Science.gov

Sample records for afm studies showed

  1. Raman and AFM study of gamma irradiated plastic bottle sheets

    SciTech Connect

    Ali, Yasir; Kumar, Vijay; Dhaliwal, A. S.; Sonkawade, R. G.

    2013-02-05

    In this investigation, the effects of gamma irradiation on the structural properties of plastic bottle sheet are studied. The Plastic sheets were exposed with 1.25MeV {sup 60}Co gamma rays source at various dose levels within the range from 0-670 kGy. The induced modifications were followed by micro-Raman and atomic force microscopy (AFM). The Raman spectrum shows the decrease in Raman intensity and formation of unsaturated bonds with an increase in the gamma dose. AFM image displays rough surface morphology after irradiation. The detailed Raman analysis of plastic bottle sheets is presented here, and the results are correlated with the AFM observations.

  2. AFM indentation study of breast cancer cells

    SciTech Connect

    Li, Q.S.; Lee, G.Y.H.; Ong, C.N.; Lim, C.T.

    2008-10-03

    Mechanical properties of individual living cells are known to be closely related to the health and function of the human body. Here, atomic force microscopy (AFM) indentation using a micro-sized spherical probe was carried out to characterize the elasticity of benign (MCF-10A) and cancerous (MCF-7) human breast epithelial cells. AFM imaging and confocal fluorescence imaging were also used to investigate their corresponding sub-membrane cytoskeletal structures. Malignant (MCF-7) breast cells were found to have an apparent Young's modulus significantly lower (1.4-1.8 times) than that of their non-malignant (MCF-10A) counterparts at physiological temperature (37 deg. C), and their apparent Young's modulus increase with loading rate. Both confocal and AFM images showed a significant difference in the organization of their sub-membrane actin structures which directly contribute to their difference in cell elasticity. This change may have facilitated easy migration and invasion of malignant cells during metastasis.

  3. High speed AFM studies of 193 nm immersion photoresists during TMAH development

    NASA Astrophysics Data System (ADS)

    Ngunjiri, Johnpeter; Meyers, Greg; Cameron, Jim; Suzuki, Yasuhiro; Jeon, Hyun; Lee, Dave; Choi, Kwang Mo; Kim, Jung Woo; Im, Kwang-Hwyi; Lim, Hae-Jin

    2016-03-01

    In this paper we report on our studies of the dynamic process of resist development in real time. Using High Speed - Atomic Force Microscopy (HS-AFM) in dilute developer solution, changes in morphology and nanomechanical properties of patterned resist were monitored. The Bruker Dimension FastScan AFMTM was applied to analyze 193 nm acrylic-based immersion resists in developer. HS-AFM operated in Peak Force mapping mode allowed for concurrent measurements of image topography resist stiffness, adhesion to AFM probe and deformation during development. In our studies we focused on HS-AFM topography data as it readily revealed detailed information about initial resist morphology, followed by a resist swelling process and eventual dissolution of the exposed resist areas. HS-AFM showed potential for tracking and understanding development of patterned resist films and can be useful in evaluating the dissolution properties of different resist designs.

  4. Surface Morphological Studies on Nerve Cells by AFM

    NASA Astrophysics Data System (ADS)

    Durkaya, Goksel; Zhong, Lei; Rehder, Vincent; Dietz, Nikolaus

    2009-03-01

    Surface morphological properties of fixed and living nerve cells removed from the buccal ganglion of Helisoma trivolvis have been studied by using Atomic Force Microscopy (AFM). Identified, individual neurons were removed from the buccal ganglion of Helisoma trivolvis and plated into poly-L-lysine coated glass cover-slips. The growth of the nerve cells was stopped and fixed with 0.1% Glutaraldehyde and 4% Formaldehyde solution after extension of growth cones at the tip of the axons. Topography and softness of growth cone filopodia and overlying lamellopodium (veil) were probed by AFM. Information obtained from AFM's amplitude and phase channels have been used for determination of softness of the region probed. The results of structural studies on the cells are linked to their mechanical properties and internal molecular density distribution.

  5. AFM study of polymer lubricants on hard disk surfaces

    NASA Astrophysics Data System (ADS)

    Bao, G. W.; Troemel, M.; Li, S. F. Y.

    Thin liquid films of PFPE (perfluoropolyether) lubricants dip-coated on hard disk surfaces were imaged with non-contact mode AFM. Demnum lubricants with phosphazene additives exhibited strong interactions with a silicon tip due to the formation of liquid bridges between the lubricants and the tip, as indicated by a remarkable hysteresis loop between approach and retraction curves in force vs. distance measurements. Features resulting from capillary forces due to tip tapping to the lubricants were revealed, which demonstrated that the capillary forces could be used to lock the non-contacting tip at a certain separation from the substrate surface to obtain AFM images. Force vs. distance curves for Fomblin Z-dol lubricants showed negligible hysteresis effects and features corresponding to lateral distortion of the tip by the lubricants only were observed. In both cases, only when the tip was positioned far above the surfaces could the natural distributions of the lubricants be imaged.

  6. XPS and AFM Study of GaAs Surface Treatment

    SciTech Connect

    Contreras-Guerrero, R.; Wallace, R. M.; Aguirre-Francisco, S.; Herrera-Gomez, A.; Lopez-Lopez, M.

    2008-11-13

    Obtaining smooth and atomically clean surfaces is an important step in the preparation of a surface for device manufacturing. In this work different processes are evaluated for cleaning a GaAs surface. A good surface cleaning treatment is that which provides a high level of uniformity and controllability of the surface. Different techniques are useful as cleaning treatments depending on the growth process to be used. The goal is to remove the oxygen and carbon contaminants and then form a thin oxide film to protect the surface, which is easy to remove later with thermal desorption mechanism like molecular beam epitaxy (MBE) with minimal impact to the surface. In this study, atomic force microscopy (AFM), x-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS) were used to characterize the structure of the surface, the composition, as well as detect oxygen and carbon contaminant on the GaAs surface. This study consists in two parts. The first part the surface was subjected to different chemical treatments. The chemical solutions were: (a)H{sub 2}SO{sub 4}:H{sub 2}O{sub 2}:H{sub 2}O(4:1:100), (b) HCl: H{sub 2}O(1:3), (c)NH{sub 4}OH 29%. The treatments (a) and (b) reduced the oxygen on the surface. Treatment (c) reduces carbon contamination. In the second part we made MOS devices on the surfaces treated. They were characterized by CV and IV electrical measurements. They show frequency dispersion.

  7. Review and perspectives of AFM application on the study of deformable drop/bubble interactions.

    PubMed

    Wang, Wei; Li, Kai; Ma, Mengyu; Jin, Hang; Angeli, Panagiota; Gong, Jing

    2015-11-01

    The applications of Atomic Force Microscopy (AFM) on the study of dynamic interactions and film drainage between deformable bodies dispersed in aqueous solutions are reviewed in this article. Novel experimental designs and recent advances in experimental methodologies are presented, which show the advantage of using AFM as a tool for probing colloidal interactions. The effects of both DLVO and non-DLVO forces on the colloid stabilization mechanism are discussed. Good agreement is found between the force - drop/bubble deformation behaviour revealed by AFM measurements and the theoretical modeling of film drainage process, giving a convincing explanation of the occurrence of certain phenomenon. However, the behaviour and shape of deformable drops as they approach or retract is still not well resolved. In addition, when surfactants are present further research is needed on the absorption of surfactant molecules into the interfaces, their mobility and the effects on interfacial film properties. PMID:26344865

  8. SU-8 hollow cantilevers for AFM cell adhesion studies

    NASA Astrophysics Data System (ADS)

    Martinez, Vincent; Behr, Pascal; Drechsler, Ute; Polesel-Maris, Jérôme; Potthoff, Eva; Vörös, Janos; Zambelli, Tomaso

    2016-05-01

    A novel fabrication method was established to produce flexible, transparent, and robust tipless hollow atomic force microscopy (AFM) cantilevers made entirely from SU-8. Channels of 3 μm thickness and several millimeters length were integrated into 12 μm thick and 40 μm wide cantilevers. Connected to a pressure controller, the devices showed high sealing performance with no leakage up to 6 bars. Changing the cantilever lengths from 100 μm to 500 μm among the same wafer allowed the targeting of various spring constants ranging from 0.5 to 80 N m‑1 within a single fabrication run. These hollow polymeric AFM cantilevers were operated in the optical beam deflection configuration. To demonstrate the performance of the device, single-cell force spectroscopy experiments were performed with a single probe detaching in a serial protocol more than 100 Saccharomyces cerevisiae yeast cells from plain glass and glass coated with polydopamine while measuring adhesion forces in the sub-nanoNewton range. SU-8 now offers a new alternative to conventional silicon-based hollow cantilevers with more flexibility in terms of complex geometric design and surface chemistry modification.

  9. STM and AFM; Which is Better for Surface Structural Analysis? Non- contact AFM Studies on Ge/Si(105) Surface

    NASA Astrophysics Data System (ADS)

    Hasegawa, Yukio

    2006-03-01

    Scanning tunneling microscopy (STM) has been utilized to determine surface atomic structure with its highly resolved images. Probing surface electronic states near the Fermi energy (EF), STM images, however, do not necessarily represent the atomic structure of surfaces. It has been believed that atomic force microscopy (AFM) provides us surface topographic images without being disturbed by the electronic states. In order to prove the surpassing performance, we performed noncontact (nc) AFM on the Ge/Si(105) surface [1], which is a facet plane of the ?hut? clusters formed on Ge-deposited Si(001) surface. It is found that STM images taken on the surface, either filled- or empty-state images, do not show all surface atoms because of the electronic effect; some surface atoms have dangling bond states below EF and other surface atoms have states above EF. [2]. In a nc-AFM image, on the other hand, all surface atoms having a dangling bond are observed [3], directly representing an atomic structure of the surface. Electronic information can also be obtained in AFM by using a Kelvin-probe method. From atomically resolved potential profile we obtained, charge transfer among the dangling bond states is directly demonstrated. These results clearly demonstrate that highly-resolved nc-AFM with a Kelvin-probe method is an ideal tool for analysis of atomic structures and electronic properties of surfaces. This work was done in collaboration with T. Eguchi, K. Akiyama, T. An, and M. Ono, ISSP, Univ. Tokyo and JST, Y. Fujikawa and T. Sakurai, IMR. Tohoku Univ. T. Hashimoto, AIST, Y. Morikawa, ISIR, Osaka Univ. K. Terakura, Hokkaido Univ., and M.G. Lagally, University of Wisconsin-Madison. [1] T. Eguchi et al., Phys. Rev. Lett. 93, 266102 (2004). [2] Y. Fujikawa et al., Phys. Rev. Lett. 88, 176101 (2002). [3] T. Eguchi and Y. Hasegawa, Phys. Rev. Lett. 89, 256105 (2002)

  10. Iron oxide mineral-water interface reactions studied by AFM

    SciTech Connect

    Hawley, M.E.; Rogers, P.S.Z.

    1994-07-01

    Natural iron mineral surfaces have been examined in air by atomic force (AFM) and scanning tunneling (STM) microscopies. A number of different surface features were found to be characteristic of the native surface. Even surfaces freshly exposed by crushing larger crystals were found to have a pebbly surface texture caused by the presence of thin coatings of what might be surface precipitates. This finding is interpreted as evidence for previous exposure to water, probably through an extensive network of microfractures. Surface reactions on the goethite crystals were studied by AFM at size resolutions ranging from microns to atomic resolution before, during, and after reaction with distilled water and 0.lN HCl. Immediate and extensive surface reconfiguration occurred on contact with water. In one case, after equilibration with water for 3 days, surface reprecipitation, etching and pitting were observed. Atomic resolution images taken under water were found to be disordered. The result of surface reaction was generally to increase the surface area substantially through the extension of surface platelet arrays, present prior to reaction. This work is being done in support of the site characterization project at Yucca Mountain.

  11. AFM Studies of Conformational Changes in Proteins and Peptides

    NASA Astrophysics Data System (ADS)

    Ploscariu, Nicoleta; Sukthankar, Pinakin; Tomich, John; Szoszkiewicz, Robert

    2015-03-01

    Here, we present estimates of molecular stiffness and mechanical energy dissipation factors for some examples of proteins and peptides. The results are obtained from AFM force spectroscopy measurements. To determine molecular stiffness and mechanical energy dissipation factors we developed a model based on measuring several resonance frequencies of an AFM cantilever in contact with either single protein molecule or peptides adsorbed on arbitrary surface. We used compliant AFM cantilevers with a small aspect ratio - a ratio of length to width - in air and in liquid, including biologically relevant phosphate buffered saline medium. Department of Physics.

  12. Tumor suppressor protein SMAR1 modulates the roughness of cell surface: combined AFM and SEM study

    PubMed Central

    2009-01-01

    Background Imaging tools such as scanning electron microscope (SEM) and atomic force microscope (AFM) can be used to produce high-resolution topographic images of biomedical specimens and hence are well suited for imaging alterations in cell morphology. We have studied the correlation of SMAR1 expression with cell surface smoothness in cell lines as well as in different grades of human breast cancer and mouse tumor sections. Methods We validated knockdown and overexpression of SMAR1 using RT-PCR as well as Western blotting in human embryonic kidney (HEK) 293, human breast cancer (MCF-7) and mouse melanoma (B16F1) cell lines. The samples were then processed for cell surface roughness studies using atomic force microscopy (AFM) and scanning electron microscopy (SEM). The same samples were used for microarray analysis as well. Tumors sections from control and SMAR1 treated mice as well as tissues sections from different grades of human breast cancer on poly L-lysine coated slides were used for AFM and SEM studies. Results Tumor sections from mice injected with melanoma cells showed pronounced surface roughness. In contrast, tumor sections obtained from nude mice that were first injected with melanoma cells followed by repeated injections of SMAR1-P44 peptide, exhibited relatively smoother surface profile. Interestingly, human breast cancer tissue sections that showed reduced SMAR1 expression exhibited increased surface roughness compared to the adjacent normal breast tissue. Our AFM data establishes that treatment of cells with SMAR1-P44 results into increase in cytoskeletal volume that is supported by comparative gene expression data showing an increase in the expression of specific cytoskeletal proteins compared to the control cells. Altogether, these findings indicate that tumor suppressor function of SMAR1 might be exhibited through smoothening of cell surface by regulating expression of cell surface proteins. Conclusion Tumor suppressor protein SMAR1 might be

  13. Atom probe, AFM, and STM studies on vacuum-fired stainless steels.

    PubMed

    Stupnik, A; Frank, P; Leisch, M

    2009-04-01

    The surface morphology of grades 304L and 316LN stainless steels, after low-temperature bake-out process and vacuum annealing, has been studied by atomic force microscopy (AFM) and scanning tunnelling microscopy (STM). The local elemental composition on the surface before and after thermal treatment has been investigated by atom probe (AP) depth profiling measurements. After vacuum annealing, AFM and STM show significant changes in the surface structure and topology. Recrystallization and surface reconstruction is less pronounced on the 316LN stainless steel. AP depth profiling analyses result in noticeable nickel enrichment on the surface of grade 304L samples. Since hydrogen recombination is almost controlled by surface structure and composition, a strong influence on the outgassing behaviour by the particular surface microstructure can be deduced. PMID:19167824

  14. Resveratrol Protects Chondrocytes from Apoptosis via Altering the Ultrastructural and Biomechanical Properties: An AFM Study

    PubMed Central

    Chen, Tongsheng; Wang, Xiaoping

    2014-01-01

    Osteoarthritis (OA), a degenerative joint disease with high prevalence among older people, occurs from molecular or nanometer level and extends gradually to higher degrees of the ultrastructure of cartilage, finally resulting in irreversible structural and functional damages. This report aims to use atomic force microscopy (AFM) to investigate the protective effects of resveratrol (RV), a drug with good anti-inflammatory properties, on cellular morphology, membrane architecture, cytoskeleton, cell surface adhesion and stiffness at nanometer level in sodium nitroprusside (SNP)-induced apoptotic chondrocytes, a typical cellular OA model. CCK-8 assay showed that 100 μM RV significantly prevented SNP-induced cytotoxicity. AFM imaging and quantitative analysis showed that SNP potently induced chondrocytes changes including shrunk, round, lamellipodia contraction and decrease in adherent junctions among cells, as well as the destruction of biomechanics: 90% decrease in elasticity and 30% decrease in adhesion. In addition, confocal imaging analysis showed that SNP induced aggregation of the cytoskeleton and decrease in the expression of cytoskeletal proteins. More importantly, these SNP-induced damages to chondrocytes could be potently prevented by RV pretreatment. Interestingly, the biomechanical changes occurred before morphological changes could be clearly observed during SNP-induced apoptosis, indicating that the biomechanics of cellular membrane may be a more robust indicator of cell function. Collectively, our data demonstrate that RV prevents SNP-induced apoptosis of chondrocytes by regulating actin organization, and that AFM-based technology can be developed into a powerful and sensitive method to study the interaction mechanisms between chondrocytes and drugs. PMID:24632762

  15. Using XAFS, EDAX and AFM in comparative study of various natural and synthetic emeralds

    NASA Astrophysics Data System (ADS)

    Parikh, P.; Saini, N. L.; Dalela, S.; Bhardwaj, D. M.; Fernandes, S.; Gupta, R. P.; Garg, K. B.

    2003-01-01

    We have performed XAFS, EDAX and AFM studies on some natural and synthetic emeralds. While the XAFS results yield information on changes in the valence of the Cr ion and the n-n distance the AFM is used to determine the areal atomic density on surface of the crystals. It is a pilot study to explore if the three techniques can offer a possible way of distinguishing between the natural and synthetic emeralds and the results are promising.

  16. Adsorption Studies with AFM of Human Plasma Fibrinogen on Silicon Surfaces

    NASA Astrophysics Data System (ADS)

    Gause, Sheena; Kong, Wendy; Rowe

    2007-11-01

    Fibrinogen (FGN) plays an important role in the clotting of blood. Human plasma fibrinogen (HPF) is a protein that readily adsorbs on biomaterial surfaces. The purpose of this experiment was to use the Atomic Force Microscope to study the adsorption of HPF molecules or FGN onto several silicon surfaces with different orientations and resistivities. The size of the FGN molecules found to be somewhat different of Si(111), (100) and (110) were compared to the size of the FGN molecules in solution (45 nm in length, the end dynodes measures to be 6.5 nm in diameter, and the middle dynode measures to be 5 nm in diameter. For this study, the CPR (Thermo-microscope) Atomic Force Microscope (AFM) was used to observe the amount of fibrinogen molecules adsorbed by Si (111) with a resistance of .0281-.0261 φ cm, Si (111) with a resistance of 1 φ cm, Si (100), and Si (110) surfaces. In finding any single fibrinogen molecules, the appropriate image scans and measurements were taken. After collection and analysis of the data, it was found from AFM that the fibrinogen molecules found on Si (110) mostly resembled fibrinogen molecules found in solution. The other images showed that the fibrinogen molecules adsorbed on Silicon substrates is significantly greater (˜10-20 %) than those in solution.

  17. Role of Capsular Polysaccharides in Biofilm Formation: An AFM Nanomechanics Study.

    PubMed

    Wang, Huabin; Wilksch, Jonathan J; Strugnell, Richard A; Gee, Michelle L

    2015-06-17

    Bacteria form biofilms to facilitate colonization of biotic and abiotic surfaces, and biofilm formation on indwelling medical devices is a common cause of hospital-acquired infection. Although it is well-recognized that the exopolysaccharide capsule is one of the key bacterial components for biofilm formation, the underlying biophysical mechanism is poorly understood. In the present study, nanomechanical measurements of wild type and specific mutants of the pathogen, Klebsiella pneumoniae, were performed in situ using atomic force microscopy (AFM). Theoretical modeling of the mechanical data and static microtiter plate biofilm assays show that the organization of the capsule can influence bacterial adhesion, and thereby biofilm formation. The capsular organization is affected by the presence of type 3 fimbriae. Understanding the biophysical mechanisms for the impact of the structural organization of the bacterial polysaccharide capsule on biofilm formation will aid the development of strategies to prevent biofilm formation. PMID:26034816

  18. An AFM study of the chlorite-fluid interface. [Atomic Force Microscopy

    SciTech Connect

    Vrdoljak, G.A.; Henderson, G.S.; Fawcett, J.J. . Dept. of Geology)

    1992-01-01

    Chlorite is a ubiquitous mineral in many geologic environments and plays an important role in elemental adsorption and retention in soils. Chlorite has a 2:1 layer structure consisting of two tetrahedral sheets with an octahedral sheet between them (talc-like layer). The 2:1 layer is charge balanced and hydrogen-bonded by an interlayer of MgOH[sub 6] octahedra (brucite-like layer). The nature of chlorite's structure, its ease of imaging, and perfect 001 cleavage, make this mineral an ideal substrate for use in elemental adsorption studies in solution, with the AFM. The 001 cleavage plane of a 2b polytype with composition (Mg[sub 4.4]Fe[sub 0.6]Al[sub 1.0])[(Si[sub 2.9]Al[sub 1.1])]O[sub 10](OH)[sub g] has been imaged in air, water, and oil by atomic force microscopy. Dissolution features are observed in water, showing sub-micron features dissolving in real-time. Atomic resolution of both the talc-like and brucite-like layers has been obtained in air. However, only the tetrahedral sheet of the talc-like layer has been imaged at atomic resolution in oil and water, which may indicate a structural instability of the brucite-like surface in solution. Measurements of the unit-cell dimensions (a and b) for the talc-like layer in the three different media indicate a structural expansion of the mineral surface in solution. The a unit cell dimension expands by 7.4 [+-] 0.1% when in water; conversely, the b dimension varies greatly when in oil ([minus]10% to +20%), relative to air. The effects of these solution media on the structure of chlorite are revealed by characterization with the AFM. This information should prove useful in future studies of adsorption onto layer silicates.

  19. Studying post-etching silicon crystal defects on 300mm wafer by automatic defect review AFM

    NASA Astrophysics Data System (ADS)

    Zandiatashbar, Ardavan; Taylor, Patrick A.; Kim, Byong; Yoo, Young-kook; Lee, Keibock; Jo, Ahjin; Lee, Ju Suk; Cho, Sang-Joon; Park, Sang-il

    2016-03-01

    Single crystal silicon wafers are the fundamental elements of semiconductor manufacturing industry. The wafers produced by Czochralski (CZ) process are very high quality single crystalline materials with known defects that are formed during the crystal growth or modified by further processing. While defects can be unfavorable for yield for some manufactured electrical devices, a group of defects like oxide precipitates can have both positive and negative impacts on the final device. The spatial distribution of these defects may be found by scattering techniques. However, due to limitations of scattering (i.e. light wavelength), many crystal defects are either poorly classified or not detected. Therefore a high throughput and accurate characterization of their shape and dimension is essential for reviewing the defects and proper classification. While scanning electron microscopy (SEM) can provide high resolution twodimensional images, atomic force microscopy (AFM) is essential for obtaining three-dimensional information of the defects of interest (DOI) as it is known to provide the highest vertical resolution among all techniques [1]. However AFM's low throughput, limited tip life, and laborious efforts for locating the DOI have been the limitations of this technique for defect review for 300 mm wafers. To address these limitations of AFM, automatic defect review AFM has been introduced recently [2], and is utilized in this work for studying DOI on 300 mm silicon wafer. In this work, we carefully etched a 300 mm silicon wafer with a gaseous acid in a reducing atmosphere at a temperature and for a sufficient duration to decorate and grow the crystal defects to a size capable of being detected as light scattering defects [3]. The etched defects form a shallow structure and their distribution and relative size are inspected by laser light scattering (LLS). However, several groups of defects couldn't be properly sized by the LLS due to the very shallow depth and low

  20. AFM study of mineral wettability with reservoir oils.

    PubMed

    Kumar, K; Dao, E; Mohanty, K K

    2005-09-01

    Wettability plays a key role in determining fluid distributions and consequently the multiphase flow and transport in petroleum reservoirs. Many crude oils have polar organic components that collect at oil-water interfaces and can adsorb onto the mineral surface if the brine film breaks, rendering the medium oil-wet or mixed-wet. Mica and silica surfaces have been aged with brine and crude oils to induce oil component adsorption. Bulk oil is eventually replaced by water in these experiments by washing with common solvents without ever drying the mineral surface. The organic deposit on the mineral surface is studied by atomic force microscopy in the tapping mode under water. Drying the surface during the removal of bulk oil induces artifacts; it is essential to keep the surface wet at all times before atomic force microscopy or contact angle measurement. As the mean thickness of the organic deposit increases, the oil-water contact angle increases. The organic deposits left behind after extraction of oil by common aromatic solvents used in core studies, such as toluene and decalin, are thinner than those left behind by non-aromatic solvents, such as cyclohexane. The force of adhesion with a probe sphere for minerals aged with just the asphaltene fraction is similar to that of the whole oil. The force of adhesion for the minerals aged with just the resin fraction is the highest of all SARA (saturates, aromatics, resins, and asphaltenes) fractions. PMID:16009229

  1. Microhardness, chemical etching, SEM, AFM and SHG studies of novel nonlinear optical crystal -L-threonine formate

    SciTech Connect

    Hanumantha Rao, Redrothu; Kalainathan, S.

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Microhardness studies of novel LTF crystal reported first time in the literature. Black-Right-Pointing-Pointer Surface studies are done by AFM, chemical etching and SEM. Black-Right-Pointing-Pointer From SHG studies, it is known that LTF is potential NLO crystal. -- Abstract: The crystal L-threonine formate, an organic NLO crystal was synthesized from aqueous solution by slow evaporation technique. The grown crystal surface has been analyzed by scanning electron microscopy (SEM), chemical etching and atomic force microscopy (AFM). SEM analysis reveals pyramidal shaped minute crystallites on the growth surface. The etching study indicates the occurrence of etch pit patterns like striations and step like pattern. The mechanical properties of LTF crystals were evaluated by mechanical testing which reveals certain mechanical characteristics like elastic stiffness constant (C{sub 11}) and young's modulus (E). The Vickers and Knoop microhardness studies have been carried out on LTF crystals over a range of 10-50 g. Hardness anisotropy has been observed in accordance with the orientation of the crystal. AFM image shows major hillock on growth surface. The second harmonic generation (SHG) efficiency has been tested by the Kurtz powder technique using Nd:YAG laser and found to be about 1.21 times in comparison with standard potassium dihydrogen phosphate (KDP) crystals.

  2. Static and Dynamic Aspects of Surfactant Surface Aggregates studied by AFM

    NASA Astrophysics Data System (ADS)

    Schniepp, Hannes; Saville, Dudley; Aksay, Ilhan

    2006-03-01

    Using AFM, we show that surfactants form micellar aggregates of varying morphology, depending on the surface structure. While all previous studies were limited to atomically flat substrates, we achieve imaging the micelles on rough gold. By gradually annealing these surfaces, we show the influence of roughness on the aggregate structures. For crystalline gold (111), aligned, hemi-cylindrical micelles that recognize the symmetry axes of the gold lattice are found. With increasing roughness, the degree of organization of the aggregates decreases. We also show that the micellar pattern on HOPG and gold(111) surfaces changes with time and responds to perturbations in a self-healing way. Our results suggest that this organization happens at the molecular scale. Theoretical analysis for HOPG, however, show that the micelle orientation cannot be explained on the molecular level, but the anisotropic van der Waals interaction between micelles and HOPG has to be considered as well [1]. [1] Saville, D. A.; Chun, J.; Li, J.-L.; Schniepp, H. C.; Car, R.; Aksay, I. A., accepted by Physical Review Letters.

  3. AFM and SEM study of the effects of etching on IPS-Empress 2 TM dental ceramic

    NASA Astrophysics Data System (ADS)

    Luo, X.-P.; Silikas, N.; Allaf, M.; Wilson, N. H. F.; Watts, D. C.

    2001-10-01

    The aim of this study was to investigate the effects of increasing etching time on the surface of the new dental material, IPS-Empress 2 TM glass ceramic. Twenty one IPS-Empress 2 TM glass ceramic samples were made from IPS-Empress 2 TM ingots through lost-wax, hot-pressed ceramic fabrication technology. All samples were highly polished and cleaned ultrasonically for 5 min in acetone before and after etching with 9.6% hydrofluoric acid gel. The etching times were 0, 10, 20, 30, 60, 90 and 120 s respectively. Microstructure was analysed by scanning electron microscopy (SEM) and atomic force microscopy (AFM) was used to evaluate the surface roughness and topography. Observations with SEM showed that etching with hydrofluoric acid resulted in preferential dissolution of glass matrix, and that partially supported crystals within the glass matrix were lost with increasing etching time. AFM measurements indicated that etching increased the surface roughness of the glass-ceramic. A simple least-squares linear regression was used to establish a relationship between surface roughness parameters ( Ra, RMS), and etching time, for which r2>0.94. This study demonstrates the benefits of combining two microscopic methods for a better understanding of the surface. SEM showed the mode of action of hydrofluoric acid on the ceramic and AFM provided valuable data regarding the extent of surface degradation relative to etching time.

  4. Study of relaxation and transport processes by means of AFM based dielectric spectroscopy

    SciTech Connect

    Miccio, Luis A.

    2014-05-15

    Since its birth a few years ago, dielectric spectroscopy studies based on atomic force microscopy (AFM) have gained a growing interest. Not only the frequency and temperature ranges have become broader since then but also the kind of processes that can be studied by means of this approach. In this work we analyze the most adequate experimental setup for the study of several dielectric processes with a spatial resolution of a few nanometers by using force mode AFM based dielectric spectroscopy. Proof of concept experiments were performed on PS/PVAc blends and PMMA homopolymer films, for temperatures ranging from 300 to 400 K. Charge transport processes were also studied by this approach. The obtained results were analyzed in terms of cantilever stray contribution, film thickness and relaxation strength. We found that the method sensitivity is strongly coupled with the film thickness and the relaxation strength, and that it is possible to control it by using an adequate experimental setup.

  5. Temperature Dependence Study of Noncontact Afm Images Using Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Nejat Pishkenari, Hossein; Meghdari, Ali

    The effect of temperature on the noncontact atomic force microscopy (NC-AFM) surface imaging is investigated with the aid of molecular dynamics (MD) analysis based on the Sutton-Chen (SC) interatomic potential. Particular attention is devoted to the tip and sample flexibility at different temperatures. When a gold coated probe is brought close to the Au (001) surface at high temperatures, the tip and surface atoms are pulled together and their distance becomes smaller. The tip and sample atoms displacement varies in the different environment temperatures and this leads to the different interaction forces. Along this line, to study the effect of temperature on the resulting images, we have employed the well-known NC-AFM model and carried out realistic non-equilibrium MD 3D simulations of atomic scale imaging at different close approach positions to the surface.

  6. A study of water droplet between an AFM tip and a substrate using dissipative particle dynamics

    NASA Astrophysics Data System (ADS)

    Pal, Souvik; Lan, Chuanjin; Li, Zhen; Hirleman, E. Daniel; Ma, Yanbao

    2014-11-01

    Formation of a water droplet between a sharp AFM tip and a substrate due to capillary condensation affects the tip-substrate interaction. As a consequence, AFM measurements lose precision and often produce incorrect sample topology. Understanding the physics of liquid bridges is also important in the field of Dip-pen nanolithography (DPN). Significant research is being carried out to understand the mechanics of the formation of the liquid bridge and its dependence of surface properties, ambient conditions etc. The in-between length scale, i.e., mesoscale (~100 nm) associated with this phenomenon presents a steep challenge for experimental measurements. In addition, molecular dynamics (MD) can be computationally prohibitive to model the entire system, especially over microseconds to seconds. Theoretical analysis using Young Laplace equation has so far provided some qualitative insights only. We study this system using Dissipative Particle Dynamics (DPD) which is a simulation technique suitable for describing mesoscopic hydrodynamic behavior of fluids. In this work, we carry out simulations to improve understanding of the process of formation of the meniscus, the mechanics of manipulation and control of its shape, and better estimation of capillary forces. The knowledge gained through our study will help in correcting the AFM measurements affected by capillary condensation. Moreover, it will improve understanding of more accurate droplet manipulation in DPN.

  7. APOBEC3G Interacts with ssDNA by Two Modes: AFM Studies

    NASA Astrophysics Data System (ADS)

    Shlyakhtenko, Luda S.; Dutta, Samrat; Banga, Jaspreet; Li, Ming; Harris, Reuben S.; Lyubchenko, Yuri L.

    2015-10-01

    APOBEC3G (A3G) protein has antiviral activity against HIV and other pathogenic retroviruses. A3G has two domains: a catalytic C-terminal domain (CTD) that deaminates cytidine, and a N-terminal domain (NTD) that binds to ssDNA. Although abundant information exists about the biological activities of A3G protein, the interplay between sequence specific deaminase activity and A3G binding to ssDNA remains controversial. We used the topographic imaging and force spectroscopy modalities of Atomic Force Spectroscopy (AFM) to characterize the interaction of A3G protein with deaminase specific and nonspecific ssDNA substrates. AFM imaging demonstrated that A3G has elevated affinity for deaminase specific ssDNA than for nonspecific ssDNA. AFM force spectroscopy revealed two distinct binding modes by which A3G interacts with ssDNA. One mode requires sequence specificity, as demonstrated by stronger and more stable complexes with deaminase specific ssDNA than with nonspecific ssDNA. Overall these observations enforce prior studies suggesting that both domains of A3G contribute to the sequence specific binding of ssDNA.

  8. Nanomechanics of new materials — AFM and computer modelling studies of trichoptera silk

    NASA Astrophysics Data System (ADS)

    Strzelecki, Janusz; Strzelecka, Joanna; Mikulska, Karolina; Tszydel, Mariusz; Balter, Aleksander; Nowak, Wiesław

    2011-04-01

    Caddisfly (Trichopera) can glue diverse material underwater with a silk fiber. This makes it a particularly interesting subject for biomimetcs. Better understanding of silk composition and structure could lead to an adhesive capable to close bleeding wounds or to new biomaterials. However, while spiderweb or silkworm secretion is well researched, caddisfly silk is still poorly understood. Here we report a first nanomechanical analysis of H. Angustipennis caddisfly silk fiber. An Atomic Force Microscope (AFM) imaging shows dense 150 nm bumps on silk surface, which can be identified as one of features responsible for its outstanding adhesive properties. AFM force spectroscopy at the fiber surface showed, among others, characteristic saw like pattern. This pattern is attributed to sacrificial bond stretching and enhances energy dissipation in mechanical deformation. Similarities of some force curves observed on Tegenaria domestica spiderweb and caddisfly silk are also discussed. Steered Molecular Dynamics simulations revealed that the strength of short components of Fib-H HA species molecules, abundant in Trichoptera silk is critically dependent on calcium presence.

  9. AFM Studies on Liquid Superlubricity between Silica Surfaces Achieved with Surfactant Micelles.

    PubMed

    Li, Jinjin; Zhang, Chenhui; Cheng, Peng; Chen, Xinchun; Wang, Weiqi; Luo, Jianbin

    2016-06-01

    By using atomic force microscopy (AFM), we showed that the liquid superlubricity with a superlow friction coefficient of 0.0007 can be achieved between two silica surfaces lubricated by hexadecyltrimethylammonium bromide (C16TAB) solution. There exists a critical load that the lubrication state translates from superlow friction to high friction reversibly. To analyze the superlow friction mechanism and the factors influencing the critical load, we used AFM to measure the structure of adsorbed C16TAB molecules and the normal force between two silica surfaces. Experimental results indicate that the C16TAB molecules are firmly adsorbed on the two silica surfaces by electrostatic interaction, forming cylinder-like micelles. Meanwhile, the positively charged headgroups exposed to solution produce the hydration and double layer repulsion to bear the applied load. By controlling the concentration of C16TAB solution, it is confirmed that the critical load of superlow friction is determined by the maximal normal force produced by the hydration layer. Finally, the superlow friction mechanism was proposed that the adsorbed micellar layer forms the hydration layer, making the two friction surfaces be in the repulsive region and meanwhile providing excellent fluidity without adhesion between micelles. PMID:27192019

  10. On the molecular interaction between albumin and ibuprofen: An AFM and QCM-D study.

    PubMed

    Eleta-Lopez, Aitziber; Etxebarria, Juan; Reichardt, Niels-Christian; Georgieva, Radostina; Bäumler, Hans; Toca-Herrera, José L

    2015-10-01

    The adsorption of proteins on surfaces often results in a change of their structural behavior and consequently, a loss of bioactivity. One experimental method to study interactions on a molecular level is single molecular force spectroscopy that permits to measure forces down to the pico-newton range. In this work, the binding force between human serum albumin (HSA), covalently immobilized on glutaraldehyde modified gold substrates, and ibuprofen sodium salt was studied by means of single molecular force spectroscopy. First of all, a protocol was established to functionalize atomic force microscopy (AFM) tips with ibuprofen. The immobilization protocol was additionally tested by quartz crystal microbalance with dissipation (QCM-D) and contact angle measurements. AFM was used to characterize the adsorption of HSA on gold substrates, which lead to a packed monolayer of thickness slightly lower than the reported value in solution. Finally, single molecule spectroscopy results were used to characterize the binding force between albumin and ibuprofen and calculate the distance of the transition state (0.6 nm) and the dissociation rate constant (0.055 s(-1)). The results might indicate that part of the adsorbed protein still preserves its functionality upon adsorption. PMID:26218522

  11. Study of galactomannose interaction with solids using AFM, IR and allied techniques.

    PubMed

    Wang, Jing; Somasundaran, Ponisseril

    2007-05-15

    Guar gum (GG) and locust bean gum (LBG) are two galactomannose polysaccharides with different mannose/galactose ratio which is widely used in many industrial sectors including food, textiles, paper, adhesive, paint, pharmaceuticals, cosmetics and mineral processing. They are natural nonionic polymers that are non-toxic and biodegradable. These properties make them ideal for industrial applications. However, a general lack of understanding of the interactions between the polysaccharides and solid surfaces has hindered wider application of these polymers. In this work, adsorption of locust bean gum and guar gum at the solid-liquid interface was investigated using adsorption tests, electrophoretic mobility measurements, FTIR, fluorescence spectroscopy, AFM and molecular modeling. Electrokinetic studies showed that the adsorption of GG and LBG on talc do not change its isoelectric point. In addition, GG and LBG adsorption on talc was found not to be affected by changes in solution conditions such as pH and ionic strength, which suggests a minor role of electrostatic force in adsorption. On the other hand, fluorescence spectroscopy studies conducted to investigate the role of hydrophobic bonding using pyrene probe showed no evidence of the formation of hydrophobic domains at talc-aqueous interface. Moreover, urea, a hydrogen bond breaker, markedly reduced the adsorption of LBG and GG on talc, supporting hydrogen bonding as an important role. In FTIR study, the changes in the infrared bands, associated with the CO stretch coupled to the CC stretch and OH deformation, were significant and therefore also supporting hydrogen bonding of GG and LBG to the solid surface. In addition, Langmuir modeling of adsorption isotherm further suggested that hydrogen bonding is the dominant force for polysaccharide adsorption since the adsorption free energy of these polymers is close to that for hydrogen bond formation. From molecular modeling, different helical structures are observed

  12. Enamel crystals of mice susceptible or resistant to dental fluorosis: an AFM study

    PubMed Central

    BUZALAF, Marília Afonso Rabelo; BARBOSA, Carolina Silveira; LEITE, Aline de Lima; CHANG, Sywe-Ren; LIU, Jun; CZAJKA-JAKUBOWSKA, Agata; CLARKSON, Brian

    2014-01-01

    Objective This study aimed to assess the overall apatite crystals profile in the enamel matrix of mice susceptible (A/J strain) or resistant (129P3/J strain) to dental fluorosis through analyses by atomic force microscopy (AFM). Material and Methods Samples from the enamel matrix in the early stages of secretion and maturation were obtained from the incisors of mice from both strains. All detectable traces of matrix protein were removed from the samples by a sequential extraction procedure. The purified crystals (n=13 per strain) were analyzed qualitatively in the AFM. Surface roughness profile (Ra) was measured. Results The mean (±SD) Ra of the crystals of A/J strain (0.58±0.15 nm) was lower than the one found for the 129P3/J strain (0.66±0.21 nm) but the difference did not reach statistical significance (t=1.187, p=0.247). Crystals of the 129P3/J strain (70.42±6.79 nm) were found to be significantly narrower (t=4.013, p=0.0013) than the same parameter measured for the A/J strain (90.42±15.86 nm). Conclusion Enamel crystals of the 129P3/J strain are narrower, which is indicative of slower crystal growth and could interfere in the occurrence of dental fluorosis. PMID:25025555

  13. AFM Studies of Salt Concentration Effects on the (110) Surface Structure of Tetragonal Lysozyme Crystals

    NASA Technical Reports Server (NTRS)

    Pusey, Marc Lee; Gorti, Sridhar; Forsythe, Elizabeth; Konnert, John

    2002-01-01

    Previous high resolution AFM studies of the (110) surface of tetragonal chicken egg white lysozyme crystals had shown that only one of two possible molecular surfaces is present, those constituting the completed 43 helices. These suggested that the crystal growth process was by the solution-phase assembly of the growth units, which then attach to the surface. However, the best fit for the imaged surfaces, vs. those predicted based upon the bulk crystallographic coordinates, were obtained when the packing about the 43 helices was "tightened up", while maintaining the underlying crystallographic unit cell spacing. This results in a widening of the gap between adjacent helices, and the top- most layer(s) may no longer be in contact. We postulated that the tightened packing about the helices is a result of the high salt concentrations in the bulk solution, used to crystallize the protein, driving hydrophobic interactions. Once the crystal surface is sufficiently buried by subsequent growth layers the ratio of salt to protein molecules decreases and the helices relax to their bulk crystallographic coordinates. The crystal surface helix structure is thus a reflection of the solution structure, and the tightness of the packing about the 43 helices would be a function of the bulk salt concentration. AFM images of the (110) surface of tetragonal lysozyme crystals grown under low (2%) and high (5%) NaCl concentrations reveal differences in the packing about the 43 helices consistent with the above proposal.

  14. Adsorption mechanisms for fatty acids on DLC and steel studied by AFM and tribological experiments

    NASA Astrophysics Data System (ADS)

    Simič, R.; Kalin, M.

    2013-10-01

    Fatty acids are known to affect the friction and wear of steel contacts via adsorption onto the surface, which is one of the fundamental boundary-lubrication mechanisms. The understanding of the lubrication mechanisms of polar molecules on diamond-like carbon (DLC) is, however, still insufficient. In this work we aimed to find out whether such molecules have a similar effect on DLC coatings as they do on steel. The adsorption of hexadecanoic acid in various concentrations (2-20 mmol/l) on DLC was studied under static conditions using an atomic force microscope (AFM). The amount of surface coverage of the adsorbed fatty-acid molecules was analysed. In addition, tribological tests were performed to correlate the wear and friction behaviours in tribological contacts with the adsorption of molecules on the surface under static conditions. A good correlation between the AFM results and the tribological behaviour was observed. We confirmed that fatty acids can adsorb onto the DLC surfaces and are, therefore, potential boundary-lubrication agents for DLC coatings. The adsorption of the fatty acid onto the DLC surfaces reduces the wear of the coatings, but it is less effective in reducing the friction. Tentative adsorption mechanisms that include an environmental species effect, a temperature effect and a tribochemical effect are proposed for DLC and steel surfaces based on our results and few potential mechanisms found in literature.

  15. Elastic modulus, oxidation depth and adhesion force of surface modified polystyrene studied by AFM and XPS

    NASA Astrophysics Data System (ADS)

    Lubarsky, G. V.; Davidson, M. R.; Bradley, R. H.

    2004-06-01

    AFM and XPS have been used to investigate the surface and near-surface properties of polystyrene (PS) substrates which have been subjected to one of three controlled surface modification processes performed in situ in a specially constructed cell. The cell was fitted to a Digital Instruments Nanoscope III AFM measuring head and allowed close control of the gaseous environment and made it possible to UV irradiate the sample during AFM measurements. Treatments were carried out using UV at 184.9 and 253.7 nm wavelengths, in oxygen (UV-ozone), and in nitrogen (UV-only). Polystyrene surfaces were also modified by an exposure to an atmosphere of ozone in the absence of UV (ozone-only). Data show that adhesion force is highest between tip and sample for the UV-ozone exposed surfaces and that the adhesion force increases with sample exposure time. Exposure to UV-only or ozone alone results in lower ultimate adhesion levels with a slower rate of increase with exposure time. Evaluation of Young's modulus for unmodified PS gave a value of 3.37 (±0.52) GPa which agrees well with the textbook value which ranges from 2 to 4 GPa depending on the measurement technique. A 60 s exposure to combined UV-ozone resulted in the formation of a surface layer with a modulus at the surface of 1.25 (±0.19) GPa which increased to 2.5 (±0.37) GPa at a depth of 3.5 nm. The sample exposed for 60 s to UV-only had a Young's modulus of 2.6 (±0.39) GPa but showed no reduced modulus layer at the surface. The modulus of the ozone-only treated material was the least affected with a decrease of around 0.75 GPa with some evidence for a surface layer with a modulus ranging from 2.6 (±0.39) GPa at the surface to 3.2 (±0.48) GPa at a depth of 2 nm. XPS analyses reveal that the oxygen content of the modified surfaces decreased in the order of UV-ozone > UV > ozone with approximate concentrations for a 60 s exposure of 5, 0.7 and 0.05 at.%, respectively. Friction force imaging of patterned surfaces

  16. Hematite/silver nanoparticle bilayers on mica--AFM, SEM and streaming potential studies.

    PubMed

    Morga, Maria; Adamczyk, Zbigniew; Oćwieja, Magdalena; Bielańska, Elżbieta

    2014-06-15

    Bilayers of hematite/silver nanoparticles were obtained in the self-assembly process and thoroughly characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM), and in situ streaming potential measurements. The hematite nanoparticles, forming a supporting layer, were 22 nm in diameter, exhibiting an isoelectric point at pH 8.9. The silver nanoparticles, used to obtain an external layer, were 29 nm in diameter, and remained negative within the pH range 3 to 11. In order to investigate the particle deposition, mica sheets were used as a model solid substrate. The coverage of the supporting layer was adjusted by changing the bulk concentration of the hematite suspension and the deposition time. Afterward, silver nanoparticle monolayers of controlled coverage were deposited under the diffusion-controlled transport. The coverage of bilayers was determined by a direct enumeration of deposited particles from SEM micrographs and AFM images. Additionally, the formation of the hematite/silver bilayers was investigated by streaming potential measurements carried out under in situ conditions. The effect of the mica substrate and the coverage of a supporting layer on the zeta potential of bilayers was systematically studied. It was established that for the coverage exceeding 0.20, the zeta potential of bilayers was independent on the substrate and the supporting layer coverage. This behavior was theoretically interpreted in terms of the 3D electrokinetic model. Beside significance for basic sciences, these measurements allowed to develop a robust method of preparing nanoparticle bilayers of controlled properties, having potential applications in catalytic processes. PMID:24767501

  17. Raman confocal microscopy and AFM combined studies of cancerous cells treated with Paclitaxel

    NASA Astrophysics Data System (ADS)

    Derely, L.; Collart Dutilleul, P.-Y.; Michotte de Welle, Sylvain; Szabo, V.; Gergely, C.; Cuisinier, F. J. G.

    2011-03-01

    Paclitaxel interferes with the normal function of microtubule breakdown, induces apoptosis in cancer cells and sequesters free tubulin. As this drug acts also on other cell mechanisms it is important to monitor its accumulation in the cell compartments. The intracellular spreading of the drug was followed using a WITEC 300R confocal Raman microscope equipped with a CCD camera. Hence Atomic force microscopy (an MFP3D- Asylum Research AFM) in imaging and force mode was used to determine the morphological and mechanical modifications induced on living cells. These studies were performed on living epithelial MCF-7 breast cancer cells. Paclitaxel was added to cell culture media for 3, 6 and 9 hours. Among the specific paclitaxel Raman bands we selected the one at 1670 cm-1 because it is not superposed by the spectrum of the cells. Confocal Raman images are formed by monitoring this band, the NH2 and the PO4 band. Paclitaxel slightly accumulates in the nucleus forming patches. The drug is also concentrated in the vicinity of the cell membrane and in an area close to the nucleus where proteins accumulate. Our AFM images reveal that the treated cancerous MCF-7 cells keep the same size as the non treated ones, but their shape becomes more oval. Cell's elasticity is also modified: a difference of 2 kPa in the Young Modulus characterizes the treated MCF-7 mammary cancerous cell. Our observations demonstrate that paclitaxel acts not only on microtubules but accumulates also in other cell compartments (nucleus) where microtubules are absent.

  18. The role of different toothpastes on preventing dentin erosion: an SEM and AFM study®.

    PubMed

    Poggio, Claudio; Lombardini, Marco; Vigorelli, Paolo; Colombo, Marco; Chiesa, Marco

    2014-01-01

    The aim of the present in vitro study was the evaluation of new formulation toothpastes on preventing dentin erosion produced by a soft drink (Coca Cola®), using atomic force microscopy (AFM) and scanning electron microscopy (SEM). Fifty dentin specimens were divided in treatment and control halves and were than assigned to 5 groups of 10 specimens each: group 1a: intact dentin, group 1b: dentin + soft drink, group 2a: intact dentin + Biorepair Plus-Sensitive Teeth®, group 2b: dentin + soft drink + Biorepair Plus-Sensitive Teeth®, group 3a: intact dentin + Biorepair Plus-Total Protection®, group 3b: dentin + soft drink + Biorepair Plus-Total Protection®, group 4a: intact dentin + Sensodyne Repair & Protect®, group 4b: dentin + soft drink + Sensodyne Repair & Protect®, group 5a: intact dentin + Colgate Sensitive Pro Relief®, group 5b: dentin + soft drink + Colgate Sensitive Pro Relief®. The surface of each specimen was imaged by AFM and SEM. Comparing specimens of group a and b (no demineralization and demineralization), a statistically significant difference (p < 0.01) in Rrms values was registered. Comparing b groups, all the analyzed toothpastes tended to remineralize the dentine surface in different extent. Biorepair Plus-Total Protection® and Sensodyne Repair & Protect® provided higher protective effect against dentin demineralization. PMID:23784952

  19. Molecular dynamics study on the mechanism of AFM-based nanoscratching process with water-layer lubrication

    NASA Astrophysics Data System (ADS)

    Ren, Jiaqi; Zhao, Jinsheng; Dong, Zeguang; Liu, Pinkuan

    2015-08-01

    The atomic force microscopy (AFM) based direct nanoscratching has been thoroughly studied but the mechanism of nanoscratching with water-layer lubrication is yet to be well understood. In current study, three-dimensional molecular dynamics (MD) simulations are conducted to evaluate the effects of the water-layer lubrication on the AFM-based nanoscratching process on monocrystalline copper. Comparisons of workpiece deformation, scratching forces, and friction coefficients are made between the water-lubricated and dry scratching under various thickness of water layer, scratching depth and scratching velocity. Simulation results reveal that the water layer has positive impact on the surface quality and significant influence on the scratching forces (normal forces and tangential forces). The friction coefficients of the tip in water-lubricated nanoscratching are significantly bigger than those in the dry process. Our simulation results shed lights on a promising AFM-based nanofabrication method, which can assist to get nanoscale surface morphologies with higher quality than traditional approaches.

  20. Coating of AFM probes with aquatic humic and non-humic NOM to study their adhesion properties.

    PubMed

    Aubry, Cyril; Gutierrez, Leonardo; Croue, Jean Philippe

    2013-06-01

    Atomic force microscopy (AFM) was used to study interaction forces between four Natural Organic Matter (NOM) samples of different physicochemical characteristics and origins and mica surface at a wide range of ionic strength. All NOM samples were strongly adsorbed on positively charged iron oxide-coated silica colloidal probe. Cross-sectioning by focused ion beam milling technique and elemental mapping by energy-filtered transmission electron microscopy indicated coating completeness of the NOM-coated colloidal probes. AFM-generated force-distance curves were analyzed to elucidate the nature and mechanisms of these interacting forces. Electrostatics and steric interactions were important contributors to repulsive forces during approach, although the latter became more influential with increasing ionic strength. Retracting force profiles showed a NOM adhesion behavior on mica consistent with its physicochemical characteristics. Humic-like substances, referred as the least hydrophilic NOM fraction, i.e., so called hydrophobic NOM, poorly adsorbed on hydrophilic mica due to their high content of ionized carboxyl groups and aromatic/hydrophobic character. However, adhesion force increased with increasing ionic strength, suggesting double layer compression. Conversely, polysaccharide-like substances showed high adhesion to mica. Hydrogen-bonding between hydroxyl groups on polysaccharide-like substances and highly electronegative elements on mica was suggested as the main adsorption mechanism, where the adhesion force decreased with increasing ionic strength. Results from this investigation indicated that all NOM samples retained their characteristics after the coating procedure. The experimental approach followed in this study can potentially be extended to investigate interactions between NOM and clean or fouled membranes as a function of NOM physicochemical characteristics and solution chemistry. PMID:23587263

  1. Membrane-based actuation for high-speed single molecule force spectroscopy studies using AFM.

    PubMed

    Sarangapani, Krishna; Torun, Hamdi; Finkler, Ofer; Zhu, Cheng; Degertekin, Levent

    2010-07-01

    Atomic force microscopy (AFM)-based dynamic force spectroscopy of single molecular interactions involves characterizing unbinding/unfolding force distributions over a range of pulling speeds. Owing to their size and stiffness, AFM cantilevers are adversely affected by hydrodynamic forces, especially at pulling speeds >10 microm/s, when the viscous drag becomes comparable to the unbinding/unfolding forces. To circumvent these adverse effects, we have fabricated polymer-based membranes capable of actuating commercial AFM cantilevers at speeds >or=100 microm/s with minimal viscous drag effects. We have used FLUENT, a computational fluid dynamics (CFD) software, to simulate high-speed pulling and fast actuation of AFM cantilevers and membranes in different experimental configurations. The simulation results support the experimental findings on a variety of commercial AFM cantilevers and predict significant reduction in drag forces when membrane actuators are used. Unbinding force experiments involving human antibodies using these membranes demonstrate that it is possible to achieve bond loading rates >or=10(6) pN/s, an order of magnitude greater than that reported with commercial AFM cantilevers and systems. PMID:20054686

  2. The influence of aminophylline on the nanostructure and nanomechanics of T lymphocytes: an AFM study

    NASA Astrophysics Data System (ADS)

    Huang, Xun; He, Jiexiang; Liu, Mingxian; Zhou, Changren

    2014-09-01

    Although much progress has been made in the illustration of the mechanism of aminophylline (AM) treating asthma, there is no data about its effect on the nanostructure and nanomechanics of T lymphocytes. Here, we presented atomic force spectroscopy (AFM)-based investigations at the nanoscale level to address the above fundamental biophysical questions. As increasing AM treatment time, T lymphocytes' volume nearly double increased and then decreased. The changes of nanostructural features of the cell membrane, i.e., mean height of particles, root-mean-square roughness (Rq), crack and fragment appearance, increased with AM treatment time. T lymphocytes were completely destroyed with 96-h treatment, and they existed in the form of small fragments. Analysis of force-distance curves showed that the adhesion force of cell surface decreased significantly with the increase of AM treatment time, while the cell stiffness increased firstly and then decreased. These changes were closely correlated to the characteristics and process of cell oncosis. In total, these quantitative and qualitative changes of T lymphocytes' structure and nanomechanical properties suggested that AM could induce T lymphocyte oncosis to exert anti-inflammatory effects for treating asthma. These findings provide new insights into the T lymphocyte oncosis and the anti-inflammatory mechanism and immune regulation actions of AM.

  3. Assembly of {alpha}-synuclein fibrils in nanoscale studied by peptide truncation and AFM

    SciTech Connect

    Zhang Feng; Lin Xiaojing; Ji Lina; Du Haining; Tang Lin; He Jianhua; Hu Jun; Hu Hongyu

    2008-04-04

    {alpha}-Synuclein ({alpha}-Syn) fibrils are the major component of Lewy bodies that are closely associated with the pathogenesis of Parkinson's disease, but the mechanism for the fibril assembly remains poorly understood. Here we report using a combination of peptide truncation and atomic force microscopy (AFM) to elucidate the self-assembly and morphology of the {alpha}-Syn fibrils. The results show that protease K significantly slims the fibrils from the mean height of {approx}6.6 to {approx}4.7 nm, whereas chaotropic denaturant urea completely breaks down the fibrils into small particles. The in situ enzymatic digestion also results in thinning of the fibrils, giving rise to some nicks on the fibrils. Moreover, N- or C-terminally truncated {alpha}-Syn fragments assemble into thinner filaments with the heights depending on the peptide lengths. A nine-residue peptide corresponding to the homologous GAV-motif sequence can form very thin ({approx}2.2 nm) but long (>1 {mu}m) filaments. Thus, the central sequence of {alpha}-Syn forms a fibrillar core by cross-{beta}-structure that is flanked by two flexible termini, and the orientation of the fibril growth is perpendicular to the {beta}-sheet structures.

  4. The influence of aminophylline on the nanostructure and nanomechanics of T lymphocytes: an AFM study

    PubMed Central

    2014-01-01

    Although much progress has been made in the illustration of the mechanism of aminophylline (AM) treating asthma, there is no data about its effect on the nanostructure and nanomechanics of T lymphocytes. Here, we presented atomic force spectroscopy (AFM)-based investigations at the nanoscale level to address the above fundamental biophysical questions. As increasing AM treatment time, T lymphocytes' volume nearly double increased and then decreased. The changes of nanostructural features of the cell membrane, i.e., mean height of particles, root-mean-square roughness (Rq), crack and fragment appearance, increased with AM treatment time. T lymphocytes were completely destroyed with 96-h treatment, and they existed in the form of small fragments. Analysis of force-distance curves showed that the adhesion force of cell surface decreased significantly with the increase of AM treatment time, while the cell stiffness increased firstly and then decreased. These changes were closely correlated to the characteristics and process of cell oncosis. In total, these quantitative and qualitative changes of T lymphocytes' structure and nanomechanical properties suggested that AM could induce T lymphocyte oncosis to exert anti-inflammatory effects for treating asthma. These findings provide new insights into the T lymphocyte oncosis and the anti-inflammatory mechanism and immune regulation actions of AM. PMID:25258618

  5. In situ AFM crystal growth and dissolution study of calcite in the presence of aqueous fluoride

    NASA Astrophysics Data System (ADS)

    Vavouraki, A.; Putnis, C. V.; Putnis, A.; Koutsoukos, P. G.

    2009-04-01

    Fluoride is naturally abundant, encountered in rocks, soil and fresh and ocean water. Calcite crystals, during crystal growth may incorporate fluoride ions into their lattice (Okumura et al., 1983). In situ atomic force microscopy (AFM) has been used to study the growth and dissolution of calcite {104} surfaces in aqueous solutions in the presence of fluoride, using a fluid cell in which the supersaturated and the understaturated solutions respectively, flow over a freshly cleaved calcite crystal. For growth experiments, supersaturation index (S.I.) with respect to calcite was equal to 0.89 and the initial solution pH 10.2. The crystal growth rates were measured from the closure of the rhombohedral etch pits along the [010] direction induced by an initial dissolution step using pure water. The spreading rate of 2-dimensional nuclei was also measured along the same direction. In the presence of low fluoride concentrations (≤0.33 mM), the crystal growth rate of calcite was unaffected. At higher concentrations (up to 5 mM) growth rate decreased substantially to 50% of the rate in the absence of fluoride. Potential fluoride sorption over the calcite surface may ascribe the decrease of growth rates. Dissolution experiments were conducted at pH= 7.2 and dissolution rates of calcite were measured from the spreading of rhombohedral etch pits along both [010] and [42] directions. The presence of low concentrations of fluoride (≤1.1 mM) in the undersaturated solutions enhanced the dissolution rate along the [42] direction by 50% in comparison with pure water. The morphology of rhombohedral etch pits changed to hexagonal in the presence of fluoride in the undersaturated solutions. The AFM dissolution experiments suggested that the fluoride ions adsorbed onto the calcite surface. Further increase of fluoride concentrations (up to 1.6 mM) resulted in the decrease of the calcite dissolution rate by 60% in both [010] and [42] directions. Reference: Okumura, M, Kitano, Y

  6. AFM study of glucagon fibrillation via oligomeric structures resulting in interwoven fibrils

    NASA Astrophysics Data System (ADS)

    Dong, Mingdong; Bruun Hovgaard, Mads; Xu, Sailong; Otzen, Daniel Erik; Besenbacher, Flemming

    2006-08-01

    Glucagon is a 29-residue amphiphatic hormone involved in the regulation of blood glucose levels in conjunction with insulin. In concentrated aqueous solutions, glucagon spontaneously aggregates to form amyloid fibrils, destroying its biological activity. In this study we utilize the atomic force microscope (AFM) to elucidate the fibrillation mechanism of glucagon at the nanoscale under acidic conditions (pH 2.0) by visualizing the nanostructures of fibrils formed at different stages of the incubation. Hollow disc-shaped oligomers form at an early stage in the process and subsequently rearrange to more solid oligomers. These oligomers co-exist with, and most likely act as precursors for, protofibrils, which subsequently associate to form at least three different classes of higher-order fibrils of different heights. A repeat unit of around 50 nm along the main fibril axis suggests a helical arrangement of interwoven protofibrils. The diversity of oligomeric and fibrillar arrangements formed at pH 2.0 complements previous spectroscopic analyses that revealed that fibrils formed under different conditions can differ substantially in stability and secondary structure.

  7. Morphology and aggregation of RADA-16-I peptide Studied by AFM, NMR and molecular dynamics simulations.

    PubMed

    Bagrov, Dmitry; Gazizova, Yuliya; Podgorsky, Victor; Udovichenko, Igor; Danilkovich, Alexey; Prusakov, Kirill; Klinov, Dmitry

    2016-01-01

    RADA-16-I is a self-assembling peptide which forms biocompatible fibrils and hydrogels. We used molecular dynamics simulations, atomic-force microscopy, NMR spectroscopy, and thioflavin T binding assay to examine size, structure, and morphology of RADA-16-I aggregates. We used the native form of RADA-16-I (H-(ArgAlaAspAla)4 -OH) rather than the acetylated one commonly used in the previous studies. At neutral pH, RADA-16-I is mainly in the fibrillar form, the fibrils consist of an even number of stacked β-sheets. At acidic pH, RADA-16-I fibrils disassemble into monomers, which form an amorphous monolayer on graphite and monolayer lamellae on mica. RADA-16-I fibrils were compared with the fibrils of a similar peptide RLDL-16-I. Thickness of β-sheets measured by AFM was in excellent agreement with the molecular dynamics simulations. A pair of RLDL-16-I β-sheets was thicker (2.3 ± 0.4 nm) than a pair of RADA-16-I β-sheets (1.9 ± 0.1 nm) due to the volume difference between alanine and leucine residues. © 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 72-81, 2016. PMID:26501800

  8. AFM studies in diverse ionic environments of nucleosomes reconstituted on the 601 positioning sequence.

    PubMed

    Nazarov, Igor; Chekliarova, Iana; Rychkov, Georgy; Ilatovskiy, Andrey V; Crane-Robinson, Colyn; Tomilin, Alexey

    2016-02-01

    Atomic force microscopy (AFM) was used to study mononucleosomes reconstituted from a DNA duplex of 353 bp containing the strong 601 octamer positioning sequence, together with recombinant human core histone octamers. Three parameters were measured: 1) the length of DNA wrapped around the core histones; 2) the number of superhelical turns, calculated from the total angle through which the DNA is bent, and 3) the volume of the DNA-histone core. This approach allowed us to define in detail the structural diversity of nucleosomes caused by disassembly of the octasome to form subnucleosomal structures containing hexasomes, tetrasomes and disomes. At low ionic strength (TE buffer) and in the presence of physiological concentrations of monovalent cations, the majority of the particles were subnucleosomal, but physiological concentrations of bivalent cations resulted in about half of the nucleosomes being canonical octasomes in which the exiting DNA duplexes cross orthogonally. The dominance of this last species explains why bivalent but not monovalent cations can induce the initial step towards compaction and convergence of neighboring nucleosomes in nucleosomal arrays to form the chromatin fiber in the absence of linker histone. The observed nucleosome structural diversity may reflect the functional plasticity of nucleosomes under physiological conditions. PMID:26586109

  9. Single-Molecule Studies of Integrins by AFM-Based Force Spectroscopy on Living Cells

    NASA Astrophysics Data System (ADS)

    Eibl, Robert H.

    The characterization of cell adhesion between two living cells at the single-molecule level, i.e., between one adhesion receptor and its counter-receptor, appears to be an experimental challenge. Atomic force microscopy (AFM) can be used in its force spectroscopy mode to determine unbinding forces of a single pair of adhesion receptors, even with a living cell as a probe. This chapter provides an overview of AFM force measurements of the integrin family of cell adhesion receptors and their ligands. A focus is given to major integrins expressed on leukocytes, such as lymphocyte function-associated antigen 1 (LFA-1) and very late antigen 4 (VLA-4). These receptors are crucial for leukocyte trafficking in health and disease. LFA-1 and VLA-1 can be activated within the bloodstream from a low-affinity to a high-affinity receptor by chemokines in order to adhere strongly to the vessel wall before the receptor-bearing leukocytes extravasate. The experimental considerations needed to provide near-physiological conditions for a living cell and to be able to measure adequate forces at the single-molecule level are discussed in detail. AFM technology has been developed into a modern and extremely sensitive tool in biomedical research. It appears now that AFM force spectroscopy could enter, within a few years, medical applications in diagnosis and therapy of cancer and autoimmune diseases.

  10. Lipid asymmetry in DLPC/DSPC supported lipid bilayers, a combined AFM and fluorescence microscopy study

    SciTech Connect

    Lin, W; Blanchette, C D; Ratto, T V; Longo, M L

    2005-06-20

    A fundamental attribute of cell membranes is transmembrane asymmetry, specifically the formation of ordered phase domains in one leaflet that are compositionally different from the opposing leaflet of the bilayer. Using model membrane systems, many previous studies have demonstrated the formation of ordered phase domains that display complete transmembrane symmetry but there have been few reports on the more biologically relevant asymmetric membrane structures. Here we report on a combined atomic force microscopy (AFM) and fluorescence microscopy study whereby we observe three different states of transmembrane symmetry in phase-separated supported bilayers formed by vesicle fusion. We find that if the leaflets differ in gel-phase area fraction, then the smaller domains in one leaflet are in registry with the larger domains in the other leaflet and the system is dynamic. In a presumed lipid flip-flop process similar to Ostwald Ripening, the smaller domains in one leaflet erode away while the large domains in the other leaflet grow until complete compositional asymmetry is reached and remains stable. We have quantified this evolution and determined that the lipid flip-flop event happens most frequently at the interface between symmetric and asymmetric DSPC domains. If both leaflets have nearly identical area fraction of gel-phase, gel-phase domains are in registry and are static in comparison to the first state. The stability of these three DSPC domain distributions, the degree of registry observed, and the domain immobility have direct biological significance with regards to maintenance of lipid asymmetry in living cell membranes, communication between inner leaflet and outer leaflet, membrane adhesion, and raft mobility.

  11. Comparative studies of thin film growth on aluminium by AFM, TEM and GDOES characterization

    NASA Astrophysics Data System (ADS)

    Qi, Jiantao; Thompson, George E.

    2016-07-01

    In this present study, comparative studies of trivalent chromium conversion coating formation, associated with aluminium dissolution process, have been investigated using atomic force microscopy (AFM), transmission electron microscopy (TEM) and glow-discharge optical emission spectroscopy (GDOES). High-resolution electron micrographs revealed the evident and uniform coating initiation on the whole surface after conversion treatment for only 30 s, although a network of metal ridges was created by HF etching pre-treatment. In terms of conversion treatment process on electropolished aluminium, constant kinetics of coating growth, ∼0.30 ± 0.2 nm/s, were found after the prolonged conversion treatment for 600 s. The availability of electrolyte anions for coating deposition determined the growth process. Simultaneously, a proceeding process of aluminium dissolution during conversion treatment, of ∼0.11 ± 0.02 nm/s, was found for the first time, indicating constant kinetics of anodic reactions. The distinct process of aluminium consumption was assigned with loss of corrosion protection of the deposited coating material as evidenced in the electrochemical impedance spectroscopy. Based on the present data, a new mechanism of coating growth on aluminium was proposed, and it consisted of an activation period (0-30 s), a linear growth period (0.30 nm/s, up for 600 s) and limited growth period (0.17 nm/s, 600-1200 s). In addition, the air-drying post-treatment and a high-vacuum environment in the microscope revealed a coating shrinkage, especially in the coatings after conversion treatments for longer time.

  12. Recombinant albumin adsorption on mica studied by AFM and streaming potential measurements.

    PubMed

    Kujda, Marta; Adamczyk, Zbigniew; Morga, Maria; Sofińska, Kamila

    2015-03-01

    Recombinant human serum albumin (rHSA) in monomeric state is widely used in pharmaceutical industry as a drug excipient and for preparing coatings for medical devices. In this work the adsorption process of rHSA on model mica surface at pH 3.5 was studied using the atomic force microscopy (AFM) and in situ streaming potential measurements. The kinetics of albumin adsorption was determined by a direct enumeration of single molecules over various substrate areas. These results were consistent with streaming potential measurements carried out for the parallel-plate channel flow and with theoretical predictions derived from the random sequential adsorption (RSA) model. Desorption kinetics of albumin under flow conditions was also evaluated via the streaming potential measurements. In this way, the amount of irreversibly bound albumin was quantitatively evaluated to be 0.64 and 1.2 mg m(-2) for ionic strength of 0.01 and 0.15 M, respectively. This agrees with previous results obtained for HSA and theoretical calculations derived from the RSA model. Additionally, it was demonstrated that there existed a fraction of reversibly bound albumin that can be fully eluted within a few hours. The binding energy of these fraction of molecules was -18 kT that is consistent with the electrostatic controlled adsorption mechanism of albumin at this pH. It was concluded that the rHSA monolayers of well-defined coverage can find applications for quantitatively analyzing ligand binding and for performing efficient biomaterials and immunological tests. PMID:25679491

  13. Size effect study of thin film hardness using AFM nano-indentation

    NASA Astrophysics Data System (ADS)

    Xu, Linyan; Qian, Shuangbei; Li, Juan; Liu, Congcong; Guo, Shijia; Huang, Di; Wu, Sen; Hu, Xiaodong

    2015-10-01

    With nano-level spatial and force resolution, atomic force microscope (AFM) becomes an indispensable nanoindentation measurement instrument for thin films and soft films. To do the research of size effect of the hardness property of thin films, indentation experiments have been done on a gold film with 200 nm thickness and a silicon nitride film with 110 nm thickness. It is possible to change the maximum load forces to get discrete residual depths on the film samples. The contact depths of the gold film are 15.91 nm and 26.67 nm respectively, while the contact depths of the silicon nitride film are 7.82 nm and 10.25 nm respectively. A group of nanoindentation force curves are recorded for the transformation into force-depth curves. Subsequently, a 3D image of the residual indentation can be obtained by in-situ scanning immediately after nanoindentation. The topography data is imported into a Matlab program to estimate the contact area of the indentation. For the gold film, the hardness parameters of 3.31 GPa and 2.57 GPa are calculated under the above two contact depths. And for silicon nitride film, the corresponding results are 6.51GPa and 3.58 GPa. The experimental results illustrate a strong size effect for thin film hardness. The correction of the residual indentation image of the gold film is also done as an initial study. Blind tip reconstruction (BTR) algorithm is introduced to calibrate the tip shape, and more reliable hardness values of 1.15 GPa and 0.94 GPa are estimated.

  14. In situ Electrochemical-AFM Study of LiFePO4 Thin Film in Aqueous Electrolyte.

    PubMed

    Wu, Jiaxiong; Cai, Wei; Shang, Guangyi

    2016-12-01

    Lithium-ion (Li-ion) batteries have been widely used in various kinds of electronic devices in our daily life. The use of aqueous electrolyte in Li-ion battery would be an alternative way to develop low cost and environmentally friendly batteries. In this paper, the lithium iron phosphate (LiFePO4) thin film cathode for the aqueous rechargeable Li-ion battery is prepared by radio frequency magnetron sputtering deposition method. The XRD, SEM, and AFM results show that the film is composed of LiFePO4 grains with olivine structure and the average size of 100 nm. Charge-discharge measurements at current density of 10 μAh cm(-2) between 0 and 1 V show that the LiFePO4 thin film electrode is able to deliver an initial discharge capacity of 113 mAh g(-1). Specially, the morphological changes of the LiFePO4 film electrode during charge and discharge processes were investigated in aqueous environment by in situ EC-AFM, which is combined AFM with chronopotentiometry method. The changes in grain area are measured, and the results show that the size of the grains decreases and increases during the charge and discharge, respectively; the relevant mechanism is discussed. PMID:27117633

  15. In situ Electrochemical-AFM Study of LiFePO4 Thin Film in Aqueous Electrolyte

    NASA Astrophysics Data System (ADS)

    Wu, Jiaxiong; Cai, Wei; Shang, Guangyi

    2016-04-01

    Lithium-ion (Li-ion) batteries have been widely used in various kinds of electronic devices in our daily life. The use of aqueous electrolyte in Li-ion battery would be an alternative way to develop low cost and environmentally friendly batteries. In this paper, the lithium iron phosphate (LiFePO4) thin film cathode for the aqueous rechargeable Li-ion battery is prepared by radio frequency magnetron sputtering deposition method. The XRD, SEM, and AFM results show that the film is composed of LiFePO4 grains with olivine structure and the average size of 100 nm. Charge-discharge measurements at current density of 10 μAh cm-2 between 0 and 1 V show that the LiFePO4 thin film electrode is able to deliver an initial discharge capacity of 113 mAh g-1. Specially, the morphological changes of the LiFePO4 film electrode during charge and discharge processes were investigated in aqueous environment by in situ EC-AFM, which is combined AFM with chronopotentiometry method. The changes in grain area are measured, and the results show that the size of the grains decreases and increases during the charge and discharge, respectively; the relevant mechanism is discussed.

  16. Malaria Vaccine Shows Promise in Small Study

    MedlinePlus

    ... nih.gov/medlineplus/news/fullstory_158765.html Malaria Vaccine Shows Promise in Small Study It protected more ... May 10, 2016 (HealthDay News) -- An experimental malaria vaccine protects a majority of adults against the mosquito- ...

  17. Malaria Vaccine Shows Promise in Small Study

    MedlinePlus

    ... https://medlineplus.gov/news/fullstory_158765.html Malaria Vaccine Shows Promise in Small Study It protected more ... May 10, 2016 (HealthDay News) -- An experimental malaria vaccine protects a majority of adults against the mosquito- ...

