Science.gov

Sample records for african cultivated rice

  1. Dissecting the genetic diversity in African rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    African cultivated rice, Oryza glaberrima, and its progenitor, O. barthii are excellent sources of important genes for rice improvement because they exhibit tolerance to several abiotic and biotic stresses. Development of advance backcross (ABC) populations between an unadapted donor parent and ada...

  2. Patterns of sequence divergence and evolution of the S orthologous regions between Asian and African cultivated rice species.

    PubMed

    Guyot, Romain; Garavito, Andrea; Gavory, Frédérick; Samain, Sylvie; Tohme, Joe; Ghesquière, Alain; Lorieux, Mathias

    2011-01-01

    A strong postzygotic reproductive barrier separates the recently diverged Asian and African cultivated rice species, Oryza sativa and O. glaberrima. Recently a model of genetic incompatibilities between three adjacent loci: S(1)A, S(1) and S(1)B (called together the S(1) regions) interacting epistatically, was postulated to cause the allelic elimination of female gametes in interspecific hybrids. Two candidate factors for the S(1) locus (including a putative F-box gene) were proposed, but candidates for S(1)A and S(1)B remained undetermined. Here, to better understand the basis of the evolution of regions involved in reproductive isolation, we studied the genic and structural changes accumulated in the S(1) regions between orthologous sequences. First, we established an 813 kb genomic sequence in O. glaberrima, covering completely the S(1)A, S(1) and the majority of the S(1)B regions, and compared it with the orthologous regions of O. sativa. An overall strong structural conservation was observed, with the exception of three isolated regions of disturbed collinearity: (1) a local invasion of transposable elements around a putative F-box gene within S(1), (2) the multiple duplication and subsequent divergence of the same F-box gene within S(1)A, (3) an interspecific chromosomal inversion in S(1)B, which restricts recombination in our O. sativa×O. glaberrima crosses. Beside these few structural variations, a uniform conservative pattern of coding sequence divergence was found all along the S(1) regions. Hence, the S(1) regions have undergone no drastic variation in their recent divergence and evolution between O. sativa and O. glaberrima, suggesting that a small accumulation of genic changes, following a Bateson-Dobzhansky-Muller (BDM) model, might be involved in the establishment of the sterility barrier. In this context, genetic incompatibilities involving the duplicated F-box genes as putative candidates, and a possible strengthening step involving the

  3. Patterns of Sequence Divergence and Evolution of the S1 Orthologous Regions between Asian and African Cultivated Rice Species

    PubMed Central

    Gavory, Frédérick; Samain, Sylvie; Tohme, Joe; Ghesquière, Alain; Lorieux, Mathias

    2011-01-01

    A strong postzygotic reproductive barrier separates the recently diverged Asian and African cultivated rice species, Oryza sativa and O. glaberrima. Recently a model of genetic incompatibilities between three adjacent loci: S1A, S1 and S1B (called together the S1 regions) interacting epistatically, was postulated to cause the allelic elimination of female gametes in interspecific hybrids. Two candidate factors for the S1 locus (including a putative F-box gene) were proposed, but candidates for S1A and S1B remained undetermined. Here, to better understand the basis of the evolution of regions involved in reproductive isolation, we studied the genic and structural changes accumulated in the S1 regions between orthologous sequences. First, we established an 813 kb genomic sequence in O. glaberrima, covering completely the S1A, S1 and the majority of the S1B regions, and compared it with the orthologous regions of O. sativa. An overall strong structural conservation was observed, with the exception of three isolated regions of disturbed collinearity: (1) a local invasion of transposable elements around a putative F-box gene within S1, (2) the multiple duplication and subsequent divergence of the same F-box gene within S1A, (3) an interspecific chromosomal inversion in S1B, which restricts recombination in our O. sativa×O. glaberrima crosses. Beside these few structural variations, a uniform conservative pattern of coding sequence divergence was found all along the S1 regions. Hence, the S1 regions have undergone no drastic variation in their recent divergence and evolution between O. sativa and O. glaberrima, suggesting that a small accumulation of genic changes, following a Bateson-Dobzhansky-Muller (BDM) model, might be involved in the establishment of the sterility barrier. In this context, genetic incompatibilities involving the duplicated F-box genes as putative candidates, and a possible strengthening step involving the chromosomal inversion might participate to

  4. The biosynthesis, structure and gelatinization properties of starches from wild and cultivated African rice species (Oryza barthii and Oryza glaberrima).

    PubMed

    Wang, Kai; Wambugu, Peterson W; Zhang, Bin; Wu, Alex Chi; Henry, Robert J; Gilbert, Robert G

    2015-09-20

    The molecular structure and gelatinization properties of starches from domesticated African rice (Oryza glaberrima) and its wild progenitor (Oryza barthii) are determined and comparison made with Asian domesticated rice (Oryza sativa), the commonest commercial rice. This suggests possible enzymatic processes contributing to the unique traits of the African varieties. These have similar starch structures, including smaller amylose molecules, but larger amounts of amylose chains across the whole amylose chain-length distribution, and higher amylose contents, than O. sativa. They also show a higher proportion of two- and three-lamellae spanning amylopectin branch chains (degree of polymerization 34-100) than O. sativa, which contributes to their higher gelatinization temperatures. Fitting amylopectin chain-length distribution with a biosynthesis-based mathematical model suggests that the reason for this difference might be because O. glaberrima and O. barthii have more active SSIIIa and/or less active SBEIIb enzymes.

  5. Investigations of methane emissions from rice cultivation in Indian context.

    PubMed

    Anand, Shalini; Dahiya, R P; Talyan, Vikash; Vrat, Prem

    2005-05-01

    The increasing demand of the growing population requires enhancement in the production of rice. This has a direct bearing on the global environment since the rice cultivation is one of the major contributors to the methane emissions. As the rice cultivation is intensified with the current practices and technologies, the methane fluxes from paddy fields will substantially rise. Improved high yielding rice varieties together with efficient cultivation techniques will certainly contribute to the curtailment of the methane emission fluxes. In this paper, the system dynamic approach is used for estimating the methane emissions from rice fields in India till the year 2020. Mitigation options studied for curtailing the methane emissions include rice production management, use of low methane emitting varieties of rice, water management and fertilizer amendment. The model is validated quantitatively and sensitivity tests are carried out to examine the robustness of the model. PMID:15788188

  6. Loss of function at RAE2, a previously unidentified EPFL, is required for awnlessness in cultivated Asian rice.

    PubMed

    Bessho-Uehara, Kanako; Wang, Diane R; Furuta, Tomoyuki; Minami, Anzu; Nagai, Keisuke; Gamuyao, Rico; Asano, Kenji; Angeles-Shim, Rosalyn B; Shimizu, Yoshihiro; Ayano, Madoka; Komeda, Norio; Doi, Kazuyuki; Miura, Kotaro; Toda, Yosuke; Kinoshita, Toshinori; Okuda, Satohiro; Higashiyama, Tetsuya; Nomoto, Mika; Tada, Yasuomi; Shinohara, Hidefumi; Matsubayashi, Yoshikatsu; Greenberg, Anthony; Wu, Jianzhong; Yasui, Hideshi; Yoshimura, Atsushi; Mori, Hitoshi; McCouch, Susan R; Ashikari, Motoyuki

    2016-08-01

    Domestication of crops based on artificial selection has contributed numerous beneficial traits for agriculture. Wild characteristics such as red pericarp and seed shattering were lost in both Asian (Oryza sativa) and African (Oryza glaberrima) cultivated rice species as a result of human selection on common genes. Awnedness, in contrast, is a trait that has been lost in both cultivated species due to selection on different sets of genes. In a previous report, we revealed that at least three loci regulate awn development in rice; however, the molecular mechanism underlying awnlessness remains unknown. Here we isolate and characterize a previously unidentified EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) family member named REGULATOR OF AWN ELONGATION 2 (RAE2) and identify one of its requisite processing enzymes, SUBTILISIN-LIKE PROTEASE 1 (SLP1). The RAE2 precursor is specifically cleaved by SLP1 in the rice spikelet, where the mature RAE2 peptide subsequently induces awn elongation. Analysis of RAE2 sequence diversity identified a highly variable GC-rich region harboring multiple independent mutations underlying protein-length variation that disrupt the function of the RAE2 protein and condition the awnless phenotype in Asian rice. Cultivated African rice, on the other hand, retained the functional RAE2 allele despite its awnless phenotype. Our findings illuminate the molecular function of RAE2 in awn development and shed light on the independent domestication histories of Asian and African cultivated rice. PMID:27466405

  7. Loss of function at RAE2, a previously unidentified EPFL, is required for awnlessness in cultivated Asian rice

    PubMed Central

    Bessho-Uehara, Kanako; Wang, Diane R.; Furuta, Tomoyuki; Minami, Anzu; Nagai, Keisuke; Gamuyao, Rico; Asano, Kenji; Angeles-Shim, Rosalyn B.; Shimizu, Yoshihiro; Ayano, Madoka; Komeda, Norio; Doi, Kazuyuki; Miura, Kotaro; Toda, Yosuke; Kinoshita, Toshinori; Okuda, Satohiro; Higashiyama, Tetsuya; Nomoto, Mika; Tada, Yasuomi; Shinohara, Hidefumi; Matsubayashi, Yoshikatsu; Greenberg, Anthony; Wu, Jianzhong; Yasui, Hideshi; Yoshimura, Atsushi; Mori, Hitoshi; McCouch, Susan R.; Ashikari, Motoyuki

    2016-01-01

    Domestication of crops based on artificial selection has contributed numerous beneficial traits for agriculture. Wild characteristics such as red pericarp and seed shattering were lost in both Asian (Oryza sativa) and African (Oryza glaberrima) cultivated rice species as a result of human selection on common genes. Awnedness, in contrast, is a trait that has been lost in both cultivated species due to selection on different sets of genes. In a previous report, we revealed that at least three loci regulate awn development in rice; however, the molecular mechanism underlying awnlessness remains unknown. Here we isolate and characterize a previously unidentified EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) family member named REGULATOR OF AWN ELONGATION 2 (RAE2) and identify one of its requisite processing enzymes, SUBTILISIN-LIKE PROTEASE 1 (SLP1). The RAE2 precursor is specifically cleaved by SLP1 in the rice spikelet, where the mature RAE2 peptide subsequently induces awn elongation. Analysis of RAE2 sequence diversity identified a highly variable GC-rich region harboring multiple independent mutations underlying protein-length variation that disrupt the function of the RAE2 protein and condition the awnless phenotype in Asian rice. Cultivated African rice, on the other hand, retained the functional RAE2 allele despite its awnless phenotype. Our findings illuminate the molecular function of RAE2 in awn development and shed light on the independent domestication histories of Asian and African cultivated rice. PMID:27466405

  8. Can the co-cultivation of rice and fish help sustain rice production?

    PubMed

    Hu, Liangliang; Zhang, Jian; Ren, Weizheng; Guo, Liang; Cheng, Yongxu; Li, Jiayao; Li, Kexin; Zhu, Zewen; Zhang, Jiaen; Luo, Shiming; Cheng, Lei; Tang, Jianjun; Chen, Xin

    2016-01-01

    Because rice feeds half of the world's population, a secure global food supply depends on sustainable rice production. Here we test whether the co-cultivation of rice and fish into one "rice-fish system" (RFS; fish refers to aquatic animals in this article) could help sustain rice production. We examined intensive and traditional RFSs that have been widely practiced in China. We found that rice yields did not decrease when fish yield was below a threshold value in each intensive RFS. Below the thresholds, moreover, fish yields in intensive RFSs can be substantially higher than those in traditional RFS without reducing rice yield. Relative to rice monoculture, the use of fertilizer-nitrogen and pesticides decreased, and the farmers' net income increased in RFSs. The results suggest that RFSs can help sustain rice production, and suggest that development of co-culture technologies (i.e. proper field configuration for fish and rice) is necessary to achieve the sustainability. PMID:27349875

  9. Environmental profile of paddy rice cultivation with different straw management.

    PubMed

    Fusi, Alessandra; Bacenetti, Jacopo; González-García, Sara; Vercesi, Annamaria; Bocchi, Stefano; Fiala, Marco

    2014-10-01

    Italy is the most important European country in terms of paddy rice production. North Italian districts such as Vercelli, Pavia, Novara, and Milano are known as some of the world's most advanced rice cultivation sites. In 2013 Italian rice cultivation represented about 50% of all European rice production by area, and paddy fields extended for over 216,000 ha. Cultivation of rice involves different agricultural activities which have environmental impacts mainly due to fossil fuels and agrochemical requirements as well as the methane emission associated with the fermentation of organic material in the flooded rice fields. In order to assess the environmental consequences of rice production in the District of Vercelli, the cultivation practices most frequently carried out were inventoried and evaluated. The general approach of this study was not only to gather the inventory data for rice production and quantify their environmental impacts, but also to identify the key environmental factors where special attention must be paid. Life Cycle Assessment methodology was applied in this study from a cradle-to-farm gate perspective. The environmental profile was analyzed in terms of seven different impact categories: climate change, ozone depletion, human toxicity, terrestrial acidification, freshwater eutrophication, marine eutrophication, and fossil depletion. Regarding straw management, two different scenarios (burial into the soil of the straw versus harvesting) were compared. The analysis showed that the environmental impact was mainly due to field emissions, the fuel consumption needed for the mechanization of field operations, and the drying of the paddy rice. The comparison between the two scenarios highlighted that the collection of the straw improves the environmental performance of rice production except that for freshwater eutrophication. To improve the environmental performance of rice production, solutions to save fossil fuel and reduce the emissions from

  10. Stress on tropical karst cultivated with wet rice: Bohol, Philippines

    NASA Astrophysics Data System (ADS)

    Urich, P. B.

    1993-06-01

    Wet rice cultivation represents one of the most intensive uses of tropical karst. Under wet field conditions karstlands can be highly resilient, but nevertheless vulnerable to change. The karst environment in this study has been cultivated for at least five centuries. However, the post-World War II era has fostered a host of pressures that have altered the local ecology. Resulting stress in the irrigation systems and society threaten the maintenance of this viable karst-based agricultural economy.

  11. Photosynthetic Bradyrhizobia Are Natural Endophytes of the African Wild Rice Oryza breviligulata

    PubMed Central

    Chaintreuil, Clémence; Giraud, Eric; Prin, Yves; Lorquin, Jean; Bâ, Amadou; Gillis, Monique; de Lajudie, Philippe; Dreyfus, Bernard

    2000-01-01

    We investigated the presence of endophytic rhizobia within the roots of the wetland wild rice Oryza breviligulata, which is the ancestor of the African cultivated rice Oryza glaberrima. This primitive rice species grows in the same wetland sites as Aeschynomene sensitiva, an aquatic stem-nodulated legume associated with photosynthetic strains of Bradyrhizobium. Twenty endophytic and aquatic isolates were obtained at three different sites in West Africa (Senegal and Guinea) from nodal roots of O. breviligulata and surrounding water by using A. sensitiva as a trap legume. Most endophytic and aquatic isolates were photosynthetic and belonged to the same phylogenetic Bradyrhizobium/Blastobacter subgroup as the typical photosynthetic Bradyrhizobium strains previously isolated from Aeschynomene stem nodules. Nitrogen-fixing activity, measured by acetylene reduction, was detected in rice plants inoculated with endophytic isolates. A 20% increase in the shoot growth and grain yield of O. breviligulata grown in a greenhouse was also observed upon inoculation with one endophytic strain and one Aeschynomene photosynthetic strain. The photosynthetic Bradyrhizobium sp. strain ORS278 extensively colonized the root surface, followed by intercellular, and rarely intracellular, bacterial invasion of the rice roots, which was determined with a lacZ-tagged mutant of ORS278. The discovery that photosynthetic Bradyrhizobium strains, which are usually known to induce nitrogen-fixing nodules on stems of the legume Aeschynomene, are also natural true endophytes of the primitive rice O. breviligulata could significantly enhance cultivated rice production. PMID:11097925

  12. Can the co-cultivation of rice and fish help sustain rice production?

    PubMed Central

    Hu, Liangliang; Zhang, Jian; Ren, Weizheng; Guo, Liang; Cheng, Yongxu; Li, Jiayao; Li, Kexin; Zhu, Zewen; Zhang, Jiaen; Luo, Shiming; Cheng, Lei; Tang, Jianjun; Chen, Xin

    2016-01-01

    Because rice feeds half of the world’s population, a secure global food supply depends on sustainable rice production. Here we test whether the co-cultivation of rice and fish into one “rice-fish system” (RFS; fish refers to aquatic animals in this article) could help sustain rice production. We examined intensive and traditional RFSs that have been widely practiced in China. We found that rice yields did not decrease when fish yield was below a threshold value in each intensive RFS. Below the thresholds, moreover, fish yields in intensive RFSs can be substantially higher than those in traditional RFS without reducing rice yield. Relative to rice monoculture, the use of fertilizer-nitrogen and pesticides decreased, and the farmers’ net income increased in RFSs. The results suggest that RFSs can help sustain rice production, and suggest that development of co-culture technologies (i.e. proper field configuration for fish and rice) is necessary to achieve the sustainability. PMID:27349875

  13. Genetic shift in local rice populations during rice breeding programs in the northern limit of rice cultivation in the world.

    PubMed

    Fujino, Kenji; Obara, Mari; Ikegaya, Tomohito; Tamura, Kenichi

    2015-09-01

    The rapid accumulation of pre-existing mutations may play major roles in the establishment and shaping of adaptability for local regions in current rice breeding programs. The cultivated rice, Oryza sativa L., which originated from tropical regions, is now grown worldwide due to the concerted efforts of breeding programs. However, the process of establishing local populations and their origins remain unclear. In the present study, we characterized DNA polymorphisms in the rice variety KITAAKE from Hokkaido, one of the northern limits of rice cultivation in the world. Indel polymorphisms were attributed to transposable element-like insertions, tandem duplications, and non-TE deletions as the original mutation events in the NIPPONBARE and KITAAKE genomes. The allele frequencies of the KITAAKE alleles markedly shifted to the current variety types among the local population from Hokkaido in the last two decades. The KITAAKE alleles widely distributed throughout wild rice and cultivated rice over the world. These have accumulated in the local population from Hokkaido via Japanese landraces as the ancestral population of Hokkaido. These results strongly suggested that combinations of pre-existing mutations played a role in the establishment of adaptability. This approach using the re-sequencing of local varieties in unique environmental conditions will be useful as a genetic resource in plant breeding programs in local regions.

  14. Domestication history and geographical adaptation inferred from a SNP map of African rice.

    PubMed

    Meyer, Rachel S; Choi, Jae Young; Sanches, Michelle; Plessis, Anne; Flowers, Jonathan M; Amas, Junrey; Dorph, Katherine; Barretto, Annie; Gross, Briana; Fuller, Dorian Q; Bimpong, Isaac Kofi; Ndjiondjop, Marie-Noelle; Hazzouri, Khaled M; Gregorio, Glenn B; Purugganan, Michael D

    2016-09-01

    African rice (Oryza glaberrima Steud.) is a cereal crop species closely related to Asian rice (Oryza sativa L.) but was independently domesticated in West Africa ∼3,000 years ago. African rice is rarely grown outside sub-Saharan Africa but is of global interest because of its tolerance to abiotic stresses. Here we describe a map of 2.32 million SNPs of African rice from whole-genome resequencing of 93 landraces. Population genomic analysis shows a population bottleneck in this species that began ∼13,000-15,000 years ago with effective population size reaching its minimum value ∼3,500 years ago, suggesting a protracted period of population size reduction likely commencing with predomestication management and/or cultivation. Genome-wide association studies (GWAS) for six salt tolerance traits identify 11 significant loci, 4 of which are within ∼300 kb of genomic regions that possess signatures of positive selection, suggesting adaptive geographical divergence for salt tolerance in this species.

  15. Domestication history and geographical adaptation inferred from a SNP map of African rice.

    PubMed

    Meyer, Rachel S; Choi, Jae Young; Sanches, Michelle; Plessis, Anne; Flowers, Jonathan M; Amas, Junrey; Dorph, Katherine; Barretto, Annie; Gross, Briana; Fuller, Dorian Q; Bimpong, Isaac Kofi; Ndjiondjop, Marie-Noelle; Hazzouri, Khaled M; Gregorio, Glenn B; Purugganan, Michael D

    2016-09-01

    African rice (Oryza glaberrima Steud.) is a cereal crop species closely related to Asian rice (Oryza sativa L.) but was independently domesticated in West Africa ∼3,000 years ago. African rice is rarely grown outside sub-Saharan Africa but is of global interest because of its tolerance to abiotic stresses. Here we describe a map of 2.32 million SNPs of African rice from whole-genome resequencing of 93 landraces. Population genomic analysis shows a population bottleneck in this species that began ∼13,000-15,000 years ago with effective population size reaching its minimum value ∼3,500 years ago, suggesting a protracted period of population size reduction likely commencing with predomestication management and/or cultivation. Genome-wide association studies (GWAS) for six salt tolerance traits identify 11 significant loci, 4 of which are within ∼300 kb of genomic regions that possess signatures of positive selection, suggesting adaptive geographical divergence for salt tolerance in this species. PMID:27500524

  16. Transcriptome population genomics reveals severe bottleneck and domestication cost in the African rice (Oryza glaberrima).

    PubMed

    Nabholz, Benoit; Sarah, Gautier; Sabot, François; Ruiz, Manuel; Adam, Hélène; Nidelet, Sabine; Ghesquière, Alain; Santoni, Sylvain; David, Jacques; Glémin, Sylvain

    2014-05-01

    The African cultivated rice (Oryza glaberrima) was domesticated in West Africa 3000 years ago. Although less cultivated than the Asian rice (O. sativa), O. glaberrima landraces often display interesting adaptation to rustic environment (e.g. drought). Here, using RNA-seq technology, we were able to compare more than 12,000 transcripts between 9 O. glaberrima, 10 wild O. barthii and one O. meridionalis individuals. With a synonymous nucleotide diversity πs = 0.0006 per site, O. glaberrima appears as the least genetically diverse crop grass ever documented. Using approximate Bayesian computation, we estimated that O. glaberrima experienced a severe bottleneck during domestication. This demographic scenario almost fully accounts for the pattern of genetic diversity across O. glaberrima genome as we detected very few outliers regions where positive selection may have further impacted genetic diversity. Moreover, the large excess of derived nonsynonymous substitution that we detected suggests that the O. glaberrima population suffered from the 'cost of domestication'. In addition, we used this genome-scale data set to demonstrate that (i) O. barthii genetic diversity is positively correlated with recombination rate and negatively with gene density, (ii) expression level is negatively correlated with evolutionary constraint, and (iii) one region on chromosome 5 (position 4-6 Mb) exhibits a clear signature of introgression with a yet unidentified Oryza species. This work represents the first genome-wide survey of the African rice genetic diversity and paves the way for further comparison between the African and the Asian rice, notably regarding the genetics underlying domestication traits.

  17. Effective Suppression of Methane Emission by 2-Bromoethanesulfonate during Rice Cultivation

    PubMed Central

    Waghmode, Tatoba R.; Haque, Md. Mozammel; Kim, Sang Yoon; Kim, Pil Joo

    2015-01-01

    2-bromoethanesulfonate (BES) is a structural analogue of coenzyme M (Co-M) and potent inhibitor of methanogenesis. Several studies confirmed, BES can inhibit CH4 prodcution in rice soil, but the suppressing effectiveness of BES application on CH4 emission under rice cultivation has not been studied. In this pot experiment, different levels of BES (0, 20, 40 and 80 mg kg-1) were applied to study its effect on CH4 emission and plant growth during rice cultivation. Application of BES effectively suppressed CH4 emission when compared with control soil during rice cultivation. The CH4 emission rates were significantly (P<0.001) decreased by BES application possibly due to significant (P<0.001) reduction of methnaogenic biomarkers like Co-M concentration and mcrA gene copy number (i.e. methanogenic abunadance). BES significantly (P<0.001) reduced methanogen activity, while it did not affect soil dehydrogenase activity during rice cultivation. A rice plant growth and yield parameters were not affected by BES application. The maximum CH4 reduction (49% reduction over control) was found at 80 mg kg-1 BES application during rice cultivation. It is, therefore, concluded that BES could be a suitable soil amendment for reducing CH4 emission without affecting rice plant growth and productivity during rice cultivation. PMID:26562416

  18. Effective Suppression of Methane Emission by 2-Bromoethanesulfonate during Rice Cultivation.

    PubMed

    Waghmode, Tatoba R; Haque, Md Mozammel; Kim, Sang Yoon; Kim, Pil Joo

    2015-01-01

    2-bromoethanesulfonate (BES) is a structural analogue of coenzyme M (Co-M) and potent inhibitor of methanogenesis. Several studies confirmed, BES can inhibit CH4 prodcution in rice soil, but the suppressing effectiveness of BES application on CH4 emission under rice cultivation has not been studied. In this pot experiment, different levels of BES (0, 20, 40 and 80 mg kg-1) were applied to study its effect on CH4 emission and plant growth during rice cultivation. Application of BES effectively suppressed CH4 emission when compared with control soil during rice cultivation. The CH4 emission rates were significantly (P<0.001) decreased by BES application possibly due to significant (P<0.001) reduction of methnaogenic biomarkers like Co-M concentration and mcrA gene copy number (i.e. methanogenic abunadance). BES significantly (P<0.001) reduced methanogen activity, while it did not affect soil dehydrogenase activity during rice cultivation. A rice plant growth and yield parameters were not affected by BES application. The maximum CH4 reduction (49% reduction over control) was found at 80 mg kg-1 BES application during rice cultivation. It is, therefore, concluded that BES could be a suitable soil amendment for reducing CH4 emission without affecting rice plant growth and productivity during rice cultivation. PMID:26562416

  19. The archaeobotany of Asian rice expansion and the development of wet-field cultivation

    NASA Astrophysics Data System (ADS)

    Fuller, D.

    2008-12-01

    Archaeobotanical evidence provides direct data on past human diet and agriculture, including a geographical and chronological framework for studying the expansion of rice agriculture. The growth of systematic archaeobotanical sampling in recent years has allowed for the past presence of rice to be seen in relation to cultivation of other crops and associated weeds. The weed flora provides a basis for inferring the nature of cultivation systems, whether rain-fed dry rice or wetland "paddy" rice, a key distinction for considerations of past methane production. Nevertheless, current data is very unevenly distributed. This poster will summarize available evidence for the origins and spread of rice in South Asia (India and Pakistan), and mainland and Island Southeast Asia deriving from an earlier Chinese domestication. Where possible, such as in India or China, the potential of the weed flora remains for distinguishing wetland rice crops will be summarized. In broad terms, although the origins of rice use and cultivation begins by or during the Middle Holocene (6000- 3000 BC), rice cultivation spread outside the regions of the wild progenitor after this time. Two phases of rice expansion can be distinguished. Phase 1, between 3000 and 1500 BC, introduced rice to Southeast Asia, probably under wetland cultivation, and the spread of dry rice over northern India and Pakistan. Phase 2, taking place between 1000 and 0 BC, sees the spread of rice throughout the Southern Indian Peninsula, with weed evidence suggesting irrigated wetland rice. Similarly, this period sees the spread of intensive paddy agriculture through Korea and Japan, but in Southeast Asia is probably related to a spread of rice in upland, dry field systems.

  20. Rice cultivation and methane emission: Documentation of distributed geographic data sets

    NASA Technical Reports Server (NTRS)

    Matthews, Elaine; John, Jasmin; Fung, Inez

    1994-01-01

    High-resolution global data bases on the geographic and seasonal distribution of rice cultivation and associated methane emission, compiled by Matthews et al., were archived for public use. In addition to the primary data sets identifying location, seasonality, and methane emission from rice cultivation, a series of supporting data sets is included, allowing users not only to replicate the work of Matthews et al. but to investigate alternative cultivation and emission scenarios. The suite of databases provided, at 1 latitude by 1 longitude resolution for the globe, includes (1) locations of rice cultivation, (2) monthly arrays of actively growing rice areas, (3) countries and political subdivisions, and (4) monthly arrays of methane emission from rice cultivation. Ancillary data include (1) a listing, by country, of harvested rice areas and seasonal distribution of crop cycles and (2) country names and codes. Summary tables of zonal/monthly distributions of actively growing rice areas and of methane emissions are presented. Users should consult original publications for complete discussion of the data bases. This short paper is designed only to document formats of the distributed information and briefly describe the contents of the data sets and their initial application to evaluating the role of rice cultivation in the methane budget.

  1. Significance, progress and prospects for research in simplified cultivation technologies for rice in China

    PubMed Central

    HUANG, M.; IBRAHIM, MD.; XIA, B.; ZOU, Y.

    2011-01-01

    SUMMARY Simplified cultivation technologies for rice have become increasingly attractive in recent years in China because of their social, economical and environmental benefits. To date, several simplified cultivation technologies, such as conventional tillage and seedling throwing (CTST), conventional tillage and direct seeding (CTDS), no-tillage and seedling throwing (NTST), no-tillage and direct seeding (NTDS) and no-tillage and transplanting (NTTP), have been developed in China. Most studies have shown that rice grown under each of these simplified cultivation technologies can produce a grain yield equal to or higher than traditional cultivation (conventional tillage and transplanting). Studies that have described the influences of agronomic practices on yield formation of rice under simplified cultivation have demonstrated that optimizing agronomy practices would increase the efficiencies of simplified cultivation systems. Further research is needed to optimize the management strategies for CTST, CTDS and NTST rice which have developed quickly in recent years, to strengthen basic research for those simplified cultivation technologies that are rarely used at present (such as NTTP and NTDS), to select and breed cultivars suitable for simplified cultivation and to compare the practicability and effectiveness of different simplified cultivation technologies in different rice production regions. PMID:22505773

  2. 7 CFR 457.170 - Cultivated wild rice crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... planted acreage with water and maintaining it at a proper depth throughout the growing season. Green.... Cultivated Wild Rice. A member of the grass family Zizania Palustris L., adapted for growing in...

  3. 7 CFR 457.170 - Cultivated wild rice crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... planted acreage with water and maintaining it at a proper depth throughout the growing season. Green.... Cultivated Wild Rice. A member of the grass family Zizania Palustris L., adapted for growing in...

  4. 7 CFR 457.170 - Cultivated wild rice crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... rice crop insurance provisions. The Cultivated Wild Rice Crop Insurance Provisions for the 2009 and... flood irrigated fields known as paddies. Finished weight. (a) The green weight delivered to a processor multiplied by the determined recovery percentage; (b) The green weight stored for seed multiplied by...

  5. Effects of Bt-transgenic rice cultivation on planktonic communities in paddy fields and adjacent ditches.

    PubMed

    Liu, Yongbo; Liu, Fang; Wang, Chao; Quan, Zhanjun; Li, Junsheng

    2016-09-15

    The non-target effects of transgenic plants are issues of concern; however, their impacts in cultivated agricultural fields and adjacent natural aquatic ecosystems are poorly understood. We conducted field experiments during two growing seasons to determine the effects of cultivating Bacillus thuringiensis (Bt)-transgenic rice on the phytoplankton and zooplankton communities in a paddy field and an adjacent ditch. Bt toxin was detected in soil but not in water. Water quality was not significantly different between non-Bt and Bt rice fields, but varied among up-, mid- and downstream locations in the ditch. Cultivation of Bt-transgenic rice had no effects on zooplankton communities. Phytoplankton abundance and biodiversity were not significantly different between transgenic and non-transgenic rice fields in 2013; however, phytoplankton were more abundant in the transgenic rice field than in the non-transgenic rice field in 2014. Water quality and rice type explained 65.9% and 12.8% of this difference in 2014, respectively. Phytoplankton and zooplankton were more abundant in mid- and downstream, than upstream, locations in the ditch, an effect that we attribute to water quality differences. Thus, the release of Bt toxins into field water during the cultivation of transgenic crops had no direct negative effects on plankton community composition, but indirect effects that alter environmental conditions should be taken into account during the processes of management planning and policymaking. PMID:27219503

  6. Polyphyletic origin of cultivated rice: based on the interspersion pattern of SINEs.

    PubMed

    Cheng, Chaoyang; Motohashi, Reiko; Tsuchimoto, Suguru; Fukuta, Yoshimichi; Ohtsubo, Hisako; Ohtsubo, Eiichi

    2003-01-01

    The wild rice species Oryza rufipogon with wide intraspecific variation is thought to be the progenitor of the cultivated rice species Oryza sativa with two ecotypes, japonica and indica. To determine the origin of cultivated rice, subfamily members of the rice retroposon p-SINE1, which show insertion polymorphism in the O. sativa -O. rufipogon population, were identified and used to "bar code" each of 101 cultivated and wild rice strains based on the presence or absence of the p-SINE1 members at the respective loci. A phylogenetic tree constructed based on the bar codes given to the rice strains showed that O. sativa strains were classified into two groups corresponding to japonica and indica, whereas O. rufipogon strains were in four groups, in which annual O. rufipogon strains formed a single group, differing from the perennial O. rufipogon strains of the other three groups. Japonica strains were closely related to the O. rufipogon perennial strains of one group, and the indica strains were closely related to the O. rufipogon annual strains, indicating that O. sativa has been derived polyphyletically from O. rufipogon. The subfamily members of p-SINE1 constitute a powerful tool for studying the classification and relationship of rice strains, even when one has limited knowledge of morphology, taxonomy, physiology, and biochemistry of rice strains. PMID:12519908

  7. Development of a rule-based algorithm for rice cultivation mapping using Landsat 8 time series

    NASA Astrophysics Data System (ADS)

    Karydas, Christos G.; Toukiloglou, Pericles; Minakou, Chara; Gitas, Ioannis Z.

    2015-06-01

    In the framework of ERMES project (FP7 66983), an algorithm for mapping rice cultivation extents using mediumhigh resolution satellite data was developed. ERMES (An Earth obseRvation Model based RicE information Service) aims to develop a prototype of downstream service for rice yield modelling based on a combination of Earth Observation and in situ data. The algorithm was designed as a set of rules applied on a time series of Landsat 8 images, acquired throughout the rice cultivation season of 2014 from the plain of Thessaloniki, Greece. The rules rely on the use of spectral indices, such as the Normalized Difference Vegetation Index (NDVI), the Normalized Difference Water Index (NDWI), and the Normalized Seasonal Wetness Index (NSWI), extracted from the Landsat 8 dataset. The algorithm is subdivided into two phases: a) a hard classification phase, resulting in a binary map (rice/no-rice), where pixels are judged according to their performance in all the images of the time series, while index thresholds were defined after a trial and error approach; b) a soft classification phase, resulting in a fuzzy map, by assigning scores to the pixels which passed (as `rice') the first phase. Finally, a user-defined threshold of the fuzzy score will discriminate rice from no-rice pixels in the output map. The algorithm was tested in a subset of Thessaloniki plain against a set of selected field data. The results indicated an overall accuracy of the algorithm higher than 97%. The algorithm was also applied in a study are in Spain (Valencia) and a preliminary test indicated a similar performance, i.e. about 98%. Currently, the algorithm is being modified, so as to map rice extents early in the cultivation season (by the end of June), with a view to contribute more substantially to the rice yield prediction service of ERMES. Both algorithm modes (late and early) are planned to be tested in extra Mediterranean study areas, in Greece, Italy, and Spain.

  8. Fire and flood management of coastal swamp enabled first rice paddy cultivation in east China.

    PubMed

    Zong, Y; Chen, Z; Innes, J B; Chen, C; Wang, Z; Wang, H

    2007-09-27

    The adoption of cereal cultivation was one of the most important cultural processes in history, marking the transition from hunting and gathering by Mesolithic foragers to the food-producing economy of Neolithic farmers. In the Lower Yangtze region of China, a centre of rice domestication, the timing and system of initial rice cultivation remain unclear. Here we report detailed evidence from Kuahuqiao that reveals the precise cultural and environmental context of rice cultivation at this earliest known Neolithic site in eastern China, 7,700 calibrated years before present (cal. yr bp). Pollen, algal, fungal spore and micro-charcoal data from sediments demonstrate that these Neolithic communities selected lowland swamps for their rice cultivation and settlement, using fire to clear alder-dominated wetland scrub and prepare the site for occupation, then to maintain wet grassland vegetation of paddy type. Regular flooding by slightly brackish water was probably controlled by 'bunding' to maintain crop yields. The site's exploitation ceased when it was overwhelmed by marine inundation 7,550 cal. yr bp. Our results establish that rice cultivation began in coastal wetlands of eastern China, an ecosystem vulnerable to coastal change but of high fertility and productivity, attractions maximized for about two centuries by sustained high levels of cultural management of the environment. PMID:17898767

  9. Characterization of functional trait diversity among Indian cultivated and weedy rice populations

    PubMed Central

    Rathore, M.; Singh, Raghwendra; Kumar, B.; Chauhan, B. S.

    2016-01-01

    Weedy rice, a menace in rice growing areas globally, is biosimilar having attributes similar to cultivated and wild rice, and therefore is difficult to manage. A study was initiated to characterize the functional traits of 76 weedy rice populations and commonly grown rice cultivars from different agro-climatic zones for nine morphological, five physiological, and three phenological parameters in a field experiment under an augmented block design. Comparison between weedy and cultivated rice revealed a difference in duration (days) from panicle emergence to heading as the most variable trait and awn length as the least variable one, as evidenced from their coefficients of variation. The results of principal component analysis revealed the first three principal components to represent 47.3% of the total variation, which indicates an important role of transpiration, conductance, leaf-air temperature difference, days to panicle emergence, days to heading, flag leaf length, SPAD (soil-plant analysis development), grain weight, plant height, and panicle length to the diversity in weedy rice populations. The variations existing in weedy rice population are a major reason for its wider adaptability to varied environmental conditions and also a problem while trying to manage it. PMID:27072282

  10. Characterization of functional trait diversity among Indian cultivated and weedy rice populations.

    PubMed

    Rathore, M; Singh, Raghwendra; Kumar, B; Chauhan, B S

    2016-04-13

    Weedy rice, a menace in rice growing areas globally, is biosimilar having attributes similar to cultivated and wild rice, and therefore is difficult to manage. A study was initiated to characterize the functional traits of 76 weedy rice populations and commonly grown rice cultivars from different agro-climatic zones for nine morphological, five physiological, and three phenological parameters in a field experiment under an augmented block design. Comparison between weedy and cultivated rice revealed a difference in duration (days) from panicle emergence to heading as the most variable trait and awn length as the least variable one, as evidenced from their coefficients of variation. The results of principal component analysis revealed the first three principal components to represent 47.3% of the total variation, which indicates an important role of transpiration, conductance, leaf-air temperature difference, days to panicle emergence, days to heading, flag leaf length, SPAD (soil-plant analysis development), grain weight, plant height, and panicle length to the diversity in weedy rice populations. The variations existing in weedy rice population are a major reason for its wider adaptability to varied environmental conditions and also a problem while trying to manage it.

  11. Nitrous oxide emissions from wetland rice-duck cultivation systems in Southern China.

    PubMed

    Li, Chengfang; Cao, Cougui; Wang, Jingping; Zhan, Ming; Yuan, Weiling; Ahmad, Shahrear

    2009-01-01

    Nitrous oxide (N2O) emissions from a rice-duck cultivation system in the subtropical region of China and its regulating factors were investigated by using a static chambers technique during rice growth seasons in 2006 and 2007. The experimental field was equally divided into six plots for two different treatments: One was a conventional rice field (CK) and the other was a rice-duck ecosystem (RD). With the same amount of urea applied as basal fertilization, N2O emission fluxes from RD and CK followed a similar seasonal variation trend. During the flooding seasons, the N2O emission flux was not correlated with temperature, but it was significantly related to soil inorganic nitrogen (SIN) (p < 0.01) and soil pH (p < 0.01). After drainage, the N2O emission flux was not correlated with temperature, SIN, and soil pH. Our experimental data showed that peaks of N2O emission flux occurred both in 2 weeks after urea application and after drainage. Compared to CK, RD could significantly increase N2O emission. We evaluated the integrated global warming potentials (GWPs) of a rice-duck cultivation system based on methane (CH4) and N2O emission, which showed that RD could suppress the total amount of CH4 and N2O emissions from rice paddies. Moreover, because the decrease of CH4 emissions from RD compared to CK was far more than the increase of N2O emissions from RD compared to CK, RD greatly reduced integrated GWPs (CH4 + N2O) compared to CK. So, the rice-duck cultivation system is an effective strategy for reducing integrated GWPs of the rice-duck cultivation systems based on CH4 and N2O in southern China and will contribute to alleviating global warming. PMID:18427710

  12. Fine mapping of a gene causing hybrid pollen sterility between Yunnan weedy rice and cultivated rice (Oryza sativa L.) and phylogenetic analysis of Yunnan weedy rice.

    PubMed

    Wang, Yong; Zhong, Zheng Zheng; Zhao, Zhi Gang; Jiang, Ling; Bian, Xiao Feng; Zhang, Wen Wei; Liu, Ling Long; Ikehashi, H; Wan, Jian Min

    2010-02-01

    Weedy rice represents an important resource for rice improvement. The F(1) hybrid between the japonica wide compatibility rice cultivar 02428 and a weedy rice accession from Yunnan province (SW China) suffered from pollen sterility. Pollen abortion in the hybrid occurred at the early bicellular pollen stage, as a result of mitotic failure in the microspore, although the tapetum developed normally. Genetic mapping in a BC(1)F(1) population (02428//Yunnan weedy rice (YWR)/02428) showed that a major QTL for hybrid pollen sterility (qPS-1) was present on chromosome 1. qPS-1 was fine-mapped to a 110 kb region known to contain the hybrid pollen sterility gene Sa, making it likely that qPS-1 is either identical to, or allelic with Sa. Interestingly, F(1) hybrid indicated that Dular and IR36 were assumed to carry the sterility-neutral allele, Sa ( n ). Re-sequencing SaM and SaF, the two component genes present at Sa, suggested that variation for IR36 and Dular may be responsible for the loss of male sterility, and the qPS-1 sequence might be derived from wild rice or indica cultivars. A phylogenetic analysis based on microsatellite genotyping suggested that the YWR accession is more closely related to wild rice and indica type cultivars than to japonica types. Thus it is probable that the YWR accession evolved from a spontaneous hybrid between wild rice and an ancient cultivated strain of domesticated rice.

  13. From tidal wetland to paddy rice fields - Changes in soil microbial communities during 2000 years of rice cultivation

    NASA Astrophysics Data System (ADS)

    Bannert, Andrea; Kleineidam, Kristina; Frenzel, Peter; Ho, Adrian; Schloter, Michael

    2010-05-01

    In many areas of China tidal wetlands have been converted into agricultural land for lowland rice cultivation. However, the consequences and effects on soil microbial communities are poorly understood. Therefore, we investigated bacterial and archaeal communities involved in nitrification and denitrification based on diversity and abundance pattern of the corresponding functional genes in a tidal wetland and two paddy soils cultivated for 50 years respectively 2000 years with rice. The abundances of all measured genes increased from the tidal wetland to the 2000 years paddy soil in reference to one gram of soil due to a significant increase of the microbial biomass. When relating the functional gene copies to the extracted microbial biomass highest copy numbers were observed in the paddy soil with 50 years of rice cultivation history with exception of the archaeal nitrification gene amoA. T-RFLP data of the archaeal amoA gene and the bacterial denitrification gene nosZ revealed significant differences in community composition in the three investigated soils. Overall, our results indicate clear changes in abundance and diversity pattern of microbial communities participating in nitrogen cycling during rice paddy evolution.

  14. [Population development characteristics of rice crop cultivated on aerobic soil with mulching].

    PubMed

    Sheng, Haijun; Shen, Qirong; Feng, Ke

    2004-01-01

    Field experiments were carried out to study the population development characteristics of rice crop cultivated both on aerobic and waterlogged soil conditions. The results showed that the whole growth duration of rice growing on aerobic soil was one week longer than that on waterlogged soil. Shorter and narrower leaves and smaller LAI of rice population were found on aerobic soil than on waterlogged soil, which resulted in a decreased photosynthesis, smaller amount and lighter weight of rice grains on aerobic soil, compared with those on waterlogged soil. Among the aerobic treatments, more tillers, lower percentage of filled grains and shorter duration of grain forming were found on soils covered with plastic film than on soils covered with semi-decomposed straw or without mulching. The rice grain yield was decreased in the order of waterlogged soil > aerobic soil covered with plastic film > aerobic soil covered with semi-decomposed straw > aerobic soil without mulching.

  15. Linking Research, Extension and Farmers: The Case of Mangrove Swamp Rice Cultivation in Sierra Leone.

    ERIC Educational Resources Information Center

    Zinnah, Moses Moroe

    1994-01-01

    Interviews with 124 rice farmers in Sierra Leone revealed that farmers and extension staff have minimal participation and input in testing of new cultivation technologies. The top-down research approach has limited contact among researchers, extension staff, and farmers and affected the utility and application of research. (SK)

  16. Airborne observations of methane emissions from rice cultivation in the Sacramento Valley of California

    NASA Astrophysics Data System (ADS)

    Peischl, J.; Ryerson, T. B.; Holloway, J. S.; Trainer, M.; Andrews, A. E.; Atlas, E. L.; Blake, D. R.; Daube, B. C.; Dlugokencky, E. J.; Fischer, M. L.; Goldstein, A. H.; Guha, A.; Karl, T.; Kofler, J.; Kosciuch, E.; Misztal, P. K.; Perring, A. E.; Pollack, I. B.; Santoni, G. W.; Schwarz, J. P.; Spackman, J. R.; Wofsy, S. C.; Parrish, D. D.

    2012-12-01

    Airborne measurements of methane (CH4) and carbon dioxide (CO2) were taken over the rice growing region of California's Sacramento Valley in the late spring of 2010 and 2011. From these and ancillary measurements, we show that CH4 mixing ratios were higher in the planetary boundary layer above the Sacramento Valley during the rice growing season than they were before it, which we attribute to emissions from rice paddies. We derive daytime emission fluxes of CH4 between 0.6 and 2.0% of the CO2 taken up by photosynthesis on a per carbon, or mole to mole, basis. We also use a mixing model to determine an average CH4/CO2 flux ratio of -0.6% for one day early in the growing season of 2010. We conclude the CH4/CO2 flux ratio estimates from a single rice field in a previous study are representative of rice fields in the Sacramento Valley. If generally true, the California Air Resources Board (CARB) greenhouse gas inventory emission rate of 2.7 × 1010 g CH4/yr is approximately three times lower than the range of probable CH4 emissions (7.8-9.3 × 1010 g CH4/yr) from rice cultivation derived in this study. We attribute this difference to decreased burning of the residual rice crop since 1991, which leads to an increase in CH4 emissions from rice paddies in succeeding years, but which is not accounted for in the CARB inventory.

  17. A systems-wide comparison of red rice (Oryza longistaminata) tissues identifies rhizome specific genes and proteins that are targets for cultivated rice improvement

    PubMed Central

    2014-01-01

    Background The rhizome, the original stem of land plants, enables species to invade new territory and is a critical component of perenniality, especially in grasses. Red rice (Oryza longistaminata) is a perennial wild rice species with many valuable traits that could be used to improve cultivated rice cultivars, including rhizomatousness, disease resistance and drought tolerance. Despite these features, little is known about the molecular mechanisms that contribute to rhizome growth, development and function in this plant. Results We used an integrated approach to compare the transcriptome, proteome and metabolome of the rhizome to other tissues of red rice. 116 Gb of transcriptome sequence was obtained from various tissues and used to identify rhizome-specific and preferentially expressed genes, including transcription factors and hormone metabolism and stress response-related genes. Proteomics and metabolomics approaches identified 41 proteins and more than 100 primary metabolites and plant hormones with rhizome preferential accumulation. Of particular interest was the identification of a large number of gene transcripts from Magnaportha oryzae, the fungus that causes rice blast disease in cultivated rice, even though the red rice plants showed no sign of disease. Conclusions A significant set of genes, proteins and metabolites appear to be specifically or preferentially expressed in the rhizome of O. longistaminata. The presence of M. oryzae gene transcripts at a high level in apparently healthy plants suggests that red rice is resistant to this pathogen, and may be able to provide genes to cultivated rice that will enable resistance to rice blast disease. PMID:24521476

  18. Comparison on cellular mechanisms of iron and cadmium accumulation in rice: prospects for cultivating Fe-rich but Cd-free rice.

    PubMed

    Gao, Lei; Chang, Jiadong; Chen, Ruijie; Li, Hubo; Lu, Hongfei; Tao, Longxing; Xiong, Jie

    2016-12-01

    Iron (Fe) is essential for rice growth and humans consuming as their staple food but is often deficient because of insoluble Fe(III) in soil for rice growth and limited assimilation for human bodies, while cadmium (Cd) is non-essential and toxic for rice growth and humans if accumulating at high levels. Over-accumulated Cd can cause damage to human bodies. Selecting and breeding Fe-rich but Cd-free rice cultivars are ambitious, challenging and meaningful tasks for researchers. Although evidences show that the mechanisms of Fe/Cd uptake and accumulation in rice are common to some extent as a result of similar entry routes within rice, an increasing number of researchers have discovered distinct mechanisms between Fe/Cd uptake and accumulation in rice. This comprehensive review systematically elaborates and compares cellular mechanisms of Fe/Cd uptake and accumulation in rice, respectively. Mechanisms for maintaining Fe homeostasis and Cd detoxicification are also elucidated. Then, effects of different fertilizer management on Fe/Cd accumulation in rice are discussed. Finally, this review enumerates various approaches for reducing grain Cd accumulation and enhancing Fe content in rice. In summary, understanding of discrepant cellular mechanisms of Fe/Cd accumulation in rice provides guidance for cultivating Fe-fortified rice and has paved the way to develop rice that are tolerant to Cd stress, aiming at breeding Fe-rich but Cd-free rice.

  19. Comparison on cellular mechanisms of iron and cadmium accumulation in rice: prospects for cultivating Fe-rich but Cd-free rice.

    PubMed

    Gao, Lei; Chang, Jiadong; Chen, Ruijie; Li, Hubo; Lu, Hongfei; Tao, Longxing; Xiong, Jie

    2016-12-01

    Iron (Fe) is essential for rice growth and humans consuming as their staple food but is often deficient because of insoluble Fe(III) in soil for rice growth and limited assimilation for human bodies, while cadmium (Cd) is non-essential and toxic for rice growth and humans if accumulating at high levels. Over-accumulated Cd can cause damage to human bodies. Selecting and breeding Fe-rich but Cd-free rice cultivars are ambitious, challenging and meaningful tasks for researchers. Although evidences show that the mechanisms of Fe/Cd uptake and accumulation in rice are common to some extent as a result of similar entry routes within rice, an increasing number of researchers have discovered distinct mechanisms between Fe/Cd uptake and accumulation in rice. This comprehensive review systematically elaborates and compares cellular mechanisms of Fe/Cd uptake and accumulation in rice, respectively. Mechanisms for maintaining Fe homeostasis and Cd detoxicification are also elucidated. Then, effects of different fertilizer management on Fe/Cd accumulation in rice are discussed. Finally, this review enumerates various approaches for reducing grain Cd accumulation and enhancing Fe content in rice. In summary, understanding of discrepant cellular mechanisms of Fe/Cd accumulation in rice provides guidance for cultivating Fe-fortified rice and has paved the way to develop rice that are tolerant to Cd stress, aiming at breeding Fe-rich but Cd-free rice. PMID:27502932

  20. Assessment of reclaimed wastewater irrigation impacts on water quality, soil, and rice cultivation in paddy fields.

    PubMed

    Kang, Moon Seong; Kim, Sang Min; Park, Seung Woo; Lee, Jeong Jae; Yoo, Kyung H

    2007-03-01

    The objective of this research was to monitor and assess the impact of reclaimed wastewater irrigation on water quality, soil, and rice cultivation by comparing the effects of various wastewater treatment levels on the growth and yield of rice. A randomized complete block design was used for the application methods of the wastewater effluents to paddy rice, with five treatments and six replications. The treatments were: control with groundwater irrigation (GW); irrigation with polluted water form a nearby stream (SW); and three treatments of reclaimed wastewater irrigation at different treatment levels. The three levels of wastewater treatments included wastewater effluents: (i) directly from the wastewater plant (WW); (ii) after passing through a sand filter (WSF); and (iii) after passing a sand filter followed by an ultraviolet treatment (WSFUV). Each plot was 4 x 4 m and was planted with rice (Oryza sativa L.) in 2002 and 2003. The results indicated that irrigation of rice with reclaimed municipal wastewater caused no adverse effects on the growth and yield of rice. The chemical compositions of the rice from all plots were within the normal ranges of brown rice quality in Korea. No adverse effects were observed on chemical concentrations including the heavy metals Cu, As, Cd, Zn, Hg, and Pb, in either the brown rice or the field. The results showed that treated municipal wastewater can be safely used as an alternative water source for the irrigation of rice, although continued monitoring will be needed to determine the long-term effects with regard to soil contamination and other potential health concerns.

  1. Methane and nitrous oxide emissions from three paddy rice based cultivation systems in Southwest China

    NASA Astrophysics Data System (ADS)

    Jiang, Changsheng; Wang, Yuesi; Zheng, Xunhua; Zhu, Bo; Huang, Yao; Hao, Qingju

    2006-05-01

    To understand methane (CH4) and nitrous oxide (N2O) emissions from permanently flooded rice paddy fields and to develop mitigation options, a field experiment was conducted in situ for two years (from late 2002 to early 2005) in three rice-based cultivation systems, which are a permanently flooded rice field cultivated with a single time and followed by a non-rice season (PF), a rice-wheat rotation system (RW) and a rice-rapeseed rotation system (RR) in a hilly area in Southwest China. The results showed that the total CH4 emissions from PF were 646.3±52.1 and 215.0±45.4 kg CH4 hm-2 during the rice-growing period and non-rice period, respectively. Both values were much lower than many previous reports from similar regions in Southwest China. The CH4 emissions in the rice-growing season were more intensive in PF, as compared to RW and RR. Only 33% of the total annual CH4 emission in PF occurred in the non-rice season, though the duration of this season is two times longer than the rice season. The annual mean N2O flux in PF was 4.5±0.6 kg N2O hm-2 yr-1. The N2O emission in the rice-growing season was also more intensive than in the non-rice season, with only 16% of the total annual emission occurring in the non-rice season. The amounts of N2O emission in PF were ignorable compared to the CH4 emission in terms of the global warming potential (GWP). Changing PF to RW or RR not only eliminated CH4 emissions in the non-rice season, but also substantially reduced the CH4 emission during the following rice-growing period (ca. 58%, P<0.05). However, this change in cultivation system substantially increased N2O emissions, especially in the non-rice season, by a factor of 3.7 to 4.5. On the 100-year horizon, the integrated GWP of total annual CH4 and N2O emissions satisfies PF≫RR≈RW. The GWP of PF is higher than that of RW and RR by a factor of 2.6 and 2.7, respectively. Of the total GWP of CH4 and N2O emissions, CH4 emission contributed to 93%, 65% and 59% in PF, RW

  2. Sequence polymorphisms in wild, weedy, and cultivated rice suggest seed-shattering locus sh4 played a minor role in Asian rice domestication.

    PubMed

    Zhu, Yongqing; Ellstrand, Norman C; Lu, Bao-Rong

    2012-09-01

    The predominant view regarding Asian rice domestication is that the initial origin of nonshattering involved a single gene of large effect, specifically, the sh4 locus via the evolutionary replacement of a dominant allele for shattering with a recessive allele for reduced shattering. Data have accumulated to challenge this hypothesis. Specifically, a few studies have reported occasional seed-shattering plants from populations of the wild progenitor of cultivated rice (Oryza rufipogon complex) being homozygous for the putative "nonshattering" sh4 alleles. We tested the sh4 hypothesis for the domestication of cultivated rice by obtaining genotypes and phenotypes for a diverse set of samples of wild, weedy, and cultivated rice accessions. The cultivars were fixed for the putative "nonshattering" allele and nonshattering phenotype, but wild rice accessions are highly polymorphic for the putative "nonshattering" allele (frequency ∼26%) with shattering phenotype. All weedy rice accessions are the "nonshattering" genotype at the sh4 locus but with shattering phenotype. These data challenge the widely accepted hypothesis that a single nucleotide mutation ("G"/"T") of the sh4 locus is the major driving force for rice domestication. Instead, we hypothesize that unidentified shattering loci are responsible for the initial domestication of cultivated rice through reduced seed shattering. PMID:23139871

  3. [Effects of labor-saving rice cultivation modes on the diversity of potential weed communities in paddy fields].

    PubMed

    Li, Shu-Shun; Qiang, Sheng; Jiao, Jun-Sen

    2009-10-01

    Aimed to understand the effects of various labor-saving rice cultivation modes on the diversity of potential weed communities in paddy fields, an investigation was made on the quantitative characteristics of the weed seed bank under dry direct seeding, water direct seeding, seedling throwing, mechanized-transplanting, wheat-rice interplanting, and conventional manual transplanting. Under dry direct seeding, the density of the weed seed bank was up to 228,416 seeds x m(-2), being significantly higher than that under the other five cultivation modes. Wheat-rice interplanting ranked the second place. The seed density of sedge weeds under dry direct seeding and that of broad leaf weeds under wheat-rice interplanting were significantly higher than the seed densities of various kinds of weeds under other cultivation modes. Conventional manual transplanting mode had the highest species richness, with Margalef index being 1.86. The diversity indices, including Shannon-Wiener index, Gini index, and Pielou evenness index under water direct seeding and wheat-rice interplanting were higher than those under other cultivation modes. Comparing with conventional manual transplanting mode, the other five cultivation modes had their own dominant species in the potential weed community, and thereby, different labor-saving rice cultivation modes should be applied by turns to control the potential weed community in paddy fields effectively and persistently.

  4. An economic evaluation comparison of solar water pumping system with engine pumping system for rice cultivation

    NASA Astrophysics Data System (ADS)

    Treephak, Kasem; Thongpron, Jutturit; Somsak, Dhirasak; Saelao, Jeerawan; Patcharaprakiti, Nopporn

    2015-08-01

    In this paper we propose the design and economic evaluation of the water pumping systems for rice cultivation using solar energy, gasoline fuel and compare both systems. The design of the water and gasoline engine pumping system were evaluated. The gasoline fuel cost used in rice cultivation in an area of 1.6 acres. Under same conditions of water pumping system is replaced by the photovoltaic system which is composed of a solar panel, a converter and an electric motor pump which is compose of a direct current (DC) motor or an alternating current (AC) motor with an inverter. In addition, the battery is installed to increase the efficiency and productivity of rice cultivation. In order to verify, the simulation and economic evaluation of the storage energy battery system with batteries and without batteries are carried out. Finally the cost of four solar pumping systems was evaluated and compared with that of the gasoline pump. The results showed that the solar pumping system can be used to replace the gasoline water pumping system and DC solar pump has a payback less than 10 years. The systems that can payback the fastest is the DC solar pumping system without batteries storage system. The system the can payback the slowest is AC solar pumping system with batteries storage system. However, VAC motor pump of 220 V can be more easily maintained than the motor pump of 24 VDC and batteries back up system can supply a more stable power to the pump system.

  5. Heading date 1 (Hd1), an ortholog of Arabidopsis CONSTANS, is a possible target of human selection during domestication to diversify flowering times of cultivated rice.

    PubMed

    Takahashi, Yasuyuki; Shimamoto, Ko

    2011-01-01

    During the domestication of rice (Oryza sativa L.), diversification of flowering time was important in expanding the areas of cultivation. Rice is a facultative short day (SD) plant and requires certain periods of dark to induce flowering. Heading date 1 (Hd1), a regulator of the florigen gene Hd3a, is one of the main factors used to generate diversity in flowering. Loss-of-function alleles of Hd1 are common in cultivated rice and cause the diversity of flowering time. However, it is unclear how these functional nucleotide polymorphisms of Hd1 accumulated in the course of evolution. Nucleotide polymorphisms within Hd1 and Hd3a were analyzed in 38 accessions of ancestral wild rice Oryza rufipogon and compared with those of cultivated rice. In contrast to cultivated rice, no nucleotide changes affecting Hd1 function were found in 38 accessions of wild rice ancestors. No functional changes were found in Hd3a in either cultivated or ancestral rice. A phylogenetic analysis indicated that evolution of the Hd1 alleles may have occurred independently in cultivars descended from various accessions of ancestral rice. The non-functional Hd1 alleles found in cultivated rice may be selected during domestication, because they were not found or very rare in wild ancestral rice. In contrast with Hd3a, which has been highly conserved, Hd1 may have undergone human selection to diversify the flowering times of rice during domestication or the early stage of the cultivation period.

  6. Unit and internal chain profile of African rice (Oryza glaberrima) amylopectin.

    PubMed

    Gayin, Joseph; Abdel-Aal, El-Sayed M; Manful, John; Bertoft, Eric

    2016-02-10

    High-performance anion-exchange chromatography was used to study the unit chain profiles of amylopectins and their φ,β-limit dextrins from two African rice (Oryza glaberrima) accessions-TOG 12440 and IRGC 103759. The samples were compared with two Asian rice (Oryza sativa) samples (cv Koshihikari and cv WITA 4) and one O. sativa × O. glaberrima cross (NERICA 4). The ratio of short:long chains ranged between 12.1 and 13.8, and the ratio of A:B-chains was ∼ 1.0 in all samples. A significant difference was observed in the distribution of internal chains with regards to the proportion of short "fingerprint" B-chains (Bfp-chains), which in the φ,β-limit dextrins have a degree of polymerization (DP) 3-7. The African rice starches and NERICA 4 had higher levels of Bfp-chains, but the major group of short B-chains (DP 8-25) was similar to that of the Asian rice samples. The average chain length (CL), internal chain length (ICL), and total internal chain length (TICL) were similar in all samples. However, the external chain length (ECL) was longer in the African rice samples and NERICA 4. ECL correlated positively and significantly (p<0.05) with gelatinization transition temperatures and enthalpy suggesting differences between the two rice types in cooking properties.

  7. Cultivation of rice for animal feed with circulated irrigation of treated municipal wastewater for enhanced nitrogen removal: comparison of cultivation systems feeding irrigation water upward and downward.

    PubMed

    Muramatsu, A; Ito, H; Sasaki, A; Kajihara, A; Watanabe, T

    2015-01-01

    To achieve enhanced nitrogen removal, we modified a cultivation system with circulated irrigation of treated municipal wastewater by using rice for animal feed instead of human consumption. The performance of this modified system was evaluated through a bench-scale experiment by comparing the direction of circulated irrigation (i.e. passing through paddy soil upward and downward). The modified system achieved more than three times higher nitrogen removal (3.2 g) than the system in which rice for human consumption was cultivated. The removal efficiency was higher than 99.5%, regardless of the direction of circulated irrigation. Nitrogen in the treated municipal wastewater was adsorbed by the rice plant in this cultivation system as effectively as chemical fertilizer used in normal paddy fields. Circulated irrigation increased the nitrogen released to the atmosphere, probably due to enhanced denitrification. Neither the circulation of irrigation water nor its direction affected the growth of the rice plant and the yield and quality of harvested rice. The yield of rice harvested in this system did not reach the target value in normal paddy fields. To increase this yield, a larger amount of treated wastewater should be applied to the system, considering the significant amount of nitrogen released to the atmosphere.

  8. Cultivation of rice for animal feed with circulated irrigation of treated municipal wastewater for enhanced nitrogen removal: comparison of cultivation systems feeding irrigation water upward and downward.

    PubMed

    Muramatsu, A; Ito, H; Sasaki, A; Kajihara, A; Watanabe, T

    2015-01-01

    To achieve enhanced nitrogen removal, we modified a cultivation system with circulated irrigation of treated municipal wastewater by using rice for animal feed instead of human consumption. The performance of this modified system was evaluated through a bench-scale experiment by comparing the direction of circulated irrigation (i.e. passing through paddy soil upward and downward). The modified system achieved more than three times higher nitrogen removal (3.2 g) than the system in which rice for human consumption was cultivated. The removal efficiency was higher than 99.5%, regardless of the direction of circulated irrigation. Nitrogen in the treated municipal wastewater was adsorbed by the rice plant in this cultivation system as effectively as chemical fertilizer used in normal paddy fields. Circulated irrigation increased the nitrogen released to the atmosphere, probably due to enhanced denitrification. Neither the circulation of irrigation water nor its direction affected the growth of the rice plant and the yield and quality of harvested rice. The yield of rice harvested in this system did not reach the target value in normal paddy fields. To increase this yield, a larger amount of treated wastewater should be applied to the system, considering the significant amount of nitrogen released to the atmosphere. PMID:26247756

  9. Community Dynamics of Arbuscular Mycorrhizal Fungi in High-Input and Intensively Irrigated Rice Cultivation Systems

    PubMed Central

    Wang, Yutao; Li, Ting; Li, Yingwei; Björn, Lars Olof; Rosendahl, Søren; Olsson, Pål Axel; Fu, Xuelin

    2015-01-01

    Application of a mycorrhizal inoculum could be one way to increase the yield of rice plants and reduce the application of fertilizer. We therefore studied arbuscular mycorrhizal fungi (AMF) in the roots of wetland rice (Oryza sativa L.) collected at the seedling, tillering, heading, and ripening stages in four paddy wetlands that had been under a high-input and intensively irrigated rice cultivation system for more than 20 years. It was found that AMF colonization was mainly established in the heading and ripening stages. The AMF community structure was characterized in rhizosphere soils and roots from two of the studied paddy wetlands. A fragment covering the partial small subunit (SSU), the whole internal transcribed spacer (ITS), and the partial large subunit (LSU) rRNA operon regions of AMF was amplified, cloned, and sequenced from roots and soils. A total of 639 AMF sequences were obtained, and these were finally assigned to 16 phylotypes based on a phylogenetic analysis, including 12 phylotypes from Glomeraceae, one phylotype from Claroideoglomeraceae, two phylotypes from Paraglomeraceae, and one unidentified phylotype. The AMF phylotype compositions in the soils were similar between the two surveyed sites, but there was a clear discrepancy between the communities obtained from root and soil. The relatively high number of AMF phylotypes at the surveyed sites suggests that the conditions are suitable for some species of AMF and that they may have an important function in conventional rice cultivation systems. The species richness of root-colonizing AMF increased with the growth of rice, and future studies should consider the developmental stages of this crop in the exploration of AMF function in paddy wetlands. PMID:25681190

  10. Community dynamics of arbuscular mycorrhizal fungi in high-input and intensively irrigated rice cultivation systems.

    PubMed

    Wang, Yutao; Li, Ting; Li, Yingwei; Björn, Lars Olof; Rosendahl, Søren; Olsson, Pål Axel; Li, Shaoshan; Fu, Xuelin

    2015-04-01

    Application of a mycorrhizal inoculum could be one way to increase the yield of rice plants and reduce the application of fertilizer. We therefore studied arbuscular mycorrhizal fungi (AMF) in the roots of wetland rice (Oryza sativa L.) collected at the seedling, tillering, heading, and ripening stages in four paddy wetlands that had been under a high-input and intensively irrigated rice cultivation system for more than 20 years. It was found that AMF colonization was mainly established in the heading and ripening stages. The AMF community structure was characterized in rhizosphere soils and roots from two of the studied paddy wetlands. A fragment covering the partial small subunit (SSU), the whole internal transcribed spacer (ITS), and the partial large subunit (LSU) rRNA operon regions of AMF was amplified, cloned, and sequenced from roots and soils. A total of 639 AMF sequences were obtained, and these were finally assigned to 16 phylotypes based on a phylogenetic analysis, including 12 phylotypes from Glomeraceae, one phylotype from Claroideoglomeraceae, two phylotypes from Paraglomeraceae, and one unidentified phylotype. The AMF phylotype compositions in the soils were similar between the two surveyed sites, but there was a clear discrepancy between the communities obtained from root and soil. The relatively high number of AMF phylotypes at the surveyed sites suggests that the conditions are suitable for some species of AMF and that they may have an important function in conventional rice cultivation systems. The species richness of root-colonizing AMF increased with the growth of rice, and future studies should consider the developmental stages of this crop in the exploration of AMF function in paddy wetlands.

  11. Genetic variation in the chloroplast genome suggests multiple domestication of cultivated Asian rice (Oryza sativa L.).

    PubMed

    Kawakami, Shin-ichi; Ebana, Kaworu; Nishikawa, Tomotaro; Sato, Yo-ichiro; Vaughan, Duncan A; Kadowaki, Koh-ichi

    2007-02-01

    Two hundred and seventy-five accessions of cultivated Asian rice and 44 accessions of AA genome Oryza species were classified into 8 chloroplast (cp) genome types (A-H) based on insertion-deletion events at 3 regions (8K, 57K, and 76K) of the cp genome. The ancestral cp genome type was determined according to the frequency of occurrence in Oryza species and the likely evolution of the variable 57K region of the cp genome. When 2 nucleotide substitutions (AA or TT) were taken into account, these 8 cp types were subdivided into 11 cp types. Most indica cultivars had 1 of 3 cp genome types that were also identified in the wild relatives of rice, O. nivara and O. rufipogon, suggesting that the 3 indica cp types had evolved from distinct gene pools of the O. rufipogon - O. nivara complex. The majority of japonica cultivars had 1 of 3 different cp genome types. One of these 3 was identified in O. rufipogon, suggesting that at least 1 japonica type is derived from O. rufipogon with the same cp genome type. These results provide evidence to support a polyphyletic origin of cultivated Asian rice from at least 4 principal lineages in the O. rufipogon - O. nivara complex.

