for its activation. Its shape distinguishes single and multi-layers [6]. Raman spectroscopy also monitors doping [7-9]. We report the evolution of the Raman spectra of single [7,8] and bi-layer [9] graphene as a function of doping. A Fermi level shift is induced either by applying a bottom gate [7], or by a polymeric top gate [8,9], or naturally happens as a result of charged impurities [10]. This induces a stiffening of the Raman G peak for both hole and electron doping [7]. This is explained including dynamic corrections to the adiabatic Born-Oppenheimer approximation [7]. The phonon renormalization of bilayer graphene has characteristic features compared to single layer. This allows a direct estimation of the interlayer coupling [7-9]. We then consider the effects strain. Uniaxial strain lifts the E2g degeneracy and splits the G peak in two: G^+ and G^-. The peaks downshift as a function of strain allows a direct measurement of the Gruneisen parameter [10]. The polarization dependence of the G^+/G^- modes is a probe of the crystallographic orientation of the sample [10]. Finally, we consider the effect of disorder [3,4,11] and show how to discriminate between disorder, strain and doping [11]. We will also discuss how the D peak is a signature of π electron localisation, and, thus, of gap opening in chemically modified

  3. A review of advances in deep-ocean Raman spectroscopy.

    PubMed

    Zhang, Xin; Kirkwood, William J; Walz, Peter M; Peltzer, Edward T; Brewer, Peter G

    2012-03-01

    We review the rapid progress made in the applications of Raman spectroscopy to deep-ocean science. This is made possible by deployment of instrumentation on remotely operated vehicles used for providing power and data flow and for precise positioning on targets of interest. Early prototype systems have now been replaced by compact and robust units that have been deployed well over 100 times on an expeditionary basis over a very wide range of ocean depths without failure. Real-time access to the spectra obtained in the vehicle control room allows for expedition decision making. Quantification of some of the solutes in seawater or pore waters observed in the spectra is made possible by self-referencing to the ubiquitous ν(2) water bending peak. The applications include detection of the structure and composition of complex thermogenic gas hydrates both occurring naturally on the sea floor and in controlled sea floor experiments designed to simulate the growth of such natural systems. New developments in the ability to probe the chemistry of sediment pore waters in situ, long thought impossible candidates for Raman study due to fluorescence observed in recovered samples, have occurred. This permits accurate measurement of the abundance of dissolved methane and sulfide in sediment pore waters. In areas where a high gas flux is observed coming out of the sediments a difference of about ×30 between in situ Raman measurement and the quantity observed in recovered cores has been found. New applications under development include the ability to address deep-sea biological processes and the ability to survey the sea floor chemical conditions associated with potential sub-sea geologic CO(2) disposal in abandoned oil and gas fields.

  4. Classification of oral cancers using Raman spectroscopy of serum

    NASA Astrophysics Data System (ADS)

    Sahu, Aditi; Talathi, Sneha; Sawant, Sharada; Krishna, C. Murali

    2014-03-01

    Oral cancers are the sixth most common malignancy worldwide, with low 5-year disease free survival rates, attributable to late detection due to lack of reliable screening modalities. Our in vivo Raman spectroscopy studies have demonstrated classification of normal and tumor as well as cancer field effects (CFE), the earliest events in oral cancers. In view of limitations such as requirement of on-site instrumentation and stringent experimental conditions of this approach, feasibility of classification of normal and cancer using serum was explored using 532 nm excitation. In this study, strong resonance features of β-carotenes, present differentially in normal and pathological conditions, were observed. In the present study, Raman spectra of sera of 36 buccal mucosa, 33 tongue cancers and 17 healthy subjects were recorded using Raman microprobe coupled with 40X objective using 785 nm excitation, a known source of excitation for biomedical applications. To eliminate heterogeneity, average of 3 spectra recorded from each sample was subjected to PC-LDA followed by leave-one-out-cross-validation. Findings indicate average classification efficiency of ~70% for normal and cancer. Buccal mucosa and tongue cancer serum could also be classified with an efficiency of ~68%. Of the two cancers, buccal mucosa cancer and normal could be classified with a higher efficiency. Findings of the study are quite comparable to that of our earlier study, which suggest that there exist significant differences, other than β- carotenes, between normal and cancerous samples which can be exploited for the classification. Prospectively, extensive validation studies will be undertaken to confirm the findings.

  5. IR spectroscopy vs. Raman scattering by measurement of glucose concentration

    NASA Astrophysics Data System (ADS)

    Abdallah, O.; Hansmann, J.; Bolz, A.; Mertsching, H.

    2010-11-01

    By developing a non-invasive device for glucose concentration measurement, two promising methods were compared for that aim. The Raman scattering using Laser at the wavelength 785 nm and the light scattering in R- and IR-range are demonstrated. An easy accessible and low-cost method for glucose concentration monitoring and management to avoid its complications will be a great help for diabetic patients. Raman Scattering is a promising method for noninvasively measuring of glucose and for the diagnostic of pathological tissue variations. Despite the power and the time of measurement can be reduced using enhanced Raman scattering, it will be difficult to develop a compatible device with low power Laser and low price for a non-invasive method for home monitoring. As using IR-spectroscopy at wavelengths slightly below 10000 nm, the absorption of glucose can be well discriminated from that of water, LED`s or LD's at these wavelengths are very expensive for this purpose. At wavelengths about 6250 and 7700 glucose has a less light absorption than water. Also slightly above 3000 nm glucose has a high absorption. There are also possibilities for the measurement in the NIR at wavelengths between 1400 nm and 1670 nm. Scattering measurements at wavelengths below 900 nm and our measurements with the wavelength about 640 nm give reproducible glucose dependence on the reflected light from a glucose solution at a constant temperature. A multi-sensor with different wavelengths and temperature sensor will be a good choice for in-vivo glucose monitoring.

  6. Study of carotenoids in cyanobacteria by Raman spectroscopy.

    PubMed

    de Oliveira, Vanessa End; Neves Miranda, Marcela A C; Soares, Maria Carolina Silva; Edwards, Howell G M; de Oliveira, Luiz Fernando Cappa

    2015-01-01

    Cyanobacteria have established dominant aquatic populations around the world, generally in aggressive environments and under severe stress conditions, e.g., intense solar radiation. Several marine strains make use of compounds such as the polyenic molecules for their damage protection justifying the range of colours observed for these species. The peridinin/chlorophyll-a/protein complex is an excellent example of essential structures used for self-prevention; their systems allow to them surviving under aggressive environments. In our simulations, few protective dyes are required to the initial specimen defense; this is an important data concern the synthetic priority in order to supply adequate damage protection. Raman measurements obtained with 1064 and 514.5 nm excitations for Cylindrospermopsis raciborskii and Microcystis aeruginosa strains shows bands assignable to the carotenoid peridinin. It was characterized by bands at 1940, 1650, 1515, 1449, 1185, 1155 and 1000 cm(-1) assigned to ν(C=C=C) (allenic vibration), ν(C=C/CO), ν(C=C), δ(C-H, C-18/19), δ(C-H), ν(C-C), and ρ(C-CH3), respectively. Recognition by Raman spectroscopy proved to be an important tool for preliminaries detections and characterization of polyene molecules in several algae, besides initiate an interesting discussion about their synthetic priority.

  7. Etude par spectroscopie raman du chlorhydrate de cocaine.

    PubMed

    Gamot, A P; Vergoten, G; Fleury, G

    1985-05-01

    Raman spectra of cocaine hydrochloride in the polycrystalline state and in saturated aqueous solutions have been recorded at room temperature from 0 to 4000 cm(-1) and at 9 K from 0 to 200 cm(-1) (only for the polycrystalline state). They show that cocaine can be characterized by the following proposed assignments. For the tropane nucleus the frequencies 851 and 786 cm(-1) (piperidine) and 896, 870 cm(-1) (pyrrolidine); these frequencies are assigned to ring carbon stretching vibrations V(C-C) Bands for the ester functional groups can be observed at 1713 cm(-1) (v(CO)) and 1203 cm(-1) (v((C-O-O)). The benzene nucleus is also important in characterization of cocaine hydrochloride because of its bands at 616, 990, 1000, 1026 and 1596 cm(-1). Special reference is made first to the work in the low-frequency range at room temperature and 9 K and secondly to the polarization studies of saturated aqueous solutions in the range 700-1726 cm(-1). The results constitute a pool of analytical characteristics which can be used for toxicological investigations, and also show all the possibilities of Raman spectroscopy in this field.

  8. Combustion Diagnosis By Coherent Anti-Stokes Raman Spectroscopy (CARS)

    NASA Astrophysics Data System (ADS)

    Hall, Robert J.; Eckbreth, Alan C.

    1981-08-01

    Coherent anti-Stokes Raman spectroscopy (CARS) appears very promising for the remote, spatially and temporally precise probing of hostile combustion environments due to its large signal conversion efficiency and coherent signal nature. CARS is a wave mixing process in which incident laser beams at frequencies w1 and 0)2, with a frequency difference tuned to a Raman resonance in the molecular species being probed, interact to generate a coher-ent signal at frequency w3 = 2(.01 - w2. By analyzing the spectral distribution of the CARS signal, temperature measurements can be performed. Species concentration measurements derive from the intensity of the CARS radiation or, in certain cases, from its spectral shape. CARS spectra have been recorded in a variety of flames from the major flame constituents and generally show very good agreement with computer synthesized spectra. Significantly, CARS has been successfully demonstrated with both liquid and gaseous fuels in the primary zone and exhaust of practical combustors. Both thermometry and species concentration measurements have been performed. High pressure effects on CARS spectra have also been examined.

  9. Raman spectroscopy of suspended mono and bilayer graphene

    NASA Astrophysics Data System (ADS)

    Kitt, Alexander; Feldman, Benjamin; Remi, Sebastian; Martin, Jens; Swan, Anna; Yacoby, Amir; Goldberg, Bennett

    2010-03-01

    Suspended mono and bilayer graphene flakes have been shown to have higher mobility and lower disorder than their supported counterparts^1. The geometry which decouples the flake from the substrate also causes an as yet uncharacterized backgate specific strain due to an electrostatic attraction between the graphene and the back gated substrate. We study this strain using spatially resolved Raman spectroscopy with a diffraction limited spot size. Upon application of uni-axial strain the unit cell is stretched reducing the symmetry of the system and breaking the double degeneracy of the G band causing a split in the peak. Additionally the Raman modes show a linear softening as a function of strain in the case of supported graphene. Suspended flakes provide an ideal system to study back gate tunable strain while avoiding complications due to substrates including the determination of the Poisson ratio and sample slippage^2. Here we present preliminary results of our observations. 1: B Feldman, J Martin, A Yacoby, ``Broken-symmetry states and divergent resistance in suspended bilayer graphene'', Nature Physics, doi:10.1038/nphys1406 2: C Metzger et al, ``Biaxial strain in graphene adhered to shallow depressions'', Accepted for publication in Nano Letters

  10. Real-time control of microreactors by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Shende, Chetan; Maksymiuk, Paul; Inscore, Frank; Farquharson, Stuart

    2006-10-01

    In recent years a paradigm in chemical manufacturing has emerged, numbering-up production instead of the traditional scaling-up. This new approach employs nanoliter to milliliter reactors that increase control of reaction pathways, product choice and yield. These small-scale reactors virtually eliminate mixing and heat transfer problems associated with large-scale reactors that often limit yield. The value of small-scale reactors is being recognized by the pharmaceutical industry where only small-scale synthesis is required until clinical trials are complete, at which time fullscale production needs to be accomplished in the shortest possible time. One of the most often used reaction steps during the synthesis of pharmaceuticals is protecting carboxylic acid groups by esterification. We have been developing Raman spectroscopy as a process analytical tool to monitor and control chemistry in such small-scale reactors. Here we present Raman spectra of the esterification of benzoic acid performed in a 5-mL batch reactor.

  11. Two-step Raman spectroscopy method for tumor diagnosis

    NASA Astrophysics Data System (ADS)

    Zakharov, V. P.; Bratchenko, I. A.; Kozlov, S. V.; Moryatov, A. A.; Myakinin, O. O.; Artemyev, D. N.

    2014-05-01

    Two-step Raman spectroscopy phase method was proposed for differential diagnosis of malignant tumor in skin and lung tissue. It includes detection of malignant tumor in healthy tissue on first step with identification of concrete cancer type on the second step. Proposed phase method analyze spectral intensity alteration in 1300-1340 and 1640-1680 cm-1 Raman bands in relation to the intensity of the 1450 cm-1 band on first step, and relative differences between RS intensities for tumor area and healthy skin closely adjacent to the lesion on the second step. It was tested more than 40 ex vivo samples of lung tissue and more than 50 in vivo skin tumors. Linear Discriminant Analysis, Quadratic Discriminant Analysis and Support Vector Machine were used for tumors type classification on phase planes. It is shown that two-step phase method allows to reach 88.9% sensitivity and 87.8% specificity for malignant melanoma diagnosis (skin cancer); 100% sensitivity and 81.5% specificity for adenocarcinoma diagnosis (lung cancer); 90.9% sensitivity and 77.8% specificity for squamous cell carcinoma diagnosis (lung cancer).

  12. [Fast discrimination of edible vegetable oil based on Raman spectroscopy].

    PubMed

    Zhou, Xiu-Jun; Dai, Lian-Kui; Li, Sheng

    2012-07-01

    A novel method to fast discriminate edible vegetable oils by Raman spectroscopy is presented. The training set is composed of different edible vegetable oils with known classes. Based on their original Raman spectra, baseline correction and normalization were applied to obtain standard spectra. Two characteristic peaks describing the unsaturated degree of vegetable oil were selected as feature vectors; then the centers of all classes were calculated. For an edible vegetable oil with unknown class, the same pretreatment and feature extraction methods were used. The Euclidian distances between the feature vector of the unknown sample and the center of each class were calculated, and the class of the unknown sample was finally determined by the minimum distance. For 43 edible vegetable oil samples from seven different classes, experimental results show that the clustering effect of each class was more obvious and the class distance was much larger with the new feature extraction method compared with PCA. The above classification model can be applied to discriminate unknown edible vegetable oils rapidly and accurately.