  18. Pericellular Brush and Mechanics of Guinea Pig Fibroblast Cells Studied with AFM.

    PubMed

    Dokukin, Maxim; Ablaeva, Yulija; Kalaparthi, Vivekanand; Seluanov, Andrei; Gorbunova, Vera; Sokolov, Igor

    2016-07-12

    The atomic force microscopy (AFM) indentation method combined with the brush model can be used to separate the mechanical response of the cell body from deformation of the pericellular layer surrounding biological cells. Although self-consistency of the brush model to derive the elastic modulus of the cell body has been demonstrated, the model ability to characterize the pericellular layer has not been explicitly verified. Here we demonstrate it by using enzymatic removal of hyaluronic content of the pericellular brush for guinea pig fibroblast cells. The effect of this removal is clearly seen in the AFM force-separation curves associated with the pericellular brush layer. We further extend the brush model for brushes larger than the height of the AFM probe, which seems to be the case for fibroblast cells. In addition, we demonstrate that an extension of the brush model (i.e., double-brush model) is capable of detecting the hierarchical structure of the pericellular brush, which, for example, may consist of the pericellular coat and the membrane corrugation (microridges and microvilli). It allows us to quantitatively segregate the large soft polysaccharide pericellular coat from a relatively rigid and dense membrane corrugation layer. This was verified by comparison of the parameters of the membrane corrugation layer derived from the force curves collected on untreated cells (when this corrugation membrane part is hidden inside the pericellular brush layer) and on treated cells after the enzymatic removal of the pericellular coat part (when the corrugations are exposed to the AFM probe). We conclude that the brush model is capable of not only measuring the mechanics of the cell body but also the parameters of the pericellular brush layer, including quantitative characterization of the pericellular layer structure. PMID:27410750

  19. Nano-scale Topographical Studies on the Growth Cones of Nerve Cells using AFM

    NASA Astrophysics Data System (ADS)

    Durkaya, Goksel; Zhong, Lei; Rehder, Vincent; Dietz, Nikolaus

    2009-11-01

    Nerve cells are the fundamental units which are responsible for intercommunication within the nervous system. The neurites, fibrous cable-like extensions for information delivery, of nerve cells are tipped by highly motile sensory structures known as the growth cones which execute important functions; neural construction, decision making and navigation during development and regeneration of the nervous system. The highly dynamic subcomponents of the growth cones are important in neural activity. Atomic Force Microscopy (AFM) is the most powerful microscopy technique which is capable of imaging without conductivity constraint and in liquid media. AFM providing nano-scale topographical information on biological structures is also informative on the physical properties such as: elasticity, adhesion, and softness. This contribution focuses on AFM analysis of the growth cones of the nerve cells removed from the buccal ganglion of Helisoma trivolvis. The results of nano-scale topography and softness analysis on growth cone central domain, filopodia and overlying lamellopodium (veil) are presented. The subcomponents of the growth cones of different nerve cells are compared to each other. The results of the analysis are linked to the mechanical properties and internal molecular density distribution of the growth cones.

  20. Microbiologically influenced corrosion of 304 stainless steel by aerobic Pseudomonas NCIMB 2021 bacteria: AFM and XPS study.

    PubMed

    Yuan, S J; Pehkonen, S O

    2007-09-01

    Microbiologically influenced corrosion (MIC) of stainless steel 304 by a marine aerobic Pseudomonas bacterium in a seawater-based medium was investigated by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). AFM was used to observe in situ the proliferation of a sessile Pseudomonas cell by binary fission. The development of a biofilm on the coupon surface and the extent of corrosion damage beneath the biofilm after various exposure times were also characterized by AFM. Results showed that the biofilm formed on the coupon surface increased in thickness and heterogeneity with time, and thus resulting in the occurrence of extensive micro-pitting corrosion; whilst the depth of pits increased linearly with time. The XPS results confirmed that the colonization of Pseudomonas bacteria on the coupon surface induced subtle changes in the alloy elemental composition in the outermost layer of surface films. The most significant feature resulting from microbial colonization on the coupon surface was the depletion of iron (Fe) and the enrichment of chromium (Cr) content as compared to a control coupon exposed to the sterile medium, and the enrichment of Cr increased with time. These compositional changes in the main alloying elements may be correlated with the occurrence of extensive micropitting corrosion on the surface. PMID:17582747

  1. A phase 1 study of the bispecific anti-CD30/CD16A antibody construct AFM13 in patients with relapsed or refractory Hodgkin lymphoma

    PubMed Central

    Rothe, Achim; Sasse, Stephanie; Topp, Max S.; Eichenauer, Dennis A.; Hummel, Horst; Reiners, Katrin S.; Dietlein, Markus; Kuhnert, Georg; Kessler, Joerg; Buerkle, Carolin; Ravic, Miroslav; Knackmuss, Stefan; Marschner, Jens-Peter; Pogge von Strandmann, Elke; Borchmann, Peter

    2015-01-01

    AFM13 is a bispecific, tetravalent chimeric antibody construct (TandAb) designed for the treatment of CD30-expressing malignancies. AFM13 recruits natural killer (NK) cells via binding to CD16A as immune effector cells. In this phase 1 dose-escalation study, 28 patients with heavily pretreated relapsed or refractory Hodgkin lymphoma received AFM13 at doses of 0.01 to 7 mg/kg body weight. Primary objectives were safety and tolerability. Secondary objectives included pharmacokinetics, antitumor activity, and pharmacodynamics. Adverse events were generally mild to moderate. The maximum tolerated dose was not reached. Pharmacokinetics assessment revealed a half-life of up to 19 hours. Three of 26 evaluable patients achieved partial remission (11.5%) and 13 patients achieved stable disease (50%), with an overall disease control rate of 61.5%. AFM13 was also active in brentuximab vedotin–refractory patients. In 13 patients who received doses of ≥1.5 mg/kg AFM13, the overall response rate was 23% and the disease control rate was 77%. AFM13 treatment resulted in a significant NK-cell activation and a decrease of soluble CD30 in peripheral blood. In conclusion, AFM13 represents a well-tolerated, safe, and active targeted immunotherapy of Hodgkin lymphoma. A phase 2 study is currently planned to optimize the dosing schedule in order to further improve the therapeutic efficacy. This phase 1 study was registered at www.clinicaltrials.gov as #NCT01221571. PMID:25887777

  2. AFM study of the effects of laser surface remelting on the morphology of Al-Fe aerospace alloys

    SciTech Connect

    Pariona, Moises Meza; Teleginski, Viviane; Santos, Kelly dos; Leandro Ribeiro dos Santos, Everton; Aparecida de Oliveira Camargo de Lima, Angela; Riva, Rudimar

    2012-12-15

    Laser beam welding has recently been incorporated into the fabrication process of aircraft and automobile structures. Surface roughness is an important parameter of product quality that strongly affects the performance of mechanical parts, as well as production costs. This parameter influences the mechanical properties such as fatigue behavior, corrosion resistance, creep life, etc., and other functional characteristics such as friction, wear, light reflection, heat transmission, lubrification, electrical conductivity, etc. The effects of laser surface remelting (LSR) on the morphology of Al-Fe aerospace alloys were examined before and after surface treatments, using optical microscopy (OM), scanning electron microscopy (SEM), low-angle X-ray diffraction (LA-XRD), atomic force microscopy (AFM), microhardness measurements (Vickers hardness), and cyclic voltammetry. This analysis was performed on both laser-treated and untreated sanded surfaces, revealing significant differences. The LA-XRD analysis revealed the presence of alumina, simple metals and metastable intermetallic phases, which considerably improved the microhardness of laser-remelted surfaces. The morphology produced by laser surface remelting enhanced the microstructure of the Al-Fe alloys by reducing their roughness and increasing their hardness. The treated surfaces showed passivity and stability characteristics in the electrolytic medium employed in this study. - Highlights: Black-Right-Pointing-Pointer The samples laser-treated and untreated showed significant differences. Black-Right-Pointing-Pointer The La-XRD revealed the presence of alumina in Al-1.5 wt.% Fe. Black-Right-Pointing-Pointer The laser-treated reducing the roughness and increasing the hardness. Black-Right-Pointing-Pointer The laser-treated surfaces showed characteristic passive in the electrolytic medium. Black-Right-Pointing-Pointer The laser-treated is a promising technique for applications technological.

  3. Studying Chemical Reactions, One Bond at a Time, with Single Molecule AFM Techniques

    NASA Astrophysics Data System (ADS)

    Fernandez, Julio M.

    2008-03-01

    The mechanisms by which mechanical forces regulate the kinetics of a chemical reaction are unknown. In my lecture I will demonstrate how we use single molecule force-clamp spectroscopy and protein engineering to study the effect of force on the kinetics of thiol/disulfide exchange. Reduction of disulfide bond via the thiol/disulfide exchange chemical reaction is crucial in regulating protein function and is of common occurrence in mechanically stressed proteins. While reduction is thought to proceed through a substitution nucleophilic bimolecular (SN2) reaction, the role of a mechanical force in modulating this chemical reaction is unknown. We apply a constant stretching force to single engineered disulfide bonds and measure their rate of reduction by dithiothreitol (DTT). We find that while the reduction rate is linearly dependent on the concentration of DTT, it is exponentially dependent on the applied force, increasing 10-fold over a 300 pN range. This result predicts that the disulfide bond lengthens by 0.34 å at the transition state of the thiol/disulfide exchange reaction. In addition to DTT, we also study the reduction of the engineered disulfide bond by the E. coli enzyme thioredoxin (Trx). Thioredoxins are enzymes that catalyze disulfide bond reduction in all organisms. As before, we apply a mechanical force in the range of 25-450 pN to the engineered disulfide bond substrate and monitor the reduction of these bonds by individual enzymes. In sharp contrast with the data obtained with DTT, we now observe two alternative forms of the catalytic reaction, the first requiring a reorientation of the substrate disulfide bond, causing a shortening of the substrate polypeptide by 0.76±0.07 å, and the second elongating the substrate disulfide bond by 0.21±0.01 å. These results support the view that the Trx active site regulates the geometry of the participating sulfur atoms, with sub-ångström precision, in order to achieve efficient catalysis. Single molecule

  4. Adsorption Behavior of Cellulose and Its Derivatives toward Ag(I) in Aqueous Medium: An AFM, Spectroscopic, and DFT Study.

    PubMed

    Zhu, Chuantao; Dobryden, Illia; Rydén, Jens; Öberg, Sven; Holmgren, Allan; Mathew, Aji P

    2015-11-17

    The aim of this study was to develop a fundamental understanding of the adsorption behavior of metal ions on cellulose surfaces using experimental techniques supported by computational modeling, taking Ag(I) as an example. Force interactions among three types of cellulose microspheres (native cellulose and its derivatives with sulfate and phosphate groups) and the silica surface in AgNO3 solution were studied with atomic force microscopy (AFM) using the colloidal probe technique. The adhesion force between phosphate cellulose microspheres (PCM) and the silica surface in the aqueous AgNO3 medium increased significantly with increasing pH while the adhesion force slightly decreased for sulfate cellulose microspheres (SCM), and no clear adhesion force was observed for native cellulose microspheres (CM). The stronger adhesion enhancement for the PCM system is mainly attributed to the electrostatic attraction between Ag(I) and the negative silica surface. The observed force trends were in good agreement with the measured zeta potentials. The scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) analyses confirmed the presence of silver on the surface of cellulose microspheres after adsorption. This study showed that PCM with a high content of phosphate groups exhibited a larger amount of adsorbed Ag(I) than CM and SCM and possible clustering of Ag(I) to nanoparticles. The presence of the phosphate group and a wavenumber shift of the P-OH vibration caused by the adsorption of silver ions on the phosphate groups were further confirmed with computational studies using density functional theory (DFT), which gives support to the above findings regarding the adsorption and clustering of Ag(I) on the cellulose surface decorated with phosphate groups as well as IR spectra. PMID:26501836

  5. The role of growth temperature in the adhesion and mechanics of pathogenic L. monocytogenes: an AFM study.

    PubMed

    Gordesli, Fatma Pinar; Abu-Lail, Nehal I

    2012-01-17

    The adhesion strengths of pathogenic L. monocytogenes EGDe to a model surface of silicon nitride were quantified using atomic force microscopy (AFM) in water for cells grown under five different temperatures (10, 20, 30, 37, and 40 °C). The temperature range investigated was chosen to bracket the thermal conditions in which L. monocytogenes survive in the environment. Our results indicated that adhesion force and energy quantified were at their maximum when the bacteria were grown at 30 °C. The higher adhesion observed at 30 °C compared to the adhesion quantified for bacterial cells grown at 37, 40, 20, and 10 °C was associated with longer and denser bacterial surface biopolymer brushes as predicted from fitting a model of steric repulsion to the approach distance-force data as well from the results of protein colorimetric assays. Theoretically predicted adhesion energies based on soft-particle DLVO theory agreed well with the adhesion energies computed from AFM force-distance retraction data (r(2) = 0.94); showing a minimum energy barrier to adhesion at 30 °C. PMID:22133148

  6. Following the Formation of Supported Lipid Bilayers on Mica: A Study Combining AFM, QCM-D, and Ellipsometry

    PubMed Central

    Richter, Ralf P.; Brisson, Alain R.

    2005-01-01

    Supported lipid bilayers (SLBs) are popular models of cell membranes with potential biotechnological applications and an understanding of the mechanisms of SLB formation is now emerging. Here we characterize, by combining atomic force microscopy, quartz crystal microbalance with dissipation monitoring, and ellipsometry, the formation of SLBs on mica from sonicated unilamellar vesicles using mixtures of zwitterionic, negatively and positively charged lipids. The results are compared with those we reported previously on silica. As on silica, electrostatic interactions were found to determine the pathway of lipid deposition. However, fundamental differences in the stability of surface-bound vesicles and the mobility of SLB patches were observed, and point out the determining role of the solid support in the SLB-formation process. The presence of calcium was found to have a much more pronounced influence on the lipid deposition process on mica than on silica. Our results indicate a specific calcium-mediated interaction between dioleoylphosphatidylserine molecules and mica. In addition, we show that the use of PLL-g-PEG modified tips considerably improves the AFM imaging of surface-bound vesicles and bilayer patches and evaluate the effects of the AFM tip on the apparent size and shape of these soft structures. PMID:15731391

  7. Molecular shape and binding force of Mycoplasma mobile's leg protein Gli349 revealed by an AFM study

    SciTech Connect

    Lesoil, Charles; Nonaka, Takahiro; Sekiguchi, Hiroshi; Osada, Toshiya; Miyata, Makoto; Afrin, Rehana; Ikai, Atsushi

    2010-01-15

    Recent studies of the gliding bacteria Mycoplasma mobile have identified a family of proteins called the Gli family which was considered to be involved in this novel and yet fairly unknown motility system. The 349 kDa protein called Gli349 was successfully isolated and purified from the bacteria, and electron microscopy imaging and antibody experiments led to the hypothesis that it acts as the 'leg' of M. mobile, responsible for attachment to the substrate as well as for gliding motility. However, more precise evidence of the molecular shape and function of this protein was required to asses this theory any further. In this study, an atomic force microscope (AFM) was used both as an imaging and a force measurement device to provide new information about Gli349 and its role in gliding motility. AFM images of the protein were obtained revealing a complex structure with both rigid and flexible parts, consistent with previous electron micrographs of the protein. Single-molecular force spectroscopy experiments were also performed, revealing that Gli349 is able to specifically bind to sialyllactose molecules and withstand unbinding forces around 70 pN. These findings strongly support the idea that Gli349 is the 'leg' protein of M. mobile, responsible for binding and also most probably force generation during gliding motility.

  8. Ability of Lactobacillus rhamnosus GAF01 to remove AFM1 in vitro and to counteract AFM1 immunotoxicity in vivo.

    PubMed

    Abbès, Samir; Salah-Abbès, Jalila Ben; Sharafi, Hakimeh; Jebali, Rania; Noghabi, Kambiz Akbari; Oueslati, Ridha

    2013-01-01

    Aflatoxin M1 (AFM1) has been detected in many parts of the world both in raw milk and many dairy products, causing great economic losses and human disease. Unfortunately, there are few studies dealing with AFM1 immunotoxicity/interactions with lactic acid bacteria for potential application as a natural preventive agent. The aim of this study was to isolate (from dairy products) food-grade probiotic bacteria able to degrade/bind AFM1 in vitro and evaluate whether the same organism(s) could impart a protective role against AFM1-induced immunotoxicity in exposed Balb/c mice. Bacteria (Lactobacillus plantarum MON03 and L. rhamnosus GAF01) were isolated from Tunisian artisanal butter and then tested for abilities to eliminate AFM1 from phosphate-buffered saline (PBS) and reconstituted milk (containing 0.05, 0.10, and 0.20 µg AFM1/ml) after 0, 6, and 24 h at 37°C. Results showed that the selected bacteria could 'remove' AFM1 both in PBS and skimmed milk. The binding abilities of AFM1 by L. plantarum MON03 and L. rhamnosus GAF01 strains (at 10(8) CFU/ml) in PBS and reconstituted milk ranged, respectively, from 16.1-78.6% and 15.3-95.1%; overall, L. rhamnosus showed a better potential for removal than L. plantarum. 'Removal' appeared to be by simple binding; the bacteria/AFM1 complex was stable and only a very small proportion of mycotoxin was released back into the solution. L. rhamnosus GAF01 had the highest binding capacity and was selected for use in the in vivo study. Those results indicated that use of the organism prevented AFM1-induced effects on total white and red blood cells, and lymphocyte subtypes, after 15 days of host treatment. These studies clearly indicated that L. rhamnosus GAF01 was able to bind AFM1 in vitro and-by mechanisms that might also be related to a binding effect-counteract AFM1-induced immunotoxicity. Moreover, by itself, this bacterium was not toxic and could potentially be used as an additive in dairy products and in biotechnology for

  9. Nanodimentional Aggregates In Organic Monolayers Studied With Atomic Force Microscopy (AFM) And Fluorescence Lifetime Imaging Microscopy (FLIM)

    NASA Astrophysics Data System (ADS)

    Ivanov, George R.; Burov, Julian

    2007-04-01

    Organic monolayers from a fluorescently labeled phospholipid (DPPE-NBD) were deposited on solid supports under special conditions that form stable nanometer wide bilayers cylinders that protrude from the monolayer. This molecule was frequently used in sensor applications due to its sensitivity to environment changes. The proposed configuration should provide both fast response times (ultra thin film) and increased sensitivity (greatly increased surface area). AFM can clearly distinguish between the different phases. The height difference between the solid-expanded and the liquid-expanded phase was measured to be 1.4 nm while the bilayer thickness was 5.6 nm. The solid domains show a 20 % decrease in fluorescence lifetime in comparison to the monolayer as measured by FLIM. This difference in lifetimes is explained in the model of fluorescence self quenching in the solid phase due to the molecules being closer to each other.

  10. Mercury's Core Molten, Radar Study Shows

    NASA Astrophysics Data System (ADS)

    2007-05-01

    100 times, and showed that Mercury's spin axis is almost, but not exactly, perpendicular to the plane of its rotation around the Sun," Margot said. Margot worked with Stanton Peale of the University of California, Santa Barbara, Raymond Jurgens and Martin Slade of NASA's Jet Propulsion Laboratory, and Igor Holin of the Space Research Institute in Moscow. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. The Arecibo Observatory is part of the National Astronomy and Ionosphere Center, which is operated by Cornell University under a cooperative agreement with the NSF. Part of this work was supported by the Jet Propulsion Laboratory, operated by Caltech under contract with NASA.

  11. The physics of pulling polyproteins: a review of single molecule force spectroscopy using the AFM to study protein unfolding

    NASA Astrophysics Data System (ADS)

    Hughes, Megan L.; Dougan, Lorna

    2016-07-01

    One of the most exciting developments in the field of biological physics in recent years is the ability to manipulate single molecules and probe their properties and function. Since its emergence over two decades ago, single molecule force spectroscopy has become a powerful tool to explore the response of biological molecules, including proteins, DNA, RNA and their complexes, to the application of an applied force. The force versus extension response of molecules can provide valuable insight into its mechanical stability, as well as details of the underlying energy landscape. In this review we will introduce the technique of single molecule force spectroscopy using the atomic force microscope (AFM), with particular focus on its application to study proteins. We will review the models which have been developed and employed to extract information from single molecule force spectroscopy experiments. Finally, we will end with a discussion of future directions in this field.

  12. SEM/AFM studies of cementitious binder modified by MWCNT and nano-sized Fe needles

    SciTech Connect

    Cwirzen, A.; Habermehl-Cwirzen, K.; Nasibulin, A.G.; Kaupinen, E.I.; Mudimela, P.R.; Penttala, V.

    2009-07-15

    Several compositions of cement paste samples containing multiwalled carbon nanotubes were produced using a small-size vacuum mixer. The mixes had water-to-binder ratios of 0.25 and 0.3. Sulfate resistant cement has been used. The multiwalled carbon nanotubes were introduced as a water suspension with added surfactant admixtures. The used surfactant acted as plasticizing agents for the cement paste and as dispersant for the multiwalled carbon nanotubes. A set of beams was produced to determine the compressive and flexural strengths. The scanning electron microscope and atomic force microscope studies of fractured and polished samples showed a good dispersion of multiwalled carbon nanotubes in the cement matrix. The studies revealed also sliding of multiwalled carbon nanotubes from the matrix in tension which indicates their weak bond with cement matrix. In addition to multiwalled carbon nanotubes also steel wires covered with ferrite needles were investigated to determine the bond strength between the matrix and the steel wire. These later samples consisted of 15-mm-high cylinders of cement paste with vertically cast-in steel wires. As reference, plain steel wires were cast, too. The bond strength between steel wires covered with nano-sized Fe needles appeared to be lower in comparison with the reference wires. The scanning electron microscope studies of fractured samples indicated on brittle nature of Fe needles resulting in shear-caused breakage of the bond to the matrix.

  13. Hydrodynamic effects of the tip movement on surface nanobubbles: a combined tapping mode, lift mode and force volume mode AFM study.

    PubMed

    Walczyk, Wiktoria; Hain, Nicole; Schönherr, Holger

    2014-08-28

    We report on an Atomic Force Microscopy (AFM) study of AFM tip-nanobubble interactions in experiments conducted on argon surface nanobubbles on HOPG (highly oriented pyrolytic graphite) in water in tapping mode, lift mode and Force Volume (FV) mode AFM. By subsequent data acquisition on the same nanobubbles in these three different AFM modes, we could directly compare the effect of different tip-sample interactions. The tip-bubble interaction strength was found to depend on the vertical and horizontal position of the tip on the bubble with respect to the bubble center. The interaction forces measured experimentally were in good agreement with the forces calculated using the dynamic interaction model. The strength of the hydrodynamic effect was also found to depend on the direction of the tip movement. It was more pronounced in the FV mode, in which the tip approaches the bubble from the top, than in the lift mode, in which the tip approaches the bubble from the side. This result suggests that the direction of tip movement influences the bubble deformation. The effect should be taken into account when nanobubbles are analysed by AFM in various scanning modes. PMID:24988375

  14. AFM-based tribological study of nanopatterned surfaces: the influence of contact area instabilities.

    PubMed

    Rota, A; Serpini, E; Gazzadi, G C; Valeri, S

    2016-04-01

    Although the importance of morphology on the tribological properties of surfaces has long been proved, an exhaustive understanding of nanopatterning effects is still lacking due to the difficulty in both fabricating 'really nano-' structures and detecting their tribological properties. In the present work we show how the probe-surface contact area can be a critical parameter due to its remarkable local variability, making a correct interpretation of the data very difficult in the case of extremely small nanofeatures. Regular arrays of parallel 1D straight nanoprotrusions were fabricated by means of a low-dose focused ion beam, taking advantage of the amorphization-related swelling effect. The tribological properties of the patterns were detected in the presence of air and in vacuum (dry ambient) by atomic force microscopy. We have introduced a novel procedure and data analysis to reduce the uncertainties related to contact instabilities. The real time estimation of the radius of curvature of the contacting asperity enables us to study the dependence of the tribological properties of the patterns from their geometrical characteristics. The effect of the patterns on both adhesion and the coefficient of friction strongly depends on the contact area, which is linked to the local radius of curvature of the probe. However, a detectable hydrophobic character induced on the hydrophilic native SiO2 has been observed as well. The results suggest a scenario for capillary formation on the patterns. PMID:26934217

  15. AFM-based tribological study of nanopatterned surfaces: the influence of contact area instabilities

    NASA Astrophysics Data System (ADS)

    Rota, A.; Serpini, E.; Gazzadi, G. C.; Valeri, S.

    2016-04-01

    Although the importance of morphology on the tribological properties of surfaces has long been proved, an exhaustive understanding of nanopatterning effects is still lacking due to the difficulty in both fabricating ‘really nano-’ structures and detecting their tribological properties. In the present work we show how the probe-surface contact area can be a critical parameter due to its remarkable local variability, making a correct interpretation of the data very difficult in the case of extremely small nanofeatures. Regular arrays of parallel 1D straight nanoprotrusions were fabricated by means of a low-dose focused ion beam, taking advantage of the amorphization-related swelling effect. The tribological properties of the patterns were detected in the presence of air and in vacuum (dry ambient) by atomic force microscopy. We have introduced a novel procedure and data analysis to reduce the uncertainties related to contact instabilities. The real time estimation of the radius of curvature of the contacting asperity enables us to study the dependence of the tribological properties of the patterns from their geometrical characteristics. The effect of the patterns on both adhesion and the coefficient of friction strongly depends on the contact area, which is linked to the local radius of curvature of the probe. However, a detectable hydrophobic character induced on the hydrophilic native SiO2 has been observed as well. The results suggest a scenario for capillary formation on the patterns.

  16. Nanoscale structural features determined by AFM for single virus particles.

    PubMed

    Chen, Shu-wen W; Odorico, Michael; Meillan, Matthieu; Vellutini, Luc; Teulon, Jean-Marie; Parot, Pierre; Bennetau, Bernard; Pellequer, Jean-Luc

    2013-11-21

    In this work, we propose "single-image analysis", as opposed to multi-image averaging, for extracting valuable information from AFM images of single bio-particles. This approach allows us to study molecular systems imaged by AFM under general circumstances without restrictions on their structural forms. As feature exhibition is a resolution correlation, we have performed AFM imaging on surfaces of tobacco mosaic virus (TMV) to demonstrate variations of structural patterns with probing resolution. Two AFM images were acquired with the same tip at different probing resolutions in terms of pixel width, i.e., 1.95 and 0.49 nm per pixel. For assessment, we have constructed an in silico topograph based on the three-dimensional crystal structure of TMV as a reference. The prominent artifacts observed in the AFM-determined shape of TMV were attributed to tip convolutions. The width of TMV rod was systematically overestimated by ~10 nm at both probing resolutions of AFM. Nevertheless, the effects of tip convolution were less severe in vertical orientation so that the estimated height of TMV by AFM imaging was in close agreement with the in silico X-ray topograph. Using dedicated image processing algorithms, we found that at low resolution (i.e., 1.95 nm per pixel), the extracted surface features of TMV can be interpreted as a partial or full helical repeat (three complete turns with ~7.0 nm in length), while individual protein subunits (~2.5 nm) were perceivable only at high resolution. The present study shows that the scales of revealed structural features in AFM images are subject to both probing resolution and processing algorithms for image analysis. PMID:24056758

  17. Characterization of the interaction between AFM tips and surface nanobubbles.

    PubMed

    Walczyk, Wiktoria; Schönherr, Holger

    2014-06-24

    While the presence of gaseous enclosures observed at various solid-water interfaces, the so-called "surface nanobubles", has been confirmed by many groups in recent years, their formation, properties, and stability have not been convincingly and exhaustively explained. Here we report on an atomic force microscopy (AFM) study of argon nanobubbles on highly oriented pyrolitic graphite (HOPG) in water to elucidate the properties of nanobubble surfaces and the mechanism of AFM tip-nanobubble interaction. In particular, the deformation of the nanobubble-water interface by the AFM tip and the question whether the AFM tip penetrates the nanobubble during scanning were addressed by this combined intermittent contact (tapping) mode and force volume AFM study. We found that the stiffness of nanobubbles was smaller than the cantilever spring constant and comparable with the surface tension of water. The interaction with the AFM tip resulted in severe quasi-linear deformation of the bubbles; however, in the case of tip-bubble attraction, the interface deformed toward the tip. We tested two models of tip-bubble interaction, namely, the capillary force and the dynamic interaction model, and found, depending on the tip properties, good agreement with experimental data. The results showed that the tip-bubble interaction strength and the magnitude of the bubble deformation depend strongly on tip and bubble geometry and on tip and substrate material, and are very sensitive to the presence of contaminations that alter the interfacial tension. In particular, nanobubbles interacted differently with hydrophilic and hydrophobic AFM tips, which resulted in qualitatively and quantitatively different force curves measured on the bubbles in the experiments. To minimize bubble deformation and obtain reliable AFM results, nanobubbles must be measured with a sharp hydrophilic tip and with a cantilever having a very low spring constant in a contamination-free system. PMID:24856074

  18. Biophysical analysis of bacterial and viral systems. A shock tube study of bio-aerosols and a correlated AFM/nanosims investigation of vaccinia virus

    SciTech Connect

    Gates, Sean Damien

    2013-05-01

    The work presented herein is concerned with the development of biophysical methodology designed to address pertinent questions regarding the behavior and structure of select pathogenic agents. Two distinct studies are documented: a shock tube analysis of endospore-laden bio-aerosols and a correlated AFM/NanoSIMS study of the structure of vaccinia virus.

  19. Modeling the Interaction between AFM Tips and Pinned Surface Nanobubbles.

    PubMed

    Guo, Zhenjiang; Liu, Yawei; Xiao, Qianxiang; Schönherr, Holger; Zhang, Xianren

    2016-01-26

    Although the morphology of surface nanobubbles has been studied widely with different AFM modes, AFM images may not reflect the real shapes of the nanobubbles due to AFM tip-nanobubble interactions. In addition, the interplay between surface nanobubble deformation and induced capillary force has not been well understood in this context. In our work we used constraint lattice density functional theory to investigate the interaction between AFM tips and pinned surface nanobubbles systematically, especially concentrating on the effects of tip hydrophilicity and shape. For a hydrophilic tip contacting a nanobubble, its hydrophilic nature facilitates its departure from the bubble surface, displaying a weak and intermediate-range attraction. However, when the tip squeezes the nanobubble during the approach process, the nanobubble shows an elastic effect that prevents the tip from penetrating the bubble, leading to a strong nanobubble deformation and repulsive interactions. On the contrary, a hydrophobic tip can easily pierce the vapor-liquid interface of the nanobubble during the approach process, leading to the disappearance of the repulsive force. In the retraction process, however, the adhesion between the tip and the nanobubble leads to a much stronger lengthening effect on nanobubble deformation and a strong long-range attractive force. The trends of force evolution from our simulations agree qualitatively well with recent experimental AFM observations. This favorable agreement demonstrates that our model catches the main intergradient of tip-nanobubble interactions for pinned surface nanobubbles and may therefore provide important insight into how to design minimally invasive AFM experiments. PMID:26751634

  20. Theoretical study of the frequency shift in bimodal FM-AFM by fractional calculus

    PubMed Central

    Herruzo, Elena T

    2012-01-01

    Summary Bimodal atomic force microscopy is a force-microscopy method that requires the simultaneous excitation of two eigenmodes of the cantilever. This method enables the simultaneous recording of several material properties and, at the same time, it also increases the sensitivity of the microscope. Here we apply fractional calculus to express the frequency shift of the second eigenmode in terms of the fractional derivative of the interaction force. We show that this approximation is valid for situations in which the amplitude of the first mode is larger than the length of scale of the force, corresponding to the most common experimental case. We also show that this approximation is valid for very different types of tip–surface forces such as the Lennard-Jones and Derjaguin–Muller–Toporov forces. PMID:22496992

  1. Theoretical study of the frequency shift in bimodal FM-AFM by fractional calculus.

    PubMed

    Herruzo, Elena T; Garcia, Ricardo

    2012-01-01

    Bimodal atomic force microscopy is a force-microscopy method that requires the simultaneous excitation of two eigenmodes of the cantilever. This method enables the simultaneous recording of several material properties and, at the same time, it also increases the sensitivity of the microscope. Here we apply fractional calculus to express the frequency shift of the second eigenmode in terms of the fractional derivative of the interaction force. We show that this approximation is valid for situations in which the amplitude of the first mode is larger than the length of scale of the force, corresponding to the most common experimental case. We also show that this approximation is valid for very different types of tip-surface forces such as the Lennard-Jones and Derjaguin-Muller-Toporov forces. PMID:22496992

  2. Binding contribution between synaptic vesicle membrane and plasma membrane proteins in neurons: an AFM study.

    PubMed

    Sritharan, K C; Quinn, A S; Taatjes, D J; Jena, B P

    1998-01-01

    The final step in the exocytotic process is the docking and fusion of membrane-bound secretory vesicles at the cell plasma membrane. This docking and fusion is brought about by several participating vesicle membrane, plasma membrane and soluble cytosolic proteins. A clear understanding of the interactions between these participating proteins giving rise to vesicle docking and fusion is essential. In this study, the binding force profiles between synaptic vesicle membrane and plasma membrane proteins have been examined for the first time using the atomic force microscope. Binding force contributions of a synaptic vesicle membrane protein VAMP1, and the plasma membrane proteins SNAP-25 and syntaxin, are also implicated from these studies. Our study suggests that these three proteins are the major, if not the only contributors to the interactive binding force that exist between the two membranes. PMID:10452835

  3. Study on Nanomorphology of High-Structure Carbon Black and its Bound Rubber by Afm

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Jin, Yongzhong; Zhang, Jingyu; Wu, Yafeng; Meng, Chuncai

    2012-02-01

    Bound rubber in carbon black (CB) filled rubber (natural rubber (NR) and styrene-butadiene rubber (SBS)) was prepared by the solvent method. The nanomorphology of CB and rubber/CB soluble rubber was observed by atomic force microscope. The results show that high-structure CB DZ13 has a "grape cluster" structure which consists of many original particles with the grain size of about 30-50 nm. Graphitizing process of CB decreases the amount of bound rubber. The NR/DZ13 soluble rubber with island-rim structure has been obtained, where the islands are DZ13 particles and the rims around the islands are occupied by NR film. But when the graphitized DZ13 particles were used as fillers of rubber, we have only observed that some graphitized DZ13 particles were deposited on the surface of the globular-like NR molecular chains, instead of the spreading of NR molecular chains along the surface of DZ13 particles, indicating that graphitized DZ13 has lower chemical activity than ungraphitized DZ13. Especially, we have already observed an interesting unusual bound rubber phenomenon, the blocked "bracelet" structure with the diameter of about 600 nm in which CB particles were blocked in ring-shaped SBS monomer.

  4. Qplus AFM driven nanostencil.

    PubMed

    Grévin, B; Fakir, M; Hayton, J; Brun, M; Demadrille, R; Faure-Vincent, J

    2011-06-01

    We describe the development of a novel setup, in which large stencils with suspended silicon nitride membranes are combined with atomic force microscopy (AFM) regulation by using tuning forks. This system offers the possibility to perform separate AFM and nanostencil operations, as well as combined modes when using stencil chips with integrated tips. The flexibility and performances are demonstrated through a series of examples, including wide AFM scans in closed loop mode, probe positioning repeatability of a few tens of nanometer, simultaneous evaporation of large (several hundred of micron square) and nanoscopic metals and fullerene patterns in static, multistep, and dynamic modes. This approach paves the way for further developments, as it fully combines the advantages of conventional stenciling with the ones of an AFM driven shadow mask. PMID:21721701

  5. Human epithelial cancer cells studied using combined AFM-IR absorption nanoimaging

    NASA Astrophysics Data System (ADS)

    Kennedy, Eamonn; Al-Majomaie, Rasoul; Zerulla, Dominic; Al-Rubeai, Mohammed; Rice, James H.

    2014-05-01

    Several recent studies have described the use of infrared (IR) nanoimaging for non-invasive chemical discrimination of subcellular features and intracellular exogenous agents. In this work we outline a number of improvements in both quantitative IR nanoimage analysis and optical system improvements which enable recovery of nanoscale subcellular chemical localization with improved chemical precision. Additionally, we demonstrate how a combination of IR absorption nanoimaging and topographic data can produce subcellular chemical density and complexity maps, which can illustrate several cellular features of interest, including the label free localization of nuclei for both healthy and cancerous cell lines with sub 40nm accuracy. As many cell processes related to disease are governed by the position and dynamics of subcellular features, we present the ability to map biochemical inhomogeneity of cancer cells at nanoscale resolution as a means to explore the subcellular biomechanics underlying carcinogenesis.

  6. Force profiles of protein pulling with or without cytoskeletal links studied by AFM

    SciTech Connect

    Afrin, Rehana; Ikai, Atsushi . E-mail: aikai@bio.titech.ac.jp

    2006-09-15

    To test the capability of the atomic force microscope for distinguishing membrane proteins with/without cytoskeletal associations, we studied the pull-out mechanics of lipid tethers from the red blood cell (RBC). When wheat germ agglutinin, a glycophorin A (GLA) specific lectin, was used to pull out tethers from RBC, characteristic force curves for tether elongation having a long plateau force were observed but without force peaks which are usually attributed to the forced unbinding of membrane components from the cytoskeleton. The result was in agreement with the reports that GLA is substantially free of cytoskeletal interactions. On the contrary, when the Band 3 specific lectin, concanavalin A, was used, the force peaks were indeed observed together with a plateau supporting its reported cytoskeletal association. Based on these observations, we postulate that the state of cytoskeletal association of particular membrane proteins can be identified from the force profiles of their pull-out mechanics.

  7. AFM Study on the Electric-Field Effects on Supported Bilayer Lipid Membranes

    PubMed Central

    Jeuken, Lars J. C.

    2008-01-01

    Electric-field induced changes in structure and conductivity of supported bilayer lipid membranes (SLM) have been studied at submicroscopic resolution using atomic force microscopy and electrochemical impedance spectroscopy. The SLMs are formed on gold surfaces modified with mixed self-assembled monolayers of a cholesterol-tether and 6-mercaptohexanol. At applied potentials of ≤−0.25 V versus standard hydrogen electrode, the conductance of the SLM increases and membrane areas of <150 nm in size are found to elevate from the surface up to 15 nm in height. To estimate the electric field experienced by the lipid membrane, electrowetting has been used to determine the point of zero charge of a 6-mercaptohexanol-modified surface (0.19 ± 0.13 V versus standard hydrogen electrode). The effects of electric fields on the structure and conductance of supported membranes are discussed. PMID:18326663

  8. Lipid Asymmetry in DLPC/DSPC-Supported Lipid Bilayers: A Combined AFM and Fluorescence Microscopy Study

    PubMed Central

    Lin, Wan-Chen; Blanchette, Craig D.; Ratto, Timothy V.; Longo, Marjorie L.

    2006-01-01

    A fundamental attribute of cell membranes is transmembrane asymmetry, specifically the formation of ordered phase domains in one leaflet that are compositionally different from the opposing leaflet of the bilayer. Using model membrane systems, many previous studies have demonstrated the formation of ordered phase domains that display complete transmembrane symmetry; but there have been few reports on the more biologically relevant asymmetric membrane structures. Here we report on a combined atomic force microscopy and fluorescence microscopy study whereby we observe three different states of transmembrane symmetry in phase-separated supported lipid bilayers formed by vesicle fusion. We find that if the leaflets differ in gel-phase area fraction, then the smaller domains in one leaflet are in registry with the larger domains in the other leaflet and the system is dynamic. In a presumed lipid flip-flop process similar to Ostwald ripening, the smaller domains in one leaflet erode away whereas the large domains in the other leaflet grow until complete compositional asymmetry is reached and remains stable. We have quantified this evolution and determined that the lipid flip-flop event happens most frequently at the interface between symmetric and asymmetric DSPC domains. If both leaflets have identical area fraction of gel-phase, gel-phase domains are in registry and are static in comparison to the first state. The stability of these three DSPC domain distributions, the degree of registry observed, and the domain immobility have biological significance with regards to maintenance of lipid asymmetry in living cell membranes, communication between inner leaflet and outer leaflet, membrane adhesion, and raft mobility. PMID:16214871

  9. AFM and STM studies of the carbonization and graphitization of polyimide films

    NASA Astrophysics Data System (ADS)

    Nysten, B.; Roux, J.-C.; Flandrois, S.; Daulan, C.; Saadaoui, H.

    1993-11-01

    Kapton polyimide and high-modulus polyimide (PPT) films were carbonized and graphitized at various temperatures from 600 to 3000 °C. Their surface was studied by atomic-force microscopy and/or by scanning tunneling microscopy in order to follow the modification of the large-scale morphology and the atomic structure as a function of the heat-treatment temperature (HTT). On the pristine Kapton films, the local order of the molecules is brought to the fore. With increasing HTT (600 to 1000 °C) the structure becomes more disordered while at larger scale a bumpy morphology appears. During graphitization, the bumpy morphology gradually disappears and is replaced by graphitized terraces whose size increases with HTT. At atomic scale, it is shown that the graphene layers progressively grow for HTT higher than 1800 °C. On the films treated between 1800 and 2400 °C, graphene layers containing point defects are imaged and (√3 × √3 )R 30° superstructures are observed near large defects. On the samples treated at 2400 and 2600 °C, moiré patterns are observed and are attributed to stacking faults (turbostratic structure).

  10. Characterizing Cell Mechanics with AFM and Microfluidics

    NASA Astrophysics Data System (ADS)

    Walter, N.; Micoulet, A.; Suresh, S.; Spatz, J. P.

    2007-03-01

    Cell mechanical properties and functionality are mainly determined by the cytoskeleton, besides the cell membrane, the nucleus and the cytosol, and depend on various parameters e.g. surface chemistry and rigidity, surface area and time available for cell spreading, nutrients and drugs provided in the culture medium. Human epithelial pancreatic and mammary cancer cells and their keratin intermediate filaments are the main focus of our work. We use Atomic Force Microscopy (AFM) to study cells adhering to substrates and Microfluidic Channels to probe cells in suspension, respectively. Local and global properties are extracted by varying AFM probe tip size and the available adhesion area for cells. Depth-sensing, instrumented indentation tests with AFM show a clear difference in contact stiffness for cells that are spread of controlled substrates and those that are loosely attached. Microfluidic Channels are utilized in parallel to evaluate cell deformation and ``flow resistance'', which are dependent on channel cross section, flow rate, cell nucleus size and the mechanical properties of cytoskeleton and membrane. The results from the study are used to provide some broad and quantitative assessments of the connections between cellular/subcellular mechanics and biochemical origins of disease states.

  11. An Evaluation of the Impacts of AF-M315E Propulsion Systems for Varied Mission Applications

    NASA Technical Reports Server (NTRS)

    Deans, Matthew C.; Oleson, Steven R.; Fittje, James; Colozza, Anthony; Packard, Tom; Gyekenyesi, John; McLean, Christopher H.; Spores, Ronald A.

    2015-01-01

    The purpose of the AF-M315E COMPASS study is to identify near-term (3-5 years) and long term (5 years +) opportunities for infusion, specifically the thruster and associated component technologies being developed as part of the GPIM project. Develop design reference missions which show the advantages of the AF-M315E green propulsion system. Utilize a combination of past COMPASS designs and selected new designs to demonstrate AF-M315E advantages. Use the COMPASS process to show the puts and takes of using AF-M315E at the integrated system level.

  12. Charging C60 islands with the AFM tip.

    PubMed

    Hoff, Brice; Henry, Claude R; Barth, Clemens

    2016-01-01

    We show that electrons can be transferred on demand from an AFM tip into single bulk-like C60 islands, which are supported on the insulating NaCl(001) surface. We exemplify this by controlled charge-manipulation experiments conducted in ultrahigh vacuum by noncontact AFM (nc-AFM), electrostatic force microscopy (EFM) and Kelvin probe force microscopy (KPFM). KPFM shows a homogeneous contrast at the islands, which is a signature for an equal distribution of the electrons in the T1u band. The charge dissipates during half a day due to an interaction of the charged C60 islands with defects in the near surface region of NaCl. Our results open the perspective in photo-voltaics to study charge attachment, stability and charge exchange with the environment of any C60 bulk-like system. PMID:26617348

  13. Charging C60 islands with the AFM tip

    NASA Astrophysics Data System (ADS)

    Hoff, Brice; Henry, Claude R.; Barth, Clemens

    2015-12-01

    We show that electrons can be transferred on demand from an AFM tip into single bulk-like C60 islands, which are supported on the insulating NaCl(001) surface. We exemplify this by controlled charge-manipulation experiments conducted in ultrahigh vacuum by noncontact AFM (nc-AFM), electrostatic force microscopy (EFM) and Kelvin probe force microscopy (KPFM). KPFM shows a homogeneous contrast at the islands, which is a signature for an equal distribution of the electrons in the T1u band. The charge dissipates during half a day due to an interaction of the charged C60 islands with defects in the near surface region of NaCl. Our results open the perspective in photo-voltaics to study charge attachment, stability and charge exchange with the environment of any C60 bulk-like system.We show that electrons can be transferred on demand from an AFM tip into single bulk-like C60 islands, which are supported on the insulating NaCl(001) surface. We exemplify this by controlled charge-manipulation experiments conducted in ultrahigh vacuum by noncontact AFM (nc-AFM), electrostatic force microscopy (EFM) and Kelvin probe force microscopy (KPFM). KPFM shows a homogeneous contrast at the islands, which is a signature for an equal distribution of the electrons in the T1u band. The charge dissipates during half a day due to an interaction of the charged C60 islands with defects in the near surface region of NaCl. Our results open the perspective in photo-voltaics to study charge attachment, stability and charge exchange with the environment of any C60 bulk-like system. Electronic supplementary information (ESI) available. See DOI: 10.1039/C5NR04541J

  14. Imaging resolution of AFM with probes modified with FIB.

    PubMed

    Skibinski, J; Rebis, J; Wejrzanowski, T; Rozniatowski, K; Pressard, K; Kurzydlowski, K J

    2014-11-01

    This study concerns imaging of the structure of materials using AFM tapping (TM) and phase imaging (PI) mode, using probes modified with focused ion beam (FIB). Three kinds of modifications were applied - thinning of the cantilever, sharpening of the tip and combination of these two modifications. Probes shaped in that way were used for AFM investigations with Bruker AFM Nanoscope 8. As a testing material, titanium roughness standard supplied by Bruker was used. The results show that performed modifications influence the oscillation of the probes. In particular thinning of the cantilever enables one to acquire higher self-resonant frequencies, which can be advantageous for improving the quality of imaging in PI mode. It was found that sharpening the tip improves imaging resolution in tapping mode, which is consistent with existing knowledge, but lowered the quality of high frequency topography images. In this paper the Finite Element Method (FEM) was used to explain the results obtained experimentally. PMID:25080273

  15. Study of the sensitivity and resonant frequency of the torsional modes of an AFM cantilever with a sidewall probe based on a nonlocal elasticity theory.

    PubMed

    Abbasi, Mohammad; Karami Mohammadi, Ardeshir

    2015-05-01

    A relationship based on a nonlocal elasticity theory is developed to investigate the torsional sensitivity and resonant frequency of an atomic force microscope (AFM) with assembled cantilever probe (ACP). This ACP comprises a horizontal cantilever and a vertical extension, and a tip located at the free end of the extension, which makes the AFM capable of topography at sidewalls of microstructures. First, the governing differential equations of motion and boundary conditions for dynamic analysis are obtained by a combination of the basic equations of nonlocal elasticity theory and Hamilton's principle. Afterward, a closed-form expression for the sensitivity of vibration modes has been obtained using the relationship between the resonant frequency and contact stiffness of cantilever and sample. These analysis accounts for a better representation of the torsional behavior of an AFM with sidewall probe where the small-scale effect are significant. The results of the proposed model are compared with those of classical beam theory. The results show that the sensitivities and resonant frequencies of ACP predicted by the nonlocal elasticity theory are smaller than those obtained by the classical beam theory. PMID:25755027

  16. Synthesis of polymer nano-brushes by self-seeding method and study of various morphologies by AFM

    NASA Astrophysics Data System (ADS)

    Agbolaghi, S.; Abbaspoor, S.; Abbasi, F.

    2016-11-01

    Polymer brushes due to their high sensitivity to environmental changes are the best and newest means for developing the responsive materials. Polymer nano-brushes consisting various surface morphologies and uniformly distributed amorphous grafted chains were synthesized via single-crystal growth procedure. Poly(ethylene glycol)- b-polystyrene (PEG- b-PS) and poly(ethylene glycol)- b-poly(methyl methacrylate) (PEG- b-PMMA) block copolymers were prepared by atom transfer radical polymerization (ATRP). On the basis of various height differences, phase regions were detectable through atomic force microscopy (AFM NanoscopeIII). The novelty of this work is developing and characterizing the random and intermediate single-co-crystals. Besides, some other sorts of brush-covered single crystals like homo-brush and matrix-dispersed mixed-brushes were involved just for comparing the distinct morphologies. The intermediate (neither matrix-dispersed nor random) single-co-crystals were detectable through their thickness fluctuations in AFM height profiles. On the contrary, the random single-co-crystals were verified through comparing with their corresponding homopolymer and homo-brush single crystals. The growth fronts of (120), (240), (200) and (040) were detected by electron diffraction of transmission electron microscope.

  17. AFM nanoscale indentation in air of polymeric and hybrid materials with highly different stiffness

    NASA Astrophysics Data System (ADS)

    Suriano, Raffaella; Credi, Caterina; Levi, Marinella; Turri, Stefano

    2014-08-01

    In this study, nanomechanical properties of a variety of polymeric materials was investigated by means of AFM. In particular, selecting different AFM probes, poly(methyl methacrylate) (PMMA), polydimethylsiloxane (PDMS) bulk samples, sol-gel hybrid thin films and hydrated hyaluronic acid hydrogels were indented in air to determine the elastic modulus. The force-distance curves and the indentation data were found to be greatly affected by the cantilever stiffness and by tip geometry. AFM indentation tests show that the choice of the cantilever spring constant and of tip shape is crucially influenced by elastic properties of samples. When adhesion-dominated interactions occur between the tip and the surface of samples, force-displacement curves reveal that a suitable functionalization of AFM probes allows the control of such interactions and the extraction of Young' modulus from AFM curves that would be otherwise unfeasible. By applying different mathematical models depending on AFM probes and materials under investigation, the values of Young's modulus were obtained and compared to those measured by rheological and dynamic mechanical analysis or to literature data. Our results show that a wide range of elastic moduli (10 kPa-10 GPa) can be determined by AFM in good agreement with those measured by conventional macroscopic measurements.

  18. Diamond-modified AFM probes: from diamond nanowires to atomic force microscopy-integrated boron-doped diamond electrodes.

    PubMed

    Smirnov, Waldemar; Kriele, Armin; Hoffmann, René; Sillero, Eugenio; Hees, Jakob; Williams, Oliver A; Yang, Nianjun; Kranz, Christine; Nebel, Christoph E

    2011-06-15

    In atomic force microscopy (AFM), sharp and wear-resistant tips are a critical issue. Regarding scanning electrochemical microscopy (SECM), electrodes are required to be mechanically and chemically stable. Diamond is the perfect candidate for both AFM probes as well as for electrode materials if doped, due to diamond's unrivaled mechanical, chemical, and electrochemical properties. In this study, standard AFM tips were overgrown with typically 300 nm thick nanocrystalline diamond (NCD) layers and modified to obtain ultra sharp diamond nanowire-based AFM probes and probes that were used for combined AFM-SECM measurements based on integrated boron-doped conductive diamond electrodes. Analysis of the resonance properties of the diamond overgrown AFM cantilevers showed increasing resonance frequencies with increasing diamond coating thicknesses (i.e., from 160 to 260 kHz). The measured data were compared to performed simulations and show excellent correlation. A strong enhancement of the quality factor upon overgrowth was also observed (120 to 710). AFM tips with integrated diamond nanowires are shown to have apex radii as small as 5 nm and where fabricated by selectively etching diamond in a plasma etching process using self-organized metal nanomasks. These scanning tips showed superior imaging performance as compared to standard Si-tips or commercially available diamond-coated tips. The high imaging resolution and low tip wear are demonstrated using tapping and contact mode AFM measurements by imaging ultra hard substrates and DNA. Furthermore, AFM probes were coated with conductive boron-doped and insulating diamond layers to achieve bifunctional AFM-SECM probes. For this, focused ion beam (FIB) technology was used to expose the boron-doped diamond as a recessed electrode near the apex of the scanning tip. Such a modified probe was used to perform proof-of-concept AFM-SECM measurements. The results show that high-quality diamond probes can be fabricated, which are

  19. Combination of ToF-SIMS imaging and AFM to study the early stages of corrosion in Al-Cu thin films

    SciTech Connect

    Seyeux, A.; Missert, Nancy; Frankel, Gerald; Unocic, Kinga A; Klein, L. H.; Galtayries, A.; Marcus, P

    2011-01-01

    The pitting corrosion of Al-Cu thin film alloys was investigated using samples that were heat treated in air to form through-thickness Al2Cu particles within an Al-0.5%Cu matrix. Time-of-Flight SIMS (ToF-SIMS) analysis revealed Cu-rich regions 250 - 800 nm in lateral extent near the metal/oxide interface. Following exposure that generated pitting corrosion, secondary electron, secondary ion, and AFM images showed pits with size and density similar to those of the Cu-rich regions. The role of the Cu-rich regions is addressed.

  20. Penis Reconstructions 'Life-Altering' for Men, Studies Show

    MedlinePlus

    ... gov/medlineplus/news/fullstory_158725.html Penis Reconstructions 'Life-Altering' for Men, Studies Show Both transgender patients ... in the studies. But the procedure can be "life-altering," both for transgender men and for those ...

  1. Nano Mechanical Machining Using AFM Probe

    NASA Astrophysics Data System (ADS)

    Mostofa, Md. Golam

    and burr formations through intermittent cutting. Combining the AFM probe based machining with vibration-assisted machining enhanced nano mechanical machining processes by improving the accuracy, productivity and surface finishes. In this study, several scratching tests are performed with a single crystal diamond AFM probe to investigate the cutting characteristics and model the ploughing cutting forces. Calibration of the probe for lateral force measurements, which is essential, is also extended through the force balance method. Furthermore, vibration-assisted machining system is developed and applied to fabricate different materials to overcome some of the limitations of the AFM probe based single point nano mechanical machining. The novelty of this study includes the application of vibration-assisted AFM probe based nano scale machining to fabricate micro/nano scale features, calibration of an AFM by considering different factors, and the investigation of the nano scale material removal process from a different perspective.

  2. Structural investigations on native collagen type I fibrils using AFM

    SciTech Connect

    Strasser, Stefan; Zink, Albert; Janko, Marek; Heckl, Wolfgang M.; Thalhammer, Stefan . E-mail: stefan.thalhammer@gsf.de

    2007-03-02

    This study was carried out to determine the elastic properties of single collagen type I fibrils with the use of atomic force microscopy (AFM). Native collagen fibrils were formed by self-assembly in vitro characterized with the AFM. To confirm the inner assembly of the collagen fibrils, the AFM was used as a microdissection tool. Native collagen type I fibrils were dissected and the inner core uncovered. To determine the elastic properties of collagen fibrils the tip of the AFM was used as a nanoindentor by recording force-displacement curves. Measurements were done on the outer shell and in the core of the fibril. The structural investigations revealed the banding of the shell also in the core of native collagen fibrils. Nanoindentation experiments showed the same Young's modulus on the shell as well as in the core of the investigated native collagen fibrils. In addition, the measurements indicate a higher adhesion in the core of the collagen fibrils compared to the shell.

  3. Morphological and spectroscopic studies on enlargement of Pd nanoparticle in L-cysteine aqueous solution by AFM and XPS

    NASA Astrophysics Data System (ADS)

    Tsukada, C.; Ogawa, S.; Niwa, H.; Nomoto, T.; Kutluk, G.; Namatame, H.; Taniguchi, M.; Yagi, S.

    2013-02-01

    We have revealed the enlargement mechanism of Pd nanoparticles (NPs) on SiO2/Si by the AFM observation and the XPS measurement, when the Pd NPs react with the L-cysteine under water environment. Furthermore, the adsorbates on the Pd NPs/SiO2/Si have been confirmed by the XPS measurement. The Pd NPs with clean surface are fabricated and deposited on the SiO2/Si substrate by the gas evaporation method. In that aspect, the Pd NPs possess an interaction with the SiO2/Si surface. When the Pd NPs/SiO2/Si is reacted into the L-cysteine aqueous solution, the adsorbates originated from the L-cysteine exist on the Pd NPs surface. On the contrary, the L-cysteine hardly adsorb on the SiO2/Si. The enlargement of the Pd NPs is stimulated by the contributions of the H2O and/or the L-cysteine molecules because the Pd NPs can be more easily migrated on the SiO2/Si surface due to those contributions.

  4. AFM study of excimer laser patterning of block-copolymer: Creation of ordered hierarchical, hybrid, or recessed structures

    NASA Astrophysics Data System (ADS)

    Švanda, Jan; Siegel, Jakub; Švorčík, Vaclav; Lyutakov, Oleksiy

    2016-05-01

    We report fabrication of the varied range of hierarchical structures by combining bottom-up self-assembly of block copolymer poly(styrene-block-vinylpyridine) (PS-b-P4VP) with top-down excimer laser patterning method. Different procedures were tested, where laser treatment was applied before phase separation and after phase separation or phase separation and surface reconstruction. Laser treatment was performed using either polarized laser light with the aim to create periodical pattern on polymer surface or non-polarized light for preferential removing of polystyrene (PS) part from PS-b-P4VP. Additionally, dye was introduced into one part of block copolymer (P4VP) with the aim to modify its response to laser light. Resulting structures were analyzed by XPS, UV-vis and AFM techniques. Application of polarized laser light leads to creation of structures with hierarchical, recessed or hybrid geometries. Non-polarized laser beam allows pronouncing the block copolymer phase separated structure. Tuning the order of steps or individual step conditions enables the efficient reorientation of block-copolymer domain at large scale, fabrication of hierarchical, hybrid or recessed structures. The obtained structures can find potential applications in nanotechnology, photonics, plasmonics, information storage, optical devices, sensors and smart surfaces.

  5. Concussion Study Shows Player-To-Player Hits Most Damaging

    MedlinePlus

    ... Study Shows Player-to-Player Hits Most Damaging Running longer before the contact happens also spells more ... the University of Georgia. "We also found that running a long distance before colliding with an opponent ...

  6. Abortion Rates Rising in Zika-Affected Countries, Study Shows

    MedlinePlus

    ... news/fullstory_159500.html Abortion Rates Rising in Zika-Affected Countries, Study Shows Brazil, Ecuador have seen ... News) -- Fears over birth defects from mosquito-borne Zika may be driving up abortion rates in Latin ...

  7. Abortion Rates Rising in Zika-Affected Countries, Study Shows

    MedlinePlus

    ... nlm.nih.gov/medlineplus/news/fullstory_159500.html Abortion Rates Rising in Zika-Affected Countries, Study Shows ... from mosquito-borne Zika may be driving up abortion rates in Latin American countries affected by the ...

  8. For 'Ironman' Athletes, Study Shows Danger of Too Much Water

    MedlinePlus

    ... Ironman' Athletes, Study Shows Danger of Too Much Water Frequent fluid stops entice racers to drink more ... News) -- Long-distance triathletes who drink too much water during competition may end up with dangerously low ...

  9. Laser Unlocks Blood-Brain Barrier for Chemotherapy, Study Shows

    MedlinePlus

    ... nlm.nih.gov/medlineplus/news/fullstory_157444.html Laser Unlocks Blood-Brain Barrier for Chemotherapy, Study Shows ... 24, 2016 WEDNESDAY, Feb. 24, 2016 (HealthDay News) -- Laser surgery can open the protective blood-brain barrier, ...

  10. Interactions of newly designed dicationic carbazole derivatives with double-stranded DNA: syntheses, binding studies and AFM imaging.

    PubMed

    Jia, Tao; Xiang, Jin; Wang, Jing; Guo, Peng; Yu, Junping

    2013-09-01

    The design of small molecular ligands able to bind with DNA is pivotal for the development of diagnostic agents and therapeutic drugs targeting DNA. Carbazole-derivatives are potential agents against tumors and opportunistic infections of AIDS. Here, two carbazole-derived dicationic compounds, DPDI and DPPDI, were designed, synthesized and characterized using NMR, IR and MS. The DNA binding properties of DPDI and DPPDI were sensitive to ionic strength. At low ionic strength, planar and aromatic DPDI had a strongly intercalative interaction with DNA, which was confirmed by circular dichroism (CD) and gel electrophoresis. In DPPDI, a phenyl group substituting H atom at the –NH group of DPDI destroyed molecular planarity, which resulted in no intercalative interactions between DPPDI and DNA, proved by CD. The positive enhancement of CD at 260–270 nm and Hoechst 33258 competitive binding tests indicated the strong groove interactions of both DPPDI and DPDI to DNA. The similarity and difference in the structures between DPDI and DPPDI explained different interaction preferences with DNA. In groove interactions, dications of pyridinium on either DPDI or DPPDI could interact with DNA base pairs, and –NH on DPDI or –N–Ph on DPPDI pointed out of the groove, as the classical model of DNA groove binding agents. Furthermore, AFM imaging revealed that both carbazole-derivatives drove the DNA conformation more compact. All the experimental data proved that the two dicationic carbazole-derivatives interacted with DNA strongly and might act as a novel type of DNA-binding candidate. PMID:23863992

  11. CO2 study shows effects on scrub oak environment

    NASA Technical Reports Server (NTRS)

    2000-01-01

    CO2 study site manager and plant physiologist Graham Hymus (left) examines scrub oak foliage while project engineer David Johnson (right) looks on. The life sciences study is showing that rising levels of carbon dioxide in our atmosphere, caused by the burning of fossil fuels, could spur plant growth globally. The site of KSC's study is a natural scrub oak area near the Vehicle Assembly Building. Twelve-foot areas of scrub oak have been enclosed in 16 open-top test chambers into which CO2 has been blown. Five scientists from NASA and the Smithsonian Environmental Research Center in Edgewater, Md., work at the site to monitor experiments and keep the site running. Scientists hope to continue the study another five to 10 years. More information on this study can be found in Release No. 57- 00.

  12. Study the friction behaviour of poly[2-(dimethylamino)ethyl methacrylate] brush with AFM probes in contact mechanics

    NASA Astrophysics Data System (ADS)

    Raftari, Maryam; Zhang, Zhenyu; Leggett, Graham J.; Geoghegan, Mark

    2011-10-01

    We have studied the frictional behaviour of grafted poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA) films using friction force microscopy (FFM). The films were prepared on native oxide-terminated silicon substrates using the technique of atom transfer radical polymerization (ATRP). We show that single asperity contact mechanics (Johnson-Kendall-Roberts(JKR) and Derjaguin-Muller-Toporov(DMT)) as well as a linear (Amontons) relation between applied load and frictional load depending on the pH of the FFM probe. Measurements were made using functionalized and unfunctionalized silicon nitride triangular probes. Functionalized probes included gold-coated probes, and ones coated with a self-assembled monolayer of dodecanethiol (DDT). The frictional behaviour between PDMAEMA and all tips immersed in pH from 3 to 11 are corresponded to the DMT or JKR model and are linear in pH=1, 2, and 12. These results show that contact mechanics of polyelectrolytes in water is complex and strongly dependent on the environmental pH.

  13. AFM Morphology Study of Si1-Y GeY:H Films Deposited by LF PE CVD from Silane-Germane with Different

    SciTech Connect

    Sanchez, L; Kosarev, A

    2005-03-28

    The morphology of Si{sub 1-Y} Ge{sub Y}:H films in the range of Y=0.23 to 0.9 has been studied by AFM. The films were deposited by Low Frequency (LF) PE CVD at substrate temperature T{sub s}=300 C and discharge frequency f=110 kHz from silane+germane mixture with and without, Ar and H{sub 2} dilution. The films were deposited on silicon and glass substrates. AFM images were taken and analyzed for 2 x 2 mm{sup 2} area. All the images demonstrated ''grain'' like structure, which was characterized by the height distribution function F(H) average roughness , standard height deviation Rq, lateral correlation length L{sub c} area distribution function F(s), mean grain area , diameter distribution function F(d), and mean grain diameter . The roughness of the films monotonically increases with Y for all dilutions, but more significantly in the films deposited without dilution. L{sub c} continuously grows with Y in the films deposited without dilution, while more complex behavior L{sub c}(Y) is observed in the films deposited with H- or Ar dilution. The sharpness of F(H) characterized by curtosis {gamma} depends on dilution and the sharpest F(H) are for the films deposited with Ar ({gamma}=5.30,Y=0.23) and without dilution ({gamma}=4.3, Y=0.45). Isothermal annealing caused increase of , L{sub c} in the films deposited with H- and Ar dilutions, while in the films prepared without dilution the behavior was more complex, depending on the substrates. Significant narrowing of the height distribution was observed in the films deposited with H dilution or without dilution.

  14. Polymorphism of amyloid fibrils formed by a peptide from the yeast prion protein Sup35: AFM and Tip-Enhanced Raman Scattering studies.

    PubMed

    Krasnoslobodtsev, Alexey V; Deckert-Gaudig, Tanja; Zhang, Yuliang; Deckert, Volker; Lyubchenko, Yuri L

    2016-06-01

    Aggregation of prion proteins is the cause of various prion related diseases. The infectious form of prions, amyloid aggregates, exist as multiple strains. The strains are thought to represent structurally different prion protein molecules packed into amyloid aggregates, but the knowledge on the structure of different types of aggregates is limited. Here we report on the use of AFM (Atomic Force Microscopy) and TERS (Tip-Enhanced Raman Scattering) to study morphological heterogeneity and access underlying conformational features of individual amyloid aggregates. Using AFM we identified the morphology of amyloid fibrils formed by the peptide (CGNNQQNY) from the yeast prion protein Sup35 that is critically involved in the aggregation of the full protein. TERS results demonstrate that morphologically different amyloid fibrils are composed of a distinct set of conformations. Fibrils formed at pH 5.6 are composed of a mixture of peptide conformations (β-sheets, random coil and α-helix) while fibrils formed in pH~2 solution primarily have β-sheets. Additionally, peak positions in the amide III region of the TERS spectra suggested that peptides have parallel arrangement of β-sheets for pH~2 fibrils and antiparallel arrangement for fibrils formed at pH 5.6. We also developed a methodology for detailed analysis of the peptide secondary structure by correlating intensity changes of Raman bands in different regions of TERS spectra. Such correlation established that structural composition of peptides is highly localized with large contribution of unordered secondary structures on a fibrillar surface. PMID:27060278

  15. Simulated structure and imaging of NTCDI on Si(1 1 1)-7 × 7 : a combined STM, NC-AFM and DFT study.

    PubMed

    Jarvis, S P; Sweetman, A M; Lekkas, I; Champness, N R; Kantorovich, L; Moriarty, P

    2015-02-11

    The adsorption of naphthalene tetracarboxylic diimide (NTCDI) on Si(1 1 1)-7 × 7 is investigated through a combination of scanning tunnelling microscopy (STM), noncontact atomic force microscopy (NC-AFM) and density functional theory (DFT) calculations. We show that NTCDI adopts multiple planar adsorption geometries on the Si(1 1 1)-7 × 7 surface which can be imaged with intramolecular bond resolution using NC-AFM. DFT calculations reveal adsorption is dominated by covalent bond formation between the molecular oxygen atoms and the surface silicon adatoms. The chemisorption of the molecule is found to induce subtle distortions to the molecular structure, which are observed in NC-AFM images. PMID:25414147

  16. Manual restraint and shows of force: the City-128 study.

    PubMed

    Bowers, Len; Van Der Merwe, Marie; Paterson, Brodie; Stewart, Duncan

    2012-02-01

    Manual restraint is used to manage disturbed behaviour by patients. This study aimed to assess the relationship of manual restraint and show of force to conflict behaviours, the use of containment methods, service environment, physical environment, patient routines, staff characteristics, and staff group variables. Data from a multivariate, cross-sectional study of 136 acute psychiatric wards in England were used to conduct this analysis. Manual restraint was used less frequently on English acute psychiatric wards (0.20 incidents per day) than show of force (0.28 incidents per day). Both were strongly associated with the proportion of patients subject to legal detention, aggressive behaviours, and the enforcement of treatment and detention. Medical, nursing, and security guard staff provision were associated in different ways with variations in the use of these coercive interventions. An effective ward structure of rules and routines was associated with less dependence on these control methods. Training for manual restraint should incorporate the scenarios of attempted absconding and enforcement of treatment, as well as violent behaviour. Attempts to lessen usage of these interventions could usefully focus on increasing the availability of medical staff to patients, reducing reliance on security guards and establishing a good ward structure. PMID:21733054

  17. Quantitative nano-mechanics of biological cells with AFM

    NASA Astrophysics Data System (ADS)

    Sokolov, Igor

    2013-03-01

    The importance of study of living cells is hard to overestimate. Cell mechanics is a relatively young, yet not a well-developed area. Besides just a fundamental interest, large practical need has emerged to measure cell mechanics quantitatively. Recent studies revealed a significant correlation between stiffness of biological cells and various human diseases, such as cancer, malaria, arthritis, and even aging. However, really quantitative studies of mechanics of biological cells are virtually absent. It is not even clear if the cell, being a complex and heterogeneous object, can be described by the elastic modulus at all. Atomic force microscopy (AFM) is a natural instrument to study properties of cells in their native environments. Here we will demonstrate that quantitative measurements of elastic modulus of cells with AFM are possible. Specifically, we will show that the ``cell body'' (cell without ``brush'' surface layer, a non-elastic layer surrounding cells) typically demonstrates the response of a homogeneous elastic medium up to the deformation of 10-20%, but if and only if a) the cellular brush layer is taken into account, b) rather dull AFM probes are used. This will be justified with the help of the strong condition of elastic behavior of material: the elastic modulus is shown to be independent on the indentation depth. We will also demonstrate that an attempt either to ignore the brush layer or to use sharp AFM probes will result in the violation of the strong condition, which implies impossibility to use the concept of the elastic modulus to describe cell mechanics in such experiments. Examples of quantitative measurements of the Young's modulus of the cell body and the cell brush parameters will be given for various cells. Address when submitting: Clarkson University, Potsdam, NY 13699

  18. Strength by atomic force microscopy (AFM): Molecular dynamics of water layer squeezing on magnesium oxide

    NASA Astrophysics Data System (ADS)

    Kendall, K.; Dhir, Aman; Yong, Chin W.

    2010-11-01

    Localised strength testing of materials is often carried out in an atomic force microscope (AFM), as foreseen by Kelly in his book Strong Solids (Clarendon Press, Oxford, 1966). During AFM indentation experiments, contamination can strongly influence the observed strength and theoretical interpretation of the results is a major problem. Here, we use molecular dynamics computer modelling to describe the contact of NaCl and MgO crystal probes onto surfaces, comparable to an AFM experiment. Clean NaCl gave elastic, brittle behaviour in contact simulations at 300 K, whereas MgO was more plastic, leading to increased toughness. This paper also considers the strength of an oxide substrate contaminated by water molecules and tested by indentation with a pyramidal probe of oxide crystal. Recent theory on the effect of liquid contaminant layers on surface strength has been mainly focussed on Lennard Jones (LJ) molecules with some studies on alcohols and water, described by molecular dynamics, which allows the molecules to be squeezed out as the crystal lattice is deformed. In this work, we have focused on water by studying the forces between a magnesium oxide (MgO) atomic force microscope (AFM) probe and an MgO slab. Force versus separation has been plotted as the AFM probe was moved towards and away from the substrate. Simulation results showed that the water layers could be removed in steps, giving up to four force peaks. The last monolayer of water could not be squeezed out, even at pressures where MgO deformed plastically. Interestingly, with water present, strength was reduced, but more in tensile than compressive measurements. In conclusion, water contaminating the oxide surface in AFM strength testing is structured. Water layer squeezing removal can be predicted by molecular modelling, which may be verified by AFM experiments to show that water can influence the strength of perfect crystals at the nanometre scale.

  19. Aflatoxin M1 Concentration in Various Dairy Products: Evidence for Biologically Reduced Amount of AFM1 in Yoghurt

    PubMed Central

    RAHIMIRAD, Amir; MAALEKINEJAD, Hassan; OSTADI, Araz; YEGANEH, Samal; FAHIMI, Samira

    2014-01-01

    Abstract Background Aflatoxin M1 (AFM1), a carcinogenic substance is found in milk and dairy products. The effect of season and type of dairy products on AFMi level in northern Iran was investigated in this study. Methods Three hundred samples (each season 75 samples) including raw and pasteurized milk, yoghurt, cheese, and cream samples were collected from three distinct milk producing farms. The samples were subjected to chemical and solid phase extractions and were analyzed by using HPLC technique. Recovery percentages, limit of detection and limit of quantification values were determined. Results Seventy percent and 98% were the minimum and maximum recoveries for cheese and raw milk, respectively and 0.021 and 0.063 ppb were the limit of detection and limit of quantification values for AFM1. We found that in autumn and winter the highest level (0.121 ppb) of AFM1 in cheese and cream samples and failed to detect any AFM1 in spring samples. Interestingly, our data showed that the yoghurt samples had the lowest level of AFM1 in all seasons. Conclusion There are significant differences between the AFM1 levels in dairy products in various seasons and also various types of products, suggesting spring and summer yoghurt samples as the safest products from AFM1 level point of view. PMID:25927044

  20. Particle deformation induced by AFM tapping under different setpoint voltages

    NASA Astrophysics Data System (ADS)

    Wu, Chung-Lin; Farkas, Natalia; Dagata, John A.; He, Bo-Ching; Fu, Wei-En

    2014-09-01

    The measured height of polystyrene nanoparticles varies with setpoint voltage during atomic force microscopy (AFM) tapping-mode imaging. Nanoparticle height was strongly influenced by the magnitude of the deformation caused by the AFM tapping forces, which was determined by the setpoint voltage. This influence quantity was studied by controlling the operational AFM setpoint voltage. A test sample consisting of well-dispersed 60-nm polystyrene and gold nanoparticles co-adsorbed on poly-l-lysine-coated mica was studied in this research. Gold nanoparticles have not only better mechanical property than polystyrene nanoparticles, but also obvious facets in AFM phase image. By using this sample of mixed nanoparticles, it allows us to confirm that the deformation resulted from the effect of setpoint voltage, not noise. In tapping mode, the deformation of polystyrene nanoparticles increased with decreasing setpoint voltage. Similar behavior was observed with both open loop and closed loop AFM instruments.

  1. Investigation of the Mechanoelectrical Transduction at Single Stereocilia by Afm

    NASA Astrophysics Data System (ADS)

    Langer, M. G.; Fink, S.; Löffler, K.; Koitschev, A.; Zenner, H.-P.

    2003-02-01

    The transduction of sound into an electrical signal in the inner ear is closely related to the mechanical properties of the hair bundles cytoskeleton and cross-linkage. In this study the effect of lateral cross-links on hair bundle mechanics and the transduction current response is demonstrated on the level of individual stereocilia. For experiments stereocilia of outer hair cells of postnatal rats (P3 - P8) were scanned with a sharp AFM tip at nanometerscale. Transduction currents were simultaneously recorded in the whole-cell-recording mode with patch clamp. AFM was used as a nanotool for local mechanical stimulation and force measurement at stereocilia whereas patch clamp serves as a detector for the electrical response of the cell. In a first experiment force transmission between adjacent stereocilia of the V- and W- shaped hair bundles of outer hair cells was investigated. Results showed that a force exerted to a single stereocilium declined to 36 % at the nearest adjacent stereocilium of the same row. This result supposes AFM to be convenient for local displacement of single stereocilia. For control, the local response of transduction channels was measured at single stereocilia of the same hair bundle. Measured transduction current amplitudes ranged from 9 to 49 pA supposing an opening of one to five transduction channels. Both, weak force transmission by lateral cross-links and small transduction current amplitudes indicate a weak mechanical interaction between individual stereocilia of the tallest row of stereocilia of outer hair cells from postnatal rats.

