Science.gov

Sample records for afm spin fluctuations

  1. Possible enhancements of AFM spin-fluctuations in high-TC cuprates

    NASA Astrophysics Data System (ADS)

    Jarlborg, Thomas

    2009-03-01

    Ab-initio band calculations for high-TC cuprates, together with modelling based of a free electron like band, show a strong interaction between anti-ferromagnetic (AFM) spin waves and periodic lattice distortions as for phonons, even though this type of spin-phonon coupling (SPC) is underestimated in calculations using the local density approximation. The SPC has a direct influence on the properties of the HTC cuprates and it can explain many observations. The strongest effects are seen for modulated waves in the CuO bond direction, and a band gap is formed near the X,Y points, but unusal band dispersion (like ``waterfalls'') might also be induced below the Fermi energy (EF) in the diagonal direction. The band results are used to propose different ways of increasing AFM spin-fluctuations locally, and to have a higher density-of-states (DOS) at EF. Static potential modulations, via periodic distribution of dopants or lattice distortions, can be tuned to increase the DOS. This opens for possibilities to enhance coupling for spin fluctuations (λsf) and superconductivity. The exchange enhancement is in general increased near a surface, which suggests a tendency towards static spin configurations. The sensivity of the band results to corrections of the local density potential are discussed.

  2. Stripe antiferromagnetic spin fluctuations in SrCo2As2.

    PubMed

    Jayasekara, W; Lee, Y; Pandey, Abhishek; Tucker, G S; Sapkota, A; Lamsal, J; Calder, S; Abernathy, D L; Niedziela, J L; Harmon, B N; Kreyssig, A; Vaknin, D; Johnston, D C; Goldman, A I; McQueeney, R J

    2013-10-11

    Inelastic neutron scattering measurements of paramagnetic SrCo2As2 at T=5 K reveal antiferromagnetic (AFM) spin fluctuations that are peaked at a wave vector of Q(AFM)=(1/2,1/2,1) and possess a large energy scale. These stripe spin fluctuations are similar to those found in AFe2As2 compounds, where spin-density wave AFM is driven by Fermi surface nesting between electron and hole pockets separated by Q(AFM). SrCo2As2 has a more complex Fermi surface and band-structure calculations indicate a potential instability toward either a ferromagnetic or stripe AFM ground state. The results suggest that stripe AFM magnetism is a general feature of both iron and cobalt-based arsenides and the search for spin fluctuation-induced unconventional superconductivity should be expanded to include cobalt-based compounds. PMID:24160618

  3. Stripe Antiferromagnetic Spin Fluctuations in SrCo2As2

    SciTech Connect

    Jayasekara, W.; Lee, Y; Pandey, Abishek; Tucker, G. S.; Sapkota, A; Lamsal, Jagat; Calder, Stuart A; Abernathy, Douglas L; Niedziela, Jennifer L; Harmon, B N; Kreyssig, A.; Vaknin, D; Johnston, D C; Goldman, A. I.; McQueeney, R. J.

    2013-01-01

    Inelastic neutron scattering measurements of paramagnetic SrCo2As2 at T = 5 K reveal antifer- romagnetic (AFM) spin fluctuations that are peaked at a wavevector of QAFM = (1/2, 1/2, 1) and possess a large energy scale. These stripe spin fluctuations are similar to those found in AFe2As2 compounds, where spin-density wave AFM is driven by Fermi surface nesting between electron and hole pockets separated by QAFM. SrCo2As2 has a more complex Fermi surface and band structure calculations indicate a potential instability towards either a ferromagnetic or stripe AFM ground state. The results suggest that stripe AFM magnetism is a general feature of both iron and cobalt- based arsenides and the search for spin fluctuation-induced unconventional superconductivity should be expanded to include cobalt-based compounds.

  4. Spin Dynamics and Quantum Tunneling in Fe8 Nanomagnet and in AFM Rings by NMR

    SciTech Connect

    Seung-Ho-Baek

    2004-12-19

    In this thesis, our main interest has been to investigate the spin dynamics and quantum tunneling in single molecule magnets (SMMs), For this we have selected two different classes of SMMs: a ferrimagnetic total high spin S = 10 cluster Fe8 and antiferromagnetic (AFM) ring-type clusters. For Fe8, our efforts have been devoted to the investigation of the quantum tunneling of magnetization in the very low temperature region. The most remarkable experimental finding in Fe8 is that the nuclear spin-lattice relaxation rate (1/T{sub l}) at low temperatures takes place via strong collision mechanism, and thus it allows to measure directly the tunneling rate vs T and H for the first time. For AFM rings, we have shown that 1/T{sub l} probes the thermal fluctuations of the magnetization in the intermediate temperature range. We find that the fluctuations are dominated by a single characteristic frequency which has a power law T-dependence indicative of fluctuations due to electron-acoustic phonon interactions.

  5. Longitudinal spin fluctuations in nickel

    SciTech Connect

    Boeni, P. , Villigen ); Martinez, J.L. ); Tranquada, J.M. )

    1989-10-10

    The longitudinal and transverse spin fluctuations in Ni have been measured below {Tc} by means of polarized neutron scattering in the momentum range 0.06 < q < 0.18 {angstrom}{sup -1}. In transverse scans spin wave peaks at E{sub q} = Dq{sup 2} appear as expected from early measurements performed with unpolarized neutrons. The longitudinal magnetic scattering {sub {chi}L}(q, E), on the other hand, is quasielastic without any signature of inelastic peaks near E{sub q}. The q and T dependences of {sub {chi}L}(q, E) resemble the paramagnetic scattering above {Tc}, i.e., the linewidth is roughly proportional to q{sup 2.5} and the integrated intensity I(q) is proportional to (q{sup 2} + {kappa}{sub z}{sup 2}){sup -1}. 8 refs., 3 figs.

  6. Spin-current noise from fluctuation relations

    SciTech Connect

    Lim, Jong Soo; Sánchez, David; López, Rosa

    2013-12-04

    We present fluctuation relations that connect spin-polarized current and noise in mesoscopic conductors. In linear response, these relations are equivalent to the fluctuation-dissipation theorem that relates equilibrium current-current correlations to the linear conductance. More interestingly, in the weakly nonlinear regime of transport, these relations establish a connection between the leading-order rectification spin conductance, the spin noise susceptibility and the third cumulant of spin current fluctuations at equilibrium. Our results are valid even for systems in the presence of magnetic fields and coupled to ferromagnetic electrodes.

  7. Electric probe for spin transition and fluctuation

    NASA Astrophysics Data System (ADS)

    Qiu, Zhiyong; Li, Jia; Hou, Dazhi; Arenholz, Elke; N'diaye, Alpha T.; Tan, Ali; Uchida, Ken-Ichi; Sato, Koji; Tserkovnyak, Yaroslov; Qiu, Z. Q.; Saitoh, Eiji

    Spin fluctuation and transition have always been one of central topics of magnetism and condense matter science. To probe them, neutron scatterings have been used as powerful tools. A part of neutrons injected into a sample is scattered by spin fluctuation inside the sample. This process transcribes the spin fluctuation onto scattering intensity, which is commonly represented by dynamical magnetic susceptibility of the sample and is maximized at magnetic phase transitions. Importantly, a neutron carries spin without electric charge, and it thus can bring spin into a sample without being disturbed by electric energy: an advantage of neutrons, although large facilities such as a nuclear reactor is necessary. Here we show that spin pumping, frequently used in nanoscale spintronic devices, provides a desktop micro probe for spin fluctuation and transition; not only a neutron beam, spin current is also a flux of spin without an electric charge and its transport reflects spin fluctuation in a sample. We demonstrate detection of anti-ferromagnetic transition in ultra-thin CoO films via frequency dependent spin-current transmission measurements.

  8. Stripe Antiferromagnetic Spin Fluctuations in SrCo2As2

    SciTech Connect

    Jayasekara, Wageesha; Lee, Young-Jin; Pandey, Abhishek; Tucker, Gregory; Sapkota, Aashish; Lamsal, J.; Calder, S.; Abernathy, D. L.; Niedziela, J. L.; Harmon, Bruce; Kreyssig, Andreas; Vaknin, David; Johnston, David; Goldman, A. I.; McQueeney, R. J.

    2013-10-01

    Inelastic neutron scattering measurements of paramagnetic SrCo2As2 at T = 5 K reveal antiferromagnetic (AFM) spin fluctuations that are peaked at a wave vector of QAFM = (1/2, 1/2, 1) and possess a large energy scale. These stripe spin fluctuations are similar to those found in AFe2As2 compounds, where spin-density wave AFM is driven by Fermi surface nesting between electron and hole pockets separated by QAFM. SrCo2As2 has a more complex Fermi surface and band-structure calculations indicate a potential instability toward either a ferromagnetic or stripe AFM ground state. The results suggest that stripe AFM magnetism is a general feature of both iron and cobalt-based arsenides and the search for spin fluctuation-induced unconventional superconductivity should be expanded to include cobalt-based compounds.

  9. Coherent spin control by electromagnetic vacuum fluctuations

    SciTech Connect

    Wang Jing; Liu Renbao; Zhu Bangfen; Sham, L. J.; Steel, D. G.

    2011-05-15

    In coherent control, electromagnetic vacuum fluctuations usually cause coherence loss through irreversible spontaneous emission. However, since the dissipation via emission is essentially due to correlation of the fluctuations, when emission ends in a superposition of multiple final states, correlation between different pathways may build up if the 'which way' information is not fully resolved (i.e., the emission spectrum is broader than the transition energy range). Such correlation can be exploited for spin-flip control in a {Lambda}-type three-level system, which manifests itself as an all-optical spin echo in nonlinear optics with two orders of optical fields saved as compared with stimulated Raman processes. This finding represents a class of optical nonlinearity induced by electromagnetic vacuum fluctuations.

  10. AFM characterization of spin coated carboxylated polystyrene nanospheres/xyloglucan layers on mica and silicon.

    PubMed

    Lubambo, Adriana F; Lucyszyn, Neoli; Petzhold, Cesar L; Sierakowski, Maria-R; Schreiner, Wido H; Saul, Cyro K

    2013-03-01

    Self-assembled nano-arrays have a potential application as solid-phase diagnostics in many biomedical devices. The easiness of its production is directly connected to manufacture cost reduction. In this work, we present self-assembled structures starting from spin coated thin films of carboxylated polystyrene (PSC) and xyloglucan (XG) mixtures on both mica and silicon substrates. AFM images showed PSC nanospheres on top of a homogeneous layer of XG, for both substrates. The average nanosphere diameter fluctuated for a constant speed and it was likely to be independent of the component proportions on the mixture within a range of 30-50% (v/v) PSC. It was also observed that the largest diameters were found at the center of the sample and the smallest at the border. The detected nanospheres were also more numerous at the border. This behavior presents a similarity to spin coated colloidal dispersions. We observed that the average nanosphere diameter on mica substrates was bigger than the nanosphere diameters obtained on top of silicon substrates, under the same conditions. This result seems to be possibly connected to different mixture-surface interactions. PMID:23465925

  11. Thermal fluctuations in artificial spin ice.

    PubMed

    Kapaklis, Vassilios; Arnalds, Unnar B; Farhan, Alan; Chopdekar, Rajesh V; Balan, Ana; Scholl, Andreas; Heyderman, Laura J; Hjörvarsson, Björgvin

    2014-07-01

    Artificial spin ice systems have been proposed as a playground for the study of monopole-like magnetic excitations, similar to those observed in pyrochlore spin ice materials. Currents of magnetic monopole excitations have been observed, demonstrating the possibility for the realization of magnetic-charge-based circuitry. Artificial spin ice systems that support thermal fluctuations can serve as an ideal setting for observing dynamical effects such as monopole propagation and as a potential medium for magnetricity investigations. Here, we report on the transition from a frozen to a dynamic state in artificial spin ice with a square lattice. Magnetic imaging is used to determine the magnetic state of the islands in thermal equilibrium. The temperature-induced onset of magnetic fluctuations and excitation populations are shown to depend on the lattice spacing and related interaction strength between islands. The excitations are described by Boltzmann distributions with their factors in the frozen state relating to the blocking temperatures of the array. Our results provide insight into the design of thermal artificial spin ice arrays where the magnetic charge density and response to external fields can be studied in thermal equilibrium. PMID:24908258

  12. Probing Nanoscale Surface Enhanced Raman Scattering Fluctuation Dynamics using Correlated AFM and Confocal Ultramicroscopy

    SciTech Connect

    Suh, Yung D.; Schenter, Gregory K.; Zhu, Leyun; Lu, H PETER.

    2003-10-01

    We have studied the laser-excitation-intensity-dependent and Ag-nanocluster interstitial-site-dependent SERS intensity fluctuations under low molecule surface coverage of rhodamine 6G and cytochrome c. a new two-channel photon time-stamping system coupled with atomic force microscopic (AFM), Raman spectroscopic, and imaging microscopy was developed and applied to record Raman intensity fluctuation trajectories at sub-microsecond resolution correlated with in-situ characterization of the nanoparticle clusters. Our experimental results suggest that the nanoconfinement of the local electromagnetic-field enhancement and the interaction of the local field with the molecules, presumably under rotational motions, result in nano-Raman fluctuations. The SERS spectral fluctuation was pertinent to the nanoscale local enhancement and local interaction of the molecules with the surface when the number of molecules to contribute the microscopic Raman signal collected from a diffraction-limited focus spot. The SERS fluctuation dynamics were both photo-induced and spontaneous for rhodamine 6G, but only the photo-induced interstitial sites with heterogeneous geometries. To interpret the observed nano-SERS fluctuation dynamics, we used computer simulation of optical multiple scattering, based on multi-sphere scattering Mie theory, and rotational diffusion of molecules at an interstitial site, based on a random walk in orientation space.

  13. Love triangles, quantum fluctuations and spin jam

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Hun

    When magnetic moments are interacting with each other in a situation resembling that of complex love triangles, called frustration, a large set of states that are energetically equivalent emerge. This leads to exotic spin states such as spin liquid and spin ice. Recently, we presented evidence for the existence of a topological glassy state, that we call spin jam, induced by quantum fluctuations. The case in point is SrCr9pGa12-9pO19 (SCGO(p)), a highly frustrated magnet, in which the magnetic Cr ions form a quasi-two-dimensional triangular system of bi-pyramids. This system has been an archetype in search for exotic spin states. Understanding the nature of the state has been a great intellectual challenge. Our new experimental data and theoretical spin jam model provide for the first time a coherent understanding of the phenomenon. Furthermore, the findings strongly support the possible existence of purely topological glassy states. Reference:

  14. Spin fluctuations in 3d paramagnetic metals

    NASA Astrophysics Data System (ADS)

    Wysocki, Aleksander; Kutepov, Andrey; Antropov, Vladimir

    Spin fluctuations (SFs) in 3d paramagnetic metals were investigated using the linear response formalism within the time dependent density functional theory. An efficient scheme of frequency integration using the Matsubara technique has been implemented and tested. The SFs spectrum in 3d paramagnets is analyzed in real and reciprocal spaces as a function of frequency and temperature. For all materials the SFs are characterized by the coexistence of low and high energy branches which originate from different regions of the Brillouin zone. The low-energy ones can be measured by neutron scattering experiments while the high-energy SFs appear to be more localized. Further, we studied the nature of square of fluctuating magnetic moment in these materials. This work was supported, in part, by the Critical Materials Institute, an Energy Innovation Hub funded by the U.S. Department of Energy (DOE), and by the Office of Basic Energy Science, Division of Materials Science and Engineering. The research was performed at Ames Laboratory, which is operated for the U.S. DOE by Iowa State University under contract # DE-AC02-07CH11358.

  15. Mixed Valence and Spin Fluctuations in Cerium

    NASA Astrophysics Data System (ADS)

    Andraka, Bohdan

    The pseudobinary alloys Ce(Ni(,x)Co(,1-x))(,2), (Ce(,x)La(,1-x))Ni(,2) and (Ce(,x)Y(,1-x))Ni(,2), where 0 < x < 1, have been studied. The room temperature lattice constant, the magnetic susceptibility in the 6 to 300 K temperature range, the low temperature specific heat in the 0.4 to 25 K range and the electrical resistivity in the 0.4 to 300 K range were measured. Additionally, X -ray absorption around L(,3) edge has been studied using the synchroton radiation. Both, thermodynamic and L(,3) probes yield similar results for the changes of valence of Ce across these systems. We have established that Ce is in the saturated valence state in the Ce(Ni(,x)Co(,1 -x))(,2) for x < 0.25. The valence decreases with x in the 0.25 to 1 concentration range. Similarly, the valence of Ce decreases in the (Ce, Y)Ni(,2) systems upon substitution of Y for Ce. The results obtained for the (Ce(,x)La(,1 -x))Ni(,2) system are interpreted in terms of changes of the Ce('3+) impurity levels. Spin fluctuations due to the 3d electrons play an important role in these systems.

  16. Structural and magnetic field effects on spin fluctuations in Sr3Ru2O7

    NASA Astrophysics Data System (ADS)

    Mukherjee, Shantanu; Lee, Wei-Cheng

    2016-08-01

    We investigate the evolution of magnetic excitations in Sr3Ru2O7 in the paramagnetic metallic phase using a three-band tight-binding model. The effect of Mn or Ti dopant ions on the Sr3Ru2O7 band structure has been included by taking into account the dopant-induced suppression of the oxygen octahedral rotation in the tight-binding band structure. We find that the low-energy spin fluctuations are dominated by three wave vectors around q ⃗=( (0 ,0 ) ,(π /2 ,π /2 ) ) and (π ,0 ) , which compete with each other. As the octahedral rotation is suppressed with increasing doping, the three wave vectors evolve differently. In particular, the undoped compound has dominant wave vectors at q ⃗=( (0 ,0 ) ,(π /2 ,π /2 ) ) , but doping Sr3Ru2O7 leads to a significant enhancement in the spin susceptibility at the q ⃗=(π ,0 ) wave vector, bringing the system closer to a magnetic instability. All the features calculated from our model are in agreement with neutron scattering experiments. We have also studied the effect of a c -axis Zeeman field on the low-energy spin fluctuations. We find that an increasing magnetic field suppresses the antiferromagnetic (AFM) fluctuations and leads to stronger competition between the AFM and ferromagnetic spin fluctuations. The magnetic field dependence observed in our calculations therefore supports the scenario that the observed nematic phase in the metamagnetic region in Sr3Ru2O7 is intimately related to the presence of a competing ferromagnetic instability.

  17. Spin fluctuations of nonequilibrium electrons and excitons in semiconductors

    NASA Astrophysics Data System (ADS)

    Glazov, M. M.

    2016-03-01

    Effects that are related to deviations from thermodynamic equilibrium have a special place in modern physics. Among these, nonequilibrium phenomena in quantum systems attract the highest interest. The experimental technique of spin-noise spectroscopy has became quite widespread, which makes it possible to observe spin fluctuations of charge carriers in semiconductors under both equilibrium and nonequilibrium conditions. This calls for the development of a theory of spin fluctuations of electrons and electron-hole complexes for nonequilibrium conditions. In this paper, we consider a range of physical situations where a deviation from equilibrium becomes pronounced in the spin noise. A general method for the calculation of electron and exciton spin fluctuations in a nonequilibrium state is proposed. A short review of the theoretical and experimental results in this area is given.

  18. Co-existence of spin fluctuation and superconductivity in electron doped cuprate Pr1-xLaCexCuO4

    NASA Astrophysics Data System (ADS)

    Song, Dongjoon; Park, S. R.; Kim, Chul; Choi, S. K.; Jung, W. S.; Koh, Y. Y.; Kim, Y. K.; Eisaki, H.; Yoshida, Y.; Kim, C.

    2012-02-01

    Even though spin fluctuation has been proposed to be as the pairing glue in the cuprate high temperature superconductivity, there is lack of a clear evidence for its coupling to electron. One of the reasons is that, for hole doped cuprates, both anti-ferromagnetism (AFM) and recently proposed charge ordering effects due to Fermi surface nesting occur in the same region of the momentum space (anti-nodal region). On the other hand, electron doped cuprates are known to have the pseudo gap effect at hot spots from AFM band renormalization. This fact makes it advantageous to investigate electron doped cuprates for the spin fluctuation issue. We performed ARPES studies on superconducting electron doped cuprates PLCCO (x=0.1, 0.15, 0.18) to investigate the relation between the spin fluctuation and superconductivity. We observe pseudo gap for all the dopings, which indicates that the short range AFM ordering survives far away from the AFM phase boundary. This coincidence of the short range AFM and superconductivity even in the over doped state may support the spin fluctuation scenarios at least in the electron doped side.

  19. Effect of spin fluctuations on quasiparticles in simple metals

    NASA Astrophysics Data System (ADS)

    Lischner, Johannes; Bazhirov, Timur; MacDonald, Allan; Cohen, Marvin; Louie, Steven

    2014-03-01

    We present a first-principles theory for quasiparticle excitations in condensed matter systems that includes their interaction with spin fluctuations. We apply this theory to sodium and lithium. Despite several previous studies, the importance of spin fluctuations in these materials and, in particular, their effect on the occupied band width remains unclear. We show that the coupling to spin fluctuations does not significantly change the occupied band width, but gives an important contribution to the quasiparticle lifetime. To obtain quantitative agreement with experiment for the occupied band width, we find that it is necessary to include vertex corrections beyond the random-phase approximation in the screening by charge fluctuations. S. G. L. acknowledges support by a Simons Foundation Fellowship in Theoretical Physics. This work was supported by NSF Grant No. DMR10-1006184 and by DOE Grant No. DE-AC02-05CH11231.

  20. Thermal spin fluctuations in spinor Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Melé-Messeguer, M.; Juliá-Díaz, B.; Polls, A.; Santos, L.

    2013-03-01

    We study the thermal activation of spin fluctuations in dynamically stable spinor Bose-Einstein condensates. We analyze the specific cases of a nondipolar spin-1 condensate in the state m=0, where thermal activation results from spin-changing collisions, and of a chromium condensate in the maximally stretched state m=-3, where thermal spin fluctuations are due to dipole-induced spin relaxation. In both cases, we show that the low energy associated to the spinor physics may be employed for thermometry purposes down to extremely low temperatures, typically impossible to measure in Bose-Einstein condensates with the usual thermometric techniques. Moreover, the peculiar dependence of the system's entropy with the applied Zeeman energy opens a possible route for adiabatic cooling.

  1. Generalized theory of spin fluctuations in itinerant electron magnets: Crucial role of spin anharmonicity

    NASA Astrophysics Data System (ADS)

    Solontsov, A.

    2015-06-01

    The paper critically overviews the recent developments of the theory of spatially dispersive spin fluctuations (SF) in itinerant electron magnetism with particular emphasis on spin-fluctuation coupling or spin anharmonicity. It is argued that the conventional self-consistent renormalized (SCR) theory of spin fluctuations is usually used aside of the range of its applicability actually defined by the constraint of weak spin anharmonicity based on the random phase approximation (RPA) arguments. An essential step in understanding SF in itinerant magnets beyond RPA-like arguments was made recently within the soft-mode theory of SF accounting for strong spin anharmonicity caused by zero-point SF. In the present paper we generalize it to apply for a wider range of temperatures and regimes of SF and show it to lead to qualitatively new results caused by zero-point effects.

  2. Unconventional superconductivity from local spin fluctuations in the Kondo lattice.

    PubMed

    Bodensiek, Oliver; Žitko, Rok; Vojta, Matthias; Jarrell, Mark; Pruschke, Thomas

    2013-04-01

    The explanation of heavy-fermion superconductivity is a long-standing challenge to theory. It is commonly thought to be connected to nonlocal fluctuations of either spin or charge degrees of freedom and therefore of unconventional type. Here we present results for the Kondo-lattice model, a paradigmatic model to describe heavy-fermion compounds, obtained from dynamical mean-field theory which captures local correlation effects only. Unexpectedly, we find robust s-wave superconductivity in the heavy-fermion state. We argue that this novel type of pairing is tightly connected to the formation of heavy quasiparticle bands and the presence of strong local spin fluctuations. PMID:25167017

  3. Spin fluctuation and Fermi surface instability in ferromagnetic superconductors

    NASA Astrophysics Data System (ADS)

    Aoki, Dai; Gourgout, Adrien; Pourret, Alexandre; Bastien, Gaël; Knebel, Georg; Flouquet, Jacques

    2014-08-01

    We review the ferromagnetic superconductivity observed in the uranium based compounds, namely UGe2, URhGe and UCoGe, where the spin-triplet state is most likely realized. An unusual upper critical field Hc2, which is enhanced under a magnetic field in a certain field direction, is discussed in terms of spin fluctuations and of Fermi surface instabilities. xml:lang="fr"

  4. Number Fluctuation Dynamics of Atomic Spin Mixing inside a Condensate

    SciTech Connect

    Chang, Lee; Zhai, Q.; Lu Rong; You, L.

    2007-08-24

    We investigate the quantum dynamics of number fluctuations inside an atomic condensate during coherent spin mixing among internal states of the ground state hyperfine manifold, by quantizing the semiclassical nonrigid pendulum model in terms of the conjugate variable pair: the relative phase and the atom number. Our result provides a theoretical basis that resolves the resolution limit, or the effective ''shot-noise'' level, for counting atoms that is needed to clearly detect quantum correlation effects in spin mixing.

  5. Charge and spin fluctuations in the density functional theory

    SciTech Connect

    Gyoerffy, B.L.; Barbieri, A. . H.H. Wills Physics Lab.); Staunton, J.B. . Dept. of Physics); Shelton, W.A.; Stocks, G.M. )

    1990-01-01

    We introduce a conceptual framework which allow us to treat charge and spin fluctuations about the Local density Approximation (LDA) to the Density Functional Theory (DFT). We illustrate the approach by explicit study of the Disordered Local Moment (DLM) state in Fe above the Curie Temperature {Tc} and the Mott insulating state in MnO. 27 refs., 6 figs.

  6. Noncollinear spin-fluctuation theory of transition-metal magnetism: Role of transverse spin fluctuations in Fe

    NASA Astrophysics Data System (ADS)

    Garibay-Alonso, R.; Dorantes-Dávila, J.; Pastor, G. M.

    2015-05-01

    A local electronic theory of transition-metal magnetism at finite temperatures is presented, which takes into account longitudinal and transverse spin fluctuations on the same footing. The magnetic properties are determined in the framework of a rotational-invariant d -band model Hamiltonian by applying a four-field Hubbard-Stratonovich functional-integral method in the static approximation. The role of transverse spin excitations on the temperature-dependent magnetic properties is investigated by performing alloy averages in the single-site virtual crystal approximation. Bulk Fe is considered as the representative example for the applications. Results are given for the average magnetization M , for the spin-excitation energies, and for the transverse and longitudinal contributions to the local magnetic moments μl at atom l . The importance of noncollinear spin excitations is quantified by comparison with the corresponding collinear calculations. An important reduction of about 33% of the calculated Curie temperature TC is obtained, which now amounts to 1250 K and is thus relatively close to the experimental value. The longitudinal (transverse) components of μl are found to decrease (increase) as a function of temperature until the full rotational symmetry is reached at TC. This reflects the increasing importance of the transverse spin fluctuations. The origin of the temperature dependence of M and μl is analyzed in terms of the local spin-fluctuation energies.

  7. Spin Fluctuations from Hertz to Terahertz on a Triangular Lattice.

    PubMed

    Nambu, Yusuke; Gardner, Jason S; MacLaughlin, Douglas E; Stock, Chris; Endo, Hitoshi; Jonas, Seth; Sato, Taku J; Nakatsuji, Satoru; Broholm, Collin

    2015-09-18

    The temporal magnetic correlations of the triangular-lattice antiferromagnet NiGa_{2}S_{4} are examined through 13 decades (10^{-13}-1 sec) using ultrahigh-resolution inelastic neutron scattering, muon spin relaxation, and ac and nonlinear susceptibility measurements. Unlike the short-ranged spatial correlations, the temperature dependence of the temporal correlations show distinct anomalies. The spin fluctuation rate decreases precipitously upon cooling towards T^{*}=8.5 K, but fluctuations on the microsecond time scale then persist in an anomalous dynamical regime for 4 Kfluctuations bear evidence of emergent degrees of freedom within the short-range correlated incommensurate state of NiGa_{2}S_{4}. PMID:26431013

  8. Link between spin fluctuations and Cooper pairing in copper oxide superconductors

    NASA Astrophysics Data System (ADS)

    Jin, Kui

    2012-02-01

    Although it is generally accepted that superconductivity is unconventional in the high-Tc cuprates, the relative importance of phenomena such as spin and charge (strip) order, superconductivity fluctuations, proximity to Mott insulator, a pseudogap phase and quantum criticality are still a matter of debate. In electron-doped cuprates, the absence of ``anomalousphase in the underdoped region of the phase diagram and weaker electron correlations suggest that Mott physics and other unidentified competing orders are less relevant and that antiferromagnetic (AFM) spin fluctuations are the dominant feature. In this talk, I will report results of low temperature magnetotransport experiments in optimal to overdoped (non-superconducting) thin films of the electron-doped cuprate La2-xCexCuO4 (LCCO). We find that a linear-in-T scattering rate is correlated with the superconductivity (Tc). Our results show that an envelope of such scattering surrounds the superconducting phase, surviving to 20 mK (the limit of our experiments) when superconductivity is suppressed by magnetic fields [1]. Comparison with similar behavior found in organic superconductors [2] strongly suggests that the linear-in-T resistivity in the electron-doped cuprates is caused by spin-fluctuation scattering. Because linear-in-T scattering has also been linked to T% c in some hole-doped cuprates [2], our results suggest a fundamental connection between AFM spin fluctuations and the pairing mechanism of high temperature superconductivity in all cuprates. In addition, I will discuss how quantum criticality plays a significant role in shaping the anomalous properties of the electron-doped cuprate phase diagram. We identify quantum critical scaling in LCCO with a line of quantum critical points that surrounds the superconducting phase as a function of magnetic field and charge doping [3]. [4pt] [1] K. Jin, N.P. Butch, K. Kirshenbaum, J. Paglione, and R.L. Greene, Nature 476, 73 (2011).[0pt] [2] L. Taillefer, Annu

  9. Phase transition in spin systems with various types of fluctuations.

    PubMed

    Miyashita, Seiji

    2010-01-01

    Various types ordering processes in systems with large fluctuation are overviewed. Generally, the so-called order-disorder phase transition takes place in competition between the interaction causing the system be ordered and the entropy causing a random disturbance. Nature of the phase transition strongly depends on the type of fluctuation which is determined by the structure of the order parameter of the system. As to the critical property of phase transitions, the concept "universality of the critical phenomena" is well established. However, we still find variety of features of ordering processes. In this article, we study effects of various mechanisms which bring large fluctuation in the system, e.g., continuous symmetry of the spin in low dimensions, contradictions among interactions (frustration), randomness of the lattice, quantum fluctuations, and a long range interaction in off-lattice systems. PMID:20689226

  10. Zero-Point Spin-Fluctuations of Single Adatoms.

    PubMed

    Ibañez-Azpiroz, Julen; Dos Santos Dias, Manuel; Blügel, Stefan; Lounis, Samir

    2016-07-13

    Stabilizing the magnetic signal of single adatoms is a crucial step toward their successful usage in widespread technological applications such as high-density magnetic data storage devices. The quantum mechanical nature of these tiny objects, however, introduces intrinsic zero-point spin-fluctuations that tend to destabilize the local magnetic moment of interest by dwindling the magnetic anisotropy potential barrier even at absolute zero temperature. Here, we elucidate the origins and quantify the effect of the fundamental ingredients determining the magnitude of the fluctuations, namely, the (i) local magnetic moment, (ii) spin-orbit coupling, and (iii) electron-hole Stoner excitations. Based on a systematic first-principles study of 3d and 4d adatoms, we demonstrate that the transverse contribution of the fluctuations is comparable in size to the magnetic moment itself, leading to a remarkable ≳50% reduction of the magnetic anisotropy energy. Our analysis gives rise to a comprehensible diagram relating the fluctuation magnitude to characteristic features of adatoms, providing practical guidelines for designing magnetically stable nanomagnets with minimal quantum fluctuations. PMID:27248465

  11. Theory of spin and charge fluctuations in the Hubbard model

    SciTech Connect

    Vilk, Y.M.; Chen, L.; Tremblay, A.S. )

    1994-05-01

    A self-consistent theory of both spin and charge fluctuations in the Hubbard model is presented. It is in quantitative agreement with Monte Carlo data at least up to intermediate coupling ([ital U][similar to]8[ital t]). It includes both short-wavelength quantum renormalization effects, and long-wavelength thermal fluctuations, which can destroy long-range order in two dimensions. The last effect leads to a small energy scale, as often observed in high-temperature superconductors. The theory is conserving, satisfies the Pauli principle, and includes three-particle correlations necessary to account for the incipient Mott transition.

  12. Stoichiometry, spin fluctuations, and superconductivity in LaNiPO

    SciTech Connect

    Klimczuk, Tomasz; Mcqueen, Tyrel M; Williams, Anthony J; Huang, Qiang; Cava, Robert J

    2009-01-01

    Superconductivity in LaNiPO is disrupted by small ({approx}5%) amounts of non-stoichiometry on the lanthanum site, even though the electronic contribution to the heat capacity increases with increasing non-stoichiometry. All samples also exhibit specific heat anomalies consistent with the presence of ferromagnetic spin fluctuations (T{sub sf}{approx} 14K). Comparison of layered nickel phosphide and nickel borocarbide superconductors reveals different structure-property correlations in the two families.

  13. Spin jam induced by quantum fluctuations in a frustrated magnet.

    PubMed

    Yang, Junjie; Samarakoon, Anjana; Dissanayake, Sachith; Ueda, Hiroaki; Klich, Israel; Iida, Kazuki; Pajerowski, Daniel; Butch, Nicholas P; Huang, Q; Copley, John R D; Lee, Seung-Hun

    2015-09-15

    Since the discovery of spin glasses in dilute magnetic systems, their study has been largely focused on understanding randomness and defects as the driving mechanism. The same paradigm has also been applied to explain glassy states found in dense frustrated systems. Recently, however, it has been theoretically suggested that different mechanisms, such as quantum fluctuations and topological features, may induce glassy states in defect-free spin systems, far from the conventional dilute limit. Here we report experimental evidence for existence of a glassy state, which we call a spin jam, in the vicinity of the clean limit of a frustrated magnet, which is insensitive to a low concentration of defects. We have studied the effect of impurities on SrCr9pGa12-9pO19 [SCGO(p)], a highly frustrated magnet, in which the magnetic Cr(3+) (s = 3/2) ions form a quasi-2D triangular system of bipyramids. Our experimental data show that as the nonmagnetic Ga(3+) impurity concentration is changed, there are two distinct phases of glassiness: an exotic glassy state, which we call a spin jam, for the high magnetic concentration region (p > 0.8) and a cluster spin glass for lower magnetic concentration (p < 0.8). This observation indicates that a spin jam is a unique vantage point from which the class of glassy states of dense frustrated magnets can be understood. PMID:26324917

  14. Spin jam induced by quantum fluctuations in a frustrated magnet

    PubMed Central

    Yang, Junjie; Samarakoon, Anjana; Dissanayake, Sachith; Ueda, Hiroaki; Klich, Israel; Iida, Kazuki; Pajerowski, Daniel; Butch, Nicholas P.; Huang, Q.; Copley, John R. D.; Lee, Seung-Hun

    2015-01-01

    Since the discovery of spin glasses in dilute magnetic systems, their study has been largely focused on understanding randomness and defects as the driving mechanism. The same paradigm has also been applied to explain glassy states found in dense frustrated systems. Recently, however, it has been theoretically suggested that different mechanisms, such as quantum fluctuations and topological features, may induce glassy states in defect-free spin systems, far from the conventional dilute limit. Here we report experimental evidence for existence of a glassy state, which we call a spin jam, in the vicinity of the clean limit of a frustrated magnet, which is insensitive to a low concentration of defects. We have studied the effect of impurities on SrCr9pGa12-9pO19 [SCGO(p)], a highly frustrated magnet, in which the magnetic Cr3+ (s = 3/2) ions form a quasi-2D triangular system of bipyramids. Our experimental data show that as the nonmagnetic Ga3+ impurity concentration is changed, there are two distinct phases of glassiness: an exotic glassy state, which we call a spin jam, for the high magnetic concentration region (p>0.8) and a cluster spin glass for lower magnetic concentration (p<0.8). This observation indicates that a spin jam is a unique vantage point from which the class of glassy states of dense frustrated magnets can be understood. PMID:26324917

  15. Problem of Phase Transition in Spin-fluctuation Theory

    NASA Astrophysics Data System (ADS)

    Melnikov, N. B.; Paradezhenko, G. V.

    A first-order phase transition is a characteristic feature of the Gaussian approximation in spin-fluctuation theory. We describe a method for taking into account the fourth-order terms of the free energy expansion using partial averaging. In the example of the Ising model, we show that renormalization of the magnetic susceptibility leads to the second-order phase transition, which is experimentally observed in metals. Near the phase transition, we use the parameter substitution method to compute temperature dependencies. We perform a qualitative analysis and explain the mechanism of the renormalization.

  16. Graphene sheet versus two-dimensional electron gas: A relativistic Fano spin filter via STM and AFM tips

    NASA Astrophysics Data System (ADS)

    Seridonio, A. C.; Siqueira, E. C.; Souza, F. M.; Machado, R. S.; Lyra, S. S.; Shelykh, I. A.

    2013-11-01

    We explore theoretically the density of states (LDOS) probed by a scanning tunneling microscope (STM) tip of two-dimensional systems hosting an adatom and a subsurface impurity, both capacitively coupled to atomic force microscope (AFM) tips and traversed by antiparallel magnetic fields. Two kinds of setups are analyzed, a monolayer of graphene and a two-dimensional electron gas (2DEG). The AFM tips set the impurity levels at the Fermi energy, where two contrasting behaviors emerge: The Fano factor for the graphene diverges, while in the 2DEG it approaches zero. As result, the spin degeneracy of the LDOS is lifted exclusively in the graphene system, in particular, for the asymmetric regime of Fano interference. The aftermath of this limit is a counterintuitive phenomenon, which consists of a dominant Fano factor due to the subsurface impurity even with a stronger STM-adatom coupling. Thus we find a full polarized conductance, achievable just by displacing vertically the position of the STM tip. Our work proposes the Fano effect as the mechanism to filter spins in graphene. This feature arises from the massless Dirac electrons within the band structure and allows us to employ the graphene host as a relativistic Fano spin filter.

  17. Mott physics and spin fluctuations: A functional viewpoint

    NASA Astrophysics Data System (ADS)

    Ayral, Thomas; Parcollet, Olivier

    2016-06-01

    We present a formalism for strongly correlated systems with fermions coupled to bosonic modes. We construct the three-particle irreducible functional K by successive Legendre transformations of the free energy of the system. We derive a closed set of equations for the fermionic and bosonic self-energies for a given K . We then introduce a local approximation for K , which extends the idea of dynamical mean-field theory (DMFT) approaches from two- to three-particle irreducibility. This approximation entails the locality of the three-leg electron-boson vertex Λ (i ω ,i Ω ) , which is self-consistently computed using a quantum impurity model with dynamical charge and spin interactions. This local vertex is used to construct frequency- and momentum-dependent electronic self-energies and polarizations. By construction, the method interpolates between the spin-fluctuation or G W approximations at weak coupling and the atomic limit at strong coupling. We apply it to the Hubbard model on two-dimensional square and triangular lattices. We complement the results of [T. Ayral and O. Parcollet, Phys. Rev. B 92, 115109 (2015), 10.1103/PhysRevB.92.115109] by (i) showing that, at half-filling, as DMFT, the method describes the Fermi-liquid metallic state and the Mott insulator, separated by a first-order interaction-driven Mott transition at low temperatures, (ii) investigating the influence of frustration, and (iii) discussing the influence of the bosonic decoupling channel.

  18. Antiferromagnetic Spin Fluctuations and Pseudogap Behavior in Ca(Fe1-xCox)2 As2 Studied by 5As NMR

    NASA Astrophysics Data System (ADS)

    Cui, Jinfang; Ran, Sheng; Bud'Ko, Sergey; Canfield, Paul; Furukawa, Yuji

    2015-03-01

    75 As NMR measurements of single-crystalline Ca(Fe1-xCox)2 As2 have been carried out for four different doping concentration crystals (x = 0.023, 0.028, 0.033, 0.059) annealed at 350°C. Co-doped CaFe2As2 is a compound in 122 family of iron-pnictide superconductors with three principle phases exhibited: paramagnetic (PM), antiferromagnetic (AFM) and superconducting (SC) states. The magnetic phase transition to AFM state occurs at TN = 180K at x =0 and is suppressed to TN = 53K for x =0.028, which is accompanied by a structural phase transition from tetragonal to orthorhombic phases. 75As NMR was used to study the low energy spin dynamics via Knight shift (K) and spin-lattice relaxation rate (1/T1) measurements. From our analysis of the temperature dependence of both K and (T1T)-1 in x =0.028 (TN = 53K), 0.033 (Tc = 9K) and 0.059 (Tc = 10K), we found a gradual decrease of AFM spin fluctuations below T* = 88K for x =0.028, 72K for x =0.033 and 41K for x =0.059, respectively, indicating the possible pseudogap behavior in spin excitation spectrum in the system. Supported by USDOE under the Contract No. DE-AC02-07CH11358.

  19. Spin-orbital fluctuations in the paramagnetic Mott insulator (V1-xCrx)2O3

    NASA Astrophysics Data System (ADS)

    Leiner, Jonathan; Stone, Matthew; Lumsden, Mark; Bao, Wei; Broholm, Collin

    2015-03-01

    The phase diagram of rhombohedral V2O3 features several distinct strongly correlated phases as a function of doping, pressure and temperature. When doped with chromium for 180 K spin waves indicates alternating FM and AFM interactions for nearest neighbor spin pairs that are equivalent in the PI. We argue that the corresponding spin-orbital fluctuations are responsible for the extremely short-range dynamic spin correlations that we document in the PI phase. Research at the Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. Research was also supported by ORNL LDRD funding.

  20. High-energy spin-density-wave correlated fluctuations in paramagnetic Cr + 5 at. % V

    SciTech Connect

    Werner, S.A.; Fawcett, E.; Elmiger, M.W.; Shirane, G.

    1992-11-01

    Measurements of the magnetic fluctuations, termed spin-density-wave (SDW) paramagnons, in the nearly antiferromagnetic alloy Cr + 5 at.%V are extended up in energy to about 80 MeV. These fluctuating spin-spin correlations occur at incommensurate positions, corresponding to the SDW wavevector Q. Their characteristic energy is at least an order of magnitude larger than that of the magnetic fluctuations seen in the paramagnetic phase of pure Cr, but their intensity is more than two orders of magnitude smaller. We find that the dynamic susceptibility decreases by about 50% between temperature T = 10K and 300K.

  1. High-energy spin-density-wave correlated fluctuations in paramagnetic Cr + 5 at. % V

    SciTech Connect

    Werner, S.A. . Dept. of Physics); Fawcett, E. . Dept. of Physics); Elmiger, M.W.; Shirane, G. )

    1992-01-01

    Measurements of the magnetic fluctuations, termed spin-density-wave (SDW) paramagnons, in the nearly antiferromagnetic alloy Cr + 5 at.%V are extended up in energy to about 80 MeV. These fluctuating spin-spin correlations occur at incommensurate positions, corresponding to the SDW wavevector Q. Their characteristic energy is at least an order of magnitude larger than that of the magnetic fluctuations seen in the paramagnetic phase of pure Cr, but their intensity is more than two orders of magnitude smaller. We find that the dynamic susceptibility decreases by about 50% between temperature T = 10K and 300K.

  2. First-principles theory of electron-spin fluctuation coupling and superconducting instabilities in iron selenide

    NASA Astrophysics Data System (ADS)

    Lischner, Johannes; Bazhirov, Timur; MacDonald, Allan H.; Cohen, Marvin L.; Louie, Steven G.

    2015-01-01

    We present first-principles calculations of the coupling of quasiparticles to spin fluctuations in iron selenide and discuss which types of superconducting instabilities this coupling gives rise to. We find that strong antiferromagnetic stripe-phase spin fluctuations lead to large coupling constants for superconducting gaps with s± symmetry, but these coupling constants are significantly reduced by other spin fluctuations with small wave vectors. An accurate description of this competition and an inclusion of band-structure and Stoner parameter renormalization effects lead to a value of the coupling constant for an s±-symmetric gap which can produce a superconducting transition temperature consistent with experimental measurements.

  3. Spin-density correlations in the dynamic spin-fluctuation theory: Comparison with polarized neutron scattering experiments

    NASA Astrophysics Data System (ADS)

    Melnikov, N. B.; Reser, B. I.; Paradezhenko, G. V.

    2016-08-01

    To study the spin-density correlations in the ferromagnetic metals above the Curie temperature, we relate the spin correlator and neutron scattering cross-section. In the dynamic spin-fluctuation theory, we obtain explicit expressions for the effective and local magnetic moments and spatial spin-density correlator. Our theoretical results are demonstrated by the example of bcc Fe. The effective and local moments are found in good agreement with results of polarized neutron scattering experiment over a wide temperature range. The calculated short-range order is small (up to 4 Å) and slowly decreases with temperature.

  4. Hanle effect in (In,Ga)As quantum dots: Role of nuclear spin fluctuations

    NASA Astrophysics Data System (ADS)

    Kuznetsova, M. S.; Flisinski, K.; Gerlovin, I. Ya.; Ignatiev, I. V.; Kavokin, K. V.; Verbin, S. Yu.; Yakovlev, D. R.; Reuter, D.; Wieck, A. D.; Bayer, M.

    2013-06-01

    The role of nuclear spin fluctuations in the dynamic polarization of nuclear spins by electrons is investigated in (In,Ga)As/GaAs quantum dots. The photoluminescence polarization under circularly polarized optical pumping in transverse magnetic fields (Hanle effect) is studied. A weak additional magnetic field parallel to the optical axis is used to control the efficiency of nuclear spin cooling and the sign of nuclear spin temperature. The shape of the Hanle curve is drastically modified when changing this control field, as observed earlier in bulk semiconductors and quantum wells. However, the standard nuclear spin cooling theory, operating with the mean nuclear magnetic field (Overhauser field), fails to describe the experimental Hanle curves in a certain range of control fields. This controversy is resolved by taking into account the nuclear spin fluctuations owed to the finite number of nuclei in the quantum dot. We propose a model considering cooling of the nuclear spin system by electron spins experiencing fast vector precession in the random Overhauser fields of nuclear spin fluctuations. The model allows us to accurately describe the measured Hanle curves and to evaluate the parameters of the electron-nuclear spin system of the studied quantum dots.

  5. Quantized massive collective modes and massive spin fluctuations in high-Tc cuprates

    NASA Astrophysics Data System (ADS)

    Kanazawa, I.; Sasaki, T.

    2015-10-01

    We have analyzed angle-resolved photoemission spectra of the single- and double-layered Bi-family high-Tc superconductors by using quantized massive gauge fields, which might contain effects of spin fluctuations, charge fluctuations, and phonons. It is suggested strongly that the quantized massive gauge fields might be mediating Cooper pairing in high-Tc cuprates.

  6. Generalized correlation functions for conductance fluctuations and the mesoscopic spin Hall effect

    NASA Astrophysics Data System (ADS)

    Ramos, J. G. G. S.; Barbosa, A. L. R.; Bazeia, D.; Hussein, M. S.; Lewenkopf, C. H.

    2012-12-01

    We study the spin Hall conductance fluctuations in ballistic mesoscopic systems. We obtain universal expressions for the spin and charge current fluctuations, cast in terms of current-current autocorrelation functions. We show that the latter are conveniently parametrized as deformed Lorentzian shape lines, functions of an external applied magnetic field and the Fermi energy. We find that the charge current fluctuations show quite unique statistical features at the symplectic-unitary crossover regime. Our findings are based on an evaluation of the generalized transmission coefficients correlation functions within the stub model and are amenable to experimental test.

  7. Fluctuation-induced heat release from temperature-quenched nuclear spins near a quantum critical point.

    PubMed

    Kim, Y H; Kaur, N; Atkins, B M; Dalal, N S; Takano, Y

    2009-12-11

    At a quantum critical point (QCP)--a zero-temperature singularity in which a line of continuous phase transition terminates--quantum fluctuations diverge in space and time, leading to exotic phenomena that can be observed at nonzero temperatures. Using a quantum antiferromagnet, we present calorimetric evidence that nuclear spins frozen in a high-temperature nonequilibrium state by temperature quenching are annealed by quantum fluctuations near the QCP. This phenomenon, with readily detectable heat release from the nuclear spins as they are annealed, serves as an excellent marker of a quantum critical region around the QCP and provides a probe of the dynamics of the divergent quantum fluctuations. PMID:20366226

  8. Revealing giant internal magnetic fields due to spin fluctuations in magnetically doped colloidal nanocrystals.

    PubMed

    Rice, William D; Liu, Wenyong; Baker, Thomas A; Sinitsyn, Nikolai A; Klimov, Victor I; Crooker, Scott A

    2016-02-01

    Strong quantum confinement in semiconductors can compress the wavefunctions of band electrons and holes to nanometre-scale volumes, significantly enhancing interactions between themselves and individual dopants. In magnetically doped semiconductors, where paramagnetic dopants (such as Mn(2+), Co(2+) and so on) couple to band carriers via strong sp-d spin exchange, giant magneto-optical effects can therefore be realized in confined geometries using few or even single impurity spins. Importantly, however, thermodynamic spin fluctuations become increasingly relevant in this few-spin limit. In nanoscale volumes, the statistical fluctuations of N spins are expected to generate giant effective magnetic fields Beff, which should dramatically impact carrier spin dynamics, even in the absence of any applied field. Here we directly and unambiguously reveal the large Beff that exist in Mn(2+)-doped CdSe colloidal nanocrystals using ultrafast optical spectroscopy. At zero applied magnetic field, extremely rapid (300-600 GHz) spin precession of photoinjected electrons is observed, indicating Beff ∼ 15 -30 T for electrons. Precession frequencies exceed 2 THz in applied magnetic fields. These signals arise from electron precession about the random fields due to statistically incomplete cancellation of the embedded Mn(2+) moments, thereby revealing the initial coherent dynamics of magnetic polaron formation, and highlighting the importance of magnetization fluctuations on carrier spin dynamics in nanomaterials. PMID:26595331

  9. Zero-Temperature Fluctuations in Short-Range Spin Glasses

    NASA Astrophysics Data System (ADS)

    Arguin, L.-P.; Newman, C. M.; Stein, D. L.; Wehr, J.

    2016-06-01

    We consider the energy difference restricted to a finite volume for certain pairs of incongruent ground states (if they exist) in the d-dimensional Edwards-Anderson Ising spin glass at zero temperature. We prove that the variance of this quantity with respect to the couplings grows proportionally to the volume in any d ≥ 2. An essential aspect of our result is the use of the excitation metastate. As an illustration of potential applications, we use this result to restrict the possible structure of spin glass ground states in two dimensions.

  10. First-principles theory of electron-spin fluctuation coupling and superconducting instabilities in iron selenide

    NASA Astrophysics Data System (ADS)

    Lischner, Johannes; Bazhirov, Timur; MacDonald, Allan H.; Cohen, Marvin L.; Louie, Steven G.

    2015-03-01

    We present first-principles calculations of the coupling of quasiparticles to spin fluctuations in iron selenide and discuss which types of superconducting instabilities this coupling gives rise to. We find that strong antiferromagnetic stripe-phase spin fluctuations lead to large coupling constants for superconducting gaps with s +/- -symmetry, but these coupling constants are significantly reduced by other spin fluctuations with small wave vectors. An accurate description of this competition and an inclusion of band structure and Stoner parameter renormalization effects lead to a value of the coupling constant for an s +/- symmetric gap which can produce a superconducting transition temperature consistent with experimental measurements. This work was supported by NSF Grant No. DMR10-1006184 and by DOE under Contract No. DE-AC02-05CH11231. Computational resources have been provided by the DOE at NERSC.

  11. Quantum spin fluctuations in quasi-one-dimensional chlorine-bridged platinum complexes

    NASA Astrophysics Data System (ADS)

    Wei, Xing; Donohoe, Robert J.; Wang, Wen Z.; Bishop, Alan R.; Gammel, Jan T.

    1997-12-01

    We report experimental and theoretical studies of spin dynamic process in the quasi-one-dimensional chlorine- bridged platinum complex, [PtII(en)2][PtIV(en)2Cl2](ClO4)4, where en equals ethylenediamine, C2N2H8. The process manifests itself in collapsing of the hyperfine and superhyperfine structures in the electron spin resonance spectrum and non-statistical distribution of spectral weight of the Pt isotopes. More surprisingly, it is activated only at temperatures below 6 K. We interpret the phenomenon in terms of quantum tunneling of the electronic spin in a strong electron-electron and electron-phonon coupling regime. This is modeled using a non-adiabatic many-body approach, in which polarons and solitons represent local spin-Peierls regions in a strongly disproportional charge- density-wave background and display intriguing spin-charge separation in the form of pinned charge and tunneling spin fluctuations.

  12. Superconducting mechanism due to the orbital and spin fluctuations in Fe-based superconductors

    NASA Astrophysics Data System (ADS)

    Kontani, Hiroshi; Yamakawa, Youichi; Onari, Seiichiro

    The rich variety of the phase diagrams in Fe-based superconductors, such as the nonmagnetic/magnetic nematic phase in FeSe/LaFeAsO, is not able to be explained by the mean-field level approximations. Recently, we explained the phase diagrams of FeSe and LaFeAsO in term of the orbital +spin fluctuation theory, by including the Aslamazov-Larkin vertex correction (AL-VC). The nematic orbital order without magnetization in FeSe is well explained. In the present study, we analyze the superconducting states in FeSe and LaFeAsO, by applying the orbital +spin fluctuation theory. Rich variety of the superconducting gap structures are induced by the strong orbital and spin fluctuations driven by the AL-VC (=orbital-spin interplay). We find that the pairing interaction due to the orbital fluctuations is strongly enlarged by the AL-VC for the anomalous self-energy, so the Migdal theory is seriously violated in the orbital-fluctuation pairing mechanism.

  13. Magnetic fluctuations and possible formation of a spin-singlet cluster under pressure in the heavy-fermion spinel LiV2O4 probed by 7Li and 51V NMR

    NASA Astrophysics Data System (ADS)

    Takeda, Hikaru; Kato, Yusuke; Yoshimura, Masahiro; Shimizu, Yasuhiro; Itoh, Masayuki; Niitaka, Seiji; Takagi, Hidenori

    2015-07-01

    7Li and 51V NMR measurements up to 9.8 GPa have been made to elucidate local magnetic properties of a heavy-fermion spinel oxide LiV2O4 which undergoes a metal-insulator transition above ˜7 GPa. The temperature T and pressure P dependences of the 7Li and 51V Knight shifts and the nuclear spin-lattice relaxation rates 1 /T1 show that in the metallic phase, there is a crossover from a high-T region with weak ferromagnetic fluctuations to a low-T one with antiferromagnetic (AFM) fluctuations. The AFM fluctuations are enhanced below 20 K and 1.5 GPa, where a heavy Fermi-liquid state with the modified Korringa relation is formed. The evolution of the magnetic fluctuations is discussed from the aspect of the competition among several magnetic interactions. Above PMI˜6.7 GPa, we find the coexistence of metallic and insulating phases due to the first-order metal-insulator transition. The 7Li and 51V NMR spectra coming from the insulating phase have T -independent small Knight shifts and 7(1 /T1 ) with the thermally activated T dependence, indicating the formation of a spin-singlet cluster. We propose a model of a spin-singlet tetramer as discussed in geometrically frustrated materials.

  14. The slave-fermion approach of spin fluctuations in ferromagnet metals

    NASA Astrophysics Data System (ADS)

    Hu, C. D.

    2015-11-01

    In this work we propose a method to treat the spin fluctuations in itinerant ferromagnets. It is able to do calculation with a convergent series. The slave fermion method is applied to separate the charge (denoted by fermions) and spin (denoted by bosons) degrees of freedom. The spin operators are then replaced by the Schwinger boson fields. This way, the interaction term in the model can be reduced to a very simple form and can be teated without difficulty. Finally the equations of motion are derived in order to obtain the forms of Green's functions of fermions and bosons. The result is applied to the calculation of resistivity as a function temperature.

  15. Fluctuations of the heat exchanged between two quantum spin chains

    NASA Astrophysics Data System (ADS)

    Landi, Gabriel T.; Karevski, Dragi

    2016-03-01

    The statistics of the heat exchanged between two quantum XX spin chains prepared at different temperatures is studied within the assumption of weak coupling. This provides simple formulas for the average heat and its corresponding characteristic function, from which the probability distribution may be computed numerically. These formulas are valid for arbitrary sizes and therefore allow us to analyze the role of the thermodynamic limit in this nonequilibrium setting. It is found that all thermodynamic quantities are extremely sensitive to the quantum phase transition of the XX chain.

  16. Influence of spinons fluctuations near the spin liquid Mott transition

    NASA Astrophysics Data System (ADS)

    Lee, Tsung-Han; Florens, Serge; Dobrosavljevic, Vladimir

    We investigate the metal to Mott-insulator transition (MIT) in the Hubbard-Heisenberg model using the slave-rotor technique, which allows to combine for the first time the dynamical mean field theory (DMFT) with the Resonating Valence Bond (RVB) approach. In the spin-liquid phase at large Coulomb repulsion, the system shows a RVB transition from a trivial paramagnetic Mott insulator towards a low temperature insulating state with long lived spinons, as seen by the emergence of a linear specific heat. This quenching of the entropy in the spin liquid phase provides strong modifications in the shape of the standard DMFT phase diagram for the MIT occurring at intermediate values of the Coulomb repulsion. We find that the RVB transition happens concomitantly with the first order MIT lines at low temperature. This implies that the Mott insulator always accommodates a spinon Fermi surface, even in the coexistence regime of the MIT, and that the metallic state always stays a Fermi-liquid as it rejects the presence of free spinons, due to their strong scattering onto the holons.

  17. In-plane resistivity anisotropy in underdoped cuprates due to scattering by charge and spin fluctuations

    NASA Astrophysics Data System (ADS)

    Schütt, Michael; Fernandes, Rafael M.

    2015-03-01

    The existence of strong in-plane electronic anisotropies in underdoped cuprates has been reported by a variety of experimental probes, such as transport measurements, scanning tunneling microscopy, and x-ray and neutron scattering. Understanding the origin of these anisotropies and their interplay is fundamental to elucidate the role played by electronic nematicity in the phase diagram of the cuprates. Here we employ a Boltzmann equation approach to investigate the resistivity anisotropy due to scattering by anisotropic spin and charge fluctuations. We show that while spin fluctuations give rise to larger resistivity along the a direction, charge fluctuations promote larger resistivity along the b direction. Because anisotropic charge and spin fluctuations compete, these behaviors give rise to a particular dependence of the resistivity anisotropy with doping, which is consistent with transport experiments performed in YBa2Cu3O7. We discuss the important role played by the CuO chains in YBCO to select the observed type of nematic domains, and propose transport measurements in strained HgBa2CuO4 and Bi2Sr2CaCu2O8 to shed light on the interplay between anisotropic fluctuations and anisotropic resistivity. MS acknowledges the support from the Humboldt Foundation. RMF is supported by the Department of Energy under Award Number DE-SC0012336.

  18. Quantifying fluctuations of resting state networks using arterial spin labeling perfusion MRI.

    PubMed

    Dai, Weiying; Varma, Gopal; Scheidegger, Rachel; Alsop, David C

    2016-03-01

    Blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) has been widely used to investigate spontaneous low-frequency signal fluctuations across brain resting state networks. However, BOLD only provides relative measures of signal fluctuations. Arterial Spin Labeling (ASL) MRI holds great potential for quantitative measurements of resting state network fluctuations. This study systematically quantified signal fluctuations of the large-scale resting state networks using ASL data from 20 healthy volunteers by separating them from global signal fluctuations and fluctuations caused by residual noise. Global ASL signal fluctuation was 7.59% ± 1.47% relative to the ASL baseline perfusion. Fluctuations of seven detected resting state networks vary from 2.96% ± 0.93% to 6.71% ± 2.35%. Fluctuations of networks and residual noise were 6.05% ± 1.18% and 6.78% ± 1.16% using 4-mm resolution ASL data applied with Gaussian smoothing kernel of 6mm. However, network fluctuations were reduced by 7.77% ± 1.56% while residual noise fluctuation was markedly reduced by 39.75% ± 2.90% when smoothing kernel of 12 mm was applied to the ASL data. Therefore, global and network fluctuations are the dominant structured noise sources in ASL data. Quantitative measurements of resting state networks may enable improved noise reduction and provide insights into the function of healthy and diseased brain. PMID:26661226

  19. The role of spin fluctuations in the conductivity of CrO2

    NASA Astrophysics Data System (ADS)

    Heffernan, Kate; Talbayev, D.; Zhang, Xueyu; Gupta, A.

    2015-03-01

    Chromium dioxide is a half-metallic ferromagnet with TC = 390K. Below TC, the conductivity of CrO2 grows by two orders of magnitude and is temperature independent below about 30 K. It is believed that electron scattering by spin fluctuations is responsible for the strong temperature dependence of the conductivity. We performed time-resolved THz spectroscopy (TRTS) and time-resolved magneto-optical Kerr effect (TRMOKE) to study the role of spin fluctuations in electron conduction. A thin film CrO2 sample was excited by an optical pump pulse. The induced conductivity changes were measured by TRTS and the induced spin response by TRMOKE. A fast and a slow component were observed in both responses. The fast component dominates the TRTS response, while the slow dominates the TRMOKE which we attribute to the spin demagnetization in CrO2. Since the slow component contributes only a small fraction of the total conductivity change in TRTS, we conclude that spin fluctuations may not play the dominant role in the pump-induced conductivity change. We also observed that the film transmits less THz light after the pump excitation, which corresponds to it becoming more conductive. We will discuss the relationship of our observations to the electronic and optical properties of CrO2. The work at Tulane was supported by the Louisiana Board of Regents through the Board of Regents Support Fund Contract Number LEQSF(2012-15)-RD-A-23.

  20. Effect of spin fluctuations on quasiparticle excitations: First-principles theory and application to sodium and lithium

    NASA Astrophysics Data System (ADS)

    Lischner, Johannes; Bazhirov, Timur; MacDonald, Allan H.; Cohen, Marvin L.; Louie, Steven G.

    2014-02-01

    We present first-principles calculations for quasiparticle excitations in sodium and lithium, including the effects of charge and spin fluctuations. We employ the Overhauser-Kukkonen form for the electron self-energy arising from spin fluctuations and demonstrate that the coupling of electrons to spin fluctuations gives an important contribution to the quasiparticle lifetime but does not significantly reduce the occupied bandwidth. Including correlation effects beyond the random-phase approximation in the screening from charge fluctuations yields good agreement with experiment.

  1. Suppression of nuclear spin bath fluctuations in self-assembled quantum dots induced by inhomogeneous strain

    NASA Astrophysics Data System (ADS)

    Chekhovich, E. A.; Hopkinson, M.; Skolnick, M. S.; Tartakovskii, A. I.

    2015-02-01

    Interaction with nuclear spins leads to decoherence and information loss in solid-state electron-spin qubits. One particular, ineradicable source of electron decoherence arises from decoherence of the nuclear spin bath, driven by nuclear-nuclear dipolar interactions. Owing to its many-body nature nuclear decoherence is difficult to predict, especially for an important class of strained nanostructures where nuclear quadrupolar effects have a significant but largely unknown impact. Here, we report direct measurement of nuclear spin bath coherence in individual self-assembled InGaAs/GaAs quantum dots: spin-echo coherence times in the range 1.2-4.5 ms are found. Based on these values, we demonstrate that strain-induced quadrupolar interactions make nuclear spin fluctuations much slower compared with lattice-matched GaAs/AlGaAs structures. Our findings demonstrate that quadrupolar effects can potentially be used to engineer optically active III-V semiconductor spin-qubits with a nearly noise-free nuclear spin bath, previously achievable only in nuclear spin-0 semiconductors, where qubit network interconnection and scaling are challenging.

  2. Suppression of nuclear spin bath fluctuations in self-assembled quantum dots induced by inhomogeneous strain.

    PubMed

    Chekhovich, E A; Hopkinson, M; Skolnick, M S; Tartakovskii, A I

    2015-01-01

    Interaction with nuclear spins leads to decoherence and information loss in solid-state electron-spin qubits. One particular, ineradicable source of electron decoherence arises from decoherence of the nuclear spin bath, driven by nuclear-nuclear dipolar interactions. Owing to its many-body nature nuclear decoherence is difficult to predict, especially for an important class of strained nanostructures where nuclear quadrupolar effects have a significant but largely unknown impact. Here, we report direct measurement of nuclear spin bath coherence in individual self-assembled InGaAs/GaAs quantum dots: spin-echo coherence times in the range 1.2-4.5 ms are found. Based on these values, we demonstrate that strain-induced quadrupolar interactions make nuclear spin fluctuations much slower compared with lattice-matched GaAs/AlGaAs structures. Our findings demonstrate that quadrupolar effects can potentially be used to engineer optically active III-V semiconductor spin-qubits with a nearly noise-free nuclear spin bath, previously achievable only in nuclear spin-0 semiconductors, where qubit network interconnection and scaling are challenging. PMID:25704639

  3. Suppression of nuclear spin bath fluctuations in self-assembled quantum dots induced by inhomogeneous strain

    PubMed Central

    Chekhovich, E.A.; Hopkinson, M.; Skolnick, M.S.; Tartakovskii, A.I.

    2015-01-01

    Interaction with nuclear spins leads to decoherence and information loss in solid-state electron-spin qubits. One particular, ineradicable source of electron decoherence arises from decoherence of the nuclear spin bath, driven by nuclear–nuclear dipolar interactions. Owing to its many-body nature nuclear decoherence is difficult to predict, especially for an important class of strained nanostructures where nuclear quadrupolar effects have a significant but largely unknown impact. Here, we report direct measurement of nuclear spin bath coherence in individual self-assembled InGaAs/GaAs quantum dots: spin-echo coherence times in the range 1.2–4.5 ms are found. Based on these values, we demonstrate that strain-induced quadrupolar interactions make nuclear spin fluctuations much slower compared with lattice-matched GaAs/AlGaAs structures. Our findings demonstrate that quadrupolar effects can potentially be used to engineer optically active III-V semiconductor spin-qubits with a nearly noise-free nuclear spin bath, previously achievable only in nuclear spin-0 semiconductors, where qubit network interconnection and scaling are challenging. PMID:25704639

  4. Theoretical study of correlation between spin fluctuations and Tc in isovalent-doped 1111 iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Arai, Hayato; Usui, Hidetomo; Suzuki, Katsuhiro; Fuseya, Yuki; Kuroki, Kazuhiko

    2015-04-01

    Motivated by recent experiments on isovalent-doped 1111 iron-based superconductors LaFeAs1-xPxO1-yFy and the theoretical study that followed, we investigate, within the five-orbital model, the correlation between spin fluctuations and the superconducting transition temperature, which exhibits a double-dome feature upon varying the Fe-As-Fe bond angle. Around the first dome with higher Tc, the low-energy spin fluctuation and Tc are not tightly correlated because the finite-energy spin fluctuation also contributes to superconductivity. On the other hand, the strength of the low-energy spin fluctuation originating from the dx z /y z orbital is correlated with Tc in the second dome with lower Tc. These calculation results are consistent with a recent NMR study, and hence strongly suggest that the pairing in iron-based superconductors is predominantly caused by multiorbital spin fluctuations.

  5. Role of spin fluctuations in the conductivity of CrO2

    NASA Astrophysics Data System (ADS)

    Heffernan, Kate H.; Yu, Shukai; Deckoff-Jones, Skylar; Zhang, Xueyu; Gupta, Arunava; Talbayev, D.

    2016-04-01

    We present a time-resolved terahertz spectroscopic study of the half-metallic ferromagnet CrO2. The ultrafast conductivity dynamics excited by an optical pump displays very short (several picoseconds) and a very long (several hundred picoseconds) characteristic time scales. We attribute the former to the electron-phonon relaxation and the latter to the spin-lattice relaxation. We use this distinction to quantify the relative contribution of the scattering by spin fluctuations to the resistivity of CrO2: We find that they contribute less than one half of all scattering events below room temperature. This contribution rises to ˜70 % as the temperature approaches TC=390 K. The small effect of spin fluctuations on the resistivity is unexpected in light of the proposed double-exchange nature of the electronic and magnetic properties of CrO2.

  6. Spin Fluctuation in YBaFe4O7+δ with Geometrically Frustrated Pyrochlore Lattice of Fe Spins

    NASA Astrophysics Data System (ADS)

    Kamazawa, Kazuya; Ishikado, Motoyuki; Ohira-Kawamura, Seiko; Kakurai, Kazuhisa; Nakajima, Kenji; Kawakita, Yukinobu; Yamada, Kazuyoshi; Arai, Masatoshi; Sato, Masatoshi

    2015-10-01

    Magnetic excitation spectra were measured by inelastic neutron scattering on a powder sample of YBaFe4O7+δ having a geometrically frustrated pyrochlore lattice of Fe spins. The observed scattering intensity map constructed in the energy ω-wave vector Q space has a streaklike magnetic contribution extending to a rather high-ω region at the Q position of Qp ˜ 1.25 Å-1, where the width κ and position Qp of the streak are found to be insensitive to both the temperature T and ω. These results indicate the existence of the short-time spin correlation of Fe hexagons in the pyrochlore lattice, and can be understood by considering the spin fluctuation arising from the purely frustrating nature of three-dimensional classical insulating systems.