  13. Composition of Uranium Oxide Surface Layers Analyzed by m-Raman Spectroscopy

    SciTech Connect

    Siekhaus, W J

    2003-11-24

    Oxide thickness and composition averaged over a few square millimeter has been measured with nm thickness resolution by diffuse reflectance fourier transform infrared (FTIR) spectroscopy. {mu}-Raman spectroscopy has been done on powders and bulk samples in the past, and can now be done on surfaces layers with {micro}m lateral and depth resolution using con-focal microscopy. Here we apply con-focal-microscopy-based {mu}-Raman spectroscopy to a freshly polished/lightly oxidized and to heavily oxidized uranium to determine its sensitivity. The spectra show that {mu}-Raman spectroscopy does detect oxide thickness and oxide composition with high sensitivity.

  14. High-pressure polymorphism of acetylsalicylic acid (aspirin): Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Crowell, Ethan L.; Dreger, Zbigniew A.; Gupta, Yogendra M.

    2015-02-01

    Micro-Raman spectroscopy was used to elucidate the high-pressure polymorphic behavior of acetylsalicylic acid (ASA), an important pharmaceutical compound known as aspirin. Using a diamond anvil cell (DAC), single crystals of the two polymorphic phases of aspirin existing at ambient conditions (ASA-I and ASA-II) were compressed to 10 GPa. We found that ASA-I does not transform to ASA-II, but instead transforms to a new phase (ASA-III) above ∼2 GPa. It is demonstrated that this transformation primarily introduces structural changes in the bonding and arrangement of the acetyl groups and is reversible upon the release of pressure. In contrast, a less dense ASA-II shows no transition in the pressure range studied, though it appears to exhibit a disordered structure above 7 GPa. Our results suggest that ASA-III is the most stable polymorph of aspirin at high pressures.

  15. Coherent two-dimensional terahertz-terahertz-Raman spectroscopy

    PubMed Central

    Finneran, Ian A.; Welsch, Ralph; Allodi, Marco A.; Miller, Thomas F.; Blake, Geoffrey A.

    2016-01-01

    We present 2D terahertz-terahertz-Raman (2D TTR) spectroscopy, the first technique, to our knowledge, to interrogate a liquid with multiple pulses of terahertz (THz) light. This hybrid approach isolates nonlinear signatures in isotropic media, and is sensitive to the coupling and anharmonicity of thermally activated THz modes that play a central role in liquid-phase chemistry. Specifically, by varying the timing between two intense THz pulses, we control the orientational alignment of molecules in a liquid, and nonlinearly excite vibrational coherences. A comparison of experimental and simulated 2D TTR spectra of bromoform (CHBr3), carbon tetrachloride (CCl4), and dibromodichloromethane (CBr2Cl2) shows previously unobserved off-diagonal anharmonic coupling between thermally populated vibrational modes. PMID:27274067

  16. Monitoring the healing process of rat bones using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Gamulin, O.; Serec, K.; Bilić, V.; Balarin, M.; Kosović, M.; Drmić, D.; Brčić, L.; Seiwerth, S.; Sikirić, P.

    2013-07-01

    The healing effect of BPC 157 on rat femoral head osteonecrosis was monitored by Raman spectroscopy. Three groups of rats were defined: an injured group treated with BPC 157 (10 μg/kg/daily ip), an injured control group (treated with saline, 5 ml/kg/daily ip), and an uninjured healthy group. The spectra were recorded and the healing effect assessed on samples harvested from animals which were sacrificed 3 and 6 weeks after being injured. The statistical analysis of the recorded spectra showed statistical differences between the BPC 157-treated, control, and healthy groups of animals. In particular, after 6 weeks the spectral resemblance between the healthy and BPC 157 samples indicated a positive BPC 157 influence on the healing process of rat femoral head.

  17. Towards ultrasensitive malaria diagnosis using surface enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Keren; Yuen, Clement; Aniweh, Yaw; Preiser, Peter; Liu, Quan

    2016-02-01

    We report two methods of surface enhanced Raman spectroscopy (SERS) for hemozoin detection in malaria infected human blood. In the first method, silver nanoparticles were synthesized separately and then mixed with lysed blood; while in the second method, silver nanoparticles were synthesized directly inside the parasites of Plasmodium falciparum. It was observed that the first method yields a smaller variation in SERS measurements and stronger correlation between the estimated contribution of hemozoin and the parasitemia level, which is preferred for the quantification of the parasitemia level. In contrast, the second method yields a higher sensitivity to a low parasitemia level thus could be more effective in the early malaria diagnosis to determine whether a given blood sample is positive.

  18. Automated analysis of single cells using Laser Tweezers Raman Spectroscopy.

    PubMed

    Casabella, S; Scully, P; Goddard, N; Gardner, P

    2016-01-21

    In recent years, significant progress has been made into the label-free detection and discrimination of individual cancer cells using Laser Tweezers Raman Spectroscopy (LTRS). However, the majority of examples reported have involved manual trapping of cells, which is time consuming and may lead to different cell lines being analysed in discrete batches. A simple, low-cost microfluidic flow chamber is introduced which allows single cells to be optically trapped and analysed in an automated fashion, greatly reducing the level of operator input required. Two implementations of the flow chamber are discussed here; a basic single-channel device in which the fluid velocity is controlled manually, and a dual-channel device which permits the automated capture and analysis of multiple cell lines with no operator input. Results are presented for the discrimination of live epithelial prostate cells and lymphocytes, together with a consideration of the consequences of traditional 'batch analysis' typically used for LTRS of live cells.

  19. Combining hyperspectral imaging and Raman spectroscopy for remote chemical sensing

    NASA Astrophysics Data System (ADS)

    Ingram, John M.; Lo, Edsanter

    2008-04-01

    The Photonics Research Center at the United States Military Academy is conducting research to demonstrate the feasibility of combining hyperspectral imaging and Raman spectroscopy for remote chemical detection over a broad area of interest. One limitation of future trace detection systems is their ability to analyze large areas of view. Hyperspectral imaging provides a balance between fast spectral analysis and scanning area. Integration of a hyperspectral system capable of remote chemical detection will greatly enhance our soldiers' ability to see the battlefield to make threat related decisions. It can also queue the trace detection systems onto the correct interrogation area saving time and reconnaissance/surveillance resources. This research develops both the sensor design and the detection/discrimination algorithms. The one meter remote detection without background radiation is a simple proof of concept.

  20. Rapid biological agent identification by surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Farquharson, Stuart; Smith, Wayne W.; Elliott, Susan; Sperry, Jay F.

    1999-11-01

    The Chemical Weapons Convention prohibits the development, production, stockpiling, and use of warfare agents (chemical and biological), and requires their destruction. Yet their use persists and has been included in the terrorist's arsenal. Currently, a number of analytical methods are being developed to perform rapid measurements of trace agents to ensure treaty compliance, as well as safe environments for military personal and the public at large. We have been investigating the ability of surface-enhanced Raman spectroscopy to detect bacterial nucleic acid-base pairs with sufficient sensitivity and selectivity to eliminate the need for enumeration used in polymerase chain reactions and culture growth, required by other measurement techniques. The design of a small volume, fiber optic coupled, electrolytic sample cell is presented along with analysis of DNA and RNA separated from non-toxic bacteria.

  1. Analysis of spreadable cheese by Raman spectroscopy and chemometric tools.

    PubMed

    Oliveira, Kamila de Sá; Callegaro, Layce de Souza; Stephani, Rodrigo; Almeida, Mariana Ramos; de Oliveira, Luiz Fernando Cappa

    2016-03-01

    In this work, FT-Raman spectroscopy was explored to evaluate spreadable cheese samples. A partial least squares discriminant analysis was employed to identify the spreadable cheese samples containing starch. To build the models, two types of samples were used: commercial samples and samples manufactured in local industries. The method of supervised classification PLS-DA was employed to classify the samples as adulterated or without starch. Multivariate regression was performed using the partial least squares method to quantify the starch in the spreadable cheese. The limit of detection obtained for the model was 0.34% (w/w) and the limit of quantification was 1.14% (w/w). The reliability of the models was evaluated by determining the confidence interval, which was calculated using the bootstrap re-sampling technique. The results show that the classification models can be used to complement classical analysis and as screening methods.

  2. High-pressure Raman spectroscopy of phase change materials

    SciTech Connect

    Hsieh, Wen-Pin Mao, Wendy L.; Zalden, Peter; Wuttig, Matthias; Lindenberg, Aaron M.

    2013-11-04

    We used high-pressure Raman spectroscopy to study the evolution of vibrational frequencies of the phase change materials (PCMs) Ge{sub 2}Sb{sub 2}Te{sub 5}, GeSb{sub 2}Te{sub 4}, and SnSb{sub 2}Te{sub 4}. We found that the critical pressure for triggering amorphization in the PCMs decreases with increasing vacancy concentration, demonstrating that the presence of vacancies, rather than differences in the atomic covalent radii, is crucial for pressure-induced amorphization in PCMs. Compared to the as-deposited amorphous phase, the pressure-induced amorphous phase has a similar vibrational spectrum but requires much lower laser power to transform into the crystalline phase, suggesting different kinetics of crystallization, which may have implications for applications of PCMs in non-volatile data storage.

  3. Raman spectroscopy of ion-irradiated astrophysically relevant materials

    NASA Astrophysics Data System (ADS)

    Baratta, G. A.; Brunetto, R.; Leto, G.; Palumbo, M. E.; Spinella, F.; Strazzulla, G.

    Solid objects in space (interstellar grains, comets, interplanetary dust particles, etc.) are continuously exposed to energetic processes, such as cosmic ion irradiation, that influence their evolution. In this paper we present an experimental study, carried out by Raman spectroscopy, of the effects induced by ion irradiation on frozen ices and refractory materials. If the irradiated ice mixture contains a relevant amount of carbon atoms, the ice is converted into an organic residue (stable at room temperature), which at high irradiation dose evolves toward a hydrogenated amorphous carbon. Here we show that material similar to that produced in the laboratory by ion irradiation of frozen ice mixtures and refractory materials can be formed in space by cosmic ion irradiation. This finding has been recently confirmed by the Stardust mission, which revealed in some of the cometary particles collected in space and returned to earth carbonaceous materials that have been processed by cosmic ion irradiation.

  4. Detecting Chemically Modified DNA Bases Using Surface Enhanced Raman Spectroscopy.

    PubMed

    Barhoumi, Aoune; Halas, Naomi J

    2011-12-15

    Post-translational modifications of DNA- changes in the chemical structure of individual bases that occur without changes in the DNA sequence- are known to alter gene expression. They are believed to result in frequently deleterious phenotypic changes, such as cancer. Methylation of adenine, methylation and hydroxymethylation of cytosine, and guanine oxidation are the primary DNA base modifications identified to date. Here we show it is possible to use surface enhanced Raman spectroscopy (SERS) to detect these primary DNA base modifications. SERS detection of modified DNA bases is label-free and requires minimal additional sample preparation, reducing the possibility of additional chemical modifications induced prior to measurement. This approach shows the feasibility of DNA base modification assessment as a potentially routine analysis that may be further developed for clinical diagnostics.

  5. Glucose determination in human aqueous humor with Raman spectroscopy

    NASA Technical Reports Server (NTRS)

    Lambert, James L.; Pelletier, Christine C.; Borchert, Mark

    2005-01-01

    It has been suggested that spectroscopic analysis of the aqueous humor of the eye could be used to indirectly predict blood glucose levels in diabetics noninvasively. We have been investigating this potential using Raman spectroscopy in combination with partial least squares (PLS) analysis. We have determined that glucose at clinically relevant concentrations can be accurately predicted in human aqueous humor in vitro using a PLS model based on artificial aqueous humor. We have further determined that with proper instrument design, the light energy necessary to achieve clinically acceptable prediction of glucose does not damage the retinas of rabbits and can be delivered at powers below internationally acceptable safety limits. Herein we summarize our current results and address our strategies to improve instrument design. 2005 Society of Photo-Optical Instrumentation Engineers.

  6. Towards ultrasensitive malaria diagnosis using surface enhanced Raman spectroscopy

    PubMed Central

    Chen, Keren; Yuen, Clement; Aniweh, Yaw; Preiser, Peter; Liu, Quan

    2016-01-01

    We report two methods of surface enhanced Raman spectroscopy (SERS) for hemozoin detection in malaria infected human blood. In the first method, silver nanoparticles were synthesized separately and then mixed with lysed blood; while in the second method, silver nanoparticles were synthesized directly inside the parasites of Plasmodium falciparum. It was observed that the first method yields a smaller variation in SERS measurements and stronger correlation between the estimated contribution of hemozoin and the parasitemia level, which is preferred for the quantification of the parasitemia level. In contrast, the second method yields a higher sensitivity to a low parasitemia level thus could be more effective in the early malaria diagnosis to determine whether a given blood sample is positive. PMID:26858127

  7. Coherent two-dimensional terahertz-terahertz-Raman spectroscopy.

    PubMed

    Finneran, Ian A; Welsch, Ralph; Allodi, Marco A; Miller, Thomas F; Blake, Geoffrey A

    2016-06-21

    We present 2D terahertz-terahertz-Raman (2D TTR) spectroscopy, the first technique, to our knowledge, to interrogate a liquid with multiple pulses of terahertz (THz) light. This hybrid approach isolates nonlinear signatures in isotropic media, and is sensitive to the coupling and anharmonicity of thermally activated THz modes that play a central role in liquid-phase chemistry. Specifically, by varying the timing between two intense THz pulses, we control the orientational alignment of molecules in a liquid, and nonlinearly excite vibrational coherences. A comparison of experimental and simulated 2D TTR spectra of bromoform (CHBr3), carbon tetrachloride (CCl4), and dibromodichloromethane (CBr2Cl2) shows previously unobserved off-diagonal anharmonic coupling between thermally populated vibrational modes.