  12. Effects of CaMSRB2-Expressing Transgenic Rice Cultivation on Soil Microbial Communities.

    PubMed

    Sohn, Soo-In; Oh, Young-Ju; Kim, Byung-Yong; Cho, Hyun-Suk

    2016-07-28

    Although many studies on the effects of genetically modified (GM) crops on soil microorganisms have been carried out over the past decades, they have provided contradictory information, even for the same GM crop, owing to the diversity of the soil environments in which they were conducted. This inconsistency in results suggests that the effects of GM crops on soil microorganisms should be considered from many aspects. In this study, we investigated the effects of the GM drought-tolerant rice MSRB2-Bar-8, which expresses the CaMSRB2 gene, on soil microorganisms based on the culture-dependent and culture-independent methods. To this end, rhizosphere soils of GM and non-GM (IM) rice were analyzed for soil chemistry, population densities of soil microorganisms, and microbial community structure (using pyrosequencing technology) at three growth stages (seedling, tillering, and maturity). There was no significant difference in the soil chemistry between GM and non-GM rice. The microbial densities of the GM soils were found to be within the range of those of the non-GM rice. In the pyrosequencing analyses, Proteobacteria and Chloroflexi were dominant at the seedling stage, while Chloroflexi showed dominance over Proteobacteria at the maturity stage in both the GM and non-GM soils. An UPGMA dendrogram showed that the soil microbial communities were clustered by growth stage. Taken together, the results from this study suggest that the effects of MSRB2-Bar-8 cultivation on soil microorganisms are not significant. PMID:27090184

  13. Effect of flaring of natural gas in oil fields of Assam on rice cultivation.

    PubMed

    Sharma, K K; Hazarika, S; Kalita, B; Sharma, B

    2011-07-01

    Assam (India) is endowed with natural resources like oil, coal and natural gas. The crude oil, one of the most precious natural resources, is found in the districts of upper Assam. During the process of extraction of crude oil, low-pressure natural gas is burnt in the air. Most of the oil wells in upper Assam are located near rice fields and therefore, rice crop grown near the oil wells is exposed to light uninterruptedly causing grain sterility resulting significant loss in grain yield. To identify promising varieties for these areas, we studied the effect of flare on rice varieties with different photoperiod sensitivity. The high light intensity and increased light hours were the factors responsible for substantial loss in grain yield near the flare resulting from delay in flower initiation, reduction of panicle length, having less number of grains per panicle and more grain sterility. To prevent significant loss in yield, photoperiod-sensitive traditional and improved rice varieties should not be grown up to the distance of 80 and 100 m, respectively from the boundary wall of the flare pit. Modern weakly-photoperiod sensitive varieties like Ranjti and Mahsuri can be grown 40 m away from the wall while modern photoperiod insensitive variety like Jaya, can be cultivated 20 m away from the wall without significant loss in yield. PMID:23029930

  14. How resilient are African woodlands to disturbance from shifting cultivation?

    PubMed

    McNicol, Iain M; Ryan, Casey M; Williams, Mathew

    2015-12-01

    Large parts of sub-Saharan Africa are experiencing rapid changes in land use and land cover, driven largely by the expansion of small-scale shifting cultivation. This practice creates complex mosaic landscapes with active agricultural fields and patches of mature woodland, interspersed with remnant patches in various stages of regrowth. Our objective here was to examine the rate and extent to which carbon stocks in trees and soils recover after cultivation, and detail how this disturbance and regrowth affect patterns in tree species composition and diversity over 40 years of succession in a miombo woodland landscape in southeast Tanzania. We sampled 67 areas, including plots previously cleared for cultivation, active fields, and mature woodlands for reference purposes. Sites were further stratified by soil texture to test for associated effects. Tree carbon stocks accumulated at an average rate of 0.83 ± 0.10 Mg C x ha(-1) x yr(-1), with soil texture having no clear impact on accumulation rates. Bulk soil carbon stocks on both soil types appeared unaffected by both the initial land clearance and the subsequent regrowth, which resulted in no significant changes over time. Tree species diversity in regrowing plots developed rapidly and within -10 years was equivalent to that of mature woodland. Many of the species found in mature woodlands reappeared relatively quickly after abandonment, although species composition is expected to take considerably longer to recover, with at least 60-80 years required for the compositional similarity between regrowing and mature woodlands to reach levels similar to that among nearby mature woodlands. Through impacts on β-diversity, disturbance was also found to increase the total number of tree species present in the landscape, with many of the recorded species only found in regrowing woodlands. Our results are of relevance to carbon sequestration projects by helping to inform the potential future carbon and biodiversity benefits

  15. How resilient are African woodlands to disturbance from shifting cultivation?

    PubMed

    McNicol, Iain M; Ryan, Casey M; Williams, Mathew

    2015-12-01

    Large parts of sub-Saharan Africa are experiencing rapid changes in land use and land cover, driven largely by the expansion of small-scale shifting cultivation. This practice creates complex mosaic landscapes with active agricultural fields and patches of mature woodland, interspersed with remnant patches in various stages of regrowth. Our objective here was to examine the rate and extent to which carbon stocks in trees and soils recover after cultivation, and detail how this disturbance and regrowth affect patterns in tree species composition and diversity over 40 years of succession in a miombo woodland landscape in southeast Tanzania. We sampled 67 areas, including plots previously cleared for cultivation, active fields, and mature woodlands for reference purposes. Sites were further stratified by soil texture to test for associated effects. Tree carbon stocks accumulated at an average rate of 0.83 ± 0.10 Mg C x ha(-1) x yr(-1), with soil texture having no clear impact on accumulation rates. Bulk soil carbon stocks on both soil types appeared unaffected by both the initial land clearance and the subsequent regrowth, which resulted in no significant changes over time. Tree species diversity in regrowing plots developed rapidly and within -10 years was equivalent to that of mature woodland. Many of the species found in mature woodlands reappeared relatively quickly after abandonment, although species composition is expected to take considerably longer to recover, with at least 60-80 years required for the compositional similarity between regrowing and mature woodlands to reach levels similar to that among nearby mature woodlands. Through impacts on β-diversity, disturbance was also found to increase the total number of tree species present in the landscape, with many of the recorded species only found in regrowing woodlands. Our results are of relevance to carbon sequestration projects by helping to inform the potential future carbon and biodiversity benefits

  16. Effect of industrial by-products containing electron acceptors on mitigating methane emission during rice cultivation

    SciTech Connect

    Ali, Muhammad Aslam; Lee, Chang Hoon; Kim, Sang Yoon; Kim, Pil Joo

    2009-10-15

    Three industrial by-products (fly ash, phosphogypsum and blast furnace slag), were evaluated for their potential re-use as soil amendments to reduce methane (CH{sub 4}) emission resulting from rice cultivation. In laboratory incubations, CH{sub 4} production rates from anoxic soil slurries were significantly reduced at amendment levels of 0.5%, 1%, 2% and 5% (wt wt{sup -1}), while observed CO{sub 2} production rates were enhanced. The level of suppression in methane production was the highest for phosphogypsum, followed by blast slag and then fly ash. In the greenhouse experiment, CH{sub 4} emission rates from the rice planted potted soils significantly decreased with the increasing levels (2-20 Mg ha{sup -1}) of the selected amendments applied, while rice yield simultaneously increased compared to the control treatment. At 10 Mg ha{sup -1} application level of the amendments, total seasonal CH{sub 4} emissions were reduced by 20%, 27% and 25%, while rice grain yields were increased by 17%, 15% and 23% over the control with fly ash, phosphogypsum, and blast slag amendments, respectively. The suppression of CH{sub 4} production rates as well as total seasonal CH{sub 4} flux could be due to the increased concentrations of active iron, free iron, manganese oxides, and sulfate in the amended soil, which acted as electron acceptors and controlled methanogens' activity by limiting substrates availability. Among the amendments, blast furnace slag and fly ash contributed mainly to improve the soil nutrients balance and increased the soil pH level towards neutral point, but soil acidity was developed with phosphogypsum application. Conclusively, blast slag among the selected amendments would be a suitable soil amendment for reducing CH{sub 4} emissions as well as sustaining rice productivity.

  17. Effect of industrial by-products containing electron acceptors on mitigating methane emission during rice cultivation.

    PubMed

    Ali, Muhammad Aslam; Lee, Chang Hoon; Kim, Sang Yoon; Kim, Pil Joo

    2009-10-01

    Three industrial by-products (fly ash, phosphogypsum and blast furnace slag), were evaluated for their potential re-use as soil amendments to reduce methane (CH(4)) emission resulting from rice cultivation. In laboratory incubations, CH(4) production rates from anoxic soil slurries were significantly reduced at amendment levels of 0.5%, 1%, 2% and 5% (wt wt(-1)), while observed CO(2) production rates were enhanced. The level of suppression in methane production was the highest for phosphogypsum, followed by blast slag and then fly ash. In the greenhouse experiment, CH(4) emission rates from the rice planted potted soils significantly decreased with the increasing levels (2-20 Mg ha(-1)) of the selected amendments applied, while rice yield simultaneously increased compared to the control treatment. At 10 Mg ha(-1) application level of the amendments, total seasonal CH(4) emissions were reduced by 20%, 27% and 25%, while rice grain yields were increased by 17%, 15% and 23% over the control with fly ash, phosphogypsum, and blast slag amendments, respectively. The suppression of CH(4) production rates as well as total seasonal CH(4) flux could be due to the increased concentrations of active iron, free iron, manganese oxides, and sulfate in the amended soil, which acted as electron acceptors and controlled methanogens' activity by limiting substrates availability. Among the amendments, blast furnace slag and fly ash contributed mainly to improve the soil nutrients balance and increased the soil pH level towards neutral point, but soil acidity was developed with phosphogypsum application. Conclusively, blast slag among the selected amendments would be a suitable soil amendment for reducing CH(4) emissions as well as sustaining rice productivity.

  18. Evolutionary dynamics and structure of the rice blast resistance locus Pi-ta in wild, cultivated, and US weedy rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Pi-ta gene in rice has been used to control rice blast pathogen, Magnaporthe oryza, in rice growing areas worldwide for decades. To understand the evolutionary process and natural selection of Pi-ta during rice domestication, we first examined sequences of the genomic region of Pi-ta in geograph...

  19. Changes in carbon stability and microbial activity in size fractions of micro-aggregates in a rice soil chronosequence under long term rice cultivation

    NASA Astrophysics Data System (ADS)

    Pan, Genxing; Liu, Yalong; Wang, Ping; Li, Lianqinfg; Cheng, Kun; Zheng, Jufeng; Zhang, Xuhui; Zheng, Jinwei; Bian, Rongjun; Ding, Yuanjun; Ma, Chong

    2016-04-01

    Recent studies have shown soil carbon sequestration through physical protection of relative labile carbon intra micro-aggregates with formation of large sized macro-aggregates under good management of soil and agricultural systems. While carbon stabilization had been increasingly concerned as ecosystem properties, the mechanisms underspin bioactivity of soil carbon with increased carbon stability has been still poorly understood. In this study, topsoil samples were collected from rice soils derived from salt marsh under different length of rice cultivation up to 700 years from eastern China. Particle size fractions (PSF) of soil aggregates were separated using a low energy dispersion protocol. Carbon fractions in the PSFs were analyzed either with FTIR spectroscopy. Soil microbial community of bacterial, fungal and archaeal were analyzed with molecular fingerprinting using specific gene primers. Soil respiration and carbon gain from amended maize as well as enzyme activities were measured using lab incubation protocols. While the PSFs were dominated by the fine sand (200-20μm) and silt fraction (20-2μm), the mass proportion both of sand (2000-200μm) and clay (<2μm) fraction increased with prolonged rice cultivation, giving rise to an increasing trend of mean weight diameter of soil aggregates (also referred to aggregate stability). Soil organic carbon was found most enriched in coarse sand fraction (40-60g/kg), followed by the clay fraction (20-24.5g/kg), but depleted in the silt fraction (~10g/kg). Phenolic and aromatic carbon as recalcitrant pool were high (33-40% of total SOC) in both coarse sand and clay fractions than in both fine sand and silt fractions (20-29% of total SOC). However, the ratio of LOC/total SOC showed a weak decreasing trend with decreasing size of the aggregate fractions. Total gene content in the size fractions followed a similar trend to that of SOC. Bacterial and archaeal gene abundance was concentrated in both sand and clay fractions

  20. Allele Distributions at Hybrid Incompatibility Loci Facilitate the Potential for Gene Flow between Cultivated and Weedy Rice in the US

    PubMed Central

    Craig, Stephanie M.; Reagon, Michael; Resnick, Lauren E.; Caicedo, Ana L.

    2014-01-01

    The accumulation of independent mutations over time in two populations often leads to reproductive isolation. Reproductive isolation between diverging populations may be reinforced by barriers that occur either pre- or postzygotically. Hybrid sterility is the most common form of postzygotic isolation in plants. Four postzygotic sterility loci, comprising three hybrid sterility systems (Sa, s5, DPL), have been recently identified in Oryza sativa. These loci explain, in part, the limited hybridization that occurs between the domesticated cultivated rice varieties, O. sativa spp. japonica and O. sativa spp. indica. In the United States, cultivated fields of japonica rice are often invaded by conspecific weeds that have been shown to be of indica origin. Crop-weed hybrids have been identified in crop fields, but at low frequencies. Here we examined the possible role of these hybrid incompatibility loci in the interaction between cultivated and weedy rice. We identified a novel allele at Sa that seemingly prevents loss of fertility in hybrids. Additionally, we found wide-compatibility type alleles at strikingly high frequencies at the Sa and s5 loci in weed groups, and a general lack of incompatible alleles between crops and weeds at the DPL loci. Our results suggest that weedy individuals, particularly those of the SH and BRH groups, should be able to freely hybridize with the local japonica crop, and that prezygotic factors, such as differences in flowering time, have been more important in limiting weed-crop gene flow in the past. As the selective landscape for weedy rice changes due to increased use of herbicide resistant strains of cultivated rice, the genetic barriers that hinder indica-japonica hybridization cannot be counted on to limit the flow of favorable crop genes into weeds. PMID:24489758

  1. Identification of β-phenylalanine as a non-protein amino acid in cultivated rice, Oryza sativa.

    PubMed

    Yokoo, Takayuki; Takata, Ryo; Yan, Jian; Matsumoto, Fuka; Teraishi, Masayoshi; Okumoto, Yutaka; Jander, Georg; Mori, Naoki

    2015-01-01

    Non-protein amino acids, often analogs of the standard 20 protein amino acids, have been discovered in many plant species. Recent research with cultivated rice (Oryza sativa) identified (3R)-β-tyrosine, as well as a tyrosine amino mutase that synthesizes (3R)-β-tyrosine from the protein amino acid (2S)-α-tyrosine. Gas chromatography-mass spectrometry (GC-MS) assays and comparison to an authentic standard showed that β-phenylalanine is also a relatively abundant non-protein amino acid in rice leaves and that its biosynthesis occurs independently from that of β-tyrosine.

  2. Identification of β-phenylalanine as a non-protein amino acid in cultivated rice, Oryza sativa

    PubMed Central

    Yokoo, Takayuki; Takata, Ryo; Yan, Jian; Matsumoto, Fuka; Teraishi, Masayoshi; Okumoto, Yutaka; Jander, Georg; Mori, Naoki

    2015-01-01

    Non-protein amino acids, often analogs of the standard 20 protein amino acids, have been discovered in many plant species. Recent research with cultivated rice (Oryza sativa) identified (3R)-β-tyrosine, as well as a tyrosine amino mutase that synthesizes (3R)-β-tyrosine from the protein amino acid (2S)-α-tyrosine. Gas chromatography-mass spectrometry (GC-MS) assays and comparison to an authentic standard showed that β-phenylalanine is also a relatively abundant non-protein amino acid in rice leaves and that its biosynthesis occurs independently from that of β-tyrosine. PMID:27066169

  3. Satellite-based investigation of flood-affected rice cultivation areas in Chao Phraya River Delta, Thailand

    NASA Astrophysics Data System (ADS)

    Son, N. T.; Chen, C. F.; Chen, C. R.; Chang, L. Y.

    2013-12-01

    The occurrence of catastrophic floods in Thailand in 2011 caused significant damage to rice agriculture. This study investigated flood-affected rice cultivation areas in the Chao Phraya River Delta (CRD) rice bowl, Thailand using time-series moderate resolution imaging spectroradiometer (MODIS) data. The data were processed for 2008 (normal flood year) and 2011, comprising four main steps: (1) data pre-processing to construct time-series MODIS vegetation indices (VIs), to filter noise from the time-series VIs by the empirical mode decomposition (EMD), and to mask out non-agricultural areas in respect to water-related cropping areas; (2) flood-affected area classification using the unsupervised linear mixture model (ULMM); (3) rice crop classification using the support vector machines (SVM); and (4) accuracy assessment of flood and rice crop mapping results. The comparisons between the flood mapping results and the ground reference data indicated an overall accuracy of 97.9% and Kappa coefficient of 0.62 achieved for 2008, and 95.7% and 0.77 for 2011, respectively. These results were reaffirmed by close agreement (R2 > 0.8) between comparisons of the two datasets at the provincial level. The crop mapping results compared with the ground reference data revealed that the overall accuracies and Kappa coefficients obtained for 2008 were 88.5% and 0.82, and for 2011 were 84.1% and 0.76, respectively. A strong correlation was also found between MODIS-derived rice area and rice area statistics at the provincial level (R2 > 0.7). Rice crop maps overlaid on the flood-affected area maps showed that approximately 16.8% of the rice cultivation area was affected by floods in 2011 compared to 4.9% in 2008. A majority of the flood-expanded area was observed for the double-cropped rice (10.5%), probably due to flood-induced effects to the autumn-summer and rainy season crops. Information achieved from this study could be useful for agricultural planners to mitigate possible impacts

  4. Structure of clusters and building blocks in amylopectin from African rice accessions.

    PubMed

    Gayin, Joseph; Abdel-Aal, El-Sayed M; Marcone, Massimo; Manful, John; Bertoft, Eric

    2016-09-01

    Enzymatic hydrolysis in combination with gel-permeation and anion-exchange chromatography techniques were employed to characterise the composition of clusters and building blocks of amylopectin from two African rice (Oryza glaberrima) accessions-IRGC 103759 and TOG 12440. The samples were compared with one Asian rice (Oryza sativa) sample (cv WITA 4) and one O. sativa×O. glaberrima cross (NERICA 4). The average DP of clusters from the African rice accessions (ARAs) was marginally larger (DP=83) than in WITA 4 (DP=81). However, regarding average number of chains, clusters from the ARAs represented both the smallest and largest clusters. Overall, the result suggested that the structure of clusters in TOG 12440 was dense with short chains and high degree of branching, whereas the situation was the opposite in NERICA 4. IRGC 103759 and WITA 4 possessed clusters with intermediate characteristics. The commonest type of building blocks in all samples was group 2 (single branched dextrins) representing 40.3-49.4% of the blocks, while groups 3-6 were found in successively lower numbers. The average number of building blocks in the clusters was significantly larger in NERICA 4 (5.8) and WITA 4 (5.7) than in IRGC 103759 and TOG 12440 (5.1 and 5.3, respectively). PMID:27185123

  5. Chromosome Segment Substitution Lines: A Powerful Tool for the Introgression of Valuable Genes from Oryza Wild Species into Cultivated Rice (O. sativa)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wild species of rice (genus Oryza) contain many useful genes but a vast majority of these genes remain untapped to date because it is often difficult to transfer these genes into cultivated rice (O. sativa L.). Chromosome segment substitution lines (CSSLs) and backcross inbred lines (BILs) are power...

  6. QTL Mapping in Three Rice Populations Uncovers Major Genomic Regions Associated with African Rice Gall Midge Resistance.

    PubMed

    Yao, Nasser; Lee, Cheng-Ruei; Semagn, Kassa; Sow, Mounirou; Nwilene, Francis; Kolade, Olufisayo; Bocco, Roland; Oyetunji, Olumoye; Mitchell-Olds, Thomas; Ndjiondjop, Marie-Noëlle

    2016-01-01

    African rice gall midge (AfRGM) is one of the most destructive pests of irrigated and lowland African ecologies. This study aimed to identify the quantitative trait loci (QTL) associated with AfRGM pest incidence and resistance in three independent bi-parental rice populations (ITA306xBW348-1, ITA306xTOG7106 and ITA306xTOS14519), and to conduct meta QTL (mQTL) analysis to explore whether any genomic regions are conserved across different genetic backgrounds. Composite interval mapping (CIM) conducted on the three populations independently uncovered a total of 28 QTLs associated with pest incidence (12) and pest severity (16). The number of QTLs per population associated with AfRGM resistance varied from three in the ITA306xBW348-1 population to eight in the ITA306xTOG7106 population. Each QTL individually explained 1.3 to 34.1% of the phenotypic variance. The major genomic region for AfRGM resistance had a LOD score and R2 of 60.0 and 34.1% respectively, and mapped at 111 cM on chromosome 4 (qAfrGM4) in the ITA306xTOS14519 population. The meta-analysis reduced the number of QTLs from 28 to 17 mQTLs, each explaining 1.3 to 24.5% of phenotypic variance, and narrowed the confidence intervals by 2.2 cM. There was only one minor effect mQTL on chromosome 1 that was common in the TOS14519 and TOG7106 genetic backgrounds; all other mQTLs were background specific. We are currently fine-mapping and validating the major effect genomic region on chromosome 4 (qAfRGM4). This is the first report in mapping the genomic regions associated with the AfRGM resistance, and will be highly useful for rice breeders. PMID:27508500

  7. QTL Mapping in Three Rice Populations Uncovers Major Genomic Regions Associated with African Rice Gall Midge Resistance

    PubMed Central

    Semagn, Kassa; Sow, Mounirou; Nwilene, Francis; Kolade, Olufisayo; Bocco, Roland; Oyetunji, Olumoye; Mitchell-Olds, Thomas; Ndjiondjop, Marie-Noëlle

    2016-01-01

    African rice gall midge (AfRGM) is one of the most destructive pests of irrigated and lowland African ecologies. This study aimed to identify the quantitative trait loci (QTL) associated with AfRGM pest incidence and resistance in three independent bi-parental rice populations (ITA306xBW348-1, ITA306xTOG7106 and ITA306xTOS14519), and to conduct meta QTL (mQTL) analysis to explore whether any genomic regions are conserved across different genetic backgrounds. Composite interval mapping (CIM) conducted on the three populations independently uncovered a total of 28 QTLs associated with pest incidence (12) and pest severity (16). The number of QTLs per population associated with AfRGM resistance varied from three in the ITA306xBW348-1 population to eight in the ITA306xTOG7106 population. Each QTL individually explained 1.3 to 34.1% of the phenotypic variance. The major genomic region for AfRGM resistance had a LOD score and R2 of 60.0 and 34.1% respectively, and mapped at 111 cM on chromosome 4 (qAfrGM4) in the ITA306xTOS14519 population. The meta-analysis reduced the number of QTLs from 28 to 17 mQTLs, each explaining 1.3 to 24.5% of phenotypic variance, and narrowed the confidence intervals by 2.2 cM. There was only one minor effect mQTL on chromosome 1 that was common in the TOS14519 and TOG7106 genetic backgrounds; all other mQTLs were background specific. We are currently fine-mapping and validating the major effect genomic region on chromosome 4 (qAfRGM4). This is the first report in mapping the genomic regions associated with the AfRGM resistance, and will be highly useful for rice breeders. PMID:27508500

  8. Enhancement of recombinant human serum albumin in transgenic rice cell culture system by cultivation strategy.

    PubMed

    Liu, Yu-Kuo; Li, Yu-Teng; Lu, Ching-Fan; Huang, Li-Fen

    2015-05-25

    Fusion of the sugar-starvation-induced αAmy3 promoter with its signal peptide has enabled secretion of recombinant human serum albumin (rHSA) into the culture medium. To simplify the production process and increase the rHSA yield in rice suspension cells, a one-step strategem without medium change was adopted. The yield of rHSA was increased sixfold by this one-step approach compared with the two-step recombinant protein process, in which a change of the culture medium to sugar-free medium is required. The one-step strategem was applied to check repeated cycle of rHSA production, and the production of rHSA was also higher in each cycle in the one-step, as opposed to the two-step, production process. The use of the one-step process resulted in fewer damaged cells during the cell sugar starvation phase for recombinant protein production. Furthermore, we scaled up the rHSA production in a 2-L airlift and a 2-L stirred tank bioreactor by the one-step approach, and concluded that rHSA can be enriched to 45 mg L(-1) in plant culture commonly used MS medium by the airlift-type bioreactor. Our results suggest that rHSA production can be enriched by this optimized cultivation strategem. PMID:25765580

  9. Comparisons of mutation rate variation at genome-wide microsatellites: evolutionary insights from two cultivated rice and their wild relatives

    PubMed Central

    2008-01-01

    Background Mutation rate (μ) per generation per locus is an important parameter in the models of population genetics. Studies on mutation rate and its variation are of significance to elucidate the extent and distribution of genetic variation, further infer evolutionary relationships among closely related species, and deeply understand genetic variation of genomes. However, patterns of rate variation of microsatellite loci are still poorly understood in plant species. Furthermore, how their mutation rates vary in di-, tri-, and tetra-nucleotide repeats within the species is largely uninvestigated across related plant genomes. Results Genome-wide variation of mutation rates was first investigated by means of the composite population parameter θ (θ = 4Nμ, where N is the effective population size and μ is the mutation rate per locus per generation) in four subspecies of Asian cultivated rice O. sativa and its three related species, O. rufipogon, O. glaberrima, and O. officinalis. On the basis of three data sets of microsatellite allele frequencies throughout the genome, population mutation rate (θ) was estimated for each locus. Our results reveal that the variation of population mutation rates at microsatellites within each studied species or subspecies of cultivated rice can be approximated with a gamma distribution. The mean population mutation rates of microsatellites do not significantly differ in motifs of di-, tri-, and tetra-nucleotide repeats for the studied rice species. The shape parameter was also estimated for each subspecies of rice as well as other related rice species. Of them, different subspecies of O. sativa possesses similar shape parameters (α) of the gamma distribution, while other species extensively vary in their population mutation rates. Conclusion Through the analysis of genome-wide microsatellite data, the population mutation rate can be approximately fitted with a gamma distribution in most of the studied species. In general

  10. Analysis of Stress-Responsive Gene Expression in Cultivated and Weedy Rice Differing in Cold Stress Tolerance

    PubMed Central

    Pereira, Andy; Tseng, Te-Ming; Zimmer, Paulo Dejalma; Burgos, Nilda Roma

    2015-01-01

    Rice (Oryza sativa L.) cultivars show impairment of growth in response to environmental stresses such as cold at the early seedling stage. Locally adapted weedy rice is able to survive under adverse environmental conditions, and can emerge in fields from greater soil depth. Cold-tolerant weedy rice can be a good genetic source for developing cold-tolerant, weed-competitive rice cultivars. An in-depth analysis is presented here of diverse indica and japonica rice genotypes, mostly weedy rice, for cold stress response to provide an understanding of different stress adaptive mechanisms towards improvement of the rice crop performance in the field. We have tested a collection of weedy rice genotypes to: 1) classify the subspecies (ssp.) grouping (japonica or indica) of 21 accessions; 2) evaluate their sensitivity to cold stress; and 3) analyze the expression of stress-responsive genes under cold stress and a combination of cold and depth stress. Seeds were germinated at 25°C at 1.5- and 10-cm sowing depth for 10d. Seedlings were then exposed to cold stress at 10°C for 6, 24 and 96h, and the expression of cold-, anoxia-, and submergence-inducible genes was analyzed. Control plants were seeded at 1.5cm depth and kept at 25°C. The analysis revealed that cold stress signaling in indica genotypes is more complex than that of japonica as it operates via both the CBF-dependent and CBF-independent pathways, implicated through induction of transcription factors including OsNAC2, OsMYB46 and OsF-BOX28. When plants were exposed to cold + sowing depth stress, a complex signaling network was induced that involved cross talk between stresses mediated by CBF-dependent and CBF-independent pathways to circumvent the detrimental effects of stresses. The experiments revealed the importance of the CBF regulon for tolerance to both stresses in japonica and indica ssp. The mechanisms for cold tolerance differed among weedy indica genotypes and also between weedy indica and cultivated

  11. Suitability assessment and mapping of Oyo State, Nigeria, for rice cultivation using GIS

    NASA Astrophysics Data System (ADS)

    Ayoade, Modupe Alake

    2016-07-01

    Rice is one of the most preferred food crops in Nigeria. However, local rice production has declined with the oil boom of the 1970s causing demand to outstrip supply. Rice production can be increased through the integration of Geographic Information Systems (GIS) and crop-land suitability analysis and mapping. Based on the key predictor variables that determine rice yield mentioned in relevant literature, data on rainfall, temperature, relative humidity, slope, and soil of Oyo state were obtained. To develop rice suitability maps for the state, two MCE-GIS techniques, namely the Overlay approach and weighted linear combination (WLC), using fuzzy AHP were used and compared. A Boolean land use map derived from a landsat imagery was used in masking out areas currently unavailable for rice production. Both suitability maps were classified into four categories of very suitable, suitable, moderate, and fairly moderate. Although the maps differ slightly, the overlay and WLC (AHP) approach found most parts of Oyo state (51.79 and 82.9 % respectively) to be moderately suitable for rice production. However, in areas like Eruwa, Oyo, and Shaki, rainfall amount received needs to be supplemented by irrigation for increased rice yield.

  12. Natural herbicide resistance (HR) to broad-spectrum herbicide, glyphosate among traditional and inbred-cultivated rice (Oryza sativa L.) varieties in Sri Lanka.

    PubMed

    Weerakoon, S R; Somaratne, S; Wijeratne, R G D; Ekanyaka, E M S I

    2013-08-15

    Weeds along with insect pests and plant diseases are sources of biotic stress in crop systems. Weeds are responsible for serious problems in rice worldwide affecting growth and causing a considerable reduction in quality and quantity in yield. High concentrations of pre-emergent-broad-spectrum systemic herbicide, Glyphosate is prevalently applied to control rice weeds which intern causes severe damages to cultivated rice varieties, susceptible to Glyphosate. However, there may be rice varieties with natural Herbicide Resistance (HR) which are so far, has not been evaluated. In this study Six traditional and eighteen developed-cultivated rice varieties (Bg, Bw, At and Ld series developed by Rice Research Development Institute, Sri Lanka) were used to screen their natural HR. RCBD with five replicates and three blocks in each treatment-combination was used as the experimental design. As observations, time taken-to seed germination, time taken to flowering; plant height and number of leaves at 12-weeks after sawing, leaf-length, breadth, panicle-length, number of seeds/panicle of resistant plants and controls were recorded. Plants with > or = 40% resistance were considered as resistant to Glyphosate. Ten inbred-cultivated rice varieties (Bg250, Bg94-1, Bg304, Bg359, Bg406, Bg379-2, Bg366, Bg300, Bw364, At362) and three traditional rice varieties ("Kalu Heenati", "Sudu Heenati", "Pachchaperumal") were naturally resistant to 0.25 g L(-1) Glyphosate concentration and when increased the concentration (0.5 g L(-1)) resistance was reduced. This study showed the usefulness of modern statistical method, classification and regression tree analysis (CART) in exploring and visualizing the patterns reflected by a large number of rice varieties (larger experimental database) on herbicide resistance in future.

  13. Natural herbicide resistance (HR) to broad-spectrum herbicide, glyphosate among traditional and inbred-cultivated rice (Oryza sativa L.) varieties in Sri Lanka.

    PubMed

    Weerakoon, S R; Somaratne, S; Wijeratne, R G D; Ekanyaka, E M S I

    2013-08-15

    Weeds along with insect pests and plant diseases are sources of biotic stress in crop systems. Weeds are responsible for serious problems in rice worldwide affecting growth and causing a considerable reduction in quality and quantity in yield. High concentrations of pre-emergent-broad-spectrum systemic herbicide, Glyphosate is prevalently applied to control rice weeds which intern causes severe damages to cultivated rice varieties, susceptible to Glyphosate. However, there may be rice varieties with natural Herbicide Resistance (HR) which are so far, has not been evaluated. In this study Six traditional and eighteen developed-cultivated rice varieties (Bg, Bw, At and Ld series developed by Rice Research Development Institute, Sri Lanka) were used to screen their natural HR. RCBD with five replicates and three blocks in each treatment-combination was used as the experimental design. As observations, time taken-to seed germination, time taken to flowering; plant height and number of leaves at 12-weeks after sawing, leaf-length, breadth, panicle-length, number of seeds/panicle of resistant plants and controls were recorded. Plants with > or = 40% resistance were considered as resistant to Glyphosate. Ten inbred-cultivated rice varieties (Bg250, Bg94-1, Bg304, Bg359, Bg406, Bg379-2, Bg366, Bg300, Bw364, At362) and three traditional rice varieties ("Kalu Heenati", "Sudu Heenati", "Pachchaperumal") were naturally resistant to 0.25 g L(-1) Glyphosate concentration and when increased the concentration (0.5 g L(-1)) resistance was reduced. This study showed the usefulness of modern statistical method, classification and regression tree analysis (CART) in exploring and visualizing the patterns reflected by a large number of rice varieties (larger experimental database) on herbicide resistance in future. PMID:24498832

  14. Formation of Guaiacol by Spoilage Bacteria from Vanillic Acid, a Product of Rice Koji Cultivation, in Japanese Sake Brewing.

    PubMed

    Ito, Toshihiko; Konno, Mahito; Shimura, Yoichiro; Watanabe, Seiei; Takahashi, Hitoshi; Hashizume, Katsumi

    2016-06-01

    The formation of guaiacol, a potent phenolic off-odor compound in the Japanese sake brewing process, was investigated. Eight rice koji samples were analyzed, and one contained guaiacol and 4-vinylguaiacol (4-VG) at extraordinarily high levels: 374 and 2433 μg/kg dry mass koji, respectively. All samples contained ferulic and vanillic acids at concentrations of mg/kg dry mass koji. Guaiacol forming microorganisms were isolated from four rice koji samples. They were identified as Bacillus subtilis, B. amyloliquefaciens/subtilis, and Staphylococcus gallinarum using 16S rRNA gene sequence. These spoilage bacteria convert vanillic acid to guaiacol and ferulic acid to 4-VG. However, they convert very little ferulic acid or 4-VG to guaiacol. Nine strains of koji fungi tested produced vanillic acid at the mg/kg dry mass koji level after cultivation. These results indicated that spoilage bacteria form guaiacol from vanillic acid, which is a product of koji cultivation in the sake brewing process. PMID:27181257

  15. Whole genome sequencing and analysis of Swarna, a widely cultivated indica rice variety with low glycemic index

    PubMed Central

    Rathinasabapathi, Pasupathi; Purushothaman, Natarajan; VL, Ramprasad; Parani, Madasamy

    2015-01-01

    Swarna is a popular cultivated indica rice variety with low glycemic index (GI) but its genetic basis is not known. The whole genome of Swarna was sequenced using Illumina’s paired-end technology, and the reads were mapped to the Nipponbare reference genome. Overall, 65,984 non-synonymous SNPs were identified in 20,350 genes, and in silico analysis predicted that 4,847 of them in 2,214 genes may have deleterious effect on protein functions. Polymorphisms were found in all the starch biosynthesis genes, except the gene for branching enzyme IIa. It was found that T/G SNP at position 246, ‘A’ at position 2,386, and ‘C’ at position 3,378 in the granule bound starch synthase I gene, and C/T SNP at position 1,188 in the glucose-6-phosphate translocator gene may contribute to the low GI phenotype in Swarna. All these variants were also found in the genome of another low GI indica rice variety from Columbia, Fedearroz 50. The whole genome analysis of Swarna helped to understand the genetic basis of GI in rice, which is a complex trait involving multiple factors. PMID:26068787

  16. Greenhouse gas emissions, soil quality, and crop productivity from a mono-rice cultivation system as influenced by fallow season straw management.

    PubMed

    Liu, Wei; Hussain, Saddam; Wu, Lishu; Qin, Ziguo; Li, Xiaokun; Lu, Jianwei; Khan, Fahad; Cao, Weidong; Geng, Mingjian

    2016-01-01

    Straw management during fallow season may influence crop productivity, soil quality, and greenhouse gas (GHG) emissions from rice field. A 3-year field experiment was carried out in central China to examine the influence of different fallow season straw management practices on rice yield, soil properties, and emissions of methane (CH4) and nitrous oxide (N2O) from a mono-rice cultivation system. The treatments comprised an unfertilized control (CK), inorganic fertilization (NPK), rice straw burning in situ (NPK + RSB), rice straw mulching (NPK + RSM), and rice straw strip mulching with green manuring (NPK + RSM + GM). The maximum rice yield, soil organic carbon, soil total nitrogen, and available potassium were observed in NPK + RSM + GM treatment. Compared with NPK, the NPK + RSM + GM recorded 9% higher grain yield averaged across 3 years. However, NPK + RSM and NPK + RSB were statistically similar with NPK regarding grain yield. The NPK + RSM and NPK + RSM + GM recorded significantly higher CH4 emission during rice growing season as well as winter fallow; however, the response of N2O emissions was variable. The NPK + RSM and NPK + RSM + GM were statistically similar for annual cumulative CH4 and N2O emissions. The NPK + RSM + GM recorded 103 and 72% higher straw-induced net economic benefits and soil organic carbon sequestration rate, and reduced net global warming potential by 27% as compared with NPK + RSM. Considering the benefits of soil fertility, higher crop productivity, and environmental safety, the NPK + RSM + GM could be the most feasible and sustainable option for mono-rice cultivation system in central China.

  17. Greenhouse gas emissions, soil quality, and crop productivity from a mono-rice cultivation system as influenced by fallow season straw management.

    PubMed

    Liu, Wei; Hussain, Saddam; Wu, Lishu; Qin, Ziguo; Li, Xiaokun; Lu, Jianwei; Khan, Fahad; Cao, Weidong; Geng, Mingjian

    2016-01-01

    Straw management during fallow season may influence crop productivity, soil quality, and greenhouse gas (GHG) emissions from rice field. A 3-year field experiment was carried out in central China to examine the influence of different fallow season straw management practices on rice yield, soil properties, and emissions of methane (CH4) and nitrous oxide (N2O) from a mono-rice cultivation system. The treatments comprised an unfertilized control (CK), inorganic fertilization (NPK), rice straw burning in situ (NPK + RSB), rice straw mulching (NPK + RSM), and rice straw strip mulching with green manuring (NPK + RSM + GM). The maximum rice yield, soil organic carbon, soil total nitrogen, and available potassium were observed in NPK + RSM + GM treatment. Compared with NPK, the NPK + RSM + GM recorded 9% higher grain yield averaged across 3 years. However, NPK + RSM and NPK + RSB were statistically similar with NPK regarding grain yield. The NPK + RSM and NPK + RSM + GM recorded significantly higher CH4 emission during rice growing season as well as winter fallow; however, the response of N2O emissions was variable. The NPK + RSM and NPK + RSM + GM were statistically similar for annual cumulative CH4 and N2O emissions. The NPK + RSM + GM recorded 103 and 72% higher straw-induced net economic benefits and soil organic carbon sequestration rate, and reduced net global warming potential by 27% as compared with NPK + RSM. Considering the benefits of soil fertility, higher crop productivity, and environmental safety, the NPK + RSM + GM could be the most feasible and sustainable option for mono-rice cultivation system in central China. PMID:26304808

  18. Utilization of composted sugar industry waste (pressmud) to improve properties of sodic soil for rice cultivation.

    PubMed

    Seth, Rashi; Chandra, R; Kumar, Narendra; Tyagi, A K

    2005-07-01

    Sulphitation pressmud (SPM) and its composts were prepared by heap, pit, NADEP and vermicomposting methods and their effects were compared with soil properties and growth, yield and nutrient uptake by rice in a sodic soil under pot conditions. Application of 15 t ha(-1) SPM and its different composts significantly increased the plant height and dry matter accumulation at different intervals, grain and straw yields and N, P and K uptake by the crop over the control. NADEP compost of SPM alone recorded the maximum and significant plant height by 8.5 to 19.3% and plant dry matter by 14.6 to 32.8% over the raw SPM at different intervals. NADEP composts of SPM alone and SPM + rice straw were also found to be superior than raw SPM by recording 34.8 and 27.8% more grain yield respectively. The SPM composts prepared by NADEP and SPM by vermicomposting methods significantly accumulated higher N and K in rice grains and straw, while NADEP compost of SPM and SPM + rice straw recorded more P in grains and straw than raw SPM. Application of SPM and its composts reduced the pH, EC and bulk density of the soil after rice harvesting, though the reductions were not significant in comparison to the control. However, these treatments increased the soil organic C by 33.33 to 69.0%, available N by 41.4 to 74.8%, available P by 47.1 to 97.8%, available K by 11.8 to 59.2% and available S by 10.3 to 90.7% over the control. NADEP composts, in general, were found to be superior than the raw SPM and other composts in residual soil nutrient content after rice crop.

  19. Population Genetic Structure of Cochliobolus miyabeanus on Cultivated Wild Rice (Zizania palustris L.) in Minnesota

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cochliobolus miyabeanus (Bipolaris oryzae) is the causal agent of fungal brown spot (FBS) in wild rice (Zizania palustris L.), an aquatic grass, endemic in Minnesota, Wisconsin, and parts of Canada. Grain yield losses can reach up to 74% when the disease starts at the boot stage and continues until ...

  20. Eliminating aluminum toxicity in an acid sulfate soil for rice cultivation using plant growth promoting bacteria.

    PubMed

    Panhwar, Qurban Ali; Naher, Umme Aminun; Radziah, Othman; Shamshuddin, Jusop; Razi, Ismail Mohd

    2015-01-01

    Aluminum toxicity is widely considered as the most important limiting factor for plants growing in acid sulfate soils. A study was conducted in laboratory and in field to ameliorate Al toxicity using plant growth promoting bacteria (PGPB), ground magnesium limestone (GML) and ground basalt. Five-day-old rice seedlings were inoculated by Bacillus sp., Stenotrophomonas maltophila, Burkholderia thailandensis and Burkholderia seminalis and grown for 21 days in Hoagland solution (pH 4.0) at various Al concentrations (0, 50 and 100 μM). Toxicity symptoms in root and leaf were studied using scanning electron microscope. In the field, biofertilizer (PGPB), GML and basalt were applied (4 t·ha-1 each). Results showed that Al severely affected the growth of rice. At high concentrations, the root surface was ruptured, leading to cell collapse; however, no damages were observed in the PGPB inoculated seedlings. After 21 days of inoculation, solution pH increased to >6.0, while the control treatment remained same. Field study showed that the highest rice growth and yield were obtained in the bio-fertilizer and GML treatments. This study showed that Al toxicity was reduced by PGPB via production of organic acids that were able to chelate the Al and the production of polysaccharides that increased solution pH. The release of phytohormones further enhanced rice growth that resulted in yield increase. PMID:25710843

  1. Convergent Loss of Awn in Two Cultivated Rice Species Oryza sativa and Oryza glaberrima Is Caused by Mutations in Different Loci.

    PubMed

    Furuta, Tomoyuki; Komeda, Norio; Asano, Kenji; Uehara, Kanako; Gamuyao, Rico; Angeles-Shim, Rosalyn B; Nagai, Keisuke; Doi, Kazuyuki; Wang, Diane R; Yasui, Hideshi; Yoshimura, Atsushi; Wu, Jianzhong; McCouch, Susan R; Ashikari, Motoyuki

    2015-09-02

    A long awn is one of the distinct morphological features of wild rice species. This organ is thought to aid in seed dispersal and prevent predation by animals. Most cultivated varieties of Oryza sativa and Oryza glaberrima, however, have lost the ability to form long awns. The causal genetic factors responsible for the loss of awn in these two rice species remain largely unknown. Here, we evaluated three sets of chromosome segment substitution lines (CSSLs) in a common O. sativa genetic background (cv. Koshihikari) that harbor genomic fragments from Oryza nivara, Oryza rufipogon, and Oryza glaberrima donors. Phenotypic analyses of these libraries revealed the existence of three genes, Regulator of Awn Elongation 1 (RAE1), RAE2, and RAE3, involved in the loss of long awns in cultivated rice. Donor segments at two of these genes, RAE1 and RAE2, induced long awn formation in the CSSLs whereas an O. sativa segment at RAE3 induced long awn formation in O. glaberrima. These results suggest that the two cultivated rice species, O. sativa and O. glaberrima, have taken independent paths to become awnless.

  2. Long-term rice cultivation stabilizes soil organic carbon and promotes soil microbial activity in a salt marsh derived soil chronosequence

    PubMed Central

    Wang, Ping; Liu, Yalong; Li, Lianqing; Cheng, Kun; Zheng, Jufeng; Zhang, Xuhui; Zheng, Jinwei; Joseph, Stephen; Pan, Genxing

    2015-01-01

    Soil organic carbon (SOC) sequestration with enhanced stable carbon storage has been widely accepted as a very important ecosystem property. Yet, the link between carbon stability and bio-activity for ecosystem functioning with OC accumulation in field soils has not been characterized. We assessed the changes in microbial activity versus carbon stability along a paddy soil chronosequence shifting from salt marsh in East China. We used mean weight diameter, normalized enzyme activity (NEA) and carbon gain from straw amendment for addressing soil aggregation, microbial biochemical activity and potential C sequestration, respectively. In addition, a response ratio was employed to infer the changes in all analyzed parameters with prolonged rice cultivation. While stable carbon pools varied with total SOC accumulation, soil respiration and both bacterial and fungal diversity were relatively constant in the rice soils. Bacterial abundance and NEA were positively but highly correlated to total SOC accumulation, indicating an enhanced bio-activity with carbon stabilization. This could be linked to an enhancement of particulate organic carbon pool due to physical protection with enhanced soil aggregation in the rice soils under long-term rice cultivation. However, the mechanism underpinning these changes should be explored in future studies in rice soils where dynamic redox conditions exist. PMID:26503629

  3. Long-term rice cultivation stabilizes soil organic carbon and promotes soil microbial activity in a salt marsh derived soil chronosequence.

    PubMed

    Wang, Ping; Liu, Yalong; Li, Lianqing; Cheng, Kun; Zheng, Jufeng; Zhang, Xuhui; Zheng, Jinwei; Joseph, Stephen; Pan, Genxing

    2015-10-27

    Soil organic carbon (SOC) sequestration with enhanced stable carbon storage has been widely accepted as a very important ecosystem property. Yet, the link between carbon stability and bio-activity for ecosystem functioning with OC accumulation in field soils has not been characterized. We assessed the changes in microbial activity versus carbon stability along a paddy soil chronosequence shifting from salt marsh in East China. We used mean weight diameter, normalized enzyme activity (NEA) and carbon gain from straw amendment for addressing soil aggregation, microbial biochemical activity and potential C sequestration, respectively. In addition, a response ratio was employed to infer the changes in all analyzed parameters with prolonged rice cultivation. While stable carbon pools varied with total SOC accumulation, soil respiration and both bacterial and fungal diversity were relatively constant in the rice soils. Bacterial abundance and NEA were positively but highly correlated to total SOC accumulation, indicating an enhanced bio-activity with carbon stabilization. This could be linked to an enhancement of particulate organic carbon pool due to physical protection with enhanced soil aggregation in the rice soils under long-term rice cultivation. However, the mechanism underpinning these changes should be explored in future studies in rice soils where dynamic redox conditions exist.

  4. Long-term rice cultivation stabilizes soil organic carbon and promotes soil microbial activity in a salt marsh derived soil chronosequence.

    PubMed

    Wang, Ping; Liu, Yalong; Li, Lianqing; Cheng, Kun; Zheng, Jufeng; Zhang, Xuhui; Zheng, Jinwei; Joseph, Stephen; Pan, Genxing

    2015-01-01

    Soil organic carbon (SOC) sequestration with enhanced stable carbon storage has been widely accepted as a very important ecosystem property. Yet, the link between carbon stability and bio-activity for ecosystem functioning with OC accumulation in field soils has not been characterized. We assessed the changes in microbial activity versus carbon stability along a paddy soil chronosequence shifting from salt marsh in East China. We used mean weight diameter, normalized enzyme activity (NEA) and carbon gain from straw amendment for addressing soil aggregation, microbial biochemical activity and potential C sequestration, respectively. In addition, a response ratio was employed to infer the changes in all analyzed parameters with prolonged rice cultivation. While stable carbon pools varied with total SOC accumulation, soil respiration and both bacterial and fungal diversity were relatively constant in the rice soils. Bacterial abundance and NEA were positively but highly correlated to total SOC accumulation, indicating an enhanced bio-activity with carbon stabilization. This could be linked to an enhancement of particulate organic carbon pool due to physical protection with enhanced soil aggregation in the rice soils under long-term rice cultivation. However, the mechanism underpinning these changes should be explored in future studies in rice soils where dynamic redox conditions exist. PMID:26503629

  5. Long-term rice cultivation stabilizes soil organic carbon and promotes soil microbial activity in a salt marsh derived soil chronosequence

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Liu, Yalong; Li, Lianqing; Cheng, Kun; Zheng, Jufeng; Zhang, Xuhui; Zheng, Jinwei; Joseph, Stephen; Pan, Genxing

    2015-10-01

    Soil organic carbon (SOC) sequestration with enhanced stable carbon storage has been widely accepted as a very important ecosystem property. Yet, the link between carbon stability and bio-activity for ecosystem functioning with OC accumulation in field soils has not been characterized. We assessed the changes in microbial activity versus carbon stability along a paddy soil chronosequence shifting from salt marsh in East China. We used mean weight diameter, normalized enzyme activity (NEA) and carbon gain from straw amendment for addressing soil aggregation, microbial biochemical activity and potential C sequestration, respectively. In addition, a response ratio was employed to infer the changes in all analyzed parameters with prolonged rice cultivation. While stable carbon pools varied with total SOC accumulation, soil respiration and both bacterial and fungal diversity were relatively constant in the rice soils. Bacterial abundance and NEA were positively but highly correlated to total SOC accumulation, indicating an enhanced bio-activity with carbon stabilization. This could be linked to an enhancement of particulate organic carbon pool due to physical protection with enhanced soil aggregation in the rice soils under long-term rice cultivation. However, the mechanism underpinning these changes should be explored in future studies in rice soils where dynamic redox conditions exist.

  6. Genome-Wide Analysis of Polycistronic MicroRNAs in Cultivated and Wild Rice

    PubMed Central

    Baldrich, Patricia; Hsing, Yue-Ie Caroline; San Segundo, Blanca

    2016-01-01

    MicroRNAs (miRNAs) are small noncoding RNAs that direct posttranscriptional gene silencing in eukaryotes. They are frequently clustered in the genomes of animals and can be independently transcribed or simultaneously transcribed into single polycistronic transcripts. Only a few miRNA clusters have been described in plants, and most of them are generated from independent transcriptional units. Here, we used a combination of bioinformatic tools and experimental analyses to discover new polycistronic miRNAs in rice. A genome-wide analysis of clustering patterns of MIRNA loci in the rice genome was carried out using a criterion of 3 kb as the maximal distance between two miRNAs. This analysis revealed 28 loci with the ability to form the typical hairpin structure of miRNA precursors in which 2 or more mature miRNAs mapped along the same structure. RT-PCR provided evidence for the polycistronic nature of seven miRNA precursors containing homologous or nonhomologous miRNA species. Polycistronic miRNAs and candidate polycistronic miRNAs are located across different rice chromosomes, except chromosome 12, and resided in both duplicated and nonduplicated chromosomal regions. Finally, most polycistronic and candidate polycistronic miRNAs showed a pattern of conservation in the genome of rice species with an AA genome. The diversity in the organization of MIR genes that are transcribed as polycistrons suggests a versatile mechanism for the control of gene expression in different biological processes and supports additional levels of complexity in miRNA functioning in plants. PMID:27190137

  7. New cultive medium for bioconversion of C5 fraction from sugarcane bagasse using rice bran extract

    PubMed Central

    da Silva, Debora Danielle Virginio; Cândido, Elisangela de Jesus; de Arruda, Priscila Vaz; da Silva, Silvio Silvério; Felipe, Maria das Graças de Almeida

    2014-01-01

    The use of hemicellulosic hydrolysates in bioprocesses requires supplementation as to ensure the best fermentative performance of microorganisms. However, in light of conflicting data in the literature, it is necessary to establish an inexpensive and applicable medium for the development of bioprocesses. This paper evaluates the fermentative performance of Scheffersomyces (Pichia) stipitis and Candida guilliermondii growth in sugarcane bagasse hemicellulosic hydrolysate supplemented with different nitrogen sources including rice bran extract, an important by-product of agroindustry and source of vitamins and amino acids. Experiments were carried out with hydrolysate supplemented with rice bran extract and (NH4)2SO4; peptone and yeast extract; (NH4)2SO4, peptone and yeast extract and non-supplemented hydrolysate as a control. S. stipitis produced only ethanol, while C. guilliermondii produced xylitol as the main product and ethanol as by-product. Maximum ethanol production by S. stipitis was observed when sugarcane bagasse hemicellulosic hydrolysate was supplemented with (NH4)2SO4, peptone and yeast extract. Differently, the maximum xylitol formation by C. guilliermondii was obtained by employing hydrolysate supplemented with (NH4)2SO4 and rice bran extract. Together, these findings indicate that: a) for both yeasts (NH4)2SO4 was required as an inorganic nitrogen source to supplement sugarcane bagasse hydrolysate; b) for S. stipitis, sugarcane hemicellulosic hydrolysate must be supplemented with peptone and yeast extract as organic nitrogen source; and: c) for C. guilliermondii, it must be supplemented with rice bran extract. The present study designed a fermentation medium employing hemicellulosic hydrolysate and provides a basis for studies about value-added products as ethanol and xylitol from lignocellulosic materials. PMID:25763056

  8. New cultive medium for bioconversion of C5 fraction from sugarcane bagasse using rice bran extract.

    PubMed

    da Silva, Debora Danielle Virginio; Cândido, Elisangela de Jesus; de Arruda, Priscila Vaz; da Silva, Silvio Silvério; Felipe, Maria das Graças de Almeida

    2014-01-01

    The use of hemicellulosic hydrolysates in bioprocesses requires supplementation as to ensure the best fermentative performance of microorganisms. However, in light of conflicting data in the literature, it is necessary to establish an inexpensive and applicable medium for the development of bioprocesses. This paper evaluates the fermentative performance of Scheffersomyces (Pichia) stipitis and Candida guilliermondii growth in sugarcane bagasse hemicellulosic hydrolysate supplemented with different nitrogen sources including rice bran extract, an important by-product of agroindustry and source of vitamins and amino acids. Experiments were carried out with hydrolysate supplemented with rice bran extract and (NH₄)₂SO₄; peptone and yeast extract; (NH₄)₂SO₄, peptone and yeast extract and non-supplemented hydrolysate as a control. S. stipitis produced only ethanol, while C. guilliermondii produced xylitol as the main product and ethanol as by-product. Maximum ethanol production by S. stipitis was observed when sugarcane bagasse hemicellulosic hydrolysate was supplemented with (NH₄)₂SO₄, peptone and yeast extract. Differently, the maximum xylitol formation by C. guilliermondii was obtained by employing hydrolysate supplemented with (NH₄)₂SO₄ and rice bran extract. Together, these findings indicate that: a) for both yeasts (NH₄)₂SO₄ was required as an inorganic nitrogen source to supplement sugarcane bagasse hydrolysate; b) for S. stipitis, sugarcane hemicellulosic hydrolysate must be supplemented with peptone and yeast extract as organic nitrogen source; and: c) for C. guilliermondii, it must be supplemented with rice bran extract. The present study designed a fermentation medium employing hemicellulosic hydrolysate and provides a basis for studies about value-added products as ethanol and xylitol from lignocellulosic materials.

  9. Rice Root Architectural Plasticity Traits and Genetic Regions for Adaptability to Variable Cultivation and Stress Conditions.

    PubMed

    Sandhu, Nitika; Raman, K Anitha; Torres, Rolando O; Audebert, Alain; Dardou, Audrey; Kumar, Arvind; Henry, Amelia

    2016-08-01

    Future rice (Oryza sativa) crops will likely experience a range of growth conditions, and root architectural plasticity will be an important characteristic to confer adaptability across variable environments. In this study, the relationship between root architectural plasticity and adaptability (i.e. yield stability) was evaluated in two traditional × improved rice populations (Aus 276 × MTU1010 and Kali Aus × MTU1010). Forty contrasting genotypes were grown in direct-seeded upland and transplanted lowland conditions with drought and drought + rewatered stress treatments in lysimeter and field studies and a low-phosphorus stress treatment in a Rhizoscope study. Relationships among root architectural plasticity for root dry weight, root length density, and percentage lateral roots with yield stability were identified. Selected genotypes that showed high yield stability also showed a high degree of root plasticity in response to both drought and low phosphorus. The two populations varied in the soil depth effect on root architectural plasticity traits, none of which resulted in reduced grain yield. Root architectural plasticity traits were related to 13 (Aus 276 population) and 21 (Kali Aus population) genetic loci, which were contributed by both the traditional donor parents and MTU1010. Three genomic loci were identified as hot spots with multiple root architectural plasticity traits in both populations, and one locus for both root architectural plasticity and grain yield was detected. These results suggest an important role of root architectural plasticity across future rice crop conditions and provide a starting point for marker-assisted selection for plasticity. PMID:27342311

  10. A Genetic Model for the Female Sterility Barrier Between Asian and African Cultivated Rice Species

    PubMed Central

    Garavito, Andrea; Guyot, Romain; Lozano, Jaime; Gavory, Frédérick; Samain, Sylvie; Panaud, Olivier; Tohme, Joe; Ghesquière, Alain; Lorieux, Mathias

    2010-01-01

    S1 is the most important locus acting as a reproductive barrier between Oryza sativa and O. glaberrima. It is a complex locus, with factors that may affect male and female fertility separately. Recently, the component causing the allelic elimination of pollen was fine mapped. However, the position and nature of the component causing female sterility remains unknown. To fine map the factor of the S1 locus affecting female fertility, we developed a mapping approach based on the evaluation of the degree of female transmission ratio distortion (fTRD) of markers. Through implementing this methodology in four O. sativa × O. glaberrima crosses, the female component of the S1 locus was mapped into a 27.8-kb (O. sativa) and 50.3-kb (O. glaberrima) region included within the interval bearing the male component of the locus. Moreover, evidence of additional factors interacting with S1 was also found. In light of the available data, a model where incompatibilities in epistatic interactions between S1 and the additional factors are the cause of the female sterility barrier between O. sativa and O. glaberrima was developed to explain the female sterility and the TRD mediated by S1. According to our model, the recombination ratio and allelic combinations between these factors would determine the final allelic frequencies observed for a given cross. PMID:20457876

  11. Effects of polishing, cooking, and storing on total arsenic and arsenic species concentrations in rice cultivated in Japan.

    PubMed

    Naito, Shigehiro; Matsumoto, Eri; Shindoh, Kumiko; Nishimura, Tsutomu

    2015-02-01

    The effects of polishing, cooking, and storing on total arsenic (As) and As species concentrations in rice were studied adopting typical Japanese conditions. Total and inorganic As levels in three white rice samples polished by removing 10% of bran by weight were reduced to 61-66% and 51-70% of those in brown rice. The As levels in the white rice after three washings with deionized water were reduced to 81-84% and 71-83% of those in raw rice. Rinse-free rice, which requires no washing before cooking because bran remaining on the surface of the rice was removed previously, yielded an effect similar to that of reducing As in rice by washing. Low-volume cooking (water:rice 1.4-2.0:1) rice to dryness did not remove As. The As content of brown rice stored in grain form for one year was stable.

  12. Red yeast rice fermentation by selected Monascus sp. with deep-red color, lovastatin production but no citrinin, and effect of temperature-shift cultivation on lovastatin production.

    PubMed

    Tsukahara, Masatoshi; Shinzato, Naoya; Tamaki, Yasutomo; Namihira, Tomoyuki; Matsui, Toru

    2009-08-01

    Monascus pilosus NBRC4520 was selected for functional fermented food inoculation for its high lovastatin and low citrinin production with a deep-red color. For koji (mold rice) with high lovastatin production, separation of the growth phase and lovastatin production phase by shifting the temperature from 30 to 23 degrees C increased lovastatin production by nearly 20 times compared to temperature-constant cultivation. In addition, citrinin was not produced even in the lovastatin production phase, although the pigment was increased. With temperature-shift cultivation, 225 microg lovastatin/g dry koji was produced in 14 days without citrinin.

  13. Influence of fipronil compounds and rice-cultivation land-use intensity on macroinvertebrate communities in streams of southwestern Louisiana, USA

    USGS Publications Warehouse

    Mize, S.V.; Porter, S.D.; Demcheck, D.K.

    2008-01-01

    Laboratory tests of fipronil and its degradation products have revealed acute lethal toxicity at very low concentrations (LC50) of <0.5 ??g/L to selected aquatic macroinvertebrates. In streams draining basins with intensive rice cultivation in southwestern Louisiana, USA, concentrations of fipronil compounds were an order of magnitude larger than the LC50. The abundance (?? = -0.64; p = 0.015) and taxa richness (r2 = 0.515, p < 0.005) of macroinvertebrate communities declined significantly with increases in concentrations of fipronil compounds and rice-cultivation land-use intensity. Macroinvertebrate community tolerance scores increased linearly (r2 = 0.442, p < 0.005) with increases in the percentage of rice cultivation in the basins, indicating increasingly degraded stream conditions. Similarly, macroinvertebrate community-tolerance scores increased rapidly as fipronil concentrations approached about 1 ??g/L. Pesticide toxicity index determinations indicated that aquatic macroinvertebrates respond to a gradient of fipronil compounds in water although stream size and habitat cannot be ruled out as contributing influences.

  14. Robustness and strategies of adaptation among farmer varieties of African Rice (Oryza glaberrima) and Asian Rice (Oryza sativa) across West Africa.

    PubMed

    Mokuwa, Alfred; Nuijten, Edwin; Okry, Florent; Teeken, Béla; Maat, Harro; Richards, Paul; Struik, Paul C

    2013-01-01

    This study offers evidence of the robustness of farmer rice varieties (Oryza glaberrima and O. sativa) in West Africa. Our experiments in five West African countries showed that farmer varieties were tolerant of sub-optimal conditions, but employed a range of strategies to cope with stress. Varieties belonging to the species Oryza glaberrima - solely the product of farmer agency - were the most successful in adapting to a range of adverse conditions. Some of the farmer selections from within the indica and japonica subspecies of O. sativa also performed well in a range of conditions, but other farmer selections from within these two subspecies were mainly limited to more specific niches. The results contradict the rather common belief that farmer varieties are only of local value. Farmer varieties should be considered by breeding programmes and used (alongside improved varieties) in dissemination projects for rural food security.

  15. Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice.

    PubMed

    Li, Xin-Min; Chao, Dai-Yin; Wu, Yuan; Huang, Xuehui; Chen, Ke; Cui, Long-Gang; Su, Lei; Ye, Wang-Wei; Chen, Hao; Chen, Hua-Chang; Dong, Nai-Qian; Guo, Tao; Shi, Min; Feng, Qi; Zhang, Peng; Han, Bin; Shan, Jun-Xiang; Gao, Ji-Ping; Lin, Hong-Xuan

    2015-07-01

    Global warming threatens many aspects of human life, for example, by reducing crop yields. Breeding heat-tolerant crops using genes conferring thermotolerance is a fundamental way to help deal with this challenge. Here we identify a major quantitative trait locus (QTL) for thermotolerance in African rice (Oryza glaberrima), Thermo-tolerance 1 (TT1), which encodes an α2 subunit of the 26S proteasome involved in the degradation of ubiquitinated proteins. Ubiquitylome analysis indicated that OgTT1 protects cells from heat stress through more efficient elimination of cytotoxic denatured proteins and more effective maintenance of heat-response processes than achieved with OsTT1. Variation in TT1 has been selected for on the basis of climatic temperature and has had an important role in local adaptation during rice evolution. In addition, we found that overexpression of OgTT1 was associated with markedly enhanced thermotolerance in rice, Arabidopsis and Festuca elata. This discovery may lead to an increase in crop security in the face of the ongoing threat of global warming.

  16. Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice.

    PubMed

    Li, Xin-Min; Chao, Dai-Yin; Wu, Yuan; Huang, Xuehui; Chen, Ke; Cui, Long-Gang; Su, Lei; Ye, Wang-Wei; Chen, Hao; Chen, Hua-Chang; Dong, Nai-Qian; Guo, Tao; Shi, Min; Feng, Qi; Zhang, Peng; Han, Bin; Shan, Jun-Xiang; Gao, Ji-Ping; Lin, Hong-Xuan

    2015-07-01

    Global warming threatens many aspects of human life, for example, by reducing crop yields. Breeding heat-tolerant crops using genes conferring thermotolerance is a fundamental way to help deal with this challenge. Here we identify a major quantitative trait locus (QTL) for thermotolerance in African rice (Oryza glaberrima), Thermo-tolerance 1 (TT1), which encodes an α2 subunit of the 26S proteasome involved in the degradation of ubiquitinated proteins. Ubiquitylome analysis indicated that OgTT1 protects cells from heat stress through more efficient elimination of cytotoxic denatured proteins and more effective maintenance of heat-response processes than achieved with OsTT1. Variation in TT1 has been selected for on the basis of climatic temperature and has had an important role in local adaptation during rice evolution. In addition, we found that overexpression of OgTT1 was associated with markedly enhanced thermotolerance in rice, Arabidopsis and Festuca elata. This discovery may lead to an increase in crop security in the face of the ongoing threat of global warming. PMID:25985140

  17. Role of Bacillus licheniformis in phytoremediation of nickel contaminated soil cultivated with rice.

    PubMed

    Jamil, Muhammad; Zeb, Salma; Anees, Muhammad; Roohi, Aneela; Ahmed, Iftikhar; ur Rehman, Shafiq; Rha, Eui Shik

    2014-01-01

    Heavy metal contamination in soil is an important environmental problem and it has negative effect on agriculture. Bacteria play a major role in phytoremediation of heavy metals contaminated soil. In this study, the effect of Bacillus licheniformis NCCP-59, a halophilic bacterium isolated from salt mines near Karak, Pakistan, were determined on a three week old greenhouse grown seedling and germinating seeds of two rice varieties (Basmati-385 (B-385) and KSK-282) in soil contaminated with different concentrations (0, 100, 250, 500, and 1000 ppm) of Nickel. Nickel significantly reduced the germination rate and germination percentage mainly at 500 and 1000 ppm. Significant decrease in ion contents (Na, K, and Ca) was observed while Ni ion concentration in the plant tissues increases as the concentration of Ni applied increases. The photosynthetic pigments (chlorophyll a (chl a), chlorophyll b (chl b), and carotenoids) were also decreased by the application of different concentrations of Ni. Total protein and organic nitrogen were found to be reduced at higher concentrations of Nickel. Inoculation of Bacillus licheniformis NCCP-59 improved seed germination and biochemical attribute of the plant under Ni stress. It is clear from the results that the Bacillus Licheniformis NCCP-59 strain has the ability to protect the plants from the toxic effects of nickel and can be used for the phytoremediation of Ni contaminated soil.

  18. [Impact on the Microbial Biomass and Metabolic Function of Carbon Source by Black Soil During Rice Cultivation].

    PubMed

    Zhao, Zhi-rui; Cui, Bing-jian; Hou, Yan-lin; Liu, Shang-qian; Wang, Yan

    2015-08-01

    The effects of rice cultivation to the black soil microbial communities, which the experimentation area of Shuangyang District Agricultural Technology Extension Station in Changchun city, Jilin Province of northeastern China, were studied by using the method of phospholipid fatty acids and Biolog ECO-microplate culture. Results showed that the content of organic matter in space was the highest, fewer in the field, and the minimum in the rhizosphere, that change trend of total nitrogen and organic matter was similar in soil. The quantity of organic matter in summer sample was the highest. The microbial fun6tional diversity was significantly higher in summer than that in spring and autumn and showed no significant difference between spring and autumn. For summer and the lowest in winter, Shannon-Wiener index and Pielou index of the space were higher than the field and the rhizosphere. The time of microbial growth into the stable period and peak value of the average well color development were different in all samples, that the time was 216 h, 192 h, 216 h, 120 h, which varied from 0.52-0.84, 0.82-1.28, 0.40-0.84, 0.05-0.48, respectively. The result showed that the time of microbial growth into the stable period was similar in spring and autumn, the highest was in summer and the lowest was in winter. Above all, these results would provide more important characteristics of microbial features in the degradation and restoration process of the quality of the black soil habitat scientifically. PMID:26592034

  19. Effects of N loading rate on CH4 and N2O emissions during cultivation and fallow periods from forage rice fields fertilized with liquid cattle waste.

    PubMed

    Riya, S; Zhou, S; Kobara, Y; Sagehashi, M; Terada, A; Hosomi, M

    2015-09-15

    The use of liquid cattle waste (LCW) as a fertilizer for forage rice is important for material recycling because it can promote biomass production, and reduce the use of chemical fertilizer. Meanwhile, increase in emission of greenhouse gases (GHGs), especially CH4 and N2O would be concerned. We conducted a field study to determine the optimum loading rate of LCW as N to promote forage rice growth with lower GHG emissions. The LCW was applied to forage rice fields, N100, N250, N500, and N750, at four different N loading rates of 107, 258, 522, and 786 kg N ha(-1), respectively, including 50 kg N ha(-1) of basal chemical fertilizer. The above-ground biomass yields increased 14.6-18.5 t ha(-1) with increases in N loading rates. During the cultivation period, both the CH4 and N2O fluxes increased with increases in LCW loading rates. In the treatments of N100, N250, N500, and N750, the cumulative CH4 emissions during the entire period, including cultivation and fallow period were 29.6, 18.1, 54.4, and 67.5 kg C ha(-1), respectively, whereas those of N2O were -0.15, -0.02, 1.49, and 5.82 kg N ha(-1), respectively. Considering the greenhouse gas emissions and above-ground biomass, the yield-scaled CO2-equivalents (CO2-eqs) were 66.3, 35.9, 161, and 272 kg CO2 t(-1) for N100, N250, N500, and N750, respectively. These results suggest that N250 is the most appropriate LCW loading rate for promoting forage rice production with lower GHG emissions. PMID:26164270

  20. Diversity of malaria in rice growing areas of the Afrotropical region.

    PubMed

    Carnevale, P; Guillet, P; Robert, V; Fontenille, D; Doannio, J; Coosemans, M; Mouchet, J

    1999-09-01

    It is well known that 'in many instances the rice agrosystem perfectly fits the ecological requirements of pathogens or vectors' and in fact 'malaria, schistosomiasis and Japanese encephalitis are important vector-borne diseases associated with rice production in developing countries' (IRRI, 1987). In spite of these fears, rice cultivation has been on the increase in the African region in response to demographic and economic pressures. However, although rice fields provide suitable breeding places for Anopheles mosquitoes and rice cultivation leads to an increase in the biting rates, the species which are adapted to these sites are not the same in all parts of Africa. Several examples illustrate this phenomenon: An. funestus in the rice fields of Madagascar, An. pharoensis in saline water rice fields in the delta of the Senegal river, An. arabiensis in northern Cameroon and Burundi, An. gambiae Mopti form in the Kou Valley (Burkina Faso) and An. gambiae Savanna form in the rice fields of Kafine near Bouaké (Côte d'Ivoire). The vectorial capacities of these species are not the same and malaria inoculation rates are not necessarily increased in the riceland agroecosystem. The consequences for malaria of introducing rice cultivation depend on the situation before its introduction: it could be worsened in unstable malaria areas but not in stable malaria areas. Therefore, sound epidemiological and entomological knowledge are needed before causing any environmental modifications for agricultural purposes and there should be regular monitoring to avoid any outbreak.

  1. Coupling of Belowground Carbon Cycling and Stoichiometry from Organisms to Ecosystems along a Soil C Gradient Under Rice Cultivation

    NASA Astrophysics Data System (ADS)

    Hartman, W.; Ye, R.; Horwath, W. R.; Tringe, S. G.

    2015-12-01

    Ecological stoichiometry is a framework linking biogeochemical cycles to organism functional traits that has been widely applied in aquatic ecosystems, animals and plants, but is poorly explored in soil microbes. We evaluated relationships among soil stoichiometry, carbon (C) cycling, and microbial community structure and function along a soil gradient spanning ~5-25% C in cultivated rice fields with experimental nitrogen (N) amendments. We found rates of soil C turnover were associated with nutrient stoichiometry and phosphorus (P) availability at ecosystem, community, and organism scales. At the ecosystem scale, soil C turnover was highest in mineral soils with lower C content and N:P ratios, and was positively correlated with soil inorganic P. Effects of N fertilization on soil C cycling also appeared to be mediated by soil P availability, while microbial community composition (by 16S rRNA sequencing) was not altered by N addition. Microbial communities varied along the soil C gradient, corresponding with highly covariant soil %C, N:P ratios, C quality, and carbon turnover. In contrast, we observed unambiguous shifts in microbial community function, imputed from taxonomy and directly assessed by shotgun sequenced metagenomes. The abundance of genes for carbohydrate utilization decreased with increasing soil C (and declining C turnover), while genes for aromatic C uptake, N fixation and P scavenging increased along with potential incorporation of C into biomass pools. Ecosystem and community-scale associations between C and nutrient substrate availability were also reflected in patterns of resource allocation among individual genomes (imputed and assembled). Microbes associated with higher rates of soil C turnover harbored more genes for carbohydrate utilization, fewer genes for obtaining energetically costly forms of C, N and P, more ribosomal RNA gene copies, and potentially lower C use efficiency. We suggest genome clustering by functional gene suites might

  2. Phytotoxicity of arsenate and salinity on early seedling growth of rice (Oryza sativa L.): a threat to sustainable rice cultivation in South and South-East Asia.

    PubMed

    Rahman, M Mamunur; Rahman, M Azizur; Maki, T; Hasegawa, H

    2012-05-01

    Arsenic (As) contamination is an important environmental consequence in some parts of salinity-affected South (S) and South-East (SE) Asia. In this study, we investigated the individual and combined phytotoxicity of arsenic (As) [arsenate; As(V)] and salinity (NaCl) on early seedling growth (ESG) of saline-tolerant and non-tolerant rice varieties. Germination percentage (GP), germination speed (GS) and vigor index (VI) of both saline-tolerant and non-tolerant rice varieties decreased significantly (p > 0.01) with increasing As(V) and NaCl concentrations. The highest GP (91%) was observed for saline non-tolerant BRRI dhan28 and BRRI dhan49, while the lowest (62%) was for saline-tolerant BRRI dhan47. The ESG parameters, such as weights and relative lengths of plumule and radicle, also decreased significantly (p < 0.01) with increasing As(V) and NaCl concentrations. Relative radicle length was more affected than plumule length by As(V) and NaCl. Although VI of saline-tolerant and non-tolerant rice seedlings showed significant variation (p < 0.05), weights and lengths of plumule and radicle of different rice varieties did not show significant variation for As(V) and NaCl treatments. Results reveal that the combined phytotoxicity of As(V) and NaCl on rice seed germination and ESG are greater than their individual toxicities, and some saline-tolerant rice varieties are more resistant to the combined phytotoxicity of As(V) and NaCl than the saline non-tolerant varieties. PMID:22395199

  3. Phytotoxicity of arsenate and salinity on early seedling growth of rice (Oryza sativa L.): a threat to sustainable rice cultivation in South and South-East Asia.

    PubMed

    Rahman, M Mamunur; Rahman, M Azizur; Maki, T; Hasegawa, H

    2012-05-01

    Arsenic (As) contamination is an important environmental consequence in some parts of salinity-affected South (S) and South-East (SE) Asia. In this study, we investigated the individual and combined phytotoxicity of arsenic (As) [arsenate; As(V)] and salinity (NaCl) on early seedling growth (ESG) of saline-tolerant and non-tolerant rice varieties. Germination percentage (GP), germination speed (GS) and vigor index (VI) of both saline-tolerant and non-tolerant rice varieties decreased significantly (p > 0.01) with increasing As(V) and NaCl concentrations. The highest GP (91%) was observed for saline non-tolerant BRRI dhan28 and BRRI dhan49, while the lowest (62%) was for saline-tolerant BRRI dhan47. The ESG parameters, such as weights and relative lengths of plumule and radicle, also decreased significantly (p < 0.01) with increasing As(V) and NaCl concentrations. Relative radicle length was more affected than plumule length by As(V) and NaCl. Although VI of saline-tolerant and non-tolerant rice seedlings showed significant variation (p < 0.05), weights and lengths of plumule and radicle of different rice varieties did not show significant variation for As(V) and NaCl treatments. Results reveal that the combined phytotoxicity of As(V) and NaCl on rice seed germination and ESG are greater than their individual toxicities, and some saline-tolerant rice varieties are more resistant to the combined phytotoxicity of As(V) and NaCl than the saline non-tolerant varieties.