  7. Thermal and quantal isospin and spin fluctuations in heavy ion reactions

    SciTech Connect

    Moretto, L.G.

    1980-01-01

    The isobaric charge distributions are discussed in terms of quantal and classical isospin fluctuations. The roles of mass asymmetry and of the higher giant isovector modes are treated within the framework of a cylinder model that is worked out exactly. Spin fluctuations are considered first in terms of quantal fluctuations in a cylinder model and second in terms of thermal fluctuations in a two-sphere model. The results are applied to the calculation of in- and out-of-plane angular distributions for sequential fission, alpha and gamma decay. Analytical expressions are obtained for the angular distributions. The theoretical predictions are compared with experimental results for sequential fission, alpha, and gamma angular distributions. 23 figures.

  8. Dynamic field-frequency lock for tracking magnetic field fluctuations in electron spin resonance experiments

    NASA Astrophysics Data System (ADS)

    Asfaw, Abraham; Tyryshkin, Alexei; Lyon, Stephen

    Global magnetic field fluctuations present significant challenges to pulsed electron spin resonance experiments on systems with long spin coherence times. We will discuss results from experiments in which we follow instantaneous changes in magnetic field by locking to the free induction decay of a proton NMR signal using a phase-locked loop. We extend conventional field-frequency locking techniques used in NMR to follow slow magnetic field drifts by using a modified Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence in which the phase of the pi-pulses follows the phase of the proton spins at all times. Hence, we retain the ability of the CPMG pulse sequence to refocus local magnetic field inhomogeneities without refocusing global magnetic field fluctuations. In contrast with conventional field-frequency locking techniques, our experiments demonstrate the potential of this method to dynamically track global magnetic field fluctuations on timescales of about 2 seconds and with rates faster than a kHz. This frequency range covers the dominant noise frequencies in our electron spin resonance experiments as previously reported.

  9. Spin-fluctuation mechanism of anomalous temperature dependence of magnetocrystalline anisotropy in itinerant magnets

    DOE PAGESBeta

    Zhuravlev, I. A.; Antropov, V. P.; Belashchenko, K. D.

    2015-11-16

    The origins of the anomalous temperature dependence of magnetocrystalline anisotropy in (Fe1–xCox)2B alloys are elucidated using first-principles calculations within the disordered local moment model. Excellent agreement with experimental data is obtained. The anomalies are associated with the changes in band occupations due to Stoner-like band shifts and with the selective suppression of spin-orbit “hot spots” by thermal spin fluctuations. Under certain conditions, the anisotropy can increase, rather than decrease, with decreasing magnetization. These peculiar electronic mechanisms are in stark contrast to the assumptions of the existing models.

  10. Spin-fluctuation mechanism of anomalous temperature dependence of magnetocrystalline anisotropy in itinerant magnets

    SciTech Connect

    Zhuravlev, I. A.; Antropov, V. P.; Belashchenko, K. D.

    2015-11-16

    The origins of the anomalous temperature dependence of magnetocrystalline anisotropy in (Fe1–xCox)2B alloys are elucidated using first-principles calculations within the disordered local moment model. Excellent agreement with experimental data is obtained. The anomalies are associated with the changes in band occupations due to Stoner-like band shifts and with the selective suppression of spin-orbit “hot spots” by thermal spin fluctuations. Under certain conditions, the anisotropy can increase, rather than decrease, with decreasing magnetization. These peculiar electronic mechanisms are in stark contrast to the assumptions of the existing models.

  11. Effect of thermal fluctuations in spin-torque driven magnetization dynamics

    NASA Astrophysics Data System (ADS)

    Bonin, R.; Bertotti, G.; Serpico, C.; Mayergoyz, I. D.; d'Aquino, M.

    2007-09-01

    Nanomagnets with uniaxial symmetry driven by an external field and spin-polarized currents are considered. Anisotropy, applied field, and spin polarization are all aligned along the symmetry axis. Thermal fluctuations are described by adding a Gaussian white noise stochastic term to the Landau-Lifshitz-Gilbert equation for the deterministic dynamics. The corresponding Fokker-Planck equation is derived. It is shown that deterministic dynamics, thermal relaxation, and transition rate between stable states are governed by an effective potential including the effect of current injection.

  12. Spin-orbit fluctuations in frustrated heavy-fermion metal LiV(2)O(4).

    PubMed

    Tomiyasu, K; Iwasa, K; Ueda, H; Niitaka, S; Takagi, H; Ohira-Kawamura, S; Kikuchi, T; Inamura, Y; Nakajima, K; Yamada, K

    2014-12-01

    Spin fluctuations were studied over a wide momentum (ℏQ) and energy (E) space in the frustrated d-electron heavy-fermion metal LiV_{2}O_{4} by time-of-flight inelastic neutron scattering. We observed the overall Q-E evolutions near the characteristic Q=0.6  Å^{-1}  peak and found another weak broad magnetic peak around 2.4  Å^{-1}. The data are described by a simple response function, a partially delocalized magnetic form factor, and antiferromagnetic short-range spatial correlations, indicating that heavy-fermion formation is attributable to spin-orbit fluctuations with orbital hybridization. PMID:25526141

  13. Effect of spin fluctuations on the resistivity of LaCrGe3

    NASA Astrophysics Data System (ADS)

    Singh, Durgesh; Gangrade, Mohan; Ganesan, V.

    2016-05-01

    Resistivity of LaCrGe3 at low temperatures and high magnetic fields is reported for fields upto 12T. Spin fluctuations play an important role in this compound whose TC is 90K. The normal state above TC is anomalous in the sense that a T1/2 term is to be added to the normal phonon contribution [ρ=ρ0+aT+bT1/2] to get a good fit, whose origin is debatable. Magneto resistance (MR) vs. applied field H in PM region confirms the presence of strong spin fluctuations in this material. Effect of magnetic field on resistivity shows marked deviation below 170K. Suppression of resistivity in field up to 12T near TC is observed. A negative magnetoresistance (MR) is seen and is consistent with the ferromagnetic behavior. The resistivity data fitted below 80K could be fitted with an equation ρ(H,T) = ρ0(H) + B(H)*Tn where n varies between 2.3 - 2.4, closed to n=2, signifying the presence of possible spin fluctuation.

  14. Low-energy paramagnetic spin fluctuations in the weak itinerant ferromagnet MnSi

    NASA Astrophysics Data System (ADS)

    Ishikawa, Y.; Noda, Y.; Fincher, C.; Shirane, G.

    1982-01-01

    Low-energy paramagnetic excitations in the weak itinerant ferromagnet (WIF) MnSi have been studied by neutron scattering. The observed spectrum has a Lorentzian form (ΓΓ2+ω2) and is clearly separated from excitations in the Stoner continuum. The generalized susceptibility, χ(q), has been obtained by integrating the scattering intensity over energy. It is found that χ(q) depends upon the wave vector q as χ(q)-1=κ2(T)+q2 for q<=0.125(2πa) with κ2(T)=κ20(T-Tc). After extrapolating these results to q=0, it is found that χ(q=0) follows the Curie-Weiss law, suggesting that the observed spin fluctuations correspond to the Moriya-Kawabata (MK) spin fluctuations responsible for the Curie-Weiss dependence of the static susceptibility of a WIF. The linewidth Γ is found to be proportional to qχ(q) as predicted by the MK theory, in contrast with the q2χ(q) relation expected in a Heisenberg system. These results provide the first direct experimental evidence for the existence of MK spin fluctuations in a WIF above Tc.

  15. Thermal magnetization fluctuations in CoFe spin-valve devices (invited)

    NASA Astrophysics Data System (ADS)

    Smith, Neil; Synogatch, Valeri; Mauri, Danielle; Katine, J. A.; Cyrille, Marie-Claire

    2002-05-01

    Thermally induced magnetization fluctuations in the Co86Fe14 free (sense) layer of micron-sized, photolithographically defined giant magetoresistive spin-valve devices are measured electrically, by passing a dc current through the devices and measuring the current-dependent part of the voltage noise power spectrum. Using fluctuation-dissipation relations, the effective Gilbert damping parameter α for 1.2, 1.8, and 2.4 nm thick free layers is estimated from either the low-frequency white-noise tail, or independently from the observed thermally excited ferromagnetic resonance peaks in the noise power spectrum, as a function of applied field. The geometry, field, and frequency dependence of the measured noise are found to be reasonably consistent with fluctuation-dissipation predictions based on a quasianalytical eigenmode model to describe the spatial dependence for the magnetization fluctuations. The extracted effective damping constant α≈0.06 found for the 1.2 nm free layer was close to 3× larger than that measured in either the 1.8 or 2.4 films, which has potentially serious implications for the future scaling down of spin-valve read heads.

  16. Effects of antiferro-ferromagnetic phase coexistence and spin fluctuations on the magnetic and related properties of NdCuSi

    SciTech Connect

    Gupta, Sachin E-mail: suresh@phy.iitb.ac.in; Suresh, K. G. E-mail: suresh@phy.iitb.ac.in; Das, A.; Nigam, A. K.; Hoser, A.

    2015-06-01

    Polycrystalline NdCuSi is found to show co-existence of antiferromagnetic (AFM) and ferromagnetic (FM) phases at low temperatures, as revealed by neutron diffraction data. The coexistence is attributed to the competing exchange interactions and crystal field effect. The compound shows a large, low-field magnetoresistance (MR) of ∼ − 32% at 20 kOe below T{sub N} (3.1 K), which becomes ∼ − 36% at 50 kOe. The MR value at 50 kOe is found to be the highest among the RTX compounds. Magnetocaloric effect (MCE) is also found to show a large value of ∼11 J/kg K close to T{sub N}. Resistivity data show the presence of spin fluctuations, which get suppressed by the applied field. Large MR and MCE in this compound arise due to the coexistence of the two phases. The field dependencies of MR and MCE show quadratic behavior, confirming the presence of spin fluctuations.

  17. Quantum Spin Fluctuations in Quasi-One-Dimensional Chlorine-Bridged Platinum Complexes

    SciTech Connect

    Wei, X.; Donohoe, R. J.; Wang, W. Z.; Bishop, A. R.; Gammel, J. T.

    1997-01-01

    We report experimental and theoretical studies of spin dynamic process in the quasi-one-dimensional chlorine-bridged platinum complex, [Pt{sup II}(en){sub 2}][Pt{sup IV}(en){sub 2}Cl{sub 2}](ClO{sub 4}){sub 4}, where en = ethylenediamine, C{sub 2}N{sub 2}H{sub 8}. The process manifests itself in collapsing of the hyperfine and superhyperfine structures in the electron spin resonance (ESR) spectrum and non-statistical distribution of spectral weight of the Pt isotopes. More surprisingly, it is activated only at temperatures below 6 K. We interpret the phenomenon in terms of quantum tunneling of the electronic spin in a strong electron-electron and electron-phonon coupling regime. This is modeled using a non-adiabatic many-body approach, in which polarons and solitons represent local spin-Peierls regions in a strongly disproportional charge-density-wave background and display intriguing spin-charge separation in the form of pinned charge and tunneling spin fluctuations. 24 refs., 5 figs., 1 tab.

  18. Strong interplay between stripe spin fluctuations, nematicity and superconductivity in FeSe.

    PubMed

    Wang, Qisi; Shen, Yao; Pan, Bingying; Hao, Yiqing; Ma, Mingwei; Zhou, Fang; Steffens, P; Schmalzl, K; Forrest, T R; Abdel-Hafiez, M; Chen, Xiaojia; Chareev, D A; Vasiliev, A N; Bourges, P; Sidis, Y; Cao, Huibo; Zhao, Jun

    2016-02-01

    In iron-based superconductors the interactions driving the nematic order (that breaks four-fold rotational symmetry in the iron plane) may also mediate the Cooper pairing. The experimental determination of these interactions, which are believed to depend on the orbital or the spin degrees of freedom, is challenging because nematic order occurs at, or slightly above, the ordering temperature of a stripe magnetic phase. Here, we study FeSe (ref. )-which exhibits a nematic (orthorhombic) phase transition at Ts = 90 K without antiferromagnetic ordering-by neutron scattering, finding substantial stripe spin fluctuations coupled with the nematicity that are enhanced abruptly on cooling through Ts. A sharp spin resonance develops in the superconducting state, whose energy (∼4 meV) is consistent with an electron-boson coupling mode revealed by scanning tunnelling spectroscopy. The magnetic spectral weight in FeSe is found to be comparable to that of the iron arsenides. Our results support recent theoretical proposals that both nematicity and superconductivity are driven by spin fluctuations. PMID:26641018

  19. Transformation between spin-Peierls and incommensurate fluctuating phases of Sc-doped TiOCl

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Wölfel, Alexander; Bykov, Maxim; Schönleber, Andreas; van Smaalen, Sander; Kremer, Reinhard K.; Williamson, Hailey L.

    2014-07-01

    Single crystals of ScxTi1-xOCl(x=0.005) have been grown by the vapor phase transport technique. Specific heat measurements prove the absence of phase transitions for 4-200 K. Instead, an excess entropy is observed over a range of temperatures that encompasses the incommensurate phase transition at 90 K and the spin-Peierls transition at 67 K of pure TiOCl. Temperature-dependent x-ray diffraction on ScxTi1-xOCl gives broadened diffraction maxima at incommensurate positions between Tc1=61.5(3) and ˜90 K, and at commensurate positions below 61.5 K. These results are interpreted as due to the presence of an incommensurate phase without long-range order at intermediate temperatures, and of a highly disturbed commensurate phase without long-range order at low temperatures. The commensurate phase is attributed to a fluctuating spin-Peierls state on an orthorhombic lattice. The monoclinic symmetry and local structure of the fluctuations are equal to the symmetry and structure of the ordered spin-Peierls state of TiOCl. A novel feature of ScxTi1-xOCl(x =0.005) is a transformation from one fluctuating phase (the incommensurate phase at intermediate temperatures) to another fluctuating phase (the spin-Peierls-like phase). This transformation is not a phase transition occurring at a critical temperature, but it proceeds gradually over a temperature range of ˜10 K wide. The destruction of long-range order requires much lower levels of doping in TiOCl than in other low-dimensional electronic crystals, like the canonical spin-Peierls compound CuGeO3. An explanation for the higher sensitivity to doping has not been found, but it is noticed that it may be the result of an increased two-dimensional character of the doped magnetic system. The observed fluctuating states with long correlation lengths are reminiscent of Kosterlitz-Thouless-type phases in two-dimensional systems.

  20. Magnetic ground state and spin fluctuations in MnGe chiral magnet as studied by muon spin rotation

    NASA Astrophysics Data System (ADS)

    Martin, N.; Deutsch, M.; Bert, F.; Andreica, D.; Amato, A.; Bonfà, P.; De Renzi, R.; Rößler, U. K.; Bonville, P.; Fomicheva, L. N.; Tsvyashchenko, A. V.; Mirebeau, I.

    2016-05-01

    We have studied by muon spin resonance (μ SR ) the helical ground state and fluctuating chiral phase recently observed in the MnGe chiral magnet. At low temperature, the muon polarization shows double-period oscillations at short-time scales. Their analysis, akin to that recently developed for MnSi [A. Amato et al., Phys. Rev. B 89, 184425 (2014), 10.1103/PhysRevB.89.184425], provides an estimation of the field distribution induced by the Mn helical order at the muon site. The refined muon position agrees nicely with ab initio calculations. With increasing temperature, an inhomogeneous fluctuating chiral phase sets in, characterized by two well-separated frequency ranges which coexist in the sample. Rapid and slow fluctuations, respectively, associated with short-range and long-range ordered helices, coexist in a large temperature range below TN=170 K. We discuss the results with respect to MnSi, taking the short helical period, metastable quenched state, and peculiar band structure of MnGe into account.

  1. Non-equilibrium spin-boson model: counting statistics and the heat exchange fluctuation theorem.

    PubMed

    Nicolin, Lena; Segal, Dvira

    2011-10-28

    We focus on the non-equilibrium two-bath spin-boson model, a toy model for examining quantum thermal transport in many-body open systems. Describing the dynamics within the noninteracting-blip approximation equations, applicable, e.g., in the strong system-bath coupling limit and/or at high temperatures, we derive expressions for the cumulant generating function in both the Markovian and non-Markovian limits by energy-resolving the quantum master equation of the subsystem. For a Markovian bath, we readily demonstrate the validity of a steady-state heat exchange fluctuation theorem. In the non-Markovian limit a "weaker" symmetry relation generally holds, a general outcome of microreversibility. We discuss the reduction of this symmetry relation to the universal steady-state fluctuation theorem. Using the cumulant generating function, an analytic expression for the heat current is obtained. Our results establish the validity of the steady-state heat exchange fluctuation theorem in quantum systems with strong system-bath interactions. From the practical point of view, this study provides tools for exploring transport characteristics of the two-bath spin-boson model, a prototype for a nonlinear thermal conductor. PMID:22047227

  2. Effect of pairing fluctuations on the spin resonance in Fe-based superconductors

    NASA Astrophysics Data System (ADS)

    Hinojosa, Alberto; Chubukov, Andrey V.; Wölfle, Peter

    2014-09-01

    The spin resonance observed in the inelastic neutron scattering data on Fe-based superconductors has played a prominent role in the quest for determining the symmetry of the order parameter in these compounds. Most theoretical studies of the resonance employ an RPA-type approach in the particle-hole channel and associate the resonance in the spin susceptibility χS(q,ω) at momentum Q =(π,π) with the spin-exciton of an s+- superconductor, pulled below 2Δ by residual attraction associated with the sign change of the gap between Fermi points connected by Q. Here we explore the effect of fluctuations in the particle-particle channel on the spin resonance. Particle-particle and particle-hole channels are coupled in a superconductor and to what extent the spin resonance can be viewed as a particle-hole exciton needs to be addressed. In the case of purely repulsive interactions, we find that the particle-particle channel at total momentum Q (the π channel) contributes little to the resonance. However, if the interband density-density interaction is attractive and the π resonance is possible on its own, along with spin-exciton, we find a much stronger shift of the resonance frequency from the position of the would-be spin-exciton resonance. We also show that the expected double-peak structure in this situation does not appear because of the strong coupling between particle-hole and particle-particle channels, and ImχS(Q ,ω) displays only a single peak.

  3. Spin fluctuations and frustrated magnetism in multiferroic FeVO4

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Ma, L.; Dai, J.; Zhang, Y. P.; He, Zhangzhen; Normand, B.; Yu, Weiqiang

    2014-05-01

    We report 51V nuclear magnetic resonance (NMR) studies on single crystals of the multiferroic material FeVO4. The high-temperature Knight shift shows Curie-Weiss behavior 51K=a/(T+θ), with a large Weiss constant θ ≈ 116 K. However, the 51V spectrum shows no ordering near these temperatures, splitting instead into two peaks below 65 K, which suggests only short-ranged magnetic order on the NMR time scale. Two magnetic transitions are identified from peaks in the spin-lattice relaxation rate 1/51T1 at temperatures TN1≈ 19 K and TN2≈ 13 K, which are lower than the estimates obtained from polycrystalline samples. In the low-temperature incommensurate spiral state, the maximum ordered moment is estimated as 1.95μB/Fe, or 1/3 of the local moment. Strong low-energy spin fluctuations are also indicated by the unconventional power-law temperature dependence 1/51T1∝T2. The large Weiss constant, short-range magnetic correlations far above TN1, small ordered moment, significant low-energy spin fluctuations, and incommensurate ordered phases all provide explicit evidence for strong magnetic frustration in FeVO4.

  4. Spin fluctuations of BaFe2(As,P)2 studied by neutron scattering

    NASA Astrophysics Data System (ADS)

    Lee, Chul-Ho; Steffens, P.; Qureshi, N.; Kihou, K.; Nakajima, M.; Iyo, A.; Eisaki, H.; Braden, M.

    2013-03-01

    Superconductivity can be induced in parent compounds of iron-based superconductors by several methods: carrier doping, external pressure and chemical pressure. To understand their superconducting mechanism, clarifying what is a common property for achieving high-Tc superconductivity is crucial. To date, studies on spin fluctuations have been mainly performed on carrier doped samples. On the other hand, there are only a few studies on chemical pressurized samples examined by powder samples. In this work, thus, we studied spin fluctuations of P doped BaFe2(As,P)2>(Tc = 29.5K) using single crystal samples. Inelastic neutron scattering measurements were conducted using triple axis spectrometer IN8 of ILL. As results, well-defined commensurate peaks have been observed at (0.5,0.5, L), which is consistent with the nesting vector of the Fermi surface. Energy spectrums at T = Tc show L dependence, suggesting a three dimensional character remains even in superconducting BaFe2(As,P)2. Clear spin gap has been observed below Tc, whose gap structure depends on L. Details will be discussed at the conference.

  5. Competing Magnetic Fluctuations in Iron Pnictide Superconductors: Role of Ferromagnetic Spin Correlations Revealed by NMR

    NASA Astrophysics Data System (ADS)

    Wiecki, P.; Roy, B.; Johnston, D. C.; Bud'ko, S. L.; Canfield, P. C.; Furukawa, Y.

    2015-09-01

    In the iron pnictide superconductors, theoretical calculations have consistently shown enhancements of the static magnetic susceptibility at both the stripe-type antiferromagnetic and in-plane ferromagnetic (FM) wave vectors. However, the possible existence of FM fluctuations has not yet been examined from a microscopic point of view. Here, using 75As NMR data, we provide clear evidence for the existence of FM spin correlations in both the hole- and electron-doped BaFe2As2 families of iron-pnictide superconductors. These FM fluctuations appear to compete with superconductivity and are thus a crucial ingredient to understanding the variability of Tc and the shape of the superconducting dome in these and other iron-pnictide families.

  6. Competing magnetic fluctuations in iron pnictide superconductors: Role of ferromagnetic spin correlations revealed by NMR

    SciTech Connect

    Wiecki, P.; Roy, B.; Johnston, D. C.; Bud’ko, S. L.; Canfield, P. C.; Furukawa, Y.

    2015-09-22

    In the iron pnictide superconductors, theoretical calculations have consistently shown enhancements of the static magnetic susceptibility at both the stripe-type antiferromagnetic and in-plane ferromagnetic (FM) wave vectors. However, the possible existence of FM fluctuations has not yet been examined from a microscopic point of view. Here, using 75As NMR data, we provide clear evidence for the existence of FM spin correlations in both the hole- and electron-doped BaFe2As2 families of iron-pnictide superconductors. Furthermore, these FM fluctuations appear to compete with superconductivity and are thus a crucial ingredient to understanding the variability of Tc and the shape of the superconducting dome in these and other iron-pnictide families.

  7. Competing magnetic fluctuations in iron pnictide superconductors: Role of ferromagnetic spin correlations revealed by NMR

    DOE PAGESBeta

    Wiecki, P.; Roy, B.; Johnston, D. C.; Bud’ko, S. L.; Canfield, P. C.; Furukawa, Y.

    2015-09-22

    In the iron pnictide superconductors, theoretical calculations have consistently shown enhancements of the static magnetic susceptibility at both the stripe-type antiferromagnetic and in-plane ferromagnetic (FM) wave vectors. However, the possible existence of FM fluctuations has not yet been examined from a microscopic point of view. Here, using 75As NMR data, we provide clear evidence for the existence of FM spin correlations in both the hole- and electron-doped BaFe2As2 families of iron-pnictide superconductors. Furthermore, these FM fluctuations appear to compete with superconductivity and are thus a crucial ingredient to understanding the variability of Tc and the shape of the superconducting domemore » in these and other iron-pnictide families.« less

  8. Magnetic ordering in tetragonal FeS: Evidence for strong itinerant spin fluctuations

    SciTech Connect

    Kwon, K.D.; Refson, K.; Bone, S.; Qiao, R.; Yang, W.; Liu, Z.; Sposito, G.

    2010-11-01

    Mackinawite is a naturally occurring layer-type FeS mineral important in biogeochemical cycles and, more recently, in the development of microbial fuel cells. Conflicting results have been published as to the magnetic properties of this mineral, with Moessbauer spectroscopy indicating no magnetic ordering down to 4.2 K but density functional theory (DFT) predicting an antiferromagnetic ground state, similar to the Fe-based high-temperature superconductors with which it is isostructural and for which it is known that magnetism is suppressed by strong itinerant spin fluctuations. We investigated this latter possibility for mackinawite using photoemission spectroscopy, near-edge x-ray absorption fine structure spectroscopy, and DFT computations. Our Fe 3{sub s} core-level photoemission spectrum of mackinawite showed a clear exchange-energy splitting (2.9 eV) consistent with a 1 {micro}{sub B} magnetic moment on the Fe ions, while the Fe L-edge x-ray absorption spectrum indicated rather delocalized Fe 3{sub d} electrons in mackinawite similar to those in Fe metal. Our DFT computations demonstrated that the ground state of mackinawite is single-stripe antiferromagnetic, with an Fe magnetic moment (2.7 {micro}{sub B}) that is significantly larger than the experimental estimate and has a strong dependence on the S height and lattice parameters. All of these trends signal the existence of strong itinerant spin fluctuations. If spin fluctuations prove to be mediators of electron pairing, we conjecture that mackinawite may be one of the simplest Fe-based superconductors.

  9. Dynamic and static fluctuations in polymer gels studied by neutron spin-echo

    NASA Astrophysics Data System (ADS)

    Kanaya, T.; Takahashi, N.; Nishida, K.; Seto, H.; Nagao, M.; Takeba, Y.

    2006-11-01

    We report neutron spin-echo measurements on three types of poly(vinyl alcohol) (PVA) gels. The first is PVA gel in a mixture of dimethyl sulfoxide (DMSO) and water with volume ratio 60/40, the second is PVA gel in an aqueous borax solution and the third is chemically cross-linked PVA gel. The observed normalized intermediate scattering functions I( Q, t)/ I( Q,0) were very different among them. The I( Q, t)/ I( Q,0) of the first and third gels showed a non-decaying component in addition to a decaying component, but the second one did not have the non-decaying one. This clearly indicates that the fluctuations in the first and third PVA gels consist of static and dynamic fluctuations whereas the second PVA gel does include only the dynamic fluctuations. The dynamic and static fluctuations of the PVA gels were analyzed in terms of a restricted motion in the gel network and the Zimm motion, respectively.

  10. Simulation of Statistical Fluctuations in the Spin Precession Measurements at RHIC

    SciTech Connect

    Poblaguev, A. A.

    2014-02-25

    Measurements of the driven spin coherent precession Sx(t)=Sx(0) - Sx(1) sin(ωt+φ0) were initiated in RHIC Run13. The expected value of the precession amplitude Sx(1) ~ 2 x 10-4 is about the statistical error in a single measurement and data fit gives a biased estimate of the Sx(1). For a proper statistical interpretation of the results of the several measurements, statistical fluctuations were studied using Monte-Carlo simulation. Preliminary results of the spin precession measurements in RHIC Run13 are presented.

  11. Spin fluctuations in La2-xSrxCuO4: NMR versus inelastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Barzykin, V.; Pines, D.; Thelen, D.

    1994-12-01

    We use a one-component description to analyze the current experimental situation for the low-frequency magnetic properties of La1.85Sr0.15CuO4 as determined by NMR and neutron-scattering experiments. We show that the measured 17O spin-lattice relaxation rate is in sharp conflict with the incommensurate-magnetic-structure interpretation of neutron-scattering experiments, but is quantitatively explained if the local-spin-fluctuation spectrum (measured by NMR) possesses a commensurate peak. We conclude that the formation of domains, as suggested by Slichter and Phillips, represents the best (and, quite possibly, only) way of reconciling NMR and neutron-scattering experiments on La1.85Sr0.15CuO4.

  12. Spin Susceptibility and Effects of Inhomogeneous Strong Pairing Fluctuations in a Trapped Ultracold Fermi Gas

    NASA Astrophysics Data System (ADS)

    Tajima, H.; Hanai, R.; Ohashi, Y.

    2016-05-01

    We theoretically investigate magnetic properties of a unitary Fermi gas in a harmonic trap. Including strong pairing fluctuations within the framework of an extended T-matrix approximation, as well as effects of a trap potential within the local density approximation, we calculate the local spin susceptibility χ (T,r) above the superfluid phase transition temperature T_c. We show that the formation of preformed singlet Cooper pairs anomalously suppresses χ (T,r) in the trap center near T_c. We also point out that, in the unitarity limit, the spin-gap temperature in a uniform Fermi gas can be evaluated from the observation of the spatial variation of χ (T,r). Since a real ultracold Fermi gas is always in a trap potential, our results would be useful for the study of how this spatial inhomogeneity affects thermodynamic properties of an ultracold Fermi gas in the BCS-BEC crossover region.

  13. Spin-Fluctuation-Driven Nematic Charge-Density Wave in Cuprate Superconductors: Impact of Aslamazov-Larkin Vertex Corrections.

    PubMed

    Yamakawa, Youichi; Kontani, Hiroshi

    2015-06-26

    We present a microscopic derivation of the nematic charge-density wave (CDW) formation in cuprate superconductors based on the three-orbital d-p Hubbard model by introducing the vertex correction (VC) into the charge susceptibility. The CDW instability at q=(Δ(FS),0), (0,Δ(FS)) appears when the spin fluctuations are strong, due to the strong charge-spin interference represented by the VC. Here, Δ(FS) is the wave number between the neighboring hot spots. The obtained spin-fluctuation-driven CDW is expressed as the "intra-unit-cell orbital order" accompanied by the charge transfer between the neighboring atomic orbitals, which is actually observed by the scanning tunneling microscope measurements. We predict that the cuprate CDW and the nematic orbital order in Fe-based superconductors are closely related spin-fluctuation-driven phenomena. PMID:26197139

  14. Ti3CrCu4: A possible 2-D ferromagnetic spin fluctuating system

    NASA Astrophysics Data System (ADS)

    Dhar, S. K.; Provino, A.; Manfrinetti, P.; Kulkarni, R.; Goyal, Neeraj; Paudyal, D.

    2016-05-01

    Ti3CrCu4 is a new ternary compound which crystallizes in the tetragonal Ti3Pd5 structure type. The Cr atoms form square nets in the a-b plane (a = 3.124 Å) which are separated by an unusually large distance c = 11.228 Å along the tetragonal axis, thus forming a -2-D Cr-sublattice. The paramagnetic susceptibility is characterized by a low effective moment, μeff = 1.1 μB, a low paramagnetic Curie temperature θP (below 7 K) and a temperature independent χ0 = 6.7 x 10-4 emu/mol. The magnetization at 1.8 K increases rapidly with field nearly saturating to 0.2 μB/f.u. The zero field heat capacity C/T shows an upturn below 7 K (˜190 mJ/mol K2 at ˜0.1K) which is suppressed in applied magnetic fields and interpreted as suggesting the presence of spin fluctuations. The resistivity at low temperatures shows non-Fermi liquid behavior. Overall, the experimental data thus reveal an unusual magnetic state in Ti3CrCu4, which likely has its origin in the layered nature of the Cr sub-lattice and ferromagnetic spin fluctuations. Density functional theoretical calculations reveal a sharp Cr density of states peak just above the Fermi level, indicating the propensity of Ti3CrCu4 to become magnetic.

  15. Low-energy spin fluctuations in the metallic spinel compound LiV2O4

    NASA Astrophysics Data System (ADS)

    Yushankhai, V. Yu.; Thalmeier, P.; Takimoto, T.

    2009-08-01

    In the family of transition metal oxides the spinel compound LiV2O4 is a rare metallic system showing heavy fermion behavior. In particular, an anomalously large specific heat coefficient γ = C/T and strongly enhanced magnetic susceptibility χs were detected in the low temperature limit, T<30 K. Recently we have proposed a model which allowed us to relate such an anomalous behavior of LiV2O4 to the proximity of the underlying 3d-electron system to a magnetic instability at T→0. The emergence of a rather peculiar paramagnetic ground state with largely degenerate lowenergy "critical" antiferromagnetic fluctuations in LiV2O4 is the combined effect of strong electron correlations and the geometrical frustration of V-ion pyrochlore lattice forming the metallic system in this compound. A self-consistent renormalization theory was developed to describe effects of strong coupling between spin fluctuation modes and their evolution with varying temperature and external pressure. The theory was shown to provide a firm basis for understanding many peculiar properties of spin dynamics obtained in the inelastic neutron scattering and NMR measurements on LiV2O4.

  16. NMR Study of Superconductivity and Spin Fluctuations in Intercalated Iron Selenides AyFe2-xSe2

    NASA Astrophysics Data System (ADS)

    Yu, Weiqiang

    2012-02-01

    The role of spin fluctuations in superconductivity is an essential topic in both cuprate and Fe-based superconductors. NMR works in several Fe-based superconductors proposed that the low-energy antiferromagnetic spin fluctuations (AFSF) is a possible pairing glue for superconductivity. However, studies on other systems such as KFe2As2 and Li1-xFeAs does not support a strong correlation between low-energy spin fluctuations and superconductivity. In the newly discovered AyFe2-xSe2 superconductors with Tc˜ 32 K, our NMR study identifies unambiguously a paramagnetic superconducting phase, which is phase separated from the block antiferromagnetic state. The low-energy AFSF is not seen at all, even though the Tc is high. The AyFe2-xSe2 are singlet superconductors evidenced from the NMR Knight shift K; However, the absence of the coherence peak in the spin-lattice relaxation rate 1/T1 suggests an unconventional behavior of superconductivity. In fact, we found that both the K and the 1/T1T increase dramatically with temperature and follow a a+bT^2 form from Tc up to 300 K. Such behavior is strong evidence for spin fluctuations with a high-energy, local nature in 3D systems, and inconsistent with a band-gap effect. Furthermore, K and 1/T1T saturate above 400 K, indicating an energy scale of 35 meV, which is distinct from the low-energy spin fluctuations. The above temperature enhanced spin fluctuations seem to be universal in Fe-based superconductors. [4pt] References: W. Yu et al., Phys. Rev. Lett. 106, 197001 (2011); Long Ma et al., Phys. Rev. B 83, 174510 (2011); L. Ma et al., arXiv:1103.4960.

  17. Theory of spin-fluctuation induced superconductivity in iron-based superconductors

    SciTech Connect

    Zhang, Junhua

    2011-01-01

    In this dissertation we focus on the investigation of the pairing mechanism in the recently discovered high-temperature superconductor, iron pnictides. Due to the proximity to magnetic instability of the system, we considered short-range spin fluctuations as the major mediating source to induce superconductivity. Our calculation supports the magnetic fluctuations as a strong candidate that drives Cooper-pair formation in this material. We find the corresponding order parameter to be of the so-called ss-wave type and show its evolution with temperature as well as the capability of supporting high transition temperature up to several tens of Kelvin. On the other hand, our itinerant model calculation shows pronounced spin correlation at the observed antiferromagnetic ordering wave vector, indicating the underlying electronic structure in favor of antiferromagnetic state. Therefore, the electronic degrees of freedom could participate both in the magnetic and in the superconducting properties. Our work shows that the interplay between magnetism and superconductivity plays an important role to the understanding of the rich physics in this material. The magnetic-excitation spectrum carries important information on the nature of magnetism and the characteristics of superconductivity. We analyze the spin excitation spectrum in the normal and superconducting states of iron pnictides in the magnetic scenario. As a consequence of the sign-reversed gap structure obtained in the above, a spin resonance mode appears below the superconducting transition temperature. The calculated resonance energy, scaled with the gap magnitude and the magnetic correlation length, agrees well with the inelastic neutron scattering (INS) measurements. More interestingly, we find a common feature of those short-range spin fluctuations that are capable of inducing a fully gapped ss state is the momentum anisotropy with elongated span along the direction transverse to the antiferromagnetic momentum

  18. 21 cm signal from cosmic dawn: imprints of spin temperature fluctuations and peculiar velocities

    NASA Astrophysics Data System (ADS)

    Ghara, Raghunath; Choudhury, T. Roy; Datta, Kanan K.

    2015-02-01

    The 21 cm brightness temperature δTb fluctuations from reionization promise to provide information on the physical processes during that epoch. We present a formalism for generating the δTb distribution using dark matter simulations and a 1D radiative transfer code. Our analysis is able to account for the spin temperature TS fluctuations arising from inhomogeneous X-ray heating and Lyα coupling during cosmic dawn. The δTb power spectrum amplitude at large scales (k ˜ 0.1 Mpc-1) is maximum when ˜10 per cent of the gas (by volume) is heated above the cosmic microwave background temperature. The power spectrum shows a `bump'-like feature during cosmic dawn and its location measures the typical sizes of heated regions. We find that the effect of peculiar velocities on the power spectrum is negligible at large scales for most part of the reionization history. During early stages (when the volume averaged ionization fraction ≲ 0.2) this is because the signal is dominated by fluctuations in TS. For reionization models that are solely driven by stars within high-mass (≳ 109 M⊙) haloes, the peculiar velocity effects are prominent only at smaller scales (k ≳ 0.4 Mpc-1) where patchiness in the neutral hydrogen density dominates the signal. The conclusions are unaffected by changes in the amplitude or steepness in the X-ray spectra of the sources.

  19. Performance comparison of dynamical decoupling sequences for a qubit in a rapidly fluctuating spin bath

    NASA Astrophysics Data System (ADS)

    Álvarez, Gonzalo A.; Ajoy, Ashok; Peng, Xinhua; Suter, Dieter

    2010-10-01

    Avoiding the loss of coherence of quantum mechanical states is an important prerequisite for quantum information processing. Dynamical decoupling (DD) is one of the most effective experimental methods for maintaining coherence, especially when one can access only the qubit system and not its environment (bath). It involves the application of pulses to the system whose net effect is a reversal of the system-environment interaction. In any real system, however, the environment is not static, and therefore the reversal of the system-environment interaction becomes imperfect if the spacing between refocusing pulses becomes comparable to or longer than the correlation time of the environment. The efficiency of the refocusing improves therefore if the spacing between the pulses is reduced. Here, we quantify the efficiency of different DD sequences in preserving different quantum states. We use C13 nuclear spins as qubits and an environment of H1 nuclear spins as the environment, which couples to the qubit via magnetic dipole-dipole couplings. Strong dipole-dipole couplings between the proton spins result in a rapidly fluctuating environment with a correlation time of the order of 100 μs. Our experimental results show that short delays between the pulses yield better performance if they are compared with the bath correlation time. However, as the pulse spacing becomes shorter than the bath correlation time, an optimum is reached. For even shorter delays, the pulse imperfections dominate over the decoherence losses and cause the quantum state to decay.

  20. Quantum critical point and spin fluctuations in lower-mantle ferropericlase

    PubMed Central

    Lyubutin, Igor S.; Struzhkin, Viktor V.; Mironovich, A. A.; Gavriliuk, Alexander G.; Naumov, Pavel G.; Lin, Jung-Fu; Ovchinnikov, Sergey G.; Sinogeikin, Stanislav; Chow, Paul; Xiao, Yuming; Hemley, Russell J.

    2013-01-01

    Ferropericlase [(Mg,Fe)O] is one of the most abundant minerals of the earth’s lower mantle. The high-spin (HS) to low-spin (LS) transition in the Fe2+ ions may dramatically alter the physical and chemical properties of (Mg,Fe)O in the deep mantle. To understand the effects of compression on the ground electronic state of iron, electronic and magnetic states of Fe2+ in (Mg0.75Fe0.25)O have been investigated using transmission and synchrotron Mössbauer spectroscopy at high pressures and low temperatures (down to 5 K). Our results show that the ground electronic state of Fe2+ at the critical pressure Pc of the spin transition close to T = 0 is governed by a quantum critical point (T = 0, P = Pc) at which the energy required for the fluctuation between HS and LS states is zero. Analysis of the data gives Pc = 55 GPa. Thermal excitation within the HS or LS states (T > 0 K) is expected to strongly influence the magnetic as well as physical properties of ferropericlase. Multielectron theoretical calculations show that the existence of the quantum critical point at temperatures approaching zero affects not only physical properties of ferropericlase at low temperatures but also its properties at P-T of the earth’s lower mantle. PMID:23589892

  1. Modeling Spin Fluctuations and Magnetic Excitations from Time-Dependent Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Gorni, Tommaso; Timrov, Iurii; Dal Corso, Andrea; Baroni, Stefano

    Harnessing spin fluctuations and magnetic excitations in materials is key in many fields of technology, spanning from memory devices to information transfer and processing, to name but a few. A proper understanding of the interplay between collective and single-particle spin excitations is still lacking, and it is expected that first-principle simulations based on TDDFT may shed light on this interplay, as well as on the role of important effects such as relativistic ones and related magnetic anisotropies. All the numerical approaches proposed so far to tackle this problem are based on the computationally demanding solution of the Sternheimer equations for the response orbitals or the even more demanding solution of coupled Dyson equations for the spin and charge susceptibilities. The Liouville-Lanczos approach to TDDFT has already proven to be a valuable alternative, the most striking of its features being the avoidance of sums over unoccupied single-particle states and the frequency-independence of the main numerical bottleneck. In this work we present an extension of this methodology to magnetic systems and its implementation in the Quantum ESPRESSO distribution, together with a few preliminary results on the magnon dispersions in bulk Fe.

  2. Strong coupling critique of spin fluctuation driven charge order in underdoped cuprates

    NASA Astrophysics Data System (ADS)

    Mishra, Vivek; Norman, M. R.

    2015-08-01

    Charge order has emerged as a generic feature of doped cuprates, leading to important questions about its origin and its relation to superconductivity. Recent experiments on two classes of hole doped cuprates indicate a novel d -wave symmetry for the order. These were motivated by earlier spin fluctuation theoretical studies based on an expansion about hot spots in the Brillouin zone that indicated such an order would be competitive with d -wave superconductivity. Here, we reexamine this problem by solving strong coupling equations in the full Brillouin zone for experimentally relevant parameters. We find that bond-oriented order, as seen experimentally, is strongly suppressed. We also include coupling to B1 g phonons and do not see any qualitative change. Our results argue against an itinerant model for the charge order, implying instead that such order is likely due to Coulombic phase separation of the doped holes.

  3. Spectroscopic Evidence for Strong Quantum Spin Fluctuations with Itinerant Character in YFe2Ge2

    DOE PAGESBeta

    Sirica, N.; Bondino, F.; Nappini, S.; Piz, I.; Poudel, L.; Christianson, Andrew D.; Mandrus, D.; Singh, David J; Mannella, Norman

    2015-03-04

    We report x-ray absorption and photoemission spectroscopy of the electronic structure in the normal state of metallic YFe2Ge2. The data reveal evidence for large fluctuating spin moments on the Fe sites, as indicated by exchange multiplets appearing in the Fe 3s core-level photoemission spectra, even though the compound does not show magnetic order. The magnitude of the multiplet splitting is comparable to that observed in the normal state of the Fe-pnictide superconductors. This shows a connection between YFe2Ge2 and the Fe-based superconductors even though it contains neither pnictogens nor chalcogens. Finally, the implication is that the chemical range of compoundsmore » showing at least one of the characteristic magnetic signatures of the Fe-based superconductors is broader than previously thought.« less

  4. Pressure dependence of critical temperature of bulk FeSe from spin fluctuation theory

    NASA Astrophysics Data System (ADS)

    Hirschfeld, Peter; Kreisel, Andreas; Wang, Yan; Tomic, Milan; Jeschke, Harald; Jacko, Anthony; Valenti, Roser; Maier, Thomas; Scalapino, Douglas

    2013-03-01

    The critical temperature of the 8K superconductor FeSe is extremely sensitive to pressure, rising to a maximum of 40K at about 10GPa. We test the ability of the current generation of fluctuation exchange pairing theories to account for this effect, by downfolding the density functional theory electronic structure for each pressure to a tight binding model. The Fermi surface found in such a procedure is then used with fixed Hubbard parameters to determine the pairing strength using the random phase approximation for the spin singlet pairing vertex. We find that the evolution of the Fermi surface captured by such an approach is alone not sufficient to explain the observed pressure dependence, and discuss alternative approaches. PJH, YW, AK were supported by DOE DE-FG02-05ER46236, the financial support of MT, HJ, and RV from the DFG Schwerpunktprogramm 1458 is kindly acknowledged.

  5. Spin fluctuations above 100 K in stoichiometric LiCoO2

    NASA Astrophysics Data System (ADS)

    Mukai, K.; Aoki, Y.; Andreica, D.; Amato, A.; Watanabe, I.; Giblin, S. R.; Sugiyama, J.

    2014-12-01

    Although stoichiometric lithium cobalt dioxide LiCoO2 (ST-LCO) is the most common positive electrode material for Li-ion batteries, the magnetic nature of ST-LCO is still not fully understood. Therefore, we measured susceptibility (χ), electron paramagnetic resonance (EPR), and μSR for ST-LCO, particularly above 100 K. The temperature dependence of χ shows a Pauli paramagnetic behavior, supporting the previous conclusion that Co3+ ions are in a low-spin state with S = 0 (t62g). However, the EPR and μSR measurements reveal a "dynamical" magnetic phase in ST-LCO above 100 K. Because the volume fraction of this magnetic phase reaches about 50% at 300 K, the appearance of the magnetic phase is not caused by impurities and/or muonium formation but is an intrinsic characteristic of ST-LCO. By considering the time windows of the three measurement techniques used in this study, we conclude that the origin of the dynamical magnetism is most likely spin fluctuations of the Co ions.

  6. Enhanced spin fluctuations and s +/- pairing by diagonal electron hopping in Fe-based superconductors

    NASA Astrophysics Data System (ADS)

    Kuroki, Kazuhiko

    2015-03-01

    In the itinerant spin picture of the iron-based superconductors, the nesting between electron and hole Fermi surfaces is usually considered to be the origin of the spin fluctuation and thus the pairing glue. However, there have appeared some experimental observations suggesting absence of Fermi surface nesting. For instance, in the 1111 materials Ln FeAsO1-xHx (Ln =La,Sm, etc.), electron doping rate x reaches up to 50%, which in a rigid band picture would wipe out the hole Fermi surfaces. Still, superconductivity not only survives, but is even enhanced in the largely doped regime, in contradiction to the expectation from the bad nesting. Another example is KxFe2-ySe2, where the ARPES experiments show the absence of hole Fermi surfaces. In the present talk, we first focus on Ln FeAsO1-xHx, where the band structure is actually not rigid against doping, and the hole Fermi surface originating from the dxy orbital remains nearly unchanged. The origin of this can be traced back to real space, where the nearest neighbor hopping t1 within the dxy orbital is found to be strongly suppressed with doping. Although the nesting itself is degraded, the spin fluctuation in the largely electron doped regime is enhanced due to t2 >t1 , where t2 is the 2nd neighbor diagonal hopping. This re-enhances s +/- pairing superconductivity, and explains the double dome x-Tc phase diagram of LaFeAsO1-xHx. From this viewpoint, it is also interesting to look into the relation between t1 and t2 in other materials. For instance, our first principles estimation for KFe2Se2givest1 = - 0 . 008 eV and t2 = 0 . 056 eV, and from this strong reduction of t1, both electron and hole Fermi surfaces are expected to be present around the Γ point, in contradiction to previous experimental observations. Results of a recent ARPES experiment will be discussed from this viewpoint.

  7. Identical spin fluctuations in Cu- and Co-doped BaFe2As2 independent of electron doping

    NASA Astrophysics Data System (ADS)

    Grafe, H.-J.; Gräfe, U.; Dioguardi, A. P.; Curro, N. J.; Aswartham, S.; Wurmehl, S.; Büchner, B.

    2014-09-01

    We present As75 nuclear magnetic resonance measurements on single crystals of BaFe2As2, BaFe1.8Co0.2As2, and BaFe1.82Cu0.18As2. While only Co doping induces bulk superconductivity on a broad doping range, the spin fluctuations probed by the nuclear spin-lattice relaxation rate (T1T )-1 are identical for both dopings down to Tc. Below this temperature, (T1T)-1 of the Cu-doped sample continues to rise, proving that (a) there is a quantum critical point below the superconducting dome, and (b) adding electrons does not affect the spin fluctuations. Consequently, we analyze the Knight shift data in terms of a two-component scenario, with one hyperfine coupling to an itinerant degree of freedom and the other to Fe moments.

  8. Neutron spin-echo studies on dynamic and static fluctuations in two types of poly(vinyl alcohol) gels

    NASA Astrophysics Data System (ADS)

    Kanaya, T.; Takahashi, N.; Nishida, K.; Seto, H.; Nagao, M.; Takeda, T.

    2005-01-01

    We report neutron spin-echo measurements on two types of poly(vinyl alcohol) (PVA) gels. The first is PVA gel in a mixture of dimethyl sulfoxide (DMSO) and water with volume ratio 60/40 , and the second is PVA gel in an aqueous borax solution. The observed normalized intermediate scattering functions I(Q,t)/I(Q,0) are very different between them. The former I(Q,t)/I(Q,0) shows a nondecaying component in addition to a fast decay, but the latter does not have the nondecaying one. This clearly indicates that the fluctuations in the former PVA gel consist of static and dynamic fluctuations whereas the latter PVA gel does include only the dynamic fluctuations. The dynamic fluctuations of the former and latter gels have been analyzed in terms of a restricted motion in the network and Zimm motion, respectively, and the origins of these motions will be discussed.

  9. Neutron spin-echo studies on dynamic and static fluctuations in two types of poly(vinyl alcohol) gels

    SciTech Connect

    Kanaya, T.; Takahashi, N.; Nishida, K.; Seto, H.; Nagao, M.; Takeda, T.

    2005-01-01

    We report neutron spin-echo measurements on two types of poly(vinyl alcohol) (PVA) gels. The first is PVA gel in a mixture of dimethyl sulfoxide (DMSO) and water with volume ratio 60/40, and the second is PVA gel in an aqueous borax solution. The observed normalized intermediate scattering functions I(Q,t)/I(Q,0) are very different between them. The former I(Q,t)/I(Q,0) shows a nondecaying component in addition to a fast decay, but the latter does not have the nondecaying one. This clearly indicates that the fluctuations in the former PVA gel consist of static and dynamic fluctuations whereas the latter PVA gel does include only the dynamic fluctuations. The dynamic fluctuations of the former and latter gels have been analyzed in terms of a restricted motion in the network and Zimm motion, respectively, and the origins of these motions will be discussed.

  10. Spin susceptibility and effects of fluctuating Cooper pairs in the BCS-BEC crossover regime of a superfluid Fermi gas

    NASA Astrophysics Data System (ADS)

    Tajima, Hiroyuki; Hanai, Ryo; Ohashi, Yoji

    2015-03-01

    We theoretically discuss the spin susceptibility χ and effects of strong-coupling corrections in the BCS-BEC crossover regime of an ultracold Fermi gas. Using an extended T-matrix approximation, we calculate χ over the entire BCS-BEC crossover region, showing that this magnetic quantity is very sensitive to pairing fluctuations in both the normal and the superfluid phase. In the normal state, it is suppressed by preformed singlet Cooper pairs near Tc, being similar to the spin-gap phenomenon in high-Tc cuprates. Below Tc, on the other hand, pairing fluctuations enhance χ, in the sense that the suppression of this quantity by the superfluid order is weakened due to partial dissociation of Cooper pairs. From these, we determine the region where pairing fluctuations strongly affect spin excitations in the phase diagram of a Fermi gas with respect to the temperature and the strength of a pairing interaction. We also compare our results with the recent experiments on a 6Li Fermi gas. Our results indicate that the spin susceptibility is a useful observable in understanding strong-coupling properties of an ultracold Fermi gas in the BCS-BEC crossover region. H. T. was supported by Graduate School Doctoral Student Aid Program from Keio University.

  11. Hydration-induced anisotropic spin fluctuations in NaxCoO2 · 1.3H2O superconductor

    NASA Astrophysics Data System (ADS)

    Matano, K.; Lin, C. T.; Zheng, Guo-qing

    2008-12-01

    We report 59Co NMR studies in single crystals of the cobalt oxide superconductor Na0.42CoO2·1.3H2O (Tc=4.25 K) and its parent compound Na0.42CoO2. We find that both the magnitude and the temperature (T) dependence of the Knight shifts are identical in the two compounds above Tc. The spin-lattice relaxation rate (1/T1) is also identical above T0~60 K for both compounds. Below T0, the unhydrated sample is found to be a non-correlated metal that well conforms to the Fermi liquid theory, while spin fluctuations develop in the superconductor. These results indicate that water intercalation does not change the density of states at the Fermi level or the carrier density but its primary role is to bring about spin fluctuations. Our result shows that, in the hydrated superconducting compound, the electron correlation is anisotropic. Namely, the spin fluctuation around the finite wave vector is much stronger along the a-axis direction than that along the c-axis direction.

  12. Competition between spin fluctuations in Ca2-xSrxRuO4 around x=0.5

    NASA Astrophysics Data System (ADS)

    Arakawa, Naoya; Ogata, Masao

    2013-05-01

    We study the static susceptibilities for charge and spin sectors in paramagnetic states for Ca2-xSrxRuO4 in 0.5≤x≤2 within random phase approximation on the basis of an effective Ru t2g orbital Hubbard model. We find that several modes of spin fluctuation around q=(0,0) and q˜(0.797π,0) are strongly enhanced for the model of x=0.5. This enhancement arises from the increase of the corresponding susceptibilities for the dxy orbital due to the rotation-induced modifications of the electronic structure for this orbital (i.e., the flattening of the bandwidth and the increase of the density of states near the Fermi level). We also find that the ferromagnetic spin fluctuation becomes stronger for a special model than for the model of x=0.5, while the competition between the modes of spin fluctuation at q=(0,0) and around q˜(π,0) is weaker for the special model; in this special model, the van Hove singularity (vHs) for the dxy orbital is located on the Fermi level. These results indicate that the location of the vHs for the dxy orbital, which is controlled by substitution of Ca for Sr, is a parameter to control this competition. We propose that the spin fluctuations for the dxy orbital around q=(0,0) and q˜(π,0) play an important role in the electronic states around x=0.5 other than the criticality approaching the usual Mott transition where all electrons are localized.

  13. Linearized Jastrow-style fluctuations on spin-projected Hartree-Fock

    SciTech Connect

    Henderson, Thomas M.; Scuseria, Gustavo E.

    2013-12-21

    The accurate and efficient description of strong electronic correlations remains an important objective in electronic structure theory. Projected Hartree-Fock theory, where symmetries of the Hamiltonian are deliberately broken and projectively restored, all with a mean-field computational scaling, shows considerable promise in this regard. However, the method is neither size extensive nor size consistent; in other words, the correlation energy per particle beyond broken-symmetry mean field vanishes in the thermodynamic limit, and the dissociation limit of a molecule is not the sum of the fragment energies. These two problems are closely related. Recently, Neuscamman [Phys. Rev. Lett. 109, 203001 (2012)] has proposed a method to cure the lack of size consistency in the context of the antisymmetrized geminal power wave function (equivalent to number-projected Hartree-Fock-Bogoliubov) by using a Jastrow-type correlator in Hilbert space. Here, we apply the basic idea in the context of projected Hartree-Fock theory, linearizing the correlator for computational simplicity but extending it to include spin fluctuations. Results are presented for the Hubbard Hamiltonian and for some simple molecular systems.

  14. The influence of electron-phonon coupling and spin fluctuations on the superconductivity of the Ti-V alloys

    NASA Astrophysics Data System (ADS)

    Matin, Md.; Sharath Chandra, L. S.; Pandey, Sudhir K.; Chattopadhyay, Maulindu Kumar; Roy, Sindhunil Barman

    2014-06-01

    We report a study of the normal and superconducting state properties of the Ti x V1- x alloys for x = 0.4, 0.6, 0.7 and 0.8 with the help of dc magnetization, electrical resistivity and heat capacity measurements along with the electronic structure calculation. The superconducting transition temperature T c of these alloys is higher than that of elemental Ti and is also higher than elemental V for x ≤ 0.7. The roles of electron density of states, electron-phonon coupling and spin fluctuations in the normal and superconducting state properties of these alloys have been investigated in detail. The experimentally observed value of T c is found to be considerably lower than that estimated on the basis of electron density of states and electron-phonon coupling in the x = 0.4, 0.6 and 0.7 alloys. There is some evidence as well for the preformed Cooper pair in all these Ti-V alloys in the temperature regime well above T c . Similar to x = 0.6 [Md. Matin, L.S. Sharath Chandra, R.K. Meena, M.K. Chattopadhyay, A.K. Sinha, M.N. Singh, S.B. Roy, Physica B 436, 20 (2014)], the normal state properties of the x = 0.4 alloy showed the signature of the presence of spin fluctuations. The difference between the experimentally observed T c and that estimated by considering electron density of states and electron-phonon coupling in the x = 0.4, 0.6 and 0.7 alloys is attributed to the possible influence of these spin fluctuations. We show that the non-monotonous variation of T c as a function of x in the Ti x V1- x alloys is due to the combined effects of the electron-phonon coupling and the spin fluctuations.

  15. Critical spin fluctuations and the origin of nematic order in Ba(Fe1-xCox)2As2

    NASA Astrophysics Data System (ADS)

    Kretzschmar, F.; Böhm, T.; Karahasanović, U.; Muschler, B.; Baum, A.; Jost, D.; Schmalian, J.; Caprara, S.; Grilli, M.; di Castro, C.; Analytis, J. G.; Chu, J.-H.; Fisher, I. R.; Hackl, R.

    2016-06-01

    Nematic fluctuations and order play a prominent role in material classes such as the cuprates, some ruthenates or the iron-based compounds and may be interrelated with superconductivity. In iron-based compounds signatures of nematicity have been observed in a variety of experiments. However, the fundamental question as to the relevance of the related spin, charge or orbital fluctuations remains open. Here, we use inelastic light (Raman) scattering and study Ba(Fe1-xCox)2As2 (0 <= x <= 0.085) for getting direct access to nematicity and the underlying critical fluctuations with finite characteristic wavelengths. We show that the response from fluctuations appears only in B1g (x2 - y2) symmetry (1 Fe unit cell). The scattering amplitude increases towards the structural transition at Ts but vanishes only below the magnetic ordering transition at TSDW < Ts, suggesting a magnetic origin of the fluctuations. The theoretical analysis explains the selection rules and the temperature dependence of the fluctuation response. These results make magnetism the favourite candidate for driving the series of transitions.

  16. Spin Fluctuations in (cerium, YTTRIUM)COBALT-2 and Related Systems.

    NASA Astrophysics Data System (ADS)

    Timlin, John

    The pseudobinary alloy systems (Y_ {rm x}Zr_{1 -rm x})Co_2, (Y _{rm x}Ce _{1-rm x})Co_2 , and (Ce_{rm x} Zr_{1-rm x})Co _2, for 0 < x < 1, have been studied. The temperature dependence of the electrical resistivity, magnetic susceptibility and specific heat have been measured for these systems. The temperature ranges were: for the electrical resistivity 1.5 to 300 K, for the magnetic susceptibility 6 to 300 K and for the specific heat 1.5 to 25 K. All three measurements show a rapid falloff of enhancements due to d-electron spin fluctuations as yttrium is replaced by zirconium in the (Y,Zr)Co_2 system. The variation of both the magnetic susceptibility and the specific heat as one substitutes cerium for yttrium in the (Y,Ce)Co _2 system is strikingly similar to that observed for (Y,Zr)Co_2. However, the resistivity of the (Y,Ce)Co_2 system is markedly different from that observed in (Y,Zr)Co_2 . Measurements done on the (Ce,Zr)Co_2 system confirm both the similarities between CeCo _2 and ZrCo_2 seen in the magnetic susceptibility and specific heat and the difference seen in the resistivity. Of greatest interest to this study is the evolution of the curvature of the temperature dependent magnetic susceptibility, which evolves from an upward bending form in YCo_2 to a downward bending form in both CeCo_2 and ZrCo_2 as predicted by theory for strongly enhanced paramagnets with a suitable density of states. This is the first controlled alloy study which shows such an evolution.

  17. Neutron spin echo investigation of the concentration fluctuation dynamics in melts of diblock copolymers

    NASA Astrophysics Data System (ADS)

    Montes, H.; Monkenbusch, M.; Willner, L.; Rathgeber, S.; Fetters, L.; Richter, D.

    1999-05-01

    Diblock copolymers in the melt exhibit order-disorder phase transitions (ODT), which are accompanied by strong concentration fluctuations. These transitions are generally described in terms of the random phase approximation (RPA) of Leibler and Fredrickson, which is able to explain small angle scattering results in the neighborhood of the ODT, in particular around the correlation peak at q*. The RPA theory has been extended to include dynamical phenomena, predicting the short time relaxation of the dynamic structure factor in polymeric multicomponent systems. We report small angle neutron scattering and neutron spin echo experiments on polyethylene-block-polyethylethylene (PE-PEE) and poly(ethylene-propylene)-block-polyethylethylene (PEP-PEE) copolymers with molecular weights of 16.500 and 68.000 g/mol, which explore the structure and dynamics of these block copolymers. Studying melts with different hydrogen/deuterium labeling it was possible to observe experimentally the different relaxation modes of such systems separately. In particular the collective relaxation behavior as well as the single chain motion were accessed. The experimental results were quantitatively compared with the RPA predictions, which were based solely on the dynamical properties of the corresponding homopolymers and the static structure factors. The collective dynamics exhibits an unanticipated fast relaxation mode. This mode is most visible at low wave numbers (q⩾q*) but extends to length scales considerably shorter than the radius of gyration. Furthermore, the dynamical RPA yields expressions for the mobilities of chain segments in the block copolymer melt. These combination rules are at variance with the experimental findings for the single chain dynamics, while they hold for the collective response.

  18. Superconductivity and spin fluctuations in the actinoid-platinum metal borides {Th ,U } Pt3B

    NASA Astrophysics Data System (ADS)

    Bauer, E.; Royanian, E.; Michor, H.; Sologub, O.; Scheidt, E.-W.; Gonçalves, A. P.; Bursik, J.; Wolf, W.; Reith, D.; Blaas-Schenner, C.; Moser, R.; Podloucky, R.; Rogl, P.

    2015-07-01

    Investigating the phase relations of the system {Th ,U } -Pt-B at 900 °C the formation of two compounds has been observed: cubic ThPt3B with P m 3 ¯m structure as a representative of the perovskites, and tetragonal UPt3B with P 4 m m structure being isotypic to the noncentrosymmetric structure of CePt3B . The crystal structures of the two compounds are defined by combined x-ray diffraction and transmission electron microscopy. Characterization of physical properties for ThPt3B reveals a superconducting transition at 0.75 K and an upper critical field at T =0 exceeding 0.4 T. For nonsuperconducting UPt3B a metallic resistivity behavior was found in the entire temperature range; at very low temperatures spin fluctuations become evident and the resistivity ρ (T ) follows non-Fermi liquid characteristics, ρ =ρ0+A T n with n =1.6 . Density functional theory (DFT) calculations were performed for both compounds for both types of structures. They predict that the experimentally claimed cubic structure of ThPt3B is thermodynamically not stable in comparison to a tetragonal phase, with a very large enthalpy difference of 25 kJ/mol, which cannot be explained by the formation energy of B vacancies. However, the presence of random boron vacancies possibly stabilizes the cubic structure via a local strain compensation mechanism during the growth of the crystal. For UPt3B the DFT results agree well with the experimental findings.

  19. Progressive slowing down of spin fluctuations in underdoped LaFeAsO1-xFx

    NASA Astrophysics Data System (ADS)

    Hammerath, F.; Gräfe, U.; Kühne, T.; Kühne, H.; Kuhns, P. L.; Reyes, A. P.; Lang, G.; Wurmehl, S.; Büchner, B.; Carretta, P.; Grafe, H.-J.

    2013-09-01

    The evolution of low-energy spin dynamics in the iron-based superconductor LaFeAsO1-xFx was studied over a broad doping, temperature, and magnetic field range (x= 0-0.15, T≤ 480 K, μ0H≤ 30 T) by means of 75As nuclear magnetic resonance. An enhanced spin-lattice relaxation rate divided by temperature (T1T)-1 in underdoped superconducting samples (x= 0.045, 0.05, and 0.075) suggests the presence of antiferromagnetic spin fluctuations, which are strongly reduced in optimally doped (x=0.10) and completely absent in overdoped (x=0.15) samples. In contrast to previous analysis, Curie-Weiss fits are shown to be insufficient to describe the data over the whole temperature range. Instead, a Bloembergen-Purcell-Pound (BPP) model is used to describe the occurrence of a peak in (T1T)-1 clearly above the superconducting transition, reflecting a progressive slowing down of the spin fluctuations down to the superconducting phase transition.

  20. Universality of the dispersive spin-resonance mode in superconducting BaFe2As2.

    PubMed

    Lee, C H; Steffens, P; Qureshi, N; Nakajima, M; Kihou, K; Iyo, A; Eisaki, H; Braden, M

    2013-10-18

    Spin fluctuations in superconducting BaFe2(As(1-x)P(x))2 (x=0.34, T(c)=29.5 K) are studied using inelastic neutron scattering. Well-defined commensurate magnetic signals are observed at (π, 0), which is consistent with the nesting vector of the Fermi surface. Antiferromagnetic (AFM) spin fluctuations in the normal state exhibit a three-dimensional character reminiscent of the AFM order in nondoped BaFe2As2. A clear spin gap is observed in the superconducting phase forming a peak whose energy is significantly dispersed along the c axis. The bandwidth of dispersion becomes larger with approaching the AFM ordered phase universally in all superconducting BaFe2As2, indicating that the dispersive feature is attributed to three-dimensional AFM correlations. The results suggest a strong relationship between the magnetism and superconductivity. PMID:24182293

  1. Spin fluctuations in the exotic metallic state of Sr2RuO4 studied with β -NMR

    NASA Astrophysics Data System (ADS)

    Cortie, D. L.; Buck, T.; Dehn, M. H.; Kiefl, R. F.; Levy, C. D. P.; McFadden, R. M. L.; Morris, G. D.; Pearson, M. R.; Salman, Z.; Maeno, Y.; MacFarlane, W. A.

    2015-06-01

    A β -NMR study was performed on a Sr2RuO4 crystal in the metallic state using a beam of spin-polarized +8Li implanted at a mean depth of 90 nm. The +8Li spin-lattice relaxation rate is strongly influenced by the onset of incommensurate spin fluctuations. The nuclear relaxation rate can be explained using previously published bulk 17O NMR and inelastic neutron spectroscopy measurements of the dynamic magnetic susceptibility to model the hyperfine coupling. A well-resolved quadrupolar-split NMR for +8Li implies a static stopping position in an interstitial site. The +8Li Knight shift is highly sensitive to the anisotropic static susceptibility.

  2. Spin fluctuations and excitations in a 2D xy-ferromagnet: CoCl/sub 2/ in graphite

    SciTech Connect

    Wiesler, D.G.; Zabel, H.

    1989-01-01

    We have investigated by neutron scattering the spin fluctuations and excitations in the stage 2 CoCl/sub 2/ -- graphite intercalation compound. This compound has easy-plane anisotropy and sufficiently weak interplanar interaction to qualify as a test material for Kosterlitz-Thouless-Berezinsky type phase transitions. We have carried out quasi-elastic scattering measurements to determine the temperature variation of the spin correlation length /xi/ above the two dimensional ordering transition. We have also probed the dependence on wave vector and temperature of the inelastic scattering cross section, consisting of both a central peak, associated with vortex diffusion, and spin wave, which become strongly damped above the transition temperature. 15 refs., 5 figs.

  3. Low-frequency spin fluctuations in the superconducting La{sub 2-x}Sr{sub x}CuO{sub 4}

    SciTech Connect

    Yamada, K.; Lee, C.H.; Endoh, Y.; Shirane, G.; Birgeneau, R.J.; Kastner, M.A.

    1997-02-01

    Recent progress in low-energy neutron scattering study on the spatially modulated or so-called incommensurate spin fluctuations is reviewed. Well-defined incommensurate spin fluctuations are observed beyond x approx 0.05 and up to the highest Sr-concentration x approx. 0.25 in the present study. The incommensurability delta(x) is saturated at around 1/8 in the overdoped region and linearly scaled with the upper limit of Tc(x) between the underdoped and optimally doped region. A characteristic energy E* below which the dynamical magnetic susceptibility dramatically diminishes in the superconducting state can be determined to be around 7 meV in the energy spectrum of the spin fluctuations for x=0.15 and x=0.18 crystals. The disorder effect induces a low-frequency component of the incommensurate spin fluctuations below E*.

  4. Static and dynamic spin fluctuations in the spin glass doping regime in La sub 2-x Sr sub x CuO sub 4+y

    SciTech Connect

    Birgeneau, R.J.; Belk, N.; Kastner, M.A.; Keimer, B. . Dept. of Physics); Endoh, Y. . Dept. of Physics); Erwin, R.W. ); Shirane, G. )

    1991-01-01

    We review the results of neutron scattering studies of the static and dynamic spin fluctuations crystals of La{sub 2-x}Sr{sub x}CuO{sub 4+{delta}} in the doping regime intermediate between the Neel and superconducting regions. In this regime the in-plane resistance is linear in temperature down to {approximately}80 K with a crossover due to logarithmic conductance effects at lower temperatures. The static spin correlations are well-described by a simple model in which the inverse correlation length {kappa}(x,T) ={kappa}(x,0) + {kappa}(0,T). The most dramatic new result is the discovery by Keimer et al. that the dynamic spin fluctuations exhibit a temperature dependence which is a simple function of {omega}/T for temperatures 10 K{le}T{le}500 K for a wide range of energies. This scaling leads to a natural explanation of a variety of normal state properties of the copper oxides. 21 refs., 4 figs.