  8. Investigation of zircon by CL (Cathodoluminescence) and Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Didem Kılıç, Ayşe

    2016-10-01

    Puturge metamorphites consists of schist, gneisse, metagranite gneisse, amphibolite, kyanite quartzite and marble type rocks. Mineralogical studies, geochemical analysis (LA- ICPMS), Raman spectroscopy and cathodoluminescence (CL) imaging that it representing amphibolite facies and greenschiste facies. Zircon imaging called as a metamict from the cathodoluminescence images of zircon minerals. The partially radiated zircon particles is higher radiogenetic mineral ratio in comparison with other zircon particles. The ratio of the radiogenetic elements (U, Pb and Th) arises from chemical difference between the core and rims of zircons. The solubility of zircon effects environmental conditions such as high pH, Zr with hydroxyl ions. Especially alkaline fluids in environment can dissolve zircon. The results show that radiogenetic elements loss in zircons can be generated from metamict zircon through volume diffusion at low temperatures or by an external fluid (H2O). The loss of lead in zircon signifies that the fluids inserting the crystal lattice causes radiation damage processes.

  9. Advances in Raman spectroscopy for the diagnosis of Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Sudworth, Caroline D.; Archer, John K. J.; Black, Richard A.; Mann, David

    2006-02-01

    Within the next 50 years Alzheimer's disease is expected to affect 100 million people worldwide. The progressive decline in the mental health of the patient is caused by severe brain atrophy generated by the breakdown and aggregation of proteins, resulting in β-amyloid plaques and neurofibrillary tangles. The greatest challenge to Alzheimer's disease lies in the pursuit of an early and definitive diagnosis, in order that suitable treatment can be administered. At the present time, definitive diagnosis is restricted to post-mortem examination. Alzheimer's disease also remains without a long-term cure. This research demonstrates the potential role of Raman spectroscopy, combined with principle components analysis (PCA), as a diagnostic method. Analyses of ethically approved ex vivo post-mortem brain tissues (originating from frontal and occipital lobes) from control (3 normal elderly subjects and 3 Huntingdon's disease subjects) and Alzheimer's disease (12 subjects) brain sections, and a further set of 12 blinded samples are presented. Spectra originating from these tissues are highly reproducible, and initial results indicate a vital difference in protein content and conformation, relating to the abnormally high levels of aggregated proteins in the diseased tissues. Further examination of these spectra using PCA allows for the separation of control from diseased tissues. The validation of the PCA models using blinded samples also displays promise for the identification of Alzheimer's disease, in conjunction with secondary information regarding other brain diseases and dementias. These results provide a route for Raman spectroscopy as a possible non-invasive, non-destructive tool for the early diagnosis of Alzheimer's disease.

  10. Ring-Down Spectroscopy for Characterizing a CW Raman Laser

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey; Savchenkov, Anatoliy; Maleki, Lute

    2007-01-01

    .A relatively simple technique for characterizing an all-resonant intracavity continuous-wave (CW) solid-state Raman laser involves the use of ring-down spectroscopy. As used here, characterizing signifies determining such parameters as threshold pump power, Raman gain, conversion efficiency, and quality factors (Q values) of the pump and Stokes cavity modes. Heretofore, in order to characterize resonant-cavity-based Raman lasers, it has usually been necessary to manipulate the frequencies and power levels of pump lasers and, in each case, to take several sets of measurements. In cases involving ultra-high-Q resonators, it also has been desirable to lock pump lasers to resonator modes to ensure the quality of measurement data. Simpler techniques could be useful. In the present ring-down spectroscopic technique, one infers the parameters of interest from the decay of the laser out of its steady state. This technique does not require changing the power or frequency of the pump laser or locking the pump laser to the resonator mode. The technique is based on a theoretical analysis of what happens when the pump laser is abruptly switched off after the Raman generation reaches the steady state. The analysis starts with differential equations for the evolution of the amplitudes of the pump and Stokes electric fields, leading to solutions for the power levels of the pump and Stokes fields as functions of time and of the aforementioned parameters. Among other things, these solutions show how the ring-down time depends, to some extent, on the electromagnetic energy accumulated in the cavity. The solutions are readily converted to relatively simple equations for the parameters as functions of quantities that can be determined from measurements of the time-dependent power levels. For example, the steady-state intracavity conversion efficiency is given by G1/G2 1 and the threshold power is given by Pin(G2/G1)2, where Pin is the steady-state input pump power immediately prior to

  11. Determination of resonance Raman cross-sections for use in biological SERS sensing with femtosecond stimulated Raman spectroscopy.

    PubMed

    Silva, W Ruchira; Keller, Emily L; Frontiera, Renee R

    2014-08-05

    Surface-enhanced Raman spectroscopy (SERS) is a promising technique for in vivo bioanalyte detection, but accurate characterization of SERS biosensors can be challenging due to difficulties in differentiating resonance and surface enhancement contributions to the Raman signal. Here, we quantitate the resonance Raman cross-sections for a commonly used near-infrared SERS dye, 3,3'-diethylthiatricarbocyanine (DTTC). It is typically challenging to measure resonance Raman cross-sections for fluorescent dye molecules due to the overwhelming isoenergetic fluorescence signal. To overcome this issue, we used etalon-based femtosecond stimulated Raman spectroscopy, which is intrinsically designed to acquire a stimulated Raman signal without strong fluorescence or interference from signals resulting from other four-wave mixing pathways. Using this technique, we found that the cross-sections for most of the resonantly enhanced modes in DTTC exceed 10(-25) cm(2)/molecule. These cross-sections lead to high signal magnitude SERS signals from even weakly enhancing SERS substrates, as much of what appears to be a SERS signal is actually coming from the intrinsically strong resonance Raman signal. Our work will lead to a more accurate determination of SERS enhancement factors and SERS substrate characterization in the biologically relevant near-infrared region, ultimately leading to a more widespread use of SERS for biosensing and bioimaging applications.

  12. Analysis of hydrocarbon fuel properties by means of Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Flatley, Martin W.

    The project is focused on the determination of Raman spectra of hydrocarbon fuel samples using a spectrometer employing a silicon linear array detector which has a spectral range of 400 nm to 1.1 mum. The spectra are processed using chemometric techniques in order to determine the concentrations of the tracked blend components and analytical values that are used to ensure that desired specifications are achieved. The verification is based on the American Standard Testing Methods procedures for the determination of the motor, research, and road octane numbers, simulated distillation and Reid vapour pressure. Blending is one of the most important steps in the final production of hydrocarbon fuels; as many as ten complex components are mixed to achieve the desired properties of the final product. Traditionally, blending relies on well-established analytical methods such as gas chromatography for component and simulated distillation analysis, knock engines and near infrared spectroscopy for octane analysis. All of these methods are reliable and accurate, but their results are not available in real time but rather with a substantial delay, since it is in the nature of the methods that the sample must be transported from a test site to the site where the instrument is located. Additional time is required for performing the analytical procedure; e.g. the results of a gas chromatography analysis are only available from minutes to hours after the sample has been introduced into the instrument. Consequently, the results, although accurate, become only available after the process of blending has been completed. The thesis describes an implementation of a Raman spectroscopic method, which is novel in the given context, since it allows monitoring and control of the blending process online, in real time. A Raman spectrometer was designed, using a solid state laser for excitation (785 nm, 800 mW), a blazed grating for the diffraction (600 lines-per-millimeter, 750 nm blaze, 635

  13. Coherent anti-Stokes Raman scattering and spontaneous Raman spectroscopy and microscopy of microalgae with nitrogen depletion.

    PubMed

    He, X N; Allen, J; Black, P N; Baldacchini, T; Huang, X; Huang, H; Jiang, L; Lu, Y F

    2012-11-01

    Microalgae are extensively researched as potential feedstocks for biofuel production. Energy-rich compounds in microalgae, such as lipids, require efficient characterization techniques to investigate the metabolic pathways and the environmental factors influencing their accumulation. The model green alga Coccomyxa accumulates significant amounts of triacylglycerols (TAGs) under nitrogen depletion (N-depletion). To monitor the growth of TAGs (lipid) in microalgal cells, a study of microalgal cells (Coccomyxa sp. C169) using both spontaneous Raman and coherent anti-Stokes Raman scattering (CARS) spectroscopy and microscopy were carried out. Spontaneous Raman spectroscopy was conducted to analyze the components in the algal cells, while CARS was carried out to monitor the distribution of lipid droplets in the cells. Raman signals of carotenoid are greater in control microalgae compared to N-depleted cells. Raman signals of lipid droplets appear after N-depletion and its distribution can be clearly observed in the CARS microscopy. Both spontaneous Raman spectroscopy and CARS microscopy were found to be suitable analysis tools for microalgae.

  14. [Study of in-situ measurement system for porous alumina film based on AFM and reflectometric interference spectroscopy].

    PubMed

    Liu, Chao; Zhang, Dong-Xian; Zhang, Hai-Jun

    2008-07-01

    An in-situ measurement system for porous alumina (PA) film based on atomic force microscope (AFM) in liquid and reflectometric interference spectroscopy (RIFS) was developed. The present article briefly discusses the principle and structure of the system, and introduces its unique characteristic. The system consists of probe unit, XY scanner, Z-piezo feedback system, computer and software, fiber optic spectrometer, anodization control circuitry etc. When a white light beam illuminates the surface of the film, the reflective light beams at the front and back side of the layer are coherent, and lead to periodical amplifications and extinction in the reflective spectrum with the information of the optical thickness of the film. A fiber optic spectrometer was applied in the system which input the refractive spectrum into the computer by which the optical thickness of the film was calculated. Meanwhile according to the surface topography of PA films by AFM in liquid, the effective refractive index was calculated based on Maxwell-Garnett theory and coherent potential approximation (CPA). So the thickness of PA films could be gained at last. To checkout the feasibility and stability of the system, the real-time scanning and thickness measurement experiments were done during anodization of Al sheets in oxalic acid aqueous solution. In the experiment, the authors used 25 mm diameter aluminum (Al) sheets with 99.999% purity and 0.4 mm thickness as the anode, and graphite rod as the cathode. The pretreatment-cleaned Al sheets were anodized in an aqueous solution of 0.5 mol x L(-1) oxalic acid at the constant temperature (20 +/- 0.2) degrees C with 20 mA x cm(-2) anodization electronic current density. Real-time AFM images of PA film were successfully obtained during anodization. The pore-ratios of Al sheet were 7.81% and 13.83% at oxidizing time 150 min and 180 min respectively. Correspondingly, the effective indexes were calculated to be 1.62 and 1.60, respectively

  15. A Correlation of Raman and Single and Multiple Layer Graphene Conductivity As Detected With A Cryogenic Multiprobe AFM With On-line Raman, NSOM and Other SPM Modalities

    NASA Astrophysics Data System (ADS)

    Lewis, Aaron; Zinoviev, Oleg; Komissar, Anatoly; Maayan, Eran; Lewis, David

    2015-03-01

    It is a challenge to study 2D materials, such as Graphene, MoS2, WeSe2, etc. at temperatures down to 10°K when considering the wide variety of physical phenomena that must be applied for a full picture of the functionality of these materials. This involves questions of structure, nanometric photoconductivity, electrical properties, thermal properties, near-field optical in the apertured & scattering modes, Kelvin probe, and Raman. These phenomena are common not only to 2D materials but also to carbon nanotubes and related nanomaterials. This presentation will describe the instrumental development of such a multiprobe cryogenic system that allows for state of the art on-line optical measurements and will also include a review of the probe developments that permit such multifunctional multiprobe operation with on-line full optical access. This system has a completely free optical axis from above and below not obscured by electrical or other probes that have been developed for multiprobe operation. This permits on-line Raman and Tip Enhanced NanoRaman Scattering. With such a system we have investigated graphene and HfO2 using multiprobe electrical, Kelvin probe, NSOM and on-line Raman. The results have yielded new insights into chemical changes correlated to electrical conductivity.

  16. Experimental evidence of ultrathin polymer film stratification by AFM force spectroscopy.

    PubMed

    Delorme, Nicolas; Chebil, Mohamed Souheib; Vignaud, Guillaume; Le Houerou, Vincent; Bardeau, Jean-François; Busselez, Rémi; Gibaud, Alain; Grohens, Yves

    2015-06-01

    By performing Atomic Force Microscopy measurements of pull-off force as a function of the temperature, we were able to probe the dynamic of supported thin polystyrene (PS) films. Thermal transitions induce modifications in the surface energy, roughness and surface modulus that are clearly detected by AFM and related to PS chain relaxation mechanisms. We demonstrated the existence of three transition temperatures that can be associated to the relaxation of polymer chains located at different depth regions within the polymer film. Independently of the film thickness, we have confirmed the presence of a region of high mobility for the polymer chains at the free interface. The thickness of this region is estimated to be above 7nm. The detection of a transition only present for film thicker than the gyration radius Rg is linked to the dynamics of polymer chains in a bulk conformation (i.e. not in contact with the free interface). We claim here that our results demonstrate, in agreement with other techniques, the stratification of thin polymer film depth profile in terms of relaxation behavior.

  17. Mechanical properties of complex biological systems using AFM-based force spectroscopy

    NASA Astrophysics Data System (ADS)

    Graham, John Stephen

    An atomic force microscope (AFM) was designed and built to study the mechanical properties of small collagen fibrils and the plasma membrane of living cells. Collagen is a major component of bone, skin and connective tissues, and is abundant in the extracellular matrix (ECM). Because of its abundance, an understanding of how disease affects collagen mechanics is crucial in disease prevention efforts. Two levels of type I collagen structure were investigated, subfibrils (on the order of 1 mum in length) and longer fibrils. Comparisons were made between measurements of wild-type (wt) collagen and collagen from the mouse model of osteogenesis imperfecta (OI). Significant differences between OI and wt collagen were observed, primarily that intermolecular bonds in OI collagen fibrils are weaker than in wt, or not ruptured, as in the case of OI subfibrils. As cells interact with collagen in the ECM, the mechanical properties of the plasma membrane are also of great interest. Membrane tethers were extracted from living cells under varied conditions in order to assess the contributions of membrane-associated macromolecules such as the actin cytoskeleton and the glycocalyx, and intracellular signaling. Tether extraction force was found to be sensitive to all of these altered conditions, suggesting that tether extraction may be used to monitor various cellular processes.