  4. Biology and epidemiology of rice viruses.

    PubMed

    Hibino, H

    1996-01-01

    The 15 known viruses that occur in rice are rice black-streaked dwarf, rice bunchy stunt, rice dwarf, rice gall dwarf, rice giallume, rice grassy stunt, rice hoja blanca, rice necrosis mosaic, rice ragged stunt, rice stripe necrosis, rice stripe, rice transitory yellowing, rice tungro bacilliform, rice tungro spherical, and rice yellow mottle viruses. This paper describes their geographical distribution, relation to vectors, infection cycles, field dispersal, and development, and lists recorded outbreaks of the viruses. Many rice viruses have become serious problems since rice cultivation has been intensified. Double-cropping of rice using improved, photo-insensitive cultivars of short growth duration has significantly influenced the incidence of these viruses. PMID:15012543

  5. Assessing impacts of alternative fertilizer management practices on both nitrogen loading and greenhouse gas emissions in rice cultivation

    NASA Astrophysics Data System (ADS)

    Zhao, Zheng; Yue, Yubo; Sha, Zhimin; Li, Changsheng; Deng, Jia; Zhang, Hanlin; Gao, Maofang; Cao, Linkui

    2015-10-01

    Nitrogen (N) losses and greenhouse gas (GHG) emissions from paddy rice fields contaminate water bodies and atmospheric environment. A 2-year (2012-2013) field experiment was conducted at a typical paddy rice field in a rural suburb of Shanghai, China. N losses and GHG emissions from the paddy field with alternative fertilizer management practices were simultaneously measured. Four treatments were tested in the experiment: applications of only chemical synthetic fertilizer urea (CT), only organic manure (OT), a combination of the two types of fertilizers (MT) and a control (CK). Results from the field study indicated that CT produced the highest seasonal N loading rate (18.79 kg N/ha) and N2O emissions (1.81 kg N2O/ha) but with the lowest seasonal CH4 emissions (69.09 kg CH4/ha). With organic manure applied, MT and OT respectively reduced N loading by 21.86% and 30.41%, reduced N2O emissions by 28.34% and 69.41%, but increased CH4 emissions by 137% and 310% in comparison with CT. However, the net impact of CH4 and N2O emissions on global warming was enhanced when organic manure was applied. In addition, CT and MT produced the optimal rice yield during the experimental period, while OT treatment led to a yield reduction by 9.29% compared with CT. In conclusion, the impacts of alternative fertilizer management practices on ecosystem services ought to be assessed specifically due to the great variations across rice yields, N loss and GHG emissions.

  6. Rice Root Architectural Plasticity Traits and Genetic Regions for Adaptability to Variable Cultivation and Stress Conditions1[OPEN

    PubMed Central

    Sandhu, Nitika; Raman, K. Anitha; Torres, Rolando O.; Audebert, Alain; Dardou, Audrey; Kumar, Arvind; Henry, Amelia

    2016-01-01

    Future rice (Oryza sativa) crops will likely experience a range of growth conditions, and root architectural plasticity will be an important characteristic to confer adaptability across variable environments. In this study, the relationship between root architectural plasticity and adaptability (i.e. yield stability) was evaluated in two traditional × improved rice populations (Aus 276 × MTU1010 and Kali Aus × MTU1010). Forty contrasting genotypes were grown in direct-seeded upland and transplanted lowland conditions with drought and drought + rewatered stress treatments in lysimeter and field studies and a low-phosphorus stress treatment in a Rhizoscope study. Relationships among root architectural plasticity for root dry weight, root length density, and percentage lateral roots with yield stability were identified. Selected genotypes that showed high yield stability also showed a high degree of root plasticity in response to both drought and low phosphorus. The two populations varied in the soil depth effect on root architectural plasticity traits, none of which resulted in reduced grain yield. Root architectural plasticity traits were related to 13 (Aus 276 population) and 21 (Kali Aus population) genetic loci, which were contributed by both the traditional donor parents and MTU1010. Three genomic loci were identified as hot spots with multiple root architectural plasticity traits in both populations, and one locus for both root architectural plasticity and grain yield was detected. These results suggest an important role of root architectural plasticity across future rice crop conditions and provide a starting point for marker-assisted selection for plasticity. PMID:27342311

  7. Levels of dioxins in rice, wheat, soybean, and adzuki bean cultivated in 1999 to 2002 in Japan and estimation of their intake.

    PubMed

    Otani, Takashi; Seike, Nobuyasu; Miwa, Tetsuhisa

    2006-08-01

    A total of 369 samples of rice (n = 311), wheat (n = 10), soybean (n = 44), and adzuki bean (n = 4) collected from various locations in Japan between 1999 and 2002 were analyzed for PCDDs, PCDFs (PCDD/Fs) and coplanar PCBs. Sampling points within about 1 km of operational municipal waste incinerators that were considered sources of dioxins were defined as "near-source" areas, and all other sampling points were defined as "general" areas. The toxic equivalent quantity (TEQ) values of soybean samples collected from near-source areas were significantly higher (p < 0.05) than those from general areas. A significant difference of TEQs among sampling years in rice in general areas was also found. However, the differences could not be explained by the presence or absence of incineration plants in the area surrounding the sampling point or by a temporal decrease of air pollution. The TEQs of the crops varied widely, but the median value of each crop was quite low, at 0.000021, 0.00013, 0.0000095, and 0.00016 pg-TEQ/g wet wt. in rice, wheat, soybean and adzuki bean, respectively. On the basis of these survey results, the daily intake of PCDD/Fs and coplanar PCBs from rice, wheat, soybean, and adzuki bean was calculated. The daily intakes from these crops were estimated to be 0.0056 pg-TEQ/kg B.W./day on the assumption that "not detected" (ND) could be taken as zero, ND = 0, and 0.18 pg-TEQ/kg B.W./day if ND is put equal to 1/2 LOD (half the limit of detection). In comparison with the tolerable daily intake set in Japan for PCDD/Fs and coplanar PCBs (4 pg-TEQ/kg B.W./day), it was considered that the levels of contamination by PCDD/Fs and coplanar PCBs in these crops cultivated in the environment of Japan do not present a problem.

  8. Cultivating a Morality of Care in African American Adolescents: A Culture-Based Model of Violence Prevention.

    ERIC Educational Resources Information Center

    Ward, Janie V.

    1995-01-01

    Aggression against others violates the care and connectedness implicit in African American racial identity and community culture. Reconnecting youth to communal values and traditions of identity and solidarity may be the solution to youth violence. (SK)

  9. Characterization of quantitative trait loci (QTLs) in cultivated rice contributing to field resistance to sheath blight (Rhizoctonia solani).

    PubMed

    Li, Z; Pinson, S R; Marchetti, M A; Stansel, J W; Park, W D

    1995-07-01

    Sheath blight, caused by Rhizoctonia solani, is one of the most important diseases of rice. Despite extensive searches of the rice germ plasm, the major gene(s) which give complete resistance to the fungus have not been identified. However, there is much variation in quantitatively inherited resistance to R. solani, and this type of resistance can offer adequate protection against the pathogen under field conditions. Using 255 F4 bulked populations from a cross between the susceptible variety 'Lemont' and the resistant variety 'Teqing', 2 years of field disease evaluation and 113 well-distributed RFLP markers, we identified six quantitative trait loci (QTLs) contributing to resistance to R. solani. These QTLs are located on 6 of the 12 rice chromosomes and collectively explain approximately 60% of the genotypic variation or 47% of the phenotypic variation in the 'Lemont'x'Teqing' cross. One of these resistance QTLs (QSbr4a), which accounted for 6% of the genotypic variation in resistance to R. solani, appeared to be independent of associated morphological traits. The remaining five putative resistance loci (QSbr2a, QSbr3a, QSbr8a, QSbr9a and QSbr12a) all mapped to chromosomal regions also associated with increased plant height, three of which were also associated with QTLs causing later heading. This was consistent with the observation that heading date and plant height accounted for 47% of the genotypic variation in resistance to R. solani in this population. There were also weak associations between resistance to R. solani and leaf width, which were likely due to linkage with a QTL for this trait rather than to a physiological relationship.

  10. Relationships of wild and domesticated rices (Oryza AA genome species) based upon whole chloroplast genome sequences

    PubMed Central

    Wambugu, Peterson W.; Brozynska, Marta; Furtado, Agnelo; Waters, Daniel L.; Henry, Robert J.

    2015-01-01

    Rice is the most important crop in the world, acting as the staple food for over half of the world’s population. The evolutionary relationships of cultivated rice and its wild relatives have remained contentious and inconclusive. Here we report on the use of whole chloroplast sequences to elucidate the evolutionary and phylogenetic relationships in the AA genome Oryza species, representing the primary gene pool of rice. This is the first study that has produced a well resolved and strongly supported phylogeny of the AA genome species. The pan tropical distribution of these rice relatives was found to be explained by long distance dispersal within the last million years. The analysis resulted in a clustering pattern that showed strong geographical differentiation. The species were defined in two primary clades with a South American/African clade with two species, O glumaepatula and O longistaminata, distinguished from all other species. The largest clade was comprised of an Australian clade including newly identified taxa and the African and Asian clades. This refined knowledge of the relationships between cultivated rice and the related wild species provides a strong foundation for more targeted use of wild genetic resources in rice improvement and efforts to ensure their conservation. PMID:26355750

  11. Differentiation of weedy traits in ALS-resistant red rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Red rice is a weedy form of cultivated rice (Oryza sativa) that competes aggressively with rice in the southern U.S., reduces yields and contaminates rice grains. The introduction of ClearfieldTM rice, a nontransgenic, herbicide-resistant rice cultivar a decade ago has led to increased use of imazet...

  12. [Effect of different cultivation practices on Fe and Cd content in iron plaque outside rice root and Cd content in rice root].

    PubMed

    Shi, Kun; Zhang, Fusuo; Liu, Xuejun; Zhang, Xudong

    2003-08-01

    The effects of different cultivation practices-traditional flooding (TF), film mulching (FM), straw mulching (SM), and wetting cultivation (WC)-on Cd concentrations in Indica and Japonica roots and on Cd and Fe concentrations in iron plaque outside the roots were studied at different growth stages (tillering, booting, filling and harvest) with a Cd-polluted soil. The results showed that in all practices, the mean Fe concentration in iron plaque and the mean Cd concentration in roots of Japonica at tillering stage were 6.37 mg.mg-1 and 25.49 mg.kg-1, and greater than those of Indica, which were 4.52 mg.mg-1 and 16.37 mg.kg-1 respectively; at booting stage, the mean Fe and Cd concentrations in iron plaque and the mean Cd concentrations of Japonica were 1.60, 16.35 and 54.68 mg.kg-1, and greater than those of Indica, which were 1.06 mg.mg-1, 9.56 and 43.31 mg.kg-1, respectively; at filling stage, the Fe concentrations in iron plaque of Japonica in SM and WC were 0.89 and 1.00 mg.mg-1, and those of Indica were 0.63 and 0.30 mg.mg-1; in all practices, the mean Cd concentrations in iron plaque and root of Japonica were 15.23 and 73.68 mg.kg-1, and those of Indica were 3.46 and 52.38 mg.kg-1; at harvest stage, the Fe concentration in iron was plaque of Indica in TF was 1.21 mg.mg-1 and that of Japonica was 0.65 mg.mg-1, but that of Japonica in SM was 0.94 mg.mg-1 and that of Indica in SM was 0.55 mg.mg-1; the Cd concentration in iron plaque of Japonica in WC was 7.96 mg.kg-1, and that of Indica was 5.09 mg.kg-1; the mean Cd concentration in root of Japonica was 54.53 mg.kg-1 and that of Indica was 35.91 mg.kg-1 in all practices. PMID:14655357

  13. Greenhouse Gas Emissions and Global Warming Potential of Traditional and Diversified Tropical Rice Rotation Systems including Impacts of Upland Crop Management Practices i.e. Mulching and Inter-crop Cultivation

    NASA Astrophysics Data System (ADS)

    Janz, Baldur; Weller, Sebastian; Kraus, David; Wassmann, Reiner; Butterbach-Bahl, Klaus; Kiese, Ralf

    2016-04-01

    Paddy rice cultivation is increasingly challenged by irrigation water scarcity, while at the same time changes in demand (e.g. changes in diets or increasing demand for biofuels) will feed back on agricultural practices. These factors are changing traditional cropping patterns from flooded double-rice systems to the introduction of well-aerated upland crop systems in the dry season. Emissions of methane (CH4) are expected to decrease, while emissions of nitrous oxide (N2O) will increase and soil organic carbon (SOC) stocks will most likely be volatilized in the form of carbon dioxide (CO2). We measured greenhouse gas (GHG) emissions at the International Rice Research Institute (IRRI) in the Philippines to provide a comparative assessment of the global warming potentials (GWP) as well as yield scaled GWPs of different crop rotations and to evaluate mitigation potentials or risks of new management practices i.e. mulching and inter-crop cultivation. New management practices of mulching and intercrop cultivation will also have the potential to change SOC dynamics, thus can play the key role in contributing to the GWP of upland cropping systems. To present, more than three years of continuous measurement data of CH4 and N2O emissions in double-rice cropping (R-R) and paddy rice rotations diversified with either maize (R-M) or aerobic rice (R-A) in upland cultivation have been collected. Introduction of upland crops in the dry season reduced irrigation water use and CH4 emissions by 66-81% and 95-99%, respectively. Moreover, for practices including upland crops, CH4 emissions in the subsequent wet season with paddy rice were reduced by 54-60%. Although annual N2O emissions increased twice- to threefold in the diversified systems, the strong reduction of CH4 led to a significantly lower (p<0.05) annual GWP (CH4+ N2O) as compared to the traditional double-rice cropping system. Measurements of soil organic carbon contents before and three years after introduction of upland

  14. A Qualitative Investigation of African Americans' Decision to Pursue Computing Science Degrees: Implications for Cultivating Career Choice and Aspiration

    ERIC Educational Resources Information Center

    Charleston, LaVar J.

    2012-01-01

    According to Pearson (2002), minority groups are not well represented in science, technology, engineering, and mathematics (STEM) occupations. Among these underrepresented groups are African Americans. To ensure the economic vitality of the STEM workforce in the United States, it is imperative to broaden participation in STEM-related fields and…

  15. Soil Phosphorus Stoichiometry Drives Carbon Turnover Along a Soil C Gradient Spanning Mineral and Organic Soils Under Rice Cultivation

    NASA Astrophysics Data System (ADS)

    Hartman, W.; Ye, R.; Horwath, W. R.; Tringe, S. G.

    2014-12-01

    Soil carbon (C) cycling is linked to the availability of nutrients like nitrogen (N) and phosphorus (P). However, the role of soil P in influencing soil C turnover and accumulation is poorly understood, with most models focusing on C:N ratios based on the assumption that terrestrial ecosystems are N limited. To determine the effects of N and P availability on soil C turnover, we compared soil respiration over the course of a growing season in four adjacent rice fields with 5%, 10%, 20% and 25% soil C. In each of these fields, plots were established to test the effect of N additions on plant growth, using control and N addition treatments (80 kg N/ha urea). Although soil P was not manipulated in parallel, prior work has shown soil P concentrations decline markedly with increasing soil C content. Soil CO2 flux was monitored using static chambers at biweekly intervals during the growing season, along with porewater dissolved organic C and ammonium. Soils were collected at the end of the growing season, and tested for total C, N, and P, extractable N and P, pH, base cations and trace metals. Soil DNA was also extracted for 16S rRNA sequencing to profile microbial communities. Soil N additions significantly increased CO2 flux and soil C turnover (seasonal CO2 flux per unit soil C) in 5% and 10% C fields, but not in 20% or 25% C fields. Soil C content was closely related to soil N:P stoichiometry, with N:P ratios of ca. 12, 16, 24, and 56 respectively in the 5, 10, 20 and 25% C fields. Seasonal CO2 fluxes (per m2) were highest in 10% C soils. However, soil C turnover was inversely related to soil C concentrations, with the greatest C turnover at the lowest values of soil C. Soil C turnover showed stronger relationships with soil chemical parameters than seasonal CO2 fluxes alone, and the best predictors of soil C turnover were soil total and extractable N:P ratios, along with extractable P alone. Our results show that soil P availability and stoichiometry influence the

  16. Molecular evolution of the sh4 shattering locus in U.S. weedy rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cultivated rice fields worldwide are plagued with weedy rice, a congeneric weed of cultivated rice (Oryza sativa L.). The persistence of weedy rice has been attributed, in part, to its ability to shatter (disperse) seed prior to crop harvesting. In the United States, separately evolved weedy rice g...

  17. The impact of herbicide-resistant rice technology on phenotypic diversity and population structure of United States weedy rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of imazethapyr herbicide-resistant (HR) Clearfield® rice (Oryza sativa L.) to control weedy rice has increased in the past 12 years to comprise about 60% of rice acreage in Arkansas, where 43% of rice in the USA was planted in 2013. To assess the impact of HR cultivated rice on herbicide res...

  18. Evaluation of four sampling techniques for surveillance of Culex quinquefasciatus (Diptera: Culicidae) and other mosquitoes in African rice agroecosystems.

    PubMed

    Muturi, Ephantus J; Mwangangi, Joseph; Shililu, Josephat; Muriu, Simon; Jacob, Benjamin; Mbogo, Charles M; John, Githure; Novak, Robert

    2007-05-01

    Field studies were conducted in a rice, Oryza sativa L., agroecosystem in Mwea Kenya to compare the efficiency of CO2-baited Centers for Disease Control (CDC) light traps against nonbaited CDC light traps and gravid traps against oviposition traps in outdoor collection of Culex quinquefasciatus Say (Diptera: Culicidae) and other mosquitoes. Collectively, 21 mosquito species from the genera Culex, Anopheles, Mansonia, Ficalbia, and Aedes were captured during the 10-wk study period. Cx. quinquefasciatus was the predominant species in all trap types with proportions ranging from 57% in the nonbaited CDC light traps to 95% in the gravid traps. Significantly higher numbers of Cx. quinquefasciatus and Culex annulioris Theobald were collected in the CO2-baited CDC light traps than in the nonbaited CDC light traps, but the numbers of other mosquito species, including malaria vectors Anopheles arabiensis Patton and Anopheles funestus Giles did not differ significantly between the two trap types. More Cx. quinquefasciatus females were collected in grass infusion-baited gravid traps than egg rafts of this species in oviposition traps containing the same infusion. Although most mosquitoes captured in CO,-baited and nonbaited CDC light traps were unfed, most of those collected in gravid traps were gravid. From these findings, it is concluded that at least in the rice-growing area of Mwea Kenya, CO2-baited CDC light traps in conjunction with gravid traps can be used in monitoring of Cx. quinquefasciatus both for control and disease surveillance.

  19. Genomic patterns of nucleotide diversity in divergent populations of U.S. weedy rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weedy rice is a significant problem in cultivated rice fields throughout the world, and is an emerging threat in regions where it was previously absent. Prior research has classified weedy rice as the same species as Asian cultivated rice (Oryza sativa L.). This close genetic relationship makes cont...

  20. Modeling effects of inter-annual variability in meteorological and land use conditions on coupled water and energy cycling in the cultivated African Sahel

    NASA Astrophysics Data System (ADS)

    Velluet, C.; Demarty, J.; Cappelaere, B.; Braud, I.; Boulain, N.; Favreau, G.; Charvet, G.; Ramier, D.; Issoufou, H.; Boucher, M.; Mainassara, I.; Chazarin, J.; Oï, M.; Yahou, H.; Benarrosh, N.; Ibrahim, M.

    2012-12-01

    In the dry tropics in general and in the African Sahel in particular, hydro-ecosystems are very sensitive to climate variability and land management. In the Niamey region of South-West Niger, a severe multi-decadal drought together with large-scale vegetation clearing coincided with an unexpected increase in surface and ground water resources. Such an apparent paradoxical situation illustrates the complex way in which climate and land cover interactions control the Sahelian water cycle dynamics. This stresses the importance of understanding and reliably modeling water/energy transfers in the local soil-plant-atmosphere system, under contrasted meteorological and surface conditions. This study investigates the effects of the inter-annual variability of meteorological and land use conditions on the coupled water and energy cycles in the cultivated Sahel over a 5-year period. This is based on a comprehensive multi-year field dataset acquired for a millet crop field and a fallow savannah, the two main land cover types of South-West Niger (Wankama catchment in the mesoscale AMMA-CATCH Niger observatory, part of the French-initiated RBV network). It includes atmospheric forcing, seasonal course of vegetation phenology, soil properties and model validation variables (net radiation, turbulent fluxes, soil heat/water profiles), for the two fields. The study area is typical of Central Sahel conditions, with 400-600 mm annual rainfall concentrated in the 4-5 month wet season. Soils are mainly sandy and prone to surface crusting, leading to a strong vertical contrast in hydrodynamic properties. The SiSPAT process-based model used solves the 1D mass and heat transfer system of equations in the soil, including vapor phase and coupled with a two-component (bare soil and vegetation) water and energy budget at the surface-atmosphere interface. The study explores whether such a model can be accurately calibrated and validated for the two sites using realistic-parameter values. The

  1. Understanding of evolutionary genomics of invasive species of rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Red rice is an aggressive, weedy form of cultivated rice (Oryza sativa) that infests crop fields and is a primary factor limiting rice productivity in the U.S. and worldwide. As the weedy relative of a genomic model species, red rice is a model for understanding the genetic and evolutionary mechani...

  2. Elucidation of molecular dynamics of invasive species of rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cultivated rice fields are aggressively invaded by weedy rice in the U.S. and worldwide. Weedy rice results in loss of yield and seed contamination. The molecular dynamics of the evolutionary adaptive traits of weedy rice are not fully understood. To understand the molecular basis and identify the i...

  3. The origin of weediness in U.S. red rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weedy or red rice, a congeneric weed of cultivated rice (Oryza sativa L.), is a significant problem throughout the world. Despite belonging to the same species complex as domesticated rice and its wild relatives, the evolutionary origins of weedy rice remain unclear. We have used genome-wide and can...

  4. Identifying novel resistance genes in rice wild relatives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice blast and sheath blight are major fungal diseases of cultivated rice (Oryza sativa L. ) that limit Arkansas rough rice yields and market potential. Resistance to these diseases has been found in rice wild relatives (Oryza spp.) A collection of these wild relatives originating from outside the U...

  5. Combinations of the Ghd7, Ghd8 and Hd1 genes largely define the ecogeographical adaptation and yield potential of cultivated rice.

    PubMed

    Zhang, Jia; Zhou, Xiangchun; Yan, Wenhao; Zhang, Zhanyi; Lu, Li; Han, Zhongmin; Zhao, Hu; Liu, Haiyang; Song, Pan; Hu, Yong; Shen, Guojing; He, Qin; Guo, Sibin; Gao, Guoqing; Wang, Gongwei; Xing, Yongzhong

    2015-12-01

    Rice cultivars have been adapted to favorable ecological regions and cropping seasons. Although several heading date genes have separately made contributions to this adaptation, the roles of gene combinations are still unclear. We employed a map-based cloning approach to isolate a heading date gene, which coordinated the interaction between Ghd7 and Ghd8 to greatly delay rice heading. We resequenced these three genes in a germplasm collection to analyze natural variation. Map-based cloning demonstrated that the gene largely affecting the interaction between Ghd7 and Ghd8 was Hd1. Natural variation analysis showed that a combination of loss-of-function alleles of Ghd7, Ghd8 and Hd1 contributes to the expansion of rice cultivars to higher latitudes; by contrast, a combination of pre-existing strong alleles of Ghd7, Ghd8 and functional Hd1 (referred as SSF) is exclusively found where ancestral Asian cultivars originated. Other combinations have comparatively larger favorable ecological scopes and acceptable grain yield. Our results indicate that the combinations of Ghd7, Ghd8 and Hd1 largely define the ecogeographical adaptation and yield potential in rice cultivars. Breeding varieties with the SSF combination are recommended for tropical regions to fully utilize available energy and light resources and thus produce greater yields.

  6. Effect of volunteer rice infestation on grain quality and yield of rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Volunteer rice (Oryza sativa L.) plants arise from shattered seeds of the previous crop, which could reduce the yield of cultivated rice and the commercial value of harvested grain. Volunteer rice plants from a cultivar other than the current crop produce grains that may differ in physico-chemical t...

  7. TAL effectors and activation of predicted host targets distinguish Asian from African strains of the rice pathogen Xanthomonas oryzae pv. oryzicola while strict conservation suggests universal importance of five TAL effectors

    PubMed Central

    Wilkins, Katherine E.; Booher, Nicholas J.; Wang, Li; Bogdanove, Adam J.

    2015-01-01

    Xanthomonas oryzae pv. oryzicola (Xoc) causes the increasingly important disease bacterial leaf streak of rice (BLS) in part by type III delivery of repeat-rich transcription activator-like (TAL) effectors to upregulate host susceptibility genes. By pathogen whole genome, single molecule, real-time sequencing and host RNA sequencing, we compared TAL effector content and rice transcriptional responses across 10 geographically diverse Xoc strains. TAL effector content is surprisingly conserved overall, yet distinguishes Asian from African isolates. Five TAL effectors are conserved across all strains. In a prior laboratory assay in rice cv. Nipponbare, only two contributed to virulence in strain BLS256 but the strict conservation indicates all five may be important, in different rice genotypes or in the field. Concatenated and aligned, TAL effector content across strains largely reflects relationships based on housekeeping genes, suggesting predominantly vertical transmission. Rice transcriptional responses did not reflect these relationships, and on average, only 28% of genes upregulated and 22% of genes downregulated by a strain are up- and down- regulated (respectively) by all strains. However, when only known TAL effector targets were considered, the relationships resembled those of the TAL effectors. Toward identifying new targets, we used the TAL effector-DNA recognition code to predict effector binding elements in promoters of genes upregulated by each strain, but found that for every strain, all upregulated genes had at least one. Filtering with a classifier we developed previously decreases the number of predicted binding elements across the genome, suggesting that it may reduce false positives among upregulated genes. Applying this filter and eliminating genes for which upregulation did not strictly correlate with presence of the corresponding TAL effector, we generated testable numbers of candidate targets for four of the five strictly conserved TAL

  8. Chloroplast DNA diversity in wild and cultivated species of rice (Genus Oryza, section Oryza). Cladistic-mutation and genetic-distance analysis.

    PubMed

    Dally, A M; Second, G

    1990-08-01

    Using a novel nonaqueous procedure, chloroplast DNA was isolated from 318 individual adult rice plants, representing 247 accessions and the breadth of the diversity in section Oryza of genus Oryza. Among them, 32 different cpDNA restriction patterns were distinguished using the restriction endonucleases EcoRI and AvaI, and they were further characterized by restriction with BamHI, HindIII, SmaI, PstI, and BstEII enzymes. The differences in the electrophoretic band patterns were parsimoniously interpreted as being the result of 110 mutations, including 47 restriction site mutations. The relationships between band patterns were studied by a cladistic analysis based on shared mutations and by the computation of genetic distances based on shared bands. The deduced relationships were compared with earlier taxonomical studies. The maternal parents for BC genome allotetraploids were deduced. Within species, cpDNA diversity was found larger in those species with an evolutionary history of recent introgression and/or allotetraploidization. Occasional paternal inheritance and recombination of cpDNA in rice was suggested.

  9. Chloroplast DNA diversity in wild and cultivated species of rice (Genus Oryza, section Oryza). Cladistic-mutation and genetic-distance analysis.

    PubMed

    Dally, A M; Second, G

    1990-08-01

    Using a novel nonaqueous procedure, chloroplast DNA was isolated from 318 individual adult rice plants, representing 247 accessions and the breadth of the diversity in section Oryza of genus Oryza. Among them, 32 different cpDNA restriction patterns were distinguished using the restriction endonucleases EcoRI and AvaI, and they were further characterized by restriction with BamHI, HindIII, SmaI, PstI, and BstEII enzymes. The differences in the electrophoretic band patterns were parsimoniously interpreted as being the result of 110 mutations, including 47 restriction site mutations. The relationships between band patterns were studied by a cladistic analysis based on shared mutations and by the computation of genetic distances based on shared bands. The deduced relationships were compared with earlier taxonomical studies. The maternal parents for BC genome allotetraploids were deduced. Within species, cpDNA diversity was found larger in those species with an evolutionary history of recent introgression and/or allotetraploidization. Occasional paternal inheritance and recombination of cpDNA in rice was suggested. PMID:24220898

  10. 4th Annual Conference for African-American Researchers in the Mathematical Sciences (CAARMS4). Preliminary Program

    SciTech Connect

    Tapia, Richard

    1998-06-01

    In June, The Center for Research on Parallel Computation (CRPC), an NSF-funded Science and Technology Center, hosted the 4th Annual Conference for African-American Reserachers in the Mathematical Sciences (CAARMS4) at Rice University. The main goal of this conference was to highlight current work by African-American researchers and graduate students in mathematics. This conference strengthened the mathematical sciences by encouraging the increased participation of African-American and underrepresented groups into the field, facilitating working relationships between them and helping to cultivate their careers. In addition to the talks there was a graduate student poster session and tutorials on topics in mathematics and computer science. These talks, presentations, and discussions brought a broader perspective to the critical issues involving minority participation in mathematics.

  11. Connecting with Rice: Carolina Lowcountry and Africa

    ERIC Educational Resources Information Center

    Mitchell, Jerry T.; Collins, Larianne; Wise, Susan S.; Caughman, Monti

    2012-01-01

    Though lasting less than 200 years, large-scale rice production in South Carolina and Georgia "probably represented the most significant utilization of the tidewater zone for crop agriculture ever attained in the United States." Rice is a specialty crop where successful cultivation relied heavily upon "adaptation" to nature via imported…

  12. Saturated Molecular Map of the Rice Genome Based on an Interspecific Backcross Population

    PubMed Central

    Causse, M. A.; Fulton, T. M.; Cho, Y. G.; Ahn, S. N.; Chunwongse, J.; Wu, K.; Xiao, J.; Yu, Z.; Ronald, P. C.; Harrington, S. E.; Second, G.; McCouch, S. R.; Tanksley, S. D.

    1994-01-01

    A molecular map has been constructed for the rice genome comprised of 726 markers (mainly restriction fragment length polymorphisms; RFLPs). The mapping population was derived from a backcross between cultivated rice, Oryza sativa, and its wild African relative, Oryza longistaminata. The very high level of polymorphism between these species, combined with the use of polymerase chain reaction-amplified cDNA libraries, contributed to mapping efficiency. A subset of the probes used in this study was previously used to construct an RFLP map derived from an inter subspecific cross, providing a basis for comparison of the two maps and of the relative mapping efficiencies in the two crosses. In addition to the previously described PstI genomic rice library, three cDNA libraries from rice (Oryza), oat (Avena) and barley (Hordeum) were used in this mapping project. Levels of polymorphism detected by each and the frequency of identifying heterologous sequences for use in rice mapping are discussed. Though strong reproductive barriers isolate O. sativa from O. longistaminata, the percentage of markers showing distorted segregation in this backcross population was not significantly different than that observed in an intraspecific F(2) population previously used for mapping. The map contains 1491 cM with an average interval size of 4.0 cM on the framework map, and 2.0 cM overall. A total of 238 markers from the previously described PstI genomic rice library, 250 markers from a cDNA library of rice (Oryza), 112 cDNA markers from oat (Avena), and 20 cDNA markers from a barley (Hordeum) library, two genomic clones from maize (Zea), 11 microsatellite markers, three telomere markers, eleven isozymes, 26 cloned genes, six RAPD, and 47 mutant phenotypes were used in this mapping project. Applications of a molecular map for plant improvement are discussed. PMID:7896104

  13. Molecular evolution of flowering time loci in U.S. weedy rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weedy rice is a persistent weed of cultivated rice (Oryza sativa) fields worldwide, which competes with the crop and drastically reduces rice yields. Within the US, two main populations of genetically differentiated weedy rice exist, the straw-hulled (SH) group and the black-hulled awned (BHA) grou...

  14. Microbial community response to two water management systems for wetland rice production in high arsenic soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice cultivation on arsenic (As) impacted soils has recently garnered considerable attention. Rice plants can accumulate As in grain, especially under the continuously flooded conditions commonly utilized in wetland-rice production. However, recent studies have indicated that rice-management system...

  15. QTLs analysis for resistance to blast disease in US weedy rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding the genetic architecture of adaptation is of great importance in evolutionary biology. US weedy rice is well-adapted to the local conditions in US rice fields. Rice blast disease is one of the most destructive diseases of cultivated rice worldwide. However, information about resistance...

  16. Uncovering a Nuisance Influence of a Phenological Trait of Plants Using a Nonlinear Structural Equation: Application to Days to Heading and Culm Length in Asian Cultivated Rice (Oryza Sativa L.)

    PubMed Central

    Onogi, Akio; Ideta, Osamu; Yoshioka, Takuma; Ebana, Kaworu; Yamasaki, Masanori; Iwata, Hiroyoshi

    2016-01-01

    Phenological traits of plants, such as flowering time, are linked to growth phase transition. Thus, phenological traits often influence other traits through the modification of the duration of growth period. This influence is a nuisance in plant breeding because it hampers genetic evaluation of the influenced traits. Genetic effects on the influenced traits have two components, one that directly affects the traits and one that indirectly affects the traits via the phenological trait. These cannot be distinguished by phenotypic evaluation and ordinary linear regression models. Consequently, if a phenological trait is modified by introgression or editing of the responsible genes, the phenotypes of the influenced traits can change unexpectedly. To uncover the influence of the phenological trait and evaluate the direct genetic effects on the influenced traits, we developed a nonlinear structural equation (NSE) incorporating a nonlinear influence of the phenological trait. We applied the NSE to real data for cultivated rice (Oryza sativa L.): days to heading (DH) as a phenological trait and culm length (CL) as the influenced trait. This showed that CL of the cultivars that showed extremely early heading was shortened by the strong influence of DH. In a simulation study, it was shown that the NSE was able to infer the nonlinear influence and direct genetic effects with reasonable accuracy. However, the NSE failed to infer the linear influence in this study. When no influence was simulated, an ordinary bi-trait linear model (OLM) tended to infer the genetic effects more accurately. In such cases, however, by comparing the NSE and OLM using an information criterion, we could assess whether the nonlinear assumption of the NSE was appropriate for the data analyzed. This study demonstrates the usefulness of the NSE in revealing the phenotypic influence of phenological traits. PMID:26859143

  17. Uncovering a Nuisance Influence of a Phenological Trait of Plants Using a Nonlinear Structural Equation: Application to Days to Heading and Culm Length in Asian Cultivated Rice (Oryza Sativa L.).

    PubMed

    Onogi, Akio; Ideta, Osamu; Yoshioka, Takuma; Ebana, Kaworu; Yamasaki, Masanori; Iwata, Hiroyoshi

    2016-01-01

    Phenological traits of plants, such as flowering time, are linked to growth phase transition. Thus, phenological traits often influence other traits through the modification of the duration of growth period. This influence is a nuisance in plant breeding because it hampers genetic evaluation of the influenced traits. Genetic effects on the influenced traits have two components, one that directly affects the traits and one that indirectly affects the traits via the phenological trait. These cannot be distinguished by phenotypic evaluation and ordinary linear regression models. Consequently, if a phenological trait is modified by introgression or editing of the responsible genes, the phenotypes of the influenced traits can change unexpectedly. To uncover the influence of the phenological trait and evaluate the direct genetic effects on the influenced traits, we developed a nonlinear structural equation (NSE) incorporating a nonlinear influence of the phenological trait. We applied the NSE to real data for cultivated rice (Oryza sativa L.): days to heading (DH) as a phenological trait and culm length (CL) as the influenced trait. This showed that CL of the cultivars that showed extremely early heading was shortened by the strong influence of DH. In a simulation study, it was shown that the NSE was able to infer the nonlinear influence and direct genetic effects with reasonable accuracy. However, the NSE failed to infer the linear influence in this study. When no influence was simulated, an ordinary bi-trait linear model (OLM) tended to infer the genetic effects more accurately. In such cases, however, by comparing the NSE and OLM using an information criterion, we could assess whether the nonlinear assumption of the NSE was appropriate for the data analyzed. This study demonstrates the usefulness of the NSE in revealing the phenotypic influence of phenological traits.

  18. Rice methylmercury exposure and mitigation: a comprehensive review.

    PubMed

    Rothenberg, Sarah E; Windham-Myers, Lisamarie; Creswell, Joel E

    2014-08-01

    Rice cultivation practices from field preparation to post-harvest transform rice paddies into hot spots for microbial mercury methylation, converting less-toxic inorganic mercury to more-toxic methylmercury, which is likely translocated to rice grain. This review includes 51 studies reporting rice total mercury and/or methylmercury concentrations, based on rice (Orzya sativa) cultivated or purchased in 15 countries. Not surprisingly, both rice total mercury and methylmercury levels were significantly higher in polluted sites compared to non-polluted sites (Wilcoxon rank sum, p<0.001). However, rice percent methylmercury (of total mercury) did not differ statistically between polluted and non-polluted sites (Wilcoxon rank sum, p=0.35), suggesting comparable mercury methylation rates in paddy soil across these sites and/or similar accumulation of mercury species for these rice cultivars. Studies characterizing the effects of rice cultivation under more aerobic conditions were reviewed to determine the mitigation potential of this practice. Rice management practices utilizing alternating wetting and drying (instead of continuous flooding) caused soil methylmercury levels to spike, resulting in a strong methylmercury pulse after fields were dried and reflooded; however, it is uncertain whether this led to increased translocation of methylmercury from paddy soil to rice grain. Due to the potential health risks, it is advisable to investigate this issue further, and to develop separate water management strategies for mercury polluted and non-polluted sites, in order to minimize methylmercury exposure through rice ingestion.

  19. Rice methylmercury exposure and mitigation: a comprehensive review

    USGS Publications Warehouse

    Rothenberg, Sarah E.; Windham-Myers, Lisamarie; Creswell, Joel E.

    2014-01-01

    Rice cultivation practices from field preparation to post-harvest transform rice paddies into hot spots for microbial mercury methylation, converting less-toxic inorganic mercury to more-toxic methylmercury, which is likely translocated to rice grain. This review includes 51 studies reporting rice total mercury and/or methylmercury concentrations, based on rice (Orzya sativa) cultivated or purchased in 15 countries. Not surprisingly, both rice total mercury and methylmercury levels were significantly higher in polluted sites compared to non-polluted sites (Wilcoxon rank sum, p<0.001). However, rice percent methylmercury (of total mercury) did not differ statistically between polluted and non-polluted sites (Wilcoxon rank sum, p=0.35), suggesting comparable mercury methylation rates in paddy soil across these sites and/or similar accumulation of mercury species for these rice cultivars. Studies characterizing the effects of rice cultivation under more aerobic conditions were reviewed to determine the mitigation potential of this practice. Rice management practices utilizing alternating wetting and drying (instead of continuous flooding) caused soil methylmercury levels to spike, resulting in a strong methylmercury pulse after fields were dried and reflooded; however, it is uncertain whether this led to increased translocation of methylmercury from paddy soil to rice grain. Due to the potential health risks, it is advisable to investigate this issue further, and to develop separate water management strategies for mercury polluted and non-polluted sites, in order to minimize methylmercury exposure through rice ingestion.

  20. Rice Methylmercury Exposure and Mitigation: A Comprehensive Review

    PubMed Central

    Rothenberg, Sarah E.; Windham-Myers, Lisamarie; Creswell, Joel E.

    2014-01-01

    Rice cultivation practices from field preparation to post-harvest transform rice paddies into hot spots for microbial mercury methylation, converting less-toxic inorganic mercury to more-toxic methylmercury, which is likely translocated to rice grain. This review includes 51 studies reporting rice total mercury and/or methylmercury concentrations, based on rice cultivated or purchased in 15 countries. Not surprisingly, both rice total mercury and methylmercury levels were significantly higher in polluted sites compared to non-polluted sites (Wilcoxon rank sum, p<0.001). However, rice percent methylmercury (of total mercury) did not differ statistically between polluted and non-polluted sites (Wilcoxon rank sum, p=0.35), suggesting comparable mercury methylation rates in paddy soil across these sites and/or similar accumulation of mercury species for these rice cultivars. Studies characterizing the effect of rice cultivation under more aerobic conditions were reviewed to determine the mitigation potential of this practice. Rice management practices utilizing alternating wetting and drying (instead of continuous flooding) caused soil methylmercury levels to spike, resulting in a strong methylmercury pulse after fields were dried and reflooded; however, it is uncertain whether this led to increased translocation of methylmercury from paddy soil to rice grain. Due to the potential health risks, it is advisable to investigate this issue further, and to develop separate water management strategies for mercury polluted and non-polluted sites, which minimize methylmercury exposure through rice ingestion. PMID:24972509

  1. Rice methylmercury exposure and mitigation: a comprehensive review.

    PubMed

    Rothenberg, Sarah E; Windham-Myers, Lisamarie; Creswell, Joel E

    2014-08-01

    Rice cultivation practices from field preparation to post-harvest transform rice paddies into hot spots for microbial mercury methylation, converting less-toxic inorganic mercury to more-toxic methylmercury, which is likely translocated to rice grain. This review includes 51 studies reporting rice total mercury and/or methylmercury concentrations, based on rice (Orzya sativa) cultivated or purchased in 15 countries. Not surprisingly, both rice total mercury and methylmercury levels were significantly higher in polluted sites compared to non-polluted sites (Wilcoxon rank sum, p<0.001). However, rice percent methylmercury (of total mercury) did not differ statistically between polluted and non-polluted sites (Wilcoxon rank sum, p=0.35), suggesting comparable mercury methylation rates in paddy soil across these sites and/or similar accumulation of mercury species for these rice cultivars. Studies characterizing the effects of rice cultivation under more aerobic conditions were reviewed to determine the mitigation potential of this practice. Rice management practices utilizing alternating wetting and drying (instead of continuous flooding) caused soil methylmercury levels to spike, resulting in a strong methylmercury pulse after fields were dried and reflooded; however, it is uncertain whether this led to increased translocation of methylmercury from paddy soil to rice grain. Due to the potential health risks, it is advisable to investigate this issue further, and to develop separate water management strategies for mercury polluted and non-polluted sites, in order to minimize methylmercury exposure through rice ingestion. PMID:24972509

  2. The impact of volunteer rice infestation on rice yield and grain quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Volunteer rice (Oryza sativa L.) is a crop stand which emerges from shattered seeds of the previous crop. When present at sufficiently high levels, it can potentially affect the commercial market value of cultivated rice products, especially if it produces kernels with quality, uniformity, or size ...

  3. Acute toxic effects of the herbicide formulation and the active ingredient used in cycloxydim-tolerant maize cultivation on embryos and larvae of the African clawed frog, Xenopus laevis.

    PubMed

    Wagner, Norman; Lötters, Stefan; Veith, Michael; Viertel, Bruno

    2015-04-01

    Most genetically engineered herbicide-tolerant crops are still awaiting approval in Europe. There is, however, a recent trend for the cultivation of cycloxydim-tolerant maize hybrids for use in maize production. We studied the acute toxic effects of the complementary herbicide Focus(®) Ultra and its active ingredient cycloxydim on embryos and early-stage larvae of the African clawed frog (Xenopus laevis). The results indicate that the herbicide formulation is significantly more toxic than the active ingredient alone. Therefore, it is suggested that the added substances either solely or in a synergistic action with the active ingredient are responsible for adverse effects. The formulation was found to be moderately toxic to embryos but highly toxic to early larvae. Based on calculated teratogenic indices, both cycloxydim and Focus(®) Ultra seem to be non-teratogenic and also the minimum Focus(®) Ultra concentration to inhibit growth in embryos and larvae was close to the LC50 values. The data suggest that tests with the rainbow trout are not in all cases appropriate to assess the risk in aquatically developing anurans. This is demonstrated by 96-h LC50 values, which are for rainbow trout more than 50- to 20-fold higher than for early X. laevis larvae. However, based on worst-case predicted environmental concentrations for surface waters, there is apparently a large safety margin in field use of Focus(®) Ultra if buffer strips between the farm land and the amphibian habitats are regarded. PMID:25634323

  4. High IgE sensitization to maize and rice pollen in the highlands of Madagascar

    PubMed Central

    Ramavovololona; Sénéchal, Hélène; Andrianarisoa, Ange; Rakotoarimanana, Vololona; Godfrin, Dominique; Peltre, Gabriel; Poncet, Pascal; Sutra, Jean-Pierre

    2014-01-01

    Introduction Maize and rice are two crops constituting the main food supply in many under-developed and developing countries. Despite the large area devoted to the culture, the sensitization to the pollen from these plants is reported to be low and often considered as an occupational allergy. Methods Sixty five Malagasy pollen allergic patients were clinically and immunochemically investigated with regard to maize and rice pollen allergens. Pollen extracts were electrophoretically separated in 1 and 2 dimensions and IgE and IgG reactivities detected upon immunoblotting. Results When exploring the sensitization profile of Malagasy allergic patients to maize and rice pollen, it appears that a high proportion of these patients consulting during grass pollinating season were sensitized to both pollen as revealed by skin prick testing (62 vs. 59%) and IgE immunoblotting (85 vs. 40%). Several clinically relevant allergens were recognized by patients’ serum IgE in maize and rice pollen extracts. Conclusion The high levels of maize and rice pollen sensitization should be related, in this tropical region, to a specific environmental exposure including i) a proximity of the population to the allergenic sources and ii) a putative exacerbating effect of a highly polluted urban atmosphere on pollen allergenicity. Cross-reactivities between wild and cultivated grasses and also between rice and maize pollen are involved as well as some specific maize sensitizations. The presence of dense urban and peri-urban agriculture, in various African regions and worldwide, could be a high environmental risk factor for people sensitive to maize pollen. PMID:25870739

  5. [Rice: source of life and death on the plateaux of Madagascar].

    PubMed

    Laventure, S; Mouchet, J; Blanchy, S; Marrama, L; Rabarison, P; Andrianaivolambo, L; Rajaonarivelo, E; Rakotoarivony, I; Roux, J

    1996-01-01

    Since the 17th century, Europeans travelling in Madagascar described the contrast between the fever-free Plateau and the fever-ridden coasts. The former were inhabited by people of Asiatic origins and the latter by African migrants. At the end of the 18th century, "Merina" kings developed land irrigation and rice cultivation, using manpower from the coasts. Since then, rice has become a monoculture covering most of the arable lands of the Highlands. The first malaria epidemic occurred in the Tananarive area in 1878, and rapidly spread throughout the Plateau. The mortality rate was high. A second epidemic in 1895 may have been a resurgence of the previous one. Subsequently, malaria became meso-epidemic despite control measures, mainly consisting of larvivorous fishes, quinine treatment and prophylaxis. In 1949, an eradication program was launched based on DDT house-spraying and chloroquine prophylaxis in children. It was very successful on the Highlands where malaria disappeared, in 1962. Spraying was cancelled and only three small foci remained under surveillance. In 1987 and 1988, a malaria outbreak devastated the plateau. Subsequently, intensive spraying operations brought the situation under control by 1993. The main malaria vector on the Madagascar Highlands is An. funestus. More than 95% of its breeding sites are in the rice fields just before the harvest and afterwards in the fallow lands. The vector peak and the corresponding peak of malaria cases occur between February and May, depending on the farming calender. The second but less important vector, An. arabiensis, breeds in the rice fields just after seeding when the surface water is sunlit. Although rice fields remain the main source of this vector, it also breeds in rainwater pods and borow-pits. Malaria vectors on the plateau are products of human activities of rice cultivation, which is the basis of the economy. The epidemiological importance of rice fields varies greatly from one country to another

  6. [Rice: source of life and death on the plateaux of Madagascar].

    PubMed

    Laventure, S; Mouchet, J; Blanchy, S; Marrama, L; Rabarison, P; Andrianaivolambo, L; Rajaonarivelo, E; Rakotoarivony, I; Roux, J

    1996-01-01

    Since the 17th century, Europeans travelling in Madagascar described the contrast between the fever-free Plateau and the fever-ridden coasts. The former were inhabited by people of Asiatic origins and the latter by African migrants. At the end of the 18th century, "Merina" kings developed land irrigation and rice cultivation, using manpower from the coasts. Since then, rice has become a monoculture covering most of the arable lands of the Highlands. The first malaria epidemic occurred in the Tananarive area in 1878, and rapidly spread throughout the Plateau. The mortality rate was high. A second epidemic in 1895 may have been a resurgence of the previous one. Subsequently, malaria became meso-epidemic despite control measures, mainly consisting of larvivorous fishes, quinine treatment and prophylaxis. In 1949, an eradication program was launched based on DDT house-spraying and chloroquine prophylaxis in children. It was very successful on the Highlands where malaria disappeared, in 1962. Spraying was cancelled and only three small foci remained under surveillance. In 1987 and 1988, a malaria outbreak devastated the plateau. Subsequently, intensive spraying operations brought the situation under control by 1993. The main malaria vector on the Madagascar Highlands is An. funestus. More than 95% of its breeding sites are in the rice fields just before the harvest and afterwards in the fallow lands. The vector peak and the corresponding peak of malaria cases occur between February and May, depending on the farming calender. The second but less important vector, An. arabiensis, breeds in the rice fields just after seeding when the surface water is sunlit. Although rice fields remain the main source of this vector, it also breeds in rainwater pods and borow-pits. Malaria vectors on the plateau are products of human activities of rice cultivation, which is the basis of the economy. The epidemiological importance of rice fields varies greatly from one country to another

  7. Little white lies: pericarp color provides insights into the origins and evolution of Southeast Asian weedy rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weedy rice is a conspecific form of cultivated rice (Oryza sativa L.) that infests rice fields and results in severe crop losses. Weed strains in different world regions appear to have originated multiple times from different domesticated and/or wild rice progenitors. In the case of Malaysian weedy ...

  8. Rice Domestication Revealed by Reduced Shattering of Archaeological rice from the Lower Yangtze valley

    PubMed Central

    Zheng, Yunfei; Crawford, Gary W.; Jiang, Leping; Chen, Xugao

    2016-01-01

    Plant remains dating to between 9000 and 8400 BP from a probable ditch structure at the Huxi site include the oldest rice (Oryza sativa) spikelet bases and associated plant remains recovered in China. The remains document an early stage of rice domestication and the ecological setting in which early cultivation was taking place. The rice spikelet bases from Huxi include wild (shattering), intermediate, and domesticated (non-shattering) forms. The relative frequency of intermediate and non-shattering spikelet bases indicates that selection for, at the very least, non-shattering rice was underway at Huxi. The rice also has characteristics of japonica rice (Oryza sativa subsp. japonica), helping to clarify the emergence of a significant lineage of the crop. Seeds, phytoliths and their context provide evidence of increasing anthropogenesis and cultivation during the occupation. Rice spikelet bases from Kuahuqiao (8000–7700 BP), Tianluoshan (7000–6500 BP), Majiabang (6300–6000 BP), and Liangzhu (5300–4300 BP) sites indicate that rice underwent continuing selection for reduced shattering and japonica rice characteristics, confirming a prolonged domestication process for rice. PMID:27324699

  9. Rice Domestication Revealed by Reduced Shattering of Archaeological rice from the Lower Yangtze valley.

    PubMed

    Zheng, Yunfei; Crawford, Gary W; Jiang, Leping; Chen, Xugao

    2016-01-01

    Plant remains dating to between 9000 and 8400 BP from a probable ditch structure at the Huxi site include the oldest rice (Oryza sativa) spikelet bases and associated plant remains recovered in China. The remains document an early stage of rice domestication and the ecological setting in which early cultivation was taking place. The rice spikelet bases from Huxi include wild (shattering), intermediate, and domesticated (non-shattering) forms. The relative frequency of intermediate and non-shattering spikelet bases indicates that selection for, at the very least, non-shattering rice was underway at Huxi. The rice also has characteristics of japonica rice (Oryza sativa subsp. japonica), helping to clarify the emergence of a significant lineage of the crop. Seeds, phytoliths and their context provide evidence of increasing anthropogenesis and cultivation during the occupation. Rice spikelet bases from Kuahuqiao (8000-7700 BP), Tianluoshan (7000-6500 BP), Majiabang (6300-6000 BP), and Liangzhu (5300-4300 BP) sites indicate that rice underwent continuing selection for reduced shattering and japonica rice characteristics, confirming a prolonged domestication process for rice. PMID:27324699

  10. Plant growth and cultivation.

    PubMed

    Podar, Dorina

    2013-01-01

    There is a variety of methods used for growing plants indoor for laboratory research. In most cases plant research requires germination and growth of plants. Often, people have adapted plant cultivation protocols to the conditions and materials at hand in their own laboratory and growth facilities. Here I will provide a guide for growing some of the most frequently used plant species for research, i.e., Arabidopsis thaliana, barley (Hordeum vulgare) and rice (Oryza sativa). However, the methods presented can be used for other plant species as well, especially if they are related to the above-mentioned species. The presented methods include growing plants in soil, hydroponics, and in vitro on plates. This guide is intended as a starting point for those who are just beginning to work on any of the above-mentioned plant species. Methods presented are to be taken as suggestive and modification can be made according to the conditions existing in the host laboratory. PMID:23073874

  11. Plant growth and cultivation.

    PubMed

    Podar, Dorina

    2013-01-01

    There is a variety of methods used for growing plants indoor for laboratory research. In most cases plant research requires germination and growth of plants. Often, people have adapted plant cultivation protocols to the conditions and materials at hand in their own laboratory and growth facilities. Here I will provide a guide for growing some of the most frequently used plant species for research, i.e., Arabidopsis thaliana, barley (Hordeum vulgare) and rice (Oryza sativa). However, the methods presented can be used for other plant species as well, especially if they are related to the above-mentioned species. The presented methods include growing plants in soil, hydroponics, and in vitro on plates. This guide is intended as a starting point for those who are just beginning to work on any of the above-mentioned plant species. Methods presented are to be taken as suggestive and modification can be made according to the conditions existing in the host laboratory.

  12. Rice production in relation to soil quality under different rice-based cropping systems

    NASA Astrophysics Data System (ADS)

    Tran Ba, Linh; Sleutel, Steven; Nguyen Van, Qui; Thi, Guong Vo; Le Van, Khoa; Cornelis, Wim

    2016-04-01

    Soil quality of shallow paddy soils may be improved by introducing upland crops and thus a more diverse crop cultivation pattern. Yet, the causal relationship between crop performance and enhanced soil traits in rice-upland crop rotations remains elusive. The objectives of this study were to (i) find correlations among soil properties under different rice-upland crop systems and link selected soil properties to rice growth and yield, (ii) present appropriate values of soil parameters for sustainable rice productivity in heavy clay soil, (iii) evaluate the effect of rotating rice with upland crops on rice yield and economic benefit in a long-term experiment. A rice-upland crop rotational field experiment in the Vietnamese Mekong delta was conducted for 10 years using a randomized complete block design with four treatments and four replications. Treatments were: (i) rice-rice-rice (control - conventional system as farmers' practice), (ii) rice-maize-rice, (iii) rice-mung bean-rice, and (iv) rice-mung bean-maize. Soil and plant sampling were performed after harvest of the rice crop at the end of the final winter-spring cropping season (i.e. year 10). Results show differences in rice growth and yield, and economic benefit as an effect of the crop rotation system. These differences were linked with changes in bulk density, soil porosity, soil aggregate stability index, soil penetration resistance, soil macro-porosity, soil organic carbon, acid hydrolysable soil C and soil nutrient elements, especially at soil depth of 20-30 cm. This is evidenced by the strong correlation (P < 0.01) between rice plant parameters, rice yield and soil properties such as bulk density, porosity, penetration resistance, soil organic carbon and Chydrolysable. It turned out that good rice root growth and rice yield corresponded to bulk density values lower than 1.3 Mg m-3, soil porosity higher than 50%, penetration resistance below 1.0 MPa, and soil organic carbon above 25 g kg-1. The optimal

  13. Aerobic rice mechanization: techniques for crop establishment

    NASA Astrophysics Data System (ADS)

    Khusairy, K. M.; Ayob, H.; Chan, C. S.; Fauzi, M. I. Mohamed; Mohamad Fakhrul, Z. O.; Shahril Shah, G. S. M.; Azlan, O.; Rasad, M. A.; Hashim, A. M.; Arshad, Z.; E, E. Ibrahim; Saifulizan, M. N.

    2015-12-01

    Rice being the staple food crops, hundreds of land races in it makes the diversity of rice crops. Aerobic rice production was introduced which requires much less water input to safeguard and sustain the rice production and conserve water due to decreasing water resources, climatic changes and competition from urban and industrial users. Mechanization system plays an important role for the success of aerobic rice cultivation. All farming activities for aerobic rice production are run on aerobic soil conditions. Row seeder mechanization system is developed to replace conventional seeding technique on the aerobic rice field. It is targeted for small and the large scale aerobic rice farmers. The aero - seeder machine is used for the small scale aerobic rice field, while the accord - seeder is used for the large scale aerobic rice field. The use of this mechanization machine can eliminate the tedious and inaccurate seeding operations reduce labour costs and increases work rate. The machine is easy to operate and it can increase crop establishment rate. It reduce missing hill, increasing planting and crop with high yield can be produce. This machine is designed for low costs maintenance and it is easy to dismantle and assemble during maintenance and it is safe to be used.

  14. [Major domestication traits in Asian rice].

    PubMed

    Ou, Shu-Jun; Wang, Hong-Ru; Chu, Cheng-Cai

    2012-11-01

    Rice (Oryza sativa L.) is an excellent model plant in elucidation of cereal domestication. Loss of seed shattering, weakened dormancy, and changes in plant architecture were thought to be three key events in the rice domestication and creating the high-yield, uniform-germinating, and densely-planting modern rice. Loss of shattering is considered to be the direct morphological evidence for identifying domesticated rice. Two major shattering QTLs, Sh4 and qSH1, have displayed different domestication histories. Weakened seed dormancy is essential for synchronous germination in agricultural production. Genes Sdr4, qSD7-1, and qSD12 impose a global and complementary adaptation strategies in controlling seed dormancy. The prostate growth habit of wild rice is an adaptation to disturbed habitats, while the erect growth habit of rice cultivars meet the needs of compact planting, and such a plant architecture is mainly controlled by PROG1. The outcrossing habit of wild rice promotes propagation of domestication genes among different populations, while the self-pollinating habit of cultivated rice facilitates fixation of domestication genes. Currently, the researches on rice domestication mainly focus on individual genes or multiple neutral markers, and much less attention has been paid to the evolution of network controlling domestication traits. With the progress in functional genomics research, the molecular mechanism of domestication traits is emerging. Rice domestication researches based on network will be more comprehensive and better reflect rice domestica-tion process. Here, we reviewed most progresses in molecular mechanisms of rice domestication traits, in order to provide the new insights for rice domestication and molecular breeding.

  15. Molecular evolution of shattering loci in U.S. weedy rice

    PubMed Central

    Thurber, Carrie S.; Reagon, Michael; Gross, Briana L.; Olsen, Kenneth M.; Jia, Yulin; Caicedo, Ana L.

    2010-01-01

    Cultivated rice fields worldwide are plagued with weedy rice, a conspecific weed of cultivated rice (Oryza sativa L.). The persistence of weedy rice has been attributed, in part, to its ability to shatter (disperse) seed prior to crop harvesting. In the United States, separately evolved weedy rice groups have been shown to share genomic identity with exotic domesticated cultivars. Here, we investigate the shattering phenotype in a collection of U.S. weedy rice accessions, as well as wild and cultivated relatives. We find that all U.S. weedy rice groups shatter seeds easily, despite multiple origins, and in contrast to a decrease in shattering ability seen in cultivated groups. We assessed allelic identity and diversity at the major shattering locus, sh4, in weedy rice; we find that all cultivated and weedy rice, regardless of population, share similar haplotypes at sh4, and all contain a single derived mutation associated with decreased seed shattering. Our data constitute the strongest evidence to date of an evolution of weeds from domesticated backgrounds. The combination of a shared cultivar sh4 allele and a highly shattering phenotype, suggests that U.S. weedy rice have re-acquired the shattering trait after divergence from their progenitors through alternative genetic mechanisms. PMID:20584132

  16. Response of aerobic rice to Piriformospora indica.

    PubMed

    Das, Joy; Ramesh, K V; Maithri, U; Mutangana, D; Suresh, C K

    2014-03-01

    Rice cultivation under aerobic condition not only saves water but also opens up a splendid scope for effective application of beneficial root symbionts in rice crop unlike conventional puddled rice cultivation where water logged condition acts as constraint for easy proliferation of various beneficial soil microorganisms like arbuscular mycorrhizal (AM) fungi. Keeping these in view, an in silico investigation were carried out to explore the interaction of hydrogen phosphate with phosphate transporter protein (PTP) from P. indica. This was followed by greenhouse investigation to study the response of aerobic rice to Glomusfasciculatum, a conventional P biofertilizer and P. indica, an alternative to AM fungi. Computational studies using ClustalW tool revealed several conserved motifs between the phosphate transporters from Piriformospora indica and 8 other Glomus species. The 3D model of PTP from P. indica resembling "Mayan temple" was successfully docked onto hydrogen phosphate, indicating the affinity of this protein for inorganic phosphorus. Greenhouse studies revealed inoculation of aerobic rice either with P. indica, G. fasciculatum or both significantly enhanced the plant growth, biomass and yield with higher NPK, chlorophyll and sugar compared to uninoculated ones, P. indica inoculated plants being superior. A significantly enhanced activity of acid phosphatase and alkaline phosphatase were noticed in the rhizosphere soil of rice plants inoculated either with P. indica, G. fasciculatum or both, contributing to higher P uptake. Further, inoculation of aerobic rice plants with P. indica proved to be a better choice as a potential biofertilizer over mycorrhiza. PMID:24669667

  17. Cytoplasmic-genetic male sterility gene provides direct evidence for some hybrid rice recently evolving into weedy rice.

    PubMed

    Zhang, Jingxu; Lu, Zuomei; Dai, Weimin; Song, Xiaoling; Peng, Yufa; Valverde, Bernal E; Qiang, Sheng

    2015-05-27

    Weedy rice infests paddy fields worldwide at an alarmingly increasing rate. There is substantial evidence indicating that many weedy rice forms originated from or are closely related to cultivated rice. There is suspicion that the outbreak of weedy rice in China may be related to widely grown hybrid rice due to its heterosis and the diversity of its progeny, but this notion remains unsupported by direct evidence. We screened weedy rice accessions by both genetic and molecular marker tests for the cytoplasmic male sterility (CMS) genes (Wild abortive, WA, and Boro type, BT) most widely used in the production of indica and japonica three-line hybrid rice as a diagnostic trait of direct parenthood. Sixteen weedy rice accessions of the 358 tested (4.5%) contained the CMS-WA gene; none contained the CMS-BT gene. These 16 accessions represent weedy rices recently evolved from maternal hybrid rice derivatives, given the primarily maternal inheritance of this trait. Our results provide key direct evidence that hybrid rice can be involved in the evolution of some weedy rice accessions, but is not a primary factor in the recent outbreak of weedy rice in China.

  18. Taste of Super-Dwarf Rice Cultured in Space

    NASA Astrophysics Data System (ADS)

    Hirai, Hiroaki; Kitaya, Yoshiaki

    2016-07-01

    The interest of food production for lunar base and manned Mars mission has increased recently. So far, plants cultured long duration in space were leafy vegetables, arabidopsis, wheat, barley and so on. Although rice is a staple food for most of the world, research on rice cultivation in space has not been done much. Rice grains are nutrient-rich with carbohydrate, protein and dietary fiber. Moreover, rice is a high yield crop and harvested grains have a long shelf life. Rice symbolizes the rice-eating culture of Japan, is extremely useful as a specific cultured plant candidate of Japan in space. In the previous report, 'Kozo-no-sumika' found from seedlings in raising of seedling was introduced as a super-dwarf rice to culture in space. Considering this rice as food in space, we investigate the taste characteristics of this rice. At present, waxy 'Kozo-no-sumika' and nonwaxy 'Hosetsu dwarf' of super-dwarf rice and 'Nipponbare' of previous standard rice for sensory test are cultured in paddy field. Hereafter, we will harvest rice, investigate yield, evaluate taste.

  19. Evolutionary and social consequences of introgression of nontransgenic herbicide resistance from rice to weedy rice in Brazil.

    PubMed

    Merotto, Aldo; Goulart, Ives C G R; Nunes, Anderson L; Kalsing, Augusto; Markus, Catarine; Menezes, Valmir G; Wander, Alcido E

    2016-08-01

    Several studies have expressed concerns about the effects of gene flow from transgenic herbicide-resistant crops to their wild relatives, but no major problems have been observed. This review describes a case study in which what has been feared in transgenics regarding gene flow has actually changed biodiversity and people's lives. Nontransgenic imidazolinone-resistant rice (IMI-rice) cultivars increased the rice grain yield by 50% in southern Brazil. This increase was beneficial for life quality of the farmers and also improved the regional economy. However, weedy rice resistant to imidazolinone herbicides started to evolve three years after the first use of IMI-rice cultivars. Population genetic studies indicate that the herbicide-resistant weedy rice was mainly originated from gene flow from resistant cultivars and distributed by seed migration. The problems related with herbicide-resistant weedy rice increased the production costs of rice that forced farmers to sell or rent their land. Gene flow from cultivated rice to weedy rice has proven to be a large agricultural, economic, and social constraint in the use of herbicide-resistant technologies in rice. This problem must be taken into account for the development of new transgenic or nontransgenic rice technologies.

  20. Evolutionary and social consequences of introgression of nontransgenic herbicide resistance from rice to weedy rice in Brazil.

    PubMed

    Merotto, Aldo; Goulart, Ives C G R; Nunes, Anderson L; Kalsing, Augusto; Markus, Catarine; Menezes, Valmir G; Wander, Alcido E

    2016-08-01

    Several studies have expressed concerns about the effects of gene flow from transgenic herbicide-resistant crops to their wild relatives, but no major problems have been observed. This review describes a case study in which what has been feared in transgenics regarding gene flow has actually changed biodiversity and people's lives. Nontransgenic imidazolinone-resistant rice (IMI-rice) cultivars increased the rice grain yield by 50% in southern Brazil. This increase was beneficial for life quality of the farmers and also improved the regional economy. However, weedy rice resistant to imidazolinone herbicides started to evolve three years after the first use of IMI-rice cultivars. Population genetic studies indicate that the herbicide-resistant weedy rice was mainly originated from gene flow from resistant cultivars and distributed by seed migration. The problems related with herbicide-resistant weedy rice increased the production costs of rice that forced farmers to sell or rent their land. Gene flow from cultivated rice to weedy rice has proven to be a large agricultural, economic, and social constraint in the use of herbicide-resistant technologies in rice. This problem must be taken into account for the development of new transgenic or nontransgenic rice technologies. PMID:27468302

  1. Water management practices affect arsenic and cadmium accumulation in rice grains.

    PubMed

    Sun, Liming; Zheng, Manman; Liu, Hongyan; Peng, Shaobing; Huang, Jianliang; Cui, Kehui; Nie, Lixiao

    2014-01-01

    Cadmium (Cd) and arsenic (As) accumulation in rice grains is a great threat to its productivity, grain quality, and thus human health. Pot and field studies were carried out to unravel the effect of different water management practices (aerobic, aerobic-flooded, and flooded) on Cd and As accumulation in rice grains of two different varieties. In pot experiment, Cd or As was also added into the soil as treatment. Pots without Cd or As addition were maintained as control. Results indicated that water management practices significantly influenced the Cd and As concentration in rice grains and aerobic cultivation of rice furnished less As concentration in its grains. Nonetheless, Cd concentration in this treatment was higher than the grains of flooded rice. Likewise, in field study, aerobic and flooded rice cultivation recorded higher Cd and As concentration, respectively. However, growing of rice in aerobic-flooded conditions decreased the Cd concentration by 9.38 times on average basis as compared to aerobic rice. Furthermore, this treatment showed 28% less As concentration than that recorded in flooded rice cultivation. The results suggested that aerobic-flooded cultivation may be a promising strategy to reduce the Cd and As accumulations in rice grains simultaneously. PMID:25013859

  2. Water Management Practices Affect Arsenic and Cadmium Accumulation in Rice Grains

    PubMed Central

    Liu, Hongyan; Peng, Shaobing; Huang, Jianliang; Cui, Kehui

    2014-01-01

    Cadmium (Cd) and arsenic (As) accumulation in rice grains is a great threat to its productivity, grain quality, and thus human health. Pot and field studies were carried out to unravel the effect of different water management practices (aerobic, aerobic-flooded, and flooded) on Cd and As accumulation in rice grains of two different varieties. In pot experiment, Cd or As was also added into the soil as treatment. Pots without Cd or As addition were maintained as control. Results indicated that water management practices significantly influenced the Cd and As concentration in rice grains and aerobic cultivation of rice furnished less As concentration in its grains. Nonetheless, Cd concentration in this treatment was higher than the grains of flooded rice. Likewise, in field study, aerobic and flooded rice cultivation recorded higher Cd and As concentration, respectively. However, growing of rice in aerobic-flooded conditions decreased the Cd concentration by 9.38 times on average basis as compared to aerobic rice. Furthermore, this treatment showed 28% less As concentration than that recorded in flooded rice cultivation. The results suggested that aerobic-flooded cultivation may be a promising strategy to reduce the Cd and As accumulations in rice grains simultaneously. PMID:25013859

  3. Moulds and mycotoxins in rice from the Swedish retail market.

    PubMed

    Fredlund, E; Thim, A-M; Gidlund, A; Brostedt, S; Nyberg, M; Olsen, M

    2009-04-01

    A survey of moulds and mycotoxins was performed on 99 rice samples taken from the Swedish retail market. The main objective was to study the mould and mycotoxin content in basmati rice and rice with a high content of fibre. Samples of jasmine rice as well as long-grain rice were also included. The samples were analysed for their content of ochratoxin A (high-performance liquid chromatography (HPLC)), aflatoxin B(1), B(2), G(1), and G(2) (HPLC, RIDA(R)QUICK), and mould (traditional cultivation methods in combination with morphological analysis). The majority of samples were sampled according to European Commission Regulation 401/2006. Subsamples were pooled and mixed before milling and both mould and mycotoxin analyses were performed on milled rice. The results showed that the majority of basmati rice (71%) and many jasmine rice samples (20%) contained detectable levels of aflatoxin B(1) (level of quantification = 0.1 microg aflatoxin kg(-1) rice). Two samples of jasmine rice and ten basmati rice samples contained levels over the regulated European maximum limits of 2 microg kg(-1) for aflatoxin B(1) or 4 microg kg(-1) for total aflatoxins. Aspergillus was the most common mould genus isolated, but also Penicillium, Eurotium, Wallemia, Cladosporium, Epicoccum, Alternaria, and Trichotecium were found. The presence of Aspergillus flavus in 21% of the samples indicates that incorrect management of rice during production and storage implies a risk of mould growth and subsequent production of aflatoxin. Rough estimates showed that high rice consumers may have an intake of 2-3 ng aflatoxin kg(-1) bodyweight and day(-1) from rice alone. This survey shows that aflatoxin is a common contaminant in rice imported to Europe.

  4. Origin of seed shattering in rice (Oryza sativa L.).

    PubMed

    Lin, Zhongwei; Griffith, Megan E; Li, Xianran; Zhu, Zuofeng; Tan, Lubing; Fu, Yongcai; Zhang, Wenxu; Wang, Xiangkun; Xie, Daoxin; Sun, Chuanqing

    2007-06-01

    A critical evolutionary step during rice domestication was the elimination of seed shattering. Wild rice disperses seeds freely at maturity to guarantee the propagation, while cultivated rice retains seeds on the straws to make easy harvest and decrease the loss of production. The molecular basis for this key event during rice domestication remains to be elucidated. Here we show that the seed shattering is controlled by a single dominant gene, Shattering1 (SHA1), encoding a member of the trihelix family of plant-specific transcription factors. SHA1 was mapped to a 5.5 kb genomic fragment, which contains a single open reading frame, using a backcrossed population between cultivated rice Teqing and an introgression line IL105 with the seed shattering habit derived from perennial common wild rice, YJCWR. The predicted amino acid sequence of SHA1 in YJCWR and IL105 is distinguished from that in eight domesticated rice cultivars, including Teqing, by only a single amino acid substitution (K79N) caused by a single nucleotide change (g237t). Further sequence verification on the g237t mutation site revealed that the g237t mutation is present in all the domesticated rice cultivars, including 92 indica and 108 japonica cultivars, but not in any of the 24 wild rice accessions examined. Our results demonstrate that the g237t mutation in SHA1 accounts for the elimination of seed shattering, and that all the domesticated rice cultivars harbor the mutant sha1 gene and therefore have lost the ability to shed their seeds at maturity. In addition, our data support the theory that the non-shattering trait selection during rice domestication occurred prior to the indica-japonica differentiation in rice evolutionary history. PMID:17216230

  5. Wild rice, hypoallergenic rice--immunologic comparison.

    PubMed

    Yum, Hye-Yung; Lee, Kyung Eun; Choi, Sung Youn; Yang, Hea Sun; Sohn, Myung Hyun; Kim, Kyu-Earn; Lee, Sang-Il

    2006-01-01

    Rice is a cereal that is mainly produced and widely consumed in Asian countries including Korea. Several reports have suggested a role of IgE-mediated hypersensitivity in asthma and eczema associated with ingestion or inhalation of rice. In Japan, hypoallergenic rices are used for a substitute of common rice in some atopic patients. We performed this study to identify major allergens of rice and changed allergenicity in cooked and hypoallergenic rice. We purified crude extracts from a variety of rice and analyzed their protein distributions by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Based on UniCAP test and skin-prick test, we selected sera with high sensitivity and analyzed specific IgE binding to rice by immunoblotting. In addition, the inhibition rate among some rice was determined by enzyme linked immunosorbent assay and CAP test. As the result of this study, rice with various origins and polishing levels had no difference in protein band pattern. After cooking, it was difficult to detect protein bands distributed in raw rice; and, even through IgE immunoblot analysis, it was impossible to differentiate between wild and hypoallergenic rice. In addition, both wild and hypoallergenic rice still had IgE binding activity on their remaining protein bands. In conclusion, almost all proteins of rice were excluded or weakened in the process of boiling and IgE binding activity still remained even in hypoallergenic rice.

