Science.gov

Sample records for africa began erupting

  1. Eruption parameters elicitation for volcanoes in Ethiopia and Kenya Informing a World Bank GFDRR project on volcanic threat in sub-Saharan Africa

    NASA Astrophysics Data System (ADS)

    Jenkins, Susanna; Lark, Murray; Loughlin, Sue; Fontijn, Karen; Mather, Tamsin; Pyle, David; Lewi, Elias; Yirgu, Gezahegn; Vye-Brown, Charlotte; Sparks, Steve

    2016-04-01

    Despite large numbers of very visible active volcanoes in sub-Saharan Africa, data about eruptions are limited compared to elsewhere in the world. We present the method and findings from elicitations carried out to characterise likely future eruptions in the region as part of a World Bank GFDRR risk profiling project for sub-Saharan Africa. The purpose of the elicitations was to better understand the characteristics and frequencies of explosive eruptions at volcanoes in Ethiopia and Kenya. The elicitations will provide source parameters for tephra fall modelling at select volcanoes in Ethiopia (Aluto, Corbetti, Fentale) and Kenya (Menegai, Longonot, Suswa). There were two stages of elicitation: 1) a 'sanity check' of initial assumptions around likely eruption style, magnitude and frequency for the six selected volcanoes; 2) a formal SHELF (SHeffield ELicitation Framework) elicitation that centred round establishing frequency-magnitude relationships for the volcanoes. The elicitation suggested that explosive eruptions at Aluto and Corbetti were less likely than at the other volcanoes, although the uncertainty was significant. Menengai and Rungwe volcano in Tanzania (elicited as an analogue for Fentale, Longonot and Suswa volcanoes) were characterised by approximately similar probabilities of eruption. However, Rungwe was considered more likely to produce larger explosive (VEI ≥ 4) eruptions than Menengai. Elicitation discussions highlighted the knowledge and data gaps for African volcanoes and raised important questions around whether gaps in the eruption record were real and related to changing regimes at the volcanoes over time or if they were a function of under-recording or lack of preservation. Further investigation is therefore needed to validate the findings of the elicitation. It is hoped that continued collaboration with local partners and studies within the ongoing NERC-funded RiftVolc project will address these issues and help to improve our knowledge

  2. Solar radiation climate change over southern Africa and an assessment of the radiative impact of volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Power, H. C.; Mills, D. M.

    2005-03-01

    Spatial and temporal variability in global, diffuse, and horizontal direct irradiance and sunshine duration has been evaluated at eight stations in South Africa and two stations in Namibia where the time series range between 21 and 41 years. Global and direct irradiance and sunshine duration decrease from northwest to southeast; diffuse irradiance increases toward the east. Annually averaged global irradiance Ga decreased between 1.3% (2.8 W m-2) and 1.7% (4.4 W m-2) per decade at Bloemfontein, Cape Town, Durban, Pretoria, and Upington. Annually averaged diffuse irradiance Da decreased 5.2% (3.0 W m-2) per decade at Grootfontein and 4.2% (3.1 W m-2) per decade at Port Elizabeth. Annual direct irradiance Ba decreased 2.1% (3.5 W m-2) per decade at Cape Town and 2.8% (5.7 W m-2) per decade at Alexander Bay. A simultaneous decrease in annually averaged daily sunshine duration Sa may have contributed to the decrease in Ba at Alexander Bay and the decrease in Ga at Pretoria. Increases in aerosols may have contributed to the observed decrease in Ga at Cape Town and Durban, and the decrease in Da at Grootfontein may be due to a decrease in aerosols. On average, variability in Sa explains 89.0%, 50.4%, and 89.5% of the variance in Ga, Da, and Ba respectively. The radiative response to changes in sunshine duration is greater for direct irradiance than for global and diffuse. In the 2 years following the 1963 Mount Agung eruption in Indonesia, changes in global irradiance over southern Africa were small and inconsistent. At eight stations, diffuse irradiance increased 21.9% (13.3 W m-2) on average and direct irradiance decreased 8.7% (15.5 W m-2). After the 1982 El Chichón eruption in Mexico, global irradiance

  3. Phytoliths Used to Investigate the Effects of the Indonesian Mount Toba Super-Eruption (~75 kyr) in East Africa: A Subdecadal Record from Lake Malawi

    NASA Astrophysics Data System (ADS)

    Yost, C. L.; Cohen, A. S.

    2014-12-01

    The recent discovery of cryptotephra visually and chemically matched to the Youngest Toba Tuff (YTT, 75.0 ± 0.9 kyr) in Lake Malawi drill core sediments has spurred renewed interest in this period of time in East Africa. The YTT is the most recent and largest of the four Mount Toba eruptions, and is the only super-eruption to have taken place during the Quaternary. The timing of the YTT approximately coincides with a hypothesized human genetic bottleneck. Several climate models have proposed an episode of global cooling following the YTT; however, the magnitude and duration of the cooling is much debated, ranging from just a few degrees of cooling to a state of volcanic winter. Cored sediments from Lake Malawi provide an excellent record of local variability in the lake's watershed that may be linked to specific climatic events. To investigate the possible effects of the YTT in East Africa, we continuously sampled Lake Malawi drill core 2A-10H-2 at 2-4 mm (~6 yr) intervals above and below the first occurrence of the YTT. Poaceae phytoliths were grouped into plant functional types (C3, C4, xerophytic, mesophytic, arboreal, etc.), revealing mostly subtle changes in terrestrial vegetation over the ~400 yr time period examined. Abrupt increases in concentration values for phytoliths derived from riverine Podostemaceae plants appear to signal increased discharge from rivers draining the surrounding uplands. Perhaps most significant is the increasing trend in burned phytoliths and decreasing trend in tree phytoliths post-YTT. Although there appears to be a very weak cooling signal synchronous with the YTT, the most abrupt terrestrial vegetation changes appear to be better correlated with the deposition of a slightly older cryptotephra horizon derived from the local Rungwe Volcanic Province. A potential complication with this record is the existence of a turbidite pre-YTT that encompasses the Rungwe horizon.

  4. Eruptive history of the Barombi Mbo Maar, Cameroon Volcanic Line, Central Africa: Constraints from volcanic facies analysis

    NASA Astrophysics Data System (ADS)

    Tchamabé, Boris Chako; Youmen, Dieudonné; Owona, Sébastien; Issa; Ohba, Takeshi; Németh, Károly; Ngapna, Moussa Nsangou; Asaah, Asobo N. E.; Aka, Festus T.; Tanyileke, Gregory; Hell, Joseph V.

    2013-12-01

    his study presents the first and detail field investigations of exposed deposits at proximal sections of the Barombi Mbo Maar (BMM), NE Mt Cameroon, with the aim of documenting its past activity, providing insight on the stratigraphic distribution, depositional process, and evolution of the eruptive sequences during its formation. Field evidence reveals that the BMM deposit is about 126m thick, of which about 20m is buried lowermost under the lake level and covered by vegetation. Based on variation in pyroclastic facies within the deposit, it can be divided into three main stratigraphic units: U1, U2 and U3. Interpretation of these features indicates that U1 consists of alternating lapilli-ash-lapilli beds series, in which fallout derived individual lapilli-rich beds are demarcated by surges deposits made up of thin, fine-grained and consolidated ash-beds that are well-defined, well-sorted and laterally continuous in outcrop scale. U2, a pyroclastic fall-derived unit, shows crudely lenticular stratified scoriaceous layers, in which many fluidal and spindle bombs-rich lapilli-beds are separated by very thin, coarse-vesiculatedash-beds, overlain by a mantle xenolith- and accidental lithic-rich explosive breccia, and massive lapilli tuff and lapillistone. U3 displays a series of surges and pyroclastic fall layers. Emplacement processes were largely controlled by fallout deposition and turbulent diluted pyroclastic density currents under "dry" and "wet" conditions. The eruptive activity evolved in a series of initial phreatic eruptions, which gradually became phreatomagmatic, followed by a phreato-Strombolian and a violent phreatomagmatic fragmentation. A relatively long-time break, demonstrated by a paleosol between U2 and U3, would have permitted the feeding of the root zone or the prominent crater by the water that sustained the next eruptive episode, dominated by subsequent phreatomagmatic eruptions. These preliminary results require complementary studies, such as

  5. Olivine-hosted glass inclusions from Scoriae erupted in 1954 2000 at Mount Cameroon volcano, West Africa

    NASA Astrophysics Data System (ADS)

    Suh, C. E.; Luhr, J. F.; Njome, M. S.

    2008-01-01

    Concentrations of major, trace, and volatile elements are reported for olivine-hosted glass inclusions from intraplate-type, nepheline-normative trachybasaltic to basanitic scoria samples representing five historical eruptions (1954, 1959, 1982, 1999, and 2000) of Mount Cameroon (4.20°N, 9.17°E). Bulk-rock and mineral compositions are also reported for the same scoria samples and for lava samples from the same eruptions. Mineral analyses are also presented for a spinel-harzburgite mantle xenolith, which we suggest may be the youngest (and freshest) mantle sample known. Mount Cameroon magmas have eruption temperatures of 1150-1200 °C and have relatively high oxygen fugacities just above the trend of the synthetic Ni-NiO buffer. The most primitive glass inclusion analyzed is also the most volatile-rich, with 1.7 wt.% H 2O, 967 ppm CO 2, 1530 ppm F, 2400 ppm S, and 1270 ppm Cl. The Mount Cameroon F contents are the highest known for basaltic glasses. The relatively high CO 2 contents in Mount Cameroon glass inclusions support the interpretation that the CO 2 gas responsible for the Lakes Monoun and Nyos gas disasters is magmatic in origin.

  6. Africa.

    ERIC Educational Resources Information Center

    Happel, Sue; Loeb, Joyce

    Although the activities in this unit are designed primarily for students in the intermediate grades, the document's text, illustrations, and bibliographic references are suitable for anyone interested in learning about Africa. Following a brief introduction and map work, the document is arranged into six sections. Section 1 traces Africa's history…

  7. Africa.

    ERIC Educational Resources Information Center

    Martz, Carlton

    2001-01-01

    This publication explores issues related to Africa. It examines the U.S. response to the Barbary pirate states (Morocco, Algiers, Tunis, Tripoli) in the early 19th century; the current AIDS crisis in Africa; and 14th century Mali and other Islamic lands through the eyes of Ibn Battuta, who traveled throughout the Muslim world. Each article…

  8. The Anthropogenic Era Began Thousands of Years Ago

    NASA Astrophysics Data System (ADS)

    Ruddiman, W. F.

    2003-12-01

    The anthropogenic era is generally thought to have begun about 150 years ago when the industrial revolution began producing CO2 and CH4 at rates sufficient to alter atmospheric compositions. The hypothesis proposed here is that anthropogenic emissions first altered atmospheric gas concentrations (and climate) thousands of years ago. This hypothesis rests on three arguments: (1) Cyclic variations in CO2 and CH4 driven by Earth-orbital changes during the last 400,000 years predict decreases of both gases throughout the Holocene, but CO2 began an anomalous increase near 8000 years ago and CH4 about 5000 years ago. (2) Published explanations attributing these Holocene gas increases to natural forcing can be rejected based on available paleoclimatic evidence. (3) Archeological, cultural, historical, and geologic sources provide viable explanations tied to anthropogenic changes that emerged from early agriculture in Eurasia, including forest clearance after 8000 years ago and lowland irrigation for rice farming by 5000 years ago. Prior to the industrial era, these emissions caused a mean-annual warming effect of ~0.8oC globally and 1.5-2oC at high latitudes. The early-anthropogenic warming counteracted most of a natural cooling that would otherwise have occurred, and it may have prevented a glaciation in northeastern Canada predicted by two kinds of climatic models. CO2 decreases as large as 10 ppm during the last 1000 years cannot be explained by solar-volcanic forcing without violating constraints imposed by reconstructions of northern hemisphere temperature. The CO2 decreases can be explained by bubonic plague pandemics that the caused widespread abandonment of western Eurasian farms documented in historical records. Rapid regrowth of forests on millions of abandoned farms could have sequestered enough carbon to explain the observed CO2 decreases. Plague-driven CO2 decreases were a significant causal factor in the cooler temperatures of the Little Ice Age from 1300 to

  9. Two Amazing Rocket Launches That Began My Career

    NASA Astrophysics Data System (ADS)

    Rothschild, Richard E.

    2013-01-01

    I began my X-ray astronomy career by being given the responsibility for the Goddard rocket program by Frank MacDonald in the early 70's. I am forever grateful to him and Elihu Boldt for the opportunity. The rocket's observing program was three compact binary X-ray sources that could not have been more different: Cyg X-1, Cyg X-3, and Her X-1. A sounding rocket launch is nothing like a satellite launch with its large booster, Cape Canaveral experience, and lots of procedures and no touching of the hardware. First of all, one can walk up to the sounding rocket tower (at least you used to be able to) and go up in it to fix or adjust something with the yet-to-be-fueled rocket, booster, and payload just sitting there. At launch, you can see it up close 100 m) and personal, and it is spectacular. There is an explosion (the Nike booster igniting), a bright flash of light, and it is gone in a second or two. And back in the block house, I watched Her X-1 pulse in real time, after Chuck Glasser calmed me down and explained that the detectors were not arcing but it was Her X-1. The Cyg X-1 observations resulted in the discovery of millisecond temporal structure in the flux from a cosmic source -- 13 1-ms bursts over a total of two minutes of observing in the 2 flights. Cyg X-3 was seen in a high state in the first flight and in a lower harder state in the second, where we detected the iron line for the first time in a Galactic source. The Her X-1 observation clearly showed the high energy roll-over of the spectrum for the first time. The light curves of the first flight found their way into many presentations, including Ricardo Giacconi's Nobel lecture. The Goddard rocket program was an amazing beginning to my career.

  10. Eruptive History of Ikeda Caldera, Southern Kyushu, Japan

    NASA Astrophysics Data System (ADS)

    Inakura, H.; Naruo, H.; Okuno, M.; Kobayashi, T.; Tamura, T.

    2015-12-01

    Ikeda caldera is a small-scale caldera (about 4 km in diameter), located in the southern tip of the Satsuma Peninsula, southern Kyushu, Japan. The information on the onset of the caldera-forming eruption is gone due to the catastrophic eruption, but Ikeda caldera is a relatively small-scale eruption that the information before the eruption may have been conserved. We conducted a geological research to understand the eruptive history of Ikeda caldera, including a study of the processes leading to the catastrophic eruption. Pre-caldera activity began at about 20 cal kBP by Iwamoto ash and the effusion of Senta lava, which may have similar composition as the caldera-forming eruption. The caldera-forming eruption began at 6.4 cal kBP with a phreatic explosion that produced the Ikezaki tephra. The phreatic eruption was followed by Osagari scoria, Mizusako scoria and Ikeda pumice plinian eruption. During the climactic stage, Ikeda ignimbrite was erupted and reclaimed the coastal area at that time, and formed the ignimbrite plateau along the coast. Immediately after this event, four maars were formed to the southeast of the caldera. Yamagawa maar, which is the largest and is located at the southeastern end of the fissure vent, erupted pumiceous base surge (Yamagawa base surge), but other maars ejected small amount of accidental materials. During the late stage of the Ikeda eruption, phreatomagmatic eruption occurred at the bottom of the caldera floor, and erupted the Ikedako ash which covered a wide area. The Central lava dome was generated at the late stage of this eruption. After Ikedako ash deposition, secondary explosion of Ikeda ignimbrite occurred mainly along the coastal area, generating small-scale base surge deposits. About two thousand years after the caldera-forming eruption at 4.8 cal kBP, new magmatic activity began on the margin of the caldera rim, and generated Nabeshimadake lava dome.

  11. Popocatepetl Erupts

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Popocatepetl Volcano, almost 30 miles south of Mexico City, erupted yesterday (December 18, 2000) in what authorities are calling its most spectacular eruption since 800 A.D. This morning, Popocatepetl (pronounced poh-poh-kah-TEH-peh-til) continued spewing red-hot rocks as well as a column of smoke and ash about 2.5 miles high into the atmosphere. This true-color image of the volcano was acquired today by the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) flying aboard the OrbView-2 satellite. In this image, Popocatepetl's plume (greyish pixels) can be seen blowing southward, away from Mexico City. There is a large cloud bank (bright white pixels) just to the east of the volcanic plume. Although Popocatepetl has been active since 1994-when it awoke from a 70-year slumber-this most recent eruption is most concerning to the greater Mexico City region's 20 million residents. The volcano demonstrated what it can do in 800 A.D. when it belched forth enough lava to fill many of the valleys in the surrounding region. Earlier, scientists warned the citizens of Mexico that there is a dome of lava at the base of the volcano that is causing pressure to build inside. They are concerned that, if it continues to build unabated, this pressure could cause even larger eruptions in the future. Image provided by the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  12. FOGO-2014: Monitoring the Fogo 2014 Eruption, Cape Verde

    NASA Astrophysics Data System (ADS)

    Fernandes, Rui; Faria, Bruno

    2015-04-01

    Fogo volcano, located in the Cape Verde Archipelago offshore Western Africa, is a complete stratovolcano system that was created by the Cape Verde hotspot, forming the island of Fogo. The top (Pico do Fogo) reaches ~2830m above sea level, and raises ~1100m above Chã das Caldeiras, an almost flat circular area with approximately 10 kilometres in the north-south direction and 7 kilometres in the east-west direction. Chã das Caldeiras, surrounded towards the West by the ~1000m high Bordeira rampart, has been inhabited since the early 20th Century, because it is one of the most productive agricultural areas in this semi-arid country. Fogo volcano erupted on November 23, 2014 (~10:00UTC) on a subsidiary vent of the main cone, after 19 years of inactivity. C4G (Collaboratory for Geosciences), a distributed research infrastructure created in 2014 in the framework of the Portuguese Roadmap for Strategic Research Infrastructures, immediately offered support to the Cape Verdean authorities, with the goal of complementing the permanent geophysical monitoring network operated in Fogo island by INMG, the Cape Verdean Meteorological and Geophysical Institute. This permanent network is composed of seven seismographic stations and three tiltmeter stations, and the data is transmitted in real time to the INMG geophysical laboratory in São Vicente Island, where it is analysed on a routine basis. Pre-eruptive activity started to be detected by the permanent monitoring network on October 2014, with earthquakes occurring at depths larger than 15 km. These events led to a first volcanic warning to the Cape Verdean Civil Protection Agency. On November 22 several volcano-tectonic earthquakes were recorded at shallow depths, indicating shallow fracturing. On the basis of this activity, INMG issued a formal alert of an impending eruption to the Civil Protection Agency, ~24 hours before the onset of the eruption. Volcanic tremor and clear tiltmeter signals were recorded about one hour

  13. Polymorphic light eruption

    MedlinePlus

    ... outdoors. Wear a sun hat. Wear sunglasses with UV protection. Use a lip balm with sunscreen. Alternative Names Polymorphic light eruption; Photodermatosis; PMLE Images Polymorphic light eruption on ...

  14. A Case Study of a Career in Education that Began with "Teach for America"

    ERIC Educational Resources Information Center

    Tellez, Kip

    2011-01-01

    In this article I share the results of a seven-year case study of an educator who began his career without formal preservice teacher education, as a participant in Teach for America. Steven (a pseudonym) began teaching mathematics in an urban middle school, later teaching social studies to English language learners, and is currently a principal of…

  15. Jupiter Eruptions

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on the image for high resolution image of Nature Cover

    Detailed analysis of two continent-sized storms that erupted in Jupiter's atmosphere in March 2007 shows that Jupiter's internal heat plays a significant role in generating atmospheric disturbances. Understanding these outbreaks could be the key to unlock the mysteries buried in the deep Jovian atmosphere, say astronomers.

    This visible-light image is from NASA's Hubble Space Telescope taken on May 11, 2007. It shows the turbulent pattern generated by the two plumes on the upper left part of Jupiter.

    Understanding these phenomena is important for Earth's meteorology where storms are present everywhere and jet streams dominate the atmospheric circulation. Jupiter is a natural laboratory where atmospheric scientists study the nature and interplay of the intense jets and severe atmospheric phenomena.

    According to the analysis, the bright plumes were storm systems triggered in Jupiter's deep water clouds that moved upward in the atmosphere vi gorously and injected a fresh mixture of ammonia ice and water about 20 miles (30 kilometers) above the visible clouds. The storms moved in the peak of a jet stream in Jupiter's atmosphere at 375 miles per hour (600 kilometers per hour). Models of the disturbance indicate that the jet stream extends deep in the buried atmosphere of Jupiter, more than 60 miles (approximately100 kilometers) below the cloud tops where most sunlight is absorbed.

  16. Asymptomatic petechial eruption on the lower legs.

    PubMed

    Mendese, Gary; Grande, Donald

    2013-09-01

    The authors report an unusual case of Rocky Mountain spotted fever that presented as an asymptomatic petechial eruption on the lower legs. Rocky Mountain spotted fever is rare in New England and, as such, is typically not on the differential diagnosis when presented with such patients. What began as an asymptomatic eruption progressed to more classic signs of the disease, including a positive Rocky Mountain spotted fever titer. The patient was successfully treated with doxycydine and within a short period of time, was completely back at baseline. PMID:24062875

  17. The 1977 eruption of Kilauea volcano, Hawaii

    USGS Publications Warehouse

    Moore, R.B.; Helz, R.T.; Dzurisin, D.; Eaton, G.P.; Koyanagi, R.Y.; Lipman, P.W.; Lockwood, J.P.; Puniwai, G.S.

    1980-01-01

    Kilauea volcano began to erupt on September 13, 1977, after a 21.5-month period of quiescence. Harmonic tremor in the upper and central east rift zone and rapid deflation of the summit area occurred for 22 hours before the outbreak of surface activity. On the first night, spatter ramparts formed along a discontinuous, en-echelon, 5.5-km-long fissure system that trends N70??E between two prehistoric cones, Kalalua and Puu Kauka. Activity soon became concentrated at a central vent that erupted sporadically until September 23 and extruded flows that moved a maximum distance of 2.5 km to the east. On September 18, new spatter ramparts began forming west of Kalalua, extending to 7 km the length of the new vent system. A vent near the center of this latest fissure became the locus of sustained fountaining and continued to extrude spatter and short flows intermittently until September 20. The most voluminous phase of the eruption began late on September 25. A discontinuous spatter rampart formed along a 700-m segment near the center of the new, 7-km-long fissure system; within 24 hours activity became concentrated at the east end of this segment. One flow from the 35-m-high cone that formed at this site moved rapidly southeast and eventually reached an area 10 km from the vent and 700 m from the nearest house in the evacuated village of Kalapana. We estimate the total volume of material produced during this 18-day eruption to be 35 ?? 106 m3. Samples from active vents and flows are differentiated quartz-normative tholeiitic basalt, similar in composition to lavas erupted from Kilauea in 1955 and 1962. Plagioclase is the only significant phenocryst; augite, minor olivine, and rare orthopyroxene and opaque oxides accompany it as microphenocrysts. Sulfide globules occur in fresh glass and as inclusions in phenocrysts in early 1977 lavas; their absence in chemically-similar basalt from the later phases of the eruption suggests that more extensive intratelluric degassing

  18. Trends in intrusive and eruptive activity during Kilauea's long-lived east rift zone eruption

    NASA Astrophysics Data System (ADS)

    Orr, T. R.; Patrick, M. R.; Heliker, C.

    2011-12-01

    Kilauea Volcano's Pu`u `O`o eruption, continuing for nearly three decades, offers a unique opportunity to study trends in eruptive behavior. One such trend, that of uprift intrusion ± eruption, accompanied by crater floor collapse and eruptive hiatus, has been repeated several times at Pu`u `O`o. This includes the February 7, 1993, intrusion; the January 29, 1997, intrusion and eruption; the September 12, 1999, intrusion; and the June 17, 2007, intrusion and eruption. Activity resumed within Pu`u `O`o following each of these events, and crater refilling culminated eventually in the outbreak of lava from new vents on the flank of the Pu`u `O`o cone. The pattern was repeated again in 2011, when a brief fissure eruption uprift from Pu`u `O`o started on March 5. The Pu`u `O`o crater floor dropped about 115 m in response to the eruption, which ceased on March 9. After a short hiatus, lava reappeared in Pu`u `O`o on March 26, and the crater began to fill slowly thereafter by overflow from a central lava lake. Starting in late June 2011, however, the crater floor began to uplift in a wholesale fashion, suggesting an increase in the pressure beneath the Pu`u `O`o edifice. By late July, the lava within the crater had reached its highest level since early 2004, and lava had begun to overflow from the southwestern side of the crater. On August 3, the west side of the Pu`u `O`o cone was abruptly thrust upward as a sill was injected beneath that portion of the cone. Within minutes, lava began to erupt from a crack on the west flank of Pu`u `O`o, completing the pattern of intrusion, crater collapse, refilling, and breakout. During a long-lived eruption, maintaining a detailed observational and geophysical record is essential for recognizing patterns that may emerge. Recognizing such a pattern allowed Hawaiian Volcano Observatory scientists to prepare a response well in advance of the August 3, 2011 event, and provides guidance for responding to future eruption crises at Pu`u `O

  19. The 2008 eruption of Chaitén volcano, Southern Chile: a tectonically controlled eruption?

    NASA Astrophysics Data System (ADS)

    Lara, L. E.; Pallister, J. S.; Ewert, J. W.

    2008-12-01

    The May, 2008 - present eruption at Chaitén caldera is the only example of a geophysically monitored rhyolite eruption. Geologic and seismic monitoring was conducted by the Chilean Servicio Nacional de Geología y Minería (SERNAGEOMIN) with assistance from the Volcano Disaster Assistance Program (VDAP, a joint program of USGS and OFDA). In addition, global remote sensing assets were focused on the eruption and provide extensive data on the eruptive plume and ash cloud. An initial analysis of seismic and observational monitoring and remote sensing data lead us to suggest that the Chaitén eruption was tectonically controlled, as described below. The Chaitén eruption began abruptly with Plinian ash columns (May 2-8), and then transitioned into lava dome effusion accompanied by continuous low-level ash plumes. Heights and durations of the Plinian phase of the eruption initially suggested magmatic volumes of up to as much as 1 km3, ranking this as a large VEI 4 or possibly a small VEI 5 eruption. However, reports of relatively modest thicknesses of downwind tephra indicate a smaller explosivity, probably in the moderate VEI 4 range. Extrusion of the lava dome continues at a high rate as of this time (mid-September, 2008). We estimate a lava volume of >0.3 km3 and eruption rates that have frequently exceeded 20 m3s-1, anomalously high rates for a sustained lava dome eruption. Little detailed on-site study of the proximal deposits of the eruption has been possible because of continued hazards from the eruption and austral winter weather conditions. However, several inferences about the nature of the eruption are evident. The apparent lack of historic eruptions, absence of a hydrothermal system, rapid onset of the eruption, crystal-poor rhyolite composition, lack of decompression reaction rims on amphibole crystals, and relatively high magmatic temperatures (about 860°C, as reported elsewhere in this session) all argue for rapid ascent of magma from depth. The

  20. Recent Two Distinct Eruptions at Sinabung and Kelud, Indonesia

    NASA Astrophysics Data System (ADS)

    Nakada, S.; Yoshimoto, M.; Maeno, F.; Iguchi, M.; Zaenudin, A.; Hendrasto, M.

    2014-12-01

    Two distinct eruptions occurred in 2014 at Sinabung and Kelud volcanoes in Indonesia. Lava dome-forming eruption started at Sinabung volcano, N Sumatra, in the end of 2013, which was preceded by the phreatic events since 2010 and shallow inflation with high seismicity since 3 months before eruption. The 2010 eruption was the first historic eruption, and the latest eruption geologically recorded occurred in the 9 to 10th Century. The eruption had continued in a nearly constant rate of magma effusion as of the summer of 2014. The lava complex extended on the SE slope (~2.5 km long from the source), frequently generating pyroclastic flows. The volume of erupted magma reached about 0.1 km3 in the 2014 summer. The lava is porphyritic andesite (SiO2 ~57%). The existence of mafic blobs in rocks and plagioclase microlites more calcic than the phenocryst rims, and the absence of breakdown rim on hornblende phenocrysts suggest magma mixing prior to eruption and relatively fast magma ascent. On the other hand, the Plinian eruption began at Kelud volcano, W Java on the evening of February 13, 2014, which had declined almost within about 6 hours. The eruption cloud rose to 18-25 km in altitude, and tephra deposited on extensive areas. The precursory seismic activity started two weeks before eruption and the intensity increased with time. This short but explosive eruption was one of recent large eruptions (VEI 4) at Kelud, which had repeated every ~20 years. A lava dome of 0.035 km3 was accidentally (?) formed within the crater in 2007-2008. The total volume of tephra of the 2014 eruption is 0.2-0.3 km3 in DRE. The magma is crystal-rich basaltic andesite (SiO2 ~56%; phenocryst proportion of ~60%). The petrological characteristics are close to the 2007-2008 dome lava except higher crystallinity in the latter. Mobilization of crystal-rich chamber magma probably was brought by intrusion of new magma. Thus, these recent examples in Indonesia are less-explosive and explosive

  1. Small volcanic eruptions and the stratospheric sulfate aerosol burden

    NASA Astrophysics Data System (ADS)

    Pyle, David M.

    2012-09-01

    (Rampino and Self 1984, Pyle et al 1996, Self and Rampino 2012). But as yet, there is little evidence for the consequences of this scale of eruption for the climate system (Miles et al 2004), and few data against which to test simulations of stratospheric sulfur-injection 'geoengineering' scenarios of a similar scale and frequency (e.g. English et al 2012). A hint of the new volcano-observing capability came during the eruption of Eyjafjallajökull, Iceland. For a few days in April 2010 meteorological conditions, coupled with a dramatic increase in volcanic ash production, led to the wide dispersal of fine volcanic particles across northern Europe; an event which was widely tracked by ground-based and satellite-borne instruments, augmented by in situ measurements from balloons and aircraft (Bennett et al 2010, Flentje et al 2010, Harrison et al 2010, Stohl et al 2011). Despite the interest in Eyjafjallajökull at the time, this was, geologically, only a very modest eruption with limited sulfur emissions and an impact restricted mainly to the regional troposphere (e.g. Thomas and Prata 2011, Walker et al 2012). Then, in June 2011, a previously dormant volcano in north-east Africa began to erupt violently. Little is known about Nabro, which is a partially collapsed volcano that straddles the Eritrea-Ethiopia border, and has had no known historical activity (Wiart and Oppenheimer 2005). Despite the remote location, and lack of prior warning, the event and its aftermath were remarkably well captured by remote-sensing instruments, as demonstrated in the new letter by Sawamura et al (2012). Using both ground-based and satellite-borne laser-ranging (lidar) data, Sawamura et al (2012) were able to extract detailed information about the nature of the volcanic aerosol layer, and its spread around the globe. The eruption started strongly, with substantial ash plumes for the first 48 h, rising to 9-14 km altitude (Smithsonian Institution 2011, Bourassa et al 2012), that carried at

  2. Deployment of MAGDAS in Africa

    NASA Astrophysics Data System (ADS)

    Maeda, G.; Yumoto, K.; Kakinami, Y.; Tokunaga, T.; Fujimoto, A.; Ikeda, A.; Yamazaki, Y.; Abe, S.; Sakai, M.; Eto, N.; Terada, H.; Shinohara, M.; Fujita, Y.; Matsuyama, K.

    2011-12-01

    The deployment of MAGDAS (MAGnetic Data Acquisition System) began in Africa in the Year 2006 with installations along the dip equator (or "geomagnetic equator") in three countries. In 2008, the 96 Deg. MM Chain was established, running from Hermanus, South Africa, to Fayum, Egypt. In 2010, a major upgrade was performed on the equatorial stations of MAGDAS.

  3. An erupted compound odontoma.

    PubMed

    Gupta, Anil; Vij, Hitesh; Vij, Ruchieka; Malhotra, Ritika

    2014-01-01

    Odontomas are familiar entities but their eruption into the oral cavity is an extraordinary occurrence, which may be associated with pain, infection, malocclusion, etc. Not many cases of erupted odontomas have been reported in the literature. This paper puts forth a case of erupting odontoma in an attempt to add to the list of reported cases of this unique pathology. PMID:24729109

  4. Former director of RCN Wales Liz Hewett began at Ty Maeth in 1998.

    PubMed

    Lenzy, Tracy

    2016-06-01

    Great story in Nursing Standard about the book Nursing Matters, which delves into the 50th anniversary of the RCN headquarters in Wales, Ty Maeth (features, May 18). However, Liz Hewett began working at the RCN in Wales in 1998 - not in 1988 as stated in the article. PMID:27275910

  5. Nyiragongo Volcano before the Eruption

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Nyiragongo is an active stratovolcano situated on the Eastern African Rift; it is part of Africa's Virunga Volcanic Chain. In a massive eruption that occurred on January 17, 2002, Nyiragongo sent a vast plume of smoke and ash skyward, and three swifly-moving rivers of lava streaming down its western and eastern flanks. Previous lava flows from Nyiragongo have been observed moving at speeds of up to 40 miles per hour (60 kph). The lava flows from the January 17 eruption destroyed more than 14 villages in the surrounding countryside, forcing tens of thousands to flee into the neighboring country of Rwanda. Within one day the lava ran to the city of Goma, situated on the northern shore of Lake Kivu about 12 miles (19 km) south of Nyiragongo. The lava cut a 200 foot (60 meter) wide swath right through Goma, setting off many fires, as it ran into Lake Kivu. Goma, the most heavily populated city in eastern Democratic Republic of Congo, is home to about 400,000 people. Most of these citizens were forced to flee, while many have begun to return to their homes only to find their homes destroyed. This true-color scene was captured by the Enhanced Thematic Mapper Plus (ETM+), flying aboard the Landsat 7 satellite, on December 11, 2001, just over a month before the most recent eruption. Nyiragongo's large crater is clearly visible in the image. As recently as June 1994, there was a large lava lake in the volcano's crater which had since solidified. The larger Nyamuragira Volcano is located roughly 13 miles (21 km) to the north of Nyiragongo. Nyamuragira last erupted in February and March 2001. That eruption was also marked by columns of erupted ash and long fluid lava flows, some of which are apparent in the image as dark greyish swaths radiating away from Nyamuragira. Both peaks are also notorious for releasing large amounts of sulfur dioxide, which presents another health hazard to people and animals living in close proximity. Image by Robert Simmon, based on data supplied

  6. Deformation associated with the 2015 Eruption of Axial Seamount

    NASA Astrophysics Data System (ADS)

    Nooner, S. L.; Chadwick, W.; Caress, D. W.; Clague, D. A.; Paduan, J. B.; Yoerger, D.; Sasagawa, G. S.

    2015-12-01

    On April 24th 2015, an eruption began at Axial Seamount, a seafloor volcano located about 480 km west of the Oregon coast at the intersection of the Cobb hotspot and the Juan de Fuca Ridge. This eruption was first detected in real time by the newly operational Ocean Observatories Initiative cabled instrumentation at Axial (Delaney, AGU-2015, Wilcock, AGU-2015, Caplan-Auerbach, AGU-2015). Two prior eruptions have been observed since routine observations began in the 1990's, one in January 1998 and the other in April 2011. Precise water pressure measurements made on the volcano have documented an inflation/deflation cycle within Axial's summit caldera for the past 15 years. These data are now being supplemented by repeat bathymetric mapping by AUV. The long-term pattern appears to be "inflation predictable", in which eruptions are triggered at or near the same level of inflation. This pattern allowed us to successfully forecast in September 2014 that the next eruption was expected to occur at Axial sometime in 2015 (a 1-year time window). It is noteworthy that the rate of inflation between the 2011 and 2015 eruptions was about 4 times higher than between the 1998 and 2011 eruptions (60 cm/yr vs. 15 cm/yr). Subsidence at the caldera center began at 06:00 on 24 April (all times GMT) and amounted to 2.2 m by 02:00 on 25 April (20 hours in), 2.4 m by 00:00 on 28 April, and 2.45 m by 05 May when subsidence ended and re-inflation began (which has continued ever since). This amount of subsidence is similar to that observed during the 2011 eruption, but in 2015 the initial rate of subsidence was higher (11 cm/hr during the first 20 hours vs. 7 cm/hr in 2011) and the duration appears to have been longer (11 days vs. 6 days). Also, the 1998 and 2011 eruptions occurred along the southeastern edge of the caldera and along Axial's south rift zone, whereas the 2015 eruption occurred along the north rift zone (Kelley, AGU-2015). Here we present preliminary results of our August

  7. Small volcanic eruptions and the stratospheric sulfate aerosol burden

    NASA Astrophysics Data System (ADS)

    Pyle, David M.

    2012-09-01

    (Rampino and Self 1984, Pyle et al 1996, Self and Rampino 2012). But as yet, there is little evidence for the consequences of this scale of eruption for the climate system (Miles et al 2004), and few data against which to test simulations of stratospheric sulfur-injection 'geoengineering' scenarios of a similar scale and frequency (e.g. English et al 2012). A hint of the new volcano-observing capability came during the eruption of Eyjafjallajökull, Iceland. For a few days in April 2010 meteorological conditions, coupled with a dramatic increase in volcanic ash production, led to the wide dispersal of fine volcanic particles across northern Europe; an event which was widely tracked by ground-based and satellite-borne instruments, augmented by in situ measurements from balloons and aircraft (Bennett et al 2010, Flentje et al 2010, Harrison et al 2010, Stohl et al 2011). Despite the interest in Eyjafjallajökull at the time, this was, geologically, only a very modest eruption with limited sulfur emissions and an impact restricted mainly to the regional troposphere (e.g. Thomas and Prata 2011, Walker et al 2012). Then, in June 2011, a previously dormant volcano in north-east Africa began to erupt violently. Little is known about Nabro, which is a partially collapsed volcano that straddles the Eritrea-Ethiopia border, and has had no known historical activity (Wiart and Oppenheimer 2005). Despite the remote location, and lack of prior warning, the event and its aftermath were remarkably well captured by remote-sensing instruments, as demonstrated in the new letter by Sawamura et al (2012). Using both ground-based and satellite-borne laser-ranging (lidar) data, Sawamura et al (2012) were able to extract detailed information about the nature of the volcanic aerosol layer, and its spread around the globe. The eruption started strongly, with substantial ash plumes for the first 48 h, rising to 9-14 km altitude (Smithsonian Institution 2011, Bourassa et al 2012), that carried at

  8. Evidence for different eruptive conditions for two simultaneous, late Miocene, rhyolitic phreatomagmatic eruptions: Jemez Mountains, New Mexico

    SciTech Connect

    Gay, K.R.; Smith, G.A. . Dept. of Earth and Planetary Sciences)

    1993-04-01

    The Peralta Tuff Member of the Bearhead Rhyolite records episodic, rhyolitic volcanism during the late Miocene. It is composed of primary and reworked pyroclastic-flow (PF), tephra-fall (TF), and pyroclastic-surge (PS) deposits intercalated with braided-stream deposits. Two eruptive units have been informally named the Tuffs of West Mesa (TWM) and the Tuffs of Lower Peralta Canyon (TLPC). The TWM consist of 20 m of PF and minor PS deposits erupted from a vent in the Bearhead Park dome complex. In most places the TLPC consist of 50 m of PF, PS, and TF and were erupted from a vent located 7 km SE of Bearhead Peak. The absence of inter-eruptive sediments, erosional surfaces, or paleosols, along with the intercalated nature of the two units, indicates that the two eruptions were simultaneous. Granulometric, vesiculation, petrographic, and stratigraphic data indicate that the TWM eruption began with a phreatomagmatic (PM) component, resulting in the formation of a tuff ring at least 70 m thick, and ended with [ge]20 m of drier PF that traveled at least 6 km from the vent. The TLPC eruption began with several PM eruptive cycles of wet, ash-rich, low-angle x-bedded PS to drier, pumiceous, lapilli-rich PS. Abundant fragments of underlying rift-fill sediments decrease upward in the cycles. The cyclic deposits were followed by 20 m of pumice-rich, x-bedded PS, containing only rare sedimentary fragments. The TLPC eruption concluded with a 2 m TF. The greater phreatomagmatic component to the TLPC eruption, despite its proximity to the simultaneously active TWM vent, is apparently related to the mixing of magma with basin-fill sediments at a topographically lower ([ge]300 m) position and at a site that probably has less subjacent, relatively dry, older volcanic rocks.

  9. MtDNA analysis of global populations support that major population expansions began before Neolithic Time

    NASA Astrophysics Data System (ADS)

    Zheng, Hong-Xiang; Yan, Shi; Qin, Zhen-Dong; Jin, Li

    2012-10-01

    Agriculture resulted in extensive population growths and human activities. However, whether major human expansions started after Neolithic Time still remained controversial. With the benefit of 1000 Genome Project, we were able to analyze a total of 910 samples from 11 populations in Africa, Europe and Americas. From these random samples, we identified the expansion lineages and reconstructed the historical demographic variations. In all the three continents, we found that most major lineage expansions (11 out of 15 star lineages in Africa, all autochthonous lineages in Europe and America) coalesced before the first appearance of agriculture. Furthermore, major population expansions were estimated after Last Glacial Maximum but before Neolithic Time, also corresponding to the result of major lineage expansions. Considering results in current and previous study, global mtDNA evidence showed that rising temperature after Last Glacial Maximum offered amiable environments and might be the most important factor for prehistorical human expansions.

  10. Iceland's Grímsvötn volcano erupts

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-05-01

    About 13 months after Iceland's Eyjafjallajökull volcano began erupting on 14 April 2010, which led to extensive air traffic closures over Europe, Grímsvötn volcano in southeastern took its turn. Iceland's most active volcano, which last erupted in 2004 and lies largely beneath the Vatnajökull ice cap, began its eruption activity on 21 May, with the ash plume initially reaching about 20 kilometers in altitude, according to the Icelandic Meteorological Office. Volcanic ash from Grímsvötn has cancelled hundreds of airplane flights and prompted U.S. president Barack Obama to cut short his visit to Ireland. As Eos went to press, activity at the volcano was beginning to subside.

  11. Regional-scale forcing of precipitation in selected modern volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Yim, W. W.-S.

    2009-04-01

    Major volcanic eruptions are known to lower the Earth's surface temperature but their regional-scale forcing of precipitation is poorly understood. In this presentation, three modern volcanic eruptions have been selected for investigation. The three eruptions are the February 1963 Agung eruption in Indonesia, the March 1982 El Chichón eruption in Mexico and the June 1991 Pinatubo eruption in the Philippines. Abnormally low annual rainfall was found in the southern China region during 1963 and 1991 respectively. Based on the total annual rainfall recorded at the Hong Kong Station, the rainfall was the driest and the tenth driest since record began in 1884 respectively. In contrast, abnormally high annual rainfall was found in southern China in 1982 with the Hong Kong Station recording the second wettest year since record began. Based on the pattern of rainfall observed, near-field major volcanic eruptions located in the Indonesian-Pacific gateway may lead to abnormally dry conditions in southern China through a shift of wind direction to predominantly offshore. On the other hand, major far-field volcanic eruptions in the eastern Pacific may give rise to abnormally wet conditions through the spread of the volcanic cloud across the globe. In the El Chichón eruption, the spread of volcanic cloud across the Pacific Ocean was tracked by satellite images. Heavy rainfall occurred when the volcanic cloud reached the coastal regions of southern China. Volcanic eruptions are therefore a possible causative factor in monsoonal variability.

  12. Nyiragongo Volcano Erupts in the Congo

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Mount Nyiragongo, located in the Democratic Republic of the Congo, erupted today (January 17, 2002), ejecting a large cloud of smoke and ash high into the sky and spewing lava down three sides of the volcano. Mount Nyiragongo is located roughly 10 km (6 miles) north of the town of Goma, near the Congo's border with Rwanda. According to news reports, one river of lava is headed straight toward Goma, where international aid teams are evacuating residents. Already, the lava flows have burned through large swaths of the surrounding jungle and have destroyed dozens of homes. This false-color image was acquired today (January 17) by the Moderate-resolution Imaging Spectroradiometer (MODIS) roughly 5 hours after the eruption began. Notice Mount Nyiragongo's large plume (bright white) can be seen streaming westward in this scene. The plume appears to be higher than the immediately adjacent clouds and so it is colder in temperature, making it easy for MODIS to distinguish the volcanic plume from the clouds by using image bands sensitive to thermal radiation. Images of the eruption using other band combinations are located on the MODIS Rapid Response System. Nyiragongo eruptions are extremely hazardous because the lava tends to be very fluid and travels down the slopes of the volcano quickly. Eruptions can be large and spectacular, and flows can reach up to 10s of kilometers from the volcano very quickly. Also, biomass burned from Nyriagongo, and nearby Mount Nyamuragira, eruptions tends to create clouds of smoke that adversely affect the Mountain Gorillas living in the adjacent mountain chain. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  13. Volcanic Eruptions and Climate

    NASA Astrophysics Data System (ADS)

    Robock, A.

    2012-12-01

    Large volcanic eruptions inject sulfur gases into the stratosphere, which convert to sulfate aerosols with an e-folding residence time of about one year. The radiative and chemical effects of these aerosol clouds produce responses in the climate system. Observations and numerical models of the climate system show that volcanic eruptions produce global cooling and were the dominant natural cause of climate change for the past millennium, on timescales from annual to century. Major tropical eruptions produce winter warming of Northern Hemisphere continents for one or two years, while high latitude eruptions in the Northern Hemisphere weaken the Asian and African summer monsoon. The Toba supereruption 74,000 years ago caused very large climate changes, affecting human evolution. However, the effects did not last long enough to produce widespread glaciation. An episode of four large decadally-spaced eruptions at the end of the 13th century C.E. started the Little Ice Age. Since the Mt. Pinatubo eruption in the Philippines in 1991, there have been no large eruptions that affected climate, but the cumulative effects of small eruptions over the past decade had a small effect on global temperature trends. The June 13, 2011 Nabro eruption in Eritrea produced the largest stratospheric aerosol cloud since Pinatubo, and the most of the sulfur entered the stratosphere not by direct injection, but by slow lofting in the Asian summer monsoon circulation. Volcanic eruptions warn us that while stratospheric geoengineering could cool the surface, reducing ice melt and sea level rise, producing pretty sunsets, and increasing the CO2 sink, it could also reduce summer monsoon precipitation, destroy ozone, allowing more harmful UV at the surface, produce rapid warming when stopped, make the sky white, reduce solar power, perturb the ecology with more diffuse radiation, damage airplanes flying in the stratosphere, degrade astronomical observations, affect remote sensing, and affect

  14. Solar Prominence Eruption

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.

    1998-01-01

    The prominence that erupts in a prominence eruption is a magnetic structure in the chromosphere and corona. It is visible in chromospheric images by virtue of chromospheric-temperature plasma suspended in the magnetic field, and belongs to that large class of magnetic structures appropriately called filaments because of their characteristic sinewy sigmoidal form. Hence, the term "filament eruption" is used interchangeably with the term "prominence eruption". The magnetic field holding a filament is prone to undergo explosive changes in configuration. In these upheavals, because the filament material is compelled by its high conductivity to ride with the magnetic field that threads it, this material is a visible tracer of the field motion. The part of the magnetic explosion displayed by the entrained filament material is the phenomenon known as a filament eruption, the topic of this article. This article begins with a description of basic observed characteristics of filament eruptions, with attention to the magnetic fields, flares, and coronal mass ejections in which erupting filaments are embedded. The present understanding of these characteristics in terms of the form and action of the magnetic field is then laid out by means of a rudimentary three-dimensional model of the field. The article ends with basic questions that this picture leaves unresolved and with remarks on the observations needed to probe these questions.

  15. Sympathetic Solar Filament Eruptions

    NASA Astrophysics Data System (ADS)

    Wang, Rui; Liu, Ying D.; Zimovets, Ivan; Hu, Huidong; Dai, Xinghua; Yang, Zhongwei

    2016-08-01

    The 2015 March 15 coronal mass ejection as one of the two that together drove the largest geomagnetic storm of solar cycle 24 so far was associated with sympathetic filament eruptions. We investigate the relations between the different filaments involved in the eruption. A surge-like small-scale filament motion is confirmed as the trigger that initiated the erupting filament with multi-wavelength observations and using a forced magnetic field extrapolation method. When the erupting filament moved to an open magnetic field region, it experienced an obvious acceleration process and was accompanied by a C-class flare and the rise of another larger filament that eventually failed to erupt. We measure the decay index of the background magnetic field, which presents a critical height of 118 Mm. Combining with a potential field source surface extrapolation method, we analyze the distributions of the large-scale magnetic field, which indicates that the open magnetic field region may provide a favorable condition for F2 rapid acceleration and have some relation with the largest solar storm. The comparison between the successful and failed filament eruptions suggests that the confining magnetic field plays an important role in the preconditions for an eruption.

  16. Mt. Etna Eruption

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1: Vis/NIR Image CloseupFigure 2: Difference Image

    October 2002 Mt. Etna, a volcano on the island of Sicily, erupted on October 26, 2002. Preliminary analysis of data taken by the Atmospheric Infrared Sounder (AIRS) on NASA's Aqua satellite on October 28 shows the instrument can provide an excellent means to study the evolution and structure of the sulfur dioxide (SO2) plume emitted from volcanoes. These data also demonstrate that AIRS can be used to obtain the total mass of SO2 injected into the atmosphere during a volcanic event, information that may help us to better understand these dangerous natural occurrences in the future.

    This image was made from a sensor on the AIRS instrument that is sensitive to the visible and near-infrared portions of the spectrum. The visible/near infrared data show the smoke plume from Mt. Etna. The view is of Europe and the central Mediterranean with Italy in the center. Since the visible/near infrared sensor on AIRS is sensitive to wavelengths that are different than the human eye, vegetated regions appear red (compare the red color of Europe with the tan desert of North Africa in the lower left). Figure 1 is a closer view of Sicily and shows a long, brownish smoke plume extending across the Mediterranean to Africa. This is consistent with the enhanced feature in the difference image in Figure 2 and helps validate the information inferred from that image.

    Figure 2 clearly shows the SO2 plume. This image was created by comparing data taken at two different frequencies, or channels, and creating one image that highlights the differences between these two channels. Both channels are sensitive to water vapor, but one of the channels is also sensitive to SO2. By subtracting out the common water vapor signal in both channels, the SO2 feature remains and shows up as an enhancement in the difference image.

    The

  17. Observations, stratigraphy and eruptive processes of the 1990 eruption of Kelut volcano, Indonesia

    NASA Astrophysics Data System (ADS)

    Bourdier, Jean-Louis; Pratomo, Indyo; Thouret, Jean-Claude; Boudon, Georges; Vincent, Pierre M.

    1997-12-01

    The February 10, 1990 eruption of Kelut volcano (eastern Java) reportedly began with seven discrete, short-lived explosions between 11.41 and 12.35 local times. Deposits of this initial, phreatomagmatic stage include a basal ash-fall layer (unit A1), widespread pumice surge deposits (unit S) and related pisolitic ash layer (unit A2). The main, plinian phase of the eruption lasted about 4 hours from 12.35 and produced pumice-flow deposits (unit PF) overlain by a pumice fallout layer distributed mainly to the southwest (unit P), and intra-plinian scoria-flow deposits (unit SF). Uppermost scoria-rich ash fall layers (unit A3) likely relate to late, discrete eruptive pulses. A few small explosions resumed on February 11 and 12 leaving no recognizable deposit. An embryonic lava dome had formed in the crater bottom by April, then was submerged by the new crater lake. Destruction of the summit area resulted from emplacement of the pre-plinian pumice surge up to 4-5 km on the south and west flanks, and of the early plinian pumice flows up to 1-2 km radially from the crater, before these were channelized in the main valleys to further travel 3 km. Most of the 32 human deaths resulted from roof collapse under the load of fallout tephra beyond the devastated area, which had been evacuated before the eruption began. The eruption produced 0.13 km 3 of tephra, of which 0.12 km 3 represent the products of the plinian phase. The average eruptive rate of the plinian phase is estimated to have been ˜7.5×10 6 kg/s magma DRE. The pumice flows are interpreted to have been formed due to unsteadiness and low velocity of the eruptive column at the beginning of the plinian phase. The intra-plinian scoria flows incorporate either more degassed or colder juvenile magma; they were presumably erupted at the edge of the column, due to fluctuations in the mass flux and in pressure in the conduit.

  18. Months between rejuvenation and volcanic eruption at Yellowstone caldera, Wyoming

    USGS Publications Warehouse

    Till, Christy B.; Vazquez, Jorge A.; Boyce, Jeremy W

    2015-01-01

    Rejuvenation of previously intruded silicic magma is an important process leading to effusive rhyolite, which is the most common product of volcanism at calderas with protracted histories of eruption and unrest such as Yellowstone, Long Valley, and Valles, USA. Although orders of magnitude smaller in volume than rare caldera-forming super-eruptions, these relatively frequent effusions of rhyolite are comparable to the largest eruptions of the 20th century and pose a considerable volcanic hazard. However, the physical pathway from rejuvenation to eruption of silicic magma is unclear particularly because the time between reheating of a subvolcanic intrusion and eruption is poorly quantified. This study uses geospeedometry of trace element profiles with nanometer resolution in sanidine crystals to reveal that Yellowstone’s most recent volcanic cycle began when remobilization of a near- or sub-solidus silicic magma occurred less than 10 months prior to eruption, following a 220,000 year period of volcanic repose. Our results reveal a geologically rapid timescale for rejuvenation and effusion of ~3 km3 of high-silica rhyolite lava even after protracted cooling of the subvolcanic system, which is consistent with recent physical modeling that predict a timescale of several years or less. Future renewal of rhyolitic volcanism at Yellowstone is likely to require an energetic intrusion of mafic or silicic magma into the shallow subvolcanic reservoir and could rapidly generate an eruptible rhyolite on timescales similar to those documented here.

  19. An Erupted Silent Tumour.

    PubMed

    Kudva, Adarsh; Chithra, A; Rao, Nirmala N; Cariappa, K M

    2016-07-01

    Odontomas are the most common odontogenic tumors of the oral cavity which are nonaggressive, hamartomatous in nature consisting of enamel, dentin and cementum. They are called as composite because they contain more than one type of tissue. They are generally asymptomatic, hence recognised on routine radiologic examination. The compound odontoma is composed of multiple small tooth like structures, whereas the complex odontoma consists of a conglomerate mass of enamel and dentine, which bears no anatomical similarity to the tooth. The eruption and infection of odontoma are uncommon, only few cases of erupted complex odontoma are reported in the literature. We report a case of silent erupting complex odontoma. PMID:27408461

  20. Dating the period when intensive anthropogenic activity began to influence the Sanjiang Plain, Northeast China

    PubMed Central

    Cong, Jinxin; Gao, Chuanyu; Zhang, Yan; Zhang, Shaoqing; He, Jiabao; Wang, Guoping

    2016-01-01

    Dating the start of intensive anthropogenic influence on ecosystems is important for identifying the conditions necessary for ecosystem recovery. However, few studies have focused on determining when anthropogenic influences on wetland began through sedimentary archives. To fill this critical gap in our knowledge, combustion sources and emission intensities, reconstructed via black carbon (BC) and polycyclic aromatic hydrocarbons (PAHs) were analyzed in two wetlands in the Sanjiang Plain in Northeast China. 14C provided age control for the sedimentary records. By combining previous sedimentary and archaeological studies, we attempt to date the beginning of intensive anthropogenic influences on the Sanjiang Plain. Our results showed that BC deposition fluxes increased from 0.02 to 0.7 g C/m2.yr during the last 10,000 years. An upward trend was apparent during the last 500 years. Before 1200 cal yr BP, human activities were minor, such that the wetland ecosystem in the Sanjiang Plain before this period may represent the reference conditions that for the recovery of these wetlands. As the human population increased after 1200 cal yr BP, combustion sources changed and residential areas became a major source of BC and PAHs. In this way, the wetland ecosystem gradually became more heavily influenced by human activities. PMID:26907560

  1. The life of Eugene Braunwald: a remarkable journey that began in Vienna.

    PubMed

    Schlossmacher, M G

    1998-01-16

    The life of Dr. Eugene Braunwald, who is without doubt the preeminent cardiologist of our time, represents a remarkable journey that began in Vienna, Austria. It took an early and decisive turn in July 1938 when his family was forced into exile by Austrian Nazism, ultimately settling in the United States. During his career Dr. Braunwald has provided unprecedented contributions to the theory and practice of medicine, foremost in cardiovascular research and clinical cardiology. Professionally, his pursuit of excellence continues in the roles of physician-scientist, academic teacher, editor and administrator. Personally, Dr. Braunwald's voyage came full circle in the summer of 1995, some fifty seven years after his emigration, when the University of Vienna awarded him an honorary Medical Doctorate. This article reviews Dr. Eugene Braunwald's remarkable journey from his childhood in pre-World War II Vienna to the current titles of Distinguished Hersey Professor of Medicine and Faculty Dean for Academic Programs at Harvard Medical School and Vice President of Partner's HealthCare Systems in Boston, Massachusetts. This essay is also intended to raise awareness of, and foster academic investigation into, the long-lasting implications of Austrian Nazism on the "Viennese School of Medicine". PMID:9499476

  2. Dating the period when intensive anthropogenic activity began to influence the Sanjiang Plain, Northeast China

    NASA Astrophysics Data System (ADS)

    Cong, Jinxin; Gao, Chuanyu; Zhang, Yan; Zhang, Shaoqing; He, Jiabao; Wang, Guoping

    2016-02-01

    Dating the start of intensive anthropogenic influence on ecosystems is important for identifying the conditions necessary for ecosystem recovery. However, few studies have focused on determining when anthropogenic influences on wetland began through sedimentary archives. To fill this critical gap in our knowledge, combustion sources and emission intensities, reconstructed via black carbon (BC) and polycyclic aromatic hydrocarbons (PAHs) were analyzed in two wetlands in the Sanjiang Plain in Northeast China. 14C provided age control for the sedimentary records. By combining previous sedimentary and archaeological studies, we attempt to date the beginning of intensive anthropogenic influences on the Sanjiang Plain. Our results showed that BC deposition fluxes increased from 0.02 to 0.7 g C/m2.yr during the last 10,000 years. An upward trend was apparent during the last 500 years. Before 1200 cal yr BP, human activities were minor, such that the wetland ecosystem in the Sanjiang Plain before this period may represent the reference conditions that for the recovery of these wetlands. As the human population increased after 1200 cal yr BP, combustion sources changed and residential areas became a major source of BC and PAHs. In this way, the wetland ecosystem gradually became more heavily influenced by human activities.

  3. New Aspects of a Lid-Removal Mechanism in the Onset of a SEP-Producing Eruption Sequence

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David A.; Knox, Javon M.

    2014-01-01

    We examine a sequence of two ejective eruptions from a single active region on 2012 January 23, using magnetograms and EUV images from SDO/HMI and SDO/AIA, and EUV images from STEREO. Cheng et al. (2013) showed that the first eruption's ("Eruption 1'') flux rope was apparent only in "hotter'' AIA channels, and that it removed overlying field that allowed the second eruption (``Eruption 2'') to begin via ideal MHD instability; here we say Eruption 2 began via a ``lid removal'' mechanism. We show that during Eruption-1's onset, its flux rope underwent ``tether weakening'' (TW) reconnection with the field of an adjacent active region. Standard flare loops from Eruption 1 developed over Eruption-2's flux rope and enclosed filament, but these overarching new loops were unable to confine that flux rope/filament. Eruption-1's flare loops, from both TW reconnection and standard-flare-model internal reconnection, were much cooler than Eruption-2's flare loops (GOES thermal temperatures of approx. 9 MK compared to approx. 14 MK). This eruption sequence produced a strong solar energetic particle (SEP) event (10 MeV protons, >10(exp 3) pfu for 43 hrs), apparently starting when Eruption-2's CME blasted through Eruption-1's CME at 5-10 R_s. This occurred because the two CMEs originated in close proximity and in close time sequence: Eruption-1's fast rise started soon after the TW reconnection; the lid removal by Eruption-1's ejection triggered the slow onset of Eruption 2; and Eruption-2's CME, which started approx. 1 hr later, was three times faster than Eruption-1's CME.

  4. Snake Filament Eruption

    NASA Video Gallery

    A very long solar filament that had been snaking around the Sun erupted on Dec. 6, 2010 with a flourish. NASA's Solar Dynamics Observatory (SDO) caught the action in dramatic detail in extreme ultr...

  5. Triple Solar Eruption

    NASA Video Gallery

    Solar activity surged on the morning of Dec 12, 2010 when the sun erupted three times in quick succession, hurling a trio of bright coronal mass ejections (CMEs) into space. Coronagraphs onboard th...

  6. The Chaitén 2008 eruption: explosive eruption characteristics and tephra dispersal

    NASA Astrophysics Data System (ADS)

    Watt, S. F. L.; Pyle, D. M.

    2012-04-01

    Chaitén volcano, situated in the southern Chilean Andes at 42.8 °S, began erupting explosively and without warning on 2nd May 2008. The early and most intense stages of the eruption lasted approximately one week, and represented the largest explosive eruption globally since that of Hudson, Chile, in 1991. The eruption was also the first explosive eruption of rhyolitic magma for almost a century. Widespread tephra deposition caused significant regional-scale disruption to agriculture, and aviation across southern Chile and Argentina was periodically affected for one month. Severe local impacts in Chile led to the evacuation of more than 5000 people. The proximal tephra fall deposit contains multiple layers, corresponding to individual eruption phases. Early clearing of the conduit produced a dense rhyolitic lapilli deposit with very little juvenile material. This was followed by pulsatory explosions of extremely homogeneous crystal-poor rhyolite. The overall volume of the tephra fall deposit was ~0.2 km3 (dense-rock equivalent). Eruption column heights reached ~19 km height during the most energetic phases, but these were of notably short duration given their intensity. After 8th May 2008 the Chaitén eruption entered a dome-forming stage, which is ongoing. The series of explosive phases during the first week of the Chaitén eruption interacted with a strong and variable wind field. This produced a complex, lobate fall deposit that reached the Atlantic coast of Argentina and covered ~2 × 105 km2. Measurable ash fallout occurred at a distance of 1000 km downwind. Ground measurements of the distal ash deposit correspond well with satellite observations of plume dispersal and ash deposition, and reflect the differing transport directions of ash-rich clouds from separate explosive phases. The overlap of multiple deposits in the medial fallout region is confirmed by the multiple modes in deposit grain-size distributions. Grain-size measurements also provide evidence

  7. Seasonality of volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Mason, B. G.; Pyle, D. M.; Dade, W. B.; Jupp, T.

    2004-04-01

    An analysis of volcanic activity during the last three hundred years reveals that volcanic eruptions exhibit seasonality to a statistically significant degree. This remarkable pattern is observed primarily along the Pacific "Ring of Fire" and locally at some individual volcanoes. Globally, seasonal fluctuations amount to 18% of the historical average monthly eruption rate. In some regions, seasonal fluctuations amount to as much as 50% of the average eruption rate. Seasonality principally reflects the temporal distribution of the smaller, dated eruptions (volcanic explosivity index of 0-2) that dominate the eruption catalog. We suggest that the pattern of seasonality correlates with the annual Earth surface deformation that accompanies the movement of surface water mass during the annual hydrological cycle and illustrate this with respect to global models of surface deformation and regional measurements of annual sea level change. For example, seasonal peaks in the eruption rate of volcanoes in Central America, the Alaskan Peninsula, and Kamchatka coincide with periods of falling regional sea level. In Melanesia, in contrast, peak numbers of volcanic eruptions occur during months of maximal regional sea level and falling regional atmospheric pressure. We suggest that the well-documented slow deformation of Earth's surface that accompanies the annual movements of water mass from oceans to continents acts to impose a fluctuating boundary condition on volcanoes, such that volcanic eruptions tend to be concentrated during periods of local or regional surface change rather than simply being distributed randomly throughout the year. Our findings have important ramifications for volcanic risk assessment and volcanoclimate feedback mechanisms.

  8. Generalized eruptive syringomas.

    PubMed

    Jamalipour, Mahnaz; Heidarpour, Mitra; Rajabi, Parvin

    2009-01-01

    Generalized eruptive syringoma is a rare clinical presentation of a benign adnexal tumor that derives from the intraepidermal portion of the eccrine sweat ducts. It presents as successive crops of small flesh-colored papules on the anterior body surfaces. It generally occurs in the peripubertal period. Treatment of this benign condition is cosmetic only. A case of a 28-year-old female with an eight-year history of eruptive syringoma is presented. PMID:20049275

  9. Current Status of MAGDAS Deployment in Africa

    NASA Astrophysics Data System (ADS)

    Maeda, G.; Yumoto, K.; Kakinami, Y.; Tokunaga, T.; Fujimoto, A.; Ikeda, A.; Yamazaki, Y.; Abe, S.; Sakai, M.; Eto, N.; Shinohara, M.; Magdas Project Team

    2010-12-01

    Under the lead of Prof. K. Yumoto (PI of the MAGDAS Project), the MAGDAS Project is intensively installing a network of real time magnetometers in Africa along two chains: (1) Dip Equator Chain, and (2) the so-called "96 Degree MM Chain" that runs from Egypt to South Africa. The Africa installations began in 2006 and still continue to this day. This talk discusses the details of the current status of this significant ground observation program in Africa. Africa presents some special problems. However, important data is now being collected continuously along these two chains. The MAGDAS Project is perhaps Japan's most significant contribution to IHY and ISWI (International Space Weather Initiative).

  10. Failed eruptions of two intertwining small-scale filaments

    NASA Astrophysics Data System (ADS)

    Xue, Zhike; Yan, Xiaoli; Zhao, Li; Xiang, Yongyuan; Yang, Liheng; Guo, Yang

    2016-02-01

    Using multi-wavelength observations of the New Vacuum Solar Telescope (NVST), the Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO), we study the topology and evolutions of two filaments observed in NOAA active region (AR) 12031 on 2014 April 7. Before their eruptions, the two filaments (F1 and F2) were sinistral filaments, and the left part of F1 (LP) was located above F2, the right part of F1 (RP) under F2. They show an overall intertwining structure. LP erupted first and rotated clockwise. The total rotation angle was about 470° (≈2.61π). With its rotation, most of the plasma fell back, and thus it was a failed eruption. Meanwhile, when LP erupted to a higher altitude, the overlying magnetic loops were partially pushed from the northeast to the southwest with projected speeds from 36 to 105 km s-1. Next, F2 began to erupt and, when reaching a certain height, the plasma of F2 started to fall down to their footpoints. Using the potential-field source-surface (PFSS) model, the decay indexes at five positions along the polarity inversion line of AR 12031 were calculated to be from 1.03 to 1.25 with an average value of 1.20 that was lower than the critical value for torus instability. These results imply that the kink instability was the main triggering mechanism for the eruption of F1, and the eruption of F2 was due to the decreasing of overlying magnetic loops caused by the eruption of F1. The eruptions of two filaments were confined by the large-scale overlying magnetic loops.

  11. First recorded eruption of Nabro volcano, Eritrea, 2011

    NASA Astrophysics Data System (ADS)

    Goitom, Berhe; Oppenheimer, Clive; Hammond, James O. S.; Grandin, Raphaël; Barnie, Talfan; Donovan, Amy; Ogubazghi, Ghebrebrhan; Yohannes, Ermias; Kibrom, Goitom; Kendall, J.-Michael; Carn, Simon A.; Fee, David; Sealing, Christine; Keir, Derek; Ayele, Atalay; Blundy, Jon; Hamlyn, Joanna; Wright, Tim; Berhe, Seife

    2015-10-01

    We present a synthesis of diverse observations of the first recorded eruption of Nabro volcano, Eritrea, which began on 12 June 2011. While no monitoring of the volcano was in effect at the time, it has been possible to reconstruct the nature and evolution of the eruption through analysis of regional seismological and infrasound data and satellite remote sensing data, supplemented by petrological analysis of erupted products and brief field surveys. The event is notable for the comparative rarity of recorded historical eruptions in the region and of caldera systems in general, for the prodigious quantity of SO2 emitted into the atmosphere and the significant human impacts that ensued notwithstanding the low population density of the Afar region. It is also relevant in understanding the broader magmatic and tectonic significance of the volcanic massif of which Nabro forms a part and which strikes obliquely to the principal rifting directions in the Red Sea and northern Afar. The whole-rock compositions of the erupted lavas and tephra range from trachybasaltic to trachybasaltic andesite, and crystal-hosted melt inclusions contain up to 3,000 ppm of sulphur by weight. The eruption was preceded by significant seismicity, detected by regional networks of sensors and accompanied by sustained tremor. Substantial infrasound was recorded at distances of hundreds to thousands of kilometres from the vent, beginning at the onset of the eruption and continuing for weeks. Analysis of ground deformation suggests the eruption was fed by a shallow, NW-SE-trending dike, which is consistent with field and satellite observations of vent distributions. Despite lack of prior planning and preparedness for volcanic events in the country, rapid coordination of the emergency response mitigated the human costs of the eruption.

  12. Eruption column physics

    SciTech Connect

    Valentine, G.A.

    1997-03-01

    In this paper the author focuses on the fluid dynamics of large-scale eruption columns. The dynamics of these columns are rooted in multiphase flow phenomena, so a major part of the paper sets up a foundation on that topic that allows one to quickly assess the inherent assumptions made in various theoretical and experimental approaches. The first part is centered on a set of complex differential equations that describe eruption columns, but the focus is on a general understanding of important physical processes rather than on the mathematics. The author discusses briefly the relative merits and weaknesses of different approaches, emphasizing that the largest advances in understanding are made by combining them. He then focuses on dynamics of steady eruption columns and then on transient phenomena. Finally he briefly reviews the effects of varying behavior of the ambient medium through which an eruption column moves. These final sections will emphasize concepts and a qualitative understanding of eruption dynamics. This paper relies on principles of continuum mechanics and transport processes but does not go into detail on the development of those principles. 36 refs., 36 figs., 3 tabs.

  13. High-latitude eruptions cast shadow over the African monsoon and the flow of the Nile

    NASA Astrophysics Data System (ADS)

    Oman, Luke; Robock, Alan; Stenchikov, Georgiy L.; Thordarson, Thorvaldur

    2006-09-01

    Nile River records indicate very low flow following the 1783-1784 Laki volcanic eruption, as well as after other high-latitude volcanic eruptions. As shown by climate model simulations of the Laki eruption, significant cooling (-1° to -3°C) of the Northern Hemisphere land masses during the boreal summer of 1783 resulted in a strong dynamical effect of weakening the African and Indian monsoon circulations, with precipitation anomalies of -1 to -3 mm/day over the Sahel of Africa, thus producing the low Nile flow. Future high-latitude eruptions would significantly impact the food and water supplies in these areas. Using observations of the flow of the Nile River, this new understanding is used to support a date of 939 for the beginning of the eruption of the Eldgjá volcano in Iceland, the largest high-latitude eruption of the past 1500 years.

  14. The 2009 eruption of Redoubt Volcano, Alaska

    USGS Publications Warehouse

    Bull, Katharine F.; Cameron, Cheryl; Coombs, Michelle L.; Diefenbach, Angie; Lopez, Taryn; McNutt, Steve; Neal, Christina; Payne, Allison; Power, John A.; Schneider, David J.; Scott, William E.; Snedigar, Seth; Thompson, Glenn; Wallace, Kristi; Waythomas, Christopher F.; Webley, Peter; Werner, Cynthia A.

    2012-01-01

    Redoubt Volcano, an ice-covered stratovolcano on the west side of Cook Inlet, erupted in March 2009 after several months of escalating unrest. The 2009 eruption of Redoubt Volcano shares many similarities with eruptions documented most recently at Redoubt in 1966–68 and 1989–90. In each case, the eruptive phase lasted several months, consisted of multiple ashproducing explosions, produced andesitic lava and tephra, removed significant amounts of ice from the summit crater and Drift glacier, generated lahars that inundated the Drift River valley, and culminated with the extrusion of a lava dome in the summit crater. Prior to the 2009 explosive phase of the eruption, precursory seismicity lasted approximately six months with the fi rst weak tremor recorded on September 23, 2008. The first phreatic explosion was recorded on March 15, and the first magmatic explosion occurred seven days later, at 22:34 on March 22. The onset of magmatic explosions was preceded by a strong, shallow swarm of repetitive earthquakes that began about 04:00 on March 20, 2009, less than three days before an explosion. Nineteen major ash-producing explosions generated ash clouds that reached heights between 17,000 ft and 62,000 ft (5.2 and 18.9 km) ASL. During ash fall in Anchorage, the Ted Stevens International Airport was shut down for 20 hours, from ~17:00 on March 28 until 13:00 on March 29. On March 23 and April 4, lahars with fl ow depths to 10 m in the upper Drift River valley inundated parts of the Drift River Terminal (DRT). The explosive phase ended on April 4 with a dome collapse at 05:58. The April 4 ash cloud reached 50,000 ft (15.2 km) and moved swiftly to the southeast, depositing up to 2 mm of ash fall in Homer, Anchor Point, and Seldovia. At least two and possibly three lava domes grew and were destroyed by explosions prior to the final lava dome extrusion that began after the April 4 event. The fi nal lava dome ceased growth by July 1, 2009, with an estimated volume of 72

  15. Eruptive history of South Sister, Oregon Cascades

    USGS Publications Warehouse

    Fierstein, J.; Hildreth, W.; Calvert, A.T.

    2011-01-01

    South Sister is southernmost and highest of the Three Sisters, three geologically dissimilar stratovolcanoes that together form a spectacular 20km reach along the Cascade crest in Oregon. North Sister is a monotonously mafic edifice as old as middle Pleistocene, Middle Sister a basalt-andesite-dacite cone built between 48 and 14ka, and South Sister is a basalt-free edifice that alternated rhyolitic and intermediate modes from 50ka to 2ka (largely contemporaneous with Middle Sister). Detailed mapping, 330 chemical analyses, and 42 radioisotopic ages show that the oldest exposed South Sister lavas were initially rhyolitic ~50ka. By ~37ka, rhyolitic lava flows and domes (72-74% SiO2) began alternating with radially emplaced dacite (63-68% SiO2) and andesite (59-63% SiO2) lava flows. Construction of a broad cone of silicic andesite-dacite (61-64% SiO2) culminated ~30ka in a dominantly explosive sequence that began with crater-forming andesitic eruptions that left fragmental deposits at least 200m thick. This was followed at ~27ka by growth of a steeply dipping summit cone of agglutinate-dominated andesite (56-60.5% SiO2) and formation of a summit crater ~800m wide. This crater was soon filled and overtopped by a thick dacite lava flow and then by >150m of dacitic pyroclastic ejecta. Small-volume dacite lavas (63-67% SiO2) locally cap the pyroclastic pile. A final sheet of mafic agglutinate (54-56% SiO2) - the most mafic product of South Sister - erupted from and drapes the small (300-m-wide) present-day summit crater, ending a summit-building sequence that lasted until ~22ka. A 20kyr-long-hiatus was broken by rhyolite eruptions that produced (1) the Rock Mesa coulee, tephra, and satellite domelets (73.5% SiO2) and (2) the Devils Chain of ~20 domes and short coulees (72.3-72.8% SiO2) from N-S vent alignments on South Sister's flanks. The compositional reversal from mafic summit agglutinate to recent rhyolites epitomizes the frequently changing compositional modes of the

  16. Explosion Quakes: The 2007 Eruption of Pavlof

    NASA Astrophysics Data System (ADS)

    Smith, C.; McNutt, S. R.; Thompson, G.

    2014-12-01

    Pavlof Volcano on the Alaska Peninsula began to erupt on August 14, 2007 after an 11 year repose. Pavlof is the most active volcano in the Aleutians, with over 40 eruptions in historical times. The 2007 eruption began with low-frequency earthquakes and thermal anomalies. Strombolian activity occurred from a newly formed vent on the SE flank of the volcano. The plume reached 20,000 ft during the peak of the eruption on August 29th and 30th. Seismic activity, monitored by a network of 5 local instruments, consisted of low-frequency events, explosion quakes, volcanic tremor, and lahar-generated signals. Here we focus on explosion quakes. The first explosion quake occurred August 14th at 2:54pm UTC and the last on September 13th at 3:14pm UTC. Explosion events were often embedded in continuous tremor, but could be distinguished by the ground-coupled air waves, which appeared as a high-frequency spike superimposed on the lower-frequency ground waves. Rates were as high as 19 explosion quakes per minute. We establish whether systematic changes in explosion rates, signal properties, and ground-coupled air-wave amplitudes correlate with the height and ash content of the plume. First order trends show a positive correlation between increased explosion quake rates, increased amplitudes, and plume height. In addition, we investigate how atmospheric conditions such as wind speed and direction affect the recording of the ground-coupled air-wave. The time differences in the airwaves at different stations are consistent with the acoustic speed of 340 m/s, but show variations of up to 0.6 s depending on wind speed and direction. Eruptions at Pavlof typically have little or no seismic precursors; this combined with the low visibility common to the area results in Pavlof being dangerous to the many aviation routes that transverse this airspace. It is the goal of this study to determine the conditions under which explosion quake data may be reliably used for more effective monitoring.

  17. Comparison of Galunggung1982-83 and Eyjafjalla-2010 Eruptions: definition of eruption dynamics from 3D Ash Surface Morphology

    NASA Astrophysics Data System (ADS)

    Aydar, E.; Höskuldsson, A.; Ersoy, O.; Gourgaud, A.