  5. Quantum lattice fluctuations in a frustrated Heisenberg spin-Peierls chain

    NASA Astrophysics Data System (ADS)

    Weiße, A.; Wellein, G.; Fehske, H.

    1999-09-01

    As a simple model for spin-Peierls systems we study a frustrated Heisenberg chain coupled to optical phonons. In view of the anorganic spin-Peierls compound CuGeO3 we consider two different mechanisms of spin-phonon coupling. Combining variational concepts in the adiabatic regime and perturbation theory in the antiadiabatic regime we derive effective spin Hamiltonians which cover the dynamical effect of phonons in an approximate way. Ground-state phase diagrams of these models are determined, and the effect of frustration is discussed. Comparing the properties of the ground state and low-lying excitations with exact diagonalization data for the full quantum spin-phonon models, good agreement is found especially in the antiadiabatic regime.

  6. Ferromagnetic Spin Fluctuation and Unconventional Superconductivity in Rb2Cr3As3 Revealed by 75As NMR and NQR

    NASA Astrophysics Data System (ADS)

    Yang, J.; Tang, Z. T.; Cao, G. H.; Zheng, Guo-qing

    2015-10-01

    We report 75As nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) studies on the superconductor Rb2Cr3As3 with a quasi-one-dimensional crystal structure. Below T ˜100 K , the spin-lattice relaxation rate (1 /T1 ) divided by temperature, 1 /T1T , increases upon cooling down to Tc=4.8 K , showing a Curie-Weiss-like temperature dependence. The Knight shift also increases with decreasing temperature. These results suggest ferromagnetic spin fluctuation. In the superconducting state, 1 /T1 decreases rapidly below Tc without a Hebel-Slichter peak, and follows a T5 variation below T ˜3 K , which points to unconventional superconductivity with point nodes in the gap function.

  7. Sample-to-sample fluctuations of the overlap distributions in the three-dimensional Edwards-Anderson spin glass

    NASA Astrophysics Data System (ADS)

    Baños, R. A.; Cruz, A.; Fernandez, L. A.; Gil-Narvion, J. M.; Gordillo-Guerrero, A.; Guidetti, M.; Iñiguez, D.; Maiorano, A.; Mantovani, F.; Marinari, E.; Martin-Mayor, V.; Monforte-Garcia, J.; Muñoz Sudupe, A.; Navarro, D.; Parisi, G.; Perez-Gaviro, S.; Ricci-Tersenghi, F.; Ruiz-Lorenzo, J. J.; Schifano, S. F.; Seoane, B.; Tarancón, A.; Tripiccione, R.; Yllanes, D.

    2011-11-01

    We study the sample-to-sample fluctuations of the overlap probability densities from large-scale equilibrium simulations of the three-dimensional Edwards-Anderson spin glass below the critical temperature. Ultrametricity, stochastic stability, and overlap equivalence impose constraints on the moments of the overlap probability densities that can be tested against numerical data. We found small deviations from the Ghirlanda-Guerra predictions, which get smaller as system size increases. We also focus on the shape of the overlap distribution, comparing the numerical data to a mean-field-like prediction in which finite-size effects are taken into account by substituting delta functions with broad peaks.

  8. Dynamic nuclear polarization and Hanle effect in (In,Ga)As/GaAs quantum dots. Role of nuclear spin fluctuations

    SciTech Connect

    Gerlovin, I. Ya.; Cherbunin, R. V.; Ignatiev, I. V.; Kuznetsova, M. S.; Verbin, S. Yu.; Flisinski, K.; Bayer, M.; Reuter, D.; Wieck, A. D.; Yakovlev, D. R.

    2013-12-04

    The degree of circular polarization of photoluminescence of (In,Ga)As quantum dots as a function of magnetic field applied perpendicular to the optical axis (Hanle effect) is experimentally studied. The measurements have been performed at various regimes of the optical excitation modulation. The analysis of experimental data has been performed in the framework of a vector model of regular nuclear spin polarization and its fluctuations. The analysis allowed us to evaluate the magnitude of nuclear polarization and its dynamics at the experimental conditions used.

  9. Anomalous effect of disorder on spin fluctuations in non-centrosymmetric superconductors

    NASA Astrophysics Data System (ADS)

    Edelstein, Victor M.

    2008-09-01

    The spin susceptibility tensor χsij(T) of an impure superconductor (SC) with broken mirror symmetry has been evaluated and a great effect of impurity scattering has been shown. As opposed to conventional singlet superconductors, where the ordinary impurity scattering is known to have no effect on χs(T) , the spin susceptibility of a polar symmetry superconductor with s -wave pairing can be isotropic and equal to its value in the normal state in the “dirty” limit Tcτ≪1 , while the superconductor stays in a full-gap state. The effect is bound up with spin-flip transitions which accompany the electron scattering in conductors with the band spin-orbit coupling.

  10. Effects of thermal and quantum fluctuations on the phase diagram of a spin-1 {sup 87}Rb Bose-Einstein condensate

    SciTech Connect

    Phuc, Nguyen Thanh; Kawaguchi, Yuki; Ueda, Masahito

    2011-10-15

    We investigate the effects of thermal and quantum fluctuations on the phase diagram of a spin-1 {sup 87}Rb Bose-Einstein condensate (BEC) under the quadratic Zeeman effect. Due to the large ratio of spin-independent to spin-dependent interactions of {sup 87}Rb atoms, the effect of noncondensed atoms on the condensate is much more significant than that in scalar BECs. We find that the condensate and spontaneous magnetization emerge at different temperatures when the ground state is in the broken-axisymmetry phase. In this phase, a magnetized condensate induces spin coherence of noncondensed atoms in different magnetic sublevels, resulting in temperature-dependent magnetization of the noncondensate. We also examine the effect of quantum fluctuations on the order parameter at absolute zero and find that the ground-state phase diagram is significantly altered by quantum depletion.

  11. Short-range correlations and persistent spin fluctuations in the undistorted kagome lattice Ising antiferromagnet Co3Mg(OH)6Cl2

    NASA Astrophysics Data System (ADS)

    Fujihala, M.; Zheng, X. G.; Oohara, Y.; Morodomi, H.; Kawae, T.; Matsuo, Akira; Kindo, Koichi

    2012-01-01

    Spin fluctuations and spin-liquid behaviors of frustrated kagome antiferromagnets have received intense recent attention. Although most severe frustration was predicted for an Ising kagome antiferromagnet, a real material system of undistorted kagome lattice has not been found so far. Here we report the frustrated magnetism of a new Ising kagome antiferromagnet, MgCo3(OH)6Cl2, which can be viewed as a Co version of the intensively researched quantum kagome antiferromagnet of Herbertsmithite ZnCu3(OH)6Cl2. Experiments of magnetization, heat capacity, μSR, and neutron scattering demonstrated a partially frozen state with persistent spin fluctuations below around T = 2.7 K. The present study has provided a real material system to study the Ising spin behaviors on undistorted kagome lattice.

  12. High T_{c} via Spin Fluctuations from Incipient Bands: Application to Monolayers and Intercalates of FeSe.

    PubMed

    Linscheid, A; Maiti, S; Wang, Y; Johnston, S; Hirschfeld, P J

    2016-08-12

    We investigate superconductivity in a two-band system with an electronlike and a holelike band, where one of the bands is away from the Fermi level (or "incipient"). We argue that the incipient band contributes significantly to spin-fluctuation pairing in the strong coupling limit where the system is close to a magnetic instability and can lead to a large T_{c}. In this case, T_{c} is limited by a competition between the frequency range of the coupling (set by an isolated paramagnon) and the coupling strength itself, such that a domelike T_{c} dependence on the incipient band position is obtained. The coupling of electrons to phonons is found to further enhance T_{c}. The results are discussed in the context of experiments on monolayers and intercalates of FeSe. PMID:27563992

  13. High Tc via Spin Fluctuations from Incipient Bands: Application to Monolayers and Intercalates of FeSe

    NASA Astrophysics Data System (ADS)

    Linscheid, A.; Maiti, S.; Wang, Y.; Johnston, S.; Hirschfeld, P. J.

    2016-08-01

    We investigate superconductivity in a two-band system with an electronlike and a holelike band, where one of the bands is away from the Fermi level (or "incipient"). We argue that the incipient band contributes significantly to spin-fluctuation pairing in the strong coupling limit where the system is close to a magnetic instability and can lead to a large Tc. In this case, Tc is limited by a competition between the frequency range of the coupling (set by an isolated paramagnon) and the coupling strength itself, such that a domelike Tc dependence on the incipient band position is obtained. The coupling of electrons to phonons is found to further enhance Tc. The results are discussed in the context of experiments on monolayers and intercalates of FeSe.

  14. NMR study of spin fluctuations and superconductivity in LaFeAsO1-xHx

    NASA Astrophysics Data System (ADS)

    Fujiwara, Naoki; Sakurai, Ryosuke; Iimura, Soushi; Matsuishi, Satoru; Hosono, Hideo; Yamakawa, Yoichi; Kontani, Hiroshi

    2013-03-01

    We have performed NMR measurements in LaFeAsO1-xHx, an isomorphic compound of LaFeAsO1-xFx. LaFeAsO1-xHx is most recently known for having double superconducting (SC) domes on H doping. LaFeAsO1-xHx is an electron- doped system, and protons act as H-1 as well as F-1. The first SC dome is very similar between F and H doping, suggesting that H doping supplies the same amount of electrons as F doping. Interestingly, an excess amount of H up to x=0.5 can be replaced with O2-. In the H-overdoped regime (x > 0 . 2), LaFeAsO1-xHx undergoes the second superconducting state. We measured the relaxation rate of LaFeAsO1-xHx for x=0.2 and 0.4, and fond an anomalous electronic state; spin fluctuations measured from 1 /T1 T is enhanced with increasing the doping level from x = 0 . 2 to 0.4. The enhancement of spin fluctuations with increasing carrier doping is a new phenomenon that has not observed in LaFeAsO1-xFx in which the upper limit of the doping level is at most x = 0 . 2 . We will discuss the phenomenon in relation to superconductivity. Grant (KAKENHI 23340101) from the Ministry of Education, Sports and Science, Japan

  15. Unusual strong spin-fluctuation effects around the critical pressure of the itinerant Ising-type ferromagnet URhAl

    NASA Astrophysics Data System (ADS)

    Shimizu, Yusei; Braithwaite, Daniel; Salce, Bernard; Combier, Tristan; Aoki, Dai; Hering, Eduardo N.; Ramos, Scheilla M.; Flouquet, Jacques

    2015-03-01

    Resistivity measurements were performed for the itinerant Ising-type ferromagnet URhAl at temperatures down to 40 mK under high pressure up to 7.5 GPa, using single crystals. We found that the critical pressure of the Curie temperature exists at around Pc˜ 5.2 GPa. Near Pc, the A coefficient of the A T2 Fermi-liquid resistivity term below T* is largely enhanced with a maximum around 5.2-5.5 GPa. Above Pc, the exponent of the resistivity ρ (T ) deviates from 2. At Pc, it is close to n =5 /3 , which is expected by the theory of three-dimensional ferromagnetic spin fluctuations for a second-order quantum-critical point (QCP). However, TC(P ) disappears as a first-order phase transition, and the critical behavior of resistivity in URhAl cannot be explained by the theory of a second-order QCP. The first-order nature of the phase transition is weak, and the electron system in URhAl is still dominated by the spin fluctuation at low temperature. With increasing pressure, the non-Fermi-liquid behavior is observed in higher fields. Magnetic field studies point out a ferromagnetic wing structure with a tricritical point (TCP) at ˜4.8 -4.9 GPa in URhAl. One open possibility is that the switch from the ferromagnetic to the paramagnetic states does not occur simply but an intermediate state arises below the TCP as suggested theoretically recently. Quite generally, if a drastic Fermi-surface change occurs through Pc, the nature of the interaction itself may change and lead to the observed unconventional behavior.

  16. Pressure dependence of spin fluctuations in metallic glasses Ni sub 25 Zr sub 75 and Fe sub 100 minus x Zr sub x ( x =75,80)

    SciTech Connect

    Hamed, F.; Razavi, F.S.; Zaleski, H.; Bose, S.K. )

    1991-02-01

    The superconducting transition temperature {ital T}{sub {ital c}} of metallic glasses Fe{sub 20}Zr{sub 80}, Fe{sub 25}Zr{sub 75}, and Cu{sub 25}Zr{sub 75} were measured under quasihydrostatic pressure up to 10 GPa. The volume (pressure) dependence of the electron-phonon coupling parameter, {lambda}{sub {ital e}-ph}, for Cu{sub 25}Zr{sub 75} was calculated using the McMillan equation. Using this volume dependence of {lambda}{sub {ital e}-ph} and the modified McMillan equation, which incorporates spin fluctuations, we determined the volume dependence of the spin-fluctuation parameter, {lambda}{sub SF}, in Ni{sub 25}Zr{sub 75} and Fe{sub 100{minus}{ital x}}Zr{sub {ital x}} ({ital x}=80, 75). It was found that with increasing pressure spin fluctuations are suppressed at a faster rate in Fe{sub 100{minus}{ital x}}Zr{sub {ital x}} as the Fe concentration is increased. The rate of suppression of spin fluctuations with pressure was also found to be higher in the Fe-Zr glasses than in Ni-Zr glasses of similar composition.

  17. Numerical study of spin relaxation by thermal fluctuation: Effect of shape anisotropy

    SciTech Connect

    Lee, K. J.; Park, N. Y.; Lee, T. D.

    2001-06-01

    Effects of the shape anisotropy on the thermally activated spin relaxation have been investigated using the stochastic Landau{endash}Lifshitz{endash}Gilbert equation. The relaxation times of a noninteracting particle and a thin film were compared with each other. In a noninteracting particle, the relaxation time largely increased with the shape anisotropy when the damping constant was smaller than a certain critical value. In this study, the critical damping constant was 0.02. However, the effect of the shape anisotropy on the energy barrier was negligible in a thin film. All of these results can be explained from the effect of magnetostatic interaction that is enhanced by precession motion at low damping constant. {copyright} 2001 American Institute of Physics.

  18. Influence of thermal fluctuations on the emission linewidth in MgO-based spin transfer oscillators

    NASA Astrophysics Data System (ADS)

    Sierra, J. F.; Quinsat, M.; Garcia-Sanchez, F.; Ebels, U.; Joumard, I.; Jenkins, A. S.; Dieny, B.; Cyrille, M.-C.; Zeltser, A.; Katine, J. A.

    2012-08-01

    The temperature dependence of the microwave emission linewidth Δf, the amplitude-phase coupling parameter ν, and the amplitude relaxation rate Γp were investigated experimentally for tunnel junction spin-transfer-oscillators. A linear increase of Δf and unexpectedly of Γp with temperature is observed, giving a ratio 2πΔf/Γp close to one. Analytical evaluation of the phase variance confirms that for this ratio the temperature dependence of Δf is linear and that in this temperature range Δf is enhanced by the amplitude-phase coupling. This is not changed when taking the temperature dependence of Γp into account, the origin of which remains to be elucidated.

  19. Qplus AFM driven nanostencil.

    PubMed

    Grévin, B; Fakir, M; Hayton, J; Brun, M; Demadrille, R; Faure-Vincent, J

    2011-06-01

    We describe the development of a novel setup, in which large stencils with suspended silicon nitride membranes are combined with atomic force microscopy (AFM) regulation by using tuning forks. This system offers the possibility to perform separate AFM and nanostencil operations, as well as combined modes when using stencil chips with integrated tips. The flexibility and performances are demonstrated through a series of examples, including wide AFM scans in closed loop mode, probe positioning repeatability of a few tens of nanometer, simultaneous evaporation of large (several hundred of micron square) and nanoscopic metals and fullerene patterns in static, multistep, and dynamic modes. This approach paves the way for further developments, as it fully combines the advantages of conventional stenciling with the ones of an AFM driven shadow mask. PMID:21721701

  20. Critical Casimir force and its fluctuations in lattice spin models: exact and Monte Carlo results.

    PubMed

    Dantchev, Daniel; Krech, Michael

    2004-04-01

    We present general arguments and construct a stress tensor operator for finite lattice spin models. The average value of this operator gives the Casimir force of the system close to the bulk critical temperature T(c). We verify our arguments via exact results for the force in the two-dimensional Ising model, d -dimensional Gaussian, and mean spherical model with 2 = k(b) T(c) (d-1)Delta/ (L/a)(d), where L is the distance between the plates and Delta is the (universal) Casimir amplitude. PMID:15169081

  1. Spin fluctuations and superconductivity in a 3D tight-binding model for BaFe2As2

    SciTech Connect

    Graser, Siegfried; Kemper, Alexander F; Maier, Thomas A; Cheng, Hai-Ping; Hirschfeld, Peter; Scalapino, Douglas

    2010-01-01

    Despite the wealth of experimental data on the Fe-pnictide compounds of the KFe2As2 type, K=Ba, Ca, or Sr, the main theoretical work based on multiorbital tight-binding models has been restricted so far to the study of the related 1111 compounds. This can be ascribed to the more three-dimensional electronic structure found by ab initio calculations for the 122 materials, making this system less amenable to model development. In addition, the more complicated Brillouin zone BZ of the body-centered tetragonal symmetry does not allow a straightforward unfolding of the electronic band structure into an effective 1Fe/unit cell BZ. Here we present an effective five-orbital tight-binding fit of the full density functional theory band structure for BaFe2As2 including the kz dispersions. We compare the five-orbital spin fluctuation model to one previously studied for LaOFeAs and calculate the random-phase approximation enhanced susceptibility. Using the fluctuation ex- change approximation to determine the leading pairing instability, we then examine the differences between a strictly two-dimensional model calculation over a single kz cut of the BZ and a completely three-dimensional approach. We find pairing states quite similar to the 1111 materials, with generic quasi-isotropic pairing on the hole sheets and nodal states on the electron sheets at kz=0, which however are gapped as the system is hole doped. On the other hand, a substantial kz dependence of the order parameter remains, with most of the pairing strength deriving from processes near kz=?. These states exhibit a tendency for an enhanced anisotropy on the hole sheets and a reduced anisotropy on the electron sheets near the top of the BZ.

  2. Evidence for phonon-like charge and spin fluctuations from an analysis of angle-resolved photoemission spectra of La2-xSrxCuO4 superconductors

    NASA Astrophysics Data System (ADS)

    Mazza, G.; Grilli, M.; Di Castro, C.; Caprara, S.

    2013-01-01

    In high temperature superconductors we provide evidence of spin and mixed phonon-charge collective modes as mediators of the effective electron-electron interaction and suggestive of a charge and spin density wave instability competing with superconductivity. Indeed, we show that the so-called kinks and waterfalls observed in angle-resolved photoemission spectra of La2-xSrxCuO4, a prototypical high-Tc superconducting cuprate, are due to the coupling of quasiparticles with two distinct nearly critical collective modes with finite characteristic wave vectors, typical of charge and spin fluctuations. The simultaneous presence of these two modes reconciles the long standing dichotomy whether kinks are due to phonons or spin waves.

  3. Tuning the metal-insulator transition in NdNiO3 heterostructures via Fermi surface instability and spin fluctuations

    NASA Astrophysics Data System (ADS)

    Dhaka, R. S.; Das, Tanmoy; Plumb, N. C.; Ristic, Z.; Kong, W.; Matt, C. E.; Xu, N.; Dolui, Kapildeb; Razzoli, E.; Medarde, M.; Patthey, L.; Shi, M.; Radović, M.; Mesot, Joël

    2015-07-01

    We employed in situ pulsed laser deposition (PLD) and angle-resolved photoemission spectroscopy (ARPES) to investigate the mechanism of the metal-insulator transition (MIT) in NdNiO3 (NNO) thin films, grown on NdGaO3(110) and LaAlO3(100) substrates. In the metallic phase, we observe three-dimensional hole and electron Fermi surface (FS) pockets formed from strongly renormalized bands with well-defined quasiparticles. Upon cooling across the MIT in NNO/NGO sample, the quasiparticles lose coherence via a spectral weight transfer from near the Fermi level to localized states forming at higher binding energies. In the case of NNO/LAO, the bands are apparently shifted upward with an additional holelike pocket forming at the corner of the Brillouin zone. We find that the renormalization effects are strongly anisotropic and are stronger in NNO/NGO than NNO/LAO. Our study reveals that substrate-induced strain tunes the crystal field splitting, which changes the FS properties, nesting conditions, and spin-fluctuation strength, and thereby controls the MIT via the formation of an electronic order parameter with QAF˜(1 /4 ,1 /4 ,1 /4 ±δ ) .

  4. Charge-spin-orbital fluctuations in mixed valence spinels: Comparative study of AlV2O4 and LiV2O4

    NASA Astrophysics Data System (ADS)

    Uehara, Amane; Shinaoka, Hiroshi; Motome, Yukitoshi

    2015-11-01

    Mixed valence spinels provide a fertile playground for the interplay between charge, spin, and orbital degrees of freedom in strongly correlated electrons on a geometrically frustrated lattice. Among them, AlV2O4 and LiV2O4 exhibit contrasting and puzzling behavior: self-organization of seven-site clusters and heavy fermion behavior. We theoretically perform a comparative study of charge-spin-orbital fluctuations in these two compounds, on the basis of the multiband Hubbard models constructed by using the maximally localized Wannier functions obtained from the ab initio band calculations. Performing the eigenmode analysis of the generalized susceptibility, we find that, in AlV2O4 , the relevant fluctuation appears in the charge sector in σ -bonding type orbitals. In contrast, in LiV2O4 , optical-type spin fluctuations in the a1 g orbital are enhanced at an incommensurate wave number at low temperature. Implications from the comparative study are discussed for the contrasting behavior, including the metal-insulator transition under pressure in LiV2O4 .

  5. 2012 IUPAP C10 Young Scientist Prize on the Structure and Dynamics of Condensed Matter Lecture: Spin Fluctuations and Pairing in Fe-based Superconductors

    NASA Astrophysics Data System (ADS)

    Christianson, A. D.

    2012-02-01

    The origin of superconductivity in the Fe-based superconductors, like that in other unconventional superconductors, remains shrouded in mystery. How the pairing bosons emerge either due to or in spite of the strong magnetic interactions found in the Fe-based superconductors is one of the most thoroughly investigated questions in the field. A prominent example of the interplay of superconductivity and magnetism is the dramatic shift of spectral weight from the low energy spin excitations to an energy which is related to the superconducting gap resulting in a peak in the spin excitation spectrum localized in both momentum and energy which occurs at the onset of superconductivity. The appearance of the new peak in the spin excitation spectrum below the superconducting transition temperature is referred to as s spin resonance and is most commonly interpreted as indicating a sign change of the superconducting order parameter on different portions of the Fermi surface and thus is consistent with an extended s-wave or s± pairing symmetry in many Fe-based superconductors. We will review the observations and implications of the spin resonance across the Fe-based superconductors. In particular we will examine the relationship between the resonance energy and the superconducting transition temperature as a function of chemical doping and pressure. While the spin resonance provides important information about pairing symmetry, there does not appear to be sufficient spectral to explain the pairing strength. Thus the remainder of the spin excitation spectrum must be examined to determine if spin fluctuations are ultimately responsible for pairing in the Fe-based materials. Consequently, we will discuss in detail the way in which the spin excitations evolve from the nonsuperconducting compounds to their superconducting relatives as a function of chemical doping.

  6. Quadrupolar Spin Orders in FeSe

    NASA Astrophysics Data System (ADS)

    Wang, Zhentao; Nevidomskyy, Andriy

    Motivated by the absence of long-range magnetic order and the strong spin fluctuations observed in the Fe-based superconductor FeSe, we study spin-1 model on a square lattice up to next-nearest neighbor Heisenberg and biquadratic spin exchanges. The zero-temperature variational phase diagram gives the conventional antiferromagnetic order and also more exotic quadrupolar spin phases. These quadrupolar phases do not host long-range magnetic order and preserve time-reversal symmetry, but break the spin SU(2) symmetry. In particular, we observe a robust ferroquadrupolar order (FQ) in immediate proximity to the columnar AFM phase. We envision that FeSe may be positioned within the FQ phase close to the phase boundary. Using the flavor-wave technique, we calculate the structure factor inside the FQ phase and find a Goldstone mode emerging from Q = (0 , 0) , which however bears zero spectral weight at ω = 0 due to time reversal symmetry. At the same time, we observe strong spin fluctuations near (π , 0) / (0 , π) , which agrees with the recent neutron scattering experiments. Further, we calculate the higher order interactions between the (π , 0) and (0 , π) spin fluctuations inside the FQ phase, which may shed light on the C4 symmetry breaking in the nematic phase of FeSe.

  7. Enhanced superconducting transition temperature in hyper-interlayer-expanded FeSe despite the suppressed electronic nematic order and spin fluctuations

    NASA Astrophysics Data System (ADS)

    Hrovat, Matevž Majcen; Jeglič, Peter; Klanjšek, Martin; Hatakeda, Takehiro; Noji, Takashi; Tanabe, Yoichi; Urata, Takahiro; Huynh, Khuong K.; Koike, Yoji; Tanigaki, Katsumi; Arčon, Denis

    2015-09-01

    The superconducting critical temperature, Tc, of FeSe can be dramatically enhanced by intercalation of a molecular spacer layer. Here we report on a 77Se,7Li , and 1H nuclear magnetic resonance (NMR) study of the powdered hyper-interlayer-expanded Lix(C2H8N2) yFe2 -zSe2 with a nearly optimal Tc=45 K. The absence of any shift in the 7Li and 1H NMR spectra indicates a complete decoupling of interlayer units from the conduction electrons in FeSe layers, whereas nearly temperature-independent 7Li and 1H spin-lattice relaxation rates are consistent with the non-negligible concentration of Fe impurities present in the insulating interlayer space. On the other hand, the strong temperature dependence of 77Se NMR shift and spin-lattice relaxation rate, 1 /77T1 , is attributed to the holelike bands close to the Fermi energy. 1 /77T1 shows no additional anisotropy that would account for the onset of electronic nematic order down to Tc. Similarly, no enhancement in 1 /77T1 due to the spin fluctuations could be found in the normal state. Yet, a characteristic power-law dependence 1 /77T1∝T4.5 still complies with the Cooper pairing mediated by spin fluctuations.

  8. Spatial modulation of low-frequency spin fluctuations in hole-doped La{sub 2}CuO{sub 4}

    SciTech Connect

    Yamada, K.; Lee, C.H.; Wada, J.; Kurahashi, K.; Kimura, H.; Endoh, Y.; Hosoya, S.; Shirane, G.; Birgeneau, R.J.; Kastner, M.A.

    1996-12-01

    Systematic neutron scattering measurements have been performed on the Sr-doped La(2-x)Sr(x) CuO4 to study the doping dependence of spatially modulated dynamical spin correlations or so-called incommensurate spin fluctuations. The modulated spin correlations appears beyond x approx. 0.05 which is close to the lower boundary of the superconducting phase. First evidence was observed for the linear relation between the degree of spatial modulation or the incommensurability delta(x) and the maximum Tc at x. We present a universal curve for delta(x) by adding data from other La2CuO4 systems such as oxygen-doped superconductors, oxygen-reduced or Zn-substituted non-superconductors and La(1.6-x)Nd(0.4)Sr(x)CuO4.

  9. Neutron-scattering measurements of spin excitations in LaFeAsO and Ba(Fe0.953Co0.047)2As2: Evidence for a sharp enhancement of spin fluctuations by nematic order [Sharp enhancement of spin fluctuations by nematic order in iron pnictides

    DOE PAGESBeta

    Zhang, Qiang; Fernandes, Rafael M.; Lamsal, Jagat; Yan, Jiaqiang; Chi, Songxue; Tucker, Gregory S.; Pratt, Daniel K.; Lynn, Jeffrey W.; McCallum, R. W.; Canfield, Paul C.; et al

    2015-02-04

    Inelastic neutron scattering is employed to investigate the impact of electronic nematic order on the magnetic spectra of LaFeAsO and Ba(Fe0.953Co0.047)2As2. These materials are ideal to study the paramagnetic-nematic state, since the nematic order, signaled by the tetragonal-to-orthorhombic transition at TS, sets in well above the stripe antiferromagnetic ordering at TN. We find that the temperature-dependent dynamic susceptibility displays an anomaly at TS followed by a sharp enhancement in the spin-spin correlation length, revealing a strong feedback effect of nematic order on the low-energy magnetic spectrum. As a result, our findings can be consistently described by a model that attributesmore » the structural or nematic transition to magnetic fluctuations, and unveils the key role played by nematic order in promoting the long-range stripe antiferromagnetic order in iron pnictides.« less

  10. Transformation of spin current by antiferromagnetic insulators

    NASA Astrophysics Data System (ADS)

    Khymyn, Roman; Lisenkov, Ivan; Tiberkevich, Vasil S.; Slavin, Andrei N.; Ivanov, Boris A.

    2016-06-01

    It is demonstrated theoretically that a thin layer of an anisotropic antiferromagnetic (AFM) insulator can effectively conduct spin current through the excitation of a pair of evanescent AFM spin wave modes. The spin current flowing through the AFM is not conserved due to the interaction between the excited AFM modes and the AFM lattice and, depending on the excitation conditions, can be either attenuated or enhanced. When the phase difference between the excited evanescent modes is close to π /2 , there is an optimum AFM thickness for which the output spin current reaches a maximum, which can significantly exceed the magnitude of the input spin current. The spin current transfer through the AFM depends on the ambient temperature and increases substantially when temperature approaches the Néel temperature of the AFM layer.

  11. PAC (perturbed angular correlation) perturbation factor for spin 5/2 nuclei subject to a rapidly fluctuation EFC (electric field gradient)

    SciTech Connect

    Evenson, W.E. . Dept. of Physics and Astronomy); McKale, A.G.; Su, H.T.; Gardner, J.A. . Dept. of Physics)

    1990-01-01

    We report numerical computations of the PAC perturbation factor G{sub 2}(t) for spin 5/2 nuclei subject to a static EFG symmetric about the z-axis and an additional axially-symmetric EFG hose symmetry axis fluctuates randomly among the x,y,z directions. For sufficiently large fluctuation rates, the numerical results are described by the expression for the static interaction alone with the addition of relaxation terms. Results of applying this model to {sup 111}Cd TDPAC measurements on tetragonal ZrO{sub 2} are described briefly. The model allows one to evaluate the probability that oxygen vacancies are trapped, the energy of association of vacancy-metal pairs, and the vacancy activation energy of motion. 4 refs., 3 figs.

  12. Eliashberg analysis of optical spectra reveals a strong coupling of charge carriers to spin fluctuations in doped iron-pnictide BaFe2As2 superconductors

    NASA Astrophysics Data System (ADS)

    Wu, D.; Barišić, N.; Dressel, M.; Cao, G. H.; Xu, Z.-A.; Schachinger, E.; Carbotte, J. P.

    2010-10-01

    The temperature and frequency dependences of the optical conductivity of Co-doped BaFe2As2 are analyzed and the electron-boson spectral density α2F(ω) are extracted using Eliashberg’s formalism. For the normal state at T=30K there is a relatively sharp and large peak around 10 meV and a secondary smaller and broader peak centered around 50 meV with the spectrum extending to high energies beyond the maximum phonon energy. The electron-boson mass enhancement parameter is 4.4, a value more consistent with spin-fluctuation scattering rather than with phonons. In addition the spectrum is found to evolve with temperature toward a less structured background at higher energies as in the spin susceptibility.

  13. First-principles modeling of longitudinal spin fluctuations in itinerant electron antiferromagnets: High Néel temperature in the V3Al alloy

    NASA Astrophysics Data System (ADS)

    Khmelevskyi, Sergii

    2016-07-01

    The V3Al alloy with D O3 crystal structure belongs to the family of the very few metallic materials that exhibit a magnetically ordered state with a high ordering temperature (˜600 K) and consist only of nonmagnetic elements. We show that, similarly to the ferromagnetism in the fcc Ni (with ordering temperature at about 630 K), the antiferromagnetism in V3Al has itinerant character, and the high value of the Néel temperature is the result of the strong longitudinal spin fluctuations in the paramagnetic state. In order to develop an ab initio-based theory of the magnetic ordering at finite temperatures, we employ an effective magnetic Heisenberg-like Hamiltonian with varying values of the on-site magnetic moments. Using a set of approximations we map this model onto the results of the first-principle-based disordered local moment formalism and the magnetoforce theorem applied in the framework of the Korringa-Kohn-Rostoker method. Our high-temperature approach is shown to describe the experimental Néel temperature of V3Al very well and thus underlines the importance of the longitudinal spin-fluctuation mechanism of formation of the vanadium magnetic moment at high temperatures.

  14. Spin Fluctuation Effect on Electrical Resistivity of La0.8Ca0.2MnO3 Manganite Nanoparticles

    NASA Astrophysics Data System (ADS)

    Choudhary, K. K.

    2015-04-01

    The electrical resistivity ρ(T) of La0.8C0.2MnO3 manganite nanoparticles (particle size 18 nm and 70 nm) significantly depends on temperature and size of nanoparticles. ρ(T) of 70 nm La0.8C0.2MnO3 manganite exhibits metallic phase in low temperature regime (T < 250 K), develops a maxima near 250 K and decrease with T at high temperatures (250 K < T < 300 K). However, the ρ(T) of 18 nm La0.8C0.2MnO3 manganite shows insulating phase in overall temperature regime, where resistivity decrease with temperature. The resistivity in metallic phase is theoretically analyzed by considering the strong spin fluctuations effect which is modelled using Drude-Lorentz type function. In addition to the spin fluctuation-induced contribution the electron-phonon and electron-electron ρe-e(T) = BT2 contributions are also incorporated for complete understanding of experimental data. The contributions to the resistivity by inherent acoustic phonons (ρac) as well as high frequency optical phonons (ρop) were estimated using Bloch-Gruneisen [BG] model of resistivity. It is observed that the resistivity contribution due to electron-electron interaction shows typical quadratic temperature dependence. Resistivity in Semiconducting/insulating phase is discussed with small polaron conduction (SPC) model. Finally the theoretically calculated resistivity compared with experimental data which found consistent in wide range of temperature.

  15. Neutron-scattering measurements of spin excitations in LaFeAsO and Ba(Fe0.953Co0.047)2As2: Evidence for a sharp enhancement of spin fluctuations by nematic order [Sharp enhancement of spin fluctuations by nematic order in iron pnictides

    SciTech Connect

    Zhang, Qiang; Fernandes, Rafael M.; Lamsal, Jagat; Yan, Jiaqiang; Chi, Songxue; Tucker, Gregory S.; Pratt, Daniel K.; Lynn, Jeffrey W.; McCallum, R. W.; Canfield, Paul C.; Lograsso, Thomas A.; Goldman, Alan I.; Vaknin, David; McQueeney, Robert J.

    2015-02-04

    Inelastic neutron scattering is employed to investigate the impact of electronic nematic order on the magnetic spectra of LaFeAsO and Ba(Fe0.953Co0.047)2As2. These materials are ideal to study the paramagnetic-nematic state, since the nematic order, signaled by the tetragonal-to-orthorhombic transition at TS, sets in well above the stripe antiferromagnetic ordering at TN. We find that the temperature-dependent dynamic susceptibility displays an anomaly at TS followed by a sharp enhancement in the spin-spin correlation length, revealing a strong feedback effect of nematic order on the low-energy magnetic spectrum. As a result, our findings can be consistently described by a model that attributes the structural or nematic transition to magnetic fluctuations, and unveils the key role played by nematic order in promoting the long-range stripe antiferromagnetic order in iron pnictides.

  16. Spin and isospin fluctuations in heavy ion collisions and their dependence upon the shape of the dinuclear complex

    SciTech Connect

    Moretto, L.G.

    1980-08-01

    The relevance of higher multipoles of giant isovector modes in the charge distribution of deep inelastic fragments is discussed and found to depend strongly on mass asymmetry. The sources of angular momentum fluctuations are investigated. Quantal effects are considered as well as effects arising from non-equilibrium and equilibrium statistical fluctuations. A model based upon equilibrium statistical mechanics is considered in detail, and used to predict both 2nd moments of the angular momentum distributions and the angular momentum misalignment. Analytical expressions are derived to calculate the angular distributions of sequentially emitted particles, fission fragments, as well as gamma rays in terms of the angular momentum misalignment. Recent data on the angular distributions of sequential alphas, fission and gamma rays are analyzed in terms of the model. 29 figures, 1 table.

  17. Absence of low energy magnetic spin-fluctuations in isovalently and aliovalently doped LaCo2B2 superconducting compounds.

    PubMed

    Majumder, M; Ghoshray, A; Khuntia, P; Mazumdar, C; Poddar, A; Baenitz, M; Ghoshray, K

    2016-09-01

    Magnetization, resistivity and (11)B, (59)Co NMR measurements have been performed on the Pauli paramagnet [Formula: see text], and the superconductors [Formula: see text] ([Formula: see text] K) and [Formula: see text] ([Formula: see text] K). The site selective NMR experiment reveals the multiband nature of the Fermi surface in these systems. The temperature independent Knight shift and 1/T 1 T clearly indicate the absence of correlated low energy magnetic spin-fluctuations in the normal state, which is in contrast to other Fe-based pnictides. The density of states (DOS) of Co 3d electrons has been enhanced in superconducting [Formula: see text] and [Formula: see text] with respect to the non superconducting reference compound [Formula: see text]. The occurrence of superconductivity is related to the DOS enhancement. PMID:27355521

  18. Spectroscopic Evidence for Strong Quantum Spin Fluctuations with Itinerant Character in YFe2Ge2

    SciTech Connect

    Sirica, N.; Bondino, F.; Nappini, S.; Piz, I.; Poudel, L.; Christianson, Andrew D.; Mandrus, D.; Singh, David J; Mannella, Norman

    2015-03-04

    We report x-ray absorption and photoemission spectroscopy of the electronic structure in the normal state of metallic YFe2Ge2. The data reveal evidence for large fluctuating spin moments on the Fe sites, as indicated by exchange multiplets appearing in the Fe 3s core-level photoemission spectra, even though the compound does not show magnetic order. The magnitude of the multiplet splitting is comparable to that observed in the normal state of the Fe-pnictide superconductors. This shows a connection between YFe2Ge2 and the Fe-based superconductors even though it contains neither pnictogens nor chalcogens. Finally, the implication is that the chemical range of compounds showing at least one of the characteristic magnetic signatures of the Fe-based superconductors is broader than previously thought.

  19. Spin dynamics and two-dimensional correlations in the fcc antiferromagnetic Sr2YRuO6

    NASA Astrophysics Data System (ADS)

    Disseler, S. M.; Lynn, J. W.; Jardim, R. F.; Torikachvili, M. S.; Granado, E.

    2016-04-01

    The face-centered-cubic (fcc) lattice of Ru5 + spins in the double perovskite Sr2YRuO6 shows a delicate, three-dimensional antiferromagnetic (AFM) ground state composed of stacked square AFM layers. Inelastic neutron scattering data taken on this state reveal a gapped low-energy excitation band emerging from [001] with spin excitations extending to 8 meV. These magnetic excitations are modeled by a simple J1-J2 interaction scheme allowing quantitative comparisons with similar materials. At higher temperatures, the low-energy excitation spectrum is dominated by a quasielastic component associated with size fluctuations of two-dimensional AFM clusters that exhibit asymmetric correlations even at low temperatures. Thus, the fcc lattice in general and the double-perovskite structure in particular emerge as hosts of both two-dimensional and three-dimensional dynamics resulting from frustration.

  20. Disappearance of static magnetic order and evolution of spin fluctuations in Fe1+δSexTe1-x

    SciTech Connect

    Xu, Zhijun; Wen, Jinsheng; Xu, Guangyong; Jie, Qing; Lin, Zhiwei; Li, Qiang; Chi, Songxue; Singh, D. K.; Gu, Genda; Tranquada, John M.

    2010-09-29

    We report neutron-scattering studies on static magnetic orders and spin excitations in the Fe-based chalcogenide system Fev Se1+δ Te1-x with different Fe and Se compositions. Short-range static magnetic order with an in-plane wave vector near the (0.5,0) (using the two-Fe unit cell), together with strong low-energy magnetic excitations is found in all nonsuperconducting samples for Se doping up to 45%. When the static order disappears and bulk superconductivity emerges, the spectral weight of the magnetic excitations shifts to the region of reciprocal space near the in-plane wave vector (0.5, 0.5), corresponding to “collinear” spin correlations. Our results suggest that there is a strong correlation between superconductivity and the character of the magnetic order/fluctuations in this system. Excess Fe appears to be important for stabilizing the magnetic order that competes with superconductivity.

  1. Spin dynamics near a putative antiferromagnetic quantum critical point in Cu-substituted BaFe2As2 and its relation to high-temperature superconductivity

    DOE PAGESBeta

    Kim, M. G.; Wang, M.; Tucker, G. S.; Valdivia, P. N.; Abernathy, D. L.; Chi, Songxue; Christianson, A. D.; Aczel, A. A.; Hong, T.; Heitmann, T. W.; et al

    2015-12-02

    We present the results of elastic and inelastic neutron scattering measurements on nonsuperconducting Ba(Fe0.957Cu0.043)2As2, a composition close to a quantum critical point between antiferromagnetic (AFM) ordered and paramagnetic phases. By comparing these results with the spin fluctuations in the low-Cu composition as well as the parent compound BaFe2As2 and superconducting Ba(Fe1–xNix)2As2 compounds, we demonstrate that paramagnon-like spin fluctuations are evident in the antiferromagnetically ordered state of Ba(Fe0.957Cu0.043)2As2, which is distinct from the AFM-like spin fluctuations in the superconducting compounds. Our observations suggest that Cu substitution decouples the interaction between quasiparticles and the spin fluctuations. In addition, we show that themore » spin-spin correlation length ξ(T) increases rapidly as the temperature is lowered and find ω/T scaling behavior, the hallmark of quantum criticality, at an antiferromagnetic quantum critical point.« less

  2. Spin dynamics near a putative antiferromagnetic quantum critical point in Cu-substituted BaFe2As2 and its relation to high-temperature superconductivity

    NASA Astrophysics Data System (ADS)

    Kim, M. G.; Wang, M.; Tucker, G. S.; Valdivia, P. N.; Abernathy, D. L.; Chi, Songxue; Christianson, A. D.; Aczel, A. A.; Hong, T.; Heitmann, T. W.; Ran, S.; Canfield, P. C.; Bourret-Courchesne, E. D.; Kreyssig, A.; Lee, D. H.; Goldman, A. I.; McQueeney, R. J.; Birgeneau, R. J.

    2015-12-01

    We present the results of elastic and inelastic neutron scattering measurements on nonsuperconducting Ba (Fe 0.957Cu 0.043) 2As 2 , a composition close to a quantum critical point between antiferromagnetic (AFM) ordered and paramagnetic phases. By comparing these results with the spin fluctuations in the low-Cu composition as well as the parent compound BaFe2As2 and superconducting Ba (Fe1-xNix) 2As2 compounds, we demonstrate that paramagnon-like spin fluctuations are evident in the antiferromagnetically ordered state of Ba (Fe0.957Cu0.043)2As2 , which is distinct from the AFM-like spin fluctuations in the superconducting compounds. Our observations suggest that Cu substitution decouples the interaction between quasiparticles and the spin fluctuations. We also show that the spin-spin correlation length ξ (T ) increases rapidly as the temperature is lowered and find ω /T scaling behavior, the hallmark of quantum criticality, at an antiferromagnetic quantum critical point.

  3. Antiferromagnetic spin correlations and pseudogaplike behavior in Ca (Fe1-xCox) 2As2 studied by 75As nuclear magnetic resonance and anisotropic resistivity

    NASA Astrophysics Data System (ADS)

    Cui, J.; Roy, B.; Tanatar, M. A.; Ran, S.; Bud'ko, S. L.; Prozorov, R.; Canfield, P. C.; Furukawa, Y.

    2015-11-01

    We report 75As nuclear magnetic resonance (NMR) measurements of single-crystalline Ca (Fe1-xCox) 2As2 (x =0.023 , 0.028, 0.033, and 0.059) annealed at 350 °C for 7 days. From the observation of a characteristic shape of 75As NMR spectra in the stripe-type antiferromagnetic (AFM) state, as in the case of x =0 (TN=170 K), clear evidence for the commensurate AFM phase transition with the concomitant structural phase transition is observed in x =0.023 (TN=106 K) and x =0.028 (TN=53 K). Through the temperature dependence of the Knight shifts and the nuclear spin lattice relaxation rates (1 /T1 ), although stripe-type AFM spin fluctuations are realized in the paramagnetic state as in the case of other iron pnictide superconductors, we found a gradual decrease of the AFM spin fluctuations below a crossover temperature T* that was nearly independent of Co-substitution concentration, and it is attributed to a pseudogaplike behavior in the spin excitation spectra of these systems. The T* feature finds correlation with features in the temperature-dependent interplane resistivity, ρc(T ) , but not with the in-plane resistivity ρa(T ) . The temperature evolution of anisotropic stripe-type AFM spin fluctuations is tracked in the paramagnetic and pseudogap phases by the 1 /T1 data measured under magnetic fields parallel and perpendicular to the c axis. Based on our NMR data, we have added a pseudogaplike phase to the magnetic and electronic phase diagram of Ca (Fe1-xCox) 2As2 .

  4. Antiferromagnetic spin correlations and pseudogaplike behavior in Ca(Fe1-xCox)2As2 studied by 75As nuclear magnetic resonance and anisotropic resistivity

    DOE PAGESBeta

    Cui, J.; Roy, B.; Tanatar, M. A.; Ran, S.; Bud'ko, S. L.; Prozorov, R.; Canfield, P. C.; Furukawa, Y.

    2015-11-06

    We report 75As nuclear magnetic resonance (NMR) measurements of single-crystalline Ca(Fe1–xCox)2As2 (x=0.023, 0.028, 0.033, and 0.059) annealed at 350°C for 7 days. From the observation of a characteristic shape of 75As NMR spectra in the stripe-type antiferromagnetic (AFM) state, as in the case of x=0 (TN=170 K), clear evidence for the commensurate AFM phase transition with the concomitant structural phase transition is observed in x=0.023 (TN=106 K) and x=0.028 (TN=53 K). Through the temperature dependence of the Knight shifts and the nuclear spin lattice relaxation rates (1/T1), although stripe-type AFM spin fluctuations are realized in the paramagnetic state as inmore » the case of other iron pnictide superconductors, we found a gradual decrease of the AFM spin fluctuations below a crossover temperature T* that was nearly independent of Co-substitution concentration, and it is attributed to a pseudogaplike behavior in the spin excitation spectra of these systems. The T* feature finds correlation with features in the temperature-dependent interplane resistivity, ρc(T), but not with the in-plane resistivity ρa(T). The temperature evolution of anisotropic stripe-type AFM spin fluctuations is tracked in the paramagnetic and pseudogap phases by the 1/T1 data measured under magnetic fields parallel and perpendicular to the c axis. As a result, based on our NMR data, we have added a pseudogaplike phase to the magnetic and electronic phase diagram of Ca(Fe1–xCox)2As2.« less

  5. Inelastic Neutron Scattering Study of a Nonmagnetic Collapsed Tetragonal Phase in Nonsuperconducting CaFe2As2: Evidence of the Impact of Spin Fluctuations on Superconductivity in the Iron-Arsenide Compounds

    NASA Astrophysics Data System (ADS)

    Soh, J. H.; Tucker, G. S.; Pratt, D. K.; Abernathy, D. L.; Stone, M. B.; Ran, S.; Bud'ko, S. L.; Canfield, P. C.; Kreyssig, A.; McQueeney, R. J.; Goldman, A. I.

    2013-11-01

    The relationship between antiferromagnetic spin fluctuations and superconductivity has become a central topic of research in studies of superconductivity in the iron pnictides. We present unambiguous evidence of the absence of magnetic fluctuations in the nonsuperconducting collapsed tetragonal phase of CaFe2As2 via inelastic neutron scattering time-of-flight data, which is consistent with the view that spin fluctuations are a necessary ingredient for unconventional superconductivity in the iron pnictides. We demonstrate that the collapsed tetragonal phase of CaFe2As2 is nonmagnetic, and discuss this result in light of recent reports of high-temperature superconductivity in the collapsed tetragonal phase of closely related compounds.

  6. PREFACE: Non-contact AFM Non-contact AFM

    NASA Astrophysics Data System (ADS)

    Giessibl, Franz J.; Morita, Seizo

    2012-02-01

    This special issue is focussed on high resolution non-contact atomic force microscopy (AFM). Non-contact atomic force microscopy was established approximately 15 years ago as a tool to image conducting and insulating surfaces with atomic resolution. Since 1998, an annual international conference has taken place, and although the proceedings of these conferences are a useful source of information, several key developments warrant devoting a special issue to this subject. In the theoretic field, the possibility of supplementing established techniques such as scanning tunneling microscopy (STM) and Kelvin probe microscopy with atomically resolved force micrsoscopy poses many challenges in the calculation of contrast and contrast reversal. The surface science of insulators, self-assembled monolayers and adsorbates on insulators is a fruitful field for the application of non-contact AFM: several articles in this issue are devoted to these subjects. Atomic imaging and manipulation have been pioneered using STM, but because AFM allows the measurement of forces, AFM has had a profound impact in this field as well. Three-dimensional force spectroscopy has allowed many important insights into surface science. In this issue a combined 3D tunneling and force microscopy is introduced. Non-contact AFM typically uses frequency modulation to measure force gradients and was initially used mainly in a vacuum. As can be seen in this issue, frequency modulation is now also used in ambient conditions, allowing better spatial and force resolution. We thank all of the contributors for their time and efforts in making this special issue possible. We are also very grateful to the staff of IOP Publishing for handling the administrative aspects and for steering the refereeing process. Non-contact AFM contents Relation between the chemical force and the tunnelling current in atomic point contacts: a simple model Pavel Jelínek, Martin Ondrácek and Fernando Flores Theoretical simulation of

  7. Absence of low energy magnetic spin-fluctuations in isovalently and aliovalently doped LaCo2B2 superconducting compounds

    NASA Astrophysics Data System (ADS)

    Majumder, M.; Ghoshray, A.; Khuntia, P.; Mazumdar, C.; Poddar, A.; Baenitz, M.; Ghoshray, K.

    2016-09-01

    Magnetization, resistivity and 11B, 59Co NMR measurements have been performed on the Pauli paramagnet \\text{LaC}{{\\text{o}}2}{{\\text{B}}2} , and the superconductors \\text{L}{{\\text{a}}0.9}{{\\text{Y}}0.1}\\text{C}{{\\text{o}}2}{{\\text{B}}2} ({{T}\\text{c}}≈ 4.2 K) and \\text{La}{{≤ft(\\text{C}{{\\text{o}}0.7}\\text{F}{{\\text{e}}0.3}\\right)}2}{{\\text{B}}2} ({{T}\\text{c}}≈ 5.8 K). The site selective NMR experiment reveals the multiband nature of the Fermi surface in these systems. The temperature independent Knight shift and 1/T 1 T clearly indicate the absence of correlated low energy magnetic spin-fluctuations in the normal state, which is in contrast to other Fe-based pnictides. The density of states (DOS) of Co 3d electrons has been enhanced in superconducting \\text{L}{{\\text{a}}0.9}{{\\text{Y}}0.1}\\text{C}{{\\text{o}}2}{{\\text{B}}2} and \\text{La}{{≤ft(\\text{C}{{\\text{o}}0.7}\\text{F}{{\\text{e}}0.3}\\right)}2}{{\\text{B}}2} with respect to the non superconducting reference compound \\text{LaC}{{\\text{o}}2}{{\\text{B}}2} . The occurrence of superconductivity is related to the DOS enhancement.

  8. Study on the correlation between s +/- pairing and intra-orbital spin fluctuations in 1111 iron based superconductors with isovalent doping

    NASA Astrophysics Data System (ADS)

    Usui, Hidetomo; Suzuki, Katsuhiro; Kuroki, Kazuhiko

    2015-03-01

    Recently, 1111 iron based superconductors with isovalent doping have been experimentally investigated in LnFeAsxP1-xO1-yFy (Ln =La, Nd, Pr). Interestingly, it was found that Tc takes its local maximum in the intermediate regime of arsenic/phosphorous ratio, which indicates that the superconductivity is locally optimized at a certain Fe-Pn-Fe (Pn =Pnictogen) bond angle larger than 109 deg. Given this background, we study the correlation between the local lattice structure, the orbital character of the Fermi surface, and Tc in 1111 system with isovalent doping. We calculate the band structure of LnFeAsxP1-xO1-yFy and construct effective five orbital models. To our surprise, it is found that superconductivity is indeed locally optimized in the intermediate arsenic doping regime. The origin of this local optimization is traced back to the gradual variation of the orbital character and the density of states of the hole Fermi surfaces around the Γ point, which is controlled by the bond angle. The consistency with the experiment strongly indicates the importance of the spin fluctuation played in this series of superconductors.

  9. Dynamics of antiferromagnets driven by spin current

    NASA Astrophysics Data System (ADS)

    Cheng, Ran; Niu, Qian

    2014-02-01

    When a spin-polarized current flows through a ferromagnetic (FM) metal, angular momentum is transferred to the background magnetization via spin-transfer torques. In antiferromagnetic (AFM) materials, however, the corresponding problem is unsolved. We derive microscopically the dynamics of an AFM system driven by spin current generated by an attached FM polarizer, and find that the spin current exerts a driving force on the local staggered order parameter. The mechanism does not rely on the conservation of spin angular momentum, nor does it depend on the induced FM moments on top the AFM background. Two examples are studied: (i) A domain wall is accelerated to a terminal velocity by purely adiabatic effect where the Walker's breakdown is avoided. (ii) Spin injection modifies the AFM resonance frequency, and spin current injection triggers spin wave instability of local moments above a threshold.

  10. Colossal magnetodielectric effect and spin flop in magnetoelectric Co4Nb2O9 crystal

    NASA Astrophysics Data System (ADS)

    Yin, L. H.; Zou, Y. M.; Yang, J.; Dai, J. M.; Song, W. H.; Zhu, X. B.; Sun, Y. P.

    2016-07-01

    We have investigated the detailed magnetic, magnetoelectric (ME), magnetodielectric (MD) and thermal expansion properties in Co4Nb2O9 crystal. A magnetic-field-induced spin flop was observed below antiferromagnetic (AFM) transition temperature TN. Dielectric constant at applied magnetic field nearly diverges around the AFM transition, giving rise to a colossal MD effect as high as ˜138% around TN. Theoretical analysis of the ME and MD data revealed a major contribution of critical spin fluctuation to the colossal MD effect in Co4Nb2O9. These results suggest that linear ME materials with large ME coupling might be potentially used to realize large MD effect for future application.

  11. Spin liquid state in the disordered triangular lattice Sc2Ga2CuO7 revealed by NMR

    DOE PAGESBeta

    Khuntia, P.; Kumar, R.; Mahajan, A. V.; Baenitz, M.; Furukawa, Y.

    2016-04-18

    We present microscopic magnetic properties of a two-dimensional triangular lattice Sc2Ga2CuO7, consisting of single and double triangular Cu planes. An antiferromagnetic (AFM) exchange interaction J/kB ≈ 35 K between Cu2+ (S = 1/2) spins in the triangular biplane is obtained from the analysis of intrinsic magnetic susceptibility data. The intrinsic magnetic susceptibility, extracted from 71Ga NMR shift data, displays the presence of AFM short range spin correlations and remains finite down to 50 mK, suggesting a nonsinglet ground state. The nuclear spin-lattice relaxation rate (1/T1) reveals a slowing down of Cu2+ spin fluctuations with decreasing T down to 100 mK.more » Magnetic specific heat (Cm) and 1/T1 exhibit power law behavior at low temperatures, implying the gapless nature of the spin excitation spectrum. The absence of long range magnetic ordering down to ~J/700, nonzero spin susceptibility at low T, and the power law behavior of Cm and 1/T1 suggest a gapless quantum spin liquid (QSL) state. Our results demonstrate that persistent spin dynamics induced by frustration maintain a quantum-disordered state at T → 0 in this triangular lattice antiferromagnet. Furthermore, this suggests that the low energy modes are dominated by spinon excitations in the QSL state due to randomness engendered by disorder and frustration.« less

  12. Spin liquid state in the disordered triangular lattice Sc2Ga2CuO7 revealed by NMR

    NASA Astrophysics Data System (ADS)

    Khuntia, P.; Kumar, R.; Mahajan, A. V.; Baenitz, M.; Furukawa, Y.

    2016-04-01

    We present microscopic magnetic properties of a two-dimensional triangular lattice Sc2Ga2CuO7 , consisting of single and double triangular Cu planes. An antiferromagnetic (AFM) exchange interaction J /kB≈35 K between Cu2 + (S =1 /2 ) spins in the triangular biplane is obtained from the analysis of intrinsic magnetic susceptibility data. The intrinsic magnetic susceptibility, extracted from 71Ga NMR shift data, displays the presence of AFM short range spin correlations and remains finite down to 50 mK, suggesting a nonsinglet ground state. The nuclear spin-lattice relaxation rate (1 /T1 ) reveals a slowing down of Cu2 + spin fluctuations with decreasing T down to 100 mK. Magnetic specific heat (Cm) and 1 /T1 exhibit power law behavior at low temperatures, implying the gapless nature of the spin excitation spectrum. The absence of long range magnetic ordering down to ˜J /700 , nonzero spin susceptibility at low T , and the power law behavior of Cm and 1 /T1 suggest a gapless quantum spin liquid (QSL) state. Our results demonstrate that persistent spin dynamics induced by frustration maintain a quantum-disordered state at T →0 in this triangular lattice antiferromagnet. This suggests that the low energy modes are dominated by spinon excitations in the QSL state due to randomness engendered by disorder and frustration.

  13. Magnetization dynamics in exchange coupled antiferromagnet spin superfluids

    NASA Astrophysics Data System (ADS)

    Liu, Yizhou; Barlas, Yafis; Yin, Gen; Zang, Jiadong; Lake, Roger

    Antiferromagnets (AFMs) are commonly used as the exchange bias layer in magnetic recording and spintronic devices. Recently, several studies on the spin transfer torque and spin pumping in AFMs reveal much more interesting physics in AFMs. Properties of AFMs such as the ultrafast switching within picoseconds and spin superfluidity demonstrate the potential to build AFM based spintronic devices. Here, we study the magnetization dynamics in an exchange coupled AFM systems. Beginning from the Landau-Lifshitz-Gilbert equation, we derive a Josephson-like equation for the exchange coupled system. We investigate the detailed magnetization dynamics by employing spin injection and spin pumping theory. We also propose a geometry that could be used to measure this magnetization dynamics. This work was supported as part of the Spins and Heat in Nanoscale Electronic Systems (SHINES) an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award #SC0012670.

  14. Spin Dynamics and Two-Dimensional Correlations in the FCC Antiferromagnetic Sr2 YRuO6

    NASA Astrophysics Data System (ADS)

    Disseler, Steven; Lynn, J. W.; Jardim, R. F.; Torikachvili, M. S.; Gr, E.

    The face-centered cubic lattice lattice of Ru5+ spins in the double perovskite Sr2YRuO6 shows a delicate three dimensional antiferromagnetic (AFM) ground state composed of stacked square AFM layers. We present new inelastic neutron scattering data taken on this state revealing a gapped low-energy excitation band that may be modeled by a simple J1 -J2 interaction scheme allowing quantitative comparison of similar materials. At higher temperatures, the low-energy excitation spectrum is dominated by a quasi-elastic component associated with size fluctuations of two-dimensional AFM clusters that exhibit asymmetric correlations even at low temperatures. Thus, the FCC lattice in general and the double perovskite structure in particular emerge as hosts of both two-dimensional and three-dimensional dynamics resulting from frustration.

  15. Spin dynamics near a putative antiferromagnetic quantum critical point in Cu-substituted BaFe2As2 and its relation to high-temperature superconductivity

    SciTech Connect

    Kim, M. G.; Wang, M.; Tucker, G. S.; Valdivia, P. N.; Abernathy, D. L.; Chi, Songxue; Christianson, A. D.; Aczel, A. A.; Hong, T.; Heitmann, T. W.; Ran, S.; Canfield, P. C.; Bourret-Courchesne, E. D.; Kreyssig, A.; Lee, D. H.; Goldman, A. I.; McQueeney, R. J.; Birgeneau, R. J.

    2015-12-02

    We present the results of elastic and inelastic neutron scattering measurements on nonsuperconducting Ba(Fe0.957Cu0.043)2As2, a composition close to a quantum critical point between antiferromagnetic (AFM) ordered and paramagnetic phases. By comparing these results with the spin fluctuations in the low-Cu composition as well as the parent compound BaFe2As2 and superconducting Ba(Fe1–xNix)2As2 compounds, we demonstrate that paramagnon-like spin fluctuations are evident in the antiferromagnetically ordered state of Ba(Fe0.957Cu0.043)2As2, which is distinct from the AFM-like spin fluctuations in the superconducting compounds. Our observations suggest that Cu substitution decouples the interaction between quasiparticles and the spin fluctuations. In addition, we show that the spin-spin correlation length ξ(T) increases rapidly as the temperature is lowered and find ω/T scaling behavior, the hallmark of quantum criticality, at an antiferromagnetic quantum critical point.

  16. Spin pumping and inverse spin Hall effects in heavy metal/antiferromagnet/Permalloy trilayers

    NASA Astrophysics Data System (ADS)

    Saglam, Hilal; Zhang, Wei; Jungfleisch, M. Benjamin; Jiang, Wanjun; Pearson, John E.; Hoffmann, Axel

    Recent work shows efficient spin transfer via spin waves in insulating antiferromagnets (AFMs), suggesting that AFMs can play a more active role in the manipulation of ferromagnets. We use spin pumping and inverse spin Hall effect experiments on heavy metal (Pt and W)/AFMs/Py (Ni80Fe20) trilayer structures, to examine the possible spin transfer phenomenon in metallic AFMs, i . e . , FeMn and PdMn. Previous work has studied electronic effects of the spin transport in these materials, yielding short spin diffusion length on the order of 1 nm. However, the work did not examine whether besides diffusive spin transport by the conduction electrons, there are additional spin transport contributions from spin wave excitations. We clearly observe spin transport from the Py spin reservoir to the heavy metal layer through the sandwiched AFMs with thicknesses well above the previously measured spin diffusion lengths, indicating that spin transport by spin waves may lead to non-negligible contributions This work was supported by US DOE, OS, Materials Sciences and Engineering Division. Lithographic patterning was carried out at the CNM, which is supported by DOE, OS under Contract No. DE-AC02-06CH11357.

  17. Paramagnetic Spin Correlations in CaFe2As2 Single Crystals

    SciTech Connect

    Omar Diallo, Souleymane; Pratt, Daniel; Fernandes, Rafael; Tian, Wei; Zarestky, J. L.; Lumsden, Mark D; Perring, T. G.; Broholm, C.; Ni, Ni; Budko, S L; Canfield, Paul; Li, Haifeng; Vaknin, D; Kreyssig, A.; Goldman, A. I.; Mcqueeney, R J

    2010-01-01

    Magnetic correlations in the paramagnetic phase of CaFe2As2(TN=172 K) have been examined by means of inelastic neutron scattering from 180 K ( 1.05TN) up to 300 K (1.8TN). Despite the first-order nature of the magnetic ordering, strong but short-ranged antiferromagnetic (AFM) correlations are clearly observed. These correlations, which consist of quasielastic scattering centered at the wave vector QAFM of the low-temperature AFM structure, are observed up to the highest measured temperature of 300 K and at high energy transfer ( >60 meV). The L dependence of the scattering implies rather weak interlayer coupling in the tetragonal c direction corresponding to nearly two-dimensional fluctuations in the (ab) plane. The spin correlation lengths within the Fe layer are found to be anisotropic, consistent with underlying fluctuations of the AFM stripe structure. Similar to the cobalt-doped superconducting BaFe2As2 compounds, these experimental features can be adequately reproduced by a scattering model that describes short-ranged and anisotropic spin correlations with overdamped dynamics.

  18. Single ricin detection by AFM chemomechanical mapping

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This research reports a method of detecting ricin molecules immobilized on chemically modified gold (Au;111) surface by chemomechanically mapping the molecular interactions with a chemically modified Atomic Force Microscope (AFM) tip. AFM images resolved the different fold-up conformations of single...

  19. Magnetic fluctuations and dynamics in the vicinity of quantum spin liquids: Cluster dynamical mean-field study of the Kitaev model

    NASA Astrophysics Data System (ADS)

    Yoshitake, Junki; Nasu, Joji; Motome, Yukitoshi

    The quantum spin liquid, which does not show any long-range ordering down to the lowest temperature, has attracted broad interest as a new quantum state of matter. Since the ground state of the Kitaev model was shown to be a quantum spin liquid in two dimensions, there has been an explosion in both theoretical and experimental studies. Nevertheless, dynamical properties at finite temperatures remain a challenge, despite the relevance to analysis of recent experiments for Ir and Ru compounds. In this contribution, we address this problem by using the cluster dynamical mean-field approximation, which we newly develop on the basis of the Majorana fermion representation. Using the continuous-time quantum Monte Carlo method for the impurity solver, we calculate the magnetic susceptibility, dynamical spin structure factor, and relaxation time in the nuclear magnetic resonance. We find that these quantities show peculiar temperature dependences in the paramagnetic state when approaching the quantum spin liquid by decreasing temperature, which reflects the fractionalization of quantum spins. We will discuss the results while changing the anisotropy and sign (ferro/antiferro) of the exchange interactions, in comparison with experiments.

  20. ezAFM: A low cost Atomic Force Microscope(AFM)

    NASA Astrophysics Data System (ADS)

    Celik, Umit; Celik, Kubra; Aslan, Husnu; Kehribar, Ihsan; Dede, Munir; Ozgur Ozer, H.; Oral, Ahmet

    2012-02-01

    A low cost AFM, ezAFM is developed for educational purposes as well as research. Optical beam deflection method is used to measure the deflection of cantilever. ezAFM scanner is built using voice coil motors (VCM) with ˜50x50x6 μm scan area. The microscope uses alignment free cantilevers, which minimizes setup times. FPGA based AFM feedback Control electronics is developed. FPGA technology allows us to drive all peripherals in parallel. ezAFM Controller is connected to PC by USB 2.0 interface as well as Wi-Fi. We have achieved <5nm lateral and ˜0.01nm vertical resolution. ezAFM can image single atomic steps in HOPG and mica. An optical microscope with <3 μm resolution is also integrated into the system. ezAFM supports different AFM operation modes such as dynamic mode, contact mode, lateral force microscopy. Advanced modes like magnetic force microscopy and electric force microscopy will be implemented later on. The new ezAFM system provides, short learning times for student labs, quick setup and easy to transport for portable applications with the best price/performance ratio. The cost of the system starts from 15,000, with system performance comparable with the traditional AFM systems.

  1. Coupled Quantum Fluctuations and Quantum Annealing

    NASA Astrophysics Data System (ADS)

    Hormozi, Layla; Kerman, Jamie

    We study the relative effectiveness of coupled quantum fluctuations, compared to single spin fluctuations, in the performance of quantum annealing. We focus on problem Hamiltonians resembling the the Sherrington-Kirkpatrick model of Ising spin glass and compare the effectiveness of different types of fluctuations by numerically calculating the relative success probabilities and residual energies in fully-connected spin systems. We find that for a small class of instances coupled fluctuations can provide improvement over single spin fluctuations and analyze the properties of the corresponding class. Disclaimer: This research was funded by ODNI, IARPA via MIT Lincoln Laboratory under Air Force Contract No. FA8721-05-C-0002. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, or the US Government.

  2. Unusual spin fluctuations and magnetic frustration in olivine and non-olivine LiCoPO4 detected by P31 and Li7 nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Baek, S.-H.; Klingeler, R.; Neef, C.; Koo, C.; Büchner, B.; Grafe, H.-J.

    2014-04-01

    We report P31 and Li7 nuclear magnetic resonance (NMR) studies in new non-olivine LiZnPO4-type LiCoPO4tetra microcrystals, where the Co2+ ions are tetrahedrally coordinated. Olivine LiCoPO4, which was directly transformed from LiCoPO4tetra by an annealing process, was also studied and compared. The uniform bulk magnetic susceptibility and the P31 Knight shift obey the Curie-Weiss law for both materials with a high spin Co2+ (3d7, S =3/2), but the Weiss temperature Θ and the effective magnetic moment μeff are considerably smaller in LiCoPO4tetra. The spin-lattice relaxation rate T1-1 reveals a quite different nature of the spin dynamics in the paramagnetic state of both materials. Our NMR results imply that strong geometrical spin frustration occurs in tetrahedrally coordinated LiCoPO4, which may lead to the incommensurate magnetic ordering.

  3. EVIDENCE FOR SPIN FLUCTUATIONS IN THE DEEP INELASTIC REACTION {sup 165}Ho + {sup 165}Ho AT 8.5 MeV/amu

    SciTech Connect

    McDonald, R. J.; Pacheco, A. J.; Wozniak, G. J.; Bolotin, H. H.; Moretto, L. G.; Schuk, C.; Shih, S.; Diamond, R. M.; Stephens, F. S.