  6. Rice tungro spherical virus resistance into photoperiod-insensitive japonica rice by marker-assisted selection.

    PubMed

    Shim, Junghyun; Torollo, Gideon; Angeles-Shim, Rosalyn B; Cabunagan, Rogelio C; Choi, Il-Ryong; Yeo, Un-Sang; Ha, Woon-Goo

    2015-09-01

    Rice tungro disease (RTD) is one of the destructive and prevalent diseases in the tropical region. RTD is caused by Rice tungro spherical virus (RTSV) and Rice tungro bacilliform virus. Cultivation of japonica rice (Oryza sativa L. ssp japonica) in tropical Asia has often been restricted because most japonica cultivars are sensitive to short photoperiod, which is characteristic of tropical conditions. Japonica1, a rice variety bred for tropical conditions, is photoperiod-insensitive, has a high yield potential, but is susceptible to RTD and has poor grain quality. To transfer RTD resistance into Japonica1, we made two backcrosses (BC) and 8 three-way crosses (3-WC) among Japonica1 and RTSV-resistant cultivars. Among 8,876 BC1F2 and 3-WCF2 plants, 342 were selected for photoperiod-insensitivity and good grain quality. Photoperiod-insensitive progenies were evaluated for RTSV resistance by a bioassay and marker-assisted selection (MAS), and 22 BC1F7 and 3-WCF7 lines were selected based on the results of an observational yield trial. The results demonstrated that conventional selection for photoperiod-insensitivity and MAS for RTSV resistance can greatly facilitate the development of japonica rice that is suitable for cultivation in tropical Asia. PMID:26366118

  7. Abandoned Rice Fields Make Streams Go Dry in Upland Landscapes

    NASA Astrophysics Data System (ADS)

    Jayawickreme, D.

    2015-12-01

    In South Asia, new economic realities are driving many rural rice farmers out of agriculture. With increasing neglect, abandonment, and rising conversions of centuries old rice fields into other uses, ecological and environmental consequences of these transitions are becoming progressively clear. Field observations in Sri Lanka's central highlands suggest that small shifts in rice to non-rice land uses in headwater watersheds can have a domino effect on the productivity and viability of rice fields and other ecological systems downstream by inflicting groundwater recharge reductions, lowering groundwater yields, and causing other hydrological changes. Preliminary analysis shows that although rice itself is a very water intensive crop, the presence of rain-fed upland rice-fields is hugely beneficial to the watersheds they reside. In particular, water benefits of rice appear to be derived from ponded conditions (3-5 inches of standing water) in which rice is grown, and the contribution rice fields makes to enhance water retention and storage capacity of their watersheds during the monsoon season that coincide with the cropping season. In the absence of well managed rice-fields, hilly upland landscapes produce more runoff and retain little rainwater during the wet season. Furthermore, after centuries of intensive use, much of South Asia's rice fields are nutrient poor and minimally productive without fertilizer applications and other interventions. Consequently, when abandoned, soil erosion and other impacts that affect aquatic ecosystems and watershed health also emerge. Despite these multiple concerns however, little research is currently done to better understand the environmental significance of rice cultivations that are a dominant land-use in many South Asian landscapes. The aim of this presentation is to stir interest among the scientific community to engage more broadly in rice, water, and environmental change research in the face of new economic realities in

  8. Genetic diversity of the rice bean (Vigna umbellata) genepool as assessed by SSR markers.

    PubMed

    Tian, J; Isemura, T; Kaga, A; Vaughan, D A; Tomooka, N

    2013-12-01

    The genetic diversity of 472 rice bean accessions (388 cultivated and 84 wild) from 16 Asian countries was evaluated by 13 simple sequence repeat (SSR) markers. In total, 168 alleles were detected, and the numbers of alleles in cultivated and wild accessions were 129 and 132, respectively. The gene diversity in cultivated populations (0.565) was about 83% of that for wild (0.678) populations. Cultivated populations from Vietnam, Myanmar, Nepal, and India had the highest gene diversity (>0.5). East Asian accessions formed a distinct genepool. Indonesian cultivated accessions showed high genetic divergence from other cultivated populations and had the most similar genetic structure to wild accessions. In Nepalese cultivated accessions, many accessions from western regions were quite distinct from others and formed a specific group. These Nepalese accessions could be considered a unique gene source for rice bean breeding. In contrast, eastern Nepalese accessions showed an SSR profile similar to that of Southeast Asian rice beans. The present study represents the first comprehensive SSR analysis in cultivated and wild rice bean germplasm and clarifies geographical distribution of genetic profile that might be used to broaden the genetic base of currently grown rice bean cultivars.

  9. Barnyard grasses were processed with rice around 10000 years ago.

    PubMed

    Yang, Xiaoyan; Fuller, Dorian Q; Huan, Xiujia; Perry, Linda; Li, Quan; Li, Zhao; Zhang, Jianping; Ma, Zhikun; Zhuang, Yijie; Jiang, Leping; Ge, Yong; Lu, Houyuan

    2015-01-01

    Rice (Oryza sativa) is regarded as the only grass that was selected for cultivation and eventual domestication in the Yangtze basin of China. Although both macro-fossils and micro-fossils of rice have been recovered from the Early Neolithic site of Shangshan, dating to more than 10,000 years before present (BP), we report evidence of phytolith and starch microfossils taken from stone tools, both for grinding and cutting, and cultural layers, that indicating barnyard grass (Echinochloa spp.) was a major subsistence resource, alongside smaller quantities of acorn starches (Lithocarpus/Quercus sensu lato) and water chestnuts (Trapa). This evidence suggests that early managed wetland environments were initially harvested for multiple grain species including barnyard grasses as well as rice, and indicate that the emergence of rice as the favoured cultivated grass and ultimately the key domesticate of the Yangtze basin was a protracted process. PMID:26536839

  10. Barnyard grasses were processed with rice around 10000 years ago

    PubMed Central

    Yang, Xiaoyan; Fuller, Dorian Q; Huan, Xiujia; Perry, Linda; Li, Quan; Li, Zhao; Zhang, Jianping; Ma, Zhikun; Zhuang, Yijie; Jiang, Leping; Ge, Yong; Lu, Houyuan

    2015-01-01

    Rice (Oryza sativa) is regarded as the only grass that was selected for cultivation and eventual domestication in the Yangtze basin of China. Although both macro-fossils and micro-fossils of rice have been recovered from the Early Neolithic site of Shangshan, dating to more than 10,000 years before present (BP), we report evidence of phytolith and starch microfossils taken from stone tools, both for grinding and cutting, and cultural layers, that indicating barnyard grass (Echinochloa spp.) was a major subsistence resource, alongside smaller quantities of acorn starches (Lithocarpus/Quercus sensu lato) and water chestnuts (Trapa). This evidence suggests that early managed wetland environments were initially harvested for multiple grain species including barnyard grasses as well as rice, and indicate that the emergence of rice as the favoured cultivated grass and ultimately the key domesticate of the Yangtze basin was a protracted process. PMID:26536839

  11. Concentration of some heavy metals in rice types available in Shiraz market and human health risk assessment.

    PubMed

    Naseri, Mahmood; Vazirzadeh, Arya; Kazemi, Robabeh; Zaheri, Farnaz

    2015-05-15

    This investigation was conducted to survey the levels of some heavy metals such as cadmium, lead, chromium, nickel and cobalt in domestic cultivated and imported rice sold on the Shiraz - Iran markets. The potential human health risk assessment was conducted by considering estimated weekly intake (EWI) of toxic metals from eating rice and compared calculated values with provisional tolerable weekly intake (PTWI). The mean values for lead and cadmium in domestic cultivated and imported rice were considerably higher than allowable limits set by FAO/WHO. In combination of recent rice consumption data, the estimated weekly intakes of toxic element were calculated for Iranian population. EWI for cadmium, nickel, chromium through imported and domestic cultivated rice consumption was lower than the PTWI. The EWI for lead were considerably higher than other measured toxic metals. The highest mean level of EWI for lead was observed in some imported rice samples (25.76 μg/kg body weight).

  12. Expression of barley SUSIBA2 transcription factor yields high-starch low-methane rice.

    PubMed

    Su, J; Hu, C; Yan, X; Jin, Y; Chen, Z; Guan, Q; Wang, Y; Zhong, D; Jansson, C; Wang, F; Schnürer, A; Sun, C

    2015-07-30

    Atmospheric methane is the second most important greenhouse gas after carbon dioxide, and is responsible for about 20% of the global warming effect since pre-industrial times. Rice paddies are the largest anthropogenic methane source and produce 7-17% of atmospheric methane. Warm waterlogged soil and exuded nutrients from rice roots provide ideal conditions for methanogenesis in paddies with annual methane emissions of 25-100-million tonnes. This scenario will be exacerbated by an expansion in rice cultivation needed to meet the escalating demand for food in the coming decades. There is an urgent need to establish sustainable technologies for increasing rice production while reducing methane fluxes from rice paddies. However, ongoing efforts for methane mitigation in rice paddies are mainly based on farming practices and measures that are difficult to implement. Despite proposed strategies to increase rice productivity and reduce methane emissions, no high-starch low-methane-emission rice has been developed. Here we show that the addition of a single transcription factor gene, barley SUSIBA2 (refs 7, 8), conferred a shift of carbon flux to SUSIBA2 rice, favouring the allocation of photosynthates to aboveground biomass over allocation to roots. The altered allocation resulted in an increased biomass and starch content in the seeds and stems, and suppressed methanogenesis, possibly through a reduction in root exudates. Three-year field trials in China demonstrated that the cultivation of SUSIBA2 rice was associated with a significant reduction in methane emissions and a decrease in rhizospheric methanogen levels. SUSIBA2 rice offers a sustainable means of providing increased starch content for food production while reducing greenhouse gas emissions from rice cultivation. Approaches to increase rice productivity and reduce methane emissions as seen in SUSIBA2 rice may be particularly beneficial in a future climate with rising temperatures resulting in increased

  13. Expression of barley SUSIBA2 transcription factor yields high-starch low-methane rice

    NASA Astrophysics Data System (ADS)

    Su, J.; Hu, C.; Yan, X.; Jin, Y.; Chen, Z.; Guan, Q.; Wang, Y.; Zhong, D.; Jansson, C.; Wang, F.; Schnürer, A.; Sun, C.

    2015-07-01

    Atmospheric methane is the second most important greenhouse gas after carbon dioxide, and is responsible for about 20% of the global warming effect since pre-industrial times. Rice paddies are the largest anthropogenic methane source and produce 7-17% of atmospheric methane. Warm waterlogged soil and exuded nutrients from rice roots provide ideal conditions for methanogenesis in paddies with annual methane emissions of 25-100-million tonnes. This scenario will be exacerbated by an expansion in rice cultivation needed to meet the escalating demand for food in the coming decades. There is an urgent need to establish sustainable technologies for increasing rice production while reducing methane fluxes from rice paddies. However, ongoing efforts for methane mitigation in rice paddies are mainly based on farming practices and measures that are difficult to implement. Despite proposed strategies to increase rice productivity and reduce methane emissions, no high-starch low-methane-emission rice has been developed. Here we show that the addition of a single transcription factor gene, barley SUSIBA2 (refs 7, 8), conferred a shift of carbon flux to SUSIBA2 rice, favouring the allocation of photosynthates to aboveground biomass over allocation to roots. The altered allocation resulted in an increased biomass and starch content in the seeds and stems, and suppressed methanogenesis, possibly through a reduction in root exudates. Three-year field trials in China demonstrated that the cultivation of SUSIBA2 rice was associated with a significant reduction in methane emissions and a decrease in rhizospheric methanogen levels. SUSIBA2 rice offers a sustainable means of providing increased starch content for food production while reducing greenhouse gas emissions from rice cultivation. Approaches to increase rice productivity and reduce methane emissions as seen in SUSIBA2 rice may be particularly beneficial in a future climate with rising temperatures resulting in increased

  14. Expression of barley SUSIBA2 transcription factor yields high-starch low-methane rice

    SciTech Connect

    Su, J.; Hu, C.; Yan, X.; Jin, Y.; Chen, Z.; Guan, Q.; Wang, Y.; Zhong, D.; Jansson, Georg C.; Wang, F.; Schnrer, Anna; Sun, Chuanxin

    2015-07-22

    Atmospheric methane is the second most important greenhouse gas after carbon dioxide, and is responsible for about 20% of the global warming effect since pre-industrial times. Rice paddies are the largest anthropogenic methane source and produce 7–17% of atmospheric methane. Warm waterlogged soil and exuded nutrients from rice roots provide ideal conditions for methanogenesis in paddies with annual methane emissions of 25–100-million tonnes. This scenario will be exacerbated by an expansion in rice cultivation needed to meet the escalating demand for food in the coming decades4. There is an urgent need to establish sustainable technologies for increasing rice production while reducing methane fluxes from rice paddies. However, ongoing efforts for methane mitigation in rice paddies are mainly based on farming practices and measures that are difficult to implement5. Despite proposed strategies to increase rice productivity and reduce methane emissions4,6, no high-starch low-methane-emission rice has been developed. Here we show that the addition of a single transcription factor gene, barley SUSIBA2, conferred a shift of carbon flux to SUSIBA2 rice, favouring the allocation of photosynthates to aboveground biomass over allocation to roots. The altered allocation resulted in an increased biomass and starch content in the seeds and stems, and suppressed methanogenesis, possibly through a reduction in root exudates. Three-year field trials in China demonstrated that the cultivation of SUSIBA2 rice was associated with a significant reduction in methane emissions and a decrease in rhizospheric methanogen levels. SUSIBA2 rice offers a sustainable means of providing increased starch content for food production while reducing greenhouse gas emissions from rice cultivation. Approaches to increase rice productivity and reduce methane emissions as seen in SUSIBA2 rice may be particularly beneficial in a future climate with rising temperatures resulting in increased methane

  15. Expression of barley SUSIBA2 transcription factor yields high-starch low-methane rice.

    PubMed

    Su, J; Hu, C; Yan, X; Jin, Y; Chen, Z; Guan, Q; Wang, Y; Zhong, D; Jansson, C; Wang, F; Schnürer, A; Sun, C

    2015-07-30

    Atmospheric methane is the second most important greenhouse gas after carbon dioxide, and is responsible for about 20% of the global warming effect since pre-industrial times. Rice paddies are the largest anthropogenic methane source and produce 7-17% of atmospheric methane. Warm waterlogged soil and exuded nutrients from rice roots provide ideal conditions for methanogenesis in paddies with annual methane emissions of 25-100-million tonnes. This scenario will be exacerbated by an expansion in rice cultivation needed to meet the escalating demand for food in the coming decades. There is an urgent need to establish sustainable technologies for increasing rice production while reducing methane fluxes from rice paddies. However, ongoing efforts for methane mitigation in rice paddies are mainly based on farming practices and measures that are difficult to implement. Despite proposed strategies to increase rice productivity and reduce methane emissions, no high-starch low-methane-emission rice has been developed. Here we show that the addition of a single transcription factor gene, barley SUSIBA2 (refs 7, 8), conferred a shift of carbon flux to SUSIBA2 rice, favouring the allocation of photosynthates to aboveground biomass over allocation to roots. The altered allocation resulted in an increased biomass and starch content in the seeds and stems, and suppressed methanogenesis, possibly through a reduction in root exudates. Three-year field trials in China demonstrated that the cultivation of SUSIBA2 rice was associated with a significant reduction in methane emissions and a decrease in rhizospheric methanogen levels. SUSIBA2 rice offers a sustainable means of providing increased starch content for food production while reducing greenhouse gas emissions from rice cultivation. Approaches to increase rice productivity and reduce methane emissions as seen in SUSIBA2 rice may be particularly beneficial in a future climate with rising temperatures resulting in increased

  16. The short and the long of it: SD1 polymorphism and the evolution of growth trait divergence in U.S. weedy rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Growth related traits are thought to enhance competitiveness of agricultural weeds. U.S. weedy rice, a major conspecific weed of cultivated rice (Oryza sativa), displays variation for growth traits. Prior studies have shown that major U.S. weedy rice populations likely evolved from domesticated grou...

  17. Can rice field channels contribute to biodiversity conservation in Southern Brazilian wetlands?

    PubMed

    Maltchik, Leonardo; Rolon, Ana Silvia; Stenert, Cristina; Machado, Iberê Farina; Rocha, Odete

    2011-12-01

    Conservation of species in agroecosystems has attracted attention. Irrigation channels can improve habitats and offer conditions for freshwater species conservation. Two questions from biodiversity conservation point of view are: 1) Can the irrigated channels maintain a rich diversity of macrophytes, macroinvertebrates and amphibians over the cultivation cycle? 2) Do richness, abundance and composition of aquatic species change over the rice cultivation cycle? For this, a set of four rice field channels was randomly selected in Southern Brazilian wetlands. In each channel, six sample collection events were carried out over the rice cultivation cycle (June 2005 to June 2006). A total of 160 taxa were identified in irrigated channels, including 59 macrophyte species, 91 taxa of macroinvertebrate and 10 amphibian species. The richness and abundance of macrophytes, macroinvertebrates and amphibians did not change significantly over the rice cultivation cycle. However, the species composition of these groups in the irrigation channels varied between uncultivated and cultivated periods. Our results showed that the species diversity found in the irrigation channels, together with the permanence of water enables these man-made aquatic networks to function as important systems that can contribute to the conservation of biodiversity in regions where the wetlands were converted into rice fields. The conservation of the species in agriculture, such as rice field channels, may be an important alternative for biodiversity conservation in Southern Brazil, where more than 90% of wetland systems have already been lost and the remaining ones are still at high risk due to the expansion of rice production.

  18. Evaluating leaf and canopy reflectance of stressed rice plants to monitor arsenic contamination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arsenic contamination is a serious problem in rice cultivated soils of many developing countries. Hence, it is critical to monitor and control arsenic uptake in rice plants to avoid adverse effects on human health. This study evaluated the feasibility of using reflectance spectroscopy to monitor ars...

  19. Optimal fertilizer N rates and yield-scaled global warming potential in drill seeded rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drill seeded rice (Oryza sativa L.) is the dominant rice cultivation practice in the USA. Although drill seeded systems can lead to significant methane and nitrous oxide emissions due to the presence of both anaerobic and aerobic soil conditions, the relationship between high-yielding management pr...

  20. Statistical inference of selection and divergence of rice blast resistance gene Pi-ta

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The resistance gene Pi-ta has been effectively used to control rice blast disease worldwide. A few recent studies have described the possible evolution of Pi-ta in cultivated and weedy rice. However, evolutionary statistics used for the studies are too limited to precisely understand selection and d...

  1. Archaeological and genetic insights into the origins of domesticated rice.

    PubMed

    Gross, Briana L; Zhao, Zhijun

    2014-04-29

    Rice (Oryza sativa) is one of the most important cereal grains in the world today and serves as a staple food source for more than half of the world's population. Research into when, where, and how rice was brought into cultivation and eventually domesticated, along with its development into a staple food source, is thus essential. These questions have been a point of nearly continuous research in both archaeology and genetics, and new information has continually come to light as theory, data acquisition, and analytical techniques have advanced over time. Here, we review the broad history of our scientific understanding of the rice domestication process from both an archaeological and genetic perspective and examine in detail the information that has come to light in both of these fields in the last 10 y. Current findings from genetics and archaeology are consistent with the domestication of O. sativa japonica in the Yangtze River valley of southern China. Interestingly, although it appears rice was cultivated in the area by as early 8000 BP, the key domestication trait of nonshattering was not fixed for another 1,000 y or perhaps longer. Rice was also cultivated in India as early as 5000 BP, but the domesticated indica subspecies currently appears to be a product of the introgression of favorable alleles from japonica. These findings are reshaping our understanding of rice domestication and also have implications for understanding the complex evolutionary process of plant domestication. PMID:24753573

  2. Genomic patterns of nucleotide diversity in divergent populations of U.S. weedy rice

    PubMed Central

    2010-01-01

    Background Weedy rice (red rice), a conspecific weed of cultivated rice (Oryza sativa L.), is a significant problem throughout the world and an emerging threat in regions where it was previously absent. Despite belonging to the same species complex as domesticated rice and its wild relatives, the evolutionary origins of weedy rice remain unclear. We use genome-wide patterns of single nucleotide polymorphism (SNP) variation in a broad geographic sample of weedy, domesticated, and wild Oryza samples to infer the origin and demographic processes influencing U.S. weedy rice evolution. Results We find greater population structure than has been previously reported for U.S. weedy rice, and that the multiple, genetically divergent populations have separate origins. The two main U.S. weedy rice populations share genetic backgrounds with cultivated O. sativa varietal groups not grown commercially in the U.S., suggesting weed origins from domesticated ancestors. Hybridization between weedy groups and between weedy rice and local crops has also led to the evolution of distinct U.S. weedy rice populations. Demographic simulations indicate differences among the main weedy groups in the impact of bottlenecks on their establishment in the U.S., and in the timing of divergence from their cultivated relatives. Conclusions Unlike prior research, we did not find unambiguous evidence for U.S. weedy rice originating via hybridization between cultivated and wild Oryza species. Our results demonstrate the potential for weedy life-histories to evolve directly from within domesticated lineages. The diverse origins of U.S. weedy rice populations demonstrate the multiplicity of evolutionary forces that can influence the emergence of weeds from a single species complex. PMID:20550656

  3. Human exposure to mercury in a compact fluorescent lamp manufacturing area: By food (rice and fish) consumption and occupational exposure.

    PubMed

    Liang, Peng; Feng, Xinbin; Zhang, Chan; Zhang, Jin; Cao, Yucheng; You, Qiongzhi; Leung, Anna Oi Wah; Wong, Ming-Hung; Wu, Sheng-Chun

    2015-03-01

    To investigate human Hg exposure by food consumption and occupation exposure in a compact fluorescent lamp (CFL) manufacturing area, human hair and rice samples were collected from Gaohong town, Zhejiang Province, China. The mean values of total mercury (THg) and methylmercury (MeHg) concentrations in local cultivated rice samples were significantly higher than in commercial rice samples which indicated that CFL manufacturing activities resulted in Hg accumulation in local rice samples. For all of the study participants, significantly higher THg concentrations in human hair were observed in CFL workers compared with other residents. In comparison, MeHg concentrations in human hair of residents whose diet consisted of local cultivated rice were significantly higher than those who consumed commercial rice. These results demonstrated that CFL manufacturing activities resulted in THg accumulation in the hair of CFL workers. However, MeHg in hair were mainly affected by the sources of rice of the residents.

  4. Human exposure to mercury in a compact fluorescent lamp manufacturing area: By food (rice and fish) consumption and occupational exposure.

    PubMed

    Liang, Peng; Feng, Xinbin; Zhang, Chan; Zhang, Jin; Cao, Yucheng; You, Qiongzhi; Leung, Anna Oi Wah; Wong, Ming-Hung; Wu, Sheng-Chun

    2015-03-01

    To investigate human Hg exposure by food consumption and occupation exposure in a compact fluorescent lamp (CFL) manufacturing area, human hair and rice samples were collected from Gaohong town, Zhejiang Province, China. The mean values of total mercury (THg) and methylmercury (MeHg) concentrations in local cultivated rice samples were significantly higher than in commercial rice samples which indicated that CFL manufacturing activities resulted in Hg accumulation in local rice samples. For all of the study participants, significantly higher THg concentrations in human hair were observed in CFL workers compared with other residents. In comparison, MeHg concentrations in human hair of residents whose diet consisted of local cultivated rice were significantly higher than those who consumed commercial rice. These results demonstrated that CFL manufacturing activities resulted in THg accumulation in the hair of CFL workers. However, MeHg in hair were mainly affected by the sources of rice of the residents. PMID:25590130

  5. Functional diversity of jasmonates in rice.

    PubMed

    Liu, Zheng; Zhang, Shumin; Sun, Ning; Liu, Hongyun; Zhao, Yanhong; Liang, Yuling; Zhang, Liping; Han, Yuanhuai

    2015-12-01

    Phytohormone jasmonates (JA) play essential roles in plants, such as regulating development and growth, responding to environmental changes, and resisting abiotic and biotic stresses. During signaling, JA interacts, either synergistically or antagonistically, with other hormones, such as salicylic acid (SA), gibberellin (GA), ethylene (ET), auxin, brassinosteroid (BR), and abscisic acid (ABA), to regulate gene expression in regulatory networks, conferring physiological and metabolic adjustments in plants. As an important staple crop, rice is a major nutritional source for human beings and feeds one third of the world's population. Recent years have seen significant progress in the understanding of the JA pathway in rice. In this review, we summarize the diverse functions of JA, and discuss the JA interplay with other hormones, as well as light, in this economically important crop. We believe that a better understanding of the JA pathway will lead to practical biotechnological applications in rice breeding and cultivation. PMID:26054241

  6. Accumulation of arsenic in tissues of rice plant (Oryza sativa L.) and its distribution in fractions of rice grain.

    PubMed

    Rahman, M Azizur; Hasegawa, H; Rahman, M Mahfuzur; Rahman, M Arifur; Miah, M A M

    2007-10-01

    A study was conducted to investigate the accumulation and distribution of arsenic in different fractions of rice grain (Oryza sativa L.) collected from arsenic affected area of Bangladesh. The agricultural soil of study area has become highly contaminated with arsenic due to the excessive use of arsenic-rich underground water (0.070+/-0.006 mg l(-1), n=6) for irrigation. Arsenic content in tissues of rice plant and in fractions of rice grain of two widely cultivated rice varieties, namely BRRI dhan28 and BRRI hybrid dhan1, were determined. Regardless of rice varieties, arsenic content was about 28- and 75-folds higher in root than that of shoot and raw rice grain, respectively. In fractions of parboiled and non-parboiled rice grain of both varieties, the order of arsenic concentrations was; rice hull>bran-polish>brown rice>raw rice>polish rice. Arsenic content was higher in non-parboiled rice grain than that of parboiled rice. Arsenic concentrations in parboiled and non-parboiled brown rice of BRRI dhan28 were 0.8+/-0.1 and 0.5+/-0.0 mg kg(-1) dry weight, respectively while those of BRRI hybrid dhan1 were 0.8+/-0.2 and 0.6+/-0.2 mg kg(-1) dry weight, respectively. However, parboiled and non-parboiled polish rice grain of BRRI dhan28 contained 0.4+/-0.0 and 0.3+/-0.1 mg kg(-1) dry weight of arsenic, respectively while those of BRRI hybrid dhan1 contained 0.43+/-0.01 and 0.5+/-0.0 mg kg(-1) dry weight, respectively. Both polish and brown rice are readily cooked for human consumption. The concentration of arsenic found in the present study is much lower than the permissible limit in rice (1.0 mg kg(-1)) according to WHO recommendation. Thus, rice grown in soils of Bangladesh contaminated with arsenic of 14.5+/-0.1 mg kg(-1) could be considered safe for human consumption. PMID:17599387

  7. Rice ( Oryza) hemoglobins

    PubMed Central

    Arredondo-Peter, Raúl; Moran, Jose F.; Sarath, Gautam

    2014-01-01

    Hemoglobins (Hbs) corresponding to non-symbiotic (nsHb) and truncated (tHb) Hbs have been identified in rice ( Oryza). This review discusses the major findings from the current studies on rice Hbs. At the molecular level, a family of the nshb genes, consisting of hb1, hb2, hb3, hb4 and hb5, and a single copy of the thb gene exist in Oryza sativa var. indica and O. sativa var. japonica, Hb transcripts coexist in rice organs and Hb polypeptides exist in rice embryonic and vegetative organs and in the cytoplasm of differentiating cells. At the structural level, the crystal structure of rice Hb1 has been elucidated, and the structures of the other rice Hbs have been modeled. Kinetic analysis indicated that rice Hb1 and 2, and possibly rice Hb3 and 4, exhibit a very high affinity for O 2, whereas rice Hb5 and tHb possibly exhibit a low to moderate affinity for O 2. Based on the accumulated information on the properties of rice Hbs and data from the analysis of other plant and non-plant Hbs, it is likely that Hbs play a variety of roles in rice organs, including O 2-transport, O 2-sensing, NO-scavenging and redox-signaling. From an evolutionary perspective, an outline for the evolution of rice Hbs is available. Rice nshb and thb genes vertically evolved through different lineages, rice nsHbs evolved into clade I and clade II lineages and rice nshbs and thbs evolved under the effect of neutral selection. This review also reveals lacunae in our ability to completely understand rice Hbs. Primary lacunae are the absence of experimental information about the precise functions of rice Hbs, the properties of modeled rice Hbs and the cis-elements and trans-acting factors that regulate the expression of rice hb genes, and the partial understanding of the evolution of rice Hbs. PMID:25653837

  8. Rice ( Oryza) hemoglobins.

    PubMed

    Arredondo-Peter, Raúl; Moran, Jose F; Sarath, Gautam

    2014-01-01

    Hemoglobins (Hbs) corresponding to non-symbiotic (nsHb) and truncated (tHb) Hbs have been identified in rice ( Oryza). This review discusses the major findings from the current studies on rice Hbs. At the molecular level, a family of the nshb genes, consisting of hb1, hb2, hb3, hb4 and hb5, and a single copy of the thb gene exist in Oryza sativa var. indica and O. sativa var. japonica, Hb transcripts coexist in rice organs and Hb polypeptides exist in rice embryonic and vegetative organs and in the cytoplasm of differentiating cells. At the structural level, the crystal structure of rice Hb1 has been elucidated, and the structures of the other rice Hbs have been modeled. Kinetic analysis indicated that rice Hb1 and 2, and possibly rice Hb3 and 4, exhibit a very high affinity for O 2, whereas rice Hb5 and tHb possibly exhibit a low to moderate affinity for O 2. Based on the accumulated information on the properties of rice Hbs and data from the analysis of other plant and non-plant Hbs, it is likely that Hbs play a variety of roles in rice organs, including O 2-transport, O 2-sensing, NO-scavenging and redox-signaling. From an evolutionary perspective, an outline for the evolution of rice Hbs is available. Rice nshb and thb genes vertically evolved through different lineages, rice nsHbs evolved into clade I and clade II lineages and rice nshbs and thbs evolved under the effect of neutral selection. This review also reveals lacunae in our ability to completely understand rice Hbs. Primary lacunae are the absence of experimental information about the precise functions of rice Hbs, the properties of modeled rice Hbs and the cis-elements and trans-acting factors that regulate the expression of rice hb genes, and the partial understanding of the evolution of rice Hbs.

  9. Timing is everything: early degradation of abscission layer is associated with increased seed shattering in U.S. weedy rice

    PubMed Central

    2011-01-01

    Background Seed shattering, or shedding, is an important fitness trait for wild and weedy grasses. U.S. weedy rice (Oryza sativa) is a highly shattering weed, thought to have evolved from non-shattering cultivated ancestors. All U.S. weedy rice individuals examined to date contain a mutation in the sh4 locus associated with loss of shattering during rice domestication. Weedy individuals also share the shattering trait with wild rice, but not the ancestral shattering mutation at sh4; thus, how weedy rice reacquired the shattering phenotype is unknown. To establish the morphological basis of the parallel evolution of seed shattering in weedy rice and wild, we examined the abscission layer at the flower-pedicel junction in weedy individuals in comparison with wild and cultivated relatives. Results Consistent with previous work, shattering wild rice individuals possess clear, defined abscission layers at flowering, whereas non-shattering cultivated rice individuals do not. Shattering weedy rice from two separately evolved populations in the U.S. (SH and BHA) show patterns of abscission layer formation and degradation distinct from wild rice. Prior to flowering, the abscission layer has formed in all weedy individuals and by flowering it is already degrading. In contrast, wild O. rufipogon abscission layers have been shown not to degrade until after flowering has occurred. Conclusions Seed shattering in weedy rice involves the formation and degradation of an abscission layer in the flower-pedicel junction, as in wild Oryza, but is a developmentally different process from shattering in wild rice. Weedy rice abscission layers appear to break down earlier than wild abscission layers. The timing of weedy abscission layer degradation suggests that unidentified regulatory genes may play a critical role in the reacquisition of shattering in weedy rice, and sheds light on the morphological basis of parallel evolution for shattering in weedy and wild rice. PMID:21235796

  10. Morphology based field rice density detection from rice transplant stage to rice jointing stage

    NASA Astrophysics Data System (ADS)

    Bai, X. D.; Cao, Z. G.; Wang, Y.; Ye, M. N.; Yu, Z. H.; Li, Y. N.

    2013-10-01

    Rice yield estimation is an important aspect in the agriculture research field. For the rice yield estimation, rice density is one of its useful factors. In this paper, we propose a new method to automatically detect the rice density from the rice transplanting stage to rice jointing stage. It devotes to detect rice planting density by image low-level features of the rice image sequences taken in the fields. Moreover, a rice jointing stage automatic detection method is proposed so as to terminate the rice density detection algorithm. The validities of the proposed rice density detection method and the rice jointing stage automatic detection method are proved in the experiment.

  11. Improving salt tolerance of lowland rice cultivar 'Rassi' through marker-aided backcross breeding in West Africa.

    PubMed

    Bimpong, Isaac Kofi; Manneh, Baboucarr; Sock, Mamadou; Diaw, Faty; Amoah, Nana Kofi Abaka; Ismail, Abdelbagi M; Gregorio, Glenn; Singh, Rakesh Kumar; Wopereis, Marco

    2016-01-01

    Salt stress affects about 25% of the 4.4 million ha of irrigated and lowland systems for rice cultivation in West Africa (WA). A major quantitative trait locus (QTLs) on chromosome 1 (Saltol) that enhances tolerance to salt stress at the vegetative stage has enabled the use of marker-assisted selection (MAS) to develop salt-tolerant rice cultivar(s) in WA. We used 3 cycles of backcrossing with selection based on DNA markers and field-testing using 'FL478' as tolerant donor and the widely grown 'Rassi' as recurrent parent. In the BC3F2 stage, salt-tolerant lines with over 80% Rassi alleles except in the region around Saltol segment were selected. 429 introgression lines (Saltol-ILs) were identified as tolerant at vegetative stage, of which 116 were field-tested for four seasons at the reproductive stage. Sixteen Saltol-ILs had less yield loss (3-26% relative to control trials), and 8 Saltol-ILs showed high yield potential under stress and non-stress conditions. The 16 Saltol-ILs had been included for further African-wide testing prior to release in 6 WA countries. MAS reduced the time for germplasm improvement from at least 7 to about 4 years. Our objective is to combine different genes/QTLs conferring tolerance to stresses under one genetic background using MAS. PMID:26566846

  12. High levels of inorganic arsenic in rice in areas where arsenic-contaminated water is used for irrigation and cooking.

    PubMed

    Rahman, M Azizur; Hasegawa, H

    2011-10-15

    Rice is the staple food for the people of arsenic endemic South (S) and South-East (SE) Asian countries. In this region, arsenic contaminated groundwater has been used not only for drinking and cooking purposes but also for rice cultivation during dry season. Irrigation of arsenic-contaminated groundwater for rice cultivation has resulted high deposition of arsenic in topsoil and uptake in rice grain posing a serious threat to the sustainable agriculture in this region. In addition, cooking rice with arsenic-contaminated water also increases arsenic burden in cooked rice. Inorganic arsenic is the main species of S and SE Asian rice (80 to 91% of the total arsenic), and the concentration of this toxic species is increased in cooked rice from inorganic arsenic-rich cooking water. The people of Bangladesh and West Bengal (India), the arsenic hot spots in the world, eat an average of 450g rice a day. Therefore, in addition to drinking water, dietary intake of arsenic from rice is supposed to be another potential source of exposure, and to be a new disaster for the population of S and SE Asian countries. Arsenic speciation in raw and cooked rice, its bioavailability and the possible health hazard of inorganic arsenic in rice for the population of S and SE Asia have been discussed in this review.

  13. Unravelling the proteomic profile of rice meiocytes during early meiosis

    PubMed Central

    Collado-Romero, Melania; Alós, Enriqueta; Prieto, Pilar

    2014-01-01

    Transfer of genetic traits from wild or related species into cultivated rice is nowadays an important aim in rice breeding. Breeders use genetic crosses to introduce desirable genes from exotic germplasms into cultivated rice varieties. However, in many hybrids there is only a low level of pairing (if existing) and recombination at early meiosis between cultivated rice and wild relative chromosomes. With the objective of getting deeper into the knowledge of the proteins involved in early meiosis, when chromosomes associate correctly in pairs and recombine, the proteome of isolated rice meiocytes has been characterized by nLC-MS/MS at every stage of early meiosis (prophase I). Up to 1316 different proteins have been identified in rice isolated meiocytes in early meiosis, being 422 exclusively identified in early prophase I (leptotene, zygotene, or pachytene). The classification of proteins in functional groups showed that 167 were related to chromatin structure and remodeling, nucleic acid binding, cell-cycle regulation, and cytoskeleton. Moreover, the putative roles of 16 proteins which have not been previously associated to meiosis or were not identified in rice before, are also discussed namely: seven proteins involved in chromosome structure and remodeling, five regulatory proteins [such as SKP1 (OSK), a putative CDK2 like effector], a protein with RNA recognition motifs, a neddylation-related protein, and two microtubule-related proteins. Revealing the proteins involved in early meiotic processes could provide a valuable tool kit to manipulate chromosome associations during meiosis in rice breeding programs. The data have been deposited to the ProteomeXchange with the PXD001058 identifier. PMID:25104955

  14. Unravelling the proteomic profile of rice meiocytes during early meiosis.

    PubMed

    Collado-Romero, Melania; Alós, Enriqueta; Prieto, Pilar

    2014-01-01

    Transfer of genetic traits from wild or related species into cultivated rice is nowadays an important aim in rice breeding. Breeders use genetic crosses to introduce desirable genes from exotic germplasms into cultivated rice varieties. However, in many hybrids there is only a low level of pairing (if existing) and recombination at early meiosis between cultivated rice and wild relative chromosomes. With the objective of getting deeper into the knowledge of the proteins involved in early meiosis, when chromosomes associate correctly in pairs and recombine, the proteome of isolated rice meiocytes has been characterized by nLC-MS/MS at every stage of early meiosis (prophase I). Up to 1316 different proteins have been identified in rice isolated meiocytes in early meiosis, being 422 exclusively identified in early prophase I (leptotene, zygotene, or pachytene). The classification of proteins in functional groups showed that 167 were related to chromatin structure and remodeling, nucleic acid binding, cell-cycle regulation, and cytoskeleton. Moreover, the putative roles of 16 proteins which have not been previously associated to meiosis or were not identified in rice before, are also discussed namely: seven proteins involved in chromosome structure and remodeling, five regulatory proteins [such as SKP1 (OSK), a putative CDK2 like effector], a protein with RNA recognition motifs, a neddylation-related protein, and two microtubule-related proteins. Revealing the proteins involved in early meiotic processes could provide a valuable tool kit to manipulate chromosome associations during meiosis in rice breeding programs. The data have been deposited to the ProteomeXchange with the PXD001058 identifier. PMID:25104955

  15. Malaysian weedy rice shows its true stripes: wild Oryza and elite rice cultivars shape agricultural weed evolution in Southeast Asia.

    PubMed

    Song, Beng-Kah; Chuah, Tse-Seng; Tam, Sheh May; Olsen, Kenneth M

    2014-10-01

    Weedy rice is a close relative of domesticated rice (Oryza sativa) that competes aggressively with the crop and limits rice productivity worldwide. Most genetic studies of weedy rice have focused on populations in regions where no reproductively compatible wild Oryza species occur (North America, Europe and northern Asia). Here, we examined the population genetics of weedy rice in Malaysia, where wild rice (O. rufipogon) can be found growing in close proximity to cultivated and weedy rice. Using 375 accessions and a combined analysis of 24 neutral SSR loci and two rice domestication genes (sh4, controlling seed shattering, and Bh4, controlling hull colour), we addressed the following questions: (i) What is the relationship of Malaysian weedy rice to domesticated and wild rice, and to weedy rice strains in the USA? (ii) To what extent does the presence of O. rufipogon influence the genetic and phenotypic diversity of Malaysian weeds? (iii) What do the distributions of sh4 and Bh4 alleles and associated phenotypes reveal about the origin and contemporary evolution of Malaysian weedy rice? Our results reveal the following: independent evolutionary origins for Malaysian weeds and US strains, despite their very close phenotypic resemblance; wild-to-weed gene flow in Malaysian weed populations, including apparent adaptive introgression of seed-shattering alleles; and a prominent role for modern Malaysian cultivars in the origin and recent proliferation of Malaysian weeds. These findings suggest that the genetic complexity and adaptability of weedy crop relatives can be profoundly influenced by proximity to reproductively compatible wild and domesticated populations.

  16. QTL Analysis for Resistance to Blast Disease in U.S. Weedy Rice.

    PubMed

    Liu, Yan; Qi, Xinshuai; Gealy, Dave R; Olsen, Kenneth M; Caicedo, Ana L; Jia, Yulin

    2015-07-01

    Understanding the genetic architecture of adaptation is of great importance in evolutionary biology. U.S. weedy rice is well adapted to the local conditions in U.S. rice fields. Rice blast disease is one of the most destructive diseases of cultivated rice worldwide. However, information about resistance to blast in weedy rice is limited. Here, we evaluated the disease reactions of 60 U.S. weedy rice accessions with 14 blast races, and investigated the quantitative trait loci (QTL) associated with blast resistance in two major ecotypes of U.S. weedy rice. Our results revealed that U.S. weedy rice exhibited a broad resistance spectrum. Using genotyping by sequencing, we identified 28 resistance QTL in two U.S. weedy rice ecotypes. The resistance QTL with relatively large and small effects suggest that U.S. weedy rice groups have adapted to blast disease using two methods, both major resistance (R) genes and QTL. Three genomic loci shared by some of the resistance QTL indicated that these loci may contribute to no-race-specific resistance in weedy rice. Comparing with known blast disease R genes, we found that the R genes at these resistance QTL are novel, suggesting that U.S. weedy rice is a potential source of novel blast R genes for resistant breeding.

  17. Localization and speciation of arsenic and trace elements in rice tissues

    SciTech Connect

    Smith, Euan; Kempson, Ivan; Juhasz, Albert L.; Weber, John; Skinner, William M.; Gräfe, Markus

    2009-09-14

    The consumption of arsenic (As) contaminated rice is an important exposure route for humans in countries where rice cultivation employs As contaminated irrigation water. Arsenic toxicity and mobility are a function of its chemical-speciation. The distribution and identification of As in the rice plant are hence necessary to determine the uptake, transformation and potential risk posed by As contaminated rice. In this study we report on the distribution and chemical-speciation of As in rice (Oryza sativa Quest) by X-ray fluorescence (XRF) and X-ray absorption near edge structure (XANES) measurements of rice plants grown in As contaminated paddy water. Investigations of {mu}XRF images from rice tissues found that As was present in all rice tissues, and its presence correlated with the presence of iron at the root surface and copper in the rice leaf. X-ray absorption near edge structure analysis of rice tissues identified that inorganic As was the predominant form of As in all rice tissues studied, and that arsenite became increasingly dominant in the aerial portion of the rice plant.

  18. Localization and speciation of arsenic and trace elements in rice tissues.

    PubMed

    Smith, Euan; Kempson, Ivan; Juhasz, Albert L; Weber, John; Skinner, William M; Gräfe, Markus

    2009-07-01

    The consumption of arsenic (As) contaminated rice is an important exposure route for humans in countries where rice cultivation employs As contaminated irrigation water. Arsenic toxicity and mobility are a function of its chemical-speciation. The distribution and identification of As in the rice plant are hence necessary to determine the uptake, transformation and potential risk posed by As contaminated rice. In this study we report on the distribution and chemical-speciation of As in rice (Oryza sativa Quest) by X-ray fluorescence (XRF) and X-ray absorption near edge structure (XANES) measurements of rice plants grown in As contaminated paddy water. Investigations of muXRF images from rice tissues found that As was present in all rice tissues, and its presence correlated with the presence of iron at the root surface and copper in the rice leaf. X-ray absorption near edge structure analysis of rice tissues identified that inorganic As was the predominant form of As in all rice tissues studied, and that arsenite became increasingly dominant in the aerial portion of the rice plant. PMID:19345396

  19. LABA1, a Domestication Gene Associated with Long, Barbed Awns in Wild Rice.

    PubMed

    Hua, Lei; Wang, Diane R; Tan, Lubin; Fu, Yongcai; Liu, Fengxia; Xiao, Langtao; Zhu, Zuofeng; Fu, Qiang; Sun, Xianyou; Gu, Ping; Cai, Hongwei; McCouch, Susan R; Sun, Chuanqing

    2015-07-01

    Common wild rice (Oryza rufipogon), the wild relative of Asian cultivated rice (Oryza sativa), flaunts long, barbed awns, which are necessary for efficient propagation and dissemination of seeds. By contrast, O. sativa cultivars have been selected to be awnless or to harbor short, barbless awns, which facilitate seed processing and storage. The transition from long, barbed awns to short, barbless awns was a crucial event in rice domestication. Here, we show that the presence of long, barbed awns in wild rice is controlled by a major gene on chromosome 4, LONG AND BARBED AWN1 (LABA1), which encodes a cytokinin-activating enzyme. A frame-shift deletion in LABA1 of cultivated rice reduces the cytokinin concentration in awn primordia, disrupting barb formation and awn elongation. Sequencing analysis demonstrated low nucleotide diversity and a selective sweep encompassing an ∼800-kb region around the derived laba1 allele in cultivated rice. Haplotype analysis revealed that the laba1 allele originated in the japonica subspecies and moved into the indica gene pool via introgression, suggesting that humans selected for this locus in early rice domestication. Identification of LABA1 provides new insights into rice domestication and also sheds light on the molecular mechanism underlying awn development.

  20. Fungicide sensitivity in the wild rice pathogen Bipolaris oryzae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years the occurrence of fungal brown spot, caused by Bipolaris oryzae has increased in cultivated wild rice (Zizania palustris) paddies in spite of the use of fungicides. To implement an efficient integrated disease management system, we are exploring whether field isolates have developed ...

  1. Unlocking the variation hidden in rice germplasm collections with genomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cultivated Asian rice (Oryza sativa) was domesticated from O. rufipogon (O. nivara). The O. sativa subspecies indica and japonica diverged in ancient times, and based on DNA markers, further subdivided into the five major subpopulations, aus, indica, aromatic, tropical japonica and temperate japoni...

  2. The Impact of Herbicide-Resistant Rice Technology on Phenotypic Diversity and Population Structure of United States Weedy Rice1[W][OPEN

    PubMed Central

    Burgos, Nilda Roma; Singh, Vijay; Tseng, Te Ming; Black, Howard; Young, Nelson D.; Huang, Zhongyun; Hyma, Katie E.; Gealy, David R.; Caicedo, Ana L.

    2014-01-01

    The use of herbicide-resistant (HR) Clearfield rice (Oryza sativa) to control weedy rice has increased in the past 12 years to constitute about 60% of rice acreage in Arkansas, where most U.S. rice is grown. To assess the impact of HR cultivated rice on the herbicide resistance and population structure of weedy rice, weedy samples were collected from commercial fields with a history of Clearfield rice. Panicles from each weedy type were harvested and tested for resistance to imazethapyr. The majority of plants sampled had at least 20% resistant offspring. These resistant weeds were 97 to 199 cm tall and initiated flowering from 78 to 128 d, generally later than recorded for accessions collected prior to the widespread use of Clearfield rice (i.e. historical accessions). Whereas the majority (70%) of historical accessions had straw-colored hulls, only 30% of contemporary HR weedy rice had straw-colored hulls. Analysis of genotyping-by-sequencing data showed that HR weeds were not genetically structured according to hull color, whereas historical weedy rice was separated into straw-hull and black-hull populations. A significant portion of the local rice crop genome was introgressed into HR weedy rice, which was rare in historical weedy accessions. Admixture analyses showed that HR weeds tend to possess crop haplotypes in the portion of chromosome 2 containing the ACETOLACTATE SYNTHASE gene, which confers herbicide resistance to Clearfield rice. Thus, U.S. HR weedy rice is a distinct population relative to historical weedy rice and shows modifications in morphology and phenology that are relevant to weed management. PMID:25122473

  3. Nutritional constituents and health benefits of wild rice (Zizania spp.).

    PubMed

    Surendiran, Gangadaran; Alsaif, Maha; Kapourchali, Fatemeh Ramezani; Moghadasian, Mohammed H

    2014-04-01

    Wild rice (Zizania spp.) seems to have originated in North America and then dispersed into Eastern Asia and other parts of the world. Nutritional analysis shows that wild rice is rich in minerals, vitamins, protein, starch, dietary fiber, and various antioxidant phytochemicals, while it is low in fat. Wild rice has been recognized as a whole grain by the US Food and Drug Administration; in the North American marketplace it is currently sold as and considered to be a health-promoting food. Recent scientific studies have revealed antioxidant and lipid-lowering properties of wild rice, while others have documented cardiovascular benefits associated with the long-term consumption of wild rice in experimental settings. The present review article summarizes various features of wild rice and its cultivation, including its plantation, harvest, nutritional composition, and biological properties. While evidence for the cardiovascular benefits of wild rice consumption is accumulating, additional studies are warranted to determine the clinical benefits of regular consumption of wild rice.

  4. Mercury cycling in a flooded rice paddy

    NASA Astrophysics Data System (ADS)

    Rothenberg, Sarah E.; Feng, Xinbin

    2012-09-01

    In 2008 and 2009, mercury (Hg) cycling was investigated in a flooded rice paddy in the Wanshan Hg mining region of eastern Guizhou, China, in the rice-planted (2008 and 2009) and fallow (2009) sections of the same paddy. In the rice-planted section, pore water was more acidic and pore water methylmercury (MeHg) concentrations were higher compared to the fallow section. However, iron (Fe) and sulfur (S) cycling differed in 2008 and 2009, with higher sediment Fe concentrations in 2009, when pore water MeHg and sulfate concentrations were more strongly correlated in the rice-planted section. We explored whether elevated sediment Fe contributed to S cycling and hence, Hg(II)-methylation. Critical pH values for formation of FeS(s) were estimated. Based on pore water pH collected in both sections of the paddy, the fallow section was more often a sink for FeS(s), while FeS(s) did not form in the rice-planted section, although sulfide concentrations were low in both sections in both years (i.e.,<10 μM). We hypothesized Fe(III) oxidized sulfide, and intermediate S species (e.g., polysulfides) were further oxidized to sulfate instead of forming FeS(s), thus prolonging sulfate reduction and promoting Hg(II)-methylation in the rice-planted section in 2009. Results suggested Fe(III) reduction increased electron acceptors for sulfate-reducing bacteria, which indirectly enhanced Hg(II)-methylation. Additionally, highest sediment MeHg concentrations were observed in the fallow section after the paddy was dried and re-wetted, indicating water-saving rice cultivation practices (e.g., alternating wetting and drying), may cause MeHg concentrations in paddy soil to spike, which should be further investigated.

  5. Transformation of rice mediated by Agrobacterium tumefaciens.

    PubMed

    Hiei, Y; Komari, T; Kubo, T

    1997-09-01

    Agrobacterium tumefaciens has been routinely utilized in gene transfer to dicotyledonous plants, but monocotyledonous plants including important cereals were thought to be recalcitrant to this technology as they were outside the host range of crown gall. Various challenges to infect monocotyledons including rice with Agrobacterium had been made in many laboratories, but the results were not conclusive until recently. Efficient transformation protocols mediated by Agrobacterium were reported for rice in 1994 and 1996. A key point in the protocols was the fact that tissues consisting of actively dividing, embryonic cells, such as immature embryos and calli induced from scutella, were co-cultivated with Agrobacterium in the presence of acetosyringonc, which is a potent inducer of the virulence genes. It is now clear that Agrobacterium is capable of transferring DNA to monocotyledons if tissues containing 'competent' cells are infected. The studies of transformation of rice suggested that numerous factors including genotype of plants, types and ages of tissues inoculated, kind of vectors, strains of Agrobacterium, selection marker genes and selective agents, and various conditions of tissue culture, are of critical importance. Advantages of the Agrobacterium-mediated transformation in rice, like on dicotyledons, include the transfer of pieces of DNA with defined ends with minimal rearrangements, the transfer of relatively large segments of DNA, the integration of small numbers of copies of genes into plant chromosomes, and high quality and fertility of transgenic plants. Delivery of foreign DNA to rice plants via A. tumefaciens is a routine technique in a growing number of laboratories. This technique will allow the genetic improvement of diverse varieties of rice, as well as studies of many aspects of the molecular biology of rice. PMID:9291974

  6. Y Chromosome Lineages in Men of West African Descent

    PubMed Central

    Keita, Shomarka O. Y.; Kittles, Rick A.

    2012-01-01

    The early African experience in the Americas is marked by the transatlantic slave trade from ∼1619 to 1850 and the rise of the plantation system. The origins of enslaved Africans were largely dependent on European preferences as well as the availability of potential laborers within Africa. Rice production was a key industry of many colonial South Carolina low country plantations. Accordingly, rice plantations owners within South Carolina often requested enslaved Africans from the so-called “Grain Coast” of western Africa (Senegal to Sierra Leone). Studies on the African origins of the enslaved within other regions of the Americas have been limited. To address the issue of origins of people of African descent within the Americas and understand more about the genetic heterogeneity present within Africa and the African Diaspora, we typed Y chromosome specific markers in 1,319 men consisting of 508 west and central Africans (from 12 populations), 188 Caribbeans (from 2 islands), 532 African Americans (AAs from Washington, DC and Columbia, SC), and 91 European Americans. Principal component and admixture analyses provide support for significant Grain Coast ancestry among African American men in South Carolina. AA men from DC and the Caribbean showed a closer affinity to populations from the Bight of Biafra. Furthermore, 30–40% of the paternal lineages in African descent populations in the Americas are of European ancestry. Diverse west African ancestries and sex-biased gene flow from EAs has contributed greatly to the genetic heterogeneity of African populations throughout the Americas and has significant implications for gene mapping efforts in these populations. PMID:22295064

  7. Alternate wetting and drying in high yielding direct-seeded rice systems accomplishes multiple environmental and agronomic objectives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice (Oryza sativa L.) cultivation is critically important for global food security, yet it also represents a significant fraction of agricultural greenhouse gas (GHG) emissions and water resource use. Alternate wetting and drying (AWD) of rice fields has been shown to reduce both methane (CH4) emis...

  8. Alternate wetting and drying in high yielding direct-seeded rice systems accomplishes multiple environmental and agronomic objectives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice cultivation is critically important for global food security, yet it also represents a significant fraction of agricultural greenhouse gas (GHG) emissions and water resource use. Alternate wetting and drying (AWD) of rice fields has been shown to reduce both methane (CH4) emissions and water us...

  9. Rice Varieties in Archaic East Asia: Reduction of Its Diversity from Past to Present Times.

    PubMed

    Kumagai, Masahiko; Kanehara, Masaaki; Shoda, Shin'ya; Fujita, Saburo; Onuki, Shizuo; Ueda, Shintaroh; Wang, Li

    2016-10-01

    The Asian cultivated rice, Oryza sativa, is one of the most important crops feeding more than a third of global population. In spite of the studies for several decades, the origin and domestication history of rice varietal groups, japonica and indica, have not been fully unveiled. Genetic information of ancient rice remains is essential for direct and exclusive insight into the domestication history of rice. We performed ancient DNA analysis of 950- to 2,800-year-old rice remains excavated from Japan and Korea. We found the presence of both japonica- and indica-type varieties in the Yayoi period and the middle ages of Japan and the middle part of Korea Peninsula 2,000 years ago. It is popularly considered that japonica has been exclusively cultivated in northern part of East Asia including Japan and Korea. Our result disclosed unexpectedly wide diversity of rice varieties in archaic East Asia. The present results from ancient rice DNA reveal an exclusive insight for the domestication history of rice which is not provided as far as contemporary rice. PMID:27461246

  10. Remote sensing based change analysis of rice environments in Odisha, India.

    PubMed

    Gumma, Murali Krishna; Mohanty, Samarendu; Nelson, Andrew; Arnel, Rala; Mohammed, Irshad A; Das, Satya Ranjan

    2015-01-15

    The rainfed rice-growing environment is perhaps one of the most vulnerable to water stress such as drought and floods. It is important to determine the spatial extent of the stress-prone areas to effectively and efficiently promote proper technologies (e.g., stress-tolerant varieties) to tackle the problem of sustainable food production. This study was conducted in Odisha state located in eastern India. Odisha is predominantly a rainfed rice ecosystem (71% rainfed and 29% canal irrigated during kharif-monsoon season), where rice is the major crop and staple food of the people. However, rice productivity in Odisha is one of the lowest in India and a significant decline (9%) in rice cultivated area was observed in 2002 (a drought year). The present study analyzed the temporal rice cropping pattern in various ecosystems and identified the stress-prone areas due to submergence (flooding) and water shortage. The spatial distribution of rice areas was mapped using MODIS (MOD09Q1) 250-m 8-day time-series data (2000-2010) and spectral matching techniques. The mapped rice areas were strongly correlated (R(2) = 90%) with district-level statistics. Also the class accuracy based on field-plot data was 84.8%. The area under the rainfed rice ecosystem continues to dominate, recording the largest share among rice classes across all the years. The use of remote-sensing techniques is rapid, cost-effective, and reliable to monitor changes in rice cultivated area over long periods of time and estimate the reduction in area cultivated due to abiotic stress such as water stress and submergence. Agricultural research institutes and line departments in the government can use these techniques for better planning, regular monitoring of land-use changes, and dissemination of appropriate technologies. PMID:24405761

  11. Remote sensing based change analysis of rice environments in Odisha, India.

    PubMed

    Gumma, Murali Krishna; Mohanty, Samarendu; Nelson, Andrew; Arnel, Rala; Mohammed, Irshad A; Das, Satya Ranjan

    2015-01-15

    The rainfed rice-growing environment is perhaps one of the most vulnerable to water stress such as drought and floods. It is important to determine the spatial extent of the stress-prone areas to effectively and efficiently promote proper technologies (e.g., stress-tolerant varieties) to tackle the problem of sustainable food production. This study was conducted in Odisha state located in eastern India. Odisha is predominantly a rainfed rice ecosystem (71% rainfed and 29% canal irrigated during kharif-monsoon season), where rice is the major crop and staple food of the people. However, rice productivity in Odisha is one of the lowest in India and a significant decline (9%) in rice cultivated area was observed in 2002 (a drought year). The present study analyzed the temporal rice cropping pattern in various ecosystems and identified the stress-prone areas due to submergence (flooding) and water shortage. The spatial distribution of rice areas was mapped using MODIS (MOD09Q1) 250-m 8-day time-series data (2000-2010) and spectral matching techniques. The mapped rice areas were strongly correlated (R(2) = 90%) with district-level statistics. Also the class accuracy based on field-plot data was 84.8%. The area under the rainfed rice ecosystem continues to dominate, recording the largest share among rice classes across all the years. The use of remote-sensing techniques is rapid, cost-effective, and reliable to monitor changes in rice cultivated area over long periods of time and estimate the reduction in area cultivated due to abiotic stress such as water stress and submergence. Agricultural research institutes and line departments in the government can use these techniques for better planning, regular monitoring of land-use changes, and dissemination of appropriate technologies.

  12. Mapping paddy rice distribution using multi-temporal Landsat imagery in the Sanjiang Plain, northeast China

    PubMed Central

    XIAO, Xiangming; DONG, Jinwei; QIN, Yuanwei; WANG, Zongming

    2016-01-01

    Information of paddy rice distribution is essential for food production and methane emission calculation. Phenology-based algorithms have been utilized in the mapping of paddy rice fields by identifying the unique flooding and seedling transplanting phases using multi-temporal moderate resolution (500 m to 1 km) images. In this study, we developed simple algorithms to identify paddy rice at a fine resolution at the regional scale using multi-temporal Landsat imagery. Sixteen Landsat images from 2010–2012 were used to generate the 30 m paddy rice map in the Sanjiang Plain, northeast China—one of the major paddy rice cultivation regions in China. Three vegetation indices, Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), and Land Surface Water Index (LSWI), were used to identify rice fields during the flooding/transplanting and ripening phases. The user and producer accuracies of paddy rice on the resultant Landsat-based paddy rice map were 90% and 94%, respectively. The Landsat-based paddy rice map was an improvement over the paddy rice layer on the National Land Cover Dataset, which was generated through visual interpretation and digitalization on the fine-resolution images. The agricultural census data substantially underreported paddy rice area, raising serious concern about its use for studies on food security.

  13. Mapping paddy rice distribution using multi-temporal Landsat imagery in the Sanjiang Plain, northeast China

    PubMed Central

    XIAO, Xiangming; DONG, Jinwei; QIN, Yuanwei; WANG, Zongming

    2016-01-01

    Information of paddy rice distribution is essential for food production and methane emission calculation. Phenology-based algorithms have been utilized in the mapping of paddy rice fields by identifying the unique flooding and seedling transplanting phases using multi-temporal moderate resolution (500 m to 1 km) images. In this study, we developed simple algorithms to identify paddy rice at a fine resolution at the regional scale using multi-temporal Landsat imagery. Sixteen Landsat images from 2010–2012 were used to generate the 30 m paddy rice map in the Sanjiang Plain, northeast China—one of the major paddy rice cultivation regions in China. Three vegetation indices, Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), and Land Surface Water Index (LSWI), were used to identify rice fields during the flooding/transplanting and ripening phases. The user and producer accuracies of paddy rice on the resultant Landsat-based paddy rice map were 90% and 94%, respectively. The Landsat-based paddy rice map was an improvement over the paddy rice layer on the National Land Cover Dataset, which was generated through visual interpretation and digitalization on the fine-resolution images. The agricultural census data substantially underreported paddy rice area, raising serious concern about its use for studies on food security. PMID:27695637

  14. Spectral and spatial characterization of rice field mosquito habitat

    NASA Technical Reports Server (NTRS)

    Wood, Byron L.; Beck, Louisa R.; Washino, Robert K.; Palchick, Susan M.; Sebesta, Paul D.

    1991-01-01

    Irrigated rice provides an ideal breeding habitat for Anopheles free-borni, the western malaria mosquito, throughout California. In a 1985 study, it was determined that early-season rice canopy development, as monitored using remotely sensed data, could be used to distinguish between high and low mosquito producing rice fields. This distinction could be made over two months prior to peak mosquito production. It was found that high-producing fields were located in an area characterized by a diversity of land use, including livestock pastures, whereas the low-producing fields were in an area devoted almost exclusively to the cultivation of rice. The ability to distinguish between high and low mosquito producing fields prior to peak mosquito production is important in terms of mosquito habitat surveillance and control.

  15. Rice Production and Marketing.

    ERIC Educational Resources Information Center

    Briers, Gary; Lee, Jasper S.

    This guide contains lesson plans for use in secondary programs of agricultural education in geographical areas in which rice is produced. Six units and 13 problem areas are organized into teaching plans that cover the broad nature of rice production. The six units are: (1) determining the importance and history of rice production; (2) determining…

  16. The Complex History of the Domestication of Rice

    PubMed Central

    Sweeney, Megan; McCouch, Susan

    2007-01-01

    Background Rice has been found in archaeological sites dating to 8000 bc, although the date of rice domestication is a matter of continuing debate. Two species of domesticated rice, Oryza sativa (Asian) and Oryza glaberrima (African) are grown globally. Numerous traits separate wild and domesticated rices including changes in: pericarp colour, dormancy, shattering, panicle architecture, tiller number, mating type and number and size of seeds. Scope Genetic studies using diverse methodologies have uncovered a deep population structure within domesticated rice. Two main groups, the indica and japonica subspecies, have been identified with several subpopulations existing within each group. The antiquity of the divide has been estimated at more than 100 000 years ago. This date far precedes domestication, supporting independent domestications of indica and japonica from pre-differentiated pools of the wild ancestor. Crosses between subspecies display sterility and segregate for domestication traits, indicating that different populations are fixed for different networks of alleles conditioning these traits. Numerous domestication QTLs have been identified in crosses between the subspecies and in crosses between wild and domesticated accessions of rice. Many of the QTLs cluster in the same genomic regions, suggesting that a single gene with pleiotropic effects or that closely linked clusters of genes underlie these QTL. Recently, several domestication loci have been cloned from rice, including the gene controlling pericarp colour and two loci for shattering. The distribution and evolutionary history of these genes gives insight into the domestication process and the relationship between the subspecies. Conclusions The evolutionary history of rice is complex, but recent work has shed light on the genetics of the transition from wild (O. rufipogon and O. nivara) to domesticated (O. sativa) rice. The types of genes involved and the geographic and genetic distribution of

  17. CFD Analysis of Bubbling Fluidized Bed Using Rice Husk

    NASA Astrophysics Data System (ADS)

    Singh, Ravi Inder; Mohapatra, S. K.; Gangacharyulu, D.

    Rice is Cultivated in all the main regions of world. The worldwide annual rice production could be 666million tons (www.monstersandcritics.com,2008) for year 2008. The annual production of rice husk is 133.2 million tons considering rice husk being 20% of total paddy production. The average annual energy potential is 1.998 *1012 MJ of rice husk considering 15MJ/kg of rice husk. India has vast resource of rice husk; a renewable source of fuel, which if used effectively would reduce the rate of depletion of fossil energy resources. As a result a new thrust on research and development in boilers bases on rice husk is given to commercialize the concept. CFD is the analysis of systems involving fluid flow, heat transfer and associated phenomena such as chemical reactions by means of computer-based simulation. High quality Computational Fluid dynamics (CFD) is an effective engineering tool for Power Engineering Industry. It can determine detailed flow distributions, temperatures, and pollutant concentrations with excellent accuracy, and without excessive effort by the software user. In the other words it is the science of predicting fluid flow, heat and mass transfer, chemical reactions and related phenomena; and an innovate strategy to conform to regulations and yet stay ahead in today's competitive power market. This paper is divided into two parts; in first part review of CFD applied to the various types of boilers based on biomass fuels/alternative fuels is presented. In second part CFD analysis of fluidized bed boilers based on rice husk considering the rice husk based furnace has been discussed. The eulerian multiphase model has used for fluidized bed. Fluidized bed has been modeled using Fluent 6.2 commercial code. The effect of numerical influence of bed superheater tubes has also been discussed.

  18. Establishment of a high efficiency Agrobacterium-mediated transformation system of rice (Oryza sativa L.).

    PubMed

    Ozawa, Kenjirou

    2009-04-01

    Technologies for transformation of rice have been developed to meet the requirements of functional genomics in order to enable the production of transgenic rice plants with useful agricultural characters. However, many rice varieties are not efficiently transformed by Agrobacterium. We have succeeded in establishing a highly efficient transformation system in rice by co-cultivating rice calli with Agrobacterium on three filter papers moistened with enriched N6 or DKN media instead of using solid media. Rice calli immersed in Agrobacterium suspension (EHA101, Agrobacterium concentration of OD600=0.04) were co-cultured on three pieces of filter paper (9cm in diameter) moistened with 5.5mL of N6 or DKN liquid co-cultivation medium supplemented with 2,4-d (2mg/L), proline (10mM), casein hydrolysate (300mg/L), sucrose (30g/L), glucose (5g/L), l-cysteine (100mg/L) and acetosyringone (15mg/L) at 25°C for 3 days in the dark. Compared with the transformation efficiency of calli co-cultivated on solid media, transformation efficiency was increased by about fivefold by using the filter paper method for many varieties of rice, including those that previously yielded much poor transformation rates.

  19. Rice production with minimal irrigation and no nitrogen fertilizer by intensive use of treated municipal wastewater.

    PubMed

    Muramatsu, Ayumi; Watanabe, Toru; Sasaki, Atsushi; Ito, Hiroaki; Kajihara, Akihiko

    2014-01-01

    We designed a new cultivation system of rice with circulated irrigation to remove nitrogen from treated municipal wastewater effectively and assessed the possibility of nitrogen removal in the new system without any adverse effects on rice production through bench-scale experiments through two seasons. Overgrowth of the rice plant, which can lead to lodging and tasteless rice, was found in the first season probably because nitrogen supply based on standard practice in normal paddy fields was too much in the closed irrigation system. In the second season, therefore, the amount of treated wastewater initially applied to the system was reduced but this resulted in a considerably decreased yield. On the other hand, the taste of the rice was significantly improved. The two-season experiments revealed that the new system enabled rice production with minimal irrigation (approximately 50% on the yield base compared to normal paddy fields) and no nitrogen fertilizer. The system also achieved >95% removal of nitrogen from the treated wastewater used for circulated irrigation. The accumulation of harmful metals in the rice was not observed after one season of cultivation in the new system. The accumulation after cultivation using the same soil repeatedly for a longer time should be examined by further studies.

  20. African Aesthetics

    ERIC Educational Resources Information Center

    Abiodun, Rowland

    2001-01-01

    No single traditional discipline can adequately supply answers to the many unresolved questions in African art history. Because of the aesthetic, cultural, historical, and, not infrequently, political biases, already built into the conception and development of Western art history, the discipline of art history as defined and practiced in the West…

  1. "African Connection."

    ERIC Educational Resources Information Center

    Adelman, Cathy; And Others

    This interdisciplinary unit provides students in grades kindergarten through seventh grade an opportunity to understand diversity through a study of Africa as a diverse continent. The project is designed to provide all elementary students with cultural enrichment by exposing them to African music, art, storytelling, and movement. This project can…

  2. Research in rice fields

    USGS Publications Warehouse

    ,

    2000-01-01

    Between 1987 and 1999, 2.4-3 million acres of rice were planted annually nationwide. Rice fields are a major component of the contemporary landscapes in the Gulf Coastal Plain, the Mississippi Alluvial Valley, and Central Valley of California. In 1998, approximately 600,000 acres of rice were planted in Louisiana. In the Louisiana plant commodities report for 1998, total value for rice was over $350 million; sugarcane was the only plant commodity that exceeded this value. Louisiana has over 2,000 rice farmers supporting over 12,000 jobs in the state. Rice fields in the United States receive high use by wildlife, especially shorebirds, wading birds, and waterfowl. Waterbirds use rice fields for food, shelter, and breeding habitat.

  3. Overexpression of Arabidopsis and rice stress genes' inducible transcription factor confers drought and salinity tolerance to rice.

    PubMed

    Datta, Karabi; Baisakh, Niranjan; Ganguly, Moumita; Krishnan, Sellapan; Yamaguchi Shinozaki, Kazuko; Datta, Swapan K

    2012-06-01

    Rice yield is greatly affected by environmental stresses such as drought and salinity. In response to the challenge of producing rice plants tolerant to these stresses, we introduced cDNA encoding the transcription factors DREB1A and DREB1B under the control of the stress inducible rd29 promoter. Two different indica rice cultivars were used, BR29, an improved commercially cultivated variety from Bangladesh and IR68899B, an IRRI bred maintainer line for hybrid rice. Agrobacterium mediated transformation of BR29 was done independently with DREB1A isolated from rice and Arabidopsis and DREB1B isolated from rice, whereas biolistic transformation was done with rice- DREB1B in the case of IR68899B. Initial genetic integration was confirmed by PCR and Southern blot analysis. Salinity tolerance was assayed in very young seedlings. Drought stress tests were found to be more reliable when they were carried out at the pre-flowering booting stage. RNA gel blot analysis as well as quantitative PCR analysis was performed to estimate the transcription level under stressed and unstressed conditions. Agronomic performance studies were done with stressed and unstressed plants to compare the yield losses due to dehydration and salt loading stresses. Noticeably enhanced tolerance to dehydration was observed in the plants transformed with DREB1A isolated from Arabidopsis while DREB1B was found to be more effective for salt tolerance.

  4. Suppression of Magnaporthe oryzae and interaction between Bacillus subtilis and rice plants in the control of rice blast.

    PubMed

    Sha, Yuexia; Wang, Qi; Li, Yan

    2016-01-01

    Magnaporthe oryzae, the causative pathogen of rice blast, has caused extensive losses to rice cultivation worldwide. Strains of the bacterium Bacillus subtilis have been used as biocontrol agents against rice blast. However, little has been reported about the interaction between B. subtilis and the rice plant and its mechanism of action. Here, the colonization process and induced disease resistance by B. subtilis SYX04 and SYX20 in rice plants was examined. Strains of B. subtilis labeled with green fluorescent protein reached population of more than 5 × 10(6) CFU/g after 20 days on mature rice leaves and were detected after 3 days on newly grown leaves. Results showed that SYX04 and SYX20 not only inhibited spore germination, germ tube length, and appressorial formation but also caused a series of alterations in the structures of hyphae and conidia. The cell walls and membrane structures of the fungus showed ultrastructural abnormalities, which became severely degraded as observed through scanning electron microscopy and transmission electron microscopy. The mixture of both B. subtilis and M. oryzae resulted in enhanced activity of peroxidase, and polyphenol oxidase while there was significantly more superoxide dismutase activity in plants that had been sprayed with B. subtilis alone. The present study suggests that colonized SYX04 and SYX20 strains protected rice plants and exhibited antifungal activity and induced systemic resistance, thus indicating their potential biological control agents. PMID:27536521

  5. Sequential Crop Cultivation Experiment using CEEF for Human Habitation

    NASA Astrophysics Data System (ADS)

    Tako, Y.; Arai, R.; Nitta, K.; Shinohara, M.