  18. Elucidation of Chemical Reactions by Two-Dimensional Resonance Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Moran, Andrew

    Two-dimensional (2D) Raman spectroscopies were proposed by Mukamel and Loring in1985 as a method for resolving line broadening mechanisms of vibrational motions in liquids. Significant technical issues challenged the development of both five- and seven-pulse 2D Raman spectroscopies. For this reason, 2D Raman experiments were largely abandoned in 2002 following the first demonstrations of 2D infrared spectroscopies (i.e., an alternate approach for obtaining similar information). We have recently shown that 2D Raman experiments conducted under electronically resonant conditions are much less susceptible to the problems encountered in the earlier 2D Raman work, which was carried out off-resonance. In effect, Franck-Condon activity obviates the problematic selection rules encountered under electronically off-resonant conditions. In this presentation, I will discuss applications of 2D resonance Raman spectroscopies to photodissocation reactions of triiodide and myoglobin. It will be shown that vibrational resonances of the reactants and products can be displayed in separate dimensions of a 2D resonance Raman spectrum when the photo-dissociation reaction is fast compared to the vibrational period. Such 2D spectra expose correlations between the nonequilibrium geometry of the reactant and the distribution of vibrational quanta in the product, thereby yielding insight in the photo-dissociation mechanism. Our results suggest that the ability of 2D resonance Raman spectroscopy to detect correlations between reactants and products will generalize to other ultrafast processes such as electron transfer and energy transfer.

  19. Combined fiber probe for fluorescence lifetime and Raman spectroscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Dochow, Sebastian; Ma, Dinglong; Latka, Ines; Bocklitz, Thomas; Hartl, Brad; Bec, Julien; Fatakdawala, Hussain; Wachsmann-Hogiu, Sebastian; Marple, Eric; Urmey, Kirk; Schmitt, Michael; Marcu, Laura; Popp, Jürgen

    2016-03-01

    Raman spectroscopy has been proven to have tremendous potential as biomedical analytical tool for spectroscopic disease diagnostics. The use of fiberoptic coupled Raman spectroscopy systems can enable in-vivo characterization of suspicious lesions. However, Raman spectroscopy has the drawback of rather long acquisition times of several hundreds of milliseconds which makes scanning of larger regions quite challenging. By combining Raman spectroscopy with a fast imaging technique this problem can be alleviate in part. Fluorescence lifetime imaging (FLIm) offers a great potential for such a combination. FLIm can allow for fast tissue area pre-segmentation and location of the points for Raman spectra acquisition. Here, we introduce an optical fiber probe combining FLIm and Raman spectroscopy with an outer diameter of 2 mm. Fluorescence is generated via excitation with a fiber laser at 355 nm. The fluorescence emission is spectrally resolved using a custom-made wavelength-selection module (WSM). The Raman excitation power at 785 nm was set to 50 mW for the in-vivo measurements to prevent sample drying. The lateral probe resolution was determined to be <250 μm for both modalities. This value was taken as step size for several raster scans of different tissue types which were conducted to show the overlap of both modalities under realistic conditions. Finally the probe was used for in vivo raster scans of a rat's brain and subsequently to acquire FLIm guided Raman spectra of several tissues in and around the craniotomy.

  20. Femtosecond stimulated Raman spectroscopy by six-wave mixing

    SciTech Connect

    Molesky, Brian P.; Guo, Zhenkun; Moran, Andrew M.

    2015-06-07

    Femtosecond Stimulated Raman Spectroscopy (FSRS) is motivated by the knowledge of the molecular geometry changes that accompany sub-picosecond chemical reactions. The detection of vibrational resonances throughout the entire fingerprint region of the spectrum with sub-100-fs delay precision is fairly straightforward to accomplish with the FSRS technique. Despite its utility, FSRS must contend with substantial technical challenges that stem from a large background of residual laser light and lower-order nonlinearities when all laser pulses are electronically resonant with the equilibrium system. In this work, a geometry based on five incident laser beams is used to eliminate much of this undesired background in experiments conducted on metmyoglobin. Compared to a three-beam FSRS geometry with all electronically resonant laser pulses, the five-beam approach described here offers major improvements in the data acquisition rate, sensitivity, and background suppression. The susceptibility of the five-beam geometry to experimental artifacts is investigated using control experiments and model calculations. Of particular concern are undesired cascades of third-order nonlinearities, which are known to challenge FSRS measurements carried out on electronically off-resonant systems. It is generally understood that “forbidden” steps in the desired nonlinear optical processes are the origin of the problems encountered under off-resonant conditions. In contrast, the present experiments are carried out under electronically resonant conditions, where such unfortunate selection rules do not apply. Nonetheless, control experiments based on spectroscopic line shapes, signal phases, and sample concentrations are conducted to rule out significant contributions from cascades of third-order processes. Theoretical calculations are further used to estimate the relative intensities of the direct and cascaded responses. Overall, the control experiments and model calculations presented in

  1. Femtosecond stimulated Raman spectroscopy by six-wave mixing.

    PubMed

    Molesky, Brian P; Guo, Zhenkun; Moran, Andrew M

    2015-06-07

    Femtosecond Stimulated Raman Spectroscopy (FSRS) is motivated by the knowledge of the molecular geometry changes that accompany sub-picosecond chemical reactions. The detection of vibrational resonances throughout the entire fingerprint region of the spectrum with sub-100-fs delay precision is fairly straightforward to accomplish with the FSRS technique. Despite its utility, FSRS must contend with substantial technical challenges that stem from a large background of residual laser light and lower-order nonlinearities when all laser pulses are electronically resonant with the equilibrium system. In this work, a geometry based on five incident laser beams is used to eliminate much of this undesired background in experiments conducted on metmyoglobin. Compared to a three-beam FSRS geometry with all electronically resonant laser pulses, the five-beam approach described here offers major improvements in the data acquisition rate, sensitivity, and background suppression. The susceptibility of the five-beam geometry to experimental artifacts is investigated using control experiments and model calculations. Of particular concern are undesired cascades of third-order nonlinearities, which are known to challenge FSRS measurements carried out on electronically off-resonant systems. It is generally understood that "forbidden" steps in the desired nonlinear optical processes are the origin of the problems encountered under off-resonant conditions. In contrast, the present experiments are carried out under electronically resonant conditions, where such unfortunate selection rules do not apply. Nonetheless, control experiments based on spectroscopic line shapes, signal phases, and sample concentrations are conducted to rule out significant contributions from cascades of third-order processes. Theoretical calculations are further used to estimate the relative intensities of the direct and cascaded responses. Overall, the control experiments and model calculations presented in this

  2. Femtosecond stimulated Raman spectroscopy by six-wave mixing

    NASA Astrophysics Data System (ADS)

    Molesky, Brian P.; Guo, Zhenkun; Moran, Andrew M.

    2015-06-01

    Femtosecond Stimulated Raman Spectroscopy (FSRS) is motivated by the knowledge of the molecular geometry changes that accompany sub-picosecond chemical reactions. The detection of vibrational resonances throughout the entire fingerprint region of the spectrum with sub-100-fs delay precision is fairly straightforward to accomplish with the FSRS technique. Despite its utility, FSRS must contend with substantial technical challenges that stem from a large background of residual laser light and lower-order nonlinearities when all laser pulses are electronically resonant with the equilibrium system. In this work, a geometry based on five incident laser beams is used to eliminate much of this undesired background in experiments conducted on metmyoglobin. Compared to a three-beam FSRS geometry with all electronically resonant laser pulses, the five-beam approach described here offers major improvements in the data acquisition rate, sensitivity, and background suppression. The susceptibility of the five-beam geometry to experimental artifacts is investigated using control experiments and model calculations. Of particular concern are undesired cascades of third-order nonlinearities, which are known to challenge FSRS measurements carried out on electronically off-resonant systems. It is generally understood that "forbidden" steps in the desired nonlinear optical processes are the origin of the problems encountered under off-resonant conditions. In contrast, the present experiments are carried out under electronically resonant conditions, where such unfortunate selection rules do not apply. Nonetheless, control experiments based on spectroscopic line shapes, signal phases, and sample concentrations are conducted to rule out significant contributions from cascades of third-order processes. Theoretical calculations are further used to estimate the relative intensities of the direct and cascaded responses. Overall, the control experiments and model calculations presented in this

  3. Characterization of polysilicon films by Raman spectroscopy and transmission electron microscopy: A comparative study

    SciTech Connect

    Tallant, D.R.; Headley, T.J.; Medernach, J.W.; Geyling, F.

    1993-11-12

    Samples of chemically-vapor-deposited micrometer and sub-micrometer-thick films of polysilicon were analyzed by transmission electron microscopy (TEM) in cross-section and by Raman spectroscopy with illumination at their surface. TEM and Raman spectroscopy both find varying amounts of polycrystalline and amorphous silicon in the wafers. Raman spectra obtained using blue, green and red excitation wavelengths to vary the Raman sampling depth are compared with TEM cross-sections of these films. Films showing crystalline columnar structures in their TEM micrographs have Raman spectra with a band near 497 cm{sup {minus}1} in addition to the dominant polycrystalline silicon band (521 cm{sup {minus}1}). The TEM micrographs of these films have numerous faulted regions and fringes indicative of nanometer-scale silicon structures, which are believed to correspond to the 497cm{sup {minus}1} Raman band.

  4. Stress analysis of zirconia studied by Raman spectroscopy at low temperatures.

    PubMed

    Kurpaska, L; Kozanecki, M; Jasinski, J J; Sitarz, M

    2014-10-15

    The paper presents effect of low temperature upon location of selected Raman bands. The structural properties of pure zirconium pre-oxidized at 773K and 873K have been studied during cooling in the range of temperatures 273K and 93K by Raman spectroscopy. Analysis of the Raman band positions for the monoclinic phase of zirconia oxide was performed. Raman spectroscopy has shown that monoclinic phase of zirconia oxide undergoes a continuous band displacement, individual for each studied Raman mode. Registered shift is aimed towards the high frequency direction. Recorded Raman band displacement was employed to study stress state in zirconia oxide films grown on pure zirconium developed during control cooling. Presented results showed a good correlation between different thicknesses of the oxide scale.

  5. Using surface-enhanced Raman spectroscopy to probe for genetic markers on single-stranded DNA

    NASA Astrophysics Data System (ADS)

    Moody, Benjamin; Leotaud, John; McCarty, Gregory S.

    2010-03-01

    Methods capable of quickly and inexpensively collecting genetic information are of increasing importance. We report a method of using surface-enhanced Raman spectroscopy to probe single-stranded DNA for genetic markers. This unique approach is used to analyze unmodified genes of moderate length for genetic markers by hybridizing native test oligonucleotides into a surface-enhanced Raman complex, vastly increasing detection sensitivity as compared to traditional Raman spectroscopy. The Raman complex is formed by sandwiching the test DNA between 40-nm gold nanoparticles and a photolithographically defined gold surface. With this design, we are able to collect characteristic Raman spectra about the test DNA and to detect genetic markers such as single-nucleotide polymorphisms (SNPs) and polymorphic regions. Results show that strands containing one of three different types of polymorphism can be differentiated using statistically significant trends regarding Raman intensity.

  6. Raman spectroscopy for characterizing and determining the pozzolanic reactivity of fly ashes

    NASA Astrophysics Data System (ADS)

    Garg, Nishant

    The efficacy and potential of Raman spectroscopy in characterization of a commercial Ordinary Portland Cement (OPC) and three fly ashes (FA's), and their evolving hydration products were studied in this Master's thesis work. While there have been several studies focusing on the application of Raman spectroscopy to synthetic, pure samples, work on commercial cementitious systems is scarce. This work covers this gap by evaluating mixtures containing cements and fly ashes. The study first involved determination followed by establishment of instrumental configuration and testing parameters optimum for studying cementitious materials both in the dry and wet form. It was found that by tweaking several parameters, collection methodologies and analysis techniques, improved, representative and reproducible data could be obtained. Mapping a representative area to determine the spatial distribution and concentration of sulfates and hydroxides on sample surfaces was found to be the most effective way to study these complex and heterogeneous systems. The Raman dry analysis of OPC and three different FA's of varying calcium contents and reactivity was able to identify the major mineralogical phases in these binders and the results were in correlation with the X-ray diffraction data. The observed calcium and sulfate phases and their relative concentration also agreed well with the supplementary compositional data obtained from X-ray fluorescence and Atomic absorption spectrometry. The wet analysis of pastes prepared with 100% OPC and 50%OPC+50%FA(1,2,3) followed the hydration process of the systems for 56 days (0, 0.2, 2, 4, 8, 12, 16, 20, 24, 48, 72 hours, 7, 14, 21, 28, and 56 days). Consistency of trends in the hydration mechanism of such pastes was only obtained when studies were focused on narrow wavenumber ranges: 950--1050 cm-1 for evolution of sulfates and 3600--3700cm-1 for evolution of hydroxides. Gradual disappearance of Gypsum with a parallel formation of Ettringite

  7. Accuracy Enhancement of Raman Spectroscopy Using Complementary Laser-Induced Breakdown Spectroscopy (LIBS) with Geologically Mixed Samples.

    PubMed

    Choi, Soojin; Kim, Dongyoung; Yang, Junho; Yoh, Jack J

    2017-01-01

    Quantitative Raman analysis was carried out with geologically mixed samples that have various matrices. In order to compensate the matrix effect in Raman shift, laser-induced breakdown spectroscopy (LIBS) analysis was performed. Raman spectroscopy revealed the geological materials contained in the mixed samples. However, the analysis of a mixture containing different matrices was inaccurate due to the weak signal of the Raman shift, interference, and the strong matrix effect. On the other hand, the LIBS quantitative analysis of atomic carbon and calcium in mixed samples showed high accuracy. In the case of the calcite and gypsum mixture, the coefficient of determination of atomic carbon using LIBS was 0.99, while the signal using Raman was less than 0.9. Therefore, the geological composition of the mixed samples is first obtained using Raman and the LIBS-based quantitative analysis is then applied to the Raman outcome in order to construct highly accurate univariate calibration curves. The study also focuses on a method to overcome matrix effects through the two complementary spectroscopic techniques of Raman spectroscopy and LIBS.