  2. AFM as an analysis tool for high-capacity sulfur cathodes for Li-S batteries.

    PubMed

    Hiesgen, Renate; Sörgel, Seniz; Costa, Rémi; Carlé, Linus; Galm, Ines; Cañas, Natalia; Pascucci, Brigitta; Friedrich, K Andreas

    2013-01-01

    In this work, material-sensitive atomic force microscopy (AFM) techniques were used to analyse the cathodes of lithium-sulfur batteries. A comparison of their nanoscale electrical, electrochemical, and morphological properties was performed with samples prepared by either suspension-spraying or doctor-blade coating with different binders. Morphological studies of the cathodes before and after the electrochemical tests were performed by using AFM and scanning electron microscopy (SEM). The cathodes that contained polyvinylidene fluoride (PVDF) and were prepared by spray-coating exhibited a superior stability of the morphology and the electric network associated with the capacity and cycling stability of these batteries. A reduction of the conductive area determined by conductive AFM was found to correlate to the battery capacity loss for all cathodes. X-ray diffraction (XRD) measurements of Li2S exposed to ambient air showed that insulating Li2S hydrolyses to insulating LiOH. This validates the significance of electrical ex-situ AFM analysis after cycling. Conductive tapping mode AFM indicated the existence of large carbon-coated sulfur particles. Based on the analytical findings, the first results of an optimized cathode showed a much improved discharge capacity of 800 mA·g(sulfur)(-1) after 43 cycles. PMID:24205455

  3. AFM as an analysis tool for high-capacity sulfur cathodes for Li–S batteries

    PubMed Central

    Sörgel, Seniz; Costa, Rémi; Carlé, Linus; Galm, Ines; Cañas, Natalia; Pascucci, Brigitta; Friedrich, K Andreas

    2013-01-01

    Summary In this work, material-sensitive atomic force microscopy (AFM) techniques were used to analyse the cathodes of lithium–sulfur batteries. A comparison of their nanoscale electrical, electrochemical, and morphological properties was performed with samples prepared by either suspension-spraying or doctor-blade coating with different binders. Morphological studies of the cathodes before and after the electrochemical tests were performed by using AFM and scanning electron microscopy (SEM). The cathodes that contained polyvinylidene fluoride (PVDF) and were prepared by spray-coating exhibited a superior stability of the morphology and the electric network associated with the capacity and cycling stability of these batteries. A reduction of the conductive area determined by conductive AFM was found to correlate to the battery capacity loss for all cathodes. X-ray diffraction (XRD) measurements of Li2S exposed to ambient air showed that insulating Li2S hydrolyses to insulating LiOH. This validates the significance of electrical ex-situ AFM analysis after cycling. Conductive tapping mode AFM indicated the existence of large carbon-coated sulfur particles. Based on the analytical findings, the first results of an optimized cathode showed a much improved discharge capacity of 800 mA·g(sulfur)−1 after 43 cycles. PMID:24205455

  4. AFM and TEM study of cyclic slip localization in fatigued ferritic X10CrAl24 stainless steel

    SciTech Connect

    Man, J. . E-mail: man@ipm.cz; Petrenec, M.; Obrtlik, K.; Polak, J.

    2004-11-08

    Atomic force microscopy and high resolution scanning electron microscopy were applied to the study of surface relief evolution at emerging persistent slip bands (PSBs) in individual grains of ferritic X10CrAl24 stainless steel cycled with constant plastic strain amplitude. Only the combination of both methods can reveal the true shape and fine details of extrusions and intrusions. Quantitative data on the changes of the surface topography of persistent slip markings and on the kinetics of extrusion growth during the fatigue life were obtained. Transmission electron microscopy of surface foils revealed PSBs with the typical, well-known ladder structure. Experimental data on cyclic slip localization in PSBs are compared with those in fcc metals and discussed in terms of vacancy models of surface relief evolution and fatigue crack initiation.

  5. Effect of the Concentration of Cytolytic Protein Cyt2Aa2 on the Binding Mechanism on Lipid Bilayers Studied by QCM-D and AFM.

    PubMed

    Tharad, Sudarat; Iturri, Jagoba; Moreno-Cencerrado, Alberto; Mittendorfer, Margareta; Promdonkoy, Boonhiang; Krittanai, Chartchai; Toca-Herrera, José L

    2015-09-29

    Bacillus thuringiensis is known by its insecticidal property. The insecticidal proteins are produced at different growth stages, including the cytolytic protein (Cyt2Aa2), which is a bioinsecticide and an antimicrobial protein. However, the binding mechanism (and the interaction) of Cyt2Aa2 on lipid bilayers is still unclear. In this work, we have used quartz crystal microbalance with dissipation (QCM-D) and atomic force microscopy (AFM) to investigate the interaction between Cyt2Aa2 protein and (cholesterol-)lipid bilayers. We have found that the binding mechanism is concentration dependent. While at 10 μg/mL, Cyt2Aa2 binds slowly on the lipid bilayer forming a compliance protein/lipid layer with aggregates, at higher protein concentrations (100 μg/mL), the binding is fast, and the protein/lipid layer is more rigid including holes (of about a lipid bilayer thickness) in its structure. Our study suggests that the protein/lipid bilayer binding mechanism seems to be carpet-like at low protein concentrations and pore forming-like at high protein concentrations. PMID:26354323

  6. Effect of incubation temperature on the self-assembly of regenerated silk fibroin: a study using AFM.

    PubMed

    Zhong, Jian; Liu, Xunwei; Wei, Daixu; Yan, Juan; Wang, Ping; Sun, Gang; He, Dannong

    2015-05-01

    Understanding effect of temperature on the molecular self-assembly process will be helpful to unravel the structure-function relationship of biomolecule and to provide important information for the bottom-up approach to nanotechnology. In this work, the effect of incubation temperature on the secondary structures and morphological structures of regenerated silk fibroin (RSF) was systematically studied using atomic force microscopy and Fourier Transform infrared spectroscopy. The effect of incubation temperature on RSF self-assembly was dependent on RSF concentration. For the RSF solution with relatively low concentrations (15 μg/mL and 60 μg/mL), the increase of the incubation temperature mainly accelerated the formation and aggregation of antiparallel β-sheet protofibrils and decreased the formation of random coil protofilaments/globule-like molecules. For the RSF solution with relatively high concentrations (300 μg/mL and 1.5mg/mL), the increase of the incubation temperature mainly accelerated the formation and aggregation of antiparallel β-sheet RSF features (protofibrils and globule-like features) and decreased the formation of random coil bead-like features. This work implies that the morphology and conformation of biomacromolecules could be tuned by controlling the incubation temperature. Further, it will be beneficial to basic understanding of the nanoscale structure formation in different silk-based biomaterials. PMID:25748848

  7. Mentally Ill Still Gain Illegal Possession of Guns, Study Shows

    MedlinePlus

    ... 1 in 3 suicides shouldn't have included firearms To use the sharing features on this page, ... who were already legally prohibited from having a firearm, a new study from Florida reveals. "That's a ...

  8. Adhesion forces in AFM of redox responsive polymer grafts: Effects of tip hydrophilicity

    NASA Astrophysics Data System (ADS)

    Feng, Xueling; Kieviet, Bernard D.; Song, Jing; Schön, Peter M.; Vancso, G. Julius

    2014-02-01

    The adherence between silicon nitride AFM tips and redox-active poly(ferrocenylsilanes) (PFS) grafts on gold was investigated by electrochemical AFM force spectroscopy. Before the adhesion measurements silicon nitride AFM probes were cleaned with organic solvents (acetone and ethanol) or piranha solution. Interestingly, these different AFM tip cleaning procedures drastically affected the observed adhesion forces. Water contact angle measurements on the corresponding AFM probe chips showed that piranha treatment resulted in a significant increase of AFM probe chip surface hydrophilicity compared to the organic solvent treatment. Obviously this hydrophilicity change caused drastic, even opposite changes in the tip-PFS adhesive force measurement upon electrode potential change to reversibly oxidize and reduce the PFS grafts. Our findings are of pivotal importance for AFM tip adhesion measurements utilizing standard silicon nitride AFM tips. Probe hydrophilicity must be carefully taken into consideration and controlled.

  9. In situ AFM study of the interaction between calcite {1 0 1¯ 4} surfaces and supersaturated Mn 2+-CO 32- aqueous solutions

    NASA Astrophysics Data System (ADS)

    Pérez-Garrido, Carlos; Astilleros, José Manuel; Fernández-Díaz, Lurdes; Prieto, Manuel

    2009-12-01

    Growth of rhodochrosite (MnCO 3) on calcite (1 0 1¯ 4) substrates from supersaturated aqueous solutions was observed in situ using an atomic force microscope (AFM). The supersaturation with respect to rhodochrosite (expressed as β rhod= a[Mn 2+] a[CO 32-]/ K sp, rhod.; where a[Mn 2+] and a[CO 32-] are the activities of Mn 2+ and CO 32- in the aqueous solution) ranged from 48.89 to 338.04. After an induction period, nuclei of the new phase are formed on the calcite substrate. These nuclei readily reach a significant height (2.2±0.2 nm), which remained approximately constant during their lateral spread. The characteristics of the growth pattern of islands of the newly formed phase indicate that there exists an epitaxial relationship between the new phase and the calcite substrate. The islands show a highly anisotropic growth, preferentially spreading along [4 2 1¯] on the calcite substrate at a rate up to 15 times faster than along [0 1 0]. As a result, the islands develop needle and sword blade-like morphologies, elongated along [4 2 1¯] and showing different truncated ends. This unusual elongation is interpreted as the result from a kinetic effect, which is controlled by both the structural characteristic of the calcite (1 0 1¯ 4) surface and the structure and elastic properties of the overgrowing phase. The lateral growth of islands leads to their coalescence and the formation of a quite homogeneous nanometric layer. The characteristics of the epitaxial growth are in agreement with a Volmer-Weber growth mechanism controlling the formation of the epitaxy. The results obtained in these experiments are compared with those obtained in several similar systems.

  10. Debate over Social Studies Shows Little Sign of Abating

    ERIC Educational Resources Information Center

    Robelen, Erik W.

    2010-01-01

    The Texas board of education which consists of 15-member elected body drew national attention as a bloc of staunch conservatives largely succeeded in putting its stamp on a revised set of social studies standards. The debate was marked by tussles over such matters as the separation of church and state, the representation of minority figures and…

  11. Ghana Fiasco Shows Risks of Faculty-Led Study Trips

    ERIC Educational Resources Information Center

    Fischer, Karin

    2007-01-01

    This article illustrates the importance of preparation for professors who take students overseas. A University of Washington study-abroad program in Ghana that was cut short last summer after the medical evacuation of half of its participants highlights the potential hazards associated with programs led by individual faculty members who may lack…

  12. What gastric cancer proteomic studies show about gastric carcinogenesis?

    PubMed

    Leal, Mariana Ferreira; Wisnieski, Fernanda; de Oliveira Gigek, Carolina; do Santos, Leonardo Caires; Calcagno, Danielle Queiroz; Burbano, Rommel Rodriguez; Smith, Marilia Cardoso

    2016-08-01

    Gastric cancer is a complex, heterogeneous, and multistep disease. Over the past decades, several studies have aimed to determine the molecular factors that lead to gastric cancer development and progression. After completing the human genome sequencing, proteomic technologies have presented rapid progress. Differently from the relative static state of genome, the cell proteome is dynamic and changes in pathologic conditions. Proteomic approaches have been used to determine proteome profiles and identify differentially expressed proteins between groups of samples, such as neoplastic and nonneoplastic samples or between samples of different cancer subtypes or stages. Therefore, proteomic technologies are a useful tool toward improving the knowledge of gastric cancer molecular pathogenesis and the understanding of tumor heterogeneity. This review aimed to summarize the proteins or protein families that are frequently identified by using high-throughput screening methods and which thus may have a key role in gastric carcinogenesis. The increased knowledge of gastric carcinogenesis will clearly help in the development of new anticancer treatments. Although the studies are still in their infancy, the reviewed proteins may be useful for gastric cancer diagnosis, prognosis, and patient management. PMID:27126070

  13. A sub-50 nm three-step height sample for AFM calibration

    NASA Astrophysics Data System (ADS)

    Yang, Shuming; Li, Changsheng; Wang, Chenying; Jiang, Zhuangde

    2014-12-01

    In this paper, a sub-50 nm three-step height sample was made for vertical calibration of atomic force microscopy (AFM) and a new step height evaluation algorithm based on polynomial fitting is discussed. The influences of AFM artefacts such as particles, image bow and high-order errors on step height were studied. The experimental results showed that the polynomial order p2 and threshold t were not critical factors. However, the increment Δh and the polynomial order p used in the calculation of optimal shifting distance were important and must be carefully considered. Δh = 0.1 nm and p ≥ 4 were determined to get a stable step height. The sample had small roughness and good uniformity. It has the potential to serve as a high quality step height standard sample for AFM calibration.

  14. PREFACE: Non-contact AFM Non-contact AFM

    NASA Astrophysics Data System (ADS)

    Giessibl, Franz J.; Morita, Seizo

    2012-02-01

    This special issue is focussed on high resolution non-contact atomic force microscopy (AFM). Non-contact atomic force microscopy was established approximately 15 years ago as a tool to image conducting and insulating surfaces with atomic resolution. Since 1998, an annual international conference has taken place, and although the proceedings of these conferences are a useful source of information, several key developments warrant devoting a special issue to this subject. In the theoretic field, the possibility of supplementing established techniques such as scanning tunneling microscopy (STM) and Kelvin probe microscopy with atomically resolved force micrsoscopy poses many challenges in the calculation of contrast and contrast reversal. The surface science of insulators, self-assembled monolayers and adsorbates on insulators is a fruitful field for the application of non-contact AFM: several articles in this issue are devoted to these subjects. Atomic imaging and manipulation have been pioneered using STM, but because AFM allows the measurement of forces, AFM has had a profound impact in this field as well. Three-dimensional force spectroscopy has allowed many important insights into surface science. In this issue a combined 3D tunneling and force microscopy is introduced. Non-contact AFM typically uses frequency modulation to measure force gradients and was initially used mainly in a vacuum. As can be seen in this issue, frequency modulation is now also used in ambient conditions, allowing better spatial and force resolution. We thank all of the contributors for their time and efforts in making this special issue possible. We are also very grateful to the staff of IOP Publishing for handling the administrative aspects and for steering the refereeing process. Non-contact AFM contents Relation between the chemical force and the tunnelling current in atomic point contacts: a simple model Pavel Jelínek, Martin Ondrácek and Fernando Flores Theoretical simulation of

  15. XPS, TDS, and AFM studies of surface chemistry and morphology of Ag-covered L-CVD SnO2 nanolayers.

    PubMed

    Kwoka, Monika; Ottaviano, Luca; Koscielniak, Piotr; Szuber, Jacek

    2014-01-01

    This is well known that the selectivity and sensitivity of tin dioxide (SnO2) thin film sensors for the detection of low concentration of volatile sulfides such as H2S in air can be improved by small amount of Ag additives. In this paper we present the results of comparative X-ray photoelectron spectroscopy (XPS), thermal desorption spectroscopy (TDS), and atomic force microscopy (AFM) studies of the surface chemistry and morphology of SnO2 nanolayers obtained by laser-enhanced chemical vapor deposition (L-CVD) additionally covered with 1 monolayer (ML) of Ag. For as deposited SnO2 nanolayers, a mixture of tin oxide (SnO) and tin dioxide (SnO2) with the [C]/[Sn] ratio of approximately 1.3 was observed. After dry air exposure, the [O]/[Sn] ratio slightly increased to approximately 1.55. Moreover, an evident increasing of C contamination was observed with [C]/[Sn] ratio of approximately 3.5. After TDS experiment, the [O]/[Sn] ratio goes back to 1.3, whereas C contamination evidently decreases (by factor of 3). Simultaneously, the Ag concentration after air exposure and TDS experiment subsequently decreased (finally by factor of approximately 2), which was caused by the diffusion of Ag atoms into the subsurface layers related to the grain-type surface morphology of Ag-covered L-CVD SnO2 nanolayers, as confirmed by XPS ion depth profiling studies. The variation of surface chemistry of the Ag-covered L-CVD SnO2 after air exposure observed by XPS was in a good correlation with the desorption of residual gases from these nanolayers observed in TDS experiments. PMID:24936162

  16. Segmental calibration for commercial AFM in vertical direction

    NASA Astrophysics Data System (ADS)

    Shi, Yushu; Gao, Sitian; Lu, Mingzhen; Li, Wei; Xu, Xuefang

    2013-01-01

    Atomic force microscopy (AFM) is most widely applied in scientific research and industrial production. AFM is a scanning probe imaging and measuring device, useful for physical and chemical studies. Depends on its basic structure, microscopic surface pattern can be measured and captured by mechanically scanning. Its vertical and horizon resolution can reach to 0.01nm and 0.1nm. Commonly the measurement values of commercial AFM are directly from scanning piezoelectric tube, so that it not a traceable value. In order to solve the problem of commercial AFM's traceability, step height standard references are applied to calibrate the piezoelectric ceramic housing in scanning tube. All of the serial of step height standard references, covering the commercial AFM vertical scale, are calibrated by Metrology AFM developed by National Institute of Metrology (NIM), China. Three interferometers have been assembled in its XYZ axis, therefore the measurement value can directly trace to laser wavelength. Because of nonlinear characteristic of PZT, the method of segmental calibration is proposed. The measurement scale can be divided into several subsections corresponding to the calibrated values of the series of step height standards references. By this method the accuracy of measurements can be ensured in each segment measurement scale and the calibration level of the whole instrument can be promoted. In order to get a standard step shape by commercial AFM, substrate removal method is applied to deal with the bow shape problem.

  17. Atomic force microscopy combined with optical tweezers (AFM/OT)

    NASA Astrophysics Data System (ADS)

    Pierini, F.; Zembrzycki, K.; Nakielski, P.; Pawłowska, S.; Kowalewski, T. A.

    2016-02-01

    The role of mechanical properties is essential to understand molecular, biological materials, and nanostructures dynamics and interaction processes. Atomic force microscopy (AFM) is the most commonly used method of direct force evaluation, but due to its technical limitations this single probe technique is unable to detect forces with femtonewton resolution. In this paper we present the development of a combined atomic force microscopy and optical tweezers (AFM/OT) instrument. The focused laser beam, on which optical tweezers are based, provides us with the ability to manipulate small dielectric objects and to use it as a high spatial and temporal resolution displacement and force sensor in the same AFM scanning zone. We demonstrate the possibility to develop a combined instrument with high potential in nanomechanics, molecules manipulation and biological studies. AFM/OT equipment is described and characterized by studying the ability to trap dielectric objects and quantifying the detectable and applicable forces. Finally, optical tweezers calibration methods and instrument applications are given.

  18. AFM nanometer surface morphological study of in situ electropolymerized neutral red redox mediator oxysilane sol-gel encapsulated glucose oxidase electrochemical biosensors.

    PubMed

    Chiorcea-Paquim, Ana-Maria; Pauliukaite, Rasa; Brett, Christopher M A; Oliveira-Brett, Ana Maria

    2008-10-15

    Four different silica sol-gel films: methyltrimethoxysilane (MTMOS), tetraethoxysilane (TEOS), 3-aminopropyltriethoxysilane (APTOS) and 3-glycidoxypropyl-trimethoxysilane (GOPMOS) assembled onto highly oriented pyrolytic graphite (HOPG) were characterized using atomic force microscopy (AFM), due to their use in the development of glucose biosensors. The chemical structure of the oxysilane precursor and the composition of the sol-gel mixture both influenced the roughness, the size and the distribution of pores in the sol-gel films, which is relevant for enzyme encapsulation. The GOPMOS sol-gel film fulfils all the morphological characteristics required for good encapsulation of the enzyme, due to a smooth topography with very dense and uniform distribution of only small, 50 nm diameter, pores at the surface. APTOS and MTMOS sol-gel films developed small pores together with large ones of 300-400 nm that allow the leakage of enzymes, while the TEOS film formed a rough and incomplete network on the electrode, less suitable for enzyme immobilisation. GOPMOS sol-gel film with encapsulated glucose oxidase and poly(neutral red) redox mediator, prepared by in situ electropolymerization, were also morphologically characterized by AFM. The AFM results explain the variation of the stability in time, sensitivity and limit of detection obtained with different oxysilane sol-gel encapsulated glucose oxidase biosensors with redox mediator. PMID:18485690

  19. BOREAS AFM-6 Surface Meteorological Data

    NASA Technical Reports Server (NTRS)

    Wilczak, James; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-6 team from the National Oceanic and Atmospheric Adminsitration/Environment Technology Laboratory (NOAA/ETL) collected surface meteorological data from 21 May to 20 Sep 1994 near the Southern Study Area-Old Jack Pine (SSA-OJP) tower site. The data are in tabular ASCII files. The surface meteorological data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  20. Nanomechanical probing of soft matter through hydrophobic AFM tips fabricated by two-photon polymerization

    NASA Astrophysics Data System (ADS)

    Suriano, Raffaella; Zandrini, Tommaso; De Marco, Carmela; Osellame, Roberto; Turri, Stefano; Bragheri, Francesca

    2016-04-01

    Atomic force microscopy (AFM) nanoindentation of soft materials is a powerful tool for probing mechanical properties of biomaterials. Though many results have been reported in this field over the last decade, adhesion forces between the tip and the sample hinder the elastic modulus measurement when hydrophilic soft samples are investigated. Here, two-photon polymerization (2PP) technology was used to fabricate hydrophobic perfluoropolyether-based AFM tips. The hydrophobic 2PP tips allowed us to overcome the limitations of commercial and functionalized tips as well as to successfully measure the elastic modulus of medically relevant soft materials in air. Our results obtained in the characterization of poly(dimethyl siloxane) and polyethylene glycol hydrogels showed lower adhesion forces over a larger measurement range when compared to measurements performed with commercial tips. The elastic moduli measured by means of hydrophobic 2PP AFM tips were also found to be comparable to those obtained using conventional techniques for macroscopic samples. We successfully showed that the hydrophobic AFM tips developed by this highly versatile technology enable the study of mechanical properties of soft matter, benefiting from reduced sample-tip interactions, and a custom-made shape and dimension of the tips.

  1. Nanomechanical probing of soft matter through hydrophobic AFM tips fabricated by two-photon polymerization.

    PubMed

    Suriano, Raffaella; Zandrini, Tommaso; De Marco, Carmela; Osellame, Roberto; Turri, Stefano; Bragheri, Francesca

    2016-04-15

    Atomic force microscopy (AFM) nanoindentation of soft materials is a powerful tool for probing mechanical properties of biomaterials. Though many results have been reported in this field over the last decade, adhesion forces between the tip and the sample hinder the elastic modulus measurement when hydrophilic soft samples are investigated. Here, two-photon polymerization (2PP) technology was used to fabricate hydrophobic perfluoropolyether-based AFM tips. The hydrophobic 2PP tips allowed us to overcome the limitations of commercial and functionalized tips as well as to successfully measure the elastic modulus of medically relevant soft materials in air. Our results obtained in the characterization of poly(dimethyl siloxane) and polyethylene glycol hydrogels showed lower adhesion forces over a larger measurement range when compared to measurements performed with commercial tips. The elastic moduli measured by means of hydrophobic 2PP AFM tips were also found to be comparable to those obtained using conventional techniques for macroscopic samples. We successfully showed that the hydrophobic AFM tips developed by this highly versatile technology enable the study of mechanical properties of soft matter, benefiting from reduced sample-tip interactions, and a custom-made shape and dimension of the tips. PMID:26926558

  2. Adhesion forces between AFM tips and superficial dentin surfaces.

    PubMed

    Pelin, I M; Piednoir, A; Machon, D; Farge, P; Pirat, C; Ramos, S M M

    2012-06-15

    In this work, we study the adhesion forces between atomic force microscopy (AFM) tips and superficial dentin etched with phosphoric acid. Initially, we quantitatively analyze the effect of acid etching on the surface heterogeneity and the surface roughness, two parameters that play a key role in the adhesion phenomenon. From a statistical study of the force-distance curves, we determine the average adhesion forces on the processed substrates. Our results show that the average adhesion forces, measured in water, increase linearly with the acid exposure time. The highest values of such forces are ascribed to the high density of collagen fibers on the etched surfaces. The individual contribution of exposed collagen fibrils to the adhesion force is highlighted. We also discuss in this paper the influence of the environmental medium (water/air) in the adhesion measurements. We show that the weak forces involved require working in the aqueous medium. PMID:22472512

  3. AFM analysis of bleaching effects on dental enamel microtopography

    NASA Astrophysics Data System (ADS)

    Pedreira de Freitas, Ana Carolina; Espejo, Luciana Cardoso; Botta, Sergio Brossi; Teixeira, Fernanda de Sa; Luz, Maria Aparecida A. Cerqueira; Garone-Netto, Narciso; Matos, Adriana Bona; Salvadori, Maria Cecilia Barbosa da Silveira

    2010-02-01

    The purpose of this in vitro study was to test a new methodology to evaluate the effects of 35% hydrogen peroxide agent on the microtopography of sound enamel using an atomic force microscope (AFM). The buccal sound surfaces of three extracted human lower incisors were used, without polishing the surfaces to maintain them with natural morphology. These unpolished surfaces were subjected to bleaching procedure with 35% hydrogen peroxide that consisted of 4 applications of the bleaching agent on enamel surfaces for 10 min each application. Surface images were obtained in a 15 μm × 15 μm area using an AFM. The roughness (Ra and RMS) and the power spectral density (PSD) were obtained before and after the bleaching treatment. As results we could inquire that the PSD analyses were very suitable to identifying the morphological changes on the surfaces, while the Ra and RMS parameters were insufficient to represent the morphological alterations promoted by bleaching procedure on enamel. The morphological wavelength in the range of visible light spectrum (380-750 nm) was analyzed, showing a considerable increase of the PSD with the bleaching treatment.

  4. Controlled AFM detachments and movement of nanoparticles: gold clusters on HOPG at different temperatures

    NASA Astrophysics Data System (ADS)

    Tripathi, Manoj; Paolicelli, Guido; D'Addato, Sergio; Valeri, Sergio

    2012-06-01

    The effect of temperature on the onset of movement of gold nanoclusters (diameter 27 nm) deposited on highly oriented pyrolytic graphite (HOPG) has been studied by atomic force microscopy (AFM) techniques. Using the AFM with amplitude modulation (tapping mode AFM) we have stimulated and controlled the movement of individual clusters. We show how, at room temperature, controlled detachments and smooth movements can be obtained for clusters having dimensions comparable to or smaller than the tip radius. Displacement is practically visible in real time and it can be started and stopped easily by adjusting only one parameter, the tip amplitude oscillation. Analysing the energy dissipation signal at the onset of nanocluster sliding we evaluated a detachment threshold energy as a function of temperature in the range 300-413 K. We also analysed single cluster thermal induced displacement and combining this delicate procedure with AFM forced movement behaviour we conclude that detachment threshold energy is directly related to the activation energy of nanocluster diffusion and it scales linearly with temperature as expected for a single-particle thermally activated process.

  5. Tracer kinetic modeling of [(11)C]AFM, a new PET imaging agent for the serotonin transporter.

    PubMed

    Naganawa, Mika; Nabulsi, Nabeel; Planeta, Beata; Gallezot, Jean-Dominique; Lin, Shu-Fei; Najafzadeh, Soheila; Williams, Wendol; Ropchan, Jim; Labaree, David; Neumeister, Alexander; Huang, Yiyun; Carson, Richard E

    2013-12-01

    [(11)C]AFM, or [(11)C]2-[2-(dimethylaminomethyl)phenylthio]-5-fluoromethylphenylamine, is a new positron emission tomography (PET) radioligand with high affinity and selectivity for the serotonin transporter (SERT). The purpose of this study was to determine the most appropriate kinetic model to quantify [(11)C]AFM binding in the healthy human brain. Positron emission tomography data and arterial input functions were acquired from 10 subjects. Compartmental modeling and the multilinear analysis-1(MA1) method were tested using the arterial input functions. The one-tissue model showed a lack of fit in low-binding regions, and the two-tissue model failed to estimate parameters reliably. Regional time-activity curves were well described by MA1. The rank order of [(11)C]AFM binding potential (BPND) matched well with the known regional SERT densities. For routine use of [(11)C]AFM, several noninvasive methods for quantification of regional binding were evaluated, including simplified reference tissue models (SRTM and SRTM2), and multilinear reference tissue models (MRTM and MRTM2). The best methods for region of interest (ROI) analysis were MA1, MRTM2, and SRTM2, with fixed population kinetic values ( or b') for the reference methods. The MA1 and MRTM2 methods were best for parametric imaging. These results showed that [(11)C]AFM is a suitable PET radioligand to image and quantify SERT in humans. PMID:23921898

  6. Label-free and quantitative evaluation of cytotoxicity based on surface nanostructure and biophysical property of cells utilizing AFM.

    PubMed

    Lee, Young Ju; Lee, Gi-Ja; Kang, Sung Wook; Cheong, Youjin; Park, Hun-Kuk

    2013-06-01

    In this study, the four commonly used cytotoxicity assays and the mechanical properties as evaluated by atomic force microscopy (AFM) were compared in a cellular system. A cytotoxicity assay is the first and most essential test to evaluate biocompatibility of various toxic substances. Many of the cytotoxicity methods require complicated and labor-intensive process, as well as introduce experimental error. In addition, these methods cannot provide instantaneous and quantitative cell viability information. AFM has become an exciting analytical tool in medical, biological, and biophysical research due to its unique abilities. AFM-based force-distance curve measurements precisely measure the changes in the biophysical properties of the cell. Therefore, we observed the morphological changes and mechanical property changes in L929 cells following sodium lauryl sulfate (SLS) treatment utilizing AFM. AFM imaging showed that the toxic effects of SLS changed not only the spindle-like shape of L929 cells into a round shape, but also made a rough cell surface. As the concentration of SLS was increased, the surface roughness of L929 cell was increased, and stiffness decreased. We confirmed that inhibition of proliferation clearly increased with increases in SLS concentration based on results from MTT, WST, neutral red uptake, and LIVE/DEAD viability/cytotoxicity assays. The estimated IC₅₀ value by AFM analysis was similar to those of other conventional assays and was included within the 95% confidence interval range. We suggest that an AFM quantitative analysis of the morphological and biophysical changes in cells can be utilized as a new method for evaluating cytotoxicity. PMID:23582483

  7. Visualization of internal structure of banana starch granule through AFM.

    PubMed

    Peroni-Okita, Fernanda H G; Gunning, A Patrick; Kirby, Andrew; Simão, Renata A; Soares, Claudinéia A; Cordenunsi, Beatriz R

    2015-09-01

    Atomic force microscopy (AFM) is a high resolution technique for studying the external and internal structures of starch granules. For this purpose granules were isolated from bananas and embedded in a non-penetrating resin. To achieve image contrast of the ultrastructure, the face of the cut blocks were wetted in steam and force modulation mode imaging was used. Images of starch from green bananas showed large variation of height across the granule due to a locational specific absorption of water and swelling of amorphous regions; the data reveal that the center of the granules are structurally different and have different viscoelastic properties. Images of starches from ripe bananas showed an even greater different level of organization: absence of growth rings around the hilum; the central region of the granule is richer in amylose; very porous surface with round shaped dark structures; the size of blocklets are larger than the green fruits. PMID:26005137

  8. AFM investigation of Martian soil simulants on micromachined Si substrates.

    PubMed

    Vijendran, S; Sykulska, H; Pike, W T

    2007-09-01

    The micro and nanostructures of Martian soil simulants with particles in the micrometre-size range have been studied using a combination of optical and atomic force microscopy (AFM) in preparation for the 2007 NASA Phoenix Mars Lander mission. The operation of an atomic force microscope on samples of micrometre-sized soil particles is a poorly investigated area where the unwanted interaction between the scanning tip and loose particles results in poor image quality and tip contamination by the sample. In order to mitigate these effects, etched silicon substrates with a variety of features have been used to facilitate the sorting and gripping of particles. From these experiments, a number of patterns were identified that were particularly good at isolating and immobilizing particles for AFM imaging. This data was used to guide the design of micromachined substrates for the Phoenix AFM. Both individual particles as well as aggregates were successfully imaged, and information on sizes, shapes and surface morphologies were obtained. This study highlights both the strengths and weaknesses of AFM for the potential in situ investigation of Martian soil and dust. Also presented are more general findings of the limiting operational constraints that exist when attempting the AFM of high aspect ratio particles with current technology. The performance of the final designs of the substrates incorporated on Phoenix will be described in a later paper. PMID:17760618

  9. AFM of biological complexes: what can we learn?

    PubMed Central

    Gaczynska, Maria; Osmulski, Pawel A.

    2009-01-01

    The term “biological complexes” broadly encompasses particles as diverse as multisubunit enzymes, viral capsids, transport cages, molecular nets, ribosomes, nucleosomes, biological membrane components and amyloids. The complexes represent a broad range of stability and composition. Atomic force microscopy offers a wealth of structural and functional data about such assemblies. For this review, we choose to comment on the significance of AFM to study various aspects of biology of selected nonmembrane protein assemblies. Such particles are large enough to reveal many structural details under the AFM probe. Importantly, the specific advantages of the method allow for gathering dynamic information about their formation, stability or allosteric structural changes critical for their function. Some of them have already found their way to nanomedical or nanotechnological applications. Here we present examples of studies where the AFM provided pioneering information about the biology of complexes, and examples of studies where the simplicity of the method is used toward the development of potential diagnostic applications. PMID:19802337

  10. Effect of tip mass on frequency response and sensitivity of AFM cantilever in liquid.

    PubMed

    Farokh Payam, Amir; Fathipour, Morteza

    2015-03-01

    The effect of tip mass on the frequency response and sensitivity of atomic force microscope (AFM) cantilever in the liquid environment is investigated. For this purpose, using Euler-Bernoulli beam theory and considering tip mass and hydrodynamic functions in a liquid environment, an expression for the resonance frequencies of AFM cantilever in liquid is derived. Then, based on this expression, the effect of the surface contact stiffness on the flexural mode of a rectangular AFM cantilever in fluid is investigated and compared with the case where the AFM cantilever operates in the air. The results show that in contrast with an air environment, the tip mass has no significant impact on the resonance frequency and sensitivity of the AFM cantilever in the liquid. Hence, analysis of AFM behaviour in liquid environment by neglecting the tip mass is logical. PMID:25562584

  11. Single ricin detection by AFM chemomechanical mapping

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This research reports a method of detecting ricin molecules immobilized on chemically modified gold (Au;111) surface by chemomechanically mapping the molecular interactions with a chemically modified Atomic Force Microscope (AFM) tip. AFM images resolved the different fold-up conformations of single...

  12. BOREAS AFM-06 Mean Temperature Profile Data

    NASA Technical Reports Server (NTRS)

    Wilczak, James; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-6 team from the National Oceanic and Atmospheric Adminsitration/Environment Technology Laboratory (NOAA/ETL) operated a 915-MHz wind/Radio Acoustic Sounding System (RASS) profiler system in the Southern Study Area (SSA) near the Old Jack Pine (OJP) tower from 21 May 1994 to 20 Sep 1994. The data set provides temperature profiles at 15 heights, containing the variables of virtual temperature, vertical velocity, the speed of sound, and w-bar. The data are stored in tabular ASCII files. The mean temperature profile data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  13. BOREAS AFM-6 Boundary Layer Height Data

    NASA Technical Reports Server (NTRS)

    Wilczak, James; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-6 team from National Oceanic and Atmospheric Adminsitration/Environment Technology Laboratory (NOAA/ETL) operated a 915-MHz wind/Radio Acoustic Sounding System (RASS) profiler system in the Southern Study Area (SSA) near the Old Jack Pine (OJP) site. This data set provides boundary layer height information over the site. The data were collected from 21 May 1994 to 20 Sep 1994 and are stored in tabular ASCII files. The boundary layer height data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  14. BOREAS AFM-06 Mean Wind Profile Data

    NASA Technical Reports Server (NTRS)

    Wilczak, James; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-6 team from the National Oceanic and Atmospheric Administration/Environment Technology Laboratory (NOAA/ETL) operated a 915-MHz wind/Radio Acoustic Sounding System (RASS) profiler system in the Southern Study Area (SSA) near the Old Jack Pine (OJP) tower from 21 May 1994 to 20 Sep 1994. The data set provides wind profiles at 38 heights, containing the variables of wind speed; wind direction; and the u-, v-, and w-components of the total wind. The data are stored in tabular ASCII files. The mean wind profile data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  15. BOREAS AFM-04 Twin Otter Aircraft Flux Data

    NASA Technical Reports Server (NTRS)

    MacPherson, J. Ian; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Desjardins, Raymond L.; Smith, David E. (Technical Monitor)

    2000-01-01

    The BOREAS AFM-5 team collected and processed data from the numerous radiosonde flights during the project. The goals of the AFM-05 team were to provide large-scale definition of the atmosphere by supplementing the existing AES aerological network, both temporally and spatially. This data set includes basic upper-air parameters collected from the network of upper-air stations during the 1993, 1994, and 1996 field campaigns over the entire study region. The data are contained in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884) or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  16. The importance of correcting for variable probe-sample interactions in AFM-IR spectroscopy: AFM-IR of dried bacteria on a polyurethane film.

    PubMed

    Barlow, Daniel E; Biffinger, Justin C; Cockrell-Zugell, Allison L; Lo, Michael; Kjoller, Kevin; Cook, Debra; Lee, Woo Kyung; Pehrsson, Pehr E; Crookes-Goodson, Wendy J; Hung, Chia-Suei; Nadeau, Lloyd J; Russell, John N

    2016-08-01

    AFM-IR is a combined atomic force microscopy-infrared spectroscopy method that shows promise for nanoscale chemical characterization of biological-materials interactions. In an effort to apply this method to quantitatively probe mechanisms of microbiologically induced polyurethane degradation, we have investigated monolayer clusters of ∼200 nm thick Pseudomonas protegens Pf-5 bacteria (Pf) on a 300 nm thick polyether-polyurethane (PU) film. Here, the impact of the different biological and polymer mechanical properties on the thermomechanical AFM-IR detection mechanism was first assessed without the additional complication of polymer degradation. AFM-IR spectra of Pf and PU were compared with FTIR and showed good agreement. Local AFM-IR spectra of Pf on PU (Pf-PU) exhibited bands from both constituents, showing that AFM-IR is sensitive to chemical composition both at and below the surface. One distinct difference in local AFM-IR spectra on Pf-PU was an anomalous ∼4× increase in IR peak intensities for the probe in contact with Pf versus PU. This was attributed to differences in probe-sample interactions. In particular, significantly higher cantilever damping was observed for probe contact with PU, with a ∼10× smaller Q factor. AFM-IR chemical mapping at single wavelengths was also affected. We demonstrate ratioing of mapping data for chemical analysis as a simple method to cancel the extreme effects of the variable probe-sample interactions. PMID:27403761

  17. AFM CHARACTERIZATION OF LASER INDUCED DAMAGE ON CDZNTE CRYSTAL SURFACES

    SciTech Connect

    Hawkins, S; Lucile Teague, L; Martine Duff, M; Eliel Villa-Aleman, E

    2008-06-10

    Semi-conducting CdZnTe (or CZT) crystals can be used in a variety of detector-type applications. CZT shows great promise for use as a gamma radiation spectrometer. However, its performance is adversely affected by point defects, structural and compositional heterogeneities within the crystals, such as twinning, pipes, grain boundaries (polycrystallinity), secondary phases and in some cases, damage caused by external forces. One example is damage that occurs during characterization of the surface by a laser during Raman spectroscopy. Even minimal laser power can cause Te enriched areas on the surface to appear. The Raman spectra resulting from measurements at moderate intensity laser power show large increases in peak intensity that is attributed to Te. Atomic Force Microscopy (AFM) was used to characterize the extent of damage to the CZT crystal surface following exposure to the Raman laser. AFM data reveal localized surface damage in the areas exposed to the Raman laser beam. The degree of surface damage to the crystal is dependent on the laser power, with the most observable damage occurring at high laser power. Moreover, intensity increases in the Te peaks of the Raman spectra are observed even at low laser power with little to no visible damage observed by AFM. AFM results also suggest that exposure to the same amount of laser power yields different amounts of surface damage depending on whether the exposed surface is the Te terminating face or the Cd terminating face of CZT.

  18. AFM Structural Characterization of Drinking Water Biofilm under Physiological Conditions

    EPA Science Inventory

    Due to the complexity of mixed culture drinking water biofilm, direct visual observation under in situ conditions has been challenging. In this study, atomic force microscopy (AFM) revealed the three dimensional morphology and arrangement of drinking water relevant biofilm in air...

  19. ezAFM: A low cost Atomic Force Microscope(AFM)

    NASA Astrophysics Data System (ADS)

    Celik, Umit; Celik, Kubra; Aslan, Husnu; Kehribar, Ihsan; Dede, Munir; Ozgur Ozer, H.; Oral, Ahmet

    2012-02-01

    A low cost AFM, ezAFM is developed for educational purposes as well as research. Optical beam deflection method is used to measure the deflection of cantilever. ezAFM scanner is built using voice coil motors (VCM) with ˜50x50x6 μm scan area. The microscope uses alignment free cantilevers, which minimizes setup times. FPGA based AFM feedback Control electronics is developed. FPGA technology allows us to drive all peripherals in parallel. ezAFM Controller is connected to PC by USB 2.0 interface as well as Wi-Fi. We have achieved <5nm lateral and ˜0.01nm vertical resolution. ezAFM can image single atomic steps in HOPG and mica. An optical microscope with <3 μm resolution is also integrated into the system. ezAFM supports different AFM operation modes such as dynamic mode, contact mode, lateral force microscopy. Advanced modes like magnetic force microscopy and electric force microscopy will be implemented later on. The new ezAFM system provides, short learning times for student labs, quick setup and easy to transport for portable applications with the best price/performance ratio. The cost of the system starts from 15,000, with system performance comparable with the traditional AFM systems.

  20. 3D Color Digital Elevation Map of AFM Sample

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This color image is a three dimensional (3D) view of a digital elevation map of a sample collected by NASA's Phoenix Mars Lander's Atomic Force Microscope (AFM).

    The image shows four round pits, only 5 microns in depth, that were micromachined into the silicon substrate, which is the background plane shown in red. This image has been processed to reflect the levelness of the substrate.

    A Martian particle only one micrometer, or one millionth of a meter, across is held in the upper left pit.

    The rounded particle shown at the highest magnification ever seen from another world is a particle of the dust that cloaks Mars. Such dust particles color the Martian sky pink, feed storms that regularly envelop the planet and produce Mars' distinctive red soil.

    The particle was part of a sample informally called 'Sorceress' delivered to the AFM on the 38th Martian day, or sol, of the mission (July 2, 2008). The AFM is part of Phoenix's microscopic station called MECA, or the Microscopy, Electrochemistry, and Conductivity Analyzer.

    The AFM was developed by a Swiss-led consortium, with Imperial College London producing the silicon substrate that holds sampled particles.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  1. Conductive supports for combined AFM SECM on biological membranes

    NASA Astrophysics Data System (ADS)

    Frederix, Patrick L. T. M.; Bosshart, Patrick D.; Akiyama, Terunobu; Chami, Mohamed; Gullo, Maurizio R.; Blackstock, Jason J.; Dooleweerdt, Karin; de Rooij, Nico F.; Staufer, Urs; Engel, Andreas

    2008-09-01

    Four different conductive supports are analysed regarding their suitability for combined atomic force and scanning electrochemical microscopy (AFM-SECM) on biological membranes. Highly oriented pyrolytic graphite (HOPG), MoS2, template stripped gold, and template stripped platinum are compared as supports for high resolution imaging of reconstituted membrane proteins or native membranes, and as electrodes for transferring electrons from or to a redox molecule. We demonstrate that high resolution topographs of the bacterial outer membrane protein F can be recorded by contact mode AFM on all four supports. Electrochemical feedback experiments with conductive cantilevers that feature nanometre-scale electrodes showed fast re-oxidation of the redox couple Ru(NH3)63+/2+ with the two metal supports after prolonged immersion in electrolyte. In contrast, the re-oxidation rates decayed quickly to unpractical levels with HOPG or MoS2 under physiological conditions. On HOPG we observed heterogeneity in the re-oxidation rate of the redox molecules with higher feedback currents at step edges. The latter results demonstrate the capability of conductive cantilevers with small electrodes to measure minor variations in an SECM signal and to relate them to nanometre-scale features in a simultaneously recorded AFM topography. Rapid decay of re-oxidation rate and surface heterogeneity make HOPG or MoS2 less attractive for combined AFM-SECM experiments on biological membranes than template stripped gold or platinum supports.

  2. Fabrication of nanochannels with ladder nanostructure at the bottom using AFM nanoscratching method.

    PubMed

    Yan, Yongda; Geng, Yanquan; Hu, Zhenjiang; Zhao, Xuesen; Yu, Bowen; Zhang, Qi

    2014-01-01

    This letter presents a novel atomic force microscopy (AFM)-based nanomanufacturing method combining the tip scanning with the high-precision stage movement to fabricate nanochannels with ladder nanostructure at the bottom by continuous scanning with a fixed scan size. Different structures can be obtained according to the matching relation of the tip feeding velocity and the precision stage moving velocity. This relationship was first studied in detail to achieve nanochannels with different ladder nanostructures at the bottom. Machining experiments were then performed to fabricate nanochannels on an aluminum alloy surface to demonstrate the capability of this AFM-based fabrication method presented in this study. Results show that the feed value and the tip orientation in the removing action play important roles in this method which has a significant effect on the machined surfaces. Finally, the capacity of this method to fabricate a large-scale nanochannel was also demonstrated. This method has the potential to advance the existing AFM tip-based nanomanufacturing technique of the formation these complex structures by increasing the removal speed, simplifying the processing procedure and achieving the large-scale nanofabrication. PMID:24940171

  3. Fabrication of nanochannels with ladder nanostructure at the bottom using AFM nanoscratching method

    PubMed Central

    2014-01-01

    This letter presents a novel atomic force microscopy (AFM)-based nanomanufacturing method combining the tip scanning with the high-precision stage movement to fabricate nanochannels with ladder nanostructure at the bottom by continuous scanning with a fixed scan size. Different structures can be obtained according to the matching relation of the tip feeding velocity and the precision stage moving velocity. This relationship was first studied in detail to achieve nanochannels with different ladder nanostructures at the bottom. Machining experiments were then performed to fabricate nanochannels on an aluminum alloy surface to demonstrate the capability of this AFM-based fabrication method presented in this study. Results show that the feed value and the tip orientation in the removing action play important roles in this method which has a significant effect on the machined surfaces. Finally, the capacity of this method to fabricate a large-scale nanochannel was also demonstrated. This method has the potential to advance the existing AFM tip-based nanomanufacturing technique of the formation these complex structures by increasing the removal speed, simplifying the processing procedure and achieving the large-scale nanofabrication. PMID:24940171

  4. Simultaneous noncontact AFM and STM of Ag:Si(111)-(3×3)R30∘

    NASA Astrophysics Data System (ADS)

    Sweetman, Adam; Stannard, Andrew; Sugimoto, Yoshiaki; Abe, Masayuki; Morita, Seizo; Moriarty, Philip

    2013-02-01

    The Ag:Si(111)-(3×3)R30∘ surface structure has attracted considerable debate concerning interpretation of scanning tunneling microscope (STM) and noncontact atomic force microscope (NC-AFM) images. In particular, the accepted interpretation of atomic resolution images in NC-AFM has been questioned by theoretical and STM studies. In this paper, we use combined NC-AFM and STM to conclusively show that the inequivalent trimer (IET) configuration best describes the surface ground state. Thermal-averaging effects result in a honeycomb-chained-trimer (HCT) appearance at room temperature, in contrast to studies suggesting that the IET configuration remains stable at higher temperatures [Zhang, Gustafsson, and Johansson, Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.74.201304 74, 201304(R) (2006) and J. Phys.: Conf. Ser.1742-658810.1088/1742-6596/61/1/264 61, 1336 (2007)]. We also comment on results obtained at an intermediate temperature that suggest an intriguing difference between the imaging mechanisms of NC-AFM and STM on structurally fluctuating samples.

  5. Nano-Wilhelmy investigation of dynamic wetting properties of AFM tips through tip-nanobubble interaction.

    PubMed

    Wang, Yuliang; Wang, Huimin; Bi, Shusheng; Guo, Bin

    2016-01-01

    The dynamic wetting properties of atomic force microscopy (AFM) tips are of much concern in many AFM-related measurement, fabrication, and manipulation applications. In this study, the wetting properties of silicon and silicon nitride AFM tips are investigated through dynamic contact angle measurement using a nano-Wilhelmy balance based method. This is done by capillary force measurement during extension and retraction motion of AFM tips relative to interfacial nanobubbles. The working principle of the proposed method and mathematic models for dynamic contact angle measurement are presented. Geometric models of AFM tips were constructed using scanning electronic microscopy (SEM) images taken from different view directions. The detailed process of tip-nanobubble interaction was investigated using force-distance curves of AFM on nanobubbles. Several parameters including nanobubble height, adhesion and capillary force between tip and nanobubbles are extracted. The variation of these parameters was studied over nanobubble surfaces. The dynamic contact angles of the AFM tips were calculated from the capillary force measurements. The proposed method provides direct measurement of dynamic contact angles for AFM tips and can also be taken as a general approach for nanoscale dynamic wetting property investigation. PMID:27452115

  6. Nano-Wilhelmy investigation of dynamic wetting properties of AFM tips through tip-nanobubble interaction

    PubMed Central

    Wang, Yuliang; Wang, Huimin; Bi, Shusheng; Guo, Bin

    2016-01-01

    The dynamic wetting properties of atomic force microscopy (AFM) tips are of much concern in many AFM-related measurement, fabrication, and manipulation applications. In this study, the wetting properties of silicon and silicon nitride AFM tips are investigated through dynamic contact angle measurement using a nano-Wilhelmy balance based method. This is done by capillary force measurement during extension and retraction motion of AFM tips relative to interfacial nanobubbles. The working principle of the proposed method and mathematic models for dynamic contact angle measurement are presented. Geometric models of AFM tips were constructed using scanning electronic microscopy (SEM) images taken from different view directions. The detailed process of tip-nanobubble interaction was investigated using force-distance curves of AFM on nanobubbles. Several parameters including nanobubble height, adhesion and capillary force between tip and nanobubbles are extracted. The variation of these parameters was studied over nanobubble surfaces. The dynamic contact angles of the AFM tips were calculated from the capillary force measurements. The proposed method provides direct measurement of dynamic contact angles for AFM tips and can also be taken as a general approach for nanoscale dynamic wetting property investigation. PMID:27452115

  7. Nano-Wilhelmy investigation of dynamic wetting properties of AFM tips through tip-nanobubble interaction

    NASA Astrophysics Data System (ADS)

    Wang, Yuliang; Wang, Huimin; Bi, Shusheng; Guo, Bin

    2016-07-01

    The dynamic wetting properties of atomic force microscopy (AFM) tips are of much concern in many AFM-related measurement, fabrication, and manipulation applications. In this study, the wetting properties of silicon and silicon nitride AFM tips are investigated through dynamic contact angle measurement using a nano-Wilhelmy balance based method. This is done by capillary force measurement during extension and retraction motion of AFM tips relative to interfacial nanobubbles. The working principle of the proposed method and mathematic models for dynamic contact angle measurement are presented. Geometric models of AFM tips were constructed using scanning electronic microscopy (SEM) images taken from different view directions. The detailed process of tip-nanobubble interaction was investigated using force-distance curves of AFM on nanobubbles. Several parameters including nanobubble height, adhesion and capillary force between tip and nanobubbles are extracted. The variation of these parameters was studied over nanobubble surfaces. The dynamic contact angles of the AFM tips were calculated from the capillary force measurements. The proposed method provides direct measurement of dynamic contact angles for AFM tips and can also be taken as a general approach for nanoscale dynamic wetting property investigation.

  8. Rational fabrication of a gold-coated AFM TERS tip by pulsed electrodeposition.

    PubMed

    Yang, Li-Kun; Huang, Teng-Xiang; Zeng, Zhi-Cong; Li, Mao-Hua; Wang, Xiang; Yang, Fang-Zu; Ren, Bin

    2015-11-21

    Reproducible fabrication of sharp gold- or silver-coated tips has become the bottleneck issue in tip-enhanced Raman spectroscopy, especially for atomic force microscopy (AFM)-based TERS. Herein, we developed a novel method based on pulsed electrodeposition to coat a thin gold layer over atomic force microscopy (AFM) tips to produce plasmonic TERS tips with high reproducibility. We systematically investigated the influence of the deposition potential and step time on the surface roughness and sharpness. This method allows the rational control of the radii of gold-coated TERS tips from a few to hundreds of nanometers, which allows us to systematically study the dependence of the TERS enhancement on the radius of the gold-coated AFM tip. The maximum TERS enhancement was achieved for the tip radius in the range of 60-75 nm in the gap mode. The coated gold layer has a strong adhesion with the silicon tip surface, which is highly stable in water, showing the great potential for application in the aqueous environment. PMID:26482226

  9. AFM volumetric methods for the characterization of proteins and nucleic acids.

    PubMed

    Fuentes-Perez, Maria Eugenia; Dillingham, Mark S; Moreno-Herrero, Fernando

    2013-04-01

    The atomic force microscope overestimates lateral dimensions and underestimates heights of nanometer size objects such as proteins and nucleic acids. This has made researchers cautious of AFM measurements, even though there is no other technique capable of measuring topography with sub-nanometer precision. Nevertheless, several approaches for determining the stoichiometry of protein and protein-DNA complexes have been developed which show that, although the absolute values may be incorrect, the AFM volume is essentially proportional to the mass. This has allowed the determination of the mass of protein complexes with the help of a calibration curve. Here we review the main techniques for AFM volume measurements and detail a methodology that significantly reduces the associated errors. This method uses a fragment of DNA as a fiducial marker by which the volume of a protein is normalized. The use of fiducial markers co-adsorbed together with the protein of interest minimizes the contribution of tip-induced artifacts as they affect both the object of interest and the marker. Finally, we apply this method to the measurement of the length of single-stranded DNA. A linear relationship between length and volume was obtained, opening the door to studies of ssDNA intermediates formed during complex DNA transactions such as replication, recombination and repair. PMID:23454289

  10. Rational fabrication of a gold-coated AFM TERS tip by pulsed electrodeposition

    NASA Astrophysics Data System (ADS)

    Yang, Li-Kun; Huang, Teng-Xiang; Zeng, Zhi-Cong; Li, Mao-Hua; Wang, Xiang; Yang, Fang-Zu; Ren, Bin

    2015-10-01

    Reproducible fabrication of sharp gold- or silver-coated tips has become the bottleneck issue in tip-enhanced Raman spectroscopy, especially for atomic force microscopy (AFM)-based TERS. Herein, we developed a novel method based on pulsed electrodeposition to coat a thin gold layer over atomic force microscopy (AFM) tips to produce plasmonic TERS tips with high reproducibility. We systematically investigated the influence of the deposition potential and step time on the surface roughness and sharpness. This method allows the rational control of the radii of gold-coated TERS tips from a few to hundreds of nanometers, which allows us to systematically study the dependence of the TERS enhancement on the radius of the gold-coated AFM tip. The maximum TERS enhancement was achieved for the tip radius in the range of 60-75 nm in the gap mode. The coated gold layer has a strong adhesion with the silicon tip surface, which is highly stable in water, showing the great potential for application in the aqueous environment.

  11. Time-dependent surface adhesive force and morphology of RBC measured by AFM.

    PubMed

    Wu, Yangzhe; Hu, Yi; Cai, Jiye; Ma, Shuyuan; Wang, Xiaoping; Chen, Yong; Pan, Yunlong

    2009-04-01

    Atomic force microscopy (AFM) is a rapidly developing tool recently introduced into the evaluation of the age of bloodstains, potentially providing legal medical experts useful information for forensic investigation. In this study, the time-dependent, morphological changes of red blood cells (RBC) under three different conditions (including controlled, room-temperature condition, uncontrolled, outdoor-environmental condition, and controlled, low-temperature condition) were observed by AFM, as well as the cellular viscoelasticity via force-vs-distance curve measurements. Firstly, the data indicate that substrate types have different effects on cellular morphology of RBC. RBC presented the typical biconcave shape on mica, whereas either the biconcave shape or flattened shape was evident on glass. The mean volume of RBCs on mica was significantly larger than that of cells on glass. Surprisingly, the adhesive property of RBC membrane surfaces was substrate type-independent (the adhesive forces were statistically similar on glass and mica). With time lapse, the changes in cell volume and adhesive force of RBC under the controlled room-temperature condition were similar to those under the uncontrolled outdoor-environmental condition. Under the controlled low-temperature condition, however, the changes in cell volume occurred mainly due to the collapse of RBCs, and the curves of adhesive force showed the dramatic alternations in viscoelasticity of RBC. Taken together, the AFM detections on the time-dependent, substrate type-dependent, environment (temperature/humidity)-dependent changes in morphology and surface viscoelasticity of RBC imply a potential application of AFM in forensic medicine or investigations, e.g., estimating age of bloodstain or death time. PMID:19019689

  12. Dielectric charging by AFM in tip-to-sample space mode: overview and challenges in revealing the appropriate mechanisms.

    PubMed

    Makasheva, K; Villeneuve-Faure, C; Laurent, C; Despax, B; Boudou, L; Teyssedre, G

    2015-07-24

    The study of charge distribution on the surface and in the bulk of dielectrics is of great scientific interest because of the information gained on the storage and transport properties of the medium. Nevertheless, the processes at the nanoscale level remain out of the scope of the commonly used diagnostic methods. Atomic force microscopy (AFM) is currently applied for both injection and imaging of charges on dielectric thin films at the nanoscale level to answer the increasing demand for characterization of miniaturized components used in microelectronics, telecommunications, electrophotography, electrets, etc. However, the mechanisms for dielectric charging by AFM are not well documented, and an analysis of the literature shows that inappropriate mechanisms are sometimes presented. It is shown here that corona discharge, frequently pointed out as a likely mechanism for dielectric charging by AFM in tip-to-sample space mode, cannot develop in such small distances. Furthermore, a review of different mechanisms surmised to be at the origin of dielectric charging at the nanoscale level is offered. Field electron emission enhanced by thermionic emission is identified as a likely mechanism for dielectric charging at the nanoscale level. Experimental validation of this mechanism is obtained for typical electric field strengths in AFM. PMID:26133237

  13. Dielectric charging by AFM in tip-to-sample space mode: overview and challenges in revealing the appropriate mechanisms

    NASA Astrophysics Data System (ADS)

    Makasheva, K.; Villeneuve-Faure, C.; Laurent, C.; Despax, B.; Boudou, L.; Teyssedre, G.

    2015-07-01

    The study of charge distribution on the surface and in the bulk of dielectrics is of great scientific interest because of the information gained on the storage and transport properties of the medium. Nevertheless, the processes at the nanoscale level remain out of the scope of the commonly used diagnostic methods. Atomic force microscopy (AFM) is currently applied for both injection and imaging of charges on dielectric thin films at the nanoscale level to answer the increasing demand for characterization of miniaturized components used in microelectronics, telecommunications, electrophotography, electrets, etc. However, the mechanisms for dielectric charging by AFM are not well documented, and an analysis of the literature shows that inappropriate mechanisms are sometimes presented. It is shown here that corona discharge, frequently pointed out as a likely mechanism for dielectric charging by AFM in tip-to-sample space mode, cannot develop in such small distances. Furthermore, a review of different mechanisms surmised to be at the origin of dielectric charging at the nanoscale level is offered. Field electron emission enhanced by thermionic emission is identified as a likely mechanism for dielectric charging at the nanoscale level. Experimental validation of this mechanism is obtained for typical electric field strengths in AFM.

  14. Examination of Humidity Effects on Measured Thickness and Interfacial Phenomena of Exfoliated Graphene on SiO2 via AC-AFM

    NASA Astrophysics Data System (ADS)

    Jinkins, Katherine; Camacho, Jorge; Farina, Lee; Wu, Yan

    2015-03-01

    Tapping (AC) mode Atomic Force Microscopy (AFM) is commonly used to determine the thickness of graphene samples. However, AFM measurements have been shown to be sensitive to environmental conditions such as adsorbed water, in turn dependent on relative humidity (RH). In the present study, AC-AFM is used to measure the thickness and loss tangent of exfoliated graphene on silicon dioxide (SiO2) as RH is increased from 10% to 80%. We show that the measured thickness of graphene is dependent on RH. Loss tangent is an AFM imaging technique that interprets the phase information as a relationship between the stored and dissipated energy in the tip-sample interaction. This study demonstrates the loss tangent of the graphene and oxide regions are both affected by humidity, with generally higher loss tangent for graphene than SiO2. As RH increases, we observe the loss tangent of both materials approaches the same value. We hypothesize that there is a layer of water trapped between the graphene and SiO2 substrate to explain this observation. Using this interpretation, the loss tangent images also indicate movement and change in this trapped water layer as RH increases, which impacts the measured thickness of graphene using AC-AFM.

  15. Manufacturing process of nanofluidics using afm probe

    NASA Astrophysics Data System (ADS)

    Karingula, Varun Kumar

    A new process for fabricating a nano fluidic device that can be used in medical application is developed and demonstrated. Nano channels are fabricated using a nano tip in indentation mode on AFM (Atomic Force Microscopy). The nano channels are integrated between the micro channels and act as a filter to separate biomolecules. Nano channels of 4 to7 m in length, 80nm in width, and at varying depths from 100nm to 850 nm allow the resulting device to separate selected groups of lysosomes and other viruses. Sharply developed vertical micro channels are produced from a deep reaction ion etching followed by deposition of different materials, such as gold and polymers, on the top surface, allowing the study of alternative ways of manufacturing a nanofluidic device. PDMS (Polydimethylsiloxane) bonding is performed to close the top surface of the device. An experimental setup is used to test and validate the device by pouring fluid through the channels. A detailed cost evaluation is conducted to compare the economical merits of the proposed process. It is shown that there is a 47:7% manufacturing time savings and a 60:6% manufacturing cost savings.

  16. Gun shows and gun violence: fatally flawed study yields misleading results.

    PubMed

    Wintemute, Garen J; Hemenway, David; Webster, Daniel; Pierce, Glenn; Braga, Anthony A

    2010-10-01

    A widely publicized but unpublished study of the relationship between gun shows and gun violence is being cited in debates about the regulation of gun shows and gun commerce. We believe the study is fatally flawed. A working paper entitled "The Effect of Gun Shows on Gun-Related Deaths: Evidence from California and Texas" outlined this study, which found no association between gun shows and gun-related deaths. We believe the study reflects a limited understanding of gun shows and gun markets and is not statistically powered to detect even an implausibly large effect of gun shows on gun violence. In addition, the research contains serious ascertainment and classification errors, produces results that are sensitive to minor specification changes in key variables and in some cases have no face validity, and is contradicted by 1 of its own authors' prior research. The study should not be used as evidence in formulating gun policy. PMID:20724672

  17. Gun Shows and Gun Violence: Fatally Flawed Study Yields Misleading Results

    PubMed Central

    Hemenway, David; Webster, Daniel; Pierce, Glenn; Braga, Anthony A.

    2010-01-01

    A widely publicized but unpublished study of the relationship between gun shows and gun violence is being cited in debates about the regulation of gun shows and gun commerce. We believe the study is fatally flawed. A working paper entitled “The Effect of Gun Shows on Gun-Related Deaths: Evidence from California and Texas” outlined this study, which found no association between gun shows and gun-related deaths. We believe the study reflects a limited understanding of gun shows and gun markets and is not statistically powered to detect even an implausibly large effect of gun shows on gun violence. In addition, the research contains serious ascertainment and classification errors, produces results that are sensitive to minor specification changes in key variables and in some cases have no face validity, and is contradicted by 1 of its own authors’ prior research. The study should not be used as evidence in formulating gun policy. PMID:20724672

  18. Hydration states of AFm cement phases

    SciTech Connect

    Baquerizo, Luis G.; Matschei, Thomas; Scrivener, Karen L.; Saeidpour, Mahsa; Wadsö, Lars

    2015-07-15

    The AFm phase, one of the main products formed during the hydration of Portland and calcium aluminate cement based systems, belongs to the layered double hydrate (LDH) family having positively charged layers and water plus charge-balancing anions in the interlayer. It is known that these phases present different hydration states (i.e. varying water content) depending on the relative humidity (RH), temperature and anion type, which might be linked to volume changes (swelling and shrinkage). Unfortunately the stability conditions of these phases are insufficiently reported. This paper presents novel experimental results on the different hydration states of the most important AFm phases: monocarboaluminate, hemicarboaluminate, strätlingite, hydroxy-AFm and monosulfoaluminate, and the thermodynamic properties associated with changes in their water content during absorption/desorption. This data opens the possibility to model the response of cementitious systems during drying and wetting and to engineer systems more resistant to harsh external conditions.

  19. ER Docs Only Ask Half of Suicidal Patients about Guns, Study Shows

    MedlinePlus

    ... Docs Only Ask Half of Suicidal Patients About Guns, Study Shows Finding points to missed chances to ... EDs) are asked if they have access to guns, a new study finds. National guidelines say doctors ...

  20. Linking of sensor molecules with amino groups to amino-functionalized AFM tips.

    PubMed

    Wildling, Linda; Unterauer, Barbara; Zhu, Rong; Rupprecht, Anne; Haselgrübler, Thomas; Rankl, Christian; Ebner, Andreas; Vater, Doris; Pollheimer, Philipp; Pohl, Elena E; Hinterdorfer, Peter; Gruber, Hermann J

    2011-06-15

    The measuring tip of an atomic force microscope (AFM) can be upgraded to a specific biosensor by attaching one or a few biomolecules to the apex of the tip. The biofunctionalized tip is then used to map cognate target molecules on a sample surface or to study biophysical parameters of interaction with the target molecules. The functionality of tip-bound sensor molecules is greatly enhanced if they are linked via a thin, flexible polymer chain. In a typical scheme of tip functionalization, reactive groups are first generated on the tip surface, a bifunctional cross-linker is then attached with one of its two reactive ends, and finally the probe molecule of interest is coupled to the free end of the cross-linker. Unfortunately, the most popular functional group generated on the tip surface is the amino group, while at the same time, the only useful coupling functions of many biomolecules (such as antibodies) are also NH(2) groups. In the past, various tricks or detours were applied to minimize the undesired bivalent reaction of bifunctional linkers with adjacent NH(2) groups on the tip surface. In the present study, an uncompromising solution to this problem was found with the help of a new cross-linker ("acetal-PEG-NHS") which possesses one activated carboxyl group and one acetal-protected benzaldehyde function. The activated carboxyl ensures rapid unilateral attachment to the amino-functionalized tip, and only then is the terminal acetal group converted into the amino-reactive benzaldehyde function by mild treatment (1% citric acid, 1-10 min) which does not harm the AFM tip. As an exception, AFM tips with magnetic coating become demagnetized in 1% citric acid. This problem was solved by deprotecting the acetal group before coupling the PEG linker to the AFM tip. Bivalent binding of the corresponding linker ("aldehyde-PEG-NHS") to adjacent NH(2) groups on the tip was largely suppressed by high linker concentrations. In this way, magnetic AFM tips could be

  1. BOREAS AFM-5 Level-1 Upper Air Network Data

    NASA Technical Reports Server (NTRS)

    Barr, Alan; Hrynkiw, Charmaine; Newcomer, Jeffrey A. (Editor); Hall, Forrest G. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-5 team collected and processed data from the numerous radiosonde flights during the project. The goals of the AFM-05 team were to provide large-scale definition of the atmosphere by supplementing the existing Atmospheric Environment Service (AES) aerological network, both temporally and spatially. This data set includes basic upper-air parameters collected from the network of upper-air stations during the 1993, 1994, and 1996 field campaigns over the entire study region. The data are contained in tabular ASCII files. The level-1 upper-air network data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files also are available on a CD-ROM (see document number 20010000884).

  2. The formation of liquid bridge in different operating modes of AFM

    NASA Astrophysics Data System (ADS)

    Wei, Zheng; Sun, Yan; Ding, WenXuan; Wang, ZaiRan

    2016-09-01

    The liquid bridge is one of the principal factors that cause artifacts in ambient-pressure atomic force microscope (AFM) images. Additionally, it is the main component of the adhesion force in ambient conditions. To understand the AFM imaging mechanism and the sample characteristics, it is essential to study the liquid bridge. This study interprets the physical mechanism involved in liquid bridge formation, which is composed of three different physical processes: the squeezing process, capillary condensation, and liquid film flow. We discuss the contributions of these three mechanisms to the volume and the capillary force of the liquid bridge in different AFM operation modes.

  3. Conductance of AFM Deformed Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexei; Maiti, Amitesh; Anatram, M. P.; Biegel, Bryan (Technical Monitor)

    2002-01-01

    This viewgraph presentation provides information on the electrical conductivity of carbon nanotubes upon deformation by atomic force microscopy (AFM). The density of states and conductance were computed using four orbital tight-binding method with various parameterizations. Different chiralities develop bandgap that varies with chirality.

  4. Contact nanomechanical measurements with the AFM

    NASA Astrophysics Data System (ADS)

    Geisse, Nicholas

    2013-03-01

    The atomic force microscope (AFM) has found broad use in the biological sciences largely due to its ability to make measurements on unfixed and unstained samples under liquid. In addition to imaging at multiple spatial scales ranging from micro- to nanometer, AFMs are commonly used as nanomechanical probes. This is pertinent for cell biology, as it has been demonstrated that the geometrical and mechanical properties of the extracellular microenvironment are important in such processes as cancer, cardiovascular disease, muscular dystrophy, and even the control of cell life and death. Indeed, the ability to control and quantify these external geometrical and mechanical parameters arises as a key issue in the field. Because AFM can quantitatively measure the mechanical properties of various biological samples, novel insights to cell function and to cell-substrate interactions are now possible. As the application of AFM to these types of problems is widened, it is important to understand the performance envelope of the technique and its associated data analyses. This talk will discuss the important issues that must be considered when mechanical models are applied to real-world data. Examples of the effect of different model assumptions on our understanding of the measured material properties will be shown. Furthermore, specific examples of the importance of mechanical stimuli and the micromechanical environment to the structure and function of biological materials will be presented.

  5. A Batch Fabricated SECM-AFM Probe

    NASA Astrophysics Data System (ADS)

    Dobson, P. S.; Macpherson, J. V.; Holder, M.; Weaver, J. M. R.

    2003-12-01

    A scheme for the fabrication of combined Scanning Electrochemical Microscopy — Atomic Force Microscopy (SECM-AFM) probes is presented for both silicon nitride and silicon cantilevers. The advantages over exsisting methods used for their production is explained. The process flow is described and initial results from electrodeposition of silver are presented.

  6. Nano-Bio-Mechanics of Neuroblastoma Cells Using AFM

    NASA Astrophysics Data System (ADS)

    Bastatas, Lyndon; Matthews, James; Kang, Min; Park, Soyeun

    2011-10-01

    We have conducted an in vitro study to determine the elastic moduli of neurobalstoma cell lines using atomic force microscopy. Using a panel of cell lines established from neuroblastoma patients at different stages of disease progress and treatment, we have investigated the differences in elastic moduli during a course of cancer progression and chemotherapy. The cells were grown on the hard substrates that are chemically functionalized to enhance adhesion. We have performed the AFM indentation experiments with different applied forces from the AFM probe. For the purpose of the comparison between cell lines, the indentations were performed only on cell centers. The obtained force-distance curves were analyzed using the Hertz model in order to extract the elastic moduli. We have found that the elastic moduli of human neuroblastoma cells significantly varied during the disease progression. We postulate that the observed difference might be affected by the treatment and chemotherapy.

  7. Molecular modeling of enzyme attachment on AFM probes.

    PubMed

    Oliveira, Guedmiller S; Leite, Fabio L; Amarante, Adriano M; Franca, Eduardo F; Cunha, Richard A; Briggs, James M; Freitas, Luiz C G

    2013-09-01

    The immobilization of enzymes on atomic force microscope tip (AFM tip) surface is a crucial step in the development of nanobiosensors to be used in detection process. In this work, an atomistic modeling of the attachment of the acetyl coenzyme A carboxylase (ACC enzyme) on a functionalized AFM tip surface is proposed. Using electrostatic considerations, suitable enzyme-surface orientations with the active sites of the ACC enzyme available for interactions with bulk molecules were found. A 50 ns molecular dynamics trajectory in aqueous solution was obtained and surface contact area, hydrogen bonding and protein stability were analyzed. The enzyme-surface model proposed here with minor adjustment can be applied to study antigen-antibody interactions as well as enzyme immobilization on silica for chromatography applications. PMID:24029365

  8. Oxide nanocrystal based nanocomposites for fabricating photoplastic AFM probes.

    PubMed

    Ingrosso, Chiara; Martin-Olmos, Cristina; Llobera, Andreu; Innocenti, Claudia; Sangregorio, Claudio; Striccoli, Marinella; Agostiano, Angela; Voigt, Anja; Gruetzner, Gabi; Brugger, Jürgen; Perez-Murano, Francesc; Curri, Maria Lucia

    2011-11-01

    We report on the synthesis, characterization and application of a novel nanocomposite made of a negative tone epoxy based photoresist modified with organic-capped Fe(2)O(3) nanocrystals (NCs). The mechanical properties of the nanocomposite drastically improve upon incorporation of a suitable concentration of NCs in the polymer, without deteriorating its photolithography performance. High aspect ratio 3D microstructures made of the nanocomposite have been fabricated with a uniform surface morphology and with a resolution down to few micrometres. The embedded organic-capped Fe(2)O(3) NCs drastically increase the stiffness and hardness of the epoxy based photoresist matrix, making the final material extremely interesting for manufacturing miniaturized polymer based mechanical devices and systems. In particular, the nanocomposite has been used as structural material for fabricating photoplastic Atomic Force Microscopy (AFM) probes with integrated tips showing outstanding mechanical response and high resolution imaging performance. The fabricated probes consist of straight cantilevers with low stress-gradient and high quality factors, incorporating sharp polymeric tips. They present considerably improved performance compared to pure epoxy based photoresist AFM probes, and to commercial silicon AFM probes. PMID:21858377

  9. Development of portable experimental set-up for AFM to work at cryogenic temperature

    NASA Astrophysics Data System (ADS)

    Agarwal, D. H.; Bhatt, P. M.; Pathan, A. M.; Patel, Hitarthi; Joshi, U. S.

    2012-06-01

    We report on the designing aspects and fabrication of low temperature atomic force microscope (AFM) to study the surface structures of nanomaterials. Several key features of design including liquid nitrogen reservoir, vacuum chamber, vibration isolation table etc. have been presented. The whole set up was assembled in-house at a fairly low cost to be used with any commercial AFM system. The surface morphology of important oxide (In0.94Sn0.04)2O3 (ITO) thin film nanostructures has been investigated using the cryogenic AFM set up.