    2012-04-01

    We consider that all works, concepts on aviation safety, security codes, establishment of warning systems etc begin in 1982, when two commercial jumbo jets en route to Australia across Indonesia suffered loss of engine thrust from ingesting volcanic ash from the erupting Galunggung Volcano, Java, and descended more than 20,000 ft before the engines could be restarted (Casadevall, 1991). It is not the only incident of this kind but this Galunggung eruption had a pionner character attracting attention on aviation safety against volcanic eruptions in international community. As the needs for precautions on aviation safety against volcanic ash encounters began with Galunggung 1982 eruption and as we all concerned by the measures taken by ICAO due to Eyjafjallajökull-2010 eruption, we aimed to investigate this last huge airspace perturbing eruption and compare the volcanic ashes produced by those two eruptions. Volcanic ash characterization should be most important parameter to understand how the eruption concerned unrolled. Galunggung 1982-83 eruption was exceptionally long, lasting about nine months between 5 April 1982-8 January 1983). During this well known eruption, the composition of the erupted magma evolved from andesite (58% SiO2) to Mg-rich basalt (47% SiO2), while the style of the eruption changed drastically through time (Katili and Sudrdajat, 1984; Sudrajat and Tilling, 1984; Gourgaud et al., 1989 gourgaud etal 2000). Paralel to chemical changes and water consumption, eruption dynamic was also changed and occured in three eruption phases with different eruptive styles as an initial Vulcanian phase (5 April-13 May), a phreatomagmatic phase (17 May-28 October) and a Strombolian phase (3 November-8 January), have been recognized (Katili and Sudradjat,1984). We examined the surficial morphological features of proximal tephra collected from Galunggung and Eyjafjalla volcanoes. Surface texture and morphology of volcanic ash particles change according to various

  18. Acneiform facial eruptions

    PubMed Central

    Cheung, Melody J.; Taher, Muba; Lauzon, Gilles J.

    2005-01-01

    OBJECTIVE To summarize clinical recognition and current management strategies for four types of acneiform facial eruptions common in young women: acne vulgaris, rosacea, folliculitis, and perioral dermatitis. QUALITY OF EVIDENCE Many randomized controlled trials (level I evidence) have studied treatments for acne vulgaris over the years. Treatment recommendations for rosacea, folliculitis, and perioral dermatitis are based predominantly on comparison and open-label studies (level II evidence) as well as expert opinion and consensus statements (level III evidence). MAIN MESSAGE Young women with acneiform facial eruptions often present in primary care. Differentiating between morphologically similar conditions is often difficult. Accurate diagnosis is important because treatment approaches are different for each disease. CONCLUSION Careful visual assessment with an appreciation for subtle morphologic differences and associated clinical factors will help with diagnosis of these common acneiform facial eruptions and lead to appropriate management. PMID:15856972

  19. Erupting Volcano Mount Etna

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Expedition Five crew members aboard the International Space Station (ISS) captured this overhead look at the smoke and ash regurgitated from the erupting volcano Mt. Etna on the island of Sicily, Italy in October 2002. Triggered by a series of earthquakes on October 27, 2002, this eruption was one of Etna's most vigorous in years. This image shows the ash plume curving out toward the horizon. The lighter-colored plumes down slope and north of the summit seen in this frame are produced by forest fires set by flowing lava. At an elevation of 10,990 feet (3,350 m), the summit of the Mt. Etna volcano, one of the most active and most studied volcanoes in the world, has been active for a half-million years and has erupted hundreds of times in recorded history.

  20. Kimberlite ascent and eruption.

    PubMed

    Sparks, R S J; Brown, R J; Field, M; Gilbertson, M

    2007-12-13

    Wilson and Head model kimberlite ascent and eruption by considering the propagation of a volatile-rich dyke. Wilson and Head's model has features in common with Sparks et al., but it is inconsistent with geological observations and constraints on volatile solubility. Here we show that this may be due to erroneous physical assumptions. PMID:18075522

  1. Volcanic Eruptions and Climate

    NASA Technical Reports Server (NTRS)

    LeGrande, Allegra N.; Anchukaitis, Kevin J.

    2015-01-01

    Volcanic eruptions represent some of the most climatically important and societally disruptive short-term events in human history. Large eruptions inject ash, dust, sulfurous gases (e.g. SO2, H2S), halogens (e.g. Hcl and Hbr), and water vapor into the Earth's atmosphere. Sulfurous emissions principally interact with the climate by converting into sulfate aerosols that reduce incoming solar radiation, warming the stratosphere and altering ozone creation, reducing global mean surface temperature, and suppressing the hydrological cycle. In this issue, we focus on the history, processes, and consequences of these large eruptions that inject enough material into the stratosphere to significantly affect the climate system. In terms of the changes wrought on the energy balance of the Earth System, these transient events can temporarily have a radiative forcing magnitude larger than the range of solar, greenhouse gas, and land use variability over the last millennium. In simulations as well as modern and paleoclimate observations, volcanic eruptions cause large inter-annual to decadal-scale changes in climate. Active debates persist concerning their role in longer-term (multi-decadal to centennial) modification of the Earth System, however.

  2. Eruption on Io

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This image, taken by NASA's Galileo spacecraft, shows a new blue-colored volcanic plume extending about 100 kilometers (about 60 miles) into space from Jupiter's moon Io (see inset at lower left). The blue color of the plume is consistent with the presence of sulfur dioxide gas and 'snow' condensing from the gas as the plume expands and cools. Galileo images have also shown that the Ra Patera plume glows in the dark, perhaps due to the fluorescence of sulfur and oxygen ions created by the breaking apart of sulfur dioxide molecules by energetic particles in the Jovian magnetosphere. The images at right show a comparison of changes seen near the volcano Ra Patera since the Voyager spacecraft flybys of 1979 (windows at right show Voyager image at top and Galileo image at bottom). This eruptive plume is an example of a new type of volcanic activity discovered during Voyager's flyby in 1979, believed to be geyser-like eruptions driven by sulfur dioxide or sulfur gas erupting and freezing in Io's extremely tenuous atmosphere. Volcanic eruptions on Earth cannot throw materials to such high altitudes. Ra Patera is the site of dramatic surface changes. An area around the volcano of about 40,000 square kilometers, area about the size of New Jersey, has been covered by new volcanic deposits. The image was taken in late June 28, 1996 from a distance of 972,000 kilometers (604,000 miles). The Galileo mission is managed by NASA's Jet Propulsion Laboratory.

  3. Lightning and electrical activity during the eruption of Mt. Augustine

    NASA Astrophysics Data System (ADS)

    Thomas, R. J.; Krehbiel, P.; Rison, W.; Aulich, G.; Edens, H.; McNutt, S.; Tytgat, G.; Clark, E.

    2006-12-01

    Lightning during several of the eruptions were observed using a technique that we use to observe thunderstorms. Very high frequency radio emissions (60 MHz) emitted by electrical discharges are located by their times of arrival at several receiving stations. In a typical thunderstorm lightning flash we locate several thousand events giving a 3-D map of the lightning. In mid January we set up two stations about 100 km east of the volcano, near Homer, AK. We received and located the source of thousands of radio emissions from the vicinity of Mt Augustine during the January 28 eruption. With two stations we were able to determine the azimuthal direction to the sources, their power, the time history and relationship to other pulses. On one lightning flash we used an interferometric effect to infer altitude. We observed two distinct forms of electrical activity. The first was many short bursts (less than a milliseconds) that occurred coincident with the explosive eruption. These seemed to be short discharges (up to several hundred meters) that occur just as the material leaves the volcano. The other type was very similar to the lightning that we see in thunderstorms. Most of these lightning flashes began several minutes after the explosive eruption began. Following the largest eruption on January 28 we observed about 300 discharges in a period lasting 11 minutes. Initially these flashes lasted only a few milliseconds, but the final ones lasted more than one half second, had many branches 10's of km in length. Most or all of this lightning was in the plume. Because of the bad weather there were no visual observations. Previous detection of volcanic lightning has been visually or by low frequency radio emissions that detect only the lightning that comes to the ground. These initial observations show that this technique has great potential to detect explosive eruptions and study the details of lightning and the charge structure in the plume.

  4. Explosive Eruptions of Kamchatkan Volcanoes in 2012 and Danger to Aviation

    NASA Astrophysics Data System (ADS)

    Girina, Olga; Manevich, Alexander; Melnikov, Dmitry; Nuzhdaev, Anton; Demyanchuk, Yury; Petrova, Elena

    2013-04-01

    Strong explosive eruption of volcanoes is the most dangerous for aircraft because in a few hours or days in the atmosphere and the stratosphere can produce about several cubic kilometers of volcanic ash and aerosols. Ash plumes and the clouds, depending on the power of the eruption, the strength and wind speed, can travel thousands of kilometers from the volcano for several days, remaining hazardous to aircraft, as the melting temperature of small particles of ash below the operating temperature of jet engines. There are 30 active volcanoes in the Kamchatka and 6 active volcanoes in the Northern Kuriles, and 4 of them continuously active. In 2012 seven strong explosive eruptions of the Kamchatkan and the Northern Kuriles volcanoes Sheveluch, Bezymianny, Kizimen, Tolbachik, Klyuchevskoy, and Karymsky took place. In addition, higher fumarolic activity of Gorely volcano was observed. The eruptive activity of Sheveluch Volcano began since 1980 (growth of the lava dome) and is continuing at present. Strong explosive events of the volcano occurred in 2012: on January 22-23; on March 16-17; March 25-30 - June 03; and on September 18: ash plumes rose up to 10 km a.s.l. and extended about 200-2000 km to the different directions of the volcano. The eruptive activity of Bezymianny volcano began since 1955, and is continuing at present as growth of the lava dome. Two paroxysmal explosive phases of the eruption occurred on March 08 and September 01: ash plumes rose up to 8-12 km a.s.l. and extended about 1500 km to the east-north-east of the volcano. Eruption of Kizimen volcano began on December 09, 2010, and continues. Strong explosive eruption began in mid-December, 2010, - ash plumes rose up to 10 km a.s.l. and extended > 800 km from the volcano. There are several stages of the eruption: explosive (from 09 December 2010 to mid-January 2011); explosive-effusive (mid-January to mid-June 2011); effusive (mid-January 2011 to September 2012). Extrusive-effusive phase of eruption

  5. Eruption prediction aided by electronic tiltmeter data at Mount St. Helens

    USGS Publications Warehouse

    Dzurisin, D.; Westphal, J.A.; Johnson, Daniel J.

    1983-01-01

    Telemetry from electronic tiltmeters in the crater at Mount St. Helens contributed to accurate predictions of all six effusive eruptions from June 1981 to August 1982. Tilting of the crater floor began several weeks before each eruption, accelerated sharply for several days, and then abruptly changed direction a few minutes to days before extrusion began. Each episode of uplift was caused by the intrusion of magma into the lava dome from a shallow source, causing the dome to inflate and eventually rupture. Release of magma pressure and increased surface loading by magma added to the dome combined to cause subsidence just prior to extrusion.

  6. Eruption prediction aided by electronic tiltmeter data at mount st. Helens.

    PubMed

    Dzurisin, D; Westphal, J A; Johnson, D J

    1983-09-30

    Telemetry from electronic tiltmeters in the crater at Mount St. Helens contributed to accurate predictions of all six effusive eruptions from June 1981 to August 1982. Tilting of the crater floor began several weeks before each eruption, accelerated sharply for several days, and then abruptly changed direction a few minutes to days before extrusion began. Each episode of uplift was caused by the intrusion of magma into the lava dome from a shallow source, causing the dome to inflate and eventually rupture. Release of magma pressure and increased surface loading by magma added to the dome combined to cause subsidence just prior to extrusion. PMID:17759009

  7. An investigation of pre-eruptive deformation for the 2004 eruption of Mount St. Helens using persistent scatterer interferometry

    NASA Astrophysics Data System (ADS)

    Welch, M.; Schmidt, D. A.

    2014-12-01

    The volcanoes of the Cascade Range pose a legitimate threat to people living in the Pacific Northwest. Mt St Helens, which erupted in 2004 as a part of a dome building event, is a notable example of this danger. Deformation and seismicity are known indicators of volcanic activity and can provide warning of an imminent eruption. In the weeks leading up to the 2004 eruption, a shallow earthquake swarm was detected under St. Helens, suggesting ongoing deformation with its source beneath the edifice. A campaign GPS survey conducted in 2000 found no evidence of deformation. The sole continuous GPS station that was operational prior to the eruption (located ~9 km away from the crater) began moving only with the onset of the earthquake swarm. Because of the lack of ground based geodetic instruments in the near-field of Mt St Helens at the time of the 2004 eruption, it is unknown whether pre-eruptive deformation occurred on the edifice or solely within crater. InSAR is the only method available to conclusively determine whether the 2004 eruption was preceded by deformation of the edifice. Previous work explored this question using standard 2-pass interferometry, but the results were inconclusive. The main obstacle to implementing InSAR methods in the Cascades region is phase decorrelation due to the presence of both dense forest and snow for most of the year. We revisit the available InSAR data for St. Helens by experimenting with the application of the Persistent Scatterers and Distributed Scatterers processing techniques in order to overcome the decorrelation problem. By using these techniques on the question of Mt St Helens pre-eruptive deformation, we will demonstrate the viability of their application to the entire Northwest region as a low cost, low maintenance, monitoring tool.

  8. The transition from explosive to effusive eruptive regime: The example of the 1912 Novarupta eruption, Alaska

    USGS Publications Warehouse

    Adams, N.K.; Houghton, B.F.; Fagents, S.A.; Hildreth, W.

    2006-01-01

    The shift from explosive to effusive silicic volcanism seen in many historical eruptions reflects a change in the style of degassing of erupted magma. This paper focuses on such a transition during the largest eruption of the twentieth century, the 1912 eruption of Novarupta. The transition is recorded in a dacite block bed, which covers an elliptical area of 4 km2 around the vent. Approximately 700 studied blocks fall into four main lithologic categories: (1) pumiceous, (2) dense, (3) flow-banded dacites, and (4) welded breccias. Textural analyses of the blocks indicate portions of the melt underwent highly variable degrees of outgassing. Vesicle populations show features characteristic of bubble coalescence and collapse. A decrease in measured vesicularity and increased evidence for bubble collapse compared with pumice from earlier Plinian episodes mark the transition from closed- to open-system degassing. Block morphology and textures strongly suggest the magma was first erupted as a relatively gas-rich lava dome/plug, but incomplete out-gassing led to explosive disruption. Heterogeneous degassing of ascending magma began in Plinian Episode III and resulted in instability during Episode IV dome growth and a (series of) Vulcanian explosion(s). Modeling of the dynamics of explosion initiation and ejecta dispersal indicates that a significant concentration in gas is required to produce the explosions responsible for the observed block field dispersal. The amount of gas available in the hot pumiceous dome material appears to have been inadequate to drive the explosion(s); therefore, external water most likely contributed to the destruction. ?? 2006 Geological Society of America.

  9. Reunion Island Volcano Erupts

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On January 16, 2002, lava that had begun flowing on January 5 from the Piton de la Fournaise volcano on the French island of Reunion abruptly decreased, marking the end of the volcano's most recent eruption. These false color MODIS images of Reunion, located off the southeastern coast of Madagascar in the Indian Ocean, were captured on the last day of the eruption (top) and two days later (bottom). The volcano itself is located on the southeast side of the island and is dark brown compared to the surrounding green vegetation. Beneath clouds (light blue) and smoke, MODIS detected the hot lava pouring down the volcano's flanks into the Indian Ocean. The heat, detected by MODIS at 2.1 um, has been colored red in the January 16 image, and is absent from the lower image, taken two days later on January 18, suggesting the lava had cooled considerably even in that short time. Earthquake activity on the northeast flank continued even after the eruption had stopped, but by January 21 had dropped to a sufficiently low enough level that the 24-hour surveillance by the local observatory was suspended. Reunion is essentially all volcano, with the northwest portion of the island built on the remains of an extinct volcano, and the southeast half built on the basaltic shield of 8,630-foot Piton de la Fournaise. A basaltic shield volcano is one with a broad, gentle slope built by the eruption of fluid basalt lava. Basalt lava flows easily across the ground remaining hot and fluid for long distances, and so they often result in enormous, low-angle cones. The Piton de la Fournaise is one of Earth's most active volcanoes, erupting over 150 times in the last few hundred years, and it has been the subject of NASA research because of its likeness to the volcanoes of Mars. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  10. The First Historic Eruption of Nabro, Eritrea: Insights from Thermal and UV Satellite Data

    NASA Astrophysics Data System (ADS)

    Sealing, C. R.; Carn, S. A.; Harris, A. J. L.

    2015-12-01

    In June 2011, the first recorded eruption of Nabro volcano, took place at the border of Eritrea and Ethiopia. This eruption was the largest in what could be considered an ongoing sequence of eruptions in the Afar-Red Sea region since 2005. It halted air travel in northern Africa, contaminated food and water sources, and displaced thousands from their homes. Geographic isolation, previous quiescence, and regional civil unrest meant that this volcano was effectively unmonitored at the time of eruption, and opportunities for field study were limited. The purpose of this study is to explore the quantity of erupted products and the timing and mechanisms of their emplacement using predominantly free, publicly available satellite data. We use MODIS and OMI data to examine rates of lava effusion and SO2 emission, and quantify the amount of erupted products. We also examine published images from other satellites, such as ALI and SEVIRI in order to understand the temporal evolution of the eruption. Synthesizing these data, we then attempt to infer the mechanisms through which the eruption progressed. Examination of satellite data reveals a bimodal eruption, beginning with explosive activity marked by high SO2 emission totalling 1824 - 2299 KT, and extensive ash fall of 270 - 440 km2. This was followed by a period of rapid effusion, producing a ~17 km long lava flow, and a volume of ~22.1 x 106 m3. Mass balance between the SO2 and lava flows reveals no sulfur 'excess', suggesting that nearly all of the degassed magma was extruded. This eruption of Nabro continued for nearly 6 weeks, and may be considered the second largest historic eruption in Africa. This type of work highlights the effectiveness and importance of accessible satellite remote sensing data for the study of active volcanoes, particularly those in remote regions that may be otherwise inaccessible.

  11. Interdisciplinary studies of eruption at Chaitén volcano, Chile

    USGS Publications Warehouse

    Pallister, John S.; Major, Jon J.; Pierson, Thomas C.; Holitt, Richard P.; Lowenstern, Jacob B.; Eichelberger, John C.; Luis, Lara; Moreno, Hugo; Muñoz, Jorge; Castro, Jonathan M.; Iroumé, Andrés; Andreoli, Andrea; Jones, Julia; Swanson, Fred; Crisafulli, Charlie

    2010-01-01

    High-silica rhyolite magma fuels Earth's largest and most explosive eruptions. Recurrence intervals for such highly explosive eruptions are in the 100- to 100,000-year time range, and there have been few direct observations of such eruptions and their immediate impacts. Consequently, there was keen interest within the volcanology community when the first large eruption of high-silica rhyolite since that of Alaska's Novarupta volcano in 1912 began on 1 May 2008 at Chaitén volcano, southern Chile, a 3-kilometer-diameter caldera volcano with a prehistoric record of rhyolite eruptions [Naranjo and Stern, 2004semi; Servicio Nacional de Geología y Minería (SERNAGEOMIN), 2008semi; Carn et al., 2009; Castro and Dingwell, 2009; Lara, 2009; Muñoz et al., 2009]. Vigorous explosions occurred through 8 May 2008, after which explosive activity waned and a new lava dome was extruded.

  12. Interdisciplinary Studies of Eruption at Chaitén Volcano, Chile

    NASA Astrophysics Data System (ADS)

    Pallister, John S.; Major, Jon J.; Pierson, Thomas C.; Hoblitt, Richard P.; Lowenstern, Jacob B.; Eichelberger, John C.; Lara, Luis; Moreno, Hugo; Muñoz, Jorge; Castro, Jonathan M.; Iroumé, Andrés; Andreoli, Andrea; Jones, Julia; Swanson, Fred; Crisafulli, Charlie

    2010-10-01

    High-silica rhyolite magma fuels Earth's largest and most explosive eruptions. Recurrence intervals for such highly explosive eruptions are in the 100- to 100,000­year time range, and there have been few direct observations of such eruptions and their immediate impacts. Consequently, there was keen interest within the volcanology community when the first large eruption of high-silica rhyolite since that of Alaska's Novarupta volcano in 1912 began on 1 May 2008 at Chaitén volcano, southern Chile, a 3-kilometer­diameter caldera volcano with a prehistoric record of rhyolite eruptions [Naranjo and Stern, 2004; Servicio Nacional de Geología y Minería (SERNAGEOMIN), 2008; Carn et al., 2009; Castro and Dingwell, 2009; Lara, 2009; Muñoz et al., 2009]. Vigorous explosions occurred through 8 May 2008, after which explosive activity waned and a new lava dome was extruded.

  13. Pre- and syn-eruptive degassing and crystallisation processes of the 2010 and 2006 eruptions of Merapi volcano, Indonesia

    NASA Astrophysics Data System (ADS)

    Preece, Katie; Gertisser, Ralf; Barclay, Jenni; Berlo, Kim; Herd, Richard A.

    2014-10-01

    The 2010 eruption of Merapi (VEI 4) was the volcano's largest since 1872. In contrast to the prolonged and effusive dome-forming eruptions typical of Merapi's recent activity, the 2010 eruption began explosively, before a new dome was rapidly emplaced. This new dome was subsequently destroyed by explosions, generating pyroclastic density currents (PDCs), predominantly consisting of dark coloured, dense blocks of basaltic andesite dome lava. A shift towards open-vent conditions in the later stages of the eruption culminated in multiple explosions and the generation of PDCs with conspicuous grey scoria and white pumice clasts resulting from sub-plinian convective column collapse. This paper presents geochemical data for melt inclusions and their clinopyroxene hosts extracted from dense dome lava, grey scoria and white pumice generated during the peak of the 2010 eruption. These are compared with clinopyroxene-hosted melt inclusions from scoriaceous dome fragments from the prolonged dome-forming 2006 eruption, to elucidate any relationship between pre-eruptive degassing and crystallisation processes and eruptive style. Secondary ion mass spectrometry analysis of volatiles (H2O, CO2) and light lithophile elements (Li, B, Be) is augmented by electron microprobe analysis of major elements and volatiles (Cl, S, F) in melt inclusions and groundmass glass. Geobarometric analysis shows that the clinopyroxene phenocrysts crystallised at depths of up to 20 km, with the greatest calculated depths associated with phenocrysts from the white pumice. Based on their volatile contents, melt inclusions have re-equilibrated during shallower storage and/or ascent, at depths of ~0.6-9.7 km, where the Merapi magma system is interpreted to be highly interconnected and not formed of discrete magma reservoirs. Melt inclusions enriched in Li show uniform "buffered" Cl concentrations, indicating the presence of an exsolved brine phase. Boron-enriched inclusions also support the presence of a

  14. SDO/AIA observations of a partially erupting prominence

    SciTech Connect

    Tripathi, Durgesh; Reeves, Katharine K.; Gibson, Sarah E.; Srivastava, Abhishek; Joshi, Navin C.

    2013-12-01

    We report an observation of a partially erupting prominence and its associated dynamical plasma processes based on observations recorded by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory. The prominence first went through a slow rise (SR) phase followed by a fast rise (FR) phase. The SR phase began after a couple of small brightenings were seen toward the footpoints. When the prominence had transitioned from SR to FR, it had already become kinked. The prominence shows strong brightening at the central kink location during the start of FR. We interpret this as an internal magnetic reconnection occurring at a vertical current sheet forming between the two legs of the erupting prominence (flux rope). The brightening at the central kink location is seen in all EUV channels of AIA. The contributions of differential emission at higher temperatures are larger compared to that for typical coronal temperatures supporting a reconnection scenario at the central kink location. The plasma above the brightening location is ejected as a hot plasmoid-like structure embedded in a coronal mass ejection, and those below the brightening move down in the form of blobs moving toward the Sun's surface. The unique time resolution of the AIA has allowed these eruptive aspects, including SR-to-FR, kinking, central current sheet formation, plasmoid-like eruption, and filament 'splitting', to be observed in a single event, providing strong and comprehensive evidence in favor of the model of partially erupting flux ropes.

  15. Nyamuragira Volcano Erupts

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Nyamuragira volcano erupted on July 26, 2002, spewing lava high into the air along with a large plume of steam, ash, and sulfur dioxide. The 3,053-meter (10,013-foot) volcano is located in eastern Congo, very near that country's border with Rwanda. Nyamuragira is the smaller, more violent sibling of Nyiragongo volcano, which devastated the town of Goma with its massive eruption in January 2002. Nyamuragira is situated just 40 km (24 miles) northeast of Goma. This true-color image was acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite, on July 28, 2002. Nyamuragira is situated roughly in the center of this scene, roughly 100 km south of Lake Edward and just north of Lake Kivu (which is mostly obscured by the haze from the erupting volcano and the numerous fires burning in the surrounding countryside). Due south of Lake Kivu is the long, narrow Lake Tanganyika running south and off the bottom center of this scene.

  16. Geology and eruptive mechanisms of Masaya Caldera Complex, Nicaragua

    SciTech Connect

    Williams, S.N.

    1983-01-01

    Results of detailed geologic field mapping and analysis of eruptive mechanisms at Masaya Caldera Complex, Nicaragua are presented. Eruptions began at least 50,000 and possibly 460,000 y.b.p. The Las Sierras Formation, regarded as Plio-Pleistocene in age, forms the local basement. A central vent of group or vents in the developing Masaya volcanic complex produced diverse deposits, all of basaltic composition. Eruption of a pyroclastic flow-surge sequence at 2250-6500 y.b.p. culminated in wholesale collapse of a caldera with a volume of 15.3 km/sup 3/. The bulk volume of the ignimbrite is 2.2-3.4 kkm/sup 3/ and the surge deposit is 4.9-5.5 km/sup 3/. Pre-historic lava production rates of 1.9-5.5 x 10/sup 6/ m/sup 3//year are similar to rates at other volcanoes but 26-76 times greater than the historic rate of production. The average lava effusion rate of 32 m/sup 3//sec during the 1772 eruption is at least an order of magnitude greater than observed effusion rates at other Central American volcanoes, and helps explain the unusual shield-like morphology of the volcano. Pyroclastic eruptions of several types have played an important role in the evolution of the volcano. Fissure-type eruptions, unknown elsewhere in Central America, have created numerous ash and scoria deposits. Two widespread scoria-fall deposits, locally known as the Fontana Lapilli an San Judas Formation, are the first documented plinian airfall deposts of basaltic composition. The Masaya-type caldera is redefined as a caldera associated with voluminous explosive eruptions of much less than 100 km/sup 3/ of mafic magma from a summit vent.

  17. The 2013 eruption of Pavlof Volcano, Alaska: a spatter eruption at an ice- and snow-clad volcano

    USGS Publications Warehouse

    Waythomas, Christopher F.; Haney, Matthew M.; Fee, David; Schneider, David J.; Wech, Aaron G.

    2014-01-01

    The 2013 eruption of Pavlof Volcano, Alaska began on 13 May and ended 49 days later on 1 July. The eruption was characterized by persistent lava fountaining from a vent just north of the summit, intermittent strombolian explosions, and ash, gas, and aerosol plumes that reached as high as 8 km above sea level and on several occasions extended as much as 500 km downwind of the volcano. During the first several days of the eruption, accumulations of spatter near the vent periodically collapsed to form small pyroclastic avalanches that eroded and melted snow and ice to form lahars on the lower north flank of the volcano. Continued lava fountaining led to the production of agglutinate lava flows that extended to the base of the volcano, about 3–4 km beyond the vent. The generation of fountain-fed lava flows was a dominant process during the 2013 eruption; however, episodic collapse of spatter accumulations and formation of hot spatter-rich granular avalanches was a more efficient process for melting snow and ice and initiating lahars. The lahars and ash plumes generated during the eruption did not pose any serious hazards for the area. However, numerous local airline flights were cancelled or rerouted, and trace amounts of ash fall occurred at all of the local communities surrounding the volcano, including Cold Bay, Nelson Lagoon, Sand Point, and King Cove.

  18. West Africa

    Atmospheric Science Data Center

    2013-04-16

    ... article title:  Hazy and Dusty Skies over Western Africa     View Larger Image ... of agricultural fires that were burning throughout western Africa during December and early January, and was likely to have been ...

  19. Eruption Forecasting: Success and Surprise at Kasatochi and Okmok Volcanoes

    NASA Astrophysics Data System (ADS)

    Prejean, S.; Power, J.; Brodsky, E.

    2008-12-01

    seismic network on Kasatochi Island. Unlike Kasatochi, Okmok volcano, also located in the central Aleutian Islands, hosts 13 telemetered seismic stations and several telemetered GPS stations. The volcano has received considerable study by AVO, and the record of historical eruptions is well known. Despite regular scrutiny of Okmok data, the 2008 eruption was a surprise as there were fewer than 3 hours of clear pre-eruptive seismicity. The color code/alert level at Okmok went directly from Green/Normal to Red/Warning on July 12 after eruptive activity began. Interpretation of co-eruptive seismicity remained a challenge through the course of the eruption as bursts of volcanic tremor often did not correlate immediately with ash output at the vent as observed in satellite data.

  20. Southern Africa

    Atmospheric Science Data Center

    2013-04-16

    article title:  Southern Africa     View larger JPEG image ... These Multi-angle Imaging SpectroRadiometer (MISR) images of Africa were acquired on August 25, 2000, during Terra orbit 3655. The left ... of smoke plumes and haze. The southern tip of South Africa is at the bottom of the image, and Zambia is at the top. Distinctive ...

  1. The ongoing Puʻu ʻŌʻō eruption of Kīlauea Volcano, Hawaiʻi: 30 years of eruptive activity

    USGS Publications Warehouse

    Orr, Tim R.; Heliker, Christina; Patrick, Matthew R.

    2013-01-01

    The Puʻu ʻŌʻō eruption of Kīlauea Volcano is its longest rift-zone eruption in more than 500 years. Since the eruption began in 1983, lava flows have buried 48 square miles (125 square kilometers) of land and added about 500 acres (200 hectares) of new land to the Island of Hawaiʻi. The eruption not only challenges local communities, which must adapt to an ever-changing and sometimes-destructive environment, but has also drawn millions of visitors to Hawaiʻi Volcanoes National Park. U.S. Geological Survey (USGS) scientists closely monitor and evaluate hazards at Hawaiʻi’s volcanoes and also work with park rangers to help ensure safe lava viewing for visitors.

  2. Models of volcanic eruption hazards

    SciTech Connect

    Wohletz, K.H.

    1992-01-01

    Volcanic eruptions pose an ever present but poorly constrained hazard to life and property for geothermal installations in volcanic areas. Because eruptions occur sporadically and may limit field access, quantitative and systematic field studies of eruptions are difficult to complete. Circumventing this difficulty, laboratory models and numerical simulations are pivotal in building our understanding of eruptions. For example, the results of fuel-coolant interaction experiments show that magma-water interaction controls many eruption styles. Applying these results, increasing numbers of field studies now document and interpret the role of external water eruptions. Similarly, numerical simulations solve the fundamental physics of high-speed fluid flow and give quantitative predictions that elucidate the complexities of pyroclastic flows and surges. A primary goal of these models is to guide geologists in searching for critical field relationships and making their interpretations. Coupled with field work, modeling is beginning to allow more quantitative and predictive volcanic hazard assessments.

  3. Inflate, Pause, Erupt, Recharge: the 2008 Alu eruption in the Erta ‘Ale volcanic system (Ethiopia)

    NASA Astrophysics Data System (ADS)

    Pagli, C.; Wright, T. J.; Ebinger, C. J.; Barnie, T. D.; Ayele, A.

    2009-12-01

    The Alu volcano is located within the Erta ‘Ale volcanic system in northern Afar (Ethiopia), about 30 km to the north of Erta ‘Ale volcano whose summit caldera hosts a persistent lava lake. On 3rd November 2008 a fissure eruption started east of Alu volcano. An unprecedented InSAR dataset, seismic records and other space satellite imagery allow us to study the temporal and spatial evolution of magma preceding, during and after the eruption. We use InSAR images from five tracks of the Envisat satellite both in descending ad ascending orbits. Small pre-eruptive inflation 3 cm/month started at Alu in July but had ceased by September 10. There was no deformation for around a month before the eruption began on November 3, 2008 at 11:10 GMT. During the eruption over 1 m of subsidence was observed at two distinct locations: at Alu and a volcanic ridge 3 km south of Alu. The co-eruptive subsidence continued for around 16 days at Alu, before deflation reversed into inflation. A swarm of earthquakes, some with magnitude (ml) > 4, occurred along the border fault escarpment, ~ 40 km west of Alu, at 22:00 GMT on November 2, and within ~4 hours a seismic activity started around Alu, leading to the eruption. The deformation was modelled with a Mogi source under Alu and a Sill under the ridge, undergoing different undergoing different volume changes from July 2008 to June 2009. In order to find the best-fit model parameters, first we modelled few selected co-eruptive interferograms with a non-linear inversion. Then, keeping fixed the model geometries we inverted a total of ~40 interferograms for the time-dependent volume change of the Mogi source and the opening of the sill, using a least-squares inversion. Results indicate that a small magma volume was intruded into Alu July-September but a time lag of ~ 1 month occurred between intrusion and eruption. Martin et al. (2008) used petrological evidence to suggest that fresh magma intruded into a magma chamber can cause volatile

  4. Erupted complex odontoma delayed eruption of permanent molar.

    PubMed

    Ohtawa, Yumi; Ichinohe, Saori; Kimura, Eri; Hashimoto, Sadamitsu

    2013-01-01

    Odontomas, benign tumors that develop in the jaw, rarely erupt into the oral cavity. We report an erupted odontoma which delayed eruption of the first molar. The patient was a 10-year-old Japanese girl who came to our hospital due to delayed eruption of the right maxillary first molar. All the deciduous teeth had been shed. The second premolar on the right side had erupted, but not the first molar. Slight inflammation of the alveolar mucosa around the first molar had exposed a tooth-like, hard tissue. Panoramic radiography revealed a radiopaque mass indicating a lesion approximately 1 cm in diameter. The border of the image was clear, and part of the mass was situated close to the occlusal surface of the first molar. The root of the maxillary right first molar was only half-developed. A clinical diagnosis of odontoma was made. The odontoma was subsequently extracted, allowing the crown of the first molar to erupt almost 5 months later. The dental germ of the permanent tooth had been displaced by the odontoma. However, after the odontoma had been extracted, the permanent tooth was still able to erupt spontaneously, as eruptive force still remained. When the eruption of a tooth is significantly delayed, we believe that it is necessary to examine the area radiographically. If there is any radiographic evidence of a physical obstruction that might delay eruption, that obstruction should be removed before any problems can arise. Regular dental checkups at schools might improve our ability to detect evidence of delayed eruption earlier. PMID:24521551

  5. Will Teide erupt again?

    NASA Astrophysics Data System (ADS)

    Marti, Joan; Geyer, Adelina

    2016-04-01

    The quantification of hazard in volcanic systems characterised by long repose period is difficult because the lack of knowledge of the past volcanic history and also because in many cases volcanism is not perceived as a potential problem, being only regarded as an attraction for tourism or a source of economic benefit, thus hiding the need to conduct hazard assessment. Teide, in the island of Tenerife (Canary Islands), is not an exception to this general rule and, despite being one of the largest composite volcanoes in the World, it is generally considered as a non-active volcano by population, visitors and even by some scientists. However, geological and geophysical evidence, including a large diversity of monitoring signals recorded during last decades, as well as a simple comparison with similar volcanoes that have erupted in recent times after hundreds or even thousands of years of quiescence, recommend to consider Teide as an active volcano and to take the necessary precaution in an island with nearly one million of permanent inhabitants and nearly 5 millions of visitors per year. What is the potential of Teide to erupt again? is the question that relies behind the fact of considering it as active, and that needs to be answered first. Based on the current volcanological, petrological and geophysical knowledge We propose a conceptual model on the magma recharge mechanisms, structure of the plumbing system, and eruption triggers and dynamics of Teide volcano that helps to understand its behaviour and to anticipate future activity. Ramón y Cajal contract (RYC-2012-11024)

  6. Granulomatous Drug Eruptions.

    PubMed

    Dodiuk-Gad, Roni P; Shear, Neil H

    2015-07-01

    Granuloma formation is usually regarded as a means of defending the host from persistent irritants of either exogenous or endogenous origin. Noninfectious granulomatous disorders of the skin encompass a challenging group of diseases owing to their clinical and histologic overlap. Drug reactions characterized by a granulomatous reaction pattern are rare, and defined by a predominance of histiocytes in the inflammatory infiltrate. This review summarizes current knowledge on the various types of granulomatous drug eruptions, focusing on the 4 major types: interstitial granulomatous drug reaction, drug-induced accelerated rheumatoid nodulosis, drug-induced granuloma annulare, and drug-induced sarcoidosis. PMID:26143430

  7. Volcanic forcing of monsoonal precipitation variability in selected modern volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Yim, W. W.; Chan, J. C.

    2009-12-01

    An important characteristic of the monsoonal climate is the heavy summer precipitation and the winter drought brought about by the shift in wind circulation. For planet Earth to achieve greater future sustainability, a better understanding of precipitation variability in the densely populated monsoonal regions of the world is particularly critical. In the present study, three major modern tropical volcanic eruptions occurring over the past fifty years have been selected to investigate their influence on precipitation variability in the monsoonal region of southern China. The three eruptions are the February 1963 Agung eruption in Indonesia, the March 1982 El Chichón eruption in Mexico and the June 1991 Pinatubo eruption in the Philippines. Abnormally low annual precipitation was found in the southern China region during 1963 and 1991. Based on the annual precipitation at the Hong Kong Observatory Station, they were the driest and the tenth driest respectively since record began in 1884. In contrast, abnormally heavy precipitation was found in southern China in 1982 with the Hong Kong Observatory Station recording the second wettest year since record began. Based on the observed precipitation, near-field major volcanic eruptions located in the Indonesian-Pacific gateway may lead to abnormally dry conditions explained either by a shift and/or strengthening of predominantly offshore wind. Far-field major volcanic eruptions such as in the eastern Pacific may give rise to abnormally wet conditions through the global spread of the volcanic cloud. The El Chichón volcanic cloud was tracked by satellites across the Pacific Ocean and there is a match in the timing of heavy precipitation after the volcanic cloud entered the South China Sea about eleven days after the main eruption phase. Major volcanic eruptions are concluded to be a causative factor in monsoonal precipitation variability worthy of greater attention.

  8. Drug Rash (Unclassified Drug Eruption) in Children

    MedlinePlus

    ... rash and rashes clinical tools newsletter | contact Share | Drug Eruption, Unclassified (Pediatric) A parent's guide to condition ... lesions coming together into larger lesions typical of drug rashes (eruptions). Overview A drug eruption, also known ...

  9. Nyamuragira Volcano Erupts

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Nyamuragira volcano erupted on July 26, 2002, spewing lava high into the air along with a large plume of steam, ash, and sulfur dioxide. The 3,053-meter (10,013-foot) volcano is located in eastern Congo, very near that country's border with Rwanda. Nyamuragira is the smaller, more violent sibling of Nyiragongo volcano, which devastated the town of Goma with its massive eruption in January 2002. Nyamuragira is situated just 40 km (24 miles) northeast of Goma. This pair of images was acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite, on July 26. The image on the left shows the scene in true color. The small purple box in the upper righthand corner marks the location of Nyamuragira's hot summit. The false-color image on the right shows the plume from the volcano streaming southwestward. This image was made using MODIS' channels sensitive at wavelengths from 8.5 to 11 microns. Red pixels indicate high concentrations of sulphur dioxide. Image courtesy Liam Gumley, Space Science and Engineering Center, University of Wisconsin-Madison

  10. The physics of large eruptions

    NASA Astrophysics Data System (ADS)

    Gudmundsson, Agust

    2015-04-01

    Based on eruptive volumes, eruptions can be classified as follows: small if the volumes are from less than 0.001 km3 to 0.1 km3, moderate if the volumes are from 0.1 to 10 km3, and large if the volumes are from 10 km3 to 1000 km3 or larger. The largest known explosive and effusive eruptions have eruptive volumes of 4000-5000 km3. The physics of small to moderate eruptions is reasonably well understood. For a typical mafic magma chamber in a crust that behaves as elastic, about 0.1% of the magma leaves the chamber (erupted and injected as a dyke) during rupture and eruption. Similarly, for a typical felsic magma chamber, the eruptive/injected volume during rupture and eruption is about 4%. To provide small to moderate eruptions, chamber volumes of the order of several tens to several hundred cubic kilometres would be needed. Shallow crustal chambers of these sizes are common, and deep-crustal and upper-mantle reservoirs of thousands of cubic kilometres exist. Thus, elastic and poro-elastic chambers of typical volumes can account for small to moderate eruptive volumes. When the eruptions become large, with volumes of tens or hundreds of cubic kilometres or more, an ordinary poro-elastic mechanism can no longer explain the eruptive volumes. The required sizes of the magma chambers and reservoirs to explain such volumes are simply too large to be plausible. Here I propose that the mechanics of large eruptions is fundamentally different from that of small to moderate eruptions. More specifically, I suggest that all large eruptions derive their magmas from chambers and reservoirs whose total cavity-volumes are mechanically reduced very much during the eruption. There are two mechanisms by which chamber/reservoir cavity-volumes can be reduced rapidly so as to squeeze out much of, or all, their magmas. One is piston-like caldera collapse. The other is graben subsidence. During large slip on the ring-faults/graben-faults the associated chamber/reservoir shrinks in volume

  11. Investigating Preschool Education and Care in South Africa.

    ERIC Educational Resources Information Center

    Van Den Berg, Owen C.; Vergnani, Tania

    Recognizing the complexities of apartheid with its implications for conducting systems-related research within the vortex of South Africa, a study investigated the implementation of a national system of preschool provision for South Africa. The investigation began by studying two earlier reports: the Reilly-Hofmeyr report of 1983 and the report of…

  12. The 2011 submarine volcanic eruption of El Hierro Island (Canary Islands, Spain)

    NASA Astrophysics Data System (ADS)

    López, C.; Blanco, M. J.

    2012-04-01

    On 10 October 2011 a submarine volcanic eruption began 2 km SW of La Restinga village in the South coast of El Hierro Island (Spain). It became the first submarine eruption reported in 500 years of historical record in the Canary Islands. The eruption took place after three months of intensive seismic activity and ground deformation. The first signal evidencing the eruption was a harmonic tremor signal, located somewhere in the South sector of El Hierro Island and registered in every seismic station on the island. On the following day, the tremoŕs amplitude increased up enough to be felt by the residents of La Restinga. The first visual evidence of the eruption was observed during the afternoon of 12 October, a large light-green coloured area on the sea surface, 2 km to the SW of La Restinga. Three days later, steaming lava fragments were observed floating on the sea, in the area where the vent was supposed to be located. These fragments had a bomb-like shape and their sizes ranged between 10 and 40 cm long. They were bicoloured, a black outer part with a basaltic composition, and a white inner part, highly vesiculated and rich in silica content (>60%). This type of fragments was only observed during the first days of the eruption. Within the next two months further emission episodes have been observed with turbulent water, foam rings and large bubbles on the sea surface. On the 27th of November new lava fragments were observed while floating and degassing on the sea surface. Most of them were "lava balloons" or hollow fragments of lavas, with sizes between 30 and 200 cm, and highly vesiculated outer crust of basaltic-basanitic and sideromelane composition. The emission of these products continues intermitently up to date (January 2012) During the eruption, the GPS monitoring network detected episodes of inflation-deflation and a maximum vertical deformation of 4 cm. The horizontal deformation, which had reached up to 5 cm before the eruption, remains stable. The

  13. Crust-ocean interactions during midocean ridge eruptions

    NASA Astrophysics Data System (ADS)

    Baker, E. T.

    2011-12-01

    Eruptions are the "quantum event" of crustal accretion, occurring daily to monthly (depending on spreading rate) along the global midocean ridge system. The number of eruptions detected and responded to remain very few, however, so our knowledge of the magnitude and rate of crust-ocean interaction at the instant of an eruption is almost entirely circumstantial. The discovery of uniquely different plumes over a 2008 eruption on the NE Lau spreading center greatly broadened the known range of eruption-initiated transfer of heat, chemicals, and perhaps biota from the crust to the ocean. Serendipitous observations and rapid response cruises have now documented that the "event (mega-) plumes" accompanying eruptions range over a factor of 100 in volume (1-150 km3), yet maintain a distinctive and consistent chemical signature (much lower 3He/heat and Mn/heat and higher H2/heat than typical black smokers). Confirmed event plumes have formed at spreading rates from 55-~90 mm/yr, with some incompletely sampled but "event-like" plumes observed at even slower rates (11-30 mm/yr; Gakkel and Carlsberg Ridges). Presently, only four event plumes can be associated with specific eruptions. Large event plumes in the NE Pacific were found over thick (up to ~75 m), voluminous, and slowly extruded pillow mounds. The 2008 eruption on the fast-spreading NE Lau spreading center demonstrated that thin (a few meters), small, and rapidly emplaced sheet flows can generate smaller event plumes. Available evidence suggests that massive fluid discharge occurs virtually simultaneously with an eruption. At Gorda Ridge in 1996, eruption-indicative seismicity began on the same day and location an event plume was found. At Axial Volcano in 1998, moorings 2 km apart both recorded the appearance of a >100-m-thick plume within minutes of the start of a 72-min-long sheet flow eruption. These observations support inferences from plume modeling and chemistry that event plume generation time is hours, not

  14. The June 2014 eruption at Piton de la Fournaise: Robust methods developed for monitoring challenging eruptive processes

    NASA Astrophysics Data System (ADS)

    Villeneuve, N.; Ferrazzini, V.; Di Muro, A.; Peltier, A.; Beauducel, F.; Roult, G. C.; Lecocq, T.; Brenguier, F.; Vlastelic, I.; Gurioli, L.; Guyard, S.; Catry, T.; Froger, J. L.; Coppola, D.; Harris, A. J. L.; Favalli, M.; Aiuppa, A.; Liuzzo, M.; Giudice, G.; Boissier, P.; Brunet, C.; Catherine, P.; Fontaine, F. J.; Henriette, L.; Lauret, F.; Riviere, A.; Kowalski, P.

    2014-12-01

    After almost 3.5 years of quiescence, Piton de la Fournaise (PdF) produced a small summit eruption on 20 June 2014 at 21:35 (GMT). The eruption lasted 20 hours and was preceded by: i) onset of deep eccentric seismicity (15-20 km bsl; 9 km NW of the volcano summit) in March and April 2014; ii) enhanced CO2 soil flux along the NW rift zone; iii) increase in the number and energy of shallow (<1.5 km asl) VT events. The increase in VT events occurred on 9 June. Their signature, and shallow location, was not characteristic of an eruptive crisis. However, at 20:06 on 20/06 their character changed. This was 74 minutes before the onset of tremor. Deformations then began at 20:20. Since 2007, PdF has emitted small magma volumes (<3 Mm3) in events preceded by weak and short precursory phases. To respond to this challenging activity style, new monitoring methods were deployed at OVPF. While the JERK and MSNoise methods were developed for processing of seismic data, borehole tiltmeters and permanent monitoring of summit gas emissions, plus CO2 soil flux, were used to track precursory activity. JERK, based on an analysis of the acceleration slope of a broad-band seismometer data, allowed advanced notice of the new eruption by 50 minutes. MSNoise, based on seismic velocity determination, showed a significant decrease 7 days before the eruption. These signals were coupled with change in summit fumarole composition. Remote sensing allowed the following syn-eruptive observations: - INSAR confirmed measurements made by the OVPF geodetic network, showing that deformation was localized around the eruptive fissures; - A SPOT5 image acquired at 05:41 on 21/06 allowed definition of the flow field area (194 500 m2); - A MODIS image acquired at 06:35 on 21/06 gave a lava discharge rate of 6.9±2.8 m3 s-1, giving an erupted volume of 0.3 and 0.4 Mm3. - This rate was used with the DOWNFLOW and FLOWGO models, calibrated with the textural data from Piton's 2010 lava, to run lava flow

  15. Source evolution and longevity of the Lusi mud eruption, Indonesia

    NASA Astrophysics Data System (ADS)

    Rudolph, M. L.; Shirzaei, M.; Manga, M.; Fukushima, Y.

    2012-12-01

    The ongoing eruption of the Lusi mud volcano (East Java, Indonesia), which began on May 29, 2006, has displaced more than 60,000 people and cost billions of US dollars in economic losses. We measured ground deformation near Lusi using interferometric processing of 46 L-band synthetic aperture radar images acquired by the ALOS satellite between 2006 and 2011. We analyzed the ground deformation using principal component analysis (PCA) and found that the dominant spatial mode of ground deformation is decreasing exponentially in amplitude with a timescale of 2.1+0.5-0.3 years, implying that the eruption rate will decrease by an order of magnitude, to less than 1000 m3/day, by 2016±1 year, much sooner than previously anticipated (Istadi et al. 2009, Davies et al. 2011, Rudolph et al. 2011). We also modeled the observed ground deformation to determine the mud chamber radius and pressure time history subject to geologic constraints on depth and thickness. The co-evolution of the mud chamber geometry and pressure suggest progressive mobilization of mud during the eruption, a process analogous to one that may occur in large explosive silicic volcanic eruptions.

  16. Eruptions of Eyjafjallajökull Volcano, Iceland

    NASA Astrophysics Data System (ADS)

    Gudmundsson, Magnús T.; Pedersen, Rikke; Vogfjörd, Kristín; Thorbjarnardóttir, Bergthóra; Jakobsdóttir, Steinunn; Roberts, Matthew J.

    2010-05-01

    The April 2010 eruption of Eyjafjallajökull volcano (Figure 1), located on Iceland's southern coast, created unprecedented disruptions to European air traffic during 15-20 April, costing the aviation industry an estimated $250 million per day (see the related news item in this issue). This cost brings into focus how volcanoes can affect communities thousands of miles away. Eyjafjallajökull rises to 1666 meters above sea level and hosts agricultural land on its southern slopes, with farms located as close as 7 kilometers from the summit caldera. In the past 1500 years, Eyjafjallajökull has produced four comparatively small eruptions. The eruption previous to 2010 began in December 1821 and lasted for over a year, with intermittent explosive activity spreading a thin layer of tephra (ash and larger ejected clasts) over the surrounding region. In contrast, the explosive 2010 eruption, sourced within the ice-capped summit of the volcano, so far is larger and characterized by magma of a slightly different composition. This may suggest that deep within the volcano, the 1821 magma source is mixing with new melt, or that residual melt from past intrusive events is being pushed out by new magma.

  17. Worldwide environmental impacts from the eruption of Thera

    NASA Astrophysics Data System (ADS)

    Lamoreaux, P. E.

    1995-10-01

    The eruptions of Thera (Santorini) between 1628 and 1450 BC constituted a natural catastrophe unparalleled in all of history. The last major eruption in 1450 BC destroyed the entire Minoan Fleet at Crete at a time when the Minoans dominated the Mediterranean world. In addition, there had to be massive loss of life from ejecta gases, volcanic ash, bombs, and flows. The collapse of a majestic mountain into a caldera 15 km in diameter caused a giant ocean wave, a tsunami, that at its source was estimated in excess of 46 m high. The tsunami destroyed ships as far away as Crete (105 km) and killed thousands of people along the shorelines in the eastern Mediterranean area. At distant points in Asia Minor and Africa, there was darkness from ash fallout, lightning, and destructive earthquakes. Earthquake waves emanating from the epicenter near the ancient volcano were felt as far away as the Norwegian countries. These disturbances caused great physical damage in the eastern Mediterranean and along the rift valley system from Turkey to the south into central Africa. They caused major damage and fires in north Africa from Sinai to Alexandria, Egypt. Volcanic ash spread upward as a pillar of fire and clouds into the atmosphere and blocked out the sun for many days. The ash reached the stratosphere and moved around the world where the associated gases and fine particulate matter impacted the atmosphere, soils, and waters. Ground-hugging, billowing gases moved along the water surface and destroyed all life downwind, probably killing those who attempted to flee from Thera. The deadly gases probably reached the shores of north Africa. Climatic changes were the aftermath of the eruption and the atmospheric plume was to eventually affect the bristlecone pine of California; the bog oaks of Ireland, England, and Germany, and the grain crops of China. Historical eruptions at Krakatau, Tambora, Vesuvius, and, more currently, eruptions at Nevado del Ruiz, Pinatubo, and Mount Saint

  18. Recovery from a Giant Eruption: The Case of Eta Car

    NASA Astrophysics Data System (ADS)

    Davidson, Kris; Mehner, Andrea; Martin, John C.; Humphreys, Roberta M.

    2016-01-01

    Giant eruptions or SN Impostors are far more mysterious than "real" supernovae, because they are scarcer and because they have received far less theoretical effort. One rather special problem is the disequilibrium state of the post-eruption object. It may be partially observable by watching the star's gradual recovery; which, in principle, may offer clues to the basic instability mechanisms. So far, the only example that can be observed well enough is eta Carinae. This object's history offers tantalizing clues and counter-clues. For instance: (1) Before 2000, the recovery timescale seemed to be of order 150 years; but (2) around 2000, many attributes began to change much more rapidly; and (3) the 150-year recovery process has been punctuated by about three abrupt changes of state. This strange combination of facts has received almost no theoretical attention.

  19. Solar Eruptive Events

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.

    2012-01-01

    It s long been known that the Sun plays host to the most energetic explosions in the solar system. But key insights into the forms that energy takes have only recently become available. Solar flares have been phenomena of both academic and practical interest since their discovery in 1859. From the academic point of view, they are the nearest events for studying the explosive release of energy in astrophysical magnetized plasmas. From the practical point of view, they disrupt communication channels on Earth, from telegraph communications in 1859 to radio and television signals today. Flares also wreak havoc on the electrical power grid, satellite operations, and GPS signals, and energetic charged particles and radiation are dangerous to passengers on high-altitude polar flights and to astronauts. Flares are not the only explosive phenomena on the Sun. More difficult to observe but equally energetic are the large coronal mass ejections (CMEs), the ejection of up to ten billion tons of magnetized plasma into the solar wind at speeds that can exceed 1000 km/s. CMEs are primarily observed from the side, with coronagraphs that block out the bright disk of the Sun and lower solar atmosphere so that light scattered from the ejected mass can be seen. Major geomagnetic storms are now known to arise from the interaction of CMEs with Earth's magnetosphere. Solar flares are observed without CMEs, and CMEs are observed without flares. The two phenomena often occur together, however, and almost always do in the case of large flares and fast CMEs. The term solar eruptive event refers to the combination of a flare and a CME. Solar eruptive events generate a lot of heat: They can heat plasma to temperatures as high at 50 million Kelvin, producing radiation across the electromagnetic spectrum. But that s not all. A fascinating aspect of solar eruptive events is the acceleration of electrons and ions to suprathermal often relativistic energies. The accelerated particles are primarily

  20. An Eruption on Io

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The first images returned to Earth by New Horizons during its close encounter with Jupiter feature the Galilean moon Io, snapped with the Long Range Reconnaissance Imager (LORRI) at 0840 UTC on February 26, while the moon was 2.5 million miles (4 million kilometers) from the spacecraft.

    Io is intensely heated by its tidal interaction with Jupiter and is thus extremely volcanically active. That activity is evident in these images, which reveal an enormous dust plume, more than 150 miles high, erupting from the volcano Tvashtar. The plume appears as an umbrella-shaped feature of the edge of Io's disk in the 11 o'clock position in the right image, which is a long-exposure (20-millisecond) frame designed specifically to look for plumes like this. The bright spots at 2 o'clock are high mountains catching the setting sun; beyond them the night side of Io can be seen, faintly illuminated by light reflected from Jupiter itself.

    The left image is a shorter exposure -- 3 milliseconds -- designed to look at surface features. In this frame, the Tvashtar volcano shows as a dark spot, also at 11 o'clock, surrounded by a large dark ring, where an area larger than Texas has been covered by fallout from the giant eruption.

    This is the clearest view yet of a plume from Tvashtar, one of Io's most active volcanoes. Ground-based telescopes and the Galileo Jupiter orbiter first spotted volcanic heat radiation from Tvashtar in November 1999, and the Cassini spacecraft saw a large plume when it flew past Jupiter in December 2000. The Keck telescope in Hawaii picked up renewed heat radiation from Tvashtar in spring 2006, and just two weeks ago the Hubble Space Telescope saw the Tvashtar plume in ultraviolet images designed to support the New Horizons flyby.

    Most of those images will be stored onboard the spacecraft for downlink to Earth in March and April.

  1. Large and small volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Gudmundsson, Agust; Mohajeri, Nahid

    2013-04-01

    Despite great progress in volcanology in the past decades, we still cannot make reliable forecasts as to the likely size (volume, mass) of an eruption once it has started. Empirical data collected from volcanoes worldwide indicates that the volumes (or masses) of eruptive materials in volcanic eruptions are heavy-tailed. This means that most of the volumes erupted from a given magma chamber are comparatively small. Yet, the same magma chamber can, under certain conditions, squeeze out large volumes of magma. To know these conditions is of fundamental importance for forecasting the likely size of an eruption. Thermodynamics provides the basis for understanding the elastic energy available to (i) propagate an injected dyke from the chamber and to the surface to feed an eruption, and (ii) squeeze magma out of the chamber during the eruption. The elastic energy consists of two main parts: first, the strain energy stored in the volcano before magma-chamber rupture and dyke injection, and, second, the work done through displacement of the flanks of the volcano (or the margins of a rift zone) and the expansion and shrinkage of the magma chamber itself. Other forms of energy in volcanoes - thermal, seismic, kinetic - are generally important but less so for squeezing magma out of a chamber during an eruption. Here we suggest that for (basaltic) eruptions in rift zones the strain energy is partly related to minor doming above the reservoir, and partly to stretching of the rift zone before rupture. The larger the reservoir, the larger is the stored strain energy before eruption. However, for the eruption to be really large, the strain energy has to accumulate in the entire crustal segment above the reservoir and there will be additional energy input into the system during the eruption which relates to the displacements of the boundary of the rift-zone segment. This is presumably why feeder dykes commonly propagate laterally at the surface following the initial fissure

  2. Investigation of Solar Eruptive Prominences

    NASA Astrophysics Data System (ADS)

    Su, Yingna; McCauley, Patrick; van Ballegooijen, Adriaan; Ji, Haisheng; Reeves, Katharine; DeLuca, Edward

    2015-08-01

    At first, we will present an investigation of the polar crown prominence that erupted on 2012 March 12. This prominence is observed at the southeast limb by SDO/AIA (end-on view) and displays a quasi vertical-thread structure. Bright U-shape (horn-like) structure is observed surrounding the upper portion of the prominence (171 Angstrom) before the eruption and becomes more prominent during the eruption. When viewed on the disk, STEREO-B shows that this long prominence is composed of a series of vertical threads and displays a half loop-like structure during the eruption. We focus on the magnetic support of the prominence by studying the structure and dynamics of the prominence before and during the eruption using observations from SDO and STEREO. We construct a series of magnetic field models (including sheared arcade model, twisted flux rope model, and model with HFT), then compare with observations. Various observational characteristics appear to support the twisted flux rope model. Our study suggests that the flux rope supporting the prominence enters the regime of torus instability at the onset of the fast rise phase, and signature of reconnection appears about one hour later. In the second part, we will present a statistical study on the kinematics of limb eruptive prominences observed by SDO/AIA. A brief introduction on an online catalog of prominence eruptions observed by SDO/AIA will also be presented.

  3. Entertainment Films and Video in Africa.

    ERIC Educational Resources Information Center

    Crane, Louise

    The film industry in Africa began in 1963. Since then, development has been slow because of funding problems and political restrictions. Television is available to only a fraction of the population and imported programming represents almost one-half of the programming. However, there are some successful African produced television programs. The…

  4. South Africa

    Atmospheric Science Data Center

    2013-04-16

    ... atmospheric and oceanic conditions. At Elands Bay in South Africa's Western Cape province, about 1000 tons of rock lobsters beached ... red tide. At the same time, people came from across South Africa to gather the undersized creatures for food. The effects of the losses ...

  5. An Analysis of Eruptions Detected by the LMSAL Eruption Patrol

    NASA Astrophysics Data System (ADS)

    Hurlburt, N. E.; Higgins, P. A.; Jaffey, S.

    2014-12-01

    Observations of the solar atmosphere reveals a wide range of real and apparent motions, from small scale jets and spicules to global-scale coronal mass ejections. Identifying and characterizing these motions are essential to advance our understanding the drivers of space weather. Automated and visual identifications are used in identifying CMEs. To date, the precursors to these — eruptions near the solar surface — have been identified primarily by visual inspection. Here we report on an analysis of the eruptions detected by the Eruption Patrol, a data mining module designed to automatically identify eruptions from data collected by Solar Dynamics Observatory's Atmospheric Imaging Assembly (SDO/AIA). We describe the module and use it both to explore relations with other solar events recorded in the Heliophysics Event Knowledgebase and to identify and access data collected by the Interface Region Imaging Spectrograph (IRIS) and Solar Optical Telescope (SOT) on Hinode for further analysis.

  6. Characterization of Solar Eruptions reported by EruptionPatrol

    NASA Astrophysics Data System (ADS)

    Hurlburt, Neal

    2015-04-01

    Observation of the solar atmosphere reveals a wide range of real and apparent motions, from small scale jets and spicules to global-scale coronal mass ejections. Identifying and characterizing these motions are essential to advance our understanding the drivers of space weather. A method for automatically identifying eruptions near the solar surface (either from filaments or otherwise) has recently been developed and integrated into the Heliophysics Events Knowledgebase. Here we report on the EruptionPatrol module for identifying eruptions in data collected by the SDO/AIA instrument and on the characterization and analysis of its output. A cluster analysis on the time periods reported by EruptionPatrol demarcates several large-scale events spanning significant portions of the solar disk with lifetimes of up to six hours.

  7. Overview of the 2004-2008 Eruption of Mount St. Helens

    NASA Astrophysics Data System (ADS)

    Gardner, C. A.

    2008-12-01

    Well-monitored and observed volcanic eruptions provide critical data sets needed to understand sub-surface properties, timescales of geophysical and geochemical processes and the conditions necessary to initiate or cease eruptive activity. Mount St. Helens' second eruptive episode within 30 years began on 1 October 2004 with a low-temperature vapor-and-ash emission and ended approximately 40 months later after extrusion of nearly 100 million m3 (DRE) of dacitic lava (roughly equivalent to the volume of the 1980s lava dome) into the 1980s crater. Unlike the episodic explosive and lava-dome-building events that characterized the 1980s eruption, the 2004-2008 episode consisted of continuous lava-dome extrusion punctuated by only two minor explosive events. Seismic unrest heralding the new eruptive episode began in late September 2004 after unseasonally heavy August rains and during a year of overall low seismic activity and no anomalous trends in either deformation or volcanic gas emissions. Soon after the start of increased seismic activity, visible near-field deformation occurred on the south side of the 1980s lava dome, with detectable volcanic gas following several days later. Lava-dome extrusion began in mid-October 2004. Monitoring parameters exhibited gradually diminishing trends such that: (1) significant seismicity accompanied high extrusion rates (>6 to < 2 m3/s) and lava spines with well-developed gouge surfaces during the first year+ of the eruption, but by the last year, when extrusion rates were below 0.5 m3/sec and the gouge surface was smaller and more poorly developed, seismicity had decreased markedly such that the eruption was nearly aseismic; (2) volcanic gas emission rates, which were barely above background by the end of the first year, were barely above instrumental limits during the last year of the eruption; and (3) flank and far-field deflation centered on the crater starting in late September 2004, dropped monotonically to below noise level

  8. Dike model for the 2012-2013 Tolbachik eruption constrained by satellite radar interferometry observations

    NASA Astrophysics Data System (ADS)

    Lundgren, Paul; Kiryukhin, Alexey; Milillo, Pietro; Samsonov, Sergey

    2015-12-01

    A large dike intrusion and fissure eruption lasting 9 months began on November 27, 2013, beneath the south flank of Tolbachik Volcano, Kamchatka, Russia. The eruption was the most recent at Tolbachik since the Great Tolbachik Eruption from 1975 to 1976. The 2012 eruption was preceded by more than 6 months of seismicity that clustered beneath the east flank of the volcano along a NW-SE trend. Seismicity increased dramatically before the eruption, with propagation of the seismicity from the central volcano conduit in the final hours. We use interferometric synthetic aperture radar (InSAR) to compute relative displacement images (interferograms) for SAR data pairs spanning the eruption. We use satellite SAR data from the Canadian Space Agency's RADARSAT-2 and from the Italian Space Agency's COSMO-SkyMed missions. Data are modeled first through a Markov Chain Monte Carlo solution for a single tensile dislocation (dike). We then use a boundary element method that includes topography to model a distributed dike-opening model. We find the best-fitting dike dips 80° to the WNW with maximum opening of 6-8 m, localized in the near surface and more broadly distributed in distinct regions up to 3 km beneath the surface, which varies from 1 to 2 km elevation for the eruptive fissures. The distribution of dike opening and its correspondence with co-diking seismicity suggests that the dike propagated radially from Tolbachik's central conduit.

  9. Water, CO2, Cl, and F in melt inclusions in phenocrysts from three Holocene explosive eruptions, Crater Lake, Oregon

    USGS Publications Warehouse

    Bacon, C.R.; Newman, S.; Stolper, E.

    1992-01-01

    Rare melt inclusions ~100 ??m in diameter trapped near the boundaries of corroded patchy zones in plagioclase phenocrysts from Plinian pumice of three Holocene eruptions were analyzed by IR spectroscopy for molecular H2O, OH groups, and CO2 and by electron microprobe for Cl and F. The three rhyodacitic eruptions, each of which began with a Plinian phase, occurred over ~200 yr. The Llao Rock and Cleetwood eruptions ended with degassed lava flows and the subsequent climatic eruption with voluminous ignimbrite. Location of melt inclusions near boundaries of patchy zones, which are mantled by oscillatory-zoned overgrowths, suggests that their H2O concentrations represent magmatic values significantly before eruption. -from Authors

  10. Merapi 2010 eruption-Chronology and extrusion rates monitored with satellite radar and used in eruption forecasting

    NASA Astrophysics Data System (ADS)

    Pallister, John S.; Schneider, David J.; Griswold, Julia P.; Keeler, Ronald H.; Burton, William C.; Noyles, Christopher; Newhall, Christopher G.; Ratdomopurbo, Antonius

    2013-07-01

    Despite dense cloud cover, satellite-borne commercial Synthetic Aperture Radar (SAR) enabled frequent monitoring of Merapi volcano's 2010 eruption. Near-real-time interpretation of images derived from the amplitude of the SAR signals and timely delivery of these interpretations to those responsible for warnings, allowed satellite remote sensing for the first time to play an equal role with in situ seismic, geodetic and gas monitoring in guiding life-saving decisions during a major volcanic crisis. Our remotely sensed data provide an observational chronology for the main phase of the 2010 eruption, which lasted 12 days (26 October-7 November, 2010). Unlike the prolonged low-rate and relatively low explosivity dome-forming and collapse eruptions of recent decades at Merapi, the eruption began with an explosive eruption that produced a new summit crater on 26 October and was accompanied by an ash column and pyroclastic flows that extended 8 km down the flanks. This initial explosive event was followed by smaller explosive eruptions on 29 October-1 November, then by a period of rapid dome growth on 1-4 November, which produced a summit lava dome with a volume of ~ 5 × 106 m3. A paroxysmal VEI 4 magmatic eruption (with ash column to 17 km altitude) destroyed this dome, greatly enlarged the new summit crater and produced extensive pyroclastic flows (to ~ 16 km radial distance in the Gendol drainage) and surges during the night of 4-5 November. The paroxysmal eruption was followed by a period of jetting of gas and tephra and by a second short period (12 h) of rapid dome growth on 6 November. The eruption ended with low-level ash and steam emissions that buried the 6 November dome with tephra and continued at low levels until seismicity decreased to background levels by about 23 November. Our near-real-time commercial SAR documented the explosive events on 26 October and 4-5 November and high rates of dome growth (> 25 m3 s- 1). An event tree analysis for the previous

  11. Immense vent complex marks flood-basalt eruption in a wet, failed rift: Coombs Hills, Antarctica

    NASA Astrophysics Data System (ADS)

    White, J. D. L.; McClintock, M. K.

    2001-10-01

    Large lava effusions can have impressive explosive antecedents. Although our picture of flood basalt is overwhelmingly effusive, phreatomagmatic eruptions have preceded quiet effusion of some flood basalts and reflect the same influence of vent architecture and hydrology on eruptive style as seen for small-volume eruptions. The scale of phreatomagmatic deposits associated with flood basalts can be huge. At Coombs Hills a vast, but otherwise typical, phreatomagmatic vent complex is exposed over more than 25 km2, and its features are interpreted to reflect processes of tephra-jet eruptions with diatreme development. Similar vent complexes are probably the source of laharic deposits reported elsewhere in the Transantarctic Mountains and in the Karoo province of South Africa.

  12. Remote sensing and petrological observations on the 2012-2013 fissure eruption at Tolbachik volcano, Kamchatka: Implications for reconstruction of the eruption chronology

    NASA Astrophysics Data System (ADS)

    Melnikov, Dmitry; Volynets, Anna O.

    2015-12-01

    We present a reconstruction of the chronological sequence of events that took place during the first days of the 2012-2013 Tolbachik fissure eruption using petrological data and remote sensing methods. We were forced to use this approach because bad weather conditions did not allow direct observations during the first two days of the eruption. We interpreted infrared images from the scanning radiometer VIIRS Suomi NPP and correlated the output with the results of the geochemical study, including comparison of the ash, deposited at the period from 27 to 29 November, with the samples of lava and bombs erupted from the Menyailov and Naboko vents. We argue that the compositional change observed in the eruption products (the decrease of SiO2 concentration and K2O/MgO ratio, increase of MgO concentration and Mg#) started approximately 24 h after the eruption began. At this time the center of activity moved to the southern part of the fissure, where the Naboko group of vents was formed; therefore, this timeframe also characterizes the timing of the Naboko vent opening. The Naboko group of vents remained active until the end of eruption in September 2013.

  13. Episode 49 of the Pu'u 'O'o-Kupaianaha eruption of Kilauea volcano-breakdown of a steady-state eruptive era

    USGS Publications Warehouse

    Mangan, M.T.; Heliker, C.C.; Mattox, T.N.; Kauahikaua, J.P.; Helz, R.T.

    1995-01-01

    The Pu'u 'O'o-Kupaianaha eruption (1983-present) is the longest lived rift eruption of either Kilauea or neighboring Mauna Loa in recorded history. The initial fissure opening in January 1983 was followed by three years of episodic fire fountaining at the Pu'u 'O'o vent on Kilauea's east rift zone ???19km from the summit (episodes 4-47). These spectacular events gave way in July 1986 to five and a half years of nearcontinuous, low-level effusion from the Kupaianaha vent, ??? 3km to the cast (episode 48). A 49th episode began in November 1991 with the opening of a new fissure between Pu'u 'O'o and Kupaianaha. this three week long outburst heralded an era of more erratic eruptive behavior characterized by the shut down of Kupaianaha in February 1992 and subsequent intermittent eruption from vents on the west flank of Pu'u 'O'o (episodes 50 and 51). The events occurring over this period are due to progressive shrinkage of the rift-zone reservoir beneath the eruption site, and had limited impact on eruption temperatures and lava composition. ?? 1995 Springer-Verlag.

  14. Comparing Dynamics in Eruptive and Non-Eruptive Flares

    NASA Astrophysics Data System (ADS)

    Nitta, Nariaki; Tarbell, Theodore D.; Slater, Gregory L.; Frank, Zoe Anne

    2016-05-01

    Close comparison of EUV and coronagraph data suggests that there may not be clear distinction between eruptive and non-eruptive flares as far as the coronal and chromospheric signatures are concerned. Here we define eruptive and non-eruptive flares in terms of the presence and absence of the associated coronal mass ejection (CME). We have studied several flares in both categories using Hinode/SOT and IRIS data. The pointing of the Hinode/SOT data has been updated by correlating them with AIA 1700 A images. We show our initial results about how the flare development compares in eruptive and non-eruptive flares, including the reconnection rate as derived from the magnetic field swept over by flare ribbons (in SOT Ca images), and the line-of-sight velocities at different locations and temperatures (in IRIS spectral data). We also discuss large-scale disturbances and related CMEs in SDO/AIA and SOHO/LASCO data as context information.

  15. Kamchatkan Volcanoes Explosive Eruptions in 2014 and Danger to Aviation

    NASA Astrophysics Data System (ADS)

    Girina, Olga; Manevich, Alexander; Melnikov, Dmitry; Demyanchuk, Yury; Nuzhdaev, Anton; Petrova, Elena

    2015-04-01

    There are 30 active volcanoes in the Kamchatka, and several of them are continuously active. In 2014, three of the Kamchatkan volcanoes - Sheveluch, Karymsky and Zhupanovsky - had strong and moderate explosive eruptions. Moderate gas-steam activity was observing of Klyuchevskoy, Bezymianny, Avachinsky, Koryaksky, Gorely, Mutnovsky and other volcanoes. Strong explosive eruption of volcanoes is the most dangerous for aircraft because in a few hours or days in the atmosphere and the stratosphere can produce about several cubic kilometers of volcanic ash and aerosols. Ash plumes and the clouds, depending on the power of the eruption, the strength and wind speed, can travel thousands of kilometers from the volcano for several days, remaining hazardous to aircraft, as the melting temperature of small particles of ash below the operating temperature of jet engines. The eruptive activity of Sheveluch Volcano began since 1980 (growth of the lava dome) and is continuing at present. Strong explosive events of the volcano occurred in 2014: on January 08 and 12, May 12, September 24, October 02 and 28, November 16, 22 and 26, and December 05, 17, 26 and 29: ash plumes rose up to 9-12 km a.s.l. and extended more 900 km to the eastern and western directions of the volcano. Ashfalls occurred at Klyuchi Village (on January 12, June 11, and November 16). Activity of the volcano was dangerous to international and local aviation. Karymsky volcano has been in a state of explosive eruption since 1996. The moderate ash explosions of this volcano were noting during 2014: from March 24 till April 02; and from September 03 till December 10. Ash plumes rose up to 5 km a.s.l. and extended more 300 km mainly to the eastern directions of the volcano. Activity of the volcano was dangerous to local aviation. Explosive eruption of Zhupanovsky volcano began on June 06, 2014 and continues in January 2015 too. Ash explosions rose up to 8-10 km a.s.l. on June 19, September 05 and 07, October 11

  16. Volcanic Eruptions in Kamchatka

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Sheveluch Stratovolcano Click on the image for full resolution TIFF Klyuchevskoy Stratovolcano Click on the image for full resolution TIFF

    One of the most volcanically active regions of the world is the Kamchatka Peninsula in eastern Siberia, Russia. It is not uncommon for several volcanoes to be erupting at the same time. On April 26, 2007, the Advanced Spaceborne Thermal Emission and Reflection Radioneter (ASTER) on NASA's Terra spacecraft captured these images of the Klyuchevskoy and Sheveluch stratovolcanoes, erupting simultaneously, and 80 kilometers (50 miles) apart. Over Klyuchevskoy, the thermal infrared data (overlaid in red) indicates that two open-channel lava flows are descending the northwest flank of the volcano. Also visible is an ash-and-water plume extending to the east. Sheveluch volcano is partially cloud-covered. The hot flows highlighted in red come from a lava dome at the summit. They are avalanches of material from the dome, and pyroclastic flows.

    With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra spacecraft. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining

  17. Futurvolc and the Bardarbunga eruption 2014-15 Iceland, success in the field and laboratory.

    NASA Astrophysics Data System (ADS)

    Hoskuldsson, Armann; Jonsdottir, Ingibjorg; Thordarson, Thor

    2016-04-01

    The Bardarbunga volcanic system in Iceland started unrest in August 2014. Seismic activity gradually build up, until magma began to be extruded on surface. The first eruption occurred on the 28th of August and was small and subglacial, the second eruption took place outside the glacier, on the 29th of August and lasted for few hours. Third and largest eruption started on early morning 31st of August. This was to be the largest eruption in Iceland since Laki eruption 1783. The eruption used the same fissure that had opened up on the 28th but was much larger. The fissure was about 2 km long with a curtain of fire along the whole fissure, curtains reaching up to 150 m into the air. The area in which the eruption took place is a glacial river outwash plain, thus relatively flat. Although the eruption site is remote, being in the highlands north of the icecap Vatnajökull, at an average altitude of some 700 m, the flat sandur plain offered a unique opportunity to combine satellite and on site observations methods. The eruption ended on the 27th of February 2015, thus lasting for almost 6 months, during this time some 1.44 km3 of lava was erupted. From day one satellite data from NOAA AVHRR, MODIS, LANDSAT 7 and 8, ASTER, EO-1 ALI, EO-1 HYPERION, SENTINEL-1, RADARSAT-2 COSMO SKYMED and TERRASAR X where collected and used in combination with onsite observation. Resulting data give unique information on the effusion rates in basaltic fissure eruptions and its evolution with time. Further information on flow behavior and cooling of basaltic lava being emplaced in a relatively flat land can be used for future and past predictions. In this talk we shall show how valuable the combination of satellite data to field observation are to be able to precisely monitor on of the largest lava eruption on earth for the past 200 years. The role of Futurevolc and preparedness involved in that work greatly enhanced and facilitated synchronization of onsite and remote data during the

  18. Tenofovir induced lichenoid drug eruption

    PubMed Central

    Gupta, Mrinal; Gupta, Heena; Gupta, Anish

    2015-01-01

    Cutaneous adverse reactions are a common complication of anti-retroviral therapy. Tenofovir is a newer anti-retroviral drug belonging to the nucleotide reverse transcriptase inhibitor group. Systemic adverse effects like nausea, vomiting, diarrhea, hepatotoxicity and renal toxicity are common with tenofovir but cutaneous adverse effects are rare. Lichenoid drug eruptions are a common adverse effect seen with a large variety of drugs including antimalarials, antihypertensives, nonsteroidal anti-inflammatory drugs and diuretics. Lichenoid drug eruption is a rare cutaneous adverse effect of tenofovir with only a single case reported till date. Here, we report a case of tenofovir induced lichenoid drug eruption in a 54-year-old human immunodeficiency virus affected male who presented with generalized lichenoid eruption after 6 weeks of initiation of tenofovir and complete clearance on cessation of the drug. PMID:26229762

  19. Voyager 2 Jupiter Eruption Movie

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This movie records an eruptive event in the southern hemisphere of Jupiter over a period of 8 Jupiter days. Prior to the event, an undistinguished oval cloud mass cruised through the turbulent atmosphere. The eruption occurs over avery short time at the very center of the cloud. The white eruptive material is swirled about by the internal wind patterns of the cloud. As a result of the eruption, the cloud then becomes a type of feature seen elsewhere on Jupiter known as 'spaghetti bowls'.