  8. Discrimination of bladder cancer cells from normal urothelial cells with high specificity and sensitivity: combined application of atomic force microscopy and modulated Raman spectroscopy.

    PubMed

    Canetta, Elisabetta; Riches, Andrew; Borger, Eva; Herrington, Simon; Dholakia, Kishan; Adya, Ashok K

    2014-05-01

    Atomic force microscopy (AFM) and modulated Raman spectroscopy (MRS) were used to discriminate between living normal human urothelial cells (SV-HUC-1) and bladder tumour cells (MGH-U1) with high specificity and sensitivity. MGH-U1 cells were 1.5-fold smaller, 1.7-fold thicker and 1.4-fold rougher than normal SV-HUC-1 cells. The adhesion energy was 2.6-fold higher in the MGH-U1 cells compared to normal SV-HUC-1 cells, which possibly indicates that bladder tumour cells are more deformable than normal cells. The elastic modulus of MGH-U1 cells was 12-fold lower than SV-HUC-1 cells, suggesting a higher elasticity of the bladder cancer cell membranes. The biochemical fingerprints of cancer cells displayed a higher DNA and lipid content, probably due to an increase in the nuclear to cytoplasm ratio. Normal cells were characterized by higher protein contents. AFM studies revealed a decrease in the lateral dimensions and an increase in thickness of cancer cells compared to normal cells; these studies authenticate the observations from MRS. Nanostructural, nanomechanical and biochemical profiles of bladder cells provide qualitative and quantitative markers to differentiate between normal and cancerous cells at the single cellular level. AFM and MRS allow discrimination between adhesion energy, elasticity and Raman spectra of SV-HUC-1 and MGH-U1 cells with high specificity (83, 98 and 95%) and sensitivity (97, 93 and 98%). Such single-cell-level studies could have a pivotal impact on the development of AFM-Raman combined methodologies for cancer profiling and screening with translational significance.

  9. Dielectrophoretic positioning of single nanoparticles on atomic force microscope tips for tip-enhanced Raman spectroscopy.

    PubMed

    Leiterer, Christian; Deckert-Gaudig, Tanja; Singh, Prabha; Wirth, Janina; Deckert, Volker; Fritzsche, Wolfgang

    2015-05-01

    Tip-enhanced Raman spectroscopy, a combination of Raman spectroscopy and scanning probe microscopy, is a powerful technique to detect the vibrational fingerprint of molecules at the nanometer scale. A metal nanoparticle at the apex of an atomic force microscope tip leads to a large enhancement of the electromagnetic field when illuminated with an appropriate wavelength, resulting in an increased Raman signal. A controlled positioning of individual nanoparticles at the tip would improve the reproducibility of the probes and is quite demanding due to usually serial and labor-intensive approaches. In contrast to commonly used submicron manipulation techniques, dielectrophoresis allows a parallel and scalable production, and provides a novel approach toward reproducible and at the same time affordable tip-enhanced Raman spectroscopy tips. We demonstrate the successful positioning of an individual plasmonic nanoparticle on a commercial atomic force microscope tip by dielectrophoresis followed by experimental proof of the Raman signal enhancing capabilities of such tips.

  10. Direct molecule-specific glucose detection by Raman spectroscopy based on photonic crystal fiber.

    PubMed

    Yang, Xuan; Zhang, Alissa Y; Wheeler, Damon A; Bond, Tiziana C; Gu, Claire; Li, Yat

    2012-01-01

    This paper reports the first step toward the development of a glucose biosensor based on Raman spectroscopy and a photonic crystal fiber (PCF) probe. Historically, it has been very challenging to detect glucose directly by Raman spectroscopy due to its inherently small Raman scattering cross-section. In this work, we report the first quantitative glucose Raman detection in the physiological concentration range (0-25 mM) with a low laser power (2 mW), a short integration time (30 s), and an extremely small sampling volume (~50 nL) using the highly sensitive liquid-filled PCF probe. As a proof of concept, we also demonstrate the molecular specificity of this technique in the presence of a competing sugar, such as fructose. High sensitivity, flexibility, reproducibility, low cost, small sampling volume, and in situ remote sensing capability make PCF a very powerful platform for potential glucose detection based on Raman spectroscopy.

  11. Graphene as a substrate to suppress fluorescence in resonance Raman spectroscopy.

    PubMed

    Xie, Liming; Ling, Xi; Fang, Yuan; Zhang, Jin; Liu, Zhongfan

    2009-07-29

    We have measured resonance Raman spectra with greatly suppressed fluorescence (FL) background from rhodamine 6G (R6G) and protoporphyrin IX (PPP) adsorbed on graphene. The FL suppression is estimated to be approximately 10(3) times for R6G. The successful observation of resonance Raman peaks demonstrates that graphene can be used as a substrate to suppress FL in resonance Raman spectroscopy (RRS), which has potential applications in low-concentration detection and RRS study of fluorescent molecules.

  12. Exploring the potential of Raman and resonance Raman spectroscopy for quantitative analysis of duplex DNA

    NASA Astrophysics Data System (ADS)

    Schulze, H. G.; Bass, A.; Addison, C.; Hughesman, C.; So, A. P.; Haynes, C. A.; Blades, M. W.; Turner, R. F. B.

    2005-09-01

    Advances in DNA microarray fabrication technologies, expanding probe libraries, and new bioinformatics methods and resources have firmly established array-based techniques as mainstream bioanalytical tools and the application space is proliferating rapidly. However, the capability of these tools to yield truly quantitative information remains limited, primarily due to problems inherent to the use of fluorescence imaging for reading the hybridized arrays. The obvious advantages of fluorescence are the unrivaled sensitivity and simplicity of the instrumentation. There are disadvantages of this approach, however, such as difficulties in achieving optimal labeling of targets and reproducible signals (due to quenching, resonance energy transfer, photobleaching effects, etc.) that undermine precision. We are exploring alternative approaches, based mainly on Raman and resonance Raman spectroscopy, that in principle permit direct analysis of structural differences between hybridized and unhybridized probes, thereby eliminating the need for labeling the target analytes. We report here on the status of efforts to evaluate the potential of these methods based on a combination of measured data and simulated experiments involving short (12-mer) ssDNA oligomer probes with varying degrees of hybridized target DNA. Preliminary results suggest that it may be possible to determine the fraction of duplex probes within a single register on a DNA microarray from 100% down to 10% (or possibly less) with a precision of +/-2 5%. Details of the methods used, their implementation, and their potential advantages and limitations are presented, along with discussion of the utility of using 2DCOS methods to emphasize small spectral changes sensitive to interstrand H bonding, backbone flexibility, hypochromicity due to base-stacking in duplex structures and solvation effects.

  13. Detection of doxorubicin-induced apoptosis of leukemic T-lymphocytes by laser tweezers Raman spectroscopy

    PubMed Central

    Moritz, Tobias J.; Taylor, Douglas S.; Krol, Denise M.; Fritch, John; Chan, James W.

    2010-01-01

    Laser tweezers Raman spectroscopy (LTRS) was used to acquire the Raman spectra of leukemic T lymphocytes exposed to the chemotherapy drug doxorubicin at different time points over 72 hours. Changes observed in the Raman spectra were dependent on drug exposure time and concentration. The sequence of spectral changes includes an intensity increase in lipid Raman peaks, followed by an intensity increase in DNA Raman peaks, and finally changes in DNA and protein (phenylalanine) Raman vibrations. These Raman signatures are consistent with vesicle formation, cell membrane blebbing, chromatin condensation, and the cytoplasm of dead cells during the different stages of drug-induced apoptosis. These results suggest the potential of LTRS as a real-time single cell tool for monitoring apoptosis, evaluating the efficacy of chemotherapeutic treatments, or pharmaceutical testing. PMID:21258536

  14. Raman Tweezers Spectroscopy of Live, Single Red and White Blood Cells

    PubMed Central

    Bankapur, Aseefhali; Zachariah, Elsa; Chidangil, Santhosh; Valiathan, Manna; Mathur, Deepak

    2010-01-01

    An optical trap has been combined with a Raman spectrometer to make high-resolution measurements of Raman spectra of optically-immobilized, single, live red (RBC) and white blood cells (WBC) under physiological conditions. Tightly-focused, near infrared wavelength light (1064 nm) is utilized for trapping of single cells and 785 nm light is used for Raman excitation at low levels of incident power (few mW). Raman spectra of RBC recorded using this high-sensitivity, dual-wavelength apparatus has enabled identification of several additional lines; the hitherto-unreported lines originate purely from hemoglobin molecules. Raman spectra of single granulocytes and lymphocytes are interpreted on the basis of standard protein and nucleic acid vibrational spectroscopy data. The richness of the measured spectrum illustrates that Raman studies of live cells in suspension are more informative than conventional micro-Raman studies where the cells are chemically bound to a glass cover slip. PMID:20454686

  15. Raman spectroscopy and coherent anti-Stokes Raman scattering imaging: prospective tools for monitoring skeletal cells and skeletal regeneration

    PubMed Central

    Moura, Catarina Costa; Tare, Rahul S.; Oreffo, Richard O. C.; Mahajan, Sumeet

    2016-01-01

    The use of skeletal stem cells (SSCs) for cell-based therapies is currently one of the most promising areas for skeletal disease treatment and skeletal tissue repair. The ability for controlled modification of SSCs could provide significant therapeutic potential in regenerative medicine, with the prospect to permanently repopulate a host with stem cells and their progeny. Currently, SSC differentiation into the stromal lineages of bone, fat and cartilage is assessed using different approaches that typically require cell fixation or lysis, which are invasive or even destructive. Raman spectroscopy and coherent anti-Stokes Raman scattering (CARS) microscopy present an exciting alternative for studying biological systems in their natural state, without any perturbation. Here we review the applications of Raman spectroscopy and CARS imaging in stem-cell research, and discuss the potential of these two techniques for evaluating SSCs, skeletal tissues and skeletal regeneration as an exemplar. PMID:27170652

  16. Advantages and limitations of Raman spectroscopy for molecular diagnostics: an update.

    PubMed

    Eberhardt, Katharina; Stiebing, Clara; Matthäus, Christian; Schmitt, Michael; Popp, Jürgen

    2015-06-01

    Over the last decade, Raman spectroscopy has gained more and more interest in research as well as in clinical laboratories. As a vibrational spectroscopy technique, it is complementary to the also well-established infrared spectroscopy. Through specific spectral patterns, substances can be identified and molecular changes can be observed with high specificity. Because of a high spatial resolution due to an excitation wavelength in the visible and near-infrared range, Raman spectroscopy combined with microscopy is very powerful for imaging biological samples. Individual cells can be imaged on the subcellular level. In vivo tissue examinations are becoming increasingly important for clinical applications. In this review, we present currently ongoing research in different fields of medical diagnostics involving linear Raman spectroscopy and imaging. We give a wide overview over applications for the detection of atherosclerosis, cancer, inflammatory diseases and pharmacology, with a focus on developments over the past 5 years. Conclusions drawn from Raman spectroscopy are often validated by standard methods, for example, histopathology or PCR. The future potential of Raman spectroscopy and its limitations are discussed in consideration of other non-linear Raman techniques.

  17. Identification of individual isotopes in a polymer blend using tip enhanced Raman spectroscopy

    SciTech Connect

    Agapov, Rebecca L.; Scherger, Jacob D.; Sokolov, Alexei P.; Foster, Mark D.

    2015-03-11

    We use tip enhanced Raman spectroscopy (TERS) blinking measurements to identify the individual isotopes of non-Raman resonant polystyrene in a miscible, binary blend. Thus it demonstrates the sensitivity and selectivity required for nanoscale chemical imaging and broadens the types of surface components potentially identifiable with TERS.

  18. Raman spectroscopy and imaging to detect contaminants for food safety applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study presents the use of Raman chemical imaging for the screening of dry milk powder for the presence of chemical contaminants and Raman spectroscopy for quantitative assessment of chemical contaminants in liquid milk. For image-based screening, melamine was mixed into dry milk at concentratio...

  19. DETERMINATION OF PERCHLORATE IN SOME FERTILIZERS AND PLANT TISSUE BY RAMAN SPECTROSCOPY

    EPA Science Inventory

    We have successfully used Raman spectroscopy for the direct qualitative and quantitative analysis of perchlorate in fertilizer extracts without the need for chromatographic separation. This approach is attractive because Raman is not hindered by the presence of water or of high ...

  20. Line-scan spatially offset Raman spectroscopy for inspecting subsurface food safety and quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper presented a method for subsurface food inspection using a newly developed line-scan spatially offset Raman spectroscopy (SORS) technique. A 785 nm laser was used as a Raman excitation source. The line-shape SORS data was collected in a wavenumber range of 0–2815 cm-1 using a detection mod...

  1. Development of a drug assay using surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Angel, S. M.; Roe, Jeffrey N.; Andresen, Brian D.; Myrick, Michael L.; Milanovich, Fred P.

    1990-07-01

    Surface-enhanced Raman spectroscopy has been used to detect low levels of several chemical compounds, including the drugs of abuse -cocaine hydrochloride and methamphetamme hydrochloride. Raman spectra of these substances have also been taken over optical fibers using red-wavelength excitation. These measurements demonstrate the feasibility of the remote determination of various target chemicals using diode laser excitation and diode array detection.