  10. AFM Investigation of Liquid-Filled Polymer Microcapsules Elasticity.

    PubMed

    Sarrazin, Baptiste; Tsapis, Nicolas; Mousnier, Ludivine; Taulier, Nicolas; Urbach, Wladimir; Guenoun, Patrick

    2016-05-10

    Elasticity of polymer microcapsules (MCs) filled with a liquid fluorinated core is studied by atomic force microscopy (AFM). Accurately characterized spherical tips are employed to obtain the Young's moduli of MCs having four different shell thicknesses. We show that those moduli are effective ones because the samples are composites. The strong decrease of the effective MC elasticity (from 3.0 to 0.1 GPa) as the shell thickness decreases (from 200 to 10 nm) is analyzed using a novel numerical approach. This model describes the evolution of the elasticity of a coated half-space according to the contact radius, the thickness of the film, and the elastic moduli of bulk materials. This numerical model is consistent with the experimental data and allows simulating the elastic behavior of MCs at high frequencies (5 MHz). While the quasi-static elasticity of the MCs is found to be very dependent on the shell thickness, the high frequency (5 MHz) elastic behavior of the core leads to a stable behavior of the MCs (from 2.5 to 3 GPa according to the shell thickness). Finally, the effect of thermal annealing on the MCs elasticity is investigated. The Young's modulus is found to decrease because of the reduction of the shell thickness due to the loss of the polymer. PMID:27058449

  11. Morphological and Structural Changes on Human Dental Enamel After Er:YAG Laser Irradiation: AFM, SEM, and EDS Evaluation

    PubMed Central

    Rodríguez-Vilchis, Laura Emma; Olea-Mejìa, Oscar Fernando; Sánchez-Flores, Ignacio; Centeno-Pedraza, Claudia

    2011-01-01

    Abstract Objective: The purpose of this study was to evaluate, using atomic force microscopy (AFM), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS), the morphological and structural changes of the enamel after irradiation with the Er:YAG laser. Background data: A previous study showed that subablative Er:YAG laser irradiation produced undesirable morphological changes on the enamel surface, such as craters and cracks; however, the enamel acid resistance was not increased. Methods: Fifty-two samples of human enamel were divided into four groups (n = 13): Group I was the control (no laser irradiation), whereas Groups II, III, and IV were irradiated with the Er:YAG 100 mJ (12.7 J/cm2), 100 mJ (7.5 J/cm2), and 150 mJ (11 J/cm2), respectively, at 10 Hz with water spray. The morphological changes were observed by AFM and SEM. The weight percentages (wt%) of calcium (Ca), phosphorus (P), oxygen (O) and chlorine (Cl) were determined in the resultant craters and their periphery using EDS. Kruskal–Wallis and Mann–Whitney U tests were performed (p ≤ 0.05) to distinguish significant differences among the groups. Results: The AFM images showed cracks with depths between 250 nm and 750 nm for Groups II and IV, respectively, and the widths of these cracks were 5.37 μm and 2.58 μm. The interior of the cracks showed a rough surface. The SEM micrographs revealed morphological changes. Significant differences were detected in Ca, P, and Cl in the crater and its periphery. Conclusions: AFM observations showed triangular-shaped cracks, whereas craters and cracks were evident by SEM in all irradiated samples. It was not possible to establish a characteristic chemical pattern in the craters. PMID:21417912

  12. Surface structure of micro-diamond from ultrahigh-pressure felsic granulite, Bohemian Massif: AFM study of growth and resorption phenomena

    NASA Astrophysics Data System (ADS)

    Kotková, J.; Klapetek, P.

    2012-04-01

    Morphology, associated phases and retrogression phenomena of in-situ microdiamonds formed at extreme pressures in ultrahigh-pressure metamorphic terranes represent excellent tools to study character of diamond-forming media at great depths. Well-preserved microdiamonds discovered recently along with coesite in ultrahigh-pressure granulites of the north Bohemian crystalline basement, European Variscan belt (Kotková et al., 2011), provide unique material for such investigations. The diamonds are enclosed in major granulite phases, i.e. garnet both in felsic and intermediate lithologies and in kyanite in the felsic sample, as well as in zircon. Transmitted and reflected light microscopy of the felsic granulite sample, with peak mineral assemblage garnet, kyanite, feldspar and quartz, revealed presence of numerous, 5-20 μm-sized, perfectly preserved diamond crystals enclosed in kyanite grains. In contrast, diamonds within garnet are rare, can reach up to 30 μm in size, and graphite rims as well as polycrystalline graphite aggregates possibly representing complete diamond retrogression are common. We applied atomic force microscopy to study in-situ crystal morphology and surface microtopographic features, representing clues to the conditions and mechanisms of crystal formation as well as diamond resorption and retrogression. Both diamond enclosed in garnet and in kyanite of the felsic granulite occur exclusively as single crystals. The crystals have octahedral crystal shapes with straight but rounded edges and rounded corners. Concentric triangular terraces delimiting a flat triangular table on crystal scale and small micron-sized negatively oriented downward-pointing trigons developed on the octahedron crystal faces. Higher magnification reveals presence of discontinuous elongate hillocks oriented parallel to the octahedron face edge with positively oriented trigons. We suggest that the large-scale triangular terraces represent growth features. In contrast, the

  13. Nanoscale rippling on polymer surfaces induced by AFM manipulation

    PubMed Central

    2015-01-01

    Summary Nanoscale rippling induced by an atomic force microscope (AFM) tip can be observed after performing one or many scans over the same area on a range of materials, namely ionic salts, metals, and semiconductors. However, it is for the case of polymer films that this phenomenon has been widely explored and studied. Due to the possibility of varying and controlling various parameters, this phenomenon has recently gained a great interest for some technological applications. The advent of AFM cantilevers with integrated heaters has promoted further advances in the field. An alternative method to heating up the tip is based on solvent-assisted viscoplastic deformations, where the ripples develop upon the application of a relatively low force to a solvent-rich film. An ensemble of AFM-based procedures can thus produce nanoripples on polymeric surfaces quickly, efficiently, and with an unprecedented order and control. However, even if nanorippling has been observed in various distinct modes and many theoretical models have been since proposed, a full understanding of this phenomenon is still far from being achieved. This review aims at summarizing the current state of the art in the perspective of achieving control over the rippling process on polymers at a nanoscale level. PMID:26733086

  14. Probing Cytoskeletal Structures by Coupling Optical Superresolution and AFM Techniques for a Correlative Approach

    PubMed Central

    Chacko, Jenu Varghese; Zanacchi, Francesca Cella; Diaspro, Alberto

    2013-01-01

    In this article, we describe and show the application of some of the most advanced fluorescence superresolution techniques, STED AFM and STORM AFM microscopy towards imaging of cytoskeletal structures, such as microtubule filaments. Mechanical and structural properties can play a relevant role in the investigation of cytoskeletal structures of interest, such as microtubules, that provide support to the cell structure. In fact, the mechanical properties, such as the local stiffness and the elasticity, can be investigated by AFM force spectroscopy with tens of nanometers resolution. Force curves can be analyzed in order to obtain the local elasticity (and the Young's modulus calculation by fitting the force curves from every pixel of interest), and the combination with STED/STORM microscopy integrates the measurement with high specificity and yields superresolution structural information. This hybrid modality of superresolution-AFM working is a clear example of correlative multimodal microscopy. PMID:24027190

  15. Fabrication of cone-shaped boron doped diamond and gold nanoelectrodes for AFM-SECM.

    PubMed

    Avdic, A; Lugstein, A; Wu, M; Gollas, B; Pobelov, I; Wandlowski, T; Leonhardt, K; Denuault, G; Bertagnolli, E

    2011-04-01

    We demonstrate a reliable microfabrication process for a combined atomic force microscopy (AFM) and scanning electrochemical microscopy (SECM) measurement tool. Integrated cone-shaped sensors with boron doped diamond (BDD) or gold (Au) electrodes were fabricated from commercially available AFM probes. The sensor formation process is based on mature semiconductor processing techniques, including focused ion beam (FIB) machining, and highly selective reactive ion etching (RIE). The fabrication approach preserves the geometry of the original AFM tips resulting in well reproducible nanoscaled sensors. The feasibility and functionality of the fully featured tips are demonstrated by cyclic voltammetry, showing good agreement between the measured and calculated currents of the cone-shaped AFM-SECM electrodes. PMID:21368355

  16. Fabrication of cone-shaped boron doped diamond and gold nanoelectrodes for AFM-SECM

    NASA Astrophysics Data System (ADS)

    Avdic, A.; Lugstein, A.; Wu, M.; Gollas, B.; Pobelov, I.; Wandlowski, T.; Leonhardt, K.; Denuault, G.; Bertagnolli, E.

    2011-04-01

    We demonstrate a reliable microfabrication process for a combined atomic force microscopy (AFM) and scanning electrochemical microscopy (SECM) measurement tool. Integrated cone-shaped sensors with boron doped diamond (BDD) or gold (Au) electrodes were fabricated from commercially available AFM probes. The sensor formation process is based on mature semiconductor processing techniques, including focused ion beam (FIB) machining, and highly selective reactive ion etching (RIE). The fabrication approach preserves the geometry of the original AFM tips resulting in well reproducible nanoscaled sensors. The feasibility and functionality of the fully featured tips are demonstrated by cyclic voltammetry, showing good agreement between the measured and calculated currents of the cone-shaped AFM-SECM electrodes.

  17. Detection of Pathogens Using AFM and SPR

    NASA Astrophysics Data System (ADS)

    Vaseashta, Ashok

    2005-03-01

    A priori detection of pathogens in food and water has become a subject of paramount importance. Several recent incidents have resulted in the government passing stringent regulations for tolerable amounts of contamination of food products. Identification and/or monitoring of bacterial contamination in food are critical. The conventional methods of pathogen detection require time-consuming steps to arrive disembark at meaningful measurement in a timely manner as the detection time exceeds the time in which perishable food recycles through the food chain distribution. The aim of this presentation is to outline surface plasmon resonance (SPR) and atomic force microscopy (AFM) as two methods for fast detect6ion of pathogens. Theoretical basis of SPR and experimental results of SPR and AFM on E. coli O157:H7 and prion are presented.

  18. AFM PeakForce QNM mode: Evidencing nanometre-scale mechanical properties of chitin-silica hybrid nanocomposites.

    PubMed

    Smolyakov, G; Pruvost, S; Cardoso, L; Alonso, B; Belamie, E; Duchet-Rumeau, J

    2016-10-20

    PeakForce Quantitative Nanomechanical Mapping (QNM) AFM mode was used to explore the mechanical properties of textured chitin-silica hybrid films at the nanoscale. The influence of the force applied by the tip on the sample surface was studied for standard homogeneous samples, for chitin nanorods and for chitin-silica hybrid nanocomposites. Thick films of superimposed chitin nanorods showed a monotonous increase of DMT modulus (based on the Derjaguin-Muller-Toporov model) owing to an increase in modulus at the interface between nanorods due to geometrical constraints of the AFM acquisition. A similar variation of DMT modulus was obtained for chitin-silica hybrid thick films related to mechanical strengthening induced by the presence of silica. This work revealed the role of the organic-inorganic interface, at the nanoscale, in the mechanical behaviour of textured materials using PeakForce QNM mode, with optimized analysis conditions. PMID:27474579

  19. Au-Interaction of Slp1 Polymers and Monolayer from Lysinibacillus sphaericus JG-B53 - QCM-D, ICP-MS and AFM as Tools for Biomolecule-metal Studies.

    PubMed

    Suhr, Matthias; Raff, Johannes; Pollmann, Katrin

    2016-01-01

    In this publication the gold sorption behavior of surface layer (S-layer) proteins (Slp1) of Lysinibacillus sphaericus JG-B53 is described. These biomolecules arrange in paracrystalline two-dimensional arrays on surfaces, bind metals, and are thus interesting for several biotechnical applications, such as biosorptive materials for the removal or recovery of different elements from the environment and industrial processes. The deposition of Au(0) nanoparticles on S-layers, either by S-layer directed synthesis or adsorption of nanoparticles, opens new possibilities for diverse sensory applications. Although numerous studies have described the biosorptive properties of S-layers, a deeper understanding of protein-protein and protein-metal interaction still remains challenging. In the following study, inductively coupled mass spectrometry (ICP-MS) was used for the detection of metal sorption by suspended S-layers. This was correlated to measurements of quartz crystal microbalance with dissipation monitoring (QCM-D), which allows the online detection of proteinaceous monolayer formation and metal deposition, and thus, a more detailed understanding on metal binding. The ICP-MS results indicated that the binding of Au(III) to the suspended S-layer polymers is pH dependent. The maximum binding of Au(III) was obtained at pH 4.0. The QCM-D investigations enabled the detection of Au(III) sorption as well as the deposition of Au(0)-NPs in real-time during the in situ experiments. Further, this method allowed studying the influence of metal binding on the protein lattice stability of Slp1. Structural properties and protein layer stability could be visualized directly after QCM-D experiment using atomic force microscopy (AFM). In conclusion, the combination of these different methods provides a deeper understanding of metal binding by bacterial S-layer proteins in suspension or as monolayers on either bacterial cells or recrystallized surfaces. PMID:26863150

  20. Structural changes of polysulfone membrane use for hemodialysis in the consecutive regime: nanometric analysis by AFM

    NASA Astrophysics Data System (ADS)

    Batina, Nikola; Acosta García, Ma. Cristina; Avalos Pérez, Angélica; Alberto Ramírez, Mario; Franco, Martha; Pérez Gravas, Héctor; Cadena Méndez, Miguel

    2013-08-01

    Nowadays, the hemodialytic treatment of patients with either acute or chronic renal failure has been improved by promoting biocompatibility in the use of new materials and improve membrane surface characteristics. Low and high flux polysulfone membranes (PM) used in dialysis and ultra filtration have been studied in order to understand the geometry and surface chemistry of the pores at inner (nanometric) and outer (micrometric) membrane parts. The surface changes of polysulfone cartridge membrane (PM) during different number of consecutive reuse trials: after 1st, 10th and 23th times of use. The morphology of the hollow fibers surfaces was studied by means of the atomic force microscopy (AFM) imaging and the surface roughness analysis. The roughness of both inner and outer part of PM surface increases with numbers of reuse trails. Thus, small and medium size pores were wiped out when the number of uses changed from zero to 23 on the outer surface. The pore density decreases. The inner part of membrane shows some nanometric size deformation in forms of new openings and raptures. The AFM analysis show differences in the PM morphology at the nanometric level, not previously revealed, which could be important in the evaluation of the PM.

  1. Solvent-mediated repair and patterning of surfaces by AFM

    SciTech Connect

    Elhadj, S; Chernov, A; De Yoreo, J

    2007-10-30

    A tip-based approach to shaping surfaces of soluble materials with nanometer-scale control is reported. The proposed method can be used, for example, to eliminate defects and inhomogeneities in surface shape, repair mechanical or laser-induced damage to surfaces, or perform 3D lithography on the length scale of an AFM tip. The phenomenon that enables smoothing and repair of surfaces is based on the transport of material from regions of high- to low-curvature within the solution meniscus formed in a solvent-containing atmosphere between the surface in question and an AFM tip scanned over the surface. Using in situ AFM measurements of the kinetics of surface remodeling on KDP (KH{sub 2}PO{sub 4}) crystals in humid air, we show that redistribution of solute material during relaxation of grooves and mounds is driven by a reduction in surface free energy as described by the Gibbs-Thomson law. We find that the perturbation from a flat interface evolves according to the diffusion equation where the effective diffusivity is determined by the product of the surface stiffness and the step kinetic coefficient. We also show that, surprisingly, if the tip is instead scanned over or kept stationary above an atomically flat area of the surface, a convex structure is formed with a diameter that is controlled by the dimensions of the meniscus, indicating that the presence of the tip and meniscus reduces the substrate chemical potential beneath that of the free surface. This allows one to create nanometer-scale 3D structures of arbitrary shape without the removal of substrate material or the use of extrinsic masks or chemical compounds. Potential applications of these tip-based phenomena are discussed.

  2. Insight into mechanics of AFM tip-based nanomachining: bending of cantilevers and machined grooves.

    PubMed

    Al-Musawi, R S J; Brousseau, E B; Geng, Y; Borodich, F M

    2016-09-23

    Atomic force microscope (AFM) tip-based nanomachining is currently the object of intense research investigations. Values of the load applied to the tip at the free end of the AFM cantilever probe used for nanomachining are always large enough to induce plastic deformation on the specimen surface contrary to the small load values used for the conventional contact mode AFM imaging. This study describes an important phenomenon specific for AFM nanomachining in the forward direction: under certain processing conditions, the deformed shape of the cantilever probe may change from a convex to a concave orientation. The phenomenon can principally change the depth and width of grooves machined, e.g. the grooves machined on a single crystal copper specimen may increase by 50% on average following such a change in the deformed shape of the cantilever. It is argued that this phenomenon can take place even when the AFM-based tool is operated in the so-called force-controlled mode. The study involves the refined theoretical analysis of cantilever probe bending, the analysis of experimental signals monitored during the backward and forward AFM tip-based machining and the inspection of the topography of produced grooves. PMID:27532247

  3. Probing ternary solvent effect in high Voc polymer solar cells using advanced AFM techniques

    DOE PAGESBeta

    Li, Chao; Soleman, Mikhael; Lorenzo, Josie; Dhasmana, Nitesh; Chantharasupawong, Panit; Ievlev, Anton; Gesquiere, Andre; Tetard, Laurene; Thomas, Jayan

    2016-01-25

    This work describes a simple method to develop a high Voc low band gap PSCs. In addition, two new atomic force microscopy (AFM)-based nanoscale characterization techniques to study the surface morphology and physical properties of the structured active layer are introduced. With the help of ternary solvent processing of the active layer and C60 buffer layer, a bulk heterojunction PSC with Voc more than 0.9 V and conversion efficiency 7.5% is developed. In order to understand the fundamental properties of the materials ruling the performance of the PSCs tested, AFM-based nanoscale characterization techniques including Pulsed-Force-Mode AFM (PFM-AFM) and Mode-Synthesizing AFMmore » (MSAFM) are introduced. Interestingly, MSAFM exhibits high sensitivity for direct visualization of the donor–acceptor phases in the active layer of the PSCs. Lastly, conductive-AFM (cAFM) studies reveal local variations in conductivity in the donor and acceptor phases as well as a significant increase in photocurrent in the PTB7:ICBA sample obtained with the ternary solvent processing.« less

  4. Stigmatization of eating disorders: a controlled study of the effects of the television show Starved.

    PubMed

    Katterman, Shawn N; Klump, Kelly L

    2010-01-01

    Starved is a situational comedy ("sitcom") that depicted individuals with eating disorders that was feared to increase stigma. Our study directly examined this possibility by randomly assigning participants to watch Starved or The Comeback (a sitcom unrelated to eating disorders) and measuring eating disorder stigma/stereotypes before and after viewing. Participants who viewed Starved did not show increased levels of stigma, suggesting that short-term exposure to an extreme portrayal of eating disorder stereotypes may not increase stigma. Future research should examine prolonged exposure and other potential sources of these negative attitudes. PMID:20390619

  5. Contesting the “Nature” Of Conformity: What Milgram and Zimbardo's Studies Really Show

    PubMed Central

    Haslam, S. Alexander; Reicher, Stephen. D.

    2012-01-01

    Understanding of the psychology of tyranny is dominated by classic studies from the 1960s and 1970s: Milgram's research on obedience to authority and Zimbardo's Stanford Prison Experiment. Supporting popular notions of the banality of evil, this research has been taken to show that people conform passively and unthinkingly to both the instructions and the roles that authorities provide, however malevolent these may be. Recently, though, this consensus has been challenged by empirical work informed by social identity theorizing. This suggests that individuals' willingness to follow authorities is conditional on identification with the authority in question and an associated belief that the authority is right. PMID:23185132

  6. Surface characterization and AFM imaging of mixed fibrinogen-surfactant films.

    PubMed

    Hassan, Natalia; Maldonado-Valderrama, Julia; Gunning, A Patrick; Morris, Victor J; Ruso, Juan M

    2011-05-19

    This study describes the adsorption behavior of mixed protein/surfactant systems at the air-water interface: specifically fibrinogen and the fluorinated and hydrogenated surfactants (C(8)FONa, C(8)HONa, and C(12)HONa). Surface tension techniques and atomic force microscopy (AFM) have been combined to investigate the adsorption behavior of these mixed systems. Interfacial rheology showed that fibrinogen has a low dilatational modulus at the air-water interface when compared to other proteins, suggesting the formation of a weak surface network. Fluorinated and hydrogenated surfactants severely decreased the dilatational modulus of the adsorbed fibrinogen film at the air-water interface. These measurements suggest the progressive displacement of fibrinogen from the air-water interface by both types of surfactants. However, in the case of fibrinogen/fluorinated surfactant systems, surface tension and dilatational rheology measurements suggest the formation of complexes with improved surface activity. AFM imaging of fibrinogen in the presence and absence of surfactants provided new information on the structure of mixed surface films, and revealed new features of the interaction of fibrinogen with hydrogenated and fluorinated surfactants. These studies suggest complexes formed between fibrinogen and fluorinated surfactants which are more surface active than fibrinogen, while the absence of interaction between fibrinogen and hydrogenated surfactants (C(8)HONa and C(12)HONa) results in compaction of the surface layer. PMID:21491854

  7. Laboratory study of fungal bioreceptivity of different fractions of composite flooring tiles showing efflorescence.

    PubMed

    Masaphy, Segula; Lavi, Ido; Sultz, Stephan; Zabari, Limor

    2014-06-01

    Fungi can grow in extreme habitats, such as natural stone and mineral building materials, sometimes causing deterioration. Efflorescence-concentrated salt deposits-results from water movement through building material; it can damage masonry materials and other bricks. Fungal isolate KUR1, capable of growth on, and dissolution of stone chips composing terrazzo-type floor tiles, was isolated from such tiles showing fiber-like crystalline efflorescence. The isolate's ribosomal DNA sequences were 100 % identical to those of Nigrospora sphaerica. The ability of KUR1 to colonize and degrade the different stone chips composing the tiles was studied in axenic culture experiments. When exposed to each of the different mineral chip types composed of dolomite, calcite, or calcite-apatite mineral in low-nutrition medium, the fungus showed selective nutrient consumption, and different growth and stone mineral dissolution rates. Micromorphological examination of the fungus-colonized chips by electron microscopy showed the production of a fungal biofilm with thin films around the hyphae on the surface of the examined chips and disintegration of the calcite-apatite fraction. More than 70 % dissolution of the introduced powdered (<1 mm particle size) mineral was obtained within 10 days of incubation for the soft calcite-apatite fraction. PMID:24652060

  8. Analysis of AFM cantilever dynamics close to sample surface

    NASA Astrophysics Data System (ADS)

    Habibnejad Korayem, A.; Habibnejad Korayem, Moharam; Ghaderi, Reza

    2013-07-01

    For imaging and manipulation of biological specimens application of atomic force microscopy (AFM) in liquid is necessary. In this paper, tapping-mode AFM cantilever dynamics in liquid close to sample surface is modeled and simulated by well defining the contact forces. The effect of cantilever tilting angle has been accounted carefully. Contact forces have some differences in liquid in comparison to air or vacuum in magnitude or formulation. Hydrodynamic forces are also applied on the cantilever due to the motion in liquid. A continuous beam model is used with its first mode and forward-time simulation method for simulation of its hybrid dynamics and the frequency response and amplitude versus separation diagrams are extracted. The simulation results show a good agreement with experimental results. The resonance frequency in liquid is so small in comparison to air due to additional mass and also additional damping due to the viscosity of the liquid around. The results show that the effect of separation on free vibration amplitude is great. Its effect on resonance frequency is considerable too.

  9. Probing fibronectin–antibody interactions using AFM force spectroscopy and lateral force microscopy

    PubMed Central

    Kulik, Andrzej J; Lee, Kyumin; Pyka-Fościak, Grazyna; Nowak, Wieslaw

    2015-01-01

    Summary The first experiment showing the effects of specific interaction forces using lateral force microscopy (LFM) was demonstrated for lectin–carbohydrate interactions some years ago. Such measurements are possible under the assumption that specific forces strongly dominate over the non-specific ones. However, obtaining quantitative results requires the complex and tedious calibration of a torsional force. Here, a new and relatively simple method for the calibration of the torsional force is presented. The proposed calibration method is validated through the measurement of the interaction forces between human fibronectin and its monoclonal antibody. The results obtained using LFM and AFM-based classical force spectroscopies showed similar unbinding forces recorded at similar loading rates. Our studies verify that the proposed lateral force calibration method can be applied to study single molecule interactions. PMID:26114080

  10. Genome-wide association study of blood lead shows multiple associations near ALAD

    PubMed Central

    Warrington, Nicole M.; Zhu, Gu; Dy, Veronica; Heath, Andrew C.; Madden, Pamela A.F.; Hemani, Gibran; Kemp, John P.; Mcmahon, George; St Pourcain, Beate; Timpson, Nicholas J.; Taylor, Caroline M.; Golding, Jean; Lawlor, Debbie A.; Steer, Colin; Montgomery, Grant W.; Martin, Nicholas G.; Davey Smith, George; Evans, David M.; Whitfield, John B.

    2015-01-01

    Exposure to high levels of environmental lead, or biomarker evidence of high body lead content, is associated with anaemia, developmental and neurological deficits in children, and increased mortality in adults. Adverse effects of lead still occur despite substantial reduction in environmental exposure. There is genetic variation between individuals in blood lead concentration but the polymorphisms contributing to this have not been defined. We measured blood or erythrocyte lead content, and carried out genome-wide association analysis, on population-based cohorts of adult volunteers from Australia and UK (N = 5433). Samples from Australia were collected in two studies, in 1993–1996 and 2002–2005 and from UK in 1991–1992. One locus, at ALAD on chromosome 9, showed consistent association with blood lead across countries and evidence for multiple independent allelic effects. The most significant single nucleotide polymorphism (SNP), rs1805313 (P = 3.91 × 10−14 for lead concentration in a meta-analysis of all data), is known to have effects on ALAD expression in blood cells but other SNPs affecting ALAD expression did not affect blood lead. Variants at 12 other loci, including ABO, showed suggestive associations (5 × 10−6 > P > 5 × 10−8). Identification of genetic polymorphisms affecting blood lead reinforces the view that genetic factors, as well as environmental ones, are important in determining blood lead levels. The ways in which ALAD variation affects lead uptake or distribution are still to be determined. PMID:25820613

  11. Genome-wide association study of blood lead shows multiple associations near ALAD.

    PubMed

    Warrington, Nicole M; Zhu, Gu; Dy, Veronica; Heath, Andrew C; Madden, Pamela A F; Hemani, Gibran; Kemp, John P; Mcmahon, George; St Pourcain, Beate; Timpson, Nicholas J; Taylor, Caroline M; Golding, Jean; Lawlor, Debbie A; Steer, Colin; Montgomery, Grant W; Martin, Nicholas G; Davey Smith, George; Evans, David M; Whitfield, John B

    2015-07-01

    Exposure to high levels of environmental lead, or biomarker evidence of high body lead content, is associated with anaemia, developmental and neurological deficits in children, and increased mortality in adults. Adverse effects of lead still occur despite substantial reduction in environmental exposure. There is genetic variation between individuals in blood lead concentration but the polymorphisms contributing to this have not been defined. We measured blood or erythrocyte lead content, and carried out genome-wide association analysis, on population-based cohorts of adult volunteers from Australia and UK (N = 5433). Samples from Australia were collected in two studies, in 1993-1996 and 2002-2005 and from UK in 1991-1992. One locus, at ALAD on chromosome 9, showed consistent association with blood lead across countries and evidence for multiple independent allelic effects. The most significant single nucleotide polymorphism (SNP), rs1805313 (P = 3.91 × 10(-14) for lead concentration in a meta-analysis of all data), is known to have effects on ALAD expression in blood cells but other SNPs affecting ALAD expression did not affect blood lead. Variants at 12 other loci, including ABO, showed suggestive associations (5 × 10(-6) > P > 5 × 10(-8)). Identification of genetic polymorphisms affecting blood lead reinforces the view that genetic factors, as well as environmental ones, are important in determining blood lead levels. The ways in which ALAD variation affects lead uptake or distribution are still to be determined. PMID:25820613

  12. Neural Correlates of Empathy with Pain Show Habituation Effects. An fMRI Study

    PubMed Central

    Preis, Mira A.; Kröner-Herwig, Birgit; Schmidt-Samoa, Carsten; Dechent, Peter; Barke, Antonia

    2015-01-01

    Background Neuroimaging studies have demonstrated that the actual experience of pain and the perception of another person in pain share common neural substrates, including the bilateral anterior insular cortex and the anterior midcingulate cortex. As many fMRI studies include the exposure of participants to repeated, similar stimuli, we examined whether empathic neural responses were affected by habituation and whether the participants' prior pain experience influenced these habituation effects. Method In 128 trials (four runs), 62 participants (31 women, 23.0 ± 4.2 years) were shown pictures of hands exposed to painful pressure (pain pictures) and unexposed (neutral pictures). After each trial, the participants rated the pain of the model. Prior to the experiment, participants were either exposed to the same pain stimulus (pain exposure group) or not (touch exposure group). In order to assess possible habituation effects, linear changes in the strength of the BOLD response to the pain pictures (relative to the neutral pictures) and in the ratings of the model’s pain were evaluated across the four runs. Results Although the ratings of the model’s pain remained constant over time, we found neural habituation in the bilateral anterior/midinsular cortex, the posterior midcingulate extending to dorsal posterior cingulate cortex, the supplementary motor area, the cerebellum, the right inferior parietal lobule, and the left superior frontal gyrus, stretching to the pregenual anterior cingulate cortex. The participant’s prior pain experience did neither affect their ratings of the model’s pain nor their maintenance of BOLD activity in areas associated with empathy. Interestingly, participants with high trait personal distress and fantasy tended to show less habituation in the anterior insula. Conclusion Neural structures showed a decrease of the BOLD signal, indicating habituation over the course of 45 minutes. This can be interpreted as a neuronal mechanism

  13. In vitro studies to show sequestration of matrix metalloproteinases by silver-containing wound care products.

    PubMed

    Walker, Michael; Bowler, Philip G; Cochrane, Christine A

    2007-09-01

    Excess or "uncontrolled" proteinase activity in the wound bed has been implicated as one factor that may delay or compromise wound healing. One proteinase group--matrix metalloproteinases--includes collagenases, elastase, and gelatinases and can be endogenous (cell) or exogenous (bacterial) in origin. A study was conducted to assess the ability of five silver-containing wound care products to reduce a known matrix metalloproteinase supernatant concentration in vitro. Four silver-containing wound dressings (a carboxy-methyl cellulose, a nanocrystalline, a hydro-alginate, and a collagen/oxidized regenerated cellulose composite dressing), along with a 0.5% aqueous silver nitrate [w/v] solution and controls for matrix metalloproteinase-2 and matrix metalloproteinase-9 sourced from ex vivo dermal tissue and blood monocytes, respectively, were used. Extracts were separated and purified using gelatine-Sepharose column chromatography and dialysis and polyacrylamide gel electrophoretic zymography was used to analyze specific matrix metalloproteinase activity. All dressings and the solution were shown to sequester both matrix metalloproteinases. The silver-containing carboxy-methyl cellulose dressing showed significantly greater sequestration for matrix metalloproteinase-2 at 6 and 24 hours (P< 0.001) compared to the other treatments. For matrix metalloproteinase-9, both the carboxy-methyl cellulose dressing and the oxidized regenerated cellulose dressing achieved significant sequestration when compared to the other treatments at 24 hours (P <0.001), which was maintained to 48 hours (P < 0.001). Results from this study show that silver-containing dressings are effective in sequestering matrix metalloproteinase-2 and -9 and that this can be achieved without a sacrificial protein (eg, collagen). Although the varying ability of wound dressings to sequester matrix metalloproteinases has been shown in vitro, further in vivo evidence is required to confirm these findings. PMID

  14. Protein-DNA interactions in high speed AFM: single molecule diffusion analysis of human RAD54.

    PubMed

    Sanchez, Humberto; Suzuki, Yuki; Yokokawa, Masatoshi; Takeyasu, Kunio; Wyman, Claire

    2011-11-01

    High-speed AFM (atomic force microscopy also called scanning force microscopy) provides nanometre spatial resolution and sub-second temporal resolution images of individual molecules. We exploit these features to study diffusion and motor activity of the RAD54 DNA repair factor. Human RAD54 functions at critical steps in recombinational-DNA repair. It is a member of the Swi2/Snf2 family of chromatin remodelers that translocate on DNA using ATP hydrolysis. A detailed single molecular description of DNA-protein interactions shows intermediate states and distribution of variable states, usually hidden by ensemble averaging. We measured the motion of individual proteins using single-particle tracking and observed that random walks were affected by imaging-buffer composition. Non-Brownian diffusion events were characterized in the presence and in the absence of nucleotide cofactors. Double-stranded DNA immobilized on the surface functioned as a trap reducing Brownian motion. Distinct short range slides and hops on DNA were visualized by high-speed AFM. These short-range interactions were usually inaccessible by other methods based on optical resolution. RAD54 monomers displayed a diffusive behavior unrelated to the motor activity. PMID:21986699

  15. Characterization of single 1.8-nm Au nanoparticle attachments on AFM tips for single sub-4-nm object pickup

    PubMed Central

    2013-01-01

    This paper presents a novel method for the attachment of a 1.8-nm Au nanoparticle (Au-NP) to the tip of an atomic force microscopy (AFM) probe through the application of a current-limited bias voltage. The resulting probe is capable of picking up individual objects at the sub-4-nm scale. We also discuss the mechanisms involved in the attachment of the Au-NP to the very apex of an AFM probe tip. The Au-NP-modified AFM tips were used to pick up individual 4-nm quantum dots (QDs) using a chemically functionalized method. Single QD blinking was reduced considerably on the Au-NP-modified AFM tip. The resulting AFM tips present an excellent platform for the manipulation of single protein molecules in the study of single protein-protein interactions. PMID:24237663

  16. Pathogen identification using peptide nanotube biosensors and impedance AFM

    NASA Astrophysics Data System (ADS)

    Maccuspie, Robert I.

    Pathogen identification at highly sensitive levels is crucial to meet urgent needs in fighting the spread of disease or detecting bioterrorism events. Toward that end, a new method for biosensing utilizing fluorescent antibody nanotubes is proposed. Fundamental studies on the self-assembly of these peptide nanotubes are performed, as are applications of aligning these nanotubes on surfaces. As biosensors, these nanotubes incorporate recognition units with antibodies at their ends and fluorescent signaling units at their sidewalls. When viral pathogens were mixed with these antibody nanotubes in solution, the nanotubes rapidly aggregated around the viruses. The size of the aggregates increased as the concentration of viruses increased, as detected by flow cytometry on the order of attomolar concentrations by changes in fluorescence and light scattering intensities. This enabled determination of the concentrations of viruses at trace levels (102 to 106 pfu/mL) within 30 minutes from the receipt of samples to the final quantitative data analysis, as demonstrated on Adenovirus, Herpes Simplex Virus, Influenza, and Vaccinia virus. As another separate approach, impedance AFM is used to study the electrical properties of individual viruses and nanoparticles used as model systems. The design, development, and implementation of the impedance AFM for an Asylum Research platform is described, as well as its application towards studying the impedance of individual nanoparticles as a model system for understanding the fundamental science of how the life cycle of a virus affects its electrical properties. In combination, these approaches fill a pressing need to quantify viruses both rapidly and sensitively.

  17. An approach towards 3D sensitive AFM cantilevers

    NASA Astrophysics Data System (ADS)

    Koops, Richard; Fokkema, Vincent

    2014-04-01

    The atomic force microscope (AFM) tapping mode is a highly sensitive local probing technique that is very useful to study and measure surface properties down to the atomic scale. The tapping mode is mostly implemented using the resonance of the first bending mode of the cantilever and therefore provides sensitivity mainly along the direction of this oscillation. Driven by the semiconductor industry, there is an increasing need for accurate measurements of nanoscale structures for side wall characterization by AFM that requires additional sensitivity in the lateral direction. The conventional tapping mode has been augmented by various authors, for example by tilting the cantilever system (Cho et al 2011 Rev. Sci. Instrum. 82 023707) to access the sidewall or using a torsion mode (Dai et al 2011 Meas. Sci. Technol. 22 094009) of the cantilever to provide additional lateral sensitivity. These approaches however trade lateral sensitivity for vertical sensitivity or still lack sensitivity in the remaining lateral direction. We present an approach towards true 3D sensitivity for AFM cantilevers based on simultaneous excitation and optical detection of multiple cantilever resonance modes along three axes. Tuning the excitation of the cantilever to specific frequencies provides a mechanism to select only those cantilever modes that have the desired characteristics. Additionally, cantilever engineering has been used to design and create a substructure within the cantilever that has been optimized for specific resonance behavior around 4 MHz. In contrast to the conventional approach of using a piezo to actuate the cantilever modulation, we present results on photo-thermal excitation using an intensity modulated low-power laser source. By tightly focusing the excitation spot on the cantilever we were able to attain a deflection efficiency of 0.7 nm µW-1 for the first bending mode. The presented approach results in an efficient all optical excitation and deflection detection

  18. Material rhetoric: spreading stones and showing bones in the study of prehistory.

    PubMed

    Van Reybrouck, David; de Bont, Raf; Rock, Jan

    2009-06-01

    Since the linguistic turn, the role of rhetoric in the circulation and the popular representation of knowledge has been widely accepted in science studies. This article aims to analyze not a textual form of scientific rhetoric, but the crucial role of materiality in scientific debates. It introduces the concept of material rhetoric to understand the promotional regimes in which material objects play an essential argumentative role. It analyzes the phenomenon by looking at two students of prehistory from nineteenth-century Belgium. In the study of human prehistory and evolution, material data are either fairly abundant stone tools or very scarce fossil bones. These two types of material data stand for two different strategies in material rhetoric. In this article, the first strategy is exemplified by Aimé Rutot, who gathered great masses of eoliths (crudely chipped stones which he believed to be prehistoric tools). The second strategy is typified by the example of Julien Fraipont, who based his scientific career on only two Neanderthal skeletons. Rutot sent his "artifacts" to a very wide audience, while Fraipont showed his skeletons to only a few selected scholars. Unlike Rutot, however, Fraipont was able to monitor his audience's interpretation of the finds by means of personal contacts. What an archaeologist gains in reach, he or she apparently loses in control. In this article we argue that only those scholars who find the right balance between the extremes of reach and control will prove to be successful. PMID:19827370

  19. Comparison of particle sizes determined with impactor, AFM and SEM

    NASA Astrophysics Data System (ADS)

    Gwaze, Patience; Annegarn, Harold J.; Huth, Joachim; Helas, Günter

    2007-11-01

    Particles size comparisons were made between conventional aerodynamic and mobility sizing techniques and physical geometric sizes measured by high resolution microscopes. Atmospheric particles were collected during the wet and dry seasons in the Amazonian ecosystems. Individual particles deposited on four stages of the MOUDI (Micro-Orifice Uniform Deposition Impactor) were characterised for particle volumes, projected surface diameters and morphologies with an Atomic Force Microscope (AFM) and a Scanning Electron Microscope (SEM). AFM and SEM size distributions were verified against distributions derived from response functions of individual MOUDI stages as specified by Winklmayr et al. [Winklmayr, W., Wang, H.-C., John, W., 1990. Adaptation of the Twomey algorithm to the inversion of cascade impactor data. Aerosol Science and Technology 13, 322-331.]. Particles indicated inherent discrepancies in sizing techniques. Particle volumes were systematically lower than expected by factors of up to 3.6. Differences were attributed to loss of mass, presumably water adsorbed on particles. Losses were high and could not be accounted for by measured humidity growth factors suggesting significant losses of other volatile compounds as well, particularly on particles that were collected during the wet season. Microscopy results showed that for hygroscopic particles, microscopy sizes depend on the relative humidity history of particles before and after sampling. Changes in relative humidity significantly altered particle morphologies. Depending on when changes occur, such losses will bias not only microscopy particle sizes but also impactor mass distributions and number concentrations derived from collected particles.

  20. Nanoscale crystallization of phase change Ge2Sb2Te5 film with AFM lithography.

    PubMed

    Kim, JunHo

    2010-01-01

    We have made nanoindents on Ge(2)Sb(2)Te(5)(GST) films using electric field-assisted atomic force microscope (AFM) lithography. GST shows increase of material density and electric conductivity as it changes from amorphous to crystalline phases. By applying electric field between AFM probe-tip and GST surface, nanoscale crystallization could be induced on tip contact area. As the crystallized GST exhibits increase of material density, that is to say depression of volume, nanoindented surface with crystallization is created on host amorphous GST (a-GST) film. For the AFM lithography, a highly conductive tip, which showed voltage-switching characteristics in current-voltage spectroscopy of GST film, was found to be very suitable for recording and sensing crystallized nanoindents on the GST film. By varying sample bias voltages, we performed nanoscale crystallization, and measured the nanostructured film in AFM conductance-image (C-image) mode and topography-image (T-image) mode, simultaneously. Two types of crystallized wires were fabricated on (a-GST) film. Type-I was sensed in only C-image, whereas Type-II was sensed in both C-image and T-image. These nanowires are discussed in terms of crystallization of GST and sensitivity of current (or topography) sensing. By repeated lithography, larger size of nanoindented wires were also produced, which indicates line-dimension controllability of AFM lithography. PMID:20853405

  1. [AFM fishing of proteins under impulse electric field].

    PubMed

    Ivanov, Yu D; Pleshakova, T O; Malsagova, K A; Kaysheva, A L; Kopylov, A T; Izotov, A A; Tatur, V Yu; Vesnin, S G; Ivanova, N D; Ziborov, V S; Archakov, A I

    2016-05-01

    A combination of (atomic force microscopy)-based fishing (AFM-fishing) and mass spectrometry allows to capture protein molecules from solutions, concentrate and visualize them on an atomically flat surface of the AFM chip and identify by subsequent mass spectrometric analysis. In order to increase the AFM-fishing efficiency we have applied pulsed voltage with the rise time of the front of about 1 ns to the AFM chip. The AFM-chip was made using a conductive material, highly oriented pyrolytic graphite (HOPG). The increased efficiency of AFM-fishing has been demonstrated using detection of cytochrome b5 protein. Selection of the stimulating pulse with a rise time of 1 ns, corresponding to the GHz frequency range, by the effect of intrinsic emission from water observed in this frequency range during water injection into the cell. PMID:27562998

  2. Geothermal-retrofit study for the National Orange Show Facilities in San Bernardino, California

    SciTech Connect

    Not Available

    1981-11-17

    The cost and feasibility of retrofitting the National Orange Show Facilities to use geothermal heat instead of natural gas for heating are determined. Because of the limited usage of the smaller facilities the study was limited to the conversion of the six major buildings: Domed, Hobby, Citrus, Auditorium, Restaurant and Commercial. A major problem is that most of the buildings are used on a very limited basis. This drastically reduced the amount of savings that could be used to amortize the retrofit cost. Another problem is that the buildings are spread over a large area and so the below grade piping costs were high. Finally, all of the buildings except for the Auditorium have direct gas fired heaters that would require all new terminal heating systems. In order to limit the retrofit cost, the retrofit system was designed to handle less than the peak load. This seemed appropriate because the facility might not even be in operation when a peak load condition occurred. Also, the existing systems could be used to supplement the geothermal system if necessary. The calculated and design peak loads are summarized.

  3. A cross-sectional study of Tritrichomonas foetus infection among healthy cats at shows in Norway

    PubMed Central

    2011-01-01

    Background In recent years, the protozoan Tritrichomonas foetus has been recognised as an important cause of chronic large-bowel diarrhoea in purebred cats in many countries, including Norway. The aim of this cross-sectional study was to determine the proportion of animals with T. foetus infection among clinically healthy cats in Norway and to assess different risk factors for T. foetus infection, such as age, sex, former history of gastrointestinal symptoms and concurrent infections with Giardia duodenalis and Cryptosporidium sp. Methods The sample population consisted of 52 cats participating in three cat shows in Norway in 2009. Samples were examined for motile T. foetus by microscopy, after culturing and for T. foetus-DNA by species-specific nested PCR, as well as for Giardia cysts and Cryptosporidium oocysts by immunofluorescent antibody test (IFAT). Results By PCR, T. foetus-DNA was demonstrated in the faeces of 11 (21%) of the 52 cats tested. DNA-sequencing of five positive samples yielded 100% identity with previous isolates of T. foetus from cats. Only one sample was positive for T. foetus by microscopy. By IFAT, four samples were positive for Giardia cysts and one for Cryptosporidium oocysts, none of which was co-infected with T. foetus. No significant associations were found between the presence of T. foetus and the various risk factors examined. Conclusions T. foetus was found to be a common parasite in clinically healthy cats in Norway. PMID:21689400

  4. Multiparametric AFM reveals turgor-responsive net-like peptidoglycan architecture in live streptococci

    NASA Astrophysics Data System (ADS)

    Saar Dover, Ron; Bitler, Arkady; Shimoni, Eyal; Trieu-Cuot, Patrick; Shai, Yechiel

    2015-05-01

    Cell-wall peptidoglycan (PG) of Gram-positive bacteria is a strong and elastic multi-layer designed to resist turgor pressure and determine the cell shape and growth. Despite its crucial role, its architecture remains largely unknown. Here using high-resolution multiparametric atomic force microscopy (AFM), we studied how the structure and elasticity of PG change when subjected to increasing turgor pressure in live Group B Streptococcus. We show a new net-like arrangement of PG, which stretches and stiffens following osmotic challenge. The same structure also exists in isogenic mutants lacking surface appendages. Cell aging does not alter the elasticity of the cell wall, yet destroys the net architecture and exposes single segmented strands with the same circumferential orientation as predicted for intact glycans. Together, we show a new functional PG architecture in live Gram-positive bacteria.

  5. Investigation of Oxidation Profile in PMR-15 Polyimide using Atomic Microscope (AFM)

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Johnson, Lili L.; Eby, R. K.

    2002-01-01

    Nanoindentation measurements are made on thermosetting materials using cantiever deflection vs. piezoelectric scanner position behavior determined by AFM. The spring model is used to determine mechanical properties of materials. The generalized Sneddon's equation is utilized to calculate Young's moduli for thermosetting materials at ambient conditions. Our investigations show that the force-penetration depth curves during unloading in these materials can be described accurately by a power law relationship. The results show that the accuracy of the measurements can be controlled within 7%. The above method is used to study oxidation profiles in Pl\\1R-15 polyimide. The thermo-mechanical profiles ofPNIR-15 indicate that the elastic modulus at the surface portion of the specimen is different from that at the interior of the material. It is also shown that there are two zones within the oxidized portion of the samples. Results confirm that the surface layer and the core material have substantially different properties.

  6. Mitochondrial DNA studies show asymmetrical Amerindian admixture in Afro-Colombian and Mestizo populations.

    PubMed

    Rodas, Clemencia; Gelvez, Nancy; Keyeux, Genoveva

    2003-02-01

    The origin of the African populations that arrived on the Colombian coasts at the time of the Spanish conquest and their subsequent settlement throughout the country and interaction with Amerindian and Spanish populations are features that can be analyzed through the study of mitochondrial DNA (mtDNA) markers. For this purpose, the present study investigates the admixture between these populations by analyzing the markers defining the main (A, B, C, D) and minor (X) founder haplogroups in Native Americans, the principal African haplogroup (L), and additional generic markers present in Caucasian (I, J, K, H, T, U, V, W) and minor African lineages (L3). As part of an interdisciplinary research program (the Expedición Humana, furthered by the Universidad Javeriana and directed by J.E. Bernal V.), 159 Afro-Colombians from five populations in which they are the majority and 91 urban Mestizos were studied. No Amerindian haplogroups (A-D, X) were detected in 81% of the Afro-Colombians. In those samples with Amerindian lineages (average 18.8%, with a range from 10% to 43%), haplogroup B predominated. When analyzed for the presence of African haplotypes, Afro-Colombians showed an overall frequency of 35.8% for haplogroup L mtDNAs, although with broad differences between populations. A few Afro-Colombian samples (1.9%) had mutations that have not been described before, and might therefore be considered as previously unsampled African variants or as new mutations arising in the American continent. Conversely, in Mestizos less than 22% of their mtDNAs belonged to non-Amerindian lineages, of which most were likely to be West Eurasian in origin. Haplogroup L mtDNAs were found in only one Mestizo (1.1%), indicating that, if present, admixture with African women would bring in other, rarer African lineages. On the other hand, in an accompanying paper (Keyeux et al. 2002) we have shown that Amerindians from Colombia have experienced little or no matrilineal admixture with

  7. Glyphosate degradation by immobilized bacteria: laboratory studies showing feasibility for glyphosate removal from waste water.

    PubMed

    Heitkamp, M A; Adams, W J; Hallas, L E

    1992-09-01

    To evaluate immobilized bacteria technology for the removal of low levels of glyphosate (N-phosphonomethylglycine) from aqueous industrial effluents, microorganisms with glyphosate-degrading activity obtained from a fill and draw enrichment reactor inoculated with activated sludge were first exposed to glyphosate production wastes containing 500-2000 mg glyphosate/L. The microorganisms were then immobilized by adsorption onto a diatomaceous earth biocarrier contained in upflow Plexiglas columns. The columns were aerated, maintained at pH 7.0-8.0, incubated at 25 degrees C, supplemented with NH4NO3 (50 mg/L), and exposed to glyphosate process wastes pumped upflow through the biocarrier. Glyphosate degradation to aminomethylphosphonic acid was initially > 96% for 21 days of operation at flows yielding hydraulic residence times (HRTs) as short as 42 min. Higher flow rate studies showed > 98% removal of 50 mg glyphosate/L from the waste stream could be achieved at a HRT of 23 min. Glyphosate removal of > 99% at a 37-min HRT was achieved under similar conditions with a column inoculated with a pure culture of Pseudomonas sp. strain LBr, a bacterium known to have high glyphosate-degrading activity. After acid shocking (pH 2.8 for 18 h) of a column of immobilized bacteria, glyphosate-degrading activity was regained within 4 days without reinoculation. Although microbial growth and glyphosate degradation were not maintained under low organic nutrient conditions in the laboratory, the low levels of degradable carbon (45-94 mg/L) in the industrial effluent were sufficient to support prolonged glyphosate-degrading activity. The results demonstrated that immobilized bacteria technology is effective in removing low levels of glyphosate in high-volume liquid waste streams. PMID:1464067

  8. Chromosome 2p shows significant linkage to antihypertensive response in the British Genetics of Hypertension Study.

    PubMed

    Padmanabhan, Sandosh; Wallace, Chris; Munroe, Patricia B; Dobson, Richard; Brown, Morris; Samani, Nilesh; Clayton, David; Farrall, Martin; Webster, John; Lathrop, Mark; Caulfield, Mark; Dominiczak, Anna F; Connell, John M

    2006-03-01

    There is a lack of consistently linked loci influencing blood pressure and hypertension status, and this may be because of genetic or phenotypic heterogeneity. We hypothesize that stratification of subjects by response to antihypertensive drug groups could be used to stringently define subsets that will have reduced genetic and etiologic heterogeneity, by partitioning contrasting mechanisms of hypertension and, thus, enhancing gene finding. We investigated the British Genetics of Hypertension Study population, which is composed of 2142 severely hypertensive white affected sibling pairs. Nonresponse to antihypertensive therapy was defined as an on-treatment blood pressure of >140/90 mm Hg or a difference between prediagnosis and on-treatment blood pressure of <20 mm Hg. Of the nonresponders, there were 89 sibling pairs (AB) who were both on antihypertensive therapy that inhibit the renin-angiotensin system (angiotensin-converting enzyme inhibitors, angiotensin II type-1 receptor blockers, or beta-blockers), and 76 sibling pairs (CD) who were both on drugs that do not (calcium channel blockers or diuretics). Nonparametric linkage analysis carried out using markers from a 10-cM genome scan and additional "grid tightening" markers showed significant linkage in the AB group on chromosome 2p (logarithm of odds=4.84 at 90.68 Kosambi cM) and suggestive linkage for the CD group on chromosome 10q (logarithm of odds=2.83 at 125.96 Kosambi cM). The AB linkage locus attained genomewide significance after simulation using 10,000 replicates (P=0.005). This locus may contain a gene for the salt-sensitive form of hypertension and/or a pharmacogenetic locus affecting drug response. We have demonstrated for the first time identification of a significant locus by partitioning different pathways of hypertension using drug response. PMID:16391175

  9. Complement activation in leprosy: a retrospective study shows elevated circulating terminal complement complex in reactional leprosy.

    PubMed

    Bahia El Idrissi, N; Hakobyan, S; Ramaglia, V; Geluk, A; Morgan, B Paul; Das, P Kumar; Baas, F

    2016-06-01

    Mycobacterium leprae infection gives rise to the immunologically and histopathologically classified spectrum of leprosy. At present, several tools for the stratification of patients are based on acquired immunity markers. However, the role of innate immunity, particularly the complement system, is largely unexplored. The present retrospective study was undertaken to explore whether the systemic levels of complement activation components and regulators can stratify leprosy patients, particularly in reference to the reactional state of the disease. Serum samples from two cohorts were analysed. The cohort from Bangladesh included multi-bacillary (MB) patients with (n = 12) or without (n = 46) reaction (R) at intake and endemic controls (n = 20). The cohort from Ethiopia included pauci-bacillary (PB) (n = 7) and MB (n = 23) patients without reaction and MB (n = 15) patients with reaction. The results showed that the activation products terminal complement complex (TCC) (P ≤ 0·01), C4d (P ≤ 0·05) and iC3b (P ≤ 0·05) were specifically elevated in Bangladeshi patients with reaction at intake compared to endemic controls. In addition, levels of the regulator clusterin (P ≤ 0·001 without R; P < 0·05 with R) were also elevated in MB patients, irrespective of a reaction. Similar analysis of the Ethiopian cohort confirmed that, irrespective of a reaction, serum TCC levels were increased significantly in patients with reactions compared to patients without reactions (P ≤ 0·05). Our findings suggests that serum TCC levels may prove to be a valuable tool in diagnosing patients at risk of developing reactions. PMID:26749503

  10. Hot-Fire Testing of a 1N AF-M315E Thruster

    NASA Technical Reports Server (NTRS)

    Burnside, Christopher G.; Pedersen, Kevin; Pierce, Charles W.

    2015-01-01

    This hot-fire test continues NASA investigation of green propellant technologies for future missions. To show the potential for green propellants to replace some hydrazine systems in future spacecraft, NASA Marshall Space Flight Center (MSFC) is continuing to embark on hot-fire test campaigns with various green propellant blends. NASA completed a hot-fire test of a 1N AF-M315E monopropellant thruster at the Marshall Space Flight Center in the small altitude test stand located in building 4205. The thruster is a ground test article used for basic performance determination and catalyst studies. The purpose of the hot-fire testing was for performance determination of a 1N size thruster and form a baseline from which to study catalyst performance and life with follow-on testing to be conducted at a later date. The thruster performed as expected. The result of the hot-fire testing are presented in this paper and presentation.

  11. BOREAS AFM-6 NOAA/ETL 35 GHz Cloud/Turbulence Radar GIF Images

    NASA Technical Reports Server (NTRS)

    Martner, Brooks E.; Newcomer, Jeffrey A. (Editor); Hall, Forrest G.; Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-6 team from the National Oceanic and Atmospheric Administration/Environment Technology Laboratory (NOAA/ETL) operated a 35-GHz cloud-sensing radar in the Northern Study Area (NSA) near the Old Jack Pine (OJP) tower from 16 Jul 1994 to 08 Aug 1994. This data set contains a time series of GIF images that show the structure of the lower atmosphere. The NOAA/ETL 35-GHz cloud/turbulence radar GIF images are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  12. Mechanical properties of in situ demineralised human enamel measured by AFM nanoindentation

    NASA Astrophysics Data System (ADS)

    Finke, Manuela; Hughes, Julie A.; Parker, David M.; Jandt, Klaus D.

    2001-10-01

    Diet-induced demineralisation is one of the key factors in surface changes of tooth enamel, with soft drinks being a significant etiological agent. The first step in this dissolution process is characterised by a change in the mechanical properties of the enamel and a roughening of the surface. The objective of this pilot study was to measure early stages of in situ induced hardness changes of polished human enamel surfaces with high accuracy using a nanoindenter attached to an atomic force microscope (AFM). Human unerupted third molars were cleaned, sterilised with sodium hypochlorite, sectioned and embedded in epoxy resin. The outer enamel surface was polished and the samples partly covered with a tape, allowing a 2-mm-wide zone to be exposed to the oral environment. Samples were fitted in an intra-oral appliance, which was worn from 9 a.m. to 5 p.m. for one day. During this time the volunteer sipped 250 ml of a drink over 10 min periods at 9.00, 11.00, 13.00 and 15.00 h. Three different drinks, mineral water, orange juice and the prototype of a blackcurrant drink with low demineralisation potential were used in this study. At the end of the experiment the samples were detached from the appliance, the tape removed and the surfaces chemically cleaned. The surface hardness and reduced Young's modulus of the exposed and unexposed areas of each sample were determined. In addition, high resolution topographical AFM images were obtained. This study shows that by determining the hardness and reduced Young's modulus, the difference in demineralisation caused by the drinks can be detected and quantified before statistically significant changes in surface topography could be observed with the AFM. The maximum decrease in surface hardness and Young's modulus occurred in the samples exposed to orange juice, followed by those exposed to the blackcurrant drink, while exposure to water led to the same values as unexposed areas. A one-way ANOVA showed a statistically significant

  13. Effect of AFM probe geometry on visco-hyperelastic characterization of soft materials.

    PubMed

    Boccaccio, Antonio; Lamberti, Luciano; Papi, Massimiliano; De Spirito, Marco; Pappalettere, Carmine

    2015-08-14

    Atomic force microscopy (AFM) nanoindentation is very suited for nano- and microscale mechanical characterization of soft materials. Although the structural response of polymeric networks that form soft matter depends on viscous effects caused by the relative slippage of polymeric chains, the usual assumption made in the AFM-based characterization is that the specimen behaves as a purely elastic material and viscous forces are negligible. However, for each geometric configuration of the AFM tip, there will be a limit indentation rate above which viscous effects must be taken into account to correctly determine mechanical properties. A parametric finite element study conducted on 12 geometric configurations of a blunt cone AFM tip (overall, the study included about 200 finite element analyses) allowed us to determine the limit indentation rate for each configuration. The selected tip dimensions cover commercially available products and account for changes in tip geometry caused by serial measurements. Nanoindentation rates cover typical experimental conditions set in AFM bio-measurements on soft matter. Viscous effects appear to be more significant in the case of sharper tips. This implies that, if quantitative data on sample viscosity are not available, using a rounded indenter and carrying out experiments below the limit indentation rate will allow errors in the determination of mechanical properties to be minimized. PMID:26201503

  14. AFM and XPA data on structural features and properties of films and powders based on naphthalocyanines

    NASA Astrophysics Data System (ADS)

    Ramonova, A. G.; Nakusov, A. T.; Sozanov, V. G.; Bliev, A. P.; Magkoev, T. T.

    2015-06-01

    The template synthesis is used to produce powders and films based on naphthalocyanines and the corresponding metal complexes (Pc, CuPc, and NiPc). The atomic-force microscopy (AFM) and X-ray phase analysis (XPA) are employed in the study of structure and phase of fine powders and nanostructured films. The AFM data are used to determine the orientation and density of primary particles packed in the film. The XPA method is used to study the chemical composition and crystal structure of the synthesized samples. The regularities related to the structural features that affect the electrophysical properties of the films under study are revealed.

  15. AFM-assisted fabrication of thiol SAM pattern with alternating quantified surface potential

    PubMed Central

    2011-01-01

    Thiol self-assembled monolayers (SAMs) are widely used in many nano- and bio-technology applications. We report a new approach to create and characterize a thiol SAMs micropattern with alternating charges on a flat gold-coated substrate using atomic force microscopy (AFM) and Kelvin probe force microscopy (KPFM). We produced SAMs-patterns made of alternating positively charged, negatively charged, and hydrophobic-terminated thiols by an automated AFM-assisted manipulation, or nanografting. We show that these thiol patterns possess only small topographical differences as revealed by AFM, and distinguished differences in surface potential (20-50 mV), revealed by KPFM. The pattern can be helpful in the development of biosensor technologies, specifically for selective binding of biomolecules based on charge and hydrophobicity, and serve as a model for creating surfaces with quantified alternating surface potential distribution. PMID:21711703

  16. Mapping site-specific endonuclease binding to DNA by direct imaging with AFM

    SciTech Connect

    Allison, D.P.; Thundat, T.; Doktycz, M.J.; Kerper, P.S.; Warmack, R.J.; Modrich, P.; Isfort, R.J.

    1995-12-31

    Physical mapping of DNA can be accomplished by direct AFM imaging of site specific proteins bound to DNA molecules. Using Gln-111, a mutant of EcoRI endonuclease with a specific affinity for EcoRI sites 1,000 times greater than wild type enzyme but with cleavage rate constants reduced by a factor of 10{sup 4}, the authors demonstrate site-specific mapping by direct AFM imaging. Images are presented showing specific-site binding of Gln-111 to plasmids having either one (pBS{sup +}) or two (pMP{sup 32}) EcoRI sites. Identification of the Gln-111/DNA complex is greatly enhanced by biotinylation of the complex followed by reaction with streptavidin gold prior to imaging. Image enhancement coupled with improvements in the preparation techniques for imaging large DNA molecules, such as lambda DNA (47 kb), has the potential to contribute to direct AFM restriction mapping of cosmid-sized genomic DNAs.

  17. BOREAS AFM-04 Twin Otter Aircraft Sounding Data

    NASA Technical Reports Server (NTRS)

    MacPherson, J. Ian; Desjardins, Raymond L.; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-4 team used the National Research Council, Canada (NRC) Twin Otter aircraft to make sounding measurements through the boundary layer. These measurements included concentrations of carbon dioxide and ozone, atmospheric pressure, dry bulb temperature, potential temperature, dewpoint temperature, calculated mixing ratio, and wind speed and direction. Aircraft position, heading, and altitude were also recorded. Data were collected at both the Northern Study Area (NSA) and the Southern Study Area (SSA) in 1994 and 1996. These data are stored in tabular ASCII files. The Twin Otter aircraft sounding data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files also are available on a CD-ROM (see document number 20010000884).

  18. Studying the Effect of a Competitive Game Show in a Learning by Teaching Environment

    ERIC Educational Resources Information Center

    Matsuda, Noboru; Yarzebinski, Evelyn; Keiser, Victoria; Raizada, Rohan; Stylianides, Gabriel J.; Koedinger, Kenneth R.

    2013-01-01

    In this paper we investigate how competition among tutees in the context of learning by teaching affects tutors' engagement as well as tutor learning. We conducted this investigation by incorporating a competitive Game Show feature into an online learning environment where students learn to solve algebraic equations by teaching a synthetic…

  19. Sub-surface imaging of carbon nanotube-polymer composites using dynamic AFM methods.

    PubMed

    Cadena, Maria J; Misiego, Rocio; Smith, Kyle C; Avila, Alba; Pipes, Byron; Reifenberger, Ron; Raman, Arvind

    2013-04-01

    High-resolution sub-surface imaging of carbon nanotube (CNT) networks within polymer nanocomposites is demonstrated through electrical characterization techniques based on dynamic atomic force microscopy (AFM). We compare three techniques implemented in the single-pass configuration: DC-biased amplitude modulated AFM (AM-AFM), electrostatic force microscopy (EFM) and Kelvin probe force microscopy (KPFM) in terms of the physics of sub-surface image formation and experimental robustness. The methods were applied to study the dispersion of sub-surface networks of single-walled nanotubes (SWNTs) in a polyimide (PI) matrix. We conclude that among these methods, the KPFM channel, which measures the capacitance gradient (∂C/∂d) at the second harmonic of electrical excitation, is the best channel to obtain high-contrast images of the CNT network embedded in the polymer matrix, without the influence of surface conditions. Additionally, we propose an analysis of the ∂C/∂d images as a tool to characterize the dispersion and connectivity of the CNTs. Through the analysis we demonstrate that these AFM-based sub-surface methods probe sufficiently deep within the SWNT composites, to resolve clustered networks that likely play a role in conductivity percolation. This opens up the possibility of dynamic AFM-based characterization of sub-surface dispersion and connectivity in nanostructured composites, two critical parameters for nanocomposite applications in sensors and energy storage devices. PMID:23478510

  20. Studies Show High Schools' Shortcomings: Young Adults Surveyed about Their Experiences

    ERIC Educational Resources Information Center

    Viadero, Debra

    2005-01-01

    Two national studies paint a portrait of the bumpy road that many students face after high school and suggest that better academic preparation and guidance could have smoothed the way. The studies, each based primarily on separate surveys of 1,300 or more 18- to 25-year-olds, come from Public Agenda, a nonprofit opinion-research group in New York…

  1. State Tests, NAEP Often a Mismatch: Bars Defining "Proficient" Unaligned, Study Shows

    ERIC Educational Resources Information Center

    Cavanagh, Sean

    2007-01-01

    Many of the states that claim to have large shares of their students reaching proficiency in reading and mathematics under the No Child Left Behind Act have set less stringent standards for meeting that threshold than lower-performing states, a new federal study finds. The study, "Mapping 2005 State Proficiency Standards Onto the NAEP Scales,"…

  2. Performance-Based Curriculum for Social Studies. From Knowing to Showing.

    ERIC Educational Resources Information Center

    Burz, Helen L.; Marshall, Kit

    This guide is intended to aid in the development of a performance-based curriculum using social studies standards recommended by the National Council for Social Studies. The performance-based orientation encourages students to be accountable for knowing what they are learning, understanding why it is important, and reporting this knowledge and…

  3. Studies show liming a direct, economical method to neutralize lake acidification

    SciTech Connect

    Not Available

    1989-11-01

    A comprehensive understanding of the effects of liming on the environment was missing until the Electric Power Research Institute (EPRI) pulled researchers together to conduct integrated lake liming studies begun about six years ago. What researchers found is that liming is a cost-effective and environmentally sound method to treat acidic lakes so fish and other organisms may thrive. To research the acidification process, EPRI studied three lakes: Woods, Panther, and Sagamore, in the Adirondacks where most of the acidified lakes in the U.S. are located. The study done from 1976-84 and called Integrated Lake-Watershed Acidification Study (ILWAS) developed a general theory for understanding the effect of natural and man-made processes on lake chemistry. The theory is incorporated into a computer simulation model that accurately predicts a lake's vulnerability to acidification.

  4. NIH study shows increased risk for two types of myotonic muscular dystrophy

    Cancer.gov

    Adults with a form of muscular dystrophy called myotonic muscular dystrophy (MMD) may be at increased risk of developing cancer, according to a study by investigators at the National Cancer Institute (NCI), part of the National Institutes of Health.

  5. Systematic Review Shows Only Few Reliable Studies of Physical Activity Intervention in Adolescents

    PubMed Central

    Soares, Nara Michelle Moura; Leão, Arley Santos; Santos, Josivan Rosa; Monteiro, Glauber Rocha; dos Santos, Jorge Rollemberg; Thomazzi, Sara Maria; Silva, Roberto Jerônimo dos Santos

    2014-01-01

    Introduction. Several studies have pointed to the high prevalence of low levels of physical activity in adolescents, suggesting the need for more effective interventions for this group. The aim of this study was to present evidence of intervention programs for efficacy of physical activity for adolescents. Methods. Surveys in PubMed, SportDiscus, LiLacs, and SciELO databases were conducted using keywords to identify population, intervention, and outcome, as well as DeCS and MeSH terms in English, Portuguese, and Spanish, whenever appropriate. The review included observational studies with minimal intervention of six months, minimum sample size of 100 adolescents, written in any language, and those who have reached STROBE score greater than 70%. Results. Only seven studies met all inclusion criteria. Of these, five were pre- and postintervention and two had n > 2000 participants. Interventions were of several types, durations, and strategies for physical activity implementation. Behavior change was assessed in 43% of studies and three reported success in some way. Conclusion. Due to heterogeneity in their contents and methodologies, as well as the lack of jobs that accompany adolescents after the intervention period, one cannot draw conclusions about the actual effects of the intervention programs of physical activity on the behavior of young people. PMID:25152903

  6. AFM CHARACTERIZATION OF RAMAN LASER INDUCED DAMAGE ON CDZNTECRYSTAL SURFACES

    SciTech Connect

    Teague, L.; Duff, M.

    2008-10-07

    High quality CdZnTe (or CZT) crystals have the potential for use in room temperature gamma-ray and X-ray spectrometers. Over the last decade, the methods for growing high quality CZT have improved the quality of the produced crystals however there are material features that can influence the performance of these materials as radiation detectors. The presence of structural heterogeneities within the crystals, such as twinning, pipes, grain boundaries (polycrystallinity), and secondary phases (SPs) can have an impact on the detector performance. There is considerable need for reliable and reproducible characterization methods for the measurement of crystal quality. With improvements in material characterization and synthesis, these crystals may become suitable for widespread use in gamma radiation detection. Characterization techniques currently utilized to test for quality and/or to predict performance of the crystal as a gamma-ray detector include infrared (IR) transmission imaging, synchrotron X-ray topography, photoluminescence spectroscopy, transmission electron microscopy (TEM), atomic force microscopy (AFM) and Raman spectroscopy. In some cases, damage caused by characterization methods can have deleterious effects on the crystal performance. The availability of non-destructive analysis techniques is essential to validate a crystal's quality and its ability to be used for either qualitative or quantitative gamma-ray or X-ray detection. The work presented herein discusses the damage that occurs during characterization of the CZT surface by a laser during Raman spectroscopy, even at minimal laser powers. Previous Raman studies have shown that the localized annealing from tightly focused, low powered lasers results in areas of higher Te concentration on the CZT surface. This type of laser damage on the surface resulted in decreased detector performance which was most likely due to increased leakage current caused by areas of higher Te concentration. In this study

  7. Contrast inversion in nc-AFM on Si(111)7×7 due to short-range electrostatic interactions

    NASA Astrophysics Data System (ADS)

    Guggisberg, M.; Pfeiffer, O.; Schär, S.; Barwich, V.; Bammerlin, M.; Loppacher, C.; Bennewitz, R.; Baratoff, A.; Meyer, E.

    Contrast inversion in nc-AFM on Si(111)7×7 is observed at positive sample bias. Corner holes appear as protrusions and adatoms as holes. The application of negative bias voltages causes drastic changes in the atomic constrast. Frequency shift vs distance curves show evidence of short-range, voltage-dependent forces. These observations indicate that short-range electrostatic forces are important for atomic-scale contrast in nc-AFM.

  8. Localized electrografting of vinylic monomers on a conducting substrate by means of an integrated electrochemical AFM probe.

    PubMed

    Ghorbal, Achraf; Grisotto, Federico; Charlier, Julienne; Palacin, Serge; Goyer, Cédric; Demaille, Christophe

    2009-05-11

    Combinations of scanning electrochemical microscopy (SECM) with other scanning probe microscopy techniques, such as atomic force microscopy (AFM), show great promise for directing localized modification, which is of great interest for chemical, biochemical and technical applications. Herein, an atomic force scanning electrochemical microscope is used as a new electrochemical lithographic tool (L-AFM-SECM) to locally electrograft, with submicrometer resolution, a non-conducting organic coating on a conducting substrate. PMID:19308970

  9. AFM-based force spectroscopy measurements of mature amyloid fibrils of the peptide glucagon

    NASA Astrophysics Data System (ADS)

    Dong, Mingdong; Bruun Hovgaard, Mads; Mamdouh, Wael; Xu, Sailong; Otzen, Daniel Erik; Besenbacher, Flemming

    2008-09-01

    We report on the mechanical characterization of individual mature amyloid fibrils by atomic force microscopy (AFM) and AFM-based single-molecule force spectroscopy (SMFS). These self-assembling materials, formed from the 29-residue amphiphatic peptide hormone glucagon, were found to display a reversible elastic behaviour. Based on AFM morphology and SMFS studies, we suggest that the observed elasticity is due to a force-induced conformational transition which is reversible due to the β-helical conformation of protofibrils, allowing a high degree of extension. The elastic properties of such mature fibrils contribute to their high stability, suggesting that the internal hydrophobic interactions of amyloid fibrils are likely to be of fundamental importance in the assembly of amyloid fibrils and therefore for the understanding of the progression of their associated pathogenic disorders. In addition, such biological amyloid fibril structures with highly stable mechanical properties can potentially be used to produce nanofibres (nanowires) that may be suitable for nanotechnological applications.

  10. AFM characterization of nonwoven material functionalized by ZnO sputter coating

    SciTech Connect

    Deng Bingyao; Yan Xiong; Wei Qufu Gao Weidong

    2007-10-15

    Sputter coatings provide new approaches to the surface functionalization of textile materials. In this study, polyethylene terephthalate (PET) nonwoven material was used as a substrate for creating functional nanostructures on the fiber surfaces. A magnetron sputter coating was used to deposit functional zinc oxide (ZnO) nanostructures onto the nonwoven substrate. The evolution of the surface morphology of the fibers in the nonwoven web was examined using atomic force microscopy (AFM). The AFM observations revealed a significant difference in the morphology of the fibers before and after the sputter coating. The AFM images also indicated the effect of the sputtering conditions on the surface morphology of the fibers. The increase in the sputtering time led to the growth of the ZnO grains on the fiber surfaces. The higher pressure in the sputtering chamber could cause the formation of larger grains on the fiber surfaces. The higher power used also generated larger grains on the fiber surfaces.

  11. Microrheology using a custom-made AFM

    NASA Astrophysics Data System (ADS)

    Kosgodagan Acharige, Sebastien; Benzaquen, Michael; Steinberger, Audrey

    In the past few years, a new method was developed to measure local properties of liquids (X. Xiong et al., Phys. Rev. E 80, 2009). This method consists of gluing a micron-sized glass fiber at the tip of an AFM cantilever and probing the liquid with it. In ENS Lyon, this method was perfected (C. Devailly et al., EPL, 106 5, 2014) with the help of an interferometer developped in the same laboratory (L. Bellon et al., Opt. Commun. 207 49, 2002 and P. Paolino et al., Rev. Sci. Instrum. 84, 2013), which background noise can reach 10-14 m /√{ Hz } . This method allows us to measure a wide range of viscosities (1 mPa . s to 500 mPa . s) of transparent and opaque fluids using a small sample volume ( 5 mL). In this presentation, I will briefly describe the interferometer developped in ENS Lyon, then explain precisely the microrheology measurements and then compare the experimental results to a model developped by M. Benzaquen. This work is supported financially by the ANR project NANOFLUIDYN (Grant Number ANR-13-BS10-0009).

  12. BOREAS AFM-07 SRC Surface Meteorological Data

    NASA Technical Reports Server (NTRS)

    Osborne, Heather; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Young, Kim; Wittrock, Virginia; Shewchuck, Stan; Smith, David E. (Technical Monitor)

    2000-01-01

    The Saskatchewan Research Council (SRC) collected surface meteorological and radiation data from December 1993 until December 1996. The data set comprises Suite A (meteorological and energy balance measurements) and Suite B (diffuse solar and longwave measurements) components. Suite A measurements were taken at each of ten sites, and Suite B measurements were made at five of the Suite A sites. The data cover an approximate area of 500 km (North-South) by 1000 km (East-West) (a large portion of northern Manitoba and northern Saskatchewan). The measurement network was designed to provide researchers with a sufficient record of near-surface meteorological and radiation measurements. The data are provided in tabular ASCII files, and were collected by Aircraft Flux and Meteorology (AFM)-7. The surface meteorological and radiation data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  13. Ganas of Showing the Way: A Grounded Theory Study of Hispanic Presidents in Higher Education

    ERIC Educational Resources Information Center

    Barrios Gutierrez, Eugenio

    2010-01-01

    In this dissertation, based on classical grounded theory (Glaser & Strauss, 1967, 1971; Glaser, 1978, 1992, 1993, 1994a, 1994b, 1996, 1998, 2001, 2003, 2004), second generation Hispanic presidents and chancellors in higher education were studied to discover how they continually try to resolve second culture-coping challenges, the "conflict of…

  14. Older Adults Show Deficits in Retrieving and Decoding Associative Mediators Generated at Study

    ERIC Educational Resources Information Center

    Hertzog, Christopher; Fulton, Erika K.; Mandviwala, Lulua; Dunlosky, John

    2013-01-01

    We instructed the use of mediators to encode paired-associate items, and then measured both cued recall of targets and mediators. Older adults (n = 49) and younger adults (n = 57) studied a mixed list of concrete and abstract noun pairs under instructions to either generate a sentence or an image to form a new association between normatively…

  15. NIH-Supported Study Shows Promise for Blood Test for Alzheimer's Disease

    MedlinePlus

    ... years before symptoms develop. The test measured the levels of several tau and amyloid proteins—the hallmarks of Alzheimer’s disease—in exosomes, microscopic organelles shed by brain cells. The study by Dimitrios Kapogiannis, Ph.D., and Edward Goetzl, M.D., both of ...