    As Voyager 2 approached Jupiter in 1979, it took images of the planet at regular intervals. This sequence is made from 8 images taken once every Jupiter rotation period (about 10 hours). These images were acquired in the Violet filter around May 6, 1979. The spacecraft was about 50 million kilometers from Jupiter at that time.

    This time-lapse movie was produced at JPL by the Image Processing Laboratory in 1979.

  20. Late Permian marine ecosystem collapse began in deeper waters: evidence from brachiopod diversity and body size changes.

    PubMed

    He, W-H; Shi, G R; Twitchett, R J; Zhang, Y; Zhang, K-X; Song, H-J; Yue, M-L; Wu, S-B; Wu, H-T; Yang, T-L; Xiao, Y-F

    2015-03-01

    Analysis of Permian-Triassic brachiopod diversity and body size changes from different water depths spanning the continental shelf to basinal facies in South China provides insights into the process of environmental deterioration. Comparison of the temporal changes of brachiopod diversity between deepwater and shallow-water facies demonstrates that deepwater brachiopods disappeared earlier than shallow-water brachiopods. This indicates that high environmental stress commenced first in deepwater settings and later extended to shallow waters. This environmental stress is attributed to major volcanic eruptions, which first led to formation of a stratified ocean and a chemocline in the outer shelf and deeper water environments, causing the disappearance of deep marine benthos including brachiopods. The chemocline then rapidly migrated upward and extended to shallow waters, causing widespread mass extinction of shallow marine benthos. We predict that the spatial and temporal patterns of earlier onset of disappearance/extinction and ecological crisis in deeper water ecosystems will be recorded during other episodes of rapid global warming. PMID:25412754

  1. Assessing Eruption Column Height in Ancient Flood Basalt Eruptions

    NASA Technical Reports Server (NTRS)

    Glaze, Lori S.; Self, Stephen; Schmidt, Anja; Hunter, Stephen J.

    2015-01-01

    A buoyant plume model is used to explore the ability of flood basalt eruptions to inject climate-relevant gases into the stratosphere. An example from the 1986 Izu-Oshima basaltic fissure eruption validates the model's ability to reproduce the observed maximum plume heights of 12-16 km above sea level, sustained above fire-fountains. The model predicts maximum plume heights of 13-17 km for source widths of between 4-16 m when 32% (by mass) of the erupted magma is fragmented and involved in the buoyant plume (effective volatile content of 6 wt%). Assuming that the Miocene-age Roza eruption (part of the Columbia River Basalt Group) sustained fire-fountains of similar height to Izu-Oshima (1.6 km above the vent), we show that the Roza eruption could have sustained buoyant ash and gas plumes that extended into the stratosphere at approximately 45 deg N. Assuming 5 km long active fissure segments and 9000 Mt of SO2 released during explosive phases over a 10-15 year duration, the approximately 180 km of known Roza fissure length could have supported approximately 36 explosive events/phases, each with a duration of 3-4 days. Each 5 km fissure segment could have emitted 62 Mt of SO2 per day into the stratosphere while actively fountaining, the equivalent of about three 1991 Mount Pinatubo eruptions per day. Each fissure segment could have had one to several vents, which subsequently produced lava without significant fountaining for a longer period within the decades-long eruption. Sensitivity of plume rise height to ancient atmospheric conditions is explored. Although eruptions in the Deccan Traps (approximately 66 Ma) may have generated buoyant plumes that rose to altitudes in excess of 18 km, they may not have reached the stratosphere because the tropopause was substantially higher in the late Cretaceous. Our results indicate that some flood basalt eruptions, such as Roza, were capable of repeatedly injecting large masses of SO2 into the stratosphere. Thus sustained

  2. Human Footprints in Relation to the 1790 Eruption of Kilauea

    NASA Astrophysics Data System (ADS)

    Swanson, D. A.; Rausch, J.

    2008-12-01

    stream, because its fallout was mainly dispersed east-southeastward by westerlies, a wind direction found only at high altitudes in Hawai'i. Surges associated with the high eruption column swept over the southwest and west rims of the caldera. These relations indicate that the accretionary lapilli (footprints) ash was an early stage of a powerful eruption involving both high columns and lithic surges. Hawaiian oral tradition says that the 1790 eruption was large, and Jaggar calculated a column height probably greater than 9 km (30,000 ft) based on observations of a pillar (eruption column) seen over Mauna Loa when viewed from the north. This is about halfway through the jet stream. Our work found two deposits of the late 1700s dispersed east of Kilauea's summit. The younger was probably erupted in 1790. A reconstruction of events in 1790 suggests that the accretionary lapilli ash fell early in the eruption, blown southwestward into areas where family groups, mainly women and children, were chipping glass from old pahoehoe for tools. They probably sought shelter while the ash was falling. but once it stopped, they slogged through the mud, leaving footprints in the 2-cm-thick deposit.. Meanwhile, the warriors and their families, camped at Kilauea's summit (supposedly for 3 days) waiting for the eruption to end, saw the sky clear following the ash eruption and started walking southwestward along the west side of the summit area. Then the most powerful stage of the eruption began, sending surges westward across the path of the doomed group, killing many. Afterwards, any survivors or rescuers who walked on the accretionary lapilli ash, by now dry, left no footprints that are preserved.

  3. Solar Activity and Solar Eruptions

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.

    2006-01-01

    Our Sun is a dynamic, ever-changing star. In general, its atmosphere displays major variation on an 11-year cycle. Throughout the cycle, the atmosphere occasionally exhibits large, sudden outbursts of energy. These "solar eruptions" manifest themselves in the form of solar flares, filament eruptions, coronal mass ejections (CMEs), and energetic particle releases. They are of high interest to scientists both because they represent fundamental processes that occur in various astrophysical context, and because, if directed toward Earth, they can disrupt Earth-based systems and satellites. Research over the last few decades has shown that the source of the eruptions is localized regions of energy-storing magnetic field on the Sun that become destabilized, leading to a release of the stored energy. Solar scientists have (probably) unraveled the basic outline of what happens in these eruptions, but many details are still not understood. In recent years we have been studying what triggers these magnetic eruptions, using ground-based and satellite-based solar observations in combination with predictions from various theoretical models. We will present an overview of solar activity and solar eruptions, give results from some of our own research, and discuss questions that remain to be explored.

  4. Infrasound research of volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Marchetti, Emanuele; Ripepe, Maurizio

    2016-04-01

    Volcanic eruptions are efficient sources of infrasound produced by the rapid perturbation of the atmosphere by the explosive source. Being able to propagate up to large distances from the source, infrasonic waves from major (VEI 4 or larger) volcanic eruptions have been recorded for many decades with analogue micro-barometers at large regional distances. In late 1980s, near-field observations became progressively more common and started to have direct impact on the understanding and modeling of explosive source dynamics, to eventually play a primary role in volcano research. Nowadays, infrasound observation from a large variety of volcanic eruptions, spanning from VEI 0 to VEI 5 events, has shown a dramatic variability in terms of signature, excess pressure and frequency content of radiated infrasound and has been used to infer complex eruptive source mechanisms for the different kinds of events. Improved processing capability and sensors has allowed unprecedented precise locations of the explosive source and is progressively increasing the possibility to monitor volcanoes from distant records. Very broadband infrasound observations is also showing the relation between volcanic eruptions and the atmosphere, with the eruptive mass injection in the atmosphere triggering acoustic-gravity waves which eventually might control the ash dispersal and fallout.

  5. A unified history of the ocean around southern Africa

    NASA Astrophysics Data System (ADS)

    Reeves, Colin; Master, Sharad

    2010-05-01

    The movement with respect to Africa of the hotspot marked by present-day Bouvet island is extrapolated backward in time to a position in the Lower Limpopo Valley at the time of the Karoo-Ferrar basalt event (183 Ma). In a tight reconstruction of the Precambrian fragments of Gondwana at this time, the triangular gap that remains between South Africa's Precambrian, that of Dronning Maud Land, Antarctica, and the eastward-extrapolated front of the Cape Fold Belt we fill with the Precambrian fragments of South Patagonia and the Falkland Islands. We postulate that the 183 Ma mantle upwelling produced a triple junction-type fracture marked by the alignments of the Lebombo, the SE margin of the Zimbabwe craton and the giant Botswana dyke swarm (178 Ma) that was rather quickly followed by the expulsion of the South Patagonia terranes from the Gondwana assembly along the alignment of the Falklands-Agulhas Fault Zone (FAFZ) as a transform margin. The space created was filled with igneous material akin to the present day Afar triangle. The magma supply generated not only oceanic crust but also overlying igneous deposits, much probably erupted subaerially. These developed progressively into the Falklands Plateau, the Mozambique Plains, the Mozambique Rise and the Explora Wedge of Antarctica. Not until the early Cretaceous did the growth of normal ocean crust start to exceed the ability of the declining mantle plume to cover the new ocean crust in a confined space with subaerial deposits that substantially thickened otherwise ‘oceanic' crust. When Antarctica and Africa began to separate before about 167 Ma, the future Mozambique Rise moved with Antarctica until, at about 125 Ma, a modest ridge reorganization east of Africa left Madagascar and the Mozambique Rise as part of the Africa Plate. An increasing westerly component to the movement of Antarctica against Africa preceded the initial opening of the South Atlantic and the fusing of the South Patagonia terranes with the

  6. Tectonic Implications of the Coupled Motions of India and Africa in the Late Cretaceous and Early Cenozoic

    NASA Astrophysics Data System (ADS)

    Cande, S. C.; Stegman, D. R.

    2010-12-01

    Two classic tectonic puzzles are 1) the fast motion of India in the Late Cretaceous and Early Cenozoic and 2) the decreased convergence rate between Africa and Eurasia in the Paleocene corresponding to a period of tectonic quiescence in the Alps (Trümpy’s “Paleocene restoration”). We have reexamined plate motion constraints in the Indo-Atlantic Oceans and tied together a series of related observations that suggest that both of these events were strongly influenced, and perhaps even driven, by the arrival of the Reunion plume. Fast motion of India, as recorded by sea floor spreading, began around 68 Ma and ended around 45 Ma. The period of fast spreading started with a short pulse of superfast spreading between 66 and 63 Ma that peaked (Ind-Ant = 200 mm/yr) during Chron 29R, the time of the maximum eruption rate of Deccan flood basalts, and was followed by a longer period of fast (but not superfast) spreading (Ind-Ant = 130 mm/yr). A few Ma before the start of the fast motion of India, around 70 Ma, Africa started an unusual 30 Ma episode of variable motion. This consisted of a 15 Ma gradually intensifying retardation of Africa’s rate of rotation about the Euler pole for Africa-Eurasia convergence (near 32° N, 16° W), followed by a 15 Ma period in which Africa’s rate of rotation gradually recovered. The gradual slowing down and speeding up of Africa caused the stage poles of Afr-NoAm, Afr-SoAm, Afr-Ant and Afr-Mantle to migrate in a systematic way, first away from and then back towards the Africa-Eurasia Euler pole. These excursions are reflected in the large bends of the fractures zones and the systematic changes in spreading rates on all three ridge systems between 70 and 40 Ma. Additionally, coeval bends in the Tristan da Cunha and St. Helena hotspot tracks are consistent with this variable motion of Africa. The retarding motion peaked between 57 and 54 Ma and then gradually faded away with the motion of Africa returning roughly to its pre-70 Ma

  7. Magma discharge and lava flow field growth in the Nornahraun/Bardarbunga eruption Iceland.

    NASA Astrophysics Data System (ADS)

    Hoskuldsson, Armann; Jónsdóttir, Ingibjörg; Riishus, Morten S.; Pedersen, Gro B. M.; Gudmundsson, Magnus T.; Thordarson, Torvaldur; Drouin, Vincent; Futurevolc IES field work Team

    2015-04-01

    Bardarbunga volcano was reactivated by an intense seismic swarm on 16/8 2014. The seismic swarm originating at the central volcano propagated north out into the associated fissure swarm during following days. As it reached the outwash plains of Jokulsa a fjollum a subaerial eruption began. Three eruptions have taken place on the outwash plane in the event, on the 29/8, 31/8 to present and on 5/9. In this presentation we discuss the second eruption that began on the 31/8 and how we do approach magma discharge parameters by combination of field observation and satellite photogrammetry. The eruption took place at the northern end of the eruptive fissure from AD 1797 and the lava was expelled out onto to relatively flat outwash plains of the glacial river Jokulsa a Fjollum thus access to eruptive products was relatively easy. It was clear from the first moments of the eruption that it had a high initial effusion rate, with lava covering the sandur plains at the rate of 25-30 m2/s. Within the first week the lava flow had covered more than 18 km2. That amounts to an average effusion rate between 195 to 280 m3/s. On the 11/9 the lava flow had grown to 25 km2, at that time effusion rate was between 140 to 247 m3/s, The lava stopped advancing and started to grow sideways and inflating. This reoccurred on the 26/9 and 12/10, with clockwise horizontal stacking of lobes to the south. From mid-November the lava growth has been controlled by tube-fed lava streams, at first generating breakouts close to the vent area and then during the last week before Christmas breaking out at the far NE end of the lava flow. As the eruption proceeded effusion rate gradually decreased and at the time of writing it is down to 9 to 76 m3/s. For assessment of areal extent of the lava field a combination of ground gps tracking and satellite photogrammetry was used. However one of the main challenges in the monitoring of the eruption was to obtain volumetric effusion rates. In the beginning of the

  8. Africa: "Yonondio."

    ERIC Educational Resources Information Center

    Bendetson, Jane

    1996-01-01

    Recounts a teacher's experiences on a trip to Africa. Describes her pleasant moments with her fellow travelers; her appreciation of the natural setting; her visit to an impoverished native school; and her confrontation with a Maasai warrior. (TB)

  9. Eruptions from the Sun

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-11-01

    The Sun often exhibits outbursts, launching material from its surface in powerful releases of energy. Recent analysis of such an outburst captured on video by several Sun-monitoring spacecraft may help us understand the mechanisms that launch these eruptions.Many OutburstsSolar jets are elongated, transient structures that are thought to regularly release magnetic energy from the Sun, contributing to coronal heating and solar wind acceleration. Coronal mass ejections (CMEs), on the other hand, are enormous blob-like explosions, violently ejecting energy and mass from the Sun at incredible speeds.But could these two types of events actually be related? According to a team of scientists at the University of Science and Technology of China, they may well be. The team, led by Jiajia Liu, has analyzed observations of a coronal jet that they believe prompted the launch of a powerful CME.Observing an ExplosionGif of a movie of the CME, taken by the Solar Dynamics Observatorys Atmospheric Imaging Assembly at a wavelength of 304. The original movie can be found in the article. [Liu et al.]An army of spacecraft was on hand to witness the event on 15 Jan 2013 including the Solar Dynamics Observatory (SDO), the Solar and Heliospheric Observatory (SOHO), and the Solar Terrestrial Relations Observatory (STEREO). The instruments on board these observatories captured the drama on the northern limb of the Sun as, at 19:32 UT, a coronal jet formed. Just eight minutes later, a powerful CME was released from the same active region.The fact that the jet and CME occurred in the same place at roughly the same time suggests theyre related. But did the initial motions of the CME blob trigger the jet? Or did the jet trigger the CME?Tying It All TogetherIn a recently published study, Liu and collaborators analyzed the multi-wavelength observations of this event to find the heights and positions of the jet and CME. From this analysis, they determined that the coronal jet triggered the release

  10. Automated Detection of Eruptive Structures for Solar Eruption Prediction

    NASA Astrophysics Data System (ADS)

    Georgoulis, Manolis K.

    2012-07-01

    The problem of data processing and assimilation for solar eruption prediction is, for contemporary solar physics, more pressing than the problem of data acquisition. Although critical solar data, such as the coronal magnetic field, are still not routinely available, space-based observatories deliver diverse, high-quality information at such a high rate that a manual or semi-manual processing becomes meaningless. We discuss automated data analysis methods and explain, using basic physics, why some of them are unlikely to advance eruption prediction. From this finding we also understand why solar eruption prediction is likely to remain inherently probabilistic. We discuss some promising eruption prediction measures and report on efforts to adapt them for use with high-resolution, high-cadence photospheric and coronal data delivered by the Solar Dynamics Observatory. Concluding, we touch on the problem of physical understanding and synthesis of different results: combining different measures inferred by different data sets is a yet-to-be-done exercise that, however, presents our best opportunity of realizing benefits in solar eruption prediction via a meaningful, targeted assimilation of solar data.

  11. Dental eruption in afrotherian mammals

    PubMed Central

    Asher, Robert J; Lehmann, Thomas

    2008-01-01

    Background Afrotheria comprises a newly recognized clade of mammals with strong molecular evidence for its monophyly. In contrast, morphological data uniting its diverse constituents, including elephants, sea cows, hyraxes, aardvarks, sengis, tenrecs and golden moles, have been difficult to identify. Here, we suggest relatively late eruption of the permanent dentition as a shared characteristic of afrotherian mammals. This characteristic and other features (such as vertebral anomalies and testicondy) recall the phenotype of a human genetic pathology (cleidocranial dysplasia), correlations with which have not been explored previously in the context of character evolution within the recently established phylogeny of living mammalian clades. Results Although data on the absolute timing of eruption in sengis, golden moles and tenrecs are still unknown, craniometric comparisons for ontogenetic series of these taxa show that considerable skull growth takes place prior to the complete eruption of the permanent cheek teeth. Specimens showing less than half (sengis, golden moles) or two-thirds (tenrecs, hyraxes) of their permanent cheek teeth reach or exceed the median jaw length of conspecifics with a complete dentition. With few exceptions, afrotherians are closer to median adult jaw length with fewer erupted, permanent cheek teeth than comparable stages of non-afrotherians. Manatees (but not dugongs), elephants and hyraxes with known age data show eruption of permanent teeth late in ontogeny relative to other mammals. While the occurrence of delayed eruption, vertebral anomalies and other potential afrotherian synapomorphies resemble some symptoms of a human genetic pathology, these characteristics do not appear to covary significantly among mammalian clades. Conclusion Morphological characteristics shared by such physically disparate animals such as elephants and golden moles are not easy to recognize, but are now known to include late eruption of permanent teeth, in

  12. Storage, migration, and eruption of magma at Kilauea volcano, Hawaii, 1971-1972

    USGS Publications Warehouse

    Duffield, W.A.; Christiansen, R.L.; Koyanagi, R.Y.; Peterson, D.W.

    1982-01-01

    The magmatic plumbing system of Kilauea Volcano consists of a broad region of magma generation in the upper mantle, a steeply inclined zone through which magma rises to an intravolcano reservoir located about 2 to 6 km beneath the summit of the volcano, and a network of conduits that carry magma from this reservoir to sites of eruption within the caldera and along east and southwest rift zones. The functioning of most parts of this system was illustrated by activity during 1971 and 1972. When a 29-month-long eruption at Mauna Ulu on the east rift zone began to wane in 1971, the summit region of the volcano began to inflate rapidly; apparently, blockage of the feeder conduit to Mauna Ulu diverted a continuing supply of mantle-derived magma to prolonged storage in the summit reservoir. Rapid inflation of the summit area persisted at a nearly constant rate from June 1971 to February 1972, when a conduit to Mauna Ulu was reopened. The cadence of inflation was twice interrupted briefly, first by a 10-hour eruption in Kilauea Caldera on 14 August, and later by an eruption that began in the caldera and migrated 12 km down the southwest rift zone between 24 and 29 September. The 14 August and 24-29 September eruptions added about 107 m3 and 8 ?? 106 m3, respectively, of new lava to the surface of Kilauea. These volumes, combined with the volume increase represented by inflation of the volcanic edifice itself, account for an approximately 6 ?? 106 m3/month rate of growth between June 1971 and January 1972, essentially the same rate at which mantle-derived magma was supplied to Kilauea between 1952 and the end of the Mauna Ulu eruption in 1971. The August and September 1971 lavas are tholeiitic basalts of similar major-element chemical composition. The compositions can be reproduced by mixing various proportions of chemically distinct variants of lava that erupted during the preceding activity at Mauna Ulu. Thus, part of the magma rising from the mantle to feed the Mauna Ulu

  13. Storage, migration, and eruption of magma at Kilauea volcano, Hawaii, 1971 1972

    NASA Astrophysics Data System (ADS)

    Duffield, Wendell A.; Christiansen, Robert L.; Koyanagi, Robert Y.; Peterson, Donald W.

    1982-08-01

    The magmatic plumbing system of Kilauea Volcano consists of a broad region of magma generation in the upper mantle, a steeply inclined zone through which magma rises to an intravolcano reservoir located about 2 to 6 km beneath the summit of the volcano, and a network of conduits that carry magma from this reservoir to sites of eruption within the caldera and along east and southwest rift zones. The functioning of most parts of this system was illustrated by activity during 1971 and 1972. When a 29-month-long eruption at Mauna Ulu on the east rift zone began to wane in 1971, the summit region of the volcano began to inflate rapidly; apparently, blockage of the feeder conduit to Mauna Ulu diverted a continuing supply of mantle-derived magma to prolonged storage in the summit reservoir. Rapid inflation of the summit area persisted at a nearly constant rate from June 1971 to February 1972, when a conduit to Mauna Ulu was reopened. The cadence of inflation was twice interrupted briefly, first by a 10-hour eruption in Kilauea Caldera on 14 August, and later by an eruption that began in the caldera and migrated 12 km down the southwest rift zone between 24 and 29 September. The 14 August and 24-29 September eruptions added about 10 7 m 3 and 8 × 10 6 m 3, respectively, of new lava to the surface of Kilauea. These volumes, combined with the volume increase represented by inflation of the volcanic edifice itself, account for an approximately 6 × 10 6 m 3/month rate of growth between June 1971 and January 1972, essentially the same rate at which mantle-derived magma was supplied to Kilauea between 1952 and the end of the Mauna Ulu eruption in 1971. The August and September 1971 lavas are tholeiitic basalts of similar major-element chemical composition. The compositions can be reproduced by mixing various proportions of chemically distinct variants of lava that erupted during the preceding activity at Mauna Ulu. Thus, part of the magma rising from the mantle to feed the

  14. Introduction to Augustine Volcano and Overview of the 2006 Eruption

    NASA Astrophysics Data System (ADS)

    Nye, C. J.

    2006-12-01

    This overview represents the combined efforts of scores of people, including Alaska Volcano Observatory staff from the US Geological Survey, the University of Alaska Fairbanks Geophysical Institute, and the Alaska Division of Geological and Geophysical Surveys; additional members of those agencies outside of AVO; and volcanologists from elsewhere. Augustine is a young, and therefore small island volcano in the Cook Inlet region of the eastern Aleutian arc. It is among the most active volcanoes in the arc, with six major historic eruptions, and a vigorous eruptive history going back at least 2,500 years. Eruptions typically begin explosively, and finish with the extrusion of domes and sometimes short, steep lava flows. At least 14 times (most recently in 1883) the -summit has become over-steepened and failed, producing debris avalanches which reached tidewater. Magmas within each of the well-studied eruptions are crystal-rich andesite spanning up to seven weight percent silica. Mixing and mingling are ubiquitous and occur at scales from meters to microns. In general, magmagenesis at Augustine is open, messy, and transcrustal. The 2006 eruption was broadly similar to the 20th century eruptions. Unrest began midway through 2005, with steadily increasing numbers of microearthquakes and continuous inflation of the edifice. By mid-December there were obvious morphological and thermal changes at the summit, as well as phreatic explosions and more passive venting of S-rich gasses. In mid-January 2006 phreatomagmatic explosions gave way to magmatic explosions, producing pyroclastic flows dominated by low-silica andesite, as well as lahars, followed by a small summit dome. In late January the nature of seismicity, eruptive style, and type of erupted magma all changed, and block-and-ash flows of high-silica, crystal-rich andesite were emplaced as the edifice deflated. Re-inflation well below the edifice and low-level effusion continued through February. During the second week

  15. Eruption cysts in the neonate.

    PubMed

    Ricci, Hérica Adad; Parisotto, Thaís Manzano; Giro, Elisa Maria Aparecida; de Souza Costa, Carlos Alberto; Hebling, Josimeri

    2008-01-01

    Disturbances of the dental development may result in anomalies, which may be apparent as soon as the child is born. Eruption cysts are rarely observed in neonates considering that at this stage of the child's life teeth eruption is uncommon. Thus, the aim of this report is to describe a case of eruption cysts in a neonate. A male neonate was brought to the emergency service with the chief complaint of an elevated area on the anterior region of the inferior alveolar ridge. The lesion was clinically characterized as a compressive and floating swelling. Through a radiographic exam two mandibular primary incisors could be seen superficially located. Due to the patient's age and the initial diagnosis of eruption cysts the conduct adopted was clinical surveillance. Forty-five days after the first visit the lesions had significantly decreased in size, and completely disappeared after 4 months. At that age, both mandibular central incisors were already in the oral cavity exhibiting small hypoplastic areas in the incisal edges. The clinical and radiographic follow-up of eruption cysts in neonates appears to be an adequate conduct without differing from that recommended for older children. PMID:18524277

  16. Featured Image: Solar Prominence Eruptions

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-02-01

    In these images from the Solar Dynamics Observatorys AIA instrument (click for the full resolution!), two solar prominence eruptions (one from June 2011 and one from August 2012) are shown in pre- and post-eruption states. The images at the top are taken in the Fe XII 193 bandpass and the images at the bottom are taken in the He II 304 bandpass. When a team of scientists searched through seven years of solar images taken by the STEREO (Solar Terrestrial Relations Observatory) spacecraft, these two eruptions were found to extend all the way out to a distance of 1 AU. They were the only two examples of clear, bright, and compact prominence eruptions found to do so. The scientists, led by Brian Wood (Naval Research Laboratory), used these observations to reconstruct the motion of the eruption and model how prominences expand as they travel away from the Sun. Theimage to the rightshowsa STEREO observation compared to the teams 3D model of theprominences shape and expansion. To learn more about theresults from this study, check out the paper below.CitationBrian E. Wood et al 2016 ApJ 816 67. doi:10.3847/0004-637X/816/2/67

  17. Automated detection of solar eruptions

    NASA Astrophysics Data System (ADS)

    Hurlburt, N.

    2015-12-01

    Observation of the solar atmosphere reveals a wide range of motions, from small scale jets and spicules to global-scale coronal mass ejections (CMEs). Identifying and characterizing these motions are essential to advancing our understanding of the drivers of space weather. Both automated and visual identifications are currently used in identifying Coronal Mass Ejections. To date, eruptions near the solar surface, which may be precursors to CMEs, have been identified primarily by visual inspection. Here we report on Eruption Patrol (EP): a software module that is designed to automatically identify eruptions from data collected by the Atmospheric Imaging Assembly on the Solar Dynamics Observatory (SDO/AIA). We describe the method underlying the module and compare its results to previous identifications found in the Heliophysics Event Knowledgebase. EP identifies eruptions events that are consistent with those found by human annotations, but in a significantly more consistent and quantitative manner. Eruptions are found to be distributed within 15 Mm of the solar surface. They possess peak speeds ranging from 4 to 100 km/s and display a power-law probability distribution over that range. These characteristics are consistent with previous observations of prominences.

  18. Bayesian analysis of volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Ho, Chih-Hsiang

    1990-10-01

    The simple Poisson model generally gives a good fit to many volcanoes for volcanic eruption forecasting. Nonetheless, empirical evidence suggests that volcanic activity in successive equal time-periods tends to be more variable than a simple Poisson with constant eruptive rate. An alternative model is therefore examined in which eruptive rate(λ) for a given volcano or cluster(s) of volcanoes is described by a gamma distribution (prior) rather than treated as a constant value as in the assumptions of a simple Poisson model. Bayesian analysis is performed to link two distributions together to give the aggregate behavior of the volcanic activity. When the Poisson process is expanded to accomodate a gamma mixing distribution on λ, a consequence of this mixed (or compound) Poisson model is that the frequency distribution of eruptions in any given time-period of equal length follows the negative binomial distribution (NBD). Applications of the proposed model and comparisons between the generalized model and simple Poisson model are discussed based on the historical eruptive count data of volcanoes Mauna Loa (Hawaii) and Etna (Italy). Several relevant facts lead to the conclusion that the generalized model is preferable for practical use both in space and time.

  19. 1891 Submarine eruption of Foerstner volcano (Pantelleria, Sicily) : insights into the vent structure of basaltic balloon eruptions

    NASA Astrophysics Data System (ADS)

    Kelly, J. T.; Carey, S.; Bell, K. L.; Rosi, M.; Marani, M.; Roman, C.; Pistolesi, M.; Baker, E. T.

    2012-12-01

    Numerous shallow water basaltic eruptions have produced abundant floating scoria up to several meters in diameter, yet little is known about the conditions that give rise to this unusual style of volcanism. On October 17, 1891, a submarine eruption began 4 kilometers northwest of the island of Pantelleria, Sicily. The eruptive vent was located at a depth of 250 meters along the NW-SE trending Sicily Channel Rift Zone. Evidence for the eruption was provided by the occurrence of hot, scoriaceous lava "balloons" floating on the sea surface along a narrow line about 850-1000 meters long trending along the rift. These extremely vesicular fragments were spherical to ellipsoidal in shape and ranged from <50 to 250 cm in diameter. Remotely Operated Vehicles (ROVs) and existing bathymetric maps have been used to conduct the first detailed investigation of a vent site associated with this unique style of volcanism. In 2011 the ROV Hercules, deployed from the E/V Nautilus, explored the 1891 Foerstner vent using high definition video cameras and produced a high resolution bathymetric map of the area using a BlueView multibeam imaging sonar. Light backscattering and oxidation-reduction potential sensors (MAPRs) were added to Hercules to detect discharge from active venting. ROV video footage has been used in conjunction with the high resolution bathymetric data to construct a geologic map of the vent area based on a variety of facies descriptors, such as abundance of scoria bombs, occurrence of pillow or scoria flow lobes, extent of sediment cover, and presence of spatter-like deposits. Initial results of the mapping have shown that there are two main vents that erupted within the observed area of floating scoria and most likely erupted at the same time as evidenced by similar bulk chemical compositions of recovered samples. Scoria bomb beds and some scoria flow lobes largely cover the suspected main vent, located at a depth of 250 meters. Distinct pillow flow lobes cover the

  20. Textural analysis of tephra from a rhyodacitic eruption sequence, Thira (Santorini), Greece

    SciTech Connect

    Heiken, G.

    1983-01-01

    The Minoan eruption sequence of 1390 B.C. produced a minimum volume of 13 km/sup 3/ of rhyodacitic tephra (dense rock equivalent). The eruptions evolved from magmatic to phreatomagmatic and back to a mix of both processes. Thin section and scanning electron micrograph analysis of the tephra sequence provide information about eruption processes that is critical to interpretation of the field data. The eruptions began at a vent located above sea level and produced a coarse-grained Plinian pumice deposit. All later phases of the eruption involved propagating vent(s) into an older flooded caldera and flooding of the sea into a collapsing Minoan caldera. Interaction of magma and water produced fine-grained tephra that consist mostly of slightly curved, nearly flat shards and small pumice pyroclasts. These were derived during fragmentation of a heterogeneous, vesicular magma containing large compound vesicles and smaller, elongate vesicles. The vesiculated magma was thoroughly comminuted during magma-water interactions. The last eruptive phase is interpreted as having involved both magmatic and phreatomagmatic processes. Hot pyroclastic flows from this phase contained a bimodal mixture of pumice pyroclasts and finely comminuted shards.

  1. Shallow pressure sources associated with the 2007 and 2014 phreatic eruptions of Mt. Ontake, Japan

    NASA Astrophysics Data System (ADS)

    Takagi, Akimichi; Onizawa, Shin'ya

    2016-07-01

    We modeled pressure sources under Mount Ontake volcano, Japan, on the basis of global navigation satellite system (GNSS) observations of ground deformation during the time period including the 2007 and 2014 phreatic eruptions. The total change in volume in two sources below sea level in the period including the 2007 eruption was estimated from GNSS network observations to be 6 × 106 m3. Additionally, data from a GNSS campaign survey yielded an estimated volume change of 0.28 × 106 m3 in a shallower source just beneath the volcanic vents. The 2007 eruption may have been activated by magmatic activity at depth. During the 2014 eruption, the volume change at depth was very small. However, tiltmeter data indicated inflation from a shallow source that began 7 min before the eruption, representing a volume change estimated to be 0.38 × 106 m3. We infer that the potential for subsurface hydrothermal activity may have remained high after the 2007 eruption.

  2. A tectonic earthquake sequence preceding the April-May 1999 eruption of Shishaldin Volcano, Alaska

    USGS Publications Warehouse

    Moran, S.C.; Stihler, S.D.; Power, J.A.

    2002-01-01

    On 4 March 1999, a shallow ML 5.2 earthquake occurred beneath Unimak Island in the Aleutian Arc. This earthquake was located 10-15 km west of Shishaldin Volcano, a large, frequently active basaltic-andesite stratovolcano. A Strombolian eruption began at Shishaldin roughly 1 month after the mainshock, culminating in a large explosive eruption on 19 April. We address the question of whether or not the eruption caused the mainshock by computing the Coulomb stress change caused by an inflating dike on fault planes oriented parallel to the mainshock focal mechanism. We found Coulomb stress increases of ???0.1 MPa in the region of the mainshock, suggesting that magma intrusion prior to the eruption could have caused the mainshock. Satellite and seismic data indicate that magma was moving upwards beneath Shishaldin well before the mainshock. indicating that, in an overall sense, the mainshock cannot be said to have caused the eruption. However, observations of changes at the volcano following the mainshock and several large aftershocks suggest that the earthquakes may, in turn, have influenced the course of the eruption.

  3. Hybrid Pyroclastic Deposits Accumulated From The Eruptive Transitional Regime of Plinian Eruptions.

    NASA Astrophysics Data System (ADS)

    di Muro, Andrea; Rosi, Mauro

    In the past 15 years sedimentological studies (Valentine and Giannetti, 1995; Wilson and Hildreth, 1997; Rosi et al., 2001), physical models (Neri et al., 1988; Veitch and Woods, 2000; Kaminski and Jaupart, 2001) and laboratory experiments (Carey et al., 1988) converge at defining a new eruptive regime transitional between the fully convective and the fully collapsing end -members. Buoyant columns and density currents are contemporaneously fed in the transitional dynamic regime and fall beds are intercalated with the density current deposits in the area invested by them. The sedimentological analysis of the well exposed 800yr B.P. plinian eruption of the volcano Quilotoa (Ecuador) enabled us to i) recognize a gradual evolution of the eruptive regime, ii) characterize the fall and density current deposits emplaced during the transitional regime. The eruptive activity began with at least two phreatic explosions and the effusion of a small volume lava dome. Eruptive behaviour then switched to explosive and fed a purely convective column that accumulated a reverse graded pumice fall while rising up to an height of 30 km. A small volume, diluted and slow density current (S1 current) was emplaced in the proximal SW sector just before the column reached its maximum height. Two group s of more voluminous and faster intra-plinian density currents (S2 and S3 currents) were subsequently emplaced contemporaneously with the accumulation of the lower and upper part respectively of a normal graded pumice fall bed. S2 and S3 currents were radially distributed around the crater and deposited bedded layers with facies of decreasing energy when moving away from the crater. Massive beds of small volume were emplaced only i) inside the proximal valley channel near the topography break in slope, ii) outside the valley channel in medial area where the currents impinged against relieves. A thick sequence of pyroclastic flow deposits (S4 currents) accumulated in the valley channels around

  4. Can rain cause volcanic eruptions?

    USGS Publications Warehouse

    Mastin, Larry G.

    1993-01-01

    Volcanic eruptions are renowned for their violence and destructive power. This power comes ultimately from the heat and pressure of molten rock and its contained gases. Therefore we rarely consider the possibility that meteoric phenomena, like rainfall, could promote or inhibit their occurrence. Yet from time to time observers have suggested that weather may affect volcanic activity. In the late 1800's, for example, one of the first geologists to visit the island of Hawaii, J.D. Dana, speculated that rainfall influenced the occurrence of eruptions there. In the early 1900's, volcanologists suggested that some eruptions from Mount Lassen, Calif., were caused by the infiltration of snowmelt into the volcano's hot summit. Most such associations have not been provable because of lack of information; others have been dismissed after careful evaluation of the evidence.

  5. Erupted odontoma: a case report.

    PubMed

    Raval, Nilesh; Mehta, Dhaval; Vachhrajani, Kanan; Nimavat, Abhishek

    2014-07-01

    Odontomas are nonaggressive, hamartomatous developmental malformations or lesions of odontogenic origin, which consist of enamel, dentin, cementum and pulpal tissue 'Erupted odontoma' is a term used to specifically denote odontomas, which are exposed into the oral cavity. These are rare entities with only 25-30 cases being reported so far in the dental literature. Here, we present a rare case of an erupted odontoma in an adolescent patient who came with a complaint of bad aesthetics due to the presence of multiple small teeth like structures in the upper front teeth region. PMID:25177649

  6. Sub-glacial volcanic eruptions

    USGS Publications Warehouse

    White, Donald Edward

    1956-01-01

    The literature on sub-glacial volcanic eruptions and the related flood phenomena has been reviewed as a minor part of the larger problem of convective and conductive heat transfer from intrusive magma. (See Lovering, 1955, for a review of the extensive literature on this subject.) This summary of data on sub-glacial eruptions is part of a program that the U.S. Geological Survey is conducting in connection with its Investigations of Geologic Processes project on behalf of the Division of Research, U.S. Atomic Energy Commission.

  7. An overview of the 2009 eruption of Redoubt Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Bull, Katharine F.; Buurman, Helena

    2013-06-01

    In March 2009, Redoubt Volcano, Alaska erupted for the first time since 1990. Explosions ejected plumes that disrupted international and domestic airspace, sent lahars more than 35 km down the Drift River to the coast, and resulted in tephra fall on communities over 100 km away. Geodetic data suggest that magma began to ascend slowly from deep in the crust and reached mid- to shallow-crustal levels as early as May, 2008. Heat flux at the volcano during the precursory phase melted ~ 4% of the Drift glacier atop Redoubt's summit. Petrologic data indicate the deeply sourced magma, low-silica andesite, temporarily arrested at 9-11 km and/or at 4-6 km depth, where it encountered and mixed with segregated stored high-silica andesite bodies. The two magma compositions mixed to form intermediate-silica andesite, and all three magma types erupted during the earliest 2009 events. Only intermediate- and high-silica andesites were produced throughout the explosive and effusive phases of the eruption. The explosive phase began with a phreatic explosion followed by a seismic swarm, which signaled the start of lava effusion on March 22, shortly prior to the first magmatic explosion early on March 23, 2009 (UTC). More than 19 explosions (or “Events”) were produced over 13 days from a single vent immediately south of the 1989-90 lava domes. During that period multiple small pyroclastic density currents flowed primarily to the north and into glacial ravines, three major lahars flooded the Drift River Terminal over 35 km down-river on the coast, tephra fall deposited on all aspects of the edifice and on several communities north and east of the volcano, and at least two, and possibly three lava domes were emplaced. Lightning accompanied almost all the explosions. A shift in the eruptive character took place following Event 9 on March 27 in terms of infrasound signal onsets, the character of repeating earthquakes, and the nature of tephra ejecta. More than nine additional

  8. Kizimen Volcano, Kamchatka, Russia: 2010-2012 Eruptive Activity

    NASA Astrophysics Data System (ADS)

    Gordeev, E.; Droznin, V.; Malik, N.; Muravyev, Y.

    2012-12-01

    New eruptive activity at Kizimen Volcano began in October 2010 after 1.5 years of seismic build up. Two vents located at the summit of the volcano had been producing occasional steam-and-gas emissions with traces of ash until early December. Kizimen is located at a junction between Shapensky graben in the Central Kamchatka Depression and a horst of Tumrok Ridge. Kizimen is a 2376 m a.s.l. complex stratovolcano. The only single eruption reported in historic time occurred from December 1928 to January 1929. Little is known about the volcano; explosive activity was preceded by strong local earthquakes, and ashfalls were reported in neighboring settlements. During the period between eruptions the volcano was producing constant fumarolic activity, reported since 1825. During the cause of the current (2010-2012) eruption, the volcano produced several eruptive phases: moderate explosive activity was observed from December 10, 2010 to late February 2011 (ashfalls and descend of pyroclastic flows resulted in a large lahar traveling along the valley of the Poperechny Creek on December 13, 2010); from late February to mid-December the volcano produced an explosive-effusive phase (the lava flow descended eastern flank, while explosive activity has decreased), which resulted in strong explosions on December 14, 2011 accompanied by scores of pyroclastic flows of various thickness to the NE foot on the volcano. Since then, a constant growth of the large lava flow has been accompanied by strong steam-and-gas emissions from the summit crater. The erupted materials are tephra and deposits of pyroclastic and lava flows consisted of high-aluminous andesites and dacites of potassium-sodium series: SiO2 content varied from 61% in December 2010 to 65-68% in January-February 2011, and up to 62% in December 2011. Ashfalls area exceeded 100 km2 (the weight of erupted tephra > 107 tons), while the total area of pyroclastic flows was estimated to be 15.5 km2 (V= 0.16 km3). Until late May 2012

  9. Discovery of the 2011 eruption at Axial Seamount

    NASA Astrophysics Data System (ADS)

    Chadwick, B.; Nooner, S. L.; Butterfield, D. A.; Lilley, M. D.; Clague, D. A.; Caress, D. W.; Dziak, R. P.; Haxel, J. H.

    2011-12-01

    to 200 m above the bottom. New vent sites on the 2011 lava had already been colonized by macro- and micro-fauna, just 3.5 months after the eruption. Seven instrumental moorings were in place during the 2011 eruption - 3 bottom pressure recorders (BPRs), 3 ocean bottom hydrophones (OBHs), and one remote access fluid sampler (RAS). One of each was engulfed by 2011 lava, but the four surviving ones (2 BPRs, 2 OBHs) were successfully recovered and provide an extraordinary in-situ monitoring record of the eruption. They show that the eruption began early on 6 April 2011, with a subsidence of ~ 2 m at the center of the caldera and a burst of hundreds of earthquakes that lasted about a week. The detection capability of SOSUS (the US Navy hydrophone network in the NE Pacific) is currently greatly diminished due to cable breaks, so no earthquake swarms were detected for the 2011 eruption.

  10. The Monte Nuovo eruption: the only historical event of the Campi Flegrei caldera

    NASA Astrophysics Data System (ADS)

    di Vito, Mauro Antonio; Arienzo, Ilenia; Buononato, Salvatore; Civetta, Lucia; Carandente, Antonio; D'Antonio, Massimo; di Renzo, Valeria; Orsi, Giovanni

    2010-05-01

    The Monte Nuovo eruption, the last event of the Campi Flegrei caldera, has been reconstructed through geological, volcanological and petrological investigations, and analyses of historical documents. The eruption, lasted one week and characterised by three vents, included three distinct phases. The main vent (MV) was located in the present crater, whereas two minor vents were along the southern (SV) and north-eastern (NEV) slopes of the Monte Nuovo tuff cone. The sequence of deposits has been subdivided in 5 members named A through E. The eruption began on September 29, 1538, at 7 p.m., and its first and main phase, lasted until the night of September 30. This phase generated almost continuous explosions mainly phreatomagmatic, producing pyroclastic density currents (pdćs) and minor short-lived, low eruption columns, which deposited members A and B. Member A, erupted in about 12 hours through the MV, forms the largest part of the cone. Phreatomagmatic explosions at the SV produced mainly pdćs which deposited Member B only in the southern sector of Monte Nuovo. Strombolian explosions at the SV and NEV deposited Member C over a narrow area. This activity was followed by a pause lasted two days. The eruption resumed on October 3 at 4 p.m. and lasted until the next night. This second phase of the eruption was characterized by a discontinuous sequence of low-energy phreatomagmatic and magmatic explosions at the MV, which deposited Member D. On October 6, at 4 p.m. explosive activity resumed and lasted few hours, mainly with low-energy magmatic explosions of a small dome, grown during the preceding two days, which produced Member E. During this phase 24 people died while climbing the slopes of the newly formed cone. The juvenile products of the Monte Nuovo eruption are phenocryst-poor rocks containing alkali feldspars and subordinate clinopyroxene and Fe-Ti oxides. The are light-coloured pumice and dark scoria fragments, and represent the most evolved magma erupted

  11. Explosive eruption of rhyodacitic magma at the Cordón-Caulle volcanic complex, southern Chile

    NASA Astrophysics Data System (ADS)

    Castro, J. M.; Schipper, C.

    2011-12-01

    After lying dormant for decades, the Cordón-Caulle volcanic complex (CCVC) reactivated again on 4 June, 2011 with an explosive eruption that produced a sustained vertical ash column reaching roughly 14,000 m a.s.l. This explosive phase produced a tephra plume that dispersed E-SE across the Chilean Patagonia into Argentina, and within a week encircled the globe prompting widespread disruption to air traffic and several airport closures. After about 3 weeks of fluctuating explosive activity, a lava flow began effusing from the same vent as the initial activity. We analyzed pumice and ash samples of the Plinian fall from 4 June for their major and trace element makeup, mineralogical characteristics, and 3D textural relationships within pyroclasts. The light beige, phenocryst-poor (<5 vol%) pumice contains plagioclase (~1mm) as its primary phase, and magnetite, orthopyroxene and clinopyroxene in sub-equal amounts. The crystals often form intergrowth clusters but may also be found separate and enclosed in highly vesicular microlite-free glass. As shown by XRF analyses on bulk pumice and ash samples collected from two localities southeast of the vent, the current eruptives comprise the following (in wt.%): SiO2 = 69.6, TiO2 = 0.70, Al2O3 = 14.3, Fe2O3 = 4.56, MnO = 0.11, MgO = 0.54, CaO = 2.3, Na2O = 5.14, K2O = 2.75, P2O5 = 0.11; and, (in ppm): Cr = 6.7, Ni = 2.3, Rb = 70.3, Sr = 163.3, Y = 51.7, Zr = 328, Ba = 702, Pb = 23.7. Interestingly, these compositions are virtually identical to those of magma erupted during 1960 and closely resemble rhyodacite erupted in 1921 from nearby vents. The primary difference between the present eruption and its recent predecessors is the much greater eruptive vigour of the current phase. Another distinction between the present and past historical eruptions is the presence of conspicuous mafic-felsic mingling textures in a small percentage (~0.5 vol%) of the current pumice. Textural and chemical analyses of the mafic blobs are

  12. Predicting Major Solar Eruptions

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-05-01

    , whether an active region that produces a flare will also produce a CME. Bobra and Ilonidis then use a feature-selection algorithm to try to understand which features distinguish between flaring regions that dont produce a CME and those that do.Predictors of CMEsThe authors reach several interesting conclusions:Under the right conditions, their algorithm is able to predict whether an active region with a given set of features will produce a CME as well as a flare with a fairly high rate of success.None of the 18 features they tested are good predictors in isolation: its necessary to look at a combination of at least 6 features to have success predicting whether a flare will be accompanied by a CME.The features that are the best predictors are all intensive features ones that stay the same independent of the active regions size. Extensive features ones that change as the active region grows or shrinks are less successful predictors.Only the magnetic field properties of the photosphere were considered, so a logical next step is to extend this study to consider properties of the solar corona above active regions as well. In the meantime, these are interesting first results that may well help us better predict these major solar eruptions.BonusCheck out this video for a great description from NASA of the difference between solar flares and CMEs (as well as some awesome observations of both).CitationM. G. Bobra and S. Ilonidis 2016 ApJ 821 127. doi:10.3847/0004-637X/821/2/127

  13. Rootless eruption of a mandibular permanent canine.

    PubMed

    Shapira, Yehoshua; Kuftinec, Mladen M

    2011-04-01

    The purpose of this article was to describe the rootless eruption of a mandibular permanent canine in a 10-year-old boy; his mandible had been fractured in a car accident. The fracture was at the region of the developing canine, resulting in arrested root formation and causing abnormal, rootless eruption. Current theories on tooth eruption and the important role of the dental follicle in the process of eruption are discussed. PMID:21457868

  14. NeuroAIDS in Africa

    PubMed Central

    Robertson, Kevin; Liner, Jeff; Hakim, James; Sankalé, Jean-Louis; Grant, Igor; Letendre, Scott; Clifford, David; Diop, Amadou Gallo; Jaye, Assan; Kanmogne, Georgette; Njamnshi, Alfred; Langford, T. Dianne; Gemechu Weyessa, Tufa; Wood, Charles; Banda, Mwanza; Hosseinipour, Mina; Sacktor, Ned; Nakasuja, Noeline; Bangirana, Paul; Paul, Robert; Joska, John; Wong, Joseph; Boivin, Michael; Holding, Penny; Kammerer, Betsy; Van Rie, Annelies; Ive, Prudence; Nath, Avindra; Lawler, Kathy; Adebamowo, Clement; Royal, Walter; Joseph, Jeymohan

    2013-01-01

    In July 2009, the Center for Mental Health Research on AIDS at the National Institute of Mental Health organized and supported the meeting “NeuroAIDS in Africa.” This meeting was held in Cape Town, South Africa, and was affiliated with the 5th IAS Conference on HIV Pathogenesis, Treatment and Prevention. Presentations began with an overview of the epidemiology of HIV in sub-Saharan Africa, the molecular epidemiology of HIV, HIV-associated neurocognitive disorders (HANDs), and HAND treatment. These introductory talks were followed by presentations on HAND research and clinical care in Botswana, Cameroon, Ethiopia, The Gambia, Kenya, Malawi, Nigeria, Senegal, South Africa, Uganda, and Zambia. Topics discussed included best practices for assessing neurocognitive disorders, patterns of central nervous system (CNS) involvement in the region, subtype-associated risk for HAND, pediatric HIV assessments and neurodevelopment, HIV-associated CNS opportunistic infections and immune reconstitution syndrome, the evolving changes in treatment implementation, and various opportunities and strategies for NeuroAIDS research and capacity building in the region. PMID:20500018

  15. Sorafenib induced eruptive melanocytic lesions.

    PubMed

    Uhlenhake, Elizabeth E; Watson, Alice C; Aronson, Peter

    2013-05-01

    Sorafenib is a multikinase inhibitor FDA-approved for the treatment of advanced renal cell and hepatocellular carcinoma. Dermatologic side effects include hand-foot skin reaction, facial and scalp erythema and desquamation, splinter subungual hemorrhages, alopecia, pruritus, xerosis, keratoacanthomas, and squamous cell carcinomas. We report sudden eruption of melanocytic nevi diffusely in a patient receiving sorafenib. PMID:24011281

  16. Eruptive viscosity and volcano morphology

    NASA Technical Reports Server (NTRS)

    Posin, Seth B.; Greeley, Ronald

    1988-01-01

    Terrestrial central volcanoes formed predominantly from lava flows were classified as shields, stratovolcanoes, and domes. Shield volcanoes tend to be large in areal extent, have convex slopes, and are characterized by their resemblance to inverted hellenic war shields. Stratovolcanoes have concave slopes, whereas domes are smaller and have gentle convex slopes near the vent that increase near the perimeter. In addition to these differences in morphology, several other variations were observed. The most important is composition: shield volcanoes tend to be basaltic, stratovolcanoes tend to be andesitic, and domes tend to be dacitic. However, important exceptions include Fuji, Pico, Mayon, Izalco, and Fuego which have stratovolcano morphologies but are composed of basaltic lavas. Similarly, Ribkwo is a Kenyan shield volcano composed of trachyte and Suswa and Kilombe are shields composed of phonolite. These exceptions indicate that eruptive conditions, rather than composition, may be the primary factors that determine volcano morphology. The objective of this study is to determine the relationships, if any, between eruptive conditions (viscosity, erupted volume, and effusion rate) and effusive volcano morphology. Moreover, it is the goal of this study to incorporate these relationships into a model to predict the eruptive conditions of extraterrestrial (Martian) volcanoes based on their morphology.

  17. Eruption conditions of spatter deposits

    NASA Astrophysics Data System (ADS)

    Rader, Erika; Geist, Dennis

    2015-10-01

    Spatter is an eruptive product that forms within a narrow range of thermal conditions: it must be hot enough to deform and agglutinate, but not so hot that clasts completely re-fuse and remobilize as clastogenic lava. This narrow thermal window of spatter-forming conditions allows for quantitative prediction of cooling rates and accumulation rates. Cooling and accumulation rates then provide information that enables estimates of eruption parameters for inaccessible and prehistoric deposits. High-temperature experiments conducted on basaltic scoria from Devil's Garden, Oregon have revealed the eruption temperature was ~ 1130 °C. The strength welds formed between experimental clasts is shown to depend on cooling rate. Natural samples are compared to the experimental samples by measuring tensile strength and welded area between clasts. The weld strength in natural deposits yields estimates of cooling rates that range between 2.5 °C and 48 °C/min, with the majority of the samples grouping between 7 °C and 14 °C/min. Thermal models based on these cooling rates yield spatter accumulation rates of 0.5-1.8 m/h in the Devil's Garden spatter deposits. We provide a general model for cooling and accumulation rates for spatter cones, ramparts, and hornitos, which allow estimation of the factors that control basaltic eruptive products.

  18. A volcano bursting at the seams: Inflation, faulting, and eruption at Sierra Negra volcano, Galápagos

    USGS Publications Warehouse

    Chadwick, William W.; Geist, Dennis J.; Jonsson, Sigurjon; Poland, Michael P.; Johnson, Daniel J.; Meertens, Charles M.

    2006-01-01

    The results of geodetic monitoring since 2002 at Sierra Negra volcano in the Galápagos Islands show that the filling and pressurization of an ∼2-km-deep sill eventually led to an eruption that began on 22 October 2005. Continuous global positioning system (CGPS) monitoring measured >2 m of accelerating inflation leading up to the eruption and contributed to nearly 5 m of total uplift since 1992, the largest precursory inflation ever recorded at a basaltic caldera. This extraordinary uplift was accommodated in part by repeated trapdoor faulting, and coseismic CGPS data provide strong constraints for improved deformation models. These results highlight the feedbacks between inflation, faulting, and eruption at a basaltic volcano, and demonstrate that faulting above an intruding magma body can relieve accumulated strain and effectively postpone eruption.

  19. Evaluating and Communicating Seismo-Volcanic Hazards Within and Between Countries in East Africa

    NASA Astrophysics Data System (ADS)

    Ebinger, C. J.; Yirgu, G.; Mbede, E. I.; Calais, E.; Wright, T.

    2007-12-01

    The 2005 seismo-volcanic crisis in a remote area of Ethiopia graphically illustrated the problems faced by research scientists in East Africa, as well as the need for regional hazard mitigation programs. Over a 3-week period in 2005, 163 mb > 3.9 earthquakes and a silicic eruption occurred as a 60 km-long dike was intruded along a previously identified rift segment ; the spatial scale is larger, and the deformation more intense, than historical seafloor spreading episodes in Iceland. A similar, but smaller dike intrusion episode with volcanic eruption began in July, 2007 in northern Tanzania. In both situations, geoscientists had communicated the potential seismic and volcanic hazards to politicians and planners, but they had little success obtaining funds for permanent seismic and geodetic monitoring networks. Ethiopian scientists seized the opportunity to both communicate science to the general public, and to increase pressure to develop national and regional hazard mitigation programs. The scientific aspects are equally daunting: how to coordinate international teams, each of whom has a national funding agency expecting output; how to incorporate geophysical training opportunities into field data acquisition programs; how to share seismic and geodetic data across sometimes tense political boundaries; how to allow E African scientists to be equal partners in the data analysis and interpretation? We use the response to these two volcano-seismic rifting events to illustrate ways to use short-term blue skies research projects to improve national and regional geophysical infrastructure in developing countries, and we discuss ongoing programs to communicate science to pastoralists and planners.

  20. Deformation regime and long-term precursors to eruption at large calderas: Rabaul, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Robertson, Robert M.; Kilburn, Christopher R. J.

    2016-03-01

    Eruptions at large calderas are normally preceded by variable rates of unrest that continue for decades or more. A classic example is the 1994 eruption of Rabaul caldera, in Papua New Guinea, which began after 23 years of surface uplift and volcano-tectonic (VT) seismicity at rates that changed unevenly with time by an order of magnitude. Although the VT event rate and uplift rate peaked in 1983-1985, eruptions only began a decade later and followed just 27 hours of anomalous changes in precursory signal. Here we argue that the entire 23 years of unrest belongs to a single sequence of damage accumulation in the crust and that, in 1991-1992, the crust's response to applied stress changed from quasi-elastic (elastic deformation with minor fault movement) to inelastic (deformation predominantly by fault movement alone). The change in behaviour yields limiting trends in the variation of VT event rate with deformation and can be quantified with a mean-field model for an elastic crust that contains a dispersed population of small faults. The results show that identifying the deformation regime for elastic-brittle crust provides new criteria for using precursory time series to evaluate the potential for eruption. They suggest that, in the quasi-elastic regime, short-term increases in rates of deformation and VT events are unreliable indicators of an imminent eruption, but that, in the inelastic regime, the precursory rates may follow hyperbolic increases with time and offer the promise of developing forecasts of eruption as much as months beforehand.

  1. Seismo-acoustic evidence for an avalanche driven phreatic eruption through a beheaded hydrothermal system: An example from the 2012 Tongariro eruption

    NASA Astrophysics Data System (ADS)

    Jolly, A. D.; Jousset, P.; Lyons, J. J.; Carniel, R.; Fournier, N.; Fry, B.; Miller, C.

    2014-10-01

    The 6 August 2012 Te Maari eruption comprises a complex eruption sequence including multiple eruption pulses, a debris avalanche that propagated ~ 2 km from the vent, and the formation of a 500 m long, arcuate chasm, located ~ 300 m from the main eruption vent. The eruption included 6 distinct impulses that were coherent across a local infrasound network marking the eruption onset at 11:52:18 (all times UTC). An eruption energy release of ~ 3 × 1012 J was calculated using a body wave equation for radiated seismic energy. A similar calculation based on the infrasound record, shows that ~ 90% of the acoustic energy was released from three impulses at onset times 11:52:20 (~ 20% of total eruption energy), 11:52:27 (~ 50%), and 11:52:31 (~ 20%). These energy impulses may coincide with eyewitness accounts describing an initial eastward directed blast, followed by a westward directed blast, and a final vertical blast. Pre-eruption seismic activity includes numerous small unlocatable micro-earthquakes that began at 11:46:50. Two larger high frequency earthquakes were recorded at 11:49:06 and 11:49:21 followed directly by a third earthquake at 11:50:17. The first event was located within the scarp based on an arrival time location from good first P arrival times and probably represents the onset of the debris avalanche. The third event was a tornillo, characterised by a 0.8 Hz single frequency resonance, and has a resonator attenuation factor of Q ~ 40, consistent with a bubbly fluid filled resonator. This contrasts with a similar tornillo event occurring 2.5 weeks earlier having Q ~ 250-1000, consistent with a dusty gas charged resonator. We surmise from pre-eruption seismicity, and the observed attenuation change, that the debris avalanche resulted from the influx of fluids into the hydrothermal system, causing destabilisation and failure. The beheaded hydrothermal system may have then caused depressurisation frothing of the remaining gas charged system leading to the

  2. A caldera-forming eruption ~ 14,100 14C yr BP at Popocatépetl volcano, México: Insights from eruption dynamics and magma mixing

    NASA Astrophysics Data System (ADS)

    Sosa-Ceballos, Giovanni; Gardner, James E.; Siebe, Claus; Macías, José L.

    2012-02-01

    Volcán Popocatépetl (México) erupted ~ 14,100 14 C yr BP (~ 17,000 cal yr BP) producing the Tutti Frutti Plinian Eruption (TFPE). The eruption tapped two different silicic magmas (GT and MT) that mixed just prior and during the eruption, resulting in the collapse of the reservoir and formation of a caldera. Two fall deposits (GT and MT) and two series of pyroclastic flows (P01 and P02) were emplaced during the eruption. These were studied at 91 sites, where thicknesses were measured, and at many sites the five coarsest lithics observed in each unit were measured. Several samples from deposits were sieved for component analysis. The eruption began with intermittent, short lived eruptions that deposited the GT unit at proximal sites around the volcano. Next, the main Plinian phase of the eruption started, and the MT unit and a pyroclastic flow were deposited to the northwest of the present-day cone. Overall, ~ 3 km3 of magma were erupted. The pyroclastic flow within MT separates two fall units characterized by different pumice color and lithic content. During deposition of the lower unit (milky pumice) eruptive intensity reached 3 × 108 kg s- 1, producing a Plinian column 37 ± 2 km in height. After emplacement of the pyroclastic flow, a lithic-rich upper unit (orange pumice) was deposited with a peak intensity of 5 × 108 kg s- 1, producing a Plinian column 44 ± 2 km in height. Lithics in the TFPE vary from only volcanic (~ 5 vol.%) in GT, to volcanic, granodiorite, and metamorphic (up to 50 vol.%) in MT. The shift in components and lithic content was produced by the collapse of the reservoir. We suggest that the reservoir was over-pressured because of mixing between GT and MT magmas, and then relaxed when all of GT, and part of MT magma were tapped, triggering collapse. The characteristics of mixing were elucidated by studying banded pumice and mixed populations of crystals found in pumice from both units. In addition, the occurrence of An-rich plagioclase, Mg

  3. Aurorae and Volcanic Eruptions

    NASA Astrophysics Data System (ADS)

    2001-06-01

    Thermal-IR Observations of Jupiter and Io with ISAAC at the VLT Summary Impressive thermal-infrared images have been obtained of the giant planet Jupiter during tests of a new detector in the ISAAC instrument on the ESO Very Large Telescope (VLT) at the Paranal Observatory (Chile). . They show in particular the full extent of the northern auroral ring and part of the southern aurora. A volcanic eruption was also imaged on Io , the very active inner Jovian moon. Although these observations are of an experimental nature, they demonstrate a great potential for regular monitoring of the Jovian magnetosphere by ground-based telescopes together with space-based facilities. They also provide the added benefit of direct comparison with the terrestrial magnetosphere. PR Photo 21a/01 : ISAAC image of Jupiter (L-band: 3.5-4.0 µm) . PR Photo 21b/01 : ISAAC image of Jupiter (Narrow-band 4.07 µm) . PR Photo 21c/01 : ISAAC image of Jupiter (Narrow-band 3.28 µm) . PR Photo 21d/01 : ISAAC image of Jupiter (Narrow-band 3.21 µm) . PR Photo 21e/01 : ISAAC image of the Jovian aurorae (false-colour). PR Photo 21f/01 : ISAAC image of volcanic activity on Io . Addendum : The Jovian aurorae and polar haze. Aladdin Meets Jupiter Thermal-infrared images of Jupiter and its volcanic moon Io have been obtained during a series of system tests with the new Aladdin detector in the Infrared Spectrometer And Array Camera (ISAAC) , in combination with an upgrade of the ESO-developed detector control electronics IRACE. This state-of-the-art instrument is attached to the 8.2-m VLT ANTU telescope at the ESO Paranal Observatory. The observations were made on November 14, 2000, through various filters that isolate selected wavebands in the thermal-infrared spectral region [1]. They include a broad-band L-filter (wavelength interval 3.5 - 4.0 µm) as well as several narrow-band filters (3.21, 3.28 and 4.07 µm). The filters allow to record the light from different components of the Jovian atmosphere

  4. Aurorae and Volcanic Eruptions

    NASA Astrophysics Data System (ADS)

    2001-06-01

    Thermal-IR Observations of Jupiter and Io with ISAAC at the VLT Summary Impressive thermal-infrared images have been obtained of the giant planet Jupiter during tests of a new detector in the ISAAC instrument on the ESO Very Large Telescope (VLT) at the Paranal Observatory (Chile). . They show in particular the full extent of the northern auroral ring and part of the southern aurora. A volcanic eruption was also imaged on Io , the very active inner Jovian moon. Although these observations are of an experimental nature, they demonstrate a great potential for regular monitoring of the Jovian magnetosphere by ground-based telescopes together with space-based facilities. They also provide the added benefit of direct comparison with the terrestrial magnetosphere. PR Photo 21a/01 : ISAAC image of Jupiter (L-band: 3.5-4.0 µm) . PR Photo 21b/01 : ISAAC image of Jupiter (Narrow-band 4.07 µm) . PR Photo 21c/01 : ISAAC image of Jupiter (Narrow-band 3.28 µm) . PR Photo 21d/01 : ISAAC image of Jupiter (Narrow-band 3.21 µm) . PR Photo 21e/01 : ISAAC image of the Jovian aurorae (false-colour). PR Photo 21f/01 : ISAAC image of volcanic activity on Io . Addendum : The Jovian aurorae and polar haze. Aladdin Meets Jupiter Thermal-infrared images of Jupiter and its volcanic moon Io have been obtained during a series of system tests with the new Aladdin detector in the Infrared Spectrometer And Array Camera (ISAAC) , in combination with an upgrade of the ESO-developed detector control electronics IRACE. This state-of-the-art instrument is attached to the 8.2-m VLT ANTU telescope at the ESO Paranal Observatory. The observations were made on November 14, 2000, through various filters that isolate selected wavebands in the thermal-infrared spectral region [1]. They include a broad-band L-filter (wavelength interval 3.5 - 4.0 µm) as well as several narrow-band filters (3.21, 3.28 and 4.07 µm). The filters allow to record the light from different components of the Jovian atmosphere

  5. NEW ASPECTS OF A LID-REMOVAL MECHANISM IN THE ONSET OF AN ERUPTION SEQUENCE THAT PRODUCED A LARGE SOLAR ENERGETIC PARTICLE (SEP) EVENT

    SciTech Connect

    Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David A.; Knox, Javon M. E-mail: ron.moore@nasa.gov

    2014-06-20

    We examine a sequence of two ejective eruptions from a single active region on 2012 January 23, using magnetograms and EUV images from the Solar Dynamics Observatory's (SDO) Helioseismic and Magnetic Imager (HMI) and Atmospheric and Imaging Assembly (AIA), and EUV images from STEREO/EUVI. This sequence produced two coronal mass ejections (CMEs) and a strong solar energetic particle event (SEP); here we focus on the magnetic onset of this important space weather episode. Cheng et al. showed that the first eruption's ({sup E}ruption 1{sup )} flux rope was apparent only in ''hotter'' AIA channels, and that it removed overlying field that allowed the second eruption ({sup E}ruption 2{sup )} to begin via ideal MHD instability; here we say that Eruption 2 began via a ''lid removal'' mechanism. We show that during Eruption 1's onset, its flux rope underwent a ''tether weakening'' (TW) reconnection with field that arched from the eruption-source active region to an adjacent active region. Standard flare loops from Eruption 1 developed over Eruption 2's flux rope and enclosed filament, but these overarching new loops were unable to confine that flux rope/filament. Eruption 1's flare loops, from both TW reconnection and standard-flare-model internal reconnection, were much cooler than Eruption 2's flare loops (GOES thermal temperatures of ∼7.5 MK and 9 MK, compared to ∼14 MK). The corresponding three sequential GOES flares were, respectively, due to TW reconnection plus earlier phase Eruption 1 tether-cutting reconnection, Eruption 1 later-phase tether-cutting reconnection, and Eruption 2 tether-cutting reconnection.

  6. South Africa

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This true-color image of South Africa was acquired on May 14, 2000, by NASA's Moderate-resolution Imaging Spectroradiometer, or MODIS. The image was produced using a combination of the sensor's 250-m and 500-m resolution visible wavelength bands. As part of the opening ceremony to begin the joint U.S.-South Africa SAFARI Field Experiment, NASA presented print copies of this image as GIFts to Dr. Ben Ngubane, Minister of Arts, Science and Technology, and Honorable Advocate Ngoaka Ramathlodi, Premier of the Northern Province, South Africa. The area shown in this image encompasses seven capital cities and a number of the region's distinctive geological features can be seen clearly. Toward the northern (top) central part of the image, the browns and tans comprise the Kalahari Desert of southern Botswana. The Tropic of Capricorn runs right through the heart of the Kalahari and the Botswanan capital city of Gaborone sits on the Limpopo River, southeast of the Kalahari. Along the western coastline of the continent is the country of Namibia, where the Namib Desert is framed against the sea by the Kaokoveld Mountains. The Namibian capital of Windhoek is obscured by clouds. Looking closely in the center of the image, the Orange River can be seen running from east to west, demarcating the boundary between Namibia and South Africa. On the southwestern corner of the continent is the hook-like Cape of Good Hope peninsula and Cape Town, the parliamentary capital of South Africa. Running west to east away from Cape Town are the Great Karroo Mountains. The shadow in this image conveys a sense of the very steep grade of the cliffs along the southern coast of South Africa. Port Elizabeth sits on the southeasternmost point of South Africa, and a large phytoplankton bloom can be seen in the water about 100 miles east of there. Moving northward along the east coast, the Drakensberg Mountains are visible. The two small nations of Lesotho and Swaziland are in this region, completely

  7. ASTER Observations of Recent Thermal Activity and Explosive Eruption at Oldoinyo Lengai, Tanzania

    NASA Astrophysics Data System (ADS)

    Vaughan, R. G.; Abrams, M. J.; Kervyn, M.; Hook, S. J.

    2007-12-01

    Oldoinyo Lengai (OL) is the only active volcano in the world that produces natro-carbonatite lava. These carbonate-rich lavas are unique in that they have relatively low temperatures (500-600 C) compared with typical silicate lavas (600-1100 C), and they have a low viscosity, behaving more like a mud flow than a lava flow. OL has been erupting on and off since 1983, mostly resulting in small lava flows, pools and spatter cones (hornitos) confined to the summit crater. Explosive, ash-producing eruptions here are rare, however, an ASTER observation from September 4, 2007 caught the first satellite image of an ash plume erupting from OL, which may be indicative of a new phase of more silica-rich products and explosive activity that has not occurred here since the 1960s. Thermal infrared satellite monitoring has detected an increasing number of thermal anomalies around OL in recent months. MODIS MODVOLC data detected >30 hot spots in the last week of August and first week of September 2007, some of which may have been brush fires started by lava flows or spatter; ASTER detected the appearance of an anomalous hot spot at the summit of OL as early as mid-June. We will present up-to date information about the progress of the eruption and results from the analysis of the spectral composition of new eruption products and thermal anomalies that occurred prior to the recent explosive eruption. OL is one of many volcanoes in the world, and especially Africa, that is not regularly monitored. It is only through sporadic reports from locals or tourists in the area, and satellite data that we know anything at all about this volcanic eruption. Continued satellite monitoring along with studies of past thermal activity will help determine how future eruptions may be forecasted.

  8. The Lusi eruption and implications for understanding fossil piercement structures in sedimentary basins

    NASA Astrophysics Data System (ADS)

    Svensen, Henrik; Mazzini, Adriano; Planke, Sverre; Hadi, Soffian

    2016-04-01

    The Lusi eruption started in northeast Java, Indonesia, on May 29th 2006, and it has been erupting rocks, mud, water, and gas ever since. We have been doing field work and research on Lusi ever since the eruption commenced. This work was initially motivated from studying the initiation of a mud volcano. However, the longevity of the eruption has made it possible to describe and monitor the lifespan of this unique piercement structure. . One of the first-order questions regarding the eruption is how it should be classified and if there are any other modern or fossil analogues that can place Lusi in a relevant geological context. During the initial stages of eruption, Lusi was classified as a mud volcano, but following geochemical studies the eruption did not show the typical CH4-dominated gas composition of other mud volcanoes and the temperature was also too high. Moreover, mud volcano eruptions normally last a few days, but Lusi never stopped during the past decade. In particular, the crater fluid geochemistry suggests a connection to the neighboring volcanic complex. Lusi represent a sedimentary hosted hydrothermal system. This opens up new possibilities for understanding fossil hydrothermal systems in sedimentary basins, such as hydrothermal vent complexes and breccia-pipes found in sedimentary basins affected by the formation of Large igneous provinces. We will present examples from the Karoo Basin (South Africa) and the Vøring Basin (offshore Norway) and discuss how Lusi can be used to refine existing formation models. Finally, by comparing Lusi to fossil hydrothermal systems we may get insight into the processes operating at depth where the Lusi system interacts with the igneous rocks of the neighbouring volcanic arc.

  9. A Ground Deformation Monitoring Approach to Understanding Magma Chamber Systems and Eruptive Cycles of Mount Cameroon

    NASA Astrophysics Data System (ADS)

    Riley, S.; Clarke, A.

    2005-05-01

    Mount Cameroon is a 13,400ft basanite volcano on the passive margin of West Africa. It has erupted seven times in the past century making it one of the most active volcanoes in Africa. Most recently Mount Cameroon erupted in 1999 and 2000 first issuing strombolian explosions from vents near the summit, and later erupting effusively from a fissure running southwest from the summit (Suh et al., 2003). Prior to 2004, the only monitoring equipment on Mount Cameroon was a small seismometer network installed following the 1982 eruption. By 1999 only a single seismometer in the network was functional. Seismic activity did not rise above background levels until the few days immediately preceding the eruption. In an effort to raise awareness of the volcano's condition and provide a more efficient warning of impending eruptions we have begun constructing a ground deformation network on Mount Cameroon. The new network currently consists of two Applied Geomechanics 711-2A(4X) biaxial tiltmeters capable of resolving 0.1 microradians of tilt. One station is located approximately 500 m from the 2000 summit vent, and the other is approximately 1km away from the central fissure approximately 5km southwest of the 2000 summit vent. Three primary processes could precede eruptions at Mt. Cameroon, offering the opportunity for detection and prediction by our network. These processes are magma chamber pressurization, magma ascent via a central conduit, and/or propagation of magma along the central fissure. Magma chamber location, if a significant chamber exists, is poorly constrained, however, previous petrologic studies on Mount Cameroon (Suh et al., 2003; Fitton et al., 1983) suggest Mount Cameroon magmas originate at a depth less than 40km. Published seismic data (Ambeh, 1989) contains evidence of magmatic activity and possible chambers at depths ranging from 10km to 70km. Preliminary calculations using a simple Mogi model suggest deformation caused by pressurization of a large

  10. The Largest Holocene Eruption of the Central Andes Found

    NASA Astrophysics Data System (ADS)

    Fernandez-Turiel, J.; Rodriguez-Gonzalez, A.; Saavedra, J.; Perez-Torrado, F.; Carracedo, J.; Osterrieth, M.; Carrizo, J.; Esteban, G.

    2013-12-01

    We present new data and interpretation about a major eruption -spreading ˜110 km3 ashes over 440.000 km2- long thought to have occurred around 4200 years ago in the Cerro Blanco Volcanic Complex (CBVC) in NW Argentina. This eruption may be the biggest during the past five millennia in the Central Volcanic Zone of the Andes, and possibly one of the largest Holocene eruptions in the world. The environmental effects of this voluminous eruption are still noticeable, as evidenced by the high content of arsenic and other trace elements in the groundwaters of the Chacopampean Plain. The recognition of this significant volcanic event may shed new light on interpretations of critical changes observed in the mid-Holocene paleontological and archaeological records, and offers researchers an excellent, extensive regional chronostratigraphic marker for reconstructing mid-Holocene geological history over a wide geographical area of South America. More than 100 ashes were sampled in Argentina, Chile and Uruguay during different field campaigns. Ash samples were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), grain size distributions laser diffraction, and geochemically by electron microprobe (EMPA) and laser ablation-HR-ICP-MS. New and published 14C ages were calibrated to calendar years BP. The age of the most recent CBVC eruption is 4407-4093 cal y BP, indirectly dated by 14C of associated organic sediment within the lower part of a proximal fall deposit of this event (26°53'16.05"S-67°44'48.68"W). This is the youngest record of a major volcanic event in the Southern Puna. This age is consistent with other radiocarbon dates of organic matter in palaeosols underlying or overlying distal ash fall deposits. Based on their products, all of rhyolitic composition, we have distinguished 8 main episodes during the evolution of the most recent CBVC eruption: 1) the eruption began with a white rhyolite lava dome extrusion; 2) followed by a Plinian

  11. Evidence for Gradual External Reconnection Before Explosive Eruption of a Solar Filament

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Moore, Ronald L.

    2004-01-01

    evolution is consistent with gradual breakout that led to (and perhaps caused) the fast eruption. Tether-cutting reconnection below the filament begins early in the rapid ejection. but our data are not complete enough to determine whether this reconnection began early enough to be the cause of the fast-phase onset. Thus, our observations are consistent with gradual breakout reconnection causing the long slow rise of the filament, but allow the cause of the sudden onset of the explosive fast phase to be either a jump in the breakout reconnection rate or the onset of runaway tether-cutting reconnection. or both.

  12. Evidence for Gradual External Reconnection Before Explosive Eruption of a Solar Filament

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Moore, Ronald L.

    2003-01-01

    . The pre-eruption evolution is consistent with gradual breakout that led to (and perhaps caused) the fast eruption. Tether-cutting reconnection below the filament begins early in the rapid ejection, but our data are not complete enough to determine whether this reconnection began early enough to be the cause of the fast-phase onset. Thus, our observations are consistent with gradual breakout reconnection causing the long slow rise of the filament, but allow the cause of the sudden onset of the explosive fast phase to be either a jump in the breakout reconnection rate or the onset of runaway tether-cutting reconnection, or both.

  13. The 2005 eruption of Sierra Negra volcano, Galápagos, Ecuador

    USGS Publications Warehouse

    Geist, Dennis J.; Harpp, Karen S.; Naumann, Terry R.; Poland, Michael P.; Chadwick, William W.; Hall, Minard; Rader, Erika

    2008-01-01

    Sierra Negra volcano began erupting on 22 October 2005, after a repose of 26 years. A plume of ash and steam more than 13 km high accompanied the initial phase of the eruption and was quickly followed by a ~2-km-long curtain of lava fountains. The eruptive fissure opened inside the north rim of the caldera, on the opposite side of the caldera from an active fault system that experienced an mb 4.6 earthquake and ~84 cm of uplift on 16 April 2005. The main products of the eruption were an `a`a flow that ponded in the caldera and clastigenic lavas that flowed down the north flank. The `a`a flow grew in an unusual way. Once it had established most of its aerial extent, the interior of the flow was fed via a perched lava pond, causing inflation of the `a`a. This pressurized fluid interior then fed pahoehoe breakouts along the margins of the flow, many of which were subsequently overridden by `a`a, as the crust slowly spread from the center of the pond and tumbled over the pahoehoe. The curtain of lava fountains coalesced with time, and by day 4, only one vent was erupting. The effusion rate slowed from day 7 until the eruption’s end two days later on 30 October. Although the caldera floor had inflated by ~5 m since 1992, and the rate of inflation had accelerated since 2003, there was no transient deformation in the hours or days before the eruption. During the 8 days of the eruption, GPS and InSAR data show that the caldera floor deflated ~5 m, and the volcano contracted horizontally ~6 m. The total eruptive volume is estimated as being ~150×106m3. The opening-phase tephra is more evolved than the eruptive products that followed. The compositional variation of tephra and lava sampled over the course of the eruption is attributed to eruption from a zoned sill that lies 2.1 km beneath the caldera floor.