  2. Natural and synthetic gas hydrates studied by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Savy, Jean-Philippe; Bigalke, Nikolaus; Aloisi, Giovanni; Kossel, Elke; Pansegrau, Moritz; Haeckel, Matthias

    2010-05-01

    Over the past decade, the interest in using CH4-hydrates as an energy resource and CO2-hydrates as a storage option for anthropogenic CO2 has grown in the scientific community as well as in the oil and gas industry. Among all the techniques used to characterize gas hydrates, the non-destructive, non-invasive Raman spectroscopy provides significant insights into the structure and composition of hydrates. In this study, we compare gas hydrates synthetically produced in the laboratory with natural hydrate samples collected from marine sediments. CO2 and CH4 gas hydrates were investigated with a high-resolution Raman microscope at in-situ p-T conditions. A water-filled glass capillary (inner diameter: 1.7 mm) was placed in a stainless steel cell, which was sealed, cooled down to 3.6 ° C and pressurized to 60 bar with liquid CO2. Video images taken after 1 h revealed droplets (~10 μm in diameter) trapped in the ice-like solid. The two Fermi dyads of CO2 in the liquid and hydrate phase at 1274 & 1381 cm1 and 1280 & 1384 cm-1, respectively, confirm the presence of liquid CO2 droplets trapped in a CO2-hydrate matrix. Equivalent experiments were conducted with CH4 gas at 1 ° C and 90 bar. The nucleation of CH4-hydrate was followed in the Raman spectral region of the C-H stretching mode. At the early stage of the nucleation, the peak at 2915 cm-1 (CH4 in small cages) was stronger than the one at 2904 cm-1 (CH4 in large cages) indicating that methane starts to populate the small 512 cages of the s-I hydrate structure first and then, as nucleation continues, the large cages are stabilized leading to a quickly growing peak at 2904 cm-1 until a final peak intensity ratio of 3.7 is established. In contrast to other studies, intermediate stabilization of the s-II structure was not observed. Video images confirmed the absence of gas inclusions. The hydrate density, 1.1 & 0.9 for CO2-hydrate and CH4-hydrate respectively, compared to the one of water may explain the formation of

  3. Fluorocarbon Fiber-Optic Raman Probe for Non-Invasive Raman Spectroscopy

    PubMed Central

    OKAGBARE, PAUL I.; MORRIS, MICHAEL D.

    2012-01-01

    We report the development of a novel fiber-optic Raman probe using a graded index fluorocarbon optical fiber. The fluorocarbon fiber has a simple Raman spectrum, a low fluorescence background, and generates a Raman signal that in turbid media serves as an intense reference Raman signal that corrects for albedo. The intensity of the reference signal can easily be varied as needed by scaling the length of the excitation fiber. Additionally, the fluorocarbon probe eliminates the broad silica Raman bands generated in conventional silica-core fiber without the need for filters. PMID:22732546

  4. RAMAN SPECTROSCOPY-BASED METABOLOMICS FOR DIFFERENTIATING EXPOSURES TO TRIAZOLE FUNGICIDES USING RAT URINE

    EPA Science Inventory

    Normal Raman spectroscopy was evaluated as a metabolomic tool for assessing the impacts of exposure to environmental contaminants, using rat urine collected during the course of a toxicological study. Specifically, one of three triazole fungicides, myclobutanil, propiconazole or ...

  5. Structure-property study of the Raman spectroscopy detection of fusaric acid and analogs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Food security can benefit from the development of selective methods to detect toxins. Fusaric acid is a mycotoxin produced by certain fungi occasionally found in agricultural commodities. Raman spectroscopy allows selective detection of analytes associated with certain spectral characteristics relat...

  6. Chemical agent detection by surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Farquharson, Stuart; Gift, Alan; Maksymiuk, Paul; Inscore, Frank E.; Smith, Wayne W.; Morrisey, Kevin; Christesen, Steven D.

    2004-03-01

    In the past decade, the Unites States and its allies have been challenged by a different kind of warfare, exemplified by the terrorist attacks of September 11, 2001. Although suicide bombings are the most often used form of terror, military personnel must consider a wide range of attack scenarios. Among these is the intentional poisoning of water supplies to obstruct military operations in Afghanistan and Iraq. To counter such attacks, the military is developing portable analyzers that can identify and quantify potential chemical agents in water supplies at microgram per liter concentrations within 10 minutes. To aid this effort we have been investigating the value of a surface-enhanced Raman spectroscopy based portable analyzer. In particular we have been developing silver-doped sol-gels to generate SER spectra of chemical agents and their hydrolysis products. Here we present SER spectra of several chemical agents measured in a generic tap water. Repeat measurements were performed to establish statistical error associated with SERS obtained using the sol-gel coated vials.

  7. Electrochemical tip-enhanced Raman spectroscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Martín Sabanés, Natalia; Domke, Katrin F.

    2016-09-01

    Tip-enhanced Raman spectroscopy (TERS) in air and ultra-high vacuum (UHV) has been refined over the years through the study of various adsorbates in different experimental configurations. Developing the technique toward more realistic working conditions would render possible the investigation of more complex solid/liquid systems like bio-membranes or energy conversion and storage devices, providing a powerful tool to characterize nanoscale electrochemical processes occurring at the interface with high sensitivity and resolution. However, the extension to solid/liquid interfaces and electrochemical conditions still remains a challenge and few reports have been published. We have built an electrochemical TERS setup with side-illumination geometry that adapts easily to different experimental conditions such as opacity, shape and dimensions of the sample. The instrument features a specially designed solid/liquid sample holder that is implemented in a standard commercial STM. The experimental scheme can, in principle, be adapted to upgrade classic air TERS setups for work in liquids. Here, we show potential-dependent EC-TER spectra of a monolayer of adenine adsorbed on Au(111). The intensity of the ring-breathing mode at 735 cm-1 decreases with increasing sample potential and is recovered again upon potential reversal. The intensity variation is attributed to orientational changes of adenine upon (dis)charging of the Au substrate.

  8. Raman spectroscopy of human vitreous collagen in diabetic retinopathy

    NASA Astrophysics Data System (ADS)

    Sebag, Jerry; Nie, Shuming; Reiser, Karen M.; Yu, Nai-Teng

    1992-08-01

    In diabetes nonenzymatic glycation alters collagen throughout the body resulting in the histopathology that underlies diabetic disease in several organs. In the eye such changes in vitreous collagen could contribute to vitreous degeneration and the progression of proliferative diabetic retinopathy. Previous studies have demonstrated early glycation and advanced endproducts in the vitreous of humans with proliferative diabetic retinopathy. Near-infrared Fourier-transform Raman spectroscopy was performed on vitreous obtained at surgery from diabetic patients and from non-diabetic control subjects. The findings were compared to measurements obtained in untreated and glycated (in vitro) rat-tail tendon collagen. The results demonstrated substantial changes in diabetic vitreous collagen resulting from glycation, most likely advanced glycation endproducts. This approach appears to be useful as a means of characterizing the molecular changes induced by diabetes. Furthermore, this technique could be developed as a way of quantifying these changes in vivo in several tissues, so as to gauge the severity of non-enzymatic glycation and monitor the response to therapy.

  9. Measuring depth profiles of residual stress with Raman spectroscopy

    SciTech Connect

    Enloe, W.S.; Sparks, R.G.; Paesler, M.A.

    1988-12-01

    Knowledge of the variation of residual stress is a very important factor in understanding the properties of machined surfaces. The nature of the residual stress can determine a part`s susceptibility to wear deformation, and cracking. Raman spectroscopy is known to be a very useful technique for measuring residual stress in many materials. These measurements are routinely made with a lateral resolution of 1{mu}m and an accuracy of 0.1 kbar. The variation of stress with depth; however, has not received much attention in the past. A novel technique has been developed that allows quantitative measurement of the variation of the residual stress with depth with an accuracy of 10nm in the z direction. Qualitative techniques for determining whether the stress is varying with depth are presented. It is also demonstrated that when the stress is changing over the volume sampled, errors can be introduced if the variation of the stress with depth is ignored. Computer aided data analysis is used to determine the depth dependence of the residual stress.

  10. The synthesis of metoprolol monitored using Raman spectroscopy and chemometrics.

    PubMed

    Svensson, O; Josefson, M; Langkilde, F W

    2000-08-01

    The synthesis of Metoprolol base was studied using Raman spectroscopy with a 785-nm laser, optical fibres, a holographic transmission grating, confocal optics and a charge-coupled device (CCD) detector. The reaction mixture was heated according to a temperature gradient and spectra of the reaction mixture were obtained by focusing the laser beam through ordinary reaction flasks. Because of overlapping bands, multivariate techniques such as principal components analysis (PCA) and partial least-squares projections to latent structures (PLS) were used in the evaluation of the obtained spectra. The use of PCA or PLS against time does not require any calibration samples and a quantitative calibration is not necessary in order to monitor the reaction. A method for reaction endpoint determination, based on euclidean distances in the score space, is presented. The use of multivariate batch control charts have been demonstrated and a number of problems and solutions regarding the sample presentation have been discussed. The effect of spectral pretreatment on the multivariate results is shown and discussed. The monitoring results show that the time to produce Metoprolol base could be reduced.

  11. Diagnostic Imaging in Flames with Instantaneous Planar Coherent Raman Spectroscopy.

    PubMed

    Bohlin, A; Kliewer, C J

    2014-04-03

    Spatial mapping of temperature and molecular species concentrations is vitally important in studies of gaseous chemically reacting flows. Temperature marks the evolution of heat release and energy transfer, while species concentration gradients provide critical information on mixing and chemical reaction. Coherent anti-Stokes Raman spectroscopy (CARS) was pioneered in measurements of such processes almost 40 years ago and is authoritative in terms of the accuracy and precision it may provide. While a reacting flow is fully characterized in three-dimensional space, a limitation of CARS has been its applicability as a point-wise measurement technique, motivating advancement toward CARS imaging, and attempts have been made considering one-dimensional probing. Here, we report development of two-dimensional CARS, with the first diagnostics of a planar field in a combusting flow within a single laser pulse, resulting in measured isotherms ranging from 450 K up to typical hydrocarbon flame temperatures of about 2000 K with chemical mapping of O2 and N2.

  12. Raman Spectroscopy: A Sensitive and Specific Technique for Determining the Accuracy of Compounded Pharmaceutical Formulations.

    PubMed

    Meek, Claudia; Hoe, Jihye; Evans, Jason; Thurman, Rosanne; Ashworth, Lisa; Leff, Richard

    2016-01-01

    OBJECTIVES: Raman spectroscopy is a widely used technology to identify chemical unknowns or confirm chemical identity. We have tested Raman spectrometry to identify compounded pharmaceutical formulations. In contrast to the commonly used application mentioned above, compounded pharmaceutical formulations contain a mixture of ingredients, and the Raman spectrometer is being used to correctly identify the composition of the complete pharmaceutical formulation, including the active pharmaceutical ingredient(s). The objective of this pilot study was to document the potential use of Raman spectroscopy as a tool to provide quality control to compounded pharmaceutical formulations. METHODS: "Testing a test" study design was used to prospectively determine whether Raman spectroscopy could verify the accuracy of compounded pharmaceutical formulations. A total of 9 formulations that are commonly compounded at Cook Children's Health Center were selected for testing. Each of the 9 formulations and 2 blank controls were randomly tested for compounding accuracy in replicate. A total of 110 tests were conducted. RESULTS: Raman spectroscopy was found to be a reliable test to determine the accuracy of compounded pharmaceutical formulations with a 100% positive predictive value. CONCLUSIONS: Raman spectroscopy promises to be an excellent tool for compounding pharmacies to provide an objective measure of compounding accuracy to their unique, compounded pharmaceutical formulations.

  13. Raman Spectroscopy: A Sensitive and Specific Technique for Determining the Accuracy of Compounded Pharmaceutical Formulations

    PubMed Central

    Meek, Claudia; Hoe, Jihye; Evans, Jason; Thurman, Rosanne; Ashworth, Lisa

    2016-01-01

    OBJECTIVES: Raman spectroscopy is a widely used technology to identify chemical unknowns or confirm chemical identity. We have tested Raman spectrometry to identify compounded pharmaceutical formulations. In contrast to the commonly used application mentioned above, compounded pharmaceutical formulations contain a mixture of ingredients, and the Raman spectrometer is being used to correctly identify the composition of the complete pharmaceutical formulation, including the active pharmaceutical ingredient(s). The objective of this pilot study was to document the potential use of Raman spectroscopy as a tool to provide quality control to compounded pharmaceutical formulations. METHODS: “Testing a test” study design was used to prospectively determine whether Raman spectroscopy could verify the accuracy of compounded pharmaceutical formulations. A total of 9 formulations that are commonly compounded at Cook Children's Health Center were selected for testing. Each of the 9 formulations and 2 blank controls were randomly tested for compounding accuracy in replicate. A total of 110 tests were conducted. RESULTS: Raman spectroscopy was found to be a reliable test to determine the accuracy of compounded pharmaceutical formulations with a 100% positive predictive value. CONCLUSIONS: Raman spectroscopy promises to be an excellent tool for compounding pharmacies to provide an objective measure of compounding accuracy to their unique, compounded pharmaceutical formulations. PMID:27877094

  14. Drop Coating Deposition Raman Spectroscopy of Fluorescein Isothiocyanate Labeled Protein

    PubMed Central

    Vangala, Karthikeshwar; Jiang, Dongping; Zou, Sige; Pechan, Tibor

    2011-01-01

    Using bovine serum albumin (BSA) as the model protein normal Raman spectra of Fluorescein isothiocyanate (FITC) -conjugated protein was systematically studied for the first time using both solution and the drop coating deposition Raman (DCDR) sampling techniques. The FITC-BSA Raman spectra are dominated by the FITC Raman features that are strongly pH dependent. Current DCDR detection sensitivity obtained with a 10:1 FITC-BSA conjugate is 45 fmol in terms of total protein consumption and ~15 attomol at laser probed volume. Unlike the FITC-BSA solution Raman spectra where the FITC Raman features are photostable, concurrent FITC fluorescence and Raman photobleaching is observed in the DCDR spectra of FITC-BSA. While the FITC Raman photobleaching follows a single exponential decay function with a time constant independent of the FITC labeling ratio, the fluorescence background photobleaching is much more complicated and it depends strongly on the FITC labeling ratio and sample conditions. Mechanistically, the FITC Raman photobleaching is believed to be due to photochemical reaction of the FITC molecules in the electronically excited state. The FITC fluorescence photobleaching involves both concentration quenching and photochemical quenching, and the latter may involve a photochemical intermediate that is fluorescence inactive but Raman active. PMID:20925976

  15. The influence of intracellular storage material on bacterial identification by means of Raman spectroscopy.

    PubMed

    Ciobotă, Valerian; Burkhardt, Eva-Maria; Schumacher, Wilm; Rösch, Petra; Küsel, Kirsten; Popp, Jürgen

    2010-08-01

    Previous studies dealing with bacterial identification by means of Raman spectroscopy have demonstrated that micro-Raman is a suitable technique for single-cell microbial identification. Raman spectra yield fingerprint-like information about all chemical components within one cell, and combined with multivariate methods, differentiation down to species or even strain level is possible. Many microorganisms may accumulate high amounts of polyhydroxyalkanoates (PHA) as carbon and energy storage materials within the cell and the Raman bands of PHA might impede the identification and differentiation of cells. To date, the identification by means of Raman spectroscopy have never been tested on bacteria which had accumulated PHA. Therefore, the aim of this study is to investigate the effect of intracellular polymer accumulation on the bacterial identification rate. Combining fluorescence imaging and Raman spectroscopy, we identified polyhydroxybutyrate (PHB) as a storage polymer accumulating in the investigated cells. The amount of energy storage material present within the cells was dependent on the physiological status of the microorganisms and strongly influenced the identification results. Bacteria in the stationary phase formed granules of crystalline PHB, which obstructed the Raman spectroscopic identification of bacterial species. The Raman spectra of bacteria in the exponential phase were dominated by signals from the storage material. However, the bands from proteins, lipids, and nucleic acids were not completely obscured by signals from PHB. Cells growing under either oxic or anoxic conditions could also be differentiated, suggesting that changes in Raman spectra can be interpreted as an indicator of different metabolic pathways. Although the presence of PHB induced severe changes in the Raman spectra, our results suggest that Raman spectroscopy can be successfully used for identification as long as the bacteria are not in the stationary phase.