  16. A Longitudinal Study Showing How Students Use a Molecule Concept when Explaining Everyday Situations

    ERIC Educational Resources Information Center

    Lofgren, Lena; Hellden, Gustav

    2009-01-01

    In this paper we present results from a 10-year (1997-2006) longitudinal study in which we, by interviews once or twice every year, followed how students, throughout the compulsory school, developed their understanding of three situations in which transformations of matter occur. We believe that students have to meet scientific ideas early in…

  17. Show Me the Money! Why Higher Ed Should Help K-12 Do Economic Impact Studies

    ERIC Educational Resources Information Center

    Alam, Nadia

    2010-01-01

    In education, economic impact studies have been largely the product of higher education institutions. Colleges and universities have recognized that they can cultivate public, political and financial support by effectively demonstrating their high return-on-investment value. For more than a decade, all types of higher education institutions have…

  18. A Case Study Showing Parameters Affecting the Quality of Education: Faculty Perspective

    ERIC Educational Resources Information Center

    Kumari, Neeraj

    2014-01-01

    The study aims to examine the faculty members' perspective (age Wise, Gender Wise and Work Experience wise) of parameters affecting the quality of education in an affiliated Undergraduate Engineering Institution in Haryana. It is a descriptive type of research. The data has been collected with the help of 'Questionnaire Based Survey'. The sample…

  19. College Transition Study Shows 4-H Helps Youth Prepare for and Succeed in College

    ERIC Educational Resources Information Center

    Ratkos, Judy; Knollenberg, Lauren

    2015-01-01

    Many young adults enter college without the knowledge and skills necessary to succeed. The purpose of the study reported here was to determine if 4-H helps develop life skills needed for the transition to college and overall college success. An online survey was sent to college-attending 4-H alumni and a comparison group, with a final sample size…

  20. Case report: gallium study showing a rare form of multiple myeloma

    SciTech Connect

    Meyers, E.; Kasner, J.R.

    1981-12-01

    A case study is presented in which a rare form of multiple myeloma with soft tissue involvememt was diagnosed by a gallium scan using 3 mCi of Ga-67 citrate. Subsequent resting cardiac blood pool images suggested pericardial rather than myocardial involvement. (JMT)

  1. "The Show"

    ERIC Educational Resources Information Center

    Gehring, John

    2004-01-01

    For the past 16 years, the blue-collar city of Huntington, West Virginia, has rolled out the red carpet to welcome young wrestlers and their families as old friends. They have come to town chasing the same dream for a spot in what many of them call "The Show". For three days, under the lights of an arena packed with 5,000 fans, the state's best…

  2. Mass and momentum interface equilibrium by molecular modeling. Simulating AFM adhesion between (120) gypsum faces in a saturated solution and consequences on gypsum cohesion

    SciTech Connect

    Jouanna, Paul Pedesseau, Laurent; Pepe, Gerard; Mainprice, David

    2008-03-15

    Properties of composite materials depend on interatomic phenomena occurring between binder crystals. Experimental information of Atomic Force Microscopy (A.F.M.) is of prime importance; however understanding is helped by molecular modeling. As underlined in Section 1, the present study is able to simulate crystal interfaces in presence of a solution within apertures less than 1 Nanometer at a full atomic scale. Section 2 presents the case study of a gypsum solution between (120) gypsum faces, with related boundary conditions and atomic interactions. Section 3 deals with the mass equilibrium of the solution within interfaces < 5 A, using the original Semi Analytical Stochastic Perturbations (SASP) approach. This information becomes in Section 4 the key for explaining the peak of adhesion obtained in A.F.M. around an aperture of 3 A and gives enlightenments on gypsum cohesion. In conclusion, this illustration shows the potentialities of full atomic modeling which could not be attained by any numerical approach at a mesoscopic scale.

  3. Device level 3D characterization using PeakForce AFM

    NASA Astrophysics Data System (ADS)

    Timoney, Padraig; Zhang, Xiaoxiao; Vaid, Alok; Hand, Sean; Osborne, Jason; Milligan, Eric; Feinstein, Adam

    2016-03-01

    Traditional metrology solutions face a range of challenges at the 1X node such as three dimensional (3D) measurement capabilities, shrinking overlay and critical dimension (CD) error budgets driven by multi-patterning and via in trench CD measurements. With advent of advanced technology nodes and 3D processing, an increasing need is emerging for in-die metrology including across-structure and structure-to-structure characterization. A myriad of work has emerged in the past few years intending to address these challenges from various aspects; in-die OCD with reduced spot size and tilt beam on traditional critical dimension scanning electron microscopy (CDSEM) for height measurements. This paper explores the latest capability offered by PeakForceTM Tapping Atomic Force Microscopy (PFT-AFM). The use of traditional harmonic tapping mode for scanning high aspect ratio, and complex "3D" wafer structures, results in limited depth probing capability as well as excessive tip wear. These limitations arise due to the large tip-sample interaction volume in such confined spaces. PeakForce Tapping eliminates these limitations through direct real time control of the tip-sample interaction contact force. The ability of PeakForce to measure, and respond directly to tip- sample interaction forces results in more detailed feature resolution, reduced tip wear, and improved depth capability. In this work, the PFT-AFM tool was applied for multiple applications, including the 14nm fin and replacement metal gate (RMG) applications outlined below. Results from DOE wafers, detailed measurement precision studies and correlation to reference metrology are presented for validation of this methodology. With the fin application, precision of 0.3nm is demonstrated by measuring 5 dies with 10 consecutive runs. Capability to resolve within-die and localized within-macro height variation is also demonstrated. Results obtained from the fin measurements support the increasing trend that measurements

  4. Ecological and toxicological responses in a multistressor scenario: Are monitoring programs showing the stressors or just showing stress? A case study in Brazil.

    PubMed

    López-Doval, Julio C; Meirelles, Sergio Tadeu; Cardoso-Silva, Sheila; Moschini-Carlos, Viviane; Pompêo, Marcelo

    2016-01-01

    The Metropolitan Region of São Paulo (MRSP) is located in the Brazilian State of São Paulo and reservoirs in this region are vital for water supply and energy production. Changes in economic, social, and demographic trends produced pollution of water bodies, decreasing water quality for human uses and affecting freshwater populations. The presence of emerging pollutants, classical priority substances, nutrient excess and the interaction with tropical-climate conditions require periodic reviews of water policies and monitoring programs in order to detect and manage these threats in a global change scenario. The objective of this work is to determine whether the monitoring program of the São Paulo's Environmental Agency, is sufficient to explain the toxicological and biological responses observed in organisms in reservoirs of the MRSP, and whether it can identify the possible agents causing these responses. For that, we used publicly available data on water quality compiled by this agency in their routine monitoring program. A general overview of these data and a chemometric approach to analyze the responses of biotic indexes and toxicological bioassays, as a function of the physical and chemical parameters monitored, were performed. Data compiled showed temporal and geographical information gaps on variables measured. Toxicological responses have been observed in the reservoirs of the MRSP, together with a high incidence of impairments of the zooplankton community. This demonstrates the presence of stressors that affect the viability of organisms and populations. The statistical approach showed that the data compiled by the environmental agency are insufficient to identify and explain the factors causing the observed ecotoxicological responses and impairments in the zooplankton community, and are therefore insufficient to identify clear cause-effect relationships. Stressors different from those analyzed could be responsible for the observed responses. PMID

  5. People see what papers show! Psychiatry's stint with print media: A pilot study from Mumbai, India.

    PubMed

    Shrivastava, Shivanshu; Kalra, Gurvinder; Ajinkya, Shaunak

    2015-01-01

    Mass media including television, internet, and newspapers influences public views about various issues by means of how it covers an issue. Newspapers have a wider reach and may affect the impact that a news story has on the reader by factors such as placement of the story within the different pages. We did a pilot study to see how two English newspapers from Mumbai, India were covering psychiatry related news stories. The study was done over a period of 3 months. We found a total of 870 psychiatry related news stories in the two newspapers over 3 months with the majority of them being covered in the main body of the newspapers. Sex-related crime stories and/or sexual dysfunction stories received the highest coverage among all the news while treatment and/or recovery related stories received very little coverage. It is crucial that the print media takes more efforts in improving reporting of psychiatry-related stories and help in de-stigmatizing psychiatry as a discipline. PMID:26816431

  6. People see what papers show! Psychiatry's stint with print media: A pilot study from Mumbai, India

    PubMed Central

    Shrivastava, Shivanshu; Kalra, Gurvinder; Ajinkya, Shaunak

    2015-01-01

    Mass media including television, internet, and newspapers influences public views about various issues by means of how it covers an issue. Newspapers have a wider reach and may affect the impact that a news story has on the reader by factors such as placement of the story within the different pages. We did a pilot study to see how two English newspapers from Mumbai, India were covering psychiatry related news stories. The study was done over a period of 3 months. We found a total of 870 psychiatry related news stories in the two newspapers over 3 months with the majority of them being covered in the main body of the newspapers. Sex-related crime stories and/or sexual dysfunction stories received the highest coverage among all the news while treatment and/or recovery related stories received very little coverage. It is crucial that the print media takes more efforts in improving reporting of psychiatry-related stories and help in de-stigmatizing psychiatry as a discipline. PMID:26816431

  7. Mechanical Characterization of Photo-crosslinkable Hydrogels with AFM

    NASA Astrophysics Data System (ADS)

    McKenna, Alyssa; Byun, Myunghwan; Hayward, Ryan; Aidala, Katherine

    2012-02-01

    Stimuli-responsive hydrogel films formed from photo-crosslinkable polymers are versatile materials for controlled drug delivery devices, three-dimensional micro-assemblies, and components in microfluidic systems. For such applications, it is important to understand both the mechanical properties and the dynamics responses of these materials. We describe the use of atomic force microscope (AFM) based indentation experiments to characterize the properties of poly(N-isopropylacrylamide) copolymer films, crosslinked by activation of pendent benzophenone units using ultraviolet light. In particular, we study how the elastic modulus of the material, determined using the Johnson, Kendall, and Roberts model, depends on UV dose, and simultaneously investigate stress relaxation in these materials in the context of viscoelastic and poroelastic relaxation models.

  8. Study of pulmonary functions of the tourist guides in two show caves in Slovenia

    NASA Astrophysics Data System (ADS)

    Debevec Gerjevic, V.; Jovanovič, P.

    2009-04-01

    Park Škocjan Caves is located in South Eastern part of Slovenia. It was established with aim of conserving and protecting exceptional geomorphological, geological and hydrological outstanding features, rare and endangered plant and animal species, paleontological and archaeological sites, ethnological and architectural characteristics and cultural landscape and for the purpose of ensuring opportunities for suitable development, by the National Assembly of the Republic of Slovenia in 1996. Due to their exceptional significance for cultural and natural heritage, the Škocjan Caves were entered on UNESCO's list of natural and cultural world heritage sites in 1986. Caves have always been special places for people all over the world. There has been a lot of research done in the field of speleology and also in medicine in relation to speleotherapy. There is still one field left partial unexplored and its main issue covers the interaction between special ecosystems as caves and human activities and living. Implementing the Slovene legislation in the field of radiation protection, we are obligated to perform special measurements in the caves and also having our guides and workers in the caves regularly examined according to established procedure. The medical exams are performed at Institution of Occupational Safety, Ljubljana in order to monitor the influence of Radon to the workers in the cave. The issue of epidemiologic research encompass several factors that are not necessarily related to the radon. Park Škocjan Caves established research monitoring projects such as caves microclimate parameters, quality of the water, every day's data from our meteorological station useful tool in public awareness related to pollution and climate change. Last year a special study was started in order to evaluate pulmonary functions of persons who work in the caves and those who work mostly in offices. Two groups of tourist guides from Škocjan Caves and Postojna Cave were included in

  9. Showing Where To Go by Maps or Pictures: An Empirical Case Study at Subway Exits

    NASA Astrophysics Data System (ADS)

    Ishikawa, Toru; Yamazaki, Tetsuo

    This study empirically examined the effectiveness of different methods of presenting route information on a mobile navigation sysyem, for accurate and effortless orientation at subway exits. Specifically, it compared participants’ spatial orientation performance with pictures and maps, in relation to the levels of their spatial ability. Participants identified the directions toward the goals after coming onto the ground faster when viewing pictures than when viewing maps. Spatial orientation with maps was more difficult than that with pictures at exits where body rotation was necessary, especially for people with low mental-rotation ability. In contrast, pictures were equally effective for people with low and high mental-rotation ability. Reasons for the effectiveness of pictures and possibilities of using other presentation formats are discussed.

  10. Effect of the molecular weight on deformation states of the polystyrene film by AFM single scanning.

    PubMed

    Sun, Yang; Yan, Yongda; Liang, Yingchun; Hu, Zhenjiang; Zhao, Xuesen; Sun, Tao; Dong, Shen

    2013-01-01

    Nanobundles patterns can be formed on the surface of most thermoplastic polymers when the atomic force microscope (AFM)-based nanomechanical machining method is employed to scratch their surfaces. Such patterns are reviewed as three-dimensional sine-wave structures. In the present study, the single-line scratch test is used firstly to study different removal states of the polystyrene (PS) polymer with different molecular weights (MWs). Effects of the scratching direction and the scratching velocity on deformation of the PS film and the state of the removed materials are also investigated. Single-wear box test is then employed to study the possibility of forming bundle structures on PS films with different MWs. The experimental results show that the state between the tip and the sample plays a key role in the nano machining process. If the contact radius between the AFM tip and the polymer surface is larger than the chain end-to-end distance, it is designated as the "cutting" state that means the area of both side ridges is less than the area of the groove and materials are removed. If the contact radius is less than the chain end-to-end distance, it is designated as the "plowing" state that means the area of both side ridges is larger than the area of the groove and no materials are removed at all. For the perfect bundles formation on the PS film, the plowing state is ideal condition for the larger MW polymers because of the chains' entanglement. PMID:23229843

  11. Patients with bipolar disorder show differential executive dysfunctions: A case-control study.

    PubMed

    Leung, Meranda M W; Lui, Simon S Y; Wang, Ya; Tsui, Chi F; Au, Angie C W; Yeung, Hera K H; Yang, Tian-Xiao; Li, Zhi; Cheng, Chi-Wai; Cheung, Eric F C; Chan, Raymond C K

    2016-04-30

    Executive deficits in euthymic bipolar I disorder were examined in a fractionated manner based on the "Supervisory Attentional System" (SAS) model, and the relationship between the degree of executive impairment and the demographic and clinical characteristics of bipolar I participants was explored. A battery of neurocognitive tests capturing specific components of executive function was administered on 30 patients with bipolar I disorder in euthymic state, and compared with 30 healthy controls who were matched by age, gender and IQ. A differential impairment in executive function was demonstrated in euthymic bipolar I participants by using a fractionated approach of the SAS. Euthymic bipolar I patients were found to have significantly poorer performance in immediate and delayed visual memory; and in the executive domains of "initiation", "sustained attention", and "attention allocation and planning". Those with a greater number of executive impairments had lower IQ and higher negative sub-scores on PANSS. These findings might provide a the basis for further studies on identifying the executive components that are associated with particular disease characteristics of bipolar disorder, and those with poorer functional outcome, so that rehabilitation can be focused on the selective domains concerned. PMID:27086222

  12. Melia azedarach plants show tolerance properties to water shortage treatment: an ecophysiological study.

    PubMed

    Dias, Maria Celeste; Azevedo, Carla; Costa, Maria; Pinto, Glória; Santos, Conceição

    2014-02-01

    Candidate species for reforestation of areas prone to drought must combine water stress (WS) tolerance and economic or medicinal interest. Melia azedarach produces high quality timber and has insecticidal and medicinal properties. However, the impact of WS on M. azedarach has not yet been studied. Two-month old M. azedarach plants were exposed to WS during 20 days. After this period, plant's growth, water potential, photosynthetic performance and antioxidant capacity were evaluated. WS did not affect plants' growth, but induced stomatal closure, reduced net CO₂ assimilation rate (A) and the intercellular CO₂ availability in mesophyll (C(i)). WS also reduced the photosynthetic efficiency of PSII but not the pigment levels. WS up-regulated the antioxidant enzymes and stimulated the production of antioxidant metabolites, preventing lipid peroxidation. Therefore, despite some repression of photosynthetic parameters by WS, they did not compromise plant growth, and plants increased their antioxidant capacity. Our data demonstrate that M. azedarach juvenile plants have the potential to acclimate to water shortage conditions, opening new perspectives to the use of this species in reforestation/afforestation programs of drought prone areas. PMID:24440555

  13. Whole-ecosystem study shows rapid fish-mercury response to changes in mercury deposition

    USGS Publications Warehouse

    Harris, R.C.; Rudd, J.W.M.; Amyot, M.; Babiarz, C.L.; Beaty, K.G.; Blanchfield, P.J.; Bodaly, R.A.; Branfireun, B.A.; Gilmour, C.C.; Graydon, J.A.; Heyes, A.; Hintelmann, H.; Hurley, J.P.; Kelly, C.A.; Krabbenhoft, D.P.; Lindberg, S.E.; Mason, R.P.; Paterson, M.J.; Podemski, C.L.; Robinson, A.; Sandilands, K.A.; Southworthn, G.R.; St. Louis, V.L.; Tate, M.T.

    2007-01-01

    Methylmercury contamination of fisheries from centuries of industrial atmospheric emissions negatively impacts humans and wild-life worldwide. The response of fish methylmercury concentrations to changes in mercury deposition has been difficult to establish because sediments/soils contain large pools of historical contamination, and many factors in addition to deposition affect fish mercury. To test directly the response of fish contamination to changing mercury deposition, we conducted a whole-ecosystem experiment, increasing the mercury load to a lake and its watershed by the addition of enriched stable mercury isotopes. The isotopes allowed us to distinguish between experimentally applied mercury and mercury already present in the ecosystem and to examine bioaccumulation of mercury deposited to different parts of the watershed. Fish methylmercury concentrations responded rapidly to changes in mercury deposition over the first 3 years of study. Essentially all of the increase in fish methylmercury concentrations came from mercury deposited directly to the lake surface. In contrast, <1% of the mercury isotope deposited to the watershed was exported to the lake. Steady state was not reached within 3 years. Lake mercury isotope concentrations were still rising in lake biota, and watershed mercury isotope exports to the lake were increasing slowly. Therefore, we predict that mercury emissions reductions will yield rapid (years) reductions in fish methylmercury concentrations and will yield concomitant reductions in risk. However, a full response will be delayed by the gradual export of mercury stored in watersheds. The rate of response will vary among lakes depending on the relative surface areas of water and watershed. ?? 2007 by The National Academy of Sciences of the USA.

  14. Dynamics of the nanoneedle probe in trolling mode AFM.

    PubMed

    Abdi, Ahmad; Pishkenari, Hossein Nejat; Keramati, Ramtin; Minary-Jolandan, Majid

    2015-05-22

    Atomic force microscopy (AFM), as an indispensable tool for nanoscale characterization, presents major drawbacks for operation in a liquid environment arising from the large hydrodynamic drag on the vibrating cantilever. The newly introduced 'Trolling mode' (TR-mode) AFM resolves this complication by using a specialized nanoneedle cantilever that keeps the cantilever outside of the liquid. Herein, a mechanical model with a lumped mass was developed to capture the dynamics of such a cantilever with a nanoneedle tip. This new developed model was applied to investigate the effects of the needle-liquid interface on the performance of the AFM, including the imaging capability in liquid. PMID:25915451

  15. Study Shows Administrative Shortage.

    ERIC Educational Resources Information Center

    Sullivan, John R., Jr.

    1989-01-01

    Summarizes "Administrative Shortage in New England: The Evidence, the Causes, the Recommendations." High pressure, long hours, low salaries, and high housing costs are among the reasons cited for the shortage. Recommendations are centered on role identity, staff support, training, and recruitment. (SI)

  16. An AFM-based pit-measuring method for indirect measurements of cell-surface membrane vesicles

    SciTech Connect

    Zhang, Xiaojun; Chen, Yuan; Chen, Yong

    2014-03-28

    Highlights: • Air drying induced the transformation of cell-surface membrane vesicles into pits. • An AFM-based pit-measuring method was developed to measure cell-surface vesicles. • Our method detected at least two populations of cell-surface membrane vesicles. - Abstract: Circulating membrane vesicles, which are shed from many cell types, have multiple functions and have been correlated with many diseases. Although circulating membrane vesicles have been extensively characterized, the status of cell-surface membrane vesicles prior to their release is less understood due to the lack of effective measurement methods. Recently, as a powerful, micro- or nano-scale imaging tool, atomic force microscopy (AFM) has been applied in measuring circulating membrane vesicles. However, it seems very difficult for AFM to directly image/identify and measure cell-bound membrane vesicles due to the similarity of surface morphology between membrane vesicles and cell surfaces. Therefore, until now no AFM studies on cell-surface membrane vesicles have been reported. In this study, we found that air drying can induce the transformation of most cell-surface membrane vesicles into pits that are more readily detectable by AFM. Based on this, we developed an AFM-based pit-measuring method and, for the first time, used AFM to indirectly measure cell-surface membrane vesicles on cultured endothelial cells. Using this approach, we observed and quantitatively measured at least two populations of cell-surface membrane vesicles, a nanoscale population (<500 nm in diameter peaking at ∼250 nm) and a microscale population (from 500 nm to ∼2 μm peaking at ∼0.8 μm), whereas confocal microscopy only detected the microscale population. The AFM-based pit-measuring method is potentially useful for studying cell-surface membrane vesicles and for investigating the mechanisms of membrane vesicle formation/release.

  17. The study on the atomic force microscopy base nanoscale electrical discharge machining.

    PubMed

    Huang, Jen-Ching; Chen, Chung-Ming

    2012-01-01

    This study proposes an innovative atomic force microscopy (AFM) based nanoscale electrical discharge machining (AFM-based nanoEDM) system which combines an AFM with a self-produced metallic probe and a high-voltage generator to create an atmospheric environment AFM-based nanoEDM system and a deionized water (DI water) environment AFM-based nanoEDM system. This study combines wire-cut processing and electrochemical tip sharpening techniques on a 40-µm thick stainless steel sheet to produce a high conductive AFM probes, the production can withstand high voltage and large current. The tip radius of these probes is approximately 40 nm. A probe test was executed on the AFM using probes to obtain nanoscales morphology of Si wafer surface. The silicon wafer was as a specimen to carry out AFM-base nanoEDM process in atmospheric and DI water environments by AFM-based nanoEDM system. After experiments, the results show that the atmospheric and DI water environment AFM-based nanoEDM systems operate smoothly. From experimental results, it can be found that the electric discharge depth of the silicon wafer at atmospheric environments is a mere 14.54 nm. In a DI water environment, the depth of electric discharge of the silicon wafer can reach 25.4 nm. This indicates that the EDM ability of DI water environment AFM-based nanoEDM system is higher than that of atmospheric environment AFM-based nanoEDM system. After multiple nanoEDM process, the tips become blunt. After applying electrochemical tip sharpening techniques, the tip radius can return to approximately 40 nm. Therefore, AFM probes produced in this study can be reused. PMID:21898457

  18. Structure and Dynamics of Four-way DNA Junctions Dynamics Revealed by Single-Molecule AFM

    NASA Astrophysics Data System (ADS)

    Lyubchenko, Yuri

    2004-03-01

    For-way DNA junctions (Holliday junctions) are critical intermediates for homologous, site-specific recombination, DNA repair and replication. A wealth of structural information is available for immobile four-way junctions. However, these data cannot give the answer on the mechanism of branch migration, the major property of the Holliday junction. Two models for the mechanism of branch migration were suggested. According to the early model of Alberts-Meselson-Sigal, exchanging DNA strands around the junction remain parallel during branch migration. Kinetic studies of branch migration suggest an alternative model in which the junction adopts an extended conformation. We tested these models using a Holliday junction undergoing branch migration. Note that it was the first time when the dynamics of the four-way DNA junction capable of branch migration had been analyzed. We applied time-lapse atomic force microscopy (single molecule dynamics AFM) to image directly loosely bound DNA at liquid-surface interface. These experiments show that mobile Holliday junctions adopt an unfolded conformation during branch migration. This conformation of the junction remains unchanged until strand separation. The data obtained support the model for branch migration having the extended conformation of the Holliday junction. The analysis of the Holliday junctions dynamics at conditions limiting branch migration revealed a broad movement of the arms suggesting that the range of mobility of these junctions is much wider than detected before. Further applications of the time-lapse AFM approach in attempt to resolve the subpopulations of the junctions conformers and the prospects for analyses of dynamics of complex biological systems will be discussed.

  19. Evaluation of shooting distance by AFM and FTIR/ATR analysis of GSR.

    PubMed

    Mou, Yongyan; Lakadwar, Jyoti; Rabalais, J Wayne

    2008-11-01

    The techniques of atomic force microscopy (AFM) and Fourier transform infrared attenuated total reflectance (FTIR/ATR) spectroscopy are applied to the analysis of gun-shot residue (GSR) to test their ability to determine shooting distance and discrimination of the powder manufacturers. AFM is a nondestructive technique that is capable of characterizing the shapes and size distributions of GSR particles with resolution down to less than a nanometer. This may be useful for estimation of the shooting distance. Our AFM images of GSR show that the size distribution of the particles is inversely proportional to the shooting distance. Discrimination of powder manufacturers is tested by FTIR/ATR investigation of GSR. Identifying the specific compounds in the GSR by FTIR/ATR was not possible because it is a mixture of the debris of several compounds that compose the residue. However, it is shown that the GSR from different cartridges has characteristic FTIR/ATR bands that may be useful in differentiating the powder manufacturers. It appears promising that the development of AFM and FTIR/ATR databases for various powder manufacturers may be useful in analysis and identification of GSR. PMID:18761553

  20. Fracture Mechanics Testing of Titanium 6AL-4V in AF-M315E

    NASA Technical Reports Server (NTRS)

    Sampson, J. W.; Martinez, J.; McLean, C.

    2016-01-01

    The Green Propellant Infusion Mission (GPIM) will demonstrate the performance of AF-M315E monopropellant on orbit. Flight certification requires a safe-life analysis of the titanium alloy fuel tank to ensure inherent processing flaws will not cause failure during the design life of the tank. Material property inputs for this analysis require testing to determine the stress intensity factor for environment-assisted cracking (KEAC) of Ti 6Al-4V in combination with the AF-M315E monopropellant. Testing of single-edge notched, or SE(B), specimens representing the bulk tank membrane and weld material were performed in accordance with ASTM E1681. Specimens with fatigue pre-cracks were loaded into test fixtures so that the crack tips were exposed to AF-M315E at 50 C for a duration of 1,000 hours. Specimens that did not fail during exposure were opened to inspect the crack surfaces for evidence of crack growth. The threshold stress intensity value, KEAC, is the highest applied stress intensity that produced neither a failure of the specimen during the exposure nor showed evidence of crack growth. The threshold stress intensity factor for environment-assisted cracking of the Ti 6Al-4V forged tank material was found to be at least 22 ksivin and at least 31 ksivin for the weld material when exposed to AF-M315E monopropellant.

  1. Charge Measurement of Atoms and Atomic Resolution of Molecules with Noncontact AFM

    NASA Astrophysics Data System (ADS)

    Gross, Leo

    2010-03-01

    Individual gold and silver adatoms [1] and pentacene molecules [2] on ultrathin NaCl films on Cu(111) were investigated using a qPlus tuning fork atomic force microscope (AFM) operated at 5 Kelvin with oscillation amplitudes in the sub-ångstrom regime. Charging a gold adatom by one electron charge increased the force on the AFM tip by a few piconewtons. Employing Kelvin probe force microscopy (KPFM) we also measured the local contact potential difference (LCPD). We observed that the LCPD is shifted depending on the sign of the charge and allows the discrimination of positively charged, neutral, and negatively charged atoms. To image pentacene molecules we modified AFM tips by means of vertical manipulation techniques, i.e. deliberately picking up known atoms and molecules, such as Au, Ag, Cl, CO, and pentacene. Using a CO terminated tip we resolved all individual atoms and bonds within a pentacene molecule. Three dimensional force maps showing the site specific distance dependence above the molecule were extracted. We compared our experimental results with density functional theory (DFT) calculations to gain insight on the physical origin of AFM contrast formation. We found that atomic resolution is only obtained due to repulsive force contributions originating from the Pauli exclusion principle. [4pt] [1] L. Gross, F. Mohn, P. Liljeroth, J. Repp, F. J. Giessibl, G. Meyer, Science 324, 1428 (2009). [0pt] [2] L. Gross, F. Mohn, N. Moll, P. Liljeroth, G. Meyer, Science 325, 1110 (2009).

  2. Effective AFM cantilever tip size: methods for in-situ determination

    NASA Astrophysics Data System (ADS)

    Maragliano, Carlo; Glia, Ayoub; Stefancich, Marco; Chiesa, Matteo

    2015-01-01

    In atomic force microscopy (AFM) investigations, knowledge of the cantilever tip radius R is essential for the quantitative interpretation of experimental observables. Here we propose two techniques to rapidly quantify in-situ the effective tip radius of AFM probes. The first method is based on the strong dependency of the minimum value of the free amplitude required to observe a sharp transition from attractive to repulsive force regimes on the AFM probe radius. Specifically, the sharper the tip, the smaller the value of free amplitude required to observe such a transition. The key trait of the second method is to treat the tip-sample system as a capacitor. Provided with an analytical model that takes into account the geometry of the tip-sample’s capacitance, one can quantify the effective size of the tip apex fitting the experimental capacitance versus distance curve. Flowchart-like algorithms, easily implementable on any hardware, are provided for both methods, giving a guideline to AFM practitioners. The methods’ robustness is assessed over a wide range of probes of different tip radii R (i.e. 4 < R < 50 nm) and geometries. Results obtained from both methods are compared with the nominal values given by manufacturers and verified by acquiring scanning electron microscopy images. Our observations show that while both methods are reliable and robust over the range of tip sizes tested, the critical amplitude method is more accurate for relatively sharp tips (4 nm < R < 10 nm).

  3. AFM Imaging Reveals Topographic Diversity of Wild Type and Z Variant Polymers of Human α1-Proteinase Inhibitor

    DOE PAGESBeta

    Gaczynska, Maria; Karpowicz, Przemyslaw; Stuart, Christine E.; Norton, Malgorzata G.; Teckman, Jeffrey H.; Marszal, Ewa; Osmulski, Pawel A.

    2016-03-23

    α1-Proteinase inhibitor (antitrypsin) is a canonical example of the serpin family member that binds and inhibits serine proteases. The natural metastability of serpins is crucial to carry out structural rearrangements necessary for biological activity. However, the enhanced metastability of the mutant Z variant of antitrypsin, in addition to folding defect, may substantially contribute to its polymerization, a process leading to incurable serpinopathy. The metastability also impedes structural studies on the polymers. There are no crystal structures of Z monomer or any kind of polymers larger than engineered wild type (WT) trimer. Our understanding of polymerization mechanisms is based on biochemicalmore » data using in vitro generated WT oligomers and molecular simulations. Here we applied atomic force microscopy (AFM) to compare topography of monomers, in vitro formed WT oligomers, and Z type polymers isolated from transgenic mouse liver. We found the AFM images of monomers closely resembled an antitrypsin outer shell modeled after the crystal structure. We confirmed that the Z variant demonstrated higher spontaneous propensity to dimerize than WT monomers. We also detected an unexpectedly broad range of different types of polymers with periodicity and topography depending on the applied method of polymerization. Short linear oligomers of unit arrangement similar to the Z polymers were especially abundant in heat-treated WT preparations. Long linear polymers were a prominent and unique component of liver extracts. However, the liver preparations contained also multiple types of oligomers of topographies undistinguishable from those found inWT samples polymerized with heat, low pH or guanidine hydrochloride treatments. In conclusion, we established that AFM is an excellent technique to assess morphological diversity of antitrypsin polymers, which is important for etiology of serpinopathies. These data also support previous, but controversial models of in vivo

  4. AFM Imaging Reveals Topographic Diversity of Wild Type and Z Variant Polymers of Human α1-Proteinase Inhibitor

    PubMed Central

    Gaczynska, Maria; Karpowicz, Przemyslaw; Stuart, Christine E.; Norton, Malgorzata G.; Teckman, Jeffrey H.; Marszal, Ewa; Osmulski, Pawel A.

    2016-01-01

    α1-Proteinase inhibitor (antitrypsin) is a canonical example of the serpin family member that binds and inhibits serine proteases. The natural metastability of serpins is crucial to carry out structural rearrangements necessary for biological activity. However, the enhanced metastability of the mutant Z variant of antitrypsin, in addition to folding defect, may substantially contribute to its polymerization, a process leading to incurable serpinopathy. The metastability also impedes structural studies on the polymers. There are no crystal structures of Z monomer or any kind of polymers larger than engineered wild type (WT) trimer. Our understanding of polymerization mechanisms is based on biochemical data using in vitro generated WT oligomers and molecular simulations. Here we applied atomic force microscopy (AFM) to compare topography of monomers, in vitro formed WT oligomers, and Z type polymers isolated from transgenic mouse liver. We found the AFM images of monomers closely resembled an antitrypsin outer shell modeled after the crystal structure. We confirmed that the Z variant demonstrated higher spontaneous propensity to dimerize than WT monomers. We also detected an unexpectedly broad range of different types of polymers with periodicity and topography depending on the applied method of polymerization. Short linear oligomers of unit arrangement similar to the Z polymers were especially abundant in heat-treated WT preparations. Long linear polymers were a prominent and unique component of liver extracts. However, the liver preparations contained also multiple types of oligomers of topographies undistinguishable from those found in WT samples polymerized with heat, low pH or guanidine hydrochloride treatments. In conclusion, we established that AFM is an excellent technique to assess morphological diversity of antitrypsin polymers, which is important for etiology of serpinopathies. These data also support previous, but controversial models of in vivo

  5. Electrical characterization of FIB processed metal layers for reliable conductive-AFM on ZnO microstructures

    NASA Astrophysics Data System (ADS)

    Pea, M.; Maiolo, L.; Giovine, E.; Rinaldi, A.; Araneo, R.; Notargiacomo, A.

    2016-05-01

    We report on the conductive-atomic force microscopy (C-AFM) study of metallic layers in order to find the most suitable configuration for electrical characterization of individual ZnO micro-pillars fabricated by focused ion beam (FIB). The electrical resistance between the probe tip and both as deposited and FIB processed metal layers (namely, Cr, Ti, Au and Al) has been investigated. Both chromium and titanium evidenced a non homogenous and non ohmic behaviour, non negligible scanning probe induced anodic oxidation associated to electrical measurements, and after FIB milling they exhibited significantly higher tip-sample resistance. Aluminium had generally a more apparent non conductive behaviour. Conversely, gold films showed very good tip-sample conduction properties being less sensitive to FIB processing than the other investigated metals. We found that a reliable C-AFM electrical characterization of ZnO microstructures obtained by FIB machining is feasible by using a combination of metal films as top contact layer. An Au/Ti bilayer on top of ZnO was capable to sustain the FIB fabrication process and to form a suitable ohmic contact to the semiconductor, allowing for reliable C-AFM measurement. To validate the consistency of this approach, we measured the resistance of ZnO micropillars finding a linear dependence on the pillar height, as expected for an ohmic conductor, and evaluated the resistivity of the material. This procedure has the potential to be downscaled to nanometer size structures by a proper choice of metal films type and thickness.

  6. AFM tip characterization by using FFT filtered images of step structures.

    PubMed

    Yan, Yongda; Xue, Bo; Hu, Zhenjiang; Zhao, Xuesen

    2016-01-01

    The measurement resolution of an atomic force microscope (AFM) is largely dependent on the radius of the tip. Meanwhile, when using AFM to study nanoscale surface properties, the value of the tip radius is needed in calculations. As such, estimation of the tip radius is important for analyzing results taken using an AFM. In this study, a geometrical model created by scanning a step structure with an AFM tip was developed. The tip was assumed to have a hemispherical cone shape. Profiles simulated by tips with different scanning radii were calculated by fast Fourier transform (FFT). By analyzing the influence of tip radius variation on the spectra of simulated profiles, it was found that low-frequency harmonics were more susceptible, and that the relationship between the tip radius and the low-frequency harmonic amplitude of the step structure varied monotonically. Based on this regularity, we developed a new method to characterize the radius of the hemispherical tip. The tip radii estimated with this approach were comparable to the results obtained using scanning electron microscope imaging and blind reconstruction methods. PMID:26517548

  7. CDSEM AFM hybrid metrology for the characterization of gate-all-around silicon nano wires

    NASA Astrophysics Data System (ADS)

    Levi, Shimon; Schwarzband, Ishai; Weinberg, Yakov; Cornell, Roger; Adan, Ofer; Cohen, Guy M.; Gignac, Lynne; Bangsaruntip, Sarunya; Hand, Sean; Osborne, Jason; Feinstein, Adam

    2014-04-01

    In an ongoing study of the physical characterization of Gate-All-Around Silicon Nano Wires (GAASiNW), we found that the thin, suspended wires are prone to buckling as a function of their length and diameter. This buckling takes place between the fixed source and drain regions of the suspended wire, and can affect the device performance and therefore must be studied and controlled. For cylindrical SiNW, theory predicts that buckling has no directional preference. However, 3D CDSEM measurement results indicated that cylindrical wires prefer to buckle towards the wafer. To validate these results and to determine if the electron beam or charging is affecting our observations, we used 3D-AFM measurements to evaluate the buckling. To assure that the CDSEM and 3D-AFM measure the exact same locations, we developed a design based recipe generation approach to match the 3D-AFM and CDSEM coordinate systems. Measuring the exact same sites enables us to compare results and use 3D-AFM data to optimize CDSEM models. In this paper we will present a hybrid metrology approach to the characterization of GAASiNW for sub-nanometer variations, validating experimental results, and proposing methods to improve metrology capabilities.

  8. The Conductance of Nanotubes Deformed by the AFM Tip

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexei; Maiti, Amitesh; Anantram, M. P.

    2003-01-01

    The conductance drop under AFM-tip deformation can be explained by stretching of the tube length. NT sensors can be built utilizing uniform stretching. Single sp3 bond cross section cannot block electrons, because another conducting path may exist. AFM tip which forms sp3 bonds with the tube will decrease conductance. In the "table experiment" a conductance drop of 2 orders of magnitude happened only after some bonds were broken.

  9. In-Situ AFM Investigation of Solid Electrolyte Interphase Formation and Failure Mechanisms in Lithium -Ion Batteries

    NASA Astrophysics Data System (ADS)

    Mueller, Thomas; Kumar, Ravi; Tokranov, Anton; Huang, Teddy; Li, Chunzeng; Xiao, Xingcheng; Sheldon, Brian

    The formation and evolution of the solid electrolyte interphase (SEI) is critical for lifetime and performance of lithium-ion batteries (LIBs), particularly for LIBs with high energy density materials such as silicon. Si has almost ten time theoretical specific capacity vs graphite, but its volume changes during cycling (up to 400%) put enormous strains on the SEI layer, resulting in continuous capacity loss. In this study we report in situ atomic force microscopy (AFM) investigation on the formation and failure mechanisms of SEI layer using patterned Si island structures. Due to the shear lag effect, patterned Si islands go through lateral expansion and Contraction, putting the SEI layer in tension and compression during lithiation and delithiation, respectively. Experimentally, we performed the studies in a glovebox with <1 ppm O2 and H2O, using PeakForce Tapping to image the extremely fragile SEI layer. We show for the first time the in operando cracking of SEI layer. To understand the mechanics of the SEI layer, the critical strain for cracking was derived from a progression of the AFM images. Our studies provide new insight into SEI formation, evolution and its mechanical response, and offer guidance to tailor passivation layers for optimal performance.

  10. Combined strategies for optimal detection of the contact point in AFM force-indentation curves obtained on thin samples and adherent cells.

    PubMed

    Gavara, Núria

    2016-01-01

    Atomic Force Microscopy (AFM) is a widely used tool to study cell mechanics. Current AFM setups perform high-throughput probing of living cells, generating large amounts of force-indentations curves that are subsequently analysed using a contact-mechanics model. Here we present several algorithms to detect the contact point in force-indentation curves, a crucial step to achieve fully-automated analysis of AFM-generated data. We quantify and rank the performance of our algorithms by analysing a thousand force-indentation curves obtained on thin soft homogeneous hydrogels, which mimic the stiffness and topographical profile of adherent cells. We take advantage of the fact that all the proposed algorithms are based on sequential search strategies, and show that a combination of them yields the most accurate and unbiased results. Finally, we also observe improved performance when force-indentation curves obtained on adherent cells are analysed using our combined strategy, as compared to the classical algorithm used in the majority of previous cell mechanics studies. PMID:26891762

  11. Combined strategies for optimal detection of the contact point in AFM force-indentation curves obtained on thin samples and adherent cells

    PubMed Central

    Gavara, Núria

    2016-01-01

    Atomic Force Microscopy (AFM) is a widely used tool to study cell mechanics. Current AFM setups perform high-throughput probing of living cells, generating large amounts of force-indentations curves that are subsequently analysed using a contact-mechanics model. Here we present several algorithms to detect the contact point in force-indentation curves, a crucial step to achieve fully-automated analysis of AFM-generated data. We quantify and rank the performance of our algorithms by analysing a thousand force-indentation curves obtained on thin soft homogeneous hydrogels, which mimic the stiffness and topographical profile of adherent cells. We take advantage of the fact that all the proposed algorithms are based on sequential search strategies, and show that a combination of them yields the most accurate and unbiased results. Finally, we also observe improved performance when force-indentation curves obtained on adherent cells are analysed using our combined strategy, as compared to the classical algorithm used in the majority of previous cell mechanics studies. PMID:26891762

  12. Spectral and AFM characterization of trimethylammoniophenylporphyrin and concanavalin A associate in solution and monolithic SiO 2 gels obtained by the sol-gel method

    NASA Astrophysics Data System (ADS)

    Polska, Katarzyna; Radzki, Stanisław

    2008-06-01

    The associate between water-soluble cationic tetrakis[4-(trimethylammonio)phenyl] porphyrin (H2TTMePP) and concanavalin A (Con A) has been studied in the tris-buffer solution by absorption and emission electron spectroscopy. The porphyrin and porphyrin concanavalin associate has been incorporated into the monolithic pure silica gels obtained by polycondensation of tetraethoxysilane. The optically transparent dried gels were studied using absorption and fluorescence spectroscopic techniques and also by the tapping mode of atomic force microscopy (AFM). Complex formation between porphyrin and concanavalin takes place in both solution and gel. In these media porphyrin and its lectin associate exhibit luminescence emission in the vis-ir range when excited with visible light. Upon binding to concanavalin A the increase in porphyrin fluorescence intensity and the red-shift in the absorption and emission maxima have been observed. AFM visualisation of porphyrin and the porphyrin-concanavalin conjugate shows significant differences between nanostructures of the pure porphyrin and complex doped gels. It has been found that the ''smooth'' surfaces of silica gels prepared by the sol-gel technique are an excellent medium for the AFM visualisation of biomolecules.

  13. Combined strategies for optimal detection of the contact point in AFM force-indentation curves obtained on thin samples and adherent cells

    NASA Astrophysics Data System (ADS)

    Gavara, Núria

    2016-02-01

    Atomic Force Microscopy (AFM) is a widely used tool to study cell mechanics. Current AFM setups perform high-throughput probing of living cells, generating large amounts of force-indentations curves that are subsequently analysed using a contact-mechanics model. Here we present several algorithms to detect the contact point in force-indentation curves, a crucial step to achieve fully-automated analysis of AFM-generated data. We quantify and rank the performance of our algorithms by analysing a thousand force-indentation curves obtained on thin soft homogeneous hydrogels, which mimic the stiffness and topographical profile of adherent cells. We take advantage of the fact that all the proposed algorithms are based on sequential search strategies, and show that a combination of them yields the most accurate and unbiased results. Finally, we also observe improved performance when force-indentation curves obtained on adherent cells are analysed using our combined strategy, as compared to the classical algorithm used in the majority of previous cell mechanics studies.

  14. Implications of the contact radius to line step (CRLS) ratio in AFM for nanotribology measurements.

    PubMed

    Helt, James M; Batteas, James D

    2006-07-01

    Investigating the mechanisms of defect generation and growth at surfaces on the nanometer scale typically requires high-resolution tools such as the atomic force microscope (AFM). To accurately assess the kinetics and activation parameters of defect production over a wide range of loads (F(z)), the AFM data should be properly conditioned. Generally, AFM wear trials are performed over an area defined by the length of the slow (L(sscan)) and fast scan axes. The ratio of L(sscan) to image resolution (res, lines per image) becomes an important experimental parameter in AFM wear trials because it defines the magnitude of the line step (LS = L(sscan)/res), the distance the AFM tip steps along the slow scan axis. Comparing the contact radius (a) to the line step (LS) indicates that the overlap of successive scans will result unless the contact radius-line step ratio (CRLS) is < or =(1)/(2). If this relationship is not considered, then the scan history (e.g., contact frequency) associated with a single scan is not equivalent at different loads owing to the scaling of contact radius with load (a proportional variant F(z)(1/3)). Here, we present a model in conjunction with empirical wear tests on muscovite mica to evaluate the effects of scan overlap on surface wear. Using the Hertz contact mechanics definition of a, the CRLS model shows that scan overlap pervades AFM wear trials even under low loads. Such findings indicate that simply counting the number of scans (N(scans)) in an experiment underestimates the full history conveyed to the surface by the tip and translates into an error in the actual extent to which a region on the surface is contacted. Utilizing the CRLS method described here provides an approach to account for image scan history accurately and to predict the extent of surface wear. This general model also has implications for any AFM measurement where one wishes to correlate scan-dependent history to image properties as well as feature resolution in scanned

  15. Relationship between model bacterial peptidoglycan network structures and AFM force-distance curves

    NASA Astrophysics Data System (ADS)

    Brown, Aidan; Wickham, Robert; Touhami, Ahmed; Dutcher, John

    2010-03-01

    Recent atomic force microscopy (AFM) measurements have involved pulling on Gram-negative bacterial sacculi with the AFM tip as a means of distinguishing between different proposed structures of the peptidoglycan network. The goal of the present study is to provide the theoretical connection between a given network structure and its response to the pulling force. We model the glycan strands as hinged rods, and the peptide cross-links as wormlike chains. Using Monte Carlo simulation to equilibrate the three-dimensional network, subject to a fixed AFM tip-to-substrate distance, we can compute the force exerted by the network on the AFM tip. The effects of adhesion of the sacculi to the substrate and enzymatic action on the network are included. We have modeled both the layered and the scaffold model for the peptidoglycan network structure. We have compared our theoretical force-distance curves for each network structure with experimental curves to determine which structure provides the best agreement with experiment.

  16. Characterization of Local Mechanical Properties of Polymer Thin Films and Polymer Nanocomposites via AFM indentations

    NASA Astrophysics Data System (ADS)

    Cheng, Xu

    AFM indentation has become a tool with great potential in the characterization of nano-mechanical properties of materials. Thanks to the nanometer sized probes, AFM indentation is capable of capturing the changes of multiple properties within the range of tens of nanometers, such task would otherwise be difficult by using other experiment instruments. Despite the great potentials of AFM indentation, it operates based on a simple mechanism: driving the delicate AFM probe to indent the sample surface, and recording the force-displacement response. With limited information provided by AFM indentation, efforts are still required for any practice to successfully extract the desired nano-scale properties from specific materials. In this thesis, we focus on the mechanical properties of interphase between polymer and inorganic materials. It is known that in nanocomposites, a region of polymer exist around nanoparticles with altered molecular structures and improved properties, which is named as interphase polymer. The system with polymer thin films and inorganic material substrates is widely used to simulate the interphase effect in nanocomposites. In this thesis, we developed an efficient and reliable method to process film/substrate samples and characterize the changes of local mechanical properties inside the interphase region with ultra-high resolution AFM mechanical mapping technique. Applying this newly developed method, the interphase of several film/substrate pairs were examined and compared. The local mechanical properties on the other side of the polymer thin film, the free surface side, was also investigated using AFM indentation equipped with surface modified probes. In order to extract the full spectrum of local elastic modulus inside the surface region in the range of only tens of nanometers, the different contact mechanics models were studied and compared, and a Finite Element model was also established. Though the film/substrate system has been wide used as

  17. Characterization of microscale wear in a ploysilicon-based MEMS device using AFM and PEEM-NEXAFS spectromicroscopy.

    SciTech Connect

    Grierson, D. S.; Konicek, A. R.; Wabiszewski, G. E.; Sumant, A. V.; de Boer, M. P.; Corwin, A. D.; Carpick, R. W.

    2009-12-01

    Mechanisms of microscale wear in silicon-based microelectromechanical systems (MEMS) are elucidated by studying a polysilicon nanotractor, a device specifically designed to conduct friction and wear tests under controlled conditions. Photoelectron emission microscopy (PEEM) was combined with near-edge X-ray absorption fine structure (NEXAFS) spectroscopy and atomic force microscopy (AFM) to quantitatively probe chemical changes and structural modification, respectively, in the wear track of the nanotractor. The ability of PEEM-NEXAFS to spatially map chemical variations in the near-surface region of samples at high lateral spatial resolution is unparalleled and therefore ideally suited for this study. The results show that it is possible to detect microscopic chemical changes using PEEM-NEXAFS, specifically, oxidation at the sliding interface of a MEMS device. We observe that wear induces oxidation of the polysilicon at the immediate contact interface, and the spectra are consistent with those from amorphous SiO{sub 2}. The oxidation is correlated with gouging and debris build-up in the wear track, as measured by AFM and scanning electron microscopy (SEM).

  18. BOREAS AFM-03-NCAR Electra 1994 Aircraft Sounding Data

    NASA Technical Reports Server (NTRS)

    Lenschow, Donald H.; Oncley, Steven P.; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-3 team used the National Center for Atmospheric Research's (NCAR) Electra aircraft to make sounding measurements to study the planetary boundary layer using in situ and remote-sensing measurements. Measurements were made of wind speed and direction, air pressure and temperature, potential temperature, dewpoint, mixing ratio of H, O, CO, concentration, and ozone concentration. Twenty-five research missions were flown over the Northern Study Area (NSA), Southern Study Area (SSA), and the transect during BOREAS Intensive Field Campaigns (IFCs) 1, 2, and 3 during 1994. All missions had from four to ten soundings through the top of the planetary boundary layer. This sounding data set contains all of the in situ vertical profiles through the boundary layer top that were made (with the exception of 'porpoise' maneuvers). Data were recorded in one-second time intervals. These data are stored in tabular ASCII files. The NCAR Electra 1994 aircraft sounding data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  19. BOREAS AFM-12 1-km AVHRR Seasonal Land Cover Classification

    NASA Technical Reports Server (NTRS)

    Steyaert, Lou; Hall, Forrest G.; Newcomer, Jeffrey A. (Editor); Knapp, David E. (Editor); Loveland, Thomas R.; Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-12 team's efforts focused on regional scale Surface Vegetation and Atmosphere (SVAT) modeling to improve parameterization of the heterogeneous BOREAS landscape for use in larger scale Global Circulation Models (GCMs). This regional land cover data set was developed as part of a multitemporal one-kilometer Advanced Very High Resolution Radiometer (AVHRR) land cover analysis approach that was used as the basis for regional land cover mapping, fire disturbance-regeneration, and multiresolution land cover scaling studies in the boreal forest ecosystem of central Canada. This land cover classification was derived by using regional field observations from ground and low-level aircraft transits to analyze spectral-temporal clusters that were derived from an unsupervised cluster analysis of monthly Normalized Difference Vegetation Index (NDVI) image composites (April-September 1992). This regional data set was developed for use by BOREAS investigators, especially those involved in simulation modeling, remote sensing algorithm development, and aircraft flux studies. Based on regional field data verification, this multitemporal one-kilometer AVHRR land cover mapping approach was effective in characterizing the biome-level land cover structure, embedded spatially heterogeneous landscape patterns, and other types of key land cover information of interest to BOREAS modelers.The land cover mosaics in this classification include: (1) wet conifer mosaic (low, medium, and high tree stand density), (2) mixed coniferous-deciduous forest (80% coniferous, codominant, and 80% deciduous), (3) recent visible bum, vegetation regeneration, or rock outcrops-bare ground-sparsely vegetated slow regeneration bum (four classes), (4) open water and grassland marshes, and (5) general agricultural land use/ grasslands (three classes). This land cover mapping approach did not detect small subpixel-scale landscape

  20. New Study Shows Flu Vaccine Reduced Children's Risk of Intensive Care Unit Flu Admission by Three-Fourths

    MedlinePlus

    ... Health Image Library (PHIL) New Study Shows Flu Vaccine Reduced Children’s Risk of Intensive Care Unit Flu ... Media Relations (404) 639-3286 Getting a flu vaccine reduces a child's risk of flu-related intensive ...

  1. Comparative quantification and statistical analysis of η′ and η precipitates in aluminum alloy AA7075-T651 by TEM and AFM

    SciTech Connect

    Garcia-Garcia, Adrian Luis Dominguez-Lopez, Ivan Lopez-Jimenez, Luis Barceinas-Sanchez, J.D. Oscar

    2014-01-15

    Quantification of nanometric precipitates in metallic alloys has been traditionally performed using transmission electron microscopy, which is nominally a low throughput technique. This work presents a comparative study of quantification of η′ and η precipitates in aluminum alloy AA7075-T651 using transmission electron microscopy (TEM) and non-contact atomic force microscopy (AFM). AFM quantification was compared with 2-D stereological results reported elsewhere. Also, a method was developed, using specialized software, to characterize nanometric size precipitates observed in dark-field TEM micrographs. Statistical analysis of the quantification results from both measurement techniques supports the use of AFM for precipitate characterization. Once the precipitate stoichiometry has been determined by appropriate analytical techniques like TEM, as it is the case for η′ and η in AA7075-T651, the relative ease with which specimens are prepared for AFM analysis could be advantageous in product and process development, and quality control, where a large number of samples are expected for analysis on a regular basis. - Highlights: • Nanometric MgZn{sub 2} precipitates in AA7075-T651 were characterized using AFM and TEM. • Phase-contrast AFM was used to differentiate metal matrix from MgZn{sub 2} precipitates. • TEM and AFM micrographs were analyzed using commercially available software. • AFM image analysis and TEM 2-D stereology render statistically equivalent results.

  2. Evaluating interaction forces between BSA and rabbit anti-BSA in sulphathiazole sodium, tylosin and levofloxacin solution by AFM

    NASA Astrophysics Data System (ADS)

    Wang, Congzhou; Wang, Jianhua; Deng, Linhong

    2011-11-01

    Protein-protein interactions play crucial roles in numerous biological processes. However, it is still challenging to evaluate the protein-protein interactions, such as antigen and antibody, in the presence of drug molecules in physiological liquid. In this study, the interaction between bovine serum albumin (BSA) and rabbit anti-BSA was investigated using atomic force microscopy (AFM) in the presence of various antimicrobial drugs (sulphathiazole sodium, tylosin and levofloxacin) under physiological condition. The results show that increasing the concentration of tylosin decreased the single-molecule-specific force between BSA and rabbit anti-BSA. As for sulphathiazole sodium, it dramatically decreased the specific force at a certain critical concentration, but increased the nonspecific force as its concentration increasing. In addition, the presence of levofloxacin did not greatly influence either the specific or nonspecific force. Collectively, these results suggest that these three drugs may adopt different mechanisms to affect the interaction force between BSA and rabbit anti-BSA. These findings may enhance our understanding of antigen/antibody binding processes in the presence of drug molecules, and hence indicate that AFM could be helpful in the design and screening of drugs-modulating protein-protein interaction processes.

  3. Bioactive compounds immobilized on Ti and TiNbHf: AFM-based investigations of biofunctionalization efficiency and cell adhesion.

    PubMed

    Herranz-Diez, C; Li, Q; Lamprecht, C; Mas-Moruno, C; Neubauer, S; Kessler, H; Manero, J M; Guillem-Martí, J; Selhuber-Unkel, C

    2015-12-01

    Implant materials require optimal biointegration, including strong and stable cell-material interactions from the early stages of implantation. Ti-based alloys with low elastic modulus are attracting a lot of interest for avoiding stress shielding, but their osseointegration potential is still very low. In this study, we report on how cell adhesion is influenced by linear RGD, cyclic RGD, and recombinant fibronectin fragment III8-10 coated on titanium versus a novel low-modulus TiNbHf alloy. The bioactive molecules were either physisorbed or covalently coupled to the substrates and their conformation on the surfaces was investigated with atomic force microscopy (AFM). The influence of the different bioactive coatings on the adhesion of rat mesenchymal stem cells was evaluated using cell culture assays and quantitatively analyzed at the single cell level by AFM-based single-cell force spectroscopy. Our results show that bioactive moieties, particularly fibronectin fragment III8-10, improve cell adhesion on titanium and TiNbHf and that the covalent tethering of such molecules provides the most promising strategy to biofunctionalize these materials. Therefore, the use of recombinant protein fragments is of high importance for improving the osseointegration potential of implant materials. PMID:26513753

  4. AFM Imaging of Mercaptobenzoic Acid on Au(110): Submolecular Contrast with Metal Tips.

    PubMed

    Hauptmann, Nadine; Robles, Roberto; Abufager, Paula; Lorente, Nicolas; Berndt, Richard

    2016-06-01

    A self-assembled monolayer of mercaptobenzoic acid (MBA) on Au(110) is investigated with scanning tunneling and atomic force microscopy (STM and AFM) and density functional calculations. High-resolution AFM images obtained with metallic tips show clear contrasts between oxygen atoms and phenyl moieties. The contrast above the oxygen atoms is due to attractive covalent interactions, which is different than previously reported high-resolution images, where Pauli repulsion dominated the image contrast. We show that the bonding of MBA to the substrate occurs mainly through dispersion interactions, whereas the thiol-Au bond contributes only a quarter of the adsorption energy. No indication of Au adatoms mediating the thiol-Au interaction was found in contrast to other thiol-bonded systems. However, MBA lifts the Au(110)-(2 × 1) reconstruction. PMID:27183144

  5. BOREAS AFM-2 Wyoming King Air 1994 Aircraft Sounding Data

    NASA Technical Reports Server (NTRS)

    Kelly, Robert D.; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The BOREAS AFM-2 team used the University of Wyoming King Air aircraft during IFCs 1, 2, and 3 in 1994 to collected pass-by-pass fluxes (and many other statistics) for the large number of level (constant altitude), straight-line passes used in a variety of flight patterns over the SSA and NSA and areas along the transect between these study areas. The data described here form a second set, namely soundings that were incorporated into nearly every research flight by the King Air in 1994. These soundings generally went from near the surface to above the inversion layer. Most were flown immediately after takeoff or immediately after finishing the last flux pattern of that particular day's flights. The parameters that were measured include wind direction, wind speed, west wind component (u), south wind component (v), static pressure, air dry bulb temperature, potential temperature, dewpoint, temperature, water vapor mixing ratio, and CO2 concentration. Data on the aircraft's location, attitude, and altitude during data collection are also provided. These data are stored in tabular ASCH files. The data files are available on a CD-ROM (see document number 20010000884) or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  6. Nanoscopic polypyrrole AFM-SECM probes enabling force measurements under potential control

    NASA Astrophysics Data System (ADS)

    Knittel, P.; Higgins, M. J.; Kranz, C.

    2014-01-01

    Conductive polymers, and in particular polypyrrole, are frequently used as biomimetic interfaces facilitating growth and/or differentiation of cells and tissues. Hence, studying forces and local interactions between such polymer interfaces and cells at the nanoscale is of particular interest. Frequently, such force interactions are not directly accessible with high spatial resolution. Consequently, we have developed nanoscopic polypyrrole electrodes, which are integrated in AFM-SECM probes. Bifunctional AFM-SECM probes were modified via ion beam-induced deposition resulting in pyramidal conductive Pt-C composite electrodes. These nanoscopic electrodes then enabled localized polypyrrole deposition, thus resulting in polymer-modified AFM probes with a well-defined geometry. Furthermore, such probes may be reversibly switched from an insulating to a conductive state. In addition, the hydrophilicity of such polymer tips is dependent on the dopant, and hence, on the oxidation state. Force studies applying different tip potentials were performed at plasma-treated glass surfaces providing localized information on the associated force interactions, which are dependent on the applied potential and the dopant.Conductive polymers, and in particular polypyrrole, are frequently used as biomimetic interfaces facilitating growth and/or differentiation of cells and tissues. Hence, studying forces and local interactions between such polymer interfaces and cells at the nanoscale is of particular interest. Frequently, such force interactions are not directly accessible with high spatial resolution. Consequently, we have developed nanoscopic polypyrrole electrodes, which are integrated in AFM-SECM probes. Bifunctional AFM-SECM probes were modified via ion beam-induced deposition resulting in pyramidal conductive Pt-C composite electrodes. These nanoscopic electrodes then enabled localized polypyrrole deposition, thus resulting in polymer-modified AFM probes with a well

  7. Liquid contact resonance AFM: analytical models, experiments, and limitations

    NASA Astrophysics Data System (ADS)

    Parlak, Zehra; Tu, Qing; Zauscher, Stefan

    2014-11-01

    Contact resonance AFM (CR-AFM) is a scanning probe microscopy technique that utilizes the contact resonances of the AFM cantilever for concurrent imaging of topography and surface stiffness. The technique has not been used in liquid until recently due to analytical and experimental difficulties, associated with viscous damping of cantilever vibrations and fluid loading effects. To address these difficulties, (i) an analytical approach for contact resonances in liquid is developed, and (ii) direct excitation of the contact resonances is demonstrated by actuating the cantilever directly in a magnetic field. By implementing the analytical approach and the direct actuation through magnetic particles, quantitative stiffness imaging on surfaces with a wide range of stiffness can be achieved in liquid with soft cantilevers and low contact forces.

  8. Improvement in metrology on new 3D-AFM platform

    NASA Astrophysics Data System (ADS)

    Schmitz, Ingo; Osborn, Marc; Hand, Sean; Chen, Qi

    2008-10-01

    According to the 2007 edition of the ITRS roadmap, the requirement for CD uniformity of isolated lines on a binary or attenuated phase shift mask is 2.1nm (3σ) in 2008 and requires improvement to1.3 nm (3σ) in 2010. In order to meet the increasing demand for CD uniformity on photo masks, improved CD metrology is required. A next generation AFM, InSightTM 3DAFM, has been developed to meet these increased requirements for advanced photo mask metrology. The new system achieves 2X improvement in CD and depth precision on advanced photo masks features over the previous generation 3D-AFM. This paper provides measurement data including depth, CD, and sidewall angle metrology. In addition the unique capabilities of damage-free defect inspection and Nanoimprint characterization by 3D AFM are presented.

  9. Mounting of Escherichia coli spheroplasts for AFM imaging.

    SciTech Connect

    Sullivan, Claretta J; Morrell-Falvey, Jennifer L; Allison, David P; Doktycz, Mitchel John

    2005-11-01

    The cytoplasmic membrane of Escherichia coli (E. coli) is the location of numerous, chemically specific transporters and recognition elements. Investigation of this membrane in vivo by atomic force microscopy (AFM) requires removal of the cell wall and stable immobilization of the spheroplast. AFM images demonstrate that spheroplasts can be secured with warm gelatin applied to the mica substrate just before the addition of a spheroplast suspension. The resulting preparation can be repeatedly imaged by AFM over the course of several hours. Confocal fluorescence imaging confirms the association of the spheroplasts with the gelatin layer. Gelatin molecules are known to reorder into a network after heating. Entrapment within this gelatin network is believed to be responsible for the immobilization of spheroplasts on mica.

  10. A comparative study of the effectiveness of "Star Show" vs. "Participatory Oriented Planetarium" lessons in a middle school Starlab setting

    NASA Astrophysics Data System (ADS)

    Platco, Nicholas L.., Jr.

    2005-06-01

    The purpose of this study was to compare the effectiveness of "Star Show" and the "Participatory Oriented Planetarium" (POP) instructional programs in a middle school Starlab setting. The Star Show is a planetarium program that relies heavily on an audiovisual/lecture format to impart information, while the POP method of instruction is an inquiry, activity-based approach to teaching astronomy. All Star Show and POP lessons were conducted in a Starlab planetarium. This study examined the effectiveness of the two methods on the attainment of astronomy knowledge, changes in student attitudes toward astronomy, retention of knowledge, and gender differences. A pilot study (N = 69) was conducted at a middle school near King of Prussia, Pennsylvania. The main study (N = 295) was conducted at a middle school near Reading, Pennsylvania. All students were pretested and posttested in both studies. The testing instruments included a 60-question paper-and-pencil content test and a 22-item Likert-style science attitude test. The content test was judged to be valid and reliable by a panel of science educators. The attitude test is a field-tested attitude survey developed by Michael Zeilik. The topics included in the Star Show and POP lessons were seasons, moon phases, eclipses, stars, and constellations. The Star Show programs used in this study are professionally prepared planetarium programs from Jeff Bowen Productions. Several planetarium educators who have been involved with planetarium training workshops throughout the United States developed the POP lessons used in this study. The Star Show was clearly the more effective method for improving student knowledge in both the pilot and main studies. Both methods were equally effective for improving student attitudes toward astronomy. The POP method was the more effective method of instruction when retention of knowledge was examined four weeks after the treatments ended. Gender did not have any significant effect on this study

  11. Surface-enhanced spectroscopy on plasmonic oligomers assembled by AFM nanoxerography

    NASA Astrophysics Data System (ADS)

    Moutet, Pierre; Sangeetha, Neralagatta M.; Ressier, Laurence; Vilar-Vidal, Noelia; Comesaña-Hermo, Miguel; Ravaine, Serge; Vallée, Renaud A. L.; Gabudean, Ana Maria; Astilean, Simion; Farcau, Cosmin

    2015-01-01

    Surface-enhanced Raman scattering (SERS) and surface-enhanced fluorescence (SEF) from individual plasmonic oligomers are investigated by confocal Raman micro-spectroscopy and time-resolved fluorescence microscopy coupled to steady state micro-spectroscopy. The nanoparticle (NP) oligomers are made of either ligand protected Au or Au@SiO2 core-shell colloidal NPs, which were assembled into ordered arrays by atomic force microscopy (AFM) nanoxerography. A strong dependence of the SERS emission on the polarization of incident light relative to the specific geometry of the plasmonic oligomer was observed. The SEF studies, performed on a large collection of NP oligomers of various known configurations showed interesting fluorophore decay rate modification and red-shift of the emission spectra. The experimental results are analyzed theoretically by employing finite-difference time-domain (FDTD) simulations on equivalent realistic structures, within the local density of optical states (LDOS) framework. The presented results, together with the proven potential of the LDOS approach as a useful common tool for analyzing both SERS and SEF effects further the general understanding of plasmon-related phenomena in nanoparticle oligomers.Surface-enhanced Raman scattering (SERS) and surface-enhanced fluorescence (SEF) from individual plasmonic oligomers are investigated by confocal Raman micro-spectroscopy and time-resolved fluorescence microscopy coupled to steady state micro-spectroscopy. The nanoparticle (NP) oligomers are made of either ligand protected Au or Au@SiO2 core-shell colloidal NPs, which were assembled into ordered arrays by atomic force microscopy (AFM) nanoxerography. A strong dependence of the SERS emission on the polarization of incident light relative to the specific geometry of the plasmonic oligomer was observed. The SEF studies, performed on a large collection of NP oligomers of various known configurations showed interesting fluorophore decay rate

  12. GPIM AF-M315E Propulsion System

    NASA Technical Reports Server (NTRS)

    Spores, Ronald A.; Masse, Robert; Kimbrel, Scott; McLean, Chris

    2014-01-01

    The NASA Space Technology mission Directorate's (STMD) Green Propellant Infusion Mission (GPIM) Technology Demonstration Mission (TDM) will demonstrate an operational AF-M315E green propellant propulsion system. Aerojet-Rocketdyne is responsible for the development of the propulsion system payload. This paper statuses the propulsion system module development, including thruster design and system design; Initial test results for the 1N engineering model thruster are presented. The culmination of this program will be high-performance, green AF-M315E propulsion system technology at TRL 7+, with components demonstrated to TRL 9, ready for direct infusion to a wide range of applications for the space user community.

  13. Mapping real-time images of high-speed AFM using multitouch control

    NASA Astrophysics Data System (ADS)

    Carberry, D. M.; Picco, L.; Dunton, P. G.; Miles, M. J.

    2009-10-01

    Conventional AFM is highly restricted by its scan rate, a problem that has been overcome by the development of high-speed AFM systems. As the technology to produce higher scan rates has developed it has pushed forward the design of control software. However, the user interface has not evolved at the same rate, limiting the user to sequential control steps. In this paper we demonstrate the integration of HSAFM with a multitouch interface to produce a highly intuitive and responsive control environment. This enables nanometre resolution to be maintained whilst scanning the sample over tens of microns, and arbitrary paths to be traversed. We illustrate this by scanning around two chromosomes in water, before scanning on top of the chromosome, showing the surface structure.

  14. Mode coupling in a hanging-fiber AFM used as a rheological probe

    NASA Astrophysics Data System (ADS)

    Devailly, C.; Laurent, J.; Steinberger, A.; Bellon, L.; Ciliberto, S.

    2014-06-01

    We analyze the advantages and drawbacks of a method which measures the viscosity of liquids at microscales, using a thin glass fiber fixed on the tip of a cantilever of an ultra-low-noise Atomic Force Microscope (AFM). When the fiber is dipped into a liquid, the dissipation of the cantilever-fiber system, which is linked to the liquid viscosity, can be computed from the power spectral density of the thermal fluctuations of the cantilever deflection. The high sensitivity of the AFM allows us to show the existence and to develop a model of the coupling between the dynamics of the fiber and that of the cantilever. This model, which accurately fits the experimental data, gives also more insights into the dynamics of coupled microdevices in a viscous environment.

  15. Development of a novel nanoindentation technique by utilizing a dual-probe AFM system

    PubMed Central

    Sahin, Ferat; Yablon, Dalia

    2015-01-01

    Summary A novel instrumentation approach to nanoindentation is described that exhibits improved resolution and depth sensing. The approach is based on a multi-probe scanning probe microscopy (SPM) tool that utilizes tuning-fork based probes for both indentation and depth sensing. Unlike nanoindentation experiments performed with conventional AFM systems using beam-bounce technology, this technique incorporates a second probe system with an ultra-high resolution for depth sensing. The additional second probe measures only the vertical movement of the straight indenter attached to a tuning-fork probe with a high spring constant and it can also be used for AFM scanning to obtain an accurate profiling. Nanoindentation results are demonstrated on silicon, fused silica, and Corning Eagle Glass. The results show that this new approach is viable in terms of accurately characterizing mechanical properties of materials through nanoindentation with high accuracy, and it opens doors to many other exciting applications in the field of nanomechanical characterization. PMID:26665072

  16. EEMD based pitch evaluation method for accurate grating measurement by AFM

    NASA Astrophysics Data System (ADS)

    Li, Changsheng; Yang, Shuming; Wang, Chenying; Jiang, Zhuangde

    2016-09-01

    The pitch measurement and AFM calibration precision are significantly influenced by the grating pitch evaluation method. This paper presents the ensemble empirical mode decomposition (EEMD) based pitch evaluation method to relieve the accuracy deterioration caused by high and low frequency components of scanning profile during pitch evaluation. The simulation analysis shows that the application of EEMD can improve the pitch accuracy of the FFT-FT algorithm. The pitch error is small when the iteration number of the FFT-FT algorithms was 8. The AFM measurement of the 500 nm-pitch one-dimensional grating shows that the EEMD based pitch evaluation method could improve the pitch precision, especially the grating line position precision, and greatly expand the applicability of the gravity center algorithm when particles and impression marks were distributed on the sample surface. The measurement indicates that the nonlinearity was stable, and the nonlinearity of x axis and forward scanning was much smaller than their counterpart. Finally, a detailed pitch measurement uncertainty evaluation model suitable for commercial AFMs was demonstrated and a pitch uncertainty in the sub-nanometer range was achieved. The pitch uncertainty was reduced about 10% by EEMD.

  17. Measuring protein isoelectric points by AFM-based force spectroscopy using trace amounts of sample.

    PubMed

    Guo, Shifeng; Zhu, Xiaoying; Jańczewski, Dominik; Lee, Serina Siew Chen; He, Tao; Teo, Serena Lay Ming; Vancso, G Julius

    2016-09-01

    Protein charge at various pH and isoelectric point (pI) values is important in understanding protein function. However, often only trace amounts of unknown proteins are available and pI measurements cannot be obtained using conventional methods. Here, we show a method based on the atomic force microscope (AFM) to determine pI using minute quantities of proteins. The protein of interest is immobilized on AFM colloidal probes and the adhesion force of the protein is measured against a positively and a negatively charged substrate made by layer-by-layer deposition of polyelectrolytes. From the AFM force-distance curves, pI values with an estimated accuracy of ±0.25 were obtained for bovine serum albumin, myoglobin, fibrinogen and ribonuclease A over a range of 4.7-9.8. Using this method, we show that the pI of the 'footprint' of the temporary adhesive proteins secreted by the barnacle cyprid larvae of Amphibalanus amphitrite is in the range 9.6-9.7. PMID:27454881

  18. AFM method to detect differences in adhesion of silica bids to cancer and normal epithelial cells

    NASA Astrophysics Data System (ADS)

    Sokolov, Igor; Iyer, Swaminathan; Gaikwad, Ravi; Woodworth, Craig

    2009-03-01

    To date, the methods of detection of cancer cells have been mostly based on traditional techniques used in biology, such as visual identification of malignant changes, cell growth analysis, specific ligand-receptor labeling, or genetic tests. Despite being well developed, these methods are either insufficiently accurate or require a lengthy complicated analysis. A search for alternative methods for the detection of cancer cells may be a fruitful approach. Here we describe an AFM study that may result in a new method for detection of cancer cells in vitro. Here we use atomic force microscopy (AFM) to study adhesion of single silica beads to malignant and normal cells cultured from human cervix. We found that adhesion depends on the time of contact, and can be statistically different for malignant and normal cells. Using these data, one could develop an optical method of cancer detection based on adhesion of various silica beads.

  19. Controlled nanodot fabrication by rippling polycarbonate surface using an AFM diamond tip

    PubMed Central

    2014-01-01

    The single scratching test of polymer polycarbonate (PC) sample surface using an atomic force microscope (AFM) diamond tip for fabricating ripple patterns has been studied with the focus on the evaluation of the effect of the tip scratching angle on the pattern formation. The experimental results indicated that the different oriented ripples can be easily machined by controlling the scratching angles of the AFM. And, the effects of the normal load and the feed on the ripples formation and their periods were also studied. Based on the ripple pattern formation, we firstly proposed a two-step scratching method to fabricate controllable and oriented complex three-dimensional (3D) nanodot arrays. These typical ripple formations can be described via a stick-slip and crack formation process. PMID:25114660

  20. Cellular mechanoadaptation to substrate mechanical properties: contributions of substrate stiffness and thickness to cell stiffness measurements using AFM.