    1981-05-01

    Both the magnitude and alignment of the transferred angular momentum in the reaction {sup 165}Ho + {sup 165}Ho have been measured as a function of Q-value via continuum {gamma}-ray multiplicity and anisotropy techniques. The spin transfer and the continuum {gamma}-ray anisotropy increase throughout the quasielastic region. The spin transfer as a function of Q-value saturates at ~35{bar h}/fragment, the anisotropy peaks at a value of ~2 and then decreases to near unity for the largest Q-values. The observed anisotropies are in good agreement with predictions from an equilibrium statistical model in which thermal excitation of angular-momentum-bearing collective modes and neutron evaporation give rise to in-plane components of the angular momentum.

  4. Nano Mechanical Machining Using AFM Probe

    NASA Astrophysics Data System (ADS)

    Mostofa, Md. Golam

    Complex miniaturized components with high form accuracy will play key roles in the future development of many products, as they provide portability, disposability, lower material consumption in production, low power consumption during operation, lower sample requirements for testing, and higher heat transfer due to their very high surface-to-volume ratio. Given the high market demand for such micro and nano featured components, different manufacturing methods have been developed for their fabrication. Some of the common technologies in micro/nano fabrication are photolithography, electron beam lithography, X-ray lithography and other semiconductor processing techniques. Although these methods are capable of fabricating micro/nano structures with a resolution of less than a few nanometers, some of the shortcomings associated with these methods, such as high production costs for customized products, limited material choices, necessitate the development of other fabricating techniques. Micro/nano mechanical machining, such an atomic force microscope (AFM) probe based nano fabrication, has, therefore, been used to overcome some the major restrictions of the traditional processes. This technique removes material from the workpiece by engaging micro/nano size cutting tool (i.e. AFM probe) and is applicable on a wider range of materials compared to the photolithographic process. In spite of the unique benefits of nano mechanical machining, there are also some challenges with this technique, since the scale is reduced, such as size effects, burr formations, chip adhesions, fragility of tools and tool wear. Moreover, AFM based machining does not have any rotational movement, which makes fabrication of 3D features more difficult. Thus, vibration-assisted machining is introduced into AFM probe based nano mechanical machining to overcome the limitations associated with the conventional AFM probe based scratching method. Vibration-assisted machining reduced the cutting forces

  5. Spin microscope based on optically detected magnetic resonance

    SciTech Connect

    Berman, Gennady P.; Chernobrod, Boris M.

    2009-11-10

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of impaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  6. Spin microscope based on optically detected magnetic resonance

    SciTech Connect

    Berman, Gennady P.; Chernobrod, Boris M.

    2010-06-29

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  7. Spin microscope based on optically detected magnetic resonance

    SciTech Connect

    Berman, Gennady P.; Chernobrod, Boris M.

    2010-07-13

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  8. Spin microscope based on optically detected magnetic resonance

    SciTech Connect

    Berman, Gennady P.; Chernobrod, Boris M.

    2009-10-27

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  9. Spin microscope based on optically detected magnetic resonance

    DOEpatents

    Berman, Gennady P.; Chernobrod, Boris M.

    2007-12-11

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  10. Hydration states of AFm cement phases

    SciTech Connect

    Baquerizo, Luis G.; Matschei, Thomas; Scrivener, Karen L.; Saeidpour, Mahsa; Wadsö, Lars

    2015-07-15

    The AFm phase, one of the main products formed during the hydration of Portland and calcium aluminate cement based systems, belongs to the layered double hydrate (LDH) family having positively charged layers and water plus charge-balancing anions in the interlayer. It is known that these phases present different hydration states (i.e. varying water content) depending on the relative humidity (RH), temperature and anion type, which might be linked to volume changes (swelling and shrinkage). Unfortunately the stability conditions of these phases are insufficiently reported. This paper presents novel experimental results on the different hydration states of the most important AFm phases: monocarboaluminate, hemicarboaluminate, strätlingite, hydroxy-AFm and monosulfoaluminate, and the thermodynamic properties associated with changes in their water content during absorption/desorption. This data opens the possibility to model the response of cementitious systems during drying and wetting and to engineer systems more resistant to harsh external conditions.

  11. AFM indentation study of breast cancer cells

    SciTech Connect

    Li, Q.S.; Lee, G.Y.H.; Ong, C.N.; Lim, C.T.

    2008-10-03

    Mechanical properties of individual living cells are known to be closely related to the health and function of the human body. Here, atomic force microscopy (AFM) indentation using a micro-sized spherical probe was carried out to characterize the elasticity of benign (MCF-10A) and cancerous (MCF-7) human breast epithelial cells. AFM imaging and confocal fluorescence imaging were also used to investigate their corresponding sub-membrane cytoskeletal structures. Malignant (MCF-7) breast cells were found to have an apparent Young's modulus significantly lower (1.4-1.8 times) than that of their non-malignant (MCF-10A) counterparts at physiological temperature (37 deg. C), and their apparent Young's modulus increase with loading rate. Both confocal and AFM images showed a significant difference in the organization of their sub-membrane actin structures which directly contribute to their difference in cell elasticity. This change may have facilitated easy migration and invasion of malignant cells during metastasis.

  12. Magnetism in the iron-based superconductors: The determination of spin-nematic fluctuations as the primary order parameter and its implications for unconventional superconductivity

    NASA Astrophysics Data System (ADS)

    Taddei, Keith M.

    With nearly innumerable applications, superconductivity stands as a holy grail in the research of quantum phenomena. Understanding the mechanism that begets the fabled pairing of electrons which leads to zero resistance is the most significant undertaking in order to bring to fruition all of superconductivity's splendor. Yet the interaction which couples electrons in the most promising family of superconductors known as unconventional superconductors, which show the highest Tc's and largest upper critical fields remains a mystery. Intense study over the past several decades on the cuprate superconductors has allowed for the identification of several candidate mechanisms --- cardinal of which is magnetic fluctuations --- however as of yet the question still remains. Recently, the discovery of the iron-based superconductors has provided another fruitful avenue through which this mechanism can be probed. Excitingly in these materials superconductivity not only arises near a magnetic instability - a situation which is expected to be particularly suited for engendering superconductivity should magnetic fluctuations be the pairing mechanism - but also exhibit the microscopic co-existence of the two presumably adversarial phenomena. In the work presented here the powerful techniques of neutron and x-ray diffraction will be used to study two particularly interesting members of this family: the intercalated iron-selenide CsxFe 2--xSe2 and two members of the iron-arsenide 122 family (BaFe2(As1--xPx)2 and Sr1--xNaxFe2As 2). Though isostructural at high temperatures, these two materials behave remarkably differently and the idiosyncratic manifestations of superconductivity and ordered magnetism in either give clues as to how the latter might stabilize the former. The iron-selenides will be shown to exhibit a complex phase space with phase separation leading to stabilization of magnetism and superconductivity in separate phases. The structure, behavior and complex vacancy

  13. Single spin magnetometry with nitrogen-vacancy centers in diamond

    NASA Astrophysics Data System (ADS)

    Chisholm, Nicholas Edward Kennedy

    The nitrogen-vacancy (NV) center in diamond is a solid-state point defect with an electronic spin that has accessible quantum mechanical properties. At room temperature, the electronic ground state sub-levels of the NV center can be initialized and read out using optical pumping, as well as coherently controlled using microwave frequency fields. This thesis focuses on using the spin state of the NV center for highly-sensitive magnetometry under ambient conditions. In particular, when the diamond surface is properly prepared, we demonstrate that NV centers can be used to measure the magnetic fluctuations stemming from individual molecules and ions attached or adsorbed to the surface. This thesis begins by introducing the physical and electronic structure of the NV center at room temperature, followed by the fundamental measurements that allow us to use the NV center as a sensitive magnetometer. Combining our sensitive NV center magnetometer with techniques from chemistry and atomic force microscopy (AFM), we demonstrate the all-optical detection of a single-molecule electron spin at room temperature. Finally, we discuss the time-resolved detection of individual electron spins adsorbing onto the surface of nano-diamonds. By extending our techniques to nano-diamonds, we move closer towards textit{in vitro} magnetic field sensing that could be pivotal for better disease diagnosis and drug development.

  14. Active fluctuation symmetries

    NASA Astrophysics Data System (ADS)

    Maes, Christian; Salazar, Alberto

    2014-01-01

    In contrast with the understanding of fluctuation symmetries for entropy production, similar ideas applied to the time-symmetric fluctuation sector have been less explored. Here we give detailed derivations of time-symmetric fluctuation symmetries in boundary-driven particle systems such as the open Kawasaki lattice gas and the zero-range model. As a measure of time-symmetric dynamical activity over time T we count the difference (Nℓ - Nr)/T between the number of particle jumps in or out at the left edge and those at the right edge of the system. We show that this quantity satisfies a fluctuation symmetry from which we derive a new Green-Kubo-type relation. It will follow then that the system is more active at the edge connected to the particle reservoir with the largest chemical potential. We also apply these exact relations derived for stochastic particle models to a deterministic case, the spinning Lorentz gas, where the symmetry relation for the activity is checked numerically.

  15. Conductance of AFM Deformed Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexei; Maiti, Amitesh; Anatram, M. P.; Biegel, Bryan (Technical Monitor)

    2002-01-01

    This viewgraph presentation provides information on the electrical conductivity of carbon nanotubes upon deformation by atomic force microscopy (AFM). The density of states and conductance were computed using four orbital tight-binding method with various parameterizations. Different chiralities develop bandgap that varies with chirality.

  16. Contact nanomechanical measurements with the AFM

    NASA Astrophysics Data System (ADS)

    Geisse, Nicholas

    2013-03-01

    The atomic force microscope (AFM) has found broad use in the biological sciences largely due to its ability to make measurements on unfixed and unstained samples under liquid. In addition to imaging at multiple spatial scales ranging from micro- to nanometer, AFMs are commonly used as nanomechanical probes. This is pertinent for cell biology, as it has been demonstrated that the geometrical and mechanical properties of the extracellular microenvironment are important in such processes as cancer, cardiovascular disease, muscular dystrophy, and even the control of cell life and death. Indeed, the ability to control and quantify these external geometrical and mechanical parameters arises as a key issue in the field. Because AFM can quantitatively measure the mechanical properties of various biological samples, novel insights to cell function and to cell-substrate interactions are now possible. As the application of AFM to these types of problems is widened, it is important to understand the performance envelope of the technique and its associated data analyses. This talk will discuss the important issues that must be considered when mechanical models are applied to real-world data. Examples of the effect of different model assumptions on our understanding of the measured material properties will be shown. Furthermore, specific examples of the importance of mechanical stimuli and the micromechanical environment to the structure and function of biological materials will be presented.

  17. A Batch Fabricated SECM-AFM Probe

    NASA Astrophysics Data System (ADS)

    Dobson, P. S.; Macpherson, J. V.; Holder, M.; Weaver, J. M. R.

    2003-12-01

    A scheme for the fabrication of combined Scanning Electrochemical Microscopy — Atomic Force Microscopy (SECM-AFM) probes is presented for both silicon nitride and silicon cantilevers. The advantages over exsisting methods used for their production is explained. The process flow is described and initial results from electrodeposition of silver are presented.

  18. Contrasting spin dynamics

    SciTech Connect

    Ning, F. L.; Ahilan, K.; Imai, T.; Sefat, A. S.; McGuire, Michael A; Sales, Brian C; Mandrus, David; Cheng, P.; Shen, B.; Wen, H.-H.

    2010-01-01

    We report the first NMR investigation of spin dynamics in the overdoped nonsuperconducting regime of Ba(Fe{sub 1-x}Co{sub x}){sub 2}As{sub 2} up to x=0.26. We demonstrate that the absence of interband transitions with large momentum transfer Q{sub AF}-({pi}/a,0) between the hole and electron Fermi surfaces results in complete suppression of antiferromagnetic spin fluctuations for x {ge} 0.15. Our experimental results provide direct evidence for a correlation between T{sub c} and the strength of Q{sub AF} antiferromagnetic spin fluctuations.

  19. Faraday rotation echo spectroscopy and detection of quantum fluctuations

    PubMed Central

    Chen, Shao-Wen; Liu, Ren-Bao

    2014-01-01

    Central spin decoherence is useful for detecting many-body physics in environments and moreover, the spin echo control can remove the effects of static thermal fluctuations so that the quantum fluctuations are revealed. The central spin decoherence approach, however, is feasible only in some special configurations and often requires uniform coupling between the central spin and individual spins in the baths, which are very challenging in experiments. Here, by making analogue between central spin decoherence and depolarization of photons, we propose a scheme of Faraday rotation echo spectroscopy (FRES) for studying quantum fluctuations in interacting spin systems. The echo control of the photon polarization is realized by flipping the polarization with a birefringence crystal. The FRES, similar to spin echo in magnetic resonance spectroscopy, can suppress the effects of the static magnetic fluctuations and therefore reveal dynamical magnetic fluctuations. We apply the scheme to a rare-earth compound LiHoF4 and calculate the echo signal, which is related to the quantum fluctuations of the system. We observe enhanced signals at the phase boundary. The FRES should be useful for studying quantum fluctuations in a broad range of spin systems, including cold atoms, quantum dots, solid-state impurities, and transparent magnetic materials. PMID:24733086

  20. Detection of Pathogens Using AFM and SPR

    NASA Astrophysics Data System (ADS)

    Vaseashta, Ashok

    2005-03-01

    A priori detection of pathogens in food and water has become a subject of paramount importance. Several recent incidents have resulted in the government passing stringent regulations for tolerable amounts of contamination of food products. Identification and/or monitoring of bacterial contamination in food are critical. The conventional methods of pathogen detection require time-consuming steps to arrive disembark at meaningful measurement in a timely manner as the detection time exceeds the time in which perishable food recycles through the food chain distribution. The aim of this presentation is to outline surface plasmon resonance (SPR) and atomic force microscopy (AFM) as two methods for fast detect6ion of pathogens. Theoretical basis of SPR and experimental results of SPR and AFM on E. coli O157:H7 and prion are presented.

  1. Visualization of Thermally Fluctuating Surface Structure in Noncontact Atomic-Force Microscopy and Tip Effects on Fluctuation: Theoretical Study of Si(111)-( √3 ×√3)-Ag Surface

    NASA Astrophysics Data System (ADS)

    Sasaki, Naruo; Watanabe, Satoshi; Tsukada, Masaru

    2002-01-01

    We investigated noncontact atomic-force microscopy (NC-AFM) images of a thermally fluctuating surface structure together with tip effects based on the first-principles electronic state calculation. As an example the Si(111)-( (3)×(3))-Ag ( (3)-Ag) surface is studied. We have succeeded in theoretically visualizing the thermal fluctuation of the (3)-Ag surface at room temperature, and in reproducing the observed NC-AFM image for the first time. Further, the pinning effect of the thermal fluctuation of the (3)-Ag surface by the tip is clarified, which shows a novel ability of NC-AFM to modify the surface structure.

  2. Enhancement of superconducting transition temperature due to antiferromagnetic spin fluctuations in iron pnictides LaFe(As1-xPx)(O1-yFy): 31P-NMR studies

    NASA Astrophysics Data System (ADS)

    Mukuda, H.; Engetsu, F.; Yamamoto, K.; Lai, K. T.; Yashima, M.; Kitaoka, Y.; Takemori, A.; Miyasaka, S.; Tajima, S.

    2014-02-01

    Systematic 31P-NMR studies on LaFe(As1-xPx)(O1-yFy) with y =0.05 and 0.1 have revealed that the antiferromagnetic spin fluctuations (AFMSFs) at low energies are markedly enhanced around x =0.6 and 0.4, respectively, and as a result, Tc exhibits respective peaks at 24 and 27 K against the P substitution for As. This result demonstrates that the AFMSFs are responsible for the increase in Tc for LaFe(As1-xPx)(O1-yFy) as a primary mediator of the Cooper pairing. From a systematic comparison of AFMSFs with a series of (La1-zYz)FeAsOδ compounds in which Tc reaches 50 K for z =0.95, we remark that a moderate development of AFMSFs causes Tc to increase up to 50 K under the condition that the local lattice parameters of the FeAs tetrahedron approach those of the regular tetrahedron. We propose that Tc of Fe-pnictides exceeding 50 K is maximized under an intimate collaboration of the AFMSFs and other factors originating from the optimization of the local structure.

  3. Multiple Antiferromagnetic Spin Fluctuations and Novel Evolution of Tc in Iron-Based Superconductors LaFe(As1‑xPx)(O1‑yFy) Revealed by 31P-NMR Studies

    NASA Astrophysics Data System (ADS)

    Shiota, Takayoshi; Mukuda, Hidekazu; Uekubo, Masahiro; Engetsu, Fuko; Yashima, Mitsuharu; Kitaoka, Yoshio; Lai, Kwing To; Usui, Hidetomo; Kuroki, Kazuhiko; Miyasaka, Shigeki; Tajima, Setsuko

    2016-05-01

    We report on 31P-NMR studies of LaFe(As1‑xPx)(O1‑yFy) over wide compositions for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 0.14, which provide clear evidence that antiferromagnetic spin fluctuations (AFMSFs) are one of the indispensable elements for enhancing Tc. Systematic 31P-NMR measurements revealed two types of AFMSFs in the temperature evolution, that is, one is the AFMSFs that develop rapidly down to Tc with low-energy characteristics, and the other, with relatively higher energy than the former, develops gradually upon cooling from high temperature. The low-energy AFMSFs in low y (electron doping) over a wide x (pnictogen height suppression) range are associated with the two orbitals of dxz/yz, whereas the higher-energy ones for a wide y region around low x originate from the three orbitals of dxy and dxz/yz. We remark that the nonmonotonic variation of Tc as a function of x and y in LaFe(As1‑xPx)(O1‑yFy) is attributed to these multiple AFMSFs originating from degenerated multiple 3d orbitals inherent to Fe-pnictide superconductors.

  4. Characterizing Cell Mechanics with AFM and Microfluidics

    NASA Astrophysics Data System (ADS)

    Walter, N.; Micoulet, A.; Suresh, S.; Spatz, J. P.

    2007-03-01

    Cell mechanical properties and functionality are mainly determined by the cytoskeleton, besides the cell membrane, the nucleus and the cytosol, and depend on various parameters e.g. surface chemistry and rigidity, surface area and time available for cell spreading, nutrients and drugs provided in the culture medium. Human epithelial pancreatic and mammary cancer cells and their keratin intermediate filaments are the main focus of our work. We use Atomic Force Microscopy (AFM) to study cells adhering to substrates and Microfluidic Channels to probe cells in suspension, respectively. Local and global properties are extracted by varying AFM probe tip size and the available adhesion area for cells. Depth-sensing, instrumented indentation tests with AFM show a clear difference in contact stiffness for cells that are spread of controlled substrates and those that are loosely attached. Microfluidic Channels are utilized in parallel to evaluate cell deformation and ``flow resistance'', which are dependent on channel cross section, flow rate, cell nucleus size and the mechanical properties of cytoskeleton and membrane. The results from the study are used to provide some broad and quantitative assessments of the connections between cellular/subcellular mechanics and biochemical origins of disease states.

  5. Magnons, Spin Current and Spin Seebeck Effect

    NASA Astrophysics Data System (ADS)

    Maekawa, Sadamichi

    2012-02-01

    When metals and semiconductors are placed in a temperature gradient, the electric voltage is generated. This mechanism to convert heat into electricity, the so-called Seebeck effect, has attracted much attention recently as the mechanism for utilizing wasted heat energy. [1]. Ferromagnetic insulators are good conductors of spin current, i.e., the flow of electron spins [2]. When they are placed in a temperature gradient, generated are magnons, spin current and the spin voltage [3], i.e., spin accumulation. Once the spin voltage is converted into the electric voltage by inverse spin Hall effect in attached metal films such as Pt, the electric voltage is obtained from heat energy [4-5]. This is called the spin Seebeck effect. Here, we present the linear-response theory of spin Seebeck effect based on the fluctuation-dissipation theorem [6-8] and discuss a variety of the devices. [4pt] [1] S. Maekawa et al, Physics of Transition Metal Oxides (Springer, 2004). [0pt] [2] S. Maekawa: Nature Materials 8, 777 (2009). [0pt] [3] Concept in Spin Electronics, eds. S. Maekawa (Oxford University Press, 2006). [0pt] [4] K. Uchida et al., Nature 455, 778 (2008). [0pt] [5] K. Uchida et al., Nature Materials 9, 894 (2010) [0pt] [6] H. Adachi et al., APL 97, 252506 (2010) and Phys. Rev. B 83, 094410 (2011). [0pt] [7] J. Ohe et al., Phys. Rev. B (2011) [0pt] [8] K. Uchida et al., Appl. Phys. Lett. 97, 104419 (2010).

  6. Quantum fluctuations stabilize skyrmion textures

    NASA Astrophysics Data System (ADS)

    Roldán-Molina, A.; Santander, M. J.; Nunez, A. S.; Fernández-Rossier, J.

    2015-12-01

    We study the quantum spin waves associated to skyrmion textures. We show that the zero-point energy associated to the quantum spin fluctuations of a noncollinear spin texture produce Casimir-like magnetic fields. We study the effect of these Casimir fields on the topologically protected noncollinear spin textures known as skyrmions. In a Heisenberg model with Dzyalonshinkii-Moriya interactions, chosen so the classical ground state displays skyrmion textures, we calculate the spin-wave spectrum, using the Holstein-Primakoff approximation, and the associated zero-point energy, to the lowest order in the spin-wave expansion. Our calculations are done both for the single-skyrmion case, for which we obtain a discrete set of skyrmion bound states, as well as for the skyrmion crystal, for which the resulting spectrum gives the spin-wave bands. In both cases, our calculations show that the Casimir magnetic field contributes up to 10% of the total Zeeman energy necessary to delete the skyrmion texture with an applied field.

  7. Mode coupling in a hanging-fiber AFM used as a rheological probe

    NASA Astrophysics Data System (ADS)

    Devailly, C.; Laurent, J.; Steinberger, A.; Bellon, L.; Ciliberto, S.

    2014-06-01

    We analyze the advantages and drawbacks of a method which measures the viscosity of liquids at microscales, using a thin glass fiber fixed on the tip of a cantilever of an ultra-low-noise Atomic Force Microscope (AFM). When the fiber is dipped into a liquid, the dissipation of the cantilever-fiber system, which is linked to the liquid viscosity, can be computed from the power spectral density of the thermal fluctuations of the cantilever deflection. The high sensitivity of the AFM allows us to show the existence and to develop a model of the coupling between the dynamics of the fiber and that of the cantilever. This model, which accurately fits the experimental data, gives also more insights into the dynamics of coupled microdevices in a viscous environment.

  8. Drift transport of helical spin coherence with tailored spin-orbit interactions

    NASA Astrophysics Data System (ADS)

    Kunihashi, Y.; Sanada, H.; Gotoh, H.; Onomitsu, K.; Kohda, M.; Nitta, J.; Sogawa, T.

    2016-03-01

    Most future information processing techniques using electron spins in non-magnetic semiconductors will require both the manipulation and transfer of spins without their coherence being lost. The spin-orbit effective magnetic field induced by drifting electrons enables us to rotate the electron spins in the absence of an external magnetic field. However, the fluctuations in the effective magnetic field originating from the random scattering of electrons also cause undesirable spin decoherence, which limits the length scale of the spin transport. Here we demonstrate the drift transport of electron spins adjusted to a robust spin structure, namely a persistent spin helix. We find that the persistent spin helix enhances the spatial coherence of drifting spins, resulting in maximized spin decay length near the persistent spin helix condition. Within the enhanced distance of the spin transport, the transport path of electron spins can be modulated by employing time-varying in-plane voltages.

  9. BOREAS AFM-6 Surface Meteorological Data

    NASA Technical Reports Server (NTRS)

    Wilczak, James; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-6 team from the National Oceanic and Atmospheric Adminsitration/Environment Technology Laboratory (NOAA/ETL) collected surface meteorological data from 21 May to 20 Sep 1994 near the Southern Study Area-Old Jack Pine (SSA-OJP) tower site. The data are in tabular ASCII files. The surface meteorological data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  10. Antiferromagnetic spin correlations and pseudogaplike behavior in Ca(Fe1-xCox)2As2 studied by 75As nuclear magnetic resonance and anisotropic resistivity

    SciTech Connect

    Cui, J.; Roy, B.; Tanatar, M. A.; Ran, S.; Bud'ko, S. L.; Prozorov, R.; Canfield, P. C.; Furukawa, Y.

    2015-11-06

    We report 75As nuclear magnetic resonance (NMR) measurements of single-crystalline Ca(Fe1–xCox)2As2 (x=0.023, 0.028, 0.033, and 0.059) annealed at 350°C for 7 days. From the observation of a characteristic shape of 75As NMR spectra in the stripe-type antiferromagnetic (AFM) state, as in the case of x=0 (TN=170 K), clear evidence for the commensurate AFM phase transition with the concomitant structural phase transition is observed in x=0.023 (TN=106 K) and x=0.028 (TN=53 K). Through the temperature dependence of the Knight shifts and the nuclear spin lattice relaxation rates (1/T1), although stripe-type AFM spin fluctuations are realized in the paramagnetic state as in the case of other iron pnictide superconductors, we found a gradual decrease of the AFM spin fluctuations below a crossover temperature T* that was nearly independent of Co-substitution concentration, and it is attributed to a pseudogaplike behavior in the spin excitation spectra of these systems. The T* feature finds correlation with features in the temperature-dependent interplane resistivity, ρc(T), but not with the in-plane resistivity ρa(T). The temperature evolution of anisotropic stripe-type AFM spin fluctuations is tracked in the paramagnetic and pseudogap phases by the 1/T1 data measured under magnetic fields parallel and perpendicular to the c axis. As a result, based on our NMR data, we have added a pseudogaplike phase to the magnetic and electronic phase diagram of Ca(Fe1–xCox)2As2.

  11. Coexistence of antiferromagnetic and ferromagnetic spin correlations in SrCo2As2 revealed by 59Co and 75As NMR

    DOE PAGESBeta

    Wiecki, P.; Ogloblichev, V.; Pandey, Abhishek; Johnston, D. C.; Furukawa, Y.

    2015-06-15

    In nonsuperconducting, metallic paramagnetic SrCo2As2, inelastic neutron scattering measurements have revealed strong stripe-type q=(π,0) antiferromagnetic (AFM) spin correlations. Using nuclear magnetic resonance (NMR) measurements on 59Co and 75As nuclei, we demonstrate that stronger ferromagnetic (FM) spin correlations coexist in SrCo2As2. Our NMR data are consistent with density functional theory (DFT) calculations which show enhancements at both q=(π,0) and the in-plane FM q=0 wave vectors in static magnetic susceptibility χ(q). We suggest that the strong FM fluctuations prevent superconductivity in SrCo2As2, despite the presence of stripe-type AFM fluctuations. Since DFT calculations have consistently revealed similar enhancements of the χ(q) at bothmore » q=(π,0) and q=0 in the iron-based superconductors and parent compounds, our observation of FM correlations in SrCo2As2 calls for detailed studies of FM correlations in the iron-based superconductors.« less

  12. High-Speed AFM Images of Thermal Motion Provide Stiffness Map of Interfacial Membrane Protein Moieties

    PubMed Central

    2014-01-01

    The flexibilities of extracellular loops determine ligand binding and activation of membrane receptors. Arising from fluctuations in inter- and intraproteinaceous interactions, flexibility manifests in thermal motion. Here we demonstrate that quantitative flexibility values can be extracted from directly imaging the thermal motion of membrane protein moieties using high-speed atomic force microscopy (HS-AFM). Stiffness maps of the main periplasmic loops of single reconstituted water channels (AqpZ, GlpF) revealed the spatial and temporal organization of loop-stabilizing intraproteinaceous H-bonds and salt bridges. PMID:25516527

  13. [AFM fishing of proteins under impulse electric field].

    PubMed

    Ivanov, Yu D; Pleshakova, T O; Malsagova, K A; Kaysheva, A L; Kopylov, A T; Izotov, A A; Tatur, V Yu; Vesnin, S G; Ivanova, N D; Ziborov, V S; Archakov, A I

    2016-05-01

    A combination of (atomic force microscopy)-based fishing (AFM-fishing) and mass spectrometry allows to capture protein molecules from solutions, concentrate and visualize them on an atomically flat surface of the AFM chip and identify by subsequent mass spectrometric analysis. In order to increase the AFM-fishing efficiency we have applied pulsed voltage with the rise time of the front of about 1 ns to the AFM chip. The AFM-chip was made using a conductive material, highly oriented pyrolytic graphite (HOPG). The increased efficiency of AFM-fishing has been demonstrated using detection of cytochrome b5 protein. Selection of the stimulating pulse with a rise time of 1 ns, corresponding to the GHz frequency range, by the effect of intrinsic emission from water observed in this frequency range during water injection into the cell. PMID:27562998

  14. Impact of magnetic fluctuations on lattice excitations in fcc nickel

    NASA Astrophysics Data System (ADS)

    Körmann, Fritz; Ma, Pui-Wai; Dudarev, Sergei L.; Neugebauer, Jörg

    2016-02-01

    The spin-space averaging formalism is applied to compute atomic forces and phonon spectra for magnetically excited states of fcc nickel. Transverse and longitudinal magnetic fluctuations are taken into account by a combination of magnetic special quasi random structures and constrained spin-density-functional theory. It turns out that for fcc Ni interatomic force constants and phonon spectra are almost unaffected by both kinds of spin fluctuations. Given the computational expense to simulate coupled magnetic and atomic fluctuations, this insight facilitates computational modeling of magnetic alloys such as Ni-based superalloys.

  15. BOREAS AFM-06 Mean Temperature Profile Data

    NASA Technical Reports Server (NTRS)

    Wilczak, James; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-6 team from the National Oceanic and Atmospheric Adminsitration/Environment Technology Laboratory (NOAA/ETL) operated a 915-MHz wind/Radio Acoustic Sounding System (RASS) profiler system in the Southern Study Area (SSA) near the Old Jack Pine (OJP) tower from 21 May 1994 to 20 Sep 1994. The data set provides temperature profiles at 15 heights, containing the variables of virtual temperature, vertical velocity, the speed of sound, and w-bar. The data are stored in tabular ASCII files. The mean temperature profile data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  16. BOREAS AFM-6 Boundary Layer Height Data

    NASA Technical Reports Server (NTRS)

    Wilczak, James; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-6 team from National Oceanic and Atmospheric Adminsitration/Environment Technology Laboratory (NOAA/ETL) operated a 915-MHz wind/Radio Acoustic Sounding System (RASS) profiler system in the Southern Study Area (SSA) near the Old Jack Pine (OJP) site. This data set provides boundary layer height information over the site. The data were collected from 21 May 1994 to 20 Sep 1994 and are stored in tabular ASCII files. The boundary layer height data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  17. BOREAS AFM-06 Mean Wind Profile Data

    NASA Technical Reports Server (NTRS)

    Wilczak, James; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-6 team from the National Oceanic and Atmospheric Administration/Environment Technology Laboratory (NOAA/ETL) operated a 915-MHz wind/Radio Acoustic Sounding System (RASS) profiler system in the Southern Study Area (SSA) near the Old Jack Pine (OJP) tower from 21 May 1994 to 20 Sep 1994. The data set provides wind profiles at 38 heights, containing the variables of wind speed; wind direction; and the u-, v-, and w-components of the total wind. The data are stored in tabular ASCII files. The mean wind profile data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  18. Scaling behavior of spin gap of the bond alternating anisotropic spin-1/2 Heisenberg chain

    NASA Astrophysics Data System (ADS)

    Paul, Susobhan; Ghosh, Asim Kumar

    2016-05-01

    Scaling behavior of spin gap of a bond alternating spin-1/2 anisotropic Heisenberg chain has been studied both in ferromagnetic (FM) and antiferromagnetic (AFM) cases. Spin gap has been estimated by using exact diagonalization technique. All those quantities have been obtained for a region of anisotropic parameter Δ defined by 0≤Δ≤1. Spin gap is found to develop as soon as the non-uniformity in the alternating bond strength is introduced in the AFM regime which furthermore sustains in the FM regime as well. Scaling behavior of the spin gap has been studied by introducing scaling exponent. The variation of scaling exponents with Δ is fitted with a regular function.

  19. Particle deformation induced by AFM tapping under different setpoint voltages

    NASA Astrophysics Data System (ADS)

    Wu, Chung-Lin; Farkas, Natalia; Dagata, John A.; He, Bo-Ching; Fu, Wei-En

    2014-09-01

    The measured height of polystyrene nanoparticles varies with setpoint voltage during atomic force microscopy (AFM) tapping-mode imaging. Nanoparticle height was strongly influenced by the magnitude of the deformation caused by the AFM tapping forces, which was determined by the setpoint voltage. This influence quantity was studied by controlling the operational AFM setpoint voltage. A test sample consisting of well-dispersed 60-nm polystyrene and gold nanoparticles co-adsorbed on poly-l-lysine-coated mica was studied in this research. Gold nanoparticles have not only better mechanical property than polystyrene nanoparticles, but also obvious facets in AFM phase image. By using this sample of mixed nanoparticles, it allows us to confirm that the deformation resulted from the effect of setpoint voltage, not noise. In tapping mode, the deformation of polystyrene nanoparticles increased with decreasing setpoint voltage. Similar behavior was observed with both open loop and closed loop AFM instruments.

  20. Microrheology using a custom-made AFM

    NASA Astrophysics Data System (ADS)

    Kosgodagan Acharige, Sebastien; Benzaquen, Michael; Steinberger, Audrey

    In the past few years, a new method was developed to measure local properties of liquids (X. Xiong et al., Phys. Rev. E 80, 2009). This method consists of gluing a micron-sized glass fiber at the tip of an AFM cantilever and probing the liquid with it. In ENS Lyon, this method was perfected (C. Devailly et al., EPL, 106 5, 2014) with the help of an interferometer developped in the same laboratory (L. Bellon et al., Opt. Commun. 207 49, 2002 and P. Paolino et al., Rev. Sci. Instrum. 84, 2013), which background noise can reach 10-14 m /√{ Hz } . This method allows us to measure a wide range of viscosities (1 mPa . s to 500 mPa . s) of transparent and opaque fluids using a small sample volume ( 5 mL). In this presentation, I will briefly describe the interferometer developped in ENS Lyon, then explain precisely the microrheology measurements and then compare the experimental results to a model developped by M. Benzaquen. This work is supported financially by the ANR project NANOFLUIDYN (Grant Number ANR-13-BS10-0009).

  1. Manufacturing process of nanofluidics using afm probe

    NASA Astrophysics Data System (ADS)

    Karingula, Varun Kumar

    A new process for fabricating a nano fluidic device that can be used in medical application is developed and demonstrated. Nano channels are fabricated using a nano tip in indentation mode on AFM (Atomic Force Microscopy). The nano channels are integrated between the micro channels and act as a filter to separate biomolecules. Nano channels of 4 to7 m in length, 80nm in width, and at varying depths from 100nm to 850 nm allow the resulting device to separate selected groups of lysosomes and other viruses. Sharply developed vertical micro channels are produced from a deep reaction ion etching followed by deposition of different materials, such as gold and polymers, on the top surface, allowing the study of alternative ways of manufacturing a nanofluidic device. PDMS (Polydimethylsiloxane) bonding is performed to close the top surface of the device. An experimental setup is used to test and validate the device by pouring fluid through the channels. A detailed cost evaluation is conducted to compare the economical merits of the proposed process. It is shown that there is a 47:7% manufacturing time savings and a 60:6% manufacturing cost savings.

  2. BOREAS AFM-07 SRC Surface Meteorological Data

    NASA Technical Reports Server (NTRS)

    Osborne, Heather; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Young, Kim; Wittrock, Virginia; Shewchuck, Stan; Smith, David E. (Technical Monitor)

    2000-01-01

    The Saskatchewan Research Council (SRC) collected surface meteorological and radiation data from December 1993 until December 1996. The data set comprises Suite A (meteorological and energy balance measurements) and Suite B (diffuse solar and longwave measurements) components. Suite A measurements were taken at each of ten sites, and Suite B measurements were made at five of the Suite A sites. The data cover an approximate area of 500 km (North-South) by 1000 km (East-West) (a large portion of northern Manitoba and northern Saskatchewan). The measurement network was designed to provide researchers with a sufficient record of near-surface meteorological and radiation measurements. The data are provided in tabular ASCII files, and were collected by Aircraft Flux and Meteorology (AFM)-7. The surface meteorological and radiation data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  3. Spin-flip noise due to nonequilibrium spin accumulation

    NASA Astrophysics Data System (ADS)

    Liu, Liang; Niu, Jiasen; Guo, Huiqiang; Wei, Jian; Li, D. L.; Feng, J. F.; Han, X. F.; Coey, J. M. D.; Zhang, X.-G.

    2016-05-01

    When current flows through a magnetic tunnel junction (MTJ), there is spin accumulation at the electrode-barrier interfaces if the magnetic moments of the two ferromagnetic electrodes are not aligned. Here we report that such nonequilibrium spin accumulation generates its own characteristic low frequency noise (LFN). Past work viewed the LFN in MTJs as an equilibrium effect arising from resistance fluctuations (SR) which a passively applied current (I ) converts to measurable voltage fluctuations (SV=I2SR ). We treat the LFN associated with spin accumulation as a nonequilibrium effect, and find that the noise power can be fitted in terms of the spin-polarized current by SIf =a I coth(I/b )-a b , resembling the form of the shot noise for a tunnel junction, but with current now taking the role of the bias voltage, and spin-flip probability taking the role of tunneling probability.

  4. State diagram of an orthogonal spin transfer spin valve device

    SciTech Connect

    Ye, Li; Wolf, Georg; Pinna, Daniele; Chaves-O'Flynn, Gabriel D.; Kent, Andrew D.

    2015-05-21

    We present the switching characteristics of a spin-transfer device that incorporates a perpendicularly magnetized spin-polarizing layer with an in-plane magnetized free and fixed magnetic layer, known as an orthogonal spin transfer spin valve device. This device shows clear switching between parallel (P) and antiparallel (AP) resistance states and the reverse transition (AP → P) for both current polarities. Further, hysteretic transitions are shown to occur into a state with a resistance intermediate between that of the P and AP states, again for both current polarities. These unusual spin-transfer switching characteristics can be explained within a simple macrospin model that incorporates thermal fluctuations and considers a spin-polarized current that is tilted with respect to the free layer's plane, due to the presence of the spin-transfer torque from the polarizing layer.

  5. Coexistence of antiferromagnetic and ferromagnetic spin correlations in SrCo2As2 revealed by 59Co and 75As NMR

    SciTech Connect

    Wiecki, P.; Ogloblichev, V.; Pandey, Abhishek; Johnston, D. C.; Furukawa, Y.

    2015-06-15

    In nonsuperconducting, metallic paramagnetic SrCo2As2, inelastic neutron scattering measurements have revealed strong stripe-type q=(π,0) antiferromagnetic (AFM) spin correlations. Using nuclear magnetic resonance (NMR) measurements on 59Co and 75As nuclei, we demonstrate that stronger ferromagnetic (FM) spin correlations coexist in SrCo2As2. Our NMR data are consistent with density functional theory (DFT) calculations which show enhancements at both q=(π,0) and the in-plane FM q=0 wave vectors in static magnetic susceptibility χ(q). We suggest that the strong FM fluctuations prevent superconductivity in SrCo2As2, despite the presence of stripe-type AFM fluctuations. Since DFT calculations have consistently revealed similar enhancements of the χ(q) at both q=(π,0) and q=0 in the iron-based superconductors and parent compounds, our observation of FM correlations in SrCo2As2 calls for detailed studies of FM correlations in the iron-based superconductors.

  6. Segmental calibration for commercial AFM in vertical direction

    NASA Astrophysics Data System (ADS)

    Shi, Yushu; Gao, Sitian; Lu, Mingzhen; Li, Wei; Xu, Xuefang

    2013-01-01

    Atomic force microscopy (AFM) is most widely applied in scientific research and industrial production. AFM is a scanning probe imaging and measuring device, useful for physical and chemical studies. Depends on its basic structure, microscopic surface pattern can be measured and captured by mechanically scanning. Its vertical and horizon resolution can reach to 0.01nm and 0.1nm. Commonly the measurement values of commercial AFM are directly from scanning piezoelectric tube, so that it not a traceable value. In order to solve the problem of commercial AFM's traceability, step height standard references are applied to calibrate the piezoelectric ceramic housing in scanning tube. All of the serial of step height standard references, covering the commercial AFM vertical scale, are calibrated by Metrology AFM developed by National Institute of Metrology (NIM), China. Three interferometers have been assembled in its XYZ axis, therefore the measurement value can directly trace to laser wavelength. Because of nonlinear characteristic of PZT, the method of segmental calibration is proposed. The measurement scale can be divided into several subsections corresponding to the calibrated values of the series of step height standards references. By this method the accuracy of measurements can be ensured in each segment measurement scale and the calibration level of the whole instrument can be promoted. In order to get a standard step shape by commercial AFM, substrate removal method is applied to deal with the bow shape problem.

  7. Raman and AFM study of gamma irradiated plastic bottle sheets

    SciTech Connect

    Ali, Yasir; Kumar, Vijay; Dhaliwal, A. S.; Sonkawade, R. G.

    2013-02-05

    In this investigation, the effects of gamma irradiation on the structural properties of plastic bottle sheet are studied. The Plastic sheets were exposed with 1.25MeV {sup 60}Co gamma rays source at various dose levels within the range from 0-670 kGy. The induced modifications were followed by micro-Raman and atomic force microscopy (AFM). The Raman spectrum shows the decrease in Raman intensity and formation of unsaturated bonds with an increase in the gamma dose. AFM image displays rough surface morphology after irradiation. The detailed Raman analysis of plastic bottle sheets is presented here, and the results are correlated with the AFM observations.

  8. Dynamics of the nanoneedle probe in trolling mode AFM.

    PubMed

    Abdi, Ahmad; Pishkenari, Hossein Nejat; Keramati, Ramtin; Minary-Jolandan, Majid

    2015-05-22

    Atomic force microscopy (AFM), as an indispensable tool for nanoscale characterization, presents major drawbacks for operation in a liquid environment arising from the large hydrodynamic drag on the vibrating cantilever. The newly introduced 'Trolling mode' (TR-mode) AFM resolves this complication by using a specialized nanoneedle cantilever that keeps the cantilever outside of the liquid. Herein, a mechanical model with a lumped mass was developed to capture the dynamics of such a cantilever with a nanoneedle tip. This new developed model was applied to investigate the effects of the needle-liquid interface on the performance of the AFM, including the imaging capability in liquid. PMID:25915451

  9. AFM Studies of Conformational Changes in Proteins and Peptides

    NASA Astrophysics Data System (ADS)

    Ploscariu, Nicoleta; Sukthankar, Pinakin; Tomich, John; Szoszkiewicz, Robert

    2015-03-01

    Here, we present estimates of molecular stiffness and mechanical energy dissipation factors for some examples of proteins and peptides. The results are obtained from AFM force spectroscopy measurements. To determine molecular stiffness and mechanical energy dissipation factors we developed a model based on measuring several resonance frequencies of an AFM cantilever in contact with either single protein molecule or peptides adsorbed on arbitrary surface. We used compliant AFM cantilevers with a small aspect ratio - a ratio of length to width - in air and in liquid, including biologically relevant phosphate buffered saline medium. Department of Physics.

  10. Quasiclassical magnetic order and its loss in a spin-1/2 Heisenberg antiferromagnet on a triangular lattice with competing bonds

    NASA Astrophysics Data System (ADS)

    Li, P. H. Y.; Bishop, R. F.; Campbell, C. E.

    2015-01-01

    We use the coupled cluster method (CCM) to study the zero-temperature ground-state (GS) properties of a spin-1/2 J1-J2 Heisenberg antiferromagnet on a triangular lattice with competing nearest-neighbor and next-nearest-neighbor exchange couplings J1>0 and J2≡κ J1>0 , respectively, in the window 0 ≤κ <1 . The classical version of the model has a single GS phase transition at κcl=1/8 in this window from a phase with 3-sublattice antiferromagnetic (AFM) 120∘ Néel order for κ <κcl to an infinitely degenerate family of 4-sublattice AFM Néel phases for κ >κcl . This classical accidental degeneracy is lifted by quantum fluctuations, which favor a 2-sublattice AFM striped phase. For the quantum model we work directly in the thermodynamic limit of an infinite number of spins, with no consequent need for any finite-size scaling analysis of our results. We perform high-order CCM calculations within a well-controlled hierarchy of approximations, which we show how to extrapolate to the exact limit. In this way we find results for the case κ =0 of the spin-1/2 model for the GS energy per spin, E /N =-0.5521 (2 ) J1 , and the GS magnetic order parameter, M =0.198 (5 ) (in units where the classical value is Mcl=1/2), which are among the best available. For the spin-1/2 J1-J2 model we find that the classical transition at κ =κcl is split into two quantum phase transitions at κ1c=0.060 (10 ) and κ2c=0.165 (5 ) . The two quasiclassical AFM states (viz., the 120∘ Néel state and the striped state) are found to be the stable GS phases in the regime κ <κ1c and κ >κ2c , respectively, while in the intermediate regimes κ1c<κ <κ2c the stable GS phase has no evident long-range magnetic order.

  11. Simultaneous noncontact AFM and STM of Ag:Si(111)-(3×3)R30∘

    NASA Astrophysics Data System (ADS)

    Sweetman, Adam; Stannard, Andrew; Sugimoto, Yoshiaki; Abe, Masayuki; Morita, Seizo; Moriarty, Philip

    2013-02-01

    The Ag:Si(111)-(3×3)R30∘ surface structure has attracted considerable debate concerning interpretation of scanning tunneling microscope (STM) and noncontact atomic force microscope (NC-AFM) images. In particular, the accepted interpretation of atomic resolution images in NC-AFM has been questioned by theoretical and STM studies. In this paper, we use combined NC-AFM and STM to conclusively show that the inequivalent trimer (IET) configuration best describes the surface ground state. Thermal-averaging effects result in a honeycomb-chained-trimer (HCT) appearance at room temperature, in contrast to studies suggesting that the IET configuration remains stable at higher temperatures [Zhang, Gustafsson, and Johansson, Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.74.201304 74, 201304(R) (2006) and J. Phys.: Conf. Ser.1742-658810.1088/1742-6596/61/1/264 61, 1336 (2007)]. We also comment on results obtained at an intermediate temperature that suggest an intriguing difference between the imaging mechanisms of NC-AFM and STM on structurally fluctuating samples.

  12. An Exact SU(2) Symmetry and Persistent Spin Helix ina Spin-orbit Coupled System

    SciTech Connect

    Bernevig, B.A.; Orenstein, J.; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2007-01-22

    Spin-orbit coupled systems generally break the spin rotation symmetry. However, for a model with equal Rashba and Dresselhauss coupling constant (the ReD model), and for the [110] Dresselhauss model, a new type of SU(2) spin rotation symmetry is discovered. This symmetry is robust against spin-independent disorder and interactions, and is generated by operators whose wavevector depends on the coupling strength. It renders the spin lifetime infinite at this wavevector, giving rise to a Persistent Spin Helix (PSH). We obtain the spin fluctuation dynamics at, and away, from the symmetry point, and suggest experiments to observe the PSH.

  13. An Exact SU(2) Symmetry and Persistent Spin Helix in a Spin-Orbit Coupled System

    SciTech Connect

    Bernevig, Andrei

    2010-02-10

    Spin-orbit coupled systems generally break the spin rotation symmetry. However, for a model with equal Rashba and Dresselhauss coupling constant (the ReD model), and for the [110] Dresselhauss model, a new type of SU(2) spin rotation symmetry is discovered. This symmetry is robust against spin-independent disorder and interactions, and is generated by operators whose wavevector depends on the coupling strength. It renders the spin lifetime infinite at this wavevector, giving rise to a Persistent Spin Helix (PSH). We obtain the spin fluctuation dynamics at, and away, from the symmetry point, and suggest experiments to observe the PSH.

  14. Current-Induced Dynamics in Antiferromagnetic Metal: Domain Wall Dynamics and Spin Wave Excitation

    NASA Astrophysics Data System (ADS)

    Cheng, Ran; Niu, Qian

    2013-03-01

    When a spin-polarized current flows through a ferromagnetic (FM) metal, angular momentum is transferred to the magnetization via spin transfer torque. However, corresponding theory is absent in antiferromagnetic (AFM) metals due to the absence of spin conservation. We solve this problem via effective gauge theory without the necessity of spin conservation. By identifying the adiabatic dynamics of conduction electrons as a non-Abelian gauge theory on degenerate band, we derive the AFM version of Landau-Lifshitz-Gilbert equation with current-induced dynamics from a microscopic point of view. Quite different from its FM counterpart, current-induced dynamics in AFM materials does not behave as a torque, but a driving force triggering second order derivative of local staggered order with respect to time. Its physical consequences are studied in two examples: 1. A domain wall is accelerated to a terminal velocity without a Walker's threshold; 2. A sufficiently large spin current will generate spin wave excitation.

  15. Ability of Lactobacillus rhamnosus GAF01 to remove AFM1 in vitro and to counteract AFM1 immunotoxicity in vivo.

    PubMed

    Abbès, Samir; Salah-Abbès, Jalila Ben; Sharafi, Hakimeh; Jebali, Rania; Noghabi, Kambiz Akbari; Oueslati, Ridha

    2013-01-01

    Aflatoxin M1 (AFM1) has been detected in many parts of the world both in raw milk and many dairy products, causing great economic losses and human disease. Unfortunately, there are few studies dealing with AFM1 immunotoxicity/interactions with lactic acid bacteria for potential application as a natural preventive agent. The aim of this study was to isolate (from dairy products) food-grade probiotic bacteria able to degrade/bind AFM1 in vitro and evaluate whether the same organism(s) could impart a protective role against AFM1-induced immunotoxicity in exposed Balb/c mice. Bacteria (Lactobacillus plantarum MON03 and L. rhamnosus GAF01) were isolated from Tunisian artisanal butter and then tested for abilities to eliminate AFM1 from phosphate-buffered saline (PBS) and reconstituted milk (containing 0.05, 0.10, and 0.20 µg AFM1/ml) after 0, 6, and 24 h at 37°C. Results showed that the selected bacteria could 'remove' AFM1 both in PBS and skimmed milk. The binding abilities of AFM1 by L. plantarum MON03 and L. rhamnosus GAF01 strains (at 10(8) CFU/ml) in PBS and reconstituted milk ranged, respectively, from 16.1-78.6% and 15.3-95.1%; overall, L. rhamnosus showed a better potential for removal than L. plantarum. 'Removal' appeared to be by simple binding; the bacteria/AFM1 complex was stable and only a very small proportion of mycotoxin was released back into the solution. L. rhamnosus GAF01 had the highest binding capacity and was selected for use in the in vivo study. Those results indicated that use of the organism prevented AFM1-induced effects on total white and red blood cells, and lymphocyte subtypes, after 15 days of host treatment. These studies clearly indicated that L. rhamnosus GAF01 was able to bind AFM1 in vitro and-by mechanisms that might also be related to a binding effect-counteract AFM1-induced immunotoxicity. Moreover, by itself, this bacterium was not toxic and could potentially be used as an additive in dairy products and in biotechnology for

  16. Atomic force microscopy combined with optical tweezers (AFM/OT)

    NASA Astrophysics Data System (ADS)

    Pierini, F.; Zembrzycki, K.; Nakielski, P.; Pawłowska, S.; Kowalewski, T. A.

    2016-02-01

    The role of mechanical properties is essential to understand molecular, biological materials, and nanostructures dynamics and interaction processes. Atomic force microscopy (AFM) is the most commonly used method of direct force evaluation, but due to its technical limitations this single probe technique is unable to detect forces with femtonewton resolution. In this paper we present the development of a combined atomic force microscopy and optical tweezers (AFM/OT) instrument. The focused laser beam, on which optical tweezers are based, provides us with the ability to manipulate small dielectric objects and to use it as a high spatial and temporal resolution displacement and force sensor in the same AFM scanning zone. We demonstrate the possibility to develop a combined instrument with high potential in nanomechanics, molecules manipulation and biological studies. AFM/OT equipment is described and characterized by studying the ability to trap dielectric objects and quantifying the detectable and applicable forces. Finally, optical tweezers calibration methods and instrument applications are given.

  17. Nanoscale structural features determined by AFM for single virus particles.

    PubMed

    Chen, Shu-wen W; Odorico, Michael; Meillan, Matthieu; Vellutini, Luc; Teulon, Jean-Marie; Parot, Pierre; Bennetau, Bernard; Pellequer, Jean-Luc

    2013-11-21

    In this work, we propose "single-image analysis", as opposed to multi-image averaging, for extracting valuable information from AFM images of single bio-particles. This approach allows us to study molecular systems imaged by AFM under general circumstances without restrictions on their structural forms. As feature exhibition is a resolution correlation, we have performed AFM imaging on surfaces of tobacco mosaic virus (TMV) to demonstrate variations of structural patterns with probing resolution. Two AFM images were acquired with the same tip at different probing resolutions in terms of pixel width, i.e., 1.95 and 0.49 nm per pixel. For assessment, we have constructed an in silico topograph based on the three-dimensional crystal structure of TMV as a reference. The prominent artifacts observed in the AFM-determined shape of TMV were attributed to tip convolutions. The width of TMV rod was systematically overestimated by ~10 nm at both probing resolutions of AFM. Nevertheless, the effects of tip convolution were less severe in vertical orientation so that the estimated height of TMV by AFM imaging was in close agreement with the in silico X-ray topograph. Using dedicated image processing algorithms, we found that at low resolution (i.e., 1.95 nm per pixel), the extracted surface features of TMV can be interpreted as a partial or full helical repeat (three complete turns with ~7.0 nm in length), while individual protein subunits (~2.5 nm) were perceivable only at high resolution. The present study shows that the scales of revealed structural features in AFM images are subject to both probing resolution and processing algorithms for image analysis. PMID:24056758

  18. The Conductance of Nanotubes Deformed by the AFM Tip

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexei; Maiti, Amitesh; Anantram, M. P.

    2003-01-01

    The conductance drop under AFM-tip deformation can be explained by stretching of the tube length. NT sensors can be built utilizing uniform stretching. Single sp3 bond cross section cannot block electrons, because another conducting path may exist. AFM tip which forms sp3 bonds with the tube will decrease conductance. In the "table experiment" a conductance drop of 2 orders of magnitude happened only after some bonds were broken.

  19. Characterization of the interaction between AFM tips and surface nanobubbles.

    PubMed

    Walczyk, Wiktoria; Schönherr, Holger

    2014-06-24

    While the presence of gaseous enclosures observed at various solid-water interfaces, the so-called "surface nanobubles", has been confirmed by many groups in recent years, their formation, properties, and stability have not been convincingly and exhaustively explained. Here we report on an atomic force microscopy (AFM) study of argon nanobubbles on highly oriented pyrolitic graphite (HOPG) in water to elucidate the properties of nanobubble surfaces and the mechanism of AFM tip-nanobubble interaction. In particular, the deformation of the nanobubble-water interface by the AFM tip and the question whether the AFM tip penetrates the nanobubble during scanning were addressed by this combined intermittent contact (tapping) mode and force volume AFM study. We found that the stiffness of nanobubbles was smaller than the cantilever spring constant and comparable with the surface tension of water. The interaction with the AFM tip resulted in severe quasi-linear deformation of the bubbles; however, in the case of tip-bubble attraction, the interface deformed toward the tip. We tested two models of tip-bubble interaction, namely, the capillary force and the dynamic interaction model, and found, depending on the tip properties, good agreement with experimental data. The results showed that the tip-bubble interaction strength and the magnitude of the bubble deformation depend strongly on tip and bubble geometry and on tip and substrate material, and are very sensitive to the presence of contaminations that alter the interfacial tension. In particular, nanobubbles interacted differently with hydrophilic and hydrophobic AFM tips, which resulted in qualitatively and quantitatively different force curves measured on the bubbles in the experiments. To minimize bubble deformation and obtain reliable AFM results, nanobubbles must be measured with a sharp hydrophilic tip and with a cantilever having a very low spring constant in a contamination-free system. PMID:24856074

  20. Lifetimes and chirality of spin waves in antiferromagnetic and ferromagnetic FeRh from the perspective of time-dependent density functional theory

    NASA Astrophysics Data System (ADS)

    Sandratskii, Leonid M.; Buczek, Paweł

    2012-01-01

    The study of the spin excitations in antiferromagnetic (AFM) and ferromagnetic (FM) phases of FeRh is reported. We demonstrate that, although the Fe atomic moments are well defined, there is a number of important phenomena absent in the Heisenberg description: Landau damping of spin waves, large Rh moments induced by the AFM magnons, and the formation of the optical magnons terminated by Stoner excitations. We relate the properties of the spin-wave damping to the features of the Stoner continuum and compare the chirality of the spin excitations in AFM, FM, and paramagnetic systems.

  1. Modeling the Interaction between AFM Tips and Pinned Surface Nanobubbles.

    PubMed

    Guo, Zhenjiang; Liu, Yawei; Xiao, Qianxiang; Schönherr, Holger; Zhang, Xianren

    2016-01-26

    Although the morphology of surface nanobubbles has been studied widely with different AFM modes, AFM images may not reflect the real shapes of the nanobubbles due to AFM tip-nanobubble interactions. In addition, the interplay between surface nanobubble deformation and induced capillary force has not been well understood in this context. In our work we used constraint lattice density functional theory to investigate the interaction between AFM tips and pinned surface nanobubbles systematically, especially concentrating on the effects of tip hydrophilicity and shape. For a hydrophilic tip contacting a nanobubble, its hydrophilic nature facilitates its departure from the bubble surface, displaying a weak and intermediate-range attraction. However, when the tip squeezes the nanobubble during the approach process, the nanobubble shows an elastic effect that prevents the tip from penetrating the bubble, leading to a strong nanobubble deformation and repulsive interactions. On the contrary, a hydrophobic tip can easily pierce the vapor-liquid interface of the nanobubble during the approach process, leading to the disappearance of the repulsive force. In the retraction process, however, the adhesion between the tip and the nanobubble leads to a much stronger lengthening effect on nanobubble deformation and a strong long-range attractive force. The trends of force evolution from our simulations agree qualitatively well with recent experimental AFM observations. This favorable agreement demonstrates that our model catches the main intergradient of tip-nanobubble interactions for pinned surface nanobubbles and may therefore provide important insight into how to design minimally invasive AFM experiments. PMID:26751634

  2. Universal Conductance Fluctuation in Two-Dimensional Topological Insulators.

    PubMed

    Choe, Duk-Hyun; Chang, K J

    2015-01-01

    Despite considerable interest in two-dimensional (2D) topological insulators (TIs), a fundamental question still remains open how mesoscopic conductance fluctuations in 2D TIs are affected by spin-orbit interaction (SOI). Here, we investigate the effect of SOI on the universal conductance fluctuation (UCF) in disordered 2D TIs. Although 2D TI exhibits UCF like any metallic systems, the amplitude of these fluctuations is distinguished from that of conventional spin-orbit coupled 2D materials. Especially, in 2D systems with mirror symmetry, spin-flip scattering is forbidden even in the presence of strong intrinsic SOI, hence increasing the amplitude of the UCF by a factor of √2 compared with extrinsic SOI that breaks mirror symmetry. We propose an easy way to experimentally observe the existence of such spin-flip scattering in 2D materials. Our findings provide a key to understanding the emergence of a new universal behavior in 2D TIs. PMID:26055574

  3. Vaporization of Kitaev Spin Liquids

    NASA Astrophysics Data System (ADS)

    Nasu, Joji; Udagawa, Masafumi; Motome, Yukitoshi

    2014-11-01

    The quantum spin liquid is an exotic quantum state of matter in magnets. This state is a spin analog of liquid helium that does not solidify down to the lowest temperature due to strong quantum fluctuations. In conventional fluids, the liquid and gas possess the same symmetry and adiabatically connect to each other by bypassing the critical end point. We find that the situation is qualitatively different in quantum spin liquids realized in a three-dimensional Kitaev model; both gapless and gapped quantum spin liquid phases at low temperatures are always distinguished from the high-temperature paramagnet (spin gas) by a phase transition. The results challenge the common belief that the absence of thermodynamic singularity down to the lowest temperature is a symptom of a quantum spin liquid.

  4. Four-state ferroelectric spin-valve

    PubMed Central

    Quindeau, Andy; Fina, Ignasi; Marti, Xavi; Apachitei, Geanina; Ferrer, Pilar; Nicklin, Chris; Pippel, Eckhard; Hesse, Dietrich; Alexe, Marin

    2015-01-01

    Spin-valves had empowered the giant magnetoresistance (GMR) devices to have memory. The insertion of thin antiferromagnetic (AFM) films allowed two stable magnetic field-induced switchable resistance states persisting in remanence. In this letter, we show that, without the deliberate introduction of such an AFM layer, this functionality is transferred to multiferroic tunnel junctions (MFTJ) allowing us to create a four-state resistive memory device. We observed that the ferroelectric/ferromagnetic interface plays a crucial role in the stabilization of the exchange bias, which ultimately leads to four robust electro tunnel electro resistance (TER) and tunnel magneto resistance (TMR) states in the junction. PMID:25961513

  5. Spin liquid phases of large spin Mott insulating ultracold atoms

    NASA Astrophysics Data System (ADS)

    Rutkowski, Todd C.; Lawler, Michael J.

    2015-03-01

    Understanding exotic forms of magnetism, primarily those driven by large spin fluctuations such as the quantum spin liquid state, is a major goal of condensed matter physics. But, the relatively small number of viable candidate materials poses a difficulty. We believe this problem can be solved by Mott insulating ultracold atoms with large spin moments that interact via whole-atom exchange. The large spin fluctuations of this exchange could stabilize exotic physics similar to condensed matter systems, all in an extremely tunable environment. We have approached the problem by performing a mean field theory for spin-f bosons in an optical lattice which is exact in the large-f limit. This setting is similar to that of SU(N) magnetism proposed for alkali-earth atoms but without the SU(N) symmetry. We find that states with long-range order, such as the spin nematic phase of f = 1 Na atoms, become highly entangled spin-liquid-like states for f = 3 Cr atoms. This is evidence that the magnetic phase diagram for Mott insulating atoms at larger spins generically contains exotic forms of magnetism.

  6. Efficient suppression of Overhauser field fluctuations with DNP

    NASA Astrophysics Data System (ADS)

    McNeil, Robert; Botzem, Tim; Tenberg, Stefanie; Rubbert, Sebastian; Bluhm, Hendrik

    2015-03-01

    In certain spin-qubit schemes the Overhauser field is a tuned control parameter and in many spin qubits this fluctuating nuclear field is a significant factor limiting coherence. Nuclear spins can be driven via dynamic nuclear polarisation (DNP) to a chosen field and selective feedback applied narrowing the distribution of nuclear Overhauser field fluctuations. The achievable narrowing of the Overhauser field is related to the maximum pump rate and previous experiments on gated GaAs quantum dots were limited by the pump rate of the pumping mechanism used. We present a method to reduce nuclear fluctuations by increasing the max achievable pump rate. Sequentially applying two ac electric fields with frequencies slightly detuned from the desired Larmor frequency results in a pump curve with a stable fixed point. In the absence of spin-orbit interaction, driving electron spin flips via electric dipole spin resonance (EDSR) will also drive nuclear spin flips and this scheme is expected to result in stronger pumping and efficient suppression of the Overhauser field fluctuations. We will present experimental evidence of this driven nuclear polarization including tracking of EDSR resonances.

  7. Non-reciprocal directional dichroism in the AFM phase of BiFeO3 at THz frequencies

    NASA Astrophysics Data System (ADS)

    Nagel, Urmas; Rõõm, T.; Farkas, D.; Szaller, D.; Bordács, S.; Kézsmárki, I.; Engelkamp, H.; Ozaki, Y.; Tomiaki, Y.; Ito, T.; Fishman, Randy S.

    We did THz absorption spectroscopy of BiFeO3 single crystals in the AFM phase, where the spin cycloid is destroyed in magnetic fields between 18 T and 32 T in Voigt geometry at 1.6 K. If B0 ∥ [ 1 1 0 ] , we see strong directional dichroism (DD) of absorption of the magnon mode with light propagating along the direction of the ferroelectric polarization k ∥ P ∥ [ 111 ] and eω ∥ [ 1 1 0 ] , bω ∥ [ 1 1 2 ] . The sign of DD can be reversed (i) by reversing the direction of B0 or (ii) by flipping the sample, thus reversing the propagation direction of light. The observed effect is caused by the strong magneto-electric coupling in the collinear AFM phase. Research sponsored by the Estonian Ministry of Education and Research (IUT23-3).

  8. Spin-current probe for phase transition in an insulator.

    PubMed

    Qiu, Zhiyong; Li, Jia; Hou, Dazhi; Arenholz, Elke; N'Diaye, Alpha T; Tan, Ali; Uchida, Ken-Ichi; Sato, Koji; Okamoto, Satoshi; Tserkovnyak, Yaroslav; Qiu, Z Q; Saitoh, Eiji

    2016-01-01

    Spin fluctuation and transition have always been one of the central topics of magnetism and condensed matter science. Experimentally, the spin fluctuation is found transcribed onto scattering intensity in the neutron-scattering process, which is represented by dynamical magnetic susceptibility and maximized at phase transitions. Importantly, a neutron carries spin without electric charge, and therefore it can bring spin into a sample without being disturbed by electric energy. However, large facilities such as a nuclear reactor are necessary. Here we show that spin pumping, frequently used in nanoscale spintronic devices, provides a desktop microprobe for spin transition; spin current is a flux of spin without an electric charge and its transport reflects spin excitation. We demonstrate detection of antiferromagnetic transition in ultra-thin CoO films via frequency-dependent spin-current transmission measurements, which provides a versatile probe for phase transition in an electric manner in minute devices. PMID:27573443

  9. Spin-current probe for phase transition in an insulator

    DOE PAGESBeta

    Qiu, Zhiyong; Li, Jia; Hou, Dazhi; Arenholz, Elke; N’Diaye, Alpha T.; Tan, Ali; Uchida, Ken-ichi; Sato, Koji; Okamoto, Satoshi; Tserkovnyak, Yaroslav; et al

    2016-08-30

    Spin fluctuation and transition have always been one of the central topics of magnetism and condensed matter science. Experimentally, the spin fluctuation is found transcribed onto scattering intensity in the neutron-scattering process, which is represented by dynamical magnetic susceptibility and maximized at phase transitions. Importantly, a neutron carries spin without electric charge, and therefore it can bring spin into a sample without being disturbed by electric energy. However, large facilities such as a nuclear reactor are necessary. Here we present that spin pumping, frequently used in nanoscale spintronic devices, provides a desktop microprobe for spin transition; spin current is amore » flux of spin without an electric charge and its transport reflects spin excitation. Additionally, we demonstrate detection of antiferromagnetic transition in ultra-thin CoO films via frequency-dependent spin-current transmission measurements, which provides a versatile probe for phase transition in an electric manner in minute devices.« less

  10. AFM investigation of Martian soil simulants on micromachined Si substrates.

    PubMed

    Vijendran, S; Sykulska, H; Pike, W T

    2007-09-01

    The micro and nanostructures of Martian soil simulants with particles in the micrometre-size range have been studied using a combination of optical and atomic force microscopy (AFM) in preparation for the 2007 NASA Phoenix Mars Lander mission. The operation of an atomic force microscope on samples of micrometre-sized soil particles is a poorly investigated area where the unwanted interaction between the scanning tip and loose particles results in poor image quality and tip contamination by the sample. In order to mitigate these effects, etched silicon substrates with a variety of features have been used to facilitate the sorting and gripping of particles. From these experiments, a number of patterns were identified that were particularly good at isolating and immobilizing particles for AFM imaging. This data was used to guide the design of micromachined substrates for the Phoenix AFM. Both individual particles as well as aggregates were successfully imaged, and information on sizes, shapes and surface morphologies were obtained. This study highlights both the strengths and weaknesses of AFM for the potential in situ investigation of Martian soil and dust. Also presented are more general findings of the limiting operational constraints that exist when attempting the AFM of high aspect ratio particles with current technology. The performance of the final designs of the substrates incorporated on Phoenix will be described in a later paper. PMID:17760618

  11. Charging C60 islands with the AFM tip.

    PubMed

    Hoff, Brice; Henry, Claude R; Barth, Clemens

    2016-01-01

    We show that electrons can be transferred on demand from an AFM tip into single bulk-like C60 islands, which are supported on the insulating NaCl(001) surface. We exemplify this by controlled charge-manipulation experiments conducted in ultrahigh vacuum by noncontact AFM (nc-AFM), electrostatic force microscopy (EFM) and Kelvin probe force microscopy (KPFM). KPFM shows a homogeneous contrast at the islands, which is a signature for an equal distribution of the electrons in the T1u band. The charge dissipates during half a day due to an interaction of the charged C60 islands with defects in the near surface region of NaCl. Our results open the perspective in photo-voltaics to study charge attachment, stability and charge exchange with the environment of any C60 bulk-like system. PMID:26617348

  12. Liquid contact resonance AFM: analytical models, experiments, and limitations

    NASA Astrophysics Data System (ADS)

    Parlak, Zehra; Tu, Qing; Zauscher, Stefan

    2014-11-01

    Contact resonance AFM (CR-AFM) is a scanning probe microscopy technique that utilizes the contact resonances of the AFM cantilever for concurrent imaging of topography and surface stiffness. The technique has not been used in liquid until recently due to analytical and experimental difficulties, associated with viscous damping of cantilever vibrations and fluid loading effects. To address these difficulties, (i) an analytical approach for contact resonances in liquid is developed, and (ii) direct excitation of the contact resonances is demonstrated by actuating the cantilever directly in a magnetic field. By implementing the analytical approach and the direct actuation through magnetic particles, quantitative stiffness imaging on surfaces with a wide range of stiffness can be achieved in liquid with soft cantilevers and low contact forces.