    The Closed Ecology Experiment Facilities (CEEF) can be used as a test bed for Controlled Ecological Life Support Systems (CELSS), because technologies developed for the CEEF system facilitate self-sufficient material circulation. In the experiment conducted from August to December of 2001, rice and soybeans were cultivated sequentially in two chambers and a chamber, each having a cultivation bed area of 30 m 2 and floor area of 43 m 2, inside the Plantation Module with artificial lighting of the CEEF. Stable transplant or seeding and harvest of each crop were maintained during 28 days, after a 110-days preparatory cultivation. Flows of gas and liquid materials to and from the crops were analyzed during the stable cultivation period. Almost all equipments of the Gas Processing Subsystem of the Closed Plantation Experiment Facilities (CPEF) in the CEEF were operated during the period. Stable operation of the subsystem was confirmed during the period. Daily averages of carbohydrate, lipid, and protein contained in edible biomass from harvested rice and soybeans for the 28-days were 2.1, 1.2, and 2.2 of the necessary amount of each for a standard human activity. Stable uptake of CO2 by each crop was confirmed during the 28 -days. Amounts of CO2 taken up by each crop were consistent with produced biomass of both crops. Exchange ratios of CO2 and O2 were also consistent with nutritional compositions of both crops biomass.

  6. Mapping rice areas of South Asia using MODIS multitemporal data

    USGS Publications Warehouse

    Gumma, M.K.; Nelson, A.; Thenkabail, P.S.; Singh, A.N.

    2011-01-01

    Our goal is to map the rice areas of six South Asian countries using moderate-resolution imaging spectroradiometer (MODIS) time-series data for the time period 2000 to 2001. South Asia accounts for almost 40% of the world's harvested rice area and is also home to 74% of the population that lives on less than $2.00 a day. The population of the region is growing faster than its ability to produce rice. Thus, accurate and timely assessment of where and how rice is cultivated is important to craft food security and poverty alleviation strategies. We used a time series of eight-day, 500-m spatial resolution composite images from the MODIS sensor to produce rice maps and rice characteristics (e.g., intensity of cropping, cropping calendar) taking data for the years 2000 to 2001 and by adopting a suite of methods that include spectral matching techniques, decision trees, and ideal temporal profile data banks to rapidly identify and classify rice areas over large spatial extents. These methods are used in conjunction with ancillary spatial data sets (e.g., elevation, precipitation), national statistics, and maps, and a large volume of field-plot data. The resulting rice maps and statistics are compared against a subset of independent field-plot points and the best available subnational statistics on rice areas for the main crop growing season (kharif season). A fuzzy classification accuracy assessment for the 2000 to 2001 rice-map product, based on field-plot data, demonstrated accuracies from 67% to 100% for individual rice classes, with an overall accuracy of 80% for all classes. Most of the mixing was within rice classes. The derived physical rice area was highly correlated with the subnational statistics with R2 values of 97% at the district level and 99% at the state level for 2000 to 2001. These results suggest that the methods, approaches, algorithms, and data sets we used are ideal for rapid, accurate, and large-scale mapping of paddy rice as well as for generating

  7. Hybrid sterility in plant: stories from rice.

    PubMed

    Ouyang, Yidan; Liu, Yao-Guang; Zhang, Qifa

    2010-04-01

    Hybrid sterility is the most common form of postzygotic reproductive isolation in plants. The best-known example is perhaps the hybrid sterility between indica and japonica subspecies of Asian cultivated rice (Oryza sativa L.). Major progress has been reported recently in rice in identifying and cloning hybrid sterility genes at two loci regulating female and male fertility, respectively. Genetic analyses and molecular characterization of these genes, together with the results from other model organisms especially Drosophila, have advanced the understanding of the processes underlying reproductive isolation and speciation. These findings also have significant implications for crop genetic improvement, by providing the feasibility and strategies for overcoming intersubspecific hybrid sterility thus allowing the development of intersubspecific hybrids.

  8. [Photosynthetic and water physiological characteristics of weedy rice in northern China].

    PubMed

    Gao, Qi; Ma, Dian-Rong; Kong, De-Xiu; Wang, Wen-Jia; Tong, Hui; Zhao, Ming-Hui; Xu, Zheng-Jin; Chen, Wen-Fu

    2013-11-01

    Weedy rice is an important germplasm source of rice, which has the characteristics of cold-, drought-, and barren tolerance. Taking 88 accessions of weedy rice and 4 varieties of cultivated rice in northern China as test materials, this paper studied the photosynthetic characteristics (photosynthetic rate, transpiration rate, and stomatal conductance), water physiological characteristics, and their interrelationships of weedy rice in northern China. There existed greater differences in the photosynthetic and water physiological characteristics among the weedy rice accessions, possessing abundant diversity. The photosynthetic rate of the accessions was from 12.47 micromol CO2 x m(-2) x s(-1) to 28.67 micromol CO2 X m(-2) x s(-1), and the instantaneous water use efficiency was from 1.39 mg x g(-1) to 3.40 mg x g(-1). Among the photosynthetic parameters, intercellular CO2 concentration had the smallest variable coefficient, while stomatal conductance had the largest one. The photosynthetic rate had significant conic relationships with transpiration rate and stomatal conductance, and had a linear relationship with intercellular CO2 concentration. The significant conic relationships also existed between the instantaneous water use efficiency and the transpiration rate and stomatal conductance. The excellent features of weedy rice could be used to improve the cultivated rice varieties.

  9. Increased greenhouse-gas intensity of rice production under future atmospheric conditions

    NASA Astrophysics Data System (ADS)

    van Groenigen, Kees Jan; van Kessel, Chris; Hungate, Bruce A.

    2013-03-01

    Increased atmospheric CO2 and rising temperatures are expected to affect rice yields and greenhouse-gas (GHG) emissions from rice paddies. This is important, because rice cultivation is one of the largest human-induced sources of the potent GHG methane (CH4) and rice is the world's second-most produced staple crop. The need for meeting a growing global food demand argues for assessing GHG emissions from croplands on the basis of yield rather than land area, such that efforts to reduce GHG emissions take into consideration the consequences for food production. However, it is unclear whether or how the GHG intensity (that is, yield-scaled GHG emissions) of cropping systems will be affected by future atmospheric conditions. Here we show, using meta-analysis, that increased atmospheric CO2 (ranging from 550 to 743ppmV) and warming (ranging from +0.8°C to +6°C) both increase the GHG intensity of rice cultivation. Increased atmospheric CO2 increased GHG intensity by 31.4%, because CH4 emissions are stimulated more than rice yields. Warming increased GHG intensity by 11.8% per 1°C, largely owing to a decrease in yield. This analysis suggests that rising CO2 and warming will approximately double the GHG intensity of rice production by the end of the twenty-first century, stressing the need for management practices that optimize rice production while reducing its GHG intensity as the climate continues to change.

  10. Extraction of light filth from rice flours, extruded rice products, and rice paper: collaborative study.

    PubMed

    Dent, R G

    1982-09-01

    Two new methods were developed for the extraction of rodent hairs and insect fragments from rice products: one for rice flour and one for extruded rice products and rice paper. A 100 g sample of rice flour was extracted with mineral oil-40% isopropanol, followed by a water phase as needed for additional cycles. For extruded rice products and rice paper, a 225 g sample of each was initially extracted as above, followed by a single extraction with mineral oil-20% isopropanol. Both methods used an acid hydrolysis pretreatment followed by wet sieving and a percolator extraction. Average rodent hair recoveries were 77.8% for rice flour and 82.2% for extruded rice products and rice paper. Average insect fragment recoveries were 89.6% for rice flour and 91.9% for extruded rice products and rice paper. Both methods were adopted official first action. PMID:7130079

  11. Title: Rice Crop Monitoring by Fusing Microwave and Optical Satellite Data

    NASA Astrophysics Data System (ADS)

    Oyoshi, K.; Takeuchi, W.; LE Toan, T.; Sobue, S.

    2015-12-01

    Rapid population and economic growth, and the increase in extreme weather events, are destabilizing global food security. In Asia, rice is a staple cereal crop, and the continent accounts for about 90% of global rice production and consumption. The Group on Earth Observations (GEO) Global Agricultural Monitoring (GLAM) was launched in 2011 to utilize remote sensing tools to enhance crop production projections in order to promote food security and foster sustainable economic growth. Asia---‒Rice Crop Estimation & Monitoring (Asia---‒RiCE) is a component of GEOGLAM, and aims to use remote sensing tools to develop rice---‒related information such as maps of paddy fields, rice growing conditions, yield, and production. However, in some regions in Southeast Asia, rice is planted and harvested more than twice a year, and the crop calendar is quite complicated. In addition, rice is mainly cultivated in the rainy season, and the high density of cloud cover during that season limits the observations that can be made from space using only optical sensors. In contrast, Synthetic Aperture Radar (SAR) is a robust tool because it penetrates cloud cover; however, the revisit frequency of a single SAR satellite is limited, making it difficult to capture the complicated rice crop calendar in Asia. In this research, time---‒series SAR data were fused with optical data to monitor rice crops in Southeast Asia with complicated crop calendars. In addition, a microwave radiometer that also penetrates clouds and has a high revisit frequency but a coarse spatial resolution (greater than several kilometers), was used. The integrated use of a large variety of satellite data enables us to periodically monitor surface conditions such as water inundation, transplanting, and rice crop growth and harvesting, which in turn enables us to examine rice planted areas, rice crop calendars, and rice growing conditions in order to estimate rice production.

  12. Cultivation of parasites

    PubMed Central

    Ahmed, Nishat Hussain

    2014-01-01

    Parasite cultivation techniques constitute a substantial segment of present-day study of parasites, especially of protozoa. Success in establishing in vitro and in vivo culture of parasites not only allows their physiology, behavior and metabolism to be studied dynamically, but also allows the nature of the antigenic molecules in the excretory and secretory products to be vigorously pursued and analyzed. The complex life-cycles of various parasites having different stages and host species requirements, particularly in the case of parasitic helminths, often make parasite cultivation an uphill assignment. Culturing of parasites depends on the combined expertise of all types of microbiological cultures. Different parasites require different cultivation conditions such as nutrients, temperature and even incubation conditions. Cultivation is an important method for diagnosis of many clinically important parasites, for example, Entamoeba histolytica, Trichomonas vaginalis, Leishmania spp., Strongyloides stercoralis and free-living amoebae. Many commercial systems like InPouch TV for T. vaginalis, microaerophilous stationary phase culture for Babesia bovis and Harada-Mori culture technique for larval-stage nematodes have been developed for the rapid diagnosis of the parasitic infections. Cultivation also has immense utility in the production of vaccines, testing vaccine efficacy, and antigen - production for obtaining serological reagents, detection of drug-resistance, screening of potential therapeutic agents and conducting epidemiological studies. Though in vitro cultivation techniques are used more often compared with in vivo techniques, the in vivo techniques are sometimes used for diagnosing some parasitic infections such as trypanosomiasis and toxoplasmosis. Parasite cultivation continues to be a challenging diagnostic option. This review provides an overview of intricacies of parasitic culture and update on popular methods used for cultivating parasites. PMID

  13. Using artificial neural network and satellite data to predict rice yield in Bangladesh

    NASA Astrophysics Data System (ADS)

    Akhand, Kawsar; Nizamuddin, Mohammad; Roytman, Leonid; Kogan, Felix; Goldberg, Mitch

    2015-09-01

    Rice production in Bangladesh is a crucial part of the national economy and providing about 70 percent of an average citizen's total calorie intake. The demand for rice is constantly rising as the new populations are added in every year in Bangladesh. Due to the increase in population, the cultivation land decreases. In addition, Bangladesh is faced with production constraints such as drought, flooding, salinity, lack of irrigation facilities and lack of modern technology. To maintain self sufficiency in rice, Bangladesh will have to continue to expand rice production by increasing yield at a rate that is at least equal to the population growth until the demand of rice has stabilized. Accurate rice yield prediction is one of the most important challenges in managing supply and demand of rice as well as decision making processes. Artificial Neural Network (ANN) is used to construct a model to predict Aus rice yield in Bangladesh. Advanced Very High Resolution Radiometer (AVHRR)-based remote sensing satellite data vegetation health (VH) indices (Vegetation Condition Index (VCI) and Temperature Condition Index (TCI) are used as input variables and official statistics of Aus rice yield is used as target variable for ANN prediction model. The result obtained with ANN method is encouraging and the error of prediction is less than 10%. Therefore, prediction can play an important role in planning and storing of sufficient rice to face in any future uncertainty.

  14. GIS-based climatic regionalization of ratoon rice in Chongqing area

    NASA Astrophysics Data System (ADS)

    gao, Yanghua; Chen, Zhijun; Yang, Shiqi; Tang, Yunhui; Yuan, Deshen

    2010-07-01

    According to ratoon rice growth and yield formation with meteorological conditions, the paper analyzed the main climatic factors which influence the growth of ratoon rice, and determined the accumulated temperature and sunshine duration of the key period as the index of climatic regionalization. The fine spatial distribution of ratoon rice regionalization was made based on the spatial distribution of indexes which was made based on the GIS and 1:250,000 DEM. And then the paper reviewed the characteristics of various types of regional climate resources separately and put forward proposals in allusion to the cultivation based on the coordinated development between the ratoon rice and other crops in late autumn, the development of annual planting plan and cultivation methods.

  15. Novel Phr1 mutations and the evolution of phenol reaction variation in US weedy rice (Oryza sativa)

    PubMed Central

    Gross, Briana L.; Skare, Karl J.; Olsen, Kenneth M.

    2010-01-01

    Summary Red rice, a major agricultural weed, is phenotypically diverse and possesses traits that are similar to both wild and cultivated rice. The genetic resources available for rice make it possible to examine the molecular basis and evolution of traits characterizing this weed. Here, we assess the phenol reaction – a classical trait for distinguishing among cultivated rice varieties – in red rice at the phenotypic and molecular levels.We phenotyped more than 100 US weed samples for the phenol reaction and sequenced the underlying Phr1 locus in a subset of samples. Data were analyzed in combination with previously published Phr1 data for cultivated rice.Most weed accessions (96.3%) are positive for the phenol reaction, and samples with a negative response carry loss-of-function alleles that are rare or heretofore undocumented. One such allele may have evolved through mutational convergence of a 1-bp frameshift insertion. Haplotype sharing between red rice and US cultivars suggests occasional crop–weed hybridization.Our discovery of previously undocumented nonfunctional phr1 alleles suggests that there are likely to be other loss-of-function mutations segregating in Oryza sativa around the world. Red rice may provide a useful study system for understanding the adaptive significance of Phr1 variation in agricultural settings. PMID:19674331

  16. A Methodological Investigation of Cultivation.

    ERIC Educational Resources Information Center

    Rubin, Alan M.; And Others

    Cultivation theory states that television engenders negative emotions in heavy viewers. Noting that cultivation methodology contains an apparent response bias, a study examined relationships between television exposure and positive restatements of cultivation concepts and tested a more instrumental media uses and effects model. Cultivation was…

  17. Obesity and African Americans

    MedlinePlus

    ... Data > Minority Population Profiles > Black/African American > Obesity Obesity and African Americans African American women have the ... ss6304.pdf [PDF | 3.38MB] HEALTH IMPACT OF OBESITY More than 80 percent of people with type ...

  18. Climatological data for the rice-growing areas along the North Coast of Puerto Rico

    USGS Publications Warehouse

    Roman-Mas, Angel; Green, Bruce

    1987-01-01

    Rainfall, temperature, wind velocity and pan evaporation data were collected from May 1983 to September 1985, in the rice growing areas of Vega Baja, Manati, and Arecibo in northern Puerto Rico. Daily values and statistics including mean, standard deviation, extremes, and totals for each month of record were compiled. Descriptions of equipment installation and operation, data processing, and significance of climatological data for rice cultivation are presented. (Author 's abstract)

  19. Rapid, small scale purification of rice hoja blanca and Echinochloa hoja blanca tenuivirus ribonucleoprotein.

    PubMed

    de Miranda, J R; Espinoza, A M; Hull, R

    1996-01-01

    Highly purified tenuivirus ribonucleoprotein was obtained from small amounts of leaf tissue by sedimenting the ribonucleoprotein particles from debris-free plant extract into a 30% sucrose cushion, in 1.5-mL microfuge tubes. Using this protocol, significant size differences were discovered in the double-stranded forms of the viral genomic RNAs of rice hoja blanca tenuivirus and a tenuivirus isolated from Echinochloa colonum, a common weed of rice cultivation. PMID:8690758

  20. Images of Male Friendships: An Investigation of How African American Undergraduate Men Develop Interpersonal Relationships with Other Men at a Predominantly White Institution

    ERIC Educational Resources Information Center

    McGowan, Brian Lamont

    2013-01-01

    African American men enter postsecondary institutions having been socialized to adopt stereotypical notions of masculinity. These traditional expectations of masculinity play a role in how African American men negotiate relationships with their male counterparts on the campus. African American men cultivate close relationships with other men to…

  1. Microbial Community Structure in the Rhizosphere of Rice Plants.

    PubMed

    Breidenbach, Björn; Pump, Judith; Dumont, Marc G

    2015-01-01

    The microbial community in the rhizosphere environment is critical for the health of land plants and the processing of soil organic matter. The objective of this study was to determine the extent to which rice plants shape the microbial community in rice field soil over the course of a growing season. Rice (Oryza sativa) was cultivated under greenhouse conditions in rice field soil from Vercelli, Italy and the microbial community in the rhizosphere of planted soil microcosms was characterized at four plant growth stages using quantitative PCR and 16S rRNA gene pyrotag analysis and compared to that of unplanted bulk soil. The abundances of 16S rRNA genes in the rice rhizosphere were on average twice that of unplanted bulk soil, indicating a stimulation of microbial growth in the rhizosphere. Soil environment type (i.e., rhizosphere versus bulk soil) had a greater effect on the community structure than did time (e.g., plant growth stage). Numerous phyla were affected by the presence of rice plants, but the strongest effects were observed for Gemmatimonadetes, Proteobacteria, and Verrucomicrobia. With respect to functional groups of microorganisms, potential iron reducers (e.g., Geobacter, Anaeromyxobacter) and fermenters (e.g., Clostridiaceae, Opitutaceae) were notably enriched in the rhizosphere environment. A Herbaspirillum species was always more abundant in the rhizosphere than bulk soil and was enriched in the rhizosphere during the early stage of plant growth. PMID:26793175

  2. Microbial Community Structure in the Rhizosphere of Rice Plants

    PubMed Central

    Breidenbach, Björn; Pump, Judith; Dumont, Marc G.

    2016-01-01

    The microbial community in the rhizosphere environment is critical for the health of land plants and the processing of soil organic matter. The objective of this study was to determine the extent to which rice plants shape the microbial community in rice field soil over the course of a growing season. Rice (Oryza sativa) was cultivated under greenhouse conditions in rice field soil from Vercelli, Italy and the microbial community in the rhizosphere of planted soil microcosms was characterized at four plant growth stages using quantitative PCR and 16S rRNA gene pyrotag analysis and compared to that of unplanted bulk soil. The abundances of 16S rRNA genes in the rice rhizosphere were on average twice that of unplanted bulk soil, indicating a stimulation of microbial growth in the rhizosphere. Soil environment type (i.e., rhizosphere versus bulk soil) had a greater effect on the community structure than did time (e.g., plant growth stage). Numerous phyla were affected by the presence of rice plants, but the strongest effects were observed for Gemmatimonadetes, Proteobacteria, and Verrucomicrobia. With respect to functional groups of microorganisms, potential iron reducers (e.g., Geobacter, Anaeromyxobacter) and fermenters (e.g., Clostridiaceae, Opitutaceae) were notably enriched in the rhizosphere environment. A Herbaspirillum species was always more abundant in the rhizosphere than bulk soil and was enriched in the rhizosphere during the early stage of plant growth. PMID:26793175

  3. Determinants for grading Malaysian rice

    NASA Astrophysics Data System (ADS)

    ChePa, Noraziah; Yusoff, Nooraini; Ahmad, Norhayati

    2016-08-01

    Due to un-uniformity of rice grading practices in Malaysia, zones which actively producing rice in Malaysia are using their own way of grading rice. Rice grading is important in determining rice quality and its subsequent price in the market. It is an important process applied in the rice production industry with the purpose of ensuring that the rice produced for the market meets the quality requirements of consumer. Two important aspects that need to be considered in determining rice grades are grading technique and determinants to be used for grading (usually referred as rice attributes). This article proposes the list of determinants to be used in grading Malaysian rice. Determinants were explored through combination of extensive literature review and series of interview with the domain experts and practitioners. The proposed determinants are believed to be beneficial to BERNAS in improving the current Malaysian rice grading process.

  4. [Comprehensive evaluation of improving effects of different organic wastes on a newly reclaimed cultivated land].

    PubMed

    Xu, Qiu-tong; Kong, Zhang-liang; Zhang, Ming-kui

    2016-02-01

    There are many problems such as low soil organic matter, available nutrients and microbial activity, compaction, and poor tillage properties for a newly reclaimed cultivated land, and the establishment of a fast, effective measure for improving soil fertility quality is of importance to enhance the quality and production performance of the newly cultivated land. A field experiment was carried out to observe the effect of organic wastes on soil fertility of a newly reclaimed cultivated land, and compared the differences of different types of urban organic wastes. The field experiment included nine treatments, i.e., pig manure, chicken manure, rice straw, vegetable harvest residue, urban sludge, biogas residue, manure+rice straw compost, garbage compost and control without organic fertilizer at annual application rate of 30 t . hm-2, and ran for three consecutive years. The results showed that the application of each type of the eight organic wastes had obvious effects on improving soil fertility. Among them, pig manure, chicken manure, pig manure+rice straw compost, rice straw and biogas residue were the most effective to enhance the carbon pool management index of soil. The addition of pig manure+rice straw compost and biogas residue had the best effect on increasing the soil water stable aggregates and decreasing soil bulk density. Sewage sludge, pig manure+rice straw compost and garbage compost could enhance soil water holding capacity. Pig manure, chicken manure and pig manure+rice straw compost had most obvious effect on increasing soil available nutrients. All kinds of organic wastes increased the number of soil microorganisms and the activity of enzymes. There were some risk of soil heavy metals pollution.for the long-term application of sludge, garbage compost and manure. However, the impact of short-term application of the wastes on soil environmental quality was not obvious. Overall, effects of organic wastes on soil fertility decreased in the order of pig

  5. Using NOAA/AVHRR based remote sensing data and PCR method for estimation of Aus rice yield in Bangladesh

    NASA Astrophysics Data System (ADS)

    Nizamuddin, Mohammad; Akhand, Kawsar; Roytman, Leonid; Kogan, Felix; Goldberg, Mitch

    2015-06-01

    Rice is a dominant food crop of Bangladesh accounting about 75 percent of agricultural land use for rice cultivation and currently Bangladesh is the world's fourth largest rice producing country. Rice provides about two-third of total calorie supply and about one-half of the agricultural GDP and one-sixth of the national income in Bangladesh. Aus is one of the main rice varieties in Bangladesh. Crop production, especially rice, the main food staple, is the most susceptible to climate change and variability. Any change in climate will, thus, increase uncertainty regarding rice production as climate is major cause year-to-year variability in rice productivity. This paper shows the application of remote sensing data for estimating Aus rice yield in Bangladesh using official statistics of rice yield with real time acquired satellite data from Advanced Very High Resolution Radiometer (AVHRR) sensor and Principal Component Regression (PCR) method was used to construct a model. The simulated result was compared with official agricultural statistics showing that the error of estimation of Aus rice yield was less than 10%. Remote sensing, therefore, is a valuable tool for estimating crop yields well in advance of harvest, and at a low cost.

  6. [Impacts of climate warming on growth period and yield of rice in Northeast China during recent two decades].

    PubMed

    Hou, Wen-jia; Geng, Ting; Chen, Qun; Chen, Chang-qing

    2015-01-01

    By using rice growth period, yield and climate observation data during the recent two decades, the impact of climate warming on rice in Northeast China was investigated by mathematical statistics methods. The results indicated that in the three provinces of Northeast China, the average, maximum and minimum temperatures in rice growing season were on the. rise, and the rainfall presented a downward trend during 1989-2009. Compared to 1990s, the rice whole growth periods of Heilongjiang, Jilin and Liaoning provinces in 2000s were prolonged 14 d, 4.5 d and 5.1 d, respectively. The increase of temperature in May, June and September could extend the rice growth period, while that in July would shorten the growth duration. The rice growth duration of registered varieties and experiment sites had a similar increasing trend in Northeast China except for the Heilongjiang Province, and the extension of registered varieties growth period was the main factor causing the prolonged growth period of rice at experiment sites. The change in daily average, minimum and maximum temperatures all could affect the rice yield in Northeast China. The increasing temperature significantly increased the rice yield in Heilongjiang Province, especially in the west region of Sanjiang Plain. Except for the south of Liaoning Province, rice yields in other regions of Northeast China were promoted by increasing temperature. Proper measures for breeding, cultivation and farming, could be adopted to fully improve the adaptation of rice to climate warming in Northeast China.

  7. Proposal of a growth chamber for growing Super-Dwarf Rice in Space Agriculture

    NASA Astrophysics Data System (ADS)

    Hirai, Hiroaki; Kitaya, Yoshiaki; Tsukamoto, Koya; Yamashita, Youichirou; Hirai, Takehiro

    Space agriculture needs to be considered to supply food for space crew who stay in space over an extended time period. So far crops such as wheat, onion, oat, pea and lettuce grew to explore the possibility of space agriculture. Although rice is a staple food for most of the world, research on rice cultivation in space has not been done much. Rice grains are nutrient-rich with carbohydrate, protein and dietary fiber. Moreover, rice is a high yield crop and harvested grains have a long shelf life. However, the plant height of standard rice cultivars is relatively long, requiring much space. In addition, rice plants require higher light intensities for greater yield. For these reasons, it is difficult to establish facilities for rice culture in a limited space with a low cost. We propose to employee a super-dwarf cultivar and a small growth chamber with a new type of LEDs. The super-dwarf rice is a short-grain japonica variety and the plant height is approximately 20 cm that is one-fifth as tall as standard cultivars. The LED light used as a light source for this study can provide full spectrum of 380 nm to 750 nm. Air temperature and humidity were controlled by a Peltier device equipped in the chamber. The characteristics of the new type of LEDs and other equipments of the chamber and the ground based performance of super-dwarf rice plants grown in the chamber will be reported.

  8. Transcriptome Analysis of Salt Stress Responsiveness in the Seedlings of Dongxiang Wild Rice (Oryza rufipogon Griff.).

    PubMed

    Zhou, Yi; Yang, Ping; Cui, Fenglei; Zhang, Fantao; Luo, Xiangdong; Xie, Jiankun

    2016-01-01

    Dongxiang wild rice (Oryza rufipogon Griff.) is the progenitor of cultivated rice (Oryza sativa L.), and is well known for its superior level of tolerance against cold, drought and diseases. To date, however, little is known about the salt-tolerant character of Dongxiang wild rice. To elucidate the molecular genetic mechanisms of salt-stress tolerance in Dongxiang wild rice, the Illumina HiSeq 2000 platform was used to analyze the transcriptome profiles of the leaves and roots at the seedling stage under salt stress compared with those under normal conditions. The analysis results for the sequencing data showed that 6,867 transcripts were differentially expressed in the leaves (2,216 up-regulated and 4,651 down-regulated) and 4,988 transcripts in the roots (3,105 up-regulated and 1,883 down-regulated). Among these differentially expressed genes, the detection of many transcription factor genes demonstrated that multiple regulatory pathways were involved in salt stress tolerance. In addition, the differentially expressed genes were compared with the previous RNA-Seq analysis of salt-stress responses in cultivated rice Nipponbare, indicating the possible specific molecular mechanisms of salt-stress responses for Dongxiang wild rice. A large number of the salt-inducible genes identified in this study were co-localized onto fine-mapped salt-tolerance-related quantitative trait loci, providing candidates for gene cloning and elucidation of molecular mechanisms responsible for salt-stress tolerance in rice.

  9. Transcriptome Analysis of Salt Stress Responsiveness in the Seedlings of Dongxiang Wild Rice (Oryza rufipogon Griff.)

    PubMed Central

    Zhou, Yi; Yang, Ping; Cui, Fenglei; Zhang, Fantao; Luo, Xiangdong; Xie, Jiankun

    2016-01-01

    Dongxiang wild rice (Oryza rufipogon Griff.) is the progenitor of cultivated rice (Oryza sativa L.), and is well known for its superior level of tolerance against cold, drought and diseases. To date, however, little is known about the salt-tolerant character of Dongxiang wild rice. To elucidate the molecular genetic mechanisms of salt-stress tolerance in Dongxiang wild rice, the Illumina HiSeq 2000 platform was used to analyze the transcriptome profiles of the leaves and roots at the seedling stage under salt stress compared with those under normal conditions. The analysis results for the sequencing data showed that 6,867 transcripts were differentially expressed in the leaves (2,216 up-regulated and 4,651 down-regulated) and 4,988 transcripts in the roots (3,105 up-regulated and 1,883 down-regulated). Among these differentially expressed genes, the detection of many transcription factor genes demonstrated that multiple regulatory pathways were involved in salt stress tolerance. In addition, the differentially expressed genes were compared with the previous RNA-Seq analysis of salt-stress responses in cultivated rice Nipponbare, indicating the possible specific molecular mechanisms of salt-stress responses for Dongxiang wild rice. A large number of the salt-inducible genes identified in this study were co-localized onto fine-mapped salt-tolerance-related quantitative trait loci, providing candidates for gene cloning and elucidation of molecular mechanisms responsible for salt-stress tolerance in rice. PMID:26752408

  10. A Built-In Mechanism to Mitigate the Spread of Insect-Resistance and Herbicide-Tolerance Transgenes into Weedy Rice Populations

    PubMed Central

    Liu, Chengyi; Li, Jingjing; Gao, Jianhua; Shen, Zhicheng; Lu, Bao-Rong; Lin, Chaoyang

    2012-01-01

    Background The major challenge of cultivating genetically modified (GM) rice (Oryza sativa) at the commercial scale is to prevent the spread of transgenes from GM cultivated rice to its coexisting weedy rice (O. sativa f. spontanea). The strategic development of GM rice with a built-in control mechanism can mitigate transgene spread in weedy rice populations. Methodology/Principal Findings An RNAi cassette suppressing the expression of the bentazon detoxifying enzyme CYP81A6 was constructed into the T-DNA which contained two tightly linked transgenes expressing the Bt insecticidal protein Cry1Ab and the glyphosate tolerant 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), respectively. GM rice plants developed from this T-DNA were resistant to lepidopteran pests and tolerant to glyphosate, but sensitive to bentazon. The application of bentazon of 2000 mg/L at the rate of 40 mL/m2, which is approximately the recommended dose for the field application to control common rice weeds, killed all F2 plants containing the transgenes generated from the Crop-weed hybrids between a GM rice line (CGH-13) and two weedy rice strains (PI-63 and PI-1401). Conclusions/Significance Weedy rice plants containing transgenes from GM rice through gene flow can be selectively killed by the spray of bentazon when a non-GM rice variety is cultivated alternately in a few-year interval. The built-in control mechanism in combination of cropping management is likely to mitigate the spread of transgenes into weedy rice populations. PMID:22359609

  11. Making rice even healthier!

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice is a naturally healthy food, but what if it could be made even healthier? Would Americans eat more rice if it could be advertised to be a 'New and Improved' source of calcium to promote bone growth, or iron to prevent anemia? Grocery stores are full of foods that are vitamin enhanced to attract...

  12. Rice (Oryza) hemoglobins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hemoglobins (Hbs) corresponding to non-symbiotic (nsHb) and truncated (tHb) Hbs have been identified in rice (Oryza). This review discusses the major findings from the current studies on rice Hbs. At the molecular level, a family of the nshb genes, consisting of hb1, hb2, hb3, hb4 and hb5, and a sin...

  13. Fermentation Quality and Additives: A Case of Rice Straw Silage.

    PubMed

    Oladosu, Yusuff; Rafii, Mohd Y; Abdullah, Norhani; Magaji, Usman; Hussin, Ghazali; Ramli, Asfaliza; Miah, Gous

    2016-01-01

    Rice cultivation generates large amount of crop residues of which only 20% are utilized for industrial and domestic purposes. In most developing countries especially southeast Asia, rice straw is used as part of feeding ingredients for the ruminants. However, due to its low protein content and high level of lignin and silica, there is limitation to its digestibility and nutritional value. To utilize this crop residue judiciously, there is a need for improvement of its nutritive value to promote its utilization through ensiling. Understanding the fundamental principle of ensiling is a prerequisite for successful silage product. Prominent factors influencing quality of silage product include water soluble carbohydrates, natural microbial population, and harvesting conditions of the forage. Additives are used to control the fermentation processes to enhance nutrient recovery and improve silage stability. This review emphasizes some practical aspects of silage processing and the use of additives for improvement of fermentation quality of rice straw. PMID:27429981

  14. Fermentation Quality and Additives: A Case of Rice Straw Silage.

    PubMed

    Oladosu, Yusuff; Rafii, Mohd Y; Abdullah, Norhani; Magaji, Usman; Hussin, Ghazali; Ramli, Asfaliza; Miah, Gous

    2016-01-01

    Rice cultivation generates large amount of crop residues of which only 20% are utilized for industrial and domestic purposes. In most developing countries especially southeast Asia, rice straw is used as part of feeding ingredients for the ruminants. However, due to its low protein content and high level of lignin and silica, there is limitation to its digestibility and nutritional value. To utilize this crop residue judiciously, there is a need for improvement of its nutritive value to promote its utilization through ensiling. Understanding the fundamental principle of ensiling is a prerequisite for successful silage product. Prominent factors influencing quality of silage product include water soluble carbohydrates, natural microbial population, and harvesting conditions of the forage. Additives are used to control the fermentation processes to enhance nutrient recovery and improve silage stability. This review emphasizes some practical aspects of silage processing and the use of additives for improvement of fermentation quality of rice straw.

  15. Fermentation Quality and Additives: A Case of Rice Straw Silage

    PubMed Central

    Oladosu, Yusuff; Magaji, Usman; Hussin, Ghazali; Ramli, Asfaliza; Miah, Gous

    2016-01-01

    Rice cultivation generates large amount of crop residues of which only 20% are utilized for industrial and domestic purposes. In most developing countries especially southeast Asia, rice straw is used as part of feeding ingredients for the ruminants. However, due to its low protein content and high level of lignin and silica, there is limitation to its digestibility and nutritional value. To utilize this crop residue judiciously, there is a need for improvement of its nutritive value to promote its utilization through ensiling. Understanding the fundamental principle of ensiling is a prerequisite for successful silage product. Prominent factors influencing quality of silage product include water soluble carbohydrates, natural microbial population, and harvesting conditions of the forage. Additives are used to control the fermentation processes to enhance nutrient recovery and improve silage stability. This review emphasizes some practical aspects of silage processing and the use of additives for improvement of fermentation quality of rice straw. PMID:27429981

  16. From Early Domesticated Rice of the Middle Yangtze Basin to Millet, Rice and Wheat Agriculture: Archaeobotanical Macro-Remains from Baligang, Nanyang Basin, Central China (6700–500 BC)

    PubMed Central

    Deng, Zhenhua; Qin, Ling; Gao, Yu; Weisskopf, Alison Ruth; Zhang, Chi; Fuller, Dorian Q.

    2015-01-01

    Baligang is a Neolithic site on a northern tributary of the middle Yangtze and provides a long archaeobotanical sequence from the Seventh Millennium BC upto the First Millennium BC. It provides evidence for developments in rice and millet agriculture influenced by shifting cultural affiliation with the north (Yangshao and Longshan) and south (Qujialing and Shijiahe) between 4300 and 1800 BC. This paper reports on plant macro-remains (seeds), from systematic flotation of 123 samples (1700 litres), producing more than 10,000 identifiable remains. The earliest Pre-Yangshao occupation of the sites provide evidence for cultivation of rice (Oryza sativa) between 6300–6700 BC. This rice appears already domesticated in on the basis of a dominance of non-shattering spikelet bases. However, in terms of grain size changes has not yet finished, as grains are still thinner than more recent domesaticated rice and are closer in grain shape to wild rices. This early rice was cultivated alongside collection of wild staple foods, especially acorns (Quercus/Lithicarpus sensu lato). In later periods the sites has evidence for mixed farming of both rice and millets (Setaria italica and Panicum miliaceum). Soybean appears on the site in the Shijiahe period (ca.2500 BC) and wheat (Triticum cf. aestivum) in the Late Longshan levels (2200–1800 BC). Weed flora suggests an intensification of rice agriculture over time with increasing evidence of wetland weeds. We interpret these data as indicating early opportunistic cultivation of alluvial floodplains and some rainfed rice, developing into more systematic and probably irrigated cultivation starting in the Yangshao period, which intensified in the Qujialing and Shijiahe period, before a shift back to an emphasis on millets with the Late Longshan cultural influence from the north. PMID:26460975

  17. From Early Domesticated Rice of the Middle Yangtze Basin to Millet, Rice and Wheat Agriculture: Archaeobotanical Macro-Remains from Baligang, Nanyang Basin, Central China (6700-500 BC).

    PubMed

    Deng, Zhenhua; Qin, Ling; Gao, Yu; Weisskopf, Alison Ruth; Zhang, Chi; Fuller, Dorian Q

    2015-01-01

    Baligang is a Neolithic site on a northern tributary of the middle Yangtze and provides a long archaeobotanical sequence from the Seventh Millennium BC upto the First Millennium BC. It provides evidence for developments in rice and millet agriculture influenced by shifting cultural affiliation with the north (Yangshao and Longshan) and south (Qujialing and Shijiahe) between 4300 and 1800 BC. This paper reports on plant macro-remains (seeds), from systematic flotation of 123 samples (1700 litres), producing more than 10,000 identifiable remains. The earliest Pre-Yangshao occupation of the sites provide evidence for cultivation of rice (Oryza sativa) between 6300-6700 BC. This rice appears already domesticated in on the basis of a dominance of non-shattering spikelet bases. However, in terms of grain size changes has not yet finished, as grains are still thinner than more recent domesaticated rice and are closer in grain shape to wild rices. This early rice was cultivated alongside collection of wild staple foods, especially acorns (Quercus/Lithicarpus sensu lato). In later periods the sites has evidence for mixed farming of both rice and millets (Setaria italica and Panicum miliaceum). Soybean appears on the site in the Shijiahe period (ca.2500 BC) and wheat (Triticum cf. aestivum) in the Late Longshan levels (2200-1800 BC). Weed flora suggests an intensification of rice agriculture over time with increasing evidence of wetland weeds. We interpret these data as indicating early opportunistic cultivation of alluvial floodplains and some rainfed rice, developing into more systematic and probably irrigated cultivation starting in the Yangshao period, which intensified in the Qujialing and Shijiahe period, before a shift back to an emphasis on millets with the Late Longshan cultural influence from the north.

  18. From Early Domesticated Rice of the Middle Yangtze Basin to Millet, Rice and Wheat Agriculture: Archaeobotanical Macro-Remains from Baligang, Nanyang Basin, Central China (6700-500 BC).

    PubMed

    Deng, Zhenhua; Qin, Ling; Gao, Yu; Weisskopf, Alison Ruth; Zhang, Chi; Fuller, Dorian Q

    2015-01-01

    Baligang is a Neolithic site on a northern tributary of the middle Yangtze and provides a long archaeobotanical sequence from the Seventh Millennium BC upto the First Millennium BC. It provides evidence for developments in rice and millet agriculture influenced by shifting cultural affiliation with the north (Yangshao and Longshan) and south (Qujialing and Shijiahe) between 4300 and 1800 BC. This paper reports on plant macro-remains (seeds), from systematic flotation of 123 samples (1700 litres), producing more than 10,000 identifiable remains. The earliest Pre-Yangshao occupation of the sites provide evidence for cultivation of rice (Oryza sativa) between 6300-6700 BC. This rice appears already domesticated in on the basis of a dominance of non-shattering spikelet bases. However, in terms of grain size changes has not yet finished, as grains are still thinner than more recent domesaticated rice and are closer in grain shape to wild rices. This early rice was cultivated alongside collection of wild staple foods, especially acorns (Quercus/Lithicarpus sensu lato). In later periods the sites has evidence for mixed farming of both rice and millets (Setaria italica and Panicum miliaceum). Soybean appears on the site in the Shijiahe period (ca.2500 BC) and wheat (Triticum cf. aestivum) in the Late Longshan levels (2200-1800 BC). Weed flora suggests an intensification of rice agriculture over time with increasing evidence of wetland weeds. We interpret these data as indicating early opportunistic cultivation of alluvial floodplains and some rainfed rice, developing into more systematic and probably irrigated cultivation starting in the Yangshao period, which intensified in the Qujialing and Shijiahe period, before a shift back to an emphasis on millets with the Late Longshan cultural influence from the north. PMID:26460975

  19. Africans in America.

    ERIC Educational Resources Information Center

    Hart, Ayanna; Spangler, Earl

    This book introduces African-American history and culture to children. The first Africans in America came from many different regions and cultures, but became united in this country by being black, African, and slaves. Once in America, Africans began a long struggle for freedom which still continues. Slavery, the Civil War, emancipation, and the…

  20. Therapy with African Families.

    ERIC Educational Resources Information Center

    Nwadiora, Emeka

    1996-01-01

    Informs helping professionals about the unique history and challenges of African families to guide them toward providing ethnically sensitive psychological services to African immigrant families in need. African families undergo great stress when faced with the alienation of being Black and African in a Euro-American culture. (SLD)

  1. African Outreach Workshop 1974.

    ERIC Educational Resources Information Center

    Schmidt, Nancy J.

    This report discusses the 1974 African Outreach Workshop planned and coordinated by the African Studies Program at the University of Illinois at Urbana-Champaign. Its major aim was to assist teachers in developing curriculum units on African using materials available in their local community. A second aim was for the African Studies Program to…

  2. Transgenic strategies to confer resistance against viruses in rice plants

    PubMed Central

    Sasaya, Takahide; Nakazono-Nagaoka, Eiko; Saika, Hiroaki; Aoki, Hideyuki; Hiraguri, Akihiro; Netsu, Osamu; Uehara-Ichiki, Tamaki; Onuki, Masatoshi; Toki, Seichi; Saito, Koji; Yatou, Osamu

    2014-01-01

    Rice (Oryza sativa L.) is cultivated in more than 100 countries and supports nearly half of the world’s population. Developing efficient methods to control rice viruses is thus an urgent necessity because viruses cause serious losses in rice yield. Most rice viruses are transmitted by insect vectors, notably planthoppers and leafhoppers. Viruliferous insect vectors can disperse their viruses over relatively long distances, and eradication of the viruses is very difficult once they become widespread. Exploitation of natural genetic sources of resistance is one of the most effective approaches to protect crops from virus infection; however, only a few naturally occurring rice genes confer resistance against rice viruses. Many investigators are using genetic engineering of rice plants as a potential strategy to control viral diseases. Using viral genes to confer pathogen-derived resistance against crops is a well-established procedure, and the expression of various viral gene products has proved to be effective in preventing or reducing infection by various plant viruses since the 1990s. RNA interference (RNAi), also known as RNA silencing, is one of the most efficient methods to confer resistance against plant viruses on their respective crops. In this article, we review the recent progress, mainly conducted by our research group, in transgenic strategies to confer resistance against tenuiviruses and reoviruses in rice plants. Our findings also illustrate that not all RNAi constructs against viral RNAs are equally effective in preventing virus infection and that it is important to identify the viral “Achilles’ heel” gene to target for RNAi attack when engineering plants. PMID:24454308

  3. The Cultivated Classroom.

    ERIC Educational Resources Information Center

    Schilder, Rosalind

    1983-01-01

    Teachers who follow this monthly schedule for starting and cultivating plants in their classrooms can look forward to blooms and greenery throughout the year. Advice on choosing plants, making cuttings, forcing bulbs, rooting sweet potatoes and pineapples, and holding a Mother's Day plant sale is included. (PP)

  4. Cultivating Leaders from Within

    ERIC Educational Resources Information Center

    Burdette, Maggie; Schertzer, Kristen

    2005-01-01

    A major problem faced by school districts in the US is the paucity of applicants for the posts of school principals. A solution adopted by The Capistrano Unified School District (CUSD) in Orange County California was the cultivation of good leaders from within the district through the Teaching Assistant Principal (TAP) program.

  5. Wavelength selection and spectral discrimination for paddy rice, with laboratory measurements of hyperspectral leaf reflectance

    NASA Astrophysics Data System (ADS)

    Song, Shalei; Gong, Wei; Zhu, Bo; Huang, Xin

    2011-09-01

    The objective of this research is to select the most sensitive wavelengths for the discrimination of the imperceptible spectral variations of paddy rice under different cultivation conditions. The paddy rice was cultivated under four different nitrogen cultivation levels and three water irrigation levels. There are 2151 hyperspectral wavelengths available, both in hyperspectral reflectance and energy space transformed spectral data. Based on these two data sets, the principal component analysis (PCA) and band-band correlation methods were used to select significant wavelengths with no reference to leaf biochemical properties, while the partial least squares (PLS) method assessed the contribution of each narrow band to leaf biochemical content associated with each loading weight across the nitrogen and water stresses. Moreover, several significant narrow bands and other broad bands were selected to establish eight kinds of wavelength (broad-band) combinations, focusing on comparing the performance of the narrow-band combinations instead of broad-band combinations for rice supervising applications. Finally, to investigate the capability of the selected wavelengths to diagnose the stress conditions across the different cultivation levels, four selected narrow bands (552, 675, 705 and 776 nm) were calculated and compared between nitrogen-stressed and non-stressed rice leaves using linear discriminant analysis (LDA). Also, wavelengths of 1158, 1378 and 1965 nm were identified as the most useful bands to diagnose the stress condition across three irrigation levels. Results indicated that good discrimination was achieved. Overall, the narrow bands based on hyperspectral reflectance data appear to have great potential for discriminating rice of differing cultivation conditions and for detecting stress in rice vegetation; these selected wavelengths also have great potential use for the designing of future sensors.

  6. Cultivating a Critical Race Consciousness for African American School Success

    ERIC Educational Resources Information Center

    Carter, Dorinda J.

    2008-01-01

    In the field of education, much of the research on Black student achievement focuses on cultural and/or structural explanations for the academic outcomes of these adolescents. A vast amount of the research on Black student achievement perpetuates a continuous discussion of Black underachievement. Race continues to remain central across discussions…

  7. Effects of aqueous extract of soil-like substrate made from three different materials on seed germination and seedling growth of rice

    NASA Astrophysics Data System (ADS)

    Shao, Lingzhi; Fu, Yuming; Fu, Wenting; Yan, Min; Li, Leyuan; Liu, Hong

    2014-03-01

    Biologically processing rice and wheat straws into soil-like substrate (SLS) and then reusing them in plant cultivation system to achieve waste recycle is very crucially important in Bioregenerative life support system (BLSS). However, rice is a plant with strong allelopathic potential. It is not clear yet that what kinds of raw materials can be processed into proper SLS to grow rice in BLSS. Therefore, in this study, the aqueous extract of SLS made from three different materials including rice straw, wheat straw and rice-wheat straw mixture was utilized to investigate its effects on the seed germination and seedling growth of rice. The gradients of the extract concentrations (soil:water) were 1:3, 1:5, 1:9, and 1:15 with deionized water used as control. The effects of different types of SLS on seed germination and seedling vitality of rice were confirmed by analyzing the germination rate, seedling length, root length, the fresh weight and other indicants. In addition, based on the analysis towards pH, organic matter composition and other factors of the SLS as well as the chlorophyll, hormone content of rice, and the mechanism of the inhibition was speculated in order to explore the preventive methods of the phenomenon. Finally, the feasibility of cultivating rice on SLSs made from the raw materials mentioned above was evaluated and wheat raw was determined as the most appropriate material for growing rice.

  8. Assimilation of MODIS-derived LAI by radiative transfer modelling to crop growth simulation model for rice crop monitoring and yield estimation in the Mekong delta, Vietnam

    NASA Astrophysics Data System (ADS)

    Nguyen, H.; de Bie, K.; Verhoef, W.

    2014-12-01

    Successful monitoring of rice crops and estimation of its yields in Mekong delta provide vital information to government agencies, rice production stakeholders and insurance companies in making their decisions and plans to establish solutions to protect rice smallholders from the risks involved. Remote sensing-based information promises a cost-effective way to observe rice crop growth in the largest rice producing region of Vietnam. For an extensive rice cultivation region as the Mekong delta, the use of divergence statistic to extract information from long-term or hypertemporal optical remote sensing NDVI profile to map rice cropping patterns has shown a high degree of success. The result map provides accurate information on where rice grew, when it was seeded and harvested, how many time it was cultivated every year. In addition, by using 8-day MODIS TERRA surface reflectance in Soil-Leaf-Canopy (SLC) radiative transfer model, 70 percent variation of seasonal rice LAI values was able to capture, making it useful to be assimilated into a rice crop growth simulation model (ORYZA 2000) to estimate the regional rice production in the season of 2008-2009. Tested results from 56 rice fields located in different rice cropping patterns showed that yields estimated using ORYZA2000 can explain 83 percent variation of field measured yields. However, simulated yields by ORYZA 2000 were used to overestimate by the model since some of model parameters could not be recalibrated due to the lack of field experiment data. This suggest that in the future, in order to gain a better results of rice crop monitoring and yield estimation, apart from improving the estimation of MODIS -derived LAIs by using SLC, calibrating crop growth simulation's parameter have to be taken into account.

  9. Cultivating an entrepreneurial mindset.

    PubMed

    Matheson, Sandra A

    2013-01-01

    Now as never before, familiar challenges require bold, novel approaches. Registered dietitians will benefit by cultivating an entrepreneurial mindset that involves being comfortable with uncertainty, learning to take calculated risks, and daring to just try it. An entrepreneur is someone who takes risks to create something new, usually in business. But the entrepreneurial mindset is available to anyone prepared to rely only on their own abilities for their economic security and expect no opportunity without first creating value for others. PMID:24018008

  10. Cultivating strategic thinking skills.

    PubMed

    Shirey, Maria R

    2012-06-01

    This department highlights change management strategies that may be successful in strategically planning and executing organizational change initiatives. With the goal of presenting practical approaches helpful to nurse leaders advancing organizational change, content includes evidence-based projects, tools, and resources that mobilize and sustain organizational change initiatives. In this article, the author presents an overview of strategic leadership and offers approaches for cultivating strategic thinking skills.

  11. Loss of floral repressor function adapts rice to higher latitudes in Europe

    PubMed Central

    Gómez-Ariza, Jorge; Galbiati, Francesca; Goretti, Daniela; Brambilla, Vittoria; Shrestha, Roshi; Pappolla, Andrea; Courtois, Brigitte; Fornara, Fabio

    2015-01-01

    The capacity to discriminate variations in day length allows plants to align flowering with the most favourable season of the year. This capacity has been altered by artificial selection when cultivated varieties became adapted to environments different from those of initial domestication. Rice flowering is promoted by short days when HEADING DATE 1 (Hd1) and EARLY HEADING DATE 1 (Ehd1) induce the expression of florigenic proteins encoded by HEADING DATE 3a (Hd3a) and RICE FLOWERING LOCUS T 1 (RFT1). Repressors of flowering antagonize such induction under long days, maintaining vegetative growth and delaying flowering. To what extent artificial selection of long day repressor loci has contributed to expand rice cultivation to Europe is currently unclear. This study demonstrates that European varieties activate both Hd3a and RFT1 expression regardless of day length and their induction is caused by loss-of-function mutations at major long day floral repressors. However, their contribution to flowering time control varies between locations. Pyramiding of mutations is frequently observed in European germplasm, but single mutations are sufficient to adapt rice to flower at higher latitudes. Expression of Ehd1 is increased in varieties showing reduced or null Hd1 expression under natural long days, as well as in single hd1 mutants in isogenic backgrounds. These data indicate that loss of repressor genes has been a key strategy to expand rice cultivation to Europe, and that Ehd1 is a central node integrating floral repressive signals. PMID:25732533

  12. Concentration of radiocaesium in rice and irrigation water, and soil management practices in Oguni, Date, Fukushima.

    PubMed

    Tsukada, Hirofumi; Ohse, Kenji

    2016-10-01

    The concentration of radiocaesium ((134) Cs and (137) Cs) in brown rice collected from Oguni, Date, Fukushima in 2011 was over 500 Bq kg(-1) , which was the provisional regulation value in 2011, and rice cultivation was prohibited in 2012. Rice culture was resumed following the application of K fertilizer as a countermeasure in 2013. The concentration of (137) Cs in soils and irrigation water in 2013 was in the range of 1200 to 4000 Bq kg(-1) (n = 31) and 0.078 to 1.1 Bq L(-1) (n = 7), respectively. The concentration of (137) Cs in the dissolved fraction in irrigation water filtered with 0.45 µm pore-size membrane filter was a relatively constant at 0.019 to 0.038 Bq L(-1) (n = 7). The concentration of (137) Cs in brown rice cultivated in the paddy fields after implementing the countermeasure was 1.1 to 24 Bq kg(-1) dry weight (n = 29), which was lower than the Standard Limits (100 Bq kg(-1) ). However, the concentration of Cs in rice cultivated under a similar agricultural management as in 2011 and prior to the Tokyo Electric Power Company Holdings' (TEPCO) Fukushima accident was over the Standard Limits. Integr Environ Assess Manag 2016;12:659-661. © 2016 SETAC. PMID:27640411

  13. Escape to Ferality: The Endoferal Origin of Weedy Rice from Crop Rice through De-Domestication

    PubMed Central

    Gettler, Kyle A.; Burgos, Nilda R.; Fischer, Albert J.

    2016-01-01

    Domestication is the hallmark of evolution and civilization and harnesses biodiversity through selection for specific traits. In regions where domesticated lines are grown near wild relatives, congeneric sources of aggressive weedy genotypes cause major economic losses. Thus, the origins of weedy genotypes where no congeneric species occur raise questions regarding management effectiveness and evolutionary mechanisms responsible for weedy population success. Since eradication in the 1970s, California growers avoided weedy rice through continuous flood culture and zero-tolerance guidelines, preventing the import, presence, and movement of weedy seeds. In 2003, after decades of no reported presence in California, a weedy rice population was confirmed in dry-seeded fields. Our objectives were to identify the origins and establishment of this population and pinpoint possible phenotypes involved. We show that California weedy rice is derived from a different genetic source among a broad range of AA genome Oryzas and is most recently diverged from O. sativa temperate japonica cultivated in California. In contrast, other weedy rice ecotypes in North America (Southern US) originate from weedy genotypes from China near wild Oryza, and are derived through existing crop-wild relative crosses. Analyses of morphological data show that California weedy rice subgroups have phenotypes like medium-grain or gourmet cultivars, but have colored pericarp, seed shattering, and awns like wild relatives, suggesting that reversion to non-domestic or wild-like traits can occur following domestication, despite apparent fixation of domestication alleles. Additionally, these results indicate that preventive methods focused on incoming weed sources through contamination may miss burgeoning weedy genotypes that rapidly adapt, establish, and proliferate. Investigating the common and unique evolutionary mechanisms underlying global weed origins and subsequent interactions with crop relatives sheds

  14. Gene flow from weedy red rice (Oryza sativa L.) to cultivated rice and fitness of hybrids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gene transfer from weeds to crops could produce weedy individuals that might impact upon the evolutionary dynamics of weedy populations, the persistence of escaped genes in agroecosystems and approaches to weed management and containment of transgenic crops. The present aim was to quantify the gene ...

  15. Selection of tolerant rice germplasm through phenotypic and genotypic evaluation for germination under low temperatures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Low temperature germinability (LTG) is an important trait for stand establishment in the direct-seeding method of rice cultivation. In temperate growing regions, water temperature during sowing season is frequently below 15°C resulting in poor crop establishment. The objective of this study was to s...

  16. Unraveling the rich phenotypic and genetic diversity in rice for varietal improvement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Asian cultivated rice (Oryza sativa L.) has two distinct varietal groups identified as the indica and japonica subspecies. With the advent of molecular markers the indica subspecies was divided into the indica and aus subpopulation groups and the japonica subspecies into the aromatic, tropical japon...

  17. Rice management interventions to mitigate greenhouse gas emissions: a review.

    PubMed

    Hussain, Saddam; Peng, Shaobing; Fahad, Shah; Khaliq, Abdul; Huang, Jianliang; Cui, Kehui; Nie, Lixiao

    2015-03-01

    Global warming is one of the gravest threats to crop production and environmental sustainability. Rice, the staple food of more than half of the world's population, is the most prominent cause of greenhouse gas (GHG) emissions in agriculture and gives way to global warming. The increasing demand for rice in the future has deployed tremendous concerns to reduce GHG emissions for minimizing the negative environmental impacts of rice cultivation. In this review, we presented a contemporary synthesis of existing data on how crop management practices influence emissions of GHGs in rice fields. We realized that modifications in traditional crop management regimes possess a huge potential to overcome GHG emissions. We examined and evaluated the different possible options and found that modifying tillage permutations and irrigation patterns, managing organic and fertilizer inputs, selecting suitable cultivar, and cropping regime can mitigate GHG emissions. Previously, many authors have discussed the feasibility principle and the influence of these practices on a single gas or, in particular, in the whole agricultural sector. Nonetheless, changes in management practices may influence more than one gas at the same time by different mechanisms or sometimes their effects may be antagonistic. Therefore, in the present attempt, we estimated the overall global warming potential of each approach to consider the magnitude of its effects on all gases and provided a comprehensive assessment of suitable crop management practices for reducing GHG emissions in rice culture. PMID:25354441

  18. Gene, protein, and network of male sterility in rice.

    PubMed

    Wang, Kun; Peng, Xiaojue; Ji, Yanxiao; Yang, Pingfang; Zhu, Yingguo; Li, Shaoqing

    2013-01-01

    Rice is one of the most important model crop plants whose heterosis has been well-exploited in commercial hybrid seed production via a variety of types of male-sterile lines. Hybrid rice cultivation area is steadily expanding around the world, especially in Southern Asia. Characterization of genes and proteins related to male sterility aims to understand how and why the male sterility occurs, and which proteins are the key players for microspores abortion. Recently, a series of genes and proteins related to cytoplasmic male sterility (CMS), photoperiod-sensitive male sterility, self-incompatibility, and other types of microspores deterioration have been characterized through genetics or proteomics. Especially the latter, offers us a powerful and high throughput approach to discern the novel proteins involving in male-sterile pathways which may help us to breed artificial male-sterile system. This represents an alternative tool to meet the critical challenge of further development of hybrid rice. In this paper, we reviewed the recent developments in our understanding of male sterility in rice hybrid production across gene, protein, and integrated network levels, and also, present a perspective on the engineering of male-sterile lines for hybrid rice production.

  19. Rice management interventions to mitigate greenhouse gas emissions: a review.

    PubMed

    Hussain, Saddam; Peng, Shaobing; Fahad, Shah; Khaliq, Abdul; Huang, Jianliang; Cui, Kehui; Nie, Lixiao

    2015-03-01

    Global warming is one of the gravest threats to crop production and environmental sustainability. Rice, the staple food of more than half of the world's population, is the most prominent cause of greenhouse gas (GHG) emissions in agriculture and gives way to global warming. The increasing demand for rice in the future has deployed tremendous concerns to reduce GHG emissions for minimizing the negative environmental impacts of rice cultivation. In this review, we presented a contemporary synthesis of existing data on how crop management practices influence emissions of GHGs in rice fields. We realized that modifications in traditional crop management regimes possess a huge potential to overcome GHG emissions. We examined and evaluated the different possible options and found that modifying tillage permutations and irrigation patterns, managing organic and fertilizer inputs, selecting suitable cultivar, and cropping regime can mitigate GHG emissions. Previously, many authors have discussed the feasibility principle and the influence of these practices on a single gas or, in particular, in the whole agricultural sector. Nonetheless, changes in management practices may influence more than one gas at the same time by different mechanisms or sometimes their effects may be antagonistic. Therefore, in the present attempt, we estimated the overall global warming potential of each approach to consider the magnitude of its effects on all gases and provided a comprehensive assessment of suitable crop management practices for reducing GHG emissions in rice culture.

  20. The Evolutionary Basis of Naturally Diverse Rice Leaves Anatomy

    PubMed Central

    Chatterjee, Jolly; Dionora, Jacqueline; Elmido-Mabilangan, Abigail; Wanchana, Samart; Thakur, Vivek; Bandyopadhyay, Anindya; Brar, Darshan S.; Quick, William Paul

    2016-01-01

    Rice contains genetically and ecologically diverse wild and cultivated species that show a wide variation in plant and leaf architecture. A systematic characterization of leaf anatomy is essential in understanding the dynamics behind such diversity. Therefore, leaf anatomies of 24 Oryza species spanning 11 genetically diverse rice genomes were studied in both lateral and longitudinal directions and possible evolutionary trends were examined. A significant inter-species variation in mesophyll cells, bundle sheath cells, and vein structure was observed, suggesting precise genetic control over these major rice leaf anatomical traits. Cellular dimensions, measured along three growth axes, were further combined proportionately to construct three-dimensional (3D) leaf anatomy models to compare the relative size and orientation of the major cell types present in a fully expanded leaf. A reconstruction of the ancestral leaf state revealed that the following are the major characteristics of recently evolved rice species: fewer veins, larger and laterally elongated mesophyll cells, with an increase in total mesophyll area and in bundle sheath cell number. A huge diversity in leaf anatomy within wild and domesticated rice species has been portrayed in this study, on an evolutionary context, predicting a two-pronged evolutionary pathway leading to the ‘sativa leaf type’ that we see today in domesticated species. PMID:27792743

  1. Regional differences in rice hulls supply for bioethanol production.

    PubMed

    Imamoglu, Esra; Dalay, Meltem Conk; Sukan, Fazilet Vardar

    2013-12-01

    Agricultural by-products are becoming an attractive substrate for bioethanol production. The aim of this study was to evaluate the effects of regional differences in the rice hulls using Escherichia coli KO11 for bioethanol production. The rice hulls coded Edirne were obtained from Thrace Region, and the rice hulls coded Izmir were obtained from Aegean Region in Turkey. Rice hulls were treated by dilute acid before using them as substrates. The cells were incubated on an orbital shaker at 160 rpm under 30 °C during 96 h of the fermentation period. It was found that the maximum yield of ethanol from sugar (0.44 g ethanol/g reducing sugar) was obtained with the substrate C/N ratio of 29.16 in Izmir medium. The main difference was the dominant carbon source available as a substrate. It was detected that glucose concentration was about 2.5 times higher in Izmir medium, whereas xylose concentration was about two times higher in Edirne medium. The different results obtained with rice hulls from different origins could depend on the type of paddy as well as different cultivation conditions. These findings provide a valuable indicator for identifying suitable agricultural waste materials to be used as substrates for bioethanol production.

  2. Genetic diversity and classification of Oryza sativa with emphasis on Chinese rice germplasm

    PubMed Central

    Wang, C-H; Zheng, X-M; Xu, Q; Yuan, X-P; Huang, L; Zhou, H-F; Wei, X-H; Ge, S

    2014-01-01

    Despite extensive studies on cultivated rice, the genetic structure and subdivision of this crop remain unclear at both global and local scales. Using 84 nuclear simple sequence repeat markers, we genotyped a panel of 153 global rice cultivars covering all previously recognized groups and 826 cultivars representing the diversity of Chinese rice germplasm. On the basis of model-based grouping, neighbour-joining tree and principal coordinate analysis, we confirmed the widely accepted five major groups of rice cultivars (indica, aus, aromatic, temperate japonica and tropical japonica), and demonstrated that rayada rice was unique in genealogy and should be treated as a new (the sixth) major group of rice germplasm. With reference to the global classification of rice cultivars, we identified three major groups (indica, temperate japonica and tropical japonica) in Chinese rice germplasm and showed that Chinese temperate japonica contained higher diversity than that of global samples, whereas Chinese indica and tropical japonica maintained slightly lower diversity than that present in the global samples. Particularly, we observed that all seasonal, drought-tolerant and endosperm types occurred within each of three major groups of Chinese cultivars, which does not support previous claims that seasonal differentiation exists in Indica and drought-tolerant differentiation is present in Japonica. It is most likely that differentiation of cultivar types arose multiple times stemming from artificial selection for adaptation to local environments. PMID:24326293

  3. Genetic diversity and classification of Oryza sativa with emphasis on Chinese rice germplasm.

    PubMed

    Wang, C-H; Zheng, X-M; Xu, Q; Yuan, X-P; Huang, L; Zhou, H-F; Wei, X-H; Ge, S

    2014-05-01

    Despite extensive studies on cultivated rice, the genetic structure and subdivision of this crop remain unclear at both global and local scales. Using 84 nuclear simple sequence repeat markers, we genotyped a panel of 153 global rice cultivars covering all previously recognized groups and 826 cultivars representing the diversity of Chinese rice germplasm. On the basis of model-based grouping, neighbour-joining tree and principal coordinate analysis, we confirmed the widely accepted five major groups of rice cultivars (indica, aus, aromatic, temperate japonica and tropical japonica), and demonstrated that rayada rice was unique in genealogy and should be treated as a new (the sixth) major group of rice germplasm. With reference to the global classification of rice cultivars, we identified three major groups (indica, temperate japonica and tropical japonica) in Chinese rice germplasm and showed that Chinese temperate japonica contained higher diversity than that of global samples, whereas Chinese indica and tropical japonica maintained slightly lower diversity than that present in the global samples. Particularly, we observed that all seasonal, drought-tolerant and endosperm types occurred within each of three major groups of Chinese cultivars, which does not support previous claims that seasonal differentiation exists in Indica and drought-tolerant differentiation is present in Japonica. It is most likely that differentiation of cultivar types arose multiple times stemming from artificial selection for adaptation to local environments.

  4. The role of irrigation techniques in arsenic bioaccumulation in rice (Oryza sativa L.).

    PubMed

    Spanu, Antonino; Daga, Leonardo; Orlandoni, Anna Maria; Sanna, Gavino

    2012-08-01

    The bioaccumulation of arsenic compounds in rice is of great concern worldwide because rice is the staple food for billions of people and arsenic is one of the most toxic and carcinogenic elements at even trace amounts. The uptake of arsenic compounds in rice comes mainly from its interaction with system soil/water in the reducing conditions typical of paddy fields and is influenced by the irrigation used. We demonstrate that the use of sprinkler irrigation produces rice kernels with a concentration of total arsenic about fifty times lower when compared to rice grown under continuous flooding irrigation. The average total amount of arsenic, measured by a fully validated ICP-MS method, in 37 rice grain genotypes grown with sprinkler irrigation was 2.8 ± 2.5 μg kg(-1), whereas the average amount measured in the same genotypes grown under identical conditions, but using continuous flooding irrigation was 163 ± 23 μg kg(-1). In addition, we find that the average concentration of total arsenic in rice grains cultivated under sprinkler irrigation is close to the total arsenic concentration found in irrigation waters. Our results suggest that, in our experimental conditions, the natural bioaccumulation of this element in rice grains may be completely circumvented by adopting an appropriate irrigation technique. PMID:22765219

  5. Cultivating the Genius of Black Children: Strategies to Close the Achievement Gap in the Early Years

    ERIC Educational Resources Information Center

    Sullivan, Debra Ren-Etta

    2016-01-01

    There has been much attention given to the opportunity gap between white and minority students, especially African American children. Using research and years of experience "Cultivating the Genius of Black Children" is able to break down the cultural influences on learning style and provides a practical approach to helping Black children…

  6. Future atmospheric conditions increase the greenhouse gas intensity of rice production

    NASA Astrophysics Data System (ADS)

    Van Groenigen, K.; Van Kessel, C.; Hungate, B. A.

    2012-12-01

    Elevated levels of atmospheric CO2 and rising temperatures are both expected to alter rice yields and greenhouse gas (GHG) emissions from rice paddies. This is important, because rice cultivation is one of the largest anthropogenic sources of the potent GHG methane (CH4) and rice is the world's second-most produced staple crop. Because global food demand is growing, it makes sense to assess GHG emissions from croplands on the basis of yield rather than land area, so that efforts to reduce GHG emissions occur with taking into consideration the effects on food production. However, it is unclear whether or how the GHG intensity (that is, yield-scaled GHG emissions) of cropping systems will be affected by future atmospheric conditions. Using meta-analysis, we show that elevated atmospheric CO2 (ranging from 550 to 743 ppmV) and warming (ranging from +0.8°C to +6°C) both increase the GHG intensity of rice cultivation. Elevated atmospheric CO2 increased GHG intensity by 31.4%, because CH4 emissions are stimulated more than rice yields. Warming increased GHG intensity by 11.8% per 1°C, largely due to a decrease in yield. Our findings underscore the need for mitigation and adaptation efforts to secure global food supply while at the same time keeping GHG emissions in check.

  7. Annual Changes of Paddy Rice Planting Areas in Northeastern Asia from MODIS images in 2000-2014

    NASA Astrophysics Data System (ADS)

    Xiao, X.; Zhang, G.; Dong, J.; Menarguez, M. A.; Kou, W.; Jin, C.; Qin, Y.; Zhou, Y.; Wang, J.; Moore, B., III

    2014-12-01

    Knowledge of the area and spatial distribution of paddy rice is important for assessment of food security, management of water resources, estimation of greenhouse gas (methane) emissions, and understanding avian influenza virus transmission. Over the past two decades, paddy rice cultivation has expanded northward in temperate and cold temperate zones, particularly in Northeastern China. There is a need to quantify and map changes in paddy rice planting areas in Northeastern Asia (Japan, North and South Korea, and northeast China) at annual interval. We developed a pixel- and phenology-based image analysis system, MODIS-RICE, to map the paddy rice in Northeastern Asia by using multi-temporal MODIS thermal and surface reflectance imagery. Paddy rice fields during the flooding and transplanting phases have unique physical and spectral characteristics, which make it possible for the development of an automated and robust algorithm to track flooding and transplanting phases of paddy rice fields over time. In this presentation, we will show the MODIS-based annual maps of paddy rice planting area in the Northeastern Asia from 2000-2014 (500-m spatial resolution). Accuracy assessments using high-resolution images show that the resultant paddy rice map of Northeastern Asia had a comparable accuracy to the existing products, including 2010 Landsat-based National Land Cover Dataset (NLCD) of China, the 2010 RapidEye-based paddy rice map in North Korea, and the 2010 AVNIR-2-based National Land Cover Dataset in Japan in terms of both area and spatial pattern of paddy rice. This study has demonstrated that our novel MODIS-Rice system, which use both thermal and optical MODIS data over a year, are simple and robust tools to identify and map paddy rice fields in temperate and cold temperate zones.

  8. Rice irrigation and schistosomiasis in savannah and forest areas of Côte d'Ivoire.

    PubMed

    Yapi, Y G; Briët, O J T; Diabate, S; Vounatsou, P; Akodo, E; Tanner, M; Teuscher, T

    2005-02-01

    Prevalence and intensity of infection of Schistosoma haematobium and Schistosoma mansoni were studied in relation to irrigated rice cultivation in Côte d'Ivoire. Urine and stool samples were collected from 4 to 15-year-old children in 24 villages in the savannah zone and 21 villages in the forest zone. Villages were classified according to surrounding inland valleys into three agro-ecosystems: (R2) full or partial water control allowing two rice cycles per year; (R1) no or partial water control allowing one harvest per year and (R0) absence of rice growing. In the savannah zone, S. haematobium prevalence was 4.8%, 2.3% and 0.7% and S. mansoni prevalence was 16.1%, 11.9% and 2.1% in R2, R1 and R0, respectively. In the forest zone, S. haematobium prevalence was 0.9%, 4.4% and 1.7% and S. mansoni prevalence was 61.3%, 46.6% and 17.5% in R2, in R1 and R0, respectively. Prevalences of S. mansoni adjusted for village effects were significantly different between agro-ecosystems in both zones. Significance of differences between agro-ecosystems of S. haematobium infection were strongly influenced by outlying villages. In savannah rice growing villages, negative binomial regression on infection intensity of each species showed significant positive relations to the surface of rice cultivated inland valleys, whereas uncultivated inland valleys showed no significant relation. However, in forest rice growing villages, S. mansoni infection intensity showed significant positive relations to the surface of uncultivated inland valleys, whereas surface water on rice cultivated land showed significant negative relations with infection intensity of each schistosomiasis species.

  9. The African Connection

    ERIC Educational Resources Information Center

    Oguntoyinbo, Lekan

    2012-01-01

    From student and faculty exchanges to joint research projects, U.S. universities maintain a broad spectrum of collaborative relationships with African universities. It's unclear how many U.S. colleges and universities have partnerships with African universities. The African Studies Association, an organization of scholars, doesn't keep that kind…

  10. Linguistic Imperialism: African Perspectives.

    ERIC Educational Resources Information Center

    Phillipson, Robert

    1996-01-01

    Responds to an article on aspects of African language policy and discusses the following issues: multilingualism and monolingualism, proposed changes in language policy from the Organization for African Unity and South African initiatives, the language of literature, bilingual education, and whose interests English-language teaching is serving.…

  11. Reclamation of abandoned shrimp pond soils in southern Thailand for cultivation of Mauritius grass (Brachiaria mutica).