    PubMed

    Vichare, Shirish; Sen, Shamik; Inamdar, Mandar M

    2014-02-28

    Mechanosensing by adherent cells is usually studied by quantifying cell responses on hydrogels that are covalently linked to a rigid substrate. Atomic force microscopy (AFM) represents a convenient way of characterizing the mechanoadaptation response of adherent cells on hydrogels of varying stiffness and thickness. Since AFM measurements reflect the effective cell stiffness, therefore, in addition to measuring real cytoskeletal alterations across different conditions, these measurements might also be influenced by the geometry and physical properties of the substrate itself. To better understand how the physical attributes of the gel influence AFM stiffness measurements of cells, we have used finite element analysis to simulate the indentation of cells of various spreads resting on hydrogels of varying stiffness and thickness. Consistent with experimental results, our simulation results indicate that for well spread cells, stiffness values are significantly over-estimated when experiments are performed on cells cultured on soft and thin gels. Using parametric studies, we have developed scaling relationships between the effective stiffness probed by AFM and the bulk cell stiffness, taking cell and tip geometry, hydrogel properties, nuclear stiffness and cell contractility into account. Finally, using simulated mechanoadaptation responses, we have demonstrated that a cell stiffening response may arise purely due to the substrate properties. Collectively, our results demonstrate the need to take hydrogel properties into account while estimating cell stiffness using AFM indentation. PMID:24651595

  1. Characterization of deep nanoscale surface trenches with AFM using thin carbon nanotube probes in amplitude-modulation and frequency-force-modulation modes

    NASA Astrophysics Data System (ADS)

    Solares, Santiago D.

    2008-01-01

    The characterization of deep surface trenches with atomic force microscopy (AFM) presents significant challenges due to the sharp step edges that disturb the instrument and prevent it from faithfully reproducing the sample topography. Previous authors have developed AFM methodologies to successfully characterize semiconductor surface trenches with dimensions on the order of tens of nanometers. However, the study of imaging fidelity for features with dimensions smaller than 10 nm has not yet received sufficient attention. Such a study is necessary because small features in some cases lead to apparently high-quality images that are distorted due to tip and sample mechanical deformation. This paper presents multi-scale simulations, illustrating common artifacts affecting images of nanoscale trenches taken with fine carbon nanotube probes within amplitude-modulation and frequency-force-modulation AFM (AM-AFM and FFM-AFM, respectively). It also describes a methodology combining FFM-AFM with a step-in/step-out algorithm analogous to that developed by other groups for larger trenches, which can eliminate the observed artifacts. Finally, an overview of the AFM simulation methods is provided. These methods, based on atomistic and continuum simulation, have been previously used to study a variety of samples including silicon surfaces, carbon nanotubes and biomolecules.

  2. Liquid solution delivery through the pulled nanopipette combined with QTF-AFM system

    NASA Astrophysics Data System (ADS)

    An, Sangmin; Stambaugh, Corey; Kim, Gunn; Lee, Manhee; Kim, Yonghee; Lee, Kunyoung; Jhe, Wonho

    2012-02-01

    Nanopipette is a versatile fluidic tool for biochemical analysis, controlled liquid delivery in bio-nanotechnology. However, most of the researches have been performed in solution based system, thus it is challenge to study nanofluidic properties of the liquid solution delivery through the nanopipette in ambient conditions. In this work, we demonstrated the liquid ejection, dispersion, and subsequent deposition of the nanoparticles via a 30 nm aperture pipette based on the quartz tuning fork -- atomic force microscope (QTF-AFM) combined nanopipette system.

  3. Peep show establishments, police activity, public place, and time: a study of secondary effects in San Diego, California.

    PubMed

    Linz, Daniel; Paul, Bryant; Yao, Mike

    2006-05-01

    An empirical study was undertaken in San Diego, California, to test assumptions made by the government and by conservative religious policy advocates that there is a greater incidence of crime in the vicinity of peep show establishments. We asked two questions: (a) Is criminal activity in San Diego particularly acute at peep show establishments compared to surrounding control locations? and (b) Is criminal activity in San Diego disproportionately greater at or near peep show establishments between the hours of 2 a.m. and 6 a.m. compared to other times of the day? The levels of crime activity and the expenditure of police resources were examined by measuring the number of calls-for-service (CFSs) to the police within a 1,000-ft. area on either side of the peep show establishments and comparably-sized control areas beyond the immediate 1,000-foot area. A more focused late-night (2 a.m. to 6 a.m.) analysis was also undertaken. The results showed no reliable evidence of differences in crime levels between the control and test areas, nor was there any evidence of disproportionately greater amounts of crime within the 2 a.m. to 6 a.m. time period in the areas surrounding the peep show establishments. We concluded that San Diego does not have a problem with crime at the peep show establishments generally, nor is there a heightened problem with crime during the 2 a.m. to 6 a.m. period. We discuss the implications of assuming that peep show establishments are associated with negative effects in the community and the possibility of viewpoint discrimination against sex communication. PMID:16817065

  4. Introduction to Atomic Force Microscopy (AFM) in Biology.

    PubMed

    Kreplak, Laurent

    2016-01-01

    The atomic force microscope (AFM) has the unique capability of imaging biological samples with molecular resolution in buffer solution over a wide range of time scales from milliseconds to hours. In addition to providing topographical images of surfaces with nanometer- to angstrom-scale resolution, forces between single molecules and mechanical properties of biological samples can be investigated from the nano-scale to the micro-scale. Importantly, the measurements are made in buffer solutions, allowing biological samples to "stay alive" within a physiological-like environment while temporal changes in structure are measured-e.g., before and after addition of chemical reagents. These qualities distinguish AFM from conventional imaging techniques of comparable resolution, e.g., electron microscopy (EM). This unit provides an introduction to AFM on biological systems and describes specific examples of AFM on proteins, cells, and tissues. The physical principles of the technique and methodological aspects of its practical use and applications are also described. © 2016 by John Wiley & Sons, Inc. PMID:27479503

  5. Hydrodynamic effects in fast AFM single-molecule force measurements.

    PubMed

    Janovjak, Harald; Struckmeier, Jens; Müller, Daniel J

    2005-02-01

    Atomic force microscopy (AFM) allows the critical forces that unfold single proteins and rupture individual receptor-ligand bonds to be measured. To derive the shape of the energy landscape, the dynamic strength of the system is probed at different force loading rates. This is usually achieved by varying the pulling speed between a few nm/s and a few microm/s, although for a more complete investigation of the kinetic properties higher speeds are desirable. Above 10 microm/s, the hydrodynamic drag force acting on the AFM cantilever reaches the same order of magnitude as the molecular forces. This has limited the maximum pulling speed in AFM single-molecule force spectroscopy experiments. Here, we present an approach for considering these hydrodynamic effects, thereby allowing a correct evaluation of AFM force measurements recorded over an extended range of pulling speeds (and thus loading rates). To support and illustrate our theoretical considerations, we experimentally evaluated the mechanical unfolding of a multi-domain protein recorded at 30 microm/s pulling speed. PMID:15257425

  6. Cell mechanics as a marker for diseases: Biomedical applications of AFM

    NASA Astrophysics Data System (ADS)

    Rianna, Carmela; Radmacher, Manfred

    2016-08-01

    Many diseases are related to changes in cell mechanics. Atomic Force Microscopy (AFM) is one of the most suitable techniques allowing the investigation of both topography and mechanical properties of adherent cells with high spatial resolution under physiological conditions. Over the years the use of this technique in medical and clinical applications has largely increased, resulting in the notion of cell mechanics as a biomarker to discriminate between different physiological and pathological states of cells. Cell mechanics has proven to be a biophysical fingerprint able discerning between cell phenotypes, unraveling processes in aging or diseases, or even detecting and diagnosing cellular pathologies. We will review in this report some of the works on cell mechanics investigated by AFM with clinical and medical relevance in order to clarify the state of research in this field and to highlight the role of cell mechanics in the study of pathologies, focusing on cancer, blood and cardiovascular diseases.

  7. Force-controlled manipulation of single cells: from AFM to FluidFM.

    PubMed

    Guillaume-Gentil, Orane; Potthoff, Eva; Ossola, Dario; Franz, Clemens M; Zambelli, Tomaso; Vorholt, Julia A

    2014-07-01

    The ability to perturb individual cells and to obtain information at the single-cell level is of central importance for addressing numerous biological questions. Atomic force microscopy (AFM) offers great potential for this prospering field. Traditionally used as an imaging tool, more recent developments have extended the variety of cell-manipulation protocols. Fluidic force microscopy (FluidFM) combines AFM with microfluidics via microchanneled cantilevers with nano-sized apertures. The crucial element of the technology is the connection of the hollow cantilevers to a pressure controller, allowing their operation in liquid as force-controlled nanopipettes under optical control. Proof-of-concept studies demonstrated a broad spectrum of single-cell applications including isolation, deposition, adhesion and injection in a range of biological systems. PMID:24856959

  8. BOREAS AFM-5 Level-2 Upper Air Network Standard Pressure Level Data

    NASA Technical Reports Server (NTRS)

    Barr, Alan; Hrynkiw, Charmaine; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The BOREAS AFM-5 team collected and processed data from the numerous radiosonde flights during the project. The goals of the AFM-05 team were to provide large-scale definition of the atmosphere by supplementing the existing AES aerological network, both temporally and spatially. This data set includes basic upper-air parameters interpolated at 0.5 kiloPascal increments of atmospheric pressure from data collected from the network of upper-air stations during the 1993, 1994, and 1996 field campaigns over the entire study region. The data are contained in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884) or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  9. AFM characterization of nanobubble formation and slip condition in oxygenated and electrokinetically altered fluids.

    PubMed

    Bhushan, Bharat; Pan, Yunlu; Daniels, Stephanie

    2013-02-15

    Nanobubbles are gas-filled features that spontaneously form at the interface of hydrophobic surfaces and aqueous solutions. In this study, an atomic force microscope (AFM) was used to characterize the morphology of nanobubbles formed on hydrophobic polystyrene (PS) and octadecyltrichlorosilane (OTS) films immersed in DI water, saline, saline with oxygen and an electrokinetically altered saline solution produced with Taylor-Couette-Poiseuille flow under elevated oxygen pressure. AFM force spectroscopy was used to evaluate hydrodynamic and electrostatic forces and boundary slip condition in various fluids. The effect of solution, electric field and surface charge on shape, size and density of nanobubbles as well as slip length was quantified and the results and underlying mechanisms are presented in this paper. PMID:23123096

  10. Recent CD AFM probe developments for sub-45 nm technology nodes

    NASA Astrophysics Data System (ADS)

    Liu, Hao-Chih; Osborne, Jason R.; Dahlen, Gregory A.; Greschner, Johann; Bayer, Thomas; Kalt, Samuel; Fritz, Georg

    2008-03-01

    This paper reports on new developments of advanced CD AFM probes after the prior introduction of "trident probes" in SPIE Advanced Lithography 2007 [1]. Trident probes, having sharpened extensions in the tip apex region, make possible bottom CD measurements within a few nanometers of the feature bottom corner; an area where other CD probes have difficulties due to tip shape limitations. Moreover, new metrology applications of trident probes have been developed for novel devices such as FinFET and vertical read/write hard disk heads. For ever smaller technology nodes, new probes evolved from the design of the trident probe. For example, the number of sharpened tip flares was reduced from three (trident) to two (bi-pod) to prevent possible interference of the third leg in the slow scan direction, as shown in Figure 3. Maintaining tip lateral stiffness as the tip size shrinks to less than 30 nm is vital for successful scanning. Consequently, a significant recent improvement is the change of probe shank cross-sectional geometry in order to maintain tip vertical aspect ratio of 1:5 (and lateral stiffness > 1 N/m). Finally, modifications of probe substrate are proposed and evaluated for current and new CD AFM systems. Hydrophobic, self-assembled monolayer (SAM) coatings were applied on CD probes to reduced tip "pull-away" distance1 during CD AFM scanning. Test results show that the pull away distance can be reduced more than 5 times on average (in some cases, by a factor of 15). Consequently, use of hydrophobic SAM coatings on CD probes mitigates pull-away distance thus allowing narrow trench CD measurements. We discuss limitations of prior CD AFM probes and design considerations of new CD probes. The characterization of first prototypes and evaluation of scan performance are presented in this work.

  11. A low-cost AFM setup with an interferometer for undergraduates and secondary-school students

    NASA Astrophysics Data System (ADS)

    Bergmann, Antje; Feigl, Daniela; Kuhn, David; Schaupp, Manuel; Quast, Günter; Busch, Kurt; Eichner, Ludwig; Schumacher, Jens

    2013-07-01

    Atomic force microscopy (AFM) is an important tool in nanotechnology. This method makes it possible to observe nanoscopic surfaces beyond the resolution of light microscopy. In order to provide undergraduate and secondary-school students with insights into this world, we have developed a very robust low-cost AFM setup with a Fabry-Perot interferometer as a detecting device. This setup is designed to be operated almost completely manually and its simplicity gives access to a profound understanding of the working principle. Our AFM is operated in a constant height mode, i.e. the topography of the sample surface is represented directly by the deflection of the cantilever. Thus, the measuring procedure can be understood even by secondary-school students; furthermore, it is the method with the lowest cost, totalling not more than 10-15 k Euros. Nevertheless, we are able to examine a large variety of sample topographies such as CD and DVD surfaces, IC structures, blood cells, butterfly wings or moth eyes. Furthermore, force-distance curves can be recorded and the tensile moduli of some materials can be evaluated. We present our setup in detail and describe its working principles. In addition, we show various experiments which have already been performed by students.

  12. Fracture Growth Testing of Titanium 6AL-4V in AF-M315E

    NASA Technical Reports Server (NTRS)

    Sampson, Jeffrey W.; Martinez, Jonathan; McLean, Christopher

    2015-01-01

    The Green Propellant Infusion Mission (GPIM) will demonstrate the performance of AF-M315E monopropellant in orbit. Flight certification requires a safe-life analysis of the titanium alloy fuel tank to ensure inherent flaws will not cause failure during the design life. Material property inputs for this analysis require testing to determine the stress intensity factor for environmentally-assisted cracking (K (sub EAC)) of Ti 6Al-4V in combination with the AF-M315E monopropellant. Testing of single-edge notched specimens SE(B) representing the bulk tank membrane and weld material were performed in accordance with ASTM E1681. Specimens with fatigue pre-cracks were loaded into test fixtures so that the crack tips were exposed to the monopropellant at 50 degrees Centigrade for a duration of 1,000 hours. Specimens that did not fail during exposure were opened to inspect the crack surfaces for evidence of crack growth. The threshold stress intensity value, KEAC, is the highest applied stress intensity that produced neither a failure of the specimen during the exposure nor showed evidence of crack growth. The threshold stress intensity factor of the Ti 6Al-4V forged tank material when exposed to AF-M315E monopropellant was found to be at least 22.0 kilopounds per square inch. The stress intensity factor of the weld material was at least 31.3 kilopounds per square inch.

  13. Ultrasharp high-aspect-ratio probe array for SECM and AFM Analysis

    NASA Astrophysics Data System (ADS)

    Tao, Ye; Fasching, Rainer J.; Prinz, Fritz B.

    2004-07-01

    A powerful experimental tool, ultra-sharp nano-electrode array is designed, fabricated and characterized. The application on a combination of Scanning Electrochemical Microscopy (SECM) and the Atomic Force Microcopy (AFM) is demonstrated. It can measure sample electrochemically initiated by SECM changes of topography while detecting topography using AFM. In order to realize this, a specialized probe system that is composed of a micro-mechanical bending structure necessary for the AFM mode and an electrochemical UME-tip required for a high performance SECM is crucial. The probe array is a row of silicon transducers embedded in silicon nitride cantilever array. The sharp high-aspect ratio (20:1) silicon tips are shaped and a thin layer of silicon nitride is deposited, which embeds the silicon tips in a silicon nitride layer so that they protrude through the nitride. Thus, the embedded silicon tips with a diameter less than 600 nm, the top radius less than 20 nm, and the aspect ratio as high as 20 can be achieved. A metal layer and an insulator layer are deposited on these tip structures to make each probe selectively conductive. Finally, cantilever structures are shaped and released by etching the silicon substrate from the backside. Electrochemical and impedance spectroscopic characterization show electrochemical functionality of the transducer system.

  14. Novel Polymer Linkers for Single Molecule AFM Force Spectroscopy

    PubMed Central

    Tong, Zenghan; Mikheikin, Andrey; Krasnoslobodtsev, Alexey; Lv, Zhengjian; Lyubchenko, Yuri L.

    2013-01-01

    Flexible polymer linkers play an important role in various imaging and probing techniques that require surface immobilization, including atomic force microscopy (AFM). In AFM force spectroscopy, polymer linkers are necessary for the covalent attachment of molecules of interest to the AFM tip and the surface. The polymer linkers tether the molecules and provide their proper orientation in probing experiments. Additionally, the linkers separate specific interactions from nonspecific short-range adhesion and serve as a reference point for the quantitative analysis of single molecule probing events. In this report, we present our results on the synthesis and testing of a novel polymer linker and the identification of a number of potential applications for its use in AFM force spectroscopy experiments. The synthesis of the linker is based on the well-developed phosphoramidate (PA) chemistry that allows the routine synthesis of linkers with predetermined lengths and PA composition. These linkers are homogeneous in length and can be terminated with various functional groups. PA linkers with different functional groups were synthesized and tested in experimental systems utilizing different immobilization chemistries. We probed interactions between complementary DNA oligonucleotides; DNA and protein complexes formed by the site-specific binding protein SfiI; and interactions between amyloid peptide (Aβ42). The results of the AFM force spectroscopy experiments validated the feasibility of the proposed approach for the linker design and synthesis. Furthermore, the properties of the tether (length, functional groups) can be adjusted to meet the specific requirements for different force spectroscopy experiments and system characteristics, suggesting that it could be used for a large number of various applications. PMID:23624104

  15. MOS-based nanocapacitor using C-AFM

    NASA Astrophysics Data System (ADS)

    Hill, Daniel; Sadewasser, Sascha; Aymerich, Xavier

    2003-04-01

    This report details the attempts made to realise nanocapacitors for nanoscale MOS based integrated circuits by AFM anodic oxidation, and therefore isolation, of nano-sized squares of poly-silicon, titanium and aluminium on Si/SiO2. Conductive AFM (C-AFM) was used to perform topographical and electrical characterisation. The experiments were performed with contact mode C-AFM, in ambient air, using Pt-Ir, Co-Cr and Ti coated (20nm) n-type silicon cantilevers. Each sample consisted of a 3-5nm thick conductor deposited on 6nm of SiO2, which was thermally grown on Phosphorus doped (1019 cm-3) n-type Si(100) substrates. Standard cleaning and passivation processes were used. Poly-silicon was immediately found to be too rough to oxidise. Initial current-voltage measurements inside of the titanium-oxide squares suggest initial isolation followed by degradation through Fowler-Nordheim tunnelling. Measurement inconsistencies seen suggest charge storage on the surface or tip with the barrier height of the native titanium oxide thought to be responsible. Al has a thicker natural oxide. To overcome this we designed a series of structures consisting of a Ti finger on SiO2, that is connected to a Ti bond pad, allowing direct probing by a semiconductor parameter analyser. AFM anodic oxidation was performed upon these Ti fingers to reduce their in-plane dimensions towards the nanoscale. To confirm the existence of a nanocapacitor topographical and electrical measurements were then done on and around them.

  16. Integrated genomic and prospective clinical studies show the importance of modular pleiotropy for disease susceptibility, diagnosis and treatment

    PubMed Central

    2014-01-01

    Background Translational research typically aims to identify and functionally validate individual, disease-specific genes. However, reaching this aim is complicated by the involvement of thousands of genes in common diseases, and that many of those genes are pleiotropic, that is, shared by several diseases. Methods We integrated genomic meta-analyses with prospective clinical studies to systematically investigate the pathogenic, diagnostic and therapeutic roles of pleiotropic genes. In a novel approach, we first used pathway analysis of all published genome-wide association studies (GWAS) to find a cell type common to many diseases. Results The analysis showed over-representation of the T helper cell differentiation pathway, which is expressed in T cells. This led us to focus on expression profiling of CD4+ T cells from highly diverse inflammatory and malignant diseases. We found that pleiotropic genes were highly interconnected and formed a pleiotropic module, which was enriched for inflammatory, metabolic and proliferative pathways. The general relevance of this module was supported by highly significant enrichment of genetic variants identified by all GWAS and cancer studies, as well as known diagnostic and therapeutic targets. Prospective clinical studies of multiple sclerosis and allergy showed the importance of both pleiotropic and disease specific modules for clinical stratification. Conclusions In summary, this translational genomics study identified a pleiotropic module, which has key pathogenic, diagnostic and therapeutic roles. PMID:24571673

  17. Elastic modulus of polypyrrole nanotubes: AFM measurement

    NASA Astrophysics Data System (ADS)

    Cuenot, Stéphane; Demoustier-Champagne, Sophie; Nysten, Bernard

    2001-03-01

    Polypyrrole nanotubes were electrochemically synthesized within the pores of nanoporous track-etched membranes. After dissolution of the template membrane, they were dispersed on PET membranes. Their tensile elastic modulus was measured by probing them in three points bending using an atomic force microscope. The elastic modulus was deduced from force-curve measurements. In this communication, the effect of the synthesis temperature and of the nanotube diameter will be presented. Especially it will be shown that the elastic modulus strongly increases when the nanotube outer diameter is reduced from 160 nm down to 35 nm. These results are in good agreement with previous results showing that the electrical conductivity of polypyrrole nanotubes increases by more than one order of magnitude when the diameter decreases in the same range. These behaviors could be explained by a larger ratio of well-oriented defect-free polymer chains in smaller tubes.

  18. Polymer coatings on conductive polypyrroles surface characterization by XPS, ToFSIMS, inverse gas chromatography and AFM

    SciTech Connect

    Chehimi, M.M.; Abel, M.; Delamar, M.; Watts, J.F.; Zhdan, P.A.

    1996-01-01

    The study of PMMA adsorption on some conducting polypyrroles (PPys) using a variety of surface analytical techniques is reported. PMMA adsorption was monitored by X-ray photoelectron spectroscopy (XPS), time of flight secondary ion mass spectroscopy (ToF-SIMS) and inverse gas chromatography (IGC). XPS and ToF-SIMS permit to determine the surface composition of PMMA-coated PPy surfaces vs the solvent nature, temperature and the PPy dopant anion. Both techniques show that acid-base interactions may govern PMMA adsorption. IGC was used to determine the coating morphology by monitoring the surface energy of the coated PPy powders. It is suggested that homogeneity of PMMA coatings increases with decreasing solvent power. Preliminary atomic force microscopy (AFM) results on PMMA films cast on flat PPy surfaces confirm the IGC observation. {copyright} {ital 1996 American Institute of Physics.}

  19. AFM and uni-axial testing of pericardium exposed to radiotherapy doses

    NASA Astrophysics Data System (ADS)

    Daar, Eman; Kaabar, W.; Lei, C.; Keddie, J. L.; Nisbet, A.; Bradley, D. A.

    2011-10-01

    The pericardium, a double-layered sac that encloses the heart, is made up of collagen and elastin fibres embedded in an amorphous matrix (forming the extracellular matrix). Collagen fibres are aligned in multidirectional orientation layers. This free arrangement of fibres gives the pericardium its viscoelastic properties and the ability to deform in all directions. This is an important mechanical property for the heart to perform its physiological functions, acknowledging the fact that the heart is attached to different ligaments and muscles in all directions. The present study aims to investigate the effect of penetrating photon ionising radiation on bovine pericardium tissue. This links to an interest in seeking to understand possible mechanisms underlying cardiac complications following treatment of the left breast in radiotherapy regimes. Pericardium samples were subjected to doses in the range 0-80 Gy. Atomic force microscopy (AFM) has been applied in characterising changes in the infrastructural and mechanical properties of the tissues. Preliminary data for doses of 80 Gy shows there was no significant change in the D-spacing period of the banded structure collagen type I but a significant increase is observed in the FWHM of the fibril widths (by between 25% and 27%) over that of unirradiated pericardium tissue.

  20. Surface-enhanced spectroscopy on plasmonic oligomers assembled by AFM nanoxerography.

    PubMed

    Moutet, Pierre; Sangeetha, Neralagatta M; Ressier, Laurence; Vilar-Vidal, Noelia; Comesaña-Hermo, Miguel; Ravaine, Serge; Vallée, Renaud A L; Gabudean, Ana Maria; Astilean, Simion; Farcau, Cosmin

    2015-02-01

    Surface-enhanced Raman scattering (SERS) and surface-enhanced fluorescence (SEF) from individual plasmonic oligomers are investigated by confocal Raman micro-spectroscopy and time-resolved fluorescence microscopy coupled to steady state micro-spectroscopy. The nanoparticle (NP) oligomers are made of either ligand protected Au or Au@SiO2 core-shell colloidal NPs, which were assembled into ordered arrays by atomic force microscopy (AFM) nanoxerography. A strong dependence of the SERS emission on the polarization of incident light relative to the specific geometry of the plasmonic oligomer was observed. The SEF studies, performed on a large collection of NP oligomers of various known configurations showed interesting fluorophore decay rate modification and red-shift of the emission spectra. The experimental results are analyzed theoretically by employing finite-difference time-domain (FDTD) simulations on equivalent realistic structures, within the local density of optical states (LDOS) framework. The presented results, together with the proven potential of the LDOS approach as a useful common tool for analyzing both SERS and SEF effects further the general understanding of plasmon-related phenomena in nanoparticle oligomers. PMID:25553777

  1. Relaxation of ultralarge VWF bundles in a microfluidic-AFM hybrid reactor

    SciTech Connect

    Steppich, D.M.; Angerer, J.I.; Sritharan, K.; Schneider, S.W.; Thalhammer, S.; Wixforth, A.; Alexander-Katz, A.; Schneider, M.F.

    2008-05-02

    The crucial role of the biopolymer 'Von Willebrand factor' (VWF) in blood platelet binding is tightly regulated by the shear forces to which the protein is exposed in the blood flow. Under high-shear conditions, VWFs ability to immobilize blood platelets is strongly increased due to a change in conformation which at sufficient concentration is accompanied by the formation of ultra large VWF bundles (ULVWF). However, little is known about the dynamic and mechanical properties of such bundles. Combining a surface acoustic wave (SAW) based microfluidic reactor with an atomic force microscope (AFM) we were able to study the relaxation of stretched VWF bundles formed by hydrodynamic stress. We found that the dynamical response of the network is well characterized by stretched exponentials, indicating that the relaxation process proceeds through hopping events between a multitude of minima. This finding is in accordance with current ideas of VWF self-association. The longest relaxation time does not show a clear dependence on the length of the bundle, and is dominated by the internal conformations and effective friction within the bundle.

  2. Porous titania films fabricated via sol gel rout - Optical and AFM characterization

    NASA Astrophysics Data System (ADS)

    Karasiński, Paweł; Gondek, Ewa; Drewniak, Sabina; Kajzer, Anita; Waczyńska-Niemiec, Natalia; Basiaga, Marcin; Izydorczyk, Weronika; Kouari, Youssef E. L.

    2016-06-01

    Mesoporous titania films of low refractive index ∼1.72 and thickness within the range of 57-96 nm were fabricated via sol-gel rout and dip-coating technique on a soda-lime glass substrate. Tetrabutylorthotitanate Ti(OBu)4 was used as a titania precursor. High porosity and consequently low refractive index were achieved using the polyethylene glycol (PEG 1100) as a template. Based on transmittance, using Tauc's relations, the optical energy band gaps and the Urbach energy were determined. The research shows that in the fabricated titania films there are two types of optical energy band gaps, connected with direct and indirect electron transitions and brought about by the presence of amorphous and crystalline phase respectively. Based on the quantum size effect, the diameters of nanocrystals versus film thickness were determined. AFM studies of the titania films have demonstrated that there are changes of surface morphology taking place with the change of thickness. We have demonstrated that the surface morphology of titania films has influence on wettability.

  3. Forced Unfolding of the Coiled-Coils of Fibrinogen by Single-Molecule AFM

    NASA Astrophysics Data System (ADS)

    Brown, Andre; Litvinov, Rustem; Discher, Dennis; Weisel, John

    2007-03-01

    A blood clot needs to have the right degree of stiffness and plasticity for hemostasis, but the origin of these mechanical properties is unknown. Here we report the first measurements using single molecule atomic force microscopy (AFM) to study the forced unfolding of fibrinogen to begin addressing this problem. To generate longer reproducible curves than are possible using monomer, factor XIIIa cross-linked, single chain fibrinogen oligomers were used. When extended under force, these oligomers showed sawtooth shaped force-extension patterns characteristic of unfolding proteins with a peak-to-peak separation of approximately 26 nm, consistent with the independent unfolding of the coiled-coils. These results were then reproduced using a Monte Carlo simulation with parameters in the same range as those previously used for unfolding globular domains. In particular, we found that the refolding time was negligible on experimental time and force scales in contrast to previous work on simpler coiled-coils. We suggest that this difference may be due to fibrinogen's structurally and topologically more complex coiled-coils and that an interaction between the alpha C and central domains may be involved. These results suggest a new functional property of fibrinogen and that the coiled-coil is more than a passive structural element of this molecule.

  4. Structure and permeability of ion-channels by integrated AFM and waveguide TIRF microscopy.

    PubMed

    Ramachandran, Srinivasan; Arce, Fernando Teran; Patel, Nirav R; Quist, Arjan P; Cohen, Daniel A; Lal, Ratnesh

    2014-01-01

    Membrane ion channels regulate key cellular functions and their activity is dependent on their 3D structure. Atomic force microscopy (AFM) images 3D structure of membrane channels placed on a solid substrate. Solid substrate prevents molecular transport through ion channels thus hindering any direct structure-function relationship analysis. Here we designed a ~70 nm nanopore to suspend a membrane, allowing fluidic access to both sides. We used these nanopores with AFM and total internal reflection fluorescence microscopy (TIRFM) for high resolution imaging and molecular transport measurement. Significantly, membranes over the nanopore were stable for repeated AFM imaging. We studied structure-activity relationship of gap junction hemichannels reconstituted in lipid bilayers. Individual hemichannels in the membrane overlying the nanopore were resolved and transport of hemichannel-permeant LY dye was visualized when the hemichannel was opened by lowering calcium in the medium. This integrated technique will allow direct structure-permeability relationship of many ion channels and receptors. PMID:24651823

  5. Immunological Identification of Fibrinogen in Dual-Component Protein Films by AFM Imaging

    PubMed Central

    Soman, Pranav; Rice, Zachary; Siedlecki, Christopher A.

    2009-01-01

    The success of long-term blood-contacting implanted devices is largely dependent upon the interaction of the blood components with the device biomaterial surface. The ability to study these interactions has been hindered by a lack of methods to measure single-molecule interactions in complex multi-protein environments similar to the environment found in-vivo. In this paper, we demonstrate the use of atomic force microscopy (AFM) in conjunction with gold nanolabels to detect the protein fibrinogen under aqueous conditions without the topographical clues usually necessary for high resolution visualization. BSA was patterned onto both muscovite mica and plasma-treated polydimethylsiloxane (PDMS) substrates and these test substrates were subsequently backfilled with fibrinogen to yield a featureless protein layer. The fibrinogen in this dual protein layer was detected using high resolution AFM imaging following infusion of anti-fibrinogen conjugated with nanogold particles. This AFM immuno-detection technique will potentially be applicable to complex multi-component protein films adsorbed on clinically-relevant polymers used in medical devices. PMID:18294855

  6. AFM-porosimetry: density and pore volume measurements of particulate materials.

    PubMed

    Sörensen, Malin H; Valle-Delgado, Juan J; Corkery, Robert W; Rutland, Mark W; Alberius, Peter C

    2008-06-01

    We introduced the novel technique of AFM-porosimetry and applied it to measure the total pore volume of porous particles with a spherical geometry. The methodology is based on using an atomic force microscope as a balance to measure masses of individual particles. Several particles within the same batch were measured, and by plotting particle mass versus particle volume, the bulk density of the sample can be extracted from the slope of the linear fit. The pore volume is then calculated from the densities of the bulk and matrix materials, respectively. In contrast to nitrogen sorption and mercury porosimetry, this method is capable of measuring the total pore volume regardless of pore size distribution and pore connectivity. In this study, three porous samples were investigated by AFM-porosimetry: one ordered mesoporous sample and two disordered foam structures. All samples were based on a matrix of amorphous silica templated by a block copolymer, Pluronic F127, swollen to various degrees with poly(propylene glycol). In addition, the density of silica spheres without a template was measured by two independent techniques: AFM and the Archimedes principle. PMID:18503284

  7. Graphene Nanopore Support System for Simultaneous High-Resolution AFM Imaging and Conductance Measurements

    PubMed Central

    2015-01-01

    Accurately defining the nanoporous structure and sensing the ionic flow across nanoscale pores in thin films and membranes has a wide range of applications, including characterization of biological ion channels and receptors, DNA sequencing, molecule separation by nanoparticle films, sensing by block co-polymers films, and catalysis through metal–organic frameworks. Ionic conductance through nanopores is often regulated by their 3D structures, a relationship that can be accurately determined only by their simultaneous measurements. However, defining their structure–function relationships directly by any existing techniques is still not possible. Atomic force microscopy (AFM) can image the structures of these pores at high resolution in an aqueous environment, and electrophysiological techniques can measure ion flow through individual nanoscale pores. Combining these techniques is limited by the lack of nanoscale interfaces. We have designed a graphene-based single-nanopore support (∼5 nm thick with ∼20 nm pore diameter) and have integrated AFM imaging and ionic conductance recording using our newly designed double-chamber recording system to study an overlaid thin film. The functionality of this integrated system is demonstrated by electrical recording (<10 pS conductance) of suspended lipid bilayers spanning a nanopore and simultaneous AFM imaging of the bilayer. PMID:24581087

  8. Nanotribology Results Show that DNA Forms a Mechanically Resistant 2D Network in Metaphase Chromatin Plates

    PubMed Central

    Gállego, Isaac; Oncins, Gerard; Sisquella, Xavier; Fernàndez-Busquets, Xavier; Daban, Joan-Ramon

    2010-01-01

    In a previous study, we found that metaphase chromosomes are formed by thin plates, and here we have applied atomic force microscopy (AFM) and friction force measurements at the nanoscale (nanotribology) to analyze the properties of these planar structures in aqueous media at room temperature. Our results show that high concentrations of NaCl and EDTA and extensive digestion with protease and nuclease enzymes cause plate denaturation. Nanotribology studies show that native plates under structuring conditions (5 mM Mg2+) have a relatively high friction coefficient (μ ≈ 0.3), which is markedly reduced when high concentrations of NaCl or EDTA are added (μ ≈ 0.1). This lubricant effect can be interpreted considering the electrostatic repulsion between DNA phosphate groups and the AFM tip. Protease digestion increases the friction coefficient (μ ≈ 0.5), but the highest friction is observed when DNA is cleaved by micrococcal nuclease (μ ≈ 0.9), indicating that DNA is the main structural element of plates. Whereas nuclease-digested plates are irreversibly damaged after the friction measurement, native plates can absorb kinetic energy from the AFM tip without suffering any damage. These results suggest that plates are formed by a flexible and mechanically resistant two-dimensional network which allows the safe storage of DNA during mitosis. PMID:21156137

  9. A Pilot Study of Reasons and Risk Factors for "No-Shows" in a Pediatric Neurology Clinic.

    PubMed

    Guzek, Lindsay M; Fadel, William F; Golomb, Meredith R

    2015-09-01

    Missed clinic appointments lead to decreased patient access, worse patient outcomes, and increased healthcare costs. The goal of this pilot study was to identify reasons for and risk factors associated with missed pediatric neurology outpatient appointments ("no-shows"). This was a prospective cohort study of patients scheduled for 1 week of clinic. Data on patient clinical and demographic information were collected by record review; data on reasons for missed appointments were collected by phone interviews. Univariate and multivariate analyses were conducted using chi-square tests and multiple logistic regression to assess risk factors for missed appointments. Fifty-nine (25%) of 236 scheduled patients were no-shows. Scheduling conflicts (25.9%) and forgetting (20.4%) were the most common reasons for missed appointments. When controlling for confounding factors in the logistic regression, Medicaid (odds ratio 2.36), distance from clinic, and time since appointment was scheduled were associated with missed appointments. Further work in this area is needed. PMID:25503257

  10. Sharp high-aspect-ratio AFM tips fabricated by a combination of deep reactive ion etching and focused ion beam techniques.

    PubMed

    Caballero, David; Villanueva, Guillermo; Plaza, Jose Antonio; Mills, Christopher A; Samitier, Josep; Errachid, Abdelhamid

    2010-01-01

    The shape and dimensions of an atomic force microscope tip are crucial factors to obtain high resolution images at the nanoscale. When measuring samples with narrow trenches, inclined sidewalls near 90 degrees or nanoscaled structures, standard silicon atomic force microscopy (AFM) tips do not provide satisfactory results. We have combined deep reactive ion etching (DRIE) and focused ion beam (FIB) lithography techniques in order to produce probes with sharp rocket-shaped silicon AFM tips for high resolution imaging. The cantilevers were shaped and the bulk micromachining was performed using the same DRIE equipment. To improve the tip aspect ratio we used FIB nanolithography technique. The tips were tested on narrow silicon trenches and over biological samples showing a better resolution when compared with standard AFM tips, which enables nanocharacterization and nanometrology of high-aspect-ratio structures and nanoscaled biological elements to be completed, and provides an alternative to commercial high aspect ratio AFM tips. PMID:20352882

  11. Wedged AFM-cantilevers for parallel plate cell mechanics.

    PubMed

    Stewart, Martin P; Hodel, Adrian W; Spielhofer, Andreas; Cattin, Cedric J; Müller, Daniel J; Helenius, Jonne

    2013-04-01

    The combination of atomic force microscopy (AFM) and optical microscopy has gained popularity for mechanical analysis of living cells. In particular, recent AFM-based assays featuring tipless cantilevers and whole-cell deformation have yielded insights into cellular function, structure, and dynamics. However, in these assays the standard ≈10° tilt of the cantilever prevents uniaxial loading, which complicates assessment of cellular geometry and can cause cell sliding or loss of loosely adherent cells. Here, we describe an approach to modify tipless cantilevers with wedges and, thereby, achieve proper parallel plate mechanics. We provide guidance on material selection, the wedge production process, property and geometry assessment, and the calibration of wedged cantilevers. Furthermore, we demonstrate their ability to simplify the assessment of cell shape, prevent lateral displacement of round cells during compression, and improve the assessment of cell mechanical properties. PMID:23473778

  12. AFM-based mechanical characterization of single nanofibres.

    PubMed

    Neugirg, Benedikt R; Koebley, Sean R; Schniepp, Hannes C; Fery, Andreas

    2016-04-28

    Nanofibres are found in a broad variety of hierarchical biological systems as fundamental structural units, and nanofibrillar components are playing an increasing role in the development of advanced functional materials. Accurate determination of the mechanical properties of single nanofibres is thus of great interest, yet measurement of these properties is challenging due to the intricate specimen handling and the exceptional force and deformation resolution that is required. The atomic force microscope (AFM) has emerged as an effective, reliable tool in the investigation of nanofibrillar mechanics, with the three most popular approaches-AFM-based tensile testing, three-point deformation testing, and nanoindentation-proving preferable to conventional tensile testing in many (but not all) cases. Here, we review the capabilities and limitations of each of these methods and give a comprehensive overview of the recent advances in this field. PMID:27055900

  13. Insights into Epoxy Network Nanostructural Heterogeneity Using AFM-IR.

    PubMed

    Morsch, Suzanne; Liu, Yanwen; Lyon, Stuart B; Gibbon, Simon R

    2016-01-13

    The first direct observation of a chemically heterogeneous nanostructure within an epoxy resin is reported. Epoxy resins comprise the matrix component of many high performance composites, coatings and adhesives, yet the molecular network structure that underpins the performance of these industrially essential materials is not well understood. Internal nodular morphologies have repeatedly been reported for epoxy resins analyzed using SEM or AFM, yet the origin of these features remains a contentious subject, and epoxies are still commonly assumed to be chemically homogeneous. Uniquely, in this contribution we use the recently developed AFM-IR technique to eliminate previous differences in interpretation, and establish that nodule features correspond to heterogeneous network connectivity within an epoxy phenolic formulation. PMID:26694687

  14. AFM-based mechanical characterization of single nanofibres

    NASA Astrophysics Data System (ADS)

    Neugirg, Benedikt R.; Koebley, Sean R.; Schniepp, Hannes C.; Fery, Andreas

    2016-04-01

    Nanofibres are found in a broad variety of hierarchical biological systems as fundamental structural units, and nanofibrillar components are playing an increasing role in the development of advanced functional materials. Accurate determination of the mechanical properties of single nanofibres is thus of great interest, yet measurement of these properties is challenging due to the intricate specimen handling and the exceptional force and deformation resolution that is required. The atomic force microscope (AFM) has emerged as an effective, reliable tool in the investigation of nanofibrillar mechanics, with the three most popular approaches--AFM-based tensile testing, three-point deformation testing, and nanoindentation--proving preferable to conventional tensile testing in many (but not all) cases. Here, we review the capabilities and limitations of each of these methods and give a comprehensive overview of the recent advances in this field.

  15. LET Spectrum Measurements In CR-39 PNTD With AFM

    NASA Astrophysics Data System (ADS)

    Johnson, C. E.; DeWitt, J. M.; Benton, E. R.; Yasuda, N.; Benton, E. V.

    2011-06-01

    Energetic protons, neutrons, and heavy ions undergoing collisions with target nuclei of varying Z can produce residual heavy recoil fragments via intra-nuclear cascade/evaporation reactions. The particles produced in these non-elastic collisions generally have such extremely short range (˜<10 μm) that they cannot be directly observed by conventional detection methods including CR-39 plastic nuclear track detector (PNTD) that has been chemically etched for analysis by standard visible light microscopy. However, high-LET recoil fragments having range on the order of several cell diameters can be produced in tissue during radiotherapy using proton and carbon beams. We have developed a method to analyze short-range, high-LET tracks in CR-39 plastic nuclear track detector (PNTD) using short duration chemical etching (˜<1 μm) following by automated atomic force microscope (AFM) scanning. The post-scan data processing used in this work was based on semi-automated matrix analysis opposed to traditional grey-scale image analysis. This method takes advantage of the 3-D data obtained via AFM to achieve robust discrimination of nuclear tracks from other features inherently present in the post-etch detector surface. Through automation of AFM scanning, sufficient AFM scan frames were obtained to attain an LET spectrum spanning the LET range from 200-1500 keV/μm. In addition to our experiments, simulations were carried out with the Monte Carlo transport code, FLUKA. To demonstrate this method, CR-39 PNTD was exposed to the proton therapy beam at Loma Linda University Medical Center (LLUMC) at 60 and 230 MeV. Additionally, detectors were exposed to 1 GeV protons at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL). For these exposures CR-39 PNTD, Al and Cu target foils were used between detector layers.

  16. AFM and SThM Characterization of Graphene

    NASA Astrophysics Data System (ADS)

    Foy, Christopher; Sidorov, Anton; Chen, Xunchi; Ruan, Ming; Berger, Claire; de Heer, Walter; Jiang, Zhigang

    2012-03-01

    We report on detailed characterization of epitaxial grown graphene on SiC and chemical vapor deposition grown graphene on Cu foil using atomic force microscopy (AFM) and scanning thermal microscopy (SThM). We focus on the electronic and thermal properties of graphene grain boundaries, and thus providing valuable feedback to materials growth. Specifically, we perform thermal conductivity contrast mapping and surface potential mapping of graphene, and compare with that obtained on the Au electrodes and the substrate.

  17. Investigation of biopolymer networks by means of AFM

    NASA Astrophysics Data System (ADS)

    Keresztes, Z.; Rigó, T.; Telegdi, J.; Kálmán, E.

    Natural hydrogel alginate was investigated by means of atomic force microscopy (AFM) to gain microscale information on the morphological and rheological properties of the biopolymer network cross-linked by various cations. Local rheological properties of the gels measured by force spectroscopy gave correlation between increasing ion selectivity and increasing polymer elasticity. Adhesive forces acting between the surface of the gel and the probe, and also the intrinsic rheological properties of bulk polymers affect the microscopical image formation.

  18. LET Spectrum Measurements In CR-39 PNTD With AFM

    SciTech Connect

    Johnson, C. E.; DeWitt, J. M.; Benton, E. R.; Yasuda, N.; Benton, E. V.

    2011-06-01

    Energetic protons, neutrons, and heavy ions undergoing collisions with target nuclei of varying Z can produce residual heavy recoil fragments via intra-nuclear cascade/evaporation reactions. The particles produced in these non-elastic collisions generally have such extremely short range ({approx}<10 {mu}m) that they cannot be directly observed by conventional detection methods including CR-39 plastic nuclear track detector (PNTD) that has been chemically etched for analysis by standard visible light microscopy. However, high-LET recoil fragments having range on the order of several cell diameters can be produced in tissue during radiotherapy using proton and carbon beams. We have developed a method to analyze short-range, high-LET tracks in CR-39 plastic nuclear track detector (PNTD) using short duration chemical etching ({approx}<1 {mu}m) following by automated atomic force microscope (AFM) scanning. The post-scan data processing used in this work was based on semi-automated matrix analysis opposed to traditional grey-scale image analysis. This method takes advantage of the 3-D data obtained via AFM to achieve robust discrimination of nuclear tracks from other features inherently present in the post-etch detector surface. Through automation of AFM scanning, sufficient AFM scan frames were obtained to attain an LET spectrum spanning the LET range from 200-1500 keV/{mu}m. In addition to our experiments, simulations were carried out with the Monte Carlo transport code, FLUKA. To demonstrate this method, CR-39 PNTD was exposed to the proton therapy beam at Loma Linda University Medical Center (LLUMC) at 60 and 230 MeV. Additionally, detectors were exposed to 1 GeV protons at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL). For these exposures CR-39 PNTD, Al and Cu target foils were used between detector layers.

  19. LET spectrum measurements in Cr-39 PNTD with AFM

    SciTech Connect

    Johnson, Carl Edward; De Witt, Joel M; Benton, Eric R; Yasuda, Nakahiro; Benton, Eugene V

    2010-01-01

    Energetic protons, neutrons, and heavy ions undergoing collisions with target nuclei of varying Z can produce residual heavy recoil fragments via intra-nuclear cascade/evaporation reactions. The particles produced in these non-elastic collisions generally have such extremely short range ({approx}< 10 {mu}m) that they cannot be directly observed by conventional detection methods including CR-39 plastic nuclear track detector (PNTD) that has been chemically etched for analysis by standard visible light microscopy. However, high-LET recoil fragments having range on the order of several cell diameters can be produced in tissue during radiotherapy using proton and carbon beams. We have developed a method to analyze short-range, high-LET tracks in CR-39 plastic nuclear track detector (PNTD) using short duration chemical etching ({approx}< 1 {mu}m) followed by automated atomic force microscope (AFM) scanning. The post-scan data processing used in this work was based on semi-automated matrix analysis opposed to traditional grey-scale image analysis. This method takes advantage of the 3-D data obtained via AFM to achieve robust discrimination of nuclear tracks from other features. Through automation of AFM scanning, sufficient AFM scan frames were obtained to attain an LET spectrum spanning the LET range from 200-1500 keV/{mu}m. In addition to our experiments, simulations were carried out with the Monte Carlo transport code, FLUKA. To demonstrate this method, CR-39 PNTD was exposed to the proton therapy beam at Loma Linda University Medical Center (LLUMC) at 60 and 230 MeV. Additionally, detectors were exposed to I GeV protons at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL). For these exposures CR-39 PNTD, Al and Cu target foils were used between detector layers.

  20. Topical application of Katupila (Securinega leucopyrus) in Dushta Vrana (chronic wound) showing excellent healing effect: A case study

    PubMed Central

    Ajmeer, Ahamed Shahan; Dudhamal, Tukaram S.; Gupta, Sanjay Kumar; Mahanta, Vyasadeva

    2014-01-01

    Securinega leucopyrus (Willd.) Muell. is known as Humari in India, Katupila in Sri Lanka and Spinous fluggea in English. It is a desert climatic plant used topically in paste form for healing of chronic and non-healing wounds. Application of Katupila Kalka (paste) is used commonly in the management of acute as well as chronic wounds in Sri Lanka as a folklore medicine. The aim of this study is to evaluate the role of herbal paste of Katupila in the treatment of Dushta Vrana (chronic wound). It is a single observational innovative case study. A female aged 40 years presented with a non-healing infected wound on her right buttock with a history of 2 months. On examination, there was a rounded wound having black color necrosed tissue and slough with foul smelling, measuring about 3 inch × 3 inch × 1 inch in diameter caused by pyogenic local infection. The routine laboratory investigations were within normal limit except hemoglobin and the swab culture test of the wound bed was reported infection of Staphylococcus aureus. This case study showed effective wound healing by topical application of Katupila paste and sesame oil. PMID:25558163

  1. Micromagnetic, rockmagnetic and mineralogical studies on Dacitic Pumice from the Pinatubo Eruption (1991, Phillipines) Showing self-reversed TRM

    NASA Astrophysics Data System (ADS)

    Hoffmann, V.; Fehr, K. Th.

    Detailed micromagnetic, rockmagnetic and mineralogical investigations on dacitic pumice from the eruption of Mt. Pinatubo (1991, Phillipines) showing reversed NRM/TRM are presented. Two intergrown hemoilmenite-phases in chemically zoned particles were detected as being responsible: a rim-(or covering) phase consisting of a weak-ferromagnetic (disordered) hemoilmenite phase (low saturation magnetization but magnetically hard like hematite, FeTiO3 content 53-57 mol percent) and a core-phase consisting of a ferrimagnetic (ordered) hemoilmenite phase (high saturation magnetization but magnetically softer, constant FeTiO3 content ≈ 58 mol percent). Preliminary studies were carried out in order to elucidate the magnetic interactions (possibly exchange coupling) responsible for the self-reversal of the NRM/TRM. A preliminary and schematic model is presented which summarizes the main points of acquisition of a self-reversed TRM according to our results.

  2. Near-Field Spectroscopy with Nanoparticles Deposited by AFM

    NASA Technical Reports Server (NTRS)

    Anderson, Mark S.

    2008-01-01

    An alternative approach to apertureless near-field optical spectroscopy involving an atomic-force microscope (AFM) entails less complexity of equipment than does a prior approach. The alternative approach has been demonstrated to be applicable to apertureless near-field optical spectroscopy of the type using an AFM and surface enhanced Raman scattering (SERS), and is expected to be equally applicable in cases in which infrared or fluorescence spectroscopy is used. Apertureless near-field optical spectroscopy is a means of performing spatially resolved analyses of chemical compositions of surface regions of nanostructured materials. In apertureless near-field spectroscopy, it is common practice to utilize nanostructured probe tips or nanoparticles (usually of gold) having shapes and dimensions chosen to exploit plasmon resonances so as to increase spectroscopic-signal strengths. To implement the particular prior approach to which the present approach is an alternative, it is necessary to integrate a Raman spectrometer with an AFM and to utilize a special SERS-active probe tip. The resulting instrumentation system is complex, and the tasks of designing and constructing the system and using the system to acquire spectro-chemical information from nanometer-scale regions on a surface are correspondingly demanding.

  3. Tissue section AFM: In situ ultrastructural imaging of native biomolecules

    PubMed Central

    Graham, Helen K.; Hodson, Nigel W.; Hoyland, Judith A.; Millward-Sadler, Sarah J.; Garrod, David; Scothern, Anthea; Griffiths, Christopher E.M.; Watson, Rachel E.B.; Cox, Thomas R.; Erler, Janine T.; Trafford, Andrew W.; Sherratt, Michael J.

    2010-01-01

    Conventional approaches for ultrastructural high-resolution imaging of biological specimens induce profound changes in bio-molecular structures. By combining tissue cryo-sectioning with non-destructive atomic force microscopy (AFM) imaging we have developed a methodology that may be applied by the non-specialist to both preserve and visualize bio-molecular structures (in particular extracellular matrix assemblies) in situ. This tissue section AFM technique is capable of: i) resolving nm–µm scale features of intra- and extracellular structures in tissue cryo-sections; ii) imaging the same tissue region before and after experimental interventions; iii) combining ultrastructural imaging with complimentary microscopical and micromechanical methods. Here, we employ this technique to: i) visualize the macro-molecular structures of unstained and unfixed fibrillar collagens (in skin, cartilage and intervertebral disc), elastic fibres (in aorta and lung), desmosomes (in nasal epithelium) and mitochondria (in heart); ii) quantify the ultrastructural effects of sequential collagenase digestion on a single elastic fibre; iii) correlate optical (auto fluorescent) with ultrastructural (AFM) images of aortic elastic lamellae. PMID:20144712

  4. AFM imaging of functionalized carbon nanotubes on biological membranes

    NASA Astrophysics Data System (ADS)

    Lamprecht, C.; Liashkovich, I.; Neves, V.; Danzberger, J.; Heister, E.; Rangl, M.; Coley, H. M.; McFadden, J.; Flahaut, E.; Gruber, H. J.; Hinterdorfer, P.; Kienberger, F.; Ebner, A.

    2009-10-01

    Multifunctional carbon nanotubes are promising for biomedical applications as their nano-size, together with their physical stability, gives access into the cell and various cellular compartments including the nucleus. However, the direct and label-free detection of carbon nanotube uptake into cells is a challenging task. The atomic force microscope (AFM) is capable of resolving details of cellular surfaces at the nanometer scale and thus allows following of the docking of carbon nanotubes to biological membranes. Here we present topographical AFM images of non-covalently functionalized single walled (SWNT) and double walled carbon nanotubes (DWNT) immobilized on different biological membranes, such as plasma membranes and nuclear envelopes, as well as on a monolayer of avidin molecules. We were able to visualize DWNT on the nuclear membrane while at the same time resolving individual nuclear pore complexes. Furthermore, we succeeded in localizing individual SWNT at the border of incubated cells and in identifying bundles of DWNT on cell surfaces by AFM imaging.

  5. Thermal unfolding studies show the disease causing F508del mutation in CFTR thermodynamically destabilizes nucleotide-binding domain 1

    PubMed Central

    Protasevich, Irina; Yang, Zhengrong; Wang, Chi; Atwell, Shane; Zhao, Xun; Emtage, Spencer; Wetmore, Diana; Hunt, John F; Brouillette, Christie G

    2010-01-01

    Misfolding and degradation of CFTR is the cause of disease in patients with the most prevalent CFTR mutation, an in-frame deletion of phenylalanine (F508del), located in the first nucleotide-binding domain of human CFTR (hNBD1). Studies of (F508del)CFTR cellular folding suggest that both intra- and inter-domain folding is impaired. (F508del)CFTR is a temperature-sensitive mutant, that is, lowering growth temperature, improves both export, and plasma membrane residence times. Yet, paradoxically, F508del does not alter the fold of isolated hNBD1 nor did it seem to perturb its unfolding transition in previous isothermal chemical denaturation studies. We therefore studied the in vitro thermal unfolding of matched hNBD1 constructs ±F508del to shed light on the defective folding mechanism and the basis for the thermal instability of (F508del)CFTR. Using primarily differential scanning calorimetry (DSC) and circular dichroism, we show for all hNBD1 pairs studied, that F508del lowers the unfolding transition temperature (Tm) by 6–7°C and that unfolding occurs via a kinetically-controlled, irreversible transition in isolated monomers. A thermal unfolding mechanism is derived from nonlinear least squares fitting of comprehensive DSC data sets. All data are consistent with a simple three-state thermal unfolding mechanism for hNBD1 ± F508del: N(±MgATP) ⇄ IT(±MgATP) → AT → (AT)n. The equilibrium unfolding to intermediate, IT, is followed by the rate-determining, irreversible formation of a partially folded, aggregation-prone, monomeric state, AT, for which aggregation to (AT)n and further unfolding occur with no detectable heat change. Fitted parameters indicate that F508del thermodynamically destabilizes the native state, N, and accelerates the formation of AT. PMID:20687133

  6. Phosphorylation of Ser-180 of rat aquaporin-4 shows marginal affect on regulation of water permeability: molecular dynamics study.

    PubMed

    Sachdeva, Ruchi; Singh, Balvinder

    2014-04-01

    Water permeation through rat aquaporin-4 (rAQP4), predominantly found in mammalian brain is regulated by phosphorylation of Ser-180. The present study has been carried out to understand the structural mechanism of regulation of water permeability across the channel. Molecular dynamics (MD) simulations have been carried out to investigate the structural changes caused due to phosphorylation of Ser-180 in the tetrameric assembly of rAQP4 along with predicted C-terminal region (255-323). The interactions involving opposite charges are observed between cytoplasmic loops and the C-terminal region during MD simulations. This results in movement of C-terminal region of rAQP4 towards the cytoplasmic mouth of water channel. Despite this movement, there was a gap between C-terminal region and cytoplasmic mouth of the channel through which water molecules were able to gain entry into the channel. The interactions between C-terminus and loop D of neighboring monomers in a tetrameric assembly appear to prevent the complete closure of cytoplasmic mouth of the water channel. Further, the rates of water permeation through phosphorylated and unphosphorylated rAQP4 have also been compared. The simulation studies showed a continuous movement of water in a single file across pore of unphosphorylated as well as phosphorylated rAQP4. PMID:23651078

  7. spa Typing and Multilocus Sequence Typing Show Comparable Performance in a Macroepidemiologic Study of Staphylococcus aureus in the United States.

    PubMed

    O'Hara, F Patrick; Suaya, Jose A; Ray, G Thomas; Baxter, Roger; Brown, Megan L; Mera, Robertino M; Close, Nicole M; Thomas, Elizabeth; Amrine-Madsen, Heather

    2016-01-01

    A number of molecular typing methods have been developed for characterization of Staphylococcus aureus isolates. The utility of these systems depends on the nature of the investigation for which they are used. We compared two commonly used methods of molecular typing, multilocus sequence typing (MLST) (and its clustering algorithm, Based Upon Related Sequence Type [BURST]) with the staphylococcal protein A (spa) typing (and its clustering algorithm, Based Upon Repeat Pattern [BURP]), to assess the utility of these methods for macroepidemiology and evolutionary studies of S. aureus in the United States. We typed a total of 366 clinical isolates of S. aureus by these methods and evaluated indices of diversity and concordance values. Our results show that, when combined with the BURP clustering algorithm to delineate clonal lineages, spa typing produces results that are highly comparable with those produced by MLST/BURST. Therefore, spa typing is appropriate for use in macroepidemiology and evolutionary studies and, given its lower implementation cost, this method appears to be more efficient. The findings are robust and are consistent across different settings, patient ages, and specimen sources. Our results also support a model in which the methicillin-resistant S. aureus (MRSA) population in the United States comprises two major lineages (USA300 and USA100), which each consist of closely related variants. PMID:26669861

  8. spa Typing and Multilocus Sequence Typing Show Comparable Performance in a Macroepidemiologic Study of Staphylococcus aureus in the United States

    PubMed Central

    O'Hara, F. Patrick; Suaya, Jose A.; Ray, G. Thomas; Baxter, Roger; Brown, Megan L.; Mera, Robertino M.; Close, Nicole M.; Thomas, Elizabeth

    2016-01-01

    A number of molecular typing methods have been developed for characterization of Staphylococcus aureus isolates. The utility of these systems depends on the nature of the investigation for which they are used. We compared two commonly used methods of molecular typing, multilocus sequence typing (MLST) (and its clustering algorithm, Based Upon Related Sequence Type [BURST]) with the staphylococcal protein A (spa) typing (and its clustering algorithm, Based Upon Repeat Pattern [BURP]), to assess the utility of these methods for macroepidemiology and evolutionary studies of S. aureus in the United States. We typed a total of 366 clinical isolates of S. aureus by these methods and evaluated indices of diversity and concordance values. Our results show that, when combined with the BURP clustering algorithm to delineate clonal lineages, spa typing produces results that are highly comparable with those produced by MLST/BURST. Therefore, spa typing is appropriate for use in macroepidemiology and evolutionary studies and, given its lower implementation cost, this method appears to be more efficient. The findings are robust and are consistent across different settings, patient ages, and specimen sources. Our results also support a model in which the methicillin-resistant S. aureus (MRSA) population in the United States comprises two major lineages (USA300 and USA100), which each consist of closely related variants. PMID:26669861

  9. The social well-being of nurses shows a thirst for a holistic support: A qualitative study

    PubMed Central

    Mozaffari, Naser; Peyrovi, Hamid; Nayeri, Nahid Dehghan

    2015-01-01

    Introduction Social well-being is one of the important aspects of health. In fact, this is a reflection of experience in a social environment, indicating how social challenges are determined. In other words, social well-being is an explanation of people's perception and experience of being in a good situation, satisfaction with the structure, and social interaction. This qualitative study intended to explore nurses’ experience of social well-being. Methods Qualitative content analysis was used to conduct the study. Through purposive sampling, a total of 18 nurses with various clinical experiences participated in semi-structured interviews. The data were analysed using the five-step, qualitative content analysis introduced by Graneheim and Lundman. Results The main theme extracted from the data analysis was “thirst for a holistic support” in nurses. It consisted of two subthemes including internal support (family's support, colleague's support, and organizational support) and external support (society's support and media's support). Conclusions and discussion Nurses’ experiences in shaping their social well-being show that nurses need support in order to rebuild their social well-being. It is supported in partnership with the media, the community, health-related organizations, and by nurses and family. This improves job satisfaction, hope, motivation, commitment, and confidence so as to ultimately facilitate improvement of social well-being of nurses. PMID:26381217

  10. Clinical and Biomarker Changes in Premanifest Huntington Disease Show Trial Feasibility: A Decade of the PREDICT-HD Study

    PubMed Central

    Paulsen, Jane S.; Long, Jeffrey D.; Johnson, Hans J.; Aylward, Elizabeth H.; Ross, Christopher A.; Williams, Janet K.; Nance, Martha A.; Erwin, Cheryl J.; Westervelt, Holly J.; Harrington, Deborah L.; Bockholt, H. Jeremy; Zhang, Ying; McCusker, Elizabeth A.; Chiu, Edmond M.; Panegyres, Peter K.

    2014-01-01

    There is growing consensus that intervention and treatment of Huntington disease (HD) should occur at the earliest stage possible. Various early-intervention methods for this fatal neurodegenerative disease have been identified, but preventive clinical trials for HD are limited by a lack of knowledge of the natural history of the disease and a dearth of appropriate outcome measures. Objectives of the current study are to document the natural history of premanifest HD progression in the largest cohort ever studied and to develop a battery of imaging and clinical markers of premanifest HD progression that can be used as outcome measures in preventive clinical trials. Neurobiological predictors of Huntington’s disease is a 32-site, international, observational study of premanifest HD, with annual examination of 1013 participants with premanifest HD and 301 gene-expansion negative controls between 2001 and 2012. Findings document 39 variables representing imaging, motor, cognitive, functional, and psychiatric domains, showing different rates of decline between premanifest HD and controls. Required sample size and models of premanifest HD are presented to inform future design of clinical and preclinical research. Preventive clinical trials in premanifest HD with participants who have a medium or high probability of motor onset are calculated to be as resource-effective as those conducted in diagnosed HD and could interrupt disease 7–12 years earlier. Methods and measures for preventive clinical trials in premanifest HD more than a dozen years from motor onset are also feasible. These findings represent the most thorough documentation of a clinical battery for experimental therapeutics in stages of premanifest HD, the time period for which effective intervention may provide the most positive possible outcome for patients and their families affected by this devastating disease. PMID:24795630

  11. Genome-wide association study identifies novel locus for neuroticism and shows polygenic association with Major Depressive Disorder

    PubMed Central

    de Moor, Marleen H.M.; van den Berg, Stéphanie M.; Verweij, Karin J.H.; Krueger, Robert F.; Luciano, Michelle; Vasquez, Alejandro Arias; Matteson, Lindsay K.; Derringer, Jaime; Esko, Tõnu; Amin, Najaf; Gordon, Scott D.; Hansell, Narelle K.; Hart, Amy B.; Seppälä, Ilkka; Huffman, Jennifer E.; Konte, Bettina; Lahti, Jari; Lee, Minyoung; Miller, Mike; Nutile, Teresa; Tanaka, Toshiko; Teumer, Alexander; Viktorin, Alexander; Wedenoja, Juho; Abecasis, Goncalo R.; Adkins, Daniel E.; Agrawal, Arpana; Allik, Jüri; Appel, Katja; Bigdeli, Timothy B.; Busonero, Fabio; Campbell, Harry; Costa, Paul T.; Smith, George Davey; Davies, Gail; de Wit, Harriet; Ding, Jun; Engelhardt, Barbara E.; Eriksson, Johan G.; Fedko, Iryna O.; Ferrucci, Luigi; Franke, Barbara; Giegling, Ina; Grucza, Richard; Hartmann, Annette M.; Heath, Andrew C.; Heinonen, Kati; Henders, Anjali K.; Homuth, Georg; Hottenga, Jouke-Jan; Janzing, Joost; Jokela, Markus; Karlsson, Robert; Kemp, John P.; Kirkpatrick, Matthew G.; Latvala, Antti; Lehtimäki, Terho; Liewald, David C.; Madden, Pamela A.F.; Magri, Chiara; Magnusson, Patrik K.E.; Marten, Jonathan; Maschio, Andrea; Medland, Sarah E.; Mihailov, Evelin; Milaneschi, Yuri; Montgomery, Grant W.; Nauck, Matthias; Ouwens, Klaasjan G.; Palotie, Aarno; Pettersson, Erik; Polasek, Ozren; Qian, Yong; Pulkki-Råback, Laura; Raitakari, Olli T.; Realo, Anu; Rose, Richard J.; Ruggiero, Daniela; Schmidt, Carsten O.; Slutske, Wendy S.; Sorice, Rossella; Starr, John M.; Pourcain, Beate St; Sutin, Angelina R.; Timpson, Nicholas J.; Trochet, Holly; Vermeulen, Sita; Vuoksimaa, Eero; Widen, Elisabeth; Wouda, Jasper; Wright, Margaret J.; Zgaga, Lina; Scotland, Generation; Porteous, David; Minelli, Alessandra; Palmer, Abraham A.; Rujescu, Dan; Ciullo, Marina; Hayward, Caroline; Rudan, Igor; Metspalu, Andres; Kaprio, Jaakko; Deary, Ian J.; Räikkönen, Katri; Wilson, James F.; Keltikangas-Järvinen, Liisa; Bierut, Laura J.; Hettema, John M.; Grabe, Hans J.; van Duijn, Cornelia M.; Evans, David M.; Schlessinger, David; Pedersen, Nancy L.; Terracciano, Antonio; McGue, Matt; Penninx, Brenda W.J.H.; Martin, Nicholas G.; Boomsma, Dorret I.

    2015-01-01

    shows that neuroticism is influenced by many genetic variants of small effect that are either common or tagged by common variants. These genetic variants also influence MDD. Future studies should confirm the role of the MAGI1 locus for neuroticism, and further investigate the association of MAGI1 and the polygenic association to a range of other psychiatric disorders that are phenotypically correlated with neuroticism. PMID:25993607

  12. Television Quiz Show Simulation

    ERIC Educational Resources Information Center

    Hill, Jonnie Lynn

    2007-01-01

    This article explores the simulation of four television quiz shows for students in China studying English as a foreign language (EFL). It discusses the adaptation and implementation of television quiz shows and how the students reacted to them.

  13. High-fidelity AFM scanning stage based on multilayer ceramic capacitors.

    PubMed

    Chen, Jian; Zhang, Lian Sheng; Feng, Zhi Hua

    2016-05-01

    A kind of multilayer ceramic capacitors (MLCCs) has been verified to have good micro-actuating properties, thus making them good candidates for nano-positioning. In this paper, we successfully employed the MLCCs as lateral scanners for a tripod scanning stage. The MLCC-based lateral scanners display hysteresis under 1.5% and a nonlinearity less than 2% even with the simplest open-loop voltage drive. The developed scanning stage was integrated into a commercial AFM to evaluate its imaging performance. Experimental results showed that sample images with high fidelities were obtained. SCANNING 38:184-190, 2016. © 2015 Wiley Periodicals, Inc. PMID:26367125

  14. Thermal unfolding studies show the disease causing F508del mutation in CFTR thermodynamically destabilizes nucleotide-binding domain 1.

    PubMed

    Protasevich, Irina; Yang, Zhengrong; Wang, Chi; Atwell, Shane; Zhao, Xun; Emtage, Spencer; Wetmore, Diana; Hunt, John F; Brouillette, Christie G

    2010-10-01

    Misfolding and degradation of CFTR is the cause of disease in patients with the most prevalent CFTR mutation, an in-frame deletion of phenylalanine (F508del), located in the first nucleotide-binding domain of human CFTR (hNBD1). Studies of (F508del)CFTR cellular folding suggest that both intra- and inter-domain folding is impaired. (F508del)CFTR is a temperature-sensitive mutant, that is, lowering growth temperature, improves both export, and plasma membrane residence times. Yet, paradoxically, F508del does not alter the fold of isolated hNBD1 nor did it seem to perturb its unfolding transition in previous isothermal chemical denaturation studies. We therefore studied the in vitro thermal unfolding of matched hNBD1 constructs ±F508del to shed light on the defective folding mechanism and the basis for the thermal instability of (F508del)CFTR. Using primarily differential scanning calorimetry (DSC) and circular dichroism, we show for all hNBD1 pairs studied, that F508del lowers the unfolding transition temperature (T(m)) by 6-7°C and that unfolding occurs via a kinetically-controlled, irreversible transition in isolated monomers. A thermal unfolding mechanism is derived from nonlinear least squares fitting of comprehensive DSC data sets. All data are consistent with a simple three-state thermal unfolding mechanism for hNBD1 ± F508del: N(±MgATP) <==> I(T)(±MgATP) → A(T) → (A(T))(n). The equilibrium unfolding to intermediate, I(T), is followed by the rate-determining, irreversible formation of a partially folded, aggregation-prone, monomeric state, A(T), for which aggregation to (A(T))(n) and further unfolding occur with no detectable heat change. Fitted parameters indicate that F508del thermodynamically destabilizes the native state, N, and accelerates the formation of A(T). PMID:20687133

  15. Experimental and molecular dynamics studies showed that CBP KIX mutation affects the stability of CBP:c-Myb complex.

    PubMed

    Odoux, Anne; Jindal, Darren; Tamas, Tamara C; Lim, Benjamin W H; Pollard, Drake; Xu, Wu

    2016-06-01

    The coactivators CBP (CREBBP) and its paralog p300 (EP300), two conserved multi-domain proteins in eukaryotic organisms, regulate gene expression in part by binding DNA-binding transcription factors. It was previously reported that the CBP/p300 KIX domain mutant (Y650A, A654Q, and Y658A) altered both c-Myb-dependent gene activation and repression, and that mice with these three point mutations had reduced numbers of platelets, B cells, T cells, and red blood cells. Here, our transient transfection assays demonstrated that mouse embryonic fibroblast cells containing the same mutations in the KIX domain and without a wild-type allele of either CBP or p300, showed decreased c-Myb-mediated transcription. Dr. Wright's group solved a 3-D structure of the mouse CBP:c-Myb complex using NMR. To take advantage of the experimental structure and function data and improved theoretical calculation methods, we performed MD simulations of CBP KIX, CBP KIX with the mutations, and c-Myb, as well as binding energy analysis for both the wild-type and mutant complexes. The binding between CBP and c-Myb is mainly mediated by a shallow hydrophobic groove in the center where the side-chain of Leu302 of c-Myb plays an essential role and two salt bridges at the two ends. We found that the KIX mutations slightly decreased stability of the CBP:c-Myb complex as demonstrated by higher binding energy calculated using either MM/PBSA or MM/GBSA methods. More specifically, the KIX mutations affected the two salt bridges between CBP and c-Myb (CBP-R646 and c-Myb-E306; CBP-E665 and c-Myb-R294). Our studies also revealed differing dynamics of the hydrogen bonds between CBP-R646 and c-Myb-E306 and between CBP-E665 and c-Myb-R294 caused by the CBP KIX mutations. In the wild-type CBP:c-Myb complex, both of the hydrogen bonds stayed relatively stable. In contrast, in the mutant CBP:c-Myb complex, hydrogen bonds between R646 and E306 showed an increasing trend followed by a decreasing trend, and hydrogen

  16. Assembly of live micro-organisms on microstructured PDMS stamps by convective/capillary deposition for AFM bio-experiments

    NASA Astrophysics Data System (ADS)

    Dague, E.; Jauvert, E.; Laplatine, L.; Viallet, B.; Thibault, C.; Ressier, L.

    2011-09-01

    Immobilization of live micro-organisms on solid substrates is an important prerequisite for atomic force microscopy (AFM) bio-experiments. The method employed must immobilize the cells firmly enough to enable them to withstand the lateral friction forces exerted by the tip during scanning but without denaturing the cell interface. In this work, a generic method for the assembly of living cells on specific areas of substrates is proposed. It consists in assembling the living cells within the patterns of microstructured, functionalized poly-dimethylsiloxane (PDMS) stamps using convective/capillary deposition. This versatile approach is validated by applying it to two systems of foremost importance in biotechnology and medicine: Saccharomyces cerevisiae yeasts and Aspergillus fumigatus fungal spores. We show that this method allows multiplexing AFM nanomechanical measurements by force spectroscopy on S. cerevisiae yeasts and high-resolution AFM imaging of germinated Aspergillus conidia in buffer medium. These two examples clearly demonstrate the immense potential of micro-organism assembly on functionalized, microstructured PDMS stamps by convective/capillary deposition for performing rigorous AFM bio-experiments on living cells.

  17. Nationwide Surveillance Study of Clostridium difficile in Australian Neonatal Pigs Shows High Prevalence and Heterogeneity of PCR Ribotypes

    PubMed Central

    Knight, Daniel R.; Squire, Michele M.

    2014-01-01

    Clostridium difficile is an important enteric pathogen of humans and the cause of diarrhea and enteritis in neonatal pigs. Outside Australia, prevalence in piglets can be up to 73%, with a single PCR ribotype (RT), 078, predominating. We investigated the prevalence and genotype of C. difficile in Australian pig herds. Rectal swabs (n = 229) were collected from piglets aged <7 days from 21 farms across Australia. Selective culture for C. difficile was performed and isolates characterized by PCR for toxin genes and PCR ribotyping. C. difficile was isolated from 52% of samples by direct culture on chromogenic agar and 67% by enrichment culture (P = 0.001). No association between C. difficile recovery or genotype and diarrheic status of either farm or piglets was found. The majority (87%; 130/154) of isolates were toxigenic. Typing revealed 23 different RTs, several of which are known to cause disease in humans, including RT014, which was isolated most commonly (23%; 36/154). RT078 was not detected. This study shows that colonization of Australian neonatal piglets with C. difficile is widespread in the herds sampled. PMID:25326297

  18. Spermatozoa bound to solid state hyaluronic acid show chromatin structure with high DNA chain integrity: an acridine orange fluorescence study.