  16. Application of Raman Spectroscopy and Infrared Spectroscopy in the Identification of Breast Cancer.

    PubMed

    Depciuch, Joanna; Kaznowska, Ewa; Zawlik, Izabela; Wojnarowska, Renata; Cholewa, Marian; Heraud, Philip; Cebulski, Józef

    2016-02-01

    Raman spectroscopy and infrared (IR) spectroscopy are both techniques that allow for the investigation of vibrating chemical particles. These techniques provide information not only about chemical particles through the identification of functional groups and spectral analysis of so-called "fingerprints", these methods allow for the qualitative and quantitative analyses of chemical substances in the sample. Both of these spectral techniques are frequently being used in biology and medicine in diagnosing illnesses and monitoring methods of therapy. The type of breast cancer found in woman is often a malignant tumor, causing 1.38 million new cases of breast cancer and 458 000 deaths in the world in 2013. The most important risk factors for breast cancer development are: sex, age, family history, specific benign breast conditions in the breast, ionizing radiation, and lifestyle. The main purpose of breast cancer screening tests is to establish early diagnostics and to apply proper treatment. Diagnoses of breast cancer are based on: (1) physical techniques (e.g., ultrasonography, mammography, elastography, magnetic resonance, positron emission tomography [PET]); (2) histopathological techniques; (3) biological techniques; and (4) optical techniques (e.g., photo acoustic imaging, fluorescence tomography). However, none of these techniques provides unique or especially revealing answers. The aim of our study is comparative spectroscopic measurements on patients with the following: normal non-cancerous breast tissue; breast cancer tissues before chemotherapy; breast cancer tissues after chemotherapy; and normal breast tissues received around the cancerous breast region. Spectra collected from breast cancer patients shows changes in amounts of carotenoids and fats. We also observed changes in carbohydrate and protein levels (e.g., lack of amino acids, changes in the concentration of amino acids, structural changes) in comparison with normal breast tissues. This fact

  17. Probing quasiparticle states in strongly interacting atomic gases by momentum-resolved Raman photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Dao, Tung-Lam; Carusotto, Iacopo; Georges, Antoine

    2009-08-01

    We investigate a momentum-resolved Raman spectroscopy technique which is able to probe the one-body spectral function and the quasiparticle states of a gas of strongly interacting ultracold atoms. This technique is inspired by angle-resolved photoemission spectroscopy, a powerful experimental probe of electronic states in solid-state systems. Quantitative examples of experimentally accessible spectra are given for the most significant regimes along the BEC-BCS crossover. When the theory is specialized to rf spectroscopy, agreement is found with recent experimental data. The main advantages of this Raman spectroscopy over existing techniques are pointed out.

  18. Raman tweezers spectroscopy study of free radical induced oxidative stress leading to eryptosis

    NASA Astrophysics Data System (ADS)

    Barkur, Surekha; Bankapur, Aseefhali; Chidangil, Santhosh

    2016-11-01

    Raman tweezers spectroscopy study of effect of free radicals was carried out on erythrocytes. We prepared hydroxyl radicals using Fenton reaction (which yields hydroxyl radicals). Raman spectra were acquired from single, trapped erythrocytes after supplementing with these free radicals. The changes in the Raman bands such as 1211 cm-1, 1224 cm-1, 1375 cm-1 indicate deoxygenation of red blood cells (RBCs). Our study shows that free radicals can induce oxidative stress on erythrocytes. The changes in the Raman spectra as well as shape of erythrocytes indicate that oxidative stress can trigger eryptosis in erythrocytes.

  19. Polarized micro Raman spectroscopy of multiferroic BiFeO3 single crystals

    NASA Astrophysics Data System (ADS)

    Beekman, C.; Cheong, Sang-Wook; Burch, Kenneth

    2011-03-01

    In Bismuth ferrite (BiFe O3) antiferromagnetic and ferroelectric order parameters coexist at room temperature, making this material an excellent candidate for new functionalities, such as electrical control of ferromagnetism. Despite extensive reports on Raman scattering experiments on single crystals and thin films, controversy still remains in the observation and assignment of the phonon modes. However, proper Raman mode assignment to describe the phonons critical for the multiferroic behavior is necessary. We present polarized micro Raman spectroscopy of single crystals with uniform ferroelectric polarization. Careful examination of the Raman spectra upon crystal rotation enables us to unambiguously assign several (A1 , Ex and Ey) modes.

  20. In vivo Raman spectroscopy for breast cancer: diagnosis in animal model

    NASA Astrophysics Data System (ADS)

    Bitar, R.; Martins, M. A.; Ribeiro, D.; Carvalho, C.; Santos, E. A. P.; Ramalho, L. N. Z.; Ramalho, F.; Martinho, H.; Martin, A. A.

    2008-02-01

    Raman spectroscopy has been well established as a powerful method for studying biological tissues and diagnosing diseases. In this study we have developed a breast cancer animal model and collected in vivo Raman spectra of mammary glands of 27 Sprague-Dawley female rats treated with DMBA and 5 non-treated used as control group. A dispersive Raman spectrometer with a @785 nm laser excitation coupled a fiber optic probe and a CCD detector was used to obtain the spectra. The obtained in vivo transcutaneous Raman spectra have shown important differences between normal and abnormal tissues when acquired from one side to the other side of the lesion.

  1. Micro-Raman Spectroscopy of Silver Nanoparticle Induced Stress on Optically-Trapped Stem Cells

    PubMed Central

    Bankapur, Aseefhali; Krishnamurthy, R. Sagar; Zachariah, Elsa; Santhosh, Chidangil; Chougule, Basavaraj; Praveen, Bhavishna; Valiathan, Manna; Mathur, Deepak

    2012-01-01

    We report here results of a single-cell Raman spectroscopy study of stress effects induced by silver nanoparticles in human mesenchymal stem cells (hMSCs). A high-sensitivity, high-resolution Raman Tweezers set-up has been used to monitor nanoparticle-induced biochemical changes in optically-trapped single cells. Our micro-Raman spectroscopic study reveals that hMSCs treated with silver nanoparticles undergo oxidative stress at doping levels in excess of 2 µg/ml, with results of a statistical analysis of Raman spectra suggesting that the induced stress becomes more dominant at nanoparticle concentration levels above 3 µg/ml. PMID:22514708

  2. [Detection of Cinnabars in Mongolian Medicines Using Raman Spectroscopy].

    PubMed

    Han, Siqingaowa; Hasi, Wuliji; Lin, Xiang; Lin, Shuang; Yang, Fang; Lou, Xiu-tao; Lu, Zhi-wei

    2015-10-01

    Cinnabar could soothe the nerves and the powder of cinnabar is always added in traditional Chinese medicine or mongolian medicines. The surface-enhanced Raman spectrum of cinnabar was identified using a portable Raman spectrometer and most structure vibration information was obtained. The results show that the Raman peaks of cinnabars were located at 253, 290, 343 cm(-1) and this three Raman characteristic peaks were selected for cinnabar identification. Meanwhile, the Raman spectra of several mongolian medicines were collected. The results showed that Raman signal of cinnabar could be observed in several mongolian medicines which contain cinnabar and Raman signal of cinnabar couldn't be detected in several mongolian medicines without cinnabar. In addition, the cinnabar in the oral ulcer powder was semi-quantitative analyzed and the limit of detection could reach to 10% of mass fraction. The relationship between the doped amount of cinnabar in the oral ulcer powder and the Raman intensity of characteristic peak was fitted and the correlation coefficient (r) was 0.995 9, which validated the accuracy of the result. This Raman analysis method for cinnabar detection is rapid, simple and accurate and it can be applied widely in mongolian medicines determination.

  3. Micro-Raman spectroscopy of meteorite Košice

    NASA Astrophysics Data System (ADS)

    Kaňuchová, Z.; Baratta, G. A.

    2014-07-01

    The Raman microscope technique was used to characterize 3-5 μm structures in the matrix of the Košice meteorite, an H5 ordinary chondrite. Its fall is associated with a bright fireball that appeared over central-eastern Slovakia on February 28, 2010. Several micro-Raman spectra of the interior part of meteorite KoŠice sample were collected. On the basis of characteristic frequencies of Raman modes the main types of minerals (olivines, pyroxenes) as well as carbon material were identified. The Raman signature of the carbon material is consistent with the second stage of the amorphization trajectory between amorphous carbon and nanocrystalline graphite.

  4. From near-infrared and Raman to surface-enhanced Raman spectroscopy: progress, limitations and perspectives in bioanalysis.

    PubMed

    Dumont, Elodie; De Bleye, Charlotte; Sacré, Pierre-Yves; Netchacovitch, Lauranne; Hubert, Philippe; Ziemons, Eric

    2016-05-01

    Over recent decades, spreading environmental concern entailed the expansion of green chemistry analytical tools. Vibrational spectroscopy, belonging to this class of analytical tool, is particularly interesting taking into account its numerous advantages such as fast data acquisition and no sample preparation. In this context, near-infrared, Raman and mainly surface-enhanced Raman spectroscopy (SERS) have thus gained interest in many fields including bioanalysis. The two former techniques only ensure the analysis of concentrated compounds in simple matrices, whereas the emergence of SERS improved the performances of vibrational spectroscopy to very sensitive and selective analyses. Complex SERS substrates were also developed enabling biomarker measurements, paving the way for SERS immunoassays. Therefore, in this paper, the strengths and weaknesses of these techniques will be highlighted with a focus on recent progress.

  5. [Rapid identification of potato cultivars using NIR-excited fluorescence and Raman spectroscopy].

    PubMed

    Dai, Fen; Bergholt, Mads Sylvest; Benjamin, Arnold Julian Vinoj; Hong, Tian-Sheng; Zhiwei, Huang

    2014-03-01

    Potato is one of the most important food in the world. Rapid and noninvasive identification of potato cultivars plays a important role in the better use of varieties. In this study, The identification ability of optical spectroscopy techniques, including near-infrared (NIR) Raman spectroscopy and NIR fluorescence spectroscopy, for invasive detection of potato cultivars was evaluated. A rapid NIR Raman spectroscopy system was applied to measure the composite Raman and NIR fluorescence spectroscopy of 3 different species of potatoes (98 samples in total) under 785 nm laser light excitation. Then pure Raman and NIR fluorescence spectroscopy were abstracted from the composite spectroscopy, respectively. At last, the partial least squares-discriminant analysis (PLS-DA) was utilized to analyze and classify Raman spectra of 3 different types of potatoes. All the samples were divided into two sets at random: the calibration set (74samples) and prediction set (24 samples), the model was validated using a leave-one-out, cross-validation method. The results showed that both the NIR-excited fluorescence spectra and pure Raman spectra could be used to identify three cultivars of potatoes. The fluorescence spectrum could distinguish the Favorita variety well (sensitivity: 1, specificity: 0.86 and accuracy: 0.92), but the result for Diamant (sensitivity: 0.75, specificity: 0.75 and accuracy: 0. 75) and Granola (sensitivity: 0.16, specificity: 0.89 and accuracy: 0.71) cultivars identification were a bit poorer. We demonstrated that Raman spectroscopy uncovered the main biochemical compositions contained in potato species, and provided a better classification sensitivity, specificity and accuracy (sensitivity: 1, specificity: 1 and accuracy: 1 for all 3 potato cultivars identification) among the three types of potatoes as compared to fluorescence spectroscopy.

  6. (17)O NMR and Raman Spectroscopies of Green Tea Infusion with Nanomaterial to Investigate Their Properties.

    PubMed

    Zhou, Changyan; Zhang, Huiping; Yan, Ying; Zhang, Xinya

    2016-09-01

    (17)O NMR and Raman spectrograms of green tea infusions with nanomaterial were investigated. Different green tea infusions were prepared by steeping tea powder with different concentrations of nanomaterial aqueous solution. The tea infusions were tested with (17)O NMR and Raman spectroscopies. The (17)O NMR results showed that line width increased to 90 in the tea infusions after nanomaterial was added as a result of the effects of the self-association of Ca(2+) and tea polyphenol. The results of Raman spectroscopy showed that, in tea infusions, the enhancement of C─C and C─O stretching vibrations suggest an increase in the number of effective components in water.