  14. Numerical Modeling of Sound from the Eruption of Anatahan Volcano, Mariana Islands

    NASA Astrophysics Data System (ADS)

    Park, M.; Dziak, R. P.; Byun, S.; Fox, C. G.; Matsumoto, H.

    2003-12-01

    NOAA VENTS Program deployed an array of five autonomous underwater hydrophones within the SOFAR channel along the Mariana chain in February 2003 to monitor seafloor volcanic eruptions and submarine earthquakes (sponsored by NOAA's Ocean Exploration Program). These five hydrophones will be recovered in September 2003 using KORDI R/V Onnuri. The first historical eruption of Anatahan volcano in the Mariana Islands began on 10 May 2003. It is expected that the hydrophone data will include the hydroacoustic records of the eruption of Anatahan Volcano. The signals recorded from the eruption will be numerically modeled using a T-wave excitation mechanism developed from the mode scattering theory of Park et al. (2001). They found that scattering from the rough seabottom converts the acoustic energy of seafloor earthquakes from the directly excited ocean crustal/water column modes to the propagating acoustic modes of T-waves, and developed an algorithm to numerically model oceanic earthquake's T-waves. We modified this numerical model of Park et al. (2001) to predict the T-waves generated from volcanic sources by adopting a buried magmatic pipe model (Chouet, 1985). We derived a moment-tensor representation of a volcano-seismic source that is governed by the geometry of the source and the physical properties of magma. Numerical modeling of the sound from the eruption requires us to determine governing factors such as the pipe radius and magma viscosity that will enable us to grasp the inward nature of Anatahan volcano.

  15. Volcanic eruption detection with TOMS

    NASA Technical Reports Server (NTRS)

    Krueger, Arlin J.

    1987-01-01

    The Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) is designed for mapping of the atmospheric ozone distribution. Absorption by sulfur dioxide at the same ultraviolet spectral wavelengths makes it possible to observe and resolve the size of volcanic clouds. The sulfur dioxide absorption is discriminated from ozone and water clouds in the data processing by their spectral signatures. Thus, the sulfur dioxide can serve as a tracer which appears in volcanic eruption clouds because it is not present in other clouds. The detection limit with TOMS is close to the theoretical limit due to telemetry signal quantization of 1000 metric tons (5-sigma threshold) within the instrument field of view (50 by 50 km near the nadir). Requirements concerning the use of TOMS in detection of eruptions, geochemical cycles, and volcanic climatic effects are discussed.

  16. Volcanic eruptions and solar activity

    NASA Technical Reports Server (NTRS)

    Stothers, Richard B.

    1989-01-01

    The historical record of large volcanic eruptions from 1500 to 1980 is subjected to detailed time series analysis. In two weak but probably statistically significant periodicities of about 11 and 80 yr, the frequency of volcanic eruptions increases (decreases) slightly around the times of solar minimum (maximum). Time series analysis of the volcanogenic acidities in a deep ice core from Greenland reveals several very long periods ranging from about 80 to about 350 yr which are similar to the very slow solar cycles previously detected in auroral and C-14 records. Solar flares may cause changes in atmospheric circulation patterns that abruptly alter the earth's spin. The resulting jolt probably triggers small earthquakes which affect volcanism.

  17. Eruption column modeling of supervolcanoes

    NASA Astrophysics Data System (ADS)

    Dobran, F.

    2010-12-01

    Eruption columns consists of multiphase mixtures of gases and particulate matter in thermodynamic non-equilibrium, and tracking the multitude of interfaces associated with the liquid, solid, and plastic bodies of a wide spectrum of sizes is not practical. The current modeling practice is to use different averaging procedures by employing single-phase continuum models or those from the kinetic theory, together with various conditions that specify the microphysical processes of mixtures. But these models are inadequate to model the eruption columns of supervolcanoes, where the plumes reach the stratosphere and phase change processes contribute to the columns’ dispersion properties on the regional and global scales. A more effective multiphase flow modeling procedure is presented and its computer implementation is discussed.

  18. Solar Eruptions and Energetic Particles

    NASA Astrophysics Data System (ADS)

    Gopalswamy, Natchimuthukonar; Mewaldt, Richard; Torsti, Jarmo

    Coronal mass ejections (CMEs) are the most energetic events in the heliosphere. During solar cycle 23, the close connection between CMEs and solar energetic particles (SEPs) was studied in much greater detail than was previously possible, including effects on space weather. This book reviews extensive observations of solar eruptions and SEPs from orbiting and ground-based systems. From SOHO and ACE to RHESSI and TRACE, we now have measurements of unprecedented sensitivity by which to test assumptions and refine models. Discussion and analysis of: • Coronal mass ejections and energetic particles over one solar cycle • Implications of solar eruptions for space weather and human space exploration • The elemental, isotopic, and ionic charge state composition of accelerated particles • Complex interconnections among CMEs, flares, shocks, and energetic particles will make this book an indispensable resource for scientists working on the Sun-Earth connection, including space physicists, magnetospheric physicists, atmospheric physicists, astrophysicists, and aeronomists.

  19. The 1883 eruption of Krakatau

    NASA Technical Reports Server (NTRS)

    Self, S.; Rampino, M. R.

    1981-01-01

    The 1883 eruption of Krakatau was a modest ignimbrite-forming event. The deposits are primarily coarse-grained dacitic, non-welded ignimbrite. Large explosions produced pyroclastic flows that entered the sea, generating destructive tsunami. Grain-size studies of the ignimbrite suggest that these explosions were not driven by magma-seawater interaction. The total bulk volume of pyroclastic deposits, including co-ignimbrite ash, is estimated to be 18-21 cu km.

  20. Mass eruptions from the Sun

    NASA Astrophysics Data System (ADS)

    Green, Lucie

    2015-08-01

    This review talk will address the recent developments and current understanding of the physical mechanisms that underlie the ejection of matter and magnetic field from the atmosphere of the Sun, known as coronal mass ejections. These eruptions are intitiated within and between active regions throughout an active region's entire lifetime; from the emergence phase, when strong and concentrated magnetic fields are present, through the long decay phase during which time the active region magnetic field fragments and disperses over a larger and larger area, eventually fading into the background quiet sun magnetic field. All coronal mass ejection models invoke the presence of a twisted magnetic field configuration known as a magnetic flux rope either before or after eruption. The observational identification of these structures using remote sensing data of the lower solar atmosphere will be discussed. Do such magnetic field configurations exist in the solar atmosphere prior to the eruption? And if so what can they tell us about the physical mechanisms that trigger and drive coronal mass ejections and the timescales over which an eruptive magnetic field configuration forms? However, not all coronal mass ejections are easily identifiable at the Sun. For example, in situ observations of coronal mass ejections in interplanetary space reveal small magnetic flux rope coronal mass ejections which are not detected leaving the Sun using the remote sensing data. And so-called stealth coronal mass ejections which also have no lower atmosphere signatures. Are there different populations of flux ropes that have different origins? And what might this say about the physical mechanisms behind coronal mass ejections and the consequences for the Sun's evolving global magnetic field?

  1. Medical effects of volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Baxter, Peter J.

    1990-09-01

    Excluding famine and tsunamis, most deaths in volcanic eruptions have been from pyroclastic flows and surges (nuées ardentes) and wet debris flows (lahars). Information on the causes of death and injury in eruptions is sparse but the available literature is summarised for the benefit of volcanologists and emergency planners. In nuées, thermal injury may be at least as important as asphyxia in causing immediate deaths. The high temperature of the gases and entrained particles readily causes severe burns to the skin and the air passages and the presence of both types of injury in an individual may combine to increase the delayed mortality risk from respiratory complications or from infection of burns. Trauma from missiles or body displacement is also common, but the role of asphyxiant or irritant gases, and steam, remains unclear. The ratio of dead: injured is much higher than in other natural disasters. At the periphery of a nuée being protected inside buildings which remain intact appears to greatly increase the chances of survival. In lahars, infected wounds and crush injury are the main delayed causes of death, and the scope for preventive measures, other than evacuation, is small. The evidence from Mount St. Helens, 1980, and other major eruptions indicates that, although mortality is high within the main zone of devastation and in the open, emergency planning should concentrate on the periphery of a nuée where preventive measures are feasible and could save many lives in densely populated areas.

  2. Continuous overnight observation of human premolar eruption.

    PubMed

    Risinger, R K; Proffit, W R

    1996-01-01

    Such observation was made possible by transmitting the image of a mobile ceramic ruling on the erupting maxillary second premolar to a video-microscope via a coaxial fibreoptic cable. The cable was inserted into a reference bar secured to the adjacent first molar and first premolar. The image of the ruling was superimposed with the image from a surveillance camera focused on the patient and continuously recorded on video-tape along with the participant's blood pressure, pulse rate, electromyographic activity and occlusal contact sounds. Overnight data from 12 individuals clearly revealed a circadian rhythm in eruption during the prefunctional spurt. On average, the maxillary second premolar erupted 41 microns during an 11-h overnight observation, with almost all the eruption occurring in the late evening from 8 p.m. to 1 a.m. After 1 a.m., eruption typically ceased, with a tendency for intrusion to occur until 7 a.m. Sleep increased the rate of eruption during the late evening, but did not influence the eruption rate during the early morning. Haemodynamic changes, including blood pressure and pulse rate, did not have a significant impact on the rhythm of eruption. The observed eruption rhythm is most probably caused by changing hormone levels and their effect on the periodontal ligament. The late-evening eruption of human premolars coincides with the late-evening secretion of growth hormone and thyroid hormone typically found in humans. PMID:9022915

  3. Inter-eruptive volcanism at Usu volcano: Micro-earthquakes and dome subsidence

    NASA Astrophysics Data System (ADS)

    Aoyama, H.; Onizawa, S.; Kobayashi, T.; Tameguri, T.; Hashimoto, T.; Oshima, H.; Mori, H.

    2009-12-01

    magma rising under the summit crater during the 2000 eruption stopped around a depth of 2 km below sea level, which is sufficiently deep relative to the focal area of the present seismicity. A part of magma intruded under the western foot and contributed to the 2000 eruption. We conclude that the 2000 eruption scarcely affected the shallow crustal activity under the summit crater, and that Usu-Shinzan cryptodome is continuing to subside just as it was before the 2000 eruption. The shallow volcanic earthquakes that began increasing from 1995 are closely related to the successive subsidence of the summit domes. Temporal change in fumarole temperature suggests a relationship between the shallow earthquakes and cooling of the magma that intruded under Usu-Shinzan during the 1977-1982 eruption.

  4. Inter-eruptive volcanism at Usu volcano: Micro-earthquakes and dome subsidence

    NASA Astrophysics Data System (ADS)

    Aoyama, Hiroshi; Onizawa, Shin'ya; Kobayashi, Tomokadu; Tameguri, Takeshi; Hashimoto, Takeshi; Oshima, Hiromitsu; Mori, Hitoshi Y.

    2009-11-01

    magma rising under the summit crater during the 2000 eruption stopped around a depth of 2 km below sea level, which is sufficiently deep relative to the focal area of the present seismicity. A part of the magma intruded under the western foot and contributed to the 2000 eruption. We conclude that the 2000 eruption scarcely affected the shallow crustal activity under the summit crater, and that Usu-Shinzan cryptodome is continuing to subside just as it was before the 2000 eruption. The shallow volcanic earthquakes that began increasing from 1995 are closely related to the successive subsidence of the summit domes. Temporal change in fumarole temperature suggests a relationship between the shallow earthquakes and cooling of the magma that intruded under Usu-Shinzan during the 1977-1982 eruption.

  5. The 2013 Eruptions of Pavlof and Mount Veniaminof Volcanoes, Alaska

    NASA Astrophysics Data System (ADS)

    Schneider, D. J.; Waythomas, C. F.; Wallace, K.; Haney, M. M.; Fee, D.; Pavolonis, M. J.; Read, C.

    2013-12-01

    Pavlof Volcano and Mount Veniaminof on the Alaska Peninsula erupted during the summer of 2013 and were monitored by the Alaska Volcano Observatory (AVO) using seismic data, satellite and web camera images, a regional infrasound array and observer reports. An overview of the work of the entire AVO staff is presented here. The 2013 eruption of Pavlof Volcano began on May 13 after a brief and subtle period of precursory seismicity. Two volcano-tectonic (VT) earthquakes at depths of 6-8 km on April 24 preceded the onset of the eruption by 3 weeks. Given the low background seismicity at Pavlof, the VTs were likely linked to the ascent of magma. The onset of the eruption was marked by subtle pulsating tremor that coincided with elevated surface temperatures in satellite images. Activity during May and June was characterized by lava fountaining and effusion from a vent near the summit. Seismicity consisted of fluctuating tremor and numerous explosions that were detected on an infrasound array (450 km NE) and as ground-coupled airwaves at local and distant seismic stations (up to 650 km). Emissions of ash and sulfur dioxide were observed in satellite data extending as far as 300 km downwind at altitudes of 5-7 km above sea level. Ash collected in Sand Point (90 km E) were well sorted, 60-150 micron diameter juvenile glass shards, many of which had fluidal forms. Automated objective ash cloud detection and cloud height retrievals from the NOAA volcanic cloud alerting system were used to evaluate the hazard to aviation. A brief reconnaissance of Pavlof in July found that lava flows on the NW flank consist of rubbly, clast rich, 'a'a flows composed of angular blocks of agglutinate and rheomorphic lava. There are at least three overlapping flows, the longest of which extends about 5 km from the vent. Eruptive activity continued through early July, and has since paused or stopped. Historical eruptions of Mount Veniaminof volcano have been from an intracaldera cone within a 10

  6. An ergodic approach to eruption hazard scaling

    NASA Astrophysics Data System (ADS)

    De la Cruz-Reyna, Servando; Mendoza-Rosas, Ana Teresa

    2014-05-01

    The complexity and indeterminacy of volcanic processes demand the use of statistical methods to analyze the expectations of the occurrence and size of future eruptions. The probability of a volcano producing potentially destructive eruptions in a given time interval may be estimated analyzing the sequence of past eruptions assuming a physically plausible process. Since the threat posed by eruptions depends on their mass or energy release (magnitude) and on their emission rate (intensity), the Volcanic Explosivity Index is a suitable measure to quantify the eruptive events, particularly considering that the largest available global catalogues use that measure. The definition of volcanic hazard is thus posed here in terms of the expected annual release of energy by eruptions in each VEI category. This concept is based on the ergodic property of a large set of volcanoes to release about the same amount of energy in each VEI category over a sufficiently large time interval. This property is however constrained to the VEI range of eruptions that constitute complete catalogues (VEI >2) in the lower end, and to the extreme eruptions that may destroy or significantly alter a volcanic system, such as the large caldera-forming eruptions (VEI < 7). In such conditions, a simple power law for eruptions at the global level relating the global rate of energy release to the eruption magnitude has been proposed as a statistical basis for eruptive event model development. Following the above mentioned arguments, we assume that a similar scaling law rules the annual rate at which energy is released by eruptions at individual volcanoes as log(EmRm)=bM+a, where Em is the energy released by eruptions in the VEI magnitude class M, and Rm is the occurrence rate of such eruptions over times ranges in which catalogues may be considered complete. The parameters b and a depend on the eruptive history of individual volcanoes, the former determining the preferred mode of the volcano to release

  7. Volcanic Eruptions and Climate: Outstanding Research Issues

    NASA Astrophysics Data System (ADS)

    Robock, Alan

    2016-04-01

    Large volcanic eruptions inject sulfur gases into the stratosphere, which convert to sulfate aerosols with an e-folding residence time of about one year. The radiative and chemical effects of this aerosol cloud produce responses in the climate system. Based on observations after major eruptions of the past and experiments with numerical models of the climate system, we understand much about their climatic impact, but there are also a number of unanswered questions. Volcanic eruptions produce global cooling, and are an important natural cause of interannual, interdecadal, and even centennial-scale climate change. One of the most interesting volcanic effects is the "winter warming" of Northern Hemisphere continents following major tropical eruptions. During the winter in the Northern Hemisphere following every large tropical eruption of the past century, surface air temperatures over North America, Europe, and East Asia were warmer than normal, while they were colder over Greenland and the Middle East. This pattern and the coincident atmospheric circulation correspond to the positive phase of the Arctic Oscillation. While this response is observed after recent major eruptions, most state-of-the-art climate models have trouble simulating winter warming. Why? High latitude eruptions in the Northern Hemisphere, while also producing global cooling, do not have the same impact on atmospheric dynamics. Both tropical and high latitude eruptions can weaken the Indian and African summer monsoon, and the effects can be seen in past records of flow in the Nile and Niger Rivers. Since the Mt. Pinatubo eruption in the Philippines in 1991, there have been no large eruptions that affected climate, but the cumulative effects of small eruptions over the past decade have had a small effect on global temperature trends. Some important outstanding research questions include: How much seasonal, annual, and decadal predictability is possible following a large volcanic eruption? Do

  8. Ice-volcano interactions during the 2010 Eyjafjallajökull eruption, as revealed by airborne imaging radar

    NASA Astrophysics Data System (ADS)

    Magnússon, E.; Gudmundsson, M. T.; Roberts, M. J.; Sigurã°Sson, G.; HöSkuldsson, F.; Oddsson, B.

    2012-07-01

    During the eruption of the ice-covered Eyjafjallajökull volcano, a series of images from an airborne Synthetic Aperture Radar (SAR) were obtained by the Icelandic Coast Guard. Cloud obscured the summit from view during the first three days of the eruption, making the weather-independent SAR a valuable monitoring resource. Radar images revealed the development of ice cauldrons in a 200 m thick ice cover within the summit caldera, as well as the formation of cauldrons to the immediate south of the caldera. Additionally, radar images were used to document the subglacial and supraglacial passage of floodwater to the north and south of the eruption site. The eruption breached the ice surface about four hours after its onset at about 01:30 UTC on 14 April 2010. The first SAR images, obtained between 08:55 and 10:42 UTC, show signs of limited supraglacial drainage from the eruption site. Floodwater began to drain from the ice cap almost 5.5 h after the beginning of the eruption, implying storage of meltwater at the eruption site due to initially constricted subglacial drainage from the caldera. Heat transfer rates from magma to ice during early stages of cauldron formation were about 1 MW m-2 in the radial direction and about 4 MW m-2 vertically. Meltwater release was characterized by accumulation and drainage with most of the volcanic material in the ice cauldrons being drained in hyperconcentrated floods. After the third day of the eruption, meltwater generation at the eruption site diminished due to an insulating lag of tephra.

  9. Reprint of "Seismic monitoring of the Plosky Tolbachik eruption in 2012-2013 (Kamchatka Peninsula Russia)"

    NASA Astrophysics Data System (ADS)

    Senyukov, S. L.; Nuzhdina, I. N.; Droznina, S. Ya.; Garbuzova, V. T.; Kozhevnikova, T. Yu.; Sobolevskaya, O. V.; Nazarova, Z. A.; Bliznetsov, V. E.

    2015-12-01

    The active basaltic volcano Plosky Tolbachik (Pl. Tolbachik) is located in the southern part of the Klyuchevskoy volcano group on the Kamchatka Peninsula. The previous 1975-1976 Great Tolbachik Fissure Eruption (1975-1976 GTFE) occurred in the southern sector of Pl. Tolbachik. It was preceded by powerful earthquakes with local magnitudes between 2.5 and 4.9 and it was successfully predicted with a short-term forecast. The Kamchatka Branch of Geophysical Survey (KBGS) of the Russian Academy of Science (RAS) began to publish the results of daily seismic monitoring of active Kamchatka volcanoes on the Internet in 2000. Unlike the 1975-1976 GTFE precursor, (1) seismicity before the 2012-2013 Tolbachik Fissure Eruption (2012-2013 TFE) was relatively weak and earthquake magnitudes did not exceed 2.5. (2) Precursory earthquake hypocenters at 0-5 km depth were concentrated mainly under the southeastern part of the volcano. (3) The frequency of events gradually increased in September 2012, and rose sharply on the eve of the eruption. (4) According to seismic data, the explosive-effusive 2012-2013 TFE began at ~ 05 h 15 min UTC on November 27, 2012; the outbreak occurred between the summit of the Pl. Tolbachik and the Northern Breakthrough of the 1975-1976 GTFE. (5) Because of bad weather, early interpretations of the onset time and the character of the eruption were made using seismological data only and were confirmed later by other monitoring methods. The eruption finished in early September 2013. This article presents the data obtained through real-time seismic monitoring and the results of retrospective analysis, with additional comments on the future monitoring of volcanic activity.

  10. Forces in Erupting Flux Ropes: CMEs and Failed Eruptions

    NASA Astrophysics Data System (ADS)

    Chen, James

    2016-05-01

    A range of dynamical behaviors that can be exhibited by a quasi-statically evolving flux rope is studied. Starting with a CME-like flux rope in equilibrium balanced by the ambient coronal pressure (non-force-free) and an overlying coronal magnetic field (Bc), the poloidal flux is slowly increased, on a timescale much longer than the eruptive timescale of several to tens of minutes. In this configuration, the overlying field Bc provides an external downward restraining force, constituting an effective potential barrier. Slowly increasing poloidal flux causes the flux rope to gradually rise, following a sequence of quasi-static equilibria. As the apex of the flux rope rises past a critical height Z*, slightly higher than the peak of the potential barrier Bc(Z), it expands on a faster, dynamical (Alfvenic) timescale determined by the magnetic field and geometry of the flux rope. The expanding flux rope may reach a new equilibrium at height Z1. Observationally, this behavior would be recognized as a ``failed eruption.'' The new equilibrium flux rope is established if the magnetic tension force due to the toroidal magnetic field component Bt can balance the outward hoop force due to the poloidal component Bp. The flux rope may also expand without reaching a new equilibrium, provided a sufficiennt amount of poloidal flux is injected on a dynamical timescale so that the tension force cannot balance the hoop force. This scenario would result in a CME eruption. The influence of the poloidal flux injection, the Bc(Z) profile, and boundary conditions on the quantitative balance of the forces in an expanding flux rope is elucidated. Potentially observable consequences of the difference scenarios/models are discussed.Work supported by the Naval Research Laboratory Base Research Program

  11. Sequence and eruptive style of the 1783 eruption of Asama Volcano, central Japan: a case study of an andesitic explosive eruption generating fountain-fed lava flow, pumice fall, scoria flow and forming a cone

    NASA Astrophysics Data System (ADS)

    Yasui, Maya; Koyaguchi, Takehiro

    The 3-month long eruption of Asama volcano in 1783 produced andesitic pumice falls, pyroclastic flows, lava flows, and constructed a cone. It is divided into six episodes on the basis of waxing and waning inferred from records made during the eruption. Episodes 1 to 4 were intermittent Vulcanian or Plinian eruptions, which generated several pumice fall deposits. The frequency and intensity of the eruption increased dramatically in episode 5, which started on 2 August, and culminated in a final phase that began on the night of 4 August, lasting for 15 h. This climactic phase is further divided into two subphases. The first subphase is characterized by generation of a pumice fall, whereas the second one is characterized by abundant pyroclastic flows. Stratigraphic relationships suggest that rapid growth of a cone and the generation of lava flows occurred simultaneously with the generation of both pumice falls and pyroclastic flows. The volumes of the ejecta during the first and second subphases are 0.21 km3 (DRE) and 0.27 km3 (DRE), respectively. The proportions of the different eruptive products are lava: cone: pumice fall=84:11:5 in the first subphase and lava: cone: pyroclastic flow=42:2:56 in the second subphase. The lava flows in this eruption consist of three flow units (L1, L2, and L3) and they characteristically possess abundant broken phenocrysts, and show extensive "welding" texture. These features, as well as ghost pyroclastic textures on the surface, indicate that the lava was a fountain-fed clastogenic lava. A high discharge rate for the lava flow (up to 106 kg/s) may also suggest that the lava was initially explosively ejected from the conduit. The petrology of the juvenile materials indicates binary mixing of an andesitic magma and a crystal-rich dacitic magma. The mixing ratio changed with time; the dacitic component is dominant in the pyroclasts of the first subphase of the climactic phase, while the proportion of the andesitic component increases in

  12. West Africa

    NASA Technical Reports Server (NTRS)

    2002-01-01

    With its vast expanses of sand, framed by mountain ranges and exposed rock, northwestern Africa makes a pretty picture when viewed from above. This image was acquired by the Moderate-resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra spacecraft. The Canary Islands can be seen on the left side of the image just off Africa's Atlantic shore. The light brown expanse running through the northern two thirds of the image is the Sahara Desert. The desert runs up against the dark brown Haut Atlas mountain range of Morocco in the northwest, the Atlantic Ocean to the west and the semi-arid (light brown pixels) Sahelian region in the South. The Sahara, however, isn't staying put. Since the 1960s, the desert has been expanding into the Sahelian region at a rate of up to 6 kilometers per year. In the 1980s this desert expansion, combined with over cultivation of the Sahel, caused a major famine across west Africa. Over the summer months, strong winds pick up sands from the Sahara and blow them across the Atlantic as far west as North America, causing air pollution in Miami and damaging coral reefs in the Bahamas and the Florida Keys. The white outlines on the map represent country borders. Starting at the top-most portion of the map and working clockwise, the countries shown are Morocco, Western Sahara, Mauritania, Senegal, Mali, Burkina Fasso, Nigeria, Mali (again), and Algeria. Image by Reto Stockli, Robert Simmon, and Brian Montgomery, NASA Earth Observatory, based on data from MODIS

  13. When do Volcanic Eruptions make Lightning? Observations from Sakurajima, Japan

    NASA Astrophysics Data System (ADS)

    Behnke, S. A.; McNutt, S. R.; Thomas, R. J.; Smith, C. M.; Edens, H. E.; Van Eaton, A. R.; Cimarelli, C.; Cigala, V.; Michel, C. W.; Miki, D.; Iguchi, M.

    2015-12-01

    Previous radio frequency (RF) observations of volcanic lightning have revealed that electrical activity frequently occurs concurrent with the onset of an explosive volcanic event. Typically, a myriad of electrical impulses originating from directly above the vent are observed first and the ensemble has durations of several seconds. The impulses are distinct from those produced by typical types of thunderstorm lightning, and have earned the moniker "continuous RF" due to their high rate and long-lasting nature . Several seconds after the onset of these impulses, small (100s of meters to several kilometers) lightning discharges occur in the plume and near the vent, and have electrical signatures similar to typical thunderstorm lightning. In eruptions with plume heights reaching 8-10 km or more, large scale (10s of kilometers) lightning discharges are observed throughout the plume several minutes after the onset of an explosive event.In May 2015, a campaign began to study the various types of small-scale electrical activity, including continuous RF, during explosive eruptions of Sakurajima volcano in Kyushu, Japan. The volcano was instrumented with two seismometers, two infrasound arrays, a high sensitivity video camera, an infrared camera, two high speed video cameras, still cameras, a 10-station Lightning Mapping Array, slow and fast electric field change sensors, and a broadband very high frequency (VHF) antenna. With these instruments, a robust data set of both the volcanic activity and electrical activity was collected. The preliminary data have revealed brief (1-2 seconds) bursts of continuous RF simultaneous with the onset of the more energetic explosions. Occurrence of continuous RF may be linked to mass eruption rate, explosivity, or grain size. Due to its unique nature, detection of continuous RF is an unambiguous indicator of explosive volcanic activity and is therefore useful for real-time volcano monitoring.

  14. Volcanism in Eastern Africa

    NASA Technical Reports Server (NTRS)

    Cauthen, Clay; Coombs, Cassandra R.

    1996-01-01

    In 1891, the Virunga Mountains of Eastern Zaire were first acknowledged as volcanoes, and since then, the Virunga Mountain chain has demonstrated its potentially violent volcanic nature. The Virunga Mountains lie across the Eastern African Rift in an E-W direction located north of Lake Kivu. Mt. Nyamuragira and Mt. Nyiragongo present the most hazard of the eight mountains making up Virunga volcanic field, with the most recent activity during the 1970-90's. In 1977, after almost eighty years of moderate activity and periods of quiescence, Mt. Nyamuragira became highly active with lava flows that extruded from fissures on flanks circumscribing the volcano. The flows destroyed vast areas of vegetation and Zairian National Park areas, but no casualties were reported. Mt. Nyiragongo exhibited the same type volcanic activity, in association with regional tectonics that effected Mt. Nyamuragira, with variations of lava lake levels, lava fountains, and lava flows that resided in Lake Kivu. Mt. Nyiragongo, recently named a Decade volcano, presents both a direct and an indirect hazard to the inhabitants and properties located near the volcano. The Virunga volcanoes pose four major threats: volcanic eruptions, lava flows, toxic gas emission (CH4 and CO2), and earthquakes. Thus, the volcanoes of the Eastern African volcanic field emanate harm to the surrounding area by the forecast of volcanic eruptions. During the JSC Summer Fellowship program, we will acquire and collate remote sensing, photographic (Space Shuttle images), topographic and field data. In addition, maps of the extent and morphology(ies) of the features will be constructed using digital image information. The database generated will serve to create a Geographic Information System for easy access of information of the Eastem African volcanic field. The analysis of volcanism in Eastern Africa will permit a comparison for those areas from which we have field data. Results from this summer's work will permit

  15. Adverse reaction of topical etofenamate: petechial eruption.

    PubMed

    Orbak, Z; Yildirim, Z K; Sepetci, O; Karakelleoglu, C; Alp, H

    2012-10-01

    Etofenamate is a non-steroidal anti-inflammatory drug (NSAID). Clinical findings caused by etofenamate are uncommon. Allergic contact dermatitis is the most common cutaneous reaction reported. But petechial eruption due to etofenamate had not been reported yet. This report concerns an 11-year old male with petechial eruption after application of topical etofenamate. Physicians need to be aware that patients can develop an asymptomatic purpuric eruption when etofenamate is ordered. PMID:23620980

  16. How and Why Do Geysers Erupt?

    NASA Astrophysics Data System (ADS)

    Manga, M.

    2014-12-01

    Geysers are features that produce episodic eruptions of water, steam and sometimes non-condensable gases. Natural geysers are rare, with fewer than 1,000 worldwide. They are more than curiosities and popular tourist attractions: they offer a direct window into geothermal processes, and may serve as a natural small-scale laboratory to study larger-scale eruptive process such as those at volcanoes, and other self-organized, intermittent processes that result from phase separation and localized input of energy and mass. Despite > 200 years of scientific study, basic questions remain: Do eruptions begin from the bottom or top of the geyser? What controls eruption duration? Why do eruptions end? What are the required special subsurface geometries? Why are some geysers periodic, and others irregular? How and why do they respond to external influences such as weather, tides, and earthquakes? This presentation will review new insights from field studies at Lone Star geyser, Yellowstone National Park, geysers in the El Tatio geyser field, Chile, and laboratory models. At Lone Star we infer that dynamics are controlled by thermal and mechanical coupling between the conduit and a deeper, laterally-offset reservoir (called a "bubble trap" in previous studies). At El Tatio, we measured pressure and temperature within geysers over multiple eruption cycles: this data document the heating of liquid water by steam delivered from below. The laboratory experiments reveal how episodic release of steam from a bubble trap prepares a conduit for eruption and can generate a range of eruption intensities. In all cases, the eruption initiation, duration and termination are controlled by the interaction between the accumulation and transport of steam and liquid, and modulated by the geometry of the geyser's plumbing. Time series of thousands of eruptions confirm that internal processes control eruptions, with only pool geysers showing a sensitivity to air temperature; only very large stress

  17. Development Communication and the New Millennium: Which Way for Africa?

    ERIC Educational Resources Information Center

    Moemeka, Andrew A.

    Since development communication began in Africa in the 1950s, it has been based on the erroneous belief, first, that development meant westernization and, later, that it meant modernization. This led to two working assumptions: that money and educated (qualified) personnel were all that was needed to create development; and that all efforts should…

  18. Winter warming from large volcanic eruptions

    NASA Technical Reports Server (NTRS)

    Robock, Alan; Mao, Jianping

    1992-01-01

    An examination of the Northern Hemisphere winter surface temperature patterns after the 12 largest volcanic eruptions from 1883-1992 shows warming over Eurasia and North America and cooling over the Middle East which are significant at the 95-percent level. This pattern is found in the first winter after tropical eruptions, in the first or second winter after midlatitude eruptions, and in the second winter after high latitude eruptions. The effects are independent of the hemisphere of the volcanoes. An enhanced zonal wind driven by heating of the tropical stratosphere by the volcanic aerosols is responsible for the regions of warming, while the cooling is caused by blocking of incoming sunlight.

  19. Tornados and Transverse Oscillations during Prominence Eruption

    NASA Astrophysics Data System (ADS)

    Banerjee, Dipankar; Chandrashekhar, K.; Morton, Richard; Pant, Vaibhav; Datta, Ajanta

    2016-07-01

    We report and analyse different phases of a prominence eruption. The winding-unwinding of two footpoints and a tornado like swirling motion is studied. The prominence eruption is observed by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO). This prominence eruption is associated with a CME at a central principal angle of 340 degree, according to the SOHO/LASCO CME catalogue. We can observe the prominence threads and the time distance maps reveal that the loop threads are entangled. We also study the transverse oscillations in the threads. Swirling motions after the eruptions are also quantified and its possible link with the CME kinematics is also studied

  20. Winter warming from large volcanic eruptions

    SciTech Connect

    Robock, A.; Mao, J.

    1992-01-01

    An examination of the Northern Hemisphere winter surface temperature patterns after the 12 largest volcanic eruptions from 1883-1992 shows warming over Eurasia and North America and cooling over the Middle East which are significant at the 95 percent level. This pattern is found in the first winter after tropical eruptions, in the first or second winter after midlatitude eruptions, and in the second winter after high latitude eruptions. The effects are independent of the hemisphere of the volcanoes. An enhanced zonal wind driven by heating of the tropical stratosphere by the volcanic aerosols is responsible for the regions of warming, while the cooling is caused by blocking of incoming sunlight.

  1. Why do Martian Magmas erupt?

    NASA Astrophysics Data System (ADS)

    Balta, J. B.; McSween, H. Y.

    2011-12-01

    Eruption of silicate lava, whether on Earth or another planet, requires that at some depth the melt has lower density than the surrounding rocks. As the densities of silicate liquids change during crystallization, whether a particular silicate liquid will erupt or be trapped at a level of neutral buoyancy is a complex yet fundamental issue for planetary dynamics. In general, 3 factors drive surface eruptions: inherent buoyancy relative to mantle phases, compositional evolution, and volatile contents. These factors manifest on Earth as terrestrial basalts commonly have compositions close to a density minimum [1]. Recent work has produced estimates of Martian parental magma compositions [2-5] based on shergottite meteorites and from Gusev crater. Using the MELTS algorithm [6] and other density calibrations, we simulated evolution of these liquids, focusing on density changes. For much of the crystallization path, density is controlled by FeO. All of the liquids begin with ρ ~ 2.8 g/cc at 1 bar, and the evolution of liquid density is controlled by the liquidus phases. At low pressures, olivine is the liquidus phase for each melt, and as FeO is not incompatible in olivine, olivine crystallization decreases liquid density, increasing buoyancy with crystallization. However, FeO is incompatible in pyroxene, and thus liquids crystallizing pyroxene become denser and less buoyant with crystallization, producing liquids with densities up to and above 3.0 g/cc. As the olivine-pyroxene saturation relationship is affected by pressure and chemistry, the identity of the liquidus phase and density evolution will vary between magmas. Without spreading centers, Mars has no location where the mantle approaches the surface, and it is likely that any magma which is denser than the crust will stall below or within that crust. The crystallization path of a liquid is a function of pressure, with pyroxene crystallizing first at P > 10 kbar (~80 km depth), close to the base of the Martian

  2. The May 2011 eruption of Grímsvötn

    NASA Astrophysics Data System (ADS)

    Gudmundsson, M. T.; Höskuldsson, Á.; Larsen, G.; Thordarson, T.; Oladottir, B. A.; Oddsson, B.; Gudnason, J.; Högnadottir, T.; Stevenson, J. A.; Houghton, B. F.; McGarvie, D.; Sigurdardottir, G. M.

    2012-04-01

    Grímsvötn is the most active volcano in Iceland with >60 known eruptions in the last 800 years. Grímsvötn is located in the centre of the 8100 km2 Vatnajökull glacier and typically produces basalts in phreatomagmatic eruptions. Magma-water interaction occurs as the eruptions quickly melt their way through 50-200 m thick ice covering a subglacial caldera lake. Most of these eruptions have been relatively modest in size (0.01-0.1 km3 DRE) causing relatively minor fallout of tephra outside Vatnajökull. After a relative quiet second half of the 20th century, a period of increased volcanic activity in Grímsvötn started in the 1990s, with basaltic phreatomagmatic eruptions occurring within the caldera in 1998 and 2004. The 2011 eruption was therefore expected. It began at 19 UTC on 21 May. The plume quickly rose to 15-20 km, forming a 50-100 km wide umbrella cloud that was maintained until late on 22 May. Heavy fallout occurred in the districts 70-100 km south of the volcano, where periods of total darkness with drifting ash closed roads and caused distress to the local population. Wind directions and plume transport varied somewhat during the eruption. After 23 May, the eruption was relatively minor, with fallout mostly confined to the Vatnajökull glacier. The eruption ended on May 28. Most of the magma was erupted in the first two days. During this period strong northerly winds were dominant at low altitude, carrying the tephra towards south as a 2-4 km high cloud, while the top part of the plume first drifted eastwards and later northwards. Most of the fallout after the first few hours came from the low southwards drifting cloud while the high plume was white in colour and with apparently low concentration of ash leading to only minor fallout. This eruption falls into a class of events that seem to happen once every 100-200 years, with previous large historical eruptions including 1619 and 1873. Preliminary estimates indicate that the eruption produced 0

  3. What Generated the Eruptive Tremor During the Bardarbunga Eruption, Iceland?

    NASA Astrophysics Data System (ADS)

    Eibl, Eva P. S.; Bean, Christopher J.; Vogfjörd, Kristin S.; Jónsdóttir, Ingibjörg; Höskuldsson, Armann; Þórðarson, Þorvaldur

    2016-04-01

    The Bárðarbunga eruption in Iceland 2014/15 led to the formation of a 85 km2 big lavafield and the extrusion of ~1.5 km3 of magma. The eruption initially started for 4 hours on August 29th. It stopped but restarted on the same fissure on August 31st. We installed a seismic array on August 30th. Harmonic tremor was seen on August 31st consistent with the visual opening of the fissure and continued through February 2015. The harmonic tremor with most energy from 0.8-1.5 Hz is remarkably stable over 6 months but 3 characteristic features occur from time to time: (i) Stronger harmonic tremor bursts in the same frequency range, (ii) Stronger non-harmonic bursts with energy up to 5 Hz and (iii) Step like increases or decreases in the tremor amplitude. Seemingly uncorrelated the array results show (iv) three very stable tremor directions until mid October and (v) tremor sources moving by up to 9 km in 4 days. We compare these five seismic observations with the features of the growing lavafield and discuss the relative importance of possible tremor sources such as: a resonating conduit, boiling magma in the vent, a resonating lavafield, interactions at the edges of the lavafield and inflation of the lavafield.

  4. South Africa.

    PubMed

    1985-05-01

    The 1983 population of South Africa was estimated at 31.1 million, with an annual growth rate of 2.5% (0.8% for whites, 1.8% for blacks and "coloreds," 1.8% for Asians, and 2.8% for Africans). The infant mortality rate was 14.9/1000 live births among whites, 80.6/1000 among blacks and coloreds, and 25.3/1000 among Asians. Life expectancy was 70 years for whites, 59 years for blacks and coloreds, 66 years for Asians, and 55 years for Africans. Racial discrimination has become increasingly institutionalized in South Africa since the ruling National Party came to power in 1948. The policy of apartheid calls for separate political institutions for the 4 major racial groups in the population. Africans are considered citizens of the homelands to which their tribal group is assigned, not permanent citizens of the country. Coloreds and Asians are considered citizens and given some political expression. The new political system envisions broad consensus among whites, coloreds, and Indians, and a parliamentary committee is considering possible abolition of laws against multiracial political activity. The work force totals 11 million, 30% of whom are engaged in agriculture, 29% are employed in industry and commerce, 34% work in the services sector, and 7% work in mining. The GNP in 1983 totalled US$75.5 billion and the GDP stood at US$73.2 billion. Per capita GNP was US$5239. PMID:12178120

  5. The 472 AD Pollena eruption of Somma-Vesuvius (Italy) and its environmental impact at the end of the Roman Empire

    NASA Astrophysics Data System (ADS)

    Mastrolorenzo, Giuseppe; Palladino, Danilo M.; Vecchio, Giuseppe; Taddeucci, Jacopo

    2002-03-01

    Catastrophic sedimentary processes associated with explosive eruptions represent a significant geologic hazard in volcanic areas. Here we report a striking historic example of an intermediate-scale explosive event whose environmental effects were strongly amplified by secondary rapid mass flows and hydrogeologic disasters. The 472 AD Pollena eruption of Somma-Vesuvius (Campania, Italy) took place in the critical period of the fall of the Western Roman Empire. On the basis of an integrated geologic-archaeologic study we point out evidence of human habitation at the time of the eruption, effects induced and recovery time in a wide territory of Campania, and how the eruption significantly accelerated the deterioration of the local society during the Late Ancient age. The eruption began with a pulsating, sustained eruption column, followed by pyroclastic surges and scoria flows. Hydromagmatism acted early in the event, different from the typical Plinian eruptions of Somma-Vesuvius. Specific facies associations of primary and secondary volcaniclastic deposits characterize three depositional domains, including the volcano slopes, the surrounding alluvial plains and the distal mountains of the Apennine Range. Both volcano slopes and distal mountain slopes supplied loose pyroclastic material to the hyperconcentrated floods and debris flows that spread across the alluvial plains. The great impact of secondary volcaniclastic processes arose from: (1) the high vulnerability of the territory due to its geomorphic context; (2) the humid climatic conditions; (3) the hydromagmatic character of the eruption; (4) the decline of land management at the end of the Roman Empire.

  6. A conceptual model of the Mount Spurr magmatic system from seismic and geochemical observations of the 1992 Crater Peak eruption sequence

    USGS Publications Warehouse

    Power, J.; Jolly, A.; Nye, C.; Harbin, M.

    2002-01-01

    A conceptual model of the geometry and dynamics of the Mount Spurr magmatic system is developed using seismic, geochemical, and visual observations of the 1992 Crater Peak eruption sequence. The basis for this model is a new classification of all located seismic events and results from prior studies of seismology, geology, geochemistry, and geophysics of the Mount Spurr area. Significant seismic features of the 1992 eruption sequence include (1) a distinct swarm of volcano-tectonic (VT) earthquakes in August 1991 directly beneath the Crater Peak vent, (2) a caldera-wide increase in VT earthquakes, lasting 7 months, which preceded the 27 June eruption, (3) two shallow swarms of VT earthquakes that occured on 5 June and 27 June, the latter immediately preceding the 27 June eruption, (4) a mix of VT, long-period (LP), and hybrid events at depths of 20-40 km, which began coincident with the onset of seismic unrest and reached a peak after eruptive activity ended, (5) a strong swarm of VT earthquakes that began as the 16-17 September eruption was ending, (6) a prominent swarm of VT earthquakes on 9-10 November at depths of 1 to 4 km beneath Crater Peak, and (7) a smaller swarm of VT earthquakes in late December 1992, which were located between 7 and 10 km depth. These seismic observations, combined with geological, geochemical, and geophysical data and observations, suggest a deep magmatic source zone for Crater Peak andesites at depths of 20-40 km, a smaller mid-crustal storage zone at about 10 km depth, and a conduit that extends to the surface. We infer that the magmas erupted in 1992 were generated at depths of 20-40 km and rose to the mid-crustal storage zone that fed all three 1992 eruptions. The 1992 eruption sequence may have terminated when additional magma solidified at shallow depths.

  7. El Cobreloa: A geyser with two distinct eruption styles

    NASA Astrophysics Data System (ADS)

    Namiki, Atsuko; Muñoz-Saez, Carolina; Manga, Michael

    2014-08-01

    We performed field measurements at a geyser nicknamed "El Cobreloa," located in the El Tatio Geyser Field, Northern Andes, Chile. The El Cobreloa geyser has two distinct eruption styles: minor eruptions and more energetic and long-lived major eruptions. Minor eruptions splash hot water intermittently over an approximately 4 min time period. Major eruptions begin with an eruption style similar to minor eruptions, but then transition to a voluminous liquid water-dominated eruption, and finally end with energetic steam discharge that continues for approximately 1 h. We calculated eruption intervals by visual observations, acoustic measurements, and ground temperature measurements and found that each eruption style has a regular interval: 4 h and 40 min for major eruptions and ˜14 min for minor eruptions. Eruptions of El Cobreloa and geochemical measurements suggest interaction of three water sources. The geyser reservoir, connected to the surface by a conduit, is recharged by a deep, hot aquifer. More deeply derived magmatic fluids heat the reservoir. Boiling in the reservoir releases steam and hot liquid water to the overlying conduit, causing minor eruptions, and heating the water in the conduit. Eventually the water in the conduit becomes warm enough to boil, leading to a steam-dominated eruption that empties the conduit. The conduit is then recharged by a shallow, colder aquifer, and the eruption cycle begins anew. We develop a model for minor eruptions which heat the water in the conduit. El Cobreloa provides insight into how small eruptions prepare the geyser system for large eruptions.

  8. The Effects of Preeruptive Magma Viscosity on Eruption Styles and Magma Eruption Rates

    NASA Astrophysics Data System (ADS)

    Tomiya, A.; Koyaguchi, T.; Kozono, T.; Takeuchi, S.

    2014-12-01

    We have collected data on magma eruption rate, which is one of the most fundamental parameters for a volcanic eruption. There are several compilations on eruption rates, for example, for Plinian eruptions (Carey and Sigurdsson, 1989), basaltic eruptions (Wadge, 1981), lava dome eruptions (Newhall and Melson, 1983), and all combined (Tomiya and Koyaguchi, 1998; Pyle, 2000). However, they did not quantitatively discuss the effects of magma viscosity, which must control eruption rates. Here, we discuss the effects of magma viscosity on eruption rates, by using 'preeruptive magma viscosities', which are important measures of magma eruptibility (Takeuchi, 2011). Preeruptive magma viscosity is the viscosity of magma (melt, dissolved water, and crystals) in the magma chamber at the preeruptive conditions, and can be approximately obtained only by the bulk rock SiO2 and phenocryst content, using an empirical formula (Takeuchi, 2010). We have found some interesting relationships, such as (1) eruption styles and rates are correlated to preeruptive magma viscosity but not correlated to bulk rock composition, and (2) the gap (ratio) in eruption rates between explosive and effusive phases in a series of eruptions is proportional to preeruptive magma viscosity. We also propose, by combining (1) and (2), that (3) the radius (or width) of volcanic conduit is positively correlated with preeruptive magma viscosity. Our data also show that the eruptive magmas are divided into two types. One is the low-viscosity type (basalt ~ phenocryst-poor andesite), characterized by lava flow and sub-Plinian eruptions. The other is the high-viscosity type (phenocryst-rich andesite ~ rhyolite), characterized by lava dome and Plinian eruptions. The boundary is at about 104 Pa s. These two types may be closely linked to the magma generation processes (fractional/batch crystallization vs. extraction from a mushy magma chamber).

  9. Fixed drug eruptions with modafinil

    PubMed Central

    Ghoshal, Loknath; Sinha, Mausumi

    2015-01-01

    Modafinil is a psychostimulant drug, which has been approved by the US Food and Drug Administration for the treatment of narcolepsy associated excessive daytime sleepiness, sleep disorder related to shift work, and obstructive sleep apnea syndrome. However, presently it is being used as a lifestyle medicine; in India, it has been misused as an “over the counter” drug. Modafinil is known to have several cutaneous side effects. Fixed drug eruption (FDE) is a distinctive drug induced reaction pattern characterized by recurrence of eruption at the same site of the skin or mucous membrane with repeated systemic administration. Only two case reports exist in the literature describing modafinil induced FDE until date. Here, we report two similar cases. The increasing use of this class of drug amongst the medical personnel might be posing a threat to the proper use and encouraging subsequent abuse. There might be a considerable population using these drugs unaware of the possible adverse effects. Authorities should be more alert regarding the sale and distribution of such medicines. PMID:25878389

  10. Jupiter Eruptions Captured in Infrared

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on the image for high resolution image of Nature Cover

    Detailed analysis of two continent-sized storms that erupted in Jupiter's atmosphere in March 2007 shows that Jupiter's internal heat plays a significant role in generating atmospheric disturbances. Understanding these outbreaks could be the key to unlock the mysteries buried in the deep Jovian atmosphere, say astronomers.

    This infrared image shows two bright plume eruptions obtained by the NASA Infrared Telescope Facility on April 5, 2007.

    Understanding these phenomena is important for Earth's meteorology where storms are present everywhere and jet streams dominate the atmospheric circulation. Jupiter is a natural laboratory where atmospheric scientists study the nature and interplay of the intense jets and severe atmospheric phenomena.

    According to the analysis, the bright plumes were storm systems triggered in Jupiter's deep water clouds that moved upward in the atmosphere vigorously and injected a fresh mixture of ammonia ice and water about 20 miles (30 kilometers) above the visible clouds. The storms moved in the peak of a jet stream in Jupiter's atmosphere at 375 miles per hour (600 kilometers per hour). Models of the disturbance indicate that the jet stream extends deep in the buried atmosphere of Jupiter, more than 60 miles (approximately100 kilometers) below the cloud tops where most sunlight is absorbed.

  11. Herculaneum: Clues to Vesuvius eruption

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    More than 80 skeletons have been unearthed in the ancient Mediterranean town of Herculaneum, west of Italy's Mount Vesuvius. This anthropological find corroborates a reinterpretation by three University of Rhode Island scientists of the sequence of the August A.D. 79 eruption of Vesuvius. In addition, the discovery is the first proof that large numbers of people perished as they tried to flee from the eruption, estimated to have been about 10 times more powerful than the May 1980 Mount St. Helens blast.‘Who says dead men don't talk? Their bones have something to say about them and their everyday lives,’ says Sara C. Bisel, a physical anthropologist who analyzed the skeletons. Among the remains are a cluster of skeletons from six adults, four children, and two infants trying to shield themselves from the volcanic onslaught; the skeleton of a sailor, still clutching an oar, lying on his back beside an 8-m-long capsized boat; a woman whose now bony hand was still graced with gem-encrusted gold rings; and a soldier (see Figure 1). From these and other finds the anthropological team was able to discern that the ancient Romans, on average, were shorter than modern citizens and, judging from the condition of some of the teeth, probably had a low-sugar diet.

  12. Preparatory process preceding the 2014 eruption of Mount Ontake volcano, Japan: insights from precise leveling measurements

    NASA Astrophysics Data System (ADS)

    Murase, Masayuki; Kimata, Fumiaki; Yamanaka, Yoshiko; Horikawa, Shinichiro; Matsuhiro, Kenjiro; Matsushima, Takeshi; Mori, Hitoshi; Ohkura, Takahiro; Yoshikawa, Shin; Miyajima, Rikio; Inoue, Hiroyuki; Mishima, Taketoshi; Sonoda, Tadaomi; Uchida, Kazunari; Yamamoto, Keigo; Nakamichi, Harushisa

    2016-01-01

    Preparatory activity preceding the 2014 eruption of Mount Ontake volcano was estimated from vertical deformation detected using a precise leveling survey. Notable uplift (2006-2009) and subsidence (2009-2014) were detected on the eastern flank of the volcano. We estimated pressure source models based on the vertical deformation and used these to infer preparatory process preceding the 2014 eruption. Our results suggest that the subsidence experienced between 2009 and 2014 (including the period of the 2014 eruption) occurred as a result of a sill-like tensile crack with a depth of 2.5 km. This tensile crack might inflate prior to the eruption and deflate during the 2014 activity. A two-tensile-crack model was used to explain uplift from 2006 to 2009. The geometry of the shallow crack was assumed to be the same as the sill-like tensile crack. The deep crack was estimated to be 2 km in length, 4.5 km in width, and 3 km in depth. Distinct uplifts began on the volcano flanks in 2006 and were followed by seismic activities and a small phreatic eruption in 2007. From the partially surveyed leveling data in August 2013, uplift might continue until August 2013 without seismic activity in the summit area. Based on the uplift from 2006 to 2013, magma ascended rapidly beneath the summit area in December 2006, and deep and shallow tensile cracks were expanded between 2006 and 2013. The presence of expanded cracks between 2007 and 2013 has not been inferred by previous studies. A phreatic eruption occurred on 27 September 2014, and, following this activity, the shallow crack may have deflated.

  13. Tephrostratigraphy and eruptive history of post-caldera stage of Toya Volcano, Hokkaido, northern Japan

    NASA Astrophysics Data System (ADS)

    Miyabuchi, Yasuo; Okuno, Mitsuru; Torii, Masayuki; Yoshimoto, Mitsuhiro; Kobayashi, Tetsuo

    2014-06-01

    A detailed tephrostratigraphy of Toya Volcano in Hokkaido, northern Japan has been constructed to evaluate the post-caldera eruptive history of the volcano. The tephrostratigraphic sequence preserved above the Toya ignimbrite reaches a total thickness of 8 m southeast of the caldera. After the caldera formation (115-112 ka), there was a long quiescent period of more than 60 ka years. The first post-caldera activity started with Nakajima Osarugawa pumice-fall deposit (Nj-Os) inside the caldera at 48 ka. Eruptive activity at Nakajima Volcano resumed at 30 ka with Nakajima Sekinai pumice-fall deposit (Nj-Sk), and was followed by continuous emission of fine ash including abundant accretionary lapilli. Soon after the Nakajima pyroclastic eruption Usu Volcano began its activity with discharges of basaltic ash and scoria (forming the Usu prehistoric tephra) and extrusion of homogeneous lavas namely Usu somma lava, resulting in the formation of the initial volcanic edifice. Subsequently, a large sector collapse occurred between 30 and 20 ka that emplaced the Zenkoji debris avalanche with little break after the formation of the initial Usu volcanic edifice. After the sector collapse, the volcano remained dormant for about 20-30 ka years. Eruptive activity at Usu Volcano resumed in 1663 AD with the most explosive plinian eruption in the post-caldera stage of Toya Volcano. Since then, seven eruptions have been recorded in 1769, 1822, 1853, 1910, 1943-1945, 1977-1978 and 2000 at multi-decadal interval. Total tephra volume during the post-caldera stage is estimated at about 0.9 km3 (dense rock equivalent: DRE), whereas total lava volume is calculated at about 2.3 km3. Therefore, the average magma discharge rate during the post-caldera stage of Toya Volcano is estimated at about 0.03 km3/ky, which is one or two order smaller than those of other Quaternary volcanoes in Japan.

  14. Low intensity hawaiian fountaining as exemplified by the March 2011, Kamoamoa eruption at Kilauea Volcano, Hawai`i (Invited)

    NASA Astrophysics Data System (ADS)

    Orr, T. R.; Houghton, B. F.; Poland, M. P.; Patrick, M. R.; Thelen, W. A.; Sutton, A. J.; Parcheta, C. E.; Thornber, C. R.

    2013-12-01

    The latest 'classic' hawaiian high-fountaining activity at Kilauea Volcano occurred in 1983-1986 with construction of the Pu`u `O`o pyroclastic cone. Since then, eruptions at Kilauea have been dominated by nearly continuous effusive activity. Episodes of sustained low hawaiian fountaining have occurred but are rare and restricted to short-lived fissure eruptions along Kilauea's east rift zone. The most recent of these weakly explosive fissure eruptions--the Kamoamoa eruption--occurred 5-9 March 2011. The Kamoamoa eruption was probably the consequence of a decrease in the carrying capacity of the conduit feeding the episode 58 eruptive vent down-rift from Pu`u `O`o in Kilauea's east rift zone. As output from the vent waned, Kilauea's summit magma storage and east rift zone transport system began to pressurize, as manifested by an increase in seismicity along the upper east rift zone, inflation of the summit and Pu`u `O`o, expansion of the east rift zone, and rising lava levels at both the summit and Pu`u `O`o. A dike began propagating towards the surface from beneath Makaopuhi Crater, 6 km west of Pu`u `O`o, at 1342 Hawaiian Standard Time (UTC - 10 hours) on 5 March. A fissure eruption started about 3.5 hours later near Nāpau Crater, 2 km uprift of Pu`u `O`o. Activity initially jumped between numerous en echelon fissure segments before centering on discrete vents near both ends of the 2.4-km-long fissure system for the final two days of the eruption. About 2.6 mcm of lava was erupted over the course of four days with a peak eruption rate of 11 m3/s. The petrologic characteristics of the fissure-fed lava indicate mixing between hotter mantle-derived magma and cooler rift-stored magma, with a greater proportion of the cooler component than was present in east rift zone lava erupting before March 2011. The fissure eruption was accompanied by the highest SO2 emission rates since 1986. Coincidentally, the summit and Pu`u `O`o deflated as magma drained away, causing

  15. Chronology and products of the 2000 eruption of Miyakejima Volcano, Japan

    NASA Astrophysics Data System (ADS)

    Nakada, S.; Nagai, M.; Kaneko, T.; Nozawa, A.; Suzuki-Kamata, K.

    2005-03-01

    Lateral migration of magma away from Miyakejima volcanic island, Japan, generated summit subsidence, associated with summit explosions in the summer of 2000. An earthquake swarm beneath Miyakejima began on the evening of 26 June 2000, followed by a submarine eruption the next morning. Strong seismic activity continued under the sea from beneath the coast of Miyakejima to a few tens of kilometers northwest of the island. Summit eruptive event began with subsidence of the summit on 8 July and both explosions and subsidence continued intermittently through July and August. The most intense eruptive event occurred on 18 August and was vulcanian to subplinian in type. Ash lofted into the stratosphere fell over the entire island, and abundant volcanic bombs were erupted at this time. Another large explosion took place on 29 August. This generated a low-temperature pyroclastic surge, which covered a residential area on the northern coast of the island. The total volume of tephra erupted was 9.3×106 m3 (DRE), much smaller than the volume of the resulting caldera (6×108 m3). Migration of magma away from Miyakejima was associated with crustal extension northwest of Miyakejima and coincident shrinkage of Miyakejima Island itself during July August 2000. This magma migration probably caused stoping of roof rock into the magma reservoir, generating subsurface cavities filled with hydrothermal fluid and/or magmatic foam and formation of a caldera (Oyama Caldera) at the summit. Interaction of hydrothermal fluid with ascending magma drove a series of phreatic to phreatomagmatic eruptions. It is likely that new magma was supplied to the reservoir from the bottom during waning stage of magma’s migration, resulting in explosive discharge on 18 August. The 18 August event and phreatic explosions on 29 August produced a conduit system that allowed abundant SO2 emission (as high as 460 kg s-1) after the major eruptive events were over. At the time of writing, inhabitants of the

  16. Mechanism of Human Tooth Eruption: Review Article Including a New Theory for Future Studies on the Eruption Process

    PubMed Central

    Kjær, Inger

    2014-01-01

    Human eruption is a unique developmental process in the organism. The aetiology or the mechanism behind eruption has never been fully understood and the scientific literature in the field is extremely sparse. Human and animal tissues provide different possibilities for eruption analyses, briefly discussed in the introduction. Human studies, mainly clinical and radiological, have focused on normal eruption and gender differences. Why a tooth begins eruption and what enables it to move eruptively and later to end these eruptive movements is not known. Pathological eruption courses contribute to insight into the aetiology behind eruption. A new theory on the eruption mechanism is presented. Accordingly, the mechanism of eruption depends on the correlation between space in the eruption course, created by the crown follicle, eruption pressure triggered by innervation in the apical root membrane, and the ability of the periodontal ligament to adapt to eruptive movements. Animal studies and studies on normal and pathological eruption in humans can support and explain different aspects in the new theory. The eruption mechanism still needs elucidation and the paper recommends that future research on eruption keeps this new theory in mind. Understanding the aetiology of the eruption process is necessary for treating deviant eruption courses. PMID:24688798

  17. Modeling eruptive coronal magnetohydrodynamic systems with FLUX

    NASA Astrophysics Data System (ADS)

    Rachmeler, L. A.

    In this dissertation I explore solar coronal energetic eruptions in the context of magnetic reconnection, which is commonly thought to be a required trigger mechanism for solar eruptions. Reconnection is difficult to directly observe in the corona, and current numerical methods cannot model reconnectionless control cases. Thus, it is not possible to determine if reconnection is a necessary component of these eruptions. I have executed multiple controlled simulations to determine the importance of reconnection for initiation and evolution of several eruptive systems using FLUX, a numerical model that uses the comparatively new fluxon technique. I describe two types of eruptions modeled with FLUX: a metastable confined flux rope theory for coronal mass ejection (CME) initiation, and symmetrically twisted coronal jets in a uniform vertical background field. In the former, I identified an ideal magnetohydrodynamic (MHD) instability that allows metastable twisted flux rope systems to suddenly lose stability and erupt even in the absence of reconnection, contradicting previous conjecture. The CME result is in contrast to the azimuthally symmetric coronal jet initiation model, where jet-like behavior does not manifest without reconnection. My work has demonstrated that some of the observed eruptive phenomena may be triggered by non-reconnective means such as ideal MHD instabilities, and that magnetic reconnection is not a required element in all coronal eruptions.

  18. Recovery From Giant Eruptions in Massive Stars

    NASA Astrophysics Data System (ADS)

    Kashi, A.; Davidson, K.; Humphreys, R. M.

    2015-12-01

    We perform radiation hydrodynamic simulations to study how very massive stars recover from giant eruptions. The post eruption star experience strong mass loss due to strong winds, driven by radial pulsations in the star*s interior, that operate by the κ-mechanism. The mass loss history obtained in our simulations resembles η Car*s history.

  19. Numerical model of crater lake eruptions

    NASA Astrophysics Data System (ADS)

    Morrissey, M.; Gisler, G.; Weaver, R.; Gittings, M.

    2010-12-01

    We present results from a numerical investigation of subaqueous eruptions involving superheated steam released through a lake mimicking the volcanic setting at Mt. Ruapehu. The simulations were conducted using an adaptive mesh, multi-material, hydrodynamics code with thermal conduction SAGE, (Simple Adaptive Grid Eulerian). Parameters investigated include eruption pressure, lake level and mass of superheated vapor. The simulations produced a spectrum of eruption styles from vapor cavities to radial jets that resulted in hazards that ranged from small-scale waves to high amplitude surges that reached and cascaded over the edge of the crater rim. There was an overall tendency for lake surface activity to increase (including wave amplitude) with increasing mass of superheated vapor and eruption pressure. Surface waves were induced by the formation and collapse of a gas cavity. The collapse of the cavity is considered to play a major role in the characteristic features observed during a subaqueous eruption. The additional mass of superheated vapor produced a larger cavity that displaced a larger area of the lake surface resulting in fast moving surges upon the collapse of the cavity. High lake levels (>90 m) appear to suppress the development of explosive jetting activity when eruption pressures are <10 MPa. At very large eruption pressures (>10 MPa), vertical jets and radial ejections of steam and water can occur in water depths >90 m. Less explosive eruption styles can produce hazardous events such as lahars by the outward movement of surface waves over the crater rim.

  20. Relationships between pre-eruptive conditions and eruptive styles of phonolite-trachyte magmas

    NASA Astrophysics Data System (ADS)

    Andújar, Joan; Scaillet, Bruno

    2012-11-01

    Phonolitic eruptions can erupt either effusively or explosively, and in some cases develop highly energetic events such as caldera-forming eruptions. However, the mechanisms that control the eruptive behaviour of such compositions are not well understood. By combining pre-eruptive data of well studied phonolitic eruptions we show that the explosive-effusive style of the phonolitic magma is controlled by the amount of volatiles, the degree of water-undersaturation and the depth of magma storage, the explosive character generally increasing with pressure depth and water contents. However, external factors, such as ingestion of external water, or latter processes occurring in the conduit, can modify the starting eruptive dynamic acquired at the levels of magma ponding.

  1. Chronology of Postglacial Eruptive Activity and Calculation of Eruption Probabilities for Medicine Lake Volcano, Northern California

    USGS Publications Warehouse

    Nathenson, Manuel; Donnelly-Nolan, Julie M.; Champion, Duane E.; Lowenstern, Jacob B.

    2007-01-01

    Medicine Lake volcano has had 4 eruptive episodes in its postglacial history (since 13,000 years ago) comprising 16 eruptions. Time intervals between events within the episodes are relatively short, whereas time intervals between the episodes are much longer. An updated radiocarbon chronology for these eruptions is presented that uses paleomagnetic data to constrain the choice of calibrated ages. This chronology is used with exponential, Weibull, and mixed-exponential probability distributions to model the data for time intervals between eruptions. The mixed exponential distribution is the best match to the data and provides estimates for the conditional probability of a future eruption given the time since the last eruption. The probability of an eruption at Medicine Lake volcano in the next year from today is 0.00028.

  2. The largest volcanic eruptions on Earth

    NASA Astrophysics Data System (ADS)

    Bryan, Scott E.; Peate, Ingrid Ukstins; Peate, David W.; Self, Stephen; Jerram, Dougal A.; Mawby, Michael R.; Marsh, J. S. (Goonie); Miller, Jodie A.

    2010-10-01

    Large igneous provinces (LIPs) are sites of the most frequently recurring, largest volume basaltic and silicic eruptions in Earth history. These large-volume (> 1000 km 3 dense rock equivalent) and large-magnitude (> M8) eruptions produce areally extensive (10 4-10 5 km 2) basaltic lava flow fields and silicic ignimbrites that are the main building blocks of LIPs. Available information on the largest eruptive units are primarily from the Columbia River and Deccan provinces for the dimensions of flood basalt eruptions, and the Paraná-Etendeka and Afro-Arabian provinces for the silicic ignimbrite eruptions. In addition, three large-volume (675-2000 km 3) silicic lava flows have also been mapped out in the Proterozoic Gawler Range province (Australia), an interpreted LIP remnant. Magma volumes of > 1000 km 3 have also been emplaced as high-level basaltic and rhyolitic sills in LIPs. The data sets indicate comparable eruption magnitudes between the basaltic and silicic eruptions, but due to considerable volumes residing as co-ignimbrite ash deposits, the current volume constraints for the silicic ignimbrite eruptions may be considerably underestimated. Magma composition thus appears to be no barrier to the volume of magma emitted during an individual eruption. Despite this general similarity in magnitude, flood basaltic and silicic eruptions are very different in terms of eruption style, duration, intensity, vent configuration, and emplacement style. Flood basaltic eruptions are dominantly effusive and Hawaiian-Strombolian in style, with magma discharge rates of ~ 10 6-10 8 kg s -1 and eruption durations estimated at years to tens of years that emplace dominantly compound pahoehoe lava flow fields. Effusive and fissural eruptions have also emplaced some large-volume silicic lavas, but discharge rates are unknown, and may be up to an order of magnitude greater than those of flood basalt lava eruptions for emplacement to be on realistic time scales (< 10 years). Most

  3. Forecasting eruptions using pre-eruptive seismic patterns at Sinabung Volcano, Indonesia

    NASA Astrophysics Data System (ADS)

    McCausland, W. A.; White, R. A.; Hendrasto, M.; Gunawan, H.; Indrastuti, N.; Triastuti, H.; Suparman, Y.; Putra, A.

    2015-12-01

    Forecasting the size, timing and style of volcanic eruptions is of primary interest to observatories and civil authorities world-wide, yet most observatories only have access to long-term data at a very limited number of volcanoes under their jurisdiction. When extensive long-term data sets are available to responsible agencies, volcanic eruptive size, timing and style can usually be successfully forecast using current monitoring data and knowledge of precursory eruptive patterns, enabling the communication of timely forecasts to civil authorities. Experienced agencies, such as Indonesia's Center for Volcanology and Geologic Hazards Mitigation and the USAID-USGS Volcano Disaster Assistance Program, utilize extensive collective experiences with multiple monitoring streams over multiple eruption cycles and across volcano types to successfully forecast eruption size, style and onset, as well as changes in eruptive style and size within ongoing eruptions. The longest-term real-time monitoring parameter commonly available at volcanoes worldwide is seismic data. Seismic data is a direct measure of rate-dependent strain changes in the magmatic system from the deep magmatic input to shallow eruptive processes. Patterns of pre-eruptive earthquakes coupled with other available monitoring data and conceptual models of magma ascent enable short-term forecasting of eruption size, style, and onset. First order event locations, characterization of background seismicity, and changes in earthquake types and energy release are most important to successful eruption forecasting. This study demonstrates how this approach has been used to successfully forecast eruption onsets, changes in eruptive style, and to change alert levels and extend or contract evacuation zones during the ongoing eruption of Sinabung Volcano, Indonesia.

  4. Estimates of mass eruption rates in Icelandic eruptions 1913-2015

    NASA Astrophysics Data System (ADS)

    Tumi Gudmundsson, Magnus; Dürig, Tobias; Larsen, Gudrún

    2016-04-01

    In the period from 1913 to 2015 about 35 eruptions occurred in Iceland, although some uncertainty exists about the number of the smallest events, particularly within the ice covered regions. For the smaller events in the earlier part of the period, only order of magnitude estimates of mass eruption rates (MER) are possible, based on the approximate amount of erupted products, duration of eruption, and information on eruption plume height in some cases. After 1947 estimates are more reliable. This is not least due to the detailed observations and interpretations of Sigurdur Thorarinsson and co-workers until the early 1980s. After 1980, various observations and instrumental data, e.g. on plume height, coupled with detailed mapping by several workers of tephra fallout and lava flow extent provide a good basis for MER estimates. The most frequent events are explosive eruptions producing tephra, often basaltic phreatomagmatic eruptions. A contributing factor to the large number of explosive eruptions is unusually frequent eruptions in Hekla since 1947. Eruptions under glaciers are also common, while a majority of these become explosive as they break through the ice. For the initially subglacial eruptions ice melting rates provide the best estimate of the MER in the first and usually most powerful phase. If the whole data set is considered, the magma volumes erupted in a single eruption span three orders of magnitude, ˜0.001 km3 to 1 km3. The range of intensity is similar, with the smallest Krafla or Askja events having maximum mass eruption rates (MER) of order 10-100 tonnes/second while the most powerful ones (Hekla 1947 and Katla 1918) had MER ˜50,000 tonnes/second (˜5 x 107 kg/s). All the events with the highest MER were explosive, including Katla 1918 where initial subglacial melting caused the largest volcanogenic flood observed since the 18th century. The period 1913-2015 had no events that belong to the class of the largest observed eruptions in Iceland. In

  5. Large, Moderate or Small? The Challenge of Measuring Mass Eruption Rates in Volcanic Eruptions

    NASA Astrophysics Data System (ADS)

    Gudmundsson, M. T.; Dürig, T.; Hognadottir, T.; Hoskuldsson, A.; Bjornsson, H.; Barsotti, S.; Petersen, G. N.; Thordarson, T.; Pedersen, G. B.; Riishuus, M. S.

    2015-12-01

    The potential impact of a volcanic eruption is highly dependent on its eruption rate. In explosive eruptions ash may pose an aviation hazard that can extend several thousand kilometers away from the volcano. Models of ash dispersion depend on estimates of the volcanic source, but such estimates are prone to high error margins. Recent explosive eruptions, including the 2010 eruption of Eyjafjallajökull in Iceland, have provided a wealth of data that can help in narrowing these error margins. Within the EU-funded FUTUREVOLC project, a multi-parameter system is currently under development, based on an array of ground and satellite-based sensors and models to estimate mass eruption rates in explosive eruptions in near-real time. Effusive eruptions are usually considered less of a hazard as lava flows travel slower than eruption clouds and affect smaller areas. However, major effusive eruptions can release large amounts of SO2 into the atmosphere, causing regional pollution. In very large effusive eruptions, hemispheric cooling and continent-scale pollution can occur, as happened in the Laki eruption in 1783 AD. The Bárdarbunga-Holuhraun eruption in 2014-15 was the largest effusive event in Iceland since Laki and at times caused high concentrations of SO2. As a result civil protection authorities had to issue warnings to the public. Harmful gas concentrations repeatedly persisted for many hours at a time in towns and villages at distances out to 100-150 km from the vents. As gas fluxes scale with lava fluxes, monitoring of eruption rates is therefore of major importance to constrain not only lava but also volcanic gas emissions. This requires repeated measurements of lava area and thickness. However, most mapping methods are problematic once lava flows become very large. Satellite data on thermal emissions from eruptions have been used with success to estimate eruption rate. SAR satellite data holds potential in delivering lava volume and eruption rate estimates

  6. The longevity of lava dome eruptions

    NASA Astrophysics Data System (ADS)

    Wolpert, Robert L.; Ogburn, Sarah E.; Calder, Eliza S.

    2016-02-01

    Understanding the duration of past, ongoing, and future volcanic eruptions is an important scientific goal and a key societal need. We present a new methodology for forecasting the duration of ongoing and future lava dome eruptions based on a database (DomeHaz) recently compiled by the authors. The database includes duration and composition for 177 such eruptions, with "eruption" defined as the period encompassing individual episodes of dome growth along with associated quiescent periods during which extrusion pauses but unrest continues. In a key finding, we show that probability distributions for dome eruption durations are both heavy tailed and composition dependent. We construct objective Bayesian statistical models featuring heavy-tailed Generalized Pareto distributions with composition-specific parameters to make forecasts about the durations of new and ongoing eruptions that depend on both eruption duration to date and composition. Our Bayesian predictive distributions reflect both uncertainty about model parameter values (epistemic uncertainty) and the natural variability of the geologic processes (aleatoric uncertainty). The results are illustrated by presenting likely trajectories for 14 dome-building eruptions ongoing in 2015. Full representation of the uncertainty is presented for two key eruptions, Soufriére Hills Volcano in Montserrat (10-139 years, median 35 years) and Sinabung, Indonesia (1-17 years, median 4 years). Uncertainties are high but, importantly, quantifiable. This work provides for the first time a quantitative and transferable method and rationale on which to base long-term planning decisions for lava dome-forming volcanoes, with wide potential use and transferability to forecasts of other types of eruptions and other adverse events across the geohazard spectrum.

  7. Deep and shallow sources for the Lusi mud eruption revealed by surface deformation

    NASA Astrophysics Data System (ADS)

    Shirzaei, M.; Rudolph, M. L.; Manga, M.

    2015-12-01

    The Lusi mud eruption, near Sidoarjo, East Java, Indonesia, began in May 2006 and continues to the present. Previous analyses of surface deformation data suggested an exponential decay of the pressure in the mud source, but did not constrain the location, geometry and evolution of the possible source(s) of the erupting mud and fluids. To map the surface deformation, we develop and new multitrack multitemporal interferometric processing algorithm and apply it to overlapped zones of three well-populated SAR data sets, including 51 images and acquired by the ALOS L-band satellite between May 2006 and April 2011. To understand the spatiotemporal evolution of the mud and fluid sources, we then apply a time-dependent inverse modeling scheme. Volume changes occur in two regions beneath Lusi, at 0.3-2.0 km and 3.5-4.75 km depth. The cumulative volume change within the shallow source is ~2-3 times larger than that of the deep source. The observation and model suggest that a shallow source plays a key role by supplying the erupting mud, but that additional fluids do ascend from depths >4 km on eruptive timescales.

  8. The Sulfur Dioxide Plume from the February 26, 2000 Eruption of Mt. Hekla, Iceland

    NASA Technical Reports Server (NTRS)

    Krueger, Arlin J.; Krotkov, N. A.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The February 2000 fissure eruption of Mt. Hekla, Iceland was captured in sulfur dioxide data from the Earth Probe TOMS. A special algorithm is used to discriminate sulfur dioxide from ozone. The eruption began at 18:19 GMT on February 26, 2000 and was first viewed by TOMS at 09:55 GMT on February 27. The volcanic cloud at that time appeared as a very long and narrow arc extending west from the volcano in southern Iceland, then north across Greenland, and finally east towards Norway. The cloud altitude was reported from aircraft sightings and data to be above 10 km. The circulation of a ridge located north of Iceland produced the large arc shaped cloud. As the eruption is non-explosive the high altitude cloud contains little ash. Almost all the ash from the eruption fell out locally across Iceland. By February 29, the sulfur dioxide cloud had drifted eastward in a band along the Barents Sea coast of Norway and Russia. The analysis includes an assessment of the initial sulfur dioxide content and its rate of conversion to sulfate.

  9. Deep and shallow sources for the Lusi mud eruption revealed by surface deformation

    NASA Astrophysics Data System (ADS)

    Shirzaei, Manoochehr; Rudolph, Maxwell L.; Manga, Michael

    2015-07-01

    The Lusi mud eruption, in East Java, Indonesia, began in May 2006 and continues to the present. Previous analyses of surface deformation data suggested an exponential decay of the pressure in the mud source but did not constrain the location, geometry, and evolution of the possible source(s) of the erupting mud and fluids. To map the surface deformation, we employ multitemporal interferometric synthetic aperture radar and analyze a well-populated L-band data set acquired by the Advanced Land Observing Satellite (ALOS) between May 2006 and April 2011. We then apply a time-dependent inverse modeling scheme. Volume changes occur in two regions beneath Lusi, at 0.3-2.0 km and 3.5-4.75 km depth. The cumulative volume change within the shallow source is ~2-3 times larger than that of the deep source. The observation and model suggest that a shallow source plays a key role by supplying the erupting mud, but that additional fluids do ascend from depths >4 km on eruptive timescales.