    PubMed

    Towatana, P; Voradej, C; Leeraphante, N

    2003-09-01

    A study on soil reclamation for cultivation of Mauritius grass was conducted on soils obtained from abandoned shrimp ponds at Ranote District, Songkhla Province, southern Thailand. A glass house experiment on the reclamation of the soils included desalination by leaching soils using various amounts of deionised water, rice husk, plant nutrients and gypsum as well as an omission pot trial experiment. The result showed that Mauritius grass survived in the treatment with > or = 15 L of water, > or = 2% of rice husk with gypsum added or > or = 8% of rice husk without gypsum added. The yield of Mauritius grass increased with increases in the amounts of water for desalination and rice husk. Thus, the highest yield of grass with a height of 148.3 cm, 12.7 tillers/pot and dry weight of 46.43 g/pot was observed in the gypsum added treatment with the highest amount of water and rice husk (25 L of water and 8% by weight of rice husk). Therefore, salinity and unfavourable structure of the abandoned pond soils were major factors governing the survival ability and growth of the grass. The omission pot trial experiment revealed that growth of the grass responded to the application of P, Ca, Mg and S, though existing amounts of such plant nutrient elements in the soils were adequate for plant growth. The anomalous characteristics were probably explained by soil pH, salinity and imbalance of plant nutrient elements.

  12. Shaping a better rice plant.

    PubMed

    Springer, Nathan

    2010-06-01

    Two studies describe how regulatory variation at the rice gene OsSPL14 can lead to altered plant morphology and improve grain yield. These studies support the possibility of improving rice yield through changing plant architecture.

  13. Rheological properties of rice-blackgram batter while replacing white rice with brown rice.

    PubMed

    Manickavasagan, Annamalai; Al-Marhubi, Insaaf Mohd; Dev, Satyanarayan

    2014-06-01

    Rice-blackgram batter is a raw material for many traditional convenience foods in Asia. Reformulation of traditional convenience food by replacing white rice with whole rice (brown rice) is a novel method to reduce the consumption of refined grain and increase the intake of whole grain in our diet. In this study, rheological properties of rice-blackgram batter was investigated while replacing white rice with brown rice at five levels (T1--0% replacement (control), T2--25% replacement, T3--50% replacement, T4--75% replacement, and T5--100% replacement). The shear stress versus shear rate plot indicates that the rice-blackgram batter exhibited non-Newtonian fluid behavior (shear thinning property) even after 100% replacement of white rice with brown rice. The rheological characteristics of rice-blackgram batters fitted reasonably well in Cassan (r2 = 0.8521-0.9856) and power law (r2 = 0.8042-0.9823) models. Brown rice replacement at all levels did not affect the flow behavior index, yield stress, consistency coefficient, and apparent viscosity of batter at 25 degrees C. However, at higher temperature, the viscosity was greater for T4 and T5 (no difference between them) than T1, T2, and T3 (no difference between them) batters. Further research is required to determine the sensory attributes and acceptability of the cooked products with brown rice-blended batter.

  14. Rheological properties of rice-blackgram batter while replacing white rice with brown rice.

    PubMed

    Manickavasagan, Annamalai; Al-Marhubi, Insaaf Mohd; Dev, Satyanarayan

    2014-06-01

    Rice-blackgram batter is a raw material for many traditional convenience foods in Asia. Reformulation of traditional convenience food by replacing white rice with whole rice (brown rice) is a novel method to reduce the consumption of refined grain and increase the intake of whole grain in our diet. In this study, rheological properties of rice-blackgram batter was investigated while replacing white rice with brown rice at five levels (T1--0% replacement (control), T2--25% replacement, T3--50% replacement, T4--75% replacement, and T5--100% replacement). The shear stress versus shear rate plot indicates that the rice-blackgram batter exhibited non-Newtonian fluid behavior (shear thinning property) even after 100% replacement of white rice with brown rice. The rheological characteristics of rice-blackgram batters fitted reasonably well in Cassan (r2 = 0.8521-0.9856) and power law (r2 = 0.8042-0.9823) models. Brown rice replacement at all levels did not affect the flow behavior index, yield stress, consistency coefficient, and apparent viscosity of batter at 25 degrees C. However, at higher temperature, the viscosity was greater for T4 and T5 (no difference between them) than T1, T2, and T3 (no difference between them) batters. Further research is required to determine the sensory attributes and acceptability of the cooked products with brown rice-blended batter. PMID:23751544

  15. Trapping African fig fly (Diptera: Drosophilidae) with combinations of vinegar and wine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The African fig fly, Zaprionus indianus Gupta (Diptera: Drosophilidae), is an invasive fruit pest that has spread rapidly through much of the eastern United States. Tests were conducted in southern Florida that recorded the response of Z. indianus to baits that included Merlot wine, rice vinegar, et...

  16. Productivity of wet soils: Biomass of cultivated and natural vegetation

    SciTech Connect

    Johnston, C.A.

    1988-12-01

    Wet soils, soils which have agronomic limitations because of excess water, comprise 105 million acres of non-federal land in the conterminous United States. Wet soils which support hydrophytic plants are ''wetlands'', and are some of the most productive natural ecosystems in the world. When both above- and belowground productivity are considered, cattail (Typha latifolia) is the most productive temperate wetland species (26.4 Mg/ha/year). Both cattail and reed (Phragmites australis) have aboveground productivities of about 13 Mg/ha/year. Although average aboveground yields of reed canarygrass (Phalaris arundinacea) are lower (9.5 Mg/ha/year), techniques for its establishment and cultivation are well-developed. Other herbaceous wetland species which show promise as biomass crops include sedge (Carex spp.), river bulrush (Scirpus fluviatilis) and prairie cordgrass (Spartina pectinata). About 40% of wet soils in the conterminous US are currently cultivated, and they produce one-quarter of the major US crops. Most of this land is artificially drained for crops such as corn, soybeans, and vegetables. US wetlands are drained for agriculture at the rate of 223,000 ha/yr. Paddies flooded with water are used to grow rice, cranberries, and wild rice. Forage and live sphagnum moss are products of undrained wetlands. A number of federal and state regulations apply to the draining or irrigation of wetlands, but most do not seriously restrict their use for agriculture. 320 refs., 36 tabs.

  17. Flood-tolerant rice reduces yield variability and raises expected yield, differentially benefitting socially disadvantaged groups

    PubMed Central

    Dar, Manzoor H.; de Janvry, Alain; Emerick, Kyle; Raitzer, David; Sadoulet, Elisabeth

    2013-01-01

    Approximately 30% of the cultivated rice area in India is prone to crop damage from prolonged flooding. We use a randomized field experiment in 128 villages of Orissa India to show that Swarna-Sub1, a recently released submergence-tolerant rice variety, has significant positive impacts on rice yield when fields are submerged for 7 to 14 days with no yield penalty without flooding. We estimate that Swarna-Sub1 offers an approximate 45% increase in yields over the current popular variety when fields are submerged for 10 days. We show additionally that low-lying areas prone to flooding tend to be more heavily occupied by people belonging to lower caste social groups. Thus, a policy relevant implication of our findings is that flood-tolerant rice can deliver both efficiency gains, through reduced yield variability and higher expected yield, and equity gains in disproportionately benefiting the most marginal group of farmers. PMID:24263095

  18. Systemic Suppression of the Shoot Metabolism upon Rice Root Nematode Infection

    PubMed Central

    Kyndt, Tina; Denil, Simon; Bauters, Lander; Van Criekinge, Wim; De Meyer, Tim

    2014-01-01

    Hirschmanniella oryzae is the most common plant-parasitic nematode in flooded rice cultivation systems. These migratory animals penetrate the plant roots and feed on the root cells, creating large cavities, extensive root necrosis and rotting. The objective of this study was to investigate the systemic response of the rice plant upon root infection by this nematode. RNA sequencing was applied on the above-ground parts of the rice plants at 3 and 7 days post inoculation. The data revealed significant modifications in the primary metabolism of the plant shoot, with a general suppression of for instance chlorophyll biosynthesis, the brassinosteroid pathway, and amino acid production. In the secondary metabolism, we detected a repression of the isoprenoid and shikimate pathways. These molecular changes can have dramatic consequences for the growth and yield of the rice plants, and could potentially change their susceptibility to above-ground pathogens and pests. PMID:25216177

  19. Modeling moisture movement in rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice is one of the leading food crops in the world. At harvest, rice normally has higher moisture content than the moisture content considered safe for its storage, which creates the necessity for a drying process before its storage. In addition to drying, moisture movement within the rice kernels a...

  20. Arsenic in rice (Oryza sativa L.) related to dynamics of arsenic and silicic acid in paddy soils.

    PubMed

    Bogdan, Katja; Schenk, Manfred K

    2008-11-01

    Paddy rice is a global staple food which in some circumstances can contain high levels of the toxic element arsenic (As). In order to elucidate factors influencing As dissolution in the soil solution during paddy rice cultivation, rice (Oryza sativa L. "Selenio") was cultivated to maturity in six paddy soils in the greenhouse in 2005 and 2006. Concentrations of Mn, Fe, As, P, and silicic acid in soil solution and As concentrations in rice straw and polished rice grain were determined. There was a close relationship between Fe and As concentrations in the soil solution, suggesting that the major part of dissolved As originated from reduced iron-(hydr)oxide. However, in addition to the factors causing As dissolution in the soil, other factors influenced the uptake of As by rice. The inhibitory effect of indigenous silicic acid in the soil solution on As uptake was clearly shown. This implied that soils with high plant available Si contents resulted in low plant As contents and that Si application to soils may decrease the As content of rice. PMID:19031876

  1. Establishment of a rice-duck integrated farming system and its effects on soil fertility and rice disease control

    NASA Astrophysics Data System (ADS)

    Teng, Qing; Hu, Xue-Feng; Cheng, Chang; Luo, Zhi-Qing; Luo, Fan

    2015-04-01

    Rice-duck integrated farming is an ecological farming system newly established in some areas of southern China . It was reported that the ducks walking around the paddy fields is beneficial to control weed hazards and reduce rice pests and diseases. To study and evaluate the effects of the rice-duck integrated farming on soil fertility and rice disease control, a field experiment of rice cultivation was carried out in the suburb of Shanghai in 2014. It includes a treatment of raising ducks in the fields and a control without ducks. The treatment was implemented by building a duck coop nearby the experimental fields and driving 15 ducks into a plot at daytime since the early stage of rice growth. Each plot is 667 m2 in area. The treatment and control were replicated for three times. No any herbicides, pesticides, fungicides and chemical fertilizers were applied during the experiment to prevent any disturbance to duck growing and rice weed hazards and disease incidences from agrochemicals. The results are as follows: (1) The incidences of rice leaf rollers (Cnaphalocrocis medinalis) and stem borers treated with ducks, 0.45%and 1.18% on average, respectively, are lower than those of the control, 0.74% and 1.44% on average, respectively. At the late stage of rice growth, the incidence of rice sheath blight treated with ducks, 13.15% on average, is significantly lower than that of the control, 16.9% on average; and the incidence of rice planthoppers treated with ducks, 11.3 per hill on average, is also significantly lower than that of the control, 47.4 per hill on average. (2) The number of weeds in the plots treated with ducks, 8.3 per m2 on average, is significantly lower than that of the control, 87.5 m2 on average. (3) Raising ducks in the fields could also enhance soil enzyme activity and nutrient status. At the late stage of rice growth, the activities of urease, phosphatase, sucrase and catalase in the soils treated with ducks are 1.39 times, 1.40 times, 1

  2. Effects of extract liquid of SLS made from three different materials on seed germination and seedling growth of rice

    NASA Astrophysics Data System (ADS)

    Shao, Lingzhi; Fu, Wenting; Liu, Hong; Yan, Min; Li, Leyuan

    Rice and wheat are the main candidate crops in the bioregenerative life support system (BLSS) of China, for they are traditional food in Asia. Thus the recycling of their straws is an important issue in our BLSS, and it is a vital way to biologically process them into the soil like substrate (SLS) first and then reuse them in the plant cultivation system to achieve their recycle in BLSS. However, rice is a plant with strong allelopathic effects. And so far, it is also not clear that what kind of raw materials can be processed into proper SLS to grow rice in the BLSS. Therefore, in this study, the extract liquid of SLS made from three different materials including rice straw, wheat straw and rice-wheat mixed straw was utilized to investigate its effects on the seed germination and seedling growth of rice. The gradients of the extract concentrations (soil: water) were 1:3, 1:5, 1:9, and 1:15 with the deionized water used as control. The effects of different types of SLS on seed germination and seedling vitality of rice were confirmed by analyzing the germination rate, seedling length, root length, root fresh weight, seedling fresh weight and other indicates. In addition, based on the analysis towards pH, organic matter composition and other factors of the SLS as well as the chlorophyll and hormone content of rice, the mechanism of the inhibition was speculated and the preventive methods of this phenomenon was explored. Finally, the feasibility of cultivating rice on the SLS made from the above three kinds of raw materials was evaluated and the proper raw materials to be processed into SLS to grow rice were determined.

  3. Detection of Inorganic Arsenic in Rice Using a Field Test Kit: A Screening Method.

    PubMed

    Bralatei, Edi; Lacan, Severine; Krupp, Eva M; Feldmann, Jörg

    2015-11-17

    Rice is a staple food eaten by more than 50% of the world's population and is a daily dietary constituent in most South East Asian countries where 70% of the rice export comes from and where there is a high level of arsenic contamination in groundwater used for irrigation. Research shows that rice can take up and store inorganic arsenic during cultivation, and rice is considered to be one of the major routes of exposure to inorganic arsenic, a class I carcinogen for humans. Here, we report the use of a screening method based on the Gutzeit methodology to detect inorganic arsenic (iAs) in rice within 1 h. After optimization, 30 rice commodities from the United Kingdom market were tested with the field method and were compared to the reference method (high-performance liquid chromatography-inductively coupled plasma-mass spectrometry, HPLC-ICP-MS). In all but three rice samples, iAs compound can be determined. The results show no bias for iAs using the field method. Results obtained show quantification limits of about 50 μg kg(-1), a good reproducibility for a field method of ±12%, and only a few false positives and negatives (<10%) could only be recorded at the 2015 European Commission (EC) guideline for baby rice of 100 μg kg(-1), while none were recorded at the maximum level suggested by the World Health Organization (WHO) and implemented by the EC for polished and white rice of 200 μg kg(-1). The method is reliable, fast, and inexpensive; hence, it is suggested to be used as a screening method in the field for preselection of rice which violates legislative guidelines.

  4. Investigation the growth, yield and yield components of rice varieties in rotation with garlic, Faba bean, lettuce, pea and fallow in north of Iran.

    PubMed

    Nasiri, Morteza; Pirdashti, Hemmatollah; Tari, Davood Barari

    2007-08-15

    In order to investigating the effects of second crop cultivation on growth, yield and yield components of rice, a field experiment was conducted at the Rice Research Institute of Iran-Deputy of Mazandaran (Amol) during 2004 and 2005. Tarom as a traditional variety and Fajr as a improved variety were used in this research. Faba, pea, Lettuce and garlic were used as a second crop in rotation with rice. Second crop cultivation, variety and interaction between them had a significant effect on tiller number at 0.01 probability level. Results showed that rice yield after lettuce and garlic rotation was lower than with Faba bean, pea and fallow rotation. These results indicated that rice varieties had different reaction to second crop cultivation. For example, Tarom variety in rotation with lettuce and garlic had higher yield deficiency than Fajr variety. These results suggested that Lettuce and garlic can not be a permanent second crop in paddy field. According to results, pea and faba bean in rotation with rice for the best performance of yield attributes of rice varieties were recommended.

  5. Survey of arsenic and its speciation in rice products such as breakfast cereals, rice crackers and Japanese rice condiments.

    PubMed

    Sun, Guo-Xin; Williams, Paul N; Zhu, Yong-Guan; Deacon, Claire; Carey, Anne-Marie; Raab, Andrea; Feldmann, Joerg; Meharg, Andrew A

    2009-04-01

    Rice has been demonstrated to be one of the major contributors to arsenic (As) in human diets in addition to drinking water, but little is known about rice products as an additional source of As exposure. Rice products were analyzed for total As and a subset of samples were measured for arsenic speciation using high performance liquid chromatography interfaced with inductively coupled plasma-mass spectrometry (HPLC-ICP-MS). A wide range of rice products had total and inorganic arsenic levels that typified those found in rice grain including, crisped rice, puffed rice, rice crackers, rice noodles and a range of Japanese rice condiments as well as rice products targeted at the macrobiotic, vegan, lactose intolerant and gluten intolerance food market. Most As in rice products are inorganic As (75.2-90.1%). This study provides a wider appreciation of how inorganic arsenic derived from rice products enters the human diet. PMID:18775567

  6. Methane potential and biodegradability of rice straw, rice husk and rice residues from the drying process.

    PubMed

    Contreras, L M; Schelle, H; Sebrango, C R; Pereda, I

    2012-01-01

    Agricultural solid residues are a potential renewable energy source. Rice harvesting and production in Sancti Spíritus province, Cuba, currently generates residues without an environmentally sustainable disposal route. Rice residues (rice straw, rice husk and rice residues from the drying process) are potentially an important carbon source for anaerobic digestion. For this paper, rice residues were placed for 36 days retention time in anaerobic batch reactor environments at both mesophilic (37 °C) and thermophilic (55 °C) conditions. Biogas and methane yield were determined as well as biogas composition. The results showed that rice straw as well as rice residues from the drying process had the highest biogas and methane yield. Temperature played an important role in determining both biogas yield and kinetics. In all cases, rice straw produced the highest yields; under mesophilic conditions the biogas yield was 0.43 m(3) kg(VS)(-1), under thermophilic conditions biogas yield reached 0.52 m(3) kg(VS)(-1). In the case of the rice husk, the biodegradability was very low. Methane content in all batches was kept above 55% vol. All digested material had a high carbon:nitrogen (C:N) ratio, even though significant biodegradation was recorded with the exception of rice husk. A first-order model can be used to describe the rice crop residues fermentation effectively.

  7. Effect of rice variety and nutrient management on rice productivity in organic rice system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Demand for organic rice has been increasing for decades. However, the information on sustainable organic rice production systems is still lacking. The objective of this study was to investigate the effects of soil amendment products, nitrogen rate, and variety on rice grain yield, yield components, ...

  8. Starting from grape cultivation.

    PubMed

    Yoshida, A

    1992-06-01

    Rapid population growth can only be stopped by lowering the fertility rate. The UNFPA recommends improving the employment opportunities for women as the single best way of achieving this reduction. An example of this phenomenon is the grape cultivation in the Nordeste (Northeastern) region of Brazil. This area is the poorest part of Brazil and has the highest proportion of indigent people. These people have been deforesting the Amazon in search of a better life. What they have done is sterilize the land and turned a tropical rain forest into a desert. In an effort to reverse this trend, grape cultivation has been introduced in an area called Petrolina. The area is very dry with less than 500 mm of precipitation annually. They do have access to a 5000 square kilometer artificial lake (the largest in the world) and the 3rd largest river in Brazil (the Sao Francisco). In an effort to avoid using agricultural medicines, the vines are fertilized with organic matter created on the farm and little or no pesticides are used since pests do not live in such an arid region. It has taken 20 years of trial and error, but the quality of the grapes is now very high and is competitive on the world market. Because of climate and location, harvesting is done year round which increases the productivity of the land. The farm managers have found that married women make the best workers and have the highest level of productivity. Age at 1st marriage averages 24-25, compared with 15-16 for unemployed women in the same area. The fertility rate averages 50% of that for unemployed women in the same area. Agricultural development offers the best opportunity for the women of developing countries. It can pay a high wage, reduce fertility, and replant desert areas.

  9. Effects of Shading on Starch Pasting Characteristics of Indica Hybrid Rice (Oryza sativa L.)

    PubMed Central

    Ren, Wan-Jun; Yang, Wen-Yu

    2013-01-01

    Rice is an important staple crop throughout the world, but environmental stress like low-light conditions can negatively impact crop yield and quality. Using pot experiments and field experiments, we studied the effects of shading on starch pasting viscosity and starch content with six rice varieties for three years, using the Rapid Visco Analyser to measure starch pasting viscosity. Shading at different growth stages and in different rice varieties all affected the starch pasting characteristics of rice. The effects of shading on starch pasting viscosity at middle and later growth stages were greater than those at earlier stages. Shading enhanced breakdown but reduced hold viscosity and setback at tillering-elongation stage. Most pasting parameters changed significantly with shading after elongation stage. Furthermore, the responses of different varieties to shading differed markedly. The change scope of starch pasting viscosity in Dexiang 4103 was rather small after heading, while that in IIyou 498 and Gangyou 906 was small before heading. We observed clear tendencies in peak viscosity, breakdown, and pasting temperature of the five rice varieties with shading in 2010 and 2011. Correlation analysis indicated that the rice amylose content was negatively correlated with breakdown, but was positively correlated with setback. Based on our results, IIyou 498, Gangyou 906, and Dexiang 4103 had higher shade endurance, making these varieties most suitable for high-quality rice cultivation in low-light regions. PMID:23861872

  10. Effects of shading on starch pasting characteristics of indica hybrid rice (Oryza sativa L.).

    PubMed

    Wang, Li; Deng, Fei; Ren, Wan-Jun; Yang, Wen-Yu

    2013-01-01

    Rice is an important staple crop throughout the world, but environmental stress like low-light conditions can negatively impact crop yield and quality. Using pot experiments and field experiments, we studied the effects of shading on starch pasting viscosity and starch content with six rice varieties for three years, using the Rapid Visco Analyser to measure starch pasting viscosity. Shading at different growth stages and in different rice varieties all affected the starch pasting characteristics of rice. The effects of shading on starch pasting viscosity at middle and later growth stages were greater than those at earlier stages. Shading enhanced breakdown but reduced hold viscosity and setback at tillering-elongation stage. Most pasting parameters changed significantly with shading after elongation stage. Furthermore, the responses of different varieties to shading differed markedly. The change scope of starch pasting viscosity in Dexiang 4103 was rather small after heading, while that in IIyou 498 and Gangyou 906 was small before heading. We observed clear tendencies in peak viscosity, breakdown, and pasting temperature of the five rice varieties with shading in 2010 and 2011. Correlation analysis indicated that the rice amylose content was negatively correlated with breakdown, but was positively correlated with setback. Based on our results, IIyou 498, Gangyou 906, and Dexiang 4103 had higher shade endurance, making these varieties most suitable for high-quality rice cultivation in low-light regions.

  11. Mapping rice field anopheline breeding habitats in Mali, West Africa, using Landsat ETM+ sensor data.

    PubMed

    Diuk-Wasser, M A; Bagayoko, M; Sogoba, N; Dolo, G; Touré, M B; Traoré, S F; Taylor, C E

    2004-01-01

    The aim of this study was to determine whether remotely sensed data could be used to identify rice-related malaria vector breeding habitats in an irrigated rice growing area near Niono, Mali. Early stages of rice growth show peak larval production, but Landsat sensor data are often obstructed by clouds during the early part of the cropping cycle (rainy season). In this study, we examined whether a classification based on two Landsat Enhanced Thematic Mapper (ETM)+ scenes acquired in the middle of the season and at harvesting times could be used to map different land uses and rice planted at different times (cohorts), and to infer which rice growth stages were present earlier in the season. We performed a maximum likelihood supervised classification and evaluated the robustness of the classifications with the transformed divergence separability index, the kappa coefficient and confusion matrices. Rice was distinguished from other land uses with 98% accuracy and rice cohorts were discriminated with 84% accuracy (three classes) or 94% (two classes). Our study showed that optical remote sensing can reliably identify potential malaria mosquito breeding habitats from space. In the future, these 'crop landscape maps' could be used to investigate the relationship between cultivation practices and malaria transmission.

  12. Effects of ammonium application rate on uptake of soil adsorbed amino acids by rice*

    PubMed Central

    Cao, Xiao-chuang; Ma, Qing-xu; Wu, Liang-huan; Zhu, Lian-feng; Jin, Qian-yu

    2016-01-01

    In recent years, excessive use of chemical nitrogen (N) fertilizers has resulted in the accumulation of excess ammonium (NH4 +) in many agricultural soils. Though rice is known as an NH4 +-tolerant species and can directly absorb soil intact amino acids, we still know considerably less about the role of high exogenous NH4 + content on rice uptake of soil amino acids. This experiment examined the effects of the exogenous NH4 + concentration on rice uptake of soil adsorbed glycine in two different soils under sterile culture. Our data showed that the sorption capacity of glycine was closely related to soils’ physical and chemical properties, such as organic matter and cation exchange capacity. Rice biomass was significantly inhibited by the exogenous NH4 + content at different glycine adsorption concentrations. A three-way analysis of variance demonstrated that rice glycine uptake and glycine nutritional contribution were not related to its sorption capacity, but significantly related to its glycine:NH4 + concentration ratio. After 21-d sterile cultivation, the rice uptake of adsorbed glycine accounted for 8.8%‒22.6% of rice total N uptake, which indicates that soil adsorbed amino acids theoretically can serve as an important N source for plant growth in spite of a high NH4 + application rate. However, further studies are needed to investigate the extent to which this bioavailability is realized in the field using the 13C, 15N double labeling technology.

  13. Emission of Methyl halides from Japanese rice paddy fields.

    NASA Astrophysics Data System (ADS)

    Komori, D.; Sudo, S.; Akiyama, H.; Nishimura, S.; Yagi, K.; Hayashi, K.; Tanaka, Y.; Yamada, K.; Toyoda, S.; Koba, K.; Yoshida, N.

    2005-12-01

    Rice paddy field is one of emission source of methyl halide (MeX: X = Cl, Br, I) which are concerned about stratospheric ozone depletion and enhanced aerosol formation. Although significant amounts of MeX which are estimated to be emitted from rice paddies affect to regional and global atmospheric environment, understandings and recent estimations of production and consumption mechanisms of MeX have large uncertainty with depending on environmental conditions. In this study, new flux data sets of MeX emissions from Japanese rice paddy fields were reported. The fluxes of MeX were compared with environmental data sets which included meteorological parameters (ambient air temperature, ambient MeX concentrations, humidity, solar irradiance), soil parameters (soil temperature, pH, redox potential, soil water contents) to understand the emission mechanisms of MeX. Gas fluxes of C2H4 were also measured, which indicate rice plants growth and ageing. Observations of MeX flux were conducted with using automated closed chamber sampling system in Tsukuba, Japan, during a cultivation season of rice from May 2005 to September 2005. Rice plants were cultivated under intermittent irrigation. Soil gases were collected manually by using evacuated 1L stainless canisters once a week and every 4 hours in certain day during this period. Other environmental parameters were automatically obtained every 10 minutes. Seasonal variation of gas emissions of C2H4 were observed in maximum tillering phase and heading phase. In addition, clearly diurnal flux trends of C2H4 depending on solar irradiance were observed. These results suggested rice plant was remarkably growing in these phase. Similarly, large amounts of gas emissions of MeBr and MeI were observed in the same phase. Diurnal flux trends of MeBr and MeI were associated with solar irradiance. Results were generally consistent with previous reports (Redeker et al., 2000). On the other hand, MeCl flux was increased in later periods than

  14. Rice Crop Monitoring and Yield Assessment with MODIS 250m Gridded Vegetation Products: A Case Study of Sa Kaeo Province, Thailand

    NASA Astrophysics Data System (ADS)

    Wijesingha, J. S. J.; Deshapriya, N. L.; Samarakoon, L.

    2015-04-01

    Billions of people in the world depend on rice as a staple food and as an income-generating crop. Asia is the leader in rice cultivation and it is necessary to maintain an up-to-date rice-related database to ensure food security as well as economic development. This study investigates general applicability of high temporal resolution Moderate Resolution Imaging Spectroradiometer (MODIS) 250m gridded vegetation product for monitoring rice crop growth, mapping rice crop acreage and analyzing crop yield, at the province-level. The MODIS 250m Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) time series data, field data and crop calendar information were utilized in this research in Sa Kaeo Province, Thailand. The following methodology was used: (1) data pre-processing and rice plant growth analysis using Vegetation Indices (VI) (2) extraction of rice acreage and start-of-season dates from VI time series data (3) accuracy assessment, and (4) yield analysis with MODIS VI. The results show a direct relationship between rice plant height and MODIS VI. The crop calendar information and the smoothed NDVI time series with Whittaker Smoother gave high rice acreage estimation (with 86% area accuracy and 75% classification accuracy). Point level yield analysis showed that the MODIS EVI is highly correlated with rice yield and yield prediction using maximum EVI in the rice cycle predicted yield with an average prediction error 4.2%. This study shows the immense potential of MODIS gridded vegetation product for keeping an up-to-date Geographic Information System of rice cultivation.

  15. Seed-mediated gene flow promotes genetic diversity of weedy rice within populations: implications for weed management.

    PubMed

    He, Zhuoxian; Jiang, Xiaoqi; Ratnasekera, Disna; Grassi, Fabrizio; Perera, Udugahapattuwage; Lu, Bao-Rong

    2014-01-01

    Increased infestation of weedy rice-a noxious agricultural pest has caused significant reduction of grain yield of cultivated rice (Oryza sativa) worldwide. Knowledge on genetic diversity and structure of weedy rice populations will facilitate the design of effective methods to control this weed by tracing its origins and dispersal patterns in a given region. To generate such knowledge, we studied genetic diversity and structure of 21 weedy rice populations from Sri Lanka based on 23 selected microsatellite (SSR) loci. Results indicated an exceptionally high level of within-population genetic diversity (He = 0.62) and limited among-population differentiation (Fst = 0.17) for this predominantly self-pollinating weed. UPGMA analysis showed a loose genetic affinity of the weedy rice populations in relation to their geographical locations, and no obvious genetic structure among populations across the country. This phenomenon was associated with the considerable amount of gene flow between populations. Limited admixture from STRUCTURE analyses suggested a very low level of hybridization (pollen-mediated gene flow) between populations. The abundant within-population genetic diversity coupled with limited population genetic structure and differentiation is likely caused by the considerable seed-mediated gene flow of weedy rice along with the long-distance exchange of farmer-saved rice seeds between weedy-rice contaminated regions in Sri Lanka. In addition to other effective weed management strategies, promoting the application of certified rice seeds with no weedy rice contamination should be the immediate action to significantly reduce the proliferation and infestation of this weed in rice ecosystems in countries with similar rice farming styles as in Sri Lanka.

  16. Detection and diagnosis of rice-infecting viruses

    PubMed Central

    Uehara-Ichiki, Tamaki; Shiba, Takuya; Matsukura, Keiichiro; Ueno, Takanori; Hirae, Masahiro; Sasaya, Takahide

    2013-01-01

    Rice-infecting viruses have caused serious damage to rice production in Asian, American, and African countries, where about 30 rice viruses and diseases have been reported. To control these diseases, developing accurate, quick methods to detect and diagnose the viruses in the host plants and any insect vectors of the viruses is very important. Based on an antigen–antibody reaction, serological methods such as latex agglutination reaction and enzyme-linked immunosorbent assay have advanced to detect viral particles or major proteins derived from viruses. They aid in forecasting disease and surveying disease spread and are widely used for virus detection at plant protection stations and research laboratories. From the early 2000s, based on sequence information for the target virus, several other methods such as reverse transcription-polymerase chain reaction (RT-PCR) and reverse transcription-loop-mediated isothermal amplification have been developed that are sensitive, rapid, and able to differentiate closely related viruses. Recent techniques such as real-time RT-PCR can be used to quantify the pathogen in target samples and monitor population dynamics of a virus, and metagenomic analyses using next-generation sequencing and microarrays show potential for use in the diagnosis of rice diseases. PMID:24130554

  17. Fusarium spp. associated with rice Bakanae: ecology, genetic diversity, pathogenicity and toxigenicity.

    PubMed

    Wulff, Ednar G; Sørensen, Jens L; Lübeck, Mette; Nielsen, Kristian F; Thrane, Ulf; Torp, Jan

    2010-03-01

    African and Asian populations of Fusarium spp. (Gibberella fujikuroi species complex) associated with Bakanae of rice (Oryzae sativa L.) were isolated from seeds and characterized with respect to ecology, phylogenetics, pathogenicity and mycotoxin production. Independent of the origin, Fusarium spp. were detected in the different rice seed samples with infection rate ranges that varied from 0.25% to 9%. Four Fusaria (F. andiyazi, F. fujikuroi, F. proliferatum and F. verticillioides) were found associated with Bakanae of rice. While three of the Fusaria were found in both African and Asian seed samples, F. fujikuroi was only detected in seed samples from Asia. Phylogenetic studies showed a broad genetic variation among the strains that were distributed into four different genetic clades. Pathogenicity tests showed that all strains reduced seed germination and possessed varying ability to cause symptoms of Bakanae on rice, some species (i.e. F. fujikuroi) being more pathogenic than others. The ability to produce fumonisins (FB(1) and FB(2)) and gibberellin A3 in vitro also differed according to the Fusarium species. While fumonisins were produced by most of the strains of F. verticillioides and F. proliferatum, gibberellin A3 was only produced by F. fujikuroi. Neither fumonisin nor gibberellin was synthesized by most of the strains of F. andiyazi. These findings provide new information on the variation within the G. fujikuroi species complex associated with rice seed and Bakanae disease.

  18. Screening Rice Cultivars for Resistance to Bacterial Leaf Blight.

    PubMed

    Fred, Agaba Kayihura; Kiswara, Gilang; Yi, Gihwan; Kim, Kyung-Min

    2016-05-28

    Bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is one of the most serious threats to rice production. In this study, screening of rice for resistance to BLB was carried out at two different times and locations; that is, in a greenhouse during winter and in an open field during summer. The pathogenicity of Xoo race K1 was tested on 32 Korean rice cultivars. Inoculation was conducted at the maximum tillering stage, and the lesion length was measured after 14 days of inoculation. Five cultivars, Hanareum, Namcheon, Samgdeok, Samgang, and Yangjo, were found to be resistant in both the greenhouse and open-field screenings. Expression of the plant defense-related genes JAmyb, OsNPR1, OsPR1a, OsWRKY45, and OsPR10b was observed in resistant and susceptible cultivars by qRT-PCR. Among the five genes tested, only OsPR10b showed coherent expression with the phenotypes. Screening of resistance to Xoo in rice was more accurate when conducted in open fields in the summer cultivation period than in greenhouses in winter. The expression of plant defenserelated genes after bacterial inoculation could give another perspective in elucidating defense mechanisms by using both resistant and susceptible individuals.

  19. Molecular evidence on the origin and evolution of glutinous rice.

    PubMed Central

    Olsen, Kenneth M; Purugganan, Michael D

    2002-01-01

    Glutinous rice is a major type of cultivated rice with long-standing cultural importance in Asia. A mutation in an intron 1 splice donor site of the Waxy gene is responsible for the change in endosperm starch leading to the glutinous phenotype. Here we examine an allele genealogy of the Waxy locus to trace the evolutionary and geographical origins of this phenotype. On the basis of 105 glutinous and nonglutinous landraces from across Asia, we find evidence that the splice donor mutation has a single evolutionary origin and that it probably arose in Southeast Asia. Nucleotide diversity measures indicate that the origin of glutinous rice is associated with reduced genetic variation characteristic of selection at the Waxy locus; comparison with an unlinked locus, RGRC2, confirms that this pattern is specific to Waxy. In addition, we find that many nonglutinous varieties in Northeast Asia also carry the splice donor site mutation, suggesting that partial suppression of this mutation may have played an important role in the development of Northeast Asian nonglutinous rice. This study demonstrates the utility of phylogeographic approaches for understanding trait diversification in crops, and it contributes to growing evidence on the importance of modifier loci in the evolution of domestication traits. PMID:12399401

  20. Rice disease management under organic production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interest in organic rice production has increased because of the increased market demand for organic rice. Texas organic rice acreage has constantly increased over the last decade, reaching 32,000 acres in 2012. Texas is now the leading state in organic rice production in the U.S. Organic rice is p...

  1. Organic Rice Production: Challenges and Opportunities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The market demand for organically produced rice has grown steadily with the majority of the acreage now being located in Texas and California. A wide range of organic products are marketed including conventional long and medium grain rice, aromatic or scented rice, rice with colored bran, and rice f...

  2. Methylmercury Bioaccumulation in Rice and Wetland Biota: employing integrated indices of processes that drive methylmercury risk

    NASA Astrophysics Data System (ADS)

    Eagles-Smith, C.; Ackerman, J.; Windham-Myers, L.; Fleck, J.

    2013-12-01

    Wetlands often are associated with elevated methylmercury (MeHg) production and food web bioaccumulation, making them potentially important sources of Hg to surrounding waters and to wetland-dependent fish and wildlife. However, the cycling of MeHg through wetlands can vary markedly with wetland type. Agricultural wetlands such as rice fields can exhibit particularly pronounced MeHg concentrations and bioaccumulation because their biogeochemical, hydrological, and ecological characteristics facilitate the conversion of inorganic mercury (Hg) to MeHg. Rice fields are characterized by a series of seasonal extreme wetting and drying cycles, sulfate-containing fertilizers, and high levels of labile organic carbon, all of which are key processes in the Hg cycle. Rice fields comprise approximately 20% of freshwater habitats and 11% of cultivated land area globally, providing critical wildlife habitat while offering substantial economic, human health, and ecosystem benefits. Thus, there is strong impetus to better understand the drivers of Hg cycling in rice fields and to develop useful management approaches for minimizing Hg risk associated with rice agriculture without compromising rice production. We examined the role of rice wetlands on MeHg bioaccumulation through foodwebs by employing biosentinel caged fish as integrators of MeHg cycling processes. With experimental field studies in California's Central Valley, we placed biosentinel fishes into nine rice wetlands that were subjected to three different harvest strategies, and into nine managed wetlands that encompassed three different hydrological regimes. We simultaneously measured a suite of biogeochemical processes in surface water, sediment, and pore water in order to link the response in fish Hg bioaccumulation with within-field processes that regulate MeHg cycling. Our preliminary results indicate that fish Hg concentrations were 1.6 times higher in rice wetlands than in managed wetlands. Additionally, fish Hg

  3. Potential health risk of total arsenic from consumption of farm rice (Oryza sativa) from the southern Caspian Sea littoral and from imported rice in Iran.

    PubMed

    Rezaitabar, Soheila; Esmaili-Sari, Abbas; Bahramifar, Nader

    2012-04-01

    In this study, Arsenic (As) was measured in several varieties of imported and local cultivated rice. Soil samples collected from rice farms situated in south Caspian Sea (Iran) were also studied. The mean concentration of As in imported rice, local farmed rice and soil, were determined as 0.28, 0.39 and 3.80 μg g(-1) dry weight, respectively. Estimated daily intake of As through human consumption of imported and local produced rice was 0.77 and 1.074 μg day(-1) kg(-1) B.W., respectively. These values are much lower than the tolerable daily intakes estimated by JECFA. The As concentration in the soil (3.80 μg g(-1) dry) was below acceptable limit for agricultural soil of 20.0 mg kg(-1) as recommended by the European Community (EC). No correlation between the As concentrations in rice and soil samples was found (p > 0.05). PMID:22323045

  4. Drought-tolerant rice germplasm developed from an Oryza officinalis transformation-competent artificial chromosome clone.

    PubMed

    Liu, R; Zhang, H H; Chen, Z X; Shahid, M Q; Fu, X L; Liu, X D

    2015-10-29

    Oryza officinalis has proven to be a natural gene reservoir for the improvement of domesticated rice as it carries many desirable traits; however, the transfer of elite genes to cultivated rice by conventional hybridization has been a challenge for rice breeders. In this study, the conserved sequence of plant stress-related NAC transcription factors was selected as a probe to screen the O. officinalis genomic transformation-competent artificial chromosome library by Southern blot; 11 positive transformation-competent artificial chromosome clones were subsequently detected. By Agrobacterium-mediated transformation, an indica rice variety, Huajingxian 74 (HJX74), was transformed with a TAC clone harboring a NAC gene-positive genomic fragment from O. officinalis. Molecular analysis revealed that the O. officinalis genomic fragment was integrated into the genome of HJX74. The transgenic lines exhibited high tolerance to drought stress. Our results demonstrate that the introduction of stress-related transformation-competent artificial chromosome clones, coupled with a transgenic validation approach, is an effective method of transferring agronomically important genes from O. officinalis to cultivated rice.

  5. Exploring Japan through Rice.

    ERIC Educational Resources Information Center

    Wojtan, Linda S.

    1998-01-01

    Explores the role of rice in Japanese culture by presenting historical background and teaching activities in a variety of categories, such as language, sociology, history, and contemporary politics. Suggests teachers create cross-cultural comparisons; for example, the role of corn in the United States. Provides a list of teacher resources. (CMK)

  6. Determination of fractionation of oxygen isotopes between rice grain and environmental water

    NASA Astrophysics Data System (ADS)

    Kaushal, R.; Ghosh, P.

    2013-12-01

    Oxygen isotopic composition (δ18O) of plant organic matter (POM) serves as a valuable proxy for paleoclimatic studies [1].The δ18O of POM emulates the isotopic composition of the source water [2]. Rice crop cultivation goes back to 12,000 years, when rice was first domesticated in China and the earliest cultivation of rice observed in India was during 3000- 2500 BC. Presently rice is cultivated in many countries around the world including India where the prerequisite of saturated soil water condition for optimum growth of rice crop is provided by the South west monsoons. Earlier studies on δ18O of rice have been limited to its geographic characterization [3]. However, detailed investigations to determine fractionation of oxygen isotopes in water, in different parts of a rice plant, with rice seed organic matter is the primary objective of this work. This is important for understanding the mechanism responsible for the transfer of source water signature to the seed organics and can facilitate understanding of past monsoonal regime using well preserved rice grain remains from archaeological sites. Water from the leaves and culms was extracted by means of heating and cryogenic distillation in a vacuum extraction system [4]. The source water and the water extracted from plant parts were analysed by CO2 equilibration method using Gas Bench peripheral. Rice seed powder, after removal of husk, is composed primarily of starch and were analysed using High Temperature Conversion-Elemental Analyser. Both these peripherals were coupled to an Isotope Ratio Mass spectrometer- MAT253 (Thermo Finnigan). Experimental results discussed here were based on greenhouse and field based studies of water and seed organic composition. The water fed to the plant in the green house showed an average δ18O value of -0.50‰ whereas the field water from irrigation covering the time of grain filling ranges between -1.03‰ and -3.08‰. Figure 1 displays the extent of enrichment recorded in

  7. The African superswell

    NASA Technical Reports Server (NTRS)

    Nyblade, Andrew A.; Robinson, Scott W.

    1994-01-01

    Maps of residual bathymetry in the ocean basins around the African continent reveal a broad bathymetric swell in the southeastern Atlantic Ocean with an amplitude of about 500 m. We propose that this region of anomalously shallow bathymetry, together with the contiguous eastern and southern African plateaus, form a superswell which we refer to as the African superswell. The origin of the African superswell is uncertain. However, rifting and volcanism in eastern Africa, as well as heat flow measurements in southern Africa and the southeastern Atlantic Ocean, suggest that the superswell may be attributed, at least in part, to heating of the lithosphere.

  8. Convergent evolution of perenniality in rice and sorghum.

    PubMed

    Hu, F Y; Tao, D Y; Sacks, E; Fu, B Y; Xu, P; Li, J; Yang, Y; McNally, K; Khush, G S; Paterson, A H; Li, Z-K

    2003-04-01

    Annual and perennial habit are two major strategies by which grasses adapt to seasonal environmental change, and these distinguish cultivated cereals from their wild relatives. Rhizomatousness, a key trait contributing to perenniality, was investigated by using an F(2) population from a cross between cultivated rice (Oryza sativa) and its wild relative, Oryza longistaminata. Molecular mapping based on a complete simple sequence-repeat map revealed two dominant-complementary genes controlling rhizomatousness. Rhz3 was mapped to the interval between markers OSR16 [1.3 centimorgans (cM)] and OSR13 (8.1 cM) on rice chromosome 4 and Rhz2 located between RM119 (2.2 cM) and RM273 (7.4 cM) on chromosome 3. Comparative mapping indicated that each gene closely corresponds to major quantitative trait loci (QTLs) controlling rhizomatousness in Sorghum propinquum, a wild relative of cultivated sorghum. Correspondence of these genes in rice and sorghum, which diverged from a common ancestor approximately 50 million years ago, suggests that the two genes may be key regulators of rhizome development in many Poaceae. Many additional QTLs affecting abundance of rhizomes in O. longistaminata were identified, most of which also corresponded to the locations of S. propinquum QTLs. Convergent evolution of independent mutations at, in some cases, corresponding genes may have been responsible for the evolution of annual cereals from perennial wild grasses. DNA markers closely linked to Rhz2 and Rhz3 will facilitate cloning of the genes, which may contribute significantly to our understanding of grass evolution, advance opportunities to develop perennial cereals, and offer insights into environmentally benign weed-control strategies. PMID:12642667

  9. Rice Glycosyltransferase (GT) Phylogenomic Database

    DOE Data Explorer

    Ronald, Pamela

    The Ronald Laboratory staff at the University of California-Davis has a primary research focus on the genes of the rice plant. They study the role that genetics plays in the way rice plants respond to their environment. They created the Rice GT Database in order to integrate functional genomic information for putative rice Glycosyltransferases (GTs). This database contains information on nearly 800 putative rice GTs (gene models) identified by sequence similarity searches based on the Carbohydrate Active enZymes (CAZy) database. The Rice GT Database provides a platform to display user-selected functional genomic data on a phylogenetic tree. This includes sequence information, mutant line information, expression data, etc. An interactive chromosomal map shows the position of all rice GTs, and links to rice annotation databases are included. The format is intended to "facilitate the comparison of closely related GTs within different families, as well as perform global comparisons between sets of related families." [From http://ricephylogenomics.ucdavis.edu/cellwalls/gt/genInfo.shtml] See also the primary paper discussing this work: Peijian Cao, Laura E. Bartley, Ki-Hong Jung and Pamela C. Ronalda. Construction of a Rice Glycosyltransferase Phylogenomic Database and Identification of Rice-Diverged Glycosyltransferases. Molecular Plant, 2008, 1(5): 858-877.

  10. "Niggaz Dyin' Don't Make No News": Exploring the Intellectual Work of an African American Urban Adolescent Boy in an After-School Program

    ERIC Educational Resources Information Center

    Staples, Jeanine M.

    2012-01-01

    In this article, and from the standpoint of an African American woman teacher/researcher, the author explores what happened when one African American adolescent boy known inside of school as a "severely disengaged" student cultivated literacy practices and events of his own volition in an after-school program. The author asks, how does race and…

  11. Influence of Additives on the Yield and Pathogenicity of Conidia Produced by Solid State Cultivation of an Isaria javanica Isolate

    PubMed Central

    Xie, Ling; Han, Ji Hee; Lee, Sang Yeob

    2014-01-01

    Recently, the Q biotype of tobacco whitefly has been recognized as the most hazardous strain of Bemisia tabaci worldwide, because of its increased resistance to some insecticide groups. As an alternative control agent, we selected an Isaria javanica isolate as a candidate for the development of a mycopesticide against the Q biotype of sweet potato whitefly. To select optimal mass production media for solid-state fermentation, we compared the production yield and virulence of conidia between 2 substrates (barley and brown rice), and we also compared the effects of various additives on conidia production and virulence. Barley was a better substrate for conidia production, producing 3.43 × 1010 conidia/g, compared with 3.05 × 1010 conidia/g for brown rice. The addition of 2% CaCO3 + 2% CaSO4 to barley significantly increased conidia production. Addition of yeast extract, casein, or gluten also improved conidia production on barley. Gluten addition (3% and 1.32%) to brown rice improved conidia production by 14 and 6 times, respectively, relative to brown rice without additives. Conidia cultivated on barley produced a mortality rate of 62% in the sweet potato whitefly after 4-day treatment, compared with 53% for conidia cultivated on brown rice. The amendment of solid substrate cultivation with additives changed the virulence of the conidia produced; the median lethal time (LT50) was shorter for conidia produced on barley and brown rice with added yeast extract (1.32% and 3%, respectively), KNO3 (0.6% and 1%), or gluten (1.32% and 3%) compared with conidia produced on substrates without additives. PMID:25606006

  12. Methane emissions from global rice fields: Magnitude, spatiotemporal patterns, and environmental controls

    NASA Astrophysics Data System (ADS)

    Zhang, Bowen; Tian, Hanqin; Ren, Wei; Tao, Bo; Lu, Chaoqun; Yang, Jia; Banger, Kamaljit; Pan, Shufen

    2016-09-01

    Given the importance of the potential positive feedback between methane (CH4) emissions and climate change, it is critical to accurately estimate the magnitude and spatiotemporal patterns of CH4 emissions from global rice fields and better understand the underlying determinants governing the emissions. Here we used a coupled biogeochemical model in combination with satellite-derived contemporary inundation area to quantify the magnitude and spatiotemporal variation of CH4 emissions from global rice fields and attribute the environmental controls of CH4 emissions during 1901-2010. Our study estimated that CH4 emissions from global rice fields varied from 18.3 ± 0.1 Tg CH4/yr (Avg. ±1 SD) under intermittent irrigation to 38.8 ± 1.0 Tg CH4/yr under continuous flooding in the 2000s, indicating that the magnitude of CH4 emissions from global rice fields is largely dependent on different water schemes. Over the past 110 years, our simulated results showed that global CH4 emissions from rice cultivation increased by 85%. The expansion of rice fields was the dominant factor for the increasing trends of CH4 emissions, followed by elevated CO2 concentration, and nitrogen fertilizer use. On the contrary, climate variability had reduced the cumulative CH4 emissions for most of the years over the study period. Our results imply that CH4 emissions from global rice fields could be reduced through optimizing irrigation practices. Therefore, the future magnitude of CH4 emissions from rice fields will be determined by the human demand for rice production as well as the implementation of optimized water management practices.

  13. Real-time and conventional PCR detection of Liberty Link rice varieties and transgenic soy in rice sampled in the Mexican and American retail markets.

    PubMed

    Quirasco, Maricarmen; Schoel, Bernd; Chhalliyil, Pradheep; Fagan, John; Gálvez, Amanda

    2008-10-01

    Samples of rice from Mexican and USA retail stores were analyzed for the presence of transgenic (GM) events using real-time PCR. In screening for the CaMV35S promoter sequence (35SP), positive results were found in 49 and 35% of the Mexican and American samples, respectively. In further investigations in Mexican samples, 43% were positive for P35S::bar, with two above the quantifiable limit; these were 0.07% and 0.05% GMO. Fourteen out of the sixteen positive samples were labeled as imported from the USA. In testing samples bought in American retail shops, 24% showed positive results, all below the quantifiable range. It could be deduced that P35S::bar positive samples were Liberty Link(R) (LL) rice. In distinguishing between LL601 and LL62, end-point PCR was used, corroborating the P35S::bar amplicon length difference of these events. LL62 was found in one rice sample purchased in Mexico and two in the USA samples. Its presence was verified with the 35S terminator sequence. All other LL positive samples contained LL601. None of the samples analyzed showed the presence of Bt63 rice. The LL rice varieties found have been identified as not being commercially cultivated, and so their presence requires further investigation. 35SP was also present in samples which did not have any LL rice. Maize sequences could not be detected in any of the samples; however, soybean DNA was found in Mexican and USA rice samples. The Roundup Ready(R) trait was detected in trace amounts in 16 and 6% of the rice samples bought in Mexico and the USA, respectively. Real-time PCR was shown to be the method of choice for the sensitive and rapid screening of commodities and retail samples for the detection of GM and other contamination.

  14. Delving deeper into technological innovations to understand differences in rice quality.

    PubMed

    Calingacion, Mariafe; Fang, Lu; Quiatchon-Baeza, Lenie; Mumm, Roland; Riedel, Arthur; Hall, Robert D; Fitzgerald, Melissa

    2015-12-01

    Increasing demand for better quality rice varieties, which are also more suited to growth under sub-optimal cultivation conditions, is driving innovation in rice research. Here we have used a multi-disciplinary approach, involving SNP-based genotyping together with phenotyping based on yield analysis, metabolomic analysis of grain volatiles, and sensory panel analysis to determine differences between two contrasting rice varieties, Apo and IR64. Plants were grown under standard and drought-induced conditions. Results revealed important differences between the volatile profiles of the two rice varieties and we relate these differences to those perceived by the sensory panel. Apo, which is the more drought tolerant variety, was less affected by the drought condition concerning both sensory profile and yield; IR64, which has higher quality but is drought sensitive, showed greater differences in these characteristics in response to the two growth conditions. Metabolomics analyses using GCxGC-MS, followed by multivariate statistical analyses of the data, revealed a number of discriminatory compounds between the varieties, but also effects of the difference in cultivation conditions. Results indicate the complexity of rice volatile profile, even of non-aromatic varieties, and how metabolomics can be used to help link changes in aroma profile with the sensory phenotype. Our outcomes also suggest valuable multi-disciplinary approaches which can be used to help define the aroma profile in rice, and its underlying genetic background, in order to support breeders in the generation of improved rice varieties combining high yield with high quality, and tolerance of both these traits to climate change. PMID:26054242

  15. Delving deeper into technological innovations to understand differences in rice quality.

    PubMed

    Calingacion, Mariafe; Fang, Lu; Quiatchon-Baeza, Lenie; Mumm, Roland; Riedel, Arthur; Hall, Robert D; Fitzgerald, Melissa

    2015-12-01

    Increasing demand for better quality rice varieties, which are also more suited to growth under sub-optimal cultivation conditions, is driving innovation in rice research. Here we have used a multi-disciplinary approach, involving SNP-based genotyping together with phenotyping based on yield analysis, metabolomic analysis of grain volatiles, and sensory panel analysis to determine differences between two contrasting rice varieties, Apo and IR64. Plants were grown under standard and drought-induced conditions. Results revealed important differences between the volatile profiles of the two rice varieties and we relate these differences to those perceived by the sensory panel. Apo, which is the more drought tolerant variety, was less affected by the drought condition concerning both sensory profile and yield; IR64, which has higher quality but is drought sensitive, showed greater differences in these characteristics in response to the two growth conditions. Metabolomics analyses using GCxGC-MS, followed by multivariate statistical analyses of the data, revealed a number of discriminatory compounds between the varieties, but also effects of the difference in cultivation conditions. Results indicate the complexity of rice volatile profile, even of non-aromatic varieties, and how metabolomics can be used to help link changes in aroma profile with the sensory phenotype. Our outcomes also suggest valuable multi-disciplinary approaches which can be used to help define the aroma profile in rice, and its underlying genetic background, in order to support breeders in the generation of improved rice varieties combining high yield with high quality, and tolerance of both these traits to climate change.

  16. Genetic structure and diversity of indigenous rice (Oryza sativa) varieties in the Eastern Himalayan region of Northeast India.

    PubMed

    Choudhury, Baharul; Khan, Mohamed Latif; Dayanandan, Selvadurai

    2013-12-01

    The Eastern Himalayan region of Northeast (NE) India is home to a large number of indigenous rice varieties, which may serve as a valuable genetic resource for future crop improvement to meet the ever-increasing demand for food production. However, these varieties are rapidly being lost due to changes in land-use and agricultural practices, which favor agronomically improved varieties. A detailed understanding of the genetic structure and diversity of indigenous rice varieties is crucial for efficient utilization of rice genetic resources and for developing suitable conservation strategies. To explore the genetic structure and diversity of rice varieties in NE India, we genotyped 300 individuals of 24 indigenous rice varieties representing sali, boro, jum and glutinous types, 5 agronomically improved varieties, and one wild rice species (O. rufipogon) using seven SSR markers. A total of 85 alleles and a very high level of gene diversity (0.776) were detected among the indigenous rice varieties of the region. Considerable level of genetic variation was found within indigenous varieties whereas improved varieties were monoporphic across all loci. The comparison of genetic diversity among different types of rice revealed that sali type possessed the highest gene diversity (0.747) followed by jum (0.627), glutinous (0.602) and boro (0.596) types of indigenous rice varieties, while the lowest diversity was detected in agronomically improved varieties (0.459). The AMOVA results showed that 66% of the variation was distributed among varieties indicating a very high level of genetic differentiation in rice varieties in the region. Two major genetically defined clusters corresponding to indica and japonica groups were detected in rice varieties of the region. Overall, traditionally cultivated indigenous rice varieties in NE India showed high levels of genetic diversity comparable to levels of genetic diversity reported from wild rice populations in various parts of the

  17. 16 Extraordinary African Americans.

    ERIC Educational Resources Information Center

    Lobb, Nancy

    This collection for children tells the stories of 16 African Americans who helped make America what it is today. African Americans can take pride in the heritage of these contributors to society. Biographies are given for the following: (1) Sojourner Truth, preacher and abolitionist; (2) Frederick Douglass, abolitionist; (3) Harriet Tubman, leader…

  18. African Studies Computer Resources.

    ERIC Educational Resources Information Center

    Kuntz, Patricia S.

    African studies computer resources that are readily available in the United States with linkages to Africa are described, highlighting those most directly corresponding to African content. Africanists can use the following four fundamental computer systems: (1) Internet/Bitnet; (2) Fidonet; (3) Usenet; and (4) dial-up bulletin board services. The…

  19. Understanding African American Males

    ERIC Educational Resources Information Center

    Bell, Edward Earl

    2010-01-01

    The purpose of this study was to assess the socialization skills, self-esteem, and academic readiness of African American males in a school environment. Discussions with students and the School Perceptions Questionnaire provided data for this investigation. The intended targets for this investigation were African American students; however, there…

  20. Africans Away from Home.

    ERIC Educational Resources Information Center

    Clarke, John Henrik

    Africans who were brought across the Atlantic as slaves never fully adjusted to slavery or accepted its inevitability. Resistance began on board the slave ships, where many jumped overboard or committed suicide. African slaves in South America led the first revolts against tyranny in the New World. The first slave revolt in the Caribbean occurred…

  1. Keeping African Masks Real

    ERIC Educational Resources Information Center

    Waddington, Susan

    2012-01-01

    Art is a good place to learn about our multicultural planet, and African masks are prized throughout the world as powerfully expressive artistic images. Unfortunately, multicultural education, especially for young children, can perpetuate stereotypes. Masks taken out of context lose their meaning and the term "African masks" suggests that there is…

  2. Educating African American Males

    ERIC Educational Resources Information Center

    Bell, Edward E.

    2010-01-01

    Background: Schools across America spend money, invest in programs, and sponsor workshops, offer teacher incentives, raise accountability standards, and even evoke the name of Obama in efforts to raise the academic achievement of African American males. Incarceration and college retention rates point to a dismal plight for many African American…

  3. African horse sickness and African carnivores.

    PubMed

    Alexander, K A; Kat, P W; House, J; House, C; O'Brien, S J; Laurenson, M K; McNutt, J W; Osburn, B I

    1995-11-01

    African horse sickness (AHS) is a disease that affects equids, and is principally transmitted by Culicoides spp. that are biological vectors of AHS viruses (AHSV). The repeated spread of AHSV from sub-Saharan Africa to the Middle East, northern Africa and the Iberian peninsula indicate that a better understanding of AHS epizootiology is needed. African horse sickness has long been known to infect and cause mortality among domestic dogs that ingest virus contaminated meat, but it is uncertain what role carnivores play in transmission of the virus. We present evidence of widespread natural AHS infection among a diversity of African carnivore species. We hypothesize that such infection resulted from ingestion of meat and organs from AHS-infected prey species. The effect of AHS on the carnivores is unknown, as is their role in the maintenance cycle of the disease.

  4. Three Strategies for Elaborating the Cultivation Hypothesis.

    ERIC Educational Resources Information Center

    Potter, W. James

    1988-01-01

    Uses three strategies (dividing cultivation into component subprocesses, testing for an intervening variable, and contingent relationships) for elaborating the cultivation hypothesis. Finds evidence that cultivation effects do exist but that dividing the socialization process does not increase the predictive power of the cultivation hypothesis.…

  5. The long and the short of it: SD1 polymorphism and the evolution of growth trait divergence in U.S. weedy rice.

    PubMed

    Reagon, Michael; Thurber, Carrie S; Olsen, Kenneth M; Jia, Yulin; Caicedo, Ana L

    2011-09-01

    Growth-related traits, such as greater height, greater biomass, faster growth rate and early flowering, are thought to enhance competitiveness of agricultural weeds. However, weedy rice, a conspecific weed of cultivated rice (Oryza sativa L.), displays variation for growth traits. In the United States, separately evolved weedy rice groups have been shown to share genomic identity with exotic domesticated cultivars. Through a common garden experiment, we investigated whether growth trait divergence has occurred among U.S. weeds and their putative cultivated progenitors. We also determined polymorphism patterns in the growth candidate gene, SD1, to assess its possible role in the evolution of divergent phenotypes. We found considerable growth trait variation among weed groups, suggesting that growth trait convergence is not evident among weedy populations. Phenotypic divergence of weedy rice from cultivated ancestors is most apparent for flowering time. Introgression of a chromosomal block containing the SD1 allele from tropical japonica, the predominant U.S. rice cultivar, was detected in one weedy rice population and is associated with a change in growth patterns in this group. This study demonstrates the role of introgressive hybridization in evolutionary divergence of an important weed. PMID:21854475

  6. Diabetes in African Americans

    PubMed Central

    Marshall, M

    2005-01-01

    African Americans have a high risk for type 2 diabetes. Genetic traits, the prevalence of obesity, and insulin resistance all contribute to the risk of diabetes in the African American community. African Americans have a high rate of diabetic complications, because of poor glycaemic control and racial disparities in health care in the USA. African Americans with diabetes may have an atypical presentation that simulates type 1 diabetes, but then their subsequent clinical course is typical of type 2 diabetes. Culturally sensitive strategies, structured disease management protocols, and the assistance of nurses, diabetic educators, and other health care professionals are effective in improving the outcome of diabetes in the African American community. PMID:16344294

  7. Exploiting Co-Benefits of Increased Rice Production and Reduced Greenhouse Gas Emission through Optimized Crop and Soil Management.

    PubMed

    An, Ning; Fan, Mingsheng; Zhang, Fusuo; Christie, Peter; Yang, Jianchang; Huang, Jianliang; Guo, Shiwei; Shi, Xiaojun; Tang, Qiyuan; Peng, Jianwei; Zhong, Xuhua; Sun, Yixiang; Lv, Shihua; Jiang, Rongfeng; Dobermann, Achim

    2015-01-01

    Meeting the future food security challenge without further sacrificing environmental integrity requires transformative changes in managing the key biophysical determinants of increasing agronomic productivity and reducing the environmental footprint. Here, we focus on Chinese rice production and quantitatively address this concern by conducting 403 on-farm trials across diverse rice farming systems. Inherent soil productivity, management practices and rice farming type resulted in confounded and interactive effects on yield, yield gaps and greenhouse gas (GHG) emissions (N2O, CH4 and CO2-equivalent) with both trade-offs and compensating effects. Advances in nitrogen, water and crop management (Best Management Practices-BMPs) helped closing existing yield gaps and resulted in a substantial reduction in CO2-equivalent emission of rice farming despite a tradeoff of increase N2O emission. However, inherent soil properties limited rice yields to a larger extent than previously known. Cultivating inherently better soil also led to lower GHG intensity (GHG emissions per unit yield). Neither adopting BMPs only nor improving soils with low or moderate productivity alone can adequately address the challenge of substantially increasing rice production while reducing the environmental footprint. A combination of both represents the most efficient strategy to harness the combined-benefits of enhanced production and mitigating climate change. Extrapolating from our farm data, this strategy could increase rice production in China by 18%, which would meet the demand for direct human consumption of rice by 2030. It would also reduce fertilizer nitrogen consumption by 22% and decrease CO2-equivalent emissions during the rice growing period by 7% compared with current farming practice continues. Benefits vary by rice-based cropping systems. Single rice systems have the largest food provision benefits due to its wider yield gap and total cultivated area, whereas double-rice system

  8. Exploiting Co-Benefits of Increased Rice Production and Reduced Greenhouse Gas Emission through Optimized Crop and Soil Management.

    PubMed

    An, Ning; Fan, Mingsheng; Zhang, Fusuo; Christie, Peter; Yang, Jianchang; Huang, Jianliang; Guo, Shiwei; Shi, Xiaojun; Tang, Qiyuan; Peng, Jianwei; Zhong, Xuhua; Sun, Yixiang; Lv, Shihua; Jiang, Rongfeng; Dobermann, Achim

    2015-01-01

    Meeting the future food security challenge without further sacrificing environmental integrity requires transformative changes in managing the key biophysical determinants of increasing agronomic productivity and reducing the environmental footprint. Here, we focus on Chinese rice production and quantitatively address this concern by conducting 403 on-farm trials across diverse rice farming systems. Inherent soil productivity, management practices and rice farming type resulted in confounded and interactive effects on yield, yield gaps and greenhouse gas (GHG) emissions (N2O, CH4 and CO2-equivalent) with both trade-offs and compensating effects. Advances in nitrogen, water and crop management (Best Management Practices-BMPs) helped closing existing yield gaps and resulted in a substantial reduction in CO2-equivalent emission of rice farming despite a tradeoff of increase N2O emission. However, inherent soil properties limited rice yields to a larger extent than previously known. Cultivating inherently better soil also led to lower GHG intensity (GHG emissions per unit yield). Neither adopting BMPs only nor improving soils with low or moderate productivity alone can adequately address the challenge of substantially increasing rice production while reducing the environmental footprint. A combination of both represents the most efficient strategy to harness the combined-benefits of enhanced production and mitigating climate change. Extrapolating from our farm data, this strategy could increase rice production in China by 18%, which would meet the demand for direct human consumption of rice by 2030. It would also reduce fertilizer nitrogen consumption by 22% and decrease CO2-equivalent emissions during the rice growing period by 7% compared with current farming practice continues. Benefits vary by rice-based cropping systems. Single rice systems have the largest food provision benefits due to its wider yield gap and total cultivated area, whereas double-rice system

  9. Exploiting Co-Benefits of Increased Rice Production and Reduced Greenhouse Gas Emission through Optimized Crop and Soil Management

    PubMed Central

    An, Ning; Fan, Mingsheng; Zhang, Fusuo; Christie, Peter; Yang, Jianchang; Huang, Jianliang; Guo, Shiwei; Shi, Xiaojun; Tang, Qiyuan; Peng, Jianwei; Zhong, Xuhua; Sun, Yixiang; Lv, Shihua; Jiang, Rongfeng; Dobermann, Achim

    2015-01-01

    Meeting the future food security challenge without further sacrificing environmental integrity requires transformative changes in managing the key biophysical determinants of increasing agronomic productivity and reducing the environmental footprint. Here, we focus on Chinese rice production and quantitatively address this concern by conducting 403 on-farm trials across diverse rice farming systems. Inherent soil productivity, management practices and rice farming type resulted in confounded and interactive effects on yield, yield gaps and greenhouse gas (GHG) emissions (N2O, CH4 and CO2-equivalent) with both trade-offs and compensating effects. Advances in nitrogen, water and crop management (Best Management Practices—BMPs) helped closing existing yield gaps and resulted in a substantial reduction in CO2-equivalent emission of rice farming despite a tradeoff of increase N2O emission. However, inherent soil properties limited rice yields to a larger extent than previously known. Cultivating inherently better soil also led to lower GHG intensity (GHG emissions per unit yield). Neither adopting BMPs only nor improving soils with low or moderate productivity alone can adequately address the challenge of substantially increasing rice production while reducing the environmental footprint. A combination of both represents the most efficient strategy to harness the combined-benefits of enhanced production and mitigating climate change. Extrapolating from our farm data, this strategy could increase rice production in China by 18%, which would meet the demand for direct human consumption of rice by 2030. It would also reduce fertilizer nitrogen consumption by 22% and decrease CO2-equivalent emissions during the rice growing period by 7% compared with current farming practice continues. Benefits vary by rice-based cropping systems. Single rice systems have the largest food provision benefits due to its wider yield gap and total cultivated area, whereas double-rice system

  10. Suppression of cadmium uptake in rice using fermented bark as a soil amendment.

    PubMed

    Mori, Masanobu; Kotaki, Kenta; Gunji, Fumine; Kubo, Naoyuki; Kobayashi, Shizusa; Ito, Tsukasa; Itabashi, Hideyuki

    2016-04-01

    The contamination of rice paddies with heavy metals has become a serious concern due to their high toxicity to human health. In this study, we developed a chemical-free, fermented bark amendment (FBA) and used it for organic rice cultivation. The application of FBA resulted in the fixation of heavy metals, especially cadmium (Cd), in the soil and suppressed their uptake in brown rice. The suppression of Cd uptake was most effective, since its uptake in rice from FBA-supplemented soil was 10 times lower than that from untreated soil under ordinary water-filling conditions. These results could be explained by the rapid conversion of sulfate ions to sulfide ions, which subsequently react with Cd producing insoluble sulfide species, as well as Cd adsorption to the decomposed bark in soil. The FBA did not affect the uptake of metals, such as calcium and iron, which are necessary for the growth of rice. Thus, the FBA may suppress Cd uptake in rice, and its effectiveness is related to application time and water regime. PMID:26841291

  11. Estimating high mosquito-producing rice fields using spectral and spatial data

    NASA Technical Reports Server (NTRS)

    Wood, B. L.; Beck, L. R.; Washino, R. K.; Hibbard, K. A.; Salute, J. S.

    1992-01-01

    The cultivation of irrigated rice provides ideal larval habitat for a number of anopheline vectors of malaria throughout the world. Anopheles freeborni, a potential vector of human malaria, is associated with the nearly 240,000 hectares of irrigated rice grown annually in Northern and Central California; therefore, this species can serve as a model for the study of rice field anopheline population dynamics. Analysis of field data revealed that rice fields with early season canopy development, that are located near bloodmeal sources (i.e., pastures with livestock) were more likely to produce anopheline larvae than fields with less developed canopies located further from pastures. Remote sensing reflectance measurements of early-season canopy development and geographic information system (GIS) measurements of distanes between rice fields and pastures with livestock were combined to distinguish between high and low mosquito-producing rice fields. Using spectral and distance measures in either a discriminant or Bayesian analysis, the identification of high mosquito-producing fields was made with 85 percent accuracy nearly two months before anopheline larval populations peaked. Since omission errors were also minimized by these approaches, they could provide a new basis for directing abatement techniques for the control of malaria vectors.

  12. Transcriptome Analysis of Early Responsive Genes in Rice during Magnaporthe oryzae Infection.

    PubMed

    Wang, Yiming; Kwon, Soon Jae; Wu, Jingni; Choi, Jaeyoung; Lee, Yong-Hwan; Agrawal, Ganesh Kumar; Tamogami, Shigeru; Rakwal, Randeep; Park, Sang-Ryeol; Kim, Beom-Gi; Jung, Ki-Hong; Kang, Kyu Young; Kim, Sang Gon; Kim, Sun Tae

    2014-12-01

    Rice blast disease caused by Magnaporthe oryzae is one of the most serious diseases of cultivated rice (Oryza sativa L.) in most rice-growing regions of the world. In order to investigate early response genes in rice, we utilized the transcriptome analysis approach using a 300 K tilling microarray to rice leaves infected with compatible and incompatible M. oryzae strains. Prior to the microarray experiment, total RNA was validated by measuring the differential expression of rice defense-related marker genes (chitinase 2, barwin, PBZ1, and PR-10) by RT-PCR, and phytoalexins (sakuranetin and momilactone A) with HPLC. Microarray analysis revealed that 231 genes were up-regulated (>2 fold change, p < 0.05) in the incompatible interaction compared to the compatible one. Highly expressed genes were functionally characterized into metabolic processes and oxidation-reduction categories. The oxidative stress response was induced in both early and later infection stages. Biotic stress overview from MapMan analysis revealed that the phytohormone ethylene as well as signaling molecules jasmonic acid and salicylic acid is important for defense gene regulation. WRKY and Myb transcription factors were also involved in signal transduction processes. Additionally, receptor-like kinases were more likely associated with the defense response, and their expression patterns were validated by RT-PCR. Our results suggest that candidate genes, including receptor-like protein kinases, may play a key role in disease resistance against M. oryzae attack.

  13. African bees to control African elephants

    NASA Astrophysics Data System (ADS)

    Vollrath, Fritz; Douglas-Hamilton, Iain

    2002-11-01

    Numbers of elephants have declined in Africa and Asia over the past 30 years while numbers of humans have increased, both substantially. Friction between these two keystone species is reaching levels which are worryingly high from an ecological as well as a political viewpoint. Ways and means must be found to keep the two apart, at least in areas sensitive to each species' survival. The aggressive African bee might be one such method. Here we demonstrate that African bees deter elephants from damaging the vegetation and trees which house their hives. We argue that bees can be employed profitably to protect not only selected trees, but also selected areas, from elephant damage.

  14. [Artificial cultivation modes for Dendrobium officinale].

    PubMed

    Si, Jin-Ping; Yu, Qiao-Xian; Song, Xian-Shui; Shao, Wei-Jiang

    2013-02-01

    Since the beginning of the new century, the artificial cultivation of Dendrobium officinale has made a breakthrough progress. This paper systematically expounds key technologies, main features and cautions of the cultivation modes e.g. bionic-facility cultivation, the original ecological cultivation, and potting cultivation for D. officinale, which can provide useful information for the development and improvement of D. officinale industry. PMID:23713268

  15. Analysis of Active Components and Proteomics of Chinese Wild Rice (Zizania latifolia (Griseb) Turcz) and Indica Rice (Nagina22).