  13. Imaging resolution of AFM with probes modified with FIB.

    PubMed

    Skibinski, J; Rebis, J; Wejrzanowski, T; Rozniatowski, K; Pressard, K; Kurzydlowski, K J

    2014-11-01

    This study concerns imaging of the structure of materials using AFM tapping (TM) and phase imaging (PI) mode, using probes modified with focused ion beam (FIB). Three kinds of modifications were applied - thinning of the cantilever, sharpening of the tip and combination of these two modifications. Probes shaped in that way were used for AFM investigations with Bruker AFM Nanoscope 8. As a testing material, titanium roughness standard supplied by Bruker was used. The results show that performed modifications influence the oscillation of the probes. In particular thinning of the cantilever enables one to acquire higher self-resonant frequencies, which can be advantageous for improving the quality of imaging in PI mode. It was found that sharpening the tip improves imaging resolution in tapping mode, which is consistent with existing knowledge, but lowered the quality of high frequency topography images. In this paper the Finite Element Method (FEM) was used to explain the results obtained experimentally. PMID:25080273

  14. AFM of biological complexes: what can we learn?

    PubMed Central

    Gaczynska, Maria; Osmulski, Pawel A.

    2009-01-01

    The term “biological complexes” broadly encompasses particles as diverse as multisubunit enzymes, viral capsids, transport cages, molecular nets, ribosomes, nucleosomes, biological membrane components and amyloids. The complexes represent a broad range of stability and composition. Atomic force microscopy offers a wealth of structural and functional data about such assemblies. For this review, we choose to comment on the significance of AFM to study various aspects of biology of selected nonmembrane protein assemblies. Such particles are large enough to reveal many structural details under the AFM probe. Importantly, the specific advantages of the method allow for gathering dynamic information about their formation, stability or allosteric structural changes critical for their function. Some of them have already found their way to nanomedical or nanotechnological applications. Here we present examples of studies where the AFM provided pioneering information about the biology of complexes, and examples of studies where the simplicity of the method is used toward the development of potential diagnostic applications. PMID:19802337

  15. Improvement in metrology on new 3D-AFM platform

    NASA Astrophysics Data System (ADS)

    Schmitz, Ingo; Osborn, Marc; Hand, Sean; Chen, Qi

    2008-10-01

    According to the 2007 edition of the ITRS roadmap, the requirement for CD uniformity of isolated lines on a binary or attenuated phase shift mask is 2.1nm (3σ) in 2008 and requires improvement to1.3 nm (3σ) in 2010. In order to meet the increasing demand for CD uniformity on photo masks, improved CD metrology is required. A next generation AFM, InSightTM 3DAFM, has been developed to meet these increased requirements for advanced photo mask metrology. The new system achieves 2X improvement in CD and depth precision on advanced photo masks features over the previous generation 3D-AFM. This paper provides measurement data including depth, CD, and sidewall angle metrology. In addition the unique capabilities of damage-free defect inspection and Nanoimprint characterization by 3D AFM are presented.

  16. Mounting of Escherichia coli spheroplasts for AFM imaging.

    SciTech Connect

    Sullivan, Claretta J; Morrell-Falvey, Jennifer L; Allison, David P; Doktycz, Mitchel John

    2005-11-01

    The cytoplasmic membrane of Escherichia coli (E. coli) is the location of numerous, chemically specific transporters and recognition elements. Investigation of this membrane in vivo by atomic force microscopy (AFM) requires removal of the cell wall and stable immobilization of the spheroplast. AFM images demonstrate that spheroplasts can be secured with warm gelatin applied to the mica substrate just before the addition of a spheroplast suspension. The resulting preparation can be repeatedly imaged by AFM over the course of several hours. Confocal fluorescence imaging confirms the association of the spheroplasts with the gelatin layer. Gelatin molecules are known to reorder into a network after heating. Entrapment within this gelatin network is believed to be responsible for the immobilization of spheroplasts on mica.

  17. Surface Morphological Studies on Nerve Cells by AFM

    NASA Astrophysics Data System (ADS)

    Durkaya, Goksel; Zhong, Lei; Rehder, Vincent; Dietz, Nikolaus

    2009-03-01

    Surface morphological properties of fixed and living nerve cells removed from the buccal ganglion of Helisoma trivolvis have been studied by using Atomic Force Microscopy (AFM). Identified, individual neurons were removed from the buccal ganglion of Helisoma trivolvis and plated into poly-L-lysine coated glass cover-slips. The growth of the nerve cells was stopped and fixed with 0.1% Glutaraldehyde and 4% Formaldehyde solution after extension of growth cones at the tip of the axons. Topography and softness of growth cone filopodia and overlying lamellopodium (veil) were probed by AFM. Information obtained from AFM's amplitude and phase channels have been used for determination of softness of the region probed. The results of structural studies on the cells are linked to their mechanical properties and internal molecular density distribution.

  18. Intrinsic topological superfluidity - fluctuations and response

    NASA Astrophysics Data System (ADS)

    Levin, K.; Wu, Chien-Te; Anderson, Brandon; Boyack, Rufus

    Recent interest in topological superconductivity is based primarily on exploiting proximity effects to obtain this important phase. However, in cold gases it is possible to contemplate ``intrinsic'' topological superfluidity produced with a synthetic spin-orbit coupling and Zeeman field. It is important for such future experiments to establish how low in temperature one needs to go to reach the ordered phase. Similarly, it will be helpful to have a probe of the normal (pseudogap) phase to determine if the ultimate superfluid order will be topological or trivial. In this talk, we address these issues by considering fluctuation effects in such a superfluid, and calculate the critical transition temperature and response functions. We see qualitative signatures of topological superfluidity in spin and charge response functions. We also explore the suppression of superfluidity due to fluctuations, and importantly find that the temperature scales necessary to reach topological superfluidity are reasonably accessible

  19. Persistence of singlet fluctuations in the coupled spin tetrahedra system Cu2Te2O5Br2 revealed by high-field magnetization, 79Br NQR, and 125Te NMR

    NASA Astrophysics Data System (ADS)

    Baek, S.-H.; Choi, K.-Y.; Berger, H.; Büchner, B.; Grafe, H.-J.

    2012-11-01

    We present high-field magnetization and 79Br nuclear quadrupole resonance (NQR) and 125Te nuclear magnetic resonance (NMR) studies in the weakly coupled Cu2+ (S=1/2) tetrahedral system Cu2Te2O5Br2. The field-induced level crossing effects were observed by the magnetization measurements in a long-ranged magnetically ordered state which was confirmed by a strong divergence of the spin-lattice relaxation rate T1-1 at T0=13.5 K. In the paramagnetic state, T1-1 reveals an effective singlet-triplet spin gap much larger than that observed by static bulk measurements. Our results imply that the inter- and the intratetrahedral interactions compete, but at the same time they cooperate strengthening effectively the local intratetrahedral exchange couplings. We discuss that the unusual feature originates from the frustrated intertetrahedral interactions.

  20. Charging C60 islands with the AFM tip

    NASA Astrophysics Data System (ADS)

    Hoff, Brice; Henry, Claude R.; Barth, Clemens

    2015-12-01

    We show that electrons can be transferred on demand from an AFM tip into single bulk-like C60 islands, which are supported on the insulating NaCl(001) surface. We exemplify this by controlled charge-manipulation experiments conducted in ultrahigh vacuum by noncontact AFM (nc-AFM), electrostatic force microscopy (EFM) and Kelvin probe force microscopy (KPFM). KPFM shows a homogeneous contrast at the islands, which is a signature for an equal distribution of the electrons in the T1u band. The charge dissipates during half a day due to an interaction of the charged C60 islands with defects in the near surface region of NaCl. Our results open the perspective in photo-voltaics to study charge attachment, stability and charge exchange with the environment of any C60 bulk-like system.We show that electrons can be transferred on demand from an AFM tip into single bulk-like C60 islands, which are supported on the insulating NaCl(001) surface. We exemplify this by controlled charge-manipulation experiments conducted in ultrahigh vacuum by noncontact AFM (nc-AFM), electrostatic force microscopy (EFM) and Kelvin probe force microscopy (KPFM). KPFM shows a homogeneous contrast at the islands, which is a signature for an equal distribution of the electrons in the T1u band. The charge dissipates during half a day due to an interaction of the charged C60 islands with defects in the near surface region of NaCl. Our results open the perspective in photo-voltaics to study charge attachment, stability and charge exchange with the environment of any C60 bulk-like system. Electronic supplementary information (ESI) available. See DOI: 10.1039/C5NR04541J

  1. BOREAS AFM-04 Twin Otter Aircraft Flux Data

    NASA Technical Reports Server (NTRS)

    MacPherson, J. Ian; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Desjardins, Raymond L.; Smith, David E. (Technical Monitor)

    2000-01-01

    The BOREAS AFM-5 team collected and processed data from the numerous radiosonde flights during the project. The goals of the AFM-05 team were to provide large-scale definition of the atmosphere by supplementing the existing AES aerological network, both temporally and spatially. This data set includes basic upper-air parameters collected from the network of upper-air stations during the 1993, 1994, and 1996 field campaigns over the entire study region. The data are contained in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884) or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  2. GPIM AF-M315E Propulsion System

    NASA Technical Reports Server (NTRS)

    Spores, Ronald A.; Masse, Robert; Kimbrel, Scott; McLean, Chris

    2014-01-01

    The NASA Space Technology mission Directorate's (STMD) Green Propellant Infusion Mission (GPIM) Technology Demonstration Mission (TDM) will demonstrate an operational AF-M315E green propellant propulsion system. Aerojet-Rocketdyne is responsible for the development of the propulsion system payload. This paper statuses the propulsion system module development, including thruster design and system design; Initial test results for the 1N engineering model thruster are presented. The culmination of this program will be high-performance, green AF-M315E propulsion system technology at TRL 7+, with components demonstrated to TRL 9, ready for direct infusion to a wide range of applications for the space user community.

  3. Steady-state spin squeezing generation in diamond nanostructures

    NASA Astrophysics Data System (ADS)

    Ma, Yong-Hong; Zhang, Xue-Feng

    2014-04-01

    As one kind of many body entangled states, spin squeezed states can be used to implement the high precise measurement beyond the standard quantum limit. Inspired by the novel spin squeezing scheme based on phonon-induced spin-spin interactions [S. D. Bennett et al., Phys. Rev. Lett. 110, 156402 (2013), 10.1103/PhysRevLett.110.156402], we reexamine the steady-state behaviors for the spin ensemble in diamond nanostructures by exerting a controllable microwave field. By using the phase-space approach we calculate analytically fluctuations of collective spin operators. We find that there is bistability and spin squeezing for the steady-state spin ensemble, despite the mechanical damping considered. Moreover, our work shows that bistability and spin squeezing can be controlled by microwave field and Zeeman splitting. The present scheme can be used to increase the stability of spin clocks, magnetometers, and other measurements based on spin-spin interaction in diamond nanostructures.

  4. Spin slush in an extended spin ice model

    PubMed Central

    Rau, Jeffrey G.; Gingras, Michel J. P.

    2016-01-01

    We present a new classical spin liquid on the pyrochlore lattice by extending spin ice with further neighbour interactions. We find that this disorder-free spin model exhibits a form of dynamical heterogeneity with extremely slow relaxation for some spins, while others fluctuate quickly down to zero temperature. We thus call this state spin slush, in analogy to the heterogeneous mixture of solid and liquid water. This behaviour is driven by the structure of the ground-state manifold which extends the celebrated two-in/two-out ice states to include branching structures built from three-in/one-out, three-out/one-in and all-in/all-out tetrahedra defects. Distinctive liquid-like patterns in the magnetic correlations serve as a signature of this intermediate range order. Possible applications to materials as well the effects of quantum tunnelling are discussed. PMID:27470199

  5. Spin slush in an extended spin ice model

    NASA Astrophysics Data System (ADS)

    Rau, Jeffrey G.; Gingras, Michel J. P.

    2016-07-01

    We present a new classical spin liquid on the pyrochlore lattice by extending spin ice with further neighbour interactions. We find that this disorder-free spin model exhibits a form of dynamical heterogeneity with extremely slow relaxation for some spins, while others fluctuate quickly down to zero temperature. We thus call this state spin slush, in analogy to the heterogeneous mixture of solid and liquid water. This behaviour is driven by the structure of the ground-state manifold which extends the celebrated two-in/two-out ice states to include branching structures built from three-in/one-out, three-out/one-in and all-in/all-out tetrahedra defects. Distinctive liquid-like patterns in the magnetic correlations serve as a signature of this intermediate range order. Possible applications to materials as well the effects of quantum tunnelling are discussed.

  6. Spin slush in an extended spin ice model.

    PubMed

    Rau, Jeffrey G; Gingras, Michel J P

    2016-01-01

    We present a new classical spin liquid on the pyrochlore lattice by extending spin ice with further neighbour interactions. We find that this disorder-free spin model exhibits a form of dynamical heterogeneity with extremely slow relaxation for some spins, while others fluctuate quickly down to zero temperature. We thus call this state spin slush, in analogy to the heterogeneous mixture of solid and liquid water. This behaviour is driven by the structure of the ground-state manifold which extends the celebrated two-in/two-out ice states to include branching structures built from three-in/one-out, three-out/one-in and all-in/all-out tetrahedra defects. Distinctive liquid-like patterns in the magnetic correlations serve as a signature of this intermediate range order. Possible applications to materials as well the effects of quantum tunnelling are discussed. PMID:27470199

  7. Cross-correlation spin noise spectroscopy of heterogeneous interacting spin systems

    SciTech Connect

    Roy, Dibyendu; Yang, Luyi; Crooker, Scott A.; Sinitsyn, Nikolai A.

    2015-04-30

    Interacting multi-component spin systems are ubiquitous in nature and in the laboratory. As such, investigations of inter-species spin interactions are of vital importance. Traditionally, they are studied by experimental methods that are necessarily perturbative: e.g., by intentionally polarizing or depolarizing one spin species while detecting the response of the other(s). Here, we describe and demonstrate an alternative approach based on multi-probe spin noise spectroscopy, which can reveal inter-species spin interactions - under conditions of strict thermal equilibrium - by detecting and cross-correlating the stochastic fluctuation signals exhibited by each of the constituent spin species. Specifically, we consider a two-component spin ensemble that interacts via exchange coupling, and we determine cross-correlations between their intrinsic spin fluctuations. The model is experimentally confirmed using “two-color” optical spin noise spectroscopy on a mixture of interacting Rb and Cs vapors. Noise correlations directly reveal the presence of inter-species spin exchange, without ever perturbing the system away from thermal equilibrium. These non-invasive and noise-based techniques should be generally applicable to any heterogeneous spin system in which the fluctuations of the constituent components are detectable.

  8. Cross-correlation spin noise spectroscopy of heterogeneous interacting spin systems

    NASA Astrophysics Data System (ADS)

    Roy, Dibyendu; Yang, Luyi; Crooker, Scott A.; Sinitsyn, Nikolai A.

    2015-04-01

    Interacting multi-component spin systems are ubiquitous in nature and in the laboratory. As such, investigations of inter-species spin interactions are of vital importance. Traditionally, they are studied by experimental methods that are necessarily perturbative: e.g., by intentionally polarizing or depolarizing one spin species while detecting the response of the other(s). Here, we describe and demonstrate an alternative approach based on multi-probe spin noise spectroscopy, which can reveal inter-species spin interactions - under conditions of strict thermal equilibrium - by detecting and cross-correlating the stochastic fluctuation signals exhibited by each of the constituent spin species. Specifically, we consider a two-component spin ensemble that interacts via exchange coupling, and we determine cross-correlations between their intrinsic spin fluctuations. The model is experimentally confirmed using ``two-color'' optical spin noise spectroscopy on a mixture of interacting Rb and Cs vapors. Noise correlations directly reveal the presence of inter-species spin exchange, without ever perturbing the system away from thermal equilibrium. These non-invasive and noise-based techniques should be generally applicable to any heterogeneous spin system in which the fluctuations of the constituent components are detectable.

  9. Geometrical spin symmetry and spin

    SciTech Connect

    Pestov, I. B.

    2011-07-15

    Unification of General Theory of Relativity and Quantum Mechanics leads to General Quantum Mechanics which includes into itself spindynamics as a theory of spin phenomena. The key concepts of spindynamics are geometrical spin symmetry and the spin field (space of defining representation of spin symmetry). The essence of spin is the bipolar structure of geometrical spin symmetry induced by the gravitational potential. The bipolar structure provides a natural derivation of the equations of spindynamics. Spindynamics involves all phenomena connected with spin and provides new understanding of the strong interaction.

  10. Magnetic monopoles in quantum spin ice

    NASA Astrophysics Data System (ADS)

    Petrova, Olga; Moessner, Roderich; Sondhi, Shivaji

    Typical spin ice materials can be modeled using classical Ising spins. The geometric frustration of the pyrochlore lattice causes the spins to satisfy ice rules, whereas a violation of the ice constraint constitutes an excitation. Flipping adjacent spins fractionalizes the excitation into two monopoles. Long range dipolar spin couplings result in Coulombic interactions between charges, while the leading effect of quantum fluctuations is to provide the monopoles with kinetic energy. We study the effect of adding quantum dynamics to spin ice, a well-known classical spin liquid, with a particular view of how to best detect its presence in experiment. For the weakly diluted quantum spin ice, we find a particularly crisp phenomenon, namely, the emergence of hydrogenic excited states in which a magnetic monopole is bound to a vacancy at various distances.

  11. Proteins, fluctuations and complexity

    SciTech Connect

    Frauenfelder, Hans; Chen, Guo; Fenimore, Paul W

    2008-01-01

    Glasses, supercooled liquids, and proteins share common properties, in particular the existence of two different types of fluctuations, {alpha} and {beta}. While the effect of the {alpha} fluctuations on proteins has been known for a few years, the effect of {beta} fluctuations has not been understood. By comparing neutron scattering data on the protein myoglobin with the {beta} fluctuations in the hydration shell measured by dielectric spectroscopy we show that the internal protein motions are slaved to these fluctuations. We also show that there is no 'dynamic transition' in proteins near 200 K. The rapid increase in the mean square displacement with temperature in many neutron scattering experiments is quantitatively predicted by the {beta} fluctuations in the hydration shell.

  12. Thermal field fluctuations in a magnetic tip / implications for magnetic resonance force microscopy

    NASA Astrophysics Data System (ADS)

    Hannay, J. D.; Chantrell, R. W.; Rugar, D.

    2000-05-01

    Thermally excited magnetic fluctuations are fundamental to the behavior of small ferromagnetic particles and have practical consequences for the proposed detection of individual spins by magnetic resonance force microscopy (MRFM). In particular, fluctuating fields from a nearby magnetic tip can increase the relaxation rate of spins in a sample if there is significant spectral density of field fluctuation at the Larmor frequency of the target spin. As an initial step toward understanding this issue, magnetic field fluctuations have been simulated which emanate from a magnetic tip with dimensions 60 nm×60 nm×2 μm. It was found that the fluctuations in a cobalt magnetic tip were too strong for MRFM experiments aimed at detecting individual electron spins. However, the results obtained for a PrFeB tip fell within the tolerance required.

  13. AFM CHARACTERIZATION OF LASER INDUCED DAMAGE ON CDZNTE CRYSTAL SURFACES

    SciTech Connect

    Hawkins, S; Lucile Teague, L; Martine Duff, M; Eliel Villa-Aleman, E

    2008-06-10

    Semi-conducting CdZnTe (or CZT) crystals can be used in a variety of detector-type applications. CZT shows great promise for use as a gamma radiation spectrometer. However, its performance is adversely affected by point defects, structural and compositional heterogeneities within the crystals, such as twinning, pipes, grain boundaries (polycrystallinity), secondary phases and in some cases, damage caused by external forces. One example is damage that occurs during characterization of the surface by a laser during Raman spectroscopy. Even minimal laser power can cause Te enriched areas on the surface to appear. The Raman spectra resulting from measurements at moderate intensity laser power show large increases in peak intensity that is attributed to Te. Atomic Force Microscopy (AFM) was used to characterize the extent of damage to the CZT crystal surface following exposure to the Raman laser. AFM data reveal localized surface damage in the areas exposed to the Raman laser beam. The degree of surface damage to the crystal is dependent on the laser power, with the most observable damage occurring at high laser power. Moreover, intensity increases in the Te peaks of the Raman spectra are observed even at low laser power with little to no visible damage observed by AFM. AFM results also suggest that exposure to the same amount of laser power yields different amounts of surface damage depending on whether the exposed surface is the Te terminating face or the Cd terminating face of CZT.

  14. 3D Color Digital Elevation Map of AFM Sample

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This color image is a three dimensional (3D) view of a digital elevation map of a sample collected by NASA's Phoenix Mars Lander's Atomic Force Microscope (AFM).

    The image shows four round pits, only 5 microns in depth, that were micromachined into the silicon substrate, which is the background plane shown in red. This image has been processed to reflect the levelness of the substrate.

    A Martian particle only one micrometer, or one millionth of a meter, across is held in the upper left pit.

    The rounded particle shown at the highest magnification ever seen from another world is a particle of the dust that cloaks Mars. Such dust particles color the Martian sky pink, feed storms that regularly envelop the planet and produce Mars' distinctive red soil.

    The particle was part of a sample informally called 'Sorceress' delivered to the AFM on the 38th Martian day, or sol, of the mission (July 2, 2008). The AFM is part of Phoenix's microscopic station called MECA, or the Microscopy, Electrochemistry, and Conductivity Analyzer.

    The AFM was developed by a Swiss-led consortium, with Imperial College London producing the silicon substrate that holds sampled particles.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  15. Structural investigations on native collagen type I fibrils using AFM

    SciTech Connect

    Strasser, Stefan; Zink, Albert; Janko, Marek; Heckl, Wolfgang M.; Thalhammer, Stefan . E-mail: stefan.thalhammer@gsf.de

    2007-03-02

    This study was carried out to determine the elastic properties of single collagen type I fibrils with the use of atomic force microscopy (AFM). Native collagen fibrils were formed by self-assembly in vitro characterized with the AFM. To confirm the inner assembly of the collagen fibrils, the AFM was used as a microdissection tool. Native collagen type I fibrils were dissected and the inner core uncovered. To determine the elastic properties of collagen fibrils the tip of the AFM was used as a nanoindentor by recording force-displacement curves. Measurements were done on the outer shell and in the core of the fibril. The structural investigations revealed the banding of the shell also in the core of native collagen fibrils. Nanoindentation experiments showed the same Young's modulus on the shell as well as in the core of the investigated native collagen fibrils. In addition, the measurements indicate a higher adhesion in the core of the collagen fibrils compared to the shell.

  16. Introduction to Atomic Force Microscopy (AFM) in Biology.

    PubMed

    Kreplak, Laurent

    2016-01-01

    The atomic force microscope (AFM) has the unique capability of imaging biological samples with molecular resolution in buffer solution over a wide range of time scales from milliseconds to hours. In addition to providing topographical images of surfaces with nanometer- to angstrom-scale resolution, forces between single molecules and mechanical properties of biological samples can be investigated from the nano-scale to the micro-scale. Importantly, the measurements are made in buffer solutions, allowing biological samples to "stay alive" within a physiological-like environment while temporal changes in structure are measured-e.g., before and after addition of chemical reagents. These qualities distinguish AFM from conventional imaging techniques of comparable resolution, e.g., electron microscopy (EM). This unit provides an introduction to AFM on biological systems and describes specific examples of AFM on proteins, cells, and tissues. The physical principles of the technique and methodological aspects of its practical use and applications are also described. © 2016 by John Wiley & Sons, Inc. PMID:27479503

  17. Hydrodynamic effects in fast AFM single-molecule force measurements.

    PubMed

    Janovjak, Harald; Struckmeier, Jens; Müller, Daniel J

    2005-02-01

    Atomic force microscopy (AFM) allows the critical forces that unfold single proteins and rupture individual receptor-ligand bonds to be measured. To derive the shape of the energy landscape, the dynamic strength of the system is probed at different force loading rates. This is usually achieved by varying the pulling speed between a few nm/s and a few microm/s, although for a more complete investigation of the kinetic properties higher speeds are desirable. Above 10 microm/s, the hydrodynamic drag force acting on the AFM cantilever reaches the same order of magnitude as the molecular forces. This has limited the maximum pulling speed in AFM single-molecule force spectroscopy experiments. Here, we present an approach for considering these hydrodynamic effects, thereby allowing a correct evaluation of AFM force measurements recorded over an extended range of pulling speeds (and thus loading rates). To support and illustrate our theoretical considerations, we experimentally evaluated the mechanical unfolding of a multi-domain protein recorded at 30 microm/s pulling speed. PMID:15257425

  18. AFM Structural Characterization of Drinking Water Biofilm under Physiological Conditions

    EPA Science Inventory

    Due to the complexity of mixed culture drinking water biofilm, direct visual observation under in situ conditions has been challenging. In this study, atomic force microscopy (AFM) revealed the three dimensional morphology and arrangement of drinking water relevant biofilm in air...

  19. Conductive supports for combined AFM SECM on biological membranes

    NASA Astrophysics Data System (ADS)

    Frederix, Patrick L. T. M.; Bosshart, Patrick D.; Akiyama, Terunobu; Chami, Mohamed; Gullo, Maurizio R.; Blackstock, Jason J.; Dooleweerdt, Karin; de Rooij, Nico F.; Staufer, Urs; Engel, Andreas

    2008-09-01

    Four different conductive supports are analysed regarding their suitability for combined atomic force and scanning electrochemical microscopy (AFM-SECM) on biological membranes. Highly oriented pyrolytic graphite (HOPG), MoS2, template stripped gold, and template stripped platinum are compared as supports for high resolution imaging of reconstituted membrane proteins or native membranes, and as electrodes for transferring electrons from or to a redox molecule. We demonstrate that high resolution topographs of the bacterial outer membrane protein F can be recorded by contact mode AFM on all four supports. Electrochemical feedback experiments with conductive cantilevers that feature nanometre-scale electrodes showed fast re-oxidation of the redox couple Ru(NH3)63+/2+ with the two metal supports after prolonged immersion in electrolyte. In contrast, the re-oxidation rates decayed quickly to unpractical levels with HOPG or MoS2 under physiological conditions. On HOPG we observed heterogeneity in the re-oxidation rate of the redox molecules with higher feedback currents at step edges. The latter results demonstrate the capability of conductive cantilevers with small electrodes to measure minor variations in an SECM signal and to relate them to nanometre-scale features in a simultaneously recorded AFM topography. Rapid decay of re-oxidation rate and surface heterogeneity make HOPG or MoS2 less attractive for combined AFM-SECM experiments on biological membranes than template stripped gold or platinum supports.

  20. Protecting a Solid-State Spin from Decoherence Using Dressed Spin States

    NASA Astrophysics Data System (ADS)

    Golter, D. Andrew; Baldwin, Thomas K.; Wang, Hailin

    2014-12-01

    We report experimental studies of dressing an electron spin in diamond with resonant and continuous microwave fields to protect the electron spin from magnetic fluctuations induced by the nuclear spin bath. We use optical coherent population trapping (CPT) to probe the energy level structure, optically induced spin transitions, and spin decoherence rates of the dressed spin states. Dressing an electron spin with resonant microwaves at a coupling rate near 1 MHz leads to a 50 times reduction in the linewidth of the spin transition underlying the CPT process, limited by transit-time broadening. Compared with dynamical decoupling, where effects of the bath are averaged out at specific times, the dressed spin state provides a continuous protection from decoherence.

  1. Feedback control of nuclear spin bath for a single hole spin in a quantum dot

    NASA Astrophysics Data System (ADS)

    Pang, Hongliang; Gong, Zhirui; Yao, Wang

    2014-03-01

    In a semiconductor quantum dot, the nuclear spin bath plays an important role as the ultimate environment of an electron or hole spin at low temperature. Through dynamic nuclear spin polarization driven by an oscillating electric field, we show that feedback controls can be implemented on the nuclear spin bath of a single hole spin. The feedback controls utilize the anisotropic hyperfine interaction between the hole spin and the nuclear spins. The negative feedback can suppress the statistical fluctuations of the nuclear hyperfine field and lead to longer coherence time of the hole spin. Positive feedback can possibly lead to cat like state of nuclear spin bath. The efficiency of the controls schemes is investigated under different parameters and control strategies. The work is supported by the Croucher Foundation under the Croucher Innovation Award, and the Research Grant Council of Hong Kong (HKU706309P, HKU8/CRF/11G).

  2. Electrical control of single spin dynamics

    NASA Astrophysics Data System (ADS)

    Petta, Jason

    2012-02-01

    Over ten years ago, Daniel Loss and David DiVincenzo proposed using the spin of a single electron as a quantum bit. At the time of the proposal, it was not possible to trap a single electron in a device and measure its spin, let alone demonstrate control of quantum coherence. In this talk I will describe recent progress in the field, focusing on two new methods for single spin control that have been developed by my group at Princeton. The first method is based on quantum interference and implements spin-interferometry on a chip. The second method utilizes the strong spin-orbit coupling of InAs. By shifting the orbital position of the electronic wavefunction at gigahertz frequencies, we can control the orientation of a single electron spin and measure the full g-tensor, which exhibits a large anisotropy due to spin-orbit interactions. Both methods for single spin control are orders of magnitude faster than conventional electron spin resonance and allow investigations of single spin coherence in the presence of fluctuating nuclear and spin-orbit fields. I will also describe recent efforts to transfer these methods to silicon quantum dots, where the effects of fluctuating nuclear fields are much smaller.

  3. Novel Polymer Linkers for Single Molecule AFM Force Spectroscopy

    PubMed Central

    Tong, Zenghan; Mikheikin, Andrey; Krasnoslobodtsev, Alexey; Lv, Zhengjian; Lyubchenko, Yuri L.

    2013-01-01

    Flexible polymer linkers play an important role in various imaging and probing techniques that require surface immobilization, including atomic force microscopy (AFM). In AFM force spectroscopy, polymer linkers are necessary for the covalent attachment of molecules of interest to the AFM tip and the surface. The polymer linkers tether the molecules and provide their proper orientation in probing experiments. Additionally, the linkers separate specific interactions from nonspecific short-range adhesion and serve as a reference point for the quantitative analysis of single molecule probing events. In this report, we present our results on the synthesis and testing of a novel polymer linker and the identification of a number of potential applications for its use in AFM force spectroscopy experiments. The synthesis of the linker is based on the well-developed phosphoramidate (PA) chemistry that allows the routine synthesis of linkers with predetermined lengths and PA composition. These linkers are homogeneous in length and can be terminated with various functional groups. PA linkers with different functional groups were synthesized and tested in experimental systems utilizing different immobilization chemistries. We probed interactions between complementary DNA oligonucleotides; DNA and protein complexes formed by the site-specific binding protein SfiI; and interactions between amyloid peptide (Aβ42). The results of the AFM force spectroscopy experiments validated the feasibility of the proposed approach for the linker design and synthesis. Furthermore, the properties of the tether (length, functional groups) can be adjusted to meet the specific requirements for different force spectroscopy experiments and system characteristics, suggesting that it could be used for a large number of various applications. PMID:23624104

  4. MOS-based nanocapacitor using C-AFM

    NASA Astrophysics Data System (ADS)

    Hill, Daniel; Sadewasser, Sascha; Aymerich, Xavier

    2003-04-01

    This report details the attempts made to realise nanocapacitors for nanoscale MOS based integrated circuits by AFM anodic oxidation, and therefore isolation, of nano-sized squares of poly-silicon, titanium and aluminium on Si/SiO2. Conductive AFM (C-AFM) was used to perform topographical and electrical characterisation. The experiments were performed with contact mode C-AFM, in ambient air, using Pt-Ir, Co-Cr and Ti coated (20nm) n-type silicon cantilevers. Each sample consisted of a 3-5nm thick conductor deposited on 6nm of SiO2, which was thermally grown on Phosphorus doped (1019 cm-3) n-type Si(100) substrates. Standard cleaning and passivation processes were used. Poly-silicon was immediately found to be too rough to oxidise. Initial current-voltage measurements inside of the titanium-oxide squares suggest initial isolation followed by degradation through Fowler-Nordheim tunnelling. Measurement inconsistencies seen suggest charge storage on the surface or tip with the barrier height of the native titanium oxide thought to be responsible. Al has a thicker natural oxide. To overcome this we designed a series of structures consisting of a Ti finger on SiO2, that is connected to a Ti bond pad, allowing direct probing by a semiconductor parameter analyser. AFM anodic oxidation was performed upon these Ti fingers to reduce their in-plane dimensions towards the nanoscale. To confirm the existence of a nanocapacitor topographical and electrical measurements were then done on and around them.

  5. Frustration and Fluctuations in Systems with Quenched Disorder

    NASA Astrophysics Data System (ADS)

    Stein, D. L.

    As Phil Anderson noted long ago, frustration can be generally defined by measuring the fluctuations in the coupling energy across a plane boundary between two large blocks of material. Since that time, a number of groups have studied the free energy fluctuations between (putative) distinct spin glass thermodynamic states. While upper bounds on such fluctuations have been obtained, useful lower bounds have been more difficult to derive. I present a history of these efforts, and briefly discuss recent work showing that free energy fluctuations between certain classes of distinct thermodynamic states (if they exist) scale as the square root of the volume. The perspective offered here is that the power and generality of the Anderson conception of frustration suggests a potential approach toward resolving some longstanding and central issues in spin glass physics.

  6. Cross-correlation spin noise spectroscopy of heterogeneous interacting spin systems

    DOE PAGESBeta

    Roy, Dibyendu; Yang, Luyi; Crooker, Scott A.; Sinitsyn, Nikolai A.

    2015-04-30

    Interacting multi-component spin systems are ubiquitous in nature and in the laboratory. As such, investigations of inter-species spin interactions are of vital importance. Traditionally, they are studied by experimental methods that are necessarily perturbative: e.g., by intentionally polarizing or depolarizing one spin species while detecting the response of the other(s). Here, we describe and demonstrate an alternative approach based on multi-probe spin noise spectroscopy, which can reveal inter-species spin interactions - under conditions of strict thermal equilibrium - by detecting and cross-correlating the stochastic fluctuation signals exhibited by each of the constituent spin species. Specifically, we consider a two-component spinmore » ensemble that interacts via exchange coupling, and we determine cross-correlations between their intrinsic spin fluctuations. The model is experimentally confirmed using “two-color” optical spin noise spectroscopy on a mixture of interacting Rb and Cs vapors. Noise correlations directly reveal the presence of inter-species spin exchange, without ever perturbing the system away from thermal equilibrium. These non-invasive and noise-based techniques should be generally applicable to any heterogeneous spin system in which the fluctuations of the constituent components are detectable.« less

  7. Fluctuations in nuclear fragmentation

    SciTech Connect

    Aranda, A.; Dorso, C.O.; Furci, V.; Lopez, J.A.

    1995-12-01

    Heavy ion collisions can be used to study the thermodynamics of hot and dense nuclear matter only if the initial mass and energy fluctuations that lead to fragmentation are of thermal origin and survive the disassembly process. If this is the case, the observed fragment multiplicity should be directly related to those initial fluctuations and to the conditions of temperature and density causing them. The feasibility of this scenario is demonstrated with a molecular dynamics study of the evolution of mass and energy fluctuations, and fluctuations of the phase-space density. First, it is verified that the fluctuations leading to fragmentation are indeed early ones. Second, it is determined that different initial conditions of density and temperature can indeed produce varying final fragment multiplicities. The {rho}-{ital T} plane is mapped to the fragment multiplicity with good precision. This mapping should be easily reproducible with existing experimental data.

  8. STM and AFM; Which is Better for Surface Structural Analysis? Non- contact AFM Studies on Ge/Si(105) Surface

    NASA Astrophysics Data System (ADS)

    Hasegawa, Yukio

    2006-03-01

    Scanning tunneling microscopy (STM) has been utilized to determine surface atomic structure with its highly resolved images. Probing surface electronic states near the Fermi energy (EF), STM images, however, do not necessarily represent the atomic structure of surfaces. It has been believed that atomic force microscopy (AFM) provides us surface topographic images without being disturbed by the electronic states. In order to prove the surpassing performance, we performed noncontact (nc) AFM on the Ge/Si(105) surface [1], which is a facet plane of the ?hut? clusters formed on Ge-deposited Si(001) surface. It is found that STM images taken on the surface, either filled- or empty-state images, do not show all surface atoms because of the electronic effect; some surface atoms have dangling bond states below EF and other surface atoms have states above EF. [2]. In a nc-AFM image, on the other hand, all surface atoms having a dangling bond are observed [3], directly representing an atomic structure of the surface. Electronic information can also be obtained in AFM by using a Kelvin-probe method. From atomically resolved potential profile we obtained, charge transfer among the dangling bond states is directly demonstrated. These results clearly demonstrate that highly-resolved nc-AFM with a Kelvin-probe method is an ideal tool for analysis of atomic structures and electronic properties of surfaces. This work was done in collaboration with T. Eguchi, K. Akiyama, T. An, and M. Ono, ISSP, Univ. Tokyo and JST, Y. Fujikawa and T. Sakurai, IMR. Tohoku Univ. T. Hashimoto, AIST, Y. Morikawa, ISIR, Osaka Univ. K. Terakura, Hokkaido Univ., and M.G. Lagally, University of Wisconsin-Madison. [1] T. Eguchi et al., Phys. Rev. Lett. 93, 266102 (2004). [2] Y. Fujikawa et al., Phys. Rev. Lett. 88, 176101 (2002). [3] T. Eguchi and Y. Hasegawa, Phys. Rev. Lett. 89, 256105 (2002)

  9. Strong Spin Hall effect in PtMn

    NASA Astrophysics Data System (ADS)

    Ou, Yongxi; Shi, Shengjie; Ralph, Daniel; Buhrman, Robert

    Recent reports indicate that certain metallic antiferromagnets (AFM) can exhibit a significant spin Hall effect. Here we report a large damping-like spin torque efficiency (ξDL) in PtMn/ferromagnet(FM) bilayer structures, determined from both FM-thickness-dependent spin-torque ferromagnetic resonance (ST-FMR), and harmonic response (HR) measurements of layers with perpendicular magnetic anisotropy (PMA). We find that ξDL can vary from <0.1 to >0.15, depending on the thickness of PtMn, the stacking order of the samples, and the choice of the FM material. The field-like spin torque efficiency (ξFL) is also quite variable, 0<|ξFL|<0.5. The large broadening of the ST-FMR linewidth suggests extra spin attenuation at the AFM/FM interface that is possibly due to intermixing. The PtMn/FeCoB/MgO structures that exhibit PMA have a comparatively low switching current density and an unusual asymmetric switching phase diagram. These results indicate that AFM PtMn has significant potential both for advancing the understanding the physics of the spin Hall effect in Pt alloys, and for enabling new spintronics functionality.

  10. Optimal Dense Coding and Swap Operation Between Two Coupled Electronic Spins: Effects of Nuclear Field and Spin-Orbit Interaction

    NASA Astrophysics Data System (ADS)

    Jiang, Li; Zhang, Guo-Feng

    2016-08-01

    The effects of nuclear field and spin-orbit interaction on dense coding and swap operation are studied in detail for both the antiferromagnetic (AFM) and ferromagnetic (FM) coupling cases. The conditions for a valid dense coding and under which swap operation is feasible are given.

  11. Wedged AFM-cantilevers for parallel plate cell mechanics.

    PubMed

    Stewart, Martin P; Hodel, Adrian W; Spielhofer, Andreas; Cattin, Cedric J; Müller, Daniel J; Helenius, Jonne

    2013-04-01

    The combination of atomic force microscopy (AFM) and optical microscopy has gained popularity for mechanical analysis of living cells. In particular, recent AFM-based assays featuring tipless cantilevers and whole-cell deformation have yielded insights into cellular function, structure, and dynamics. However, in these assays the standard ≈10° tilt of the cantilever prevents uniaxial loading, which complicates assessment of cellular geometry and can cause cell sliding or loss of loosely adherent cells. Here, we describe an approach to modify tipless cantilevers with wedges and, thereby, achieve proper parallel plate mechanics. We provide guidance on material selection, the wedge production process, property and geometry assessment, and the calibration of wedged cantilevers. Furthermore, we demonstrate their ability to simplify the assessment of cell shape, prevent lateral displacement of round cells during compression, and improve the assessment of cell mechanical properties. PMID:23473778

  12. AFM-based mechanical characterization of single nanofibres.

    PubMed

    Neugirg, Benedikt R; Koebley, Sean R; Schniepp, Hannes C; Fery, Andreas

    2016-04-28

    Nanofibres are found in a broad variety of hierarchical biological systems as fundamental structural units, and nanofibrillar components are playing an increasing role in the development of advanced functional materials. Accurate determination of the mechanical properties of single nanofibres is thus of great interest, yet measurement of these properties is challenging due to the intricate specimen handling and the exceptional force and deformation resolution that is required. The atomic force microscope (AFM) has emerged as an effective, reliable tool in the investigation of nanofibrillar mechanics, with the three most popular approaches-AFM-based tensile testing, three-point deformation testing, and nanoindentation-proving preferable to conventional tensile testing in many (but not all) cases. Here, we review the capabilities and limitations of each of these methods and give a comprehensive overview of the recent advances in this field. PMID:27055900

  13. Insights into Epoxy Network Nanostructural Heterogeneity Using AFM-IR.

    PubMed

    Morsch, Suzanne; Liu, Yanwen; Lyon, Stuart B; Gibbon, Simon R

    2016-01-13

    The first direct observation of a chemically heterogeneous nanostructure within an epoxy resin is reported. Epoxy resins comprise the matrix component of many high performance composites, coatings and adhesives, yet the molecular network structure that underpins the performance of these industrially essential materials is not well understood. Internal nodular morphologies have repeatedly been reported for epoxy resins analyzed using SEM or AFM, yet the origin of these features remains a contentious subject, and epoxies are still commonly assumed to be chemically homogeneous. Uniquely, in this contribution we use the recently developed AFM-IR technique to eliminate previous differences in interpretation, and establish that nodule features correspond to heterogeneous network connectivity within an epoxy phenolic formulation. PMID:26694687

  14. Nano-Bio-Mechanics of Neuroblastoma Cells Using AFM

    NASA Astrophysics Data System (ADS)

    Bastatas, Lyndon; Matthews, James; Kang, Min; Park, Soyeun

    2011-10-01

    We have conducted an in vitro study to determine the elastic moduli of neurobalstoma cell lines using atomic force microscopy. Using a panel of cell lines established from neuroblastoma patients at different stages of disease progress and treatment, we have investigated the differences in elastic moduli during a course of cancer progression and chemotherapy. The cells were grown on the hard substrates that are chemically functionalized to enhance adhesion. We have performed the AFM indentation experiments with different applied forces from the AFM probe. For the purpose of the comparison between cell lines, the indentations were performed only on cell centers. The obtained force-distance curves were analyzed using the Hertz model in order to extract the elastic moduli. We have found that the elastic moduli of human neuroblastoma cells significantly varied during the disease progression. We postulate that the observed difference might be affected by the treatment and chemotherapy.

  15. AFM-based mechanical characterization of single nanofibres

    NASA Astrophysics Data System (ADS)

    Neugirg, Benedikt R.; Koebley, Sean R.; Schniepp, Hannes C.; Fery, Andreas

    2016-04-01

    Nanofibres are found in a broad variety of hierarchical biological systems as fundamental structural units, and nanofibrillar components are playing an increasing role in the development of advanced functional materials. Accurate determination of the mechanical properties of single nanofibres is thus of great interest, yet measurement of these properties is challenging due to the intricate specimen handling and the exceptional force and deformation resolution that is required. The atomic force microscope (AFM) has emerged as an effective, reliable tool in the investigation of nanofibrillar mechanics, with the three most popular approaches--AFM-based tensile testing, three-point deformation testing, and nanoindentation--proving preferable to conventional tensile testing in many (but not all) cases. Here, we review the capabilities and limitations of each of these methods and give a comprehensive overview of the recent advances in this field.

  16. Molecular modeling of enzyme attachment on AFM probes.

    PubMed

    Oliveira, Guedmiller S; Leite, Fabio L; Amarante, Adriano M; Franca, Eduardo F; Cunha, Richard A; Briggs, James M; Freitas, Luiz C G

    2013-09-01

    The immobilization of enzymes on atomic force microscope tip (AFM tip) surface is a crucial step in the development of nanobiosensors to be used in detection process. In this work, an atomistic modeling of the attachment of the acetyl coenzyme A carboxylase (ACC enzyme) on a functionalized AFM tip surface is proposed. Using electrostatic considerations, suitable enzyme-surface orientations with the active sites of the ACC enzyme available for interactions with bulk molecules were found. A 50 ns molecular dynamics trajectory in aqueous solution was obtained and surface contact area, hydrogen bonding and protein stability were analyzed. The enzyme-surface model proposed here with minor adjustment can be applied to study antigen-antibody interactions as well as enzyme immobilization on silica for chromatography applications. PMID:24029365

  17. AFM study of polymer lubricants on hard disk surfaces

    NASA Astrophysics Data System (ADS)

    Bao, G. W.; Troemel, M.; Li, S. F. Y.

    Thin liquid films of PFPE (perfluoropolyether) lubricants dip-coated on hard disk surfaces were imaged with non-contact mode AFM. Demnum lubricants with phosphazene additives exhibited strong interactions with a silicon tip due to the formation of liquid bridges between the lubricants and the tip, as indicated by a remarkable hysteresis loop between approach and retraction curves in force vs. distance measurements. Features resulting from capillary forces due to tip tapping to the lubricants were revealed, which demonstrated that the capillary forces could be used to lock the non-contacting tip at a certain separation from the substrate surface to obtain AFM images. Force vs. distance curves for Fomblin Z-dol lubricants showed negligible hysteresis effects and features corresponding to lateral distortion of the tip by the lubricants only were observed. In both cases, only when the tip was positioned far above the surfaces could the natural distributions of the lubricants be imaged.

  18. BOREAS AFM-5 Level-1 Upper Air Network Data

    NASA Technical Reports Server (NTRS)

    Barr, Alan; Hrynkiw, Charmaine; Newcomer, Jeffrey A. (Editor); Hall, Forrest G. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-5 team collected and processed data from the numerous radiosonde flights during the project. The goals of the AFM-05 team were to provide large-scale definition of the atmosphere by supplementing the existing Atmospheric Environment Service (AES) aerological network, both temporally and spatially. This data set includes basic upper-air parameters collected from the network of upper-air stations during the 1993, 1994, and 1996 field campaigns over the entire study region. The data are contained in tabular ASCII files. The level-1 upper-air network data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files also are available on a CD-ROM (see document number 20010000884).

  19. Adhesion forces in AFM of redox responsive polymer grafts: Effects of tip hydrophilicity

    NASA Astrophysics Data System (ADS)

    Feng, Xueling; Kieviet, Bernard D.; Song, Jing; Schön, Peter M.; Vancso, G. Julius

    2014-02-01

    The adherence between silicon nitride AFM tips and redox-active poly(ferrocenylsilanes) (PFS) grafts on gold was investigated by electrochemical AFM force spectroscopy. Before the adhesion measurements silicon nitride AFM probes were cleaned with organic solvents (acetone and ethanol) or piranha solution. Interestingly, these different AFM tip cleaning procedures drastically affected the observed adhesion forces. Water contact angle measurements on the corresponding AFM probe chips showed that piranha treatment resulted in a significant increase of AFM probe chip surface hydrophilicity compared to the organic solvent treatment. Obviously this hydrophilicity change caused drastic, even opposite changes in the tip-PFS adhesive force measurement upon electrode potential change to reversibly oxidize and reduce the PFS grafts. Our findings are of pivotal importance for AFM tip adhesion measurements utilizing standard silicon nitride AFM tips. Probe hydrophilicity must be carefully taken into consideration and controlled.

  20. Hadronic Correlations and Fluctuations

    SciTech Connect

    Koch, Volker

    2008-10-09

    We will provide a review of some of the physics which can be addressed by studying fluctuations and correlations in heavy ion collisions. We will discuss Lattice QCD results on fluctuations and correlations and will put them into context with observables which have been measured in heavy-ion collisions. Special attention will be given to the QCD critical point and the first order co-existence region, and we will discuss how the measurement of fluctuations and correlations can help in an experimental search for non-trivial structures in the QCD phase diagram.

  1. Spatial fluctuation theorem

    NASA Astrophysics Data System (ADS)

    Pérez-Espigares, Carlos; Redig, Frank; Giardinà, Cristian

    2015-08-01

    For non-equilibrium systems of interacting particles and for interacting diffusions in d-dimensions, a novel fluctuation relation is derived. The theorem establishes a quantitative relation between the probabilities of observing two current values in different spatial directions. The result is a consequence of spatial symmetries of the microscopic dynamics, generalizing in this way the Gallavotti-Cohen fluctuation theorem related to the time-reversal symmetry. This new perspective opens up the possibility of direct experimental measurements of fluctuation relations of vectorial observables.

  2. LET Spectrum Measurements In CR-39 PNTD With AFM

    NASA Astrophysics Data System (ADS)

    Johnson, C. E.; DeWitt, J. M.; Benton, E. R.; Yasuda, N.; Benton, E. V.

    2011-06-01

    Energetic protons, neutrons, and heavy ions undergoing collisions with target nuclei of varying Z can produce residual heavy recoil fragments via intra-nuclear cascade/evaporation reactions. The particles produced in these non-elastic collisions generally have such extremely short range (˜<10 μm) that they cannot be directly observed by conventional detection methods including CR-39 plastic nuclear track detector (PNTD) that has been chemically etched for analysis by standard visible light microscopy. However, high-LET recoil fragments having range on the order of several cell diameters can be produced in tissue during radiotherapy using proton and carbon beams. We have developed a method to analyze short-range, high-LET tracks in CR-39 plastic nuclear track detector (PNTD) using short duration chemical etching (˜<1 μm) following by automated atomic force microscope (AFM) scanning. The post-scan data processing used in this work was based on semi-automated matrix analysis opposed to traditional grey-scale image analysis. This method takes advantage of the 3-D data obtained via AFM to achieve robust discrimination of nuclear tracks from other features inherently present in the post-etch detector surface. Through automation of AFM scanning, sufficient AFM scan frames were obtained to attain an LET spectrum spanning the LET range from 200-1500 keV/μm. In addition to our experiments, simulations were carried out with the Monte Carlo transport code, FLUKA. To demonstrate this method, CR-39 PNTD was exposed to the proton therapy beam at Loma Linda University Medical Center (LLUMC) at 60 and 230 MeV. Additionally, detectors were exposed to 1 GeV protons at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL). For these exposures CR-39 PNTD, Al and Cu target foils were used between detector layers.

  3. AFM and SThM Characterization of Graphene

    NASA Astrophysics Data System (ADS)

    Foy, Christopher; Sidorov, Anton; Chen, Xunchi; Ruan, Ming; Berger, Claire; de Heer, Walter; Jiang, Zhigang

    2012-03-01

    We report on detailed characterization of epitaxial grown graphene on SiC and chemical vapor deposition grown graphene on Cu foil using atomic force microscopy (AFM) and scanning thermal microscopy (SThM). We focus on the electronic and thermal properties of graphene grain boundaries, and thus providing valuable feedback to materials growth. Specifically, we perform thermal conductivity contrast mapping and surface potential mapping of graphene, and compare with that obtained on the Au electrodes and the substrate.

  4. Investigation of biopolymer networks by means of AFM

    NASA Astrophysics Data System (ADS)

    Keresztes, Z.; Rigó, T.; Telegdi, J.; Kálmán, E.

    Natural hydrogel alginate was investigated by means of atomic force microscopy (AFM) to gain microscale information on the morphological and rheological properties of the biopolymer network cross-linked by various cations. Local rheological properties of the gels measured by force spectroscopy gave correlation between increasing ion selectivity and increasing polymer elasticity. Adhesive forces acting between the surface of the gel and the probe, and also the intrinsic rheological properties of bulk polymers affect the microscopical image formation.

  5. LET Spectrum Measurements In CR-39 PNTD With AFM

    SciTech Connect

    Johnson, C. E.; DeWitt, J. M.; Benton, E. R.; Yasuda, N.; Benton, E. V.

    2011-06-01

    Energetic protons, neutrons, and heavy ions undergoing collisions with target nuclei of varying Z can produce residual heavy recoil fragments via intra-nuclear cascade/evaporation reactions. The particles produced in these non-elastic collisions generally have such extremely short range ({approx}<10 {mu}m) that they cannot be directly observed by conventional detection methods including CR-39 plastic nuclear track detector (PNTD) that has been chemically etched for analysis by standard visible light microscopy. However, high-LET recoil fragments having range on the order of several cell diameters can be produced in tissue during radiotherapy using proton and carbon beams. We have developed a method to analyze short-range, high-LET tracks in CR-39 plastic nuclear track detector (PNTD) using short duration chemical etching ({approx}<1 {mu}m) following by automated atomic force microscope (AFM) scanning. The post-scan data processing used in this work was based on semi-automated matrix analysis opposed to traditional grey-scale image analysis. This method takes advantage of the 3-D data obtained via AFM to achieve robust discrimination of nuclear tracks from other features inherently present in the post-etch detector surface. Through automation of AFM scanning, sufficient AFM scan frames were obtained to attain an LET spectrum spanning the LET range from 200-1500 keV/{mu}m. In addition to our experiments, simulations were carried out with the Monte Carlo transport code, FLUKA. To demonstrate this method, CR-39 PNTD was exposed to the proton therapy beam at Loma Linda University Medical Center (LLUMC) at 60 and 230 MeV. Additionally, detectors were exposed to 1 GeV protons at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL). For these exposures CR-39 PNTD, Al and Cu target foils were used between detector layers.

  6. Quantitative nano-mechanics of biological cells with AFM

    NASA Astrophysics Data System (ADS)

    Sokolov, Igor

    2013-03-01

    The importance of study of living cells is hard to overestimate. Cell mechanics is a relatively young, yet not a well-developed area. Besides just a fundamental interest, large practical need has emerged to measure cell mechanics quantitatively. Recent studies revealed a significant correlation between stiffness of biological cells and various human diseases, such as cancer, malaria, arthritis, and even aging. However, really quantitative studies of mechanics of biological cells are virtually absent. It is not even clear if the cell, being a complex and heterogeneous object, can be described by the elastic modulus at all. Atomic force microscopy (AFM) is a natural instrument to study properties of cells in their native environments. Here we will demonstrate that quantitative measurements of elastic modulus of cells with AFM are possible. Specifically, we will show that the ``cell body'' (cell without ``brush'' surface layer, a non-elastic layer surrounding cells) typically demonstrates the response of a homogeneous elastic medium up to the deformation of 10-20%, but if and only if a) the cellular brush layer is taken into account, b) rather dull AFM probes are used. This will be justified with the help of the strong condition of elastic behavior of material: the elastic modulus is shown to be independent on the indentation depth. We will also demonstrate that an attempt either to ignore the brush layer or to use sharp AFM probes will result in the violation of the strong condition, which implies impossibility to use the concept of the elastic modulus to describe cell mechanics in such experiments. Examples of quantitative measurements of the Young's modulus of the cell body and the cell brush parameters will be given for various cells. Address when submitting: Clarkson University, Potsdam, NY 13699

  7. LET spectrum measurements in Cr-39 PNTD with AFM

    SciTech Connect

    Johnson, Carl Edward; De Witt, Joel M; Benton, Eric R; Yasuda, Nakahiro; Benton, Eugene V

    2010-01-01

    Energetic protons, neutrons, and heavy ions undergoing collisions with target nuclei of varying Z can produce residual heavy recoil fragments via intra-nuclear cascade/evaporation reactions. The particles produced in these non-elastic collisions generally have such extremely short range ({approx}< 10 {mu}m) that they cannot be directly observed by conventional detection methods including CR-39 plastic nuclear track detector (PNTD) that has been chemically etched for analysis by standard visible light microscopy. However, high-LET recoil fragments having range on the order of several cell diameters can be produced in tissue during radiotherapy using proton and carbon beams. We have developed a method to analyze short-range, high-LET tracks in CR-39 plastic nuclear track detector (PNTD) using short duration chemical etching ({approx}< 1 {mu}m) followed by automated atomic force microscope (AFM) scanning. The post-scan data processing used in this work was based on semi-automated matrix analysis opposed to traditional grey-scale image analysis. This method takes advantage of the 3-D data obtained via AFM to achieve robust discrimination of nuclear tracks from other features. Through automation of AFM scanning, sufficient AFM scan frames were obtained to attain an LET spectrum spanning the LET range from 200-1500 keV/{mu}m. In addition to our experiments, simulations were carried out with the Monte Carlo transport code, FLUKA. To demonstrate this method, CR-39 PNTD was exposed to the proton therapy beam at Loma Linda University Medical Center (LLUMC) at 60 and 230 MeV. Additionally, detectors were exposed to I GeV protons at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL). For these exposures CR-39 PNTD, Al and Cu target foils were used between detector layers.

  8. Near-Field Spectroscopy with Nanoparticles Deposited by AFM

    NASA Technical Reports Server (NTRS)

    Anderson, Mark S.

    2008-01-01

    An alternative approach to apertureless near-field optical spectroscopy involving an atomic-force microscope (AFM) entails less complexity of equipment than does a prior approach. The alternative approach has been demonstrated to be applicable to apertureless near-field optical spectroscopy of the type using an AFM and surface enhanced Raman scattering (SERS), and is expected to be equally applicable in cases in which infrared or fluorescence spectroscopy is used. Apertureless near-field optical spectroscopy is a means of performing spatially resolved analyses of chemical compositions of surface regions of nanostructured materials. In apertureless near-field spectroscopy, it is common practice to utilize nanostructured probe tips or nanoparticles (usually of gold) having shapes and dimensions chosen to exploit plasmon resonances so as to increase spectroscopic-signal strengths. To implement the particular prior approach to which the present approach is an alternative, it is necessary to integrate a Raman spectrometer with an AFM and to utilize a special SERS-active probe tip. The resulting instrumentation system is complex, and the tasks of designing and constructing the system and using the system to acquire spectro-chemical information from nanometer-scale regions on a surface are correspondingly demanding.

  9. Tissue section AFM: In situ ultrastructural imaging of native biomolecules

    PubMed Central

    Graham, Helen K.; Hodson, Nigel W.; Hoyland, Judith A.; Millward-Sadler, Sarah J.; Garrod, David; Scothern, Anthea; Griffiths, Christopher E.M.; Watson, Rachel E.B.; Cox, Thomas R.; Erler, Janine T.; Trafford, Andrew W.; Sherratt, Michael J.

    2010-01-01

    Conventional approaches for ultrastructural high-resolution imaging of biological specimens induce profound changes in bio-molecular structures. By combining tissue cryo-sectioning with non-destructive atomic force microscopy (AFM) imaging we have developed a methodology that may be applied by the non-specialist to both preserve and visualize bio-molecular structures (in particular extracellular matrix assemblies) in situ. This tissue section AFM technique is capable of: i) resolving nm–µm scale features of intra- and extracellular structures in tissue cryo-sections; ii) imaging the same tissue region before and after experimental interventions; iii) combining ultrastructural imaging with complimentary microscopical and micromechanical methods. Here, we employ this technique to: i) visualize the macro-molecular structures of unstained and unfixed fibrillar collagens (in skin, cartilage and intervertebral disc), elastic fibres (in aorta and lung), desmosomes (in nasal epithelium) and mitochondria (in heart); ii) quantify the ultrastructural effects of sequential collagenase digestion on a single elastic fibre; iii) correlate optical (auto fluorescent) with ultrastructural (AFM) images of aortic elastic lamellae. PMID:20144712

  10. Nanoscale rippling on polymer surfaces induced by AFM manipulation

    PubMed Central

    2015-01-01

    Summary Nanoscale rippling induced by an atomic force microscope (AFM) tip can be observed after performing one or many scans over the same area on a range of materials, namely ionic salts, metals, and semiconductors. However, it is for the case of polymer films that this phenomenon has been widely explored and studied. Due to the possibility of varying and controlling various parameters, this phenomenon has recently gained a great interest for some technological applications. The advent of AFM cantilevers with integrated heaters has promoted further advances in the field. An alternative method to heating up the tip is based on solvent-assisted viscoplastic deformations, where the ripples develop upon the application of a relatively low force to a solvent-rich film. An ensemble of AFM-based procedures can thus produce nanoripples on polymeric surfaces quickly, efficiently, and with an unprecedented order and control. However, even if nanorippling has been observed in various distinct modes and many theoretical models have been since proposed, a full understanding of this phenomenon is still far from being achieved. This review aims at summarizing the current state of the art in the perspective of achieving control over the rippling process on polymers at a nanoscale level. PMID:26733086

  11. AFM imaging of functionalized carbon nanotubes on biological membranes

    NASA Astrophysics Data System (ADS)

    Lamprecht, C.; Liashkovich, I.; Neves, V.; Danzberger, J.; Heister, E.; Rangl, M.; Coley, H. M.; McFadden, J.; Flahaut, E.; Gruber, H. J.; Hinterdorfer, P.; Kienberger, F.; Ebner, A.

    2009-10-01

    Multifunctional carbon nanotubes are promising for biomedical applications as their nano-size, together with their physical stability, gives access into the cell and various cellular compartments including the nucleus. However, the direct and label-free detection of carbon nanotube uptake into cells is a challenging task. The atomic force microscope (AFM) is capable of resolving details of cellular surfaces at the nanometer scale and thus allows following of the docking of carbon nanotubes to biological membranes. Here we present topographical AFM images of non-covalently functionalized single walled (SWNT) and double walled carbon nanotubes (DWNT) immobilized on different biological membranes, such as plasma membranes and nuclear envelopes, as well as on a monolayer of avidin molecules. We were able to visualize DWNT on the nuclear membrane while at the same time resolving individual nuclear pore complexes. Furthermore, we succeeded in localizing individual SWNT at the border of incubated cells and in identifying bundles of DWNT on cell surfaces by AFM imaging.

  12. Investigation of the Mechanoelectrical Transduction at Single Stereocilia by Afm

    NASA Astrophysics Data System (ADS)

    Langer, M. G.; Fink, S.; Löffler, K.; Koitschev, A.; Zenner, H.-P.

    2003-02-01

    The transduction of sound into an electrical signal in the inner ear is closely related to the mechanical properties of the hair bundles cytoskeleton and cross-linkage. In this study the effect of lateral cross-links on hair bundle mechanics and the transduction current response is demonstrated on the level of individual stereocilia. For experiments stereocilia of outer hair cells of postnatal rats (P3 - P8) were scanned with a sharp AFM tip at nanometerscale. Transduction currents were simultaneously recorded in the whole-cell-recording mode with patch clamp. AFM was used as a nanotool for local mechanical stimulation and force measurement at stereocilia whereas patch clamp serves as a detector for the electrical response of the cell. In a first experiment force transmission between adjacent stereocilia of the V- and W- shaped hair bundles of outer hair cells was investigated. Results showed that a force exerted to a single stereocilium declined to 36 % at the nearest adjacent stereocilium of the same row. This result supposes AFM to be convenient for local displacement of single stereocilia. For control, the local response of transduction channels was measured at single stereocilia of the same hair bundle. Measured transduction current amplitudes ranged from 9 to 49 pA supposing an opening of one to five transduction channels. Both, weak force transmission by lateral cross-links and small transduction current amplitudes indicate a weak mechanical interaction between individual stereocilia of the tallest row of stereocilia of outer hair cells from postnatal rats.

  13. Oxide nanocrystal based nanocomposites for fabricating photoplastic AFM probes.

    PubMed

    Ingrosso, Chiara; Martin-Olmos, Cristina; Llobera, Andreu; Innocenti, Claudia; Sangregorio, Claudio; Striccoli, Marinella; Agostiano, Angela; Voigt, Anja; Gruetzner, Gabi; Brugger, Jürgen; Perez-Murano, Francesc; Curri, Maria Lucia

    2011-11-01

    We report on the synthesis, characterization and application of a novel nanocomposite made of a negative tone epoxy based photoresist modified with organic-capped Fe(2)O(3) nanocrystals (NCs). The mechanical properties of the nanocomposite drastically improve upon incorporation of a suitable concentration of NCs in the polymer, without deteriorating its photolithography performance. High aspect ratio 3D microstructures made of the nanocomposite have been fabricated with a uniform surface morphology and with a resolution down to few micrometres. The embedded organic-capped Fe(2)O(3) NCs drastically increase the stiffness and hardness of the epoxy based photoresist matrix, making the final material extremely interesting for manufacturing miniaturized polymer based mechanical devices and systems. In particular, the nanocomposite has been used as structural material for fabricating photoplastic Atomic Force Microscopy (AFM) probes with integrated tips showing outstanding mechanical response and high resolution imaging performance. The fabricated probes consist of straight cantilevers with low stress-gradient and high quality factors, incorporating sharp polymeric tips. They present considerably improved performance compared to pure epoxy based photoresist AFM probes, and to commercial silicon AFM probes. PMID:21858377

  14. Precrystallisation fluctuation phenomena in homopolymer melts.

    NASA Astrophysics Data System (ADS)

    Ryan, A. J.; Fairclough, J. P. A.; Terrill, N. J.; Young, R. J.; Towns-Andrews, E.; Komanschek, B. U.

    1997-03-01

    In order to separate nucleation from growth, two types of experiments have been performed on polypropylene, polyethylene, polyethylene oxide and polyethylene terepthalate. Rapid crystallisations were studied by melt extrusion of a tape. The extrusion of tape is a steady-state process where the distance down the spin-line is directly proportional to the crystallisation time. This allowed long data collection times (minutes) for very short crystallisation times. Prior to the development of crystallinity, well resolved, oriented small-angle patterns could be collected with length scales (50-200Åand intensities that grew down the spin-line. The orientation of the patterns was caused by the coupling of the density fluctuations with the elongational flow-field. Slow crystallisations with long induction times have been studied by simultaneous SAXS and WAXS. Clear development of small angle scattering, due to the density fluctuations, with a characteristic length scale of ≈ 100Åwas observed prior to the presence of crystals identified by wide-angle scattering. The growth of these fluctuations is analysed in terms of Cahn Hilliard kinetics. We could estimate the both the dominant length scale and the effective diffusion coefficient and by conducting experiments at a series of temperature we could find the stability limit.

  15. Fluctuations In Electrohydrodynamic Instability

    NASA Astrophysics Data System (ADS)

    Bianco, Francesco; Lucchesi, Mauro; Capaccioli, Simone; Fronzoni, Leone; Allegrini, Paolo

    2005-11-01

    Electrohydrodynamic Convection in Liquid Crystals (EHC) is a good system for the experimental study of spatio-temporal chaos. Particularly interesting is the behavior of the Nematic in presence of weak turbulence where ordered and disordered states are mixed. In this case, the fluctuations of velocity and electric current, for instance, are typical fluctuations of a system far from equilibrium. Recently some authors have analyzed the amplitude of the fluctuations as function of the applied electric field and they present interesting interpretations provided by some theories. Although important results have been obtained by these authors, many aspects of the dynamical behavior have to be further analyzed as the role of some localized coherences inside the turbulence regions. The direct optical observation allows us to make a correspondence between fluctuations and patterns, providing important information for a theoretical interpretation.

  16. Fe Spin Reorientation across the Metamagnetic Transition in Strained FeRh Thin Films

    NASA Astrophysics Data System (ADS)

    Bordel, C.; Juraszek, J.; Cooke, David W.; Baldasseroni, C.; Mankovsky, S.; Minár, J.; Ebert, H.; Moyerman, S.; Fullerton, E. E.; Hellman, F.

    2012-09-01

    A spin reorientation accompanying the temperature-induced antiferromagnetic (AFM) to ferromagnetic (FM) phase transition is reported in strained epitaxial FeRh thin films. Fe57 conversion electron Mössbauer spectrometry showed that the Fe moments have different orientations in FeRh grown on thick single-crystalline MgO and in FeRh grown on ion-beam-assist-deposited (IBAD) MgO. It was also observed, in both samples, that the Fe moments switch orientations at the AFM to FM phase transition. Perpendicular anisotropy was evidenced in the AFM phase of the film grown on IBAD MgO and in the FM phase of that grown on regular MgO. Density-functional theory calculations enabled this spin-reorientation transition to be accurately reproduced for both FeRh films across the AFM-FM phase transition and show that these results are due to differences in strain.