  10. Modeling the Climate Response of the Laki Eruption - Benjamin Franklin was Right

    NASA Astrophysics Data System (ADS)

    Oman, L.; Robock, A.; Stenchikov, G. L.; Thordarson, T.

    2006-12-01

    Benjamin Franklin was one of the first to recognize the connections between volcanic eruptions and climate. Shortly after the 1783-1784 Laki eruption, he postulated that the dry fog over much of Europe was likely caused by a volcanic eruption in Iceland, that the winds would have transported the gas and aerosol over much of the Northern Hemisphere, and that the cold winter of 1783-84 was caused by this dry fog. We used the NASA Goddard Institute for Space Studies ModelE climate model to examine the chemical conversion and transport of SO2 gas from the Laki eruption (64.10°N, 17.15°W) and used the resulting aerosol concentrations to model the climate response. Using our calculated aerosol distribution, we conducted a 10-member ensemble simulation with ModelE coupled to a q-flux mixed-layer ocean. The mean of these runs reproduced the extensive radiative cooling (-1 to -3°C) that occurred during the summer of 1783 across much of Asia, Canada, and Alaska and produced a strong dynamical effect in summer as the Laki eruption forces a significant weakening of the African and India monsoon circulations. This is seen in cloud cover and precipitation anomalies and resulted in significant warming (1 to 2°C) from the Sahel of Africa to northern India. This is a very robust result and has been observed after the last 3 large high-latitude volcanic eruptions, Eldgjá (939), Katmai (1912), and Laki, all of which produced large reductions in the flow of the Nile River. In the winter of 1783-1784 our model reproduced the significant negative temperature anomalies over the Northeastern United States, and smaller cooling produced over Europe. That winter was one of the coldest on record over these areas and our model results confirm that Laki could have been partially responsible for these anomalies.

  11. Dome forming eruptions: a global hazards database

    NASA Astrophysics Data System (ADS)

    Ogburn, S. E.; Loughlin, S.; Calder, E. S.; Ortiz, N.

    2009-12-01

    The analysis of global datasets of historical eruptions is a powerful tool for decision-making as well as for scientific discovery. Lava dome forming eruptions are common throughout the world, can extend for significant periods of time and have many associated hazards, thus providing a rich source of data to mine. A database on dome forming eruptions is under development with the view to aiding comparative studies, providing scientists with valuable data for analysis, and enabling advances in modeling of associated hazards. For new eruptive episodes in particular, and in the absence of monitoring data or a knowledge of a volcano’s eruptive history, global analysis can provide a method of understanding what might be expected based on similar eruptions in the past. Important scientific information has already been gleaned from disparate collections of dome-forming eruption hazard information, such as variation in the mobility of different types of pyroclastic flows, magma ascent and extrusion dynamics, and mechanisms of lava dome collapse. Further, modeling (both empirically-based and geophysically-based) of volcanic phenomena requires extensive data for development, calibration and validation. This study investigates the relationship between large explosive eruptions (VEI ≥ 4) and lava dome-growth from 1000 CE to present by development of a world-wide database of all relevant information, including dome growth duration, pauses between episodes of dome growth, and extrusion rates. Data sources include the database of volcanic activity maintained by the Smithsonian Institute (Global Volcanism Program) and all relevant published review papers, research papers and reports. For example, nearly all dome-forming eruptions have been associated with some level of explosive activity. Most explosions are vulcanian with eruption plumes reaching less than 15 km, and with a Volcanic Explosivity Index (VEI) <3. However large Plinian explosions with a VEI ≥ 4 can also occur

  12. Long-period (12sec) Volcanic Tremor Observed at Usu 2000 Eruption: Seismological Detection of a Deep Magma Plumbing system

    NASA Astrophysics Data System (ADS)

    KAWAKATSU, H.; YAMAMOTO, M.

    2001-12-01

    Mt. Usu is a dacitic stratovolcano located in southwestern Hokkaido, Japan, and has erupted repeatedly (in 1910, 1943-45, and 1977-78). In the end of March 2000, after twenty some years of quiescence, Usu volcano began its activity with an intensive earthquake swarm. After several days of the earthquake swarm, on March 31, 2000, the eruption began at the northwest foot of the volcano. We have installed five broadband seismometers around the volcano, and detected long period (12 sec) tremors (hereafter called LPTs) which are continually emitted from the volcano. Although these LPTs are continually observed at an interval of a few minutes, there exist no corresponding surface activities such as eruptions. The source of these LPTs are located relatively deep at a depth of 5 km, and their amplitude variation well correlates with the uplift rate of the eruption area. We thus attribute these LPTs to the flow induced vibration of a magma chamber and its outlet located around the source region of the LPTs. The estimated moment tensor for LPTs shows a reversed polarity for the isotropic and CLVD components. This is consistent with a combination of a deflating spherical source and an inflating crack which opens northwestern direction toward the eruption site. The volumetric magma flow rate may be estimated from the observed RMS amplitude of LPT through a seismic moment rate, and turns out to be around 3*E5 m3 per day. Geodetic observations report the volume change of the order of 107 m3 within the first few days. It appears that the volume flow rate estimated from LPTs is about one order of magnitude smaller than that of the actual flow rate. This may be reasonable if we consider that through seismic waves we are observing a fluctuating part of the magma flow. This may be the first seismological detection of dynamics of a main magma plumbing system beneath volcanos directly related to eruption activities.

  13. Regional paleogeographic evolution of west Africa: Implications for hydrocarbon exploration

    SciTech Connect

    Hempton, M.R.; Rosen, M.A.; Coughlin, R.M.; Scardina, A.D.; Hagen, E.S.; Nordstrom, P.J. )

    1991-03-01

    New paleogeographic reconstructions of west African continental margins provide a regional framework to contrast differences in hydrocarbon habitat and tectonostratigraphic style. Five regional provinces are delineated: (1) Northwest Africa margin from mauritania to Sierra Leone, (2) Transform margin from Liberia to Benin, (3) Niger delta of Nigeria, Cameroon, and Equatorial Guinea, (4) South Atlantic Salt basin margin from Cameroon to Angola, and (5) Southwest Africa margin of Namibia and South Africa. Computer-constrained paleogeographic reconstructions based on exploration data depict the separation of west Africa from South and North America during the Late Triassic to the present along three rift systems. In northwest Africa rifting began in the Late Triassic associated with the opening of the Central Atlantic. In southwest Africa rifting began between the southern tips of Africa and South America in the Early Cretaceous (Valanginian) and propagated northward to the Benue Trough, a broad zone of left-lateral shear and extensional basins that began to open in the Aptian. Between these two rift systems, the Transform margin rift system initiated in the Early Cretaceous (Barremain) as a wrench-fault dominated eastward extension of the Proto-Caribbean ocean that propagated to the Benue Trough by the middle Albian. The most important variables affecting the tectonostratigraphic and hydrocarbon evolution of the west African margins include (1) the geometry, kinematics, and duration of rifting; (2) distribution of rift basins relative to paleoclimate zones (which affects the deposition of lacustrine source rocks and evaporites while influencing the type and quantity of sediment derived from land); (3) sea-level fluctuations; and (4) distribution of deltaic and turbiditic depocenters.

  14. Thermal vesiculation during volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Lavallée, Yan; Dingwell, Donald B.; Johnson, Jeffrey B.; Cimarelli, Corrado; Hornby, Adrian J.; Kendrick, Jackie E.; von Aulock, Felix W.; Kennedy, Ben M.; Andrews, Benjamin J.; Wadsworth, Fabian B.; Rhodes, Emma; Chigna, Gustavo

    2015-12-01

    Terrestrial volcanic eruptions are the consequence of magmas ascending to the surface of the Earth. This ascent is driven by buoyancy forces, which are enhanced by bubble nucleation and growth (vesiculation) that reduce the density of magma. The development of vesicularity also greatly reduces the ‘strength’ of magma, a material parameter controlling fragmentation and thus the explosive potential of the liquid rock. The development of vesicularity in magmas has until now been viewed (both thermodynamically and kinetically) in terms of the pressure dependence of the solubility of water in the magma, and its role in driving gas saturation, exsolution and expansion during decompression. In contrast, the possible effects of the well documented negative temperature dependence of solubility of water in magma has largely been ignored. Recently, petrological constraints have demonstrated that considerable heating of magma may indeed be a common result of the latent heat of crystallization as well as viscous and frictional heating in areas of strain localization. Here we present field and experimental observations of magma vesiculation and fragmentation resulting from heating (rather than decompression). Textural analysis of volcanic ash from Santiaguito volcano in Guatemala reveals the presence of chemically heterogeneous filaments hosting micrometre-scale vesicles. The textures mirror those developed by disequilibrium melting induced via rapid heating during fault friction experiments, demonstrating that friction can generate sufficient heat to induce melting and vesiculation of hydrated silicic magma. Consideration of the experimentally determined temperature and pressure dependence of water solubility in magma reveals that, for many ascent paths, exsolution may be more efficiently achieved by heating than by decompression. We conclude that the thermal path experienced by magma during ascent strongly controls degassing, vesiculation, magma strength and the effusive

  15. Thermal vesiculation during volcanic eruptions.

    PubMed

    Lavallée, Yan; Dingwell, Donald B; Johnson, Jeffrey B; Cimarelli, Corrado; Hornby, Adrian J; Kendrick, Jackie E; von Aulock, Felix W; Kennedy, Ben M; Andrews, Benjamin J; Wadsworth, Fabian B; Rhodes, Emma; Chigna, Gustavo

    2015-12-24

    Terrestrial volcanic eruptions are the consequence of magmas ascending to the surface of the Earth. This ascent is driven by buoyancy forces, which are enhanced by bubble nucleation and growth (vesiculation) that reduce the density of magma. The development of vesicularity also greatly reduces the 'strength' of magma, a material parameter controlling fragmentation and thus the explosive potential of the liquid rock. The development of vesicularity in magmas has until now been viewed (both thermodynamically and kinetically) in terms of the pressure dependence of the solubility of water in the magma, and its role in driving gas saturation, exsolution and expansion during decompression. In contrast, the possible effects of the well documented negative temperature dependence of solubility of water in magma has largely been ignored. Recently, petrological constraints have demonstrated that considerable heating of magma may indeed be a common result of the latent heat of crystallization as well as viscous and frictional heating in areas of strain localization. Here we present field and experimental observations of magma vesiculation and fragmentation resulting from heating (rather than decompression). Textural analysis of volcanic ash from Santiaguito volcano in Guatemala reveals the presence of chemically heterogeneous filaments hosting micrometre-scale vesicles. The textures mirror those developed by disequilibrium melting induced via rapid heating during fault friction experiments, demonstrating that friction can generate sufficient heat to induce melting and vesiculation of hydrated silicic magma. Consideration of the experimentally determined temperature and pressure dependence of water solubility in magma reveals that, for many ascent paths, exsolution may be more efficiently achieved by heating than by decompression. We conclude that the thermal path experienced by magma during ascent strongly controls degassing, vesiculation, magma strength and the effusive

  16. The largest volcanic eruptions on Earth

    NASA Astrophysics Data System (ADS)

    Bryan, Scott E.; Peate, Ingrid Ukstins; Peate, David W.; Self, Stephen; Jerram, Dougal A.; Mawby, Michael R.; Marsh, J. S. (Goonie); Miller, Jodie A.

    2010-10-01

    Large igneous provinces (LIPs) are sites of the most frequently recurring, largest volume basaltic and silicic eruptions in Earth history. These large-volume (> 1000 km 3 dense rock equivalent) and large-magnitude (> M8) eruptions produce areally extensive (10 4-10 5 km 2) basaltic lava flow fields and silicic ignimbrites that are the main building blocks of LIPs. Available information on the largest eruptive units are primarily from the Columbia River and Deccan provinces for the dimensions of flood basalt eruptions, and the Paraná-Etendeka and Afro-Arabian provinces for the silicic ignimbrite eruptions. In addition, three large-volume (675-2000 km 3) silicic lava flows have also been mapped out in the Proterozoic Gawler Range province (Australia), an interpreted LIP remnant. Magma volumes of > 1000 km 3 have also been emplaced as high-level basaltic and rhyolitic sills in LIPs. The data sets indicate comparable eruption magnitudes between the basaltic and silicic eruptions, but due to considerable volumes residing as co-ignimbrite ash deposits, the current volume constraints for the silicic ignimbrite eruptions may be considerably underestimated. Magma composition thus appears to be no barrier to the volume of magma emitted during an individual eruption. Despite this general similarity in magnitude, flood basaltic and silicic eruptions are very different in terms of eruption style, duration, intensity, vent configuration, and emplacement style. Flood basaltic eruptions are dominantly effusive and Hawaiian-Strombolian in style, with magma discharge rates of ~ 10 6-10 8 kg s -1 and eruption durations estimated at years to tens of years that emplace dominantly compound pahoehoe lava flow fields. Effusive and fissural eruptions have also emplaced some large-volume silicic lavas, but discharge rates are unknown, and may be up to an order of magnitude greater than those of flood basalt lava eruptions for emplacement to be on realistic time scales (< 10 years). Most

  17. Andesitic Plinian eruptions at Mt. Ruapehu: quantifying the uppermost limits of eruptive parameters

    NASA Astrophysics Data System (ADS)

    Pardo, Natalia; Cronin, Shane; Palmer, Alan; Procter, Jonathan; Smith, Ian

    2012-07-01

    New tephro-stratigraphic studies of the Tongariro Volcanic Centre (TgVC) on the North Island (New Zealand) allowed reconstruction of some of the largest, andesitic, explosive eruptions of Mt. Ruapehu. Large eruptions were common in the Late Pleistocene, before a transition to strombolian-vulcanian and phreatomagmatic eruptive styles that have predominated over the past 10,000 years. Considering this is the most active volcano in North Island of New Zealand and the uppermost hazard limits are unknown, we identified and mapped the pyroclastic deposits corresponding to the five largest eruptions since ~27 ka. The selected eruptive units are also characterised by distinctive lithofacies associations correlated to different behaviours of the eruptive column. In addition, we clarify the source of the ~10-9.7 ka Pahoka Tephra, identified by previous authors as the product of one of the largest eruptions of the TgVC. The most common explosive eruptions taking place between ~13.6 and ~10 ka cal years BP involved strongly oscillating, partially collapsing eruptive columns up to 37 km high, at mass discharge rates up to 6 × 108 kg/s and magnitudes of 4.9, ejecting minimum estimated volumes of 0.6 km3. Our results indicate that this volcano (as well as the neighbouring andesitic Mt. Tongariro) can generate Plinian eruptions similar in magnitude to the Chaitén 2008 and Askja 1875 events. Such eruptions would mainly produce pyroclastic fallout covering a minimum area of 1,700 km2 ESE of the volcano, where important touristic, agricultural and military activities are based. As for the 1995/1996 eruption, our field data indicate that complex wind patterns were critical in controlling the dispersion of the eruptive clouds, developing sheared, commonly bilobate plumes.

  18. Observed Aspects of Reconnection in Solar Eruptions

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.

    2010-01-01

    Signatures of reconnection in major CME (coronal mass ejection)/flare eruptions and in coronal X-ray jets are illustrated and interpreted. The signatures are magnetic field lines and their feet that brighten in flare emission. CME/flare eruptions are magnetic explosions in which: 1. The field that erupts is initially a closed arcade. 2. At eruption onset, most of the free magnetic energy to be released is not stored in field bracketing a current sheet, but in sheared field in the core of the arcade. 3. The sheared core field erupts by a process that from its start or soon after involves fast tether-cutting reconnection at an initially small current sheet low in the sheared core field. If the arcade has oppositely-directed field over it, the eruption process from its start or soon after also involves fast breakout reconnection at an initially small current sheet between the arcade and the overarching field. These aspects are shown by the small area of the bright field lines and foot-point flare ribbons in the onset of the eruption. 4. At either small current sheet, the fast reconnection progressively unleashes the erupting core field to erupt with progressively greater force. In turn, the erupting core field drives the current sheet to become progressively larger and to undergo progressively greater fast reconnection in the explosive phase of the eruption, and the flare arcade and ribbons grow to become comparable to the pre-eruption arcade in lateral extent. In coronal X-ray jets: 1. The magnetic energy released in the jet is built up by the emergence of a magnetic arcade into surrounding unipolar "open" field. 2. A simple jet is produced when a burst of reconnection occurs at the current sheet between the arcade and the open field. This produces a bright reconnection jet and a bright reconnection arcade that are both much smaller in diameter that the driving arcade. 3. A more complex jet is produced when the arcade has a sheared core field and undergoes an

  19. Modeling Eruptive Coronal Magnetohydrodynamic Systems with FLUX

    NASA Astrophysics Data System (ADS)

    Rachmeler, Laurel

    2010-05-01

    I explore solar coronal energetic eruptions in the context of magnetic reconnection, which is commonly thought to be a required trigger mechanism for solar eruptions. Reconnection is difficult to observe in the corona, and current numerical methods cannot model reconnectionless control cases. Thus, it is not possible to determine if it is a necessary component. I have executed multiple controlled simulations to determine the importance of reconnection for initiation and evolution of several eruptive systems using FLUX, a numerical model that uses the comparatively new fluxon technique. I describe two types of eruptions modeled with FLUX: a confined flux rope theory for CME initiation, and symmetrically twisted coronal jets in a uniform vertical background field. In the former, I identified an ideal MHD instability that allows metastable twisted flux rope systems to suddenly lose stability and erupt even in the absence of reconnection, contradicting previous conjecture. The CME result is in contrast to the azimuthally symmetric coronal jet initiation model, where jet-like behavior does not manifest without reconnection. I demonstrate that some eruptive phenomena may be triggered by non-reconnective means such as ideal MHD instabilities, and that magnetic reconnection is not a required element in all coronal eruptions.

  20. Solar Eruptions Initiated in Sigmoidal Active Regions

    NASA Astrophysics Data System (ADS)

    Savcheva, Antonia

    2016-07-01

    active regions that have been shown to possess high probability for eruption. They present a direct evidence of the existence of flux ropes in the corona prior to the impulsive phase of eruptions. In order to gain insight into their eruptive behavior and how they get destabilized we need to know their 3D magnetic field structure. First, we review some recent observations and modeling of sigmoidal active regions as the primary hosts of solar eruptions, which can also be used as useful laboratories for studying these phenomena. Then, we concentrate on the analysis of observations and highly data-constrained non-linear force-free field (NLFFF) models over the lifetime of several sigmoidal active regions, where we have captured their magnetic field structure around the times of major flares. We present the topology analysis of a couple of sigmoidal regions pointing us to the probable sites of reconnection. A scenario for eruption is put forward by this analysis. We demonstrate the use of this topology analysis to reconcile the observed eruption features with the standard flare model. Finally, we show a glimpse of how such a NLFFF model of an erupting region can be used to initiate a CME in a global MHD code in an unprecedented realistic manner. Such simulations can show the effects of solar transients on the near-Earth environment and solar system space weather.

  1. Satellite observations of the volcanic plume from the 23rd April 2015 eruption of Calbuco volcano

    NASA Astrophysics Data System (ADS)

    Hayer, Catherine; Carboni, Elisa; Ventress, Lucy; Povey, Adam; Grainger, Roy

    2016-04-01

    Calbuco volcano, Chile, erupted on 23rd April 2015, producing an eruption column reported to reach 17 km. The eruption was captured on the IASI NRT website (http://www.nrt-atmos.cems.rl.ac.uk/). The data were then reprocessed using the iterative optimal estimation retrieval developed by the EODG group at University of Oxford to determine the SO2 atmospheric loading and the altitude of the plume over time. The atmospheric loading was measured as 0.3 - 0.4 Tg of SO2 over the first 2 days. It is thought that the eruption was relatively ash poor, with the majority of the ash falling out within the first couple of days. The retrieved altitude of the plume is consistent with the range initially reported, with the core of the plume reaching 15 - 18 km. When the SO2 plume reached the west coast of South Africa, it was caught in a cyclonic system, causing it to remain in the same region for several days with a highly constrained core. A SO2 depletion rate and conversion time to H2SO4 are calculated from this data. The data from the IASI instruments are compared to CALIOP lidar overpasses as well as data from the MLS & OSIRIS instruments. The HYSPLIT trajectory model is used to investigate the evolution of the plume and to corroborate the altitudes retrieved by IASI.

  2. LATERAL OFFSET OF THE CORONAL MASS EJECTIONS FROM THE X-FLARE OF 2006 DECEMBER 13 AND ITS TWO PRECURSOR ERUPTIONS

    SciTech Connect

    Sterling, Alphonse C.; Moore, Ronald L.; Harra, Louise K. E-mail: ron.moore@nasa.gov

    2011-12-10

    Two GOES sub-C-class precursor eruptions occurred within {approx}10 hr prior to and from the same active region as the 2006 December 13 X4.3-class flare. Each eruption generated a coronal mass ejection (CME) with center laterally far offset ({approx}> 45 Degree-Sign ) from the co-produced bright flare. Explaining such CME-to-flare lateral offsets in terms of the standard model for solar eruptions has been controversial. Using Hinode/X-Ray Telescope (XRT) and EUV Imaging Spectrometer (EIS) data, and Solar and Heliospheric Observatory (SOHO)/Large Angle and Spectrometric Coronagraph (LASCO) and Michelson Doppler Imager (MDI) data, we find or infer the following. (1) The first precursor was a 'magnetic-arch-blowout' event, where an initial standard-model eruption of the active region's core field blew out a lobe on one side of the active region's field. (2) The second precursor began similarly, but the core-field eruption stalled in the side-lobe field, with the side-lobe field erupting {approx}1 hr later to make the CME either by finally being blown out or by destabilizing and undergoing a standard-model eruption. (3) The third eruption, the X-flare event, blew out side lobes on both sides of the active region and clearly displayed characteristics of the standard model. (4) The two precursors were offset due in part to the CME originating from a side-lobe coronal arcade that was offset from the active region's core. The main eruption (and to some extent probably the precursor eruptions) was offset primarily because it pushed against the field of the large sunspot as it escaped outward. (5) All three CMEs were plausibly produced by a suitable version of the standard model.

  3. Topological Analyses of Symmetric Eruptive Prominences

    NASA Astrophysics Data System (ADS)

    Panasenco, O.; Martin, S. F.

    Erupting prominences (filaments) that we have analyzed from Hα Doppler data at Helio Research and from SOHO/EIT 304 Å, show strong coherency between their chirality, the direction of the vertical and lateral motions of the top of the prominences, and the directions of twisting of their legs. These coherent properties in erupting prominences occur in two patterns of opposite helicity; they constitute a form of dynamic chirality called the ``roll effect." Viewed from the positive network side as they erupt, many symmetrically-erupting dextral prominences develop rolling motion toward the observer along with right-hand helicity in the left leg and left-hand helicity in the right leg. Many symmetricaly-erupting sinistral prominences, also viewed from the positive network field side, have the opposite pattern: rolling motion at the top away from the observer, left-hand helical twist in the left leg, and right-hand twist in the right leg. We have analysed the motions seen in the famous movie of the ``Grand Daddy" erupting prominence and found that it has all the motions that define the roll effect. From our analyses of this and other symmetric erupting prominences, we show that the roll effect is an alternative to the popular hypothetical configuration of an eruptive prominence as a twisted flux rope or flux tube. Instead we find that a simple flat ribbon can be bent such that it reproduces nearly all of the observed forms. The flat ribbon is the most logical beginning topology because observed prominence spines already have this topology prior to eruption and an initial long magnetic ribbon with parallel, non-twisted threads, as a basic form, can be bent into many more and different geometrical forms than a flux rope.

  4. Investigation on Eruptive Prominences Observed by SDO

    NASA Astrophysics Data System (ADS)

    Su, Yingna; McCauley, Patrick; van Ballegooijen, Adriaan; Ji, Haisheng; Reeves, Katharine; DeLuca, Edward

    2015-04-01

    We will present an investigation of the polar crown prominence that erupted on 2012 March 12. This prominence is observed at the southeast limb by SDO/AIA (end-on view) and displays a quasi vertical-thread structure. Bright U-shape (horn-like) structure is observed surrounding the upper portion of the prominence (171 Angstrom) before the eruption and becomes more prominent during the eruption. When viewed on the disk, STEREO-B shows that this long prominence is composed of a series of vertical threads and displays a half loop-like structure during the eruption. We focus on the magnetic support of the prominence by studying the structure and dynamics of the prominence before and during the eruption using observations from SDO and STEREO. During the eruption, AIA observes dark ribbons seen in absorption at 171 Angstrom in corresponding to the bright ribbons at 304 Angstrom. We construct a series of magnetic field models (including sheared arcade model, twisted flux rope model, and model with HFT), then compare with observations. Various observational characteristics appear to support the twisted flux rope model. Our study suggests that the flux rope supporting the prominence enters the regime of torus instability at the onset of the fast rise phase, and evidence of reconnection (post-eruption arcade, new U-shape Structure, rising blobs) appears about one hour later. We will also present a statistical study on the kinematics of limb eruptive prominences observed by SDO/AIA. A brief introduction on an online catalog of prominence eruptions observed by SDO/AIA will also be presented.

  5. Forecasting volcanic eruptions: the narrow margin between eruption and intrusion

    NASA Astrophysics Data System (ADS)

    Steele, Alexander; Kilburn, Christopher; Wall, Richard; Charlton, Danielle

    2016-04-01

    Volcano-tectonic (VT) seismicity is one of the primary geophysical signals for monitoring volcanic unrest. It measures the brittle response of the crust to changes in stress and provides a natural proxy for gauging the stability of a pressurizing body of magma. Here we apply a new model of crustal extension to observations from the 2015 unrest of Cotopaxi, in Ecuador. The model agrees well with field data and is consistent with accelerating unrest during the pressurization and rupture of a vertically-extended magma source within the volcanic edifice. At andesitic-dacitic stratovolcanoes in subduction zones, unrest after long repose is often characterised by increases in VT event rate that change from an exponential to hyperbolic trend with time. This sequence was observed when renewed unrest was detected in April 2015 at Cotopaxi, following at least 73 years of repose. After about 80 days of elevated seismicity at an approximately steady rate, the numbers of VT events increased exponentially with time for c. 80 days, before increasing for c. 15 days along a faster, hyperbolic trend. Both trends were characterised by the same value of 2 for the ratio of maximum applied stress SF to tensile strength of the crust σT, consistent with the pressurization of an approximately vertical, cylindrical magma body. The hyperbolic trend indicated a potential rupture on 25 September. Rupture appears to have occurred on 21-22 September, when the VT rate rapidly decreased. However, no major eruption accompanied the change, suggesting that a near-surface intrusion occurred instead. Although the quantitative VT trends were consistent with the rupture of a magmatic body, they could not on their own distinguish between an eruptive or intrusive outcome. An outstanding goal remains to identify additional precursory characteristics for quantifying the probability that magma will reach the surface after escaping from a ruptured parent body. Data for this analysis were kindly made available

  6. DAMAGE AND CORRESPOBDENCE OF LOCAL GOVERNMENTS AND BUSINESS ESTABLISHMENTS FOR Mt. SHINMOE 2011 ERUPTIONS

    NASA Astrophysics Data System (ADS)

    Uno, Kohji; Nakano, Susumu; Kasubuchi, Yoshio

    On Jan. 27, 2011, Mt. Shinmoe in the Kirishima mountain range on the border between Kagoshima and Miyazaki Prefectures began erupting for the first time in 52 years. In this study, to clarify the damage and correspondence of local governments and business establishments for a series of volcanic hazards of Mt. Shinmoe in 2011, we conducted interview research and document investigation. For endless volcanic hazard, not only the serious and sustained effots of disaster-affected area, but also the broad-based supoorts from neighboring local governments and business establishments are required.

  7. Magmatic volatiles in explosive rhyolitic eruptions

    SciTech Connect

    Eichelberger, J.C.; Westrich, H.R.

    1981-07-01

    Obsidian clasts in rhyolitic tephra deposits preserve preeruption magmatic volatile contents, providing a direct means for determining the volatile content of explosively erupted magmas. Small to moderate volume Plinian eruptions (10/sup -3/ to 10/sup -1/ km/sup 3/) appear to be driven by 0.5--1.0 wt.% volatiles, consisting dominantly of H/sub 2/O with minor CO/sub 2/. Analysis of obsidian from eruptive sequences consisting of tephra and flows indicates that this hydrous magma abruptly overlies magma with only 0.1--0.2 wt.% H/sub 2/O.

  8. Spectrophotometric Evolution of Eta Carinae's Great Eruption

    NASA Astrophysics Data System (ADS)

    Rest, Armin; Prieto, Jose Luis; Bianco, Federica; Matheson, Thomas; Smith, Nathan; Smith, Chris; Chornock, Ryan; Sinnott, Brendan; Welch, Douglas; Walborn, Nolan

    2013-06-01

    Eta Carinae is one of the most massive binaries in the Milky Way, and its expanding circumstellar nebula has been studied in detail. It was seen as the second brightest star in the sky during its 1800s "Great Eruption", but only visual estimates of its brightness were recorded. We discovered light echoes of the Great Eruption, which allowed us to obtain a spectrum of this event now, 150 years after it was first observed. We will present our new follow-up observations with which we have started to retrace its spectrophotometric evolution during and before the eruption.

  9. Familial eruptive syringoma in a Nigerian girl.

    PubMed

    Ibekwe, P

    2016-06-01

    Familial eruptive syringoma (FES) is an uncommon clinical presentation of syringoma, a benign tumour of the intraepidermal portion of the eccrine sweat ducts. It is characterized by firm, smooth, skin-coloured to pigmented, discrete papules that appear as successive crops on the anterior body surface of individuals who also have one or more family member(s) with similar eruptive or localized lesions. The inheritance is autosomal dominant. Eight types of familial syringomas have been proposed, although the number of reported cases is quite few. We present a case of familial eruptive syringoma that could be classified as type 4 familial syringoma. PMID:26452448

  10. [Lichenoid drug eruption induced by olanzapine].

    PubMed

    Fernández-Torres, R; Almagro, M; del Pozo, J; Robles, O; Martínez-González, C; Mazaira, M; Fonseca, E

    2008-04-01

    Lichenoid drug eruptions can mimic idiopathic lichen planus and other dermatoses. The list of drugs that can cause them is long and growing steadily. Although cutaneous side effects of antipsychotics are rare, various cutaneous manifestations have been reported in association with olanzapine. We present the case of a patient who developed an atypical lichenoid eruption due to olanzapine. A review of the literature in Medline from 1951 to 2007 and in the Indice Médico Español (Spanish Medical Index) revealed no previous cases of lichenoid eruptions associated with the use of this drug. PMID:18358199

  11. The initial trajectories of eruptive solar prominences

    NASA Astrophysics Data System (ADS)

    Filippov, B. P.

    2016-03-01

    Trajectories of eruptive prominences are compared with the shapes of coronal neutral surfaces calculated in a potential approximation using photospheric measurements. Space-based Solar Dymamics Observatory and STEREO observations carried out at different viewing angles enable a precise determination of a prominence's position at successive times during its eruption. In the initial segments of their trajectories, eruptive prominences move along neutral surfaces ( B r = 0) of the potential coronal magnetic field. This can be used to predict the directions of subsequent coronal mass ejections and to estimate their geoefficiency.

  12. Analysis of a Limb Eruptive Event

    NASA Astrophysics Data System (ADS)

    Kotrč, P. Kupryakov, Yu. A.; Bárta, M.; Kashapova, K., L.; Liu, W.

    2016-04-01

    We present the analysis of an eruptive event that took place on the eastern limb on April 21, 2015, which was observed by the Ondřejov horizontal telescope and spectrograph. The eruption of the highly twisted prominence was followed by the onset of soft X-ray sources. We identified the structures observed in Hα spectra with the details on the Hα filtergrams and analyzed the evolution of Doppler component velocities. The timing and observed characteristics of the eruption were compared with the prediction of the model based on the twisting of the flux ropes and the kink/torus instability.

  13. Timing signatures of large scale solar eruptions

    NASA Astrophysics Data System (ADS)

    Balasubramaniam, K. S.; Hock-Mysliwiec, Rachel; Henry, Timothy; Kirk, Michael S.

    2016-05-01

    We examine the timing signatures of large solar eruptions resulting in flares, CMEs and Solar Energetic Particle events. We probe solar active regions from the chromosphere through the corona, using data from space and ground-based observations, including ISOON, SDO, GONG, and GOES. Our studies include a number of flares and CMEs of mostly the M- and X-strengths as categorized by GOES. We find that the chromospheric signatures of these large eruptions occur 5-30 minutes in advance of coronal high temperature signatures. These timing measurements are then used as inputs to models and reconstruct the eruptive nature of these systems, and explore their utility in forecasts.

  14. Volumes and eruption rates for the 2008-2009 Chaitén rhyolite lava dome

    NASA Astrophysics Data System (ADS)

    Pallister, J. S.; Diefenbach, A. K.; Griswold, J.; Muñoz, J.; Lara, L. E.; Valenzuela, C.; Burton, W. C.; Keeler, R.

    2010-12-01

    The 2008 eruption of Chaitén caldera, southern Chile, was one of the most explosive on Earth in the past two decades. The eruption began early on 2 May 2008 (UTC) and produced sub-plinian to plinian ash columns between 2 May and 9 May, before transitioning from explosive eruption of tephra to effusive eruption of rhyolite lava. A series of lava flow lobes accumulated within the caldera between late May and the end of the year, burying most of Chaitén’s prehistoric lava dome. A prominent lava spine was also extruded, starting in late 2008. The spine collapsed on 19 February 2009, producing a pyroclastic flow that extended out of the caldera and 7 km down the Río Chaitén. Dome growth continued through 2009, filling in much of the spine-collapse area and further expanding the composite dome through endogenous growth. Dome volumes are computed and eruption rates estimated using satellite data from 2008-10, photogrammetric analysis of oblique aerial photographs taken in January 2010, and digital elevation models derived from ASTER, SRTM, LIDAR and topographic maps. The 2008-10 dome has a total volume of approximately 0.8 km3. About 0.5 km3 erupted within the first four months, when extrusion rates were in the range 10-100 m3s-1. Extrusion rates decreased exponentially over the eruptive period. The 2008-10 dome is similar in volume and composition to the prehistoric lava dome, which has a volume of at least 0.5 km3. Together the two domes constitute about 20-40% of the 3.5-7 km3 collapse volume of the prehistoric caldera. The unusually rapid extrusion rates during the first four months are among the highest ever measured for silicic lava. Chaitén’s 2008-10 lava is obsidian and microcrystalline rhyolite with 75.35+/-0.02% SiO2. A large volume of low viscosity crystal-poor magma (about 0.1% phenocrysts) coupled with high extrusion pressures during the extended transition from explosive to effusive eruption style resulted in these exceptionally high extrusion rates.

  15. Two types of volcanic tremor changed with eruption style during 1986 Izu-Oshima eruption

    NASA Astrophysics Data System (ADS)

    Kurokawa, Aika; Takeo, Minoru; Kurita, Kei

    2016-04-01

    Volcanic tremor provides clues to magma migration pathways so that tremor source location is expected to be an efficient tool for tracking dynamic behavior of magma in evolution of eruptive activity. However, clear evidence, which connects between temporal variation in volcanic tremor and evolution of eruption style, is still lacking. We have analyzed volcanic tremors occurred during 1986 Izu-Oshima eruption using recently digitized data. The results present a clear link between eruption styles, waveform variations and source locations of the tremors. Moreover, precursory activity of the tremors that indicates injection of magma below fissures has been clarified 5 days prior to the fissure eruptions. This demonstrates predominance of tremor activity as an adaptive monitoring tool in volcanic eruption.

  16. The 2010 Eyjafjallajökull and 2011 Grímsvötn eruptions: Insights from GPS geodesy

    NASA Astrophysics Data System (ADS)

    Hreinsdottir, S.; Sigmundsson, F.; Roberts, M.; Árnadóttir, P.; Ófeigsson, B.; Grapenthin, R.; Sturkell, E.; Villemin, T.; Bennett, R.; Geirsson, H.

    2012-04-01

    Both the Eyjafjallajökull summit eruption in 2010 and Grímsvötn eruption in 2011 resulted in significant disruption of aviation. Three historic (last 1100 years) eruptions are known in Eyjafjallajökull volcano prior to 2010 (in 920, 1612, and 1821-23). In contrast Grímsvötn volcano is Icelands most active volcano with the last three eruptions in 1983, 1998, and 2004. Both volcanoes have been monitored with continuous GPS measurements in the last few years, revealing different style of deformation leading up to and during the eruption. On March 20 2010 a 300 m long fissure opened up on the east flank of Eyjafjallajökull volcano. The eruption was preceded by three months of unrest with increased seismic activity and surface deformation. The deformation pattern leading up to the eruption was both spatially and temporally variable. In January and February 2010 inflation was observed at GPS sites on the flanks of the volcano indicating formations of sills. From February 20 more distant GPS stations showed a small but distinct change in horizontal velocity. Sites started moving in toward the volcano, suggesting deep pressure changes. In early March seismic activity intensified and rapid deformation leading up to the eruption suggested the upward migration of magma. During the flank eruption deformation almost ceased and the volcano remained at an inflated state. On April 14 2010, a more explosive eruption began at the ice-caped summit of the volcano. Rapid deformation toward the summit and subsidence was observed at GPS sites around the volcano during this eruption. In early May a small but significant inflation signal was observed at the GPS sites closest to the summit suggesting a renewed flux of magma from depth but was followed by a continued deformation toward the summit for a few weeks. Around 19 UTC on May 21, 2011 a phreatomagmatic eruption started at Grímsvötn volcano lasting until the May 28. The Grímsvötn volcano lies beneath the Vatnajökul icecap

  17. Facilitated Eruption of an Impacted Premolar 8 Years Post-eruption Timing- Think before You Treat!!!

    PubMed Central

    Tripathi, Tulika; Rai, Priyank; Singh, Navneet

    2015-01-01

    The treatment planning of impacted teeth usually involves surgical intervention for bringing about its eruption with traction. But a thoughtful analysis in such cases looking at the possible aetiology may save the complexity of therapy. The present case demonstrates the importance of correct diagnosis in resolving impaction wherein an impacted mandibular second premolar was made to erupt using a simple removable appliance 8 years after its normal range of eruption timing. PMID:26557628

  18. 10,000 Years of explosive eruptions of Merapi Volcano, Central Java: archaeological and modern implications

    USGS Publications Warehouse

    Newhall, C.G.; Bronto, S.; Alloway, B.; Banks, N.G.; Bahar, I.; Del Marmol, M.A.; Hadisantono, R.D.; Holcomb, R.T.; McGeehin, J.; Miksic, J.N.; Rubin, M.; Sayudi, S.D.; Sukhyar, R.; Andreastuti, S.; Tilling, R.I.; Torley, R.; Trimble, D.; Wirakusumah, A.D.

    2000-01-01

    Stratigraphy and radiocarbon dating of pyroclastic deposits at Merapi Volcano, Central Java, reveals ~10,000 years of explosive eruptions. Highlights include: (1) Construction of an Old Merapi stratovolcano to the height of the present cone or slightly higher. Our oldest age for an explosive eruption is 9630±60 14C y B.P.; construction of Old Merapi certainly began earlier. (2) Collapse(s) of Old Merapi that left a somma rim high on its eastern slope and sent one or more debris avalanche(s) down its southern and western flanks. Impoundment of Kali Progo to form an early Lake Borobudur at ~3400 14C y B.P. hints at a possible early collapse of Merapi. The latest somma-forming collapse occurred ~1900 14C y B.P. The current cone, New Merapi, began to grow soon thereafter. (3) Several large and many small Buddhist and Hindu temples were constructed in Central Java between 732 and ~900 A.D. (roughly, 1400-1000 14C y B.P.). Explosive Merapi eruptions occurred before, during and after temple construction. Some temples were destroyed and (or) buried soon after their construction, and we suspect that this destruction contributed to an abrupt shift of power and organized society to East Java in 928 A.D. Other temples sites, though, were occupied by "caretakers" for several centuries longer. (4) A partial collapse of New Merapi occurred 14C y B.P. Eruptions ~700-800 14C y B.P. (12-14th century A.D.) deposited ash on the floors of (still-occupied?) Candi Sambisari and Candi Kedulan. We speculate but cannot prove that these eruptions were triggered by (the same?) partial collapse of New Merapi, and that the eruptions, in turn, ended "caretaker" occupation at Candi Sambisari and Candi Kedulan. A new or raised Lake Borobudur also existed during part or all of the 12-14th centuries, probably impounded by deposits from Merapi. (5) Relatively benign lava-dome extrusion and dome-collapse pyroclastic flows have dominated activity of the 20th century, but explosive eruptions much

  19. Active Volcanic Eruptions on Io

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Six views of the volcanic plume named Prometheus, as seen against Io's disk and near the bright limb (edge) of the satellite by the SSI camera on the Galileo spacecraft during its second (G2) orbit of Jupiter. North is to the top of each frame. To the south-southeast of Prometheus is another bright spot that appears to be an active plume erupting from a feature named Culann Patera. Prometheus was active 17 years ago during both Voyager flybys, but no activity was detected by Voyager at Culann. Both of these plumes were seen to glow in the dark in an eclipse image acquired by the imaging camera during Galileo's first (G1) orbit, and hot spots at these locations were detected by Galileo's Near-Infrared Mapping Spectrometer.

    The plumes are thought to be driven by heating sulfur dioxide in Io's subsurface into an expanding fluid or 'geyser'. The long-lived nature of these eruptions requires that a substantial supply of sulfur dioxide must be available in Io's subsurface, similar to groundwater. Sulfur dioxide gas condenses into small particles of 'snow' in the expanding plume, and the small particles scatter light and appear bright at short wavelengths. The images shown here were acquired through the shortest-wavelength filter (violet) of the Galileo camera. Prometheus is about 300 km wide and 75 km high and Culann is about 150 km wide and less than 50 km high. The images were acquired on September 4, 1996 at a range of 2,000,000 km (20 km/pixel resolution). Prometheus is named after the Greek fire god and Culann is named after the Celtic smith god.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the

  20. Compound-specific carbon isotopes from Earth's largest flood basalt eruptions directly linked to the end-Triassic mass extinction.

    PubMed

    Whiteside, Jessica H; Olsen, Paul E; Eglinton, Timothy; Brookfield, Michael E; Sambrotto, Raymond N

    2010-04-13

    A leading hypothesis explaining Phanerozoic mass extinctions and associated carbon isotopic anomalies is the emission of greenhouse, other gases, and aerosols caused by eruptions of continental flood basalt provinces. However, the necessary serial relationship between these eruptions, isotopic excursions, and extinctions has never been tested in geological sections preserving all three records. The end-Triassic extinction (ETE) at 201.4 Ma is among the largest of these extinctions and is tied to a large negative carbon isotope excursion, reflecting perturbations of the carbon cycle including a transient increase in CO(2). The cause of the ETE has been inferred to be the eruption of the giant Central Atlantic magmatic province (CAMP). Here, we show that carbon isotopes of leaf wax derived lipids (n-alkanes), wood, and total organic carbon from two orbitally paced lacustrine sections interbedded with the CAMP in eastern North America show similar excursions to those seen in the mostly marine St. Audrie's Bay section in England. Based on these results, the ETE began synchronously in marine and terrestrial environments slightly before the oldest basalts in eastern North America but simultaneous with the eruption of the oldest flows in Morocco, a CO(2) super greenhouse, and marine biocalcification crisis. Because the temporal relationship between CAMP eruptions, mass extinction, and the carbon isotopic excursions are shown in the same place, this is the strongest case for a volcanic cause of a mass extinction to date. PMID:20308590

  1. The 2008 Eruption of Chaitén Volcano, Chile and National Volcano-Monitoring Programs in the U.S. and Chile

    NASA Astrophysics Data System (ADS)

    Ewert, J. W.; Lara, L. E.; Moreno, H.

    2008-12-01

    Chaitén volcano, southern Chile, began erupting on 2 May 2008. The eruption produced 3 Plinian eruption pulses between May 2 and 8. Between Plinian phases the volcano emitted a constant column of ash to approximately 10 km, gradually diminishing to approximately 3 km by the end of June. The eruption of Chaitén was remarkable on several counts--it was the first rhyolite eruption on the planet since Novarupta (Katmai) erupted in 1912, and Chaitén had apparently lain dormant for approximately 9300 years. Though Chaitén is located in a generally sparsely populated region, the eruption had widespread impacts. More than 5000 people had to be quickly evacuated from proximal areas and aviation in southern South America was disrupted for weeks. Within 10 days secondary lahars had overrun much of the town of Chaitén complicating the prospects of the townspeople to return to their homes. Prior to the eruption onset, the nearest real-time seismic station was 300 km distant, and earthquakes were not felt by local citizens until approximately 30 hours before the eruption onset. No other signs of unrest were noted. Owing to the lack of near-field monitoring, and the nighttime eruption onset, there was initial confusion about which volcano was erupting: Chaitén or nearby Michinmahuida. Lack of monitoring systems at Chaitén meant that warning time for the public at risk was extremely short, and owing to the nature of the eruption and the physical geography of the area, it was very difficult to install monitoring instruments to track its progress after the eruption started. The lack of geophysical monitoring also means that an important data set on precursory behavior for silicic systems was not collected. With more than 120 Pleistocene to Holocene-age volcanoes within its continental territory, Chile is one of the more volcanically active countries in the world. The eruption of Chaitén has catalyzed the creation of a new program within the Servicio Nacional de Geología y

  2. Eruptive history of the Dieng Mountains region, central Java, and potential hazards from future eruptions

    USGS Publications Warehouse

    Miller, C. Dan; Sushyar, R.; Santoso; Hamidi, S.

    1983-01-01

    The Dieng Mountains region consists of a complex of late Quaternary to recent volcanic stratocones, parasitic vents, and explosion craters. Six age groups of volcanic centers, eruptive products, and explosion craters are recognized in the region based on their morphology, degree of dissection, stratigraphic relationships, and degree of weathering. These features range in age from tens of thousands of years to events that have occurred this century. No magmatic eruptions have occurred in the Dieng Mountains region for at least several thousand years; volcanic activity during this time interval has consisted of phreatic eruptions and non-explosive hydrothermal activity. If future volcanic events are similar to those of the last few thousand years, they will consist of phreatic eruptions, associated small hot mudflows, emission of suffocating gases, and hydrothermal activity. Future phreatic eruptions may follow, or accompany, periods of increased earthquake activity; the epicenters for the seismicity may suggest where eruptive activity will occur. Under such circumstances, the populace within several kilometers of a potential eruption site should be warned of a possible eruption, given instructions about what to do in the event of an eruption, or temporarily evacuated to a safer location.

  3. Eruptive history of the Dieng mountains region, central Java, and potential hazards from future eruptions

    SciTech Connect

    Miller, C.D.; Sukhyar, R.; Santoso; Hamidi, S.

    1983-01-01

    The Dieng Mountains region consists of a complex of late Quaternary to recent volcanic stratocones, parasitic vents, and explosion craters. Six age groups of volcanic centers, eruptive products, and explosion craters are recognized in the region based on their morphology, degree of dissection, stratigraphic relationships, and degree of weathering. These features range in age from tens of thousands of years to events that have occurred this century. No magmatic eruptions have occurred in the Dieng Mountains region for at least several thousand years; volcanic activity during this time interval has consisted of phreatic eruptions and non-explosive hydrothermal activity. If future volcanic events are similar to those of the last few thousand years, they will consist of phreatic eruptions, associated small hot mudflows, emission of suffocating gases, and hydrothermal activity. Future phreatic eruptions may follow, or accompany, periods of increased earthquake activity; the epicenters for the seismicity may suggest where eruptive activity will occur. Under such circumstances, the populace within several kilometers of a potential eruption site should be warned of a possible eruption, given instructions about what to do in the event of an eruption, or temporarily evacuated to a safer location. 6 references, 6 figures, 2 tables.

  4. Analyses of Etna Eruptive Activity From 18th Century and Characterization of Flank Eruptions

    NASA Astrophysics Data System (ADS)

    del Carlo, P.; Branca, S.; Coltelli, M.

    2003-12-01

    Etna explosive activity has usually been considered subordinate with respect to the effusive eruptions. Nevertheless, in the last decade and overall after the 2001 and 2002 flank eruptions, explosive activity has drawn the attention of the scientific and politic communities owing to the damages that the long-lasting ash fall caused to Sicily's economy. We analyzed the eruptions from the 18th century to find some analogous behavior of Etna in the past. A study of the Etna historical record (Branca and Del Carlo, 2003) evidenced that after the 1727 eruption, there are no more errors in the attribution of the year of the eruption. Furthermore from this time on, the scientific quality of the chronicles allowed us to obtain volcanological information and to estimate the magnitude of the major explosive events. The main goal of this work was to characterize the different typologies of Etna eruptions in the last three centuries. Meanwhile, we have tried to find the possible relationship between the two kinds of activity (explosive and effusive) in order to understand the complexity of the eruptive phenomena and define the short-term behavior of Etna. On the base of the predominance of the eruptive typology (effusive or explosive) we have classified the flank eruptions in three classes: i) Type 1: almost purely effusive; ii) Type 2: the intensity of explosive activity comparable with the effusive; iii) Type 3: almost purely explosive with minor lava effusion (only the 1763 La Montagnola and 2002 eruptions belong to this class). Long-lasting explosive activity is produced by flank eruptions with continuous ash emission and prolonged fallout on the flanks (e.g. 1763, 1811, 1852-53, 1886, 1892, 2001 and 2002 eruptions). At summit craters continuous activity is weaker, whereas the strongest explosive eruptions are short-lived events. Furthermore, from the 18th to 20th century there were several years of intense and discontinuous summit explosive activity, from high strombolian

  5. Interacting filamentary eruptions in magnetised plasmas

    NASA Astrophysics Data System (ADS)

    Henneberg, S. A.; Cowley, S. C.; Wilson, H. R.

    2015-12-01

    The interaction between multiple filamentary plasma eruptions is investigated by modelling the non-linear ideal MHD ballooning mode envelope equation with a mixed Eulerian and Lagrangian characterisation of the boundary conditions. The study of multiple plasma filaments is performed in a specific slab equilibrium susceptible to Rayleigh-Taylor instabilities. If the unstable system is initiated with three equal sized filaments, they erupt at the same rate, independently of each other, even in the non-linear regime. However, if one is initiated very slightly larger than the other two it causes a down-draft as it erupts upwards, which suppresses the smaller filaments. This suggests that those filaments which first enter the non-linear regime will dominate the plasma eruption dynamics.

  6. C3-class Solar Flare Eruption

    NASA Video Gallery

    Just as sunspot 1105 was turning away from Earth on Sept. 8, the active region erupted, producing a C3-class solar flare (peak @ 2330 UT) and a fantastic prominence. This is a three color closeup o...

  7. Juvenile Spring Eruption: A Variant of Perniosis?

    PubMed

    Nabatian, Adam S; Rosman, Ilana S; Sturza, Jeffrey; Jacobson, Mark

    2015-09-01

    Juvenile spring eruption (JSE) is a unique condition that typically affects the helices of the ears of boys and young men. The classical clinical picture of JSE includes the abrupt onset of lesions after spending time outdoors in the early spring. Because of the papulovesicular nature of the rash and the history of sun exposure, JSE is considered a variant of polymorphous light eruption. In addition to the term "juvenile spring eruption," this entity has also been described under other less common terms such as "perniosis juvenilis vernalis aurium" or "spring perniosis," which emphasizes the onset in the spring and the possible pathogenic role of cold weather. We present a case of likely JSE with histopathologic features more consistent with perniosis than polymorphous light eruption and present a review the literature. PMID:26291421

  8. Seasonal variations of volcanic eruption frequencies

    NASA Technical Reports Server (NTRS)

    Stothers, Richard B.

    1989-01-01

    Do volcanic eruptions have a tendency to occur more frequently in the months of May and June? Some past evidence suggests that they do. The present study, based on the new eruption catalog of Simkin et al.(1981), investigates the monthly statistics of the largest eruptions, grouped according to explosive magnitude, geographical latitude, and year. At the 2-delta level, no month-to-month variations in eruption frequency are found to be statistically significant. Examination of previously published month-to-month variations suggests that they, too, are not statistically significant. It is concluded that volcanism, at least averaged over large portions of the globe, is probably not periodic on a seasonal or annual time scale.

  9. Solar Eruptions: Coronal Mass Ejections and Flares

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat

    2012-01-01

    This lecture introduces the topic of Coronal mass ejections (CMEs) and solar flares, collectively known as solar eruptions. During solar eruptions, the released energy flows out from the Sun in the form of magnetized plasma and electromagnetic radiation. The electromagnetic radiation suddenly increases the ionization content of the ionosphere, thus impacting communication and navigation systems. Flares can be eruptive or confined. Eruptive flares accompany CMEs, while confined flares hav only electromagnetic signature. CMEs can drive MHD shocks that accelerate charged particles to very high energies in the interplanetary space, which pose radiation hazard to astronauts and space systems. CMEs heading in the direction of Earth arrive in about two days and impact Earth's magnetosphere, producing geomagnetic storms. The magnetic storms result in a number of effects including induced currnts that can disrupt power grids, railroads, and underground pipelines

  10. Italian super-eruption larger than thought

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2012-07-01

    Recent research suggested that the super-eruption of the Campi Flegrei caldera volcano in southern Italy about 40,000 years ago may have played a part in wiping out, or forcing the migration of, the Neanderthal and modern human populations in the eastern Mediterranean regions that were covered in ash. Now a new modeling study by Costa et al. suggests that this eruption may have been even larger than previously thought. This Campi Flegrei eruption produced a widespread ash layer known as Campanian Ignimbrite (CI). Using ash thickness measurements collected at 115 sites and a three-dimensional ash dispersal model, the researchers found that the CI super-eruption would have spread 250-300 cubic kilometers of ash across a 3.7-million-square kilometer region—2 to 3 times previous ash volume estimates.

  11. STEREO's View of Aug. 24, 2014 Eruption

    NASA Video Gallery

    A bright eruption of solar material surges into space as captured by NASA's Solar Terrestrial Relations Observatory - Before satellite, which currently has a view of the far side of the sun. The in...

  12. Ring-shaped Prominence Erupts from Sun

    NASA Video Gallery

    A coronal mass ejection (CME) on Jan. 31, 2013 was accompanied by a large prominence eruption best visible in light with a wavelength of 304 angstroms. NASA’s Solar Dynamics Observatory captured ...

  13. Lower third molar eruption following orthodontic treatment.

    PubMed

    Salehi, P; Danaie, S Momene

    2008-01-01

    This study assessed the effect of extraction and preservation of the 1st premolar on lower 3rd molar eruption. Orthodontic clinic records from 1993 to 1995 were evaluated before and after treatment and 8-9 years after treatment for 3 groups of patients: 32 with extraction of 1st premolars in both jaws, 32 with no extraction but orthodontic treatment and 48 controls with no extraction but orthodontic treatment in the upper jaws only. Successful eruption of 3rd molars was evaluated. There was a significant difference in the rates of successful eruptions in the extraction (42%), non-extraction (12%) and control (20%) groups. The findings indicate that 1st premolar extraction may increase the chance of 3rd molar eruption, leading to a lower incidence of health and economic complications. PMID:19161121

  14. Depth of origin of magma in eruptions.

    PubMed

    Becerril, Laura; Galindo, Ines; Gudmundsson, Agust; Morales, Jose Maria

    2013-01-01

    Many volcanic hazard factors--such as the likelihood and duration of an eruption, the eruption style, and the probability of its triggering large landslides or caldera collapses--relate to the depth of the magma source. Yet, the magma source depths are commonly poorly known, even in frequently erupting volcanoes such as Hekla in Iceland and Etna in Italy. Here we show how the length-thickness ratios of feeder dykes can be used to estimate the depth to the source magma chamber. Using this method, accurately measured volcanic fissures/feeder-dykes in El Hierro (Canary Islands) indicate a source depth of 11-15 km, which coincides with the main cloud of earthquake foci surrounding the magma chamber associated with the 2011-2012 eruption of El Hierro. The method can be used on widely available GPS and InSAR data to calculate the depths to the source magma chambers of active volcanoes worldwide. PMID:24067336

  15. Depth of origin of magma in eruptions

    PubMed Central

    Becerril, Laura; Galindo, Ines; Gudmundsson, Agust; Morales, Jose Maria

    2013-01-01

    Many volcanic hazard factors - such as the likelihood and duration of an eruption, the eruption style, and the probability of its triggering large landslides or caldera collapses - relate to the depth of the magma source. Yet, the magma source depths are commonly poorly known, even in frequently erupting volcanoes such as Hekla in Iceland and Etna in Italy. Here we show how the length-thickness ratios of feeder dykes can be used to estimate the depth to the source magma chamber. Using this method, accurately measured volcanic fissures/feeder-dykes in El Hierro (Canary Islands) indicate a source depth of 11–15 km, which coincides with the main cloud of earthquake foci surrounding the magma chamber associated with the 2011–2012 eruption of El Hierro. The method can be used on widely available GPS and InSAR data to calculate the depths to the source magma chambers of active volcanoes worldwide. PMID:24067336

  16. Mortality in England during the 1783 4 Laki Craters eruption

    NASA Astrophysics Data System (ADS)

    Witham, C. S.; Oppenheimer, C.

    2004-12-01

    1783/4 has been recognised as a mortality “crisis year” in the population history of England. This demographic incident coincides with the Laki Craters eruption, Iceland, which began in June 1783 and fumigated many parts of Europe with volcanic gases and particles. Many reports and proxy climate records implicate the volcanic cloud in meteorological anomalies, including notably hot 1783 summer conditions in England and a severe subsequent winter. We present here a detailed analysis of the geographical and temporal trends in English mortality data, and interpret them in the light of the climatological records and observations of the pollutant cloud. We show that there were two distinct crisis periods: in August-September 1783, and January-February 1784, which together accounted for ~20,000 extra deaths. In both cases, the East of England was the worst affected region. Possible causes for the two crisis periods are considered and we conclude that the timing and magnitude of the winter mortality peak can be explained by the severe cold of January 1784. The late summer mortality followed 1 2 months after the very hot July of 1783 and may also have been related to the weather, with the time lag reflecting the relatively slow spread of enteric disease or the contraction of malaria. However, it is hard to explain the entire late summer anomaly by these high temperature causes. We therefore consider that fine acid aerosol and/or gases in the volcanic haze may also have contributed to the unusual August-September mortality. Given that complex radiative and dynamical effects of the volcanic cloud are implicated in the climatic anomalies in 1783 4, it is likely that the Laki Craters eruption did play a role in the English mortality crises of the same period.

  17. Overview Of Mount St. Helens Volcanic Eruption

    NASA Astrophysics Data System (ADS)

    Tilling, Robert I.

    Dormant since 1857, Mount St. Helens Volcano in southwestern Washington stirred from its repose to erupt on March 27, 1980, following a week of premonitory earthquake activity. The eruption was the first in the conterminous United States since the 1914-1921 activity of Lassen Peak, California. The eruptive activity through May 17 was intermittent and relatively mild, but the accompanying seismic activity remained intense. On May 18, a catastrophic eruption, triggered by a magnitude 5.0 earthquake, produced a massive landslide/debris avalanche, a devastating lateral "blast," pyroclastic flows, mudflows, and an ash column that rose more than 20 km into the stratosphere. Winds carried the ash easterly, and more than 7 cm of ash was deposited locally in parts of eastern Washington. The landslide/debris avalanche and associated mudflows caused flooding of the Toutle and Cowlitz River valleys, which carried sediment as far as the confluence with the Columbia, where it choked off the channel to navigation. Smaller but significant explosive eruptions followed in May, June, July, August, and October, 1980, with lava domes being extruded in the crater following the June, August, and October eruptions. Subsequently in December 1980 and February 1981, lava domes were extruded without significant preceding explosive activity. Except for the latter two, each dome was partly or wholly destroyed by succeeding explosive events. Scientists expect similar activity to continue for months or years--possibly even decades. The Mount St. Helens eruptions severely tested the ability of scientists to respond swiftly and effectively in assisting public officials during a geologic disaster. At the same time, they shall continue to provide an unprecedented opportunity for the systematic investigation of volcanic phenomena, and hopefully, the insight to meet possible future eruptions there and elsewhere in the Cascade Range with equal success.

  18. Azithromycin induced bullous fixed drug eruption

    PubMed Central

    Das, Anupam; Sancheti, Karan; Podder, Indrashis; Das, Nilay Kanti

    2016-01-01

    Fixed drug eruption (FDE) is a common type of drug eruption seen in skin clinics. It is characterized by solitary or multiple, round to oval erythematous patches with dusky red centers, some of which may progress to bulla formation. Bullous FDE may be caused by a number of drugs. We hereby describe a case of azithromycin-induced bullous FDE; to the best of our knowledge, this is the first such case being reported. PMID:26997729

  19. Preventive health measures in volcanic eruptions.

    PubMed Central

    Baxter, P J; Bernstein, R S; Buist, A S

    1986-01-01

    Medical treatment has only a small role in severe volcanic eruptions and so preventive measures are paramount if injuries and loss of life are to be reduced. The health team must be incorporated in emergency planning and response at the earliest stage. Guidance on the interpretation of geological information about a volcano and the appropriate health measures that should be adopted before and after an eruption are summarized for the benefit of health workers. PMID:3946731

  20. A Nanolite Record of Eruption Style Transition

    NASA Astrophysics Data System (ADS)

    Mujin, M.; Nakamura, M.

    2014-12-01

    Microlites in pyroclasts have been intensively studied to understand magma ascent processes. However, microlites do not record the explosive-effusive transitions in sub-Plinian eruptions when such transitions are governed by the shallow level degassing rather than by the magma ascent rate. To overcome this limitation, we studied the "nanolites" in the quenched products of the 2011 Shinmoedake, Kirishima Volcanic Group, Kyusyu Japan1. Nanolites are the nanometer-scale components of the groundmass minerals and exhibit a steeper slope of crystal size distribution than that of the microlites2. In the 2011 Shinmoedake eruption, the style of activity had undergone transformations from sub-Plinian eruption to Vulcanian explosion and intermittent effusion of lava3. We found that, although the products formed by different eruptive activities have similar microlite characteristics, such products can be distinguished clearly by their mineral assemblage of nanolites. The samples of pumices of sub-Plinian eruptions and Vulcanian explosions and the dense juvenile fragments of lava (in descending order of explosivity) contained, respectively, nanolites of low-Ca pyroxene, low-Ca pyroxene + plagioclase, and low-Ca pyroxene + plagioclase + Fe-Ti oxides. Nanolites are assumed to crystallize when undercooling of the magma due primarily to dehydration increases rapidly near the surface. The water contents of the interstitial glass indicate that the quenched depths did not differ greatly between eruption styles. Hence, the different nanolite assemblages of each eruption style are assumed to have resulted from differences in magma residence time near the surface. Thus, we propose that nanolites in pyroclasts have the potential to indicate the physicochemical conditions of magma at the transition points of eruption styles. References 1) Mujin and Nakamura, 2014, Geology, v.42, p.611-614 2) Sharp et al., 1996, Bull. Volcanol, v.57, p.631-640 3) Miyabuchi et al, 2013, J. Volcanol

  1. Satellite Observations of Volcanic Clouds from the Eruption of Redoubt Volcano, Alaska, 2009

    NASA Astrophysics Data System (ADS)

    Dean, K. G.; Ekstrand, A. L.; Webley, P.; Dehn, J.

    2009-12-01

    Redoubt Volcano began erupting on 23 March 2009 (UTC) and consisted of 19 events over a 14 day period. The volcano is located on the Alaska Peninsula, 175 km southwest of Anchorage, Alaska. The previous eruption was in 1989/1990 and seriously disrupted air traffic in the region, including the near catastrophic engine failure of a passenger airliner. Plumes and ash clouds from the recent eruption were observed on a variety of satellite data (AVHRR, MODIS and GOES). The eruption produced volcanic clouds up to 19 km which are some of the highest detected in recent times in the North Pacific region. The ash clouds primarily drifted north and east of the volcano, had a weak ash signal in the split window data and resulted in light ash falls in the Cook Inlet basin and northward into Alaska’s Interior. Volcanic cloud heights were measured using ground-based radar, and plume temperature and wind shear methods but each of the techniques resulted in significant variations in the estimates. Even though radar showed the greatest heights, satellite data and wind shears suggest that the largest concentrations of ash may be at lower altitudes in some cases. Sulfur dioxide clouds were also observed on satellite data (OMI, AIRS and Calipso) and they primarily drifted to the east and were detected at several locations across North America, thousands of kilometers from the volcano. Here, we show time series data collected by the Alaska Volcano Observatory, illustrating the different eruptive events and ash clouds that developed over the subsequent days.

  2. Africa: Prosperous times

    SciTech Connect

    1996-08-01

    Political instability and corruption is the rule, rather than the exception, in Africa`s main producing regions, but exploration and production prospects there are bright and attractive to foreign operators. The paper discusses exploration, drilling, resource development, and production in Nigeria, Libya, Algeria, Egypt, Angola, Congo, Gabon, and Tunisia. The other countries of Africa are briefly mentioned, i.e., Cameroon, Cote D`Ivoire, South Africa, Sudan, Namibia, Equatorial Guinea, Eritrea, Zaire, Mozambique, Ghana, Niger, and Seychelles.

  3. Climatic impact of volcanic eruptions

    NASA Technical Reports Server (NTRS)

    Rampino, Michael R.

    1991-01-01

    Studies have attempted to 'isolate' the volcanic signal in noisy temperature data. This assumes that it is possible to isolate a distinct volcanic signal in a record that may have a combination of forcings (ENSO, solar variability, random fluctuations, volcanism) that all interact. The key to discovering the greatest effects of volcanoes on short-term climate may be to concentrate on temperatures in regions where the effects of aerosol clouds may be amplified by perturbed atmospheric circulation patterns. This is especially true in subpolar and midlatitude areas affected by changes in the position of the polar front. Such climatic perturbation can be detected in proxy evidence such as decrease in tree-ring widths and frost rings, changes in the treeline, weather anomalies, severity of sea-ice in polar and subpolar regions, and poor grain yields and crop failures. In low latitudes, sudden temperature drops were correlated with the passage overhead of the volcanic dust cloud (Stothers, 1984). For some eruptions, such as Tambora, 1815, these kinds of proxy and anectdotal information were summarized in great detail in a number of papers and books (e.g., Post, 1978; Stothers, 1984; Stommel and Stommel, 1986; C. R. Harrington, in press). These studies lead to the general conclusion that regional effects on climate, sometimes quite severe, may be the major impact of large historical volcanic aerosol clouds.

  4. Volcanic eruptions; energy and size

    USGS Publications Warehouse

    de la Cruz-Reyna, S.

    1991-01-01

    The Earth is a dynamic planet. Many different processes are continuously developing, creating a delicate balance between the energy stored and generated in its interior and the heat lost into space. The heat in continuously transferred through complex self-regulating convection mechanisms on a planetary scale. The distribution of terrestrial heat flow reveals some of the fine structure of the energy transport mechanisms in the outer layers of the Earth. Of these mechanisms in the outer layers of the Earth. Of these mechanisms, volcanism is indeed the most remarkable, for it allows energy to be transported in rapid bursts to the surface. In order to maintain the subtle balance of the terrestrial heat machine, one may expect that some law or principle restricts the ways in which these volcanic bursts affect the overall energy transfer of the Earth. For instance, we know that the geothermal flux of the planet amounts to 1028 erg/year. On the other hand, a single large event like the Lava Creek Tuff eruption that formed Yellowstone caldera over half a million years ago may release the same amount of energy in a very small area, over a short period of time. 

  5. Petrologic constraints on rift-zone processes - Results from episode 1 of the Puu Oo eruption of Kilauea volcano, Hawaii

    USGS Publications Warehouse

    Garcia, M.O.; Ho, R.A.; Rhodes, J.M.; Wolfe, E.W.

    1989-01-01

    The Puu Oo eruption in the middle of Kilauea volcano's east rift zone provides an excellent opportunity to utilize petrologic constraints to interpret rift-zone processes. Emplacement of a dike began 24 hours before the start of the eruption on 3 January 1983. Seismic and geodetic evidence indicates that the dike collided with a magma body in the rift zone. Most of the lava produced during the initial episode of the Puu Oo eruption is of hybrid composition, with petrographic and geochemical evidence of mixing magmas of highly evllved and more mafic compositions. Some olivine and plagioclase grains in the hybrid lavas show reverse zoning. Whole-rock compositional variations are linear even for normally compatible elements like Ni and Cr. Leastsquares mixing calculations yield good residuals for major and trace element analyses for magma mixing. Crystal fractionation calculations yield unsatisfactory residuals. The highly evolved magma is similar in composition to the lava from the 1977 eruption and, at one point, vents for these two eruptions are only 200 m apart. Possibly both the 1977 lava and the highly evolved component of the episode 1 Puu Oo lava were derived from a common body of rift-zone-stored magma. The more mafic mixing component may be represented by the most mafic lava from the January 1983 eruption; it shows no evidence of magma mixing. The dike that was intruded just prior to the start of the Puu Oo eruption may have acted as a hydraulic plunger causing mixing of the two rift-zone-stored magmas. ?? 1989 Springer-Verlag.

  6. Environmental impact of the 1.8 ka Taupo eruption, New Zealand: Landscape responses to a large-scale explosive rhyolite eruption

    NASA Astrophysics Data System (ADS)

    Manville, V.; Segschneider, B.; Newton, E.; White, J. D. L.; Houghton, B. F.; Wilson, C. J. N.

    2009-10-01

    Large-scale ignimbrite eruptions from rhyolitic caldera volcanoes can trigger geologically instantaneous changes in sedimentary systems over huge areas by either burying existing environments or overloading them with vast quantities of unconsolidated particulate material. The post-eruption readjustment of the landscape to such perturbations is one of the most dramatic processes in physical sedimentology, exemplified here by the 1.8 ka Taupo eruption in the central North Island of New Zealand. This eruption generated voluminous fall deposits, then climaxed with emplacement of a c. 30 km 3 non-welded ignimbrite over a near-circular area of c. 20 000 km 2. Approximately 90% of the area, but < 50% of the ignimbrite volume, is represented by a landscape-mantling unit that covered the pre-eruption topography to a depth varying from c. 10 m in proximal areas to less than 15-30 cm distally. The remainder of the ignimbrite deposit is represented by landscape-modifying material that ponded in valley bottoms and depressions to thicknesses of up to 70 m, with no systematic variation in thickness with distance from source. The headwaters of many of the North Island's largest rivers were impacted by both the primary pyroclastic fall and flow material. Large-scale post-eruption remobilisation of this material, coupled with the re-establishment of fluvial systems, occurred in a distinct sequence as recorded by the evolution of sedimentary facies in different sub-environments. Following an initial period dominated by mass flows, re-establishment of fluvial systems began with the headward erosion of box canyons through the ponded ignimbrite deposits, a process often associated with the break-out of temporary lakes. Aggradational streams developed in these channels rapidly evolved from shallow, ephemeral, sediment-laden outbursts associated with flash flood events to deeper, permanent braided rivers, before declining sediment yields led to retrenchment of single thread rivers and a

  7. Communicating Uncertainty to the Public During Volcanic Unrest and Eruption -A Case Study From the 2004-2005 Eruption of Mount St. Helens, USA

    NASA Astrophysics Data System (ADS)

    Gardner, C. A.; Pallister, J. S.

    2005-12-01

    The earthquake swarm beneath Mount St. Helens that began on 23 September 2004 did not initially appear different from previous swarms (none of which culminated in an eruption) that had occurred beneath the volcano since the end of the 1980-1986 eruptions. Three days into the swarm, however, a burst of larger-magnitude earthquakes indicated that this swarm was indeed different and prompted the U.S. Geological Survey's Cascades Volcano Observatory (CVO) to issue a change in alert level, the first time such a change had been issued in the Cascades in over 18 years. From then on, the unrest accelerated quickly as did the need to communicate the developing conditions to the public and public officials, often in the spotlight of intense media attention. Within three weeks of the onset of unrest, magma reached the surface. Since mid-October 2004, lava has been extruding through a glacier within the crater of Mount St. Helens, forming a 60 Mm3 dome by August 2005. The rapid onset of the eruption required a rapid ramping up of communication within and among the scientific, emergency-response and land-management communities, as well as the reestablishment of protocols that had not been rigorously tested for 18 years. Early on, daily meetings of scientists from CVO and the University of Washington's Pacific Northwest Seismograph Network were established to discuss incoming monitoring data and to develop a consensus on the likely course of activity, hazard potential and the uncertainty inherent in these forecasts. Subgroups developed scenario maps to describe the range of activity likely under different eruptive behaviors and sizes, and assessed short- and long-term probabilities of eruption, explosivity and hazardous events by employing a probability-tree methodology. Resultant consensual information has been communicated to a variety of groups using established alert levels for ground-based and aviation communities, daily updates and media briefings, postings on the

  8. The 2010 Eruption of Merapi Volcano, Java, Indonesia: Petrological Insights into Magma Dynamics and Eruptive Behaviour

    NASA Astrophysics Data System (ADS)

    Gertisser, R.; Handley, H.; Preece, K.; Reagan, M.; Berlo, K.; Barclay, J.; Herd, R.

    2012-04-01

    The violent eruption of Merapi volcano (Central Java) that started on 26 October 2010 was the volcano's largest since 1872 and the deadliest event since 1930. Before 2010, Merapi's more recent (historical) eruptive activity was repeatedly characterised by periods of slow lava dome extrusion punctuated by gravitational dome failures, generating small-volume pyroclastic density currents (PDCs) with runout distances of typically less than 10 km. The unforeseen, large-magnitude events in 2010 were unusual in many respects: (1) the eruption was short-lived and started with an explosive phase that was not preceded by a lava dome at the surface; (2) between 31 October and 4 November, a lava dome appeared and grew rapidly within the summit crater, exceeding growth rates observed at the peak of the penultimate eruption in 2006 by a factor of ~ 22; (3) during the most vigorous eruptive phase on 5 November, at least one PDC travelled more than 15 km (more than twice the distance of the largest flows in 2006) beyond the summit along the Gendol river valley, causing widespread devastation on Merapi's south flank; (4) in a late phase of the eruption, pumice-rich PDCs were produced, forming a thin veneer on top of the deposits of the largest PDCs from 5 November; (5) ash emissions from sustained eruption columns resulted in ash fall tens of kilometres from the volcano, affecting, amongst other areas, the volcano's western slopes and the city of Yogyakarta ~ 25 km to the south; and (6) the total deposited volume in 2010, based on provisional estimates, may have been ~ 10 times higher than that of other recent eruptions. Here we report and present new geochemical, Sr-Nd-O isotope and U-series data for the volcanic products (lava dome fragments, magmatic inclusions, scoria, pumice and ash) from various stages of the 2010 eruption of Merapi. These data are discussed in the context of other recent to historical, typically less explosive, dome-forming eruptions to elucidate the driving

  9. Gas-driven eruptions at Mount Ruapehu, New Zealand: towards a coherent model of eruption

    NASA Astrophysics Data System (ADS)

    Kilgour, G. N.; Mader, H. M.; Mangan, M.; Blundy, J.

    2010-12-01

    Mt. Ruapehu is an andesitic cone volcano situated at the southern end of the Taupo Volcanic Zone. The summit plateau at Ruapehu consists of three craters (South, Central and North). Historical activity has consisted of frequent small phreatic and phreatomagmatic eruptions from South Crater. The active vents of South Crater are submerged beneath Crater Lake - a warm, acidic lake. The most recent eruption at Ruapehu occurred on 25th September, 2007 that generated a moderate steam column to about 4.5 km above Crater Lake, and a directed ballistic and surge deposit of coarse blocks and ash to the north of Crater Lake. It also initiated lahars in two catchments. The eruption occurred during the ski season and it resulted in the temporary closure of the three ski fields. Seismicity for the main eruption lasted for about 4 minutes and included an explosive phase which lasted for less than 1 minute and a post-explosion phase which probably indicated resonance in the conduit together with signals generated from lahars and vent stabilisation. Preceding seismicity occurred ~ 10 min before the eruption. The 2007 eruption appears strikingly similar to phreatic/phreatomagmatic eruptions of 1969 and 1975. In those eruptions, limited precursory seismicity was recorded, the bulk of the erupted deposits were accidental lithics, including lake sediments and older lavas, and only a small amount of juvenile material was erupted (~ 5%). It is likely that all three eruptions were driven by magmatic gases, either stored and pressurised beneath a hydrothermal seal, or rapidly exsolved during a gas release event. This poster outlines the plan that we will use to model this common type of eruption at Ruapehu. We will analyse the volatile content of phenocryst-hosted melt inclusions to determine the degassing depth of historic eruptions. This will allow us to identify where the magmas have been or are degassing beneath Crater Lake. Analogue modelling of gas and fluid flow through a visco

  10. Impulsive Seafloor Signals from the 2015 Eruption of Axial Seamount

    NASA Astrophysics Data System (ADS)

    Garcia, C.; Wilcock, W. S. D.; Tan, Y. J.; Tolstoy, M.

    2015-12-01

    Axial Seamount is a hotspot volcano on the Juan de Fuca Ridge that has erupted three times over the past two decades. The most recent eruption was recorded by a cabled seismic network in the southern half of the summit caldera that has been operated by the Ocean Observatories Initiative (OOI) since November 2014. After five months of increasing seismicity, a 10-hour seismic crisis involving thousands of earthquakes began at 0500 GMT on April 24, 2015 accompanied by ~2 m of deflation in the central caldera (Nooner et al., this meeting). Local seismicity declined rapidly after the eruption, but thousands of impulsive waterborne events were observed across the network starting immediately after the seismic crisis. Over 1500 events per day were recorded on April 25 and 26, decreasing to less than 500 per day after May 1, and ceasing altogether around May 20. Each event comprises a train of three to five consistently spaced arrivals visible on all 3 seismometer channels with a broad frequency content of 10-100 Hz. The timing of arrivals across the network is consistent with water column multiples from a seafloor source to the north. A subset of events has been manually picked and located by modeling travel times of the first three arrivals assuming flat bathymetry at a range of depths between 1500-1800 m and a sound speed of 1.5 km/s. The preliminary locations are clustered around Axial Seamount's northern rift at a distance of 10-15 km from the north rim of the caldera. In July, an OOI cruise discovered fresh pillow lavas up to 100 m thick and 670 m wide, and extending for 7 km along the rift in the same region (Kelley et al., this meeting). The source of the impulsive events is uncertain and could involve gas explosions, bubble collapse, and thermal or mechanical cracking, but their colocation with the fresh lava flow suggests that ocean bottom seismic networks can not only track the faulting and fracturing associated with subsurface magma movements but also the

  11. Seismic damage before eruptions as a tool to map pre-eruptive mechanics: worldwide average patterns

    NASA Astrophysics Data System (ADS)

    Schmid, A.; Grasso, J. R.