    PubMed

    Jiang, Ming-Xia; Zhai, Li-Jie; Yang, Hua; Zhai, Shu-Menghui; Zhai, Cheng-Kai

    2016-08-01

    The ancient Chinese wild rice (Zizania latifolia (Griseb) Turcz) (CWR) has valuable biological and medicinal functions. To assess the advantages lost in modern cultivated rice after domestication, we compared the composition of bioactive compounds and the results of proteomic analysis with those of Indica rice (N22). We used routine methods to determine the protein, total dietary fiber, amino acid, mineral substance, plant secondary metabolites, and amino acid composition of CWR and N22. The protein and mineral contents of CWR were two times that of N22, and the levels of calcium, potassium, magnesium, chromium, iron, and zinc were significantly higher than those of N22 (P < .05). There was ∼7.6 times more dietary fiber in CWR than in N22, but fewer carbohydrates (P < .05). Anthocyanins and chlorophyll were detected in CWR, but were absent from N22. Compared with N22, CWR had 53, 19, and 5.4 times higher (P < .05) levels of saponins, flavonoids, and plant sterols, respectively. The amino acid score of CWR was 66.6, which was significantly higher than N22. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) indicated that the main seed proteins of CWR were glutelins, including both acid and alkaline subunits, which were approximately twice those of N22. To investigate the differences in protein profiles between CWR and N22, we conducted two-dimensional electrophoresis (2-DE) analysis of the total proteins in the seeds of the two rice species. 2-DE gels revealed 19 differentially expressed proteins. Information obtained from peptide mass fingerprinting indicates that glutelin precursor caffeoyl coenzyme A (CoA) O-methyltransferase and putative bithoraxoid-like protein can provide good gene sources for improving rice quality. PMID:27533651

  16. High-level expression and characterization of recombinant acid urease for enzymatic degradation of urea in rice wine.

    PubMed

    Yang, Yuqing; Kang, Zhen; Zhou, Jianli; Chen, Jian; Du, Guocheng

    2015-01-01

    Ethylcarbamate, a carcinogenic compound, is formed from urea and ethanol in rice wine, and enzymatic elimination of urea is always attractive. In the present work, we amplified the acid urease gene cluster ureABCEFGD from Lactobacillus reuteri CICC6124 and constructed robust Lactococcus lactis cell factories for the production of acid urease. The titer of the recombinant acid urease was increased from 1,550 to 11,560 U/L by optimization of the cultivation process. Meanwhile, the enzyme showed satisfied properties toward urea elimination in the rice wine model system. By incubating the enzyme (50 U/L) at 20 °C for 60 h, about 95.8% of urea in rice wine was removed. Interestingly, this acid urease also exhibited activity toward ethylcarbamate. The results demonstrated that this recombinant acid urease has great potential in the elimination of urea in rice wine.

  17. Outcrossing Potential between U.S. Blackhull Red Rice and Indica Rice Cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weedy red rice is a major weed pest of rice in the southern U.S. Outcrossing between red rice and commercial tropical japonica rice cultivars has resulted in new weed biotypes that further hinder the effectiveness of weed management. In recent years, indica rice has been used increasingly as a ger...

  18. Impacts of sea-level change on human activity at the early Neolithic forager/cultivator site, Kuahuqiao on the east coast of China

    NASA Astrophysics Data System (ADS)

    Zong, Yongqiang; Innes, James; Chen, Zhongyuan; Chen, Chun; Wang, Zhanghua; Wang, Hui

    2010-05-01

    The date and location of the adoption of rice cultivation by foraging cultures in China is of considerable current interest but its understanding is hampered by a lack of information regarding its palaeoenvironmental context. We present detailed multi-proxy palaeoecological research at the earliest-dated site of rice cultivation in the coastal area of east China which has revealed the precise environmental setting of this early Neolithic settlement and its incipient cultivation at c. 7750 cal. BP. Regional and local environmental changes governed the character of the site and the duration of human activity. The rise in relative sea level up to 8000 cal. BP prompted the development of coastal wetland environments at the head of the Hangzhou Bay. A short period of stable sea level allowed natural hydrological succession and terrestrialisation of the site changing from a brackish/freshwater lake to a freshwater marsh/alder carr, which attracted Neolithic foragers to settle and take advantage of the plentiful food resources present in the wetland, wild rice in particular. After a fire clearance of an alder scrub that prepared the ground for settlement, the Kuahuqiao people maintained a reedswamp-type wet grassland in which rice was grown. As relative sea level rose again around 7600-7500 cal. BP, artificial bunding was used to retain nutrient rich water and prevent tidal flooding to provide rice with the consistent water regime it requires. Such bunding resulted in blockage of water which promoted the growth of aquatic plants such as Cattail. Cropping of Cattail stands may have formed part of the subsistence base. Thesite was overwhelmed by marine inundation around 7400-7200 cal. BP as relative sea level rose rapidly for a couple of meters, after which rice cultivation spread to Neolithic sites of Hemudu type elsewhere in the coastal lowlands.

  19. 7 CFR 868.310 - Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice. (See also Â...) GRAIN INSPECTION, PACKERS AND STOCKYARD ADMINISTRATION (FEDERAL GRAIN INSPECTION SERVICE), DEPARTMENT OF... classes Long Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled...

  20. 7 CFR 868.310 - Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice. (See also Â...) GRAIN INSPECTION, PACKERS AND STOCKYARD ADMINISTRATION (FEDERAL GRAIN INSPECTION SERVICE), DEPARTMENT OF... classes Long Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled...

  1. 7 CFR 868.310 - Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice. (See also Â...) GRAIN INSPECTION, PACKERS AND STOCKYARD ADMINISTRATION (FEDERAL GRAIN INSPECTION SERVICE), DEPARTMENT OF... classes Long Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled...

  2. Delay-tolerant mobile network protocol for rice field monitoring using wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Guitton, Alexandre; Andres, Frédéric; Cardoso, Jarbas Lopes; Kawtrakul, Asanee; Barbin, Silvio E.

    2015-10-01

    The monitoring of rice fields can improve productivity by helping farmers throughout the rice cultivation cycle, on various issues: when to harvest, when to treat the crops against disease, when to increase the water level, how to share observations and decisions made in a collaborative way, etc. In this paper, we propose an architecture to monitor a rice field by a wireless sensor network. Our architecture is based on static sensor nodes forming a disconnected network, and mobile nodes communicating with the sensor nodes in a delay-tolerant manner. The data collected by the static sensor nodes are transmitted to mobile nodes, which in turn transmit them to a gateway, connected to a database, for further analysis. We focus on the related architecture, as well as on the energy-efficient protocols intended to perform the data collection.

  3. Sustainable reuse of rice residues as feedstocks in vermicomposting for organic fertilizer production.

    PubMed

    Shak, Katrina Pui Yee; Wu, Ta Yeong; Lim, Su Lin; Lee, Chieh Ai

    2014-01-01

    Over the past decade, rice (Oryza sativa or Oryza glaberrima) cultivation has increased in many rice-growing countries due to the increasing export demand and population growth and led to a copious amount of rice residues, consisting mainly of rice straw (RS) and rice husk (RH), being generated during and after harvesting. In this study, Eudrilus eugeniae was used to decompose rice residues alone and rice residues amended with cow dung (CD) for bio-transformation of wastes into organic fertilizer. Generally, the final vermicomposts showed increases in macronutrients, namely, calcium (11.4-34.2%), magnesium (1.3-40.8%), phosphorus (1.2-57.3%), and potassium (1.1-345.6%) and a decrease in C/N ratio (26.8-80.0%) as well as increases in heavy metal content for iron (17-108%), copper (14-120%), and manganese (6-60%) after 60 days of vermicomposting. RS as a feedstock was observed to support healthier growth and reproduction of earthworms as compared to RH, with maximum adult worm biomass of 0.66 g/worm (RS) at 60 days, 31 cocoons (1RS:2CD), and 23 hatchlings (1RS:1CD). Vermicomposting of RS yielded better results than RH among all of the treatments investigated. RS that was mixed with two parts of CD (1RS:2CD) showed the best combination of nutrient results as well as the growth of E. eugeniae. In conclusion, vermicomposting could be used as a green technology to bio-convert rice residues into nutrient-rich organic fertilizers if the residues are mixed with CD in the appropriate ratio. PMID:23900949

  4. The Challenges and Solutions for Cadmium-contaminated Rice in China: A Critical Review.

    PubMed

    Hu, Yuanan; Cheng, Hefa; Tao, Shu

    2016-01-01

    The wide occurrence of Cd-contaminated rice in southern China poses significant public health risk and deserves immediate action, which arises primarily from extensive metal (including Cd) contamination of paddies with the fast expansion of nonferrous metal mining and smelting activities. Accumulation of Cd in rice grains can be reduced by removing Cd from the contaminated paddy soils, reducing its bioavailability, and controlling its uptake by rice plants. Although a range of measures can be taken to rehabilitate Cd-contaminated lands, including soil replacement and turnover, chemical washing, and phytoremediation, they are either too expensive and/or too slow. Various amendment materials, including lime, animal manures, and biochar, can be used to immobilize Cd in soils, but such fixation approach can only temporarily reduce Cd availability to rice uptake. Cultivation of alternative crops with low Cd accumulation in edible plant parts is impractical on large scales due to extensive contamination and food security concerns in southern China. Transgenic techniques can help develop rice cultivars with low Cd accumulation in grains, but little public acceptance is expected for such products. As an alternative, selection and development of low-Cd rice varieties and hybrids through plant biotechnology and breeding, particularly, by integration of marker-assisted selection (MAS) with traditional breeding, could be a practical and acceptable option that would allow continued rice production in soils with high bioavailability of Cd. Plant biotechnology and breeding can also help develop Cd-hyperaccumulating rice varieties, which can greatly facilitate phytoremediation of contaminated paddies. To eliminate the long-term risk of Cd entering the food chain, soils contaminated by Cd should be cleaned up when cost-effective remediation measures are available. PMID:27179698

  5. Sea level rise impacts on rice production: The Ebro Delta as an example.

    PubMed

    Genua-Olmedo, Ana; Alcaraz, Carles; Caiola, Nuno; Ibáñez, Carles

    2016-11-15

    Climate change and sea level rise (SLR) are global impacts threatening the sustainability of coastal territories and valuable ecosystems such as deltas. The Ebro Delta is representative of the vulnerability of coastal areas to SLR. Rice cultivation is the main economic activity in the region. Rice fields occupy most of the delta (ca. 65%) and are vulnerable to accelerated SLR and consequent increase in soil salinity, the most important physical factor affecting rice production. We developed a model to predict the impacts of SLR on soil salinity and rice production under different scenarios predicted by the Fifth Assessment Report of the Intergovernmental Panel on Climate Change by coupling data from Geographic Information Systems with Generalized Linear Models. Soil salinity data were measured in agricultural parcels and rice production from surveys among farmers. The correlation between observed and soil salinity predicted values was high and significant (Pearson's r=0.72, P<0.0001), thus supporting the predictive ability of the model. Soil salinity was directly related to distances to the river, to the delta inner border, and to the river old mouth, while clay presence, winter river flow and surface elevation were inversely related to it. Surface elevation was the most important variable in explaining soil salinity. Rice production was negatively influenced by soil salinity, thus the models predict a decrease from higher elevation zones close to the river to the shoreline. The model predicts a maximum reduction in normalized rice production index from 61.2% in 2010 to 33.8% by 2100 in the worst considered scenario (SLR=1.8m), with a decrease of profit up to 300 € per hectare. The model can be applied to other deltaic areas worldwide, and help rice farmers and stakeholders to identify the most vulnerable areas to SLR impacts. PMID:27481453

  6. Evaluating the Effect of Expressing a Peanut Resveratrol Synthase Gene in Rice

    PubMed Central

    Li, Zhen; Wang, Qingguo; Yao, Fangyin; Yang, Lianqun; Pan, Jiaowen; Liu, Wei

    2015-01-01

    Resveratrol (Res) is a type of natural plant stilbenes and phytoalexins that only exists in a few plant species. Studies have shown that the Res could be biosynthesized and accumulated within plants, once the complete metabolic pathway and related enzymes, such as the key enzyme resveratrol synthase (RS), existed. In this study, a RS gene named PNRS1 was cloned from the peanut, and the activity was confirmed in E. coli. Using transgenic approach, the PNRS1 transgenic rice was obtained. In T3 generation, the Res production and accumulation were further detected by HPLC. Our data revealed that compared to the wild type rice which trans-resveratrol was undetectable, in transgenic rice, the trans-resveratrol could be synthesized and achieved up to 0.697 μg/g FW in seedlings and 3.053 μg/g DW in seeds. Furthermore, the concentration of trans-resveratrol in transgenic rice seedlings could be induced up to eight or four-fold higher by ultraviolet (UV-C) or dark, respectively. Simultaneously, the endogenous increased of Res also showed the advantages in protecting the host plant from UV-C caused damage or dark-induced senescence. Our data indicated that Res was involved in host-defense responses against environmental stresses in transgenic rice. Here the results describes the processes of a peanut resveratrol synthase gene transformed into rice, and the detection of trans-resveratrol in transgenic rice, and the role of trans-resveratrol as a phytoalexin in transgenic rice when treated by UV-C and dark. These findings present new outcomes of transgenic approaches for functional genes and their corresponding physiological functions, and shed some light on broadening available resources of Res, nutritional improvement of crops, and new variety cultivation by genetic engineering. PMID:26302213

  7. Sea level rise impacts on rice production: The Ebro Delta as an example.

    PubMed

    Genua-Olmedo, Ana; Alcaraz, Carles; Caiola, Nuno; Ibáñez, Carles

    2016-11-15

    Climate change and sea level rise (SLR) are global impacts threatening the sustainability of coastal territories and valuable ecosystems such as deltas. The Ebro Delta is representative of the vulnerability of coastal areas to SLR. Rice cultivation is the main economic activity in the region. Rice fields occupy most of the delta (ca. 65%) and are vulnerable to accelerated SLR and consequent increase in soil salinity, the most important physical factor affecting rice production. We developed a model to predict the impacts of SLR on soil salinity and rice production under different scenarios predicted by the Fifth Assessment Report of the Intergovernmental Panel on Climate Change by coupling data from Geographic Information Systems with Generalized Linear Models. Soil salinity data were measured in agricultural parcels and rice production from surveys among farmers. The correlation between observed and soil salinity predicted values was high and significant (Pearson's r=0.72, P<0.0001), thus supporting the predictive ability of the model. Soil salinity was directly related to distances to the river, to the delta inner border, and to the river old mouth, while clay presence, winter river flow and surface elevation were inversely related to it. Surface elevation was the most important variable in explaining soil salinity. Rice production was negatively influenced by soil salinity, thus the models predict a decrease from higher elevation zones close to the river to the shoreline. The model predicts a maximum reduction in normalized rice production index from 61.2% in 2010 to 33.8% by 2100 in the worst considered scenario (SLR=1.8m), with a decrease of profit up to 300 € per hectare. The model can be applied to other deltaic areas worldwide, and help rice farmers and stakeholders to identify the most vulnerable areas to SLR impacts.

  8. The Challenges and Solutions for Cadmium-contaminated Rice in China: A Critical Review.

    PubMed

    Hu, Yuanan; Cheng, Hefa; Tao, Shu

    2016-01-01

    The wide occurrence of Cd-contaminated rice in southern China poses significant public health risk and deserves immediate action, which arises primarily from extensive metal (including Cd) contamination of paddies with the fast expansion of nonferrous metal mining and smelting activities. Accumulation of Cd in rice grains can be reduced by removing Cd from the contaminated paddy soils, reducing its bioavailability, and controlling its uptake by rice plants. Although a range of measures can be taken to rehabilitate Cd-contaminated lands, including soil replacement and turnover, chemical washing, and phytoremediation, they are either too expensive and/or too slow. Various amendment materials, including lime, animal manures, and biochar, can be used to immobilize Cd in soils, but such fixation approach can only temporarily reduce Cd availability to rice uptake. Cultivation of alternative crops with low Cd accumulation in edible plant parts is impractical on large scales due to extensive contamination and food security concerns in southern China. Transgenic techniques can help develop rice cultivars with low Cd accumulation in grains, but little public acceptance is expected for such products. As an alternative, selection and development of low-Cd rice varieties and hybrids through plant biotechnology and breeding, particularly, by integration of marker-assisted selection (MAS) with traditional breeding, could be a practical and acceptable option that would allow continued rice production in soils with high bioavailability of Cd. Plant biotechnology and breeding can also help develop Cd-hyperaccumulating rice varieties, which can greatly facilitate phytoremediation of contaminated paddies. To eliminate the long-term risk of Cd entering the food chain, soils contaminated by Cd should be cleaned up when cost-effective remediation measures are available.

  9. A global view of genetic diversity in cultivated sorghums using a core collection.

    PubMed

    Deu, M; Rattunde, F; Chantereau, J

    2006-02-01

    We report here an analysis of the structure of genetic diversity in cultivated sorghums. A core collection of 210 landraces representative of race, latitude of origin, response to day length, and production system was analysed with 74 RFLP probes dispersed throughout the genome. Multivariate analyses showed the specificity of the subrace guinea margaritiferum, as well as the geographical and racial pattern of genetic diversity. Neighbour-joining analysis revealed a clear differentiation between northern and southern equatorial African accessions. The presence of Asian accessions in these 2 major geographical poles for sorghum evolution indicated two introductions of sorghum into Asia. Morphological race also influenced the pattern of sorghum genetic diversity. A single predominant race was identified in 8 of 10 clusters of accessions, i.e., 1 kafir, 1 durra, 4 guinea, and 2 caudatum clusters. Guinea sorghums, with the exception of accessions in the margaritiferum subrace, clustered in 3 geographical groups, i.e., western African, southern African, and Asian guinea clusters; the latter two appeared more closely related. Caudatum were mainly distributed in 2 clusters, the African Great Lakes caudatum cluster and those African caudatum originating from other African regions. This last differentiation appears related to contrasting photoperiod responses. These results aid in the optimization of sampling accessions for introgression in breeding programs. PMID:16498467

  10. 21 CFR 137.350 - Enriched rice.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Enriched rice. 137.350 Section 137.350 Food and... Related Products § 137.350 Enriched rice. (a) The foods for which definitions and standards of identity are prescribed by this section are forms of milled rice (except rice coated with talc and glucose...

  11. A comparative study on carbon footprint of rice production between household and aggregated farms from Jiangxi, China.

    PubMed

    Yan, Ming; Luo, Ting; Bian, Rongjun; Cheng, Kun; Pan, Genxing; Rees, Robert

    2015-06-01

    Quantifying the carbon footprint (CF) for crop production can help identify key options to mitigate greenhouse gas (GHG) emissions in agriculture. In the present study, both household and aggregated farm scales were surveyed to obtain the data of rice production and farming management practices in a typical rice cultivation area of Northern Jiangxi, China. The CFs of the different rice systems including early rice, late rice, and single rice under household and aggregated farm scale were calculated. In general, early rice had the lower CF in terms of land use and grain production being 4.54 ± 0.44 t CO2-eq./ha and 0.62 ± 0.1 t CO2-eq./t grain than single rice (6.84 ± 0.79 t CO2-eq./ha and 0.80 ± 0.13 t CO2-eq./t grain) and late rice (8.72 ± 0.54 t CO2-eq./ha and 1.1 ± 0.17 t CO2-eq./t grain). The emissions from nitrogen fertilizer use accounted for 33 % of the total CF on average and the direct CH4 emissions for 57 %. The results indicated that the CF of double rice cropping under aggregated farm being 0.86 ± 0.11 t CO2-eq./t grain was lower by 25 % than that being 1.14 ± 0.25 t CO2-eq./t grain under household farm, mainly due to high nitrogen use efficiency and low methane emissions. Therefore, developing the aggregated farm scale with efficient use of agro-chemicals and farming operation for greater profitability could offer a strategy for reducing GHG emissions in China's agriculture.

  12. A comparative study on carbon footprint of rice production between household and aggregated farms from Jiangxi, China.

    PubMed

    Yan, Ming; Luo, Ting; Bian, Rongjun; Cheng, Kun; Pan, Genxing; Rees, Robert

    2015-06-01

    Quantifying the carbon footprint (CF) for crop production can help identify key options to mitigate greenhouse gas (GHG) emissions in agriculture. In the present study, both household and aggregated farm scales were surveyed to obtain the data of rice production and farming management practices in a typical rice cultivation area of Northern Jiangxi, China. The CFs of the different rice systems including early rice, late rice, and single rice under household and aggregated farm scale were calculated. In general, early rice had the lower CF in terms of land use and grain production being 4.54 ± 0.44 t CO2-eq./ha and 0.62 ± 0.1 t CO2-eq./t grain than single rice (6.84 ± 0.79 t CO2-eq./ha and 0.80 ± 0.13 t CO2-eq./t grain) and late rice (8.72 ± 0.54 t CO2-eq./ha and 1.1 ± 0.17 t CO2-eq./t grain). The emissions from nitrogen fertilizer use accounted for 33 % of the total CF on average and the direct CH4 emissions for 57 %. The results indicated that the CF of double rice cropping under aggregated farm being 0.86 ± 0.11 t CO2-eq./t grain was lower by 25 % than that being 1.14 ± 0.25 t CO2-eq./t grain under household farm, mainly due to high nitrogen use efficiency and low methane emissions. Therefore, developing the aggregated farm scale with efficient use of agro-chemicals and farming operation for greater profitability could offer a strategy for reducing GHG emissions in China's agriculture. PMID:25947895

  13. Red yeast rice for dysipidemia.

    PubMed

    Shamim, Shariq; Al Badarin, Firas J; DiNicolantonio, James J; Lavie, Carl J; O'Keefe, James H

    2013-01-01

    Red yeast rice is an ancient Chinese food product that contains monacolins, chemical substances that are similar to statins in their mechanisms of action and lipid lowering properties. Several studies have found red yeast rice to be moderately effective at improving the lipid profile, particularly for lowering the low-density lipoprotein cholesterol levels. One large randomized controlled study from China found that red yeast rice significantly improved risk of major adverse cardiovascular events and overall survival in patients following myocardial infarction. Thus, red yeast rice is a potentially useful over-the-counter cholesterol-lowering agent. However, many red yeast rice formulations are non-standardized and unregulated food supplements, and there is a need for further research and regulation of production.

  14. Cassava; African perspective on space agriculture

    NASA Astrophysics Data System (ADS)

    Katayama, Naomi; Njemanze, Philip; Nweke, Felix; Space Agriculture Task Force, J.; Katayama, Naomi; Yamashita, Masamichi

    Looking on African perspective in space agriculture may contribute to increase diversity, and enforce robustness for advanced life support capability. Cassava, Manihot esculentaand, is one of major crop in Africa, and could be a candidate of space food materials. Since resource is limited for space agriculture in many aspects, crop yield should be high in efficiency, and robust as well. The efficiency is measured by farming space and time. Harvest yield of cassava is about 41 MJ/ m2 (70 ton/ha) after 11 months of farming. Among rice, wheat, potato, and sweet potato, cassava is ranked to the first place (40 m2 ) in terms of farming area required to supply energy of 5 MJ/day, which is recommended for one person. Production of cassava could be made under poor condition, such as acidic soil, shortage of fertilizer, draught. Laterite, similar to Martian regolith. Propagation made by stem cutting is an advantage of cassava in space agriculture avoiding entomophilous or anemophilous process to pollinate. Feature of crop storage capability is additional factor that determines the efficiency in the whole process of agriculture. Cassava root tuber can be left in soil until its consumption. Cassava might be an African contribution to space agriculture.

  15. Community structure and abundance of ammonia-oxidizing archaea and bacteria after conversion from soybean to rice paddy in albic soils of Northeast China.

    PubMed

    Wang, Jing; Wang, Weidong; Gu, Ji-Dong

    2014-03-01

    Community composition of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in the albic soil grown with soybean and rice for different years was investigated by construction of clone libraries, denaturing gradient gel electrophoresis (DGGE), and quantitative polymerase chain reaction (q-PCR) by PCR amplification of the ammonia monooxygenase subunit A (amoA) gene. Soil samples were collected at two layers (0-5 and 20-25 cm) from a soybean field and four rice paddy fields with 1, 5, 9, and 17 years of continuous rice cultivation. Both the community structures and abundances of AOA and AOB showed detectable changes after conversion from soybean to rice paddy judged by clone library, DGGE, and q-PCR analyses. In general, the archaeal amoA gene abundance increased after conversion to rice cultivation, while bacterial amoA gene abundance decreased. The abundances of both AOA and AOB were higher in the surface layer than the bottom one in the soybean field, but a reverse trend was observed for AOB in all paddy samples regardless of the duration of paddy cultivation. Phylogenetic analysis identified nine subclusters of AOA and seven subclusters of AOB. Community composition of both AOA and AOB was correlated with available ammonium and increased pH value caused by flooding in multiple variance analysis. Community shift of AOB was also observed in different paddy fields, but the two layers did not show any detectable changes in DGGE analysis. Conversion from soybean to rice cultivation changed the community structure and abundance of AOA and AOB in albic agricultural soil, which requires that necessary cultivation practice be followed to manage the N utilization more effectively. PMID:24092004

  16. Spot-5 multispectral image for 60-75 days of rice mapping

    NASA Astrophysics Data System (ADS)

    Amiruddin Ramli, Mohd; Shariff, Abdul Rashid Mohamed; Khairunniza Bejo, Siti

    2014-06-01

    The objective of this study is to investigate the potential application of Spot-5 multispectral satellite data in monitoring rice cultivation areas in IADA (Integrated Agriculture Development Area) located at Kerian District, Perak Malaysia. Information of the rice cultivation areas is a global economic and environmental significance. Multi-spectral images acquired at high spatial resolution are an important tool, especially in agricultural applications. This paper addresses the relationship between normalize difference vegetation index (NDVI) and ancillary data acquired from Farmers Organization Authority (PPK) for 217 farmer's field in IADA Kerian. The results indicated that NDVI range 0.62 - 0.75 has a strong positive relationship with the ground survey area estimation with (r = 0.85; p <0.01) (r2 = 0.722). The r2 value of 0.722 indicated a statistically significant linear relationship between the rice area estimate using NDVI range 0.62 - 0.75 and on the ground surveyed data for 217 farmers' fields. The equation of unstandardized distribution can be described as Ŷ=0.0197+0.852x. The equation for standardized regression formula for this distribution is Ŷ= 0.850x. Thus, the results indicate that 60-75 days of rice area can be estimated from the following equation Ŷ=0.197+0.852x, where Ŷ is the predicted rice area and x is area calculated using NDVI range 0.62-0.75 in IADA Kerian Perak Malaysia. The results appear promising and rice mapping operations using SPOT-5 multispectral image data can be foreseen.

  17. Mitigation options for methane emissions from rice fields in the Philippines

    SciTech Connect

    Lantin, R.S.; Buendia, L.V.; Wassmann, R.

    1996-12-31

    The contribution of Philippine rice production to global methane emission and breakthroughs in methane emission studies conducted in the country are presented in this paper. A significant impact in the reduction of GHG emissions from agriculture can be achieved if methane emissions from ricefields can be abated. This study presents the contribution of Philippine rice cultivation to global methane emission and breakthroughs in methane emission studies in the country which address the issue of mitigation. Using the derived emission factors from local measurements, rice cultivation contributes 566.6 Gg of methane emission in the Philippines. This value is 62% of the total methane emitted from the agriculture sector. The emission factors employed which are 78% of the IPCC value for irrigated rice and 95% for rainfed rice were derived from measurements with an automatic system taken during the growth duration in the respective ecosystems. Plots drained for 2 weeks at midtillering and before harvest gave a significant reduction in methane emission as opposed to continuously flooded plots and plots drained before harvest. The cultivar Magat reduced methane emission by 50% as compared to the check variety IR72. The application of ammonium sulfate instead of urea reduced methane emission by 10% to 34%. Addition of 6 t ha{sup {minus}1} phosphogypsum in combination with urea reduced emission by 74% as opposed to plots applied with urea alone. It is also from the results of such measurements that abatement strategies are based as regards to modifying treatments such as water management, fertilization, and choice of rice variety. It is not easy to identify and recommend mitigation strategies that will fit a particular cropping system. However, the identified mitigation options provide focus for the abatement of methane emission from ricefields.

  18. Remote Sensing Based Methane Emission Inventory Vis-A-Vis Rice Cultural Types Of South Asia

    NASA Astrophysics Data System (ADS)

    Manjunath, K. R.; More, R.; Chauhan, P.; Vyas, A.; Panigrahy, S.; Parihar, J. S.

    2014-11-01

    Rice cultivation has been recognized as one of the major anthropogenic source for methane (CH4) emissions which is a microbial mediated anaerobic activity, mainly favoured by the flooded conditions in the rice fields. Information available on CH4 emission is limited, especially in a spatial domain, mainly because of the complexity involved in generating such data. The current approach demonstrates the use of secondary data sources available on the methane emission scaling factors, coupled with the information derived on rice cultural types and crop calendar. Methane emission from each type of rice field was firstly calculated by multiplying the emission factor by the corresponding cultivation area and length of cropping period. The values were then extrapolated over each country with respect to the rice area and crop duration for under each cultural type. The rice cultural type wise methane emission value for South Asia was derived by summation of individual emission values for the respective cultural type within each country. The total methane emission derived for South Asia region is (4.7817 Tg/yr). The mean methane emission estimates derived for each country are viz. India (3.3860 Tg/yr), Bangladesh (0.9136 Tg/yr), Pakistan (0.2675 Tg/yr), Sri Lanka (0.1073 Tg/yr) and Nepal (0.1074 Tg/yr). The derived methane emission estimates could be used to study the regional variations within the country and also to adopt the mitigation strategies to combat the high methane emission values within specific cultural type by means of altering the farming practise or water regime.

  19. Astronomy for African development

    NASA Astrophysics Data System (ADS)

    Govender, Kevindran

    2011-06-01

    In recent years there have been a number of efforts across Africa to develop the field of astronomy as well as to reap benefit from astronomy for African people. This presentation will discuss the case of the SALT (Southern African Large Telescope) Collateral Benefits Programme (SCBP) which was set up to ensure societal benefit from astronomy. With African society as the target, the SCBP has embarked on various projects from school level education to public understanding of science to socio-economic development, the latter mainly being felt in the rural communities surrounding the South African Astronomical Observatory (home to SALT). A development plan for ``Astronomy in Africa'' will also be discussed. This plan has been drawn up with input from all over Africa and themed ``Astronomy for Education''. The Africa case stands as a good example for the IYA cornerstone project ``Developing Astronomy Globally'' which focuses on developing regions.

  20. African American Health

    MedlinePlus

    ... specific health concerns. Differences in the health of groups can result from Genetics Environmental factors Access to care Cultural factors On this page, you'll find links to health issues that affect African Americans.

  1. African American Suicide

    MedlinePlus

    ... accounted for 83.8% of Caucasian elderly suicides. • Firearms were the predominant method of suicide among African ... per 100,000 annually. Source: Centers for Disease Control and Prevention. National Vital Statistics System. Mortality Data. ...

  2. Rice photosynthetic productivity and PSII photochemistry under nonflooded irrigation.

    PubMed

    He, Haibing; Yang, Ru; Jia, Biao; Chen, Lin; Fan, Hua; Cui, Jing; Yang, Dong; Li, Menglong; Ma, Fu-Yu

    2014-01-01

    Nonflooded irrigation is an important water-saving rice cultivation technology, but little is known on its photosynthetic mechanism. The aims of this work were to investigate photosynthetic characteristics of rice during grain filling stage under three nonflooded irrigation treatments: furrow irrigation with plastic mulching (FIM), furrow irrigation with nonmulching (FIN), and drip irrigation with plastic mulching (DI). Compared with the conventional flooding (CF) treatment, those grown in the nonflooded irrigation treatments showed lower net photosynthetic rate (PN), lower maximum quantum yield (Fv/Fm), and lower effective quantum yield of PSII photochemistry (ΦPSII). And the poor photosynthetic characteristics in the nonflooded irrigation treatments were mainly attributed to the low total nitrogen content (TNC). Under non-flooded irrigation, the PN, Fv/Fm, and ΦPSII significantly decreased with a reduction in the soil water potential, but these parameters were rapidly recovered in the DI and FIM treatments when supplementary irrigation was applied. Moreover, The DI treatment always had higher photosynthetic productivity than the FIM and FIN treatments. Grain yield, matter translocation, and dry matter post-anthesis (DMPA) were the highest in the CF treatment, followed by the DI, FIM, and FIN treatments in turn. In conclusion, increasing nitrogen content in leaf of rice plants could be a key factor to improve photosynthetic capacity in nonflooded irrigation.

  3. Rice Photosynthetic Productivity and PSII Photochemistry under Nonflooded Irrigation

    PubMed Central

    He, Haibing; Yang, Ru; Jia, Biao; Chen, Lin; Fan, Hua; Cui, Jing; Yang, Dong; Li, Menglong; Ma, Fu-Yu

    2014-01-01

    Nonflooded irrigation is an important water-saving rice cultivation technology, but little is known on its photosynthetic mechanism. The aims of this work were to investigate photosynthetic characteristics of rice during grain filling stage under three nonflooded irrigation treatments: furrow irrigation with plastic mulching (FIM), furrow irrigation with nonmulching (FIN), and drip irrigation with plastic mulching (DI). Compared with the conventional flooding (CF) treatment, those grown in the nonflooded irrigation treatments showed lower net photosynthetic rate (PN), lower maximum quantum yield (Fv/Fm), and lower effective quantum yield of PSII photochemistry (ΦPSII). And the poor photosynthetic characteristics in the nonflooded irrigation treatments were mainly attributed to the low total nitrogen content (TNC). Under non-flooded irrigation, the PN, Fv/Fm, and ΦPSII significantly decreased with a reduction in the soil water potential, but these parameters were rapidly recovered in the DI and FIM treatments when supplementary irrigation was applied. Moreover, The DI treatment always had higher photosynthetic productivity than the FIM and FIN treatments. Grain yield, matter translocation, and dry matter post-anthesis (DMPA) were the highest in the CF treatment, followed by the DI, FIM, and FIN treatments in turn. In conclusion, increasing nitrogen content in leaf of rice plants could be a key factor to improve photosynthetic capacity in nonflooded irrigation. PMID:24741364

  4. Asia Rice Crop Estimation and Monitoring (Asia-RiCE) for GEOGLAM

    NASA Astrophysics Data System (ADS)

    Oyoshi, K.; Tomiyama, N.; Okumura, T.; Sobue, S.

    2013-12-01

    Food security is a critical issue for the international community because of rapid population and economic growth, and climate change. In June 2011, the meeting of G20 agriculture ministers was held to discuss food security and food price volatility, and they agreed on an 'Action Plan on Food Price Volatility and Agriculture'. This plan includes a GEO Global Agricultural Monitoring (GEOGLAM) initiative. The aim of GEOGLAM is to reinforce the international community's ability to produce and disseminate relevant, timely, and accurate forecasts of agricultural production on regional, national, and global scales by utilizing remote sensing technology. GEOGLAM focused on four major grain crops, wheat, maize, soybeans and rice. In particular, Asian countries are responsible for approximately 90% of the world rice production and consumption, rice is the most significant cereal crop in Asian region. Hence, Asian space and agricultural agencies with an interest in the development of rice crop monitoring technology launched an Asia-Rice Crop Estimation & Monitoring (Asia-RiCE) component for the GEOGLAM initiative. In Asian region, rice is mainly cultivated in rainy season, and a large amount of cloud limits rice crop monitoring with optical sensors. But, Synthetic Aperture RADAR (SAR) is all-weather sensor and can observe land surface even if the area is covered by cloud. Therefore, SAR technology would be powerful tool to monitor rice crop in Asian region. Asia-RiCE team required mainly SAR observation data including ALOS-2, RISAT-1, Sentinel-1 and RADARSAT, TerraSAR-X, COSMO-SkyMed for Asia-RiCE GEOGLAM Phase 1 implementation (2013-2015) to the Committee on Earth Observations (CEOS) in the GEOGLAM-CEOS Global Agricultural Monitoring Co-community Meeting held in June 2013. And also, rice crop has complicated cropping systems such as rein-fed or irrigated cultivation, single, double or sometimes triple cropping. In addition, each agricultural field is smaller than that of

  5. Fitness correlates of crop transgene flow into weedy populations: a case study of weedy rice in China and other examples.

    PubMed

    Lu, Bao-Rong; Yang, Xiao; Ellstrand, Norman C

    2016-08-01

    Whether transgene flow from crops to cross-compatible weedy relatives will result in negative environmental consequences has been the topic of discussion for decades. An important component of environmental risk assessment depends on whether an introgressed transgene is associated with a fitness change in weedy populations. Several crop-weed pairs have received experimental attention. Perhaps, the most worrisome example is transgene flow from genetically engineered cultivated rice, a staple for billions globally, to its conspecific weed, weedy rice. China's cultivated/weedy rice system is one of the best experimentally studied systems under field conditions for assessing how the presence of transgenes alters the weed's fitness and the likely impacts of that fitness change. Here, we present the cultivated/weedy rice system as a case study on the consequences of introgressed transgenes in unmanaged populations. The experimental work on this system reveals considerable variation in fitness outcomes - increased, decreased, and none - based on the transgenic trait, its introgressed genomic background, and the environment. A review of similar research from a sample of other crop-wild pairs suggests such variation is the rule. We conclude such variation in fitness correlates supports the case-by-case method of biosafety regulation is sound. PMID:27468304

  6. Sustainable rice production and its impact on the rice value chain: A case study of rural paddy farm in Kedah

    NASA Astrophysics Data System (ADS)

    Othman, Siti Norezam; Othman, Zakirah; Yaacob, Noorulsadiqin Azbiya; Hamid, Kamal Ab

    2016-08-01

    System of Rice Intensification (SRI) method had contributed towards environmental sustainability through improving paddy ecosystem, better sustainable economic due to improving paddy production and sales and social sustainability through local community development through community activity and health. This study aimed to find out whether the innovative practices of SRI affect the rice value chain and to determine the roles, activities of the actors in the value chain as well as challenges that impacted the value chain. Using interview as data collection method, case samples were selected from various SRI paddy site in Kedah. The findings indicated that implementing SRI practices in organic paddy cultivation had caused the value chain to be different from conventional paddy value chain in terms of actor and effect of middle man subject to the small scale paddy production. For organic rice value chain to become competitive, roles, activities and challenges were identified so that supports could be provided to the farmers and other related parties in the value chain.

  7. Genome-wide association mapping focusing on a rice population derived from rice breeding programs in a region.

    PubMed

    Fujino, Kenji; Obara, Mari; Shimizu, Toshiaki; Koyanagi, Kanako O; Ikegaya, Tomohito

    2015-12-01

    Plant breeding programs in local regions may generate genetic variations that are desirable to local populations and shape adaptability during the establishment of local populations. To elucidate genetic bases for this process, we proposed a new approach for identifying the genetic bases for the traits improved during rice breeding programs; association mapping focusing on a local population. In the present study, we performed association mapping focusing on a local rice population, consisting of 63 varieties, in Hokkaido, the northernmost region of Japan and one of the northern limits of rice cultivation worldwide. Six and seventeen QTLs were identified for heading date and low temperature germinability, respectively. Of these, 13 were novel QTLs in this population and 10 corresponded to the QTLs previously reported based on QTL mapping. The identification of QTLs for traits in local populations including elite varieties may lead to a better understanding of the genetic bases of elite traits. This is of direct relevance for plant breeding programs in local regions.

  8. [Effects of mechanical transplanting of rice with controlled release bulk blending fertilizer on rice yield and soil fertility].

    PubMed

    Zhang, Xuan; Ding, Jun-Shan; Liu, Yan-Ling; Gu, Yan; Han, Ke-Feng; Wu, Liang-Huan

    2014-03-01

    Abstract: A 2-year field experiment with a yellow-clay paddy soil in Zhejiang Province was conducted to study the effects of different planting measures combined with different fertilization practices on rice yield, soil nutrients, microbial biomass C and N and activities of urease, phosphatase, sucrase and hydrogen peroxidase at the maturity stage. Results showed that mechanical transplanting of rice with controlled release bulk blending (BB) fertilizer (BBMT) could achieve a significantly higher mean yield than traditional manual transplanting with traditional fertilizer (TFTM) and direct seeding with controlled release BB fertilizer (BBDS) by 16.3% and 27.0%, respectively. The yield by BBMT was similar to that by traditional manual transplanting with controlled release BB fertilizer (BBTM). Compared with TFTM, BBMT increased the contents of soil total-N, available N, available P and microbial biomass C, and the activities of urease, sucrase and hydrogen peroxidase by 21.5%, 13.6%, 41.2%, 27.1%, 50.0%, 22.5% and 46.2%, respectively. Therefore, BBMT, a simple high-efficiency rice cultivation method with use of a light-weighted mechanical transplanter, should be widely promoted and adopted. PMID:24984497

  9. [Effects of mechanical transplanting of rice with controlled release bulk blending fertilizer on rice yield and soil fertility].

    PubMed

    Zhang, Xuan; Ding, Jun-Shan; Liu, Yan-Ling; Gu, Yan; Han, Ke-Feng; Wu, Liang-Huan

    2014-03-01

    Abstract: A 2-year field experiment with a yellow-clay paddy soil in Zhejiang Province was conducted to study the effects of different planting measures combined with different fertilization practices on rice yield, soil nutrients, microbial biomass C and N and activities of urease, phosphatase, sucrase and hydrogen peroxidase at the maturity stage. Results showed that mechanical transplanting of rice with controlled release bulk blending (BB) fertilizer (BBMT) could achieve a significantly higher mean yield than traditional manual transplanting with traditional fertilizer (TFTM) and direct seeding with controlled release BB fertilizer (BBDS) by 16.3% and 27.0%, respectively. The yield by BBMT was similar to that by traditional manual transplanting with controlled release BB fertilizer (BBTM). Compared with TFTM, BBMT increased the contents of soil total-N, available N, available P and microbial biomass C, and the activities of urease, sucrase and hydrogen peroxidase by 21.5%, 13.6%, 41.2%, 27.1%, 50.0%, 22.5% and 46.2%, respectively. Therefore, BBMT, a simple high-efficiency rice cultivation method with use of a light-weighted mechanical transplanter, should be widely promoted and adopted.

  10. Integrating cultivation history into EBIPM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ecologically based invasive plant management (EBIPM) is a systematic thinking and planning process to assist with applying the appropriate combination of tools and strategies to addrress the underlying cause of invasion rather than simply controlling invasive annual grass abundance. Cultivation his...

  11. Cultivate the Love of Reading.

    ERIC Educational Resources Information Center

    Andrews-Beck, Carolyn

    1997-01-01

    Suggests that the school year is like a growing season, but with planting in the fall and harvest in the spring. Discusses ways teachers can "prepare the soil" for cultivating students' love of reading. Presents a baker's dozen ideas to build the desire to read. (RS)

  12. Cultivation and uses of cucurbits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cultivated cucurbits have spread through trade and exploration from their respective Old and New World centers of origin to the six arable continents and are important in local, regional and world trade. Cucumber (Cucumis sativus L.), melon (Cucumis melo L.), pumpkin, squash and gourd (Cucurbita spp...

  13. Cultivating Spontaneous Self-Discipline.

    ERIC Educational Resources Information Center

    O'Shaughnessy, Molly

    1998-01-01

    Draws on contemporary sources to provide strategies for cultivating self-discipline. Advocates self-healing for the adult to be free from destructive attitudes and personal history that can keep adults from being mindful of the child's needs, perspective, and potential. Concludes with ways to facilitate a truly Montessori approach to discipline.…

  14. A Methodological Examination of Cultivation.

    ERIC Educational Resources Information Center

    Rubin, Alan M.; And Others

    1988-01-01

    Considers two issues in cultivation research. Examines relationships between television exposure and positive statements of social perceptions, and tests a model of instrumental media uses and effects. Finds television exposure to be unrelated to social attitudes, while program selectivity is related to all social attitudes except interpersonal…

  15. Mapping Rice Production in China with AVHRR Imagery

    NASA Technical Reports Server (NTRS)

    Paliouras, Eleni J.; Emery, William

    2001-01-01

    The study of rice agriculture is necessary for both the importance of rice as a vital food source and because of the fact that cultivating it has an unfortunate byproduct, namely methane gas. As a food source, rice is a staple for a large majority of the world's population, especially in Asia. Because the populations of many Asian nations are increasing at rapid rates, the production of rice will need to similarly increase. In 1989, it was estimated that the demand for rice would increase by 65% by the year 2019. Rice crops are considered to be one of the primary anthropogenic sources of methane gas. A reason for concern is that this gas is a so-called "greenhouse" trace gas and given its increasing levels in the atmosphere, is thought to contribute to the suspected global warming phenomenon. Some estimate that methane may contribute up to 20% to the global warming effect. Trace gas emissions from anthropogenic sources is an issue that generates great worldwide interest because of the fact that mankind is very likely affecting the current and future climate in potentially negative ways. In an effort to better understand these effects, scientists and engineers are conducting research on all of the varied fronts which relate to climate change and biosphere/atmosphere interactions. The study of global warming through increasing concentrations of greenhouse gases is one area which has received much media and scientific attention. Research fueled by debates on this topic is being conducted on numerous, interrelated fronts in an effort to better understand the complex relationship between human activities and the earth's climate. The research ranges from attempting to verify if the observed data even supports the existence of an anthropogenically generated global-warming phenomenon, to identification of sources and sinks of the trace gases, to measuring the source strengths, to studies which focus on modeling the processes which generate the gases, and finally, to trying

  16. Rice Crop Monitoring by Earth Observation Data in the Asian Region

    NASA Astrophysics Data System (ADS)

    Oyoshi, K.; Sobue, S.; Tomiyama, N.; Okumura, T.; Rakwatin, P.

    2012-12-01

    Food security is a critical issue for the international community. In June 2011, the meeting of G20 agriculture ministers was held to discuss global food security and they agreed on an "Action Plan on Food Price Volatility and Agriculture". This plan includes a GEO Global Agricultural Monitoring (GEO-GLAM) initiative which utilizes remote sensing to improve projections of crop production and weather forecasting. Hence, satellite remote sensing is expected to contribute national, regional and global food security through the systematic and efficient collection of food security related information such as agro-meteorological condition, crop growth or yield estimation. Food security related information is utilized to take mitigation strategies or policies to manage food shortages or trading, and ensure food security. Especially in Asia, rice is the most important cereal crop because Asian countries are responsible for approximately 90% of the world rice productions and consumptions. There- fore, Asian countries are expected to contribute GLAM through the construction of rice crop monitoring system. We demonstrated the estimation of rice production, the crop phenology monitoring by Earth Observation (EO) data. The aim of this study is to establish a prototype system designed to provide paddy rice area and yield estimation. Generally, crop yield estimation is consist of two components, cultivated area and yield per area. The cultivated areas of paddy field are detected by the seasonal pattern of SAR data over paddy field. This means paddy field is filled with water just before planting rice, then covered by dense vegetation in growing season. The paddy filed map was derived from the seasonal Advanced Land Observation Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) data with a simple threshold method. Then, to estimate rice productivity, we applied a simple rice crop model. The input data to the model are physical and chemical properties of

  17. Water management impacts on arsenic behavior and rhizosphere bacterial communities and activities in a rice agro-ecosystem.

    PubMed

    Das, Suvendu; Chou, Mon-Lin; Jean, Jiin-Shuh; Liu, Chia-Chuan; Yang, Huai-Jen

    2016-01-15

    Although rice cultivated under water-saturated conditions as opposed to submerged conditions has received considerable attention with regard to reducing As levels in rice grain, the rhizosphere microbiome potentially influencing As-biotransformation and bioavailability in a rice ecosystem has rarely been studied. In this study, the impacts of flooded, non-flooded and alternate wetting and drying (AWD) practices on rhizosphere bacterial composition and activities that could potentially impact As speciation and accumulation in rhizosphere soil and pore water, As fractions in rhizosphere soil and As speciation and distribution in plant parts were assessed. The results revealed that in addition to pore water As concentration, non-specifically sorbed As fraction, specifically sorbed As fraction and amorphous iron oxide bound As fraction in soil were bio-available to rice plants. In the flooded treatment, As(III) in the pore water was the predominant As species, accounting for 87.3-93.6% of the total As, whereas in the non-flooded and AWD treatments, As(V) was the dominant As species, accounting for 89.6-96.2% and 73.0-83.0%, respectively. The genera Ohtaekwangia, Geobacter, Anaeromyxobacter, Desulfuromonas, Desulfocapsa, Desulfobulbus, and Lacibacter were found in relatively high abundance in the flooded soil, whereas the genera Acinetobacter, Ignavibacterium, Thiobacillus, and Lysobacter were detected in relatively high abundance in the non-flooded soil. Admittedly, the decrease in As level in rice cultivated under the non-flooded and AWD conditions was mostly linked to a relatively high soil redox potential, low As(III) concentration in the soil pore water, a decrease in the relative abundance of As-, Fe- and sulfur-reducing bacteria and an increase in the relative abundance of As-, Fe- and sulfur-oxidizing bacteria in the rhizosphere soil of the rice. This study demonstrated that with substantial reduction in grain As levels and higher water productivity, AWD

  18. Similar traits, different genes? Examining convergent evolution in related weedy rice populations.

    PubMed

    Thurber, Carrie S; Jia, Melissa H; Jia, Yulin; Caicedo, Ana L

    2013-02-01

    Convergent phenotypic evolution may or may not be associated with convergent genotypic evolution. Agricultural weeds have repeatedly been selected for weed-adaptive traits such as rapid growth, increased seed dispersal and dormancy, thus providing an ideal system for the study of convergent evolution. Here, we identify QTL underlying weedy traits and compare their genetic architecture to assess the potential for convergent genetic evolution in two distinct populations of weedy rice. F(2) offspring from crosses between an indica cultivar and two individuals from genetically differentiated U.S. weedy rice populations were used to map QTL for four quantitative (heading date, seed shattering, plant height and growth rate) and two qualitative traits. We identified QTL on nine of the twelve rice chromosomes, yet most QTL locations do not overlap between the two populations. Shared QTL among weed groups were only seen for heading date, a trait for which weedy groups have diverged from their cultivated ancestors and from each other. Sharing of some QTL with wild rice also suggests a possible role in weed evolution for genes under selection during domestication. The lack of overlapping QTL for the remaining traits suggests that, despite a close evolutionary relationship, weedy rice groups have adapted to the same agricultural environment through different genetic mechanisms. PMID:23205731

  19. Evaluating Leaf and Canopy Reflectance of Stressed Rice Plants to Monitor Arsenic Contamination.

    PubMed

    Bandaru, Varaprasad; Daughtry, Craig S; Codling, Eton E; Hansen, David J; White-Hansen, Susan; Green, Carrie E

    2016-01-01

    Arsenic contamination is a serious problem in rice cultivated soils of many developing countries. Hence, it is critical to monitor and control arsenic uptake in rice plants to avoid adverse effects on human health. This study evaluated the feasibility of using reflectance spectroscopy to monitor arsenic in rice plants. Four arsenic levels were induced in hydroponically grown rice plants with application of 0, 5, 10 and 20 µmol·L(-1) sodium arsenate. Reflectance spectra of upper fully expanded leaves were acquired over visible and infrared (NIR) wavelengths. Additionally, canopy reflectance for the four arsenic levels was simulated using SAIL (Scattering by Arbitrarily Inclined Leaves) model for various soil moisture conditions and leaf area indices (LAI). Further, sensitivity of various vegetative indices (VIs) to arsenic levels was assessed. Results suggest that plants accumulate high arsenic amounts causing plant stress and changes in reflectance characteristics. All leaf spectra based VIs related strongly with arsenic with coefficient of determination (r²) greater than 0.6 while at canopy scale, background reflectance and LAI confounded with spectral signals of arsenic affecting the VIs' performance. Among studied VIs, combined index, transformed chlorophyll absorption reflectance index (TCARI)/optimized soil adjusted vegetation index (OSAVI) exhibited higher sensitivity to arsenic levels and better resistance to soil backgrounds and LAI followed by red edge based VIs (modified chlorophyll absorption reflectance index (MCARI) and TCARI) suggesting that these VIs could prove to be valuable aids for monitoring arsenic in rice fields. PMID:27322304

  20. Suitability Evaluation for Lowland Rice in Inland Valleys in West Africa

    NASA Astrophysics Data System (ADS)

    Hideto, Fujii; Muralikrishna, Gumma; Prasad, Thenkabail; Regassa, Namara

    A GIS based model developed by the authors are applied for selecting suitable rice cultivation area in inland valleys that has high potential for rice production in West Africa where rice consumption is increasing very rapidly. The model has the following features. 1) The model is to evaluate the suitability of the land for lowland rice based on score distribution maps respectively made by the data of 29 evaluation parameters. 2) The parameters are classified into 4 categories; bio-physical, technical, socio-economic and health-environmental parameters. 3) Each scored map (layer) is integrated to obtain total scores by multiplying a weight which is determined by the importance of parameters. The suitability for rice in two study sites was evaluated using the model. Mankran and Jolo-Kwaha watershed selected as the study sites from different agro-ecological zone in Ghana. Applying the data of 12 parameters acquired in the study sites to the model, “very suitable” or “suitable” occupies around 30% in Mankran study site and around 60% in Jolo-Kwaha study site.

  1. Physiological and growth response of rice plants (Oryza sativa L.) to Trichoderma spp. inoculants.

    PubMed

    Doni, Febri; Isahak, Anizan; Che Mohd Zain, Che Radziah; Wan Yusoff, Wan Mohtar

    2014-01-01

    Trichoderma spp., a known beneficial fungus is reported to have several mechanisms to enhance plant growth. In this study, the effectiveness of seven isolates of Trichoderma spp. to promote growth and increase physiological performance in rice was evaluated experimentally using completely randomized design under greenhouse condition. This study indicated that all the Trichoderma spp. isolates tested were able to increase several rice physiological processes which include net photosynthetic rate, stomatal conductance, transpiration, internal CO2 concentration and water use efficiency. These Trichoderma spp. isolates were also able to enhance rice growth components including plant height, leaf number, tiller number, root length and root fresh weight. Among the Trichoderma spp. isolates, Trichoderma sp. SL2 inoculated rice plants exhibited greater net photosynthetic rate (8.66 μmolCO2 m(-2) s(-1)), internal CO2 concentration (336.97 ppm), water use efficiency (1.15 μmoCO2/mmoH2O), plant height (70.47 cm), tiller number (12), root length (22.5 cm) and root fresh weight (15.21 g) compared to the plants treated with other Trichoderma isolates tested. We conclude that beneficial fungi can be used as a potential growth promoting agent in rice cultivation.

  2. Selection Under Domestication: Evidence for a Sweep in the Rice Waxy Genomic Region

    PubMed Central

    Olsen, Kenneth M.; Caicedo, Ana L.; Polato, Nicholas; McClung, Anna; McCouch, Susan; Purugganan, Michael D.

    2006-01-01

    Rice (Oryza sativa) was cultivated by Asian Neolithic farmers >11,000 years ago, and different cultures have selected for divergent starch qualities in the rice grain during and after the domestication process. An intron 1 splice donor site mutation of the Waxy gene is responsible for the absence of amylose in glutinous rice varieties. This mutation appears to have also played an important role in the origin of low amylose, nonglutinous temperate japonica rice varieties, which form a primary component of Northeast Asian cuisines. Waxy DNA sequence analyses indicate that the splice donor mutation is prevalent in temperate japonica rice varieties, but rare or absent in tropical japonica, indica, aus, and aromatic varieties. Sequence analysis across a 500-kb genomic region centered on Waxy reveals patterns consistent with a selective sweep in the temperate japonicas associated with the mutation. The size of the selective sweep (>250 kb) indicates very strong selection in this region, with an inferred selection coefficient that is higher than similar estimates from maize domestication genes or wild species. These findings demonstrate that selection pressures associated with crop domestication regimes can exceed by one to two orders of magnitude those observed for genes under even strong selection in natural systems. PMID:16547098

  3. Evaluating Leaf and Canopy Reflectance of Stressed Rice Plants to Monitor Arsenic Contamination

    PubMed Central

    Bandaru, Varaprasad; Daughtry, Craig S.; Codling, Eton E.; Hansen, David J.; White-Hansen, Susan; Green, Carrie E.

    2016-01-01

    Arsenic contamination is a serious problem in rice cultivated soils of many developing countries. Hence, it is critical to monitor and control arsenic uptake in rice plants to avoid adverse effects on human health. This study evaluated the feasibility of using reflectance spectroscopy to monitor arsenic in rice plants. Four arsenic levels were induced in hydroponically grown rice plants with application of 0, 5, 10 and 20 µmol·L−1 sodium arsenate. Reflectance spectra of upper fully expanded leaves were acquired over visible and infrared (NIR) wavelengths. Additionally, canopy reflectance for the four arsenic levels was simulated using SAIL (Scattering by Arbitrarily Inclined Leaves) model for various soil moisture conditions and leaf area indices (LAI). Further, sensitivity of various vegetative indices (VIs) to arsenic levels was assessed. Results suggest that plants accumulate high arsenic amounts causing plant stress and changes in reflectance characteristics. All leaf spectra based VIs related strongly with arsenic with coefficient of determination (r2) greater than 0.6 while at canopy scale, background reflectance and LAI confounded with spectral signals of arsenic affecting the VIs’ performance. Among studied VIs, combined index, transformed chlorophyll absorption reflectance index (TCARI)/optimized soil adjusted vegetation index (OSAVI) exhibited higher sensitivity to arsenic levels and better resistance to soil backgrounds and LAI followed by red edge based VIs (modified chlorophyll absorption reflectance index (MCARI) and TCARI) suggesting that these VIs could prove to be valuable aids for monitoring arsenic in rice fields. PMID:27322304

  4. Soil Incorporation of Silica-Rich Rice Husk Decreases Inorganic Arsenic in Rice Grain.

    PubMed

    Seyfferth, Angelia L; Morris, Andrew H; Gill, Rattandeep; Kearns, Kelli A; Mann, Jessica N; Paukett, Michelle; Leskanic, Corey

    2016-05-18

    Arsenic decreases rice yield, and inorganic grain As threatens human health; thus, strategies to decrease rice As are critically needed. Increased plant-available silica (Si) can decrease rice As, yet the source of Si matters. Rice husk, an underutilized and Si-rich byproduct of rice production that contains less labile C and an order of magnitude less As than rice straw, may be an economically viable Si resource to decrease rice As, yet the impact of rice husk incorporation on As in the rice-soil nexus has not been reported. This proof-of-concept study shows that rice husk incorporation to soil (1% w/w) decreases inorganic grain As by 25-50% without negatively affecting grain Cd, yield, or dissolved CH4 levels. Rice husk is a critical yet perhaps overlooked resource to improve soil quality through enhanced nutrient availability and attenuate human health risks through consumption of As-laden grain. PMID:27109244

  5. Carbon and water cycling in flooded and rainfed rice (Oryza Sativa) ecosystem: Disentangling agronomical and ecological aspects of water use efficiency

    NASA Astrophysics Data System (ADS)

    Nay-Htoon, Bhone; Xue, Wei; Dubbert, Maren; Lindner, Steve; Cuntz, Matthias; Ko, Jonghan; Tenhunen, John; Werner, Christiane

    2015-04-01

    Agricultural crops play an important role in the global carbon and water cycling process and there is intense research to understand and predict carbon and water fluxes, productivity and water use of cultivated crops under climate change. Mechanistic understanding of the trade of between ecosystem water use efficiency and agronomic water use efficiency to maintain higher crop yield and productive water loss is necessary for the ecosystem sustainability. . We compared water and carbon fluxes of paddy and rainfed rice by canopy scale gas exchange measurements, crop growth, and daily evapotranspiration, transpiration and carbon flux modeling. According to our findings, evaporation contributed strongly (maximum 100% to minimum 45%) to paddy rice evapotranspiration while transpiration of rainfed is almost 50 % of daily evapotranspiration. Water use efficiency (WUE) was higher in rainfed rice both from an agronomic (WUEagro, i.e. grain yield per evapotranspiration) and ecosystem (WUEeco, i.e. gross primary production per evapotranspiration) perspective. However, rainfed rice showed also high ecosystem respiration losses and a slightly lower crop yield, demonstrating that higher WUE in rainfed rice comes at the expense of higher respiration losses of assimilated carbon and lower plant production, compared to paddy rice. Our results highlighted the need to partition water and carbon fluxes to improve our mechanistic understanding of water use efficiency and environmental impact of different agricultural practices. Keywords: Rainfed rice, Paddy rice, water use efficiency, Transpiration/Evapotranspiration, ecosystem WUE, agronomic WUE, Evapotranspiration

  6. [Effects of increased planting density with reduced nitrogen fertilizer application on rice yield, N use efficiency and greenhouse gas emission in Northeast China].

    PubMed

    Zhu, Xiang-cheng; Zhang, Zhen-ping; Zhang, Jun; Deng, Ai-xing; Zhang, Wei-jian

    2016-02-01

    The traditional rice growing practice has to change to save resource and protect environment, and it' s necessary to develop new technology in rice cultivation. Therefore, a two-year field experiment of Japonica rice (Liaoxing 1) was conducted in Northeast China in 2012 and 2013 to investigate the integrated effects of dense planting with less basal nitrogen (N) and unchanged top-dressing N (IR) on rice yield, N use efficiency (NUE) and greenhouse gas emissions. Compared with traditional practice (CK), we increased the rice seedling density by 33.3% and reduced the basal N rate by 20%. The results showed that the average N agronomy efficiency and partial factor productivity were improved by 49.6% (P<0.05) and 20.4% (P<0.05), respectively, while the area and yield-scaled greenhouse gas emissions were reduced by 9.9% and 12.7% (P<0.05), respectively. Although IR cropping mode decreased panicle number and biomass production, it significantly enhanced rice seed setting rate and harvest index, resulting in an unchanged or even highei yield. NH4+-N and NO3(-)-N concentrations in rice rhizosphere soil were reduced, resulting in an increment of N recovery efficiency. Generally, proper dense planting with less basal N applicatior could be a good approach for the trade-off between rice yield, NUE and greenhouse gas emission. PMID:27396117

  7. [Effects of increased planting density with reduced nitrogen fertilizer application on rice yield, N use efficiency and greenhouse gas emission in Northeast China].

    PubMed

    Zhu, Xiang-cheng; Zhang, Zhen-ping; Zhang, Jun; Deng, Ai-xing; Zhang, Wei-jian

    2016-02-01

    The traditional rice growing practice has to change to save resource and protect environment, and it' s necessary to develop new technology in rice cultivation. Therefore, a two-year field experiment of Japonica rice (Liaoxing 1) was conducted in Northeast China in 2012 and 2013 to investigate the integrated effects of dense planting with less basal nitrogen (N) and unchanged top-dressing N (IR) on rice yield, N use efficiency (NUE) and greenhouse gas emissions. Compared with traditional practice (CK), we increased the rice seedling density by 33.3% and reduced the basal N rate by 20%. The results showed that the average N agronomy efficiency and partial factor productivity were improved by 49.6% (P<0.05) and 20.4% (P<0.05), respectively, while the area and yield-scaled greenhouse gas emissions were reduced by 9.9% and 12.7% (P<0.05), respectively. Although IR cropping mode decreased panicle number and biomass production, it significantly enhanced rice seed setting rate and harvest index, resulting in an unchanged or even highei yield. NH4+-N and NO3(-)-N concentrations in rice rhizosphere soil were reduced, resulting in an increment of N recovery efficiency. Generally, proper dense planting with less basal N applicatior could be a good approach for the trade-off between rice yield, NUE and greenhouse gas emission.

  8. A comparison of methane emissions following rice paddies conversion to crab-fish farming wetlands in southeast China.

    PubMed

    Hu, Zhiqiang; Wu, Shuang; Ji, Cheng; Zou, Jianwen; Zhou, Quansuo; Liu, Shuwei

    2016-01-01

    Rice paddies and aquaculture wetlands are typical agricultural wetlands that constitute one of the important sources of atmospheric methane (CH4). Traditional transplanted rice paddies have been experiencing conversion to pond aquaculture wetlands for pursuing higher economic benefits over the past decades in southeast China. A parallel field experiment was carried out to compare CH4 emissions from a transplanted rice paddy and its converted crab-fish farming wetland in southeast China. Over the rice-growing season, CH4 fluxes averaged 1.86 mg m(-2) h(-1) from rice paddies, and 1.14 and 0.50 mg m(-2) h(-1) for the treatments with or without aquatic vegetation present in the crab-fish farming wetlands, respectively. When averaged across the treatments, seasonal CH4 emissions from crab-fish framing wetlands were 52% lower than those from rice paddies. The CH4 fluxes were negatively related to water dissolved oxygen (DO) concentration but positively related to soil/sediment dissolved organic carbon (DOC) content in crab-fish farming wetlands. Dependence of CH4 fluxes on DO or DOC was intensified by the aquatic vegetation presence. By extrapolating the present CH4 emission rate with the current rice paddy-converted aquaculture cultivation area, the seasonal CH4 emissions from inland aquaculture wetlands during the critical farming stage (20 June to 18 October) were estimated to be 33.6 Gg ha(-1) in southeast China in 2012. Rice paddies conversion to crab-fish farming wetlands might have reduced CH4 emissions by 22-54% in mainland China. Results of this study suggest that the conversion of transplanted rice paddies to crab-fish aquaculture wetlands for higher economic benefits would also lead to a lower ecosystem CH4 release rate.

  9. The estimation of rice paddy yield with GRAMI crop model and Geostationary Ocean Color Imager (GOCI) image over South Korea

    NASA Astrophysics Data System (ADS)

    Yeom, J. M.; Kim, H. O.

    2014-12-01

    In this study, we estimated the rice paddy yield with moderate geostationary satellite based vegetation products and GRAMI model over South Korea. Rice is the most popular staple food for Asian people. In addition, the effects of climate change are getting stronger especially in Asian region, where the most of rice are cultivated. Therefore, accurate and timely prediction of rice yield is one of the most important to accomplish food security and to prepare natural disasters such as crop defoliation, drought, and pest infestation. In the present study, GOCI, which is world first Geostationary Ocean Color Image, was used for estimating temporal vegetation indices of the rice paddy by adopting atmospheric correction BRDF modeling. For the atmospheric correction with LUT method based on Second Simulation of the Satellite Signal in the Solar Spectrum (6S), MODIS atmospheric products such as MOD04, MOD05, MOD07 from NASA's Earth Observing System Data and Information System (EOSDIS) were used. In order to correct the surface anisotropy effect, Ross-Thick Li-Sparse Reciprocal (RTLSR) BRDF model was performed at daily basis with 16day composite period. The estimated multi-temporal vegetation images was used for crop classification by using high resolution satellite images such as Rapideye, KOMPSAT-2 and KOMPSAT-3 to extract the proportional rice paddy area in corresponding a pixel of GOCI. In the case of GRAMI crop model, initial conditions are determined by performing every 2 weeks field works at Chonnam National University, Gwangju, Korea. The corrected GOCI vegetation products were incorporated with GRAMI model to predict rice yield estimation. The predicted rice yield was compared with field measurement of rice yield.

  10. Evidence for divergence of response in Indica, Japonica, and wild rice to high CO2 × temperature interaction.

    PubMed

    Wang, Diane R; Bunce, James A; Tomecek, Martha B; Gealy, David; McClung, Anna; McCouch, Susan R; Ziska, Lewis H

    2016-07-01

    High CO2 and high temperature have an antagonistic interaction effect on rice yield potential and present a unique challenge to adapting rice to projected future climates. Understanding how the differences in response to these two abiotic variables are partitioned across rice germplasm accessions may be key to identifying potentially useful sources of resilient alleles for adapting rice to climate change. In this study, we evaluated eleven globally diverse rice accessions under controlled conditions at two carbon dioxide concentrations (400 and 600 ppm) and four temperature environments (29 °C day/21 °C night; 29 °C day/21 °C night with additional heat stress at anthesis; 34 °C day/26 °C night; and 34 °C day/26 °C night with additional heat stress at anthesis) for a suite of traits including five yield components, five growth characteristics, one phenological trait, and four photosynthesis-related measurements. Multivariate analyses of mean trait data from these eight treatments divide our rice panel into two primary groups consistent with the genetic classification of INDICA/INDICA-like and JAPONICA populations. Overall, we find that the productivity of plants grown under elevated [CO2 ] was more sensitive (negative response) to high temperature stress compared with that of plants grown under ambient [CO2 ] across this diversity panel. We report differential response to CO2 × temperature interaction for INDICA/INDICA-like and JAPONICA rice accessions and find preliminary evidence for the beneficial introduction of exotic alleles into cultivated rice genomic background. Overall, these results support the idea of using wild or currently unadapted gene pools in rice to enhance breeding efforts to secure future climate change adaptation.

  11. A comparison of methane emissions following rice paddies conversion to crab-fish farming wetlands in southeast China.

    PubMed

    Hu, Zhiqiang; Wu, Shuang; Ji, Cheng; Zou, Jianwen; Zhou, Quansuo; Liu, Shuwei

    2016-01-01

    Rice paddies and aquaculture wetlands are typical agricultural wetlands that constitute one of the important sources of atmospheric methane (CH4). Traditional transplanted rice paddies have been experiencing conversion to pond aquaculture wetlands for pursuing higher economic benefits over the past decades in southeast China. A parallel field experiment was carried out to compare CH4 emissions from a transplanted rice paddy and its converted crab-fish farming wetland in southeast China. Over the rice-growing season, CH4 fluxes averaged 1.86 mg m(-2) h(-1) from rice paddies, and 1.14 and 0.50 mg m(-2) h(-1) for the treatments with or without aquatic vegetation present in the crab-fish farming wetlands, respectively. When averaged across the treatments, seasonal CH4 emissions from crab-fish framing wetlands were 52% lower than those from rice paddies. The CH4 fluxes were negatively related to water dissolved oxygen (DO) concentration but positively related to soil/sediment dissolved organic carbon (DOC) content in crab-fish farming wetlands. Dependence of CH4 fluxes on DO or DOC was intensified by the aquatic vegetation presence. By extrapolating the present CH4 emission rate with the current rice paddy-converted aquaculture cultivation area, the seasonal CH4 emissions from inland aquaculture wetlands during the critical farming stage (20 June to 18 October) were estimated to be 33.6 Gg ha(-1) in southeast China in 2012. Rice paddies conversion to crab-fish farming wetlands might have reduced CH4 emissions by 22-54% in mainland China. Results of this study suggest that the conversion of transplanted rice paddies to crab-fish aquaculture wetlands for higher economic benefits would also lead to a lower ecosystem CH4 release rate. PMID:26374545

  12. Rice scene radiation research plan

    NASA Technical Reports Server (NTRS)

    Heilman, J.

    1982-01-01

    Data requirements, tasks to be accomplished, and the technical approaches to be used in identifying the characteristics of rice for crop inventories are listed as well as methods for estimating crop development and assessing its conditions.

  13. Rice Reoviruses in Insect Vectors.

    PubMed

    Wei, Taiyun; Li, Yi

    2016-08-01

    Rice reoviruses, transmitted by leafhopper or planthopper vectors in a persistent propagative manner, seriously threaten the stability of rice production in Asia. Understanding the mechanisms that enable viral transmission by insect vectors is a key to controlling these viral diseases. This review describes current understanding of replication cycles of rice reoviruses in vector cell lines, transmission barriers, and molecular determinants of vector competence and persistent infection. Despite recent breakthroughs, such as the discoveries of actin-based tubule motility exploited by viruses to overcome transmission barriers and mutually beneficial relationships between viruses and bacterial symbionts, there are still many gaps in our knowledge of transmission mechanisms. Advances in genome sequencing, reverse genetics systems, and molecular technologies will help to address these problems. Investigating the multiple interaction systems among the virus, insect vector, insect symbiont, and plant during natural infection in the field is a central topic for future research on rice reoviruses. PMID:27296147

  14. Suitability analysis for rice growing sites using a multicriteria evaluation and GIS approach in great Mwea region, Kenya.

    PubMed

    Kihoro, Joseph; Bosco, Njoroge J; Murage, Hunja

    2013-12-01

    Land suitability analysis is a prerequisite to achieving optimum utilization of the available land resources. Lack of knowledge on best combination of factors that suit production of rice has contributed to the low production. The aim of this study was to develop a suitability map for rice crop based on physical and climatic factors of production using a Multi-Criteria Evaluation (MCE) & GIS approach. The study was carried out in Kirinyaga, Embu and Mberee counties in Kenya. Biophysical variables of soil, climate and topography were considered for suitability analysis. All data were stored in ArcGIS 9.3 environment and the factor maps were generated. For MCE, Pairwise Comparison Matrix was applied and the suitable areas for rice crop were generated and graduated. The current land cover map of the area was developed from a scanned survey map of the rice growing areas. According to the present land cover map, the rice cultivated area was 13,369 ha. Finally, we overlaid the land cover map with the suitability map to identify variances between the present and potential land use. The crop-land evaluation results of the present study showed that, 75% of total area currently being used was under highly suitable areas and 25% was under moderately suitable areas. The results showed that the potential area for rice growing is 86,364 ha and out of this only 12% is under rice cultivation. This research provided information at local level that could be used by farmers to select cropping patterns and suitability.