  17. Fe spin reorientation across the metamagnetic transition in strained FeRh thin films.

    PubMed

    Bordel, C; Juraszek, J; Cooke, David W; Baldasseroni, C; Mankovsky, S; Minár, J; Ebert, H; Moyerman, S; Fullerton, E E; Hellman, F

    2012-09-14

    A spin reorientation accompanying the temperature-induced antiferromagnetic (AFM) to ferromagnetic (FM) phase transition is reported in strained epitaxial FeRh thin films. (57)Fe conversion electron Mössbauer spectrometry showed that the Fe moments have different orientations in FeRh grown on thick single-crystalline MgO and in FeRh grown on ion-beam-assist-deposited (IBAD) MgO. It was also observed, in both samples, that the Fe moments switch orientations at the AFM to FM phase transition. Perpendicular anisotropy was evidenced in the AFM phase of the film grown on IBAD MgO and in the FM phase of that grown on regular MgO. Density-functional theory calculations enabled this spin-reorientation transition to be accurately reproduced for both FeRh films across the AFM-FM phase transition and show that these results are due to differences in strain. PMID:23005667

  18. Fluctuations in Photosynthesis

    NASA Astrophysics Data System (ADS)

    Khajeh, Ramin; Nishikida, Dean; Haberstroh, John; Geissler, Phillip L.

    2015-03-01

    The dynamics of the energy gap fluctuations of chromophores in Fenna-Matthews-Olson (FMO) complex can lead to an understanding of the underlying mechanism which is responsible for an efficient exciton energy transfer in such photosynthetic structures. Using Molecular Dynamics simulation results, we investigate trajectory statistics of energy gap fluctuations in chromophores using methods of propagators and Fourier coefficient distributions and examine possible anharmonic signatures in their behavior. Berkeley Lab - Material Science Division.

  19. Direct measurement of antiferromagnetic domain fluctuations.

    PubMed

    Shpyrko, O G; Isaacs, E D; Logan, J M; Feng, Yejun; Aeppli, G; Jaramillo, R; Kim, H C; Rosenbaum, T F; Zschack, P; Sprung, M; Narayanan, S; Sandy, A R

    2007-05-01

    Measurements of magnetic noise emanating from ferromagnets owing to domain motion were first carried out nearly 100 years ago, and have underpinned much science and technology. Antiferromagnets, which carry no net external magnetic dipole moment, yet have a periodic arrangement of the electron spins extending over macroscopic distances, should also display magnetic noise. However, this must be sampled at spatial wavelengths of the order of several interatomic spacings, rather than the macroscopic scales characteristic of ferromagnets. Here we present a direct measurement of the fluctuations in the nanometre-scale superstructure of spin- and charge-density waves associated with antiferromagnetism in elemental chromium. The technique used is X-ray photon correlation spectroscopy, where coherent X-ray diffraction produces a speckle pattern that serves as a 'fingerprint' of a particular magnetic domain configuration. The temporal evolution of the patterns corresponds to domain walls advancing and retreating over micrometre distances. This work demonstrates a useful measurement tool for antiferromagnetic domain wall engineering, but also reveals a fundamental finding about spin dynamics in the simplest antiferromagnet: although the domain wall motion is thermally activated at temperatures above 100 K, it is not so at lower temperatures, and indeed has a rate that saturates at a finite value-consistent with quantum fluctuations-on cooling below 40 K. PMID:17476263

  20. Magnetism of the spin-trimer compound CaNi 3(P 2O 7)2: Microscopic insight from combined 31P NMR and first-principles studies

    NASA Astrophysics Data System (ADS)

    Majumder, M.; Kanungo, S.; Ghoshray, A.; Ghosh, M.; Ghoshray, K.

    2015-03-01

    Magnetization, 31P nuclear magnetic resonance study, and first-principles electronic structure calculations have been performed in the spin-1 trimer chain compound CaNi3(P2O7 )2. Two separate spectra arising from magnetically and crystallographically inequivalent P sites are observed. In the ordered state, the resonance lines for both the P sites (P1 and P2) are found to be split into two, which is clear microscopic evidence of the development of two-sublattice AFM order below TM. A nonnegligible contribution of ferromagnetic hyperfine field and dipolar field have also been seen in the ordered state. The first-principles calculations show that the intratrimer (J1) and intertrimer interactions (J2) are of weak ferromagnetic type with the values 2.85 and 1.49 meV, respectively, whereas the interchain interaction (J3) is of strong antiferromagnetic type with a value of 5.63 meV. The anisotropy of the imaginary part of dynamical spin susceptibility around TM along with the exponential decrement of 1 /T1 below TM indicate the probable participation of the Ni -3 d electron's orbital degrees of freedom in the ferrimagnetic transition. The dominance of orbital fluctuations over the spin fluctuations seems to be responsible for showing low value of the binding energy u of the local spin configuration (estimated from local spin models) and an unusually weak exponent in the power-law behavior of 1 /T1 below 50 K, in the paramagnetic state. Electronic structure calculations also reveal the importance of orbital degrees of freedom of Ni -3 d moments, which is consistent with our NMR data analysis.

  1. Scaling metabolic rate fluctuations.

    PubMed

    Labra, Fabio A; Marquet, Pablo A; Bozinovic, Francisco

    2007-06-26

    Complex ecological and economic systems show fluctuations in macroscopic quantities such as exchange rates, size of companies or populations that follow non-Gaussian tent-shaped probability distributions of growth rates with power-law decay, which suggests that fluctuations in complex systems may be governed by universal mechanisms, independent of particular details and idiosyncrasies. We propose here that metabolic rate within individual organisms may be considered as an example of an emergent property of a complex system and test the hypothesis that the probability distribution of fluctuations in the metabolic rate of individuals has a "universal" form regardless of body size or taxonomic affiliation. We examined data from 71 individuals belonging to 25 vertebrate species (birds, mammals, and lizards). We report three main results. First, for all these individuals and species, the distribution of metabolic rate fluctuations follows a tent-shaped distribution with power-law decay. Second, the standard deviation of metabolic rate fluctuations decays as a power-law function of both average metabolic rate and body mass, with exponents -0.352 and -1/4 respectively. Finally, we find that the distributions of metabolic rate fluctuations for different organisms can all be rescaled to a single parent distribution, supporting the existence of general principles underlying the structure and functioning of individual organisms. PMID:17578913

  2. Helical Spin Order from Topological Dirac and Weyl Semimetals

    NASA Astrophysics Data System (ADS)

    Sun, Xiao-Qi; Zhang, Shou-Cheng; Wang, Zhong

    2015-08-01

    We study dynamical mass generation and the resultant helical spin orders in topological Dirac and Weyl semimetals, including the edge states of quantum spin Hall insulators, the surface states of weak topological insulators, and the bulk materials of Weyl semimetals. In particular, the helical spin textures of Weyl semimetals manifest the spin-momentum locking of Weyl fermions in a visible manner. The spin-wave fluctuations of the helical order carry electric charge density; therefore, the spin textures can be electrically controlled in a simple and predictable manner.

  3. Drift transport of helical spin coherence with tailored spin–orbit interactions

    PubMed Central

    Kunihashi, Y.; Sanada, H.; Gotoh, H.; Onomitsu, K.; Kohda, M.; Nitta, J.; Sogawa, T.

    2016-01-01

    Most future information processing techniques using electron spins in non-magnetic semiconductors will require both the manipulation and transfer of spins without their coherence being lost. The spin–orbit effective magnetic field induced by drifting electrons enables us to rotate the electron spins in the absence of an external magnetic field. However, the fluctuations in the effective magnetic field originating from the random scattering of electrons also cause undesirable spin decoherence, which limits the length scale of the spin transport. Here we demonstrate the drift transport of electron spins adjusted to a robust spin structure, namely a persistent spin helix. We find that the persistent spin helix enhances the spatial coherence of drifting spins, resulting in maximized spin decay length near the persistent spin helix condition. Within the enhanced distance of the spin transport, the transport path of electron spins can be modulated by employing time-varying in-plane voltages. PMID:26952129

  4. Antiferromagnetic ordering in spin-chain multiferroic Gd{sub 2}BaNiO{sub 5} studied by electronic spin resonance

    SciTech Connect

    Guo, Y. M.; Ruan, M. Y.; Cheng, J. J.; Sun, Y. C.; Ouyang, Z. W. Xia, Z. C.; Rao, G. H.

    2015-06-14

    High-field electron spin resonance (ESR) has been employed to study the antiferromagnetic (AFM) ordering state (T < T{sub N} = 55 K) of spin-chain multiferroic Gd{sub 2}BaNiO{sub 5}. The spin reorientation at T{sub SR} = 24 K is well characterized by the temperature-dependent ESR spectra. The magnetization data evidence a field-induced spin-flop transition at 2 K. The frequency-field relationship of the ESR data can be explained by conventional AFM resonance theory with uniaxial anisotropy, in good agreement with magnetization data. Related discussion on zero-field spin gap is presented.

  5. Inelastic neutron scattering in valence fluctuation compounds

    SciTech Connect

    Jon M Lawrence

    2011-02-15

    The valence fluctuation compounds are rare earth intermetallics where hybridization of the nearly-localized 4f electrons with the conduction electrons leads to incorporation of the 4f's into the itinerant states. This hybridization slows down the conduction electrons and hence gives them a heavy effective mass, justifying application of the term 'heavy Fermion' (HF) to these materials. During the project period, we grew large single crystals of several such compounds and measured their properties using both standard thermodynamic probes and state-of-the-art inelastic neutron scattering. We obtained three main results. For the intermediate valence compounds CePd{sub 3} and YbAl{sub 3}, we showed that the scattering of neutrons by the fluctuations of the 4f magnetic moment does not have the momentum dependence expected for the itinerant heavy mass state; rather, the scattering is more typical of a localized spin fluctuation. We believe that incoherent scattering localizes the excitation. For the heavy Fermion compound Ce(Ni{sub 0.935}Pd{sub 0.065}){sub 2}Ge{sub 2}, which sits at a T = 0 critical point for transformation into an antiferromagnetic (AF) phase, we showed that the scattering from the AF fluctuations does not exhibit any of the divergences that are expected at a phase transition. We speculate that alloy disorder profoundly suppresses the growth of the fluctuating AF regions, leading to short range clusters rather than regions of infinite size. Finally, we explored the applicability of key concepts used to describe the behavior of rare earth heavy Fermions to uranium based HF compounds where the 5f electrons are itinerant as opposed to localized. We found that scaling laws relating the spin fluctuation energy measured in neutron scattering to the low temperature specific heat and susceptibility are valid for the uranium compounds, once corrections are made for AF fluctuations; however, the degeneracy of the high temperature moment is smaller than expected

  6. Fluctuations in the shape transitions of hot nuclei

    NASA Astrophysics Data System (ADS)

    Pacheco, J. M.; Yannouleas, C.; Broglia, R. A.

    1988-07-01

    The effect of quantal and thermal quadrupole shape fluctuations in the giant dipole response function of hot nuclei at high spin is studied within the Landau theory of phase transitions. The effects are found to be important in the relation of the nuclear shape to the experimental findings and in the identification of shape phase transitions.

  7. Nonlocal Nuclear Spin Quieting in Quantum Dot Molecules: Optically Induced Extended Two-Electron Spin Coherence Time

    NASA Astrophysics Data System (ADS)

    Chow, Colin M.; Ross, Aaron M.; Kim, Danny; Gammon, Daniel; Bracker, Allan S.; Sham, L. J.; Steel, Duncan G.

    2016-08-01

    We demonstrate the extension of coherence between all four two-electron spin ground states of an InAs quantum dot molecule (QDM) via nonlocal suppression of nuclear spin fluctuations in two vertically stacked quantum dots (QDs), while optically addressing only the top QD transitions. Long coherence times are revealed through dark-state spectroscopy as resulting from nuclear spin locking mediated by the exchange interaction between the QDs. Line shape analysis provides the first measurement of the quieting of the Overhauser field distribution correlating with reduced nuclear spin fluctuations.

  8. Nonlocal Nuclear Spin Quieting in Quantum Dot Molecules: Optically Induced Extended Two-Electron Spin Coherence Time.

    PubMed

    Chow, Colin M; Ross, Aaron M; Kim, Danny; Gammon, Daniel; Bracker, Allan S; Sham, L J; Steel, Duncan G

    2016-08-12

    We demonstrate the extension of coherence between all four two-electron spin ground states of an InAs quantum dot molecule (QDM) via nonlocal suppression of nuclear spin fluctuations in two vertically stacked quantum dots (QDs), while optically addressing only the top QD transitions. Long coherence times are revealed through dark-state spectroscopy as resulting from nuclear spin locking mediated by the exchange interaction between the QDs. Line shape analysis provides the first measurement of the quieting of the Overhauser field distribution correlating with reduced nuclear spin fluctuations. PMID:27563998

  9. Detecting quantum critical points using bipartite fluctuations.

    PubMed

    Rachel, Stephan; Laflorencie, Nicolas; Song, H Francis; Le Hur, Karyn

    2012-03-16

    We show that the concept of bipartite fluctuations F provides a very efficient tool to detect quantum phase transitions in strongly correlated systems. Using state-of-the-art numerical techniques complemented with analytical arguments, we investigate paradigmatic examples for both quantum spins and bosons. As compared to the von Neumann entanglement entropy, we observe that F allows us to find quantum critical points with much better accuracy in one dimension. We further demonstrate that F can be successfully applied to the detection of quantum criticality in higher dimensions with no prior knowledge of the universality class of the transition. Promising approaches to experimentally access fluctuations are discussed for quantum antiferromagnets and cold gases. PMID:22540493

  10. Magnetoconductance fluctuations in open bismuth quantum dots

    NASA Astrophysics Data System (ADS)

    Hackens, B.; Minet, J. P.; Farhi, G.; Crahay, A.; Faniel, S.; Gustin, C.; Bayot, V.

    2002-03-01

    We investigate the low temperature (300 mK - 10 K) magnetoconductance of open circular bismuth quantum dots (diameter: 500 nm). The structures are fabricated using a combination of electron beam lithography, lift off and plasma etching techniques on bismuth thin films evaporated on heated SiO2 substrates. We observe reproducible magnetoconductance fluctuations (UCFs) up to 5T, qualitatively similar to conductance fluctuations evidenced in open quantum dots patterned in high mobility semiconductor heterostructures. In our samples, UCFs are superposed on a slowly varying negative magnetoconductance background. We also observe a sharp conductance maximum centered in B=0, which is reminescent of the spin-orbit induced anti-localisation phenomenon. The behavior of UCFs and of the conductance maximum is discussed as a function of the temperature, thickness and degree of cristallinity of the cavity.

  11. Fluctuating shells under pressure

    PubMed Central

    Paulose, Jayson; Vliegenthart, Gerard A.; Gompper, Gerhard; Nelson, David R.

    2012-01-01

    Thermal fluctuations strongly modify the large length-scale elastic behavior of cross-linked membranes, giving rise to scale-dependent elastic moduli. Whereas thermal effects in flat membranes are well understood, many natural and artificial microstructures are modeled as thin elastic shells. Shells are distinguished from flat membranes by their nonzero curvature, which provides a size-dependent coupling between the in-plane stretching modes and the out-of-plane undulations. In addition, a shell can support a pressure difference between its interior and its exterior. Little is known about the effect of thermal fluctuations on the elastic properties of shells. Here, we study the statistical mechanics of shape fluctuations in a pressurized spherical shell, using perturbation theory and Monte Carlo computer simulations, explicitly including the effects of curvature and an inward pressure. We predict novel properties of fluctuating thin shells under point indentations and pressure-induced deformations. The contribution due to thermal fluctuations increases with increasing ratio of shell radius to thickness and dominates the response when the product of this ratio and the thermal energy becomes large compared with the bending rigidity of the shell. Thermal effects are enhanced when a large uniform inward pressure acts on the shell and diverge as this pressure approaches the classical buckling transition of the shell. Our results are relevant for the elasticity and osmotic collapse of microcapsules. PMID:23150558

  12. Solvent-mediated repair and patterning of surfaces by AFM

    SciTech Connect

    Elhadj, S; Chernov, A; De Yoreo, J

    2007-10-30

    A tip-based approach to shaping surfaces of soluble materials with nanometer-scale control is reported. The proposed method can be used, for example, to eliminate defects and inhomogeneities in surface shape, repair mechanical or laser-induced damage to surfaces, or perform 3D lithography on the length scale of an AFM tip. The phenomenon that enables smoothing and repair of surfaces is based on the transport of material from regions of high- to low-curvature within the solution meniscus formed in a solvent-containing atmosphere between the surface in question and an AFM tip scanned over the surface. Using in situ AFM measurements of the kinetics of surface remodeling on KDP (KH{sub 2}PO{sub 4}) crystals in humid air, we show that redistribution of solute material during relaxation of grooves and mounds is driven by a reduction in surface free energy as described by the Gibbs-Thomson law. We find that the perturbation from a flat interface evolves according to the diffusion equation where the effective diffusivity is determined by the product of the surface stiffness and the step kinetic coefficient. We also show that, surprisingly, if the tip is instead scanned over or kept stationary above an atomically flat area of the surface, a convex structure is formed with a diameter that is controlled by the dimensions of the meniscus, indicating that the presence of the tip and meniscus reduces the substrate chemical potential beneath that of the free surface. This allows one to create nanometer-scale 3D structures of arbitrary shape without the removal of substrate material or the use of extrinsic masks or chemical compounds. Potential applications of these tip-based phenomena are discussed.

  13. Applications of AFM for atomic manipulation and spectroscopy

    NASA Astrophysics Data System (ADS)

    Custance, Oscar

    2009-03-01

    Since the first demonstration of atom-by-atom assembly [1], atomic manipulation with scanning tunneling microscopy has yielded stunning realizations in nanoscience. A new exciting panorama has been recently opened with the possibility of manipulating atoms at surfaces using atomic force microscopy (AFM) [2-5]. In this talk, we will present two different approaches that enable patterning structures at semiconductor surfaces by manipulating individual atoms with AFM and at room temperature [2, 3]. We will discuss the physics behind each protocol through the analysis of the measured forces associated with these manipulations [3-5]. Another challenging issue in scanning probe microscopy is the ability to disclose the local chemical composition of a multi-element system at atomic level. Here, we will introduce a single-atom chemical identification method, which is based on detecting the forces between the outermost atom of the AFM tip and the atoms at a surface [6]. We demonstrate this identification procedure on a particularly challenging system, where any discrimination attempt based solely on topographic measurements would be impossible to achieve. [4pt] References: [0pt] [1] D. M. Eigler and E. K. Schweizer, Nature 344, 524 (1990); [0pt] [2] Y. Sugimoto, M. Abe, S. Hirayama, N. Oyabu, O. Custance and S. Morita, Nature Materials 4, 156 (2005); [0pt] [3] Y. Sugimoto, P. Pou, O. Custance, P. Jelinek, M. Abe, R. Perez and S. Morita, Science 322, 413 (2008); [0pt] [4] Y. Sugimoto, P. Jelinek, P. Pou, M. Abe, S. Morita, R. Perez and O. Custance, Phys. Rev. Lett. 98, 106104 (2007); [0pt] [5] M. Ternes, C. P. Lutz, C. F. Hirjibehedin, F. J. Giessibl and A. J. Heinrich, Science 319, 1066 (2008); [0pt] [6] Y. Sugimoto, P. Pou, M. Abe, P. Jelinek, R. Perez, S. Morita, and O. Custance, Nature 446, 64 (2007)

  14. Fluctuation-driven topological Hund insulators

    NASA Astrophysics Data System (ADS)

    Budich, Jan Carl; Trauzettel, Björn; Sangiovanni, Giorgio

    2013-06-01

    We investigate the role of electron-electron interaction in a two-band Hubbard model based on the Bernevig-Hughes-Zhang Hamiltonian exhibiting the quantum spin Hall (QSH) effect. By means of dynamical mean-field theory, we find that a system with topologically trivial noninteracting parameters can be driven into a QSH phase at finite interaction strength by virtue of local dynamical fluctuations. For very strong interaction, the system reenters a trivial insulating phase by going through a Mott transition. We obtain the phase diagram of our model by direct calculation of the bulk topological invariant of the interacting system in terms of its single-particle Green's function.

  15. An approach towards 3D sensitive AFM cantilevers

    NASA Astrophysics Data System (ADS)

    Koops, Richard; Fokkema, Vincent

    2014-04-01

    The atomic force microscope (AFM) tapping mode is a highly sensitive local probing technique that is very useful to study and measure surface properties down to the atomic scale. The tapping mode is mostly implemented using the resonance of the first bending mode of the cantilever and therefore provides sensitivity mainly along the direction of this oscillation. Driven by the semiconductor industry, there is an increasing need for accurate measurements of nanoscale structures for side wall characterization by AFM that requires additional sensitivity in the lateral direction. The conventional tapping mode has been augmented by various authors, for example by tilting the cantilever system (Cho et al 2011 Rev. Sci. Instrum. 82 023707) to access the sidewall or using a torsion mode (Dai et al 2011 Meas. Sci. Technol. 22 094009) of the cantilever to provide additional lateral sensitivity. These approaches however trade lateral sensitivity for vertical sensitivity or still lack sensitivity in the remaining lateral direction. We present an approach towards true 3D sensitivity for AFM cantilevers based on simultaneous excitation and optical detection of multiple cantilever resonance modes along three axes. Tuning the excitation of the cantilever to specific frequencies provides a mechanism to select only those cantilever modes that have the desired characteristics. Additionally, cantilever engineering has been used to design and create a substructure within the cantilever that has been optimized for specific resonance behavior around 4 MHz. In contrast to the conventional approach of using a piezo to actuate the cantilever modulation, we present results on photo-thermal excitation using an intensity modulated low-power laser source. By tightly focusing the excitation spot on the cantilever we were able to attain a deflection efficiency of 0.7 nm µW-1 for the first bending mode. The presented approach results in an efficient all optical excitation and deflection detection

  16. The Advancing State of AF-M315E Technology

    NASA Technical Reports Server (NTRS)

    Masse, Robert; Spores, Ronald A.; McLean, Chris

    2014-01-01

    The culmination of twenty years of applied research in hydroxyl ammonium nitrate (HAN)-based monopropellants, the NASA Space Technology mission Directorate's (STMD) Green Propellant Infusion Mission (GPIM) will achieve the first on-orbit demonstration of an operational AF-M315E green propellant propulsion system by the end of 2015. Following an contextual overview of the completed flight design of the GPIM propellant storage and feed system, results of first operation of a flight-representative heavyweight 20-N engineering model thruster (to be conducted in mid-2014) are presented with performance comparisons to prior lab model (heavyweight) test articles.

  17. Comparison of dynamic lever STM and noncontact AFM

    NASA Astrophysics Data System (ADS)

    Guggisberg, M.; Bammerlin, M.; Lüthi, R.; Loppacher, C.; Battiston, F.; Lü, J.; Baratoff, A.; Meyer, E.; Güntherodt, H.-J.

    We investigate interaction effects which occur in scanning tunneling microscopy (STM) by performing local force spectroscopy with an oscillating tip while imaging Si(111)7×7 terraces in the dynamic lever STM mode (constant time-averaged current). It is found that true atomic resolution is achieved close to the minimum of the resonance frequency vs. distance curve and even closer to the sample. On the other hand true atomic resolution in noncontact AFM (constant frequency shift) is expected several nm away from this minimum, in the range where the frequency shift becomes more negative with decreasing distance.

  18. Spin dynamics in paramagnetic diluted magnetic semiconductors

    NASA Astrophysics Data System (ADS)

    Phan, Van-Nham; Tran, Minh-Tien

    2015-10-01

    Microscopic properties of low-energy spin dynamics in diluted magnetic semiconductor are addressed in a framework of the Kondo lattice model including random distribution of magnetic dopants. Based on the fluctuation-dissipation theorem, we derive an explicit dependence of the spin diffusion coefficient on the single-particle Green function which is directly evaluated by dynamical mean-field theory. In the paramagnetic state, the magnetic scattering has been manifested to suppress spin diffusion. In agreement with other ferromagnet systems, we also point out that the spin diffusion in diluted magnetic semiconductors at small carrier concentration displays a monotonic 1 /T -like temperature dependence. By investigating the spin diffusion coefficient on a wide range of the model parameters, the obtained results have provided a significant scenario to understand the spin dynamics in the paramagnetic diluted magnetic semiconductors.

  19. Fluctuations and friction

    NASA Astrophysics Data System (ADS)

    Raine, Derek

    2005-11-01

    Einstein's 1905 (Einstein 1905 Ann. Phys. 17 549) paper on Brownian motion is his most cited work, yet in terms of the scope of its application, apparently the least understood. In this brief note, I look at some examples of problems involving frictional forces that have puzzled school teachers, university lecturers and students, all of which can be understood from a proper appreciation of the relation between fluctuations and dissipation. For completeness I shall first give a simple derivation of a fluctuation-dissipation theorem, followed by three examples.

  20. Quantum-critical fluctuations in 2D metals: strange metals and superconductivity in antiferromagnets and in cuprates.

    PubMed

    Varma, Chandra M

    2016-08-01

    The anomalous transport and thermodynamic properties in the quantum-critical region, in the cuprates, and in the quasi-two dimensional Fe-based superconductors and heavy-fermion compounds, have the same temperature dependences. This can occur only if, despite their vast microscopic differences, a common statistical mechanical model describes their phase transitions. The antiferromagnetic (AFM)-ic models for the latter two, just as the loop-current model for the cuprates, map to the dissipative XY model. The solution of this model in (2+1)D reveals that the critical fluctuations are determined by topological excitations, vortices and a variety of instantons, and not by renormalized spin-wave theories of the Landau-Ginzburg-Wilson type, adapted by Moriya, Hertz and others for quantum-criticality. The absorptive part of the fluctuations is a separable function of momentum [Formula: see text], measured from the ordering vector, and of the frequency ω and the temperature T which scale as [Formula: see text] at criticality. Direct measurements of the fluctuations by neutron scattering in the quasi-two-dimensional heavy fermion and Fe-based compounds, near their antiferromagnetic quantum critical point, are consistent with this form. Such fluctuations, together with the vertex coupling them to fermions, lead to a marginal fermi-liquid, with the imaginary part of the self-energy [Formula: see text] for all momenta, a resistivity [Formula: see text], a [Formula: see text] contribution to the specific heat, and other singular fermi-liquid properties common to these diverse compounds, as well as to d-wave superconductivity. This is explicitly verified, in the cuprates, by analysis of the pairing and the normal self-energy directly extracted from the recent high resolution angle resolved photoemission measurements. This reveals, in agreement with the theory, that the frequency dependence of the attractive irreducible particle-particle vertex in the d-wave channel is the same

  1. Quantum-critical fluctuations in 2D metals: strange metals and superconductivity in antiferromagnets and in cuprates

    NASA Astrophysics Data System (ADS)

    Varma, Chandra M.

    2016-08-01

    The anomalous transport and thermodynamic properties in the quantum-critical region, in the cuprates, and in the quasi-two dimensional Fe-based superconductors and heavy-fermion compounds, have the same temperature dependences. This can occur only if, despite their vast microscopic differences, a common statistical mechanical model describes their phase transitions. The antiferromagnetic (AFM)-ic models for the latter two, just as the loop-current model for the cuprates, map to the dissipative XY model. The solution of this model in (2+1)D reveals that the critical fluctuations are determined by topological excitations, vortices and a variety of instantons, and not by renormalized spin-wave theories of the Landau–Ginzburg–Wilson type, adapted by Moriya, Hertz and others for quantum-criticality. The absorptive part of the fluctuations is a separable function of momentum \\mathbf{q} , measured from the ordering vector, and of the frequency ω and the temperature T which scale as \\tanh (ω /2T) at criticality. Direct measurements of the fluctuations by neutron scattering in the quasi-two-dimensional heavy fermion and Fe-based compounds, near their antiferromagnetic quantum critical point, are consistent with this form. Such fluctuations, together with the vertex coupling them to fermions, lead to a marginal fermi-liquid, with the imaginary part of the self-energy \\propto \\text{max}(ω,T) for all momenta, a resistivity \\propto T , a T\\ln T contribution to the specific heat, and other singular fermi-liquid properties common to these diverse compounds, as well as to d-wave superconductivity. This is explicitly verified, in the cuprates, by analysis of the pairing and the normal self-energy directly extracted from the recent high resolution angle resolved photoemission measurements. This reveals, in agreement with the theory, that the frequency dependence of the attractive irreducible particle–particle vertex in the d-wave channel is the same as the irreducible

  2. Physical properties of polyacrylamide gels probed by AFM and rheology

    NASA Astrophysics Data System (ADS)

    Abidine, Yara; Laurent, Valérie M.; Michel, Richard; Duperray, Alain; Iulian Palade, Liviu; Verdier, Claude

    2015-02-01

    Polymer gels have been shown to behave as viscoelastic materials but only a small amount of data is usually provided in the glass transition. In this paper, the dynamic moduli G\\prime and G\\prime\\prime of polyacrylamide hydrogels are investigated using both an AFM in contact force modulation mode and a classical rheometer. The validity is shown by the matching of the two techniques. Measurements are carried out on gels of increasing polymer concentration in a wide frequency range. A model based on fractional derivatives is successfully used, covering the whole frequency range. G\\text{N}0 , the plateau modulus, as well as several other parameters are obtained at low frequencies. The model also predicts the slope a of both moduli in the glass transition, and a transition frequency f\\text{T} is introduced to separate the gel-like behavior with the glassy state. Its variation with polymer content c gives a dependence f\\text{T}∼ c1.6 , in good agreement with previous theories. Therefore, the AFM data provides new information on the physics of polymer gels.

  3. Dual AFM probes alignment based on vision guidance

    NASA Astrophysics Data System (ADS)

    Zhang, Hua-kun; Gao, Si-tian; Lu, Ming-zhen; Wang, Long-long

    2013-10-01

    Atomic force microscope (AFM) with dual probes that operate together can measure both side walls excellently at the same time, which virtually eliminates the prevalent effect of probe width that contributes a large component of uncertainty in measurement results and finally obtains the critical dimension (CD)(e.g. the linewidth) through data synthesis. In calibration process, the dual probes must contact each other in advance, which realizes the alignment in the three dimensions, to establish a zero reference point and ensure the accuracy of measurement. Because nowadays the optical resolution of advanced lens have exceeded micrometer range, and the size of probes is within micro level, it is possible to acquire dual probes images in both horizontal and vertical directions, through which the movement of the probes can be controlled in time. In order to further enhance the alignment precision, sub-pixel edge detection method based on Zernike orthogonal moment is used to obtain relative position between these two probes, which helps the tips alignment attains sub-micron range. Piezoelectric nanopositioning stages calibrated by laser interferometer are used to implement fine movement of the probes to verify the accuracy of the experimental results. To simplify the system, novel self-sensing and self-actuating probe based on a quartz tuning fork combined with a micromachined cantilever is used for dynamic mode AFM. In this case, an external optical detection system is not needed, so the system is simple and small.

  4. Viscoelasticity of gelatin surfaces probed by AFM noise analysis.

    PubMed

    Benmouna, Farida; Johannsmann, Diethelm

    2004-01-01

    The viscoelastic properties of surfaces of swollen gelatin were investigated by analyzing the Brownian motion of an atomic force microscopy (AFM) cantilever in contact with the gel surface. A micron-sized glass sphere attached to the AFM cantilever is used as the dynamic probe. When the sphere approaches the gelatin surface, there is a static repulsive force without a jump into contact. The cantilever's Brownian movement is monitored in parallel, providing access to the dynamic sphere-surface interaction as quantified by the dynamic spring constant, kappa, and the drag coefficient, xi. Gelatin is used as a model substance for a variety of other soft surfaces, where the stiffness of the gel can be varied via the solvent quality, the bloom number, and the pH. The modulus derived from the static force-distance curve is in the kPa range, consistent with the literature. However, the dynamic spring constant as derived from the Brownian motion is much larger than the static differential spring constant dF/dz. On retraction, one observes a rather strong adhesion hysteresis. The strength of the bridge (as given by the dynamic spring constant and the drag coefficient) is very small. PMID:15745019

  5. Analysis of AFM cantilever dynamics close to sample surface

    NASA Astrophysics Data System (ADS)

    Habibnejad Korayem, A.; Habibnejad Korayem, Moharam; Ghaderi, Reza

    2013-07-01

    For imaging and manipulation of biological specimens application of atomic force microscopy (AFM) in liquid is necessary. In this paper, tapping-mode AFM cantilever dynamics in liquid close to sample surface is modeled and simulated by well defining the contact forces. The effect of cantilever tilting angle has been accounted carefully. Contact forces have some differences in liquid in comparison to air or vacuum in magnitude or formulation. Hydrodynamic forces are also applied on the cantilever due to the motion in liquid. A continuous beam model is used with its first mode and forward-time simulation method for simulation of its hybrid dynamics and the frequency response and amplitude versus separation diagrams are extracted. The simulation results show a good agreement with experimental results. The resonance frequency in liquid is so small in comparison to air due to additional mass and also additional damping due to the viscosity of the liquid around. The results show that the effect of separation on free vibration amplitude is great. Its effect on resonance frequency is considerable too.

  6. Iron oxide mineral-water interface reactions studied by AFM

    SciTech Connect

    Hawley, M.E.; Rogers, P.S.Z.

    1994-07-01

    Natural iron mineral surfaces have been examined in air by atomic force (AFM) and scanning tunneling (STM) microscopies. A number of different surface features were found to be characteristic of the native surface. Even surfaces freshly exposed by crushing larger crystals were found to have a pebbly surface texture caused by the presence of thin coatings of what might be surface precipitates. This finding is interpreted as evidence for previous exposure to water, probably through an extensive network of microfractures. Surface reactions on the goethite crystals were studied by AFM at size resolutions ranging from microns to atomic resolution before, during, and after reaction with distilled water and 0.lN HCl. Immediate and extensive surface reconfiguration occurred on contact with water. In one case, after equilibration with water for 3 days, surface reprecipitation, etching and pitting were observed. Atomic resolution images taken under water were found to be disordered. The result of surface reaction was generally to increase the surface area substantially through the extension of surface platelet arrays, present prior to reaction. This work is being done in support of the site characterization project at Yucca Mountain.

  7. Pathogen identification using peptide nanotube biosensors and impedance AFM

    NASA Astrophysics Data System (ADS)

    Maccuspie, Robert I.

    Pathogen identification at highly sensitive levels is crucial to meet urgent needs in fighting the spread of disease or detecting bioterrorism events. Toward that end, a new method for biosensing utilizing fluorescent antibody nanotubes is proposed. Fundamental studies on the self-assembly of these peptide nanotubes are performed, as are applications of aligning these nanotubes on surfaces. As biosensors, these nanotubes incorporate recognition units with antibodies at their ends and fluorescent signaling units at their sidewalls. When viral pathogens were mixed with these antibody nanotubes in solution, the nanotubes rapidly aggregated around the viruses. The size of the aggregates increased as the concentration of viruses increased, as detected by flow cytometry on the order of attomolar concentrations by changes in fluorescence and light scattering intensities. This enabled determination of the concentrations of viruses at trace levels (102 to 106 pfu/mL) within 30 minutes from the receipt of samples to the final quantitative data analysis, as demonstrated on Adenovirus, Herpes Simplex Virus, Influenza, and Vaccinia virus. As another separate approach, impedance AFM is used to study the electrical properties of individual viruses and nanoparticles used as model systems. The design, development, and implementation of the impedance AFM for an Asylum Research platform is described, as well as its application towards studying the impedance of individual nanoparticles as a model system for understanding the fundamental science of how the life cycle of a virus affects its electrical properties. In combination, these approaches fill a pressing need to quantify viruses both rapidly and sensitively.

  8. SU-8 hollow cantilevers for AFM cell adhesion studies

    NASA Astrophysics Data System (ADS)

    Martinez, Vincent; Behr, Pascal; Drechsler, Ute; Polesel-Maris, Jérôme; Potthoff, Eva; Vörös, Janos; Zambelli, Tomaso

    2016-05-01

    A novel fabrication method was established to produce flexible, transparent, and robust tipless hollow atomic force microscopy (AFM) cantilevers made entirely from SU-8. Channels of 3 μm thickness and several millimeters length were integrated into 12 μm thick and 40 μm wide cantilevers. Connected to a pressure controller, the devices showed high sealing performance with no leakage up to 6 bars. Changing the cantilever lengths from 100 μm to 500 μm among the same wafer allowed the targeting of various spring constants ranging from 0.5 to 80 N m‑1 within a single fabrication run. These hollow polymeric AFM cantilevers were operated in the optical beam deflection configuration. To demonstrate the performance of the device, single-cell force spectroscopy experiments were performed with a single probe detaching in a serial protocol more than 100 Saccharomyces cerevisiae yeast cells from plain glass and glass coated with polydopamine while measuring adhesion forces in the sub-nanoNewton range. SU-8 now offers a new alternative to conventional silicon-based hollow cantilevers with more flexibility in terms of complex geometric design and surface chemistry modification.

  9. Comparison of particle sizes determined with impactor, AFM and SEM

    NASA Astrophysics Data System (ADS)

    Gwaze, Patience; Annegarn, Harold J.; Huth, Joachim; Helas, Günter

    2007-11-01

    Particles size comparisons were made between conventional aerodynamic and mobility sizing techniques and physical geometric sizes measured by high resolution microscopes. Atmospheric particles were collected during the wet and dry seasons in the Amazonian ecosystems. Individual particles deposited on four stages of the MOUDI (Micro-Orifice Uniform Deposition Impactor) were characterised for particle volumes, projected surface diameters and morphologies with an Atomic Force Microscope (AFM) and a Scanning Electron Microscope (SEM). AFM and SEM size distributions were verified against distributions derived from response functions of individual MOUDI stages as specified by Winklmayr et al. [Winklmayr, W., Wang, H.-C., John, W., 1990. Adaptation of the Twomey algorithm to the inversion of cascade impactor data. Aerosol Science and Technology 13, 322-331.]. Particles indicated inherent discrepancies in sizing techniques. Particle volumes were systematically lower than expected by factors of up to 3.6. Differences were attributed to loss of mass, presumably water adsorbed on particles. Losses were high and could not be accounted for by measured humidity growth factors suggesting significant losses of other volatile compounds as well, particularly on particles that were collected during the wet season. Microscopy results showed that for hygroscopic particles, microscopy sizes depend on the relative humidity history of particles before and after sampling. Changes in relative humidity significantly altered particle morphologies. Depending on when changes occur, such losses will bias not only microscopy particle sizes but also impactor mass distributions and number concentrations derived from collected particles.

  10. AFM analysis of bleaching effects on dental enamel microtopography

    NASA Astrophysics Data System (ADS)

    Pedreira de Freitas, Ana Carolina; Espejo, Luciana Cardoso; Botta, Sergio Brossi; Teixeira, Fernanda de Sa; Luz, Maria Aparecida A. Cerqueira; Garone-Netto, Narciso; Matos, Adriana Bona; Salvadori, Maria Cecilia Barbosa da Silveira

    2010-02-01

    The purpose of this in vitro study was to test a new methodology to evaluate the effects of 35% hydrogen peroxide agent on the microtopography of sound enamel using an atomic force microscope (AFM). The buccal sound surfaces of three extracted human lower incisors were used, without polishing the surfaces to maintain them with natural morphology. These unpolished surfaces were subjected to bleaching procedure with 35% hydrogen peroxide that consisted of 4 applications of the bleaching agent on enamel surfaces for 10 min each application. Surface images were obtained in a 15 μm × 15 μm area using an AFM. The roughness (Ra and RMS) and the power spectral density (PSD) were obtained before and after the bleaching treatment. As results we could inquire that the PSD analyses were very suitable to identifying the morphological changes on the surfaces, while the Ra and RMS parameters were insufficient to represent the morphological alterations promoted by bleaching procedure on enamel. The morphological wavelength in the range of visible light spectrum (380-750 nm) was analyzed, showing a considerable increase of the PSD with the bleaching treatment.

  11. Synthesis of polymer nano-brushes by self-seeding method and study of various morphologies by AFM

    NASA Astrophysics Data System (ADS)

    Agbolaghi, S.; Abbaspoor, S.; Abbasi, F.

    2016-11-01

    Polymer brushes due to their high sensitivity to environmental changes are the best and newest means for developing the responsive materials. Polymer nano-brushes consisting various surface morphologies and uniformly distributed amorphous grafted chains were synthesized via single-crystal growth procedure. Poly(ethylene glycol)- b-polystyrene (PEG- b-PS) and poly(ethylene glycol)- b-poly(methyl methacrylate) (PEG- b-PMMA) block copolymers were prepared by atom transfer radical polymerization (ATRP). On the basis of various height differences, phase regions were detectable through atomic force microscopy (AFM NanoscopeIII). The novelty of this work is developing and characterizing the random and intermediate single-co-crystals. Besides, some other sorts of brush-covered single crystals like homo-brush and matrix-dispersed mixed-brushes were involved just for comparing the distinct morphologies. The intermediate (neither matrix-dispersed nor random) single-co-crystals were detectable through their thickness fluctuations in AFM height profiles. On the contrary, the random single-co-crystals were verified through comparing with their corresponding homopolymer and homo-brush single crystals. The growth fronts of (120), (240), (200) and (040) were detected by electron diffraction of transmission electron microscope.

  12. Crystallinity and compositional changes in carbonated apatites: Evidence from {sup 31}P solid-state NMR, Raman, and AFM analysis

    SciTech Connect

    McElderry, John-David P.; Zhu, Peizhi; Mroue, Kamal H.; Xu, Jiadi; Pavan, Barbara; Fang, Ming; Zhao, Guisheng; McNerny, Erin; Kohn, David H.; Franceschi, Renny T.; Holl, Mark M.Banaszak; Tecklenburg, Mary M.J.; Ramamoorthy, Ayyalusamy; Morris, Michael D.

    2013-10-15

    Solid-state (magic-angle spinning) NMR spectroscopy is a useful tool for obtaining structural information on bone organic and mineral components and synthetic model minerals at the atomic-level. Raman and {sup 31}P NMR spectral parameters were investigated in a series of synthetic B-type carbonated apatites (CAps). Inverse {sup 31}P NMR linewidth and inverse Raman PO{sub 4}{sup 3−}ν{sub 1} bandwidth were both correlated with powder XRD c-axis crystallinity over the 0.3–10.3 wt% CO{sub 3}{sup 2−} range investigated. Comparison with bone powder crystallinities showed agreement with values predicted by NMR and Raman calibration curves. Carbonate content was divided into two domains by the {sup 31}P NMR chemical shift frequency and the Raman phosphate ν{sub 1} band position. These parameters remain stable except for an abrupt transition at 6.5 wt% carbonate, a composition which corresponds to an average of one carbonate per unit cell. This near-binary distribution of spectroscopic properties was also found in AFM-measured particle sizes and Ca/P molar ratios by elemental analysis. We propose that this transition differentiates between two charge-balancing ion-loss mechanisms as measured by Ca/P ratios. These results define a criterion for spectroscopic characterization of B-type carbonate substitution in apatitic minerals. - Graphical abstract: Carbonated apatite shows an abrupt change in spectral (NMR, Raman) and morphological (AFM) properties at a composition of about one carbonate substitution per unit cell. Display Omitted - Highlights: • Crystallinity (XRD), particle size (AFM) of carbonated apatites and bone mineral. • Linear relationships among crystallinity, {sup 31}P NMR and Raman inverse bandwidths. • Low and high carbonated apatites use different charge-balancing ion-loss mechanism.

  13. Two-step spin flop transition in quantum spin ladders

    NASA Astrophysics Data System (ADS)

    Sakai, Toru; Okamoto, Kiyomi

    2008-03-01

    It is well known that the antiferromagnet with easy-axis anisotropies exhibits a field-induced first-order phase transition, the so- called spin flop. In one-dimensional quantum spin systems, instead of it, a second-order phase transition occurs because of large quantum fluctuations[1]. Particularly the S=1 antiferromagnetic chain with the easy-axis single-ion anisotropy was revealed to exhibit two successive field-induced second-order transitions by our previous numerical analysis[2]. However, such transitions have not been obseved yet. Recently a two-step spin flop transition was observed in the spin ladder system IPA-CuCl3[3], which has ferromagnetic rung coupling. In order to clarify the mechanism of the two-step field-induced transition, we investigate the anisotropic spin ladder using the numerical diagonalization and the finite-size scaling analysis. As a result, we revealed that two different field-induced second-order quantum phase transitions possibly occur. Several phase diagrams are also presented. In addition we discuss on a possible two-step spin flop in other materials[4] and some frustrated systems. [1] C. N. Yang and C. P. Yang, Phys. Rev. 151 (1966) 258. [2] T. Sakai, Phys. Rev. B 58 (1998) 6268. [3] T. Masuda et al, Phys. Rev. Lett. 96 (2006) 047210. [4] H. Miyasaka et al, Inorg. Chem. 42 (2003) 8203.

  14. Fluctuating Asymmetry and Intelligence

    ERIC Educational Resources Information Center

    Bates, Timothy C.

    2007-01-01

    The general factor of mental ability ("g") may reflect general biological fitness. If so, "g"-loaded measures such as Raven's progressive matrices should be related to morphological measures of fitness such as fluctuating asymmetry (FA: left-right asymmetry of a set of typically left-right symmetrical body traits such as finger lengths). This…

  15. GRADFLEX: Fluctuations in Microgravity

    NASA Technical Reports Server (NTRS)

    Vailati, A.; Cerbino, R.; Mazzoni, S.; Giglio, M.; Nikolaenko, G.; Cannell, D. S.; Meyer, W. V.; Smart, A. E.

    2004-01-01

    We present the results of experimental investigations of gradient driven fluctuations induced in a liquid mixture with a concentration gradient and in a single-component fluid with a temperature gradient. We also describe the experimental apparatus being developed to carry out similar measurement under microgravity conditions.

  16. Terrestrial Gravity Fluctuations

    NASA Astrophysics Data System (ADS)

    Harms, Jan

    2015-12-01

    Different forms of fluctuations of the terrestrial gravity field are observed by gravity experiments. For example, atmospheric pressure fluctuations generate a gravity-noise foreground in measurements with super-conducting gravimeters. Gravity changes caused by high-magnitude earthquakes have been detected with the satellite gravity experiment GRACE, and we expect high-frequency terrestrial gravity fluctuations produced by ambient seismic fields to limit the sensitivity of ground-based gravitational-wave (GW) detectors. Accordingly, terrestrial gravity fluctuations are considered noise and signal depending on the experiment. Here, we will focus on ground-based gravimetry. This field is rapidly progressing through the development of GW detectors. The technology is pushed to its current limits in the advanced generation of the LIGO and Virgo detectors, targeting gravity strain sensitivities better than 10^-23 Hz^-1/2 above a few tens of a Hz. Alternative designs for GW detectors evolving from traditional gravity gradiometers such as torsion bars, atom interferometers, and superconducting gradiometers are currently being developed to extend the detection band to frequencies below 1 Hz. The goal of this article is to provide the analytical framework to describe terrestrial gravity perturbations in these experiments. Models of terrestrial gravity perturbations related to seismic fields, atmospheric disturbances, and vibrating, rotating or moving objects, are derived and analyzed. The models are then used to evaluate passive and active gravity noise mitigation strategies in GW detectors, or alternatively, to describe their potential use in geophysics. The article reviews the current state of the field, and also presents new analyses especially with respect to the impact of seismic scattering on gravity perturbations, active gravity noise cancellation, and time-domain models of gravity perturbations from atmospheric and seismic point sources. Our understanding of

  17. Realizing stable fully spin polarized transport in SiC nanoribbons with dopant

    NASA Astrophysics Data System (ADS)

    Tao, Xixi; Hao, Hua; Wang, Xianlong; Zheng, Xiaohong; Zeng, Zhi

    2016-06-01

    Intrinsic half-metallicity recently reported in zigzag edged SiC nanoribbons is basically undetectable due to negligible energy difference between the antiferromagnetic (AFM) and ferromagnetic (FM) configurations. In this Letter, by density functional theory calculations, we demonstrate a scheme of N doping at the carbon edge to selectively close the edge state channel at this edge and achieve 100% spin filtering, no matter whether it is in an AFM state or FM state. This turns SiC nanoribbon into a promising material for obtaining stable and completely spin polarized transport and may find application in spintronic devices.

  18. Squeezed light spin noise spectroscopy

    NASA Astrophysics Data System (ADS)

    Lucivero, Vito Giovanni; Jiménez-Martínez, Ricardo; Kong, Jia; Mitchell, Morgan

    2016-05-01

    Spin noise spectroscopy (SNS) has recently emerged as a powerful technique for determining physical properties of an unperturbed spin system from its power noise spectrum both in atomic and solid state physics. In the presence of a transverse magnetic field, we detect spontaneous spin fluctuations of a dense Rb vapor via Faraday rotation of an off-resonance probe beam, resulting in the excess of spectral noise at the Larmor frequency over a white photon shot-noise background. We report quantum enhancement of the signal-to-noise ratio via polarization squeezing of the probe beam up to 3dB over the full density range up to n = 1013 atoms cm-3, covering practical conditions used in optimized SNS experiments. Furthermore, we show that squeezing improves the trade-off between statistical sensitivity and systematic errors due to line broadening, a previously unobserved quantum advantage.

  19. The importance of correcting for variable probe-sample interactions in AFM-IR spectroscopy: AFM-IR of dried bacteria on a polyurethane film.

    PubMed

    Barlow, Daniel E; Biffinger, Justin C; Cockrell-Zugell, Allison L; Lo, Michael; Kjoller, Kevin; Cook, Debra; Lee, Woo Kyung; Pehrsson, Pehr E; Crookes-Goodson, Wendy J; Hung, Chia-Suei; Nadeau, Lloyd J; Russell, John N

    2016-08-01

    AFM-IR is a combined atomic force microscopy-infrared spectroscopy method that shows promise for nanoscale chemical characterization of biological-materials interactions. In an effort to apply this method to quantitatively probe mechanisms of microbiologically induced polyurethane degradation, we have investigated monolayer clusters of ∼200 nm thick Pseudomonas protegens Pf-5 bacteria (Pf) on a 300 nm thick polyether-polyurethane (PU) film. Here, the impact of the different biological and polymer mechanical properties on the thermomechanical AFM-IR detection mechanism was first assessed without the additional complication of polymer degradation. AFM-IR spectra of Pf and PU were compared with FTIR and showed good agreement. Local AFM-IR spectra of Pf on PU (Pf-PU) exhibited bands from both constituents, showing that AFM-IR is sensitive to chemical composition both at and below the surface. One distinct difference in local AFM-IR spectra on Pf-PU was an anomalous ∼4× increase in IR peak intensities for the probe in contact with Pf versus PU. This was attributed to differences in probe-sample interactions. In particular, significantly higher cantilever damping was observed for probe contact with PU, with a ∼10× smaller Q factor. AFM-IR chemical mapping at single wavelengths was also affected. We demonstrate ratioing of mapping data for chemical analysis as a simple method to cancel the extreme effects of the variable probe-sample interactions. PMID:27403761

  20. AFM CHARACTERIZATION OF RAMAN LASER INDUCED DAMAGE ON CDZNTECRYSTAL SURFACES

    SciTech Connect

    Teague, L.; Duff, M.

    2008-10-07

    High quality CdZnTe (or CZT) crystals have the potential for use in room temperature gamma-ray and X-ray spectrometers. Over the last decade, the methods for growing high quality CZT have improved the quality of the produced crystals however there are material features that can influence the performance of these materials as radiation detectors. The presence of structural heterogeneities within the crystals, such as twinning, pipes, grain boundaries (polycrystallinity), and secondary phases (SPs) can have an impact on the detector performance. There is considerable need for reliable and reproducible characterization methods for the measurement of crystal quality. With improvements in material characterization and synthesis, these crystals may become suitable for widespread use in gamma radiation detection. Characterization techniques currently utilized to test for quality and/or to predict performance of the crystal as a gamma-ray detector include infrared (IR) transmission imaging, synchrotron X-ray topography, photoluminescence spectroscopy, transmission electron microscopy (TEM), atomic force microscopy (AFM) and Raman spectroscopy. In some cases, damage caused by characterization methods can have deleterious effects on the crystal performance. The availability of non-destructive analysis techniques is essential to validate a crystal's quality and its ability to be used for either qualitative or quantitative gamma-ray or X-ray detection. The work presented herein discusses the damage that occurs during characterization of the CZT surface by a laser during Raman spectroscopy, even at minimal laser powers. Previous Raman studies have shown that the localized annealing from tightly focused, low powered lasers results in areas of higher Te concentration on the CZT surface. This type of laser damage on the surface resulted in decreased detector performance which was most likely due to increased leakage current caused by areas of higher Te concentration. In this study

  1. Device level 3D characterization using PeakForce AFM

    NASA Astrophysics Data System (ADS)

    Timoney, Padraig; Zhang, Xiaoxiao; Vaid, Alok; Hand, Sean; Osborne, Jason; Milligan, Eric; Feinstein, Adam

    2016-03-01

    Traditional metrology solutions face a range of challenges at the 1X node such as three dimensional (3D) measurement capabilities, shrinking overlay and critical dimension (CD) error budgets driven by multi-patterning and via in trench CD measurements. With advent of advanced technology nodes and 3D processing, an increasing need is emerging for in-die metrology including across-structure and structure-to-structure characterization. A myriad of work has emerged in the past few years intending to address these challenges from various aspects; in-die OCD with reduced spot size and tilt beam on traditional critical dimension scanning electron microscopy (CDSEM) for height measurements. This paper explores the latest capability offered by PeakForceTM Tapping Atomic Force Microscopy (PFT-AFM). The use of traditional harmonic tapping mode for scanning high aspect ratio, and complex "3D" wafer structures, results in limited depth probing capability as well as excessive tip wear. These limitations arise due to the large tip-sample interaction volume in such confined spaces. PeakForce Tapping eliminates these limitations through direct real time control of the tip-sample interaction contact force. The ability of PeakForce to measure, and respond directly to tip- sample interaction forces results in more detailed feature resolution, reduced tip wear, and improved depth capability. In this work, the PFT-AFM tool was applied for multiple applications, including the 14nm fin and replacement metal gate (RMG) applications outlined below. Results from DOE wafers, detailed measurement precision studies and correlation to reference metrology are presented for validation of this methodology. With the fin application, precision of 0.3nm is demonstrated by measuring 5 dies with 10 consecutive runs. Capability to resolve within-die and localized within-macro height variation is also demonstrated. Results obtained from the fin measurements support the increasing trend that measurements

  2. Spinon walk in quantum spin ice

    NASA Astrophysics Data System (ADS)

    Wan, Yuan; Carrasquilla, Juan; Melko, Roger

    Quantum spin ice is a novel family of spin ice magnets that possess substantial quantum fluctuations. The fractional excitations are spinons, which are quantum analog of the monopoles in classical spin ice. The spinon propagates in quantum spin ice via quantum tunnelling. As opposed to a conventional quantum particle, the spinon moves in a background of disordered spins. The orientation of background spins controls the spinon motion, whereas the spinon motion in turn alters the spin background. One may naturally ask what a suitable framework for understanding the dynamics of spinon is in quantum spin ice, and furthermore, whether the spinon propagation is coherent. In this talk, we address these issues by investigating a minimal model that captures the essential features of single spinon dynamics in quantum spin ice. We demonstrate that the spinon motion can be thought of as a quantum walk with entropy-induced memory. Our numerical simulation shows that the simple quasi-particle behaviour emerges out of the intricate interplay between the spinon and the background spins .

  3. Effect of tip mass on frequency response and sensitivity of AFM cantilever in liquid.

    PubMed

    Farokh Payam, Amir; Fathipour, Morteza

    2015-03-01

    The effect of tip mass on the frequency response and sensitivity of atomic force microscope (AFM) cantilever in the liquid environment is investigated. For this purpose, using Euler-Bernoulli beam theory and considering tip mass and hydrodynamic functions in a liquid environment, an expression for the resonance frequencies of AFM cantilever in liquid is derived. Then, based on this expression, the effect of the surface contact stiffness on the flexural mode of a rectangular AFM cantilever in fluid is investigated and compared with the case where the AFM cantilever operates in the air. The results show that in contrast with an air environment, the tip mass has no significant impact on the resonance frequency and sensitivity of the AFM cantilever in the liquid. Hence, analysis of AFM behaviour in liquid environment by neglecting the tip mass is logical. PMID:25562584

  4. Conductance fluctuations in nanostructures

    NASA Astrophysics Data System (ADS)

    Zhu, Ningjia

    1997-12-01

    In this Ph.D thesis the conductance fluctuations of different physical origins in semi-conductor nanostructures were studied using both diagrammatic analytical methods and large scale numerical techniques. In the "mixed" transport regime where both mesoscopic and ballistic features play a role, for the first time I have analytically calculated the non-universal conductance fluctuations. This mixed regime is reached when impurities are distributed near the walls of a quantum wire, leaving the center region ballistic. I have discovered that the existence of a ballistic region destroys the universal conductance fluctuations. The crossover behavior of the fluctuation amplitude from the usual quasi-1D situation to that of the mixed regime is clearly revealed, and the role of various length scales are identified. My analytical predictions were confirmed by a direct numerical simulation by evaluating the Landauer formula. In another direction, I have made several studies of conductance or resistance oscillations and fluctuations in systems with artificial impurities in the ballistic regime. My calculation gave explanations of all the experimental results concerning the classical focusing peaks of the resistance versus magnetic field, the weak localization peak in a Sinai billiard system, the formation of a chaotic billiard, and predicted certain transport features which were indeed found experimentally. I have further extended the calculation to study the Hall resistance in a four-terminal quantum dot in which there is an antidot array. From my numerical data I analyzed the classical paths of electron motion and its quantum oscillations. The results compare well with recent experimental studies on similar systems. Since these billiard systems could provide quantum chaotic dynamics, I have made a detailed study of the consequence of such dynamics. In particular I have investigated the resonant transmission of electrons in these chaotic systems, and found that the level

  5. Dynamic Stabilization of a Quantum Many-Body Spin System

    NASA Astrophysics Data System (ADS)

    Hoang, T. M.; Gerving, C. S.; Land, B. J.; Anquez, M.; Hamley, C. D.; Chapman, M. S.

    2013-08-01

    We demonstrate dynamic stabilization of a strongly interacting quantum spin system realized in a spin-1 atomic Bose-Einstein condensate. The spinor Bose-Einstein condensate is initialized to an unstable fixed point of the spin-nematic phase space, where subsequent free evolution gives rise to squeezing and quantum spin mixing. To stabilize the system, periodic microwave pulses are applied that rotate the spin-nematic many-body fluctuations and limit their growth. The stability diagram for the range of pulse periods and phase shifts that stabilize the dynamics is measured and compares well with a stability analysis.

  6. Dynamic stabilization of a quantum many-body spin system.

    PubMed

    Hoang, T M; Gerving, C S; Land, B J; Anquez, M; Hamley, C D; Chapman, M S

    2013-08-30

    We demonstrate dynamic stabilization of a strongly interacting quantum spin system realized in a spin-1 atomic Bose-Einstein condensate. The spinor Bose-Einstein condensate is initialized to an unstable fixed point of the spin-nematic phase space, where subsequent free evolution gives rise to squeezing and quantum spin mixing. To stabilize the system, periodic microwave pulses are applied that rotate the spin-nematic many-body fluctuations and limit their growth. The stability diagram for the range of pulse periods and phase shifts that stabilize the dynamics is measured and compares well with a stability analysis. PMID:24033006

  7. Spin transport in helical biological systems

    SciTech Connect

    Díaz, Elena; Gutierrez, Rafael

    2014-08-20

    Motivated by the recent experimental demonstration of spin selective effects in monolayers of double-stranded DNA oligomers, our work presents a minimal model to describe electron transmission through helical fields. Our model highlight that the lack of inversion symmetry due to the chirality of the potential is a key factor which will lead to a high spin-polarization (SP). We also study the stability of the SP against fluctuations of the electronic structure induced by static disorder affecting the on-site energies. In the energy regions where the spin-filtering occurs, our results remain stable against moderate disorders although the SP is slightly reduced.

  8. AFM surface investigation of polyethylene modified by ion bombardment

    NASA Astrophysics Data System (ADS)

    Švorčík, V.; Arenholz, E.; Hnatowicz, V.; Rybka, V.; Öchsner, R.; Ryssel, H.

    1998-07-01

    Polyethylene (PE) was irradiated with 63 keV Ar + and 155 keV Xe + ions to fluences of 1 × 10 13 to 3 × 10 15 cm -2 with ion energies being chosen in order to achieve approximately the same penetration depth for both species. The PE surface morphology was examined by means of atomic force microscopy (AFM), whereas the concentration of free radicals and conjugated double bonds, both created by the ion irradiation, were determined using electron paramagnetic resonance (EPR) and UV-VIS spectroscopy, respectively. As expected, the degradation of PE was higher after irradiation with heavier Xe + ions but the changes in the PE surface morphology were more pronounced for Ar + ions. This newly observed effect can be explained by stronger compaction of the PE surface layer in the case of the Xe + irradiation, connected with a reduction of free volume available.

  9. FM-AFM crossover in vanadium oxide nanomaterials

    NASA Astrophysics Data System (ADS)

    Demishev, S. V.; Chernobrovkin, A. L.; Glushkov, V. V.; Grigorieva, A. V.; Goodilin, E. A.; Sluchanko, N. E.; Samarin, N. A.; Semeno, A. V.

    2010-01-01

    The magnetic properties of nanomaterials based on vanadium oxide (multiwall nanotubes, nanorods, and nanolayers) have been investigated in the temperature range of 1.8-220 K by high-frequency (60-GHz) EPR. A transition from a ferromagnetic temperature dependence to an antiferromagnetic temperature dependence has been observed in nanorods and nanotubes with a decrease in the temperature. The FM-AFM crossover observed near T C ˜ 110 K is accompanied by a low-temperature increase in the Curie constant by a factor of 2.7-7. The comparison of the experimental data for various VO x nanoparticles indicates that the most probable cause of the change in the type of magnetic interaction is a change in the concentration of V4+ magnetic ions.

  10. Adhesion forces between AFM tips and superficial dentin surfaces.

    PubMed

    Pelin, I M; Piednoir, A; Machon, D; Farge, P; Pirat, C; Ramos, S M M

    2012-06-15

    In this work, we study the adhesion forces between atomic force microscopy (AFM) tips and superficial dentin etched with phosphoric acid. Initially, we quantitatively analyze the effect of acid etching on the surface heterogeneity and the surface roughness, two parameters that play a key role in the adhesion phenomenon. From a statistical study of the force-distance curves, we determine the average adhesion forces on the processed substrates. Our results show that the average adhesion forces, measured in water, increase linearly with the acid exposure time. The highest values of such forces are ascribed to the high density of collagen fibers on the etched surfaces. The individual contribution of exposed collagen fibrils to the adhesion force is highlighted. We also discuss in this paper the influence of the environmental medium (water/air) in the adhesion measurements. We show that the weak forces involved require working in the aqueous medium. PMID:22472512

  11. BOREAS AFM-04 Twin Otter Aircraft Sounding Data

    NASA Technical Reports Server (NTRS)

    MacPherson, J. Ian; Desjardins, Raymond L.; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-4 team used the National Research Council, Canada (NRC) Twin Otter aircraft to make sounding measurements through the boundary layer. These measurements included concentrations of carbon dioxide and ozone, atmospheric pressure, dry bulb temperature, potential temperature, dewpoint temperature, calculated mixing ratio, and wind speed and direction. Aircraft position, heading, and altitude were also recorded. Data were collected at both the Northern Study Area (NSA) and the Southern Study Area (SSA) in 1994 and 1996. These data are stored in tabular ASCII files. The Twin Otter aircraft sounding data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files also are available on a CD-ROM (see document number 20010000884).

  12. Visualization of internal structure of banana starch granule through AFM.

    PubMed

    Peroni-Okita, Fernanda H G; Gunning, A Patrick; Kirby, Andrew; Simão, Renata A; Soares, Claudinéia A; Cordenunsi, Beatriz R

    2015-09-01

    Atomic force microscopy (AFM) is a high resolution technique for studying the external and internal structures of starch granules. For this purpose granules were isolated from bananas and embedded in a non-penetrating resin. To achieve image contrast of the ultrastructure, the face of the cut blocks were wetted in steam and force modulation mode imaging was used. Images of starch from green bananas showed large variation of height across the granule due to a locational specific absorption of water and swelling of amorphous regions; the data reveal that the center of the granules are structurally different and have different viscoelastic properties. Images of starches from ripe bananas showed an even greater different level of organization: absence of growth rings around the hilum; the central region of the granule is richer in amylose; very porous surface with round shaped dark structures; the size of blocklets are larger than the green fruits. PMID:26005137

  13. AFM of self-assembled lambda DNA-histone networks.

    PubMed

    Liu, YuYing; Guthold, Martin; Snyder, Matthew J; Lu, HongFeng

    2015-10-01

    Atomic force microscopy (AFM) was used to investigate the self-assembly behavior of λ-DNA and histones at varying histone:DNA ratios. Without histones and at the lowest histone:DNA ratio (less than one histone per 1000 base pairs of DNA), the DNA appeared as individual (uncomplexed), double-stranded DNA molecules. At increasing histone concentrations (one histone per 500, 250 and 167 base pairs of DNA), the DNA molecules started to form extensive polygonal networks of mostly pentagons and hexagons. The observed networks might be one of the naturally occurring, stable DNA-histone structures. The condensing effects of the divalent cations Mg(2+) and Ca(2+) on the DNA-histone complexes were also investigated. The networks persisted at high Mg(2+) concentration (20mM) and the highest histone concentration. At high Ca(2+) concentration and the highest histone concentration, the polygonal network disappeared and, instead, individual, tightly condensed aggregates were formed. PMID:26141439

  14. Mechanical Characterization of Photo-crosslinkable Hydrogels with AFM

    NASA Astrophysics Data System (ADS)

    McKenna, Alyssa; Byun, Myunghwan; Hayward, Ryan; Aidala, Katherine

    2012-02-01

    Stimuli-responsive hydrogel films formed from photo-crosslinkable polymers are versatile materials for controlled drug delivery devices, three-dimensional micro-assemblies, and components in microfluidic systems. For such applications, it is important to understand both the mechanical properties and the dynamics responses of these materials. We describe the use of atomic force microscope (AFM) based indentation experiments to characterize the properties of poly(N-isopropylacrylamide) copolymer films, crosslinked by activation of pendent benzophenone units using ultraviolet light. In particular, we study how the elastic modulus of the material, determined using the Johnson, Kendall, and Roberts model, depends on UV dose, and simultaneously investigate stress relaxation in these materials in the context of viscoelastic and poroelastic relaxation models.

  15. Vibration-induced field fluctuations in a superconducting magnet

    NASA Astrophysics Data System (ADS)

    Britton, J. W.; Bohnet, J. G.; Sawyer, B. C.; Uys, H.; Biercuk, M. J.; Bollinger, J. J.

    2016-06-01

    Superconducting magnets enable precise control of nuclear and electron spins, and are used in experiments that explore biological and condensed-matter systems, and fundamental atomic particles. In high-precision applications, a common view is that slow (<1 Hz ) drift of the homogeneous magnetic-field limits control and measurement precision. We report on previously undocumented higher-frequency field noise (10-200 Hz) that limits the coherence time of Be+9 electron-spin qubits in the 4.46 -T field of a superconducting magnet. We measure a spin-echo T2 coherence time of ˜6 ms for the Be+9 electron-spin resonance at 124 GHz , limited by part-per-billion fractional fluctuations in the magnet's homogeneous field. Vibration isolation of the magnet improved T2 to ˜50 ms.

  16. Extracting primordial density fluctuations

    PubMed

    Gawiser; Silk

    1998-05-29

    The combination of detections of anisotropy in cosmic microwave background radiation and observations of the large-scale distribution of galaxies probes the primordial density fluctuations of the universe on spatial scales varying by three orders of magnitude. These data are found to be inconsistent with the predictions of several popular cosmological models. Agreement between the data and the cold + hot dark matter model, however, suggests that a significant fraction of the matter in the universe may consist of massive neutrinos. PMID:9603724

  17. Recent advances in exchange bias of layered magnetic FM/AFM systems

    NASA Astrophysics Data System (ADS)

    Liu, ZhongYuan

    2013-01-01

    The exchange bias (EB) has been investigated in magnetic materials with the ferromagnetic (FM)/antiferromagnetic (AFM) contacting interfaces for more than half a century. To date, the significant progress has been made in the layered magnetic FM/AFM thin film systems. EB mechanisms have shown substantive research advances. Here some of the new advances are introduced and discussed with the emphasis on the influence of AFM layer, the interlayer EB coupling across nonmagnetic spacer, and the interlayer coupling across AFM layer, as well as EB related to multiferrioc materials and electrical control.

  18. Continuum physics: Correlation and fluctuation analysis

    SciTech Connect

    Herskind, B.

    1993-10-01

    It is well known that the main flow of the {gamma}-decay from high spin states passes through the regions of high level density several MeV above the yrast line. Nevertheless, only very limited information about the nuclear structure in this region is available, due to the extremely high complexity of the decay patterns. The new highly efficient {gamma}-spectrometer arrays, GASP, EUROGAM and GAMMASPHERE coming into operation these years, with several orders of magnitude higher selectivity for studying weakly populated states, offers new exiting possibilities also for a much more detailed study of the high spin quasi-continuum. It is of special interest to study the phase transition from the region of discrete regular rotational band structures found close to the yrast line, into the region of damped rotational motion at higher excitation energies and investigate the interactions responsible for the damping phenomena. Some of the first large data-sets to be analyzed are made on residues around e.g. {sup 152}Dy and {sup 168}Yb produced with EUROGAM in Daresbury, UK, in addition to {sup 143}Eu and {sup 182}Pt produced with GASP in Legnaro, Italy. These data-sets will for the first time contain enough counts to allow for a fluctuation analysis of 3-fold coincidence matrixes. The high spatial resolution in a cube of triples make it possible to select transitions from specific configurations using 2 of the detectors and measure the fluctuations caused by the simplicity of feeding the selected configuration by the 3. detector. Thus, weakly mixed structures in the damped region as e.g. superdeformed- or high-K bands are expected to show large fluctuations. Results from these experiments will be discussed.