    2010-12-01

    Volcanic eruptions and earthquakes are shown to interact at different time and space scales, from a few hundreds of km for VEI>5 eruptions and Mag>7 earthquakes (Linde and Sacks, 1998), down to a few km with Mag<3 VT earthquakes that are contemporary to regular small effusive eruptions. When distances are normalized by the seismic fault length, VEI>0 and Mag>5, Lemarchand and Grasso, (2007) suggest that the seismicity rate before eruptions follows inverse Omori’s law (Omori, 1896) similar to the one observed for earthquakes, but with possible different exponent values. Given this similarity, we were interested to further compare the properties of the upper crust damage contemporary to worldwide eruptions (expressed through the seismicity), to the properties of the upper crust damage triggered by the standard tectonic loading of worldwide earthquakes. Using two empirical laws (Gutemberg-Richter law, Omori law) ETAS model well reproduces the main observed properties of tectonic seismicity. It will here be considered as null hypothesis. Differences from ETAS model or global tectonic seismicity patterns are used to track down the seismic signature of the magma movement and the pre-eruptive mechanisms. First, we analyzed the crustal response to loading, thanks to patterns of seismicity: i) before 525 Mag>7 earthquakes, USGS worldwide catalog 1973-2009, ii) before earthquakes of synthetic ETAS simulation, iii) before 1179 worldwide eruptions from the Smithsonian Institution catalog, 1973-2009. Using stacked sequences of seismic events before eruption times and for different classes of eruptions sizes, we found that the parameters of inverse Omori law significantly differ from the expected values of ETAS model or the ones of real tectonic seismicity: i) The productivity in foreshocks scales linearly to VEI; ii) The exponent of the power-law increase of foreshock rates vary with the eruption size. For VEI<2 eruptions, the 0.49 p-value of foreshock sequences is smaller

  12. New insights into the initiation and venting of the Bronze-Age eruption of Santorini (Greece), from component analysis

    NASA Astrophysics Data System (ADS)

    Druitt, T. H.

    2014-02-01

    The late-seventeenth century BC Minoan eruption of Santorini discharged 30-60 km3 of magma, and caldera collapse deepened and widened the existing 22 ka caldera. A study of juvenile, cognate, and accidental components in the eruption products provides new constraints on vent development during the five eruptive phases, and on the processes that initiated the eruption. The eruption began with subplinian (phase 0) and plinian (phase 1) phases from a vent on a NE-SW fault line that bisects the volcanic field. During phase 1, the magma fragmentation level dropped from the surface to the level of subvolcanic basement and magmatic intrusions. The fragmentation level shallowed again, and the vent migrated northwards (during phase 2) into the flooded 22 ka caldera. The eruption then became strongly phreatomagmatic and discharged low-temperature ignimbrite containing abundant fragments of post-22 ka, pre-Minoan intracaldera lavas (phase 3). Phase 4 discharged hot, fluidized pyroclastic flows from subaerial vents and constructed three main ignimbrite fans (northwestern, eastern, and southern) around the volcano. The first phase-4 flows were discharged from a vent, or vents, in the northern half of the volcanic field, and laid down lithic-block-rich ignimbrite and lag breccias across much of the NW fan. About a tenth of the lithic debris in these flows was subvolcanic basement. New subaerial vents then opened up, probably across much of the volcanic field, and finer-grained ignimbrite was discharged to form the E and S fans. If major caldera collapse took place during the eruption, it probably occurred during phase 4. Three juvenile components were discharged during the eruption—a volumetrically dominant rhyodacitic pumice and two andesitic components: microphenocryst-rich andesitic pumices and quenched andesitic enclaves. The microphenocryst-rich pumices form a textural, mineralogical, chemical, and thermal continuum with co-erupted hornblende diorite nodules, and together

  13. Volcano shapes, entropies, and eruption probabilities

    NASA Astrophysics Data System (ADS)

    Gudmundsson, Agust; Mohajeri, Nahid

    2014-05-01

    We propose that the shapes of polygenetic volcanic edifices reflect the shapes of the associated probability distributions of eruptions. In this view, the peak of a given volcanic edifice coincides roughly with the peak of the probability (or frequency) distribution of its eruptions. The broadness and slopes of the edifices vary widely, however. The shapes of volcanic edifices can be approximated by various distributions, either discrete (binning or histogram approximation) or continuous. For a volcano shape (profile) approximated by a normal curve, for example, the broadness would be reflected in its standard deviation (spread). Entropy (S) of a discrete probability distribution is a measure of the absolute uncertainty as to the next outcome/message: in this case, the uncertainty as to time and place of the next eruption. A uniform discrete distribution (all bins of equal height), representing a flat volcanic field or zone, has the largest entropy or uncertainty. For continuous distributions, we use differential entropy, which is a measure of relative uncertainty, or uncertainty change, rather than absolute uncertainty. Volcano shapes can be approximated by various distributions, from which the entropies and thus the uncertainties as regards future eruptions can be calculated. We use the Gibbs-Shannon formula for the discrete entropies and the analogues general formula for the differential entropies and compare their usefulness for assessing the probabilities of eruptions in volcanoes. We relate the entropies to the work done by the volcano during an eruption using the Helmholtz free energy. Many factors other than the frequency of eruptions determine the shape of a volcano. These include erosion, landslides, and the properties of the erupted materials (including their angle of repose). The exact functional relation between the volcano shape and the eruption probability distribution must be explored for individual volcanoes but, once established, can be used to

  14. Hydrological Disturbances Caused By Explosive Volcanic Eruptions

    NASA Astrophysics Data System (ADS)

    Major, J. J.; Pierson, T. C.; Spicer, K. R.; Mark, L.; Yamakoshi, T.; Suwa, H.

    2014-12-01

    Explosive eruptions can drastically alter hydrogeomorphic regimes of drainage basins. The extent and degree of eruption-induced alteration scale with eruption magnitude, volcanic process, and basin proximity to a volcano. The most important effects of explosive eruptions on basin hydrology are ones that alter production and routing of runoff: (a) vegetation damage, which decreases (or eliminates) interception and evapotranspiration (ET); (b) reduction of surface infiltration owing to tephra deposition, which increases overland flow; (c) alteration of stream-channel hydraulics, which enables efficient transport of water and sediment; and (d) alterations to drainage networks, which accelerate or delay geomorphic response. In combination, these effects alter flood magnitude and frequency and rates of sediment transport. Vegetation loss allows more water to fall directly to the ground surface and reduces ET, which affects soil moisture, water storage and runoff pathways. Tephra fall, which typically paves the landscape with nearly impervious sediment, can reduce infiltration by as much as 2 orders of magnitude compared to pre-eruption rates and can increase direct runoff from near zero to as much as 90%. Even very thin layers (2-5 mm) of extremely fine tephra can increase runoff and decrease lag times between peak rainfall and peak runoff. Volcanic sedimentation in river valleys can increase channel gradient, reduce planform resistance, and smooth channel hydraulics, allowing for more efficient flow routing and producing larger, flashier flows. Hydrological effects of eruptive disturbance can linger for decades, but the most extreme effects typically last but a few years. However, lake formation through tributary blockage by thick deposits can delay response and extend the hydrologic legacy of eruptive disturbances. Failures of lake-impounding dams can produce large floods that renew downstream channel instability and rejuvenate headwater erosion.

  15. Jet noise recorded during discrete explosive eruptions

    NASA Astrophysics Data System (ADS)

    Scarlato, P.; Sesterhenn, J.; Taddeucci, J.

    2013-12-01

    Most commonly, acoustic studies of explosive volcanic activity focus on the infrasonic range, as related to large volumetric changes mostly associated with the liberation of pressurized gas. However, there are multiple potential sources of sound that accompany explosive activity, expected to cover a broad range of frequencies. Among the audible range are several mechanisms, generating sound in high-velocity jets of gas or gas-particle mixture entering the atmosphere. This types of sound, well-documented and investigated in physics and engineering literature, has been so far mostly neglected in the study of explosive eruptions, due to the high energy content of the jet noise in the infrasonic regime, despite the potential it holds for parameterizing and understanding eruption processes. High-speed imaging of Strombolian and Vulcanian explosive eruptions at several volcanoes allowed the visualization of acoustic waves generated during the emission of the eruptive gas-pyroclast mixture. The waves, visible only when travelling within dilute gas/aerosol plumes, are thought to cause a temporary phase change in the travel medium. Image analysis allows direct measurement of the apparent (projected) trajectory, wavelength and travel velocity of the waves. Synchronized audio recording from the same eruptions include frequency contents in agreement with the observed waves. The general features of the observed waves are compatible with jet noise originated by the gas-pyroclast mixture entering the atmosphere, opening the way for future comparison with the results of numerical simulations of explosive eruptions, and possibly setting the basis for new acoustic monitoring tools for explosive eruptions.

  16. A FLUX ROPE ERUPTION TRIGGERED BY JETS

    SciTech Connect

    Guo Juan; Zhang Hongqi; Deng Yuanyong; Lin Jiaben; Su Jiangtao; Liu Yu

    2010-03-10

    We present an observation of a filament eruption caused by recurrent chromospheric plasma injections (surges/jets) on 2006 July 6. The filament eruption was associated with an M2.5 two-ribbon flare and a coronal mass ejection (CME). There was a light bridge in the umbra of the main sunspot of NOAA 10898; one end of the filament was terminated at the region close to the light bridge, and recurrent surges were observed to be ejected from the light bridge. The surges occurred intermittently for about 8 hr before the filament eruption, and finally a clear jet was found at the light bridge to trigger the filament eruption. We analyzed the evolutions of the relative darkness of the filament and the loaded mass by the continuous surges quantitatively. It was found that as the occurrence of the surges, the relative darkness of the filament body continued growing for about 3-4 hr, reached its maximum, and kept stable for more than 2 hr until it erupted. If suppose 50% of the ejected mass by the surges could be trapped by the filament channel, then the total loaded mass into the filament channelwill be about 0.57x10{sup 16} g with a momentum of 0.57x10{sup 22} g cm s{sup -1} by 08:08 UT, which is a non-negligible effect on the stability of the filament. Based on the observations, we present a model showing the important role that recurrent chromospheric mass injection play in the evolution and eruption of a flux rope. Our study confirms that the surge activities can efficiently supply the necessary material for some filament formation. Furthermore, our study indicates that the continuous mass with momentum loaded by the surge activities to the filament channel could make the filament unstable and cause it to erupt.

  17. Characterize Eruptive Processes at Yucca Mountain, Nevada

    SciTech Connect

    G. Valentine

    2001-12-20

    This Analysis/Model Report (AMR), ''Characterize Eruptive Processes at Yucca Mountain, Nevada'', presents information about natural volcanic systems and the parameters that can be used to model their behavior. This information is used to develop parameter-value distributions appropriate for analysis of the consequences of volcanic eruptions through a potential repository at Yucca Mountain. Many aspects of this work are aimed at resolution of the Igneous Activity Key Technical Issue (KTI) as identified by the Nuclear Regulatory Commission (NRC 1998, p. 3), Subissues 1 and 2, which address the probability and consequence of igneous activity at the proposed repository site, respectively. Within the framework of the Disruptive Events Process Model Report (PMR), this AMR provides information for the calculations in two other AMRs ; parameters described herein are directly used in calculations in these reports and will be used in Total System Performance Assessment (TSPA). Compilation of this AMR was conducted as defined in the Development Plan, except as noted. The report begins with considerations of the geometry of volcanic feeder systems, which are of primary importance in predicting how much of a potential repository would be affected by an eruption. This discussion is followed by one of the physical and chemical properties of the magmas, which influences both eruptive styles and mechanisms for interaction with radioactive waste packages. Eruptive processes including the ascent velocity of magma at depth, the onset of bubble nucleation and growth in the rising magmas, magma fragmentation, and velocity of the resulting gas-particle mixture are then discussed. The duration of eruptions, their power output, and mass discharge rates are also described. The next section summarizes geologic constraints regarding the interaction between magma and waste packages. Finally, they discuss bulk grain size produced by relevant explosive eruptions and grain shapes.

  18. Infrasound characterization of some Yellowstone geysers' eruptions

    NASA Astrophysics Data System (ADS)

    Quezada-Reyes, A.; Johnson, J.

    2012-12-01

    Geysers are springs that intermittently erupt hot water and steam. As with volcanoes, infrasonic airwaves produced by different geysers provide information about the processes that occur near the nozzle, such as the amount of fluid released during eruptive episodes. The aim of this study was to investigate acoustic sources from different geyser behaviors observed at Lone Star, Sawmill and Great Fountain geysers, Yellowstone National Park, Wyoming. Acoustic signal were measured by arrays of microphones deployed around Lone Star and Great Fountain geysers between August 9th to 14th, 2011, and during one hour on August 16th, 2011 at Sawmill Geyser. Infrasound was analyzed with coincident video recordings to quantify and compare the pressure fields generated during explosive phases at the three geysers. We propose that the periodic infrasound recorded at Sawmill, and dominated by energy at 1 to 40 Hz, is generated by: 1) steam-filled bubble oscillations, and 2) subsequent bursting at the free surface resulting in a violent steam and water discharge. At Lone Star geyser, where ~18 m/s eruption jets endure for about 30 minutes, sound is dominated by higher frequency infrasound and audio-band signal evolving from 20 - 60 Hz to 40 - 85 Hz. We suggest that the infrasound tremor amplitudes are related to the transition of the erupted two-phase mixture from mostly water (low acoustic radiation) to steam (high acoustic radiation). At Great Fountain we observed three explosive bursts of water and steam during the last stage on the August 11 eruption with bi-modal infrasound pulses of up to 0.7 Pa-m. We model these pulses as volumetric sound sources and infer up to 32 m3 of fluid ejection. The variety of recordings reflect the variety of eruption mechanisms at the different geyser systems. Better understanding of the mechanisms of geyser infrasound radiation may help us to understand infrasound analogues at erupting silicic volcanoes, which are considerably more difficult to

  19. Fluid Geochemistry of the Lusi Mud Volcano (east Java, Indonesia) and Implications for Eruption Dynamics

    NASA Astrophysics Data System (ADS)

    Hartnett, H. E.; Vanderkluysen, L.; Clarke, A. B.

    2011-12-01

    more complex geophysical models of the eruption. Based on our oxygen and deuterium isotope data, the LUSI fluids reflect high-temperature water-rock interactions, and the isotopic composition of the water does not appear to have changed between 2006 and 2008. Some evidence suggests the water content of the mud has changed since the eruption began, but sampling at LUSI has, thus far, been infrequent and we cannot know if the fluid chemistry reflects short-period variations associated with the eruption cycles without higher-frequency sampling.

  20. Eruption and degassing dynamics of the major August 2015 Piton de la Fournaise eruption

    NASA Astrophysics Data System (ADS)

    Di Muro, Andrea; Arellano, Santiago; Aiuppa, Alessandro; Bachelery, Patrick; Boudoire, Guillaume; Coppola, Diego; Ferrazzini, Valerie; Galle, Bo; Giudice, Gaetano; Gurioli, Lucia; Harris, Andy; Liuzzo, Marco; Metrich, Nicole; Moune, Severine; Peltier, Aline; Villeneuve, Nicolas; Vlastelic, Ivan

    2016-04-01

    Piton de la Fournaise (PdF) shield volcano is one of the most active basaltic volcanoes in the World with one eruption every nine months, on average. This frequent volcanic activity is broadly bimodal, with frequent small volume, short lived eruptions (< 30 Mm3, most being < 10 Mm3) and less frequent relatively large (50-210 Mm3) and long lasting (months) eruptions. After the major caldera forming event of 2007, the volcano produced several short lived small volume summit to proximal eruptions of relatively evolved cotectic magmas and relatively long repose periods (up to 3.5 years between 2010 and 2014). The August 2015 eruption was the first large (45±15 Mm3) and long lasting (2 months) eruption since 2007 and the only event to be fully monitored by the new gas geochemical network of Piton de la Fournaise volcanological observatory (DOAS, MultiGaS, diffuse CO2 soil emissions). Regular lava and tephra sampling was also performed for geochemical and petrological analysis. The eruption was preceded by a significant increase in CO2 soil emissions at distal soil stations (ca. 15 km from the summit), with CO2 enrichment also being recorded at summit low temperature fumaroles. Eruptive products were spectacularly zoned, with plagioclase and pyroxene being abundant in the early erupted products and olivine being the main phase in the late-erupted lavas. Total gas emissions at the eruptive vent underwent a decrease during the first half of the eruption and then an increase, mirroring the time evolution of magma discharge rate (from 5-10 m3/s in September to 15-30 m3/s in late-October) and the progressive change in magma composition. In spite of significant evolution in magma and gas output, CO2/SO2 ratios in high temperature gases remained quite low (< 0.3) and with little temporal change. Geochemical data indicated that this relatively long-lived eruption corresponded to the progressive drainage of most of the shallow part of PdF plumbing system, triggered by a new

  1. Vent Processes and Deposits of a Hiatus in a Violent Eruption: Quilotoa Volcano, Ecuador

    NASA Astrophysics Data System (ADS)

    Best, J. A.; Bustillos, J.; Ort, M. H.; Cashman, K. V.; Mothes, P. A.; di Muro, A.; Rosi, M.

    2009-12-01

    high proportion of stained fragments in U2b requires a different, possibly hydrothermal, source. We interpret the lava lapilli of U2c and U3 as being from a single explosion, perhaps the opening of a new vent, and thus they indicate that the eruption was continuous from U2b through U3. Our current hypothesis is that, as the U1 eruption ended, acidic gas streamed through the material clogging the vent. This elutriated vitric material that eventually formed a cap on the system. As the U3 magma began its ascent, gas flux increased, leading to explosions that gradually removed the vitric cap and depositing the vitric U2a. Then, more continuous gas streaming led to the development of an pulsatory eruption column that carried the hot stained crystals and lithic fragments into a convecting column and eventual deposition as fallout of U2b, which was then followed by the establishment of the U3 eruption column.

  2. Thermal signature, eruption style, and eruption evolution at Pele and Pillan on Io

    USGS Publications Warehouse

    Davies, A.G.; Keszthelyi, L.P.; Williams, D.A.; Phillips, C.B.; McEwen, A.S.; Lopes, R.M.C.; Smythe, W.D.; Kamp, L.W.; Soderblom, L.A.; Carlson, R.W.

    2001-01-01

    The Galileo spacecraft has been periodically monitoring volcanic activity on Io since June 1996, making it possible to chart the evolution of individual eruptions. We present results of coanalysis of Near-Infrared Mapping Spectrometer (NIMS) and solid-state imaging (SSI) data of eruptions at Pele and Pillan, especially from a particularly illuminating data set consisting of mutually constraining, near-simultaneous NIMS and SSI observations obtained during orbit C9 in June 1997. The observed thermal signature from each hot spot, and the way in which the thermal signature changes with time, tightly constrains the possible styles of eruption. Pele and Pillan have very different eruption styles. From September 1996 through May 1999, Pele demonstrates an almost constant total thermal output, with thermal emission spectra indicative of a long-lived, active lava lake. The NIMS Pillan data exhibit the thermal signature of a "Pillanian" eruption style, a large, vigorous eruption with associated open channel, or sheet flows, producing an extensive flow field by orbit C10 in September 1997. The high mass eruption rate, high liquidus temperature (at least 1870 K) eruption at Pillan is the best candidate so far for an active ultramafic (magnesium-rich, "komatiitic") flow on Io, a style of eruption never before witnessed. The thermal output per unit area from Pillan is, however, consistent with the emplacement of large, open-channel flows. Magma temperature at Pele is ???1600 K. If the magma temperature is 1600 K, it suggests a komatiitic-basalt composition. The power output from Pele is indicative of a magma volumetric eruption rate of ???250 to 340 m3 s-1. Although the Pele lava lake is considerably larger than its terrestrial counterparts, the power and mass fluxes per unit area are similar to active terrestrial lava lakes. Copyright 2001 by the American Geophysical Union.

  3. Eruption Mechanism of the 10th Century Eruption in Baitoushan Volcano, China/North Korea

    NASA Astrophysics Data System (ADS)

    Shimano, T.; Miyamoto, T.; Nakagawa, M.; Ban, M.; Maeno, F.; Nishimoto, J.; Jien, X.; Taniguchi, H.

    2005-12-01

    Baitoushan volcano, China/North Korea, is one of the most active volcanoes in Northeastern Asia, and the 10th century eruption was the most voluminous eruption in the world in recent 2000 years. The sequence of the eruption reconstructed recently consists mainly of 6 units of deposits (Miyamoto et al., 2004); plinian airfall (unit B), large pyroclastic flow (unit C), plinian airfall with some intra- plinian pyroclastic flows (unit D), sub-plinian airfall (unit E), and large pyroclastic flow (unit F) with base surge (unit G) in ascending order. The magma erupted during steady eruption in earlier phase was comendite (unit B-C; Phase 1), whereas the magma during fluctuating eruptions in later phase is characterized by trachyte to trachyandesite with various amount of comendite (unit D-G; Phase 2). The wide variety in composition and occurrence of banded pumices strongly indicate mixing or mingling of the two magmas just prior to or during the eruption. The initial water contents had been determined for comendite by melt inclusion analyses (ca. 5.2 wt.%; Horn and Schmincke, 2000). Although the initial water content of the trachytic magma has not been correctly determined yet, the reported water contents of trachytic melt inclusions are lower (3-4 wt.%) than those of comenditic melt (Horn and Schmincke, 2000). We investigated juvenile materials of the eruption sequentially in terms of vesicularity, H2O content in matrix glass and textural characteristics. The vesicularity of pumices are generally high (>0.75) for all units. The residual water contents of the comenditic pumices during Phase 1 are relatively uniform (1.6 wt.%), whereas those of the trachytic scoria during Phase 2 and gray pumices during Phase 1 are low (ca. 0.7-1.3 wt.%). These facts may indicate that the difference in the initial water content, rather than the ascent mechanism of magma, controls the steadiness or fluctuation in eruption styles and the mass flux during the eruption.

  4. The Eruptive Behavior of Klyuchevskoy Volcano, Kamchatka

    NASA Astrophysics Data System (ADS)

    Rose, S.; Ramsey, M.

    2008-12-01

    Klyuchevskoy volcano, one of the most active volcanoes in the northern Pacific, is located on the Kamchatka Peninsula in eastern Russia at the junction between the Kurile-Kamchatka and Aleutian Island Arcs. Its remote location and diversity of eruption styles make satellite-based monitoring and characterization of its eruptive activity essential. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor was launched in December 1999 on the NASA Terra satellite and has proven effective for the detection and monitoring of volcanic eruptions and their associated products. The goal of this investigation is to determine how well data from a broad spectral range at spatial resolutions under 100m/pixel can be used to characterize the 2005 and 2007 eruptions of a remote volcano during the harsh northern Pacific winter. The ASTER data presented here are supplemented by hand samples collected from the 2005 basaltic lava flows as well as high-spatial resolution thermal infrared data collected by a Forward Looking Infrared (FLIR) camera during field campaigns in August 2005 and 2007. Collectively, these data provide details regarding the composition, eruption rate, and eruptive mechanisms. Analysis of the data from all three ASTER subsystems reveals four main eruptive phases: a precursory, explosive, explosive-effusive, and cooling phase. These phases correlate to a gradual increase in maximum brightness temperatures followed by a rapid decrease. Close examination of FLIR data and digital photographs reveal the presence of a breakout point approximately 90 m below the rim of the nested summit crater, indicating a flow had breached the nested crater and traveled down the Krestovsky channel during both eruptions. Laboratory- derived TIR spectral data of the 2005 hand samples indicate good agreement with those obtained by ASTER after being reduced to the same spectral resolution. However, inherent errors of the spectra at longer wavelength indicate the

  5. Russian eruption warning systems for aviation

    USGS Publications Warehouse

    Neal, C.; Girina, O.; Senyukov, S.; Rybin, A.; Osiensky, J.; Izbekov, P.; Ferguson, G.

    2009-01-01

    More than 65 potentially active volcanoes on the Kamchatka Peninsula and the Kurile Islands pose a substantial threat to aircraft on the Northern Pacific (NOPAC), Russian Trans-East (RTE), and Pacific Organized Track System (PACOTS) air routes. The Kamchatka Volcanic Eruption Response Team (KVERT) monitors and reports on volcanic hazards to aviation for Kamchatka and the north Kuriles. KVERT scientists utilize real-time seismic data, daily satellite views of the region, real-time video, and pilot and field reports of activity to track and alert the aviation industry of hazardous activity. Most Kurile Island volcanoes are monitored by the Sakhalin Volcanic Eruption Response Team (SVERT) based in Yuzhno-Sakhalinsk. SVERT uses daily moderate resolution imaging spectroradiometer (MODIS) satellite images to look for volcanic activity along this 1,250-km chain of islands. Neither operation is staffed 24 h per day. In addition, the vast majority of Russian volcanoes are not monitored seismically in real-time. Other challenges include multiple time-zones and language differences that hamper communication among volcanologists and meteorologists in the US, Japan, and Russia who share the responsibility to issue official warnings. Rapid, consistent verification of explosive eruptions and determination of cloud heights remain significant technical challenges. Despite these difficulties, in more than a decade of frequent eruptive activity in Kamchatka and the northern Kuriles, no damaging encounters with volcanic ash from Russian eruptions have been recorded. ?? Springer Science+Business Media B.V. 2009.

  6. Seismogenic lavas and explosive eruption forecasting.

    PubMed

    Lavallée, Y; Meredith, P G; Dingwell, D B; Hess, K-U; Wassermann, J; Cordonnier, B; Gerik, A; Kruhl, J H

    2008-05-22

    Volcanic dome-building episodes commonly exhibit acceleration in both effusive discharge rate and seismicity before explosive eruptions. This should enable the application of material failure forecasting methods to eruption forecasting. To date, such methods have been based exclusively on the seismicity of the country rock. It is clear, however, that the rheology and deformation rate of the lava ultimately dictate eruption style. The highly crystalline lavas involved in these eruptions are pseudoplastic fluids that exhibit a strong component of shear thinning as their deformation accelerates across the ductile to brittle transition. Thus, understanding the nature of the ductile-brittle transition in dome lavas may well hold the key to an accurate description of dome growth and stability. Here we present the results of rheological experiments with continuous microseismic monitoring, which reveal that dome lavas are seismogenic and that the character of the seismicity changes markedly across the ductile-brittle transition until complete brittle failure occurs at high strain rates. We conclude that magma seismicity, combined with failure forecasting methods, could potentially be applied successfully to dome-building eruptions for volcanic forecasting. PMID:18497822

  7. Coronal bright points associated with minifilament eruptions

    SciTech Connect

    Hong, Junchao; Jiang, Yunchun; Yang, Jiayan; Bi, Yi; Li, Haidong; Yang, Bo; Yang, Dan

    2014-12-01

    Coronal bright points (CBPs) are small-scale, long-lived coronal brightenings that always correspond to photospheric network magnetic features of opposite polarity. In this paper, we subjectively adopt 30 CBPs in a coronal hole to study their eruptive behavior using data from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory. About one-quarter to one-third of the CBPs in the coronal hole go through one or more minifilament eruption(s) (MFE(s)) throughout their lifetimes. The MFEs occur in temporal association with the brightness maxima of CBPs and possibly result from the convergence and cancellation of underlying magnetic dipoles. Two examples of CBPs with MFEs are analyzed in detail, where minifilaments appear as dark features of a cool channel that divide the CBPs along the neutral lines of the dipoles beneath. The MFEs show the typical rising movements of filaments and mass ejections with brightenings at CBPs, similar to large-scale filament eruptions. Via differential emission measure analysis, it is found that CBPs are heated dramatically by their MFEs and the ejected plasmas in the MFEs have average temperatures close to the pre-eruption BP plasmas and electron densities typically near 10{sup 9} cm{sup –3}. These new observational results indicate that CBPs are more complex in dynamical evolution and magnetic structure than previously thought.

  8. An arcade-like eruptive prominence

    NASA Astrophysics Data System (ADS)

    Zhong, Shu-Hua; Zhan, La-Sheng

    2004-12-01

    An eruptive prominence happened on the east-northern limb of the Sun on March 7, 1991. It appeared in a relatively quiet region where any activity phenomena such as flare, filament and sunspot etc. was not found. The maximum height reachable of the prominence was 6.97×104km and its maximum length reached as 11.6×104km. The eruptive prominence might belong to the one of the middle-smaller scale according to its size in morphology. The course of the eruption exhibited some properties: ascending rapidly and descending slowly just like the process of the flare eruption. After the eruption, the most material in the prominence basically moved along a parabola under the action of magnetic force lines forming the arcade-like shape and keeping it till to the disappearance of the prominence. Before and after descending, a little matter came from the top part was ejected and divorced from the main body of the prominence and diffused into the interplanetary space.

  9. Initiation of CMEs associated with filament eruption, and the nature of CME related shocks

    NASA Astrophysics Data System (ADS)

    Fainshtein, V. G.; Egorov, Ya. I.

    2015-02-01

    Using data from SDO, PROBA2 and other spacecraft, Fainshtein and Egorov (2013) have discovered processes accompanying initiation of six limb CMEs and have studied features of their motion. The said CMEs occurred after eruption of prominence or hot emission loop and were associated with X-ray flares. The follow-up study of the CMEs, associated with the prominence eruption, showed that the formation of such mass ejections and the initial stage of their motion may be characterised by special features. In this work, we give examples of CMEs with such features. We have revealed a positive correlation between the height of the CME-related eruptive prominence and the height of the frontal structure of CMEs measured before they began to move. By analysing two of the CMEs, using SDO data, we found out that the kinematics of CME body and its related shock differs considerably. We have established that the time dependence of shock position and velocity obtained from SDO data is in agreement with theoretical dependencies of variation in these motion parameters with time in the context of self-similar motion of an explosion shock. We have concluded that the shock are not piston-like with the CME body acting as a piston.

  10. Management of Ectopically Erupting Maxillary Incisors: A Case Series.

    PubMed

    Suresh, Kotumachagi Sangappa; Uma, H L; Nagarathna, J; Kumar, Pravin

    2015-01-01

    Eruption disturbances related to the position include ectopic eruption and transpositions. The occurrence of ectopic eruption is most commonly associated with maxillary incisors. The normal eruption, position and morphology of these teeth are crucial to craniofacial development, facial esthetics as well as phonetics. It is essential that the clinicians have thorough knowledge of the eruption disturbances in order to make an appropriate, as well as timely intervention, as dictated by the complexity of the problem. How to cite this article: Suresh KS, Uma HL, Nagarathna J, Kumar P. Management of Ectopically Erupting Maxillary Incisors: A Case Series. Int J Clin Pediatr Dent 2015;8(3):227-233. PMID:26604543

  11. Management of Ectopically Erupting Maxillary Incisors: A Case Series

    PubMed Central

    Suresh, Kotumachagi Sangappa; Uma, HL; Nagarathna, J

    2015-01-01

    ABSTRACT Eruption disturbances related to the position include ectopic eruption and transpositions. The occurrence of ectopic eruption is most commonly associated with maxillary incisors. The normal eruption, position and morphology of these teeth are crucial to craniofacial development, facial esthetics as well as phonetics. It is essential that the clinicians have thorough knowledge of the eruption disturbances in order to make an appropriate, as well as timely intervention, as dictated by the complexity of the problem. How to cite this article: Suresh KS, Uma HL, Nagarathna J, Kumar P. Management of Ectopically Erupting Maxillary Incisors: A Case Series. Int J Clin Pediatr Dent 2015;8(3):227-233. PMID:26604543

  12. Multi-disciplinary Monitoring of the 2014 Eruption of Fogo Volcano, Cape Verde

    NASA Astrophysics Data System (ADS)

    Fernandes, R. M. S.; Faria, B. V. E.

    2015-12-01

    The Fogo volcano, located in the Cape Verde Archipelago (offshore Western Africa), is a complete stratovolcano system. It is the most recent expression of the Cape Verde hotspot, that has formed the archipelago. The summit reaches ~2830m above sea level, and raises 1100m above Chã das Caldeiras, an almost flat circular area. The last eruption of Fogo started on November 23, 2014 (~10:00UTC), after 19 years of inactivity. C4G, a distributed research infrastructure created in 2014 in the framework of the Portuguese Roadmap for Strategic Research Infrastructures, collaborated immediately with INMG, the Cape Verdean Meteorological and Geophysical Institut with the goal of complementing the permanent geophysical monitoring network in operation on Fogo island. The INMG permanent network is composed of seven seismographic stations and three tiltmeter stations, with real-time data transmitted. On the basis of increased pre-event activity (which started in October 2014), INMG issued a formal alert of an impending eruption to the Civil Protection Agency, about 24 hours before the onset of the eruption. Although the eruption caused no casualties or personal injuries due to the warnings issued, the lava expelled by the eruption (which last until the end of January) destroyed the two main villages in the caldera (~1000 inhabitants) and covered vast areas of agricultural land, causing very large economic losses and an uncertain future of the local populations. The C4G team installed a network of seven GNSS receivers and nine seismometers, distributed by the entire island. The data collection started on 28th November 2014, and continued until the end of January 2015. The mission also included a new detailed gravimetric survey of the island, the acquisition of geological samples, and the analysis of the air quality during the eruption. We present here a detailed description of the monitoring efforts carried out during the eruption as well as initial results of the analysis of the

  13. Io Eclipse/Volcanic Eruption

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image was acquired while Io was in eclipse (in Jupiter's shadow) during Galileo's eighth orbit, and reveals several dynamic processes. The most intense features are red, while glows of lesser intensity are yellow or green, and very faint glows appear blue in this color-coded image. The small red or yellow spots mark the sites of high-temperature magma erupting onto the surface in lava flows or lava lakes.

    This image reveals a field of bright spots near Io's sub-Jupiter point (right-hand side of image). The sub-Jupiter hemisphere always faces Jupiter just as the Moon's nearside always faces Earth. There are extended diffuse glows on the equatorial limbs or edges of the planet (right and left sides). The glow on the left is over the active volcanic plume Prometheus, but whereas Prometheus appears to be 75 kilometers (46.6 miles) high in reflected light, here the diffuse glow extends about 800 kilometers (497 miles) from Io's limb. This extended glow indicates that gas or small particles reach much greater heights than the dense inner plume. The diffuse glow on the right side reaches a height of 400 kilometers (249 miles), and includes a prominence with a plume-like shape. However, no volcanic plume has been seen at this location in reflected light. This type of observation is revealing the relationships between Io's volcanism, atmosphere and exosphere.

    Taken on May 6, 1997, north is toward the top. The image was taken with the clear filter of the solid state imaging (CCD) system on NASA's Galileo spacecraft at a range of 1.8 million kilometers (1.1 million miles).

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and

  14. Arizona-sized Io Eruption

    NASA Technical Reports Server (NTRS)

    1997-01-01

    These images of Jupiter's volcanic moon, Io, show the results of a dramatic event that occurred on the fiery satellite during a five-month period. The changes, captured by the solid state imaging (CCD) system on NASA's Galileo spacecraft, occurred between the time Galileo acquired the left frame, during its seventh orbit of Jupiter, and the right frame, during its tenth orbit. A new dark spot, 400 kilometers (249 miles) in diameter, which is roughly the size of Arizona, surrounds a volcanic center named Pillan Patera. Galileo imaged a 120 kilometer (75 mile) high plume erupting from this location during its ninth orbit. Pele, which produced the larger plume deposit southwest of Pillan, also appears different than it did during the seventh orbit, perhaps due to interaction between the two large plumes. Pillan's plume deposits appear dark at all wavelengths. This color differs from the very red color associated with Pele, but is similar to the deposits of Babbar Patera, the dark feature southwest of Pele. Some apparent differences between the images are not caused by changes on Io's surface, but rather are due to differences in illumination, emission and phase angles. This is particularly apparent at Babbar Patera.

    North is to the top of the images. The left frame was acquired on April 4th, 1997, while the right frame was taken on Sept. 19th, 1997. The images were obtained at ranges of 563,000 kilometers (350,000 miles) for the left image, and 505,600 kilometers (314,165 miles) for the right.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo.

  15. Adverse cutaneous drug eruptions: current understanding.

    PubMed

    Hoetzenecker, W; Nägeli, M; Mehra, E T; Jensen, A N; Saulite, I; Schmid-Grendelmeier, P; Guenova, E; Cozzio, A; French, L E

    2016-01-01

    Adverse cutaneous drug reactions are recognized as being major health problems worldwide causing considerable costs for health care systems. Most adverse cutaneous drug reactions follow a benign course; however, up to 2% of all adverse cutaneous drug eruptions are severe and life-threatening. These include acute generalized exanthematous pustulosis (AGEP), drug reaction with eosinophilia and systemic symptoms (DRESS), Stevens-Johnson syndrome (SJS), and toxic epidermal necrolysis (TEN). Physicians should be aware of specific red flags to rapidly identify these severe cutaneous drug eruptions and initiate appropriate treatment. Besides significant progress in clinical classification and treatment, recent studies have greatly enhanced our understanding in the pathophysiology of adverse cutaneous drug reactions. Genetic susceptibilities to certain drugs have been identified in SJS/TEN patients, viral reactivation in DRESS has been elucidated, and the discovery of tissue resident memory T cells helps to better understand the recurrent site-specific inflammation in patients with fixed drug eruption. PMID:26553194

  16. Eruption of Alaska volcano breaks historic pattern

    USGS Publications Warehouse

    Larsen, Jessica; Neal, Christina A.; Webley, Peter; Freymueller, Jeff; Haney, Matthew; McNutt, Stephen; Schneider, David; Prejean, Stephanie; Schaefer, Janet; Wessels, Rick L.

    2009-01-01

    In the late morning of 12 July 2008, the Alaska Volcano Observatory (AVO) received an unexpected call from the U.S. Coast Guard, reporting an explosive volcanic eruption in the central Aleutians in the vicinity of Okmok volcano, a relatively young (~2000-year-old) caldera. The Coast Guard had received an emergency call requesting assistance from a family living at a cattle ranch on the flanks of the volcano, who reported loud "thunder," lightning, and noontime darkness due to ashfall. AVO staff immediately confirmed the report by observing a strong eruption signal recorded on the Okmok seismic network and the presence of a large dark ash cloud above Okmok in satellite imagery. Within 5 minutes of the call, AVO declared the volcano at aviation code red, signifying that a highly explosive, ash-rich eruption was under way.

  17. El Cobreloa: A geyser with two distinct eruption styles

    NASA Astrophysics Data System (ADS)

    Namiki, A.; Munoz, C.; Manga, M.; Hurwitz, S.; King, E.; Negri, A.; Ortega, P.; Patel, A.; Rudolph, M.

    2013-12-01

    El Cobreloa geyser has two distinct eruption styles: vigorous major eruptions, and less energetic minor eruptions. Minor eruptions splash hot water intermittently over an approximately 4 minute time period. Major eruptions begin with an eruption style similar to minor eruptions, but then transition to a voluminous and water-dominated eruption, and finally end with energetic steam discharge. The steam discharge continues for approximately 1 hour. We calculated the eruption intervals by visual observations, acoustic measurements, and ground temperature measurements. All of measurements consistently show that each eruption style has a regular interval: 4 hours and 40 minutes for major eruptions, and ~13 minutes for minor eruptions. From these observations, we infer that there are two boiling loci that source each type of eruption, one at the bottom and the other at the top of the conduit. If the bottom of the conduit is hot enough, boiling begins at the bottom of the conduit to make a steam slug. As this slug ascends in the conduit, it heats the surrounding water. If the slug rises fast enough it splashes water when it reaches the surface, creating minor eruptions. Each successive steam slug continues to heat water in the conduit until it eventually reaches the boiling temperature everywhere. Once the top of the conduit begins boiling, the energetic steam discharge begins and the boiling propagates downward. Such a process causes major eruption. Geysers are often studied as an analogue to magmatic volcanoes because it is easier to document how mass and energy transfer lead to eruptions. El Cobreloa provides insight into how the system becomes primed for large eruptions.

  18. Explosive Volcanic Eruptions from Linear Vents on Earth, Venus and Mars: Comparisons with Circular Vent Eruptions

    NASA Technical Reports Server (NTRS)

    Glaze, Lori S.; Baloga, Stephen M.; Wimert, Jesse

    2010-01-01

    Conditions required to support buoyant convective plumes are investigated for explosive volcanic eruptions from circular and linear vents on Earth, Venus, and Mars. Vent geometry (linear versus circular) plays a significant role in the ability of an explosive eruption to sustain a buoyant plume. On Earth, linear and circular vent eruptions are both capable of driving buoyant plumes to equivalent maximum rise heights, however, linear vent plumes are more sensitive to vent size. For analogous mass eruption rates, linear vent plumes surpass circular vent plumes in entrainment efficiency approximately when L(sub o) > 3r(sub o) owing to the larger entrainment area relative to the control volume. Relative to circular vents, linear vents on Venus favor column collapse and the formation of pyroclastic flows because the range of conditions required to establish and sustain buoyancy is narrow. When buoyancy can be sustained, however, maximum plume heights exceed those from circular vents. For current atmospheric conditions on Mars, linear vent eruptions are capable of injecting volcanic material slightly higher than analogous circular vent eruptions. However, both geometries are more likely to produce pyroclastic fountains, as opposed to convective plumes, owing to the low density atmosphere. Due to the atmospheric density profile and water content on Earth, explosive eruptions enjoy favorable conditions for producing sustained buoyant columns, while pyroclastic flows would be relatively more prevalent on Venus and Mars. These results have implications for the injection and dispersal of particulates into the planetary atmosphere and the ability to interpret the geologic record of planetary volcanism.

  19. ROTATION OF CORONAL MASS EJECTIONS DURING ERUPTION

    SciTech Connect

    Lynch, B. J.; Li, Y.; Luhmann, J. G.; Antiochos, S. K.; DeVore, C. R. E-mail: yanli@ssl.berkeley.edu E-mail: spiro.k.antiochos@nasa.gov

    2009-06-01

    Understanding the connection between coronal mass ejections (CMEs) and their interplanetary counterparts (ICMEs) is one of the most important problems in solar-terrestrial physics. We calculate the rotation of erupting field structures predicted by numerical simulations of CME initiation via the magnetic breakout model. In this model, the initial potential magnetic field has a multipolar topology and the system is driven by imposing a shear flow at the photospheric boundary. Our results yield insight on how to connect solar observations of the orientation of the filament or polarity inversion line (PIL) in the CME source region, the orientation of the CME axis as inferred from coronagraph images, and the ICME flux rope orientation obtained from in situ measurements. We present the results of two numerical simulations that differ only in the direction of the applied shearing motions (i.e., the handedness of the sheared-arcade systems and their resulting CME fields). In both simulations, eruptive flare reconnection occurs underneath the rapidly expanding sheared fields transforming the ejecta fields into three-dimensional flux rope structures. As the erupting flux ropes propagate through the low corona (from 2 to 4 R{sub sun}) the right-handed breakout flux rope rotates clockwise and the left-handed breakout flux rope rotates counterclockwise, in agreement with recent observations of the rotation of erupting filaments. We find that by 3.5 R {sub sun} the average rotation angle between the flux rope axes and the active region PIL is approximately 50 deg. We discuss the implications of these results for predicting, from the observed chirality of the pre-eruption filament and/or other properties of the CME source region, the direction and amount of rotation that magnetic flux rope structures will experience during eruption. We also discuss the implications of our results for CME initiation models.

  20. Chain Reconnections Observed in Sympathetic Eruptions

    NASA Astrophysics Data System (ADS)

    Joshi, Navin Chandra; Schmieder, Brigitte; Magara, Tetsuya; Guo, Yang; Aulanier, Guillaume

    2016-04-01

    The nature of various plausible causal links between sympathetic events is still a controversial issue. In this work, we present multiwavelength observations of sympathetic eruptions, associated flares, and coronal mass ejections (CMEs) occurring on 2013 November 17 in two close active regions. Two filaments, i.e., F1 and F2, are observed in between the active regions. Successive magnetic reconnections, caused for different reasons (flux cancellation, shear, and expansion) have been identified during the whole event. The first reconnection occurred during the first eruption via flux cancellation between the sheared arcades overlying filament F2, creating a flux rope and leading to the first double-ribbon solar flare. During this phase, we observed the eruption of overlying arcades and coronal loops, which leads to the first CME. The second reconnection is believed to occur between the expanding flux rope of F2 and the overlying arcades of filament F1. We suggest that this reconnection destabilized the equilibrium of filament F1, which further facilitated its eruption. The third stage of reconnection occurred in the wake of the erupting filament F1 between the legs of the overlying arcades. This may create a flux rope and the second double-ribbon flare and a second CME. The fourth reconnection was between the expanding arcades of the erupting filament F1 and the nearby ambient field, which produced the bi-directional plasma flows both upward and downward. Observations and a nonlinear force-free field extrapolation confirm the possibility of reconnection and the causal link between the magnetic systems.

  1. Research oriented MSc course on solar eruptions

    NASA Astrophysics Data System (ADS)

    Vainio, Rami; Heber, Bernd; Agueda, Neus; Kilpua, Emilia; Isavnin, Alexey; Afanasiev, Alexandr; Ganse, Urs; Koskinen, Hannu E. J.

    2014-05-01

    Department of Physics, University of Helsinki, organized a five-credit-point Master-level course on "Solar Eruptions and Space Environment" in spring 2013. The course, attended by nine students, included twenty hours of introductory lectures on solar eruptive phenomena (focusing on energetic particle emissions) as well as experimental and theoretical methods to analyze them. In addition, the course contained ten hours of exercise sessions, where solutions on short calculation exercises were presented and discussed. The main learning method on the course was, however, a coordinated scientific analysis of five solar eruptions observed by the STEREO spacecraft in 2010-2011. The students were grouped in four teams to study the solar eruptive events from four different view points: (1) Analysis of morphology and kinematics of coronal mass ejections, (2) analysis of EUV imaging observations of coronal wave-like transients, (3) solar and interplanetary magnetic field conditions during the eruptions, and (4) emission and transport modelling of near-relativistic electron events associated with the eruptions. Each group of students was assigned a scientist to oversee their work. The students reported weekly on their progress and gave a final presentation (of 30 minutes) in a seminar session at the end of the seven-week course. Grading of the course was based on the home exercises and final presentations. Students were also asked to give anonymous feedback on the course. Learning results on the course were very encouraging, showing that research oriented courses with practical research exercises on specific topics give students deeper knowledge and more practical skills than traditional lectures and home exercises alone.

  2. South Africa plays down faulty condom scare.

    PubMed

    1999-01-11

    South Africa has one of the highest rates of HIV infection in the world, with 3 million of the country's total population of approximately 40 million estimated to be currently infected with HIV. With 1500 people in South Africa contracting HIV every day, it is projected that more than 25% of the country's population will be infected with HIV by 2010. However, despite the current state of affairs regarding HIV/AIDS in South Africa and the extremely high level of HIV prevalence projected for the future, South Africans don't buy condoms. Free distribution, began in 1992, accounts for 90-95% of all condom use in the country. South Africa's Department of Health distributed more than 140 million free condoms in 1998, although as many as 1 million were defective. In an attempt to quell the resultant public uproar over the distribution of sub-standard condoms, a senior HIV/AIDS specialist with the Department of Health assures the population that from April 1, 1999, South Africa will adhere to the same standards as the World Health Organization, and all procurements will have been batch-by-batch tested. This specialist also stated that only one brand of condom, supplied by a manufacturer in India, was found to be defective and was immediately withdrawn. Assertions that other batches imported from China were also sub-standard were false. The Department of Health plans to sponsor a National Condom Week leading up to Valentine's Day on February 14, 1999, to promote condoms and their correct use. PMID:12294480

  3. Kamchatka and North Kurile Volcano Explosive Eruptions in 2015 and Danger to Aviation

    NASA Astrophysics Data System (ADS)

    Girina, Olga; Melnikov, Dmitry; Manevich, Alexander; Demyanchuk, Yury; Nuzhdaev, Anton; Petrova, Elena

    2016-04-01

    There are 36 active volcanoes in the Kamchatka and North Kurile, and several of them are continuously active. In 2015, four of the Kamchatkan volcanoes (Sheveluch, Klyuchevskoy, Karymsky and Zhupanovsky) and two volcanoes of North Kurile (Alaid and Chikurachki) had strong and moderate explosive eruptions. Moderate gas-steam activity was observing of Bezymianny, Kizimen, Avachinsky, Koryaksky, Gorely, Mutnovsky and other volcanoes. Strong explosive eruptions of volcanoes are the most dangerous for aircraft because they can produce in a few hours or days to the atmosphere and the stratosphere till several cubic kilometers of volcanic ash and aerosols. Ash plumes and the clouds, depending on the power of the eruption, the strength and wind speed, can travel thousands of kilometers from the volcano for several days, remaining hazardous to aircraft, as the melting temperature of small particles of ash below the operating temperature of jet engines. The eruptive activity of Sheveluch volcano began since 1980 (growth of the lava dome) and is continuing at present. Strong explosive events of the volcano occurred in 2015: on 07, 12, and 15 January, 01, 17, and 28 February, 04, 08, 16, 21-22, and 26 March, 07 and 12 April: ash plumes rose up to 7-12 km a.s.l. and extended more 900 km to the different directions of the volcano. Ashfalls occurred at Ust'-Kamchatsk on 16 March, and Klyuchi on 30 October. Strong and moderate hot avalanches from the lava dome were observing more often in the second half of the year. Aviation color code of Sheveluch was Orange during the year. Activity of the volcano was dangerous to international and local aviation. Explosive-effusive eruption of Klyuchevskoy volcano lasted from 01 January till 24 March. Strombolian explosive volcanic activity began from 01 January, and on 08-09 January a lava flow was detected at the Apakhonchich chute on the southeastern flank of the volcano. Vulcanian activity of the volcano began from 10 January. Ashfalls

  4. The Variable Climate Impact of Volcanic Eruptions

    NASA Astrophysics Data System (ADS)

    Graf, H.

    2011-12-01

    The main effect of big volcanic eruptions in the climate system is due to their efficient transport of condensable gases and their precursors into the stratosphere. There the formation of aerosols leads to effects on atmospheric radiation transfer inducing a reduction of incoming solar radiation by reflection (i.e. cooling of the Earth surface) and absorption of near infrared radiation (i.e. heating) in the aerosol laden layers. In the talk processes determining the climate effect of an eruption will be illustrated by examples, mainly from numerical modelling. The amount of gases released from a magma during an eruption and the efficiency of their transport into very high altitudes depends on the geological setting (magma type) and eruption style. While mid-sized eruption plumes of Plinian style quickly can develop buoyancy by entrainment of ambient air, very large eruptions with high magma flux rates often tend to collapsing plumes and co-ignimbrite style. These cover much bigger areas and are less efficient in entraining ambient air. Vertical transport in these plumes is chaotic and less efficient, leading to lower neutral buoyancy height and less gas and particles reaching high stratospheric altitudes. Explosive energy and amount of released condensable gases are not the only determinants for the climatic effect of an eruption. The effect on shortwave radiation is not linear with the amount of aerosols formed since according to the Lambert-Beer Law atmospheric optical depth reaches a saturation limit with increased absorber concentration. In addition, if more condensable gas is available for aerosol growth, particles become larger and this affects their optical properties to less reflection and more absorption. Larger particles settle out faster, thus reducing the life time of the aerosol disturbance. Especially for big tropical eruptions the strong heating of the stratosphere in low latitudes leads to changes in atmospheric wave propagation by strengthened

  5. Multiple eruptive keratoacanthomas arising in a tattoo.

    PubMed

    Vitiello, Magalys; Echeverria, Begoña; Romanelli, Paolo; Abuchar, Adriana; Kerdel, Francisco

    2010-07-01

    Keratoacanthomas are rapidly growing, keratinizing, epithelial neoplasms that tend to spontaneously involute and are rarely multiple or eruptive. There is still disagreement on whether or not this condition is a malignancy or a benign epidermal neoplasm; nevertheless, its appearance on tattoos has been reported in rare instances. When waiting for spontaneous involution is not an option, surgery is the preferred treatment. Other therapeutic modalities used for the treatment of this condition include radiotherapy; cryotherapy; laser therapy; and multiple intralesional, topical, and systemic agents. The authors report a patient who developed multiple, eruptive keratoacanthomas in the red ink portions of a tattoo and was successfully treated with acitretin. PMID:20725558

  6. Tephra from the 1979 soufriere explosive eruption.

    PubMed

    Sigurdsson, H

    1982-06-01

    The explosive phase of the 1979 Soufriere eruption produced 37.5 x 10(6) cubic meters (dense-rock equivalent) of tephra, consisting of about 40 percent juvenile basaltic andesite and 60 percent of a nonjuvenile component derived from the fragmentation of the 1971-1972 lava island during phreatomagmatic explosions. The unusually fine grain size, poor sorting, and bimodality of the land deposit are attributed to particle aggregation and the formation of accretionary lapilli in a wet eruption column. PMID:17808489

  7. Magma movements and Iceland's next eruptions (Invited)

    NASA Astrophysics Data System (ADS)

    Sigmundsson, F.; Ofeigsson, B.; Hreinsdottir, S.; Hensch, M.; Gudmundsson, G.; Vogfjord, K. S.; Roberts, M. J.; Geirsson, H.; La Femina, P. C.; Hooper, A. J.; Sturkell, E. C.; Einarsson, P.; Gudmundsson, M. T.; Brandsdottir, B.; Loughlin, S. C.; Team, F.

    2013-12-01

    Iceland, created by hotspot-ridge interaction, is characterized by higher magmatic input and more complicated plate boundary structure than other parts of the Mid-Atlantic rift system. It has 30+ volcanic systems, where 20 confirmed eruptions have occurred in the last 40 years, the most recent at Eyjafjallajökull in 2010 and Grimsvotn in 2011. Likely candidates for the next eruption include the four most active volcanoes in Iceland (Hekla, Katla, Grimsvotn, and Bardarbunga) and other areas of volcanic unrest (Askja region, the Krisuvik area). Present volcano monitoring and research, including the FUTUREVOLC project, aims at providing warnings of impending eruptions and their character. Earthquake monitoring and deformation studies have hereto provided the most relevant information. Hekla continuously accumulates magma at a rate of about 0.003-0.02 km3/yr, according to GPS and InSAR studies, in a magma chamber placed below 14 km depth. A sequence of M0.4-1 earthquakes early this year stands out from otherwise mostly aseismic character of Hekla during repose periods. The Hekla magma chamber does not fail at a constant amount of magma volume, rather a clear pattern is observed with eruption size scaling with the length of the preceding period of dormancy. The ice capped Katla volcano shows unusual annual deformation pattern, seismic activity, and hydrological variations depending on time of year, presumably related to ice load and water pressure variations. It may be in a critical stage and renewed inflow of magma may quickly move the volcano towards failure. Bardarbunga had major earthquake and magma transfer activity in 1996, and has been the site of deep low-frequency earthquakes. Grímsvötn volcano is the only volcano with a shallow magma chamber with ongoing confirmed recharging, and failure criteria closest to 'expected'. A large eruption occurred in 2011 compared to much smaller eruption in 2004. However, the amount of erupted magma did not scale with the

  8. Geyser's Eruptive Activity in Broadband Seismic Records

    NASA Astrophysics Data System (ADS)

    Kugaenko, Yulia; Saltykov, Vadim

    2010-05-01

    A geyser is a spring characterized by intermittent discharge of water ejected turbulently and accompanied by a vapor phase (steam). The formation of geysers is due to particular hydrogeological conditions, which exist in only a few places on Earth, so they are a fairly rare phenomenon. The reasons of geyser periodicity and specifics of the activity for every particular geyser are not completely clear yet. So almost for all known geysers it is necessary to develop the personal model. In given study we first use seismic method for detection of possible hidden feature of geyser's eruptive activity in Kamchatkan Valley of the Geysers. Broadband seismic records of geyser generated signals were obtained in hydrothermal field. The Valley of the Geysers belongs to Kronotskiy State Natural Biosphere Reserve and the UNESCO World Natural Heritage Site "Volcanoes of Kamchatka". Neither seismological nor geophysical investigations were carried out here earlier. In September, 2009 seismic observation was organized in geyser's field by 24-bit digital output broadband seismometers (GURALP CMG-6TD flat velocity response 0.033-50 Hz). Four geysers were surveyed: the fountain type Big and Giant geysers; the cone type Pearl geyser and the short-period Gap geyser. Seismometers were set as possible close to the geyser's surface vent (usually at the distance near 3-5 m). Main parameters of the eruptions for the investigated geysers: - The Giant geyser is the most powerful among the regular active geysers in Kamchatkan Valley of the Geysers. The height of the fountain reaches 30 meters, the mass of water erupted is about 40-60 tons. The main cycle of activity varies significantly: in 1945 the intervals between eruptions was near 3 hours, nowadays it is 5-6 hours. As a geyser of fountain type, the Giant geyser erupts from the 2*3 m2 pool of water. - The Big geyser was flooded by the lake after the natural catastrophe (giant mud-stone avalanche, formed by landslide, bed into Geiyzernaya

  9. Giant eruptions of very massive stars

    NASA Astrophysics Data System (ADS)

    Davidson, Kris

    2016-07-01

    Giant eruptions or supernova-impostor events are far more mysterious than true supernovae. An extreme example can release as much radiative energy as a SN, ejecting several Mʘ of material. These events involve continuous radiation-driven outflows rather than blast waves. They constitute one of the main unsolved problems in stellar astrophysics, but have received little theoretical attention. The most notorious giant-eruption survivor, ƞ Carinae, is amazingly close to us for such a rare event. It offers a wealth of observational clues, many of them quite unexpected in terms of simple theory.

  10. Eruptive history and tectonic setting of Medicine Lake Volcano, a large rear-arc volcano in the southern Cascades

    NASA Astrophysics Data System (ADS)

    Donnelly-Nolan, Julie M.; Grove, Timothy L.; Lanphere, Marvin A.; Champion, Duane E.; Ramsey, David W.

    2008-10-01

    Medicine Lake Volcano (MLV), located in the southern Cascades ˜ 55 km east-northeast of contemporaneous Mount Shasta, has been found by exploratory geothermal drilling to have a surprisingly silicic core mantled by mafic lavas. This unexpected result is very different from the long-held view derived from previous mapping of exposed geology that MLV is a dominantly basaltic shield volcano. Detailed mapping shows that < 6% of the ˜ 2000 km 2 of mapped MLV lavas on this southern Cascade Range shield-shaped edifice are rhyolitic and dacitic, but drill holes on the edifice penetrated more than 30% silicic lava. Argon dating yields ages in the range ˜ 475 to 300 ka for early rhyolites. Dates on the stratigraphically lowest mafic lavas at MLV fall into this time frame as well, indicating that volcanism at MLV began about half a million years ago. Mafic compositions apparently did not dominate until ˜ 300 ka. Rhyolite eruptions were scarce post-300 ka until late Holocene time. However, a dacite episode at ˜ 200 to ˜ 180 ka included the volcano's only ash-flow tuff, which was erupted from within the summit caldera. At ˜ 100 ka, compositionally distinctive high-Na andesite and minor dacite built most of the present caldera rim. Eruption of these lavas was followed soon after by several large basalt flows, such that the combined area covered by eruptions between 100 ka and postglacial time amounts to nearly two-thirds of the volcano's area. Postglacial eruptive activity was strongly episodic and also covered a disproportionate amount of area. The volcano has erupted 9 times in the past 5200 years, one of the highest rates of late Holocene eruptive activity in the Cascades. Estimated volume of MLV is ˜ 600 km 3, giving an overall effusion rate of ˜ 1.2 km 3 per thousand years, although the rate for the past 100 kyr may be only half that. During much of the volcano's history, both dry HAOT (high-alumina olivine tholeiite) and hydrous calcalkaline basalts erupted

  11. Eruptive history and tectonic setting of Medicine Lake Volcano, a large rear-arc volcano in the southern Cascades

    USGS Publications Warehouse

    Donnelly-Nolan, J. M.; Grove, T.L.; Lanphere, M.A.; Champion, D.E.; Ramsey, D.W.

    2008-01-01

    Medicine Lake Volcano (MLV), located in the southern Cascades ??? 55??km east-northeast of contemporaneous Mount Shasta, has been found by exploratory geothermal drilling to have a surprisingly silicic core mantled by mafic lavas. This unexpected result is very different from the long-held view derived from previous mapping of exposed geology that MLV is a dominantly basaltic shield volcano. Detailed mapping shows that < 6% of the ??? 2000??km2 of mapped MLV lavas on this southern Cascade Range shield-shaped edifice are rhyolitic and dacitic, but drill holes on the edifice penetrated more than 30% silicic lava. Argon dating yields ages in the range ??? 475 to 300??ka for early rhyolites. Dates on the stratigraphically lowest mafic lavas at MLV fall into this time frame as well, indicating that volcanism at MLV began about half a million years ago. Mafic compositions apparently did not dominate until ??? 300??ka. Rhyolite eruptions were scarce post-300??ka until late Holocene time. However, a dacite episode at ??? 200 to ??? 180??ka included the volcano's only ash-flow tuff, which was erupted from within the summit caldera. At ??? 100??ka, compositionally distinctive high-Na andesite and minor dacite built most of the present caldera rim. Eruption of these lavas was followed soon after by several large basalt flows, such that the combined area covered by eruptions between 100??ka and postglacial time amounts to nearly two-thirds of the volcano's area. Postglacial eruptive activity was strongly episodic and also covered a disproportionate amount of area. The volcano has erupted 9 times in the past 5200??years, one of the highest rates of late Holocene eruptive activity in the Cascades. Estimated volume of MLV is ??? 600??km3, giving an overall effusion rate of ??? 1.2??km3 per thousand years, although the rate for the past 100??kyr may be only half that. During much of the volcano's history, both dry HAOT (high-alumina olivine tholeiite) and hydrous calcalkaline

  12. Public and Media Communication of Volcanic Hazard Before and During the 2010 Eruption in Eyjafjallajökull, Iceland

    NASA Astrophysics Data System (ADS)

    Gylfason, A. G.; Gudmundsson, M. T.; Jakobsdottir, S.; Reynisson, V.

    2010-12-01

    The 39 day long explosive eruption in Eyjafjallajökull was the largest natural hazard event in Iceland for decades. It began with a small flank eruption in March, but the main event was the explosive summit eruption. The flooding that resulted from melting of ice at the eruption site posed considerable danger for the local population, fallout of ash made conditions south of the volcano difficult for several weeks, threatening the future of farming in this rural area, and lead to unprecedented disruption to air traffic in Europe and the North Atlantic. About 800 people were evacuated in a hurry three times during these events because of imminent flood hazard, but fortunately no dwellings were damaged and people could usually return to their homes the same day. These events called for extensive media coverage, both locally and internationally. Some staff at research institutes had for several days to devote their time exclusively to giving interviews to the international media. Scientific communication with the local population was mainly conducted through four channels: (1) the web pages of institutions, (2) the national media; (3) indirectly at meetings on the status of the eruption with local and national officials, and (4) public meetings in the affected areas. In addition the scientific community issued daily status reports to the Department of Civil Protection and Emergency Management, these reports served both national and local Civil Protection officials when preparing their statements on the eruption and answer basic questions from the media. During media communication, it is important to stick to facts, avoid speculation and use plain language without scientific jargon. However, the most critical part of the communication occurred in the years before the eruption through meetings with the local inhabitants. At these meetings the results of a detailed hazard assessment on eruptions in Eyjafjallajökull and the neighboring ice-filled Katla caldera where

  13. Melt inclusion data from the July/August 2006 and May 2010 eruptions of Tungurahua volcano, Ecuador

    NASA Astrophysics Data System (ADS)

    Myers, M.; Geist, D.; Rowe, M. C.; Harpp, K. S.; Dufek, J.

    2011-12-01

    Tungurahua volcano, located in the eastern Cordillera of the Ecuadorian Andes, began a new eruptive sequence in 1999 after ~80 years of inactivity, which persists as of August 2011. This study focuses on the pyroclastic flow-forming eruptions of 2006 and May 2010, using melt inclusions within plagioclase and pyroxene to complement the whole rock compositions presented by Samaniego et al. (2011). Melt inclusions in pyroxene from the 2006 eruption have higher silica concentrations (61-64 wt%) than those hosted within plagioclase (59-62 wt%), the matrix glass (61-62 wt%), and the bulk rock (58 wt%). The 2010 eruption shows a similar but more exaggerated trend, with pyroxene-hosted melt inclusions having silica concentrations ranging from 58-67 wt%, plagioclase between 61-63 wt% and glass between 59-62 wt%. These differences are not attributable to post-entrapment modification. The more evolved inclusions in the 2010 pyroxenes can be created through fractional crystallization of the 2006 glass compositions, using pressures ~2-3 kb and water concentrations ~3 wt%, as simulated by MELTs. Phenocrysts in the 2006 samples have reabsorbed rims and sieve textures, whereas few of the 2010 plagioclases are sieve textured. The 2006 and 2010 melt inclusion compositions plot within the trend formed by the whole rock data from historical eruptions, suggesting that they originated from similar petrogenetic processes. The 2006 pyroxene-hosted melt inclusions have aluminum concentrations above the whole rock trend, whereas the 2010 fall below; otherwise, rocks and inclusions from the two eruptions have similar compositions. Because the pyroxene-hosted melt inclusions contain more evolved melt than the plagioclase-hosted melt inclusions, it is possible that: 1) plagioclase crystallized at higher temperature, along with iron-titanium oxides, increasing the silica concentrations in liquids that were captured by pyroxene, followed by a mafic intrusion that triggered the eruption or 2

  14. Monitoring lava-dome growth during the 2004-2008 Mount St. Helens, Washington, eruption using oblique terrestrial photography

    USGS Publications Warehouse

    Major, J.J.; Dzurisin, D.; Schilling, S.P.; Poland, Michael P.

    2009-01-01

    We present an analysis of lava dome growth during the 2004–2008 eruption of Mount St. Helens using oblique terrestrial images from a network of remotely placed cameras. This underutilized monitoring tool augmented more traditional monitoring techniques, and was used to provide a robust assessment of the nature, pace, and state of the eruption and to quantify the kinematics of dome growth. Eruption monitoring using terrestrial photography began with a single camera deployed at the mouth of the volcano's crater during the first year of activity. Analysis of those images indicates that the average lineal extrusion rate decayed approximately logarithmically from about 8 m/d to about 2 m/d (± 2 m/d) from November 2004 through December 2005, and suggests that the extrusion rate fluctuated on time scales of days to weeks. From May 2006 through September 2007, imagery from multiple cameras deployed around the volcano allowed determination of 3-dimensional motion across the dome complex. Analysis of the multi-camera imagery shows spatially differential, but remarkably steady to gradually slowing, motion, from about 1–2 m/d from May through October 2006, to about 0.2–1.0 m/d from May through September 2007. In contrast to the fluctuations in lineal extrusion rate documented during the first year of eruption, dome motion from May 2006 through September 2007 was monotonic (± 0.10 m/d) to gradually slowing on time scales of weeks to months. The ability to measure spatial and temporal rates of motion of the effusing lava dome from oblique terrestrial photographs provided a significant, and sometimes the sole, means of identifying and quantifying dome growth during the eruption, and it demonstrates the utility of using frequent, long-term terrestrial photography to monitor and study volcanic eruptions.

  15. Precursory tilt changes of small phreatic eruptions of Meakan-dake volcano, Hokkaido, Japan, in November 2008

    NASA Astrophysics Data System (ADS)

    Aoyama, Hiroshi; Oshima, Hiromitsu

    2015-07-01

    Although forecasting an occurrence of phreatic eruption is very difficult, it has been reported that some precursory activities often precede these eruptions at several volcanoes. In this study, we observed seismic activities before and during the 2008 phreatic eruption at Meakan-dake volcano, eastern Hokkaido, Japan, by using broadband seismometers and surface mount-type tiltmeters. The precursory increase in seismicity began in late September about 2 months before the first eruption on November 18. After several rises and falls in seismicity in October and in early November, a small volcanic tremor was observed early on November 16. Although the original velocity seismogram of the tremor generally appeared to be spindle shaped, an outstanding ramp function appeared in the displacement seismogram obtained by simple integration. Since the ramp function appeared only in the horizontal components and continued for about 3 min, which is sufficiently longer than the natural period of the seismometer, we regarded the ramp function as an expression of the tilting motions of seismic stations that was quantitatively confirmed by the strong similarity between horizontal displacement seismograms and tilt data from co-located biaxial tiltmeter. Azimuthal distribution of three tilting vectors obtained from broadband seismograms was not consistent with a simple spherical source but rather strongly suggested a vertical dike under the crater. In this study, we confirmed that an almost vertical single dike effectively explains the observed tilting vectors. The estimated volume increase in the dike was 4-5 × 104 m3. The strike direction of the dike is highly consistent with the alignment of the hydrothermal area on and around the volcano. Our dike model also partially explains the changes in global navigation satellite system (GNSS) measurement and in groundwater levels reported in previous research. Since a similar deformation coincided with a volcanic tremor preceding the 2006

  16. The Volcano Disaster Assistance Program: Working with International Partners to Reduce the Risk from Volcanic Eruptions Worldwide

    NASA Astrophysics Data System (ADS)

    Mayberry, G. C.; Pallister, J. S.

    2015-12-01

    The Volcano Disaster Assistance Program (VDAP) is a joint effort between USGS and the U.S. Agency for International Development's (USAID) Office of U.S. Foreign Disaster Assistance (OFDA). OFDA leads and coordinates disaster responses overseas for the U.S. government and is a unique stakeholder concerned with volcano disaster risk reduction as an international humanitarian assistance donor. One year after the tragic eruption of Nevado del Ruiz in 1985, OFDA began funding USGS to implement VDAP. VDAP's mission is to reduce the loss of life and property and limit the economic impact from foreign volcano crises, thereby preventing such crises from becoming disasters. VDAP fulfills this mission and complements OFDA's humanitarian assistance by providing crisis response, capacity-building, technical training, and hazard assessments to developing countries before, during, and after eruptions. During the past 30 years, VDAP has responded to more than 27 major volcanic crises, built capacity in 12+ countries, and helped counterparts save tens of thousands of lives and hundreds of millions of dollars in property. VDAP responses have evolved as host-country capabilities have grown, but the pace of work has not diminished; as a result of VDAP's work at 27 volcanoes in fiscal year 2014, more than 1.3 million people who could have been impacted by volcanic activity benefitted from VDAP assistance, 11 geological policies were modified, 188 scientists were trained, and several successful eruption forecasts were made. VDAP is developing new initiatives to help counterparts monitor volcanoes and communicate volcanic risk. These include developing the Eruption Forecasting Information System (EFIS) to learn from compiled crisis data from 30 years of VDAP responses, creating event trees to forecast eruptions at restless volcanoes, and exploring the use of unmanned aerial systems for monitoring. The use of these new methods, along with traditional VDAP assistance, has improved VDAP

  17. Changing eruptive styles in basaltic explosive volcanism: Examples from Croscat complex scoria cone, Garrotxa Volcanic Field (NE Iberian Peninsula)

    NASA Astrophysics Data System (ADS)

    Di Traglia, F.; Cimarelli, C.; de Rita, D.; Gimeno Torrente, D.

    2009-03-01

    The Croscat pyroclastic succession has been analysed to investigate the transition between different eruptive styles in basaltic monogenetic volcanoes, with particular emphasis on the role of phreatomagmatism in triggering Violent Strombolian eruptions. Croscat volcano, an 11 ka basaltic complex scoria cone in the Quaternary Garrotxa Volcanic Field (GVF) shows pyroclastic deposits related both to magmatic and phreatomagmatic explosions. Lithofacies analysis, grain size distribution, chemical composition, glass shard morphologies, vesicularity, bubble-number density and crystallinity of the Croscat pyroclastic succession have been used to characterize the different eruptive styles. Eruptions at Croscat began with fissural Hawaiian-type fountaining that rapidly changed to eruption types transitional between Hawaiian and Strombolian from a central vent. A first phreatomagmatic phase occurred by the interaction between magma and water from a shallow aquifer system at the waning of the Hawaiian- and Strombolian-types stage. A Violent Strombolian explosion then occurred, producing a widespread (8 km 2), voluminous tephra blanket. The related deposits are characterized by the presence of wood-shaped, highly vesicular scoriae. Glass-bearing xenoliths (buchites) are also present within the deposit. At the waning of the Violent Strombolian phase a second phreatomagmatic phase occurred, producing a second voluminous deposit dispersed over 8.4 km 2. The eruption ended with a lava flow emission and consequent breaching of the western-side of the volcano. Our data suggest that the Croscat Violent Strombolian phase was related to the ascent of deeper, crystal-poor, highly vesicular magma under fast decompression rate. Particles and vesicles elongation and brittle failure observed in the wood-shaped clasts indicate that fragmentation during Violent Strombolian phase was enhanced by high strain-rate of the magma within the conduit.

  18. The eruption of Mount Pagan volcano, Mariana Islands, 15 May 1981

    NASA Astrophysics Data System (ADS)

    Banks, Norman G.; Koyanagi, Robert Y.; Sinton, John M.; Honma, Kenneth T.

    1984-10-01

    A major explosive eruption occurred 15 May 1981 at Mount Pagan Volcano, the larger of two historic eruptive centers on Pagan Island, Mariana Islands. The eruption was preceded by increased numbers of locally felt earthquakes beginning in late March or early April and by new ground cracks, new sublimates, and increased gas emissions. A swarm of felt earthquakes began at 0745h (local time = UCT+10 hours) 15 May, and at 0915 h, closely following a loud sonic boom, a strong plinian column issued from the volcano. The high-altitude ash cloud (at least 13.5 km) travelled south-southeast, but ash and scoria deposits were thickest (> 2 m) in the NW sector of the island because of the prevailing low-altitude southeasterly winds. The early activity of 15 May probably involved magmatic eruption along a fissure system oriented about N10°E. However, the eruption became hydromagmatic, possibly within minutes, and was largely restricted to three long-lived vents. The northernmost of these built a substantial new scoria-ash cinder cone. Flows and air-fall deposits, consisting almost entirely of juvenile material, exceeded 105 × 10 6 m 3 in volume (75 × 10 6 m 3 of magma) on land and at least 70-100 × 60 6 m 3 at sea. An unknown volume was carried away by stratospheric winds. Lithic blocks and juvenile bombs as large as 1 m in diameter were thrown more than 2 km from the summit, and evidence for base-surge was observed in restricted corridors as low as 200 m elevation on the north and south slopes of the volcano. Neither of these events resulted in serious injuries to the 54 residents of the island, nor did the eruption produce serious chemical hazards in their water supply. Weak eruptions occurred during the ensuing month, and some of these were monitored by ground observations, seismic monitoring, and deformation studies. Precursory seismicity and possibly deformation occurred with some of the observed eruptions. More vigorous eruptions were reported by visiting residents in

  19. The 2008 Eruption of Kasatochi Volcano, Central Aleutian Islands, Alaska: Reconnaissance Observations and Preliminary Physical Volcanology

    NASA Astrophysics Data System (ADS)

    Waythomas, C. F.; Schneider, D. J.; Prejean, S. G.

    2008-12-01

    The August 7, 2008 eruption of Kasatochi volcano was the first documented historical eruption of this small (3 x 3 km) island volcano with a 1 km2 lake filled crater in the central Aleutian Islands of Alaska. Reports of previous Kasatochi eruptions are unconfirmed and lacking in detail and little is known about the eruptive history. Three explosively-generated ash plumes reaching altitudes of 15 to 20 km were observed in satellite data and were preceded by some of the most intense seismicity yet recorded by the Alaska Volcano Observatory (AVO) seismic network. Eruptive products on Kasatochi Island observed on August 22 and 23 consist of pumice-bearing, lithic-rich pyroclastic-flow deposits overlain by a 1-2 m thick sequence of fine- grained pyroclastic-surge, and -fall deposits all exposed at the coastline. These deposits completely blanket Kasatochi Island to a depth of many meters. Pyroclastic flows entered the sea and extended the coastline 300-400 m beyond prominent wave cut cliffs and sea stacks. Tide gauge data from Adak Island, 80 km to the west, indicate a small tsunami with maximum water amplitude of 20 cm, was initiated during the eruption. Kasatochi volcano lacks a real-time seismic monitoring network. Seismic activity was detected by AVO instruments on Great Sitkin Island 40 km to the west, and thus the timing of eruptive events is approximate. The eruption began explosively at 2201 UTC on August 7, and was followed by at least two additional strong eruptive bursts at 0150 UTC and 0435 UTC, August 8. Satellite data show a significant ash cloud associated with the 0435 UTC event followed by at least 14 hours of continuous ash emission. The lack of a strong ash signature in satellite data suggest that the first two plumes were ash poor. Satellite data also show a large emission of SO2 that entered the stratosphere. Correlation of eruptive periods with deposits on the island is not yet possible, but it appears that pyroclastic flows were emplaced during

  20. Vent Processes and Deposits of a Hiatus in a Violent Eruption: Quilotoa Volcano, Ecuador

    NASA Astrophysics Data System (ADS)

    Best, J. A.; Bustillos, J.; Ort, M. H.; Cashman, K. V.; Mothes, P. A.; di Muro, A.; Rosi, M.

    2010-12-01

    , with the simultaneous milling of the weakened material producing the orange dust. We interpret the dense vitric lapilli ≥ -2.0 φ of U2c as being from an explosion through a lava dome, and thus they indicate that the eruption was continuous from U2c through U3. Our current hypothesis is that, as the U1 eruption ended, magma stalled deep in the conduit and degassed hot acidic gas that streamed through the material clogging the vent. This elutriated vitric material that eventually formed a cap on the system. As the U3 magma began its ascent, gas flux increased, leading to explosions that gradually removed the vitric cap and deposited the vitric U2a. Then, more continuous gas streaming led to the development of a pulsatory eruption column that carried hot crystals and vitric grains from the vent clog into a convecting column and eventual deposition as U2b fallout, which was then followed by the establishment of the U3 eruption column.