    PubMed

    Yagci, Artay; Murk, William; Stronk, Jill; Huszar, Gabor

    2010-01-01

    During human spermiogenesis, the elongated spermatids undergo a plasma membrane remodeling step that facilitates formation of the zona pellucida and hyaluronic acid (HA) binding sites. Various biochemical sperm markers indicated that human sperm bound to HA exhibit attributes similar to that of zona pellucida-bound sperm, including minimal DNA fragmentation, normal shape, and low frequency of chromosomal aneuploidies. In this work, we tested the hypothesis that HA-bound sperm would be enhanced in sperm of high DNA chain integrity and green acridine orange fluorescence (AOF) compared with the original sperm in semen. Sperm DNA integrity in semen and in their respective HA-bound sperm fractions was studied in 50 men tested for fertility. In the semen samples, the proportions of sperm with green AOF (high DNA integrity) and red AOF (DNA breaks) were 54.9% ± 2.0% and 45.0% ± 1.9%, whereas in the HA-bound sperm fraction, the respective proportions were 99% and 1.0%, respectively. The data indeed demonstrated that HA shows a high degree of selectivity for sperm with high DNA integrity. These findings are important from the points of view of human sperm DNA integrity, sperm function, and the potential efficacy of HA-mediated sperm selection for intracytoplasmic sperm injection. PMID:20133967

  19. Correlation and Characterization of 3D Morphological Dependent Localized Surface Plasmon Resonance Spectra of Single Silver Nanoparticles Using Dark-field Optical Microscopy and Spectroscopy and AFM

    PubMed Central

    Song, Yujun; Nallathamby, Prakash D.; Huang, Tao; Elsayed-Ali, Hani E.; Xu, Xiao-Hong Nancy

    2009-01-01

    We have developed a new and effective methodology to correlate optical and AFM images of single Ag nanoparticles (NPs), allowing us to study 3D-morphological dependent localized surface plasmon resonance (LSPR) spectra of individual Ag NPs. We fabricated arrays of distinctive microwindows on glass coverslips using photo-lithography method, and created well-isolated individual Ag NPs with a wide variety of shapes and morphologies on the glass coverslips using a modified nanosphere lithography method (NSL). Using distinctive geometries of microwindows, we located individual Ag NPs of interest in their optical and AFM images, enabling us to correlate and characterize the LSPR spectra and 3D morphologies of the same single NPs using dark-field optical microscopy and spectroscopy (DFOMS) and AFM, respectively. We found that LSPR spectra of single Ag NPs, with nearly equal volume [(8.6 ± 0.4) × 103 nm3], cross-section [(2.2 ± 0.2) × 102 nm3], and height (39.6 ± 3.6 nm), highly depend on their shapes, showing the red shift of peak wavelength to 629 nm (quasi trapezoidal cylindrical NP) from that of 506 nm (quasi circular cylindrical NP). LSPR spectra of single Ag NPs simulated using discrete dipole approximation (DDA) agree well with those measured experimentally when their shapes and morphologies can be accuractely described in both methods, but differ when they are not. Furthermore, we found location-dependent LSPR spectra on and around a single NP, offering a unique opportunity to characterize multi-mode plasmonic NPs at nanometer resolution for better understanding their plasmonic optical properties and for rational design of single NP optics. PMID:20190865

  20. Prognostic Role of Ventricular Ectopic Beats in Systemic Sclerosis: A Prospective Cohort Study Shows ECG Indexes Predicting the Worse Outcome

    PubMed Central

    Gabrielli, Francesca Augusta; Berardi, Giorgia; Parisi, Federico; Rucco, Manuela; Canestrari, Giovanni; Loperfido, Francesco; Galiuto, Leonarda; Crea, Filippo; Ferraccioli, Gianfranco

    2016-01-01

    Background Arrhythmias are frequent in Systemic Sclerosis (SSc) and portend a bad prognosis, accounting alone for 6% of total deaths. Many of these patients die suddenly, thus prevention and intensified risk-stratification represent unmet medical needs. The major goal of this study was the definition of ECG indexes of poor prognosis. Methods We performed a prospective cohort study to define the role of 24h-ECG-Holter as an additional risk-stratification technique in the identification of SSc-patients at high risk of life-threatening arrhythmias and sudden cardiac death (SCD). One-hundred SSc-patients with symptoms and/or signs suggestive of cardiac involvement underwent 24h-ECG-Holter. The primary end-point was a composite of SCD or need for implantable cardioverter defibrillator (ICD). Results Fifty-six patients (56%) had 24h-ECG-Holter abnormalities and 24(24%) presented frequent ventricular ectopic beats (VEBs). The number of VEBs correlated with high-sensitive cardiac troponin T (hs-cTnT) levels and inversely correlated with left-ventricular ejection fraction (LV-EF) on echocardiography. During a mean follow-up of 23.1±16.0 months, 5 patients died suddenly and two required ICD-implantation. The 7 patients who met the composite end-point had a higher number of VEBs, higher levels of hs-cTnT and NT-proBNP and lower LV-EF (p = 0.001 for all correlations). All these 7 patients had frequent VEBs, while LV-EF was not reduced in all and its range was wide. At ROC curve, VEBs>1190/24h showed 100% of sensitivity and 83% of specificity to predict the primary end-point (AUROC = 0.92,p<0.0001). Patients with VEBS>1190/24h had lower LV-EF and higher hs-cTnT levels and, at multivariate analysis, the presence of increased hs-cTnT and of right bundle branch block on ECG emerged as independent predictors of VEBs>1190/24h. None of demographic or disease-related characteristics emerged as predictors of poor outcome. Conclusions VEBS>1190/24h identify patients at high risk of

  1. Microbiological Evaluation of Household Drinking Water Treatment in Rural China Shows Benefits of Electric Kettles: A Cross-Sectional Study

    PubMed Central

    Cohen, Alasdair; Tao, Yong; Luo, Qing; Zhong, Gemei; Romm, Jeff; Colford, John M.; Ray, Isha

    2015-01-01

    Background In rural China ~607 million people drink boiled water, yet little is known about prevailing household water treatment (HWT) methods or their effectiveness. Boiling, the most common HWT method globally, is microbiologically effective, but household air pollution (HAP) from burning solid fuels causes cardiovascular and respiratory disease, and black carbon emissions exacerbate climate change. Boiled water is also easily re-contaminated. Our study was designed to identify the HWT methods used in rural China and to evaluate their effectiveness. Methods We used a geographically stratified cross-sectional design in rural Guangxi Province to collect survey data from 450 households in the summer of 2013. Household drinking water samples were collected and assayed for Thermotolerant Coliforms (TTC), and physicochemical analyses were conducted for village drinking water sources. In the winter of 2013–2104, we surveyed 120 additional households and used remote sensors to corroborate self-reported boiling data. Findings Our HWT prevalence estimates were: 27.1% boiling with electric kettles, 20.3% boiling with pots, 34.4% purchasing bottled water, and 18.2% drinking untreated water (for these analyses we treated bottled water as a HWT method). Households using electric kettles had the lowest concentrations of TTC (73% lower than households drinking untreated water). Multilevel mixed-effects regression analyses showed that electric kettles were associated with the largest Log10TTC reduction (-0.60, p<0.001), followed by bottled water (-0.45, p<0.001) and pots (-0.44, p<0.01). Compared to households drinking untreated water, electric kettle users also had the lowest risk of having TTC detected in their drinking water (risk ratio, RR = 0.49, 0.34–0.70, p<0.001), followed by bottled water users (RR = 0.70, 0.53–0.93, p<0.05) and households boiling with pots (RR = 0.74, 0.54–1.02, p = 0.06). Conclusion As far as we are aware, this is the first HWT-focused study in

  2. A tetravalent bispecific TandAb (CD19/CD3), AFM11, efficiently recruits T cells for the potent lysis of CD19+ tumor cells

    PubMed Central

    Reusch, Uwe; Duell, Johannes; Ellwanger, Kristina; Herbrecht, Carmen; Knackmuss, Stefan HJ; Fucek, Ivica; Eser, Markus; McAleese, Fionnuala; Molkenthin, Vera; Le Gall, Fabrice; Topp, Max; Little, Melvyn; Zhukovsky, Eugene A

    2015-01-01

    To harness the potent tumor-killing capacity of T cells for the treatment of CD19+ malignancies, we constructed AFM11, a humanized tetravalent bispecific CD19/CD3 tandem diabody (TandAb) consisting solely of Fv domains. The molecule exhibits good manufacturability and stability properties. AFM11 has 2 binding sites for CD3 and 2 for CD19, an antigen that is expressed from early B cell development through differentiation into plasma cells, and is an attractive alternative to CD20 as a target for the development of therapeutic antibodies to treat B cell malignancies. Comparison of the binding and cytotoxicity of AFM11 with those of a tandem scFv bispecific T cell engager (BiTE) molecule targeting the same antigens revealed that AFM11 elicited more potent in vitro B cell lysis. Though possessing high affinity to CD3, the TandAb mediates serial-killing of CD19+ cells with little dependence of potency or efficacy upon effector:target ratio, unlike the BiTE. The advantage of the TandAb over the BiTE was most pronounced at lower effector:target ratios. AFM11 mediated strictly target-dependent T cell activation evidenced by CD25 and CD69 induction, proliferation, and cytokine release, notwithstanding bivalent CD3 engagement. In a NOD/scid xenograft model, AFM11 induced dose-dependent growth inhibition of Raji tumors in vivo, and radiolabeled TandAb exhibited excellent localization to tumor but not to normal tissue. After intravenous administration in mice, half-life ranged from 18.4 to 22.9 h. In a human ex vivo B-cell chronic lymphocytic leukemia study, AFM11 exhibited substantial cytotoxic activity in an autologous setting. Thus, AFM11 may represent a promising therapeutic for treatment of CD19+ malignancies with an advantageous safety risk profile and anticipated dosing regimen. PMID:25875246

  3. The use of colloid probe microscopy to predict aerosolization performance in dry powder inhalers: AFM and in vitro correlation.

    PubMed

    Young, Paul M; Tobyn, Michael J; Price, Robert; Buttrum, Mark; Dey, Fiona

    2006-08-01

    The atomic force microscope (AFM) colloid probe technique was utilized to measure cohesion forces (separation energy) between three drug systems as a function of relative humidity (RH). The subsequent data was correlated with in vitro aerosolization data collected over the same RH range. Three drug-only systems were chosen for study; salbutamol sulphate (SS), triamcinolone acetonide (TAA), and di-sodium cromoglycate (DSCG). Analysis of the AFM and in vitro data suggested good correlations, with the separation energy being related inversely to the aerosolization performance (measured as fine particle fraction, FPF(LD)). In addition, the relationship between, cohesion, RH, and aerosolization performance was drug specific. For example, an increase in RH between 15% and 75% resulted in increased cohesion and decreased FPF(LD) for SS and DSCG. In comparison, for TAA, a decrease in cohesion and increased FPF(LD) was observed when RH was increased (15-75%). Linear regression analysis comparing AFM with in vitro data indicated R(2) values > 0.80, for all data sets, suggesting the AFM could be used to indicate in vitro aerosolization performance. PMID:16795018

  4. Applications of AFM for atomic manipulation and spectroscopy

    NASA Astrophysics Data System (ADS)

    Custance, Oscar

    2009-03-01

    Since the first demonstration of atom-by-atom assembly [1], atomic manipulation with scanning tunneling microscopy has yielded stunning realizations in nanoscience. A new exciting panorama has been recently opened with the possibility of manipulating atoms at surfaces using atomic force microscopy (AFM) [2-5]. In this talk, we will present two different approaches that enable patterning structures at semiconductor surfaces by manipulating individual atoms with AFM and at room temperature [2, 3]. We will discuss the physics behind each protocol through the analysis of the measured forces associated with these manipulations [3-5]. Another challenging issue in scanning probe microscopy is the ability to disclose the local chemical composition of a multi-element system at atomic level. Here, we will introduce a single-atom chemical identification method, which is based on detecting the forces between the outermost atom of the AFM tip and the atoms at a surface [6]. We demonstrate this identification procedure on a particularly challenging system, where any discrimination attempt based solely on topographic measurements would be impossible to achieve. [4pt] References: [0pt] [1] D. M. Eigler and E. K. Schweizer, Nature 344, 524 (1990); [0pt] [2] Y. Sugimoto, M. Abe, S. Hirayama, N. Oyabu, O. Custance and S. Morita, Nature Materials 4, 156 (2005); [0pt] [3] Y. Sugimoto, P. Pou, O. Custance, P. Jelinek, M. Abe, R. Perez and S. Morita, Science 322, 413 (2008); [0pt] [4] Y. Sugimoto, P. Jelinek, P. Pou, M. Abe, S. Morita, R. Perez and O. Custance, Phys. Rev. Lett. 98, 106104 (2007); [0pt] [5] M. Ternes, C. P. Lutz, C. F. Hirjibehedin, F. J. Giessibl and A. J. Heinrich, Science 319, 1066 (2008); [0pt] [6] Y. Sugimoto, P. Pou, M. Abe, P. Jelinek, R. Perez, S. Morita, and O. Custance, Nature 446, 64 (2007)

  5. Cell visco-elasticity measured with AFM and optical trapping at sub-micrometer deformations.

    PubMed

    Nawaz, Schanila; Sánchez, Paula; Bodensiek, Kai; Li, Sai; Simons, Mikael; Schaap, Iwan A T

    2012-01-01

    The measurement of the elastic properties of cells is widely used as an indicator for cellular changes during differentiation, upon drug treatment, or resulting from the interaction with the supporting matrix. Elasticity is routinely quantified by indenting the cell with a probe of an AFM while applying nano-Newton forces. Because the resulting deformations are in the micrometer range, the measurements will be affected by the finite thickness of the cell, viscous effects and even cell damage induced by the experiment itself. Here, we have analyzed the response of single 3T3 fibroblasts that were indented with a micrometer-sized bead attached to an AFM cantilever at forces from 30-600 pN, resulting in indentations ranging from 0.2 to 1.2 micrometer. To investigate the cellular response at lower forces up to 10 pN, we developed an optical trap to indent the cell in vertical direction, normal to the plane of the coverslip. Deformations of up to two hundred nanometers achieved at forces of up to 30 pN showed a reversible, thus truly elastic response that was independent on the rate of deformation. We found that at such small deformations, the elastic modulus of 100 Pa is largely determined by the presence of the actin cortex. At higher indentations, viscous effects led to an increase of the apparent elastic modulus. This viscous contribution that followed a weak power law, increased at larger cell indentations. Both AFM and optical trapping indentation experiments give consistent results for the cell elasticity. Optical trapping has the benefit of a lower force noise, which allows a more accurate determination of the absolute indentation. The combination of both techniques allows the investigation of single cells at small and large indentations and enables the separation of their viscous and elastic components. PMID:23028915

  6. The Advancing State of AF-M315E Technology

    NASA Technical Reports Server (NTRS)

    Masse, Robert; Spores, Ronald A.; McLean, Chris

    2014-01-01

    The culmination of twenty years of applied research in hydroxyl ammonium nitrate (HAN)-based monopropellants, the NASA Space Technology mission Directorate's (STMD) Green Propellant Infusion Mission (GPIM) will achieve the first on-orbit demonstration of an operational AF-M315E green propellant propulsion system by the end of 2015. Following an contextual overview of the completed flight design of the GPIM propellant storage and feed system, results of first operation of a flight-representative heavyweight 20-N engineering model thruster (to be conducted in mid-2014) are presented with performance comparisons to prior lab model (heavyweight) test articles.

  7. Comparison of dynamic lever STM and noncontact AFM

    NASA Astrophysics Data System (ADS)

    Guggisberg, M.; Bammerlin, M.; Lüthi, R.; Loppacher, C.; Battiston, F.; Lü, J.; Baratoff, A.; Meyer, E.; Güntherodt, H.-J.

    We investigate interaction effects which occur in scanning tunneling microscopy (STM) by performing local force spectroscopy with an oscillating tip while imaging Si(111)7×7 terraces in the dynamic lever STM mode (constant time-averaged current). It is found that true atomic resolution is achieved close to the minimum of the resonance frequency vs. distance curve and even closer to the sample. On the other hand true atomic resolution in noncontact AFM (constant frequency shift) is expected several nm away from this minimum, in the range where the frequency shift becomes more negative with decreasing distance.

  8. Dynamic modeling and sensitivity analysis of dAFM in the transient and steady state motions.

    PubMed

    Payam, Amir Farokh

    2016-10-01

    In this paper, based on the slow time varying function theory, dynamical equations for the amplitude and phase of the dynamic atomic force microscope are derived. Then, the sensitivity of the amplitude and phase to the dissipative and conservative parts of interaction force is investigated. The most advantage of this dynamical model is the ability to simulate and analysis the dynamics behavior of amplitude and phase of the AFM tip motion not only in the steady state but also in the transient regime. Using numerical analysis the transient and steady state behavior of amplitude and phase is studied and the sensitivity of amplitude and phase to the interaction force is analyzed. PMID:27448201

  9. BOREAS AFM-3 NCAR Electra 1994 Aircraft Flux and Moving Window Data

    NASA Technical Reports Server (NTRS)

    Lenschow, Donald H.; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Shanot, Al; Oncley, Steven P.; Cooper, Al; Smith, David E. (Technical Monitor)

    2000-01-01

    The BOREAS AFM-3 team used the NCAR Electra aircraft data to make measurements of the fluxes of momentum, sensible and latent heat, carbon dioxide, and ozone over the entire BOREAS region to tie together measurements made in both the SSA and the NSA in 1994. These data were also used to study the planetary boundary layer using both in situ and remote sensing measurements. This data set contains both the aircraft flux and the moving window data. These data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884) or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  10. Investigation of the resistive switching in AgxAsS2 layer by conductive AFM

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Kutalek, Petr; Knotek, Petr; Hromadko, Ludek; Macak, Jan M.; Wagner, Tomas

    2016-09-01

    In this paper, a study of resistive switching in AgxAsS2 layer, based on a utilization of conductive atomic force microscope (AFM), is reported. As the result of biasing, two distinct regions were created on the surface (the conductive region and non-conductive region). Both were analysed from the spread current maps. The volume change, corresponding to the growth of Ag particles, was derived from the topological maps, recorded simultaneously with the current maps. Based on the results, a model explaining the mechanism of the Ag particle and Ag filament formation was proposed from the distribution of charge carriers and Ag ions.

  11. Single molecule detection of PARP1 and PARP2 interaction with DNA strand breaks and their poly(ADP-ribosyl)ation using high-resolution AFM imaging.

    PubMed

    Sukhanova, Maria V; Abrakhi, Sanae; Joshi, Vandana; Pastre, David; Kutuzov, Mikhail M; Anarbaev, Rashid O; Curmi, Patrick A; Hamon, Loic; Lavrik, Olga I

    2016-04-01

    PARP1 and PARP2 are implicated in the synthesis of poly(ADP-ribose) (PAR) after detection of DNA damage. The specificity of PARP1 and PARP2 interaction with long DNA fragments containing single- and/or double-strand breaks (SSBs and DSBs) have been studied using atomic force microscopy (AFM) imaging in combination with biochemical approaches. Our data show that PARP1 localizes mainly on DNA breaks and exhibits a slight preference for nicks over DSBs, although the protein has a moderately high affinity for undamaged DNA. In contrast to PARP1, PARP2 is mainly detected at a single DNA nick site, exhibiting a low level of binding to undamaged DNA and DSBs. The enhancement of binding affinity of PARP2 for DNA containing a single nick was also observed using fluorescence titration. AFM studies reveal that activation of both PARPs leads to the synthesis of highly branched PAR whose size depends strongly on the presence of SSBs and DSBs for PARP1 and of SSBs for PARP2. The initial affinity between the PARP1, PARP2 and the DNA damaged site appears to influence both the size of the PAR synthesized and the time of residence of PARylated PARP1 and PARP2 on DNA damages. PMID:26673720

  12. Single molecule detection of PARP1 and PARP2 interaction with DNA strand breaks and their poly(ADP-ribosyl)ation using high-resolution AFM imaging

    PubMed Central

    Sukhanova, Maria V.; Abrakhi, Sanae; Joshi, Vandana; Pastre, David; Kutuzov, Mikhail M.; Anarbaev, Rashid O.; Curmi, Patrick A.; Hamon, Loic; Lavrik, Olga I.

    2016-01-01

    PARP1 and PARP2 are implicated in the synthesis of poly(ADP-ribose) (PAR) after detection of DNA damage. The specificity of PARP1 and PARP2 interaction with long DNA fragments containing single- and/or double-strand breaks (SSBs and DSBs) have been studied using atomic force microscopy (AFM) imaging in combination with biochemical approaches. Our data show that PARP1 localizes mainly on DNA breaks and exhibits a slight preference for nicks over DSBs, although the protein has a moderately high affinity for undamaged DNA. In contrast to PARP1, PARP2 is mainly detected at a single DNA nick site, exhibiting a low level of binding to undamaged DNA and DSBs. The enhancement of binding affinity of PARP2 for DNA containing a single nick was also observed using fluorescence titration. AFM studies reveal that activation of both PARPs leads to the synthesis of highly branched PAR whose size depends strongly on the presence of SSBs and DSBs for PARP1 and of SSBs for PARP2. The initial affinity between the PARP1, PARP2 and the DNA damaged site appears to influence both the size of the PAR synthesized and the time of residence of PARylated PARP1 and PARP2 on DNA damages. PMID:26673720

  13. Maps showing water geochemistry of the Buffalo Peaks Wilderness Study Area, Lake, Park, and Chaffee Counties, Colorado

    USGS Publications Warehouse

    Nowlan, G.A.; Ficklin, Walter H.; Dover, Robert A.

    1985-01-01

    This report presents results of geochemical studies carried out in June and July of 1982 in the Buffalo Peaks Wilderness Study Area, Colo. (see index map). Samples of water were collected from 84 streams and 18 springs draining the study area. Tabulations of the analyses and a sample locality map are in Ficklin and others (1984). The geochemistry of stream sediments and panned concentrates of the study area is in Nowlan and Gerstel (1985). The geology of the study area and vicinity is in Hedlund (1985). The mineral resource potential of the study area is described in Hedlund and others (1983). This report (1) assists in the assessment of the mineral resource potential of the Buffalo Peaks Wilderness Study Area; and (2) compares analyses of water samples with analyses of stream-sediment and panned-concentrate samples (Nowlan and Gerstel, 1985).

  14. Piezoresistive AFM cantilevers surpassing standard optical beam deflection in low noise topography imaging.

    PubMed

    Dukic, Maja; Adams, Jonathan D; Fantner, Georg E

    2015-01-01

    Optical beam deflection (OBD) is the most prevalent method for measuring cantilever deflections in atomic force microscopy (AFM), mainly due to its excellent noise performance. In contrast, piezoresistive strain-sensing techniques provide benefits over OBD in readout size and the ability to image in light-sensitive or opaque environments, but traditionally have worse noise performance. Miniaturisation of cantilevers, however, brings much greater benefit to the noise performance of piezoresistive sensing than to OBD. In this paper, we show both theoretically and experimentally that by using small-sized piezoresistive cantilevers, the AFM imaging noise equal or lower than the OBD readout noise is feasible, at standard scanning speeds and power dissipation. We demonstrate that with both readouts we achieve a system noise of ≈0.3 Å at 20 kHz measurement bandwidth. Finally, we show that small-sized piezoresistive cantilevers are well suited for piezoresistive nanoscale imaging of biological and solid state samples in air. PMID:26574164

  15. Piezoresistive AFM cantilevers surpassing standard optical beam deflection in low noise topography imaging

    PubMed Central

    Dukic, Maja; Adams, Jonathan D.; Fantner, Georg E.

    2015-01-01

    Optical beam deflection (OBD) is the most prevalent method for measuring cantilever deflections in atomic force microscopy (AFM), mainly due to its excellent noise performance. In contrast, piezoresistive strain-sensing techniques provide benefits over OBD in readout size and the ability to image in light-sensitive or opaque environments, but traditionally have worse noise performance. Miniaturisation of cantilevers, however, brings much greater benefit to the noise performance of piezoresistive sensing than to OBD. In this paper, we show both theoretically and experimentally that by using small-sized piezoresistive cantilevers, the AFM imaging noise equal or lower than the OBD readout noise is feasible, at standard scanning speeds and power dissipation. We demonstrate that with both readouts we achieve a system noise of ≈0.3 Å at 20 kHz measurement bandwidth. Finally, we show that small-sized piezoresistive cantilevers are well suited for piezoresistive nanoscale imaging of biological and solid state samples in air. PMID:26574164

  16. Piezoresistive AFM cantilevers surpassing standard optical beam deflection in low noise topography imaging

    NASA Astrophysics Data System (ADS)

    Dukic, Maja; Adams, Jonathan D.; Fantner, Georg E.

    2015-11-01

    Optical beam deflection (OBD) is the most prevalent method for measuring cantilever deflections in atomic force microscopy (AFM), mainly due to its excellent noise performance. In contrast, piezoresistive strain-sensing techniques provide benefits over OBD in readout size and the ability to image in light-sensitive or opaque environments, but traditionally have worse noise performance. Miniaturisation of cantilevers, however, brings much greater benefit to the noise performance of piezoresistive sensing than to OBD. In this paper, we show both theoretically and experimentally that by using small-sized piezoresistive cantilevers, the AFM imaging noise equal or lower than the OBD readout noise is feasible, at standard scanning speeds and power dissipation. We demonstrate that with both readouts we achieve a system noise of ≈0.3 Å at 20 kHz measurement bandwidth. Finally, we show that small-sized piezoresistive cantilevers are well suited for piezoresistive nanoscale imaging of biological and solid state samples in air.

  17. Physical properties of polyacrylamide gels probed by AFM and rheology

    NASA Astrophysics Data System (ADS)

    Abidine, Yara; Laurent, Valérie M.; Michel, Richard; Duperray, Alain; Iulian Palade, Liviu; Verdier, Claude

    2015-02-01

    Polymer gels have been shown to behave as viscoelastic materials but only a small amount of data is usually provided in the glass transition. In this paper, the dynamic moduli G\\prime and G\\prime\\prime of polyacrylamide hydrogels are investigated using both an AFM in contact force modulation mode and a classical rheometer. The validity is shown by the matching of the two techniques. Measurements are carried out on gels of increasing polymer concentration in a wide frequency range. A model based on fractional derivatives is successfully used, covering the whole frequency range. G\\text{N}0 , the plateau modulus, as well as several other parameters are obtained at low frequencies. The model also predicts the slope a of both moduli in the glass transition, and a transition frequency f\\text{T} is introduced to separate the gel-like behavior with the glassy state. Its variation with polymer content c gives a dependence f\\text{T}∼ c1.6 , in good agreement with previous theories. Therefore, the AFM data provides new information on the physics of polymer gels.

  18. Dual AFM probes alignment based on vision guidance

    NASA Astrophysics Data System (ADS)

    Zhang, Hua-kun; Gao, Si-tian; Lu, Ming-zhen; Wang, Long-long

    2013-10-01

    Atomic force microscope (AFM) with dual probes that operate together can measure both side walls excellently at the same time, which virtually eliminates the prevalent effect of probe width that contributes a large component of uncertainty in measurement results and finally obtains the critical dimension (CD)(e.g. the linewidth) through data synthesis. In calibration process, the dual probes must contact each other in advance, which realizes the alignment in the three dimensions, to establish a zero reference point and ensure the accuracy of measurement. Because nowadays the optical resolution of advanced lens have exceeded micrometer range, and the size of probes is within micro level, it is possible to acquire dual probes images in both horizontal and vertical directions, through which the movement of the probes can be controlled in time. In order to further enhance the alignment precision, sub-pixel edge detection method based on Zernike orthogonal moment is used to obtain relative position between these two probes, which helps the tips alignment attains sub-micron range. Piezoelectric nanopositioning stages calibrated by laser interferometer are used to implement fine movement of the probes to verify the accuracy of the experimental results. To simplify the system, novel self-sensing and self-actuating probe based on a quartz tuning fork combined with a micromachined cantilever is used for dynamic mode AFM. In this case, an external optical detection system is not needed, so the system is simple and small.

  19. Viscoelasticity of gelatin surfaces probed by AFM noise analysis.

    PubMed

    Benmouna, Farida; Johannsmann, Diethelm

    2004-01-01

    The viscoelastic properties of surfaces of swollen gelatin were investigated by analyzing the Brownian motion of an atomic force microscopy (AFM) cantilever in contact with the gel surface. A micron-sized glass sphere attached to the AFM cantilever is used as the dynamic probe. When the sphere approaches the gelatin surface, there is a static repulsive force without a jump into contact. The cantilever's Brownian movement is monitored in parallel, providing access to the dynamic sphere-surface interaction as quantified by the dynamic spring constant, kappa, and the drag coefficient, xi. Gelatin is used as a model substance for a variety of other soft surfaces, where the stiffness of the gel can be varied via the solvent quality, the bloom number, and the pH. The modulus derived from the static force-distance curve is in the kPa range, consistent with the literature. However, the dynamic spring constant as derived from the Brownian motion is much larger than the static differential spring constant dF/dz. On retraction, one observes a rather strong adhesion hysteresis. The strength of the bridge (as given by the dynamic spring constant and the drag coefficient) is very small. PMID:15745019

  20. 46 Pct. of All Undergraduates Received Some Form of Financial Aid in Fall 1986, U.S. Study Shows.

    ERIC Educational Resources Information Center

    Wilson, Robin

    1988-01-01

    The National Postsecondary Student Aid Study by the U.S. Department of Education examines the amount and types of aid students receive nationwide. The study covered aid distributed by the federal government, state governments, colleges and universities, and other sources. (MLW)

  1. N.Y.C. Study Finds Gains for Charters: Research Shows Schools Closing City-Suburb Gap

    ERIC Educational Resources Information Center

    Viadero, Debra

    2009-01-01

    New York City's charter schools are making strides in closing achievement gaps between disadvantaged inner-city students and their better-off suburban counterparts, a new study concludes. The study, conducted by Stanford University researcher Caroline M. Hoxby and her co-authors Sonali Mararka and Jenny Kang, is based on eight years of data for…

  2. In situ Stiffness Adjustment of AFM Probes by Two Orders of Magnitude

    PubMed Central

    de Laat, Marcel Lambertus Cornelis; Pérez Garza, Héctor Hugo; Ghatkesar, Murali Krishna

    2016-01-01

    The choice on which type of cantilever to use for Atomic Force Microscopy (AFM) depends on the type of the experiment being done. Typically, the cantilever has to be exchanged when a different stiffness is required and the entire alignment has to be repeated. In the present work, a method to adjust the stiffness in situ of a commercial AFM cantilever is developed. The adjustment is achieved by changing the effective length of the cantilever by electrostatic pull-in. By applying a voltage between the cantilever and an electrode (with an insulating layer at the point of contact), the cantilever snaps to the electrode, reducing the cantilever’s effective length. An analytical model was developed to find the pull-in voltage of the system. Subsequently, a finite element model was developed to study the pull-in behavior. The working principle of this concept is demonstrated with a proof-of-concept experiment. The electrode was positioned close to the cantilever by using a robotic nanomanipulator. To confirm the change in stiffness, the fundamental resonance frequency of the cantilever was measured for varying electrode positions. The results match with the theoretical expectations. The stiffness was adjusted in situ in the range of 0.2 N/m to 27 N/m, covering two orders of magnitude in one single cantilever. This proof-of-concept is the first step towards a micro fabricated prototype, that integrates the electrode positioning system and cantilever that can be used for actual AFM experiments. PMID:27077863

  3. Characterization of Pebax angioplasty balloon surfaces with AFM, SEM, TEM, and SAXS.

    PubMed

    Warner, Jacob A; Forsyth, Bruce; Zhou, Fang; Myers, Jason; Frethem, Chris; Haugstad, Greg

    2016-04-01

    In the medical device industry, angioplasty balloons have been widely used in the less invasive treatment of heart disease by expanding and relieving clogged structures in various arterial segments. However, new applications using thin coatings on the balloon surface have been explored to enhance therapeutic value in the delivery of pharmaceuticals (drug-elution) or control thermal energy output (RF ablation). In this study, angioplasty balloon materials comprised of poly(ether-block-amide) (Pebax) were investigated via atomic force microscopy (AFM), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and small-angle X-ray scattering (SAXS) to characterize physical properties at the balloon surface that may affect coating adhesion. The soft segment of this Pebax 1074 material is polyethylene oxide (PEO) and the hard segment is nylon-12. The morphology of the hard segments of this block co-polymer are found via AFM stiffness measurements to be (40 ± 20) nm by (300 ± 150) nm and are oriented parallel to the surface of the balloon. SAXS measurements found the lamellar spacing to be (18.5 ± 0.5) nm, and demonstrate a preferential orientation in agreement with TEM and AFM measurements. Fixation of this balloon in resin, followed by cryo-sectioning is shown to provide a novel manner in which to investigate surface characteristics on the balloon such as material or coating thickness as well as uniformity in comparison to the bulk structure. These outputs were deemed critical to improve overall balloon processing such as molding and surface treatment options for robust designs toward better procedural outcomes targeting new therapeutic areas. PMID:25891789

  4. Hydrodynamics in nanoscale confinement: SFA and colloid probe AFM liquid drainage experiments

    NASA Astrophysics Data System (ADS)

    Krasowska, M.; Popescu, M. N.; Ralston, J.

    2012-12-01

    Flow and drainage of very thin liquid films play an important role in mineral recovery, drop coalescence and emulsion stability, as well as lubrication of micromechanical devices. Studies of liquid flow under strong confinement (i.e., film thickness below a few hundred of nanometers and down to a few nanometers) can reveal the limits of applicability of a classical hydrodynamics description, but are very challenging. The Surface Force Apparatus (SFA) technique has enabled studies of drainage at nanoscale separation between atomically smooth mica sheets. The development of the colloid probe Atomic Force Microscope (AFM) as an alternative technique has allowed a significantly wider variety of confining solid surfaces to be studied. Both the SFA and the colloid probe AFM have been adapted to permit the surfaces confining the film to be soft, e.g., the surface of a drop or bubble, and therefore deformable. We present a succinct review of the experimental and theoretical modeling challenges for such studies and critically discuss the outcomes of recent experiments.

  5. Comparison of the Identation and Elasticity of E.coli and its Spheroplasts by AFM

    SciTech Connect

    Sullivan, Claretta J; Venkataraman, Sankar; Retterer, Scott T; Allison, David P; Doktycz, Mitchel John

    2007-01-01

    Atomic force microscopy (AFM) provides a unique opportunity to study live individual bacteria at the nanometer scale. In addition to providing accurate morphological information, AFM can be exploited to investigate membrane protein localization and molecular interactions on the surface of living cells. A prerequisite for these studies is the development of robust procedures for sample preparation. While such procedures are established for intact bacteria, they are only beginning to emerge for bacterial spheroplasts. Spheroplasts are useful research models for studying mechanosensitive ion channels, membrane transport, lipopolysaccharide translocation, solute uptake, and the effects of antimicrobial agents on membranes. Furthermore, given the similarities between spheroplasts and cell wall-deficient (CWD) forms of pathogenic bacteria, spheroplast research could be relevant in biomedical research. In this paper, a new technique for immobilizing spheroplasts on mica pretreated with aminopropyltriethoxysilane (APTES) and glutaraldehyde is described. Using this mounting technique, the indentation and cell elasticity of glutaraldehyde-fixed and untreated spheroplasts of E. coli in liquid were measured. These values are compared to those of intact E. coli. Untreated spheroplasts were found to be much softer than the intact cells and the silicon nitride cantilevers used in this study.

  6. Changes in collagen fibril pattern and adhesion force with collagenase-induced injury in rat Achilles tendon observed via AFM.

    PubMed

    Lee, Gi-Ja; Choi, Samjin; Chon, Jinmann; Yoo, Seungdon; Cho, Ilsung; Park, Hun-Kuk

    2011-01-01

    The Achilles tendon consists mainly of type I collagen fibers that contain collagen fibrils. When the Achilles tendon is injured, it is inflamed. The collagenase-induced model has been widely used to study tendinitis. The major advantages of atomic force microscopy (AFM) over conventional optical and electron microscopy for bio-imaging include its non-requirement of a special coating and vacuum, and its capability to perform imaging in all environments. AFM force-distance measurements have become a fundamental tool in the fields of surface chemistry, biochemistry and materials science. Therefore, the changes in the ultrastructure and adhesion force of the collagen fibrils on the Achilles tendons of rats with Achilles tendinitis were observed using AFM. The changes in the structure of the Achilles tendons were evaluated based on the diameter and D-banding of the collagen fibrils. Collagenase-induced Achilles tendinitis was induced with the injection of 30 microl crude collagenase into 7-week-old male Sprague-Dawley rats. The animals were each sacrificed on the first, second, third, fifth and seventh day after the collagenase injection. The normal and injured Achilles tendons were fixed in 4% buffered formalin and dehydrated with increasing concentrations of ethanol. AFM was performed using the non-contact mode at the resolution of 512 x 512 pixels, with a scan speed of 0.8 line/sec. The adhesion force was measured via the force-distance curve that resulted from the interactions between the AFM tip and the collagen fibril sample using the contact mode. The diameter of the collagen fibrils in the Achilles tendons significantly decreased (p < 0.05) after the collagenase injection, and the pattern of the D-banding of the collagen fibrils was similar to that of the diameter changes. The adhesion force decreased until the fifth day after the collagenase injection, but increased on the seventh day after the collagenase injection (p < 0.0001). PMID:21446543

  7. Single Dimer E-Cadherin Interaction Forces Characterized Using Modified AFM Cantilevers

    NASA Astrophysics Data System (ADS)

    Rudnitsky, Robert; Drees, Frauke; Nelson, W. James; Kenny, Thomas

    2002-03-01

    In tissue monolayers, adhesion between cells is accomplished chiefly through the action of [Ca++] dependent cadherin proteins. E-cadherin molecules coalesce into large plaques on contacting membranes of adjacent cells. Using specialized AFM cantilevers functionalized with tethered E-cadherin proteins, we studied the interaction forces of trans dimers from the single bond level through to the higher surface densities found in plaques, with pico-Newton force resolution. The measurements demonstrated the dependence of E-cadherin homoassociation on surface protein density. Previous in-vivo studies established the role of Ca++ in E-cadherin adhesion in whole cells. Advances in AFM force spectroscopy allowed us to characterize the unbinding process under force loads, and to differentiate single and multiple molecular binding events. The data correlates the dependence of E-cadherin adhesion at a molecular level to [Ca++], revealing interaction details that cannot be observed using whole-cell studies. This work is supported by NSF (XYZ on a Chip Program) CMS-9980838, NIH (GMB5227), and the Fannie and John Hertz Foundation.

  8. A Case Study Showing How One Young Child Represented Issues Concerned with Attachment and Separation in Her Spontaneous Explorations

    ERIC Educational Resources Information Center

    Arnold, Cath

    2009-01-01

    This paper presents a case study of a young child, demonstrating evidence of a connection between "enveloping" objects and understanding presence and absence of a temporary and permanent nature. The starting point for the researcher was: an interest in identifying schemas or repeated patterns in order to understand cognitive development and; a…

  9. Study Shows No Difference in Impact between Online and Face-to-Face Professional Learning. Lessons from Research

    ERIC Educational Resources Information Center

    Killion, Joellen

    2014-01-01

    Adopting new curricula presents both a need and an opportunity for professional development to advance teacher content knowledge and instructional practices for achieving curriculum-specific student outcomes. This study examines two modalities of professional development: face-to-face in a summer workshop and online that included two days of…

  10. Life Satisfaction Shows Terminal Decline in Old Age: Longitudinal Evidence from the German Socio-Economic Panel Study (SOEP)

    ERIC Educational Resources Information Center

    Gerstorf, Denis; Ram, Nilam; Estabrook, Ryne; Schupp, Jurgen; Wagner, Gert G.; Lindenberger, Ulman

    2008-01-01

    Longitudinal data spanning 22 years, obtained from deceased participants of the German Socio-Economic Panel Study (SOEP; N = 1,637; 70- to 100-year-olds), were used to examine if and how life satisfaction exhibits terminal decline at the end of life. Changes in life satisfaction were more strongly associated with distance to death than with…

  11. A cellular study of teosinte Zea mays ssp. parviglumis (Poaceae) caryopsis development showing several processes conserved in maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although recent molecular studies elucidate the genetic background leading to changed morphology of maize female inflorescence and the structure of the caryopsis during the domestication of maize (Zea mays ssp. mays) from its wild progenitor teosinte (Zea mays ssp. parviglumis), the mechanisms under...

  12. Structure of crystal defects in damaged RDX as revealed by an AFM

    SciTech Connect

    Sharma, J.; Hoover, S. M.; Coffey, C. S.; Tompa, A. S.; Sandusky, H. W.; Armstrong, R. W.; Elban, W. L.

    1998-07-10

    An atomic force microscope (AFM) was employed to reveal the structure of defects produced in single crystals of cyclotrimethylenetrinitramine (RDX), damaged either by indentation, heat or underwater shock. In general, all of these stimuli produced dislocation pits, cracks, fissures and mosaics, however, the details were different. Indentation generated a large number of triangular dislocation pits, which in their turn produced fissures, cracks and holes by coalescing. Heat produced fine parallel cracks. Slivers as thin as sixty molecules across were observed. Shock caused the crystal to become a three-dimensional mosaic structure, 100-500 nm in size, produced by intensive cleavage and delamination. In all cases very fine particles, 20-500 nm in size, were ejected onto the surface as debris from the formation of defects. The AFM has revealed for the first time un-etched dislocation pits in their pristine condition, so that their internal structure could be investigated. A dislocation density of 10{sup 6} cm{sup -2} has been observed. RDX is found to behave like a very fragile crystal in which numerous imperfections show up at a level of the stimuli, far below that necessary for the start of chemical reaction.

  13. Charge Content In Nanometer Rings from Atomic Force Microscope (AFM) Traces

    NASA Astrophysics Data System (ADS)

    Zypman, F.; Eppell, S.; Feinstein, M.; Fried, Y.; Lazarev, D.; Metzger, C.

    The last few years have seen a growing interest in identifying charge content in small structures such as graphene ribbons and aromatic biorings. More generally it is believed that charge content in proteins holds the key to the ultimate understanding of biological self-assembly. Here we describe a model system, a charged ring inside liquid probed by an AFM tip, and show how the charge content and the relative size of the ring with respect to the tip affect the measured force. More importantly, we explain how to measure the charge from the AFM experimental data. The process involves the modeling of the dynamics of the tip-cantilever sensor under the influence of the charged sample, but also of ambient hydrodynamic forces, electrostatic interactions that appear due to charge induction in the tip and electrolytic screening. Of particular relevance is the possibility of our approach to treat analytically the size of ions. This is relevant when the tip-sample distance becomes sub-nanometric, and the more common description via Poisson-Boltzmann equation breaks down. Funding for this research ``Instrument Development: Charge Sensing In Fluids With Nanometer Precision'' is provided by Chemical Measurement & Imaging, National Science Foundation, Grant Number 1508085.

  14. Adaptive AFM scan speed control for high aspect ratio fast structure tracking

    SciTech Connect

    Ahmad, Ahmad; Schuh, Andreas; Rangelow, Ivo W.

    2014-10-15

    Improved imaging rates in Atomic Force Microscopes (AFM) are of high interest for disciplines such as life sciences and failure analysis of semiconductor wafers, where the sample topology shows high aspect ratios. Also, fast imaging is necessary to cover a large surface under investigation in reasonable times. Since AFMs are composed of mechanical components, they are associated with comparably low resonance frequencies that undermine the effort to increase the acquisition rates. In particular, high and steep structures are difficult to follow, which causes the cantilever to temporarily loose contact to or crash into the sample. Here, we report on a novel approach that does not affect the scanner dynamics, but adapts the lateral scanning speed of the scanner. The controller monitors the control error signal and, only when necessary, decreases the scan speed to allow the z-piezo more time to react to changes in the sample's topography. In this case, the overall imaging rate can be significantly increased, because a general scan speed trade-off decision is not needed and smooth areas are scanned fast. In contrast to methods trying to increase the z-piezo bandwidth, our method is a comparably simple approach that can be easily adapted to standard systems.

  15. XRD and AFM characterization of epitaxial Nb films before and after hydrogen exposure

    NASA Astrophysics Data System (ADS)

    Allain, Monica; Heuser, Brent; Durfee, Curtis

    2001-03-01

    Epitaxial Nb films have been characterized with x-ray diffraction (XRD) and atomic force microscopy (AFM) before and after hydrogenation at 100 C and 760 Torr. Two 1000 Angstrom epitaxial Nb films were grown on a-plane sapphire with two different miscut angles, 0.08 and 1.4 degrees. Both Nb films were capped with a 100 Angstrom thick Pd layer to facilitate molecular hydrogen dissociation. While the as-grow film mosaic did not depend on miscut angle, the surface morphology was significantly different. In particular, the high miscut film exhibited a fingered topography that was absent in the low miscut film. Hydrogen absorption under the conditions stated above induce a complete conversion of Nb to the alpha prime hydride phase. The Nb hydride phase transformation process is known to create dislocations as incoherent phase boundaries pass through the lattice. The surface morphology and lattice mosaic from post-hydrogen AFM and XRD measurements, respectively, show the extreme effect of the phase transformation process. Discussion will focus on the lattice mosaic broadening, residual strain, and surface features after hydrogen exposure.

  16. Possible enhancements of AFM spin-fluctuations in high-TC cuprates

    NASA Astrophysics Data System (ADS)

    Jarlborg, Thomas

    2009-03-01

    Ab-initio band calculations for high-TC cuprates, together with modelling based of a free electron like band, show a strong interaction between anti-ferromagnetic (AFM) spin waves and periodic lattice distortions as for phonons, even though this type of spin-phonon coupling (SPC) is underestimated in calculations using the local density approximation. The SPC has a direct influence on the properties of the HTC cuprates and it can explain many observations. The strongest effects are seen for modulated waves in the CuO bond direction, and a band gap is formed near the X,Y points, but unusal band dispersion (like ``waterfalls'') might also be induced below the Fermi energy (EF) in the diagonal direction. The band results are used to propose different ways of increasing AFM spin-fluctuations locally, and to have a higher density-of-states (DOS) at EF. Static potential modulations, via periodic distribution of dopants or lattice distortions, can be tuned to increase the DOS. This opens for possibilities to enhance coupling for spin fluctuations (λsf) and superconductivity. The exchange enhancement is in general increased near a surface, which suggests a tendency towards static spin configurations. The sensivity of the band results to corrections of the local density potential are discussed.

  17. Bacteria attachment to surfaces--AFM force spectroscopy and physicochemical analyses.

    PubMed

    Harimawan, Ardiyan; Rajasekar, Aruliah; Ting, Yen-Peng

    2011-12-01

    Understanding bacterial adhesion to surfaces requires knowledge of the forces that govern bacterial-surface interactions. Biofilm formation on stainless steel 316 (SS316) by three bacterial species was investigated by examining surface force interaction between the cells and metal surface using atomic force microscopy (AFM). Bacterial-metal adhesion force was quantified at different surface delay time from 0 to 60s using AFM tip coated with three different bacterial species: Gram-negative Massilia timonae and Pseudomonas aeruginosa, and Gram-positive Bacillus subtilis. The results revealed that bacterial adhesion forces on SS316 surface by Gram-negative bacteria is higher (8.53±1.40 nN and 7.88±0.94 nN) when compared to Gram-positive bacteria (1.44±0.21 nN). Physicochemical analysis on bacterial surface properties also revealed that M. timonae and P. aeruginosa showed higher hydrophobicity and surface charges than B. subtilis along with the capability of producing extracellular polymeric substances (EPS). The higher hydrophobicity, surface charges, and greater propensity to form EPS by M. timonae and P. aeruginosa led to high adhesive force on the metal surface. PMID:21889162

  18. Imaging and manipulation of nanoscale materials with coaxial and triaxial AFM probes

    NASA Astrophysics Data System (ADS)

    Brown, Keith A.; Westervelt, R. M.

    2011-03-01

    We present coaxial and triaxial Atomic Force Microscope (AFM) probes and demonstrate their applications to imaging and manipulating nanoscale materials. A coaxial probe with concentric electrodes at its tip creates a highly confined electric field that decays as a dipole field, making the coaxial probe useful for near field imaging of electrical properties. We show nearly an order of magnitude improvement in the step resolution of Kelvin probe force microscopy with coaxial probes. We further demonstrate that coaxial probes can image dielectric materials with the dielectrophoretic force. In addition to imaging, the capacitive structure that makes up the cantilever of a coaxial probe is used to locally mechanically drive the probe, making them self-driving probes. Finally, coaxial probes can create strong forces with dielectrophoresis (DEP) which we combine with the nanometer precision of the AFM to create a nanometer scale pick-and-place tool. We demonstrate 3D assembly of micrometer scale objects with coaxial probes using positive DEP and discuss the assembly of nanometer scale objects with triaxial probes using negative DEP.

  19. Automated AFM force curve analysis for determining elastic modulus of biomaterials and biological samples.

    PubMed

    Chang, Yow-Ren; Raghunathan, Vijay Krishna; Garland, Shaun P; Morgan, Joshua T; Russell, Paul; Murphy, Christopher J

    2014-09-01

    The analysis of atomic force microscopy (AFM) force data requires the selection of a contact point (CP) and is often time consuming and subjective due to influence from intermolecular forces and low signal-to-noise ratios (SNR). In this report, we present an automated algorithm for the selection of CPs in AFM force data and the evaluation of elastic moduli. We propose that CP may be algorithmically easier to detect by identifying a linear elastic indentation region of data (high SNR) rather than the contact point itself (low SNR). Utilizing Hertzian mechanics, the data are fitted for the CP. We first detail the algorithm and then evaluate it on sample polymeric and biological materials. As a demonstration of automation, 64 × 64 force maps were analyzed to yield spatially varying topographical and mechanical information of cells. Finally, we compared manually selected CPs to automatically identified CPs and demonstrated that our automated approach is both accurate (< 10nm difference between manual and automatic) and precise for non-interacting polymeric materials. Our data show that the algorithm is useful for analysis of both biomaterials and biological samples. PMID:24951927

  20. AFM nano-plough planar YBCO micro-bridges: critical currents and magnetic field effects.

    PubMed

    Elkaseh, A A O; Perold, W J; Srinivasu, V V

    2010-10-01

    The critical current (Ic) of YBa2Cu3O7-x (YBCO) AFM plough micro-constrictions is measured as a function of temperature, width and the magnetic flux density (B), which was applied perpendicular to the YBCO ab-plane and surface of the bridges. C-axis oriented thin films of YBa2Cu3O7-x were deposited on MgO substrates using an inverted cylindrical magnetron (ICM) sputtering technique. The films were then patterned into 8-10 micron size strips, using standard photolithography and dry etching processes. Micro-bridges with widths between 1.9 microm to 4.1 microm were fabricated by using atomic force microscope (AFM) nanolithography techniques. Critical current versus temperature data shows a straight-line behavior, which is typical of constriction type Josephson junctions. The Ic versus B characteristics exhibited a modulation, and a suppression of the critical current of up to 84%. It was also found that the critical current increases with increasing constriction width. PMID:21137754

  1. Structural study of a bent-core liquid crystal showing the B{sub 1}-B{sub 2} transition

    SciTech Connect

    Folcia, Cesar Luis; Etxebarria, J.; Ortega, J.; Ros, M. B.

    2006-09-15

    An experimental study of the B{sub 1}-B{sub 2} transition is carried out in a bent-core liquid crystal. The study is essentially based on x-ray measurements as a function of temperature. The B{sub 1}-B{sub 2} transition is extremely unusual and implies a deep structural change from a columnar phase to a lamellar phase. We have found that the B{sub 1} phase in our compound is similar to the so-called B{sub 1} reversed phase, with an additional splay of the polarization in the columns. On approaching the B{sub 2} phase the width of the cross section of the columns increases. The transition is clearly first order, with a large hysteresis though the enthalpy content is very small. A possible mechanism for the transition is briefly sketched.

  2. A genome-wide study shows a limited contribution of rare copy number variants to Alzheimer's disease risk

    PubMed Central

    Chapman, Jade; Rees, Elliott; Harold, Denise; Ivanov, Dobril; Gerrish, Amy; Sims, Rebecca; Hollingworth, Paul; Stretton, Alexandra; Holmans, Peter; Owen, Michael J.; O'Donovan, Michael C.; Williams, Julie; Kirov, George

    2013-01-01

    We assessed the role of rare copy number variants (CNVs) in Alzheimer's disease (AD) using intensity data from 3260 AD cases and 1290 age-matched controls from the genome-wide association study (GWAS) conducted by the Genetic and Environmental Risk for Alzheimer's disease Consortium (GERAD). We did not observe a significant excess of rare CNVs in cases, although we did identify duplications overlapping APP and CR1 which may be pathogenic. We looked for an excess of CNVs in loci which have been highlighted in previous AD CNV studies, but did not replicate previous findings. Through pathway analyses, we observed suggestive evidence for biological overlap between single nucleotide polymorphisms and CNVs in AD susceptibility. We also identified that our sample of elderly controls harbours significantly fewer deletions >1 Mb than younger control sets in previous CNV studies on schizophrenia and bipolar disorder (P = 8.9 × 10−4 and 0.024, respectively), raising the possibility that healthy elderly individuals have a reduced rate of large deletions. Thus, in contrast to diseases such as schizophrenia, autism and attention deficit/hyperactivity disorder, CNVs do not appear to make a significant contribution to the development of AD. PMID:23148125

  3. An innovative method and experiment for fabricating bulgy shape nanochannel using AFM

    NASA Astrophysics Data System (ADS)

    Lin, Zone-Ching; Jheng, Hao-Yuan; Ding, Hao-Yang

    2015-08-01

    The paper proposes using atomic force microscopy (AFM) and the concept of specific down force energy (SDFE) to establish an innovative offset cycle cutting method for fabricating a bulgy shape nanochannel on a single-crystal silicon substrate. In the offset cycle cutting method, cutting is performed at a constant down force in all cutting passes. After the first cutting pass, the AFM probe is offset rightward for the second pass and subsequently offset leftward to the middle (i.e., between the positions of the first two cutting passes) for the third cutting pass. Applying a step-by-step method to modify the offset distance and approach the defined SDFE value, this study determined the depth of the middle cutting pass and smaller values of upward bulginess and downward indentation at the bottom of the nanochannel. The nanochannel width can be increased by increasing the number of offset cycle cutting passes. In addition, by applying the proposed method, this study involved a simulation and experiment concerning the cutting path plan of bulgy shape nanochannels. Furthermore, using a small down force along the burr path is proposed for reducing burr height. The results of the simulation and experiment were compared to verify the feasibility of the method.

  4. The binucleate cell of okapi and giraffe placenta shows distinctive glycosylation compared with other ruminants: a lectin histochemical study.

    PubMed

    Jones, Carolyn J P; Wilsher, Sandra A; Wooding, F B P; Benirschke, K; Allen, W R

    2015-02-01

    The placenta of ruminants contains characteristic binucleate cells (BNC) with a highly conserved glycan structure which evolved early in Ruminant phylogenesis. Giraffe and Okapi placentae also contain these cells and it is not known whether they have a similar glycan array. We have used lectin histochemistry to examine the glycosylation of these cells in these species and compare them with bovine BNC which have a typical ruminant glycan composition. Two placentae, mid and near term, from Giraffe (Giraffa camelopardalis) and two term placenta of Okapi (Okapia johnstoni) were embedded in resin and stained with a panel of 23 lectins and compared with near-term bovine (Bos taurus) placenta. Significant differences were found in the glycans of Giraffe and Okapi BNC compared with those from the bovine, with little or no expression of terminal αN-acetylgalactosamine bound by Dolichos biflorus and Vicia villosa agglutinins which instead bound to placental blood vessels. Higher levels of N-acetylglucosamine bound by Lycopersicon esculentum and Phytolacca americana agglutinins were also apparent. Some differences between Okapi and Giraffe were evident. Most N-linked glycans were similarly expressed in all three species as were fucosyl residues. Interplacentomal areas in Giraffe and Bovine showed differences from the placentomal cells though no intercotyledonary BNC were apparent in Okapi. In conclusion, Giraffidae BNC developed different glycan biosynthetic pathways following their split from the Bovidae with further differences evolving as Okapi and Giraffe diverged from each other, affecting both inter and placentomal BNC which may have different functions during development. PMID:25527317

  5. Identification of a new locus and validation of previously reported loci showing differential methylation associated with smoking. The REGICOR study.

    PubMed

    Sayols-Baixeras, Sergi; Lluís-Ganella, Carla; Subirana, Isaac; Salas, Lucas A; Vilahur, Nadia; Corella, Dolores; Muñoz, Dani; Segura, Antonio; Jimenez-Conde, Jordi; Moran, Sebastián; Soriano-Tárraga, Carolina; Roquer, Jaume; Lopez-Farré, Antonio; Marrugat, Jaume; Fitó, Montse; Elosua, Roberto

    2015-01-01

    Smoking increases the risk of many diseases and could act through changes in DNA methylation patterns. The aims of this study were to determine the association between smoking and DNA methylation throughout the genome at cytosine-phosphate-guanine (CpG) site level and genomic regions. A discovery cross-sectional epigenome-wide association study nested in the follow-up of the REGICOR cohort was designed and included 645 individuals. Blood DNA methylation was assessed using the Illumina HumanMethylation450 BeadChip. Smoking status was self-reported using a standardized questionnaire. We identified 66 differentially methylated CpG sites associated with smoking, located in 38 genes. In most of these CpG sites, we observed a trend among those quitting smoking to recover methylation levels typical of never smokers. A CpG site located in a novel smoking-associated gene (cg06394460 in LNX2) was hypomethylated in current smokers. Moreover, we validated two previously reported CpG sites (cg05886626 in THBS1, and cg24838345 in MTSS1) for their potential relation to atherosclerosis and cancer diseases, using several different approaches: CpG site methylation, gene expression, and plasma protein level determinations. Smoking was also associated with higher THBS1 gene expression but with lower levels of thrombospondin-1 in plasma. Finally, we identified differential methylation regions in 13 genes and in four non-coding RNAs. In summary, this study replicated previous findings and identified and validated a new CpG site located in LNX2 associated with smoking. PMID:26829059

  6. Map showing a deep-tow geophysical study of the north end of the San Clemente Fault, California Borderland

    USGS Publications Warehouse

    Ford, George A.; Normark, William R.

    1980-01-01

    A deep-tow geophysical study of a small ridge along the north end of the San Clemente fault, informally termed Kimki Ridge by Arne Junger and J.G. Vedder (unpub. data, 1979), was conducted in April 1976 using the R/V Melville of the Scripps Institution of Oceanography. The purpose of the survey was to search for evidence of active faulting along the north-ward extension of the San Clemente fault, a major structural feature in the California Borderland (fig. 1). 

  7. Radiolabeled Antibodies in Prostate Cancer: A Case Study Showing the Effect of Host Immunity on Antibody Bio-distribution

    PubMed Central

    Vilhelmsson-Timmermand, Oskar; Santos, Elmer; Thorek, Daniel LJ; Evans-Axelsson, Susan; Bjartell, Anders; Lilja, Hans; Larson, Steven M; Strand, Sven-Erik; Tran, Thuy A.; Ulmert, David

    2015-01-01

    Objectives Human tumors xenografted in immunodeficient mice are crucial models in nuclear medicine to evaluate the effectiveness of candidate diagnostic and therapeutic compounds. However, little attention has been focused on the biological profile of the host model and its potential effects on the bio-distribution and tumor targeting of the tracer compound under study. We specifically investigated the dissimilarity in bio-distribution of 111In-DTPA-5A10, which targets free Prostate Specific Antigen (fPSA), in two animal models. Methods In vivo bio-distribution studies of 111In-DTPA-5A10 were performed in immunodeficient BALB/c-nu or NMRI-nu mice with subcutaneous (s.c.) LNCaP tumors. Targeting-specificity of the tracer was assessed by quantifying the uptake in (a) mice with s.c. xenografts of PSA-negative DU145 cells as well as (b) BALB/c-nu or NMRI-nu mice co-injected with an excess of non-labeled 5A10. Finally, the effect of neonatal Fc-receptor (FcRn) inhibition on the bio-distribution of the conjugate was studied by saturating FcRn-binding capacity with nonspecific IgG1. Results The inherent biological attributes of the mouse model substantially influenced the bio-distribution and pharmacokinetics of 111In-DTPA-5A10. With LNCaP xenografts in BALB/c-nu mice (with intact B and NK cells but with deficient T cells) versus NMRI-nu mice (with intact B cells, increased NK cells and absent T cells), we observed a significantly higher hepatic accumulation (26±3.9 versus 3.5±0.4 %IA/g respectively), and concomitantly lower tumor uptake (25±11 versus 52±10 %IA/g respectively) in BALB/c-nu mice. Inhibiting FcRn by administration of nonspecific IgG1 just prior to 111In-DTPA-5A10 did not change tumor accumulation significantly. Conclusions We demonstrated that the choice of immunodeficient mouse model importantly influence the bio-distribution of 111In-DTPA-5A10. This study further highlighted important considerations in the evaluation of preclinical tracers, with

  8. NMR-based metabolomics and breath studies show lipid and protein catabolism during low dose chronic T1AM treatment

    PubMed Central

    Haviland, J. A.; Reiland, H.; Butz, D. E.; Tonelli, M.; Porter, W. P.; Zucchi, R.; Scanlan, T. S.; Chiellini, G.; Assadi-Porter, F. M.

    2013-01-01

    Objective 3-iodothyronamine (T1AM), an analog of thyroid hormone, is a recently discovered fast-acting endogenous metabolite. High single dose treatments of T1AM have produced rapid short-term effects, including a reduction of body temperature, bradycardia, and hyperglycemia in mice. Design and Methods The present study monitored the effect of daily low doses of T1AM (10mg/Kg) for eight-days on weight loss and metabolism in spontaneously overweight mice. The experiments were repeated twice (n=4). Nuclear magnetic resonance (NMR) spectroscopy of plasma and real-time analysis of exhaled 13CO2 in breath by cavity ringdown spectroscopy (CRDS) were used to detect T1M-induced lipolysis. Results CRDS detected increased lipolysis in breath shortly after T1AM administration that was associated with a significant weight loss but independent of food consumption. NMR spectroscopy revealed alterations in key metabolites in serum: valine, glycine, and 3-hydroxybutyrate, suggesting that the subchronic effects of T1AM include both lipolysis and protein breakdown. After discontinuation of T1AM treatment, mice regained only 1.8% of the lost weight in the following two weeks, indicating lasting effects of T1AM on weight maintenance. Conclusions CRDS in combination with NMR and 13C-metabolic tracing constitute a powerful method of investigation in obesity studies for identifying in vivo biochemical pathway shifts and unanticipated debilitating side effects. PMID:23512955

  9. Field Studies Show That In Situ Greenhouse Gas Emission Factors for East African Agriculture Are Less Than IPCC Values

    NASA Astrophysics Data System (ADS)

    Pelster, D.; Butterbach-Bahl, K.; Rufino, M.; Rosenstock, T. S.; Wanyama, G.

    2015-12-01

    Greenhouse gas (GHG) emissions from African agricultural systems are thought to comprise a large portion of total emissions from the continent, however these estimates have been calculated using emission factors (EF) from other regions due to the lack of field studies in Africa, which results in large uncertainties for these estimates. Field measurements from western Kenya calculating emissions over a year in 59 different sites found that GHG emissions from typical smallholder farms ranged from 2.8 to 15.0 Mg CO2-C ha-1, -6.0 to 2.4 kg CH4-C ha-1 and -0.1 to 1.8 kg N2O-N ha-1, and were not affected by management intensity. The lack of a response in N2O emissions to N fertilization suggests that the EF currently used in national inventories overestimates N2O emissions from typical smallholder agriculture. Another study measuring N2O and CH4 emissions from manure deposited by grazing cattle found that the N2O EF ranged from 0.1 to 0.2%, while the CH4 EF ranged from 0.04 to 0.14 Kg CH4-C per 173 kg animal. These suggest that the current IPCC EF overestimate agricultural soil and manure GHG emissions for Kenya, and likely for much of East Africa.

  10. Honored Teacher Shows Commitment.

    ERIC Educational Resources Information Center

    Ratte, Kathy

    1987-01-01

    Part of the acceptance speech of the 1985 National Council for the Social Studies Teacher of the Year, this article describes the censorship experience of this honored social studies teacher. The incident involved the showing of a videotape version of the feature film entitled "The Seduction of Joe Tynan." (JDH)

  11. Underweight Full-Term Indian Neonates Show Differences in Umbilical Cord Blood Leukocyte Phenotype: A Cross-Sectional Study

    PubMed Central

    Rathore, Deepak K.; Nair, Deepa; Raza, Saimah; Saini, Savita; Singh, Reeta; Kumar, Amit; Tripathi, Reva; Ramji, Siddarth; Batra, Aruna; Aggarwal, Kailash C.; Chellani, Harish K.; Arya, Sugandha; Bhatla, Neerja; Paul, Vinod K.; Aggarwal, Ramesh; Agarwal, Nidhi; Mehta, Umesh; Sopory, Shailaja; Natchu, Uma Chandra Mouli; Bhatnagar, Shinjini; Bal, Vineeta; Rath, Satyajit; Wadhwa, Nitya

    2015-01-01

    Background While infections are a major cause of neonatal mortality in India even in full-term neonates, this is an especial problem in the large proportion (~20%) of neonates born underweight (or small-for-gestational-age; SGA). One potential contributory factor for this susceptibility is the possibility that immune system maturation may be affected along with intrauterine growth retardation. Methods In order to examine the possibility that differences in immune status may underlie the susceptibility of SGA neonates to infections, we enumerated the frequencies and concentrations of 22 leukocyte subset populations as well as IgM and IgA levels in umbilical cord blood from full-term SGA neonates and compared them with values from normal-weight (or appropriate-for-gestational-age; AGA) full-term neonates. We eliminated most SGA-associated risk factors in the exclusion criteria so as to ensure that AGA-SGA differences, if any, would be more likely to be associated with the underweight status itself. Results An analysis of 502 such samples, including 50 from SGA neonates, showed that SGA neonates have significantly fewer plasmacytoid dendritic cells (pDCs), a higher myeloid DC (mDC) to pDC ratio, more natural killer (NK) cells, and higher IgM levels in cord blood in comparison with AGA neonates. Other differences were also observed such as tendencies to lower CD4:CD8 ratios and greater prominence of inflammatory monocytes, mDCs and neutrophils, but while some of them had substantial differences, they did not quite reach the standard level of statistical significance. Conclusions These differences in cellular lineages of the immune system possibly reflect stress responses in utero associated with growth restriction. Increased susceptibility to infections may thus be linked to complex immune system dysregulation rather than simply retarded immune system maturation. PMID:25898362

  12. In Urban And Rural India, A Standardized Patient Study Showed Low Levels Of Provider Training And Huge Quality Gaps

    PubMed Central

    Das, Jishnu; Holla, Alaka; Das, Veena; Mohanan, Manoj; Tabak, Diana; Chan, Brian

    2013-01-01

    This article reports on the quality of care delivered by private and public providers of primary health care services in rural and urban India. To measure quality, the study used standardized patients recruited from the local community and trained to present consistent cases of illness to providers. We found low overall levels of medical training among health care providers; in rural Madhya Pradesh, for example, 67 percent of health care providers who were sampled reported no medical qualifications at all. What’s more, we found only small differences between trained and untrained doctors in such areas as adherence to clinical checklists. Correct diagnoses were rare, incorrect treatments were widely prescribed, and adherence to clinical checklists was higher in private than in public clinics. Our results suggest an urgent need to measure the quality of health care services systematically and to improve the quality of medical education and continuing education programs, among other policy changes. PMID:23213162

  13. Dithiocarbamate-thiourea hybrids useful as vaginal microbicides also show reverse transcriptase inhibition: design, synthesis, docking and pharmacokinetic studies.

    PubMed

    Bala, Veenu; Jangir, Santosh; Mandalapu, Dhanaraju; Gupta, Sonal; Chhonker, Yashpal S; Lal, Nand; Kushwaha, Bhavana; Chandasana, Hardik; Krishna, Shagun; Rawat, Kavita; Maikhuri, Jagdamba P; Bhatta, Rabi S; Siddiqi, Mohammad I; Tripathi, Rajkamal; Gupta, Gopal; Sharma, Vishnu L

    2015-02-15

    Prophylactic prevention is considered as the most promising strategy to tackle STI/HIV. Twenty-five dithiocarbamate-thiourea hybrids (14-38) were synthesized as woman controlled topical vaginal microbicides to counter Trichomonas vaginalis and sperm along with RT inhibition potential. The four promising compounds (18, 26, 28 and 33) were tested for safety through cytotoxic assay against human cervical cell line (HeLa) and compatibility with vaginal flora, Lactobacillus. Docking study of most promising vaginal microbicide (33) revealed that it docked in a position and orientation similar to known reverse transcriptase inhibitor Nevirapine. The preliminary in vivo pharmacokinetics of compound 33 was performed in NZ-rabbits to evaluate systemic toxicity in comparison to Nonoxynol-9. PMID:25592712

  14. Randomized, Controlled, Thorough QT/QTc Study Shows Absence of QT Prolongation with Luseogliflozin in Healthy Japanese Subjects

    PubMed Central

    Kumagai, Yuji; Hasunuma, Tomoko; Sakai, Soichi; Ochiai, Hidekazu; Samukawa, Yoshishige

    2015-01-01

    Luseogliflozin is a selective sodium glucose co-transporter 2 (SGLT2) inhibitor. To evaluate the cardiac safety of luseogliflozin, a thorough QT/QTc study was conducted in healthy Japanese subjects. The effects of moxifloxacin on QT prolongation in Japanese subjects were also evaluated. In this double-blind, placebo- and open-label positive-controlled, 4-way crossover study, 28 male and 28 female subjects received a single dose of luseogliflozin 5 mg (therapeutic dose), luseogliflozin 20 mg (supratherapeutic dose), placebo, and moxifloxacin 400 mg. Serial triplicate digital 12-lead electrocardiograms (ECGs) were recorded before and after dosing, and results were analyzed using the Fridericia correction (QTcF) method. Serial blood sampling was performed for pharmacokinetic analyses of luseogliflozin and moxifloxacin to analyze the relationship between QTcF interval and plasma concentration. The upper limits of the two-sided 90% confidence intervals (CIs) for baseline and placebo-adjusted QTcF intervals (ΔΔQTcF) in the 5 mg and 20 mg luseogliflozin groups were less than 10 ms at all time points. No correlation between plasma luseogliflozin concentrations and ΔΔQTcF was observed. In the moxifloxacin group, the lower limits of the two-sided 90% CIs for ΔΔQTcF were greater than 5 ms at all time points. A positive relationship was observed between plasma moxifloxacin concentration and change in ΔΔQTcF. Luseogliflozin was well tolerated at both dose levels. The majority of adverse events were mild in severity, and no serious or life-threatening adverse events occurred. Neither therapeutic (5 mg) nor supratherapeutic (20 mg) doses of luseogliflozin affected QT prolongation in healthy Japanese subjects. PMID:26444986

  15. Thermoeffector neuronal pathways in fever: a study in rats showing a new role of the locus coeruleus

    PubMed Central

    Almeida, Maria C; Steiner, Alexandre A; Coimbra, Norberto C; Branco, Luiz G S

    2004-01-01

    It is known that brain noradrenaline (norepinephrine) mediates fever, but the neuronal group involved is unknown. We studied the role of the major noradrenergic nucleus, the locus coeruleus (LC), in lipopolysaccharide (LPS)-induced fever. Male Wistar rats had their LC completely ablated electrolytically or their catecholaminergic LC neurones selectively lesioned by microinjection of 6-hydroxydopamine; the controls were sham-operated. Both lesions resulted in a marked attenuation of LPS (1 or 10 μg kg−1, i.v.) fever at a subneutral (23°C) ambient temperature (Ta). Because electrolytic and chemical lesions produced similar effects, the role of the LC in fever was further investigated using electrolytic lesions only. The levels of prostaglandin (PG) E2, the terminal mediator of fever, were equally raised in the anteroventral third ventricular region of LC-lesioned and sham-operated rats during the course of LPS fever, indicating that LC neurones are not involved in febrigenic signalling to the brain. To investigate the potential involvement of the LC in an efferent thermoregulatory neuronal pathway, the thermoregulatory response to PGE2 (25 ng, i.c.v.) was studied at a subneutral (23°C, when fever is brought about by thermogenesis) or neutral (28°C, when fever is brought about by tail skin vasoconstriction) Ta. The PGE2-induced increases in metabolic rate (an index of thermogenesis) and fever were attenuated in LC-lesioned rats at 23°C, whereas PGE2-induced skin vasoconstriction and fever normally developed in LC-lesioned rats at 28°C. The LC-lesioned rats had attenuated PGE2 thermogenesis despite the fact that they were fully capable of activating thermogenesis in response to noradrenaline and cold exposure. It is concluded that LC neurones are part of a neuronal network that is specifically activated by PGE2 to increase thermogenesis and produce fever. PMID:15146040

  16. Comparative percutaneous permeation study using caffeine-loaded microemulsion showing low reliability of the frozen/thawed skin models.

    PubMed

    Sintov, Amnon C; Greenberg, Igor

    2014-08-25

    The aim of this study was to explore the transdermal delivery potential of a new caffeine-containing microemulsion system. The skin permeability of caffeine (CAF) was measured in vitro using skin excised from three different animal species: rat, rabbit and pig. As shown, microemulsion containing 20% aqueous phase enhanced CAF permeation across fresh rat skin by one order of magnitude (Papp=8.2×10(-3) vs. 0.86×10(-3) cm/h; enhancement ratio=9.6). The permeability coefficient value, the cumulative permeation amount, and the percent of dose permeated after 24 h, decreased with the increase of water content from 60% to 80% in microemulsions due to the apparent increase in the droplet size. Importantly, differences were noted between caffeine transport rates across fresh and frozen/thawed pig skin whereas microemulsions delivered caffeine at similar rates across rat and rabbit skin, either fresh or frozen/thawed. It has been shown that the permeability of caffeine through frozen/thawed pig skin was abnormally high and was independent of its vehicle properties, i.e., its hydrophilic or lipophilic nature. It has been hypothesized that the reason for this abnormality is that porcine stratum corneum has a higher ceramide-to-cholesterol ratio compared to rat and rabbit skin. This unusual phenomenon observed in a non-freshly used porcine skin places a question mark on its suitability to in vitro evaluation of transdermal drug delivery systems. PMID:24866271

  17. AFM surface investigation of polyethylene modified by ion bombardment

    NASA Astrophysics Data System (ADS)

    Švorčík, V.; Arenholz, E.; Hnatowicz, V.; Rybka, V.; Öchsner, R.; Ryssel, H.

    1998-07-01

    Polyethylene (PE) was irradiated with 63 keV Ar + and 155 keV Xe + ions to fluences of 1 × 10 13 to 3 × 10 15 cm -2 with ion energies being chosen in order to achieve approximately the same penetration depth for both species. The PE surface morphology was examined by means of atomic force microscopy (AFM), whereas the concentration of free radicals and conjugated double bonds, both created by the ion irradiation, were determined using electron paramagnetic resonance (EPR) and UV-VIS spectroscopy, respectively. As expected, the degradation of PE was higher after irradiation with heavier Xe + ions but the changes in the PE surface morphology were more pronounced for Ar + ions. This newly observed effect can be explained by stronger compaction of the PE surface layer in the case of the Xe + irradiation, connected with a reduction of free volume available.

  18. FM-AFM crossover in vanadium oxide nanomaterials

    NASA Astrophysics Data System (ADS)

    Demishev, S. V.; Chernobrovkin, A. L.; Glushkov, V. V.; Grigorieva, A. V.; Goodilin, E. A.; Sluchanko, N. E.; Samarin, N. A.; Semeno, A. V.

    2010-01-01

    The magnetic properties of nanomaterials based on vanadium oxide (multiwall nanotubes, nanorods, and nanolayers) have been investigated in the temperature range of 1.8-220 K by high-frequency (60-GHz) EPR. A transition from a ferromagnetic temperature dependence to an antiferromagnetic temperature dependence has been observed in nanorods and nanotubes with a decrease in the temperature. The FM-AFM crossover observed near T C ˜ 110 K is accompanied by a low-temperature increase in the Curie constant by a factor of 2.7-7. The comparison of the experimental data for various VO x nanoparticles indicates that the most probable cause of the change in the type of magnetic interaction is a change in the concentration of V4+ magnetic ions.