  19. Multiscale Fluctuation Analysis Revisited

    NASA Astrophysics Data System (ADS)

    Struzik, Zbigniew R.; Kiyono, Ken; Yamamoto, Yoshiharu

    2007-07-01

    Ubiquitous non-Gaussianity of the probability density of (time-series) fluctuations in many real world phenomena has been known and modelled extensively in recent years. Similarly, the analysis of (multi)scaling properties of (fluctuations in) complex systems has become a standard way of addressing unknown complexity. Yet the combined analysis and modelling of multiscale behaviour of probability density — multiscale PDF analysis — has only recently been proposed for the analysis of time series arising in complex systems, such as the cardiac neuro-regulatory system, financial markets or hydrodynamic turbulence. This relatively new technique has helped significantly to expand the previously obtained insights into the phenomena addressed. In particular, it has helped to identify a novel class of scale invariant behaviour of the multiscale PDF in healthy heart rate regulation during daily activity and in a market system undergoing crash dynamics. This kind of invariance reflects invariance of the system under renormalisation and resembles behaviour at criticality of a system undergoing continuous phase transition — indeed in both phenomena, such phase transition behaviour has been revealed. While the precise mechanism underlying invariance of the PDF under system renormalisation of both systems discussed is not to date understood, there is an intimate link between the non-Gaussian PDF characteristics and the persistent invariant correlation structure emerging between fluctuations across scale and time.

  20. Real-Time Estimation Of Aiming Error Of Spinning Antenna

    NASA Technical Reports Server (NTRS)

    Dolinsky, Shlomo

    1992-01-01

    Spinning-spacecraft dynamics and amplitude variations in communications links studied from received-signal fluctuations. Mathematical model and associated analysis procedure provide real-time estimates of aiming error of remote rotating transmitting antenna radiating constant power in narrow, pencillike beam from spinning platform, and current amplitude of received signal. Estimates useful in analyzing and enhancing calibration of communication system, and in analyzing complicated dynamic effects in spinning platform and antenna-aiming mechanism.

  1. Photo-induced Spin Angular Momentum Transfer into Antiferromagnetic Insulator

    NASA Astrophysics Data System (ADS)

    Fang, Fan; Fan, Yichun; Ma, Xin; Zhu, J.; Li, Q.; Ma, T. P.; Wu, Y. Z.; Chen, Z. H.; Zhao, H. B.; Luepke, Gunter; College of William and Mary Team; Department of Physics, Fudan University Team; Department of Optical Science and Engineering, Fudan University Team

    2014-03-01

    Spin angular momentum transfer into antiferromagnetic(AFM) insulator is observed in single crystalline Fe/CoO/MgO(001) heterostructure by time-resolved magneto-optical Kerr effect (TR-MOKE). The transfer process is mediated by the Heisenberg exchange coupling between Fe and CoO spins. Below the Neel temperature(TN) of CoO, the fact that effective Gilbert damping parameter α is independent of external magnetic field and it is enhanced with respect to the intrinsic damping in Fe/MgO, indicates that the damping process involves both the intrinsic spin relaxation and the transfer of Fe spin angular momentum to CoO spins via FM-AFM exchange coupling and then into the lattice by spin-orbit coupling. The work at the College of William and Mary was sponsored by the Office of Naval Research. The work at Department of Physics, Fudan, was supported by NSFC. The work at Department of Optical Science and Engineering, Fudan was supported by NSFC and NCET.

  2. Coherent electron-spin-resonance manipulation of three individual spins in a triple quantum dot

    NASA Astrophysics Data System (ADS)

    Noiri, A.; Yoneda, J.; Nakajima, T.; Otsuka, T.; Delbecq, M. R.; Takeda, K.; Amaha, S.; Allison, G.; Ludwig, A.; Wieck, A. D.; Tarucha, S.

    2016-04-01

    Quantum dot arrays provide a promising platform for quantum information processing. For universal quantum simulation and computation, one central issue is to demonstrate the exhaustive controllability of quantum states. Here, we report the addressable manipulation of three single electron spins in a triple quantum dot using a technique combining electron-spin-resonance and a micro-magnet. The micro-magnet makes the local Zeeman field difference between neighboring spins much larger than the nuclear field fluctuation, which ensures the addressable driving of electron-spin-resonance by shifting the resonance condition for each spin. We observe distinct coherent Rabi oscillations for three spins in a semiconductor triple quantum dot with up to 25 MHz spin rotation frequencies. This individual manipulation over three spins enables us to arbitrarily change the magnetic spin quantum number of the three spin system, and thus to operate a triple-dot device as a three-qubit system in combination with the existing technique of exchange operations among three spins.

  3. Electron spin relaxation in carbon nanotubes: Dyakonov-Perel mechanism

    NASA Astrophysics Data System (ADS)

    Semenov, Yuriy; Zavada, John; Kim, Ki Wook

    2010-03-01

    The long standing problem of unaccountable short spin relaxation in carbon nanotubes (CNT) meets a disclosure in terms of curvature-mediated spin-orbital interaction that leads to spin fluctuating precession analogous to Dyakonov-Perel mechanism. Strong anisotropy imposed by arbitrary directed magnetic field has been taken into account in terms of extended Bloch equations. Especially, stationary spin current through CNT can be controlled by spin-flip processes with relaxation time as less as 150 ps, the rate of transversal polarization (i.e. decoherence) runs up to 1/(70 ps) at room temperature while spin interference of the electrons related to different valleys can be responsible for shorter spin dephasing. Dependencies of spin-relaxation parameters on magnetic field strength and orientation, CNT curvature and chirality have been analyzed.

  4. Dephasing due to Nuclear Spins in Large-Amplitude Electric Dipole Spin Resonance

    NASA Astrophysics Data System (ADS)

    Chesi, Stefano; Yang, Li-Ping; Loss, Daniel

    2016-02-01

    We analyze effects of the hyperfine interaction on electric dipole spin resonance when the amplitude of the quantum-dot motion becomes comparable or larger than the quantum dot's size. Away from the well-known small-drive regime, the important role played by transverse nuclear fluctuations leads to a Gaussian decay with characteristic dependence on drive strength and detuning. A characterization of spin-flip gate fidelity, in the presence of such additional drive-dependent dephasing, shows that vanishingly small errors can still be achieved at sufficiently large amplitudes. Based on our theory, we analyze recent electric dipole spin resonance experiments relying on spin-orbit interactions or the slanting field of a micromagnet. We find that such experiments are already in a regime with significant effects of transverse nuclear fluctuations and the form of decay of the Rabi oscillations can be reproduced well by our theory.

  5. Observation of transverse spin freezing by TDPAC

    NASA Astrophysics Data System (ADS)

    Webb, T. A.; Ryan, D. H.

    2013-05-01

    We use 181Hf time-differential perturbed angular correlation (TDPAC) spectroscopy to investigate magnetic ordering in the bond-frustrated metallic glass: a - Fe91Hf9. We show that TDPAC can be used to observe the magnetic fluctuations that are associated with the freezing of transverse spin components at T xy .

  6. Model for lightcone fluctuations due to stress tensor fluctuations

    NASA Astrophysics Data System (ADS)

    Bessa, C. H. G.; De Lorenci, V. A.; Ford, L. H.; Ribeiro, C. C. H.

    2016-03-01

    We study a model for quantum lightcone fluctuations in which vacuum fluctuations of the electric field and of the squared electric field in a nonlinear dielectric material produce variations in the flight times of probe pulses. When this material has a nonzero third order polarizability, the flight time variations arise from squared electric field fluctuations, and are analogous to effects expected when the stress tensor of a quantized field drives passive spacetime geometry fluctuations. We also discuss the dependence of the squared electric field fluctuations upon the geometry of the material, which in turn determines a sampling function for averaging the squared electric field along the path of the pulse. This allows us to estimate the probability of especially large fluctuations, which is a measure of the probability distribution for quantum stress tensor fluctuations.

  7. Anisotropic spin model of strong spin-orbit-coupled triangular antiferromagnets

    NASA Astrophysics Data System (ADS)

    Li, Yao-Dong; Wang, Xiaoqun; Chen, Gang

    2016-07-01

    Motivated by the recent experimental progress on the strong spin-orbit-coupled rare-earth triangular antiferromagnet, we analyze the highly anisotropic spin model that describes the interaction between the spin-orbit-entangled Kramers' doublet local moments on the triangular lattice. We apply the Luttinger-Tisza method, the classical Monte Carlo simulation, and the self-consistent spin wave theory to analyze the anisotropic spin Hamiltonian. The classical phase diagram includes the 120∘ state and two distinct stripe-ordered phases. The frustration is very strong and significantly suppresses the ordering temperature in the regimes close to the phase boundary between two ordered phases. Going beyond the semiclassical analysis, we include the quantum fluctuations of the spin moments within a self-consistent Dyson-Maleev spin-wave treatment. We find that the strong quantum fluctuations melt the magnetic order in the frustrated regions. We explore the magnetic excitations in the three different ordered phases as well as in strong magnetic fields. Our results provide a guidance for the future theoretical study of the generic model and are broadly relevant for strong spin-orbit-coupled triangular antiferromagnets such as YbMgGaO4, RCd3P3 , RZn3P3 , RCd3As3 , RZn3As3 , and R2O2CO3 .

  8. Fermion pseudogap from fluctuations of an order parameter

    NASA Astrophysics Data System (ADS)

    Tchernyshyov, Oleg Vladimirovich

    Pseudogap behavior, observed in cuprate superconductors and Peierls chains, is studied using various phenomenological approaches. (1) A work of M. V. Sadovskii on Peierls chains with Gaussian fluctuations of the order parameter is revisited. A more transparent diagrammatic method is given and a serious error is pointed out. The method is applied to a recent work of J. Schmalian, B. Stojkovic and D. Pines on "hot spots". It is shown that, while their model is not affected by Sadovskii's mistake, it predicts no pseudogap in the local density of states. (2) A simple analytical treatment based on the self-consistent t-matrix approach is suggested to describe Cooper pair fluctuations deeply in the pseudogap regime. It is argued that a pronounced depletion of the fermion density of states by the pseudogap suppresses the decay of pairing fluctuations, giving them a propagating, rather than diffusing, nature. In view of an approximate particle-hole symmetry at the Fermi surface, both electron pairs and hole pairs should exist in the pseudogap regime, in addition to gapped fermions. Near 2 dimensions, the condensation temperature of these pairs is linearly proportional to the fermion density (the Uemura scaling). (3) A work of J. R. Schrieffer and A. R. Kampf on the crossover between an antiferromagnetic (AFM) insulator and a Fermi liquid is complemented by an exactly solvable toy model with all essential features intact. Based on that solution, the three bands of Schrieffer and Kampf are reinterpreted as just two AFM bands with a gap slowly varying in time or across the sample.

  9. Electrical control of quantum dot spin qubits

    NASA Astrophysics Data System (ADS)

    Laird, Edward Alexander

    This thesis presents experiments exploring the interactions of electron spins with electric fields in devices of up to four quantum dots. These experiments are particularly motivated by the prospect of using electric fields to control spin qubits. A novel hyperfine effect on a single spin in a quantum dot is presented in Chapter 2. Fluctuations of the nuclear polarization allow single-spin resonance to be driven by an oscillating electric field. Spin resonance spectroscopy revealed a nuclear polarization built up inside the quantum dot device by driving the resonance. The evolution of two coupled spins is controlled by the combination of hyperfine interaction, which tends to cause spin dephasing, and exchange, which tends to prevent it. In Chapter 3, dephasing is studied in a device with tunable exchange, probing the crossover between exchange-dominated and hyperfine-dominated regimes. In agreement with theoretical predictions, oscillations of the spin conversion probability and saturation of dephasing are observed. Chapter 4 deals with a three-dot device, suggested as a potential qubit controlled entirely by exchange. Preparation and readout of the qubit state are demonstrated, together with one out of two coherent exchange operations needed for arbitrary manipulations. A new readout technique allowing rapid device measurement is described. In Chapter 5, an attempt to make a two-qubit gate using a four-dot device is presented. Although spin qubit operation has not yet been possible, the electrostatic interaction between pairs of dots was measured to be sufficient in principle for coherent qubit coupling.

  10. Electronic structure of the weakly coupled edge-sharing MnO4 spin-\\frac {5}{2} chain compound LiMnVO4: an ab initio study

    NASA Astrophysics Data System (ADS)

    Ming, Xing; Wang, Chun-Zhong; Fan, Hou-Gang; Hu, Fang; Wei, Ying-Jin; Huang, Zu-Fei; Meng, Xing; Chen, Gang

    2008-10-01

    Based on fully self-consistent first-principles density functional theory (DFT) calculations as well as classical spin analysis, we study the electronic structure and magnetic interactions of the spinel-related compound LiMnVO4. Four possible ordered spin states have been considered by spin-polarized generalized gradient approximation (GGA) calculations. The antiferromagnetic (AFM) configuration with both intra-chain and inter-chain AFM coupling interactions is energetically favorable among these magnetic ordered states. The calculated AFM solution agrees well with a series of experimental measurements. The intra-atomic exchange splitting of the Mn 3d spin-up and spin-down states results in the insulating behavior of LiMnVO4. The Heisenberg Hamiltonian is used to deduce the magnetic coupling parameters by adopting Noodleman's broken symmetry method. The intra-chain AFM interactions are much stronger than the inter-chain AFM interactions and thus LiMnVO4 can be described as a weakly coupled edge-sharing spin \\frac {5}{2} chain system. We propose that the presence of the side groups of edge-sharing LiO4 and VO4 tetrahedra are contributing to the intra-chain AFM interactions in the nearly 90° Mn-O-Mn bond configuration of the edge-sharing MnO4 chains.

  11. Spin Selective Charge Transport through Cysteine Capped CdSe Quantum Dots.

    PubMed

    Bloom, Brian P; Kiran, Vankayala; Varade, Vaibhav; Naaman, Ron; Waldeck, David H

    2016-07-13

    This work demonstrates that chiral imprinted CdSe quantum dots (QDs) can act as spin selective filters for charge transport. The spin filtering properties of chiral nanoparticles were investigated by magnetic conductive-probe atomic force microscopy (mCP-AFM) measurements and magnetoresistance measurements. The mCP-AFM measurements show that the chirality of the quantum dots and the magnetic orientation of the tip affect the current-voltage curves. Similarly, magnetoresistance measurements demonstrate that the electrical transport through films of chiral quantum dots correlates with the chiroptical properties of the QD. The spin filtering properties of chiral quantum dots may prove useful in future applications, for example, photovoltaics, spintronics, and other spin-driven devices. PMID:27336320

  12. Strain-modulated antiferromagnetic spin orientation and exchange coupling in Fe/CoO(001)

    SciTech Connect

    Zhu, J.; Li, Q.; Li, J. X.; Ding, Z.; Wu, Y. Z.; Hua, C. Y.; Huang, M. J.; Lin, H.-J.; Hu, Z.; Won, C.

    2014-05-21

    The effect of CoO spin orientation on exchange coupling was investigated in single-crystalline Fe/CoO/MnO/MgO(001) systems. An antiferromagnetic CoO spin reorientation transition from the in-plane direction to the out-of-plane direction was found to be associated with the in-plane strain transition in CoO film from compression to expansion. The induced uniaxial anisotropies by exchange coupling at the Fe/CoO interface are significantly stronger for the in-plane CoO spin orientation than for the out-of-plane CoO spin orientation. Our study provides a way to modify the exchange coupling in the ferromagnetic (FM)/antiferromagnetic (AFM) bilayer by modulating the strain in the AFM film.

  13. Fluctuations, Intermittency and Predictivity

    NASA Astrophysics Data System (ADS)

    Charbonneau, Paul

    This chapter considers the various mechanisms capable of producing amplitude and duration variations in the various dynamo models introduced in Chap. 3 (10.1007/978-3-642-32093-4_3). After a survey of observed and inferred fluctuation patterns of the solar cycle, the effects on the basic cycle of stochastic forcing, dynamical nonlinearities and time delay are considered in turn. The occurrence of intermittency in a subset of these models is then investigated, with an eye on explaining Grand Minima observed in the solar activity record. The chapter closes with a brief discussion of solar cycle prediction schemes based on dynamo models.

  14. Gambling with Superconducting Fluctuations

    NASA Astrophysics Data System (ADS)

    Foltyn, Marek; Zgirski, Maciej

    2015-08-01

    Josephson junctions and superconducting nanowires, when biased close to superconducting critical current, can switch to a nonzero voltage state by thermal or quantum fluctuations. The process is understood as an escape of a Brownian particle from a metastable state. Since this effect is fully stochastic, we propose to use it for generating random numbers. We present protocol for obtaining random numbers and test the experimentally harvested data for their fidelity. Our work is prerequisite for using the Josephson junction as a tool for stochastic (probabilistic) determination of physical parameters such as magnetic flux, temperature, and current.

  15. Spin ejector

    DOEpatents

    Andersen, John A.; Flanigan, John J.; Kindley, Robert J.

    1978-01-01

    The disclosure relates to an apparatus for spin ejecting a body having a flat plate base containing bosses. The apparatus has a base plate and a main ejection shaft extending perpendicularly from the base plate. A compressible cylindrical spring is disposed about the shaft. Bearings are located between the shaft and the spring. A housing containing a helical aperture releasably engages the base plate and surrounds the shaft bearings and the spring. A piston having an aperture follower disposed in the housing aperture is seated on the spring and is guided by the shaft and the aperture. The spring is compressed and when released causes the piston to spin eject the body.

  16. BOREAS AFM-12 1-km AVHRR Seasonal Land Cover Classification

    NASA Technical Reports Server (NTRS)

    Steyaert, Lou; Hall, Forrest G.; Newcomer, Jeffrey A. (Editor); Knapp, David E. (Editor); Loveland, Thomas R.; Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-12 team's efforts focused on regional scale Surface Vegetation and Atmosphere (SVAT) modeling to improve parameterization of the heterogeneous BOREAS landscape for use in larger scale Global Circulation Models (GCMs). This regional land cover data set was developed as part of a multitemporal one-kilometer Advanced Very High Resolution Radiometer (AVHRR) land cover analysis approach that was used as the basis for regional land cover mapping, fire disturbance-regeneration, and multiresolution land cover scaling studies in the boreal forest ecosystem of central Canada. This land cover classification was derived by using regional field observations from ground and low-level aircraft transits to analyze spectral-temporal clusters that were derived from an unsupervised cluster analysis of monthly Normalized Difference Vegetation Index (NDVI) image composites (April-September 1992). This regional data set was developed for use by BOREAS investigators, especially those involved in simulation modeling, remote sensing algorithm development, and aircraft flux studies. Based on regional field data verification, this multitemporal one-kilometer AVHRR land cover mapping approach was effective in characterizing the biome-level land cover structure, embedded spatially heterogeneous landscape patterns, and other types of key land cover information of interest to BOREAS modelers.The land cover mosaics in this classification include: (1) wet conifer mosaic (low, medium, and high tree stand density), (2) mixed coniferous-deciduous forest (80% coniferous, codominant, and 80% deciduous), (3) recent visible bum, vegetation regeneration, or rock outcrops-bare ground-sparsely vegetated slow regeneration bum (four classes), (4) open water and grassland marshes, and (5) general agricultural land use/ grasslands (three classes). This land cover mapping approach did not detect small subpixel-scale landscape

  17. Nano-Wilhelmy investigation of dynamic wetting properties of AFM tips through tip-nanobubble interaction.

    PubMed

    Wang, Yuliang; Wang, Huimin; Bi, Shusheng; Guo, Bin

    2016-01-01

    The dynamic wetting properties of atomic force microscopy (AFM) tips are of much concern in many AFM-related measurement, fabrication, and manipulation applications. In this study, the wetting properties of silicon and silicon nitride AFM tips are investigated through dynamic contact angle measurement using a nano-Wilhelmy balance based method. This is done by capillary force measurement during extension and retraction motion of AFM tips relative to interfacial nanobubbles. The working principle of the proposed method and mathematic models for dynamic contact angle measurement are presented. Geometric models of AFM tips were constructed using scanning electronic microscopy (SEM) images taken from different view directions. The detailed process of tip-nanobubble interaction was investigated using force-distance curves of AFM on nanobubbles. Several parameters including nanobubble height, adhesion and capillary force between tip and nanobubbles are extracted. The variation of these parameters was studied over nanobubble surfaces. The dynamic contact angles of the AFM tips were calculated from the capillary force measurements. The proposed method provides direct measurement of dynamic contact angles for AFM tips and can also be taken as a general approach for nanoscale dynamic wetting property investigation. PMID:27452115

  18. Nano-Wilhelmy investigation of dynamic wetting properties of AFM tips through tip-nanobubble interaction

    PubMed Central

    Wang, Yuliang; Wang, Huimin; Bi, Shusheng; Guo, Bin

    2016-01-01

    The dynamic wetting properties of atomic force microscopy (AFM) tips are of much concern in many AFM-related measurement, fabrication, and manipulation applications. In this study, the wetting properties of silicon and silicon nitride AFM tips are investigated through dynamic contact angle measurement using a nano-Wilhelmy balance based method. This is done by capillary force measurement during extension and retraction motion of AFM tips relative to interfacial nanobubbles. The working principle of the proposed method and mathematic models for dynamic contact angle measurement are presented. Geometric models of AFM tips were constructed using scanning electronic microscopy (SEM) images taken from different view directions. The detailed process of tip-nanobubble interaction was investigated using force-distance curves of AFM on nanobubbles. Several parameters including nanobubble height, adhesion and capillary force between tip and nanobubbles are extracted. The variation of these parameters was studied over nanobubble surfaces. The dynamic contact angles of the AFM tips were calculated from the capillary force measurements. The proposed method provides direct measurement of dynamic contact angles for AFM tips and can also be taken as a general approach for nanoscale dynamic wetting property investigation. PMID:27452115

  19. Beyond topography - enhanced imaging of cometary dust with the MIDAS AFM

    NASA Astrophysics Data System (ADS)

    Bentley, M. S.; Torkar, K.; Jeszenszky, H.; Romstedt, J.

    2013-09-01

    The MIDAS atomic force microscope (AFM) onboard the Rosetta spacecraft is primarily designed to return the 3D shape and structure of cometary dust particles collected at comet 67P/Churyumov-Gerasimenko [1]. Commercial AFMs have, however, been further developed to measure many other sample properties. The possibilities to make such measurements with MIDAS are explored here.

  20. Nano-Wilhelmy investigation of dynamic wetting properties of AFM tips through tip-nanobubble interaction

    NASA Astrophysics Data System (ADS)

    Wang, Yuliang; Wang, Huimin; Bi, Shusheng; Guo, Bin

    2016-07-01

    The dynamic wetting properties of atomic force microscopy (AFM) tips are of much concern in many AFM-related measurement, fabrication, and manipulation applications. In this study, the wetting properties of silicon and silicon nitride AFM tips are investigated through dynamic contact angle measurement using a nano-Wilhelmy balance based method. This is done by capillary force measurement during extension and retraction motion of AFM tips relative to interfacial nanobubbles. The working principle of the proposed method and mathematic models for dynamic contact angle measurement are presented. Geometric models of AFM tips were constructed using scanning electronic microscopy (SEM) images taken from different view directions. The detailed process of tip-nanobubble interaction was investigated using force-distance curves of AFM on nanobubbles. Several parameters including nanobubble height, adhesion and capillary force between tip and nanobubbles are extracted. The variation of these parameters was studied over nanobubble surfaces. The dynamic contact angles of the AFM tips were calculated from the capillary force measurements. The proposed method provides direct measurement of dynamic contact angles for AFM tips and can also be taken as a general approach for nanoscale dynamic wetting property investigation.

  1. Absorbing State Phase Transition with Competing Quantum and Classical Fluctuations.

    PubMed

    Marcuzzi, Matteo; Buchhold, Michael; Diehl, Sebastian; Lesanovsky, Igor

    2016-06-17

    Stochastic processes with absorbing states feature examples of nonequilibrium universal phenomena. While the classical regime has been thoroughly investigated in the past, relatively little is known about the behavior of these nonequilibrium systems in the presence of quantum fluctuations. Here, we theoretically address such a scenario in an open quantum spin model which, in its classical limit, undergoes a directed percolation phase transition. By mapping the problem to a nonequilibrium field theory, we show that the introduction of quantum fluctuations stemming from coherent, rather than statistical, spin flips alters the nature of the transition such that it becomes first order. In the intermediate regime, where classical and quantum dynamics compete on equal terms, we highlight the presence of a bicritical point with universal features different from the directed percolation class in a low dimension. We finally propose how this physics could be explored within gases of interacting atoms excited to Rydberg states. PMID:27367395

  2. Absorbing State Phase Transition with Competing Quantum and Classical Fluctuations

    NASA Astrophysics Data System (ADS)

    Marcuzzi, Matteo; Buchhold, Michael; Diehl, Sebastian; Lesanovsky, Igor

    2016-06-01

    Stochastic processes with absorbing states feature examples of nonequilibrium universal phenomena. While the classical regime has been thoroughly investigated in the past, relatively little is known about the behavior of these nonequilibrium systems in the presence of quantum fluctuations. Here, we theoretically address such a scenario in an open quantum spin model which, in its classical limit, undergoes a directed percolation phase transition. By mapping the problem to a nonequilibrium field theory, we show that the introduction of quantum fluctuations stemming from coherent, rather than statistical, spin flips alters the nature of the transition such that it becomes first order. In the intermediate regime, where classical and quantum dynamics compete on equal terms, we highlight the presence of a bicritical point with universal features different from the directed percolation class in a low dimension. We finally propose how this physics could be explored within gases of interacting atoms excited to Rydberg states.

  3. Magnetism in Parent Iron Chalcogenides: Quantum Fluctuations Select Plaquette Order

    NASA Astrophysics Data System (ADS)

    Ducatman, Samuel; Perkins, Natalia B.; Chubukov, Andrey

    2012-10-01

    We analyze magnetic order in Fe chalcogenide Fe1+yTe, the parent compound of the high-temperature superconductor Fe1+yTe1-xSex. Experiments show that magnetic order in this material contains components with momentum Q1=(π/2,π/2) and Q2=(π/2,-π/2) in the Fe only Brillouin zone. The actual spin order depends on the interplay between these two components. Previous works assumed that the ordered state has a single Q (either Q1 or Q2). In such a state, spins form double stripes along one of the diagonals breaking the rotational C4 symmetry. We show that quantum fluctuations actually select another order—a double Q plaquette state with equal weight of Q1 and Q2 components, which preserves C4 symmetry. We argue that the order in Fe1+yTe is determined by the competition between quantum fluctuations and magnetoelastic coupling.

  4. High speed AFM studies of 193 nm immersion photoresists during TMAH development

    NASA Astrophysics Data System (ADS)

    Ngunjiri, Johnpeter; Meyers, Greg; Cameron, Jim; Suzuki, Yasuhiro; Jeon, Hyun; Lee, Dave; Choi, Kwang Mo; Kim, Jung Woo; Im, Kwang-Hwyi; Lim, Hae-Jin

    2016-03-01

    In this paper we report on our studies of the dynamic process of resist development in real time. Using High Speed - Atomic Force Microscopy (HS-AFM) in dilute developer solution, changes in morphology and nanomechanical properties of patterned resist were monitored. The Bruker Dimension FastScan AFMTM was applied to analyze 193 nm acrylic-based immersion resists in developer. HS-AFM operated in Peak Force mapping mode allowed for concurrent measurements of image topography resist stiffness, adhesion to AFM probe and deformation during development. In our studies we focused on HS-AFM topography data as it readily revealed detailed information about initial resist morphology, followed by a resist swelling process and eventual dissolution of the exposed resist areas. HS-AFM showed potential for tracking and understanding development of patterned resist films and can be useful in evaluating the dissolution properties of different resist designs.

  5. Gradient Driven Fluctuations

    NASA Technical Reports Server (NTRS)

    Cannell, David

    2005-01-01

    We have worked with our collaborators at the University of Milan (Professor Marzio Giglio and his group-supported by ASI) to define the science required to measure gradient driven fluctuations in the microgravity environment. Such a study would provide an accurate test of the extent to which the theory of fluctuating hydrodynamics can be used to predict the properties of fluids maintained in a stressed, non-equilibrium state. As mentioned above, the results should also provide direct visual insight into the behavior of a variety of fluid systems containing gradients or interfaces, when placed in the microgravity environment. With support from the current grant, we have identified three key systems for detailed investigation. These three systems are: 1) A single-component fluid to be studied in the presence of a temperature gradient; 2) A mixture of two organic liquids to be studied both in the presence of a temperature gradient, which induces a steady-state concentration gradient, and with the temperature gradient removed, but while the concentration gradient is dying by means of diffusion; 3) Various pairs of liquids undergoing free diffusion, including a proteidbuffer solution and pairs of mixtures having different concentrations, to allow us to vary the differences in fluid properties in a controlled manner.

  6. A Fluctuating Torque

    NASA Astrophysics Data System (ADS)

    Zamorano, Nelson; Gómez, Alfredo

    2013-04-01

    The existence of a fluctuating torque generates a wide variety of possible orbits. This situation contrasts with those examples where the torque vanishes and the angular momentum remains constant. Here we study a two dimensional example with a logarithmic effective potential V(x,y)= 12,,^2o,[ x^2 + (y/b)^2], with a small deviation from the axis symmetry given by the constant b with b < 1. Briefly, the effective potential models the gravitational force exerted by the N point particles on a test object. This potential is used to learn about the dynamics of galaxies and among other features, generates a fluctuating torque which is our main interest here. There is not an analytical solution for these two equations of motion. A simple numerical approach (provided) is required. Also, a change on the initial conditions may generate a different shape for the orbit. This apparently simple potential, represents a challenge for the students. We propose it as a good pedagogical tool for reviewing the main concepts of newtonian dynamics.

  7. Fitness in fluctuating environments

    NASA Astrophysics Data System (ADS)

    Tanase Nicola, Sorin; Nemenman, Ilya

    2011-03-01

    Often environments change faster than the time needed to evolve optimal phenotypes through cycles of mutation and selection. We focus on this case, but assume that environmental oscillations are slower than an individual's lifetime. This is relevant, for example, for bacterial populations confronted with daily environmental changes. We analyze a resource-limited competition between a mutant phenotype and the ancestor. Environmental dynamics is represented by periodically varying, off-phase parameters of the corresponding Lotka-Volterra model. For the very slow dynamics (but still faster than the fixation time scale) the strength and the sign of selection are functions of the birth/death rates averaged over all of the environmental states and independent of the period of the fluctuations. For faster fluctuations, selection depends on the particular sequence of the successive environmental states. In particular, a time reversal of the environmental dynamics can change the sign of the selection. We conclude that the fittest phenotype in a changing environment can be very different from both the optimal phenotype in the average environment, and the phenotype with the largest average fitness.

  8. Fission mode fluctuations in the resonances of 235U(n,f)

    NASA Astrophysics Data System (ADS)

    Hambsch, F. J.; Knitter, H. H.; Budtz-Jørgensen, C.; Theobald, J. P.

    1989-01-01

    Fission fragment mass- and total kinetic energy distributions were measured for single, isolated resonances and neutron energy bins covering the incident neutron energy range from 0.006 eV to 130 eV. The measurements were performed at the Geel Electron Linear Accelerator (GELINA) of the European Communities using a Frisch-gridded ionization chamber. Fluctuations of the fission fragment mass distributions as function of resonance energy were observed, which are correlated with fluctuations of the reaction Q-value and with the measured total kinetic energy averaged over all fragments. In the resonance region the fluctuations in from resonance to resonance are observed with amplitudes up to about 450 keV. The correlations between the mass-distribution fluctuations and other parameters like spin J, spin orientation quantum number K, angular distribution fluctuations and the fluctuations of the average number of neutrons emitted in fission, overlinev, are evaluated and discussed. An interpretation of the overlinev- fluctuations observed in other experiments is given in terms of the mass distribution fluctuations. The fluctuations of the mass-distribution parameters and of the total kinetic energy distributions as function of mass are viewed in the frame of the fission channel model of Bohr and Wheeler and of the recent multi-fission mode random neck-rupture model of Brosa, Grossmann and Müller.

  9. BOREAS AFM-2 Wyoming King Air 1994 Aircraft Sounding Data

    NASA Technical Reports Server (NTRS)

    Kelly, Robert D.; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The BOREAS AFM-2 team used the University of Wyoming King Air aircraft during IFCs 1, 2, and 3 in 1994 to collected pass-by-pass fluxes (and many other statistics) for the large number of level (constant altitude), straight-line passes used in a variety of flight patterns over the SSA and NSA and areas along the transect between these study areas. The data described here form a second set, namely soundings that were incorporated into nearly every research flight by the King Air in 1994. These soundings generally went from near the surface to above the inversion layer. Most were flown immediately after takeoff or immediately after finishing the last flux pattern of that particular day's flights. The parameters that were measured include wind direction, wind speed, west wind component (u), south wind component (v), static pressure, air dry bulb temperature, potential temperature, dewpoint, temperature, water vapor mixing ratio, and CO2 concentration. Data on the aircraft's location, attitude, and altitude during data collection are also provided. These data are stored in tabular ASCH files. The data files are available on a CD-ROM (see document number 20010000884) or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  10. BOREAS AFM-03-NCAR Electra 1994 Aircraft Sounding Data

    NASA Technical Reports Server (NTRS)

    Lenschow, Donald H.; Oncley, Steven P.; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-3 team used the National Center for Atmospheric Research's (NCAR) Electra aircraft to make sounding measurements to study the planetary boundary layer using in situ and remote-sensing measurements. Measurements were made of wind speed and direction, air pressure and temperature, potential temperature, dewpoint, mixing ratio of H, O, CO, concentration, and ozone concentration. Twenty-five research missions were flown over the Northern Study Area (NSA), Southern Study Area (SSA), and the transect during BOREAS Intensive Field Campaigns (IFCs) 1, 2, and 3 during 1994. All missions had from four to ten soundings through the top of the planetary boundary layer. This sounding data set contains all of the in situ vertical profiles through the boundary layer top that were made (with the exception of 'porpoise' maneuvers). Data were recorded in one-second time intervals. These data are stored in tabular ASCII files. The NCAR Electra 1994 aircraft sounding data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  11. AFM-based force microsensor for a microrobot

    NASA Astrophysics Data System (ADS)

    Fatikow, Sergej; Fahlbusch, Stephan

    2001-10-01

    Microrobots are the result of increasing research activities at the border between microsystem technology and robotics. Today already, robots with dimensions of a few cubic- centimeters can be developed. Like conventional robots, microrobots represent a complex system that usually contains several different types of actuators and sensors. The measurement of gripping forces is the most important sensor application in micromanipulation besides visual servoing to protect the parts from too high surface pressures and thereby damage during the assembly process. Very small forces in the range of 200 (mu) N down to 0.1 (mu) N or even less have to be sensed. Thus, the aim of our current research activities is the development of a high-resolution integrated force microsensor for measuring gripping forces in a microhandling robot. On the one hand, the sensor should be a device for teleoperated manipulation tasks in a flexible microhandling station. On the other hand, typical microhandling operations should to a large extend be automated with the aid of computer-based signal processing of sensor information. The user should be provided with an interface for teleoperated manipulation and an interface for partially automated manipulation of microobjects. In this paper, a concept for the measurement of gripping forces in microrobotics using piezoresistive AFM (atomic force microscope) cantilevers is introduced. Further on, the concept of a microrobot-based SEM station and its applications are presented.

  12. AFM Investigation of Liquid-Filled Polymer Microcapsules Elasticity.

    PubMed

    Sarrazin, Baptiste; Tsapis, Nicolas; Mousnier, Ludivine; Taulier, Nicolas; Urbach, Wladimir; Guenoun, Patrick

    2016-05-10

    Elasticity of polymer microcapsules (MCs) filled with a liquid fluorinated core is studied by atomic force microscopy (AFM). Accurately characterized spherical tips are employed to obtain the Young's moduli of MCs having four different shell thicknesses. We show that those moduli are effective ones because the samples are composites. The strong decrease of the effective MC elasticity (from 3.0 to 0.1 GPa) as the shell thickness decreases (from 200 to 10 nm) is analyzed using a novel numerical approach. This model describes the evolution of the elasticity of a coated half-space according to the contact radius, the thickness of the film, and the elastic moduli of bulk materials. This numerical model is consistent with the experimental data and allows simulating the elastic behavior of MCs at high frequencies (5 MHz). While the quasi-static elasticity of the MCs is found to be very dependent on the shell thickness, the high frequency (5 MHz) elastic behavior of the core leads to a stable behavior of the MCs (from 2.5 to 3 GPa according to the shell thickness). Finally, the effect of thermal annealing on the MCs elasticity is investigated. The Young's modulus is found to decrease because of the reduction of the shell thickness due to the loss of the polymer. PMID:27058449

  13. Fluctuation effects in grain growth

    NASA Astrophysics Data System (ADS)

    Kim, Seong Gyoon; Park, Yong Bum

    2016-08-01

    In this study, we attempted to clarify the roles of fluctuation effects in grain growth. To capture the persistent nature in both space and time of fluctuations due to variations in the local surroundings of individual grains, we developed a local mean-field model. The fluctuation strength in this model is arbitrarily controlled by employing an artificial number, n , of nearest neighbor grains. Large-scale numerical computations of the model for various n values and initial GSDs were carried out to follow transient behaviors and determine the steady states. This study reveals that, in the classical mean-field model with no fluctuation effects, the steady state is not unique but is strongly dependent upon the initial GSD. However, a small fluctuation drives the mean-field model to reach the Hillert solution, independent of the fluctuation strength and initial GSD, as long as the fluctuation strength is sufficiently small. On the other hand, when the fluctuation is sufficiently strong, the fluctuation pushes the steady state of the mean-field model out of the Hillert solution, and its strength determines a unique steady state independent of the initial GSD. The strong fluctuation makes the GSD more symmetric than the Hillert distribution. Computations designed to mimic actual 2 and 3D grain growth were carried out by taking the number of nearest neighbors of each grain as a function of the scaled grain size. The resultant GSDs in two and three dimensions were compared with the direct simulations of ideal grain growth.

  14. High temperature spin dynamics in linear magnetic chains, molecular rings, and segments by nuclear magnetic resonance

    SciTech Connect

    Adelnia, Fatemeh; Lascialfari, Alessandro; Mariani, Manuel; Ammannato, Luca; Caneschi, Andrea; Rovai, Donella; Winpenny, Richard; Timco, Grigore; Corti, Maurizio Borsa, Ferdinando

    2015-05-07

    We present the room temperature proton nuclear magnetic resonance (NMR) nuclear spin-lattice relaxation rate (NSLR) results in two 1D spin chains: the Heisenberg antiferromagnetic (AFM) Eu(hfac){sub 3}NITEt and the magnetically frustrated Gd(hfac){sub 3}NITEt. The NSLR as a function of external magnetic field can be interpreted very well in terms of high temperature spin dynamics dominated by a long time persistence of the decay of the two-spin correlation function due to the conservation of the total spin value for isotropic Heisenberg chains. The high temperature spin dynamics are also investigated in Heisenberg AFM molecular rings. In both Cr{sub 8} closed ring and in Cr{sub 7}Cd and Cr{sub 8}Zn open rings, i.e., model systems for a finite spin segment, an enhancement of the low frequency spectral density is found consistent with spin diffusion but the high cut-off frequency due to intermolecular anisotropic interactions prevents a detailed analysis of the spin diffusion regime.

  15. Dynamical theory of spin noise and relaxation: Prospects for real-time NMR measurements.

    PubMed

    Field, Timothy R

    2014-11-01

    Recent developments in theoretical aspects of spin noise and relaxation and their interrelationship reveal a modified spin density, distinct from the density matrix, as the necessary object to describe fluctuations in spin systems. These fluctuations are to be viewed as an intrinsic quantum mechanical property of such systems immersed in random magnetic environments and are observed as "spin noise" in the absence of any radio frequency excitation. With the prospect of ultrafast digitization, the role of spin noise in real-time parameter extraction for (NMR) spin systems, and the advantage over standard techniques, is of essential importance, especially for systems containing a small number of spins. In this article we outline prospects for harnessing the recent dynamical theory in terms of spin-noise measurement, with attention to real-time properties. PMID:25493776

  16. Spin pumping and spin Seebeck effect

    NASA Astrophysics Data System (ADS)

    Saitoh, Eiji

    2012-02-01

    Utilization of a spin current, a flow of electrons' spins in a solid, is the key technology in spintronics that will allow the achievement of efficient magnetic memories and computing devices. In this technology, generation and detection of spin currents are necessary. Here, we review inverse spin-Hall effect and spin-current-generation phenomena recently discovered both in metals and insulators: inverse spin-Hall effect, spin pumping, and spin Seebeck effect. (1)Spin pumping and spin torque in a Mott insulator system We found that spin pumping and spin torque effects appear also at an interface between Pt and an insulator YIG.. This means that we can connect a spin current carried by conduction electrons and a spin-wave spin current flowing in insulators. We demonstrate electric signal transmission by using these effects and interconversion of the spin currents [1]. (2) Spin Seebeck effect We have observed, by using the inverse spin-Hall effect [2], spin voltage generation from a heat current in a NiFe, named the spin-Seebeck effect [3]. Surprisingly, spin-Seebeck effect was found to appear even in insulators [4], a situation completely different from conventional charge Seebeck effect. The result implies an important role of elementary excitation in solids beside charge in the spin Seebeck effect. In the talk, we review the recent progress of the research on this effect. This research is collaboration with K. Ando, K. Uchida, Y. Kajiwara, S. Maekawa, G. E. W. Bauer, S. Takahashi, and J. Ieda. [4pt] [1] Y. Kajiwara and E. Saitoh et al. Nature 464 (2010) 262. [0pt] [2] E. Saitoh et al., Appl. Phys. Lett. 88 (2006) 182509. [0pt] [3] K. Uchida and E. Saitoh et al., Nature 455 (2008)778. [0pt] [4] K. Uchida and E. Saitoh et al.,Nature materials 9 (2010) 894 - 897.

  17. Fluctuating Thermodynamics for Biological Processes

    NASA Astrophysics Data System (ADS)

    Ham, Sihyun

    Because biomolecular processes are largely under thermodynamic control, dynamic extension of thermodynamics is necessary to uncover the mechanisms and driving factors of fluctuating processes. The fluctuating thermodynamics technology presented in this talk offers a practical means for the thermodynamic characterization of conformational dynamics in biomolecules. The use of fluctuating thermodynamics has the potential to provide a comprehensive picture of fluctuating phenomena in diverse biological processes. Through the application of fluctuating thermodynamics, we provide a thermodynamic perspective on the misfolding and aggregation of the various proteins associated with human diseases. In this talk, I will present the detailed concepts and applications of the fluctuating thermodynamics technology for elucidating biological processes. This work was supported by Samsung Science and Technology Foundation under Project Number SSTF-BA1401-13.

  18. Direct measurement of friction of a fluctuating contact line

    NASA Astrophysics Data System (ADS)

    Guo, Shuo; Gao, Min; Xiong, Xiaomin; Wang, Yong Jian; Wang, Xiaoping; Sheng, Ping; Tong, Penger

    2013-03-01

    What happens at a moving contact line, where one fluid displaces another (immiscible) fluid over a solid surface, is a fundamental issue in fluid dynamics. In this presentation, we report a direct measurement of the friction coefficient in the immediate vicinity of a fluctuating contact line using a micron-sized vertical glass fiber with one end glued to an atomic force microscope (AFM) cantilever beam and the other end touching a liquid-air interface. By measuring the broadening of the resonance peak of the cantilever system with varying liquid viscosity η, we obtain the friction coefficient ξc associated with the contact line fluctuations on the glass fiber of diameter d and find it has the universal form, ξc = 0 . 8 πdη , independent of the contact angle. The result is further confirmed by using a soap film system whose bulk effect is negligibly small. This is the first time that the friction coefficient of a fluctuating contact line is measured. *Work supported by the Research Grants Council of Hong Kong SAR.

  19. Fluctuation theory of starlight polarization

    SciTech Connect

    Nee, S.F.

    1980-04-15

    The average and the variance of absolute polarization of starlight are calculated as a function of distance based on the fluctuation theory of Langevin's scheme. The computed curves from the theory agree with the sample observational data. It estimates a correlation length of 225 pc and a fluctuating angle of 22./sup 0/5 for the fluctuation of interstellar magnetic field for the observation direction within 60/sup 0/

  20. Feedback control of nuclear spin bath of a single hole spin in a quantum dot

    NASA Astrophysics Data System (ADS)

    Pang, Hongliang; Gong, Zhirui; Yao, Wang

    2015-01-01

    For a III-V semiconductor quantum dot charged with a single hole, we investigate the feedback control of the nuclear spin bath through dynamical nuclear spin polarization. The scheme utilizes the hole-nuclear flip-flop by their anisotropic hyperfine interaction, where the flip direction of the nuclear spin can be conditioned on the sign of the overall hyperfine field through initialization processes that do not involve explicit measurement. We show that a negative feedback can be implemented to suppress the statistical fluctuations of the nuclear hyperfine field for enhancing the coherence time of the hole spin qubit. Positive feedback can prepare the nuclear spin ensemble into states where the nuclear hyperfine field distribution has two well separated peaks, realizing a quantum heat bath that cannot be described by a single effective temperature.

  1. Charge noise, spin-orbit coupling, and dephasing of single-spin qubits

    SciTech Connect

    Bermeister, Adam; Keith, Daniel; Culcer, Dimitrie

    2014-11-10

    Quantum dot quantum computing architectures rely on systems in which inversion symmetry is broken, and spin-orbit coupling is present, causing even single-spin qubits to be susceptible to charge noise. We derive an effective Hamiltonian for the combined action of noise and spin-orbit coupling on a single-spin qubit, identify the mechanisms behind dephasing, and estimate the free induction decay dephasing times T{sub 2}{sup *} for common materials such as Si and GaAs. Dephasing is driven by noise matrix elements that cause relative fluctuations between orbital levels, which are dominated by screened whole charge defects and unscreened dipole defects in the substrate. Dephasing times T{sub 2}{sup *} differ markedly between materials and can be enhanced by increasing gate fields, choosing materials with weak spin-orbit, making dots narrower, or using accumulation dots.

  2. XPS and AFM Study of GaAs Surface Treatment

    SciTech Connect

    Contreras-Guerrero, R.; Wallace, R. M.; Aguirre-Francisco, S.; Herrera-Gomez, A.; Lopez-Lopez, M.

    2008-11-13

    Obtaining smooth and atomically clean surfaces is an important step in the preparation of a surface for device manufacturing. In this work different processes are evaluated for cleaning a GaAs surface. A good surface cleaning treatment is that which provides a high level of uniformity and controllability of the surface. Different techniques are useful as cleaning treatments depending on the growth process to be used. The goal is to remove the oxygen and carbon contaminants and then form a thin oxide film to protect the surface, which is easy to remove later with thermal desorption mechanism like molecular beam epitaxy (MBE) with minimal impact to the surface. In this study, atomic force microscopy (AFM), x-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS) were used to characterize the structure of the surface, the composition, as well as detect oxygen and carbon contaminant on the GaAs surface. This study consists in two parts. The first part the surface was subjected to different chemical treatments. The chemical solutions were: (a)H{sub 2}SO{sub 4}:H{sub 2}O{sub 2}:H{sub 2}O(4:1:100), (b) HCl: H{sub 2}O(1:3), (c)NH{sub 4}OH 29%. The treatments (a) and (b) reduced the oxygen on the surface. Treatment (c) reduces carbon contamination. In the second part we made MOS devices on the surfaces treated. They were characterized by CV and IV electrical measurements. They show frequency dispersion.

  3. AFM nanoscale indentation in air of polymeric and hybrid materials with highly different stiffness

    NASA Astrophysics Data System (ADS)

    Suriano, Raffaella; Credi, Caterina; Levi, Marinella; Turri, Stefano

    2014-08-01

    In this study, nanomechanical properties of a variety of polymeric materials was investigated by means of AFM. In particular, selecting different AFM probes, poly(methyl methacrylate) (PMMA), polydimethylsiloxane (PDMS) bulk samples, sol-gel hybrid thin films and hydrated hyaluronic acid hydrogels were indented in air to determine the elastic modulus. The force-distance curves and the indentation data were found to be greatly affected by the cantilever stiffness and by tip geometry. AFM indentation tests show that the choice of the cantilever spring constant and of tip shape is crucially influenced by elastic properties of samples. When adhesion-dominated interactions occur between the tip and the surface of samples, force-displacement curves reveal that a suitable functionalization of AFM probes allows the control of such interactions and the extraction of Young' modulus from AFM curves that would be otherwise unfeasible. By applying different mathematical models depending on AFM probes and materials under investigation, the values of Young's modulus were obtained and compared to those measured by rheological and dynamic mechanical analysis or to literature data. Our results show that a wide range of elastic moduli (10 kPa-10 GPa) can be determined by AFM in good agreement with those measured by conventional macroscopic measurements.

  4. Emergent spin

    SciTech Connect

    Creutz, Michael

    2014-03-15

    Quantum mechanics and relativity in the continuum imply the well known spin–statistics connection. However for particles hopping on a lattice, there is no such constraint. If a lattice model yields a relativistic field theory in a continuum limit, this constraint must “emerge” for physical excitations. We discuss a few models where a spin-less fermion hopping on a lattice gives excitations which satisfy the continuum Dirac equation. This includes such well known systems such as graphene and staggered fermions. -- Highlights: •The spin–statistics theorem is not required for particles on a lattice. •Spin emerges dynamically when spinless fermions have a relativistic continuum limit. •Graphene and staggered fermions are examples of this phenomenon. •The phenomenon is intimately tied to chiral symmetry and fermion doubling. •Anomaly cancellation is a crucial feature of any valid lattice fermion action.

  5. Observation of magnetic fragmentation in spin ice

    NASA Astrophysics Data System (ADS)

    Petit, S.; Lhotel, E.; Canals, B.; Ciomaga Hatnean, M.; Ollivier, J.; Mutka, H.; Ressouche, E.; Wildes, A. R.; Lees, M. R.; Balakrishnan, G.

    2016-08-01

    Fractionalized excitations that emerge from a many-body system have revealed rich physics and concepts, from composite fermions in two-dimensional electron systems, revealed through the fractional quantum Hall effect, to spinons in antiferromagnetic chains and, more recently, fractionalization of Dirac electrons in graphene and magnetic monopoles in spin ice. Even more surprising is the fragmentation of the degrees of freedom themselves, leading to coexisting and a priori independent ground states. This puzzling phenomenon was recently put forward in the context of spin ice, in which the magnetic moment field can fragment, resulting in a dual ground state consisting of a fluctuating spin liquid, a so-called Coulomb phase, on top of a magnetic monopole crystal. Here we show, by means of neutron scattering measurements, that such fragmentation occurs in the spin ice candidate Nd2Zr2O7. We observe the spectacular coexistence of an antiferromagnetic order induced by the monopole crystallization and a fluctuating state with ferromagnetic correlations. Experimentally, this fragmentation manifests itself through the superposition of magnetic Bragg peaks, characteristic of the ordered phase, and a pinch point pattern, characteristic of the Coulomb phase. These results highlight the relevance of the fragmentation concept to describe the physics of systems that are simultaneously ordered and fluctuating.

  6. Tuning the resonance of a photonic crystal microcavity with an AFM probe.

    PubMed

    Märki, Iwan; Salt, Martin; Herzig, Hans Peter

    2006-04-01

    We present theoretical and experimental results on switching and tuning of a two-dimensional photonic crystal resonant microcavity by means of a silicon AFM tip, probing the highly localized optical field in the vicinity of the cavity. On-off switching and modulation of the transmission signal in the kHz range is achieved by bringing an AFM tip onto the center of the microcavity, inducing a damping effect on the transmission resonance. Tuning of the resonant wavelength in the order of several nanometers becomes possible by inserting the AFM tip into one of the holes of the Bragg mirror forming the microcavity in the propagation direction. PMID:19516436

  7. Development of portable experimental set-up for AFM to work at cryogenic temperature

    NASA Astrophysics Data System (ADS)

    Agarwal, D. H.; Bhatt, P. M.; Pathan, A. M.; Patel, Hitarthi; Joshi, U. S.

    2012-06-01

    We report on the designing aspects and fabrication of low temperature atomic force microscope (AFM) to study the surface structures of nanomaterials. Several key features of design including liquid nitrogen reservoir, vacuum chamber, vibration isolation table etc. have been presented. The whole set up was assembled in-house at a fairly low cost to be used with any commercial AFM system. The surface morphology of important oxide (In0.94Sn0.04)2O3 (ITO) thin film nanostructures has been investigated using the cryogenic AFM set up.

  8. The formation of liquid bridge in different operating modes of AFM

    NASA Astrophysics Data System (ADS)

    Wei, Zheng; Sun, Yan; Ding, WenXuan; Wang, ZaiRan

    2016-09-01

    The liquid bridge is one of the principal factors that cause artifacts in ambient-pressure atomic force microscope (AFM) images. Additionally, it is the main component of the adhesion force in ambient conditions. To understand the AFM imaging mechanism and the sample characteristics, it is essential to study the liquid bridge. This study interprets the physical mechanism involved in liquid bridge formation, which is composed of three different physical processes: the squeezing process, capillary condensation, and liquid film flow. We discuss the contributions of these three mechanisms to the volume and the capillary force of the liquid bridge in different AFM operation modes.

  9. Optical-mechanical signatures of cancer cells based on fluctuation profiles measured by interferometry.

    PubMed

    Bishitz, Yael; Gabai, Haniel; Girshovitz, Pinhas; Shaked, Natan T

    2014-08-01

    We propose to establish a cancer biomarker based on the unique optical-mechanical signatures of cancer cells measured in a noncontact, label-free manner by optical interferometry. Using wide-field interferometric phase microscopy (IPM), implemented by a portable, off-axis, common-path and low-coherence interferometric module, we quantitatively measured the time-dependent, nanometer-scale optical thickness fluctuation maps of live cells in vitro. We found that cancer cells fluctuate significantly more than healthy cells, and that metastatic cancer cells fluctuate significantly more than primary cancer cells. Atomic force microscopy (AFM) measurements validated the results. Our study shows the potential of IPM as a simple clinical tool for aiding in diagnosis and monitoring of cancer. PMID:23585163

  10. MetaRep, an extended CMAS 3D program to visualize mafic (CMAS, ACF-S, ACF-N) and pelitic (AFM-K, AFM-S, AKF-S) projections

    NASA Astrophysics Data System (ADS)

    France, Lydéric; Nicollet, Christian

    2010-06-01

    MetaRep is a program based on our earlier program CMAS 3D. It is developed in MATLAB ® script. MetaRep objectives are to visualize and project major element compositions of mafic and pelitic rocks and their minerals in the pseudo-quaternary projections of the ACF-S, ACF-N, CMAS, AFM-K, AFM-S and AKF-S systems. These six systems are commonly used to describe metamorphic mineral assemblages and magmatic evolutions. Each system, made of four apices, can be represented in a tetrahedron that can be visualized in three dimensions with MetaRep; the four tetrahedron apices represent oxides or combination of oxides that define the composition of the projected rock or mineral. The three-dimensional representation allows one to obtain a better understanding of the topology of the relationships between the rocks and minerals and relations. From these systems, MetaRep can also project data in ternary plots (for example, the ACF, AFM and AKF ternary projections can be generated). A functional interface makes it easy to use and does not require any knowledge of MATLAB ® programming. To facilitate the use, MetaRep loads, from the main interface, data compiled in a Microsoft Excel ™ spreadsheet. Although useful for scientific research, the program is also a powerful tool for teaching. We propose an application example that, by using two combined systems (ACF-S and ACF-N), provides strong confirmation in the petrological interpretation.

  11. Decoupling a hole spin qubit from the nuclear spins.

    PubMed

    Prechtel, Jonathan H; Kuhlmann, Andreas V; Houel, Julien; Ludwig, Arne; Valentin, Sascha R; Wieck, Andreas D; Warburton, Richard J

    2016-09-01

    A huge effort is underway to develop semiconductor nanostructures as low-noise hosts for qubits. The main source of dephasing of an electron spin qubit in a GaAs-based system is the nuclear spin bath. A hole spin may circumvent the nuclear spin noise. In principle, the nuclear spins can be switched off for a pure heavy-hole spin. In practice, it is unknown to what extent this ideal limit can be achieved. A major hindrance is that p-type devices are often far too noisy. We investigate here a single hole spin in an InGaAs quantum dot embedded in a new generation of low-noise p-type device. We measure the hole Zeeman energy in a transverse magnetic field with 10 neV resolution by dark-state spectroscopy as we create a large transverse nuclear spin polarization. The hole hyperfine interaction is highly anisotropic: the transverse coupling is <1% of the longitudinal coupling. For unpolarized, randomly fluctuating nuclei, the ideal heavy-hole limit is achieved down to nanoelectronvolt energies; equivalently dephasing times up to a microsecond. The combination of large and strong optical dipole makes the single hole spin in a GaAs-based device an attractive quantum platform. PMID:27454044

  12. Nanometer-scale probing of spin waves using single electron spins

    NASA Astrophysics Data System (ADS)

    van der Sar, Toeno; Casola, Francesco; Walsworth, Ronald; Yacoby, Amir

    2015-05-01

    We have developed a new approach to exploring magnetic excitations in correlated-electron systems, based on single electronic spins in atom-like defects diamond known as nitrogen-vacancy (NV) color centers. We demonstrate the power of this approach by detecting spin-wave excitations in a ferromagnetic microdisc with nanoscale spatial sensitivity over a broad range of frequencies and magnetic fields. We show how spin-wave resonances can be exploited for on-chip amplification of microwave magnetic fields, allowing strongly increased spin manipulation rates and single-spin magnetometry with enhanced sensitivity. Finally, we show the possibility to detect the magnetic spin noise produced by a thin (~ 30 nm) layer of a patterned ferromagnet. For the interpretation of our results, we develop a general framework describing single-spin stray field detection in terms of a filter function sensitive mostly to spin fluctuations with wavevector ~ 1 / d , where d is the NV-ferromagnet distance. Our results pave the way towards quantitative and non-perturbative detection of spectral properties in nanomagnets, establishing NV center magnetometry as an emergent probe of collective spin dynamics in condensed matter.

  13. Quantum spin ice: a search for gapless quantum spin liquids in pyrochlore magnets.

    PubMed

    Gingras, M J P; McClarty, P A

    2014-05-01

    The spin ice materials, including Ho2Ti2O7 and Dy2Ti2O7, are rare-earth pyrochlore magnets which, at low temperatures, enter a constrained paramagnetic state with an emergent gauge freedom. Spin ices provide one of very few experimentally realized examples of fractionalization because their elementary excitations can be regarded as magnetic monopoles and, over some temperature range, spin ice materials are best described as liquids of these emergent charges. In the presence of quantum fluctuations, one can obtain, in principle, a quantum spin liquid descended from the classical spin ice state characterized by emergent photon-like excitations. Whereas in classical spin ices the excitations are akin to electrostatic charges with a mutual Coulomb interaction, in the quantum spin liquid these charges interact through a dynamic and emergent electromagnetic field. In this review, we describe the latest developments in the study of such a quantum spin ice, focusing on the spin liquid phenomenology and the kinds of materials where such a phase might be found. PMID:24787264

  14. Modeling of low- and high-frequency noise by slow and fast fluctuators

    NASA Astrophysics Data System (ADS)

    Nesterov, Alexander I.; Berman, Gennady P.

    2012-05-01

    We study the dynamics of dephasing in a quantum two-level system by modeling both 1/f and high-frequency noise by random telegraph processes. Our approach is based on a so-called spin-fluctuator model in which a noisy environment is modeled by a large number of fluctuators. In the continuous limit we obtain an effective random process (ERP) that is described by a distribution function of the fluctuators. In a simplified model, we reduce the ERP to the two (slow and fast) ensembles of fluctuators. Using this model, we study decoherence in a superconducting flux qubit and we compare our theoretical results with the available experimental data. We demonstrate good agreement of our theoretical predictions with the experiments. Our approach can be applied to many quantum systems, such as biological complexes, semiconductors, superconducting, and spin qubits, where the effects of interaction with the environment are essential.

  15. Decoherence imaging of spin ensembles using a scanning single-electron spin in diamond

    PubMed Central

    Luan, Lan; Grinolds, Michael S.; Hong, Sungkun; Maletinsky, Patrick; Walsworth, Ronald L.; Yacoby, Amir

    2015-01-01

    The nitrogen-vacancy (NV) defect center in diamond has demonstrated great capability for nanoscale magnetic sensing and imaging for both static and periodically modulated target fields. However, it remains a challenge to detect and image randomly fluctuating magnetic fields. Recent theoretical and numerical works have outlined detection schemes that exploit changes in decoherence of the detector spin as a sensitive measure for fluctuating fields. Here we experimentally monitor the decoherence of a scanning NV center in order to image the fluctuating magnetic fields from paramagnetic impurities on an underlying diamond surface. We detect a signal corresponding to roughly 800 μB in 2 s of integration time, without any control on the target spins, and obtain magnetic-field spectral information using dynamical decoupling techniques. The extracted spatial and temporal properties of the surface paramagnetic impurities provide insight to prolonging the coherence of near-surface qubits for quantum information and metrology applications. PMID:25631646

  16. Size-dependent magnetism in nanocrystals of spin-chain α-CoV2O6

    NASA Astrophysics Data System (ADS)

    Shu, H.; Ouyang, Z. W.; Sun, Y. C.; Ruan, M. Y.; Li, J. J.; Yue, X. Y.; Wang, Z. X.; Xia, Z. C.; Rao, G. H.

    2016-06-01

    Magnetization and high-field ESR measurements have been performed to study the magnetism of nanocrystals of α-CoV2O6, an Ising spin-chain system without triangular lattice but presenting interesting 1/3 magnetization step. The results demonstrated the antiferromagnetic (AFM) enhancement and gradual suppression of the 1/3 magnetization step in nanoparticle samples. Within the framework of core-shell model consisting of the AFM core spins and the uncompensated/disordered shell spins, the AFM enhancement below TN=13 K is a result of enhanced shell disorder with weak ferromagnetism. This AFM enhancement, along with the suppression of saturation magnetization, results in the suppression of 1/3 magnetization step. Furthermore, the paramagnetism of the shell was confirmed by our high-field ESR measurements. The time-dependent magnetization suggests the presence of spin-glass-like freezing. This is expected for nanoparticles with surface shell disorder with ferromagnetic correlations, but is not expected for bulk material of α-CoV2O6 without spin frustration. These findings demonstrate that size tuning is an effective parameter for controlling the ground state of α-CoV2O6.

  17. Glassiness and exotic entropy scaling induced by quantum fluctuations in a disorder-free frustrated magnet

    PubMed Central

    Klich, I.; Lee, S.-H.; Iida, K.

    2014-01-01

    When spins are arranged in a lattice of triangular motif, the phenomenon of frustration leads to numerous energetically equivalent ground states, and results in exotic states such as spin liquid and spin ice. Here we report an alternative situation: a system, classically a liquid, freezes in the clean limit into a glassy state induced by quantum fluctuations. We call such glassy state a spin jam. The case in point is a frustrated magnet, where spins are arranged in a triangular network of bipyramids. Quantum corrections break the classical degeneracy into a set of aperiodic spin configurations forming local minima in a rugged energy landscape. This is established by mapping the problem into tiling with hexagonal tiles. The number of tessellations scales with the boundary length rather than its volume, showing the absence of local zero-energy modes. Low-temperature thermodynamics is discussed to compare it with other glassy materials. PMID:24686398

  18. NMR evidence for inhomogeneous nematic fluctuations in BaFe2(As1-xPx)2

    NASA Astrophysics Data System (ADS)

    Dioguardi, Adam P.; Kissikov, Tanat; Lin, Ching-Han; Shirer, Kent R.; Lawson, Matthew M.; Grafe, Hans-Joachim; Chu, Jiun-Haw; Fisher, Ian R.; Fernandes, Rafael M.; Curro, Nicholas J.

    We present evidence for nuclear spin-lattice relaxation driven by glassy nematic fluctuations in isovalent P-doped BaFe2As2 single crystals. Both the 75As and 31P sites exhibit stretched-exponential relaxation similar to the electron-doped systems. By comparing the hyperfine fields and the relaxation rates at these sites we find that the As relaxation cannot be explained solely in terms of magnetic spin fluctuations. We demonstrate that nematic fluctuations couple to the As nuclear quadrupolar moment and can explain the excess relaxation. These results suggest that glassy nematic dynamics are a universal phenomenon in the iron-based superconductors.

  19. NMR Evidence for Inhomogeneous Nematic Fluctuations in BaFe2 (As1 -xPx )2

    NASA Astrophysics Data System (ADS)

    Dioguardi, A. P.; Kissikov, T.; Lin, C. H.; Shirer, K. R.; Lawson, M. M.; Grafe, H.-J.; Chu, J.-H.; Fisher, I. R.; Fernandes, R. M.; Curro, N. J.

    2016-03-01

    We present evidence for nuclear spin-lattice relaxation driven by glassy nematic fluctuations in isovalent P-doped BaFe2As2 single crystals. Both the 75As and 31 sites exhibit a stretched-exponential relaxation similar to the electron-doped systems. By comparing the hyperfine fields and the relaxation rates at these sites we find that the As relaxation cannot be explained solely in terms of magnetic spin fluctuations. We demonstrate that nematic fluctuations couple to the As nuclear quadrupolar moment and can explain the excess relaxation. These results suggest that glassy nematic dynamics are a common phenomenon in the iron-based superconductors.

  20. NMR evidence for inhomogeneous nematic fluctuations in BaFe2(As1-xPx)2

    DOE PAGESBeta

    Dioguardi, A. P.; Kissikov, T.; Lin, C. H.; Shirer, K. R.; Lawson, M. M.; Grafe, H. -J.; Chu, J. -H.; Fisher, I. R.; Fernandes, R. M.; Curro, N. J.

    2016-03-10

    We present evidence for nuclear spin-lattice relaxation driven by glassy nematic fluctuations in isovalent P-doped BaFe2As2 single crystals. Both the 75As and 31P sites exhibit a stretched-exponential relaxation similar to the electron-doped systems. By comparing the hyperfine fields and the relaxation rates at these sites we find that the As relaxation cannot be explained solely in terms of magnetic spin fluctuations. We demonstrate that nematic fluctuations couple to the As nuclear quadrupolar moment and can explain the excess relaxation. Lastly, these results suggest that glassy nematic dynamics are a common phenomenon in the iron-based superconductors.

  1. Chemical Applications of Fluctuation Spectroscopy.

    ERIC Educational Resources Information Center

    Green, Michael E.

    1984-01-01

    Examines some of the possibilities for applying the noise spectroscopic technique as well as the origin of noise (or fluctuations) which accompanies transport in physical systems. Indicates that fluctuation techniques are useful in studying liposome and micelle suspensions, liquid-liquid surfaces, semiconductors, and semiconductor devices. (JN)

  2. Fluctuations as stochastic deformation.

    PubMed

    Kazinski, P O

    2008-04-01

    A notion of stochastic deformation is introduced and the corresponding algebraic deformation procedure is developed. This procedure is analogous to the deformation of an algebra of observables like deformation quantization, but for an imaginary deformation parameter (the Planck constant). This method is demonstrated on diverse relativistic and nonrelativistic models with finite and infinite degrees of freedom. It is shown that under stochastic deformation the model of a nonrelativistic particle interacting with the electromagnetic field on a curved background passes into the stochastic model described by the Fokker-Planck equation with the diffusion tensor being the inverse metric tensor. The first stochastic correction to the Newton equations for this system is found. The Klein-Kramers equation is also derived as the stochastic deformation of a certain classical model. Relativistic generalizations of the Fokker-Planck and Klein-Kramers equations are obtained by applying the procedure of stochastic deformation to appropriate relativistic classical models. The analog of the Fokker-Planck equation associated with the stochastic Lorentz-Dirac equation is derived too. The stochastic deformation of the models of a free scalar field and an electromagnetic field is investigated. It turns out that in the latter case the obtained stochastic model describes a fluctuating electromagnetic field in a transparent medium. PMID:18517590

  3. Fluctuations as stochastic deformation

    NASA Astrophysics Data System (ADS)

    Kazinski, P. O.

    2008-04-01

    A notion of stochastic deformation is introduced and the corresponding algebraic deformation procedure is developed. This procedure is analogous to the deformation of an algebra of observables like deformation quantization, but for an imaginary deformation parameter (the Planck constant). This method is demonstrated on diverse relativistic and nonrelativistic models with finite and infinite degrees of freedom. It is shown that under stochastic deformation the model of a nonrelativistic particle interacting with the electromagnetic field on a curved background passes into the stochastic model described by the Fokker-Planck equation with the diffusion tensor being the inverse metric tensor. The first stochastic correction to the Newton equations for this system is found. The Klein-Kramers equation is also derived as the stochastic deformation of a certain classical model. Relativistic generalizations of the Fokker-Planck and Klein-Kramers equations are obtained by applying the procedure of stochastic deformation to appropriate relativistic classical models. The analog of the Fokker-Planck equation associated with the stochastic Lorentz-Dirac equation is derived too. The stochastic deformation of the models of a free scalar field and an electromagnetic field is investigated. It turns out that in the latter case the obtained stochastic model describes a fluctuating electromagnetic field in a transparent medium.