  1. The eruption of Mount Pagan volcano, Mariana Islands, 15 May 1981

    USGS Publications Warehouse

    Banks, N.G.; Koyanagi, R.Y.; Sinton, J.M.; Honma, K.T.

    1984-01-01

    A major explosive eruption occurred 15 May 1981 at Mount Pagan Volcano, the larger of two historic eruptive centers on Pagan Island, Mariana Islands. The eruption was preceded by increased numbers of locally felt earthquakes beginning in late March or early April and by new ground cracks, new sublimates, and increased gas emissions. A swarm of felt earthquakes began at 0745h (local time = UCT+10 hours) 15 May, and at 0915 h, closely following a loud sonic boom, a strong plinian column issued from the volcano. The high-altitude ash cloud (at least 13.5 km) travelled south-southeast, but ash and scoria deposits were thickest (> 2 m) in the NW sector of the island because of the prevailing low-altitude southeasterly winds. The early activity of 15 May probably involved magmatic eruption along a fissure system oriented about N10??E. However, the eruption became hydromagmatic, possibly within minutes, and was largely restricted to three long-lived vents. The northernmost of these built a substantial new scoria-ash cinder cone. Flows and air-fall deposits, consisting almost entirely of juvenile material, exceeded 105 ?? 106 m3 in volume (75 ?? 106 m3 of magma) on land and at least 70-100 ?? 606 m3 at sea. An unknown volume was carried away by stratospheric winds. Lithic blocks and juvenile bombs as large as 1 m in diameter were thrown more than 2 km from the summit, and evidence for base-surge was observed in restricted corridors as low as 200 m elevation on the north and south slopes of the volcano. Neither of these events resulted in serious injuries to the 54 residents of the island, nor did the eruption produce serious chemical hazards in their water supply. Weak eruptions occurred during the ensuing month, and some of these were monitored by ground observations, seismic monitoring, and deformation studies. Precursory seismicity and possibly deformation occurred with some of the observed eruptions. More vigorous eruptions were reported by visiting residents in late

  2. Solar Prominence Eruption Marks 1 Million on Helioviewer

    NASA Video Gallery

    This movie of a prominence eruption on April 20, 2013, was the millionth movie made on Helioviewer.org. The wispy eruption seen here eventually blossomed into a much larger cloud of solar material,...

  3. On an Unified Scaling Law for Volcanic Eruptions

    NASA Astrophysics Data System (ADS)

    Cannavo, F.; Nunnari, G.

    2014-12-01

    Volcanoes constitute dissipative systems with many degrees of freedom. Their eruptions are the result of complex processes that involve interacting chemical-physical systems. At the present, both analytical and numerical models are unable to include all the possible dynamics involved into eruptions. On the other hand, the knowledge of eruption duration can be a key factor for natural hazard estimation. In this work, analyzing a large database with most of all the known volcanic eruptions, we have determined that the duration of eruptions can be described by a unique universal distribution which fully governs eruption duration dynamics. In particular, after the well-known results proposed in literature concerning the seismicity (i.e. the Gutenberg-Richter law), we present an Earth-wise power-law distribution of durations of volcanic eruptions that holds from worldwide to local scales, for different volcanic environments and for all the considered eruption types.

  4. Filament Eruptions, Jets, and Space Weather

    NASA Technical Reports Server (NTRS)

    Moore, Ronald; Sterling, Alphonse; Robe, Nick; Falconer, David; Cirtain, Jonathan

    2013-01-01

    Previously, from chromospheric H alpha and coronal X-ray movies of the Sun's polar coronal holes, it was found that nearly all coronal jets (greater than 90%) are one or the other of two roughly equally common different kinds, different in how they erupt: standard jets and blowout jets (Yamauchi et al 2004, Apl, 605, 5ll: Moore et all 2010, Apj, 720, 757). Here, from inspection of SDO/AIA He II 304 A movies of 54 polar x-ray jets observed in Hinode/XRT movies, we report, as Moore et al (2010) anticipated, that (1) most standard x-ray jets (greater than 80%) show no ejected plasma that is cool enough (T is less than or approximately 10(exp 5K) to be seen in the He II 304 A movies; (2) nearly all blownout X-ray jets (greater than 90%) show obvious ejection of such cool plasma; (3) whereas when cool plasma is ejected in standard X-ray jets, it shows no lateral expansion, the cool plasma ejected in blowout X-ray jets shows strong lateral expansion; and (4) in many blowout X-ray jets, the cool plasma ejection displays the erupting-magnetic-rope form of clasic filament eruptions and is thereby seen to be a miniature filament eruption. The XRT movies also showed most blowout X-ray jets to be larger and brighter, and hence to apparently have more energy, than most standard X-ray jets. These observations (1) confirm the dichotomy of coronal jets, (2) agree with the Shibata model for standard jets, and (3) support the conclusion of Moore et al (2010) that in blowout jets the magnetic-arch base of the jet erupts in the manner of the much larger magnetic arcades in which the core field, the field rooted along the arcade's polarity inversion line, is sheared and twisted (sigmoid), often carries a cool-plasma filament, and erupts to blowout the arcade, producing a CME. From Hinode/SOT Ca II movies of the polar limb, Sterling et al (2010, ApJ, 714, L1) found that chromospheric Type-II spicules show a dichotomy of eruption dynamics similar to that found here for the cool

  5. Active Eruptions in the NE Lau Basin

    NASA Astrophysics Data System (ADS)

    Resing, J. A.; Embley, R. W.

    2009-12-01

    NE Lau Response Team: K Rubin, E Baker, J Lupton, M Lilley, T Shank, S Merle, R Dziak, T Collasius (Jason 2 Expedition Leader), N Buck, T Baumberger, D Butterfield, D Clague, D Conlin, J Cowen, R Davis, L Evans, J Huber, M Keith, N Keller, P Michael, E Podowski, A-L Reysenbach, K Roe, H Thomas, S Walker. During a May 2009 cruise to W Mata volcano in the NE Lau Basin, we made the first observations of an active eruption on the deep-sea floor. The cruise was organized after volcanic activity was detected at two sites (W Mata volcano and NE Lau Spreading Center, NELSC) during a Nov. 2008 NOAA-PMEL expedition. At that time, both sites had elevated H2 concentrations and volcaniclastic shards in the hydrothermal plumes. Moored hydrophone data since Jan 2009 indicate that the activity at W Mata has been continuous between these expeditions. Results of our cruise and other work suggest that the NE Lau Basin hosts an unusually high level of magmatic activity, making it an ideal location to study the effects of magmatic processes on hydrothermal activity and associated ecosystems. W Mata was visited with 5 ROV Jason 2 dives and 2 dives with the MBARI autonomous mapping vehicle in May 2009. It was actively erupting at the 1200 m deep summit during each, so a hydrophone was deployed locally to collect acoustic data. Ship and shore-based analysis of HD video, molten lava, rocks, sediments, hot spring waters, and micro- and macro biological specimens collected by Jason 2 have provided a wealth of data. The eruption itself was characterized by extrusion of red, molten lava, extensive degassing, formation of large magma bubbles, explosive pyroclast ejection, and the active extrusion of pillow lavas. The erupting magmas are boninite, a relatively rare magma type found only at convergent margins. The hydrothermal fluids are generally acidic and all diffuse fluids collected were microbially active, even those at pH <3. W Mata was host to shrimp similar to those found at several other

  6. Mafic intrusions triggering eruptions in Iceland

    NASA Astrophysics Data System (ADS)

    Sigmarsson, O.

    2012-04-01

    The last two eruptions in Iceland, Eyjafjallajökull 2010 and Grímsvötn 2011, were both provoked by an intrusion of more mafic magma into pre-existing magmatic system. Injection into the latter volcano, which is located in the main rift-zone of the island, above the presumed centre of the mantle plume and is the most active volcano of Iceland, has been gradual since the last eruption in 2004. In contrast, at Eyjafjallajökull volcano, one of the least active volcano in Iceland and located at the southern part of a propagating rift-zone where extensional tectonics are poorly developed, mafic magma intrusion occurred over less than a year. Beneath Eyjafjallajökull, a silicic intrusion at approximately 6 km depth was recharged with mantle derived alkali basalt that was injected into residual rhyolite from the penultimate eruption in the years 1821-23. The resulting magma mingIing process was highly complex, but careful sampling of tephra during the entire eruption allows the dynamics of the mingling process to be unravelled. Short-lived disequilibria between the gaseous nuclide 210Po and the much less volatile nuclide 210Pb, suggest that basalt accumulated beneath the silicic intrusion over approximately 100 days, or from early January 2010 until the onset of the explosive summit eruption on 14 April. Due to the degassing, crystal fractionation modified the composition of the injected mafic magma producing evolved Fe-and Ti-rich basalt, similar in composition to that of the nearby Katla volcano. This evolved basalt was intruded into the liquid part of the silicic intrusion only a few hours before the onset of the explosive summit eruption. The short time between intrusion and eruption led to the production of very heterogeneous (of basaltic, intermediate and silicic composition) and fine-grained tephra during the first days of explosive eruption. The fine grained tephra resulted from combined effects of magma fragmentation due to degassing of stiff magma rich in

  7. Source mechanism of Vulcanian eruption at Tungurahua Volcano, Ecuador, derived from seismic moment tensor inversions

    NASA Astrophysics Data System (ADS)

    Kim, Keehoon; Lees, Jonathan M.; Ruiz, Mario C.

    2014-02-01

    Source mechanisms of explosive volcanic eruptions are critical for understanding magmatic plumbing systems and magma transport. Tungurahua is a large andesitic stratovolcano where seismoacoustic data has been recorded over several years. In May 2010, an energetic eruption cycle began with a midsize Vulcanian explosion followed by swarms of explosive eruptions. The five-station seismoacoustic network recorded significant seismic and infrasonic signals from the explosions. Source mechanisms of 50 explosion earthquakes associated with Vulcanian explosions during this eruptive period are investigated here. The source centroid locations and geometries of explosive signals in the 10-2 s band were determined by full-waveform moment tensor inversion. The observed waveforms are well explained by a combination of volumetric moment tensor components and a single, vertical, downward force component. The source centroids are positioned about 1.5 km below and about 320 m north of the active crater. Eigenvalue and eigenvector analysis indicates that the source geometries can be described by a subhorizontal, thin ellipsoid representing a sill-like magma accumulation. Resultant source time histories show a repetitive sequence of inflation and deflation from event to event, indicating identical source processes frequently occurred over the period. The inflation/deflation in the deep source region may be the result of crack opening. Volatile bubble growth at depth opens a pathway for gases to escape and triggers shallow explosions at the summit crater. The associated downward single force is interpreted as an exchange of linear momentum between the source and the surrounding region during the escaping gas flow.

  8. A Volcano Rekindled: The Renewed Eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    Mount St. Helens began a dome-building eruption in September 2004 after nearly two decades of quiescence. Dome growth was initially robust, became more sluggish with time, and ceased completely in late January 2008. The volcano has been quiet again since January 2008. Professional Paper 1750 describes the first 1 1/2 years of this eruptive activity, chiefly from September 2004 until December 2005. Its 37 chapters contain contributions of 87 authors from 23 institutions, including the U.S. Geological Survey, Forest Service, many universities, and local and State emergency management agencies. Chapter topics range widely - from seismology, geology, geodesy, gas geochemistry, and petrology to the human endeavor required for managing the public volcanic lands and distributing information during the hectic early days of a renewed eruption. In PDF format, the book may be downloaded in its entirety or by its topical sections, each section including a few prefatory paragraphs that describe the general findings, recurrent themes, and, in some cases, the unanswered questions that arise repeatedly. Those readers who prefer downloading the smaller files of only a chapter or two have this option available as well. Readers are directed to chapter 1 for a general overview of the eruption and the manner in which different chapters build our knowledge of events. More detailed summaries for specific topics can be found in chapter 2 (seismology), chapter 9 (geology), chapter 14 (deformation), chapter 26 (gas geochemistry), and chapter 30 (petrology). The printed version of the book may be purchased as a hardback weighty tome (856 printed pages) that includes a DVD replete with the complete online version, including all chapters and several additional appendixes not in the printed book.

  9. The 1793 eruption of San Martín Tuxtla volcano, Veracruz, Mexico

    NASA Astrophysics Data System (ADS)

    Espíndola, J. M.; Zamora-Camacho, A.; Godinez, M. L.; Schaaf, P.; Rodríguez, S. R.

    2010-11-01

    San Martín Tuxtla (N18.562°; W95.199°, 1659 masl) is a basaltic volcano located in southern Veracruz, a Mexican State bordering the Gulf of Mexico. It rises in a volcanic field strewn with monogenetic volcanic cones, maars and three other large volcanoes mostly dormant since the late Pliocene: Santa Marta, San Martín Pajapan and Cerro El Vigía. The latest eruptive event of San Martín occurred in 1793 and was described by Don José Mariano Moziño, a naturalist under the commission of the Viceroy of the then New Spain. In this work we present results of the study of this eruption based on historical accounts and field observations. We identified an ash deposit around the volcano related to the 1793 eruption, mapped its distribution and determined its granulometric, petrographic and geochemical characteristics. These studies suggest that the volcano began its activity with explosive phreatomagmatic explosions, which were followed by Strombolian activity; this period lasting from March to October 1793. The activity continued with an effusive phase that lasted probably 2 years. The eruption covered an area of about 480 km 2 with at least 1 cm of ash; the fines reaching distances greater than 300 km from the crater. A total mass of about 2.5 × 10 14 g was ejected and the volcanic columns probably reached altitudes of the order of 10 km during the most explosive phases. The lava emitted formed a coulee that descended the northern flank of the volcano and has an approximate volume of 2.0 × 10 7 m 3.

  10. Eruption-related lahars and sedimentation response downstream of Mount Hood: Field guide to volcaniclastic deposits along the Sandy River, Oregon

    USGS Publications Warehouse

    Pierson, Tom C.; Scott, William E.; Vallance, James W.; Pringle, Patrick T.

    2009-01-01

    Late Holocene dome-building eruptions at Mount Hood during the Timberline and Old Maid eruptive periods resulted in numerous dome-collapse pyroclastic flows and lahars that moved large volumes of volcaniclastic sediment into temporary storage in headwater canyons of the Sandy River. During each eruptive period, accelerated sediment loading to the river through erosion and remobilization of volcanic fragmental debris resulted in very high sediment-transport rates in the Sandy River during rain- and snowmelt-induced floods. Large sediment loads in excess of the river's transport capacity led to channel aggradation, channel widening, and change to a braided channel form in the lowermost reach of the river, between 61 and 87 km downstream from the volcano. The post-eruption sediment load moved as a broad bed-material wave, which in the case of the Old Maid eruption took ~2 decades to crest 83 km downstream. Maximum post-eruption aggradation levels of at least 28 and 23 m were achieved in response to Timberline and Old Maid eruptions. In each case, downstream aggradation cycles were initiated by lahars, but the bulk of the aggradation was achieved by fluvial sediment transport and deposition. When the high rates of sediment supply began to diminish, the river degraded, incising the channel fills and forming progressively lower sets of degradational terraces. A variety of debris-flow, hyperconcentrated-flow, and fluvial (upper and lower flow regime) deposits record the downstream passage of the sediment waves that were initiated by these eruptions. The deposits also presage a hazard that may be faced by communities along the Sandy River when volcanic activity at Mount Hood resumes.

  11. Addressing the needs of the telecoms industry for optical fibre communication in Africa

    NASA Astrophysics Data System (ADS)

    Leitch, Andrew W. R.; Conibear, Ann B.

    2005-10-01

    We report on a successful partnership between the Department of Physics at the Nelson Mandela Metropolitan University (NMMU) and Telkom, South Africa's national telecommunications company, to train physics students in the important fields related to optical fibre technology. The partnership, which began in 2001 and forms part of Telkom's Centre of Excellence program in South Africa, is currently being extended to other countries in Africa. The training being conducted in the Physics Department has as one of its main goals an increased understanding of polarisation mode dispersion (PMD), an effect that will ultimately limit the transmission speeds through optical fibre.

  12. The variation of magma discharge during basaltic eruptions

    NASA Astrophysics Data System (ADS)

    Wadge, G.

    1981-12-01

    The rate at which basaltic magma is discharged varies substantially during many eruptions. An individual eruption has an eruption rate ( Qe), the volumetric rate of discharge averaged over the whole or a major part of an eruption, and an effusion rate ( Qf), the volumetric flux rate at any given time. In many examples Qf soon reaches a maximum value after a short period of waxing flow, partly because of magmatic expansion, and then falls more slowly in the later parts of the eruption. The release of elastic strain energy from stored magma and the sub-volcanic reservoir during eruption can produce an exponential form of such waning flow. Comparison of the eruption rates of the historic eruptions of Mauna Loa, Kilauea and Etna shows that for each volcano there is a trend of decreasing Qe with increasing duration of eruption. This relationship is not predicted by a simple elastic model of magma release. Two additional processes are invoked to explain the eruptive histories of these volcanoes: modification of the eruptive conduits, and the continued supply of magma from depth during eruption. Conduits evolving from dikes to plugs by wall-rock erosion or freezing of magma can result in increased early values of Qf and the maintenance of very low values of Qf values for long periods later in the eruption. Discharge variations during three specific eruptions are discussed in detail. Paricutin (1943-1952) had exponentially waning flow, with a time constant of about three years, that is consistent with a deep reservoir. The waning flow of Hekla's 1947-1948 eruption showed some of the characteristics of conduit modification, whilst the 1959 Kilauea Iki eruption is interpreted in terms of a closed system with varying magma rheology.

  13. Sulphur-rich volcanic eruptions and stratospheric aerosols

    NASA Technical Reports Server (NTRS)

    Rampino, M. R.; Self, S.

    1984-01-01

    Data from direct measurements of stratospheric optical depth, Greenland ice-core acidity, and volcanological studies are compared, and it is shown that relatively small but sulfur-rich volcanic eruptions can have atmospheric effects equal to or even greater than much larger sulfur-poor eruptions. These small eruptions are probably the most frequent cause of increased stratospheric aerosols. The possible sources of the excess sulfur released in these eruptions are discussed.

  14. Burst conditions of explosive volcanic eruptions recorded on microbarographs

    USGS Publications Warehouse

    Morrissey, M.M.; Chouet, B.A.

    1997-01-01

    Explosive volcanic eruptions generate pressure disturbances in the atmosphere that propagate away either as acoustic or as shock waves, depending on the explosivity of the eruption. Both types of waves are recorded on microbarographs as 1- to 0.1-hertz N-shaped signals followed by a longer period coda. These waveforms can be used to estimate burst pressures end gas concentrations in explosive volcanic eruptions and provide estimates of eruption magnitudes.

  15. Holocene eruptive activity of El Chichon volcano, Chiapas, Mexico

    NASA Astrophysics Data System (ADS)

    Tilling, R. I.; Rubin, M.; Sigurdsson, H.; Carey, S.; Duffield, W. A.; Rose, W. I.

    1984-05-01

    Geologic and radiometric-age data indicate that El Chichon was frequently and violently active during the Holocene, including eruptive episodes about 600, 1250, and 1700 years ago and several undated, older eruptions. These episodes, involving explosive eruptions of sulfur-rich magma and associated domegrowth processes, were apparently separated by intervals of approximately 350 to 650 years. Some of El Chichon's eruptions may correlate with unusual atmospheric phenomena around A.D. 1300 and possibly A.D. 623.

  16. Holocene eruptive activity of El Chichon volcano, Chiapas, Mexico

    NASA Technical Reports Server (NTRS)

    Tilling, R. I.; Rubin, M.; Sigurdsson, H.; Carey, S.; Duffield, W. A.; Rose, W. I.

    1984-01-01

    Geologic and radiometric-age data indicate that El Chichon was frequently and violently active during the Holocene, including eruptive episodes about 600, 1250, and 1700 years ago and several undated, older eruptions. These episodes, involving explosive eruptions of sulfur-rich magma and associated domegrowth processes, were apparently separated by intervals of approximately 350 to 650 years. Some of El Chichon's eruptions may correlate with unusual atmospheric phenomena around A.D. 1300 and possibly A.D. 623.

  17. The Cataclysmic 1991 Eruption of Mount Pinatubo, Philippines

    USGS Publications Warehouse

    Newhall, Christopher G.; Hendley, James W., II; Stauffer, Peter H.

    1997-01-01

    The second-largest volcanic eruption of this century, and by far the largest eruption to affect a densely populated area, occurred at Mount Pinatubo in the Philippines on June 15, 1991. The eruption produced high-speed avalanches of hot ash and gas, giant mudflows, and a cloud of volcanic ash hundreds of miles across. The impacts of the eruption continue to this day.

  18. Multiwavelength Observations of a Slow Raise, Multi-Step X1.6 Flare and the Associated Eruption

    NASA Astrophysics Data System (ADS)

    Yurchyshyn, V.

    2015-12-01

    Using multi-wavelength observations we studied a slow rise, multi-step X1.6 flare that began on November 7, 2014 as a localized eruption of core fields inside a δ-sunspot and later engulfed the entire active region. This flare event was associated with formation of two systems of post eruption arcades (PEAs) and several J-shaped flare ribbons showing extremely fine details, irreversible changes in the photospheric magnetic fields, and it was accompanied by a fast and wide coronal mass ejection. Data from the Solar Dynamics Observatory, IRIS spacecraft along with the ground based data from the New Solar Telescope (NST) present evidence that i) the flare and the eruption were directly triggered by a flux emergence that occurred inside a δ--sunspot at the boundary between two umbrae; ii) this event represented an example of an in-situ formation of an unstable flux rope observed only in hot AIA channels (131 and 94Å) and LASCO C2 coronagraph images; iii) the global PEA system spanned the entire AR and was due to global scale reconnection occurring at heights of about one solar radii, indicating on the global spatial and temporal scale of the eruption.

  19. Multiwavelength Observations of a Slow-rise, Multistep X1.6 Flare and the Associated Eruption

    NASA Astrophysics Data System (ADS)

    Yurchyshyn, V.; Kumar, P.; Cho, K.-S.; Lim, E.-K.; Abramenko, V. I.

    2015-10-01

    Using multiwavelength observations, we studied a slow-rise, multistep X1.6 flare that began on 2014 November 7 as a localized eruption of core fields inside a δ-sunspot and later engulfed the entire active region (AR). This flare event was associated with formation of two systems of post-eruption arcades (PEAs) and several J-shaped flare ribbons showing extremely fine details, irreversible changes in the photospheric magnetic fields, and it was accompanied by a fast and wide coronal mass ejection. Data from the Solar Dynamics Observatory and IRIS spacecraft, along with the ground-based data from the New Solar Telescope, present evidence that (i) the flare and the eruption were directly triggered by a flux emergence that occurred inside a δ-sunspot at the boundary between two umbrae; (ii) this event represented an example of the formation of an unstable flux rope observed only in hot AIA channels (131 and 94 Å) and LASCO C2 coronagraph images; (iii) the global PEA spanned the entire AR and was due to global-scale reconnection occurring at heights of about one solar radius, indicating the global spatial and temporal scale of the eruption.

  20. Tephra architecture, pyroclast texture and magma rheology of mafic, ash-dominated eruptions: the Violent Strombolian phase of the Pleistocene Croscat (NE Spain) eruption.

    NASA Astrophysics Data System (ADS)

    Cimarelli, C.; Di Traglia, F.; Vona, A.,; Taddeucci, J.

    2012-04-01

    A broad range of low- to mid-intensity explosive activity is dominated by the emission of ash-sized pyroclasts. Among this activity, Violent Strombolian phases characterize the climax of many mafic explosive eruptions. Such phases last months to years, and produce ash-charged plumes several kilometers in height, posing severe threats to inhabited areas. To tackle the dominant processes leading to ash formation during Violent Strombolian eruptions, we investigated the magma rheology and the field and textural features of products from the 11 ka Croscat basaltic complex scoria cone in the Quaternary Garrotxa Volcanic Field (GVF). Field, grain-size, chemical (XRF, FE-SEM and electron microprobe) and textural analyses of the Croscat pyroclastic succession outlined the following eruption evolution: activity at Croscat began with fissural, Hawaiian-type fountaining that rapidly shifted towards Strombolian style from a central vent. Later, a Violent Strombolian explosion included several stages, with different emitted volumes and deposit features indicative of differences within the same eruptive style: at first, quasi-sustained fire-fountaining with ash jet and plume produced a massive, reverse to normal graded, scoria deposit; later, a long lasting series of ash-explosions produced a laminated scoria deposit. The eruption ended with a lava flow breaching the western-side of the volcano. Scoria clasts from the Croscat succession ubiquitously show micrometer- to centimeter-sized, microlite-rich domains (MRD) intermingled with volumetrically dominant, microlite-poor domains (MPD). MRD magmas resided longer in a relatively cooler, degassed zone lining the conduit walls, while MPD ones travelled faster along the central, hotter streamline, the two interminging along the interface between the two velocity zones. The preservation of two distinct domains in the short time-scale of the eruption was favoured by their rheological contrast related to the different microlite

  1. The September 1988 intracaldera avalanche and eruption at Fernandina volcano, Galapagos Islands

    USGS Publications Warehouse

    Chadwick, W.W., Jr.; De Roy, T.; Carrasco, A.

    1991-01-01

    During 14-16 September 1988, a large intracaldera avalanche and an eruption of basaltic tephra and lava at Fernandina volcano, Galapagos, produced the most profound changes within the caldera since its collapse in 1968. A swarm of eight earthquakes (mb 4.7-5.5) occurred in a 14 h period on 24 February 1988 at Fernandina, and two more earthquakes of this size followed on 15 April and 20 May, respectively. On 14 September 1988, another earthquake (mb 4.6) preceded a complex series of events. A debris avalanche was generated by the failure of a fault-bounded segment of the east caldera wall, approximately 2 km long and 300 m wide. The avalanche deposit is up to 250 m thick and has an approximate volume of 0.9 km3. The avalanche rapidly displaced a preexisting lake from the southeast end of the caldera floor to the northwest end, where the water washed up against the lower part of the caldera wall, then gradually seeped into the avalanche deposit and was completely gone by mid-January 1989. An eruption began in the caldera within about 1-2 h of the earthquake, producing a vigorous tephra plume for about 12 h, then lava flows during the next two days. The eruption ended late on 16 September. Most of the eruptive activity was from vents on the caldera floor near the base of the new avalanche scar. Unequivocal relative timing of events is difficult to determine, but seismic records suggest that the avalanche may have occurred 1.6 h after the earthquake, and field relations show that lava was clearly erupted after the avalanche was emplaced. The most likely sequence of events seems to be that the 1988 feeder dike intruded upward into the east caldera wall, dislocated the unstable wall block, and triggered the avalanche. The avalanche immediately exposed the newly emplaced dike and initiated the eruption. The exact cause of the earthquakes is unknown. ?? 1991 Springer-Verlag.

  2. CME Eruption Onset Observations from EIT and SXT

    NASA Technical Reports Server (NTRS)

    Sterling, A. C.

    2004-01-01

    Why CMEs erupt is a major outstanding puzzle of solar physics. Signatures observable at the earliest stages of eruption onset may hold precious clues about the onset mechanism. We present observations in EUV from SOHO/EIT and in soft X-rays from Yohkoh/SXT of the re-eruption and eruption phases of CME expulsion, along with the eruption's magnetic setting found from SOHO/MDI magnetograms. Most of our events involve clearly-observable filament eruptions and multiple neutral lines, and we use the magnetic settings and motions of the filaments to help infer the geometry and behavior of the associated erupting magnetic fields. Pre-eruption and early-eruption signatures include a relatively slow filament rise prior to eruption, and intensity "dimmings" and brightenings, both in the immediate neighborhood of the "core" (location of greatest magnetic shear) of the erupting fields and at locations remote from the core. These signatures and their relative timings place observational constraints on eruption mechanisms; our recent work has focused on implications for the so-called "tether cutting" and "breakout" models, but the same observational constraints are applicable to any model.

  3. X-ray and EUV Observations of CME Eruption Onset

    NASA Technical Reports Server (NTRS)

    Sterling, A. C.

    2004-01-01

    Why Coronal Mass Ejections (CMEs) erupt is a major outstanding puzzle of solar physics. Signatures observable at the earliest stages of eruption onset may hold precious clues about the onset mechanism. We present observations from SOHO/EIT and from TRACE in EUV, and from Yohkoh/SXT in soft X-rays of the pre-eruption and eruption phases of CME expulsion, along with the eruption's magnetic setting found from SOHO/MDI magnetograms. Most of our events involve clearly-observable filament eruptions and multiple neutral lines, and we use the magnetic settings and motions of the filaments to help infer the geometry and behavior of the associated erupting magnetic fields. Pre-eruption and early-eruption signatures include a relatively slow filament rise prior to eruption, and intensity "dimmings" and brightenings, both in the immediate neighborhood of the "core" (location of greatest magnetic shear) of the erupting fields and at locations remote from the core. These signatures and their relative timings place observational constraints on eruption mechanisms; our recent work has focused on implications for the so-called "tether cutting" and "breakout" models, but the same observational constraints are applicable to any model.

  4. X-Ray and EUV Observations of CME Eruption Onset

    NASA Astrophysics Data System (ADS)

    Sterling, Alphonse C.

    Why CMEs erupt is a major outstanding puzzle of solar physics. Signatures observable at the earliest stages of eruption onset may hold precious clues about the onset mechanism. We summarize and discuss observations from SOHO/EIT in EUV and from Yohkoh/SXT in soft X-rays of the pre-eruption and eruption phases of three CME expulsions, along with the eruptions' magnetic setting inferred from SOHO/MDI magnetograms. Our events involve clearly-observable filament eruptions and multiple neutral lines, and we use the magnetic settings and motions of the filaments to help infer the geometry and behavior of the associated erupting magnetic fields. Pre-eruption and early-eruption signatures include a relatively slow filament rise prior to eruption, and intensity dimmings and brightenings, both in the immediate neighborhood of the "core" (location of greatest magnetic shear) of the erupting fields and at locations remote from the core. These signatures and their relative timings place observational constraints on eruption mechanisms; our recent work has focused on implications for the so-called "tether cutting" and "breakout" models, but the same observational constraints are applicable to any model.

  5. The influence of magma supply rate on eruption style and textures of erupted ash particles

    NASA Astrophysics Data System (ADS)

    Wright, H. M.; Cashman, K. V.

    2011-12-01

    Persistent low- to moderate-level eruptive activity of basaltic to andesitic volcanoes is difficult to monitor because small changes in magma supply rates can cause abrupt transitions in eruption style. Direct measurement of magma ascent rate is not possible; therefore, we must develop indirect measures of ascent rate. Here, we use a petrologic approach to this problem. We quantify textural variations in Vulcanian and Strombolian eruptive products (erupted between 1999-2006) from Tungurahua volcano, Ecuador. We compare average crystallinities of pyroclasts from a succession of ash eruptions with magma supply rates determined using satellite observations of plume heights and seismic recordings of explosion frequency. We show that tephra crystallinity correlates inversely with magma supply rate, similar to correlations described from decompression experiments of intermediate composition magma. We further suggest that the range of textures present in any individual sample indicates recycling from one eruption to the next and/or simultaneous eruption of particles with different crystallization histories. The correlation between crystallinity and magma supply rate is most easily explained by efficient degassing at very low pressures and degassing-driven crystallization between eruptions. A similar correlation has been shown at Crater Peak, USA (Gardner et al. 1998); Merapi, Indonesia (Hammer et al. 2000); Unzen, Japan (Nakada and Motomura, 1999); and Sakurajima, Japan (Miwa et al., 2009). Futhermore, systematic changes in crystallinity have been shown to extend across a range of eruption styles (including Vulcanian and Strombolian), as at Etna, Italy (Taddeucci et al. 2002) and Croscat, Spain (Cimarelli et al., 2010). This variation with eruption style suggests that the observed transition from intermittent Vulcanian explosions to more continuous periods of Strombolian eruptions and lava fountains can be explained simply by changes in the average crystal content of the

  6. Driving mechanism of a failed eruption

    NASA Astrophysics Data System (ADS)

    Guo, Y.; Ding, M. D.; Schmieder, B.; Li, H.; Törö, T.; Wiegelmann, T.

    We find a magnetic flux rope before the M1.1 flare in active region 10767 on 2005 May 27 by a nonlinear force-free field extrapolation. TRACE observations of the filament eruption show that the erupting structure performed a writhing deformation and stopped rising at a certain height, suggesting that the flux rope converted some of its twist into writhe and was confined in the corona. After calculating the twist of the flux rope, we find that it was comparable to thresholds of the helical kink instability found in numerical simulations. We conclude that the activation and rise of the flux rope were triggered and initially driven by the kink instability. The decay index of the external magnetic field stays below the threshold for the torus instability within a long height range. The confinement of the eruption could be explained by the failure of the torus instability. Hard X-ray sources at the peak of the M1.1 flare coincided with the footpoints of the erupting helical structure, which indicates a high possibility that hard X-ray sources were produced more efficiently in the flux rope.

  7. Monster Prominence Erupts from the Sun

    NASA Video Gallery

    When a rather large M 3.6 class flare occurred near the edge of the Sun on Feb. 24, 2011, it blew out a gorgeous, waving mass of erupting plasma that swirled and twisted for 90 minutes. NASA’s So...

  8. Fixed Drug Eruption Due to Ornidazole

    PubMed Central

    Gupta, Ramji

    2014-01-01

    A 56-year-old male developed an ulcer on his glans penis and mucosae of upper and lower lips 3 days after taking ofloxacin, cephalexin, and ornidazole. Clinically, a provisional diagnosis of fixed drug eruption was made. The causative drug was confirmed by an oral provocation test which triggered a reactivation of all lesions only with ornidazole. PMID:25484435

  9. Geyser's Eruptive Activity in Broadband Seismic Records

    NASA Astrophysics Data System (ADS)

    Kugaenko, Yulia; Saltykov, Vadim

    2010-05-01

    A geyser is a spring characterized by intermittent discharge of water ejected turbulently and accompanied by a vapor phase (steam). The formation of geysers is due to particular hydrogeological conditions, which exist in only a few places on Earth, so they are a fairly rare phenomenon. The reasons of geyser periodicity and specifics of the activity for every particular geyser are not completely clear yet. So almost for all known geysers it is necessary to develop the personal model. In given study we first use seismic method for detection of possible hidden feature of geyser's eruptive activity in Kamchatkan Valley of the Geysers. Broadband seismic records of geyser generated signals were obtained in hydrothermal field. The Valley of the Geysers belongs to Kronotskiy State Natural Biosphere Reserve and the UNESCO World Natural Heritage Site "Volcanoes of Kamchatka". Neither seismological nor geophysical investigations were carried out here earlier. In September, 2009 seismic observation was organized in geyser's field by 24-bit digital output broadband seismometers (GURALP CMG-6TD flat velocity response 0.033-50 Hz). Four geysers were surveyed: the fountain type Big and Giant geysers; the cone type Pearl geyser and the short-period Gap geyser. Seismometers were set as possible close to the geyser's surface vent (usually at the distance near 3-5 m). Main parameters of the eruptions for the investigated geysers: - The Giant geyser is the most powerful among the regular active geysers in Kamchatkan Valley of the Geysers. The height of the fountain reaches 30 meters, the mass of water erupted is about 40-60 tons. The main cycle of activity varies significantly: in 1945 the intervals between eruptions was near 3 hours, nowadays it is 5-6 hours. As a geyser of fountain type, the Giant geyser erupts from the 2*3 m2 pool of water. - The Big geyser was flooded by the lake after the natural catastrophe (giant mud-stone avalanche, formed by landslide, bed into Geiyzernaya

  10. Kaposi's varicelliform eruption: A case series

    PubMed Central

    Ferrari, Bruno; Taliercio, Vanina; Luna, Paula; Abad, María Eugenia; Larralde, Margarita

    2015-01-01

    Kaposi's varicelliform eruption is a rare and potentially fatal viral infection caused mainly by reactivation of herpes simplex virus. It concomitantly occurs with pre-existing skin conditions, mostly atopic dermatitis, so it is predominately found in children. We present a case series that includes four adults, familial cases, and previously healthy patients. We also highlight clinical features, associations and therapeutic options. PMID:26753139

  11. Modeling Solar Eruptions: Where Do We Stand?

    NASA Astrophysics Data System (ADS)

    Torok, Tibor

    2013-06-01

    Solar flares and coronal mass ejections involve massive releases of energies into the heliosphere and are the main driver of space weather disturbances near Earth. It is now well accepted that these enigmatic events are manifestations of a sudden and violent disruption of the Sun's coronal magnetic field. However, although such eruptions have been studied for many years, the detailed physical mechanisms by which they are initiated and driven are not yet fully understood; primarily because of our present inability to accurately measure magnetic fields in the corona. Numerical models have become a powerful tool to help us overcome this limitation. Global simulations of solar eruptions are particularly challenging, because of the enormous disparity of the relevant scales. While the steady advance of computational power has enabled us to model eruptions with ever increasing detail and realism, many questions remain unanswered. In this talk, I review what we have learned from numerical modeling about the physical processes associated with solar eruptions and I will discuss the current limitations and future prospects of models.

  12. Modeling Solar Eruptions: Where Do We stand?

    NASA Astrophysics Data System (ADS)

    Torok, Tibor

    2013-07-01

    Solar flares and coronal mass ejections involve massive releases of energies into the heliosphere and are the main driver of space weather disturbances near Earth. It is now well accepted that these enigmatic events are manifestations of a sudden and violent disruption of the Sun's coronal magnetic field. However, although such eruptions have been studied for many years, the detailed physical mechanisms by which they are initiated and driven are not yet fully understood; primarily because of our present inability to accurately measure magnetic fields in the corona. Numerical models have become a powerful tool to help us overcome this limitation. Global simulations of solar eruptions are particularly challenging, because of the enormous disparity of the relevant scales. While the steady advance of computational power has enabled us to model eruptions with ever increasing detail and realism, many questions remain unanswered. In this talk, I review what we have learned from numerical modeling about the physical processes associated with solar eruptions and I will discuss the current limitations and future prospects of models.

  13. Fixed drug eruption against rupatadine fumarate.

    PubMed

    Fidan, Vural; Fidan, Tulin

    2011-09-01

    Second generation of antihistaminics have better therapeutic efficacy and more predictable pharmacological responses at lower doses than older compounds. However, new compounds have a reduced adverse reaction profile; clinicians can also encounter some unexpected adverse effects of these newer compounds. We report the first case of fixed drug eruption of rupatadine fumarate, which was confirmed by oral provocation test. PMID:21959412

  14. Gas Eruptions Taper Off in Northwestern Oklahoma.

    ERIC Educational Resources Information Center

    Preston, Don

    1980-01-01

    Describes the eruption of inflammable natural gas from the ground surface in the Edith area near Camp Houston. Determining the source of the gas, the results established the Chester-Oswago interval as the most likely source. The surface venting has declined steadily; the likelihood of finding its cause is also described. (SK)

  15. Holocene eruptions of mauna kea volcano, hawaii.

    PubMed

    Porter, S C

    1971-04-23

    Postglacial lava flows, interstratified with thick locally derived sheets of tephra, cover some 27.5 square kilometers on the south slope of Mauna Kea. Most of the volcanics were erupted about 4500 years ago and overlie a regionally extensive paleosol which developed largely during the last glaciation. PMID:17756040

  16. The practice of pathology in Africa.

    PubMed

    Kaschula, Ronald Otto Christian

    2013-06-01

    In attempting to advance the health of women and children in Africa, practitioners should be cognizant of the history of health care delivery in the continent and the nature of the existing systems. Although autopsies began in Africa several millennia ago, traditional healers have held sway for many centuries and continue to do so for most of Africa's people. The role of laboratory medicine in advancing modern health care has been impeded by its ever-increasing high cost, lack of confidence in the system, lack of adequately trained personnel, and inadequate provision of facilities and training opportunities. This is partly caused by the continent having the highest proportion of young children in the world, an exceptionally heavy disease burden, and a low proportion of tax payers. For laboratory medicine to have its intended effect in making accurate diagnoses, national, minimal standards for certification and practice should be formulated. There should be periodic inspections, rewards for excellence, and opportunities for professional development. It is recommended that laboratory medicine be practiced in a 4-tier system, with the highest in teaching hospitals, and the lowest in primary health care clinics. For the practice of anatomic pathology to advance, an effective referral system and an equitable minimal and maximal workload for each pathologist are needed. The changing dynamics of urbanization, with massive unemployment rates, unhealthy life styles, and the continued role of traditional healers calls for gifted leaders to come to the fore and facilitate internal and external cooperation with diverse health care agencies. PMID:23721269

  17. Evolution of Neogene Dynamic Topography in Africa

    NASA Astrophysics Data System (ADS)

    Paul, Jonathan; Roberts, Gareth; White, Nicky

    2013-04-01

    The characteristic basins and swells of Africa's surface topography probably reflect patterns of convective circulation in the sub-lithospheric mantle. We have interrogated drainage networks to determine the spatial and temporal pattern of convectively driven uplift. ~560 longitudinal river profiles were extracted from a digital elevation model of Africa. An inverse model is then used to minimise the misfit between observed and calculated river profiles as a function of uplift rate history. During inversion, the residual misfit decreases from ~22 to ~5. Our results suggest that Africa's topography began to grow most rapidly after ~30 Ma at peak uplift rates of 0.1-0.15 mm/yr. The algorithm resolves distinct phases of uplift which generate localized swells of high topography and relief (e.g. the Angolan Dome). Uplift rate histories are shown to vary significantly from swell to swell. The calculated magnitudes, timing, and location of uplift agree well with local independent geological constraints, such as intense volcanism at Hoggar (42-39 Ma) and Afar (31-29 Ma), uplifted marine terraces, and warped peneplains. We have also calculated solid sediment flux histories for major African deltas which have persisted through time. This onshore record provides an important indirect constraint on the history of vertical motions at the surface, and agrees well with the offshore flux record, obtained from mapping isopachs of deltaic sediments. Our modelling and reconstructed sedimentary flux histories indicate that the evolution of drainage networks may contain useful information about mantle convective processes.

  18. Bringing the world to a standstill: an investigation into the effects of a Novarupta scale volcanic eruption on today's aviation industry

    NASA Astrophysics Data System (ADS)

    Welchman, R. A.

    2010-12-01

    Novarupta erupted in Alaska on 6th June 1912 and was the biggest of the 21st century. It erupted for 60 hours and sent an ash cloud over 32,000m into the air. People were stranded for several days, houses destroyed, villages abandoned and food supplies disrupted for a long period after the eruption. Ash was recorded to have travelled over 9,500km away in Africa, demonstrating potentially global impacts. The eruption occurred when Alaska had very little aviation industry, today however the airspace above Alaska is one of the busiest in the world. The eruption in Iceland in 2010 which disrupted the European airspace for several weeks and closed it completely for five days, brought to light just how disruptive a volcanic eruption can be, even in countries where volcanic activity is not considered a hazard. It was an expensive event for the aviation industry and caused much disruption. Simulations of a Katmai scale eruption were run in the ‘present-day’, using the PUFF ash fall model. Simulations were run for one week from the start the eruption. A ‘worst-case’ scenario is presented based on data from 2005-2009. It is a hypothetical eruption started on 17th January 2005 and it shows that ash is likely to cause havoc in North America, Europe and parts of Asia. At least 43 airports on average would be severely affected each day of the simulation, leading to several of the major air routes being affected. Where financial data is available, an estimated cost of this event is presented. A 500 hr simulation is presented to demonstrate the possible global effects that could occur within three weeks of an eruption. It shows ash being transported across the equator at high altitudes to the southern hemisphere in Asia as well as the whole of the northern hemisphere being engulfed. The complex implications an eruption like this would have on national and international infrastructures is presented. The results could aid further scientific studies, governmental bodies and

  19. THE MECHANISMS FOR THE ONSET AND EXPLOSIVE ERUPTION OF CORONAL MASS EJECTIONS AND ERUPTIVE FLARES

    SciTech Connect

    Karpen, J. T.; Antiochos, S. K.; DeVore, C. R.

    2012-11-20

    We have investigated the onset and acceleration of coronal mass ejections (CMEs) and eruptive flares. To isolate the eruption physics, our study uses the breakout model, which is insensitive to the energy buildup process leading to the eruption. We performed 2.5D simulations with adaptive mesh refinement that achieved the highest overall spatial resolution to date in a CME/eruptive flare simulation. The ultra-high resolution allows us to separate clearly the timing of the various phases of the eruption. Using new computational tools, we have determined the number and evolution of all X- and O-type nulls in the system, thereby tracking both the progress and the products of reconnection throughout the computational domain. Our results show definitively that CME onset is due to the start of fast reconnection at the breakout current sheet. Once this reconnection begins, eruption is inevitable; if this is the only reconnection in the system, however, the eruption will be slow. The explosive CME acceleration is triggered by fast reconnection at the flare current sheet. Our results indicate that the explosive eruption is caused by a resistive instability, not an ideal process. Moreover, both breakout and flare reconnections begin first as a form of weak tearing characterized by slowly evolving plasmoids, but eventually transition to a fast form with well-defined Alfvenic reconnection jets and rapid flux transfer. This transition to fast reconnection is required for both CME onset and explosive acceleration. We discuss the key implications of our results for CME/flare observations and for theories of magnetic reconnection.

  20. The Mechanisms for the Onset and Explosive Eruption of Coronal Mass Ejections and Eruptive Flares

    NASA Technical Reports Server (NTRS)

    Karpen, Judith T.; Antiochos, Spiro K.; DeVore, Carl Richard

    2012-01-01

    We have investigated the onset and acceleration of coronal mass ejections (CMEs) and eruptive flares. To isolate the eruption physics, our study uses the breakout model, which is insensitive to the energy buildup process leading to the eruption. We performed 2.5D simulations with adaptive mesh refinement that achieved the highest overall spatial resolution to date in a CME/eruptive flare simulation. The ultra-high resolution allows us to separate clearly the timing of the various phases of the eruption. Using new computational tools, we have determined the number and evolution of all X- and O-type nulls in the system, thereby tracking both the progress and the products of reconnection throughout the computational domain. Our results show definitively that CME onset is due to the start of fast reconnection at the breakout current sheet. Once this reconnection begins, eruption is inevitable; if this is the only reconnection in the system, however, the eruption will be slow. The explosive CME acceleration is triggered by fast reconnection at the flare current sheet. Our results indicate that the explosive eruption is caused by a resistive instability, not an ideal process. Moreover, both breakout and flare reconnections begin first as a form of weak tearing characterized by a slowly evolving plasmoids, but eventually transition to a fast form with well-defined Alfvenic reconnection jets and rapid flux transfer. This transition to fast reconnection is required for both CME onset and explosive acceleration. We discuss the key implications of our results for CME/flare observations and for theories of magnetic reconnection.

  1. 2014 Mount Ontake eruption: characteristics of the phreatic eruption as inferred from aerial observations

    NASA Astrophysics Data System (ADS)

    Kaneko, Takayuki; Maeno, Fukashi; Nakada, Setsuya

    2016-05-01

    The sudden eruption of Mount Ontake on September 27, 2014, led to a tragedy that caused more than 60 fatalities including missing persons. In order to mitigate the potential risks posed by similar volcano-related disasters, it is vital to have a clear understanding of the activity status and progression of eruptions. Because the erupted material was largely disturbed while access was strictly prohibited for a month, we analyzed the aerial photographs taken on September 28. The results showed that there were three large vents in the bottom of the Jigokudani valley on September 28. The vent in the center was considered to have been the main vent involved in the eruption, and the vents on either side were considered to have been formed by non-explosive processes. The pyroclastic flows extended approximately 2.5 km along the valley at an average speed of 32 km/h. The absence of burned or fallen trees in this area indicated that the temperatures and destructive forces associated with the pyroclastic flow were both low. The distribution of ballistics was categorized into four zones based on the number of impact craters per unit area, and the furthest impact crater was located 950 m from the vents. Based on ballistic models, the maximum initial velocity of the ejecta was estimated to be 111 m/s. Just after the beginning of the eruption, very few ballistic ejecta had arrived at the summit, even though the eruption plume had risen above the summit, which suggested that a large amount of ballistic ejecta was expelled from the volcano several tens-of-seconds after the beginning of the eruption. This initial period was characterized by the escape of a vapor phase from the vents, which then caused the explosive eruption phase that generated large amounts of ballistic ejecta via sudden decompression of a hydrothermal reservoir.

  2. Kamchatka and North Kurile Volcano Explosive Eruptions in 2015 and Danger to Aviation

    NASA Astrophysics Data System (ADS)

    Girina, Olga; Melnikov, Dmitry; Manevich, Alexander; Demyanchuk, Yury; Nuzhdaev, Anton; Petrova, Elena

    2016-04-01

    There are 36 active volcanoes in the Kamchatka and North Kurile, and several of them are continuously active. In 2015, four of the Kamchatkan volcanoes (Sheveluch, Klyuchevskoy, Karymsky and Zhupanovsky) and two volcanoes of North Kurile (Alaid and Chikurachki) had strong and moderate explosive eruptions. Moderate gas-steam activity was observing of Bezymianny, Kizimen, Avachinsky, Koryaksky, Gorely, Mutnovsky and other volcanoes. Strong explosive eruptions of volcanoes are the most dangerous for aircraft because they can produce in a few hours or days to the atmosphere and the stratosphere till several cubic kilometers of volcanic ash and aerosols. Ash plumes and the clouds, depending on the power of the eruption, the strength and wind speed, can travel thousands of kilometers from the volcano for several days, remaining hazardous to aircraft, as the melting temperature of small particles of ash below the operating temperature of jet engines. The eruptive activity of Sheveluch volcano began since 1980 (growth of the lava dome) and is continuing at present. Strong explosive events of the volcano occurred in 2015: on 07, 12, and 15 January, 01, 17, and 28 February, 04, 08, 16, 21-22, and 26 March, 07 and 12 April: ash plumes rose up to 7-12 km a.s.l. and extended more 900 km to the different directions of the volcano. Ashfalls occurred at Ust'-Kamchatsk on 16 March, and Klyuchi on 30 October. Strong and moderate hot avalanches from the lava dome were observing more often in the second half of the year. Aviation color code of Sheveluch was Orange during the year. Activity of the volcano was dangerous to international and local aviation. Explosive-effusive eruption of Klyuchevskoy volcano lasted from 01 January till 24 March. Strombolian explosive volcanic activity began from 01 January, and on 08-09 January a lava flow was detected at the Apakhonchich chute on the southeastern flank of the volcano. Vulcanian activity of the volcano began from 10 January. Ashfalls

  3. Guidance and Counselling in the Republic of South Africa: A Future Perspective.

    ERIC Educational Resources Information Center

    Marais, James L.

    This report reviews the development and history of school guidance, which began in 1936, among the various cultural groups in the Republic of South Africa. It explains how political and economic factors influenced the nature and character of school guidance and counseling and how political structures gradually led to the fact that white education…

  4. A Management Framework for Training Providers to Improve Workplace Skills Development in South Africa

    ERIC Educational Resources Information Center

    Bisschoff, Tom; Govender, Cookie

    2007-01-01

    Deputy President, Ms Phumzile Mlambo-Ngcuka, says a skills revolution is necessary for South Africa's (SA) skills crisis. The SA skills revolution began with the skills legislation of 1998-1999 when the Departments of Labour and Education intended a seamless, integrated approach to rapid skills development. The National Skills Development…

  5. Review of eruptive activity at Tianchi volcano, Changbaishan, northeast China: implications for possible future eruptions

    NASA Astrophysics Data System (ADS)

    Wei, Haiquan; Liu, Guoming; Gill, James

    2013-04-01

    One of the largest explosive eruptions in the past several thousand years occurred at Tianchi volcano, also known as Changbaishan, on the China-North Korea border. This historically active polygenetic central volcano consists of three parts: a lower basaltic shield, an upper trachytic composite cone, and young comendite ash flows. The Millennium Eruption occurred between 938 and 946 ad, and was preceded by two smaller and chemically different rhyolitic pumice deposits. There has been at least one additional, small eruption in the last three centuries. From 2002 to 2005, seismicity, deformation, and the helium and hydrogen gas contents of spring waters all increased markedly, causing regional concern. We attribute this event to magma recharge or volatile exhalation or both at depth, followed by two episodes of addition of magmatic fluids into the overlying aquifer without a phreatic eruption. The estimated present magma accumulation rate is too low by itself to account for the 2002-2005 unrest. The most serious volcanic hazards are ash eruption and flows, and lahars. The available geological information and volcano monitoring data provide a baseline for comprehensive assessment of future episodes of unrest and possible eruptive activity.

  6. Volcano geodesy: The search for magma reservoirs and the formation of eruptive vents

    USGS Publications Warehouse

    Dvorak, J.J.; Dzurisin, D.

    1997-01-01

    Routine geodetic measurements are made at only a few dozen of the world's 600 or so active volcanoes, even though these measurements have proven to be a reliable precursor of eruptions. The pattern and rate of surface displacement reveal the depth and rate of pressure increase within shallow magma reservoirs. This process has been demonstrated clearly at Kilauea and Mauna Loa, Hawaii; Long Valley caldera, California; Campi Flegrei caldera, Italy; Rabaul caldera, Papua New Guinea; and Aira caldera and nearby Sakurajima, Japan. Slower and lesser amounts of surface displacement at Yellowstone caldera, Wyoming, are attributed to changes in a hydrothermal system that overlies a crustal magma body. The vertical and horizontal dimensions of eruptive fissures, as well as the amount of widening, have been determined at Kilauea, Hawaii; Etna, Italy; Tolbachik, Kamchatka; Krafla, Iceland; and Asal-Ghoubbet, Djibouti, the last a segment of the East Africa Rift Zone. Continuously recording instruments, such as tiltmeters, extensometers, and dilatometers, have recorded horizontal and upward growth of eruptive fissures, which grew at rates of hundreds of meters per hour, at Kilauea; Izu-Oshima, Japan; Teishi Knoll seamount, Japan; and Piton de la Fournaise, Re??union Island. In addition, such instruments have recorded the hour or less of slight ground movement that preceded small explosive eruptions at Sakurajima and presumed sudden gas emissions at Galeras, Colombia. The use of satellite geodesy, in particular the Global Positioning System, offers the possibility of revealing changes in surface strain both local to a volcano and over a broad region that includes the volcano.

  7. Language in South Africa.

    ERIC Educational Resources Information Center

    Mesthrie, Rajend, Ed.

    This collection of 24 papers focuses on language and society in South Africa. Part 1, "The Main Language Groupings," includes (1) "South Africa: A Sociolinguistic Overview" (R. Mesthrie); (2) "The Khoesan Languages" (A. Traill); (3) "The Bantu Languages: Sociohistorical Perspectives" (Robert K. Herbert and Richard Bailey); (4) "Afrikaans:…

  8. Generation 2030/Africa

    ERIC Educational Resources Information Center

    You, Danzhen; Hug, Lucia; Anthony, David

    2014-01-01

    Until relatively recently, much of Africa has been among the economically least developed and least densely populated places on earth, replete with villages and rural communities. Africa is changing rapidly, in its economy, trade and investment; in climate change; in conflict and stability; in urbanization, migration patterns, and most of all in…

  9. 2-D Numerical Simulation of Eruption Clouds : Effects of Turbulent Mixing between Eruption Cloud and Air

    NASA Astrophysics Data System (ADS)

    Suzuki, Y.; KOYAGUCHI, T.; OGAWA, M.; Hachisu, I.

    2001-05-01

    Mixing of eruption cloud and air is one of the most important processes for eruption cloud dynamics. The critical condition of eruption types (eruption column or pyroclastic flow) depends on efficiency of mixing of eruption cloud and the ambient air. However, in most of the previous models (e.g., Sparks,1986; Woods, 1988), the rate of mixing between cloud and air is taken into account by introducing empirical parameters such as entrainment coefficient or turbulent diffusion coefficient. We developed a numerical model of 2-D (axisymmetrical) eruption columns in order to simulate the turbulent mixing between eruption column and air. We calculated the motion of an eruption column from a circular vent on the flat surface of the earth. Supposing that relative velocity of gas and ash particles is sufficiently small, we can treat eruption cloud as a single gas. Equation of state (EOS) for the mixture of the magmatic component (i.e. volcanic gas plus pyroclasts) and air can be expressed by EOS for an ideal gas, because volume fraction of the gas phase is very large. The density change as a function of mixing ratio between air and the magmatic component has a strong non-linear feature, because the density of the mixture drastically decreases as entrained air expands by heating. This non-linear feature can be reproduced by changing the gas constant and the ratio of specific heat in EOS for ideal gases; the molecular weight increases and the ratio of specific heat approaches 1 as the magmatic component increases. It is assumed that the dynamics of eruption column follows the Euler equation, so that no viscous effect except for the numerical viscosity is taken into account. Roe scheme (a general TVD scheme for compressible flow) is used in order to simulate the generation of shock waves inside and around the eruption column. The results show that many vortexes are generated around the boundary between eruption cloud and air, which results in violent mixing. When the size of

  10. Keanakākoʻi Tephra produced by 300 years of explosive eruptions following collapse of Kīlauea's caldera in about 1500 CE

    USGS Publications Warehouse

    Swanson, Donald A.; Rose, Timothy R.; Fiske, Richard S.; McGeehin, John P.

    2012-01-01

    The Keanakākoʻi Tephra at Kīlauea Volcano has previously been interpreted by some as the product of a caldera-forming eruption in 1790 CE. Our study, however, finds stratigraphic and 14C evidence that the tephra instead results from numerous eruptions throughout a 300-year period between about 1500 and 1800. The stratigraphic evidence includes: (1) as many as six pure lithic ash beds interleaved in sand dunes made of earlier Keanakākoʻi vitric ash, (2) three lava flows from Kīlauea and Mauna Loa interbedded with the tephra, (3) buried syneruptive cultural structures, (4) numerous intraformational water-cut gullies, and (5) abundant organic layers rich in charcoal within the tephra section. Interpretation of 97 new accelerator mass spectrometry (AMS) 14C ages and 4 previous conventional ages suggests that explosive eruptions began in 1470–1510 CE, and that explosive activity continued episodically until the early 1800s, probably with two periods of quiescence lasting several decades. Kīlauea's caldera, rather than forming in 1790, predates the first eruption of the Keanakākoʻi and collapsed in 1470–1510, immediately following, and perhaps causing, the end of the 60-year-long, 4–6 km3 ʻAilāʻau eruption from the east side of Kīlauea's summit area. The caldera was several hundred meters deep when the Keanakākoʻi began erupting, consistent with oral tradition, and probably had a volume of 4–6 km3. The caldera formed by collapse, but no eruption of lava coincided with its formation. A large volume of magma may have quickly drained from the summit reservoir and intruded into the east rift zone, perhaps in response to a major south-flank slip event, leading to summit collapse. Alternatively, magma may have slowly drained from the reservoir during the prolonged ʻAilāʻau eruption, causing episodic collapses before the final, largest downdrop took place. Two prolonged periods of episodic explosive eruptions are known at Kīlauea, the Keanak

  11. Keanakākoʻi Tephra produced by 300 years of explosive eruptions following collapse of Kīlauea's caldera in about 1500 CE

    USGS Publications Warehouse

    Swanson, Donald A.; Rose, Timothy R.; Fiske, Richard S.; McGeehin, John P.

    2012-01-01

    The Keanakākoʻi Tephra at Kīlauea Volcano has previously been interpreted by some as the product of a caldera-forming eruption in 1790 CE. Our study, however, finds stratigraphic and 14C evidence that the tephra instead results from numerous eruptions throughout a 300-year period between about 1500 and 1800. The stratigraphic evidence includes: (1) as many as six pure lithic ash beds interleaved in sand dunes made of earlier Keanakākoʻi vitric ash, (2) three lava flows from Kīlauea and Mauna Loa interbedded with the tephra, (3) buried syneruptive cultural structures, (4) numerous intraformational water-cut gullies, and (5) abundant organic layers rich in charcoal within the tephra section. Interpretation of 97 new accelerator mass spectrometry (AMS) 14C ages and 4 previous conventional ages suggests that explosive eruptions began in 1470–1510 CE, and that explosive activity continued episodically until the early 1800s, probably with two periods of quiescence lasting several decades. Kīlauea's caldera, rather than forming in 1790, predates the first eruption of the Keanakākoʻi and collapsed in 1470–1510, immediately following, and perhaps causing, the end of the 60-year-long, 4–6 km3 ʻAilāʻau eruption from the east side of Kīlauea's summit area. The caldera was several hundred meters deep when the Keanakākoʻi began erupting, consistent with oral tradition, and probably had a volume of 4–6 km3. The caldera formed by collapse, but no eruption of lava coincided with its formation. A large volume of magma may have quickly drained from the summit reservoir and intruded into the east rift zone, perhaps in response to a major south-flank slip event, leading to summit collapse. Alternatively, magma may have slowly drained from the reservoir during the prolonged ʻAilāʻau eruption, causing episodic collapses before the final, largest downdrop took place. Two prolonged periods of episodic explosive eruptions are known at Kīlauea, the Keanak

  12. The submarine volcano eruption at the island of El Hierro: physical-chemical perturbation and biological response

    NASA Astrophysics Data System (ADS)

    Fraile-Nuez, E.; Santana-Casiano, J.; Gonzalez-Davila, M.

    2013-12-01

    On October 10 2011 an underwater eruption gave rise to a novel shallow submarine volcano south of the island of El Hierro, Canary Islands, Spain. During the eruption large quantities of mantle-derived gases, solutes and heat were released into the surrounding waters. In order to monitor the impact of the eruption on the marine ecosystem, periodic multidisciplinary cruises were carried out. Here, we present an initial report of the extreme physical-chemical perturbations caused by this event, comprising thermal changes, water acidification, deoxygenation and metal-enrichment, which resulted in significant alterations to the activity and composition of local plankton communities. Our findings highlight the potential role of this eruptive process as a natural ecosystem-scale experiment for the study of extreme effects of global change stressors on marine environments. (A) Natural color composite from the MEdium Resolution Imaging Spectrometer (MERIS) instrument aboard ENVISAT Satellite (European Space Agency), (November 9, 2011 at 14:45 UTC). Remote sensing data have been used to monitor the evolution of the volcanic emissions, playing a fundamental role during field cruises in guiding the Spanish government oceanographic vessel to the appropriate sampling areas. The inset map shows the position of Canary Islands west of Africa and the study area (solid white box). (B) Location of the stations carried out from November 2011 to February 2012 at El Hierro. Black lines denote transects A-B and C-D.

  13. Bang! Month-scale eruption triggering at Santorini volcano.

    PubMed

    Martin, Victoria M; Morgan, Daniel J; Jerram, Dougal A; Caddick, Mark J; Prior, David J; Davidson, Jon P

    2008-08-29

    The time lag between intrusion of fresh, hot magma and an ensuing eruption is of critical importance in both understanding the triggering and mitigating the consequences of volcanic eruptions. This work looks at material erupted during 1925-28 at the Nea Kameni volcanic center in Santorini, Greece, to determine this time scale. By exploiting Fe-Mg diffusion in olivine crystals, we constrained the intrusion-to-eruption time lag to between 3 and 10 weeks. These techniques have potential application at many volcanic centers; previously erupted material can be used to calibrate records of the short-time scale processes common to many volcanic centers. PMID:18755968

  14. Thermodynamics of gas and steam-blast eruptions

    USGS Publications Warehouse

    Mastin, L.G.

    1995-01-01

    Eruptions of gas or steam and non-juvenile debris are common in volcanic and hydrothermal areas. From reports of non-juvenile eruptions or eruptive sequences world-wide, at least three types (or end-members) can be identified: (1) those involving rock and liquid water initially at boiling-point temperatures ('boiling-point eruptions'); (2) those powered by gas (primarily water vapor) at initial temperatures approaching magmatic ('gas eruptions'); and (3) those caused by rapid mixing of hot rock and ground- or surface water ('mixing eruptions'). For these eruption types, the mechanical energy released, final temperatures, liquid water contents and maximum theoretical velocities are compared by assuming that the erupting mixtures of rock and fluid thermally equilibrate, then decompress isentropically from initial, near-surface pressure (???10 MPa) to atmospheric pressure. Maximum mechanical energy release is by far greatest for gas eruptions (??????1.3 MJ/kg of fluid-rock mixture)-about one-half that of an equivalent mass of gunpowder and one-fourth that of TNT. It is somewhat less for mixing eruptions (??????0.4 MJ/kg), and least for boiling-point eruptions (??????0.25 MJ/kg). The final water contents of crupted boiling-point mixtures are usually high, producing wet, sloppy deposits. Final erupted mixtures from gas eruptions are nearly always dry, whereas those from mixing eruptions vary from wet to dry. If all the enthalpy released in the eruptions were converted to kinetic energy, the final velocity (vmax) of these mixtures could range up to 670 m/s for boiling-point eruptions and 1820 m/s for gas eruptions (highest for high initial pressure and mass fractions of rock (mr) near zero). For mixing eruptions, vmax ranges up to 1150 m/s. All observed eruption velocities are less than 400 m/s, largely because (1) most solid material is expelled when mr is high, hence vmax is low; (2) observations are made of large blocks the velocities of which may be less than the

  15. Selected time-lapse movies of the east rift zone eruption of KĪlauea Volcano, 2004–2008

    USGS Publications Warehouse

    Orr, Tim R.

    2011-01-01

    Since 2004, the U.S. Geological Survey's Hawaiian Volcano Observatory has used mass-market digital time-lapse cameras and network-enabled Webcams for visual monitoring and research. The 26 time-lapse movies in this report were selected from the vast collection of images acquired by these camera systems during 2004–2008. Chosen for their content and broad aesthetic appeal, these image sequences document a variety of flow-field and vent processes from Kīlauea's east rift zone eruption, which began in 1983 and is still (as of 2011) ongoing.

  16. Rheological controls on the eruption style and size of historical eruptions from Mt. Ruapehu, New Zealand

    NASA Astrophysics Data System (ADS)

    Kilgour, Geoff; Mader, Heidy

    2014-05-01

    The physical state of a magma controls a range of igneous processes, from crystal and bubble growth, the ability to exsolve gas, drive convection, and eventually whether the magma erupts or stalls. During magma ascent, crystallisation and bubble expansion significantly alter the physical state of a magma. Therefore, a quantitative assessment of magma rheology through time could help to explain the style, duration and size of eruptions. The aim of this work is to determine the rheology of magma from storage to eruption using existing constitutive equations. An assessment of the changing rheological properties of magma could provide insights into the generation of seismicity, deformation, and gas efflux; all signals that are regularly monitored at active volcanoes. Regular eruptions have occurred at Mt. Ruapehu, New Zealand since 1830, yet all have been small volume (< 0.001 km3). This work combines melt inclusion volatile contents with geochemistry to track the physical state of the magma from its source region (300 MPa) to eruption. In doing so, we hoped to explain the size and style of Ruapehu eruptions. The rheology of Ruapehu magma has been determined using a combination of thermodynamic models and rheological calculations. We used a thermodynamic model (MELTS) to determine the composition of three, representative Ruapehu magmas from 300 MPa to ~ 30 MPa. The outputs of the model agreed with experimental data and provided the crystal and bubble (assuming no gas loss) content, along with the melt content and composition. We calculated the melt viscosity, and the relative effect of bubbles and crystals, to quantify the rheology of the magma during ascent (under assumed equilibrium conditions). The crystal content at which a yield strength would develop, and therefore the point at which a magma would likely stall, has been constrained to ~ 0.3, which is marginally higher than the crystal content of erupted scoria. Historical eruptions from Ruapehu were H2O

  17. Monitoring of the volcanic rock compositions during the 2012-2013 fissure eruption at Tolbachik volcano, Kamchatka

    NASA Astrophysics Data System (ADS)

    Volynets, Anna O.; Edwards, Benjamin R.; Melnikov, Dmitry; Yakushev, Anton; Griboedova, Irina

    2015-12-01

    Here we present the results from monitoring of the composition of rocks produced during the 2012-2013 fissure eruption at Tolbachik volcano (FTE). Major and trace element concentrations in 75 samples are reported. Products of this eruption are represented by high alumina basaltic trachyandesites with higher alkalis and titanium contents than in all previously studied rocks of the Tolbachik monogenetic volcanic field. Rocks erupted during the first three days (27-30 November) from the northern (also called Menyailov) group of vents are the most silica- and alkali-rich (SiO2 concentrations up to 55.35 wt.% and K2O up to 2.67 wt.%). From December onwards, when the eruptive activity switched from the Menyailov vents to the southern (Naboko) group of vents, silica content dropped by 2 wt.%, concentrations of MgO, FeO, TiO2 and Mg# increased, and K2O and Na2O concentrations and K2O/MgO ratio decreased. For the rest of the eruption the compositions of rocks remained constant and homogeneous; no systematic compositional differences between lava, bombs and scoria samples are evident. Trace element distributions in the rocks of the Menyailov and Naboko vent lavas are relatively uniform; Menyailov lavas have slightly higher Th, Nb, Hf, Y, and HREE concentrations than the Naboko vent lavas at more or less constant element ratios. We explain the initial change in geochemistry by tapping of a slightly cooler and fractionated (~ 3% Mt and 8% Cpx) upper part of the magma storage zone before the main storage area began to feed the eruption. Thermodynamic constraints show that apparent liquidus temperatures varied from 1142 °C to 1151 °C, and thermodynamic modeling shows that variations in compositions are consistent with a high degree of low pressure (100-300 MPa), nominally anhydrous fractionation of a parent melt compositionally similar to the 1975 Northern Breakthrough high-Mg basalt. Geochemistry, petrological observations and modeling are in agreement with the newly erupted

  18. Record of complex scoria cone eruptive activity at Red Mountain, Arizona, USA, and implications for monogenetic mafic volcanoes

    NASA Astrophysics Data System (ADS)

    Riggs, N. R.; Duffield, W. A.

    2008-12-01

    Scoria cone eruptions are generally modeled as a simple succession from explosive eruption to form the cone to passive effusion of lava, generally from the base of the cone. Sector collapse of scoria cones, wherein parts of the cone are rafted on a lava flow, is increasingly recognized as common, but the reasons that a cone may not be rebuilt are poorly understood. Red Mountain volcano is a Pleistocene scoria cone in the San Francisco Volcanic Field of northern Arizona, USA. The cone lies along the trace of a major steeply dipping normal fault that originated during Proterozoic tectonism and was reactivated in Tertiary time. The earliest phase of eruption at Red Mountain was typical "Strombolian", forming a cone that was followed by or possibly synchronous with lava effusion, toward the west from the base of the cone. Rafting then ensued as the west side of the cone collapsed; approximately 15% of the cone is preserved in mounds as much as 30 m high. Rafting was extensive enough to remove most of the cone over the vent area, which effectively reduced the pressure cap on the magma conduit. Resultant low fountaining fed clastogenic lava flows and minor scoria fallback. Clastogenic flows traveled as far as 4 km and now form a cliff 30-40 m high at the edge of the lava platform. Although several possibilities explain the change in vent dynamics and eruptive style, we favor the interpretation that an increase in magma-rise rate caused collapse of the cone. The abrupt removal of 300 m of material over the vent removed a conduit "cork" and low fountaining began. Magma that had erupted effusively suddenly became explosive. This aspect of scoria cone rafting at Red Mountain is broadly similar to sector collapse followed by explosive eruption in larger systems. A steep-walled, 150-m-high amphitheatre on the northeast side of Red Mountain exposes weakly to strongly altered scoria cemented by calcite, iron, and zeolites. We suggest that vapor-phase alteration was responsible

  19. MAGNETOHYDRODYNAMIC SIMULATION OF A SIGMOID ERUPTION OF ACTIVE REGION 11283

    SciTech Connect

    Jiang Chaowei; Feng Xueshang; Wu, S. T.; Hu Qiang E-mail: fengx@spaceweather.ac.cn E-mail: qh0001@uah.edu

    2013-07-10

    Current magnetohydrodynamic (MHD) simulations of the initiation of solar eruptions are still commonly carried out with idealized magnetic field models, whereas the realistic coronal field prior to eruptions can possibly be reconstructed from the observable photospheric field. Using a nonlinear force-free field extrapolation prior to a sigmoid eruption in AR 11283 as the initial condition in an MHD model, we successfully simulate the realistic initiation process of the eruption event, as is confirmed by a remarkable resemblance to the SDO/AIA observations. Analysis of the pre-eruption field reveals that the envelope flux of the sigmoidal core contains a coronal null and furthermore the flux rope is prone to a torus instability. Observations suggest that reconnection at the null cuts overlying tethers and likely triggers the torus instability of the flux rope, which results in the eruption. This kind of simulation demonstrates the capability of modeling the realistic solar eruptions to provide the initiation process.

  20. The variation of magma discharge during basaltic eruptions

    NASA Astrophysics Data System (ADS)

    Wadge, G.

    The different types of magmatic flow in basaltic eruptions are discussed, and processes explaining the eruptive history of specific volcanoes are investigated. The effusion rate curve is divided into waxing and waning flow parts, and the ideal, elastic response of the reservoir in the waning phase is analytically shown. Historical eruption rates of Mauna Loa, Kilauea, and Etna are presented, demonstrating that for each volcano there is a trend of decreasing rate with increasing duration of eruption, a relationship not predicted by a simple elastic model of magma release. The eruptive histories of these volcanoes is explained by the processes of modification of the eruptive conduits and the continued supply of magma from depth during eruption. Discharge variations from Paricutin, Hekla, and Kilauea Iki are discussed in detail.

  1. Eruptive history of the youngest Mexican Shield and Mexico's most voluminous Holocene eruption: Cerro El Metate

    NASA Astrophysics Data System (ADS)

    Oryaëlle Chevrel, Magdalena; Guilbaud, Marie-Noelle; Siebe, Claus

    2016-04-01

    Small to medium-sized shield volcanoes are an important component of many volcanic fields on Earth. The Trans-Mexican Volcanic Belt, one of the most complex and active continental arcs worldwide, displays a large number of such medium-sized volcanoes. In particular the Michoacán-Guanajuato Volcanic Field (MGVF) situated in central Mexico, is the largest monogenetic volcanic field in the world and includes more than 1000 scoria cones and about four hundred medium-sized volcanoes, also known as Mexican shields. The Mexican shields nevertheless represent nearly 70% of the total volume erupted since 1 Ma and hence played a considerable role in the formation of the MGVF. However, the source, storage, and transport as well as the physical properties (density, viscosity, volatile content, etc.) of the magmas involved in these eruptions remain poorly constrained. Here, we focus on Cerro El Metate, the youngest monogenetic andesite shield volcano of the field. New C14 dates for the eruption yield a young age (~AD 1250), which briefly precedes the initial rise of the Tarascan Empire (AD 1350-1521) in this region. This volcano has a minimum volume of ~9.2 km3 DRE, and its viscous lava flows were emplaced during a single eruption over a period of ~35 years covering an area of 103 km2. By volume, this is certainly the largest eruption during the Holocene in Mexico, and it is the largest andesitic effusive eruption known worldwide for this period. Such a large volume of lava erupted in a relatively short time had a significant impact on the environment (modification of the hydrological network, forest fires, etc.), and hence, nearby human populations probably had to migrate. Its eruptive history was reconstructed through detailed mapping, and geochemical and rheological analyses of its thick hornblende-bearing andesitic flows. Early and late flows have distinct morphologies, chemical and mineralogical compositions, and isotopic signatures which show that these lavas were fed by

  2. Ionospheric disturbances by volcanic eruptions by GNSS-TEC: Comparison between Vulcanian and Plinian eruptions

    NASA Astrophysics Data System (ADS)

    Nakashima, Y.; Heki, K.; Takeo, A.; Cahyadi, M. N.; Aditiya, A.

    2014-12-01

    Acoustic waves from volcanic eruptions are often observed as infrasound in near fields. Part of them propagate upward and disturb the ionosphere, and can be observed in Total Electron Content (TEC) data derived by Global Navigation Satellite System (GNSS) receivers. In the past, Heki (2006 GRL) detected ionospheric disturbances by the 2004 explosion of the Asama Volcano, central Japan, and Dautermann et al. (2009 JGR) studied the 2003 eruption of the Soufriere Hills volcano in Montserrat, West Indies. Here we present new examples, and try to characterize such disturbances. We first show TEC disturbances by the 2014 February Plinian eruption (VEI 4) of the Kelud volcano, East Java, Indonesia (Figure), observed with a regional GNSS network.The 2014 Kelud eruption broke a lava dome made by 2007 eruption and created a new creator. Significant disturbances were detected with four GPS and two GLONASS satellites, and the wavelet analyses showed that harmonic oscillations started at ~16:25 UT and continued nearly one hour. The frequency of the oscillation was ~3.8 mHz, which coincides with the atmospheric fundamental mode. We also confirmed concentric wavefronts, moving outward by ~0.8m/sec (stronger signals on the northern side). These features are similar to the 2003 Soufriere Hills case, although the signals in the present Kelud case is much clearer. Next, we compare them with ionospheric disturbances by Vulcanian explosions that occurred recently in Japan, i.e. the 2004 Asama case and the 2009 Sakurajima, and the 2011 Shin-moedake eruptions. They are characterized with one-time N-shaped disturbances possibly excited by the compression of the air above the vents. On the other hand, data from nearby seismometers suggested that atmospheric oscillations of various frequencies were excited by this continuous Plinian eruption. Part of such oscillations would have grown large due to atmospheric resonance.

  3. A Comparison Study of an Active Region Eruptive Filament and a Neighboring Non-Eruptive Filament

    NASA Astrophysics Data System (ADS)

    Wu, S. T.; Jiang, C.; Feng, X. S.; Hu, Q.