  7. New Applications of Portable Raman Spectroscopy in Agri-Bio-Photonics

    NASA Astrophysics Data System (ADS)

    Voronine, Dmitri; Scully, Rob; Sanders, Virgil

    2014-03-01

    Modern optical techniques based on Raman spectroscopy are being used to monitor and analyze the health of cattle, crops and their natural environment. These optical tools are now available to perform fast, noninvasive analysis of live animals and plants in situ. We will report new applications of a portable handheld Raman spectroscopy to identification and taxonomy of plants. In addition, detection of organic food residues will be demonstrated. Advantages and limitations of current portable instruments will be discussed with suggestions for improved performance by applying enhanced Raman spectroscopic schemes.

  8. Characterization and differentiation of normal and abnormal spermatozoa via micro-Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Huang, Z. F.; Chen, X. W.; Chen, G. N.; Chen, J. H.; Wang, J.; Lin, J. Q.; Zeng, H. S.; Chen, R.

    2013-03-01

    Growth in the percentage of spermatozoa with aberrant sperm head morphologies has been correlated with a rise in male infertility. In our study, micro-Raman spectroscopy using a new substrate was utilized to characterize and differentiate the morphologically normal and abnormal human sperm cells based on their different biochemical components by showing their different specific Raman spectra. A detailed classification based on the PCA-LDA method was performed showing a diagnostic sensitivity of 76% and specificity of 91%, with 80% classification accuracy. Our results suggest that micro-Raman spectroscopy can serve as a reliable and non-invasive tool for detection and differentiation of human spermatozoa.

  9. Using Raman Spectroscopy and Surface-Enhanced Raman Scattering to Identify Colorants in Art: An Experiment for an Upper-Division Chemistry Laboratory

    ERIC Educational Resources Information Center

    Mayhew, Hannah E.; Frano, Kristen A.; Svoboda, Shelley A.; Wustholz, Kristin L.

    2015-01-01

    Surface-enhanced Raman scattering (SERS) studies of art represent an attractive way to introduce undergraduate students to concepts in nanoscience, vibrational spectroscopy, and instrumental analysis. Here, we present an undergraduate analytical or physical chemistry laboratory wherein a combination of normal Raman and SERS spectroscopy is used to…

  10. Assessment of hand-held Raman instrumentation for in situ screening for potentially counterfeit artesunate antimalarial tablets by FT-Raman spectroscopy and direct ionization mass spectrometry.

    PubMed

    Ricci, Camilla; Nyadong, Leonard; Yang, Felicia; Fernandez, Facundo M; Brown, Christopher D; Newton, Paul N; Kazarian, Sergei G

    2008-08-15

    Pharmaceutical counterfeiting has become a significant public health problem worldwide and new, rapid, user-friendly, reliable and inexpensive methods for drug quality screening are needed. This work illustrates the chemical characterization of genuine and fake artesunate antimalarial tablets by portable Raman spectroscopy and validation by FT-Raman spectroscopy and ambient mass spectrometry. The applicability of a compact and robust portable Raman spectrometer (TruScan) for the in situ chemical identification of counterfeit tablets is reported.

  11. Micro Structural Analysis of In2S3 Thin Films by Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Izadneshana, H.; Gremenok, V. F.

    2014-11-01

    In2S3 thin films with different thicknesses were deposited on glass substrates using the thermal evaporation method. The as-deposited films were annealed in vacuum at 330 and 400°C for 30 and 60 min. We used Raman spectroscopy and X-ray diffraction to evaluate the effect of thermal treatment on the film structures. Raman active modes that can be classified as 9A1 and 14E modes have been observed in the Raman spectra of the In2S3 thin films. Variations in the Raman shift and bandwidth of different In2S3 thin films reveal the influence of the annealing effect. Results of Raman spectroscopy and XRD show that the annealing effect changes the crystallization phase from tetragonal to cubic at high temperatures.

  12. Quantitative determination of the human breast milk macronutrients by near-infrared Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Motta, Edlene d. C. M.; Zângaro, Renato A.; Silveira, Landulfo, Jr.

    2012-03-01

    This work proposes the evaluation of the macronutrient constitution of human breast milk based on the spectral information provided by near-infrared Raman spectroscopy. Human breast milk (5 mL) from a subject was collected during the first two weeks of breastfeeding and stocked in -20°C freezer. Raman spectra were measured using a Raman spectrometer (830 nm excitation) coupled to a fiber based Raman probe. Spectra of human milk were dominated by bands of proteins, lipids and carbohydrates in the 600-1800 cm-1 spectral region. Raman spectroscopy revealed differences in the biochemical constitution of human milk depending on the time of breastfeeding startup. This technique could be employed to develop a classification routine for the milk in Human Milk Banking (HMB) depending on the nutritional facts.

  13. New Material for Surface-Enhanced Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Farquharson, Stuart; Nelson, Chad; Lee, Yuan

    2004-01-01

    A chemical method of synthesis and application of coating materials that are especially suitable for surface-enhanced Raman spectroscopy (SERS) has been developed. The purpose of this development is to facilitate the utilization of the inherently high sensitivity of SERS to detect chemicals of interest (analytes) in trace amounts, without need for lengthy sample preparation. Up to now, the use of SERS has not become routine because the methods available have not been able to reproduce sampling conditions and provide quantitative measurements. In contrast, the coating materials of the present method enable analysis with minimum preparation of samples, and SERS measurements made using these materials are reproducible and reversible. Moreover, unlike in methods investigated in prior efforts to implement SERS, sampling is not restricted to such specific environments as electrolytes or specific solvents. The coating materials of this method are porous glasses, formed in sol-gel processes, that contain small particles of gold or silver metal. Materials of this type can be applied to the sample-contact surfaces of a variety of sampling and sensing devices, including glass slides, glass vials, fiber-optic probes, and glass tubes. Glass vials with their insides coated according to this method are particularly convenient for SERS to detect trace chemicals in solutions: One simply puts a sample solution containing the analyte(s) into a vial, then puts the vial into a Raman spectrometer for analysis. The chemical ingredients and the physical conditions of the sol-gel process have been selected so that the porous glass formed incorporates particles of the desired metal with size(s) to match the wavelength(s) of the SERS excitation laser in order to optimize the generation of surface plasmons. The ingredients and processing conditions have further been chosen to tailor the porosity and polarity of the glass to optimize the sample flow and the interaction between the analyte

  14. Chemical and explosives point detection through opaque containers using spatially offset Raman spectroscopy (SORS)

    NASA Astrophysics Data System (ADS)

    Loeffen, Paul W.; Maskall, Guy; Bonthron, Stuart; Bloomfield, Matthew; Tombling, Craig; Matousek, Pavel

    2011-05-01

    Spatially Offset Raman Spectroscopy (SORS) is a novel technique used to identify the chemical Raman signature of threat materials within a few seconds through common non-metallic containers, including those containers which may not yield to inspection by conventional backscatter Raman. In particular, some opaque plastic containers and coloured glass bottles can be difficult to analyze using conventional backscatter Raman because the signal from the contents is often overwhelmed by the much stronger Raman signal and/or fluorescence originating from the container itself. SORS overcomes these difficulties and generates clean Raman spectra from both the container and the contents with no prior knowledge of either. This is achieved by making two, or more, Raman measurements at various offsets between the collection and illumination areas, each containing different proportions of the fingerprint signals from the container and content materials. Using scaled subtraction, or multivariate statistical methods, the two orthogonal signals can be separated numerically, thereby providing a clean Raman spectrum of the contents without contamination from the container. Consequently, SORS promises to significantly improve threat detection capability and decrease the falsealarm rate compared with conventional Raman spectroscopy making it considerably more suitable as an alarm resolution methodology (e.g. at airports). In this paper, the technique and method are described and a study of offset value optimization is described illustrating the difference between one and two fixed spatial offsets. It is concluded that two fixed offsets yield an improvement in the SORS measurement which will help maximize the threat detection capability.

  15. Excited-state Raman spectroscopy with and without actinic excitation: S{sub 1} Raman spectra of trans-azobenzene

    SciTech Connect

    Dobryakov, A. L.; Quick, M.; Ioffe, I. N.; Granovsky, A. A.; Ernsting, N. P.; Kovalenko, S. A.

    2014-05-14

    We show that femtosecond stimulated Raman spectroscopy can record excited-state spectra in the absence of actinic excitation, if the Raman pump is in resonance with an electronic transition. The approach is illustrated by recording S{sub 1} and S{sub 0} spectra of trans-azobenzene in n-hexane. The S{sub 1} spectra were also measured conventionally, upon nπ* (S{sub 0} → S{sub 1}) actinic excitation. The results are discussed and compared to earlier reports.

  16. Dispersive Raman spectroscopy allows the identification and quantification of melanin types

    PubMed Central

    Galván, Ismael; Jorge, Alberto

    2015-01-01

    Melanins are the most prevalent pigments in animals and are involved in visual communication by producing colored traits that often evolve as intraspecific signals of quality. Identifying and quantifying melanins are therefore essential to understand the function and evolution of melanin-based signals. However, the analysis of melanins is difficult due to their insolubility and the lack of simple methods that allow the identification of their chemical forms. We recently proposed the use of Raman spectroscopy as a simple, noninvasive technique that can be used to identify and quantify melanins in feathers and hairs. Contrarily, other authors later stated that melanins are characterized by a lack of defined Raman signals. Here, we use confocal Raman microscopy to confirm previous analyses showing that the two main chemical forms of melanins (eumelanin and pheomelanin) exhibit distinct Raman signal and compare different excitation wavelengths to analyze synthetic pheomelanin and natural melanins in feathers of different species of birds. Our analyses indicate that only laser excitation wavelengths below 1064 nm are useful for the analysis of melanins by Raman spectroscopy, and only 780-nm laser in the case of melanins in feathers. These findings show that the capacity of Raman spectroscopy to distinguish different chemical forms of melanins depends on laser power and integration time. As a consequence, Raman spectroscopy should be applied after preliminar analyses using a range of these parameters, especially in fragile biological tissues such as feathers. PMID:25897382

  17. Insights into Protein Structure and Dynamics by Ultraviolet and Visible Resonance Raman Spectroscopy.

    PubMed

    López-Peña, Ignacio; Leigh, Brian S; Schlamadinger, Diana E; Kim, Judy E

    2015-08-11

    Raman spectroscopy is a form of vibrational spectroscopy based on inelastic scattering of light. In resonance Raman spectroscopy, the wavelength of the incident light falls within an absorption band of a chromophore, and this overlap of excitation and absorption energy greatly enhances the Raman scattering efficiency of the absorbing species. The ability to probe vibrational spectra of select chromophores within a complex mixture of molecules makes resonance Raman spectroscopy an excellent tool for studies of biomolecules. In this Current Topic, we discuss the type of molecular insights obtained from steady-state and time-resolved resonance Raman studies of a prototypical photoactive protein, rhodopsin. We also review recent efforts in ultraviolet resonance Raman investigations of soluble and membrane-associated biomolecules, including integral membrane proteins and antimicrobial peptides. These examples illustrate that resonance Raman is a sensitive, selective, and practical method for studying the structures of biological molecules, and the molecular bonding, geometry, and environments of protein cofactors, the backbone, and side chains.

  18. Dental caries detection by optical spectroscopy: a polarized Raman approach with fibre-optic coupling

    NASA Astrophysics Data System (ADS)

    Ko, A. C.-T.; Choo-Smith, L.-P.; Werner, J.; Hewko, M.; Sowa, M. G.; Dong, C.; Cleghorn, B.

    2006-09-01

    Incipient dental caries lesions appear as white spots on the tooth surface; however, accurate detection of early approximal lesions is difficult due to limited sensitivity of dental radiography and other traditional diagnostic tools. A new fibre-optic coupled spectroscopic method based on polarized Raman spectroscopy (P-RS) with near-IR laser excitation is introduced which provides contrast for detecting and characterizing incipient caries. Changes in polarized Raman spectra are observed in PO 4 3- vibrations arising from hydroxyapatite of mineralized tooth tissue. Demineralization-induced morphological/orientational alteration of enamel crystallites is believed to be responsible for the reduction of Raman polarization anisotropy observed in the polarized Raman spectra of caries lesions. Supporting evidence obtained by polarized Raman spectral imaging is presented. A specially designed fibre-optic coupled setup for simultaneous measurement of parallel- and cross-polarized tooth Raman spectra is demonstrated in this study.

  19. Optimal multivariate method for Raman spectroscopy based diagnosis of nasopharyngeal carcinoma

    NASA Astrophysics Data System (ADS)

    Chen, Bingling; Li, Shaoxin; Li, Jianghua; Guo, Zhouyi; Chen, Qiuyan; Mai, Haiqiang

    2013-12-01

    In this paper, we evaluated four kinds of classification algorithms on Raman spectra for nasopharyngeal carcinoma (NPC) diagnosis: Bayesian classification (BC), Linear discriminate analysis (LDA), Mahalanobis distance after the principal component analysis (PCA); as well the Genetic algorithm-LDA. A total of 225 Raman spectra were acquired from 120 tissue sites of 63 patients, in which 56 Raman spectra were from normal tissue, whereas 171 Raman spectra were from cancer nasopharyngeal tissue. The averaged Raman spectrum of NPC could be distinguished from that of the control group by the above multivariate analysis. Discrimination analysis of PCA-BC revealed that the highest sensitivity, specificity and overall accuracy of cancer diagnosis were 98% (1/56), 99% (1/171), and 99%, respectively. The results showed that Raman spectroscopy in combination with Bayesian classification had high enough sensitivity and specificity to accurately detect and diagnose NPC.

  20. Remote Pulsed-Laser Raman Spectroscopy System for Mineral Analysis

    NASA Technical Reports Server (NTRS)

    Sharma, S. K.; Angel, S. M.; Ghosh, M.; Hubble, H. W.; Lucey, P. G.

    2001-01-01

    We have measured Raman spectra of carbonate, silicate, and hydrous silicate and sulfate minerals, our new remote-pulsed Raman system, indicating that it can be used to analyze the minerals on planetary surfaces to a distance of 10 to 66 meters. Additional information is contained in the original extended abstract.