  4. Frequency fluctuations in silicon nanoresonators

    NASA Astrophysics Data System (ADS)

    Sansa, Marc; Sage, Eric; Bullard, Elizabeth C.; Gély, Marc; Alava, Thomas; Colinet, Eric; Naik, Akshay K.; Villanueva, Luis Guillermo; Duraffourg, Laurent; Roukes, Michael L.; Jourdan, Guillaume; Hentz, Sébastien

    2016-06-01

    Frequency stability is key to the performance of nanoresonators. This stability is thought to reach a limit with the resonator's ability to resolve thermally induced vibrations. Although measurements and predictions of resonator stability usually disregard fluctuations in the mechanical frequency response, these fluctuations have recently attracted considerable theoretical interest. However, their existence is very difficult to demonstrate experimentally. Here, through a literature review, we show that all studies of frequency stability report values several orders of magnitude larger than the limit imposed by thermomechanical noise. We studied a monocrystalline silicon nanoresonator at room temperature and found a similar discrepancy. We propose a new method to show that this was due to the presence of frequency fluctuations, of unexpected level. The fluctuations were not due to the instrumentation system, or to any other of the known sources investigated. These results challenge our current understanding of frequency fluctuations and call for a change in practices.

  5. Fluctuation phenomena in layered superconductors

    SciTech Connect

    Klemm, R.A.

    1996-10-01

    Gaussian fluctuations in layered superconductors have been the subject of study for many years. Although the FD was studied in detail long ago, the FC (fluctuation conductivity) was studied only recently, since the MT and DOS diagrams were previously neglected. Recent comparisons with experiment on YBCO have shown that the DOS diagrams are important and can lead to qualitatively different behaviors for the FC parallel and perpendicular to the layers. In both cases, Gaussian fluctuations fit the data above {Tc} very well, even for YBCO. To date, nearly all calculations of fluctuation quantities were for B{parallel}{cflx c}. Nevertheless, it should be possible to treat an arbitrary B, but the evaluation of the required matrix elements for the fluctuation quantities will be more complicated.

  6. Nonequilibrium fluctuations in a resistor

    NASA Astrophysics Data System (ADS)

    Garnier, N.; Ciliberto, S.

    2005-06-01

    In small systems where relevant energies are comparable to thermal agitation, fluctuations are of the order of average values. In systems in thermodynamical equilibrium, the variance of these fluctuations can be related to the dissipation constant in the system, exploiting the fluctuation-dissipation theorem. In nonequilibrium steady systems, fluctuations theorems (FT) additionally describe symmetry properties of the probability density functions (PDFs) of the fluctuations of injected and dissipated energies. We experimentally probe a model system: an electrical dipole driven out of equilibrium by a small constant current I , and show that FT are experimentally accessible and valid. Furthermore, we stress that FT can be used to measure the dissipated power P¯ =R I2 in the system by just studying the PDFs’ symmetries.

  7. Frequency fluctuations in silicon nanoresonators.

    PubMed

    Sansa, Marc; Sage, Eric; Bullard, Elizabeth C; Gély, Marc; Alava, Thomas; Colinet, Eric; Naik, Akshay K; Villanueva, Luis Guillermo; Duraffourg, Laurent; Roukes, Michael L; Jourdan, Guillaume; Hentz, Sébastien

    2016-06-01

    Frequency stability is key to the performance of nanoresonators. This stability is thought to reach a limit with the resonator's ability to resolve thermally induced vibrations. Although measurements and predictions of resonator stability usually disregard fluctuations in the mechanical frequency response, these fluctuations have recently attracted considerable theoretical interest. However, their existence is very difficult to demonstrate experimentally. Here, through a literature review, we show that all studies of frequency stability report values several orders of magnitude larger than the limit imposed by thermomechanical noise. We studied a monocrystalline silicon nanoresonator at room temperature and found a similar discrepancy. We propose a new method to show that this was due to the presence of frequency fluctuations, of unexpected level. The fluctuations were not due to the instrumentation system, or to any other of the known sources investigated. These results challenge our current understanding of frequency fluctuations and call for a change in practices. PMID:26925826

  8. The dynamic critical properties of the spin-2 Ising model on a bilayer square lattice

    NASA Astrophysics Data System (ADS)

    Temizer, Ümüt; Yarar, Semih; Tülek, Mesimi

    2016-05-01

    The spin-2 Ising model is investigated for the ferromagnetic/ferromagnetic (FM/FM), antiferromagnetic/ferromagnetic (AFM/FM) and antiferromagnetic/antiferromagnetic (AFM/AFM) interactions on the two-layer square lattice by using the Glauber-type stochastic dynamics. The system is in contact with a heat bath at temperature T, and the exchange of energy with the heat bath occurs via one-spin flip. By employing the Master equation and Glauber transition rates, the dynamic equations of the system are obtained. These equations are solved by using the numerical methods. First, we investigate the average order parameters as a function of the time to find the phases in the system. Then, the temperature-dependence of the dynamic order parameters is examined to obtain the dynamic phase transition temperatures. The dynamic phase diagrams are presented on the different planes. According to the values of the system parameters, a variety of dynamic critical points such as tricritical point, triple point, quadruple point, critical end point, double critical end point, zero-temperature critical point, multicritical point and tetracritical point are obtained. The reentrant behavior is seen in the system for the AFM/AFM interaction. Finally, we also investigate the influence of the oscillating field frequency on the dynamic phase diagrams in detail.

  9. Simultaneous differential spinning disk fluorescence optical sectioning microscopy and nanomechanical mapping atomic force microscopy

    SciTech Connect

    Miranda, Adelaide; De Beule, Pieter A. A.

    2015-09-15

    Combined microscopy techniques offer the life science research community a powerful tool to investigate complex biological systems and their interactions. Here, we present a new combined microscopy platform based on fluorescence optical sectioning microscopy through aperture correlation microscopy with a Differential Spinning Disk (DSD) and nanomechanical mapping with an Atomic Force Microscope (AFM). The illumination scheme of the DSD microscope unit, contrary to standard single or multi-point confocal microscopes, provides a time-independent illumination of the AFM cantilever. This enables a distortion-free simultaneous operation of fluorescence optical sectioning microscopy and atomic force microscopy with standard probes. In this context, we discuss sample heating due to AFM cantilever illumination with fluorescence excitation light. Integration of a DSD fluorescence optical sectioning unit with an AFM platform requires mitigation of mechanical noise transfer of the spinning disk. We identify and present two solutions to almost annul this noise in the AFM measurement process. The new combined microscopy platform is applied to the characterization of a DOPC/DOPS (4:1) lipid structures labelled with a lipophilic cationic indocarbocyanine dye deposited on a mica substrate.

  10. Probing Cytoskeletal Structures by Coupling Optical Superresolution and AFM Techniques for a Correlative Approach

    PubMed Central

    Chacko, Jenu Varghese; Zanacchi, Francesca Cella; Diaspro, Alberto

    2013-01-01

    In this article, we describe and show the application of some of the most advanced fluorescence superresolution techniques, STED AFM and STORM AFM microscopy towards imaging of cytoskeletal structures, such as microtubule filaments. Mechanical and structural properties can play a relevant role in the investigation of cytoskeletal structures of interest, such as microtubules, that provide support to the cell structure. In fact, the mechanical properties, such as the local stiffness and the elasticity, can be investigated by AFM force spectroscopy with tens of nanometers resolution. Force curves can be analyzed in order to obtain the local elasticity (and the Young's modulus calculation by fitting the force curves from every pixel of interest), and the combination with STED/STORM microscopy integrates the measurement with high specificity and yields superresolution structural information. This hybrid modality of superresolution-AFM working is a clear example of correlative multimodal microscopy. PMID:24027190

  11. Fabrication of cone-shaped boron doped diamond and gold nanoelectrodes for AFM-SECM.

    PubMed

    Avdic, A; Lugstein, A; Wu, M; Gollas, B; Pobelov, I; Wandlowski, T; Leonhardt, K; Denuault, G; Bertagnolli, E

    2011-04-01

    We demonstrate a reliable microfabrication process for a combined atomic force microscopy (AFM) and scanning electrochemical microscopy (SECM) measurement tool. Integrated cone-shaped sensors with boron doped diamond (BDD) or gold (Au) electrodes were fabricated from commercially available AFM probes. The sensor formation process is based on mature semiconductor processing techniques, including focused ion beam (FIB) machining, and highly selective reactive ion etching (RIE). The fabrication approach preserves the geometry of the original AFM tips resulting in well reproducible nanoscaled sensors. The feasibility and functionality of the fully featured tips are demonstrated by cyclic voltammetry, showing good agreement between the measured and calculated currents of the cone-shaped AFM-SECM electrodes. PMID:21368355

  12. Fabrication of cone-shaped boron doped diamond and gold nanoelectrodes for AFM-SECM

    NASA Astrophysics Data System (ADS)

    Avdic, A.; Lugstein, A.; Wu, M.; Gollas, B.; Pobelov, I.; Wandlowski, T.; Leonhardt, K.; Denuault, G.; Bertagnolli, E.

    2011-04-01

    We demonstrate a reliable microfabrication process for a combined atomic force microscopy (AFM) and scanning electrochemical microscopy (SECM) measurement tool. Integrated cone-shaped sensors with boron doped diamond (BDD) or gold (Au) electrodes were fabricated from commercially available AFM probes. The sensor formation process is based on mature semiconductor processing techniques, including focused ion beam (FIB) machining, and highly selective reactive ion etching (RIE). The fabrication approach preserves the geometry of the original AFM tips resulting in well reproducible nanoscaled sensors. The feasibility and functionality of the fully featured tips are demonstrated by cyclic voltammetry, showing good agreement between the measured and calculated currents of the cone-shaped AFM-SECM electrodes.

  13. Spin injection into semiconductors

    NASA Astrophysics Data System (ADS)

    Oestreich, M.; Hübner, J.; Hägele, D.; Klar, P. J.; Heimbrodt, W.; Rühle, W. W.; Ashenford, D. E.; Lunn, B.

    1999-03-01

    The injection of spin-polarized electrons is presently one of the major challenges in semiconductor spin electronics. We propose and demonstrate a most efficient spin injection using diluted magnetic semiconductors as spin aligners. Time-resolved photoluminescence with a Cd0.98Mn0.02Te/CdTe structure proves the feasibility of the spin-alignment mechanism.

  14. Order by virtual crystal field fluctuations in pyrochlore XY antiferromagnets

    NASA Astrophysics Data System (ADS)

    Rau, Jeffrey G.; Petit, Sylvain; Gingras, Michel J. P.

    2016-05-01

    Conclusive evidence of order by disorder is scarce in real materials. Perhaps one of the strongest cases presented has been for the pyrochlore XY antiferromagnet Er2Ti2O7 , with the ground state selection proceeding by order by disorder induced through the effects of quantum fluctuations. This identification assumes the smallness of the effect of virtual crystal field fluctuations that could provide an alternative route to picking the ground state. Here we show that this order by virtual crystal field fluctuations is not only significant, but competitive with the effects of quantum fluctuations. Further, we argue that higher-multipolar interactions that are generically present in rare-earth magnets can dramatically enhance this effect. From a simplified bilinear-biquadratic model of these multipolar interactions, we show how the virtual crystal field fluctuations manifest in Er2Ti2O7 using a combination of strong-coupling perturbation theory and the random-phase approximation. We find that the experimentally observed ψ2 state is indeed selected and the experimentally measured excitation gap can be reproduced when the bilinear and biquadratic couplings are comparable while maintaining agreement with the entire experimental spin-wave excitation spectrum. Finally, we comment on possible tests of this scenario and discuss implications for other order-by-disorder candidates in rare-earth magnets.

  15. Concept for room temperature single-spin tunneling force microscopy with atomic spatial resolution

    NASA Astrophysics Data System (ADS)

    Payne, Adam

    A study of a force detected single-spin magnetic resonance measurement concept with atomic spatial resolution is presented. The method is based upon electrostatic force detection of spin-selection rule controlled single electron tunneling between two electrically isolated paramagnetic states. Single-spin magnetic resonance detection is possible by measuring the force detected tunneling charge noise on and off spin resonance. Simulation results of this charge noise, based upon physical models of the tunneling and spin physics, are directly compared to measured atomic force microscopy (AFM) system noise. The results show that the approach could provide single-spin measurement of electrically isolated defect states with atomic spatial resolution at room temperature.

  16. Using XAFS, EDAX and AFM in comparative study of various natural and synthetic emeralds

    NASA Astrophysics Data System (ADS)

    Parikh, P.; Saini, N. L.; Dalela, S.; Bhardwaj, D. M.; Fernandes, S.; Gupta, R. P.; Garg, K. B.

    2003-01-01

    We have performed XAFS, EDAX and AFM studies on some natural and synthetic emeralds. While the XAFS results yield information on changes in the valence of the Cr ion and the n-n distance the AFM is used to determine the areal atomic density on surface of the crystals. It is a pilot study to explore if the three techniques can offer a possible way of distinguishing between the natural and synthetic emeralds and the results are promising.

  17. A Multifunctional Frontloading Approach for Repeated Recycling of a Pressure-Controlled AFM Micropipette.

    PubMed

    Roder, Phillip; Hille, Carsten

    2015-01-01

    Fluid force microscopy combines the positional accuracy and force sensitivity of an atomic force microscope (AFM) with nanofluidics via a microchanneled cantilever. However, adequate loading and cleaning procedures for such AFM micropipettes are required for various application situations. Here, a new frontloading procedure is described for an AFM micropipette functioning as a force- and pressure-controlled microscale liquid dispenser. This frontloading procedure seems especially attractive when using target substances featuring high costs or low available amounts. Here, the AFM micropipette could be filled from the tip side with liquid from a previously applied droplet with a volume of only a few μL using a short low-pressure pulse. The liquid-loaded AFM micropipettes could be then applied for experiments in air or liquid environments. AFM micropipette frontloading was evaluated with the well-known organic fluorescent dye rhodamine 6G and the AlexaFluor647-labeled antibody goat anti-rat IgG as an example of a larger biological compound. After micropipette usage, specific cleaning procedures were tested. Furthermore, a storage method is described, at which the AFM micropipettes could be stored for a few hours up to several days without drying out or clogging of the microchannel. In summary, the rapid, versatile and cost-efficient frontloading and cleaning procedure for the repeated usage of a single AFM micropipette is beneficial for various application situations from specific surface modifications through to local manipulation of living cells, and provides a simplified and faster handling for already known experiments with fluid force microscopy. PMID:26636981

  18. A Multifunctional Frontloading Approach for Repeated Recycling of a Pressure-Controlled AFM Micropipette

    PubMed Central

    Roder, Phillip; Hille, Carsten

    2015-01-01

    Fluid force microscopy combines the positional accuracy and force sensitivity of an atomic force microscope (AFM) with nanofluidics via a microchanneled cantilever. However, adequate loading and cleaning procedures for such AFM micropipettes are required for various application situations. Here, a new frontloading procedure is described for an AFM micropipette functioning as a force- and pressure-controlled microscale liquid dispenser. This frontloading procedure seems especially attractive when using target substances featuring high costs or low available amounts. Here, the AFM micropipette could be filled from the tip side with liquid from a previously applied droplet with a volume of only a few μL using a short low-pressure pulse. The liquid-loaded AFM micropipettes could be then applied for experiments in air or liquid environments. AFM micropipette frontloading was evaluated with the well-known organic fluorescent dye rhodamine 6G and the AlexaFluor647-labeled antibody goat anti-rat IgG as an example of a larger biological compound. After micropipette usage, specific cleaning procedures were tested. Furthermore, a storage method is described, at which the AFM micropipettes could be stored for a few hours up to several days without drying out or clogging of the microchannel. In summary, the rapid, versatile and cost-efficient frontloading and cleaning procedure for the repeated usage of a single AFM micropipette is beneficial for various application situations from specific surface modifications through to local manipulation of living cells, and provides a simplified and faster handling for already known experiments with fluid force microscopy. PMID:26636981

  19. Exchange bias and antiferromagnetic interfacial exchange coupling in the mixed-spin oxide Li2/7Ni5/7O

    NASA Astrophysics Data System (ADS)

    Shi, C. X.; Ren, W. J.; Liu, W.; Zhang, Z. D.

    2014-01-01

    We present a detailed study on magnetic properties of mixed spin oxide Li2/7Ni5/7O, where small ferromagnetic (FM) clusters (with averaged diameter of ˜18 Å) immersed with an antiferromagnetic (AFM) host. The exchange bias (EB) with shifts of the hysteresis loop along both the field and magnetization axes is found, which is due to the interfacial interaction between the FM clusters and the AFM host. An AFM interfacial exchange coupling is deduced from the exchange interactions between Ni ions. The type and strength of this interfacial exchange interaction are discussed in terms of the EB at low temperature.

  20. Controlling spin relaxation with a cavity

    NASA Astrophysics Data System (ADS)

    Bienfait, Audrey; Pla, Jarryd; Kubo, Yuimaru; Zhou, Xin; Stern, Michael; Lo, Cheuk; Weis, Christopher; Schenkel, Thomas; Vion, Denis; Esteve, Daniel; Morton, John; Bertet, Patrice

    Spontaneous emission of radiation is one of the fundamental relaxation mechanisms for a quantum system. For spins, however, it is negligible compared to non-radiative relaxation processes due to their weak coupling to the electromagnetic field. In 1946, Purcell realized that spontaneous emission is strongly enhanced when the quantum system is placed in a resonant cavity - an effect now used to control the lifetime of systems with an electrical dipole. Here, by coupling donor spins in silicon to a high quality factor superconducting microwave cavity of small mode volume, we reach the regime where spontaneous emission constitutes the dominant spin relaxation channel. The relaxation rate is increased by three orders of magnitude when the spins are tuned to the cavity resonance, showing it can be engineered and controlled on-demand. Our results provide a novel way to initialize any spin into its ground state, with applications in magnetic resonance and quantum information processing. They also show for the first time an alteration of spin dynamics by quantum fluctuations, a step towards the coherent magnetic coupling of a spin to microwave photons.

  1. Quantum dynamics in strong fluctuating fields

    NASA Astrophysics Data System (ADS)

    Goychuk, Igor; Hänggi, Peter

    A large number of multifaceted quantum transport processes in molecular systems and physical nanosystems, such as e.g. nonadiabatic electron transfer in proteins, can be treated in terms of quantum relaxation processes which couple to one or several fluctuating environments. A thermal equilibrium environment can conveniently be modelled by a thermal bath of harmonic oscillators. An archetype situation provides a two-state dissipative quantum dynamics, commonly known under the label of a spin-boson dynamics. An interesting and nontrivial physical situation emerges, however, when the quantum dynamics evolves far away from thermal equilibrium. This occurs, for example, when a charge transferring medium possesses nonequilibrium degrees of freedom, or when a strong time-dependent control field is applied externally. Accordingly, certain parameters of underlying quantum subsystem acquire stochastic character. This may occur, for example, for the tunnelling coupling between the donor and acceptor states of the transferring electron, or for the corresponding energy difference between electronic states which assume via the coupling to the fluctuating environment an explicit stochastic or deterministic time-dependence. Here, we review the general theoretical framework which is based on the method of projector operators, yielding the quantum master equations for systems that are exposed to strong external fields. This allows one to investigate on a common basis, the influence of nonequilibrium fluctuations and periodic electrical fields on those already mentioned dynamics and related quantum transport processes. Most importantly, such strong fluctuating fields induce a whole variety of nonlinear and nonequilibrium phenomena. A characteristic feature of such dynamics is the absence of thermal (quantum) detailed balance.ContentsPAGE1. Introduction5262. Quantum dynamics in stochastic fields531 2.1. Stochastic Liouville equation531 2.2. Non-Markovian vs. Markovian discrete

  2. Spin noise of electrons and holes in (In,Ga)As quantum dots: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Glasenapp, Ph.; Smirnov, D. S.; Greilich, A.; Hackmann, J.; Glazov, M. M.; Anders, F. B.; Bayer, M.

    2016-05-01

    The spin fluctuations of electron and hole doped self-assembled quantum dot ensembles are measured optically in the low-intensity limit of a probe laser for absence and presence of longitudinal or transverse magnetic fields. The experimental results are modeled by two complementary approaches based either on a semiclassical or quantum mechanical description. This allows us to characterize the hyperfine interaction of electron and hole spins with the surrounding bath of nuclei on time scales covering several orders of magnitude. Our results demonstrate (i) the intrinsic precession of the electron spin fluctuations around the effective Overhauser field caused by the host lattice nuclear spins, (ii) the comparably long time scales for electron and hole spin decoherence, as well as (iii) the dramatic enhancement of the spin lifetimes induced by a longitudinal magnetic field due to the decoupling of nuclear and charge carrier spins.

  3. Insight into mechanics of AFM tip-based nanomachining: bending of cantilevers and machined grooves.

    PubMed

    Al-Musawi, R S J; Brousseau, E B; Geng, Y; Borodich, F M

    2016-09-23

    Atomic force microscope (AFM) tip-based nanomachining is currently the object of intense research investigations. Values of the load applied to the tip at the free end of the AFM cantilever probe used for nanomachining are always large enough to induce plastic deformation on the specimen surface contrary to the small load values used for the conventional contact mode AFM imaging. This study describes an important phenomenon specific for AFM nanomachining in the forward direction: under certain processing conditions, the deformed shape of the cantilever probe may change from a convex to a concave orientation. The phenomenon can principally change the depth and width of grooves machined, e.g. the grooves machined on a single crystal copper specimen may increase by 50% on average following such a change in the deformed shape of the cantilever. It is argued that this phenomenon can take place even when the AFM-based tool is operated in the so-called force-controlled mode. The study involves the refined theoretical analysis of cantilever probe bending, the analysis of experimental signals monitored during the backward and forward AFM tip-based machining and the inspection of the topography of produced grooves. PMID:27532247

  4. AFM/CLSM data visualization and comparison using an open-source toolkit.

    PubMed

    Rajwa, Bartek; McNally, Helen A; Varadharajan, Padma; Sturgis, Jennifer; Robinson, J Paul

    2004-06-01

    There is a vast difference in the traditional presentation of AFM data and confocal data. AFM data are presented as surface contours while confocal data are usually visualized using either surface- or volume-rendering techniques. Finding a common meaningful visualization platform is not an easy task. AFM and CLSM technologies are complementary and are more frequently being used to image common biological systems. In order to provide a presentation method that would assist us in evaluating cellular morphology, we propose a simple visualization strategy that is comparative, intuitive, and operates within an open-source environment of ImageJ, SurfaceJ, and VolumeJ applications. In order to find some common ground for AFM-CLSM image comparison, we have developed a plug-in for ImageJ, which allows us to import proprietary image data sets into this application. We propose to represent both AFM and CLSM image data sets as shaded elevation maps with color-coded height. This simple technique utilizes the open source VolumeJ and SurfaceJ plug-ins. To provide an example of this visualization technique, we evaluated the three-dimensional architecture of living chick dorsal root ganglia and sympathetic ganglia measured independently with AFM and CLSM. PMID:15352089

  5. Probing ternary solvent effect in high Voc polymer solar cells using advanced AFM techniques

    DOE PAGESBeta

    Li, Chao; Soleman, Mikhael; Lorenzo, Josie; Dhasmana, Nitesh; Chantharasupawong, Panit; Ievlev, Anton; Gesquiere, Andre; Tetard, Laurene; Thomas, Jayan

    2016-01-25

    This work describes a simple method to develop a high Voc low band gap PSCs. In addition, two new atomic force microscopy (AFM)-based nanoscale characterization techniques to study the surface morphology and physical properties of the structured active layer are introduced. With the help of ternary solvent processing of the active layer and C60 buffer layer, a bulk heterojunction PSC with Voc more than 0.9 V and conversion efficiency 7.5% is developed. In order to understand the fundamental properties of the materials ruling the performance of the PSCs tested, AFM-based nanoscale characterization techniques including Pulsed-Force-Mode AFM (PFM-AFM) and Mode-Synthesizing AFMmore » (MSAFM) are introduced. Interestingly, MSAFM exhibits high sensitivity for direct visualization of the donor–acceptor phases in the active layer of the PSCs. Lastly, conductive-AFM (cAFM) studies reveal local variations in conductivity in the donor and acceptor phases as well as a significant increase in photocurrent in the PTB7:ICBA sample obtained with the ternary solvent processing.« less

  6. Membrane-based actuation for high-speed single molecule force spectroscopy studies using AFM.

    PubMed

    Sarangapani, Krishna; Torun, Hamdi; Finkler, Ofer; Zhu, Cheng; Degertekin, Levent

    2010-07-01

    Atomic force microscopy (AFM)-based dynamic force spectroscopy of single molecular interactions involves characterizing unbinding/unfolding force distributions over a range of pulling speeds. Owing to their size and stiffness, AFM cantilevers are adversely affected by hydrodynamic forces, especially at pulling speeds >10 microm/s, when the viscous drag becomes comparable to the unbinding/unfolding forces. To circumvent these adverse effects, we have fabricated polymer-based membranes capable of actuating commercial AFM cantilevers at speeds >or=100 microm/s with minimal viscous drag effects. We have used FLUENT, a computational fluid dynamics (CFD) software, to simulate high-speed pulling and fast actuation of AFM cantilevers and membranes in different experimental configurations. The simulation results support the experimental findings on a variety of commercial AFM cantilevers and predict significant reduction in drag forces when membrane actuators are used. Unbinding force experiments involving human antibodies using these membranes demonstrate that it is possible to achieve bond loading rates >or=10(6) pN/s, an order of magnitude greater than that reported with commercial AFM cantilevers and systems. PMID:20054686

  7. What can we learn about the dynamics of transported spins by measuring shot noise in spin-orbit-coupled nanostructures?

    NASA Astrophysics Data System (ADS)

    Nikolić, Branislav K.; Dragomirova, Ralitsa L.

    2009-06-01

    We review recent studies of the shot noise of spin-polarized charge currents and pure spin currents in multiterminal semiconductor nanostructures, while focusing on the effects brought by the intrinsic Rashba spin-orbit (SO) coupling and/or extrinsic SO scattering off impurities in two-dimensional electron gas (2DEG) based devices. By generalizing the scattering theory of quantum shot noise to include the full spin-density matrix of electrons injected from a spin-filtering electrode, we show how decoherence and dephasing in the course of spin precession can lead to the substantial enhancement of the Fano factor (noise-to-current ratio) of spin-polarized charge currents. These processes are suppressed by decreasing the width of the diffusive Rashba wire, so that purely electrical measurement of the shot noise in a ferromagnet|SO-coupled-diffusive-wire|paramagnet setup can quantify the degree of quantum coherence of transported spin through a remarkable one-to-one correspondence between the purity of the spin state and the Fano factor. In four-terminal SO-coupled nanostructures, injection of unpolarized charge current through the longitudinal leads is responsible not only for the pure spin Hall current in the transverse leads, but also for nonequilibrium random time-dependent current fluctuations. The analysis of the shot noise of transverse pure spin Hall current and zero charge current, or transverse spin current and non-zero charge Hall current, driven by unpolarized or spin-polarized injected longitudinal charge current, respectively, reveals a unique experimental tool to differentiate between the intrinsic Rashba and extrinsic SO mechanisms underlying the spin Hall effect in 2DEG devices. When the intrinsic mechanisms responsible for spin precession start to dominate the spin Hall effect, they also enhance the shot noise of transverse spin and charge transport in multiterminal geometries. Finally, we discuss the shot noise of transverse spin and zero charge

  8. Dynamics of a mesoscopic nuclear spin ensemble interacting with an optically driven electron spin

    NASA Astrophysics Data System (ADS)

    Stanley, M. J.; Matthiesen, C.; Hansom, J.; Le Gall, C.; Schulte, C. H. H.; Clarke, E.; Atatüre, M.

    2014-11-01

    The ability to discriminate between simultaneously occurring noise sources in the local environment of semiconductor InGaAs quantum dots, such as electric and magnetic field fluctuations, is key to understanding their respective dynamics and their effect on quantum dot coherence properties. We present a discriminatory approach to all-optical sensing based on two-color resonance fluorescence of a quantum dot charged with a single electron. Our measurements show that local magnetic field fluctuations due to nuclear spins in the absence of an external magnetic field are described by two correlation times, both in the microsecond regime. The nuclear spin bath dynamics show a strong dependence on the strength of resonant probing, with correlation times increasing by a factor of 4 as the optical transition is saturated. We interpret the behavior as motional averaging of both the Knight field of the resident electron spin and the hyperfine-mediated nuclear spin-spin interaction due to optically induced electron spin flips.

  9. Spin noise in mixed Spin Systems

    NASA Astrophysics Data System (ADS)

    Bauch, Erik; Junghyun, Paul; Singh, Swati; Devakul, Trithep; Feguin, Adrian; Hart, Connor; Walsworth, Ronald

    2016-05-01

    The spin noise due to interaction of multiple spin species in mixed spin systems provides a fundamental limit to ultra-sensitive ensemble sensing and quantum information applications. In our work, we investigate the interaction of dense nuclear 13C spins with electronic nitrogen spins using Nitrogen-Vacancy centers in diamond. Our work shows experimentally and theoretically, that under certain conditions, spin noise is greatly suppressed and the coherence time of NV centers improved by order of magnitudes, providing a pathway to engineering high density ensemble samples with long coherence times at room temperature.

  10. Ultrafast band engineering and transient spin currents in antiferromagnetic oxides

    DOE PAGESBeta

    Gu, Mingqiang; Rondinelli, James M.

    2016-04-29

    Here, we report a dynamic structure and band engineering strategy with experimental protocols to induce indirect-to-direct band gap transitions and coherently oscillating pure spin-currents in three-dimensional antiferromagnets (AFM) using selective phononic excitations. In the Mott insulator LaTiO3, we show that a photo-induced nonequilibrium phonon mode amplitude destroys the spin and orbitally degenerate ground state, reduces the band gap by 160 meV and renormalizes the carrier masses. The time scale of this process is a few hundreds of femtoseconds. Then in the hole-doped correlated metallic titanate, we show how pure spin-currents can be achieved to yield spin-polarizations exceeding those observed inmore » classic semiconductors. Last, we demonstrate the generality of the approach by applying it to the non-orbitally degenerate AFM CaMnO3. These results advance our understanding of electron-lattice interactions in structures out-of-equilibrium and establish a rational framework for designing dynamic phases that may be exploited in ultrafast optoelectronic and optospintronic devices.« less

  11. Ultrafast Band Engineering and Transient Spin Currents in Antiferromagnetic Oxides

    PubMed Central

    Gu, Mingqiang; Rondinelli, James M.

    2016-01-01

    We report a dynamic structure and band engineering strategy with experimental protocols to induce indirect-to-direct band gap transitions and coherently oscillating pure spin-currents in three-dimensional antiferromagnets (AFM) using selective phononic excitations. In the Mott insulator LaTiO3, we show that a photo-induced nonequilibrium phonon mode amplitude destroys the spin and orbitally degenerate ground state, reduces the band gap by 160 meV and renormalizes the carrier masses. The time scale of this process is a few hundreds of femtoseconds. Then in the hole-doped correlated metallic titanate, we show how pure spin-currents can be achieved to yield spin-polarizations exceeding those observed in classic semiconductors. Last, we demonstrate the generality of the approach by applying it to the non-orbitally degenerate AFM CaMnO3. These results advance our understanding of electron-lattice interactions in structures out-of-equilibrium and establish a rational framework for designing dynamic phases that may be exploited in ultrafast optoelectronic and optospintronic devices. PMID:27126354

  12. Ultrafast Band Engineering and Transient Spin Currents in Antiferromagnetic Oxides

    NASA Astrophysics Data System (ADS)

    Gu, Mingqiang; Rondinelli, James M.

    2016-04-01

    We report a dynamic structure and band engineering strategy with experimental protocols to induce indirect-to-direct band gap transitions and coherently oscillating pure spin-currents in three-dimensional antiferromagnets (AFM) using selective phononic excitations. In the Mott insulator LaTiO3, we show that a photo-induced nonequilibrium phonon mode amplitude destroys the spin and orbitally degenerate ground state, reduces the band gap by 160 meV and renormalizes the carrier masses. The time scale of this process is a few hundreds of femtoseconds. Then in the hole-doped correlated metallic titanate, we show how pure spin-currents can be achieved to yield spin-polarizations exceeding those observed in classic semiconductors. Last, we demonstrate the generality of the approach by applying it to the non-orbitally degenerate AFM CaMnO3. These results advance our understanding of electron-lattice interactions in structures out-of-equilibrium and establish a rational framework for designing dynamic phases that may be exploited in ultrafast optoelectronic and optospintronic devices.

  13. Interfacial exchange-coupling induced chiral symmetry breaking of spin-orbit effects

    NASA Astrophysics Data System (ADS)

    Perna, P.; Ajejas, F.; Maccariello, D.; Fernandez Cuñado, J. L.; Guerrero, R.; Niño, M. A.; Bollero, A.; Miranda, R.; Camarero, J.

    2015-12-01

    We demonstrate that the interfacial exchange coupling in ferromagnetic/antiferromagnetic (FM/AFM) systems induces symmetry breaking of the spin-orbit (SO) effects. This has been done by studying the field and angle dependencies of anisotropic magnetoresistance and vectorial-resolved magnetization hysteresis loops, measured simultaneously and reproduced with numerical simulations. We show how the induced unidirectional magnetic anisotropy at the FM/AFM interface results in strong asymmetric transport behaviors, which are chiral around the magnetization hard-axis direction. Similar asymmetric features are anticipated in other SO-driven phenomena.

  14. Spin-lattice relaxation of heavy spin-1/2 nuclei in diamagnetic solids: A Raman process mediated by spin-rotation interaction

    NASA Astrophysics Data System (ADS)

    Vega, Alexander J.; Beckmann, Peter A.; Bai, Shi; Dybowski, Cecil

    2006-12-01

    We present a theory for the nuclear spin-lattice relaxation of heavy spin-1/2 nuclei in solids, which explains within an order of magnitude the unexpectedly effective lead and thallium nuclear spin-lattice relaxation rates observed in the ionic solids lead molybdate, lead chloride, lead nitrate, thallium nitrate, thallium nitrite, and thallium perchlorate. The observed rates are proportional to the square of the temperature and are independent of magnetic field. This rules out all known mechanisms usually employed to model nuclear spin relaxation in lighter spin-1/2 nuclei. The relaxation is caused by a Raman process involving the interactions between nuclear spins and lattice vibrations via a fluctuating spin-rotation magnetic field. The model places an emphasis on the time dependence of the angular velocity of pairs of adjacent atoms rather than on their angular momentum. Thus the spin-rotation interaction is characterized not in the traditional manner by a spin-rotation constant but by a related physical parameter, the magnetorotation constant, which relates the local magnetic field generated by spin rotation to an angular velocity. Our semiclassical relaxation model involves a frequency-mode description of the spectral density that can directly be related to the mean-square amplitudes and mode densities of lattice vibrations in the Debye model.

  15. Long-lived nanosecond spin relaxation and spin coherence of electrons in monolayer MoS2 and WS2

    NASA Astrophysics Data System (ADS)

    Yang, Luyi; Sinitsyn, Nikolai A.; Chen, Weibing; Yuan, Jiangtan; Zhang, Jing; Lou, Jun; Crooker, Scott A.

    2015-10-01

    The recently discovered monolayer transition metal dichalcogenides (TMDCs) provide a fertile playground to explore new coupled spin-valley physics. Although robust spin and valley degrees of freedom are inferred from polarized photoluminescence (PL) experiments, PL timescales are necessarily constrained by short-lived (3-100 ps) electron-hole recombination. Direct probes of spin/valley polarization dynamics of resident carriers in electron (or hole)-doped TMDCs, which may persist long after recombination ceases, are at an early stage. Here we directly measure the coupled spin-valley dynamics in electron-doped MoS2 and WS2 monolayers using optical Kerr spectroscopy, and reveal very long electron spin lifetimes, exceeding 3 ns at 5 K (two to three orders of magnitude longer than typical exciton recombination times). In contrast with conventional III-V or II-VI semiconductors, spin relaxation accelerates rapidly in small transverse magnetic fields. Supported by a model of coupled spin-valley dynamics, these results indicate a novel mechanism of itinerant electron spin dephasing in the rapidly fluctuating internal spin-orbit field in TMDCs, driven by fast inter-valley scattering. Additionally, a long-lived spin coherence is observed at lower energies, commensurate with localized states. These studies provide insight into the physics underpinning spin and valley dynamics of resident electrons in atomically thin TMDCs.

  16. Fluctuation Probes of Quark Deconfinement

    SciTech Connect

    Asakawa, Masayuki; Heinz, Ulrich; Mueller, Berndt

    2000-09-04

    The size of the average fluctuations of net baryon number and electric charge in a finite volume of hadronic matter differs widely between the confined and deconfined phases. These differences may be exploited as indicators of the formation of a quark-gluon plasma in relativistic heavy-ion collisions, because fluctuations created in the initial state survive until freeze-out due to the rapid expansion of the hot fireball. (c) 2000 The American Physical Society.

  17. Principle of minimal work fluctuations.

    PubMed

    Xiao, Gaoyang; Gong, Jiangbin

    2015-08-01

    Understanding and manipulating work fluctuations in microscale and nanoscale systems are of both fundamental and practical interest. For example, in considering the Jarzynski equality 〈e-βW〉=e-βΔF, a change in the fluctuations of e-βW may impact how rapidly the statistical average of e-βW converges towards the theoretical value e-βΔF, where W is the work, β is the inverse temperature, and ΔF is the free energy difference between two equilibrium states. Motivated by our previous study aiming at the suppression of work fluctuations, here we obtain a principle of minimal work fluctuations. In brief, adiabatic processes as treated in quantum and classical adiabatic theorems yield the minimal fluctuations in e-βW. In the quantum domain, if a system initially prepared at thermal equilibrium is subjected to a work protocol but isolated from a bath during the time evolution, then a quantum adiabatic process without energy level crossing (or an assisted adiabatic process reaching the same final states as in a conventional adiabatic process) yields the minimal fluctuations in e-βW, where W is the quantum work defined by two energy measurements at the beginning and at the end of the process. In the classical domain where the classical work protocol is realizable by an adiabatic process, then the classical adiabatic process also yields the minimal fluctuations in e-βW. Numerical experiments based on a Landau-Zener process confirm our theory in the quantum domain, and our theory in the classical domain explains our previous numerical findings regarding the suppression of classical work fluctuations [G. Y. Xiao and J. B. Gong, Phys. Rev. E 90, 052132 (2014)]. PMID:26382367

  18. Principle of minimal work fluctuations

    NASA Astrophysics Data System (ADS)

    Xiao, Gaoyang; Gong, Jiangbin

    2015-08-01

    Understanding and manipulating work fluctuations in microscale and nanoscale systems are of both fundamental and practical interest. For example, in considering the Jarzynski equality =e-β Δ F , a change in the fluctuations of e-β W may impact how rapidly the statistical average of e-β W converges towards the theoretical value e-β Δ F, where W is the work, β is the inverse temperature, and Δ F is the free energy difference between two equilibrium states. Motivated by our previous study aiming at the suppression of work fluctuations, here we obtain a principle of minimal work fluctuations. In brief, adiabatic processes as treated in quantum and classical adiabatic theorems yield the minimal fluctuations in e-β W. In the quantum domain, if a system initially prepared at thermal equilibrium is subjected to a work protocol but isolated from a bath during the time evolution, then a quantum adiabatic process without energy level crossing (or an assisted adiabatic process reaching the same final states as in a conventional adiabatic process) yields the minimal fluctuations in e-β W, where W is the quantum work defined by two energy measurements at the beginning and at the end of the process. In the classical domain where the classical work protocol is realizable by an adiabatic process, then the classical adiabatic process also yields the minimal fluctuations in e-β W. Numerical experiments based on a Landau-Zener process confirm our theory in the quantum domain, and our theory in the classical domain explains our previous numerical findings regarding the suppression of classical work fluctuations [G. Y. Xiao and J. B. Gong, Phys. Rev. E 90, 052132 (2014), 10.1103/PhysRevE.90.052132].

  19. Simulation Of Fluctuating Geomagnetic Index

    NASA Technical Reports Server (NTRS)

    Vedder, John; Tabor, Jill

    1993-01-01

    Mathematical model produces synthetic geomagnetic-index (ap) data including short-term fluctuations like those of real ap data. Measures geomagnetic activity computed from measurements of fluctuations in geomagnetic field taken at 12 high-latitude stations every 3 hours. Used in studies of interactions between solar wind and Earth, especially in studies of effect of geomagnetic field upon heating of thermosphere by impacts of energetic charged solar-wind particles.

  20. Thermally excited proton spin-flip laser emission in tokamaks

    SciTech Connect

    Arunasalam, V.; Greene, G.J.

    1993-07-01

    Based on statistical thermodynamic fluctuation arguments, it is shown here for the first time that thermally excited spin-flip laser emission from the fusion product protons can occur in large tokamak devices that are entering the reactor regime of operation. Existing experimental data from TFTR supports this conjecture, in the sense that these measurements are in complete agreement with the predictions of the quasilinear theory of the spin-flip laser.

  1. Momentum-dependent band spin splitting in semiconducting MnO2: a density functional calculation.

    PubMed

    Noda, Yusuke; Ohno, Kaoru; Nakamura, Shinichiro

    2016-05-11

    Recently, manganese-oxide compounds have attracted considerable attention, in particular, as candidate materials for photochemical water-splitting reactions. Here, we investigate electronic states of pristine manganese dioxides (MnO2) in different crystal phases using spin-polarized density functional theory (DFT) with Hubbard U correction. Geometrical structures and band dispersions of α-, β-, δ-, and λ-MnO2 crystals with collinear magnetic [ferromagnetic (FM) and antiferromagnetic (AFM)] orders are discussed in detail. We reveal that penalty energies that arise by violating the Goodenough-Kanamori rule are important and the origin of the magnetic interactions of the MnO2 crystals is governed by the superexchange interactions of Mn-O-Mn groups. In addition, it is found that momentum-dependent band spin splitting occurs in the AFM α-, β-, and δ-MnO2 crystals while no spin splitting occurs in the AFM λ-MnO2 crystal. Our results show that spin-split band dispersions stem from the different orientations of Mn-centred oxygen octahedra. Such interesting electronic states of the MnO2 crystals are unraveled by our discussion on the relationship between the effective (spin-dependent) single-electron potentials and the space-group symmetry operations that map up-spin Mn atoms onto down-spin Mn atoms. This work provides a basis to understand the relationship between the spin-dependent electronic states and the crystallography of manganese oxides. Another relationship to the recent experimental observations of the photochemical oxygen evolution of MnO2 crystals is also discussed. PMID:27119122

  2. Strength by atomic force microscopy (AFM): Molecular dynamics of water layer squeezing on magnesium oxide

    NASA Astrophysics Data System (ADS)

    Kendall, K.; Dhir, Aman; Yong, Chin W.

    2010-11-01

    Localised strength testing of materials is often carried out in an atomic force microscope (AFM), as foreseen by Kelly in his book Strong Solids (Clarendon Press, Oxford, 1966). During AFM indentation experiments, contamination can strongly influence the observed strength and theoretical interpretation of the results is a major problem. Here, we use molecular dynamics computer modelling to describe the contact of NaCl and MgO crystal probes onto surfaces, comparable to an AFM experiment. Clean NaCl gave elastic, brittle behaviour in contact simulations at 300 K, whereas MgO was more plastic, leading to increased toughness. This paper also considers the strength of an oxide substrate contaminated by water molecules and tested by indentation with a pyramidal probe of oxide crystal. Recent theory on the effect of liquid contaminant layers on surface strength has been mainly focussed on Lennard Jones (LJ) molecules with some studies on alcohols and water, described by molecular dynamics, which allows the molecules to be squeezed out as the crystal lattice is deformed. In this work, we have focused on water by studying the forces between a magnesium oxide (MgO) atomic force microscope (AFM) probe and an MgO slab. Force versus separation has been plotted as the AFM probe was moved towards and away from the substrate. Simulation results showed that the water layers could be removed in steps, giving up to four force peaks. The last monolayer of water could not be squeezed out, even at pressures where MgO deformed plastically. Interestingly, with water present, strength was reduced, but more in tensile than compressive measurements. In conclusion, water contaminating the oxide surface in AFM strength testing is structured. Water layer squeezing removal can be predicted by molecular modelling, which may be verified by AFM experiments to show that water can influence the strength of perfect crystals at the nanometre scale.

  3. A software tool for STED-AFM correlative super-resolution microscopy

    NASA Astrophysics Data System (ADS)

    Koho, Sami; Deguchi, Takahiro; Löhmus, Madis; Näreoja, Tuomas; Hänninen, Pekka E.

    2015-03-01

    Multi-modal correlative microscopy allows combining the strengths of several imaging techniques to provide unique contrast. However it is not always straightforward to setup instruments for such customized experiments, as most microscope manufacturers use their own proprietary software, with limited or no capability to interface with other instruments - this makes correlation of the multi-modal data extremely challenging. We introduce a new software tool for simultaneous use of a STimulated Emission Depletion (STED) microscope with an Atomic Force Microscope (AFM). In our experiments, a Leica TCS STED commercial super-resolution microscope, together with an Agilent 5500ilm AFM microscope was used. With our software, it is possible to synchronize the data acquisition between the STED and AFM instruments, as well as to perform automatic registration of the AFM images with the super-resolution STED images. The software was realized in LabVIEW; the registration part was also implemented as an ImageJ script. The synchronization was realized by controlling simple trigger signals, also available in the commercial STED microscope, with a low-cost National Instruments USB-6501 digital I/O card. The registration was based on detecting the positions of the AFM tip inside the STED fieldof-view, which were then used as registration landmarks. The registration should work on any STED and tip-scanning AFM microscope combination, at nanometer-scale precision. Our STED-AFM correlation method has been tested with a variety of nanoparticle and fixed cell samples. The software will be released under BSD open-source license.

  4. A rapid and automated relocation method of an AFM probe for high-resolution imaging.

    PubMed

    Zhou, Peilin; Yu, Haibo; Shi, Jialin; Jiao, Niandong; Wang, Zhidong; Wang, Yuechao; Liu, Lianqing

    2016-09-30

    The atomic force microscope (AFM) is one of the most powerful tools for high-resolution imaging and high-precision positioning for nanomanipulation. The selection of the scanning area of the AFM depends on the use of the optical microscope. However, the resolution of an optical microscope is generally no larger than 200 nm owing to wavelength limitations of visible light. Taking into consideration the two determinants of relocation-relative angular rotation and positional offset between the AFM probe and nano target-it is therefore extremely challenging to precisely relocate the AFM probe to the initial scan/manipulation area for the same nano target after the AFM probe has been replaced, or after the sample has been moved. In this paper, we investigate a rapid automated relocation method for the nano target of an AFM using a coordinate transformation. The relocation process is both simple and rapid; moreover, multiple nano targets can be relocated by only identifying a pair of reference points. It possesses a centimeter-scale location range and nano-scale precision. The main advantages of this method are that it overcomes the limitations associated with the resolution of optical microscopes, and that it is label-free on the target areas, which means that it does not require the use of special artificial markers on the target sample areas. Relocation experiments using nanospheres, DNA, SWCNTs, and nano patterns amply demonstrate the practicality and efficiency of the proposed method, which provides technical support for mass nanomanipulation and detection based on AFM for multiple nano targets that are widely distributed in a large area. PMID:27559679

  5. Long-lived Spin Relaxation and Spin Coherence of Electrons in Monolayer MoS2

    NASA Astrophysics Data System (ADS)

    Yang, Luyi

    Monolayer MoS2 and related transition metal dichalcogenides (TMDs) are direct-gap semiconductors in which strong spin-orbit coupling and a lack of structural inversion symmetry give rise to new coupled spin-valley physics. Although robust spin and valley degrees of freedom have been inferred from polarized photoluminescence (PL) studies of excitons, PL timescales are necessarily constrained by short (3-100 ps) electron-hole recombination. Direct probes of spin/valley dynamics of resident carriers in electron (or hole)-doped TMDs, which may persist long after recombination ceases, are still at an early stage. Here we directly measure the coupled spin-valley dynamics of resident electrons in n-type monolayer MoS2 using optical Kerr-rotation spectroscopy, and reveal very long spin lifetimes exceeding 3ns at 5K (orders of magnitude longer than typical exciton lifetimes). In contrast with conventional III-V or II-VI semiconductors, spin relaxation accelerates rapidly in small transverse magnetic fields. This suggests a novel mechanism of electron spin dephasing in monolayer TMDs, driven by rapidly-fluctuating internal spin-orbit fields due to fast intervalley scattering. Additionally, a small but very long-lived oscillatory signal is observed, indicating spin coherence of localized states. These studies provide direct insight into the physics underpinning the spin and valley dynamics of electrons in monolayer TMDs. In collaboration with S.A. Crooker & N.A. Sinitsyn (Los Alamos), W. Chen, J. Yuan, J. Zhang & J. Lou (Rice University), K.M. McCreary & B.T. Jonker (Naval Research Lab), and supported by the Los Alamos LDRD program.

  6. Quantum fluctuations of radiation pressure

    SciTech Connect

    Wu, Chun-Hsien; Ford, L. H.

    2001-08-15

    Quantum fluctuations of electromagnetic radiation pressure are discussed. We use an approach based on the quantum stress tensor to calculate the fluctuations in velocity and position of a mirror subjected to electromagnetic radiation. Our approach reveals that radiation pressure fluctuations in the case of a coherent state are due to a cross term between vacuum and state dependent terms in a stress tensor operator product. Thus observation of these fluctuations would entail experimental confirmation of this cross term. We first analyze the pressure fluctuations on a single, perfectly reflecting mirror, and then study the case of an interferometer. This involves a study of the effects of multiple bounces in one arm, as well as the correlations of the pressure fluctuations between arms of the interferometer. In all cases, our results are consistent with those previously obtained by Caves using different methods. We argue that the agreement between the different methods supports the reality of the cross term and justifies the methods used in its evaluation.

  7. Generalised tensor fluctuations and inflation

    SciTech Connect

    Cannone, Dario; Tasinato, Gianmassimo; Wands, David E-mail: g.tasinato@swansea.ac.uk

    2015-01-01

    Using an effective field theory approach to inflation, we examine novel properties of the spectrum of inflationary tensor fluctuations, that arise when breaking some of the symmetries or requirements usually imposed on the dynamics of perturbations. During single-clock inflation, time-reparameterization invariance is broken by a time-dependent cosmological background. In order to explore more general scenarios, we consider the possibility that spatial diffeomorphism invariance is also broken by effective mass terms or by derivative operators for the metric fluctuations in the Lagrangian. We investigate the cosmological consequences of the breaking of spatial diffeomorphisms, focussing on operators that affect the power spectrum of fluctuations. We identify the operators for tensor fluctuations that can provide a blue spectrum without violating the null energy condition, and operators for scalar fluctuations that lead to non-conservation of the comoving curvature perturbation on superhorizon scales even in single-clock inflation. In the last part of our work, we also examine the consequences of operators containing more than two spatial derivatives, discussing how they affect the sound speed of tensor fluctuations, and showing that they can mimic some of the interesting effects of symmetry breaking operators, even in scenarios that preserve spatial diffeomorphism invariance.

  8. AFM, ellipsometry, XPS and TEM on ultra-thin oxide/polymer nanocomposite layers in organic thin film transistors.

    PubMed

    Fian, A; Haase, A; Stadlober, B; Jakopic, G; Matsko, N B; Grogger, W; Leising, G

    2008-03-01

    Here we report on the fabrication and characterization of ultra-thin nanocomposite layers used as gate dielectric in low-voltage and high-performance flexible organic thin film transistors (oTFTs). Reactive sputtered zirconia layers were deposited with low thermal exposure of the substrate and the resulting porous oxide films with high leakage currents were spin-coated with an additional layer of poly-alpha-methylstyrene (P alphaMS). After this treatment a strong improvement of the oTFT performance could be observed; leakage currents could be eliminated almost completely. In ellipsometric studies a higher refractive index of the ZrO(2)/P alphaMS layers compared to the "as sputtered" zirconia films could be detected without a significant enhancement of the film thickness. Atomic force microscopy (AFM) measurements of the surface topography clearly showed a surface smoothing after the P alphaMS coating. Further studies with X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) also indicated that the polymer definitely did not form an extra layer. The polymer chains rather (self-)assemble in the nano-scaled interspaces of the porous oxide film giving an oxide-polymer "nanocomposite" with a high oxide filling grade resulting in high dielectric constants larger than 15. The dielectric strength of more than 1 MV cm(-1) is in good accordance with the polymer-filled interspaces. PMID:17952415

  9. Controlling spin relaxation with a cavity

    NASA Astrophysics Data System (ADS)

    Bienfait, A.; Pla, J. J.; Kubo, Y.; Zhou, X.; Stern, M.; Lo, C. C.; Weis, C. D.; Schenkel, T.; Vion, D.; Esteve, D.; Morton, J. J. L.; Bertet, P.

    2016-03-01

    Spontaneous emission of radiation is one of the fundamental mechanisms by which an excited quantum system returns to equilibrium. For spins, however, spontaneous emission is generally negligible compared to other non-radiative relaxation processes because of the weak coupling between the magnetic dipole and the electromagnetic field. In 1946, Purcell realized that the rate of spontaneous emission can be greatly enhanced by placing the quantum system in a resonant cavity. This effect has since been used extensively to control the lifetime of atoms and semiconducting heterostructures coupled to microwave or optical cavities, and is essential for the realization of high-efficiency single-photon sources. Here we report the application of this idea to spins in solids. By coupling donor spins in silicon to a superconducting microwave cavity with a high quality factor and a small mode volume, we reach the regime in which spontaneous emission constitutes the dominant mechanism of spin relaxation. The relaxation rate is increased by three orders of magnitude as the spins are tuned to the cavity resonance, demonstrating that energy relaxation can be controlled on demand. Our results provide a general way to initialize spin systems into their ground state and therefore have applications in magnetic resonance and quantum information processing. They also demonstrate that the coupling between the magnetic dipole of a spin and the electromagnetic field can be enhanced up to the point at which quantum fluctuations have a marked effect on the spin dynamics; as such, they represent an important step towards the coherent magnetic coupling of individual spins to microwave photons.

  10. Controlling spin relaxation with a cavity.

    PubMed

    Bienfait, A; Pla, J J; Kubo, Y; Zhou, X; Stern, M; Lo, C C; Weis, C D; Schenkel, T; Vion, D; Esteve, D; Morton, J J L; Bertet, P

    2016-03-01

    Spontaneous emission of radiation is one of the fundamental mechanisms by which an excited quantum system returns to equilibrium. For spins, however, spontaneous emission is generally negligible compared to other non-radiative relaxation processes because of the weak coupling between the magnetic dipole and the electromagnetic field. In 1946, Purcell realized that the rate of spontaneous emission can be greatly enhanced by placing the quantum system in a resonant cavity. This effect has since been used extensively to control the lifetime of atoms and semiconducting heterostructures coupled to microwave or optical cavities, and is essential for the realization of high-efficiency single-photon sources. Here we report the application of this idea to spins in solids. By coupling donor spins in silicon to a superconducting microwave cavity with a high quality factor and a small mode volume, we reach the regime in which spontaneous emission constitutes the dominant mechanism of spin relaxation. The relaxation rate is increased by three orders of magnitude as the spins are tuned to the cavity resonance, demonstrating that energy relaxation can be controlled on demand. Our results provide a general way to initialize spin systems into their ground state and therefore have applications in magnetic resonance and quantum information processing. They also demonstrate that the coupling between the magnetic dipole of a spin and the electromagnetic field can be enhanced up to the point at which quantum fluctuations have a marked effect on the spin dynamics; as such, they represent an important step towards the coherent magnetic coupling of individual spins to microwave photons. PMID:26878235

  11. Spin-orbital exchange of strongly interacting fermions in the p band of a two-dimensional optical lattice.

    PubMed

    Zhou, Zhenyu; Zhao, Erhai; Liu, W Vincent

    2015-03-13

    Mott insulators with both spin and orbital degeneracy are pertinent to a large number of transition metal oxides. The intertwined spin and orbital fluctuations can lead to rather exotic phases such as quantum spin-orbital liquids. Here, we consider two-component (spin 1/2) fermionic atoms with strong repulsive interactions on the p band of the optical square lattice. We derive the spin-orbital exchange for quarter filling of the p band when the density fluctuations are suppressed, and show that it frustrates the development of long-range spin order. Exact diagonalization indicates a spin-disordered ground state with ferro-orbital order. The system dynamically decouples into individual Heisenberg spin chains, each realizing a Luttinger liquid accessible at higher temperatures compared to atoms confined to the s band. PMID:25815913

  12. Fluctuations of the order parameter in R 0.55Sr0.45MnO3 manganites near the metal-insulator phase transition

    NASA Astrophysics Data System (ADS)

    Bukhanko, F. N.; Bukhanko, A. F.

    2013-06-01

    The magnetic phase transformations induced by changes of the composition, external magnetic field strength, and temperature in manganites with a nearly half-filled conduction band in the vicinity of the metal-insulator phase transition have been investigated experimentally. It has been found that the substitution of rare-earth ions (Sm) for Nd ions with a larger ionic radius in R 0.55Sr0.45MnO3 manganites leads to a linear decrease in the Curie temperature T C from 270 to 130 K and a transformation of the second-order ferromagnetic (FM) phase transition into a first-order phase transition. The results of measurements of the alternating-current (ac) magnetic susceptibility in the (Nd1 - y Sm y )0.55Sr0.45MnO3 system indicate the existence of a Griffiths-like phase in samples with a samarium concentration y > 0.5 in the temperature range T C < T < T* (where T* ˜ 220 K). For samples with y > 0.5, the magnetization isotherms at temperatures above T C exhibit specific features in the form of reversible metamagnetic phase transitions associated with strong fluctuations of the short-range ferromagnetic order in the system of Mn spins in the high-temperature Griffiths phase consisting of ferromagnetic clusters. According to the results of measurements of the ac magnetic susceptibility in the (Sm1 - y Gd y )0.55Sr0.45MnO3 system for a gadolinium concentration y = 0.5, there is an antiferromagnetic (AFM) phase with an unusually low critical temperature of the spin ordering T N ≊ 48.5 K. An increase in the external static magnetic field at 4.2 K leads to an irreversible induction of the ferromagnetic phase, which is stable in the temperature range 4.2-60 K. In the temperature range 60 K < T < 150 K, there exists a high-temperature Griffiths-like phase consisting of clusters (correlations) with a local charge/orbital ordering. The metastable antiferromagnetic structure is retained in samples with gadolinium concentrations y = 0.6 and 0.7, but it is destroyed with a further

  13. AFM as an analysis tool for high-capacity sulfur cathodes for Li-S batteries.

    PubMed

    Hiesgen, Renate; Sörgel, Seniz; Costa, Rémi; Carlé, Linus; Galm, Ines; Cañas, Natalia; Pascucci, Brigitta; Friedrich, K Andreas

    2013-01-01

    In this work, material-sensitive atomic force microscopy (AFM) techniques were used to analyse the cathodes of lithium-sulfur batteries. A comparison of their nanoscale electrical, electrochemical, and morphological properties was performed with samples prepared by either suspension-spraying or doctor-blade coating with different binders. Morphological studies of the cathodes before and after the electrochemical tests were performed by using AFM and scanning electron microscopy (SEM). The cathodes that contained polyvinylidene fluoride (PVDF) and were prepared by spray-coating exhibited a superior stability of the morphology and the electric network associated with the capacity and cycling stability of these batteries. A reduction of the conductive area determined by conductive AFM was found to correlate to the battery capacity loss for all cathodes. X-ray diffraction (XRD) measurements of Li2S exposed to ambient air showed that insulating Li2S hydrolyses to insulating LiOH. This validates the significance of electrical ex-situ AFM analysis after cycling. Conductive tapping mode AFM indicated the existence of large carbon-coated sulfur particles. Based on the analytical findings, the first results of an optimized cathode showed a much improved discharge capacity of 800 mA·g(sulfur)(-1) after 43 cycles. PMID:24205455

  14. Sub-surface imaging of carbon nanotube-polymer composites using dynamic AFM methods.

    PubMed

    Cadena, Maria J; Misiego, Rocio; Smith, Kyle C; Avila, Alba; Pipes, Byron; Reifenberger, Ron; Raman, Arvind

    2013-04-01

    High-resolution sub-surface imaging of carbon nanotube (CNT) networks within polymer nanocomposites is demonstrated through electrical characterization techniques based on dynamic atomic force microscopy (AFM). We compare three techniques implemented in the single-pass configuration: DC-biased amplitude modulated AFM (AM-AFM), electrostatic force microscopy (EFM) and Kelvin probe force microscopy (KPFM) in terms of the physics of sub-surface image formation and experimental robustness. The methods were applied to study the dispersion of sub-surface networks of single-walled nanotubes (SWNTs) in a polyimide (PI) matrix. We conclude that among these methods, the KPFM channel, which measures the capacitance gradient (∂C/∂d) at the second harmonic of electrical excitation, is the best channel to obtain high-contrast images of the CNT network embedded in the polymer matrix, without the influence of surface conditions. Additionally, we propose an analysis of the ∂C/∂d images as a tool to characterize the dispersion and connectivity of the CNTs. Through the analysis we demonstrate that these AFM-based sub-surface methods probe sufficiently deep within the SWNT composites, to resolve clustered networks that likely play a role in conductivity percolation. This opens up the possibility of dynamic AFM-based characterization of sub-surface dispersion and connectivity in nanostructured composites, two critical parameters for nanocomposite applications in sensors and energy storage devices. PMID:23478510

  15. Nanoscale crystallization of phase change Ge2Sb2Te5 film with AFM lithography.

    PubMed

    Kim, JunHo

    2010-01-01

    We have made nanoindents on Ge(2)Sb(2)Te(5)(GST) films using electric field-assisted atomic force microscope (AFM) lithography. GST shows increase of material density and electric conductivity as it changes from amorphous to crystalline phases. By applying electric field between AFM probe-tip and GST surface, nanoscale crystallization could be induced on tip contact area. As the crystallized GST exhibits increase of material density, that is to say depression of volume, nanoindented surface with crystallization is created on host amorphous GST (a-GST) film. For the AFM lithography, a highly conductive tip, which showed voltage-switching characteristics in current-voltage spectroscopy of GST film, was found to be very suitable for recording and sensing crystallized nanoindents on the GST film. By varying sample bias voltages, we performed nanoscale crystallization, and measured the nanostructured film in AFM conductance-image (C-image) mode and topography-image (T-image) mode, simultaneously. Two types of crystallized wires were fabricated on (a-GST) film. Type-I was sensed in only C-image, whereas Type-II was sensed in both C-image and T-image. These nanowires are discussed in terms of crystallization of GST and sensitivity of current (or topography) sensing. By repeated lithography, larger size of nanoindented wires were also produced, which indicates line-dimension controllability of AFM lithography. PMID:20853405

  16. AFM as an analysis tool for high-capacity sulfur cathodes for Li–S batteries

    PubMed Central

    Sörgel, Seniz; Costa, Rémi; Carlé, Linus; Galm, Ines; Cañas, Natalia; Pascucci, Brigitta; Friedrich, K Andreas

    2013-01-01

    Summary In this work, material-sensitive atomic force microscopy (AFM) techniques were used to analyse the cathodes of lithium–sulfur batteries. A comparison of their nanoscale electrical, electrochemical, and morphological properties was performed with samples prepared by either suspension-spraying or doctor-blade coating with different binders. Morphological studies of the cathodes before and after the electrochemical tests were performed by using AFM and scanning electron microscopy (SEM). The cathodes that contained polyvinylidene fluoride (PVDF) and were prepared by spray-coating exhibited a superior stability of the morphology and the electric network associated with the capacity and cycling stability of these batteries. A reduction of the conductive area determined by conductive AFM was found to correlate to the battery capacity loss for all cathodes. X-ray diffraction (XRD) measurements of Li2S exposed to ambient air showed that insulating Li2S hydrolyses to insulating LiOH. This validates the significance of electrical ex-situ AFM analysis after cycling. Conductive tapping mode AFM indicated the existence of large carbon-coated sulfur particles. Based on the analytical findings, the first results of an optimized cathode showed a much improved discharge capacity of 800 mA·g(sulfur)−1 after 43 cycles. PMID:24205455

  17. Enabling accurate gate profile control with inline 3D-AFM

    NASA Astrophysics Data System (ADS)

    Bao, Tianming; Lopez, Andrew; Dawson, Dean

    2009-05-01

    The logic and memory semiconductor device technology strives to follow the aggressive ITRS roadmap. The ITRS calls for increased 3D metrology to meet the demand for tighter process control at 45nm and 32nm nodes. In particular, gate engineering has advanced to a level where conventional metrology by CD-SEM and optical scatterometry (OCD) faces fundamental limitations without involvement of 3D atomic force microscope (3D-AFM or CD-AFM). This paper reports recent progress in 3D-AFM to address the metrology need to control gate dimension in MOSFET transistor formation. 3D-AFM metrology measures the gate electrode at post-etch with the lowest measurement uncertainty for critical gate geometry, including linewidth, sidewall profile, sidewall angle (SWA), line width roughness (LWR), and line edge roughness (LER). 3D-AFM enables accurate gate profile control in three types of metrology applications: reference metrology to validate CD-SEM and OCD, inline depth or 3D monitoring, or replacing TEM for 3D characterization for engineering analysis.

  18. Development of a new generation of active AFM tools for applications in liquids

    NASA Astrophysics Data System (ADS)

    Rollier, A.-S.; Jenkins, D.; Dogheche, E.; Legrand, B.; Faucher, M.; Buchaillot, L.

    2010-08-01

    Atomic force microscopy (AFM) is a powerful imaging tool with high-resolution imaging capability. AFM probes consist of a very sharp tip at the end of a silicon cantilever that can respond to surface artefacts to produce an image of the topography or surface features. They are intrinsically passive devices. For imaging soft biological samples, and also for samples in liquid, it is essential to control the AFM tip position, both statically and dynamically, and this is not possible using external actuators mounted on the AFM chip. AFM cantilevers have been fabricated using silicon micromachining to incorporate a piezoelectric thin film actuator for precise control. The piezoelectric thin films have been fully characterized to determine their actuation performance and to characterize the operation of the integrated device. Examples of the spatial and vertical response are presented to illustrate their imaging capability. For operation in a liquid environment, the dynamic behaviour has been modelled and verified experimentally. The optimal drive conditions for the cantilever, along with their dynamic response, including frequency and phase in air and water, are presented.

  19. Effect of AFM probe geometry on visco-hyperelastic characterization of soft materials.

    PubMed

    Boccaccio, Antonio; Lamberti, Luciano; Papi, Massimiliano; De Spirito, Marco; Pappalettere, Carmine

    2015-08-14

    Atomic force microscopy (AFM) nanoindentation is very suited for nano- and microscale mechanical characterization of soft materials. Although the structural response of polymeric networks that form soft matter depends on viscous effects caused by the relative slippage of polymeric chains, the usual assumption made in the AFM-based characterization is that the specimen behaves as a purely elastic material and viscous forces are negligible. However, for each geometric configuration of the AFM tip, there will be a limit indentation rate above which viscous effects must be taken into account to correctly determine mechanical properties. A parametric finite element study conducted on 12 geometric configurations of a blunt cone AFM tip (overall, the study included about 200 finite element analyses) allowed us to determine the limit indentation rate for each configuration. The selected tip dimensions cover commercially available products and account for changes in tip geometry caused by serial measurements. Nanoindentation rates cover typical experimental conditions set in AFM bio-measurements on soft matter. Viscous effects appear to be more significant in the case of sharper tips. This implies that, if quantitative data on sample viscosity are not available, using a rounded indenter and carrying out experiments below the limit indentation rate will allow errors in the determination of mechanical properties to be minimized. PMID:26201503

  20. AFM1 in Milk: Physical, Biological, and Prophylactic Methods to Mitigate Contamination

    PubMed Central

    Giovati, Laura; Magliani, Walter; Ciociola, Tecla; Santinoli, Claudia; Conti, Stefania; Polonelli, Luciano

    2015-01-01

    Aflatoxins (AFs) are toxic, carcinogenic, immunosuppressive secondary metabolites produced by some Aspergillus species which colonize crops, including many dietary staple foods and feed components. AFB1 is the prevalent and most toxic among AFs. In the liver, it is biotransformed into AFM1, which is then excreted into the milk of lactating mammals, including dairy animals. AFM1 has been shown to be cause of both acute and chronic toxicoses. The presence of AFM1 in milk and dairy products represents a worldwide concern since even small amounts of this metabolite may be of importance as long-term exposure is concerned. Contamination of milk may be mitigated either directly, decreasing the AFM1 content in contaminated milk, or indirectly, decreasing AFB1 contamination in the feed of dairy animals. Current strategies for AFM1 mitigation include good agricultural practices in pre-harvest and post-harvest management of feed crops (including storage) and physical or chemical decontamination of feed and milk. However, no single strategy offers a complete solution to the issue. PMID:26512694