    2014-12-01

    We perform a comparison study of an eruptive filament in the core region of AR 11283 and a nearby non-eruptive filament. The coronal magnetic field supporting these two filaments is extrapolated using our data-driven CESE-MHD-NLFFF code (Jiang et al. 2013, Jiang etal. 2014), which presents two magnetic flux ropes (FRs) in the same extrapolation box. The eruptive FR contains a bald-patch separatrix surface (BPSS) spatially co-aligned very well with a pre-eruption EUV sigmoid, which is consistent with the BPSS model for the coronal sigmoids. The numerically reproduced magnetic dips of the FRs match observations of the filaments strikingly well, which supports strongly the FR-dip model for filaments. The FR that supports the AR eruptive filament is much smaller (with a length of 3 Mm) compared with the large-scale FR holding the quiescent filament (with a length of 30 Mm). But the AR eruptive FR contains most of the magnetic free energy in the extrapolation box and holds a much higher magnetic energy density than the quiescent FR, because it resides along the main polarity inversion line (PIL) around sunspots with strong magnetic shear. Both the FRs are weakly twisted and cannot trigger kink instability. The AR eruptive FR is unstable because its axis reaches above a critical height for torus instability (TI), at which the overlying closed arcades can no longer confine the FR stably. To the contrary, the quiescent FR is firmly held down by its overlying field, as its axis apex is far below the TI threshold height. (This work is partially supported by NSF AGS-1153323 and 1062050)

  4. Development of the very long-range cosmic-ray muon radiographic imaging technique to explore the internal structure of an erupting volcano, Shinmoe-dake, Japan

    NASA Astrophysics Data System (ADS)

    Kusagaya, T.; Tanaka, H. K. M.

    2015-11-01

    Muography offers us a tool to observe hazardous erupting volcanoes remotely. However, practical muographic observations of volcanoes from a distance are difficult; therefore, various observations have been performed in the vicinity (< 1.5 km) of volcano peaks to suppress background noise and enhance images. In this study, we created a muographic image directly beneath the caldera floor of the erupting Shinmoe-dake volcano in Japan by locating our muography telescope 5 km from the peak. The Shinmoe-dake volcano began to erupt on 19 January 2011 and, in less than 1 month, the ejected lava almost completely filled the caldera and completely changed the topography of the caldera floor. The resultant image shows a low-density region underneath the western part of the newly created caldera floor, which indicates the existence of a void there. After the volcano became less active in February 2011, infrequent eruptions might have left a void beneath the caldera floor, which may trigger a collapse in the future. We anticipate that our novel muography will be a practical tool for monitoring and predicting eruption sequences in the near future.

  5. Development of the very long range muographic imaging technique to explore the internal structure of an erupting volcano, Shinmoe-dake, Japan

    NASA Astrophysics Data System (ADS)

    Kusagaya, T.; Tanaka, H. K. M.

    2015-07-01

    Muography offers us a tool to observe hazardous erupting volcanoes remotely. However, practical muographic observations of volcanoes from a distance are difficult; therefore, various observations have been performed in the vicinity (< 1.5 km) of volcano peaks to suppress background noise and enhance images. In this study, we created a muographic image directly beneath the caldera floor of the erupting Shinmoe-dake volcano in Japan by locating our muography telescope 5 km from the peak. Shinmoe-dake volcano began to erupt on 19 January 2011, and in less than one month, the ejected lava almost completely filled the caldera and completely changed the topography of the caldera floor. The resultant image shows a low-density region underneath the western part of the newly created caldera floor, which indicates the existence of a void there. After the volcano became less active in February 2011, infrequent eruptions might have left a void beneath the caldera floor, which may trigger a collapse in the future. We anticipate that our novel muography will be a practical tool for monitoring and predicting eruption sequences in the near future.

  6. Compound-specific carbon isotopes from Earth’s largest flood basalt eruptions directly linked to the end-Triassic mass extinction

    PubMed Central

    Whiteside, Jessica H.; Olsen, Paul E.; Eglinton, Timothy; Brookfield, Michael E.; Sambrotto, Raymond N.

    2010-01-01

    A leading hypothesis explaining Phanerozoic mass extinctions and associated carbon isotopic anomalies is the emission of greenhouse, other gases, and aerosols caused by eruptions of continental flood basalt provinces. However, the necessary serial relationship between these eruptions, isotopic excursions, and extinctions has never been tested in geological sections preserving all three records. The end-Triassic extinction (ETE) at 201.4 Ma is among the largest of these extinctions and is tied to a large negative carbon isotope excursion, reflecting perturbations of the carbon cycle including a transient increase in CO2. The cause of the ETE has been inferred to be the eruption of the giant Central Atlantic magmatic province (CAMP). Here, we show that carbon isotopes of leaf wax derived lipids (n-alkanes), wood, and total organic carbon from two orbitally paced lacustrine sections interbedded with the CAMP in eastern North America show similar excursions to those seen in the mostly marine St. Audrie’s Bay section in England. Based on these results, the ETE began synchronously in marine and terrestrial environments slightly before the oldest basalts in eastern North America but simultaneous with the eruption of the oldest flows in Morocco, a CO2 super greenhouse, and marine biocalcification crisis. Because the temporal relationship between CAMP eruptions, mass extinction, and the carbon isotopic excursions are shown in the same place, this is the strongest case for a volcanic cause of a mass extinction to date. PMID:20308590

  7. Kilauea volcano eruption seen from orbit

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The STS-51 crew had a clear view of the erupting Kilauea volcano during the early morning pass over the Hawaiian islands. Kilauea, on the southwest side of the island of Hawaii, has been erupting almost continuously since January, 1983. Kilauea's summit caldera, with the smaller Halemaumau crater nestled within, is highlighted in the early morning sun (just above the center of the picture). The lava flows which covered roads and subdivisions in 1983-90 can be seen as dark flows to the east (toward the upper right) of the steam plumes on this photo. The summit crater and lava flows of Mauna Loa volcano make up the left side of the photo. Features like the Volcano House and Kilauea Visitor Center on the edge of the caldera, the small subdivisions east of the summit, Ola's Rain Forest north of the summit, and agricultural land along the coast are easily identified.

  8. Localized Eruptive Blue Nevi after Herpes Zoster

    PubMed Central

    Colson, Fany; Arrese, Jorge E.; Nikkels, Arjen F.

    2016-01-01

    A 52-year-old White man presented with a dozen small, well-restricted, punctiform, asymptomatic, blue-gray macules on the left shoulder. A few months earlier, he had been treated with oral acyclovir for herpes zoster (HZ) affecting the left C7–C8 dermatomes. All the blue macules appeared over a short period of time and then remained stable. The patient had not experienced any previous trauma or had tattooing in this anatomical region. The clinical diagnosis suggested blue nevi. Dermatoscopy revealed small, well-limited, dark-blue, compact, homogeneous areas evoking dermal blue nevi. An excisional biopsy was performed and the histological examination confirmed a blue nevus. As far as we are aware of, this is the first report of eruptive blue nevi following HZ, and it should be included in the differential diagnosis of zosteriform dermatoses responding to an isotopic pathway. In addition, a brief review concerning eruptive nevi is presented. PMID:27462219

  9. An Erupted Dilated Odontoma: A Rare Presentation

    PubMed Central

    Sharma, Gaurav; Nagra, Amritpreet; Singh, Gurkeerat; Nagpal, Archna; Soin, Atul; Bhardwaj, Vishal

    2016-01-01

    A dilated odontoma is an extremely rare developmental anomaly represented as a dilatation of the crown and root as a consequence of a deep, enamel-lined invagination and is considered a severe variant of dens invaginatus. An oval shape of the tooth lacking morphological characteristics of a crown or root implies that the invagination happened in the initial stages of morphodifferentiation. Spontaneous eruption of an odontoma is a rare occurrence and the occurrence of a dilated odontoma in a supernumerary tooth is even rarer with only a few case reports documented in the English literature. We present an extremely rare case of erupted dilated odontoma occurring in the supernumerary tooth in anterior maxillary region in an 18-year-old male, which, to the best of our knowledge, is the first ever case reported in English literature. PMID:26989523

  10. An Erupted Dilated Odontoma: A Rare Presentation.

    PubMed

    Sharma, Gaurav; Nagra, Amritpreet; Singh, Gurkeerat; Nagpal, Archna; Soin, Atul; Bhardwaj, Vishal

    2016-01-01

    A dilated odontoma is an extremely rare developmental anomaly represented as a dilatation of the crown and root as a consequence of a deep, enamel-lined invagination and is considered a severe variant of dens invaginatus. An oval shape of the tooth lacking morphological characteristics of a crown or root implies that the invagination happened in the initial stages of morphodifferentiation. Spontaneous eruption of an odontoma is a rare occurrence and the occurrence of a dilated odontoma in a supernumerary tooth is even rarer with only a few case reports documented in the English literature. We present an extremely rare case of erupted dilated odontoma occurring in the supernumerary tooth in anterior maxillary region in an 18-year-old male, which, to the best of our knowledge, is the first ever case reported in English literature. PMID:26989523

  11. A new paradigm for solar filament eruptions

    NASA Astrophysics Data System (ADS)

    Rust, David M.

    2001-11-01

    This article discusses the formation, magnetic structure, and eruption of solar filaments in terms of two contrasting paradigms. The standard paradigm is that filaments are formed by condensation of plasma on coronal magnetic fields that are twisted or dimpled as a result of photospheric motions. According to this paradigm, filaments erupt when photospheric motions shear the fields, increasing their energy and decreasing their stability. According to a new paradigm, subsurface motions generate toroidal magnetic flux ropes, and after these flux ropes emerge to form active regions, the most twisted parts migrate into the corona to form filaments. Filaments become unstable and are ejected after a sufficient accumulation of twist (i.e., magnetic helicity). Various proposed mechanisms for producing the needed helicity are reviewed, and several observational tests are proposed to differentiate among the possible mechanisms.

  12. Formation and eruption of solar prominences

    NASA Technical Reports Server (NTRS)

    Van Ballegooijen, A. A.; Martens, P. C. H.

    1989-01-01

    A model for the magnetic field associated with solar prominences is considered. It is shown that flux cancellation at the neutral line of a sheared magnetic arcade leads to the formation of helical field lines which are capable, in principle, of supporting prominence plasma. A numerical method for the computation of force-free, canceling magnetic structures is presented. Starting from an initial potential field we prescribe the motions of magnetic footpoints at the photosphere, with reconnection occurring only at the neutral line. As more and more flux cancels, magnetic flux is transferred from the arcade field to the helical field. Results for a particular model of the photospheric motions are presented. The magnetic structure is found to be stable: the arcade field keeps the helical field tied down at the photosphere. The axis of the helical field moves to larger and larger height, suggestive of prominence eruption. These results suggest that prominence eruptions may be trigered by flux cancellation.

  13. Learning to recognize volcanic non-eruptions

    USGS Publications Warehouse

    Poland, Michael P.

    2010-01-01

    An important goal of volcanology is to answer the questions of when, where, and how a volcano will erupt—in other words, eruption prediction. Generally, eruption predictions are based on insights from monitoring data combined with the history of the volcano. An outstanding example is the A.D. 1980–1986 lava dome growth at Mount St. Helens, Washington (United States). Recognition of a consistent pattern of precursors revealed by geophysical, geological, and geochemical monitoring enabled successful predictions of more than 12 dome-building episodes (Swanson et al., 1983). At volcanic systems that are more complex or poorly understood, probabilistic forecasts can be useful (e.g., Newhall and Hoblitt, 2002; Marzocchi and Woo, 2009). In such cases, the probabilities of different types of volcanic events are quantified, using historical accounts and geological studies of a volcano's past activity, supplemented by information from similar volcanoes elsewhere, combined with contemporary monitoring information.

  14. Poverty reduction in Africa

    PubMed Central

    Collier, Paul

    2007-01-01

    Poverty in Africa has been rising for the last quarter-century, while it has been falling in the rest of the developing world. Africa's distinctive problem is that its economies have not been growing. This article attempts to synthesize a range of recent research to account for this failure of the growth process. I argue that the reasons lie not in African peculiarities but rather in geographic features that globally cause problems but that are disproportionately pronounced in Africa. These features interact to create three distinct challenges that are likely to require international interventions beyond the conventional reliance on aid. PMID:17942702

  15. Voluminous Icelandic Basaltic Eruptions Appear To Cause Abrupt Global Warming

    NASA Astrophysics Data System (ADS)

    Ward, P. L.

    2011-12-01

    Beginning on June 21, 1783, Laki volcano in southern Iceland erupted 14.7 km3 basalt, ejecting 24 Mt SO_{2} into the stratosphere where it was blown eastward and northward and 98 Mt into the troposphere where the jet stream transported it southeastward to Europe. The "dry fog" observed in Europe with an estimated mean concentration of 60 ppbv SO2, raised daytime temperatures as much as 3.3^{o}C, causing the warmest July in England from 1659 when measurements began until 1983. SO2, tropospheric O_{3}, NO2, and fine ash absorb ultraviolet energy from the sun that causes the bonds between and within their atoms to oscillate at 47 times higher frequency than the bonds in CO_{2} absorbing infrared radiation. Temperature is proportional to the kinetic energy of these oscillations, i.e. the frequency squared. Thus these gases are raised to much higher temperatures than greenhouse gases. The Stefan-Boltzmann law says that radiation from these molecules is a constant times temperature raised to the fourth power. As a result, SO2 and ash radiate far more energy back to earth than CO_{2}, causing warming. Another way to look at the energy involved shows that 15 ppbv SO2 in the 0.3-0.42 μm wavelength band absorbs as much solar energy per unit volume as 388,000 ppbv CO_{2} absorbs infrared energy in the 12.7-17.5 μm band. Basaltic volcanoes such as Laki emit 10 to 100 times more SO2 than more evolved magmas and are less explosive, leaving most of the SO_{2} in the troposphere. All 14 Dansgaard-Oeschger (DO) sudden warmings between 46 and 11 ka are contemporaneous with the highest levels of sulfate in the GISP2 drill hole near Summit Greenland. These DO events typically warmed the northern hemisphere out of the ice age within decades, but as volcanism waned, ocean temperatures cooled the world back into an ice age within centuries. The world finally exited the ice age when voluminous volcanism continued from 11.6 to 9.6 ka. Basaltic table mountains or tuyas in Iceland document

  16. Eruptive Source Parameters from Near-Source Gravity Waves Induced by Large Vulcanian eruptions

    NASA Astrophysics Data System (ADS)

    Barfucci, Giulia; Ripepe, Maurizio; De Angelis, Silvio; Lacanna, Giorgio; Marchetti, Emanuele

    2016-04-01

    The sudden ejection of hot material from volcanic vent perturbs the atmosphere generating a broad spectrum of pressure oscillations from acoustic infrasound (<10 Hz) to gravity waves (<0.03 Hz). However observations of gravity waves excited by volcanic eruptions are still rare, mostly limited to large sub-plinian eruptions and frequently at large distance from the source (>100 km). Atmospheric Gravity waves are induced by perturbations of the hydrostatic equilibrium of the atmosphere and propagate within a medium with internal density stratification. They are initiated by mechanisms that cause the atmosphere to be displaced as for the injection of volcanic ash plume during an eruption. We use gravity waves to infer eruptive source parameters, such as mass eruption rate (MER) and duration of the eruption, which may be used as inputs in the volcanic ash transport and dispersion models. We present the analysis of near-field observations (<7 km) of atmospheric gravity waves, with frequencies of 0.97 and 1.15 mHz, recorded by a pressure sensors network during two explosions in July and December 2008 at Soufrière Hills Volcano, Montserrat. We show that gravity waves at Soufrière Hills Volcano originate above the volcanic dome and propagate with an apparent horizontal velocities of 8-10 m/s. Assuming a single mass injection point source model, we constrain the source location at ~3.5 km a.s.l., above the vent, duration of the gas thrust < 140 s and MERs of 2.6 and 5.4 x10E7 kg/s, for the two eruptive events. Source duration and MER derived by modeling Gravity Waves are fully compatible with others independent estimates from field observations. Our work strongly supports the use of gravity waves to model eruption source parameters and can have a strong impact on our ability to monitor volcanic eruption at a large distance and may have future application in assessing the relative magnitude of volcanic explosions.

  17. Fixed drug eruptions with intraoral presentation

    PubMed Central

    Srivastava, Rahul; Bihari, Manorama; Bhuvan, Jyoti; Saad, Ahmed

    2015-01-01

    Fixed-drug eruption (FDE) is an unusual and rare adverse drug reaction. This type of reaction is actually a delayed type of hypersensitivity reaction that occurs as lesions recurring at the same skin site due to repeated intake of an offending drug. Here is a case report of a 58-year-old male patient who developed intraoral FDEs after ingestion of the first dose of ornidazole. PMID:26097341

  18. Persistent docetaxel-induced supravenous erythematous eruption*

    PubMed Central

    Fernandes, Karina de Almeida Pinto; Felix, Paulo Antônio Oldani

    2015-01-01

    Taxanes are drugs used to treat many types of cancer, including breast and lung cancer. The most common side effects of these drugs are neutropenia and mucositis. Signs of skin toxicity are observed in about 65% of cases and include alopecia, hypersensitivity reactions, persistent supravenous erythematous eruption, nail changes, scleroderma reactions and others. We report two cases of skin reaction to docetaxel and warn that it is not necessary to interrupt the treatment in these cases. PMID:26560218

  19. Cellular and molecular basis of tooth eruption

    PubMed Central

    Wise, GE

    2009-01-01

    Objectives Tooth eruption requires the presence of a dental follicle (DF), alveolar bone resorption for an eruption pathway, and alveolar bone formation at the base of the bony crypt. The objectives of our investigations have been to determine how the DF regulates both the osteoclastogenesis and osteogenesis needed for eruption. Material & Methods Multiple experimental methods have been employed. Results The DF regulates osteoclastogenesis and osteogenesis by regulating the expression of critical genes in both a chronological and spatial fashion. In the rat 1st mandibular molar there is a major burst of osteoclastogenesis at day 3 postnatally and a minor burst at day 10. At day 3, the DF maximally expresses colony-stimulating factor-1 (CSF-1) to down-regulate the expression of osteoprotegerin such that osteoclastogenesis can occur. At day 10, the minor burst of osteoclastogenesis is promoted by upregulation of VEGF and RANKL in the DF. Spatially, the bone resorption is in the coronal portion of the bony crypt and genes such as RANKL are expressed more in the coronal region of the DF than in its basal one-half. For osteogenesis, bone formation begins at day 3 at the base of the bony crypt and maximal growth is at days 9–14. Osteo-inductive genes such as BMP-2 appear to promote this and are expressed more in the basal half of the DF than in the coronal. Conclusion The osteoclastogenesis and osteogenesis needed for eruption are regulated by differential gene expression in the DF both chronologically and spatially. PMID:19419449

  20. A Statistical Study of Solar Filament Eruptions

    NASA Astrophysics Data System (ADS)

    Schanche, Nicole; Aggarwal, Ashna; Reeves, Kathy; Kempton, Dustin James; Angryk, Rafal

    2016-05-01

    Solar filaments are cool, dark channels of partially-ionized plasma that lie above the chromosphere. Their structure follows the neutral line between local regions of opposite magnetic polarity. Previous research (e.g. Schmieder et al. 2013, McCauley et al. 2015) has shown a positive correlation (70-80%) between the occurrence of filament eruptions and coronal mass ejections (CME’s). In this study, we attempt to use properties of the filament in order to predict whether or not a given filament will erupt. This prediction would help to better predict the occurrence of an oncoming CME. To track the evolution of a filament over time, a spatio-temporal algorithm that groups separate filament instances from the Heliophysics Event Knowledgebase (HEK) into filament tracks was developed. Filament features from the HEK metadata, such as length, chirality, and tilt are then combined with other physical features, such as the overlying decay index for two sets of filaments tracks - those that erupt and those that remain bound. Using statistical methods such as the Kolmogrov-Smirnov test and a Random Forest Classifier, we determine the effectiveness of the combined features in prediction. We conclude that there is significant overlap between the properties of filaments that erupt and those that do not, leading to predictions only ~5-10% above chance. However, the changes in features, such as a change in the filament's length over time, were determined to have the highest predictive power. We discuss the possible physical connections with the change in these features."This project has been supported by funding from the Division of Advanced Cyberinfrastructure within the Directorate for Computer and Information Science and Engineering, the Division of Astronomical Sciences within the Directorate for Mathematical and Physical Sciences, and the Division of Atmospheric and Geospace Sciences within the Directorate for Geosciences, under NSF award #1443061.”

  1. Football acne--an acneiform eruption.

    PubMed

    Farber, G A; Burks, J W; Hegre, A M; Brown, G R

    1977-09-01

    Football acne is a peculiar form of localized acneiform eruption of the chin that occurs in acne-prone individuals, as a result of the use of a protective chin strap under conditions of physical and emotional stress. Perhaps it is a locus minoris resistentiae phenomenon. The condition responds favorably to the removal of the chin strap and to the usual topical and systemic acne therapies. PMID:142615

  2. Volcanic Lightning in Eruptions of Sakurajima Volcano

    NASA Astrophysics Data System (ADS)

    Edens, Harald; Thomas, Ronald; Behnke, Sonja; McNutt, Stephen; Smith, Cassandra; Farrell, Alexandra; Van Eaton, Alexa; Cimarelli, Corrado; Cigala, Valeria; Eack, Ken; Aulich, Graydon; Michel, Christopher; Miki, Daisuke; Iguchi, Masato

    2016-04-01

    In May 2015 a field program was undertaken to study volcanic lightning at the Sakurajima volcano in southern Japan. One of the main goals of the study was to gain a better understanding of small electrical discharges in volcanic eruptions, expanding on our earlier studies of volcanic lightning at Augustine and Redoubt volcanoes in Alaska, USA, and Eyjafjallajökull in Iceland. In typical volcanic eruptions, electrical activity occurs at the onset of an eruption as a near-continual production of VHF emissions at or near to the volcanic vent. These emissions can occur at rates of up to tens of thousands of emissions per second, and are referred to as continuous RF. As the ash cloud expands, small-scale lightning flashes of several hundred meters length begin to occur while the continuous RF ceases. Later on during the eruption larger-scale lightning flashes may occur within the ash cloud that are reminiscent of regular atmospheric lightning. Whereas volcanic lightning flashes are readily observed and reasonably well understood, the nature and morphology of the events producing continuous RF are unknown. During the 2015 field program we deployed a comprehensive set of instrumentation, including a 10-station 3-D Lightning Mapping Array (LMA) that operated in 10 μs high time resolution mode, slow and fast ΔE antennas, a VHF flat-plate antenna operating in the 20-80 MHz band, log-RF waveforms within the 60-66 MHz band, an infra-red video camera, a high-sensitivity Watec video camera, two high-speed video cameras, and still cameras. We give an overview of the Sakurajima field program and present preliminary results using correlated LMA, waveforms, photographs and video recordings of volcanic lightning at Sakurajima volcano.

  3. Terbinafine induced pityriasis rosea-like eruption

    PubMed Central

    George, Anisha; Bhatia, Anuradha; Kanish, Bimal; Williams, Abhilasha

    2015-01-01

    Terbinafine is an allylamine antifungal agent which is widely used for the treatment of fungal infections. Cutaneous side effects have been reported in 2% of the patients on terbinafine therapy with many morphological patterns. We report a case of terbinafine induced pityriasis rosea, a very rare side effect of terbinafine. This report emphasizes the importance of counseling the patient to report immediately in the event of a cutaneous eruption. PMID:26729964

  4. Modern Multispectral Sensors Help Track Explosive Eruptions

    NASA Astrophysics Data System (ADS)

    Harris, A. J. L.; Valade, S.; Sawyer, G. M.; Donnadieu, F.; Battaglia, J.; Gurioli, L.; Kelfoun, K.; Labazuy, P.; Stachowicz, T.; Bombrun, M.; Barra, V.; Delle Donne, D.; Lacanna, G.

    2013-09-01

    Due to its massive air traffic impact, the 2010 eruption of Eyjafjallajökull was felt by millions of people and cost airlines more than U.S. $1.7 billion. The event has, thus, become widely cited in renewed efforts to improve real-time tracking of volcanic plumes, as witnessed by special sections published last year in Journal of Geophysical Research, (117, issues D20 and B9).

  5. Assessing the atmospheric and climatic effects of basaltic fissure eruptions. A case study Nornahraun, North Iceland, 2014-2015.

    NASA Astrophysics Data System (ADS)

    Gallagher, Catherine; Burton, Kevin; Thordarson, Thorvaldur; Vye-Brown, Charlotte; Brown, Richard

    2015-04-01

    A volcanic eruption's ability to release sulphur gases into the atmosphere is one of the critical factors in assessing their climatic and environmental effects, because it is directly linked to the potential H2SO4 aerosol burden produced [1]. Basaltic fissure eruptions loft large amounts of sulphur into the atmosphere because of the efficient degassing of volatiles and halogens from the magma at the vent [2-4] coupled with the high sulphur yield of basaltic magma. The common nature of this style of eruption and its products, regardless of magnitude, means that our understanding of the exact processes which influence atmospheric chemistry and environmental impact is very important. The Nornahraun fissure eruption in North Iceland that began on the 31st August 2014, has quickly become one of the best documented eruptions of its kind, through systematic monitoring and sampling by the Institute of Earth Sciences eruption team and The Icelandic Meteorological Office. As a result it is an excellent modern analogue for historic or ancient basaltic fissure eruptions, for which the amount of degassing can only be estimated through petrological and geochemical methods. It also serves as a timely testing platform for novel geochemical proxies. This study uses the exceptional sensitivity of the 187Os-187Re radiogenic system to the presence of crustal material [5], and highly siderophile stable isotopes Cu, Zn and S to indicate the chemistry and degassing of the melt carrying S to the surface. The geochemical isotopic proxies will be tested using established petrological methods and gas emission data. This study concentrates on determining the following key parameters: (1) The source of volatiles in the magma indicated though the pressure dependence of S solubility. (2) The mechanism of aerosol and gas release into the atmosphere is dictated both by the chemistry of the melt that controls the S species (H2S, SO2 or FeS2) present [6], and by the mechanism of transfer. (3) The

  6. Characterize Eruptive Processes at Yucca Mountain, Nevada

    SciTech Connect

    D. Krier

    2004-10-04

    The purpose of this scientific analysis report, ''Characterize Eruptive Processes at Yucca Mountain, Nevada'', is to present information about natural volcanic systems and the parameters that can be used to model their behavior. This information is used to develop parameter-value distributions appropriate for analysis of the consequences of volcanic eruptions through a repository at Yucca Mountain. This scientific analysis report provides information to four other reports: ''Number of Waste Packages Hit by Igneous Intrusion'', (BSC 2004 [DIRS 170001]); ''Atmospheric Dispersal and Deposition of Tephra from Potential Volcanic Eruption at Yucca Mountain, Nevada'' (BSC 2004 [DIRS 170026]); ''Dike/Drift Interactions'' (BSC 2004 [DIRS 170028]); ''Development of Earthquake Ground Motion Input for Preclosure Seismic Design and Postclosure Performance Assessment of a Geologic Repository at Yucca Mountain, NV'' (BSC 2004 [DIRS 170027], Section 6.5). This report is organized into seven major sections. This section addresses the purpose of this document. Section 2 addresses quality assurance, Section 3 the use of software, Section 4 identifies the requirements that constrain this work, and Section 5 lists assumptions and their rationale. Section 6 presents the details of the scientific analysis and Section 7 summarizes the conclusions reached.

  7. A phenomenological model for precursor volcanic eruptions.

    PubMed

    Menand, T; Tait, S R

    2001-06-01

    Intense explosions of relatively short duration frequently precede large explosive and effusive volcanic eruptions-by as much as weeks to months in the case of very viscous magmas. In some cases, such pre-eruption activity has served as a sufficient warning to those living in the vicinity to evacuate and avoid calamity. Precursor events seem to be related to the formation of a magma pathway to the surface, but their precise interpretation is a long-standing puzzle. It has been inferred from theoretical studies that exsolution of volatiles might create an almost separate gas pocket at the tip of a propagating dyke. Here we explain the role that such a process may have, using a laboratory study of the transient propagation of a liquid-filled crack with a gas pocket at its tip that grows with time. We show that once the gas pocket acquires sufficient buoyancy to overcome the fracture resistance of the host solid the dynamics of the gas pocket, rather than those of the liquid, determine the velocity of the crack tip. Furthermore, we find that the gas can ultimately separate from the liquid. We propose that fast-moving, gas-rich pockets reaching the surface ahead of the main liquid-filled fissure could be the origin of many precursor eruptions. PMID:11395766

  8. Victims from volcanic eruptions: a revised database

    NASA Astrophysics Data System (ADS)

    Tanguy, J.-C.; Ribière, C.; Scarth, A.; Tjetjep, W. S.

    The number of victims from volcanism and the primary cause(s) of death reported in the literature show considerable uncertainty. We present the results of investigations carried out either in contemporary accounts or in specific studies of eruptions that occurred since A.D. 1783. More than 220 000 people died because of volcanic activity during this period, which includes approximately 90% of the recorded deaths throughout history. Most of the fatalities resulted from post-eruption famine and epidemic disease (30.3%), nuées ardentes or pyroclastic flows and surges (26.8%), mudflows or lahars (17.1%), and volcanogenic tsunamis (16.9%). At present, however, international relief efforts might reduce the effects of post-eruption crop failure and disease, and at least some of the lahars could be anticipated in time by adequate scientific and social response. Thus, mitigation of hazards from pyroclastic flows and tsunamis will become of paramount importance to volcanologists and civil authorities.

  9. Fluvial responses to volcanism: resedimentation of the 1800a Taupo ignimbrite eruption in the Rangitaiki River catchment, North Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Manville, Vern; Newton, Erin H.; White, James D. L.

    2005-02-01

    The potential for the generation of dangerous and damaging lahars and floods in response to the eruption of voluminous pyroclastic debris has become increasingly appreciated in recent years. The style and tempo of this response varies both between eruptions and between individual catchments impacted by a single eruption, so that an understanding of the factors controlling this variation is necessary for precise hazard assessment. The 1800a Taupo eruption from the Taupo Volcanic Centre in the central North Island of New Zealand devastated an area of 20,000 km 2 during eruption of a climactic ignimbrite, impacting the headwaters of all major rivers draining radially from this region. The Rangitaiki River, the subject of this paper, differs from other catchments in that the Taupo ignimbrite buried an essentially flat land surface inherited from a suite of welded ignimbrite sheets erupted between 320-340 and 230 ka. The middle reaches of the catchment are characterised by narrow, steep gorges alternating with low-gradient basins developed in tectonic half-grabens. Initially, remobilisation of pyroclastic material in the headwaters was dominated by hyperconcentrated sheet flows resulting in shallow reworking. In higher gradient areas, reintegration of drainage networks was achieved by incision of deep channels and gullies, assisted by breakouts from ephemeral lakelets developed in ignimbrite-dammed depressions. Braided, and later meandering, streams superseded this pattern as rill and gully systems stabilised and sediment yields fell leading to a decline in drainage density. Gorge reaches acted as efficient conduits for remobilised material while the basins acted as local depocentres for the temporary storage of volcaniclastic sediments, mediating the transfer of pyroclastic debris to the Bay of Plenty coast >100 km to the north. Reworking and resedimentation of pyroclastic debris began immediately after the eruption, peaking early and then rapidly declining so that

  10. Particle-water heat transfer during explosive volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Woodcock, D. C.; Gilbert, J. S.; Lane, S. J.

    2012-10-01

    Thermal interaction between volcanic particles and water during explosive eruptions has been quantified using a numerical heat transfer model for spherical particles. The model couples intraparticle conduction with heat transfer from the particle surface by boiling water in order to explore heat loss with time for a range of particle diameters. The results are combined with estimates of particle settling times to provide insight into heat removal during eruption from samples of volcanic particles produced by explosive eruption. Heat removal is restricted by resistance to heat transfer from the volcanic particles with intraparticle thermal conduction important for large particles and surface cooling by boiling dominating for small particles. In most cases, volcanic particles approach thermal equilibrium with the surrounding fluid during an explosive eruption. Application of the results to a sample from the Gjálp 1996, Iceland eruption indicates that, relative to 0○C, 70-80% of the heat is transferred from the particles to boiling water during the settling time before burial in the stratigraphic succession. The implication is that, for subglacial explosive eruptions, much of the heat content of the magma is coupled into melting ice extremely rapidly. If all particles of the Gjálp 1996 deposit were cooled to the local boiling point by the end of the eruption then approximately 78% of the initial heat content was removed from the erupting magma during the eruption. This is consistent with calorimetric calculations based on volumes of ice melted during and after the eruption.

  11. Global influence of the AD 1600 eruption of Huaynaputina, Peru

    NASA Astrophysics Data System (ADS)

    de Silva, Shanaka L.; Zielinski, Gregory A.

    1998-06-01

    It has long been estabished that gas and fine ash from large equatorial explosive eruptions can spread globally, and that the sulphuric acid that is consequently produced in the stratosphere can cause a small, but statistically significant, cooling of global temperatures,. Central to revealing the ancient volcano-climate connection have been studies linking single eruptions to features of climate-proxy records such as found in ice-core and tree-ring chronologies. Such records also suggest that the known inventory of eruptions is incomplete, and that the climatic significance of unreported or poorly understood eruptions remains to be revealed. The AD 1600 eruption of Huaynaputina, in southern Peru, has been speculated to be one of the largest eruptions of the past 500 years; acidity spikes from Greenland and Antarctica ice, tree-ring chronologies, along with records of atmospheric perturbations in early seventeenth-century Europe and China,, implicate an eruption of similar or greater magnitude than that of Krakatau in 1883. Here we use tephra deposits to estimate the volume of the AD 1600 Huaynaputina eruption, revealing that it was indeed one of the largest eruptions in historic times. The chemical characteristics of the glass from juvenile tephra allow a firm cause-effect link to be established with glass from the Antarctic ice, and thus improve on estimates of the stratospheric loading of the eruption.

  12. Deformation associated with the 1997 eruption of Okmok volcano, Alaska

    USGS Publications Warehouse

    Mann, Dorte; Freymueller, Jeffrey T.; Lu, Zhiming

    2002-01-01

    Okmok volcano, located on Umnak Island in the Aleutian chain, Alaska, is the most eruptive caldera system in North America in historic time. Its most recent eruption occurred in 1997. Synthetic aperture radar interferometry shows deflation of the caldera center of up to 140 cm during this time, preceded and followed by inflation of smaller magnitude. The main part of the observed deformation can be modeled using a pressure point source model. The inferred source is located between 2.5 and 5.0 km beneath the approximate center of the caldera and ???5 km from the eruptive vent. We interpret it as a central magma reservoir. The preeruptive period features inflation accompanied by shallow localized subsidence between the caldera center and the vent. We hypothesize that this is caused by hydrothermal activity or that magma moved away from the central chamber and toward the later vent. Since all historic eruptions at Okmok have originated from the same cone, this feature may be a precursor that indicates an upcoming eruption. The erupted magma volume is ???9 times the volume that can be accounted for by the observed preeruptive inflation. This indicates a much longer inflation interval than we were able to observe. The observation that reinflation started shortly after the eruption suggests that inflation spans the whole time interval between eruptions. Extrapolation of the average subsurface volume change rate is in good agreement with the long-term eruption frequency and eruption volumes of Okmok.

  13. Geodetic evidence for lower crustal magma withdrawal during the 2009 eruption of Redoubt Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Cervelli, P. F.; Grapenthin, R.; Freymueller, J. T.

    2009-12-01

    Redoubt volcano, on the western side of Cook Inlet about 100 miles WSW of Anchorage, Alaska began erupting in March 2009. The eruption continued for nearly 3 months, and slow dome growth may still persist. No continuously recording GPS instrumentation existed with 25 km of Redoubt at the beginning of major precursory unrest in January 2009. The closest CPGS instrument at that time was the Plate Boundary Observatory (PBO) backbone station AC17, about 27 km northeast of the volcano's summit. A small GPS campaign network, consisting of about 15 benchmarks, had been established at Redoubt in 2001 and had been partially reoccupied in 2008. In response to the precursory unrest, the Alaska Volcano Observatory deployed continuously recording GPS instruments at five of the campaign benchmarks, though only one of these was telemetered. Several distinct signals appear in the GPS time series, suggesting an interplay of at least two sources ranging in depth from the lower crust to within the volcanic edifice. The most remarkable of these signals, measured more than 25 km from Redoubt at AC17, shows a movement down and toward the volcano coincident in time with the initial onset of extrusion in late March, but ending well before the emplacement of the large, 70 million cubic meter lava dome through mid-April to mid-May that culminated the eruption. Closer stations show an exponentially decaying pattern of deflation that seems to follow the temporal pattern of dome growth. These contrasting styles and scales of deformation almost certainly indicate multiple sources operating over a range of depths. The rapid augmentation of the Redoubt geophysical network with CGPS proved quite useful, not just from the standpoint of engendering scientific research, but also from the perspective of providing short-term forecasts of volcanic hazard. As demonstrated during the recent eruption of Redoubt, as well as at other volcanoes in Alaska and elsewhere, we argue that routine use of CGPS on

  14. Women in Africa

    ERIC Educational Resources Information Center

    Spitzer, Manon

    1975-01-01

    The role and status of women in Africa has changed profoundly since the end of the colonial period. Many differences in women's status and role are based on geography, history, nationality, political and socioeconomic systems, culture, and religion. (JR)

  15. Indirect Climatic Effects of Major Volcanic Eruptions

    NASA Astrophysics Data System (ADS)

    Hofmann, D. J.

    2007-05-01

    The direct effects on climate, related to atmospheric emissions to the atmosphere following major volcanic eruptions, are well-known although the sparseness of such eruptions make detailed study on the range of such variations difficult. In general terms, infrared absorption by volcanic emissions to the stratosphere result in local heating early in the event when gaseous sulfur compounds exist. This early period is followed by gas to particle conversion, on a time scale of 1-2 months, promoting the formation of sulfuric acid-water droplets. Coagulation and droplet growth result in the "volcanic stratospheric aerosol layer" which is related to the predominant direct climatic effect of large eruptions, the cooling of the troposphere by backscattering of solar visible radiation to space with a recovery time scale of 1-2 years. In this paper we will discuss some of the less-known "indirect" effects of the volcanic stratospheric aerosol on climate. We label them indirect as they act on climate through intermediary atmospheric constituents. The intermediaries in the volcanic indirect climatic effect are generally atmospheric greenhouse gases or other atmospheric gases and conditions which affect greenhouse gases. For example, cooling of the troposphere following major eruptions reduces the growth rate of atmospheric carbon dioxide related to respiration by the terrestrial biosphere. In addition, redirection of part of the direct solar beam into diffuse radiation by the volcanic stratospheric aerosol stimulates plant photosynthesis, further reducing the carbon dioxide growth rate. The growth rate of the second-most important atmospheric greenhouse gas, methane, is also affected by volcanic emissions. Volcanic stratospheric aerosol particles provide surface area which catalyzes heterogeneous chemical reactions thus stimulating removal of stratospheric ozone, also a greenhouse gas. Although major droughts usually related to ENSO events have opposite effects on carbon

  16. Hubble Captures Volcanic Eruption Plume From Io

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Hubble Space Telescope has snapped a picture of a 400-km-high (250-mile-high) plume of gas and dust from a volcanic eruption on Io, Jupiter's large innermost moon.

    Io was passing in front of Jupiter when this image was taken by the Wide Field and Planetary Camera 2 in July 1996. The plume appears as an orange patch just off the edge of Io in the eight o'clock position, against the blue background of Jupiter's clouds. Io's volcanic eruptions blasts material hundreds of kilometers into space in giant plumes of gas and dust. In this image, material must have been blown out of the volcano at more than 2,000 mph to form a plume of this size, which is the largest yet seen on Io.

    Until now, these plumes have only been seen by spacecraft near Jupiter, and their detection from the Earth-orbiting Hubble Space Telescope opens up new opportunities for long-term studies of these remarkable phenomena.

    The plume seen here is from Pele, one of Io's most powerful volcanos. Pele's eruptions have been seen before. In March 1979, the Voyager 1 spacecraft recorded a 300-km-high eruption cloud from Pele. But the volcano was inactive when the Voyager 2 spacecraft flew by Jupiter in July 1979. This Hubble observation is the first glimpse of a Pele eruption plume since the Voyager expeditions.

    Io's volcanic plumes are much taller than those produced by terrestrial volcanos because of a combination of factors. The moon's thin atmosphere offers no resistance to the expanding volcanic gases; its weak gravity (one-sixth that of Earth) allows material to climb higher before falling; and its biggest volcanos are more powerful than most of Earth's volcanos.

    This image is a contrast-enhanced composite of an ultraviolet image (2600 Angstrom wavelength), shown in blue, and a violet image (4100 Angstrom wavelength), shown in orange. The orange color probably occurs because of the absorption and/or scattering of ultraviolet light in the plume. This light from Jupiter passes through

  17. Profile of South Africa

    SciTech Connect

    Fox, G.J.; Tonneson, L.C.

    1996-08-01

    A broad overview of the Republic of South Africa`s nuclear energy program is presented. Economic aspects are the main focus of the article, and numerical data is provided for electricity generation and use and uranium production. The role of the molecular laser isotope process for enrichment is discussed. The research reactor program, waste disposal and decommissioning, mining history, uranium production, and nonproliferation policy are other highlighted topics.

  18. Astronomy Landscape in Africa

    NASA Astrophysics Data System (ADS)

    Nemaungani, Takalani

    2015-01-01

    The vision for astronomy in Africa is embedded in the African Space Policy of the African Union in early 2014. The vision is about positioning Africa as an emerging hub for astronomy sciences and facilities. Africa recognized the need to take advantage of its natural resource, the geographical advantage of the clear southern skies and pristine sites for astronomy. The Pan African University (PAU) initiative also presents an opportunity as a post-graduate training and research network of university nodes in five regions of Africa and supported by the African Union. The Southern African node based in South Africa concentrates on space sciences which also includes astronomy. The PAU aims to provide the opportunity for advanced graduate training and postgraduate research to high-performing African students. Objectives also include promoting mobility of students and teachers and harmonizing programs and degrees.A number of astronomy initiatives have burgeoned in the Southern African region and these include the Southern Africa Largest Optical Telescope (SALT), HESS (High Energy Stereoscopic System), the SKA (Square Kilometre Array) and the AVN (African Very Long Baseline Interferometer Network). There is a growing appetite for astronomy sciences in Africa. In East Africa, the astronomy community is well organized and is growing - the East African Astronomical society (EAAS) held its successful fourth annual conference since 2010 on 30 June to 04 July 2014 at the University of Rwanda. Centred around the 'Role of Astronomy in Socio-Economic Transformation,' this conference aimed at strengthening capacity building in Astronomy, Astrophysics and Space Science in general, while providing a forum for astronomers from the region to train young and upcoming scientists.

  19. Eruption Source Parameters for forecasting ash dispersion and deposition from vulcanian eruptions at Tungurahua volcano: Insights from field data from the July 2013 eruption

    NASA Astrophysics Data System (ADS)

    Parra, René; Bernard, Benjamin; Narváez, Diego; Le Pennec, Jean-Luc; Hasselle, Nathalie; Folch, Arnau

    2016-01-01

    Tungurahua volcano, located in the central area of the Ecuadorian Sierra, is erupting intermittently since 1999 alternating between periods of quiescence and explosive activity. Volcanic ash has been the most frequent and widespread hazard provoking air contamination episodes and impacts on human health, animals and crops in the surrounding area. After two months of quiescence, Tungurahua erupted violently on 14th July 2013 generating short-lived eruptive columns rising up to 9 km above the vent characterized as a vulcanian eruption. The resulting fallout deposits were sampled daily during and after the eruptions to determine grain size distributions and perform morphological and componentry analyses. Dispersion and sedimentation of ash were simulated numerically coupling the meteorological Weather Research Forecasting (WRF) with the volcanic ash dispersion FALL3D models. The combination of field and numerical studies allowed constraining the Eruption Source Parameters (ESP) for this event, which could be used to forecast ash dispersion and deposition from future vulcanian eruptions at Tungurahua. This set of pre-defined ESP was further validated using two different eruptions, as blind test, occurring on 16th December 2012 and 1st February 2014.

  20. Eruptive History and Chemical Evolution of the Precaldera and Postcaldera Basalt-Dacite Sequences, Long Valley, California: Implications for Magma Sources, Current Seismic Unrest, and Future Volcanism

    USGS Publications Warehouse

    Bailey, Roy A.

    2004-01-01

    The Long Valley Volcanic Field in east-central California straddles the East Sierran frontal fault zone, overlapping the Sierra Nevada and western Basin and Range Provinces. The volcanic field overlies a mature mid-Tertiary erosional surface that truncates a basement composed mainly of Mesozoic plutons and associated roof pendants of Mesozoic metavolcanic and Paleozoic metasedimentary rocks. Long Valley volcanism began about 4 Ma during Pliocene time and has continued intermittently through the Holocene. The volcanism is separable into two basalt-rhyolite episodes: (1) an earlier, precaldera episode related to Long Valley Caldera that climaxed with eruption of the Bishop Tuff and collapse of the caldera; and (2) a later, postcaldera episode structurally related to the north-south-trending Mono-Inyo Craters fissure system, which extends from the vicinity of Mammoth Mountain northward through the west moat of the caldera to Mono Lake. Eruption of the basalt-dacite sequence of the precaldera basalt-rhyolite episode peaked volumetrically between 3.8 and 2.5 Ma; few basalts were erupted during the following 1.8 m.y. (2.5?0.7 Ma). Volcanism during this interval was dominated by eruption of the voluminous rhyolites of Glass Mountain (2.2?0.8 Ma) and formation of the Bishop Tuff magma chamber. Catastrophic rupture of the roof of this magma chamber caused eruption of the Bishop Tuff and collapse of Long Valley Caldera (760 ka), after which rhyolite eruptions resumed on the subsided caldera floor. The earliest postcaldera rhyolite flows (700?500 ka) contain quenched globular basalt enclaves (mafic magmatic inclusions), indicating that basaltic magma had reentered shallow parts of the magmatic system after a 1.8-m.y. hiatus. Later, at about 400 ka, copious basalts, as well as dacites, began erupting from vents mainly in the west moat of the caldera. These later eruptions initiated the postcaldera basalt-rhyolite episode related to the Mono-Inyo Craters fissure system, which

  1. Usutu virus in Africa.

    PubMed

    Nikolay, Birgit; Diallo, Mawlouth; Boye, Cheikh Saad Bouh; Sall, Amadou Alpha

    2011-11-01

    Usutu virus (USUV) was discovered in South Africa in 1959. Since then, it has been reported in several African countries including Senegal, Central African Republic, Nigeria, Uganda, Burkina Faso, Cote d'Ivoire, and Morocco. In 2001, USUV has been identified for the first time outside of Africa, namely in Europe, where it caused a significant mortality among blackbirds in Vienna, Austria. In 2009, the first two human cases of USUV infection in Europe have been reported in Italy, causing encephalitis in immunocompromised patients. The host range in Africa includes mainly Culex mosquitoes, birds, and also humans with one benign and one severe case. Given its role as a potential human pathogen and the similar appearance compared with other emerging arboviruses, it is essential to investigate the natural history and ecology of USUV in Africa. In this regard, we review the emergence of USUV in Africa, summarizing data about isolations, host range, and potential vectors, which should help to improve our understanding of the factors underlying the circulation of USUV in Europe and Africa. PMID:21767160

  2. Eruptions at Lone Star Geyser, Yellowstone National Park, USA, part 1: energetics and eruption dynamics

    USGS Publications Warehouse

    Karlstrom, Leif; Hurwitz, Shaul; Sohn, Robert; Vandemeulebrouck, Jean; Murphy, Fred; Rudolph, Maxwell L.; Johnston, Malcolm J.S.; Manga, Michael; McCleskey, R. Blaine

    2013-01-01

    Geysers provide a natural laboratory to study multiphase eruptive processes. We present results from a four–day experiment at Lone Star Geyser in Yellowstone National Park, USA. We simultaneously measured water discharge, acoustic emissions, infraredintensity, and visible and infrared video to quantify the energetics and dynamics of eruptions, occurring approximately every three hours. We define four phases in the eruption cycle: 1) a 28 ± 3 minute phase with liquid and steam fountaining, with maximum jet velocities of 16–28 m s− 1, steam mass fraction of less than ∼ 0.01. Intermittently choked flow and flow oscillations with periods increasing from 20 to 40 s are coincident with a decrease in jet velocity and an increase of steam fraction; 2) a 26 ± 8 minute post–eruption relaxation phase with no discharge from the vent, infrared (IR) and acoustic power oscillations gliding between 30 and 40 s; 3) a 59 ± 13 minute recharge period during which the geyser is quiescent and progressively refills, and 4) a 69 ± 14 minute pre–play period characterized by a series of 5–10 minute–long pulses of steam, small volumes of liquid water discharge and 50–70 s flow oscillations. The erupted waters ascend froma 160 − 170° C reservoir and the volume discharged during the entire eruptive cycle is 20.8 ± 4.1 m3. Assuming isentropic expansion, we calculate a heat output from the geyser of 1.4–1.5 MW, which is < 0.1% of the total heat output from Yellowstone Caldera.

  3. Emplacement of the final lava dome of the 2009 eruption of Redoubt Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Bull, Katharine F.; Anderson, Steven W.; Diefenbach, Angela K.; Wessels, Rick L.; Henton, Sarah M.

    2013-06-01

    After more than 8 months of precursory activity and over 20 explosions in 12 days, Redoubt Volcano, Alaska began to extrude the fourth and final lava dome of the 2009 eruption on April 4. By July 1 the dome had filled the pre-2009 summit crater and ceased to grow. By means of analysis and annotations of time-lapse webcam imagery, oblique-image photogrammetry techniques and capture and analysis of forward-looking infrared (FLIR) images, we tracked the volume, textural, effusive-style and temperature changes in near-real time over the entire growth period of the dome. The first month of growth (April 4-May 4) produced blocky intermediate- to high-silica andesite lava (59-62.3 wt.% SiO2) that initially formed a round dome, expanding by endogenous growth, breaking the surface crust in radial fractures and annealing them with warmer, fresh lava. On or around May 1, more finely fragmented and scoriaceous andesite lava (59.8-62.2 wt.% SiO2) began to appear at the top of the dome coincident with increased seismicity and gas emissions. The more scoriaceous lava spread radially over the dome surface, while the dome continued to expand from endogenous growth and blocky lava was exposed on the margins and south side of the dome. By mid-June the upper scoriaceous lava had covered 36% of the dome surface area. Vesicularity of the upper scoriaceous lava range from 55 to 66%, some of the highest vesicularity measurements recorded from a lava dome. We suggest that the stability of the final lava dome primarily resulted from sufficient fracturing and clearing of the conduit by preceding explosions that allowed efficient degassing of the magma during effusion. The dome was thus able to grow until it was large enough to exceed the magmastatic pressure in the chamber, effectively shutting off the eruption.

  4. Geomorphic consequences of volcanic eruptions in Alaska: A review

    NASA Astrophysics Data System (ADS)

    Waythomas, Christopher F.

    2015-10-01

    Eruptions of Alaska volcanoes have significant and sometimes profound geomorphic consequences on surrounding landscapes and ecosystems. The effects of eruptions on the landscape can range from complete burial of surface vegetation and preexisting topography to subtle, short-term perturbations of geomorphic and ecological systems. In some cases, an eruption will allow for new landscapes to form in response to the accumulation and erosion of recently deposited volcaniclastic material. In other cases, the geomorphic response to a major eruptive event may set in motion a series of landscape changes that could take centuries to millennia to be realized. The effects of volcanic eruptions on the landscape and how these effects influence surface processes has not been a specific focus of most studies concerned with the physical volcanology of Alaska volcanoes. Thus, what is needed is a review of eruptive activity in Alaska in the context of how this activity influences the geomorphology of affected areas. To illustrate the relationship between geomorphology and volcanic activity in Alaska, several eruptions and their geomorphic impacts will be reviewed. These eruptions include the 1912 Novarupta-Katmai eruption, the 1989-1990 and 2009 eruptions of Redoubt volcano, the 2008 eruption of Kasatochi volcano, and the recent historical eruptions of Pavlof volcano. The geomorphic consequences of eruptive activity associated with these eruptions are described, and where possible, information about surface processes, rates of landscape change, and the temporal and spatial scale of impacts are discussed. A common feature of volcanoes in Alaska is their extensive cover of glacier ice, seasonal snow, or both. As a result, the generation of meltwater and a variety of sediment-water mass flows, including debris-flow lahars, hyperconcentrated-flow lahars, and sediment-laden water floods, are typical outcomes of most types of eruptive activity. Occasionally, such flows can be quite large

  5. Predicting eruptions from precursory activity using remote sensing data hybridization

    NASA Astrophysics Data System (ADS)

    Reath, K. A.; Ramsey, M. S.; Dehn, J.; Webley, P. W.

    2016-07-01

    Many volcanoes produce some level of precursory activity prior to an eruption. This activity may or may not be detected depending on the available monitoring technology. In certain cases, precursors such as thermal output can be interpreted to make forecasts about the time and magnitude of the impending eruption. Kamchatka (Russia) provides an ideal natural laboratory to study a wide variety of eruption styles and precursory activity prior to an eruption. At Bezymianny volcano for example, a clear increase in thermal activity commonly occurs before an eruption, which has allowed predictions to be made months ahead of time. Conversely, the eruption of Tolbachik volcano in 2012 produced no discernable thermal precursors before the large scale effusive eruption. However, most volcanoes fall between the extremes of consistently behaved and completely undetectable, which is the case with neighboring Kliuchevskoi volcano. This study tests the effectiveness of using thermal infrared (TIR) remote sensing to track volcanic thermal precursors using data from both the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Advanced Very High Resolution Radiometer (AVHRR) sensors. It focuses on three large eruptions that produced different levels and durations of effusive and explosive behavior at Kliuchevskoi. Before each of these eruptions, TIR spaceborne sensors detected thermal anomalies (i.e., pixels with brightness temperatures > 2 °C above the background temperature). High-temporal, low-spatial resolution (i.e., ~ hours and 1 km) AVHRR data are ideal for detecting large thermal events occurring over shorter time scales, such as the hot material ejected following strombolian eruptions. In contrast, high-spatial, low-temporal resolution (i.e., days to weeks and 90 m) ASTER data enables the detection of much lower thermal activity; however, activity with a shorter duration will commonly be missed. ASTER and AVHRR data are combined to track low

  6. Geomorphic Consequences of Volcanic Eruptions in Alaska: A Review

    USGS Publications Warehouse

    Waythomas, Christopher F.

    2015-01-01

    Eruptions of Alaska volcanoes have significant and sometimes profound geomorphic consequences on surrounding landscapes and ecosystems. The effects of eruptions on the landscape can range from complete burial of surface vegetation and preexisting topography to subtle, short-term perturbations of geomorphic and ecological systems. In some cases, an eruption will allow for new landscapes to form in response to the accumulation and erosion of recently deposited volcaniclastic material. In other cases, the geomorphic response to a major eruptive event may set in motion a series of landscape changes that could take centuries to millennia to be realized. The effects of volcanic eruptions on the landscape and how these effects influence surface processes has not been a specific focus of most studies concerned with the physical volcanology of Alaska volcanoes. Thus, what is needed is a review of eruptive activity in Alaska in the context of how this activity influences the geomorphology of affected areas. To illustrate the relationship between geomorphology and volcanic activity in Alaska, several eruptions and their geomorphic impacts will be reviewed. These eruptions include the 1912 Novarupta–Katmai eruption, the 1989–1990 and 2009 eruptions of Redoubt volcano, the 2008 eruption of Kasatochi volcano, and the recent historical eruptions of Pavlof volcano. The geomorphic consequences of eruptive activity associated with these eruptions are described, and where possible, information about surface processes, rates of landscape change, and the temporal and spatial scale of impacts are discussed.A common feature of volcanoes in Alaska is their extensive cover of glacier ice, seasonal snow, or both. As a result, the generation of meltwater and a variety of sediment–water mass flows, including debris-flow lahars, hyperconcentrated-flow lahars, and sediment-laden water floods, are typical outcomes of most types of eruptive activity. Occasionally, such flows can be quite

  7. Complex dynamics of small-moderate volcanic events: the example of the 2011 rhyolitic Cordón Caulle eruption, Chile

    NASA Astrophysics Data System (ADS)

    Pistolesi, Marco; Cioni, Raffaello; Bonadonna, Costanza; Elissondo, Manuela; Baumann, Valerie; Bertagnini, Antonella; Chiari, Laura; Gonzales, Rafael; Rosi, Mauro; Francalanci, Lorella

    2015-01-01

    After decades of repose, Puyehue-Cordón Caulle Volcano (Chile) erupted in June 2011 following a month of continuously increasing seismic activity. The eruption dispersed a large volume of rhyolitic tephra over a wide area and was characterized by complex dynamics. During the initial climactic phase of the eruption (24-30 h on 4-5 June), 11-14-km-high plumes dispersed most of the erupted tephra eastward towards Argentina, reaching as far as the Atlantic Ocean. This first eruptive phase was followed by activity of lower intensity, leading to the development of a complex stratigraphic sequence, mainly due to rapid shifts in wind direction and eruptive style. The resulting tephra deposits consist of 13 main layers grouped into four units. Each layer was characterized based on its dispersal direction, sedimentological features, and on the main characteristics of the juvenile fraction (texture, density, petrography, chemistry). The lowest part of the eruptive sequence (Unit I), corresponding to the tephra emitted between 4 and 5 June, is composed of alternating lapilli layers with a total estimated volume of ca. 0.75 km3; these layers record the highest intensity phase, during which a bent-over plume dispersed tephra towards the southeast-east, with negligible up-wind sedimentation. Products emitted during 5-6 June (Unit II) signaled an abrupt shift in wind direction towards the north, leading to the deposition of a coarse ash deposit in the northern sector (ca. 0.21 km3 in volume), followed by a resumption of easterly directed winds. A third phase (Unit III) began on 7 June and resulted in tephra deposits in the eastern sector and ballistic bombs around the vent area. A final phase (Unit IV) started after 15 June and was characterized by the emission of fine-grained white tephra from ash-charged plumes during low-level activity and the extrusion of a viscous lava flow. Timing and duration of the first eruptive phases were constrained based on comparison of the

  8. The latest explosive eruptions of Ciomadul (Csomád) volcano, East Carpathians - A tephrostratigraphic approach for the 51-29 ka BP time interval

    NASA Astrophysics Data System (ADS)

    Karátson, D.; Wulf, S.; Veres, D.; Magyari, E. K.; Gertisser, R.; Timar-Gabor, A.; Novothny, Á.; Telbisz, T.; Szalai, Z.; Anechitei-Deacu, V.; Appelt, O.; Bormann, M.; Jánosi, Cs.; Hubay, K.; Schäbitz, F.

    2016-06-01

    The most recent, mainly explosive eruptions of Ciomadul, the youngest volcano in the Carpatho-Pannonian Region, have been constrained by detailed field volcanological studies, major element pumice glass geochemistry, luminescence and radiocarbon dating, and a critical evaluation of available geochronological data. These investigations were complemented by the first tephrostratigraphic studies of the lacustrine infill of Ciomadul's twin craters (St. Ana and Mohoş) that received tephra deposition during the last eruptions of the volcano. Our analysis shows that significant explosive activity, collectively called EPPA (Early Phreatomagmatic and Plinian Activity), started at Ciomadul in or around the present-day Mohoş, the older crater, at ≥ 51 ka BP. These eruptions resulted in a thick succession of pyroclastic-fall deposits found in both proximal and medial/distal localities around the volcano, characterized by highly silicic (rhyolitic) glass chemical compositions (ca. 75.2-79.8 wt.% SiO2). The EPPA stage was terminated by a subplinian/plinian eruption at ≥ 43 ka BP, producing pumiceous pyroclastic-fall and -flow deposits of similar glass composition, probably from a "Proto-St. Ana" vent located at or around the younger crater hosting the present-day Lake St. Ana. After a quiescent period with a proposed lava dome growth in the St. Ana crater, a new explosive stage began, defined as MPA (Middle Plinian Activity). In particular, a significant two-phase eruption occurred at ~ 31.5 ka BP, producing pyroclastic flows from vulcanian explosions disrupting the preexisting lava dome of Sf. Ana, and followed by pumiceous fallout from a plinian eruption column. Related pyroclastic deposits show a characteristic, less evolved rhyolitic glass composition (ca. 70.2-74.5 wt.% SiO2) and occur both in proximal and medial/distal localities up to 21 km from source. The MPA eruptions, that may have pre-shaped a crater similar to, but possibly smaller than, the present-day St

  9. Dynamics and pre-eruptive conditions of catastrophic, ignimbrite-producing eruptions from the Yenkahe Caldera, Vanuatu

    NASA Astrophysics Data System (ADS)

    Firth, Chris W.; Cronin, Shane J.; Turner, Simon P.; Handley, Heather K.; Gaildry, Clement; Smith, Ian

    2015-12-01

    A combined stratigraphic and geochemical examination of ~ 43 kyr of volcanic activity is presented for the Yenkahe Caldera, a mafic-intermediate volcanic system on the island of Tanna, in the Vanuatu Arc. Through this period two catastrophic ignimbrite-producing eruptions have occurred: the Siwi eruption and the older, Old Tanna Ignimbrite eruption. The latter was previously linked with a different edifice to the north-east, however re-examination has shown it was derived from the Yenkahe Caldera. Radiocarbon dating of this ignimbrite gives an age of ~ 43 kyr B.P. Both eruptions produced voluminous ignimbrite sheets, however differences in deposit sequences show that the eruptions followed distinct courses. Deposits from the more recent Siwi eruption display greater evidence for phreatomagmatic phases during eruption onset. Both ignimbrites are distributed asymmetrically about the caldera, indicating partial collapse in each case. The early stages of the Siwi eruption produced directed pyroclastic surges and spatter fountains. Between these two major eruptions, volcanic activity was maintained through the formation of small, discrete volcanic cones, such as Yasur, which is active today. Whole rock major and trace element data show that intra-caldera activity between cataclysmic eruptions produced magmas of uniform basaltic-trachy-andesitic composition (SiO2 ~ 56 wt.%). Minerals within these lavas appear to be in equilibrium with their host. The Siwi eruption produced the most evolved, trachy-andesitic magma (SiO2 > 58 wt.%), while the Old Tanna eruption is associated with less evolved, basaltic-andesite magma (SiO2 ~ 53 wt.%). Juvenile clasts from both ignimbrites display diverse mineral chemistry and mineral disequilibrium textures. From these variations in geochemistry and petrology we suggest that a crystal mush or resident magma remained following low-magnitude, intra-caldera activity. MELTS modelling suggest that this was stored at shallow depths, equivalent

  10. A comparison study of a solar active-region eruptive filament and a neighboring non-eruptive filament

    NASA Astrophysics Data System (ADS)

    Jiang, Chao-Wei; Wu, Shi-Tsan; Feng, Xue-Shang; Hu, Qiang

    2016-01-01

    Solar active region (AR) 11283 is a very magnetically complex region and it has produced many eruptions. However, there exists a non-eruptive filament in the plage region just next to an eruptive one in the AR, which gives us an opportunity to perform a comparison analysis of these two filaments. The coronal magnetic field extrapolated using our CESE-MHD-NLFFF code reveals that two magnetic flux ropes (MFRs) exist in the same extrapolation box supporting these two filaments, respectively. Analysis of the magnetic field shows that the eruptive MFR contains a bald-patch separatrix surface (BPSS) cospatial very well with a pre-eruptive EUV sigmoid, which is consistent with the BPSS model for coronal sigmoids. The magnetic dips of the non-eruptive MFRs match Hα observation of the non-eruptive filament strikingly well, which strongly supports the MFR-dip model for filaments. Compared with the non-eruptive MFR/filament (with a length of about 200 Mm), the eruptive MFR/filament is much smaller (with a length of about 20 Mm), but it contains most of the magnetic free energy in the extrapolation box and holds a much higher free energy density than the non-eruptive one. Both the MFRs are weakly twisted and cannot trigger kink instability. The AR eruptive MFR is unstable because its axis reaches above a critical height for torus instability, at which the overlying closed arcades can no longer confine the MFR stably. On the contrary, the quiescent MFR is very firmly held by its overlying field, as its axis apex is far below the torus-instability threshold height. Overall, this comparison investigation supports that an MFR can exist prior to eruption and the ideal MHD instability can trigger an MFR eruption.

  11. Quantifying the condition of eruption column collapse during explosive volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Koyaguchi, Takehiro; Suzuki, Yujiro

    2016-04-01

    During an explosive eruption, a mixture of pyroclasts and volcanic gas forms a buoyant eruption column or a pyroclastic flow. Generation of a pyroclastic flow caused by eruption column collapse is one of the most hazardous phenomena during explosive volcanic eruptions. The quantification of column collapse condition (CCC) is, therefore, highly desired for volcanic hazard assessment. Previously the CCC was roughly predicted by a simple relationship between magma discharge rate and water content (e.g., Carazzo et al., 2008). When a crater is present above the conduit, because of decompression/compression process inside/above the crater, the CCC based on this relationship can be strongly modified (Woods and Bower, 1995; Koyaguchi et al., 2010); however, the effects of the crater on CCC has not been fully understood in a quantitative fashion. Here, we have derived a semi-analytical expression of CCC, in which the effects of the crater is taken into account. The CCC depends on magma properties, crater shape (radius, depth and opening angle) as well as the flow rate at the base of crater. Our semi-analytical CCC expresses all these dependencies by a single surface in a parameter space of the dimensionless magma discharge rate, the dimensionless magma flow rate (per unit area) and the ratio of the cross-sectional areas at the top and the base of crater. We have performed a systematic parameter study of three-dimensional (3D) numerical simulations of eruption column dynamics to confirm the semi-analytical CCC. The results of the 3D simulations are consistent with the semi-analytical CCC, while they show some additional fluid dynamical features in the transitional state (e.g., partial column collapse). Because the CCC depends on such many parameters, the scenario towards the generation of pyroclastic flow during explosive eruptions is considered to be diverse. Nevertheless, our semi-analytical CCC together with the existing semi-analytical solution for the 1D conduit flow

  12. Influence of seismicity on the Lusi mud eruption

    NASA Astrophysics Data System (ADS)

    Rudolph, Maxwell L.; Manga, Michael; Tingay, Mark; Davies, Richard J.

    2015-09-01

    Earthquakes trigger the eruption of mud and magmatic volcanoes and influence ongoing eruptive activity. One mechanism that could trigger an eruption is clay liquefaction. Here we model the propagation of seismic waves beneath the Lusi mud eruption (East Java, Indonesia) using available seismic velocity and density models to assess the effect of subsurface structure on the amplification of incident seismic waves. We find that using an updated subsurface density and velocity structure, there is no significant amplification of incident seismic energy in the Upper Kalibeng Formation, the source of the erupting solids. Hence, the hypothesis that the Lusi eruption was triggered by clay liquefaction appears unlikely to be correct. Independent constraints from gas chemistry as well as analyses of drilling activities at the nearby Banjar-Panji 1 gas exploration well and an analysis of the effects of other earthquakes all favor a drilling trigger.

  13. MASS COMPOSITION IN PRE-ERUPTION QUIET SUN FILAMENTS

    SciTech Connect

    Kilper, Gary; Gilbert, Holly; Alexander, David

    2009-10-10

    Filament eruptions are extremely important phenomena due to their association with coronal mass ejections and their effects on space weather. Little is known about the filament mass and composition in the eruption process, since most of the related research has concentrated on the evolution and disruption of the magnetic field. Following up on our previous work, we present here an analysis of nineteen quiet Sun filament eruptions observed by Mauna Loa Solar Observatory in Halpha and He I 10830 A that has identified a compositional precursor common to all of these eruptions. There is a combined trend of an apparent increase in the homogenization of the filament mass composition, with concurrent increases in absorption in Halpha and He I and in the level of activity, all starting at least one day prior to eruption. This finding suggests that a prolonged period of mass motions, compositional mixing, and possibly even extensive mass loading is occurring during the build up of these eruptions.

  14. Effects of Vent Asymmetry on Steady and Unsteady Eruption Dynamics

    NASA Astrophysics Data System (ADS)

    Sim, S.; Ogden, D.

    2013-12-01

    Models of volcanic eruptions are typically based on symmetric vent and conduit geometries. However, in natural settings, these features are rarely perfectly symmetric. For example, the May 18, 1980 eruption of Mount St Helens (MSH) took place through a highly asymmetrical crater due to the preceding landslide and subsequent vent erosion. In supersonic, high-pressure eruptions, such as what may have occurred at MSH, vent and crater asymmetry can strongly affect the directionality of the eruption. Here we explore flow dynamics resulting from a supersonic, high-pressure eruption though an asymmetric volcanic vent and a symmetric vent using a both unsteady numerical simulations and semi-analytical steady-state models. Preliminary results from both methods suggest that asymmetric vent shape may provide a first-order effect on dynamics of the initial phases of explosive eruptions.

  15. Lunar mare volcanism - Stratigraphy, eruption conditions, and the evolution of secondary crusts

    NASA Technical Reports Server (NTRS)

    Head, James W., III; Wilson, Lionel

    1992-01-01

    Recent developments in the geological analysis of lunar mare volcanism are reviewed. Analysis of returned samples and photogeological and remote sensing studies shows that mare volcanism began prior to the end of heavy bombardment (the period of cryptomare formation), in pre-Nectarian times, and continued until the Copernical Period, the total duration approaching 3.5-4 Ga. Stratigraphic analysis shows that the flux was not constant, but peaked in early lunar history, during the Imbrian Period. Average volcanic output rate during this period was about 0.01 cu cm/a. Volcanic landforms indicate that many eruptions were of high volume and long duration. Some eruptions associated with sinuous rills may have lasted a year and emplaced 1000 cu km of lava, representing the equivalent in one year of about 70,000 yr at the average flux. The occurrence of farside maria within craters whose diameter is generally near to or less than the thickness of the crust may be accounted for by the difference between local and regional compensation.

  16. Most Powerful Eruption in the Universe Discovered

    NASA Astrophysics Data System (ADS)

    2005-01-01

    Astronomers have found the most powerful eruption seen in the Universe using NASA's Chandra X-ray Observatory. A supermassive black hole generated this eruption by growing at a remarkable rate. This discovery shows the enormous appetite of large black holes, and the profound impact they have on their surroundings. The huge eruption is seen in a Chandra image of the hot, X-ray emitting gas of a galaxy cluster called MS 0735.6+7421. Two vast cavities extend away from the supermassive black hole in the cluster's central galaxy. The eruption - which has lasted for 100 million years and is still going - has generated the energy equivalent to hundreds of millions of gamma-ray bursts. Animation of Eruption from Supermassive Black Hole Animation of Eruption from Supermassive Black Hole This event was caused by gravitational energy release as enormous amounts of matter fell toward a black hole. Most of the matter was swallowed, but some of it was violently ejected before being captured by the black hole. "I was stunned to find that a mass of about 300 million Suns was swallowed," said Brian McNamara of Ohio University in Athens, lead author of the study that appears in the January 6, 2005 issue of Nature. "This is almost as massive as the supermassive black hole that swallowed it." Astronomers are not sure where such large amounts of matter came from. One theory is that gas from the host galaxy catastrophically cooled and was then swallowed by the black hole. Illustration of MS 0735.6+742 Illustration of MS 0735.6+742 The energy released shows that the black hole in MS 0735 has grown very dramatically during this eruption. Previous studies suggest that other large black holes have grown very little in the recent past, and that only smaller black holes are still growing quickly. "This new result is as surprising as it is exciting", said co-author Paul Nulsen of the Harvard-Smithsonian Center of Astrophysics. "This black hole is feasting when it should be fasting." Radio

  17. Failed magmatic eruptions: Late-stage cessation of magma ascent

    USGS Publications Warehouse

    Moran, S.C.; Newhall, C.; Roman, D.C.

    2011-01-01

    When a volcano becomes restless, a primary question is whether the unrest will lead to an eruption. Here we recognize four possible outcomes of a magmatic intrusion: "deep intrusion", "shallow intrusion", "sluggish/viscous magmatic eruption", and "rapid, often explosive magmatic eruption". We define "failed eruptions" as instances in which magma reaches but does not pass the "shallow intrusion" stage, i. e., when magma gets close to, but does not reach, the surface. Competing factors act to promote or hinder the eventual eruption of a magma intrusion. Fresh intrusion from depth, high magma gas content, rapid ascent rates that leave little time for enroute degassing, opening of pathways, and sudden decompression near the surface all act to promote eruption, whereas decreased magma supply from depth, slow ascent, significant enroute degassing and associated increases in viscosity, and impingement on structural barriers all act to hinder eruption. All of these factors interact in complex ways with variable results, but often cause magma to stall at some depth before reaching the surface. Although certain precursory phenomena, such as rapidly escalating seismic swarms or rates of degassing or deformation, are good indicators that an eruption is likely, such phenomena have also been observed in association with intrusions that have ultimately failed to erupt. A perpetual difficulty with quantifying the probability of eruption is a lack of data, particularly on instances of failed eruptions. This difficulty is being addressed in part through the WOVOdat database. Papers in this volume will be an additional resource for scientists grappling with the issue of whether or not an episode of unrest will lead to a magmatic eruption.

  18. Erupted complex odontoma of the posterior maxilla: A rarity

    PubMed Central

    Verma, Sonika; Arul, A. Sri Kennath J.; Arul, A. Sri Sennath J.; Chitra, S.

    2015-01-01

    Complex odontomas, hamartomas of aborted tooth development, mainly occur in posterior part of the mandible and rarely erupt into the oral cavity. The spontaneous eruption may be associated with pain, inflammation of adjacent soft tissues or recurrent infection. The present case of complex odontoma is of particular interest due to its apparent eruption in the maxillary posterior segment, its association with agenesis of the second molar and impacted third molar; with the lesion being completely asymptomatic. PMID:26604611

  19. Erupted complex odontoma of the posterior maxilla: A rarity.

    PubMed

    Verma, Sonika; Arul, A Sri Kennath J; Arul, A Sri Sennath J; Chitra, S

    2015-08-01

    Complex odontomas, hamartomas of aborted tooth development, mainly occur in posterior part of the mandible and rarely erupt into the oral cavity. The spontaneous eruption may be associated with pain, inflammation of adjacent soft tissues or recurrent infection. The present case of complex odontoma is of particular interest due to its apparent eruption in the maxillary posterior segment, its association with agenesis of the second molar and impacted third molar; with the lesion being completely asymptomatic. PMID:26604611

  20. Coronal transient--eruptive prominence of 1980 August 5

    SciTech Connect

    Fisher, R.; Garcia, C.J.; Seagraves, P.

    1981-06-15

    A coronal transient was observed in association with an eruptive prominence event using the Mauna Loa experiment system. The transient, a rarefaction, formed before the acceleration of the eruptive prominence. Upward velocities of various features, as seen in the plane of the sky, show a marked difference as a function of time between the transient and the eruptive prominence. A region of enhanced electron density formed slowly in front of the rarefaction.

  1. Magma degassing during eruption through water-saturated porous rocks

    NASA Astrophysics Data System (ADS)

    Melnik, O. E.; Afanasyev, A. A.; Zarin, G. A.

    2016-05-01

    In the case of extrusive eruption, we consider the problem on magma degassing which rises in a volcano conduit crossing porous water-saturated rocks. We show that the intensity of outflow of volcanic gases into the rocks is comparable to the intensity of their transport with the rising magma. The magma degassing in the rocks substantially affects the eruption dynamics, in particular, the duration of the periods of eruptive activity.

  2. Transient linear eruption: asymmetric periflexural exanthem or blaschkitis.

    PubMed

    Arun, Bavani; Salim, Asad

    2010-01-01

    We report the case of a 4-year-old boy who presented with a transient extensive eczematous eruption on the left side of his trunk and extremities, with clear demarcation in the midline. The eruption started to resolve without any sequelae in 4 weeks. The history and clinical findings suggest that this transient eruption could have been either a case of unilateral blaschkitis in childhood or asymmetric periflexural exanthem. PMID:20609153

  3. The ~ 31 ka rhyolitic Plinian to sub-Plinian eruption of Tlaloc Volcano, Sierra Nevada, central Mexico

    NASA Astrophysics Data System (ADS)

    Rueda, H.; Macías, J. L.; Arce, J. L.; Gardner, J. E.; Layer, P. W.

    2013-02-01

    Tlaloc is a late Pleistocene stratovolcano located NE of México City. It is the northernmost volcano of the N-S Sierra Nevada Volcanic Range, which consists from north to south of Tlaloc, Telapón, Iztaccíhuatl, and Popocatépetl volcanoes. Tlaloc has always been considered the oldest (and extinct) volcano of the Sierra Nevada Volcanic Range. Recent field data revealed that Tlaloc was very active during late Pleistocene through a series of explosive eruptions. One of these eruptions produced the Multilayered White Pumice (MWP) a rhyolitic pyroclastic sequence. The eruption began with a 24-km high Plinian column MWP-F1 that was dispersed to the NE by prevailing winds. It was interrupted by fountaining of the column with the generation of a pyroclastic density current that emplaced MWP-S1 layer. Then, followed five unstable sub-Plinian columns (MWP-F2 to F6) that reached altitudes between 16 and 19 km. Fall deposits as a whole are 1 m thick at 12 km from the vent, cover a minimum area of 577 km2 for a total volume of 4.68 km3 (DRE 1.58 km3). The eruption ejected a total mass of 3.45 × 1012 kg at different mass discharges. The last sub-Plinian column (MWP-F6) collapsed and produced dense pyroclastic density currents that deposited pumiceous pyroclastic flows (MWP-PF) following main ravines to the north and east of the vent. These density currents filled gullies with 23 m-thick deposits at a distance of 12 km from the vent totaling a minimum DRE volume of 0.2 km3. Pyroclastic flow deposits charred tree trunks that yielded an age of 31,490 + 1995/- 1595 yr B.P. that closely date the age of the eruption. Rain during this phase of the eruption generated syn-eruptive lahars (MWP-DF). Post-eruptive lahars (MWP-ED) finally swept the volcano flanks. The MWP deposits consist of abundant white pumice (up to 96 vol.%), rare gray pumice, cognate lithics, accidental altered lithics, xenocrysts. White and gray pumice clasts contain phenocrysts of quartz, plagioclase, sanidine

  4. Plagioclase populations and zoning in dacite of the 2004-2005 Mount St. Helens eruption: constraints for magma origin and dynamics: Chapter 34 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Streck, Martin J.; Broderick, Cindy A.; Thronber, Carl R.; Clynne, Michael A.; Pallister, John S.