  19. AFM of self-assembled lambda DNA-histone networks.

    PubMed

    Liu, YuYing; Guthold, Martin; Snyder, Matthew J; Lu, HongFeng

    2015-10-01

    Atomic force microscopy (AFM) was used to investigate the self-assembly behavior of λ-DNA and histones at varying histone:DNA ratios. Without histones and at the lowest histone:DNA ratio (less than one histone per 1000 base pairs of DNA), the DNA appeared as individual (uncomplexed), double-stranded DNA molecules. At increasing histone concentrations (one histone per 500, 250 and 167 base pairs of DNA), the DNA molecules started to form extensive polygonal networks of mostly pentagons and hexagons. The observed networks might be one of the naturally occurring, stable DNA-histone structures. The condensing effects of the divalent cations Mg(2+) and Ca(2+) on the DNA-histone complexes were also investigated. The networks persisted at high Mg(2+) concentration (20mM) and the highest histone concentration. At high Ca(2+) concentration and the highest histone concentration, the polygonal network disappeared and, instead, individual, tightly condensed aggregates were formed. PMID:26141439

  20. Characterization of Fibromyalgia Symptoms in Patients 55 to 95 Years Old: a Longitudinal Study Showing Symptom Persistence with Suboptimal Treatment

    PubMed Central

    Jacobson, Sandra A.; Simpson, Rachel G.; Lubahn, Cheri; Hu, Chengcheng; Belden, Christine M.; Davis, Kathryn J.; Nicholson, Lisa R.; Long, Kathy E.; Osredkar, Tracy; Lorton, Dianne

    2014-01-01

    BACKGROUND Fibromyalgia (FM) has been understudied in the elderly population, a group with particular vulnerabilities to pain, reduced mobility, and sleep disruption. AIMS To characterize FM symptoms and treatments in a cohort of older subjects examined over time to determine the extent to which current, community-based treatment for older FM patients is in accord with published guidelines, and effective in reducing symptoms. METHODS A longitudinal, observational study of 51 subjects with FM (range 55 to 95 years) and 81 control subjects (58 to 95 years) performed at Banner Sun Health Research Institute in Sun City, AZ. Serial history and examination data were obtained over a 6-year period. FM data included medical history, medications, physical examination, tender point examination, neuropsychological testing, sleep and pain ratings, the Physical Function Subscale of the Fibromyalgia Impact Questionnaire, and other standardized scales to evaluate depression and other psychiatric symptoms, and cognitive and functional impairment. RESULTS Pain and stiffness that interfered with physical activity, sleep, and mood were reported by 80% or more of subjects. Over time, pain involved an increasing number of body areas. Over half of subjects were treated with NSAIDs, one-quarter with opioids, and one-quarter with estrogen. Few were treated with dual-acting antidepressants or pregabalin. DISCUSSION In this cohort of elders with suboptimally treated FM, substantial persistence of symptoms was seen over time. In general, recommended treatments were either not used or not tolerated. CONCLUSIONS Age-appropriate treatments as well as education of primary care providers are needed to improve treatment of FM in the older population. PMID:24859821

  1. Dinuclear center of ferritin: studies of iron binding and oxidation show differences in the two iron sites.

    PubMed

    Treffry, A; Zhao, Z; Quail, M A; Guest, J R; Harrison, P M

    1997-01-14

    The ferroxidase activity of human ferritin has previously been associated with a diiron site situated centrally within the four-helix bundle of H-type chains (HuHF). However, direct information about the site of Fe(II) binding has been lacking, and events between Fe(II) binding and its oxidation have not previously been studied. A sequential stopped-flow assay has now been developed to enable the dissection of binding and oxidation. It depends on the ability of 1,10-phenanthroline to complex protein-bound Fe(II) and to distinguish it from the more immediately available free Fe(II). This approach, aided by the use of site-directed variants, indicates that in HuHF and the non-heme ferritin of Escherichia coli the first 48 Fe(II) atoms/molecule added are bound and oxidized at the dinuclear centers. At a constant iron concentration, the rate of Fe(II) oxidation was maximal for additions of 2 Fe(II) atoms/subunit, consistent with a two-electron oxidation of the Fe(II) pair. Although, at low Fe(II)/protein ratios, no cooperativity in Fe(II) binding was observed; a preferred order of binding was deduced [Fe(II) binding first at site A and then at site B]. Binding of Fe(II) at both sites was essential for fast oxidation. Modification of site A ligands resulted in slow iron binding and slow oxidation. Modification of site B did not prevent Fe(II) binding at site A but greatly reduced its oxidation rate. These differences may mean that dioxygen is initially bound to Fe(II) at site B. PMID:9003196

  2. Direct measurement of optical force induced by near-field plasmonic cavity using dynamic mode AFM

    SciTech Connect

    Guan, Dongshi; Hang, Zhi Hong; Marset, Zsolt; Liu, Hui; Kravchenko, Ivan I.; Chan, Ho Bun; Chan, C. T.; Tong, Penger

    2015-11-20

    Plasmonic nanostructures have attracted much attention in recent years because of their potential applications in optical manipulation through near-field enhancement. Continuing experimental efforts have been made to develop accurate techniques to directly measure the near-field optical force induced by the plasmonic nanostructures in the visible frequency range. In this work, we report a new application of dynamic mode atomic force microscopy (DM-AFM) in the measurement of the enhanced optical force acting on a nano-structured plasmonic resonant cavity. The plasmonic cavity is made of an upper gold-coated glass sphere and a lower quartz substrate patterned with an array of subwavelength gold disks. In the near-field when the sphere is positioned close to the disk array, plasmonic resonance is excited in the cavity and the induced force by a 1550 nm infrared laser is found to be increased by an order of magnitude compared with the photon pressure generated by the same laser light. Lastly, the experiment demonstrates that DM-AFM is a powerful tool for the study of light induced forces and their enhancement in plasmonic nanostructures.

  3. Direct measurement of optical force induced by near-field plasmonic cavity using dynamic mode AFM

    DOE PAGESBeta

    Guan, Dongshi; Hang, Zhi Hong; Marset, Zsolt; Liu, Hui; Kravchenko, Ivan I.; Chan, Ho Bun; Chan, C. T.; Tong, Penger

    2015-11-20

    Plasmonic nanostructures have attracted much attention in recent years because of their potential applications in optical manipulation through near-field enhancement. Continuing experimental efforts have been made to develop accurate techniques to directly measure the near-field optical force induced by the plasmonic nanostructures in the visible frequency range. In this work, we report a new application of dynamic mode atomic force microscopy (DM-AFM) in the measurement of the enhanced optical force acting on a nano-structured plasmonic resonant cavity. The plasmonic cavity is made of an upper gold-coated glass sphere and a lower quartz substrate patterned with an array of subwavelength goldmore » disks. In the near-field when the sphere is positioned close to the disk array, plasmonic resonance is excited in the cavity and the induced force by a 1550 nm infrared laser is found to be increased by an order of magnitude compared with the photon pressure generated by the same laser light. Lastly, the experiment demonstrates that DM-AFM is a powerful tool for the study of light induced forces and their enhancement in plasmonic nanostructures.« less

  4. Measuring cell wall elasticity on enteroaggregative Escherichia coli wild type and dispersin mutant by AFM

    SciTech Connect

    Beckmann, Melissa; Venkataraman, Sankar; Doktycz, Mitchel John; Nataro, James P; Sullivan, Claretta J; Morrell-Falvey, Jennifer L; Allison, David P

    2006-07-01

    Enteroaggregative Escherichia coli (EAEC) is pathogenic and produces severe diarrhea in humans. A mutant of EAEC that does not produce dispersin, a cell surface protein, is not pathogenic. It has been proposed that dispersin imparts a positive charge to the bacterial cell surface allowing the bacteria to colonize on the negatively charged intestinal mucosa. However, physical properties of the bacterial cell surface, such as rigidity, may be influenced by the presence of dispersin and may contribute to pathogenicity. Using the system developed in our laboratory for mounting and imaging bacterial cells by atomic force microscopy (AFM), in liquid, on gelatin coated mica surfaces, studies were initiated to measure cell surface elasticity. This was carried out in both wild type EAEC, that produces dispersin, and the mutant that does not produce dispersin. This was accomplished using AFM force-distance (FD) spectroscopy on the wild type and mutant grown in liquid or on solid medium. Images in liquid and in air of both the wild-type and mutant grown in liquid and on solid media are presented. This work represents an initial step in efforts to understand the pathogenic role of the dispersin protein in the wild-type bacteria.

  5. Direct Measurement of Optical Force Induced by Near-Field Plasmonic Cavity Using Dynamic Mode AFM.

    PubMed

    Guan, Dongshi; Hang, Zhi Hong; Marcet, Zsolt; Liu, Hui; Kravchenko, I I; Chan, C T; Chan, H B; Tong, Penger

    2015-01-01

    Plasmonic nanostructures have attracted much attention in recent years because of their potential applications in optical manipulation through near-field enhancement. Continuing experimental efforts have been made to develop accurate techniques to directly measure the near-field optical force induced by the plasmonic nanostructures in the visible frequency range. In this work, we report a new application of dynamic mode atomic force microscopy (DM-AFM) in the measurement of the enhanced optical force acting on a nano-structured plasmonic resonant cavity. The plasmonic cavity is made of an upper gold-coated glass sphere and a lower quartz substrate patterned with an array of subwavelength gold disks. In the near-field when the sphere is positioned close to the disk array, plasmonic resonance is excited in the cavity and the induced force by a 1550 nm infrared laser is found to be increased by an order of magnitude compared with the photon pressure generated by the same laser light. The experiment demonstrates that DM-AFM is a powerful tool for the study of light induced forces and their enhancement in plasmonic nanostructures. PMID:26586455

  6. Direct Measurement of Optical Force Induced by Near-Field Plasmonic Cavity Using Dynamic Mode AFM

    PubMed Central

    Guan, Dongshi; Hang, Zhi Hong; Marcet, Zsolt; Liu, Hui; Kravchenko, I. I.; Chan, C. T.; Chan, H. B.; Tong, Penger

    2015-01-01

    Plasmonic nanostructures have attracted much attention in recent years because of their potential applications in optical manipulation through near-field enhancement. Continuing experimental efforts have been made to develop accurate techniques to directly measure the near-field optical force induced by the plasmonic nanostructures in the visible frequency range. In this work, we report a new application of dynamic mode atomic force microscopy (DM-AFM) in the measurement of the enhanced optical force acting on a nano-structured plasmonic resonant cavity. The plasmonic cavity is made of an upper gold-coated glass sphere and a lower quartz substrate patterned with an array of subwavelength gold disks. In the near-field when the sphere is positioned close to the disk array, plasmonic resonance is excited in the cavity and the induced force by a 1550 nm infrared laser is found to be increased by an order of magnitude compared with the photon pressure generated by the same laser light. The experiment demonstrates that DM-AFM is a powerful tool for the study of light induced forces and their enhancement in plasmonic nanostructures. PMID:26586455

  7. Direct Measurement of Optical Force Induced by Near-Field Plasmonic Cavity Using Dynamic Mode AFM

    NASA Astrophysics Data System (ADS)

    Guan, Dongshi; Hang, Zhi Hong; Marcet, Zsolt; Liu, Hui; Kravchenko, I. I.; Chan, C. T.; Chan, H. B.; Tong, Penger

    2015-11-01

    Plasmonic nanostructures have attracted much attention in recent years because of their potential applications in optical manipulation through near-field enhancement. Continuing experimental efforts have been made to develop accurate techniques to directly measure the near-field optical force induced by the plasmonic nanostructures in the visible frequency range. In this work, we report a new application of dynamic mode atomic force microscopy (DM-AFM) in the measurement of the enhanced optical force acting on a nano-structured plasmonic resonant cavity. The plasmonic cavity is made of an upper gold-coated glass sphere and a lower quartz substrate patterned with an array of subwavelength gold disks. In the near-field when the sphere is positioned close to the disk array, plasmonic resonance is excited in the cavity and the induced force by a 1550 nm infrared laser is found to be increased by an order of magnitude compared with the photon pressure generated by the same laser light. The experiment demonstrates that DM-AFM is a powerful tool for the study of light induced forces and their enhancement in plasmonic nanostructures.

  8. Structure, cell wall elasticity and polysaccharide properties of living yeast cells, as probed by AFM

    NASA Astrophysics Data System (ADS)

    Alsteens, David; Dupres, Vincent; McEvoy, Kevin; Wildling, Linda; Gruber, Hermann J.; Dufrêne, Yves F.

    2008-09-01

    Although the chemical composition of yeast cell walls is known, the organization, assembly, and interactions of the various macromolecules remain poorly understood. Here, we used in situ atomic force microscopy (AFM) in three different modes to probe the ultrastructure, cell wall elasticity and polymer properties of two brewing yeast strains, i.e. Saccharomyces carlsbergensis and S. cerevisiae. Topographic images of the two strains revealed smooth and homogeneous cell surfaces, and the presence of circular bud scars on dividing cells. Nanomechanical measurements demonstrated that the cell wall elasticity of S. carlsbergensis is homogeneous. By contrast, the bud scar of S. cerevisiae was found to be stiffer than the cell wall, presumably due to the accumulation of chitin. Notably, single molecule force spectroscopy with lectin-modified tips revealed major differences in polysaccharide properties of the two strains. Polysaccharides were clearly more extended on S. cerevisiae, suggesting that not only oligosaccharides, but also polypeptide chains of the mannoproteins were stretched. Consistent with earlier cell surface analyses, these findings may explain the very different aggregation properties of the two organisms. This study demonstrates the power of using multiple complementary AFM modalities for probing the organization and interactions of the various macromolecules of microbial cell walls.

  9. Nanobiosensors Based on Chemically Modified AFM Probes: A Useful Tool for Metsulfuron-Methyl Detection

    PubMed Central

    da Silva, Aline C.N.; Deda, Daiana K.; da Róz, Alessandra L.; Prado, Rogilene A.; Carvalho, Camila C.; Viviani, Vadim; Leite, Fabio L.

    2013-01-01

    The use of agrochemicals has increased considerably in recent years, and consequently, there has been increased exposure of ecosystems and human populations to these highly toxic compounds. The study and development of methodologies to detect these substances with greater sensitivity has become extremely relevant. This article describes, for the first time, the use of atomic force spectroscopy (AFS) in the detection of enzyme-inhibiting herbicides. A nanobiosensor based on an atomic force microscopy (AFM) tip functionalised with the acetolactate synthase (ALS) enzyme was developed and characterised. The herbicide metsulfuron-methyl, an ALS inhibitor, was successfully detected through the acquisition of force curves using this biosensor. The adhesion force values were considerably higher when the biosensor was used. An increase of ∼250% was achieved relative to the adhesion force using an unfunctionalised AFM tip. This considerable increase was the result of a specific interaction between the enzyme and the herbicide, which was primarily responsible for the efficiency of the nanobiosensor. These results indicate that this methodology is promising for the detection of herbicides, pesticides, and other environmental contaminants. PMID:23348034

  10. Nanopuller-open data acquisition platform for AFM force spectroscopy experiments.

    PubMed

    Pawlak, Konrad; Strzelecki, Janusz

    2016-05-01

    Atomic Force Microscope (AFM) is a widely used tool in force spectroscopy studies. Presently, this instrument is accessible from numerous vendors, albeit commercial solutions are expensive and almost always hardware and software closed. Approaches for open setups were published, as with modern low cost and readily available piezoelectric actuators, data acquisition interfaces and optoelectronic components building such force spectroscopy AFM is relatively easy. However, suitable software to control such laboratory made instrument was not released. Developing it in the lab requires significant time and effort. Our Nanopuller software described in this paper is intended to eliminate this obstacle. With only minimum adjustments this program can be used to control and acquire data with any suitable National Instruments universal digital/analog interface and piezoelectric actuator analog controller, giving significant freedom and flexibility in designing force spectroscopy experiment. Since the full code, written in a graphical LabVIEW environment is available, our Nanopuller can be easily customized. In this paper we describe the program and test its performance in controlling different setups. Successful and accurate force curve acquisition for standard samples (single molecules of I27O reference titin polyprotein and DNA as well as red blood cells) is shown. PMID:26994468

  11. Recent advances in exchange bias of layered magnetic FM/AFM systems

    NASA Astrophysics Data System (ADS)

    Liu, ZhongYuan

    2013-01-01

    The exchange bias (EB) has been investigated in magnetic materials with the ferromagnetic (FM)/antiferromagnetic (AFM) contacting interfaces for more than half a century. To date, the significant progress has been made in the layered magnetic FM/AFM thin film systems. EB mechanisms have shown substantive research advances. Here some of the new advances are introduced and discussed with the emphasis on the influence of AFM layer, the interlayer EB coupling across nonmagnetic spacer, and the interlayer coupling across AFM layer, as well as EB related to multiferrioc materials and electrical control.

  12. Implementation of a four quadrant optic fibre bundle as a deflection sensor to get rid of heat sources in an AFM head

    NASA Astrophysics Data System (ADS)

    Boukellal, Younes; Ducourtieux, Sebastien

    2015-09-01

    In the frame of developing a thermally passive atomic force microscope head, a new kind of 2D displacement sensor based on a four quadrant optic fibre bundle has been implemented. The aim is to replace the quad cell photodiode used in the optical beam deflection method to detect cantilever deflection. The use of the bundle as a position sensor has already been modelled and experimentally evaluated in a previous work. This article reports on the implementation of the bundle as a deflection sensor for atomic force microscopy. The main motivation for such a development was to reduce the heat sources in the instrument. To reach this goal the photodiode and its conditioning circuit used for the measurement of cantilever deflection has been externalized from the AFM head. For the same reason, the laser diode and its electronic driver have been deported using optic fibre. To test the AFM head prototype in real conditions, approach curves and AFM images have been performed. The results show that the bundle is very well suited for AFM applications that require very low heat sources such as metrological AFM where each error source has to be managed.

  13. Towards quantitative molecular mapping of cells by Raman microscopy: using AFM for decoupling molecular concentration and cell topography.

    PubMed

    Boitor, Radu; Sinjab, Faris; Strohbuecker, Stephanie; Sottile, Virginie; Notingher, Ioan

    2016-06-23

    Raman micro-spectroscopy (RMS) is a non-invasive technique for imaging live cells in vitro. However, obtaining quantitative molecular information from Raman spectra is difficult because the intensity of a Raman band is proportional to the number of molecules in the sampled volume, which depends on the local molecular concentration and the thickness of the cell. In order to understand these effects, we combined RMS with atomic force microscopy (AFM), a technique that can measure accurately the thickness profile of the cells. Solution-based calibration models for RNA and albumin were developed to create quantitative maps of RNA and proteins in individual fixed cells. The maps were built by applying the solution-based calibration models, based on partial least squares fitting (PLS), on raster-scan Raman maps, after accounting for the local cell height obtained from the AFM. We found that concentrations of RNA in the cytoplasm of mouse neuroprogenitor stem cells (NSCs) were as high as 25 ± 6 mg ml(-1), while proteins were distributed more uniformly and reached concentrations as high as ∼50 ± 12 mg ml(-1). The combined AFM-Raman datasets from fixed cells were also used to investigate potential improvements for normalization of Raman spectral maps. For all Raman maps of fixed cells (n = 10), we found a linear relationship between the scores corresponding to the first component (PC1) and the cell height profile obtained by AFM. We used PC1 scores to reconstruct the relative height profiles of independent cells (n = 10), and obtained correlation coefficients with AFM maps higher than 0.99. Using this normalization method, qualitative maps of RNA and protein were used to obtain concentrations for live NSCs. While this study demonstrates the potential of using AFM and RMS for measuring concentration maps for individual NSCs in vitro, further studies are required to establish the robustness of the normalization method based on principal component analysis when comparing

  14. Talk Show Science.

    ERIC Educational Resources Information Center

    Moore, Mitzi Ruth

    1992-01-01

    Proposes having students perform skits in which they play the roles of the science concepts they are trying to understand. Provides the dialog for a skit in which hot and cold gas molecules are interviewed on a talk show to study how these properties affect wind, rain, and other weather phenomena. (MDH)

  15. AFM, ellipsometry, XPS and TEM on ultra-thin oxide/polymer nanocomposite layers in organic thin film transistors.

    PubMed

    Fian, A; Haase, A; Stadlober, B; Jakopic, G; Matsko, N B; Grogger, W; Leising, G

    2008-03-01

    Here we report on the fabrication and characterization of ultra-thin nanocomposite layers used as gate dielectric in low-voltage and high-performance flexible organic thin film transistors (oTFTs). Reactive sputtered zirconia layers were deposited with low thermal exposure of the substrate and the resulting porous oxide films with high leakage currents were spin-coated with an additional layer of poly-alpha-methylstyrene (P alphaMS). After this treatment a strong improvement of the oTFT performance could be observed; leakage currents could be eliminated almost completely. In ellipsometric studies a higher refractive index of the ZrO(2)/P alphaMS layers compared to the "as sputtered" zirconia films could be detected without a significant enhancement of the film thickness. Atomic force microscopy (AFM) measurements of the surface topography clearly showed a surface smoothing after the P alphaMS coating. Further studies with X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) also indicated that the polymer definitely did not form an extra layer. The polymer chains rather (self-)assemble in the nano-scaled interspaces of the porous oxide film giving an oxide-polymer "nanocomposite" with a high oxide filling grade resulting in high dielectric constants larger than 15. The dielectric strength of more than 1 MV cm(-1) is in good accordance with the polymer-filled interspaces. PMID:17952415

  16. Surface investigations of ZnBeMnSe mixed crystals by means of the piezoelectric spectroscopy and the AFM technique

    NASA Astrophysics Data System (ADS)

    Strzałkowski, K.; Kulesza, S.; Zakrzewski, J.; Maliński, M.

    2014-01-01

    Piezoelectric photoacoustic spectroscopy with a piezoelectric detection has been used for measurements of the amplitude and phase spectra of Zn1-x-yBexMnySe mixed semiconductors. The investigated crystals were grown from the melt by the modified high pressure Bridgman method under the argon overpressure. The preliminary study of the sample's surface of the investigated crystals was carried out using the AFM technique. The influence of a different surface treatment on the amplitude and phase piezoelectric spectra as well as on AFM images is presented and analyzed. The correlations between these two techniques have been found and are discussed. Piezoelectric (PZE) spectra were analyzed using an extended and modified Jackson-Amer theory.

  17. Performance improvement of a large range metrological AFM through parasitic interference feedback artifacts removing by using laser multimode modulation method

    NASA Astrophysics Data System (ADS)

    Li, Qi; Gao, Sitian; Li, Wei; Lu, Mingzhen; Shi, Yushu

    2013-05-01

    A large range multi-functional metrological atomic force microscope based on optical beam deflection method has been set up at NIM one year ago. Being designed intended to make a traceable measurement of standard samples, the machine uses three axes stacked piezoceramic actuators, each axis with a pair of push-pull piezo operated at opposite phases to make orthogonal scanning with maximized dimensional up to 50×50×2mm3. The stage displacement is measured by homodyne interferometer framework in x,y,z direction, from which beams are aligned to intersect at cantilever tip to avoid Abbe error, an eight times optical path multiplier interferometer mirror is researched to enhance fringe resolution. There is also a new compact AFM head integrated with LD, quadrant PD, cantilever, optical path and microscope, the head uses special track lens group to guarantee laser spot focused and static on the back of the cantilever, no matter whether or not the cantilever have lateral movements; similarly, reflect beam also focused and static in the center of quadrant detector through convergence lens group, assumed no cantilever bending on vertical direction. Attribute to above design, the AFM have a resolution up to 0.5nm. In the paper, further improvement is described to reduce the influence of parasitic interference caused by reflection from sample surface using laser multimode modulation, the results shows metrological AFM have a better performance in measuring step, lateral pitch, line width, nanoroughness and other nanoscale structures.

  18. Conductive-probe AFM characterization of graphene sheets bonded to gold surfaces

    NASA Astrophysics Data System (ADS)

    Hauquier, Fanny; Alamarguy, David; Viel, Pascal; Noël, Sophie; Filoramo, Arianna; Huc, Vincent; Houzé, Frédéric; Palacin, Serge

    2012-01-01

    Conducting probe atomic force microscopy (CP-AFM) has been used to perform mechanical and electrical experiments on graphene layers bonded to polyaminophenylene (PAP) films grafted on gold substrates. This technique is a new approach for the characterization of graphene sheets and represents a complementary tool to Raman spectroscopy. The combination of friction and electrical imaging reveals that different stacked graphene sheets have been successfully distinguished from each other and from the underlying PAP films. Lateral force microscopy has shown that the friction is greatly reduced on graphene sheets in comparison with the organic coating. The electrical resistance images show very different local conduction properties which can be linked to the number of underlying graphene sheets. The resistance decreases very slowly when the normal load increases. Current-voltage curves display characteristics of metal-molecule-metal junctions.

  19. Beyond topography - enhanced imaging of cometary dust with the MIDAS AFM

    NASA Astrophysics Data System (ADS)

    Bentley, M. S.; Torkar, K.; Jeszenszky, H.; Romstedt, J.

    2013-09-01

    The MIDAS atomic force microscope (AFM) onboard the Rosetta spacecraft is primarily designed to return the 3D shape and structure of cometary dust particles collected at comet 67P/Churyumov-Gerasimenko [1]. Commercial AFMs have, however, been further developed to measure many other sample properties. The possibilities to make such measurements with MIDAS are explored here.

  20. Obtaining reliable friction data at the nanoscale by tuning AFM parameters

    NASA Astrophysics Data System (ADS)

    Kim, Sung Hyun; Kim, Suenne

    2015-03-01

    Carefully devised experimental study of friction at the nanoscale in dry system is desired for proper mathematical modeling or for quantitative research. Experimentally, contact mode atomic force microscope (AFM) which is able to perform lateral force microscopy (LFM) can be used for acquiring frictional data. To obtain reliable LFM information, we have investigated the effect of scanning parameters, especially gain and scanning rate, on the LFM measurements. Depending on the parameters selected, the relative ratio of the friction force obtained from graphene to that of SiO2 varies greatly from about 1 to 0.1. We will discuss, here, firstly how to understand this behavior and secondly the parameter-optimization procedure for the LFM imaging, which is different from the height imaging, eventually to aid quantitative LFM studies. This research was supported by Basic Science Research Program through NRF of Korea funded by the ministry of Education (2014R1A1A2056555).

  1. Nanomechanical characterization of nanostructured bainitic steel: Peak Force Microscopy and Nanoindentation with AFM

    NASA Astrophysics Data System (ADS)

    Morales-Rivas, Lucia; González-Orive, Alejandro; Garcia-Mateo, Carlos; Hernández-Creus, Alberto; Caballero, Francisca G.; Vázquez, Luis

    2015-11-01

    The full understanding of the deformation mechanisms in nanostructured bainite requires the local characterization of its mechanical properties, which are expected to change from one phase, bainitic ferrite, to another, austenite. This study becomes a challenging process due to the bainitic nanostructured nature and high Young’s modulus. In this work, we have carried out such study by means of the combination of AFM-based techniques, such as nanoindentation and Peak Force Quantitative Nanomechanical Mapping (PF-QNM) measurements. We have addressed critically the limits and advantages of these techniques and been able to measure some elastoplastic parameters of both phases. Specifically, we have analyzed by PF-QNM two nanostructured bainitic steels, with a finer and a coarser structure, and found that both phases have a similar Young’s modulus.

  2. Nanomechanical characterization of nanostructured bainitic steel: Peak Force Microscopy and Nanoindentation with AFM

    PubMed Central

    Morales-Rivas, Lucia; González-Orive, Alejandro; Garcia-Mateo, Carlos; Hernández-Creus, Alberto; Caballero, Francisca G.; Vázquez, Luis

    2015-01-01

    The full understanding of the deformation mechanisms in nanostructured bainite requires the local characterization of its mechanical properties, which are expected to change from one phase, bainitic ferrite, to another, austenite. This study becomes a challenging process due to the bainitic nanostructured nature and high Young’s modulus. In this work, we have carried out such study by means of the combination of AFM-based techniques, such as nanoindentation and Peak Force Quantitative Nanomechanical Mapping (PF-QNM) measurements. We have addressed critically the limits and advantages of these techniques and been able to measure some elastoplastic parameters of both phases. Specifically, we have analyzed by PF-QNM two nanostructured bainitic steels, with a finer and a coarser structure, and found that both phases have a similar Young’s modulus. PMID:26602631

  3. Nanomechanical characterization of nanostructured bainitic steel: Peak Force Microscopy and Nanoindentation with AFM.

    PubMed

    Morales-Rivas, Lucia; González-Orive, Alejandro; Garcia-Mateo, Carlos; Hernández-Creus, Alberto; Caballero, Francisca G; Vázquez, Luis

    2015-01-01

    The full understanding of the deformation mechanisms in nanostructured bainite requires the local characterization of its mechanical properties, which are expected to change from one phase, bainitic ferrite, to another, austenite. This study becomes a challenging process due to the bainitic nanostructured nature and high Young's modulus. In this work, we have carried out such study by means of the combination of AFM-based techniques, such as nanoindentation and Peak Force Quantitative Nanomechanical Mapping (PF-QNM) measurements. We have addressed critically the limits and advantages of these techniques and been able to measure some elastoplastic parameters of both phases. Specifically, we have analyzed by PF-QNM two nanostructured bainitic steels, with a finer and a coarser structure, and found that both phases have a similar Young's modulus. PMID:26602631

  4. AFM mapping of the elastic properties of brain tissue reveals kPa μm(-1) gradients of rigidity.

    PubMed

    Bouchonville, Nicolas; Meyer, Mikaël; Gaude, Christophe; Gay, Emmanuel; Ratel, David; Nicolas, Alice

    2016-07-20

    It is now well established that the mechanical environment of the cells in tissues deeply impacts cellular fate, including life cycle, differentiation and tumor progression. Designs of biomaterials already include the control of mechanical parameters, and in general, their main focus is to control the rheological properties of the biomaterials at a macroscopic scale. However, recent studies have demonstrated that cells can stress their environment below the micron scale, and therefore could possibly respond to the rheological properties of their environment at this micron scale. In this context, probing the mechanical properties of physiological cellular environments at subcellular scales is becoming critical. To this aim, we performed in vitro indentation measurements using AFM on sliced human pituitary gland tissues. A robust methodology was implemented using elasto-adhesive models, which shows that accounting for the adhesion of the probe on the tissue is critical for the reliability of the measurement. In addition to quantifying for the first time the rigidity of normal pituitary gland tissue, with a geometric mean of 9.5 kPa, our measurements demonstrated that the mechanical properties of this tissue are far from uniform at subcellular scales. Gradients of rigidity as large as 12 kPa μm(-1) were observed. This observation suggests that physiological rigidity can be highly non-uniform at the micron-scale. PMID:27377831

  5. AFM-based force microsensor for a microrobot

    NASA Astrophysics Data System (ADS)

    Fatikow, Sergej; Fahlbusch, Stephan

    2001-10-01

    Microrobots are the result of increasing research activities at the border between microsystem technology and robotics. Today already, robots with dimensions of a few cubic- centimeters can be developed. Like conventional robots, microrobots represent a complex system that usually contains several different types of actuators and sensors. The measurement of gripping forces is the most important sensor application in micromanipulation besides visual servoing to protect the parts from too high surface pressures and thereby damage during the assembly process. Very small forces in the range of 200 (mu) N down to 0.1 (mu) N or even less have to be sensed. Thus, the aim of our current research activities is the development of a high-resolution integrated force microsensor for measuring gripping forces in a microhandling robot. On the one hand, the sensor should be a device for teleoperated manipulation tasks in a flexible microhandling station. On the other hand, typical microhandling operations should to a large extend be automated with the aid of computer-based signal processing of sensor information. The user should be provided with an interface for teleoperated manipulation and an interface for partially automated manipulation of microobjects. In this paper, a concept for the measurement of gripping forces in microrobotics using piezoresistive AFM (atomic force microscope) cantilevers is introduced. Further on, the concept of a microrobot-based SEM station and its applications are presented.

  6. Data fusion for CD metrology: heterogeneous hybridization of scatterometry, CDSEM, and AFM data

    NASA Astrophysics Data System (ADS)

    Hazart, J.; Chesneau, N.; Evin, G.; Largent, A.; Derville, A.; Thérèse, R.; Bos, S.; Bouyssou, R.; Dezauzier, C.; Foucher, J.

    2014-04-01

    The manufacturing of next generation semiconductor devices forces metrology tool providers for an exceptional effort in order to meet the requirements for precision, accuracy and throughput stated in the ITRS. In the past years hybrid metrology (based on data fusion theories) has been investigated as a new methodology for advanced metrology [1][2][3]. This paper provides a new point of view of data fusion for metrology through some experiments and simulations. The techniques are presented concretely in terms of equations to be solved. The first point of view is High Level Fusion which is the use of simple numbers with their associated uncertainty postprocessed by tools. In this paper, it is divided into two stages: one for calibration to reach accuracy, the second to reach precision thanks to Bayesian Fusion. From our perspective, the first stage is mandatory before applying the second stage which is commonly presented [1]. However a reference metrology system is necessary for this fusion. So, precision can be improved if and only if the tools to be fused are perfectly matched at least for some parameters. We provide a methodology similar to a multidimensional TMU able to perform this matching exercise. It is demonstrated on a 28 nm node backend lithography case. The second point of view is Deep Level Fusion which works on the contrary with raw data and their combination. In the approach presented here, the analysis of each raw data is based on a parametric model and connections between the parameters of each tool. In order to allow OCD/SEM Deep Level Fusion, a SEM Compact Model derived from [4] has been developed and compared to AFM. As far as we know, this is the first time such techniques have been coupled at Deep Level. A numerical study on the case of a simple stack for lithography is performed. We show strict equivalence of Deep Level Fusion and High Level Fusion when tools are sensitive and models are perfect. When one of the tools can be considered as a

  7. PREFACE: NC-AFM 2004: Proceedings of the 7th International Conference on Non-contact Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Schwarz, Udo

    2005-03-01

    With the ongoing miniaturization of devices and controlled nanostructuring of materials, the importance of atomic-scale information on surfaces and surface properties is growing continuously. The astonishing progress in nanoscience and nanotechnology that took place during the last two decades was in many ways related to recent progress in high-resolution imaging techniques such as scanning tunnelling microscopy and transmission electron microscopy. Since the mid-1990s, non-contact atomic force microscopy (NC-AFM) performed in ultrahigh vacuum has evolved as an alternative technique that achieves atomic resolution, but without the restriction to conducting surfaces of the previously established techniques. Advances of the rapidly developing field of NC-AFM are discussed at annual conferences as part of a series that started in 1998 in Osaka, Japan. This special issue of Nanotechnology is a compilation of original work presented at the 7th International Conference on Non-contact Atomic Force Microscopy that took place in Seattle, USA, 12-15 September 2004. Over the years, the conference grew in size and scope. Atomic resolution imaging of oxides and semiconductors remains an issue. Noticeable new developments have been presented in this regard such as, e.g., the demonstrated ability to manipulate individual atoms. Additionally, the investigation of individual molecules, clusters, and organic materials gains more and more attention. In this context, considerable effort is undertaken to transfer the NC-AFM principle based on frequency modulation to applications in air and liquids with the goal of enabling high-resolution surface studies of biological material in native environments, as well as to reduce the experimental complexity, which so far involves the availability of (costly) vacuum systems. Force spectroscopy methods continue to be improved and are applied to topics such as the imaging of the three-dimensional force field as a function of the distance with

  8. Functionalisation of gold surfaces with thiolate SAMs: Topography/bioactivity relationship A combined FT-RAIRS, AFM and QCM investigation

    NASA Astrophysics Data System (ADS)

    Briand, E.; Gu, C.; Boujday, S.; Salmain, M.; Herry, J. M.; Pradier, C. M.

    2007-09-01

    Immobilisation of rabbit immunoglobulin G (rIgG) was performed by affinity binding to protein A (PrA) covalently bound to three different thiolate self-assembled monolayers (SAMs), (i) a mixed SAM of mercaptoundecanoic acid (MUA) and mercaptohexanol (C6OH) at a molar ratio of 1-3, (ii) a pure SAM of MUA and (iii) a pure SAM of cystamine (CA). A comparative study of anti-rIgG recognition process on these three surfaces was achieved in order to assess the influence of the attachment layer topography and composition upon the sensor quality. Functionalised gold-coated surfaces were characterised by three complementary analytical techniques, namely atomic force microscopy (AFM), polarization modulation-reflection-adsorption infrared spectroscopy (PM-RAIRS) and quartz crystal microbalance (QCM). PM-RAIRS and AFM revealed that the three SAMs were formed on the gold surfaces. AFM observations made it clear that the thiolate and PrA layers were rather homogeneous in the case of pure MUA and CA SAMs, as compared to the MUA/C6OH mixed SAM on which PrA aggregates were observed. Though the highest amount of antibody was bound to the PrA on CA layer, higher anti-rIgG over IgG ratios were measured on the less dense layers of antibody.

  9. Solid State Microstructure of Poly(L-lactide-co-meso-lactide) Copolymers by AFM

    NASA Astrophysics Data System (ADS)

    Kanchanasopa, M.; Manias, E.; Runt, J.

    2002-03-01

    The focus in the present study is on characterization of the lamellar morphology of poly(L-lactide) and two L-lactide/meso-lactide random copolymers containing 3 and 6 the same (Mn = 65,000, PDI = 2) and crystallization behavior is therefore controlled by comonomer content. Degrees of crystallinity and crystallization rates decrease substantially with increasing meso-lactide content in the copolymers. Tapping mode AFM experiments on the surfaces of films, previously isothermally crystallized at selected temperatures, were conducted. Similar experiments were also performed on cross-sections, microtomed from the crystallized films. Tapping force plays an important role in all experiments, particularly for low crystallinity samples. Mean lamellar thicknesses derived from analysis of height images agree well with those determined previously from small-angle x-ray scattering experiments.

  10. Probing of miniPEGγ-PNA-DNA Hybrid Duplex Stability with AFM Force Spectroscopy

    PubMed Central

    Dutta, Samrat; Armitage, Bruce A.; Lyubchenko, Yuri L.

    2016-01-01

    Peptide nucleic acids (PNA) are synthetic polymers, the neutral peptide backbone of which provides elevated stability to PNA-PNA and PNA-DNA hybrid duplex. It was demonstrated that incorporation of diethylene glycol (miniPEG) at the γ position of the peptide backbone increased the thermal stability of the hybrid duplexes (Sahu, B. et al. (2011) Journal of Organic Chemistry 76, 5614-5627). Here, we applied atomic force microscopy (AFM) based single molecule force spectroscopy (SMFS) and dynamic force spectroscopy (DFS) to test the strength and stability of the hybrid 10 bp duplex. This hybrid duplex consisted of miniPEGγ-PNA and DNA of the same length (γMPPNA-DNA), which we compared to a DNA duplex with a homologous sequence. AFM force spectroscopy data obtained at the same conditions showed that γMPPNA-DNA hybrid is more stable than the DNA counterpart, 65 ± 15 pN vs 47 ± 15 pN, respectively. The DFS measurements performed in a range of pulling speeds analyzed in the framework of the Bell-Evans approach yielded a dissociation constant, koff ∼ 0.030 ± 0.01 sec-1 for γMPPNA-DNA hybrid duplex vs. 0.375 ± 0.18 sec-1 for the DNA-DNA duplex suggesting that the hybrid duplex is much more stable. Correlating the high affinity of γMPPNA-DNA to slow dissociation kinetics is consistent with prior bulk characterization by surface plasmon resonance. Given the growing interest in γMPPNA as well as other synthetic DNA analogues, the use of single molecule experiments along with computational analysis of force spectroscopy data will provide direct characterization of various modifications as well as higher order structures such as triplexes and quadruplexes. PMID:26898903

  11. Probing of miniPEGγ-PNA-DNA Hybrid Duplex Stability with AFM Force Spectroscopy.

    PubMed

    Dutta, Samrat; Armitage, Bruce A; Lyubchenko, Yuri L

    2016-03-15

    Peptide nucleic acids (PNA) are synthetic polymers, the neutral peptide backbone of which provides elevated stability to PNA-PNA and PNA-DNA hybrid duplexes. It was demonstrated that incorporation of diethylene glycol (miniPEG) at the γ position of the peptide backbone increased the thermal stability of the hybrid duplexes (Sahu, B. et al. J. Org. Chem. 2011, 76, 5614-5627). Here, we applied atomic force microscopy (AFM) based single molecule force spectroscopy and dynamic force spectroscopy (DFS) to test the strength and stability of the hybrid 10 bp duplex. This hybrid duplex consisted of miniPEGγ-PNA and DNA of the same length (γ(MP)PNA-DNA), which we compared to a DNA duplex with a homologous sequence. AFM force spectroscopy data obtained at the same conditions showed that the γ(MP)PNA-DNA hybrid is more stable than the DNA counterpart, 65 ± 15 pN vs 47 ± 15 pN, respectively. The DFS measurements performed in a range of pulling speeds analyzed in the framework of the Bell-Evans approach yielded a dissociation constant, koff ≈ 0.030 ± 0.01 s⁻¹ for γ(MP)PNA-DNA hybrid duplex vs 0.375 ± 0.18 s⁻¹ for the DNA-DNA duplex suggesting that the hybrid duplex is much more stable. Correlating the high affinity of γ(MP)PNA-DNA to slow dissociation kinetics is consistent with prior bulk characterization by surface plasmon resonance. Given the growing interest in γ(MP)PNA as well as other synthetic DNA analogues, the use of single molecule experiments along with computational analysis of force spectroscopy data will provide direct characterization of various modifications as well as higher order structures such as triplexes and quadruplexes. PMID:26898903

  12. Initial Growth Process of Magnetron Sputtering 321 Stainless Steel Films Observed by Afm

    NASA Astrophysics Data System (ADS)

    Jin, Yongzhong; Wu, Wei; Liu, Dongliang; Chen, Jian; Sun, Yali

    To investigate the initial morphological evolution of 321 stainless steel (SS) films, we examined the effect of sputtering time on the morphology of 321 SS film. In this study, a group of samples were prepared at nine different sputtering times within 20 s using radio-frequency (r.f.) magnetron sputtering and characterized by atomic force microscopy (AFM). Only globular-like grains were formed on mica substrates within 6 s, whose average grain size is ~ 21-44 nm. Meanwhile, few grains with larger size are subject to settle at the defect sites of mica substrates. At 8 s, we found large columnar crystallites with the average grain size of 61 nm. From 10 to 14 s, islands grew continuously and coalesced in order to form an interconnected structure containing irregular channels or grooves, with a depth of ~ 3.5-5 nm. Up to 16 s, a nearly continuous film was formed and some new globular-like grains were again present on the film. Study of the AFM image at 20 s suggests that the watercolor masking method designed by us is an effective method, by which we can prepare thin films with steps for the measurement of the thickness of continuous thin films. It is also found that the coverage rate of films increases with the increase in sputtering time (from 2 to 16 s). On the other hand, the increase in root mean square (RMS) roughness is much more significant from 6 to 10 s, and there is a maximum value, 2.81 nm at 10 s due to more islands during deposition. However, RMS roughness decreases with the decrease in length and width of channels or grooves from 10 to 16 s. Especially, a lower RMS roughness of 0.73 nm occurs at 16 s, because of the continuous film produced with a large coverage rate of 98.43%.

  13. Effects of lateral tip control in CD-AFM width metrology

    NASA Astrophysics Data System (ADS)

    Dixson, Ronald; Ng, Boon Ping; Orji, Ndubuisi

    2014-09-01

    Critical dimension atomic force microscopes (CD-AFMs) use flared tips and two-dimensional sensing and position control of the tip-sample interaction to enable scanning of features with near-vertical or reentrant sidewalls. Sidewall sensing usually involves lateral dither of the tip, which was the case in the first two generations of CD-AFM. Current, third-generation instruments also have a fast dither tube actuation (FDTA) mode where a control algorithm and fast response piezo actuator are used to position the tip in a manner that resembles touch-triggering of coordinate measuring machines (CMMs). All methods of tip position control, however, induce an effective tip width that may deviate from the actual geometrical tip width. When lateral dithering is involved, this effect is readily understood as the addition of a dither envelope to the geometrical tip width. The effective tip width is a key correction parameter for accurate feature width measurements and is typically estimated using a tip calibration procedure. However, the possibility exists of small errors in the estimated tip width due to variations and dependencies of the effective width on tip, tool, material, and environmental parameters. We are investigating this possibility through a systematic study of the dependence of the apparent width on measurement mode, dither amplitude, tip type, and sample composition. While we believe that there are potential effects that should be considered carefully, we also conclude, particularly for silicon features, that most potential biases can be removed by performing the calibration and measurement exercises under the same conditions.

  14. AFM Nanolithography of Lanthanum Barium Manganese Oxide (LaBaMnO3)Thin Films: The Effect of Oxygen Pressure Variations During Film Growth

    NASA Astrophysics Data System (ADS)

    Stumpf, Christoper; Schaefer, David; Kolagani, Rajeswari; Yong, Grace; Warecki, Zoey

    2014-03-01

    In AFM nanolithography, a bias voltage applied between the tip of an atomic force microscope (AFM) and a sample is used to produce nanoscale modifications of material surfaces. AFM nanolithography has been studied extensively on a variety of materials, but limited studies have been performed on perovskite manganites such as Lanthanum Barium Manganese Oxide (LBMO). Studying such materials is important because of their potential applications for room-temperature nanoscale spintronic devices. Previous research on LBMO by our group has focused on how parameters such as applied tip voltage, temperature, and humidity affect the creation of nanopatterns. This paper reports on the influence of growth pressure of the LBMO films grown by pulsed laser deposition. Films grown on (100) SrTiO3 were studied for growth pressures ranging between 100 mTorr to 400 mTorr. Our studies indicate that the type of nanopatterns induced by AFM and the relaxation dynamics of these patterns are sensitive to the film growth pressure. The growth pressure is mainly known to affect the oxygen concentration and the surface roughness, but possible variations in cationic stoichiometry could also contribute to these results. RK and GY acknowledge support from the National Science Foundation Grant ECCS 1128586.

  15. Non-contact atomic force microscopy study of hydroxyl groups on the spinel MgAl2O4(100) surface.

    PubMed

    Federici Canova, F; Foster, A S; Rasmussen, M K; Meinander, K; Besenbacher, F; Lauritsen, J V

    2012-08-17

    Atom-resolved non-contact atomic force microscopy (NC-AFM) studies of the magnesium aluminate (MgAl(2)O(4)) surface have revealed that, contrary to expectations, the (100) surface is terminated by an aluminum and oxygen layer. Theoretical studies have suggested that hydrogen plays a strong role in stabilizing this surface through the formation of surface hydroxyl groups, but the previous studies did not discuss in depth the possible H configurations, the diffusion behaviour of hydrogen atoms and how the signature of adsorbed H is reflected in atom-resolved NC-AFM images. In this work, we combine first principles calculations with simulated and experimental NC-AFM images to investigate the role of hydrogen on the MgAl(2)O(4)(100) surface. By means of surface energy calculations based on density functional theory, we show that the presence of hydrogen adsorbed on the surface as hydroxyl groups is strongly predicted by surface stability considerations at all relevant partial pressures of H(2) and O(2). We then address the question of how such adsorbed hydrogen atoms are reflected in simulated NC-AFM images for the most stable surface hydroxyl groups, and compare with experimental atom-resolved NC-AFM data. In the appendices we provide details of the methods used to simulate NC-AFM using first principles methods and a virtual AFM. PMID:22827936

  16. Tuning the resonance of a photonic crystal microcavity with an AFM probe.

    PubMed

    Märki, Iwan; Salt, Martin; Herzig, Hans Peter

    2006-04-01

    We present theoretical and experimental results on switching and tuning of a two-dimensional photonic crystal resonant microcavity by means of a silicon AFM tip, probing the highly localized optical field in the vicinity of the cavity. On-off switching and modulation of the transmission signal in the kHz range is achieved by bringing an AFM tip onto the center of the microcavity, inducing a damping effect on the transmission resonance. Tuning of the resonant wavelength in the order of several nanometers becomes possible by inserting the AFM tip into one of the holes of the Bragg mirror forming the microcavity in the propagation direction. PMID:19516436

  17. MetaRep, an extended CMAS 3D program to visualize mafic (CMAS, ACF-S, ACF-N) and pelitic (AFM-K, AFM-S, AKF-S) projections

    NASA Astrophysics Data System (ADS)

    France, Lydéric; Nicollet, Christian

    2010-06-01

    MetaRep is a program based on our earlier program CMAS 3D. It is developed in MATLAB ® script. MetaRep objectives are to visualize and project major element compositions of mafic and pelitic rocks and their minerals in the pseudo-quaternary projections of the ACF-S, ACF-N, CMAS, AFM-K, AFM-S and AKF-S systems. These six systems are commonly used to describe metamorphic mineral assemblages and magmatic evolutions. Each system, made of four apices, can be represented in a tetrahedron that can be visualized in three dimensions with MetaRep; the four tetrahedron apices represent oxides or combination of oxides that define the composition of the projected rock or mineral. The three-dimensional representation allows one to obtain a better understanding of the topology of the relationships between the rocks and minerals and relations. From these systems, MetaRep can also project data in ternary plots (for example, the ACF, AFM and AKF ternary projections can be generated). A functional interface makes it easy to use and does not require any knowledge of MATLAB ® programming. To facilitate the use, MetaRep loads, from the main interface, data compiled in a Microsoft Excel ™ spreadsheet. Although useful for scientific research, the program is also a powerful tool for teaching. We propose an application example that, by using two combined systems (ACF-S and ACF-N), provides strong confirmation in the petrological interpretation.

  18. High-speed atomic force microscopy shows that annexin V stabilizes membranes on the second timescale.

    PubMed

    Miyagi, Atsushi; Chipot, Christophe; Rangl, Martina; Scheuring, Simon

    2016-09-01

    Annexins are abundant cytoplasmic proteins that can bind to negatively charged phospholipids in a Ca(2+)-dependent manner, and are known to play a role in the storage of Ca(2+) and membrane healing. Little is known, however, about the dynamic processes of protein-Ca(2+)-membrane assembly and disassembly. Here we show that high-speed atomic force microscopy (HS-AFM) can be used to repeatedly induce and disrupt annexin assemblies and study their structure, dynamics and interactions. Our HS-AFM set-up is adapted for such biological applications through the integration of a pumping system for buffer exchange and a pulsed laser system for uncaging caged compounds. We find that biochemically identical annexins (annexin V) display different effective Ca(2+) and membrane affinities depending on the assembly location, providing a wide Ca(2+) buffering regime while maintaining membrane stabilization. We also show that annexin is membrane-recruited and forms stable supramolecular assemblies within ∼5 s in conditions that are comparable to a membrane lesion in a cell. Molecular dynamics simulations provide atomic detail of the role played by Ca(2+) in the reversible binding of annexin to the membrane surface. PMID:27271964

  19. A clinical study shows safety and efficacy of autologous bone marrow mononuclear cell therapy to improve quality of life in muscular dystrophy patients.

    PubMed

    Sharma, Alok; Sane, Hemangi; Badhe, Prerna; Gokulchandran, Nandini; Kulkarni, Pooja; Lohiya, Mamta; Biju, Hema; Jacob, V C

    2013-01-01

    Muscular dystrophy is a genetic disorder with no definite cure. A study was carried out on 150 patients diagnosed with muscular dystrophy. These included Duchenne muscular dystrophy, limb-girdle muscular dystrophy, and Becker muscular dystrophy variants. They were administered autologous bone marrow-derived mononuclear cells intrathecally and intramuscularly at the motor points of the antigravity weak muscles followed by vigorous rehabilitation therapy. No significant adverse events were noted. Assessment after transplantation showed neurological improvements in trunk muscle strength, limb strength on manual muscle testing, gait improvements, and a favorable shift on assessment scales such as the Functional Independence Measure and the Brooke and Vignos Scales. Furthermore, imaging and electrophysiological studies also showed significant changes in selective cases. On a mean follow-up of 12 ± 1 months, overall 86.67% cases showed symptomatic and functional improvements, with six patients showing changes with respect to muscle regeneration and a decrease in fatty infiltration on musculoskeletal magnetic resonance imaging and nine showing improved muscle electrical activity on electromyography. Fifty-three percent of the cases showed an increase in trunk muscle strength, 48% showed an increase in upper limb strength, 59% showed an increase in lower limb strength, and approximately 10% showed improved gait. These data were statistically analyzed using Student's paired t test and found to be significant. The results show that this treatment is safe and efficacious and also improves the quality of life of patients having muscular dystrophy. This manuscript is published as part of the International Association of Neurorestoratology (IANR) supplement issue of Cell Transplantation. PMID:24070109

  20. Crystallinity and compositional changes in carbonated apatites: Evidence from {sup 31}P solid-state NMR, Raman, and AFM analysis

    SciTech Connect

    McElderry, John-David P.; Zhu, Peizhi; Mroue, Kamal H.; Xu, Jiadi; Pavan, Barbara; Fang, Ming; Zhao, Guisheng; McNerny, Erin; Kohn, David H.; Franceschi, Renny T.; Holl, Mark M.Banaszak; Tecklenburg, Mary M.J.; Ramamoorthy, Ayyalusamy; Morris, Michael D.

    2013-10-15

    Solid-state (magic-angle spinning) NMR spectroscopy is a useful tool for obtaining structural information on bone organic and mineral components and synthetic model minerals at the atomic-level. Raman and {sup 31}P NMR spectral parameters were investigated in a series of synthetic B-type carbonated apatites (CAps). Inverse {sup 31}P NMR linewidth and inverse Raman PO{sub 4}{sup 3−}ν{sub 1} bandwidth were both correlated with powder XRD c-axis crystallinity over the 0.3–10.3 wt% CO{sub 3}{sup 2−} range investigated. Comparison with bone powder crystallinities showed agreement with values predicted by NMR and Raman calibration curves. Carbonate content was divided into two domains by the {sup 31}P NMR chemical shift frequency and the Raman phosphate ν{sub 1} band position. These parameters remain stable except for an abrupt transition at 6.5 wt% carbonate, a composition which corresponds to an average of one carbonate per unit cell. This near-binary distribution of spectroscopic properties was also found in AFM-measured particle sizes and Ca/P molar ratios by elemental analysis. We propose that this transition differentiates between two charge-balancing ion-loss mechanisms as measured by Ca/P ratios. These results define a criterion for spectroscopic characterization of B-type carbonate substitution in apatitic minerals. - Graphical abstract: Carbonated apatite shows an abrupt change in spectral (NMR, Raman) and morphological (AFM) properties at a composition of about one carbonate substitution per unit cell. Display Omitted - Highlights: • Crystallinity (XRD), particle size (AFM) of carbonated apatites and bone mineral. • Linear relationships among crystallinity, {sup 31}P NMR and Raman inverse bandwidths. • Low and high carbonated apatites use different charge-balancing ion-loss mechanism.

  1. Ultrafast optical pump-probe spectroscopy is used to reveal the coexistence of coupled antiferromagnetic (AFM)/ferroelectric (FE) and ferromagnetic (FM) orders in multiferroic TbMnO3 films, which can guide researchers in creating new kinds of multiferroic materials.

    SciTech Connect

    Qi, Jingbo; Zhu, Jianxin; Trugman, Stuart A.; Taylor, Antoinette; Jia, Quanxi; Prasankumar, Rohit

    2012-07-06

    Multiferroic materials have attracted much interest in the past decade, due not only to their novel device applications, but also their manifestations of coupling and interactions between different order parameters (particularly electric polarization and magnetic order). Recently, much attention has been focused on perovskite manganites, RMnO{sub 3} (R = rare earth ions), due to the discovery of a large magnetoelectric effect in these materials. The first member of this family to be discovered was TbMnO{sub 3} (TMO), which is now well established as a typical magnetoelectric multiferroic. Extensive experimental and theoretical studies have already been done on single crystal TMO (SC-TMO). In brief, SC-TMO, with a distorted orthorhombic perovskite structure, has an antiferromagnetic (AFM) phase transition at T{sub N} {approx}40 K with sinusoidally ordered Mn moments. Below T{sub FE} {approx} 28 K, ferroelectric (FE) order develops owing to the appearance of cycloidal spiral spin structure. In contrast, there are relatively few reports describing the properties of TMO thin films (typically grown on SrTiO{sub 3} (STO) substrates). In general, thin films can enable new functionality in materials, as their physical parameters can be changed by modifying their structure via strain imposed by the substrate. Strain in particular has the potential to directly couple FE and FM orders, which is very rare. This could benefit electronic device applications by providing low power consumption, high speed operation, and greater electric/magnetic field controllability. Previous investigations of magnetic properties in TMO films revealed an unexpected ferromagnetic (FM) order, in contrast to SC-TMO. However, several important questions regarding these films are still unanswered for instance: (1) What mechanism induces FM order? (2) Can FM, sinusoidal AFM and spiral AFM (or FE) orders coexist? (3) Can FM order be coupled to FE order? To fully understand these unique materials

  2. A Multifunctional Frontloading Approach for Repeated Recycling of a Pressure-Controlled AFM Micropipette.

    PubMed

    Roder, Phillip; Hille, Carsten

    2015-01-01

    Fluid force microscopy combines the positional accuracy and force sensitivity of an atomic force microscope (AFM) with nanofluidics via a microchanneled cantilever. However, adequate loading and cleaning procedures for such AFM micropipettes are required for various application situations. Here, a new frontloading procedure is described for an AFM micropipette functioning as a force- and pressure-controlled microscale liquid dispenser. This frontloading procedure seems especially attractive when using target substances featuring high costs or low available amounts. Here, the AFM micropipette could be filled from the tip side with liquid from a previously applied droplet with a volume of only a few μL using a short low-pressure pulse. The liquid-loaded AFM micropipettes could be then applied for experiments in air or liquid environments. AFM micropipette frontloading was evaluated with the well-known organic fluorescent dye rhodamine 6G and the AlexaFluor647-labeled antibody goat anti-rat IgG as an example of a larger biological compound. After micropipette usage, specific cleaning procedures were tested. Furthermore, a storage method is described, at which the AFM micropipettes could be stored for a few hours up to several days without drying out or clogging of the microchannel. In summary, the rapid, versatile and cost-efficient frontloading and cleaning procedure for the repeated usage of a single AFM micropipette is beneficial for various application situations from specific surface modifications through to local manipulation of living cells, and provides a simplified and faster handling for already known experiments with fluid force microscopy. PMID:26636981

  3. A Multifunctional Frontloading Approach for Repeated Recycling of a Pressure-Controlled AFM Micropipette

    PubMed Central

    Roder, Phillip; Hille, Carsten

    2015-01-01

    Fluid force microscopy combines the positional accuracy and force sensitivity of an atomic force microscope (AFM) with nanofluidics via a microchanneled cantilever. However, adequate loading and cleaning procedures for such AFM micropipettes are required for various application situations. Here, a new frontloading procedure is described for an AFM micropipette functioning as a force- and pressure-controlled microscale liquid dispenser. This frontloading procedure seems especially attractive when using target substances featuring high costs or low available amounts. Here, the AFM micropipette could be filled from the tip side with liquid from a previously applied droplet with a volume of only a few μL using a short low-pressure pulse. The liquid-loaded AFM micropipettes could be then applied for experiments in air or liquid environments. AFM micropipette frontloading was evaluated with the well-known organic fluorescent dye rhodamine 6G and the AlexaFluor647-labeled antibody goat anti-rat IgG as an example of a larger biological compound. After micropipette usage, specific cleaning procedures were tested. Furthermore, a storage method is described, at which the AFM micropipettes could be stored for a few hours up to several days without drying out or clogging of the microchannel. In summary, the rapid, versatile and cost-efficient frontloading and cleaning procedure for the repeated usage of a single AFM micropipette is beneficial for various application situations from specific surface modifications through to local manipulation of living cells, and provides a simplified and faster handling for already known experiments with fluid force microscopy. PMID:26636981

  4. Visualization of Thermally Fluctuating Surface Structure in Noncontact Atomic-Force Microscopy and Tip Effects on Fluctuation: Theoretical Study of Si(111)-( √3 ×√3)-Ag Surface

    NASA Astrophysics Data System (ADS)

    Sasaki, Naruo; Watanabe, Satoshi; Tsukada, Masaru

    2002-01-01

    We investigated noncontact atomic-force microscopy (NC-AFM) images of a thermally fluctuating surface structure together with tip effects based on the first-principles electronic state calculation. As an example the Si(111)-( (3)×(3))-Ag ( (3)-Ag) surface is studied. We have succeeded in theoretically visualizing the thermal fluctuation of the (3)-Ag surface at room temperature, and in reproducing the observed NC-AFM image for the first time. Further, the pinning effect of the thermal fluctuation of the (3)-Ag surface by the tip is clarified, which shows a novel ability of NC-AFM to modify the surface structure.

  5. AFM/CLSM data visualization and comparison using an open-source toolkit.

    PubMed

    Rajwa, Bartek; McNally, Helen A; Varadharajan, Padma; Sturgis, Jennifer; Robinson, J Paul

    2004-06-01

    There is a vast difference in the traditional presentation of AFM data and confocal data. AFM data are presented as surface contours while confocal data are usually visualized using either surface- or volume-rendering techniques. Finding a common meaningful visualization platform is not an easy task. AFM and CLSM technologies are complementary and are more frequently being used to image common biological systems. In order to provide a presentation method that would assist us in evaluating cellular morphology, we propose a simple visualization strategy that is comparative, intuitive, and operates within an open-source environment of ImageJ, SurfaceJ, and VolumeJ applications. In order to find some common ground for AFM-CLSM image comparison, we have developed a plug-in for ImageJ, which allows us to import proprietary image data sets into this application. We propose to represent both AFM and CLSM image data sets as shaded elevation maps with color-coded height. This simple technique utilizes the open source VolumeJ and SurfaceJ plug-ins. To provide an example of this visualization technique, we evaluated the three-dimensional architecture of living chick dorsal root ganglia and sympathetic ganglia measured independently with AFM and CLSM. PMID:15352089

  6. Pathbreaking CBO Study Shows Dramatic Increases in Income Disparities in 1980s and 1990s: An Analysis of the CBO Data. Revised.

    ERIC Educational Resources Information Center

    Shapiro, Isaac; Greenstein, Robert; Primus, Wendell

    A study by the Congressional Budget Office of income and tax trends since 1979 showed dramatic increases in income disparities, especially between the wealthiest one percent of Americans and the rest of society, in the 1980s and 1990s. The percentage of income Americans paid in federal taxes declined for every income group between 1979-97. The…

  7. The Wordpath Show.

    ERIC Educational Resources Information Center

    Anderton, Alice

    The Intertribal Wordpath Society is a nonprofit educational corporation formed to promote the teaching, status, awareness, and use of Oklahoma Indian languages. The Society produces "Wordpath," a weekly 30-minute public access television show about Oklahoma Indian languages and the people who are teaching and preserving them. The show aims to…

  8. Sequence-controlled RNA self-processing: computational design, biochemical analysis, and visualization by AFM

    PubMed Central

    Petkovic, Sonja; Badelt, Stefan; Flamm, Christoph; Delcea, Mihaela

    2015-01-01

    Reversible chemistry allowing for assembly and disassembly of molecular entities is important for biological self-organization. Thus, ribozymes that support both cleavage and formation of phosphodiester bonds may have contributed to the emergence of functional diversity and increasing complexity of regulatory RNAs in early life. We have previously engineered a variant of the hairpin ribozyme that shows how ribozymes may have circularized or extended their own length by forming concatemers. Using the Vienna RNA package, we now optimized this hairpin ribozyme variant and selected four different RNA sequences that were expected to circularize more efficiently or form longer concatemers upon transcription. (Two-dimensional) PAGE analysis confirms that (i) all four selected ribozymes are catalytically active and (ii) high yields of cyclic species are obtained. AFM imaging in combination with RNA structure prediction enabled us to calculate the distributions of monomers and self-concatenated dimers and trimers. Our results show that computationally optimized molecules do form reasonable amounts of trimers, which has not been observed for the original system so far, and we demonstrate that the combination of theoretical prediction, biochemical and physical analysis is a promising approach toward accurate prediction of ribozyme behavior and design of ribozymes with predefined functions. PMID:25999318

  9. The Great Cometary Show

    NASA Astrophysics Data System (ADS)

    2007-01-01

    its high spatial and spectral resolution, it was possible to zoom into the very heart of this very massive star. In this innermost region, the observations are dominated by the extremely dense stellar wind that totally obscures the underlying central star. The AMBER observations show that this dense stellar wind is not spherically symmetric, but exhibits a clearly elongated structure. Overall, the AMBER observations confirm that the extremely high mass loss of Eta Carinae's massive central star is non-spherical and much stronger along the poles than in the equatorial plane. This is in agreement with theoretical models that predict such an enhanced polar mass-loss in the case of rapidly rotating stars. ESO PR Photo 06c/07 ESO PR Photo 06c/07 RS Ophiuchi in Outburst Several papers from this special feature focus on the later stages in a star's life. One looks at the binary system Gamma 2 Velorum, which contains the closest example of a star known as a Wolf-Rayet. A single AMBER observation allowed the astronomers to separate the spectra of the two components, offering new insights in the modeling of Wolf-Rayet stars, but made it also possible to measure the separation between the two stars. This led to a new determination of the distance of the system, showing that previous estimates were incorrect. The observations also revealed information on the region where the winds from the two stars collide. The famous binary system RS Ophiuchi, an example of a recurrent nova, was observed just 5 days after it was discovered to be in outburst on 12 February 2006, an event that has been expected for 21 years. AMBER was able to detect the extension of the expanding nova emission. These observations show a complex geometry and kinematics, far from the simple interpretation of a spherical fireball in extension. AMBER has detected a high velocity jet probably perpendicular to the orbital plane of the binary system, and allowed a precise and careful study of the wind and the shockwave

  10. Ultra-large scale AFM of lipid droplet arrays: investigating the ink transfer volume in dip pen nanolithography

    NASA Astrophysics Data System (ADS)

    Förste, Alexander; Pfirrmann, Marco; Sachs, Johannes; Gröger, Roland; Walheim, Stefan; Brinkmann, Falko; Hirtz, Michael; Fuchs, Harald; Schimmel, Thomas

    2015-05-01

    There are only few quantitative studies commenting on the writing process in dip-pen nanolithography with lipids. Lipids are important carrier ink molecules for the delivery of bio-functional patters in bio-nanotechnology. In order to better understand and control the writing process, more information on the transfer of lipid material from the tip to the substrate is needed. The dependence of the transferred ink volume on the dwell time of the tip on the substrate was investigated by topography measurements with an atomic force microscope (AFM) that is characterized by an ultra-large scan range of 800 × 800 μm2. For this purpose arrays of dots of the phospholipid1,2-dioleoyl-sn-glycero-3-phosphocholine were written onto planar glass substrates and the resulting pattern was imaged by large scan area AFM. Two writing regimes were identified, characterized of either a steady decline or a constant ink volume transfer per dot feature. For the steady state ink transfer, a linear relationship between the dwell time and the dot volume was determined, which is characterized by a flow rate of about 16 femtoliters per second. A dependence of the ink transport from the length of pauses before and in between writing the structures was observed and should be taken into account during pattern design when aiming at best writing homogeneity. The ultra-large scan range of the utilized AFM allowed for a simultaneous study of the entire preparation area of almost 1 mm2, yielding good statistic results.

  11. A Holographic Road Show.

    ERIC Educational Resources Information Center

    Kirkpatrick, Larry D.; Rugheimer, Mac

    1979-01-01

    Describes the viewing sessions and the holograms of a holographic road show. The traveling exhibits, believed to stimulate interest in physics, include a wide variety of holograms and demonstrate several physical principles. (GA)

  12. Measuring the energy landscape of complex bonds using AFM

    NASA Astrophysics Data System (ADS)

    Mayyas, Essa; Hoffmann, Peter; Runyan, Lindsay

    2009-03-01

    We measured rupture force of a complex bond of two interacting proteins with atomic force microscopy. Proteins of interest were active and latent Matrix metalloproteinases (MMPs), type 2 and 9, and their tissue inhibitors TIMP1 and TIMP2. Measurements show that the rupture force depends on the pulling speed; it ranges from 30 pN to 150 pN at pulling speeds 30nm/s to 48000nm/s. Analyzing data using an extended theory enabled us to understand the mechanism of MMP-TIMP interaction; we determined all physical parameters that form the landscape energy of the interaction, in addition to the life time of the bond and its length. Moreover, we used the pulling experiment to study the interaction of TIMP2 with the receptor MT1-MMP on the surface of living cells.

  13. A software tool for STED-AFM correlative super-resolution microscopy

    NASA Astrophysics Data System (ADS)

    Koho, Sami; Deguchi, Takahiro; Löhmus, Madis; Näreoja, Tuomas; Hänninen, Pekka E.

    2015-03-01

    Multi-modal correlative microscopy allows combining the strengths of several imaging techniques to provide unique contrast. However it is not always straightforward to setup instruments for such customized experiments, as most microscope manufacturers use their own proprietary software, with limited or no capability to interface with other instruments - this makes correlation of the multi-modal data extremely challenging. We introduce a new software tool for simultaneous use of a STimulated Emission Depletion (STED) microscope with an Atomic Force Microscope (AFM). In our experiments, a Leica TCS STED commercial super-resolution microscope, together with an Agilent 5500ilm AFM microscope was used. With our software, it is possible to synchronize the data acquisition between the STED and AFM instruments, as well as to perform automatic registration of the AFM images with the super-resolution STED images. The software was realized in LabVIEW; the registration part was also implemented as an ImageJ script. The synchronization was realized by controlling simple trigger signals, also available in the commercial STED microscope, with a low-cost National Instruments USB-6501 digital I/O card. The registration was based on detecting the positions of the AFM tip inside the STED fieldof-view, which were then used as registration landmarks. The registration should work on any STED and tip-scanning AFM microscope combination, at nanometer-scale precision. Our STED-AFM correlation method has been tested with a variety of nanoparticle and fixed cell samples. The software will be released under BSD open-source license.

  14. A rapid and automated relocation method of an AFM probe for high-resolution imaging.

    PubMed

    Zhou, Peilin; Yu, Haibo; Shi, Jialin; Jiao, Niandong; Wang, Zhidong; Wang, Yuechao; Liu, Lianqing

    2016-09-30

    The atomic force microscope (AFM) is one of the most powerful tools for high-resolution imaging and high-precision positioning for nanomanipulation. The selection of the scanning area of the AFM depends on the use of the optical microscope. However, the resolution of an optical microscope is generally no larger than 200 nm owing to wavelength limitations of visible light. Taking into consideration the two determinants of relocation-relative angular rotation and positional offset between the AFM probe and nano target-it is therefore extremely challenging to precisely relocate the AFM probe to the initial scan/manipulation area for the same nano target after the AFM probe has been replaced, or after the sample has been moved. In this paper, we investigate a rapid automated relocation method for the nano target of an AFM using a coordinate transformation. The relocation process is both simple and rapid; moreover, multiple nano targets can be relocated by only identifying a pair of reference points. It possesses a centimeter-scale location range and nano-scale precision. The main advantages of this method are that it overcomes the limitations associated with the resolution of optical microscopes, and that it is label-free on the target areas, which means that it does not require the use of special artificial markers on the target sample areas. Relocation experiments using nanospheres, DNA, SWCNTs, and nano patterns amply demonstrate the practicality and efficiency of the proposed method, which provides technical support for mass nanomanipulation and detection based on AFM for multiple nano targets that are widely distributed in a large area. PMID:27559679

  15. BOREAS AFM-08 ECMWF Hourly Surface and Upper Air Data for the SSA and NSA

    NASA Technical Reports Server (NTRS)

    Viterbo, Pedro; Betts, Alan; Hall, Forrest G. (Editor); Newcomer, Jeffrey A.; Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-8 team focused on modeling efforts to improve the understanding of the diurnal evolution of the convective boundary layer over the boreal forest. This data set contains hourly data from the European Center for for Medium-Range Weather Forecasts (ECMWF) operational model from below the surface to the top of the atmosphere, including the model fluxes at the surface. Spatially, the data cover a pair of the points that enclose the rawinsonde sites at Candle Lake, Saskatchewan, in the Southern Study Area (SSA) and Thompson, Manitoba, in the Northern Study Area (NSA). Temporally, the data include the two time periods of 13 May 1994 to 30 Sept 1994 and 01 Mar 1996 to 31 Mar 1997. The data are stored in tabular ASCII files. The number of records in the upper air data files may exceed 20,000, causing a problem for some software packages. The ECMWF hourly surface and upper air data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  16. Reversible wetting of NaCl nanoparticles at relative humidities below deliquescence observed by environmental non-contact AFM

    SciTech Connect

    Bruzewicz, D.A.; Lewis, E.; Ocko, B. M.; McGraw, R. L.; Schwartz, S. E.

    2009-12-14

    The behavior of NaCl nanoparticles as a function of relative humidity (RH) was characterized by depositing particles on a prepared hydrophobic surface and measuring their height via non-contact environmental atomic force microscopy (AFM). Non-contact AFM allows greater sensitivity to changes in the size of particles than does contact AFM or scanning electron microscopy, and greater sensitivity to changes in shape than do mass-based techniques. Crystalline cubic NaCl nanoparticles with sides of 35 to 150 nm were found to reversibly take up water with increasing RH, and to form a liquid-like surface layer of thickness 2 to 4 nm at humidities well below the deliquescence point of 75.0% at 20°C. Measurable uptake begins at 70% RH. The maximum thickness of the layer increases with increasing RH for a given particle size and, for a given RH, increases with increasing particle size over the range studied. The liquid-like behavior of the layer is indicated by a reversible “rounding” at the tops of the particles, where the ratio of particle height to radius of curvature increases from zero (flat top) at 68% RH to 0.7 at 74% RH. These observations suggest that a reorganization of mass occurs on the solid NaCl nanoparticle, and hence that the behavior of NaCl aerosol nanoparticles at RH between 70 and 75% RH is more complex than an abrupt first-order phase transition. Theoretical treatments of the phase transition should therefore account for both the presence of a liquid-like layer prior to deliquescence, and the RH-dependent thickness of the layer.

  17. Show What You Know

    ERIC Educational Resources Information Center

    Eccleston, Jeff

    2007-01-01

    Big things come in small packages. This saying came to the mind of the author after he created a simple math review activity for his fourth grade students. Though simple, it has proven to be extremely advantageous in reinforcing math concepts. He uses this activity, which he calls "Show What You Know," often. This activity provides the perfect…

  18. The Ozone Show.

    ERIC Educational Resources Information Center

    Mathieu, Aaron

    2000-01-01

    Uses a talk show activity for a final assessment tool for students to debate about the ozone hole. Students are assessed on five areas: (1) cooperative learning; (2) the written component; (3) content; (4) self-evaluation; and (5) peer evaluation. (SAH)

  19. Stage a Water Show

    ERIC Educational Resources Information Center

    Frasier, Debra

    2008-01-01

    In the author's book titled "The Incredible Water Show," the characters from "Miss Alaineus: A Vocabulary Disaster" used an ocean of information to stage an inventive performance about the water cycle. In this article, the author relates how she turned the story into hands-on science teaching for real-life fifth-grade students. The author also…

  20. Showing What They Know

    ERIC Educational Resources Information Center

    Cech, Scott J.

    2008-01-01

    Having students show their skills in three dimensions, known as performance-based assessment, dates back at least to Socrates. Individual schools such as Barrington High School--located just outside of Providence--have been requiring students to actively demonstrate their knowledge for years. The Rhode Island's high school graduating class became…