  15. Suitability analysis for rice growing sites using a multicriteria evaluation and GIS approach in great Mwea region, Kenya.

    PubMed

    Kihoro, Joseph; Bosco, Njoroge J; Murage, Hunja

    2013-12-01

    Land suitability analysis is a prerequisite to achieving optimum utilization of the available land resources. Lack of knowledge on best combination of factors that suit production of rice has contributed to the low production. The aim of this study was to develop a suitability map for rice crop based on physical and climatic factors of production using a Multi-Criteria Evaluation (MCE) & GIS approach. The study was carried out in Kirinyaga, Embu and Mberee counties in Kenya. Biophysical variables of soil, climate and topography were considered for suitability analysis. All data were stored in ArcGIS 9.3 environment and the factor maps were generated. For MCE, Pairwise Comparison Matrix was applied and the suitable areas for rice crop were generated and graduated. The current land cover map of the area was developed from a scanned survey map of the rice growing areas. According to the present land cover map, the rice cultivated area was 13,369 ha. Finally, we overlaid the land cover map with the suitability map to identify variances between the present and potential land use. The crop-land evaluation results of the present study showed that, 75% of total area currently being used was under highly suitable areas and 25% was under moderately suitable areas. The results showed that the potential area for rice growing is 86,364 ha and out of this only 12% is under rice cultivation. This research provided information at local level that could be used by farmers to select cropping patterns and suitability. PMID:23888264

  16. Storage stability of flour-blasted brown rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brown rice was blasted with rice flour rather than sand in a sand blaster to make microscopic nicks and cuts so that water can easily penetrate into the brown rice endosperm and cook the rice in a shorter time. The flour-blasted American Basmati brown rice, long grain brown rice, and parboiled long...

  17. African-Americans and Alzheimer's

    MedlinePlus

    ... Share Plus on Google Plus African-Americans and Alzheimer's alz.org | IHaveAlz Introduction 10 Warning Signs Brain ... African-Americans are at a higher risk for Alzheimer's disease. Many Americans dismiss the warning signs of ...

  18. Improving Lowland Rice (O. sativa L. cv. MR219) Plant Growth Variables, Nutrients Uptake, and Nutrients Recovery Using Crude Humic Substances.

    PubMed

    Palanivell, Perumal; Ahmed, Osumanu Haruna; Ab Majid, Nik Muhamad; Jalloh, Mohamadu Boyie; Susilawati, Kasim

    2015-01-01

    High cation exchange capacity and organic matter content of crude humic substances from compost could be exploited to reduce ammonia loss from urea and to as well improve rice growth and soil chemical properties for efficient nutrients utilization in lowland rice cultivation. Close-dynamic air flow system was used to determine the effects of crude humic substances on ammonia volatilization. A pot experiment was conducted to determine the effects of crude humic substances on rice plant growth, nutrients uptake, nutrients recovery, and soil chemical properties using an acid soil mixed with three rates of crude humic substances (20, 40, and 60 g pot(-1)). Standard procedures were used to evaluate rice plant dry matter production, nutrients uptake, nutrients recovery, and soil chemical properties. Application of crude humic substances increased ammonia volatilization. However, the lowest rate of crude humic substances (20 g pot(-1)) significantly improved total dry matter, nutrients uptake, nutrients recovery, and soil nutrients availability compared with crude humic substances (40 and 60 g pot(-1)) and the normal fertilization. Apart from improving growth of rice plants, crude humic substances can be used to ameliorate acid soils in rice cultivation. The findings of this study are being validated in our ongoing field trials.

  19. Improving Lowland Rice (O. sativa L. cv. MR219) Plant Growth Variables, Nutrients Uptake, and Nutrients Recovery Using Crude Humic Substances

    PubMed Central

    Palanivell, Perumal; Ahmed, Osumanu Haruna; Ab Majid, Nik Muhamad; Jalloh, Mohamadu Boyie; Susilawati, Kasim

    2015-01-01

    High cation exchange capacity and organic matter content of crude humic substances from compost could be exploited to reduce ammonia loss from urea and to as well improve rice growth and soil chemical properties for efficient nutrients utilization in lowland rice cultivation. Close-dynamic air flow system was used to determine the effects of crude humic substances on ammonia volatilization. A pot experiment was conducted to determine the effects of crude humic substances on rice plant growth, nutrients uptake, nutrients recovery, and soil chemical properties using an acid soil mixed with three rates of crude humic substances (20, 40, and 60 g pot−1). Standard procedures were used to evaluate rice plant dry matter production, nutrients uptake, nutrients recovery, and soil chemical properties. Application of crude humic substances increased ammonia volatilization. However, the lowest rate of crude humic substances (20 g pot−1) significantly improved total dry matter, nutrients uptake, nutrients recovery, and soil nutrients availability compared with crude humic substances (40 and 60 g pot−1) and the normal fertilization. Apart from improving growth of rice plants, crude humic substances can be used to ameliorate acid soils in rice cultivation. The findings of this study are being validated in our ongoing field trials. PMID:25977938

  20. Expansins in deepwater rice internodes

    SciTech Connect

    Cho, Hyung-Taeg; Kende, H.

    1997-04-01

    Cell walls of deepwater rice internodes undergo long-term extension (creep) when placed under tension in acidic buffers. This is indicative of the action of the cell wall-loosening protein expansion. Wall extension had a pH optimum of around 4.0 and was abolished by boiling. Acid-induced extension of boiled cell walls could be reconstituted by addition of salt-extracted rice or cucumber cell wall proteins. Cucumber expansion antibody recognized a single protein band of 24.5-kD apparent molecular mass on immunoblots of rice cell wall proteins. Expansions were partially purified by concanavalin A affinity chromatography and sulfopropyl (SP) cation-exchange chromatography. The latter yielded two peaks with extension activity (SP20 and SP29), and immunoblot analysis showed that both of these active fractions contained expansion of 24.5-kD molecular mass. The N-terminal amino acid sequence of SP20 expansion is identical to that deduced from the rice expansion cDNA Os-EXP1. The N-terminal amino acid sequence of SP29 expansion matches that deduced from the rice expansion cDNA Os-EXP2 in six of eight amino acids. Our results show that two expansions occur in the cell walls of rice internodes and that they may mediate acid-induced wall extension.

  1. Interactive effects of straw-derived biochar and N fertilization on soil C storage and rice productivity in rice paddies of Northeast China.

    PubMed

    Sui, Yanghui; Gao, Jiping; Liu, Caihong; Zhang, Wenzhong; Lan, Yu; Li, Shuhang; Meng, Jun; Xu, Zhengjin; Tang, Liang

    2016-02-15

    Impacts of biochar on greenhouse gas emissions and C sequestration in agricultural soils have been considered as the key to mitigate climate change. There is limited knowledge regarding the effects of rice straw-derived biochar and interaction with N fertilization on soil C sequestration and rice productivity in fertile paddy fields. A 2-year (2013 and 2014) consecutive field trial was performed using straw treatment (5.05 t ha(-1)) and biochar amendment (0, 1.78, 14.8 and 29.6 t ha(-1)) with or without urea application in a rice paddy in Northeast China. A super high yielding rice variety (Oryza sativa L. subsp. Japonica cv. 'Shennong 265') was cultivated with permanent flooding. Results showed that biochar amendments significantly decreased CH4 emissions relative to straw treatment irrespective of N fertilization, especially in N-fertilized soils with 1.78 t ha(-1) biochar. There were no differences in CO2 emissions with respect to biochar amendments, except for 14.8 t ha(-1) biochar with N fertilization. Straw treatment had the highest global warming potential over a 100-year time frame, which was nearly 1.5 times that of 14.8 t ha(-1) biochar amendment without N fertilization. Biochar addition increased total soil C by up to 5.75 mg g(-1) and 11.69 mg g(-1) (with 14.8 and 29.6 t ha(-1) biochar, respectively), whereas straw incorporation increased this value by only 3.92 mg g(-1). The aboveground biomass of rice in biochar-amended soils increased to varying degrees compared with that in straw-treated soils. However, biochar application had no effects on rice yield, regardless of N fertilization. This study indicated that transforming straw to biochar was more stabilized and more suitable to mitigate greenhouse gas emissions and increase C storage in agriculture soils in Northeast China. PMID:26657366

  2. Kennedy at Rice University

    NASA Technical Reports Server (NTRS)

    1962-01-01

    President Kennedy speaks before a crowd of 35,000 people at Rice University in the football field. The following are excerpts from his speech. ' ...We set sail on his new sea because there is a new knowledge to begained, and new rights to be won, and they must be won and used for the progress of all people. Whether it will become a force for good or ill depends on man, and only if the United States occupies a position of pre-eminence can we help decide whether this new ocean will be a sea of peace or a new terrifying theater of war. But I do say space can be explored and mastered without feeding the fires of war, without repeating the mistakes that man has made with extending his wirt around this globe of ours. There is no strife, no prejudice, no national conflict in outer space as yet. Its conquest deserves the best of all mankind, and its opportunity for peaceful cooperation may never come again. But why, some say the Moon? Why choose this as our goal? And they may well ask, why climb the highest mountain? Why 35 years ago why fly the Atlantic? Why does Rice play Texas? We choose to go to the Moon, we choose to go to the moon in this decade and do the other things, not because they are easy, but because they are hard, because that goal will serve to organize and measure the best of our energies and skills, because that challenge is one that we are willing to accept, one we are unwilling to postpone, and one in which we attend to win, and the others , too.'

  3. Kennedy at Rice University

    NASA Technical Reports Server (NTRS)

    1962-01-01

    President Kennedy speaks before a crowd of 35,000 people at Rice University in the football field. The following are excerpts from his speech. ' ...We set sail on his new sea because there is a new knowledge to be gained, and new rights to be won, and they must be won and used for the progress of all people. ...Whether it will become a force for good or ill depends on man, and only if the United States occupies a position of pre-eminence can we help decide whether this new ocean will be a sea of peace or a new terrifying theater of war. But I do say space can be explored and mastered without feeding the fires of war, without repeating the mistakes that man has made with extending his writ around this globe of ours. ...There is no strife, no prejudice, no national conflict in outer space as yet. Its conquest deserves the best of all mankind, and its opportunity for peaceful cooperation may never come again. But why, some say the Moon? Why choose this as our goal? And they may well ask, why climb the highest mountian? Why - 35 years ago - why fly the Atlantic? Why does Rice play Texas? We choose to go to the Moon, we choose to go to the Moon in this decade and do the other things, not because they are easy, but because they are hard, because that goal will serve to organize and measure the best of our energies and skills, because that challenge is one that we are willing to accept, one we are unwilling to postpone, and one in which we intend to win, and the others too.'

  4. Outcrossing potential between U.S. red rice (Oryza sativa) and Chinese indica rice (Oryza sativa) lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Red rice in southern U.S. rice fields remains a widespread, economically challenging problem despite nearly a decade of rice production systems that include true-breeding rice cultivars and indica-derived hybrid rice with resistance to imazethapyr. Both of these herbicide-resistant rice systems hav...

  5. Genetic analysis of atypical U.S. red rice phenotypes: indications of prior gene flow in rice fields?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Red rice is a troublesome weed problem in rice fields of the southern U.S. Outcrossing between rice and red rice occurs at low rates, resulting in a broad array of plant types. SSR markers were used to evaluate the genetic backgrounds of atypical red rice types obtained from rice farms in comparis...

  6. Structure, variation, and assembly of the root-associated microbiomes of rice

    PubMed Central

    Edwards, Joseph; Johnson, Cameron; Santos-Medellín, Christian; Lurie, Eugene; Podishetty, Natraj Kumar; Bhatnagar, Srijak; Eisen, Jonathan A.; Sundaresan, Venkatesan

    2015-01-01

    Plants depend upon beneficial interactions between roots and microbes for nutrient availability, growth promotion, and disease suppression. High-throughput sequencing approaches have provided recent insights into root microbiomes, but our current understanding is still limited relative to animal microbiomes. Here we present a detailed characterization of the root-associated microbiomes of the crop plant rice by deep sequencing, using plants grown under controlled conditions as well as field cultivation at multiple sites. The spatial resolution of the study distinguished three root-associated compartments, the endosphere (root interior), rhizoplane (root surface), and rhizosphere (soil close to the root surface), each of which was found to harbor a distinct microbiome. Under controlled greenhouse conditions, microbiome composition varied with soil source and genotype. In field conditions, geographical location and cultivation practice, namely organic vs. conventional, were factors contributing to microbiome variation. Rice cultivation is a major source of global methane emissions, and methanogenic archaea could be detected in all spatial compartments of field-grown rice. The depth and scale of this study were used to build coabundance networks that revealed potential microbial consortia, some of which were involved in methane cycling. Dynamic changes observed during microbiome acquisition, as well as steady-state compositions of spatial compartments, support a multistep model for root microbiome assembly from soil wherein the rhizoplane plays a selective gating role. Similarities in the distribution of phyla in the root microbiomes of rice and other plants suggest that conclusions derived from this study might be generally applicable to land plants. PMID:25605935

  7. English as an African Language.

    ERIC Educational Resources Information Center

    Desai, Gaurav

    1993-01-01

    Discusses the role of the English language in postcolonial African literature, focusing on the politics of language, "Africanized" English, and the social languages used in Chinua Achebe's novels and concludes that English today is as much an African language as a British or American one. (Contains 37 references.) (MDM)

  8. The Struggles over African Languages

    ERIC Educational Resources Information Center

    Maseko, Pam; Vale, Peter

    2016-01-01

    In this interview, African Language expert Pam Maseko speaks of her own background and her first encounter with culture outside of her mother tongue, isiXhosa. A statistical breakdown of South African languages is provided as background. She discusses Western (originally missionary) codification of African languages and suggests that this approach…

  9. Processing Conditions, Rice Properties, Health and Environment

    PubMed Central

    Roy, Poritosh; Orikasa, Takahiro; Okadome, Hiroshi; Nakamura, Nobutaka; Shiina, Takeo

    2011-01-01

    Rice is the staple food for nearly two-thirds of the world’s population. Food components and environmental load of rice depends on the rice form that is resulted by different processing conditions. Brown rice (BR), germinated brown rice (GBR) and partially-milled rice (PMR) contains more health beneficial food components compared to the well milled rice (WMR). Although the arsenic concentration in cooked rice depends on the cooking methods, parboiled rice (PBR) seems to be relatively prone to arsenic contamination compared to that of untreated rice, if contaminated water is used for parboiling and cooking. A change in consumption patterns from PBR to untreated rice (non-parboiled), and WMR to PMR or BR may conserve about 43–54 million tons of rice and reduce the risk from arsenic contamination in the arsenic prone area. This study also reveals that a change in rice consumption patterns not only supply more food components but also reduces environmental loads. A switch in production and consumption patterns would improve food security where food grains are scarce, and provide more health beneficial food components, may prevent some diseases and ease the burden on the Earth. However, motivation and awareness of the environment and health, and even a nominal incentive may require for a method switching which may help in building a sustainable society. PMID:21776212

  10. Natural rice rhizospheric microbes suppress rice blast infections

    PubMed Central

    2014-01-01

    Background The natural interactions between plant roots and their rhizospheric microbiome are vital to plant fitness, modulating both growth promotion and disease suppression. In rice (Oryza sativa), a globally important food crop, as much as 30% of yields are lost due to blast disease caused by fungal pathogen Magnaporthe oryzae. Capitalizing on the abilities of naturally occurring rice soil bacteria to reduce M. oryzae infections could provide a sustainable solution to reduce the amount of crops lost to blast disease. Results Naturally occurring root-associated rhizospheric bacteria were isolated from California field grown rice plants (M-104), eleven of which were taxonomically identified by16S rRNA gene sequencing and fatty acid methyl ester (FAME) analysis. Bacterial isolates were tested for biocontrol activity against the devastating foliar rice fungal pathogen, M. oryzae pathovar 70–15. In vitro, a Pseudomonas isolate, EA105, displayed antibiosis through reducing appressoria formation by nearly 90% as well as directly inhibiting fungal growth by 76%. Although hydrogen cyanide (HCN) is a volatile commonly produced by biocontrol pseudomonads, the activity of EA105 seems to be independent of its HCN production. During in planta experiments, EA105 reduced the number of blast lesions formed by 33% and Pantoea agglomerans isolate, EA106 by 46%. Our data also show both EA105 and EA106 trigger jasmonic acid (JA) and ethylene (ET) dependent induced systemic resistance (ISR) response in rice. Conclusions Out of 11 bacteria isolated from rice soil, pseudomonad EA105 most effectively inhibited the growth and appressoria formation of M. oryzae through a mechanism that is independent of cyanide production. In addition to direct antagonism, EA105 also appears to trigger ISR in rice plants through a mechanism that is dependent on JA and ET signaling, ultimately resulting in fewer blast lesions. The application of native bacteria as biocontrol agents in combination with

  11. Diversity of global rice markets and the science required for consumer-targeted rice breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With the ever-increasing global demand for high quality rice in both local production regions and with Western consumers, we have a strong desire to understand better the importance of different quality traits that make up the rice grain and obtain a full picture of rice quality demographics. Rice ...

  12. Cattle Manure Enhances Methanogens Diversity and Methane Emissions Compared to Swine Manure under Rice Paddy.

    PubMed

    Kim, Sang Yoon; Pramanik, Prabhat; Bodelier, Paul L E; Kim, Pil Joo

    2014-01-01

    Livestock manures are broadly used in agriculture to improve soil quality. However, manure application can increase the availability of organic carbon, thereby facilitating methane (CH4) production. Cattle and swine manures are expected to have different CH4 emission characteristics in rice paddy soil due to the inherent differences in composition as a result of contrasting diets and digestive physiology between the two livestock types. To compare the effect of ruminant and non-ruminant animal manure applications on CH4 emissions and methanogenic archaeal diversity during rice cultivation (June to September, 2009), fresh cattle and swine manures were applied into experimental pots at 0, 20 and 40 Mg fresh weight (FW) ha-1 in a greenhouse. Applications of manures significantly enhanced total CH4 emissions as compared to chemical fertilization, with cattle manure leading to higher emissions than swine manure. Total organic C contents in cattle (466 g kg-1) and swine (460 g kg-1) manures were of comparable results. Soil organic C (SOC) contents were also similar between the two manure treatments, but dissolved organic C (DOC) was significantly higher in cattle than swine manure. The mcrA gene copy numbers were significantly higher in cattle than swine manure. Diverse groups of methanogens which belong to Methanomicrobiaceae were detected only in cattle-manured but not in swine-manured soil. Methanogens were transferred from cattle manure to rice paddy soils through fresh excrement. In conclusion, cattle manure application can significantly increase CH4 emissions in rice paddy soil during cultivation, and its pretreatment to suppress methanogenic activity without decreasing rice productivity should be considered. PMID:25494364

  13. Geochemical patterns and microbial contribution to iron plaque formation in the rice plant rhizosphere

    NASA Astrophysics Data System (ADS)

    Maisch, Markus; Murata, Chihiro; Unger, Julia; Kappler, Andreas; Schmidt, Caroline

    2015-04-01

    Rice is the major food source for more than half of the world population and 80 percent of the worldwide rice cultivation is performed on water logged paddy soils. The establishment of reducing conditions in the soil and across the soil-water interface not only stimulates the microbial production and release of the greenhouse gas methane. These settings also create optimal conditions for microbial iron(III) reduction and therefore saturate the system with reduced ferrous iron. Through the reduction and dissolution of ferric minerals that are characterized by their high surface activity, sorbed nutrients and contaminants (e.g. arsenic) will be mobilized and are thus available for uptake by plants. Rice plants have evolved a strategy to release oxygen from their roots in order to prevent iron toxification in highly ferrous environments. The release of oxygen to the reduced paddy soil causes ferric iron plaque formation on the rice roots and finally increases the sorption capacity for toxic metals. To this date the geochemical and microbiological processes that control the formation of iron plaque are not deciphered. It has been hypothesized that iron(II)-oxidizing bacteria play a potential role in the iron(III) mineral formation along the roots. However, not much is known about the actual processes, mineral products, and geochemical gradients that establish within the rhizosphere. In the present study we have developed a growth set-up that allows the co-cultivation of rice plants and iron(II)-oxidizing bacteria, as well as the visual observation and in situ measurement of geochemical parameters. Oxygen and dissolved iron(II) gradients have been measured using microelectrodes and show geochemical hot spots that offer optimal growth conditions for microaerophilic iron(II) oxidizers. First mineral identification attempts of iron plaque have been performed using Mössbauer spectroscopy and microscopy. The obtained results on mineraology and crystallinity have been

  14. Cattle Manure Enhances Methanogens Diversity and Methane Emissions Compared to Swine Manure under Rice Paddy

    PubMed Central

    Kim, Sang Yoon; Pramanik, Prabhat; Bodelier, Paul L. E.; Kim, Pil Joo

    2014-01-01

    Livestock manures are broadly used in agriculture to improve soil quality. However, manure application can increase the availability of organic carbon, thereby facilitating methane (CH4) production. Cattle and swine manures are expected to have different CH4 emission characteristics in rice paddy soil due to the inherent differences in composition as a result of contrasting diets and digestive physiology between the two livestock types. To compare the effect of ruminant and non-ruminant animal manure applications on CH4 emissions and methanogenic archaeal diversity during rice cultivation (June to September, 2009), fresh cattle and swine manures were applied into experimental pots at 0, 20 and 40 Mg fresh weight (FW) ha−1 in a greenhouse. Applications of manures significantly enhanced total CH4 emissions as compared to chemical fertilization, with cattle manure leading to higher emissions than swine manure. Total organic C contents in cattle (466 g kg−1) and swine (460 g kg−1) manures were of comparable results. Soil organic C (SOC) contents were also similar between the two manure treatments, but dissolved organic C (DOC) was significantly higher in cattle than swine manure. The mcrA gene copy numbers were significantly higher in cattle than swine manure. Diverse groups of methanogens which belong to Methanomicrobiaceae were detected only in cattle-manured but not in swine-manured soil. Methanogens were transferred from cattle manure to rice paddy soils through fresh excrement. In conclusion, cattle manure application can significantly increase CH4 emissions in rice paddy soil during cultivation, and its pretreatment to suppress methanogenic activity without decreasing rice productivity should be considered. PMID:25494364

  15. The Genetic Structure and History of Africans and African Americans

    PubMed Central

    Tishkoff, Sarah A.; Reed, Floyd A.; Friedlaender, Françoise R.; Ehret, Christopher; Ranciaro, Alessia; Froment, Alain; Hirbo, Jibril B.; Awomoyi, Agnes A.; Bodo, Jean-Marie; Doumbo, Ogobara; Ibrahim, Muntaser; Juma, Abdalla T.; Kotze, Maritha J.; Lema, Godfrey; Moore, Jason H.; Mortensen, Holly; Nyambo, Thomas B.; Omar, Sabah A.; Powell, Kweli; Pretorius, Gideon S.; Smith, Michael W.; Thera, Mahamadou A.; Wambebe, Charles; Weber, James L.; Williams, Scott M.

    2010-01-01

    Africa is the source of all modern humans, but characterization of genetic variation and of relationships among populations across the continent has been enigmatic. We studied 121 African populations, four African American populations, and 60 non-African populations for patterns of variation at 1327 nuclear microsatellite and insertion/deletion markers. We identified 14 ancestral population clusters in Africa that correlate with self-described ethnicity and shared cultural and/or linguistic properties. We observed high levels of mixed ancestry in most populations, reflecting historical migration events across the continent. Our data also provide evidence for shared ancestry among geographically diverse hunter-gatherer populations (Khoesan speakers and Pygmies). The ancestry of African Americans is predominantly from Niger-Kordofanian (~71%), European (~13%), and other African (~8%) populations, although admixture levels varied considerably among individuals. This study helps tease apart the complex evolutionary history of Africans and African Americans, aiding both anthropological and genetic epidemiologic studies. PMID:19407144

  16. Extensive sequence divergence between the reference genomes of two elite indica rice varieties Zhenshan 97 and Minghui 63.

    PubMed

    Zhang, Jianwei; Chen, Ling-Ling; Xing, Feng; Kudrna, David A; Yao, Wen; Copetti, Dario; Mu, Ting; Li, Weiming; Song, Jia-Ming; Xie, Weibo; Lee, Seunghee; Talag, Jayson; Shao, Lin; An, Yue; Zhang, Chun-Liu; Ouyang, Yidan; Sun, Shuai; Jiao, Wen-Biao; Lv, Fang; Du, Bogu; Luo, Meizhong; Maldonado, Carlos Ernesto; Goicoechea, Jose Luis; Xiong, Lizhong; Wu, Changyin; Xing, Yongzhong; Zhou, Dao-Xiu; Yu, Sibin; Zhao, Yu; Wang, Gongwei; Yu, Yeisoo; Luo, Yijie; Zhou, Zhi-Wei; Hurtado, Beatriz Elena Padilla; Danowitz, Ann; Wing, Rod A; Zhang, Qifa

    2016-08-30

    Asian cultivated rice consists of two subspecies: Oryza sativa subsp. indica and O. sativa subsp. japonica Despite the fact that indica rice accounts for over 70% of total rice production worldwide and is genetically much more diverse, a high-quality reference genome for indica rice has yet to be published. We conducted map-based sequencing of two indica rice lines, Zhenshan 97 (ZS97) and Minghui 63 (MH63), which represent the two major varietal groups of the indica subspecies and are the parents of an elite Chinese hybrid. The genome sequences were assembled into 237 (ZS97) and 181 (MH63) contigs, with an accuracy >99.99%, and covered 90.6% and 93.2% of their estimated genome sizes. Comparative analyses of these two indica genomes uncovered surprising structural differences, especially with respect to inversions, translocations, presence/absence variations, and segmental duplications. Approximately 42% of nontransposable element related genes were identical between the two genomes. Transcriptome analysis of three tissues showed that 1,059-2,217 more genes were expressed in the hybrid than in the parents and that the expressed genes in the hybrid were much more diverse due to their divergence between the parental genomes. The public availability of two high-quality reference genomes for the indica subspecies of rice will have large-ranging implications for plant biology and crop genetic improvement. PMID:27535938

  17. Extensive sequence divergence between the reference genomes of two elite indica rice varieties Zhenshan 97 and Minghui 63.

    PubMed

    Zhang, Jianwei; Chen, Ling-Ling; Xing, Feng; Kudrna, David A; Yao, Wen; Copetti, Dario; Mu, Ting; Li, Weiming; Song, Jia-Ming; Xie, Weibo; Lee, Seunghee; Talag, Jayson; Shao, Lin; An, Yue; Zhang, Chun-Liu; Ouyang, Yidan; Sun, Shuai; Jiao, Wen-Biao; Lv, Fang; Du, Bogu; Luo, Meizhong; Maldonado, Carlos Ernesto; Goicoechea, Jose Luis; Xiong, Lizhong; Wu, Changyin; Xing, Yongzhong; Zhou, Dao-Xiu; Yu, Sibin; Zhao, Yu; Wang, Gongwei; Yu, Yeisoo; Luo, Yijie; Zhou, Zhi-Wei; Hurtado, Beatriz Elena Padilla; Danowitz, Ann; Wing, Rod A; Zhang, Qifa

    2016-08-30

    Asian cultivated rice consists of two subspecies: Oryza sativa subsp. indica and O. sativa subsp. japonica Despite the fact that indica rice accounts for over 70% of total rice production worldwide and is genetically much more diverse, a high-quality reference genome for indica rice has yet to be published. We conducted map-based sequencing of two indica rice lines, Zhenshan 97 (ZS97) and Minghui 63 (MH63), which represent the two major varietal groups of the indica subspecies and are the parents of an elite Chinese hybrid. The genome sequences were assembled into 237 (ZS97) and 181 (MH63) contigs, with an accuracy >99.99%, and covered 90.6% and 93.2% of their estimated genome sizes. Comparative analyses of these two indica genomes uncovered surprising structural differences, especially with respect to inversions, translocations, presence/absence variations, and segmental duplications. Approximately 42% of nontransposable element related genes were identical between the two genomes. Transcriptome analysis of three tissues showed that 1,059-2,217 more genes were expressed in the hybrid than in the parents and that the expressed genes in the hybrid were much more diverse due to their divergence between the parental genomes. The public availability of two high-quality reference genomes for the indica subspecies of rice will have large-ranging implications for plant biology and crop genetic improvement.

  18. Extensive sequence divergence between the reference genomes of two elite indica rice varieties Zhenshan 97 and Minghui 63

    PubMed Central

    Zhang, Jianwei; Chen, Ling-Ling; Xing, Feng; Kudrna, David A.; Yao, Wen; Copetti, Dario; Mu, Ting; Li, Weiming; Song, Jia-Ming; Lee, Seunghee; Talag, Jayson; Shao, Lin; An, Yue; Zhang, Chun-Liu; Ouyang, Yidan; Sun, Shuai; Jiao, Wen-Biao; Lv, Fang; Du, Bogu; Luo, Meizhong; Maldonado, Carlos Ernesto; Goicoechea, Jose Luis; Xiong, Lizhong; Wu, Changyin; Xing, Yongzhong; Zhou, Dao-Xiu; Yu, Sibin; Zhao, Yu; Wang, Gongwei; Yu, Yeisoo; Luo, Yijie; Zhou, Zhi-Wei; Hurtado, Beatriz Elena Padilla; Danowitz, Ann; Wing, Rod A.; Zhang, Qifa

    2016-01-01

    Asian cultivated rice consists of two subspecies: Oryza sativa subsp. indica and O. sativa subsp. japonica. Despite the fact that indica rice accounts for over 70% of total rice production worldwide and is genetically much more diverse, a high-quality reference genome for indica rice has yet to be published. We conducted map-based sequencing of two indica rice lines, Zhenshan 97 (ZS97) and Minghui 63 (MH63), which represent the two major varietal groups of the indica subspecies and are the parents of an elite Chinese hybrid. The genome sequences were assembled into 237 (ZS97) and 181 (MH63) contigs, with an accuracy >99.99%, and covered 90.6% and 93.2% of their estimated genome sizes. Comparative analyses of these two indica genomes uncovered surprising structural differences, especially with respect to inversions, translocations, presence/absence variations, and segmental duplications. Approximately 42% of nontransposable element related genes were identical between the two genomes. Transcriptome analysis of three tissues showed that 1,059–2,217 more genes were expressed in the hybrid than in the parents and that the expressed genes in the hybrid were much more diverse due to their divergence between the parental genomes. The public availability of two high-quality reference genomes for the indica subspecies of rice will have large-ranging implications for plant biology and crop genetic improvement. PMID:27535938

  19. Association Mapping for Important Agronomic Traits in Core Collection of Rice (Oryza sativa L.) with SSR Markers

    PubMed Central

    Zhang, Peng; Liu, Xiangdong; Tong, Hanhua; Lu, Yonggen; Li, Jinquan

    2014-01-01

    Mining elite genes within rice landraces is of importance for the improvement of cultivated rice. An association mapping for 12 agronomic traits was carried out using a core collection of rice consisting of 150 landraces (Panel 1) with 274 simple sequence repeat (SSR) markers, and the mapping results were further verified using a Chinese national rice micro-core collection (Panel 2) and a collection from a global molecular breeding program (Panel 3). Our results showed that (1) 76 significant (P<0.05) trait-marker associations were detected using mixed linear model (MLM) within Panel 1 in two years, among which 32% were identical with previously mapped QTLs, and 11 significant associations had >10% explained ratio of genetic variation; (2) A total of seven aforementioned trait-marker associations were verified within Panel 2 and 3 when using a general linear model (GLM) and 55 SSR markers of the 76 significant trait-marker associations. However, no significant trait-marker association was found to be identical within three panels when using the MLM model; (3) several desirable alleles of the loci which showed significant trait-marker associations were identified. The research provided important information for further mining these elite genes within rice landraces and using them for rice breeding. PMID:25360796

  20. Dynamics of Seed-Borne Rice Endophytes on Early Plant Growth Stages

    PubMed Central

    Hardoim, Pablo R.; Hardoim, Cristiane C. P.; van Overbeek, Leonard S.; van Elsas, Jan Dirk

    2012-01-01

    Bacterial endophytes are ubiquitous to virtually all terrestrial plants. With the increasing appreciation of studies that unravel the mutualistic interactions between plant and microbes, we increasingly value the beneficial functions of endophytes that improve plant growth and development. However, still little is known on the source of established endophytes as well as on how plants select specific microbial communities to establish associations. Here, we used cultivation-dependent and -independent approaches to assess the endophytic bacterrial community of surface-sterilized rice seeds, encompassing two consecutive rice generations. We isolated members of nine bacterial genera. In particular, organisms affiliated with Stenotrophomonas maltophilia and Ochrobactrum spp. were isolated from both seed generations. PCR-based denaturing gradient gel electrophoresis (PCR-DGGE) of seed-extracted DNA revealed that approximately 45% of the bacterial community from the first seed generation was found in the second generation as well. In addition, we set up a greenhouse experiment to investigate abiotic and biotic factors influencing the endophytic bacterial community structure. PCR-DGGE profiles performed with DNA extracted from different plant parts showed that soil type is a major effector of the bacterial endophytes. Rice plants cultivated in neutral-pH soil favoured the growth of seed-borne Pseudomonas oryzihabitans and Rhizobium radiobacter, whereas Enterobacter-like and Dyella ginsengisoli were dominant in plants cultivated in low-pH soil. The seed-borne Stenotrophomonas maltophilia was the only conspicuous bacterial endophyte found in plants cultivated in both soils. Several members of the endophytic community originating from seeds were observed in the rhizosphere and surrounding soils. Their impact on the soil community is further discussed. PMID:22363438

  1. Dynamics of seed-borne rice endophytes on early plant growth stages.

    PubMed

    Hardoim, Pablo R; Hardoim, Cristiane C P; van Overbeek, Leonard S; van Elsas, Jan Dirk

    2012-01-01

    Bacterial endophytes are ubiquitous to virtually all terrestrial plants. With the increasing appreciation of studies that unravel the mutualistic interactions between plant and microbes, we increasingly value the beneficial functions of endophytes that improve plant growth and development. However, still little is known on the source of established endophytes as well as on how plants select specific microbial communities to establish associations. Here, we used cultivation-dependent and -independent approaches to assess the endophytic bacterrial community of surface-sterilized rice seeds, encompassing two consecutive rice generations. We isolated members of nine bacterial genera. In particular, organisms affiliated with Stenotrophomonas maltophilia and Ochrobactrum spp. were isolated from both seed generations. PCR-based denaturing gradient gel electrophoresis (PCR-DGGE) of seed-extracted DNA revealed that approximately 45% of the bacterial community from the first seed generation was found in the second generation as well. In addition, we set up a greenhouse experiment to investigate abiotic and biotic factors influencing the endophytic bacterial community structure. PCR-DGGE profiles performed with DNA extracted from different plant parts showed that soil type is a major effector of the bacterial endophytes. Rice plants cultivated in neutral-pH soil favoured the growth of seed-borne Pseudomonas oryzihabitans and Rhizobium radiobacter, whereas Enterobacter-like and Dyella ginsengisoli were dominant in plants cultivated in low-pH soil. The seed-borne Stenotrophomonas maltophilia was the only conspicuous bacterial endophyte found in plants cultivated in both soils. Several members of the endophytic community originating from seeds were observed in the rhizosphere and surrounding soils. Their impact on the soil community is further discussed.

  2. Dynamics of seed-borne rice endophytes on early plant growth stages.

    PubMed

    Hardoim, Pablo R; Hardoim, Cristiane C P; van Overbeek, Leonard S; van Elsas, Jan Dirk

    2012-01-01

    Bacterial endophytes are ubiquitous to virtually all terrestrial plants. With the increasing appreciation of studies that unravel the mutualistic interactions between plant and microbes, we increasingly value the beneficial functions of endophytes that improve plant growth and development. However, still little is known on the source of established endophytes as well as on how plants select specific microbial communities to establish associations. Here, we used cultivation-dependent and -independent approaches to assess the endophytic bacterrial community of surface-sterilized rice seeds, encompassing two consecutive rice generations. We isolated members of nine bacterial genera. In particular, organisms affiliated with Stenotrophomonas maltophilia and Ochrobactrum spp. were isolated from both seed generations. PCR-based denaturing gradient gel electrophoresis (PCR-DGGE) of seed-extracted DNA revealed that approximately 45% of the bacterial community from the first seed generation was found in the second generation as well. In addition, we set up a greenhouse experiment to investigate abiotic and biotic factors influencing the endophytic bacterial community structure. PCR-DGGE profiles performed with DNA extracted from different plant parts showed that soil type is a major effector of the bacterial endophytes. Rice plants cultivated in neutral-pH soil favoured the growth of seed-borne Pseudomonas oryzihabitans and Rhizobium radiobacter, whereas Enterobacter-like and Dyella ginsengisoli were dominant in plants cultivated in low-pH soil. The seed-borne Stenotrophomonas maltophilia was the only conspicuous bacterial endophyte found in plants cultivated in both soils. Several members of the endophytic community originating from seeds were observed in the rhizosphere and surrounding soils. Their impact on the soil community is further discussed. PMID:22363438

  3. The Other African Americans.

    ERIC Educational Resources Information Center

    Matory, J. Lorand

    Black North America is ethnically and culturally diverse. It contains many groups who do not call themselves or have not always called themselves "Negro,""Black,""African-American," and so forth, such as Louisiana Creoles of color and many of the Indian tribes east of the Mississippi. There are also numerous North American ethnic groups of African…

  4. African Oral Tradition Literacy.

    ERIC Educational Resources Information Center

    Green, Doris

    1985-01-01

    Presents the basic principles of two systems for notating African music and dance: Labanotation (created to record and analyze movements) and Greenotation (created to notate musical instruments of Africa and to parallel Labanotation whereby both music and dance are incorporated into one integrated score). (KH)

  5. Elective: African Literature.

    ERIC Educational Resources Information Center

    Jenkins, Kenneth V.

    The make-up of a course in African literature for high school students is discussed. It is pointed out that the course can be constructed on already familiar lines. High school students will be able to describe clearly, for example, the relationship between environment and character or the dilemma of characters caught between traditional values…

  6. Music Videos and Sexual Risk in African American Adolescent Girls: Gender, Power and the Need for Media Literacy

    ERIC Educational Resources Information Center

    Robillard, Alyssa

    2012-01-01

    Background: Music videos contain sexual content often reflecting women as promiscuous, submissive, or passive. Few studies have examined gender- and sex-related attitudes in African American females, particularly across genres of music videos. Purpose: Using constructs from Cultivation Theory, Theory of Gender and Power and Social Cognitive…

  7. Rice aroma and flavor: a literature review.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aroma and flavor of cooked rice are major criteria for preference among consumers. Small variations in these sensory properties can make rice highly desired or unacceptable to consumers. Human sensory analyses have identified over a dozen different aromas and flavors in rice. Instrumental ana...

  8. New market opportunities for rice grains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Breeding efforts for rice have been focusing on increasing yield and improving quality (milling yield and grain quality), while maintaining cooked rice sensory properties to meet consumer preferences. These breeding targets will no doubt continue as the main foci for the rice industry. However, the ...

  9. Seaweed cultivation for renewable resources

    SciTech Connect

    Bird, K.T.; Benson, P.H.

    1987-01-01

    In the 1970's and 80's, major research and development programs were launched to explore the possibility of using marine biomass as a source of energy. This volume, not only reviews the accomplishments of the aforementioned programs, but also describes how this research relates to seaweed cultivation for other products, such as food, feed, and high value chemicals. Topics covered include the features of marine biomass production, biotechnological manipulations of marine algae, and marine biomass conversion to energy, as well as economics. The chapters synthesize a large number of technical reports, journal articles, symposia and conference proceedings and technology transfer meetings.

  10. Reducing CH4 emission from rice paddy fields by altering water management

    NASA Astrophysics Data System (ADS)

    Sudo, S.; Itoh, M.

    2010-12-01

    Percentage of atmospheric methane emitted form rice paddy is estimated at 60Tg/yr (20 - 100Tg/yr) which is near 10% of total global methane emission of 535Tg/yr (410 - 660Tg) (IPCC(1995), and which is near 30% of anthropogenic CH4 emission. Thus, mitigation of CH4 emission is urgently required. CH4 in paddy soil is emanated by the activities of anaerobic bacteria which is called methane producer through reduction of CO2 or decomposition of acetic acid, and it is transported to atmosphere through soil or paddy water surface. It is effective to control methane emission from rice paddy that period is extended on intermittent drainage, composted rice straw is incorporated as fertilizer instead of flesh one, or other. However, empirical approach of these kinds of experiments had not been sufficient because such a kind of experiment required significant times and efforts. In this study, we conducted demonstrative experiments to verify the effects of water management method differences in order to reduce CH4 emission from rice paddy at 9 experimental sites in 8 prefectures. In this, we used new gas analyzer which can measure CH4, CO2 and N2O at once developed by National Institute for Agro-Environmental Sciences (NIAES), Japan. In this report, we show the results in two years of this study. 'Nakaboshi' (mid-season-drainage) is one of cultivation methods in rice paddy that surface water in paddy field is once drained for about 10 days and the field is maintained like upland field to give adequate stress to rice plant for better harvest qualities and yields. Our targeted evaluation was dependencies of Nakaboshi periods lengths and Nakaboshi periods to CH4 emission reduction amounts for total cultivation periods within harvest yield maintained. The longer length of Nakaboshi period was extended, the lesser CH4 emitted even after when Nakaboshi period lasted, as a whole. In some cases, for example in Kagoshima, exceptional phenomena of that significant high emission were

  11. Fingerprint of Seasonal Relative humidity in Rice (Oryza sativa L.): Potential for Paleoclimate Archive

    NASA Astrophysics Data System (ADS)

    Kaushal, R.; Ghosh, P.

    2015-12-01

    Seasonal variability of relative humidity (RH) condition during southwest monsoon (SWM) is strongly related with availability of moisture for rainfall over the continental region. There are ongoing efforts to reconstruct the past monsoonal condition based on geochemical and isotopic records as proxies [1]. However, limited archives have been successfully retrieved for reconstructing moisture condition during SWM [2]. Potential of plants as climate archives and the mechanism involved in transfer of climate signature to the stable isotope composition of oxygen (δ18O) has been demonstarted successfully [3]. Here we are introducing δ18O of rice grain bulk organic matter (δ18OOM) as a new proxy for precise determination of RH during SWM. Rice is a seasonal crop and widely cultivated over the Indian subcontinent during SWM. Here we present δ18OOM of rice grains collected from 15 locations from different climatic zones over the Indian subcontinent, ranging from semi-arid to humid-perhumid. These samples were collected from the harvest of the crop grown at the time of SWM for the period 2012-2014. Each of these climatic zones are characterized by unique range of RH values, which is expected to leave distinct oxygen isotopic signature in the rice grain OM. We compared the δ18OOM values with δ18O of precipitation water, RH and temperature during the period of cultivation. Precipitation δ18O values were obtained from were obtained from OPIC [4]. Our observations document a significant relationship between δ18OOM and RH (R2 =0.62, p<0.001). When the RH level fluctuated from 65% to 88%, δ18OOM tended to vary between 31.5 ‰ to 15.4‰. However, the humid regions with rainfed crop showed significant relationship between δ18OOM and precipitation δ18O. Remaining stations being fed by the both rain and irrigation from river/ groundwater, dampen the rainfall isotope signature in δ18OOM. This approach can be extended in deriving RH of regions of rice cultivation by

  12. Arsenic in soil and irrigation water affects arsenic uptake by rice: complementary insights from field and pot studies.

    PubMed

    Dittmar, Jessica; Voegelin, Andreas; Maurer, Felix; Roberts, Linda C; Hug, Stephan J; Saha, Ganesh C; Ali, M Ashraf; Badruzzaman, A Borhan M; Kretzschmar, Ruben

    2010-12-01

    Groundwater rich in arsenic (As) is extensively used for dry season boro rice cultivation in Bangladesh, leading to long-term As accumulation in soils. This may result in increasing levels of As in rice straw and grain, and eventually, in decreasing rice yields due to As phytotoxicity. In this study, we investigated the As contents of rice straw and grain over three consecutive harvest seasons (2005-2007) in a paddy field in Munshiganj, Bangladesh, which exhibits a documented gradient in soil As caused by annual irrigation with As-rich groundwater since the early 1990s. The field data revealed that straw and grain As concentrations were elevated in the field and highest near the irrigation water inlet, where As concentrations in both soil and irrigation water were highest. Additionally, a pot experiment with soils and rice seeds from the field site was carried out in which soil and irrigation water As were varied in a full factorial design. The results suggested that both soil As accumulated in previous years and As freshly introduced with irrigation water influence As uptake during rice growth. At similar soil As contents, plants grown in pots exhibited similar grain and straw As contents as plants grown in the field. This suggested that the results from pot experiments performed at higher soil As levels can be used to assess the effect of continuing soil As accumulation on As content and yield of rice. On the basis of a recently published scenario of long-term As accumulation at the study site, we estimate that, under unchanged irrigation practice, average grain As concentrations will increase from currently ∼0.15 mg As kg(-1) to 0.25-0.58 mg As kg(-1) by the year 2050. This translates to a 1.5-3.8 times higher As intake by the local population via rice, possibly exceeding the provisional tolerable As intake value defined by FAO/WHO. PMID:21043519

  13. Arsenic in soil and irrigation water affects arsenic uptake by rice: complementary insights from field and pot studies.

    PubMed

    Dittmar, Jessica; Voegelin, Andreas; Maurer, Felix; Roberts, Linda C; Hug, Stephan J; Saha, Ganesh C; Ali, M Ashraf; Badruzzaman, A Borhan M; Kretzschmar, Ruben

    2010-12-01

    Groundwater rich in arsenic (As) is extensively used for dry season boro rice cultivation in Bangladesh, leading to long-term As accumulation in soils. This may result in increasing levels of As in rice straw and grain, and eventually, in decreasing rice yields due to As phytotoxicity. In this study, we investigated the As contents of rice straw and grain over three consecutive harvest seasons (2005-2007) in a paddy field in Munshiganj, Bangladesh, which exhibits a documented gradient in soil As caused by annual irrigation with As-rich groundwater since the early 1990s. The field data revealed that straw and grain As concentrations were elevated in the field and highest near the irrigation water inlet, where As concentrations in both soil and irrigation water were highest. Additionally, a pot experiment with soils and rice seeds from the field site was carried out in which soil and irrigation water As were varied in a full factorial design. The results suggested that both soil As accumulated in previous years and As freshly introduced with irrigation water influence As uptake during rice growth. At similar soil As contents, plants grown in pots exhibited similar grain and straw As contents as plants grown in the field. This suggested that the results from pot experiments performed at higher soil As levels can be used to assess the effect of continuing soil As accumulation on As content and yield of rice. On the basis of a recently published scenario of long-term As accumulation at the study site, we estimate that, under unchanged irrigation practice, average grain As concentrations will increase from currently ∼0.15 mg As kg(-1) to 0.25-0.58 mg As kg(-1) by the year 2050. This translates to a 1.5-3.8 times higher As intake by the local population via rice, possibly exceeding the provisional tolerable As intake value defined by FAO/WHO.

  14. The life cycle of rice: LCA of alternative agri-food chain management systems in Vercelli (Italy).

    PubMed

    Blengini, Gian Andrea; Busto, Mirko

    2009-03-01

    The Vercelli rice district in northern Italy plays a key role in the agri-food industry in a country which accounts for more than 50% of the EU rice production and exports roughly 70%. However, although wealth and jobs are created, the sector is said to be responsible for environmental impacts that are increasingly being perceived as topical. As a complex and comprehensive environmental evaluation is necessary to understand and manage the environmental impact of the agri-food chain, the Life Cycle Assessment (LCA) methodology has been applied to the rice production system: from the paddy field to the supermarket. The LCA has pointed out the magnitude of impact per kg of delivered white milled rice: a CO2eq emission of 2.9 kg, a primary energy consumption of 17.8 MJ and the use of 4.9 m3 of water for irrigation purposes. Improvement scenarios have been analysed considering alternative rice farming and food processing methods, such as organic and upland farming, as well as parboiling. The research has shown that organic and upland farming have the potential to decrease the impact per unit of cultivated area. However, due to the lower grain yields, the environmental benefits per kg of the final products are greatly reduced in the case of upland rice production and almost cancelled for organic rice. LCA has proved to be an effective tool for understanding the eco-profile of Italian rice and should be used for transparent and credible communication between suppliers and their customers.

  15. Genetic diversity analysis reveals that geographical environment plays a more important role than rice cultivar in Villosiclava virens population selection.

    PubMed

    Wang, Fei; Zhang, Shu; Liu, Mei-Gang; Lin, Xian-Song; Liu, Hui-Jiang; Peng, You-Liang; Lin, Yang; Huang, Jun-Bin; Luo, Chao-Xi

    2014-05-01

    Rice false smut caused by Villosiclava virens is an economically important disease of grains worldwide. The genetic diversity of 153 isolates from six fields located in Wuhan (WH), Yichang Wangjia (YCW), Yichang Yaohe (YCY), Huanggang (HG), Yangxin (YX), and Jingzhou (JZ) in Hubei province of China were phylogenetically analyzed to evaluate the influence of environments and rice cultivars on the V. virens populations. Isolates (43) from Wuhan were from two rice cultivars, Wanxian 98 and Huajing 952, while most of the other isolates from fields YCW, YCY, HG, YX, and JZ originated from different rice cultivars with different genetic backgrounds. Genetic diversity of isolates was analyzed using random amplified polymorphic DNA (RAPD) and single-nucleotide polymorphisms (SNP). The isolates from the same cultivars in Wuhan tended to group together, indicating that the cultivars had an important impact on the fungal population. The 110 isolates from individual fields tended to cluster according to geographical origin. The values of Nei's gene diversity (H) and Shannon's information index (I) showed that the genetic diversity among isolates was higher between than within geographical populations. Furthermore, mean genetic distance between groups (0.006) was higher than mean genetic distance within groups (0.0048) according to MEGA 5.2. The pairwise population fixation index (FST) values also showed significant genetic differentiation between most populations. Higher genetic similarity of isolates from individual fields but different rice cultivars suggested that the geographical factor played a more important role in the selection of V. virens isolates than rice cultivars. This information could be used to improve the management strategy for rice false smut by adjusting the cultivation measures, such as controlling fertilizer, water, and planting density, in the rice field to change the microenvironment.

  16. Enhanced Cultivation Of Stimulated Murine B Cells

    NASA Technical Reports Server (NTRS)

    Sammons, David W.

    1994-01-01

    Method of in vitro cultivation of large numbers of stimulated murine B lymphocytes. Cells electrofused with other cells to produce hybridomas and monoclonal antibodies. Offers several advantages: polyclonally stimulated B-cell blasts cultivated for as long as 14 days, hybridomas created throughout culture period, yield of hybridomas increases during cultivation, and possible to expand polyclonally in vitro number of B cells specific for antigenic determinants first recognized in vivo.

  17. Processes Underpinning Development and Maintenance of Diversity in Rice in West Africa: Evidence from Combining Morphological and Molecular Markers

    PubMed Central

    Maat, Harro; Richards, Paul; Struik, Paul C.

    2014-01-01

    We assessed the interplay of artificial and natural selection in rice adaptation in low-input farming systems in West Africa. Using 20 morphological traits and 176 molecular markers, 182 farmer varieties of rice (Oryza spp.) from 6 West African countries were characterized. Principal component analysis showed that the four botanical groups (Oryza sativa ssp. indica, O. sativa ssp. japonica, O. glaberrima, and interspecific farmer hybrids) exhibited different patterns of morphological diversity. Regarding O. glaberrima, morphological and molecular data were in greater conformity than for the other botanical groups. A clear difference in morphological features was observed between O. glaberrima rices from the Togo hills and those from the Upper Guinea Coast, and among O. glaberrima rices from the Upper Guinea Coast. For the other three groups such clear patterns were not observed. We argue that this is because genetic diversity is shaped by different environmental and socio-cultural selection pressures. For O. glaberrima, recent socio-cultural selection pressures seemed to restrict genetic diversity while this was not observed for the other botanical groups. We also show that O. glaberrima still plays an important role in the selection practices of farmers and resulting variety development pathways. This is particularly apparent in the case of interspecific farmer hybrids where a relationship was found between pericarp colour, panicle attitude and genetic diversity. Farmer varieties are the product of long and complex trajectories of selection governed by local human agency. In effect, rice varieties have emerged that are adapted to West African farming conditions through genotype × environment × society interactions. The diversity farmers maintain in their rice varieties is understood to be part of a risk-spreading strategy that also facilitates successful and often serendipitous variety innovations. We advocate, therefore, that farmers and farmer varieties should

  18. Rice epigenomics and epigenetics: challenges and opportunities.

    PubMed

    Chen, Xiangsong; Zhou, Dao-Xiu

    2013-05-01

    During recent years rice genome-wide epigenomic information such as DNA methylation and histone modifications, which are important for genome activity has been accumulated. The function of a number of rice epigenetic regulators has been studied, many of which are found to be involved in a diverse range of developmental and stress-responsive pathways. Analysis of epigenetic variations among different rice varieties indicates that epigenetic modification may lead to inheritable phenotypic variation. Characterizing phenotypic consequences of rice epigenomic variations and the underlining chromatin mechanism and identifying epialleles related to important agronomic traits may provide novel strategies to enhance agronomically favorable traits and grain productivity in rice.

  19. Tillering and panicle branching genes in rice.

    PubMed

    Liang, Wei-hong; Shang, Fei; Lin, Qun-ting; Lou, Chen; Zhang, Jing

    2014-03-01

    Rice (Oryza sativa L.) is one of the most important staple food crops in the world, and rice tillering and panicle branching are important traits determining grain yield. Since the gene MONOCULM 1 (MOC 1) was first characterized as a key regulator in controlling rice tillering and branching, great progress has been achieved in identifying important genes associated with grain yield, elucidating the genetic basis of yield-related traits. Some of these important genes were shown to be applicable for molecular breeding of high-yielding rice. This review focuses on recent advances, with emphasis on rice tillering and panicle branching genes, and their regulatory networks. PMID:24345551

  20. Tillering and panicle branching genes in rice.

    PubMed

    Liang, Wei-hong; Shang, Fei; Lin, Qun-ting; Lou, Chen; Zhang, Jing

    2014-03-01

    Rice (Oryza sativa L.) is one of the most important staple food crops in the world, and rice tillering and panicle branching are important traits determining grain yield. Since the gene MONOCULM 1 (MOC 1) was first characterized as a key regulator in controlling rice tillering and branching, great progress has been achieved in identifying important genes associated with grain yield, elucidating the genetic basis of yield-related traits. Some of these important genes were shown to be applicable for molecular breeding of high-yielding rice. This review focuses on recent advances, with emphasis on rice tillering and panicle branching genes, and their regulatory networks.

  1. Breeding high-yielding drought-tolerant rice: genetic variations and conventional and molecular approaches

    PubMed Central

    Kumar, Arvind; Dixit, Shalabh; Ram, T.; Yadaw, R. B.; Mishra, K. K.; Mandal, N. P.

    2014-01-01

    The increased occurrence and severity of drought stress have led to a high yield decline in rice in recent years in drought-affected areas. Drought research at the International Rice Research Institute (IRRI) over the past decade has concentrated on direct selection for grain yield under drought. This approach has led to the successful development and release of 17 high-yielding drought-tolerant rice varieties in South Asia, Southeast Asia, and Africa. In addition to this, 14 quantitative trait loci (QTLs) showing a large effect against high-yielding drought-susceptible popular varieties were identified using grain yield as a selection criterion. Six of these (qDTY 1.1, qDTY 2.2, qDTY 3.1, qDTY 3.2, qDTY 6.1, and qDTY 12.1) showed an effect against two or more high-yielding genetic backgrounds in both the lowland and upland ecosystem, indicating their usefulness in increasing the grain yield of rice under drought. The yield of popular rice varieties IR64 and Vandana has been successfully improved through a well-planned marker-assisted backcross breeding approach, and QTL introgression in several other popular varieties is in progress. The identification of large-effect QTLs for grain yield under drought and the higher yield increase under drought obtained through the use of these QTLs (which has not been reported in other cereals) indicate that rice, because of its continuous cultivation in two diverse ecosystems (upland, drought tolerant, and lowland, drought susceptible), has benefited from the existence of larger genetic variability than in other cereals. This can be successfully exploited using marker-assisted breeding. PMID:25205576

  2. Impacts of climate change on paddy rice yield in a temperate climate.

    PubMed

    Kim, Han-Yong; Ko, Jonghan; Kang, Suchel; Tenhunen, John

    2013-02-01

    The crop simulation model is a suitable tool for evaluating the potential impacts of climate change on crop production and on the environment. This study investigates the effects of climate change on paddy rice production in the temperate climate regions under the East Asian monsoon system using the CERES-Rice 4.0 crop simulation model. This model was first calibrated and validated for crop production under elevated CO2 and various temperature conditions. Data were obtained from experiments performed using a temperature gradient field chamber (TGFC) with a CO2 enrichment system installed at Chonnam National University in Gwangju, Korea in 2009 and 2010. Based on the empirical calibration and validation, the model was applied to deliver a simulated forecast of paddy rice production for the region, as well as for the other Japonica rice growing regions in East Asia, projecting for years 2050 and 2100. In these climate change projection simulations in Gwangju, Korea, the yield increases (+12.6 and + 22.0%) due to CO2 elevation were adjusted according to temperature increases showing variation dependent upon the cultivars, which resulted in significant yield decreases (-22.1% and -35.0%). The projected yields were determined to increase as latitude increases due to reduced temperature effects, showing the highest increase for any of the study locations (+24%) in Harbin, China. It appears that the potential negative impact on crop production may be mediated by appropriate cultivar selection and cultivation changes such as alteration of the planting date. Results reported in this study using the CERES-Rice 4.0 model demonstrate the promising potential for its further application in simulating the impacts of climate change on rice production from a local to a regional scale under the monsoon climate system.

  3. Breeding high-yielding drought-tolerant rice: genetic variations and conventional and molecular approaches.

    PubMed

    Kumar, Arvind; Dixit, Shalabh; Ram, T; Yadaw, R B; Mishra, K K; Mandal, N P

    2014-11-01

    The increased occurrence and severity of drought stress have led to a high yield decline in rice in recent years in drought-affected areas. Drought research at the International Rice Research Institute (IRRI) over the past decade has concentrated on direct selection for grain yield under drought. This approach has led to the successful development and release of 17 high-yielding drought-tolerant rice varieties in South Asia, Southeast Asia, and Africa. In addition to this, 14 quantitative trait loci (QTLs) showing a large effect against high-yielding drought-susceptible popular varieties were identified using grain yield as a selection criterion. Six of these (qDTY 1.1 , qDTY 2.2 , qDTY 3.1 , qDTY 3.2 , qDTY 6.1 , and qDTY 12.1 ) showed an effect against two or more high-yielding genetic backgrounds in both the lowland and upland ecosystem, indicating their usefulness in increasing the grain yield of rice under drought. The yield of popular rice varieties IR64 and Vandana has been successfully improved through a well-planned marker-assisted backcross breeding approach, and QTL introgression in several other popular varieties is in progress. The identification of large-effect QTLs for grain yield under drought and the higher yield increase under drought obtained through the use of these QTLs (which has not been reported in other cereals) indicate that rice, because of its continuous cultivation in two diverse ecosystems (upland, drought tolerant, and lowland, drought susceptible), has benefited from the existence of larger genetic variability than in other cereals. This can be successfully exploited using marker-assisted breeding.

  4. Extensive sequence variation in rice blast resistance gene Pi54 makes it broad spectrum in nature

    PubMed Central

    Thakur, Shallu; Singh, Pankaj K.; Das, Alok; Rathour, R.; Variar, M.; Prashanthi, S. K.; Singh, A. K.; Singh, U. D.; Chand, Duni; Singh, N. K.; Sharma, Tilak R.

    2015-01-01

    Rice blast resistant gene, Pi54 cloned from rice line, Tetep, is effective against diverse isolates of Magnaporthe oryzae. In this study, we prospected the allelic variants of the dominant blast resistance gene from a set of 92 rice lines to determine the nucleotide diversity, pattern of its molecular evolution, phylogenetic relationships and evolutionary dynamics, and to develop allele specific markers. High quality sequences were generated for homologs of Pi54 gene. Using comparative sequence analysis, InDels of variable sizes in all the alleles were observed. Profiling of the selected sites of SNP (Single Nucleotide Polymorphism) and amino acids (N sites ≥ 10) exhibited constant frequency distribution of mutational and substitutional sites between the resistance and susceptible rice lines, respectively. A total of 50 new haplotypes based on the nucleotide polymorphism was also identified. A unique haplotype (H_3) was found to be linked to all the resistant alleles isolated from indica rice lines. Unique leucine zipper and tyrosine sulfation sites were identified in the predicted Pi54 proteins. Selection signals were observed in entire coding sequence of resistance alleles, as compared to LRR domains for susceptible alleles. This is a maiden report of extensive variability of Pi54 alleles in different landraces and cultivated varieties, possibly, attributing broad-spectrum resistance to Magnaporthe oryzae. The sequence variation in two consensus region: 163 and 144 bp were used for the development of allele specific DNA markers. Validated markers can be used for the selection and identification of better allele(s) and their introgression in commercial rice cultivars employing marker assisted selection. PMID:26052332

  5. Crop rotation of flooded rice with upland maize impacts the resident and active methanogenic microbial community.

    PubMed

    Breidenbach, Björn; Blaser, Martin B; Klose, Melanie; Conrad, Ralf

    2016-09-01

    Crop rotation of flooded rice with upland crops is a common management scheme allowing the reduction of water consumption along with the reduction of methane emission. The introduction of an upland crop into the paddy rice ecosystem leads to dramatic changes in field conditions (oxygen availability, redox conditions). However, the impact of this practice on the archaeal and bacterial communities has scarcely been studied. Here, we provide a comprehensive study focusing on the crop rotation between flooded rice in the wet season and upland maize (RM) in the dry season in comparison with flooded rice (RR) in both seasons. The composition of the resident and active microbial communities was assessed by 454 pyrosequencing targeting the archaeal and bacterial 16S rRNA gene and 16S rRNA. The archaeal community composition changed dramatically in the rotational fields indicated by a decrease of anaerobic methanogenic lineages and an increase of aerobic Thaumarchaeota. Members of Methanomicrobiales, Methanosarcinaceae, Methanosaetaceae and Methanocellaceae were equally suppressed in the rotational fields indicating influence on both acetoclastic and hydrogenotrophic methanogens. On the contrary, members of soil crenarchaeotic group, mainly Candidatus Nitrososphaera, were higher in the rotational fields, possibly indicating increasing importance of ammonia oxidation during drainage. In contrast, minor effects on the bacterial community were observed. Acidobacteria and Anaeromyxobacter spp. were enriched in the rotational fields, whereas members of anaerobic Chloroflexi and sulfate-reducing members of Deltaproteobacteria were found in higher abundance in the rice fields. Combining quantitative polymerase chain reaction and pyrosequencing data revealed increased ribosomal numbers per cell for methanogenic species during crop rotation. This stress response, however, did not allow the methanogenic community to recover in the rotational fields during re-flooding and rice

  6. Alternate Wetting and Drying as an Effective Management Practice to Reduce Methane in Arkansas Rice Production

    NASA Astrophysics Data System (ADS)

    Runkle, B.; Smith, S. F.; Suvocarev, K.; Reba, M. L.

    2015-12-01

    Approximately 15% of the global 308 Tg CH4 emitted by anthropogenic sources is currently attributed to rice cultivation. Arkansas, the leading state in rice cultivation, produces over 42% of the total rice and represents over 43% of total land planted to rice in the US. Although rice production is generally water-intensive, some rice producers have adopted a conservation practice, 'Alternate Wetting and Drying' (AWD), in which the flood is released periodically during the growing season. In addition, implementing AWD can reduce CH4 emissions though the introduction of aerobic conditions. To assess the magnitude of this reduction, conventionally flooded (CONV) and AWD fields were identically instrumented for the 2015 season and fluxes of CH4 were measured with an open path IRGA. Other biophysical variables were monitored to determine the relative dominance of potential drivers. Half-hourly CH4 fluxes from the AWD and CONV fields during their similar initial flood (DOY 138-161) were well correlated (R2 = 0.762), indicating similar mechanisms controlling CH4 emissions in both fields. After the initial drydown event in the AWD field (162 DOY), daily median CH4 fluxes continued to rise to 7.80 mg CH4 m-2 h-1 on 163 DOY before subsiding to a local minimum of 0.162 mg CH4 m-2 h-1 on 171 DOY. Daily median CH4 fluxes between 9.24 and 16.0 mg CH4 m-2 h-1 were observed in the CONV field during this same period. Cumulative emissions from both fields following the drydown event and prior to rewetting demonstrated a reduction in CH4 emissions by the AWD treatment by 82%. The substantial decrease in CH4 emissions by AWD in the early growing season supports and expands upon previous chamber-based research and offers strong evidence for the efficacy of AWD in reducing CH4 emissions in AR rice production. The presentation will also assess the latter portion of the growing season, currently underway, and will provide process-based relationships between biophysical parameters and CH

  7. Incorporating rice residues into paddy soils affects methylmercury accumulation in rice.

    PubMed

    Zhu, Huike; Zhong, Huan; Wu, Jialu

    2016-06-01

    Paddy fields are characterized by frequent organic input (e.g., fertilization and rice residue amendment), which may affect mercury biogeochemistry and bioaccumulation. To explore potential effects of rice residue amendment on methylmercury (MMHg) accumulation in rice, a mercury-contaminated paddy soil was amended with rice root (RR), rice straw (RS) or composted rice straw (CS), and planted with rice. Incorporating RS or CS increased grain MMHg concentration by 14% or 11%. The observed increases could be attributed to the elevated porewater MMHg levels and thus enhanced MMHg uptake by plants, as well as increased MMHg translocation to grain within plants. Our results indicated for the first time that rice residue amendment could significantly affect MMHg accumulation in rice grain, which should be considered in risk assessment of MMHg in contaminated areas. PMID:26974480

  8. Objective evaluation of whiteness of cooked rice and rice cakes using a portable spectrophotometer.

    PubMed

    Goto, Hajime; Asanome, Noriyuki; Suzuki, Keitaro; Sano, Tomoyoshi; Saito, Hiroshi; Abe, Yohei; Chuba, Masaru; Nishio, Takeshi

    2014-03-01

    The whiteness of cooked rice and rice cakes was evaluated using a portable spectrophotometer with a whiteness index (WI). Also, by using boiled rice for measurement of Mido values by Mido Meter, it was possible to infer the whiteness of cooked rice without rice cooking. In the analysis of varietal differences of cooked rice, 'Tsuyahime', 'Koshihikari' and 'Koshinokaori' showed high whiteness, while 'Satonoyuki' had inferior whiteness. The whiteness of rice cakes made from 'Koyukimochi' and 'Dewanomochi' was higher than the whiteness of those made from 'Himenomochi' and 'Koganemochi'. While there was a significant correlation (r = 0.84) between WI values and whiteness scores of cooked rice by the sensory test, no correlation was detected between the whiteness scores and Mido values, indicating that the values obtained by a spectrophotometer differ from those obtained by a Mido Meter. Thus, a spectrophotometer may be a novel device for measurement of rice eating quality.

  9. Understanding traditional African healing

    PubMed Central

    MOKGOBI, M.G.

    2015-01-01

    Traditional African healing has been in existence for many centuries yet many people still seem not to understand how it relates to God and religion/spirituality. Some people seem to believe that traditional healers worship the ancestors and not God. It is therefore the aim of this paper to clarify this relationship by discussing a chain of communication between the worshipers and the Almighty God. Other aspects of traditional healing namely types of traditional healers, training of traditional healers as well as the role of traditional healers in their communities are discussed. In conclusion, the services of traditional healers go far beyond the uses of herbs for physical illnesses. Traditional healers serve many roles which include but not limited to custodians of the traditional African religion and customs, educators about culture, counselors, social workers and psychologists. PMID:26594664

  10. WRKY transcription factor genes in wild rice Oryza nivara

    PubMed Central

    Xu, Hengjian; Watanabe, Kenneth A.; Zhang, Liyuan; Shen, Qingxi J.

    2016-01-01

    The WRKY transcription factor family is one of the largest gene families involved in plant development and stress response. Although many WRKY genes have been studied in cultivated rice (Oryza sativa), the WRKY genes in the wild rice species Oryza nivara, the direct progenitor of O. sativa, have not been studied. O. nivara shows abundant genetic diversity and elite drought and disease resistance features. Herein, a total of 97 O. nivara WRKY (OnWRKY) genes were identified. RNA-sequencing demonstrates that OnWRKY genes were generally expressed at higher levels in the roots of 30-day-old plants. Bioinformatic analyses suggest that most of OnWRKY genes could be induced by salicylic acid, abscisic acid, and drought. Abundant potential MAPK phosphorylation sites in OnWRKYs suggest that activities of most OnWRKYs can be regulated by phosphorylation. Phylogenetic analyses of OnWRKYs support a novel hypothesis that ancient group IIc OnWRKYs were the original ancestors of only some group IIc and group III WRKYs. The analyses also offer strong support that group IIc OnWRKYs containing the HVE sequence in their zinc finger motifs were derived from group Ia WRKYs. This study provides a solid foundation for the study of the evolution and functions of WRKY genes in O. nivara. PMID:27345721

  11. Human African trypanosomiasis.

    PubMed

    Lejon, Veerle; Bentivoglio, Marina; Franco, José Ramon

    2013-01-01

    Human African trypanosomiasis or sleeping sickness is a neglected tropical disease that affects populations in sub-Saharan Africa. The disease is caused by infection with the gambiense and rhodesiense subspecies of the extracellular parasite Trypanosoma brucei, and is transmitted to humans by bites of infected tsetse flies. The disease evolves in two stages, the hemolymphatic and meningoencephalitic stages, the latter being defined by central nervous system infection after trypanosomal traversal of the blood-brain barrier. African trypanosomiasis, which leads to severe neuroinflammation, is fatal without treatment, but the available drugs are toxic and complicated to administer. The choice of medication is determined by the infecting parasite subspecies and disease stage. Clinical features include a constellation of nonspecific symptoms and signs with evolving neurological and psychiatric alterations and characteristic sleep-wake disturbances. Because of the clinical profile variability and insidiously progressive central nervous system involvement, disease staging is currently based on cerebrospinal fluid examination, which is usually performed after the finding of trypanosomes in blood or other body fluids. No vaccine being available, control of human African trypanosomiasis relies on diagnosis and treatment of infected patients, assisted by vector control. Better diagnostic tools and safer, easy to use drugs are needed to facilitate elimination of the disease.

  12. Diversity among African Pygmies

    PubMed Central

    Ramírez Rozzi, Fernando V.; Sardi, Marina L.

    2010-01-01

    Although dissimilarities in cranial and post-cranial morphology among African pygmies groups have been recognized, comparative studies on skull morphology usually pull all pygmies together assuming that morphological characters are similar among them and different with respect to other populations. The main aim of this study is to compare cranial morphology between African pygmies and non-pygmies populations from Equatorial Africa derived from both the Eastern and the Western regions in order to test if the greatest morphological difference is obtained in the comparison between pygmies and non-pygmies. Thirty three-dimensional (3D) landmarks registered with Microscribe in four cranial samples (Western and Eastern pygmies and non-pygmies) were obtained. Multivariate analysis (generalized Procrustes analysis, Mahalanobis distances, multivariate regression) and complementary dimensions of size were evaluated with ANOVA and post hoc LSD. Results suggest that important cranial shape differentiation does occur between pygmies and non-pygmies but also between Eastern and Western populations and that size changes and allometries do not affect similarly Eastern and Western pygmies. Therefore, our findings raise serious doubt about the fact to consider African pygmies as a homogenous group in studies on skull morphology. Differences in cranial morphology among pygmies would suggest differentiation after divergence. Although not directly related to skull differentiation, the diversity among pygmies would probably suggest that the process responsible for reduced stature occurred after the split of the ancestors of modern Eastern and Western pygmies. PMID:21049030

  13. African horse sickness.

    PubMed

    Zientara, S; Weyer, C T; Lecollinet, S

    2015-08-01

    African horse sickness (AHS) is a devastating disease of equids caused by an arthropod-borne virus belonging to the Reoviridae family, genus Orbivirus. It is considered a major health threat for horses in endemic areas in sub-Saharan Africa. African horse sickness virus (AHSV) repeatedly caused large epizootics in the Mediterranean region (North Africa and southern Europe in particular) as a result of trade in infected equids. The unexpected emergence of a closely related virus, the bluetongue virus, in northern Europe in 2006 has raised fears about AHSV introduction into Europe, and more specifically into AHSV-free regions that have reported the presence of AHSV vectors, e.g. Culicoides midges. North African and European countries should be prepared to face AHSV incursions in the future, especially since two AHSV serotypes (serotypes 2 and 7) have recently spread northwards to western (e.g. Senegal, Nigeria, Gambia) and eastern Africa (Ethiopia), where historically only serotype 9 had been isolated. The authors review key elements of AHS epidemiology, surveillance and prophylaxis. PMID:26601437

  14. Weedy (red) rice: An emerging constraint to global rice production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ongoing increases in the human population necessitate that rice will continue to be an essential aspect of food security for the 21st century. While production must increase in the coming decades to meet demand, such increases will be accompanied by diminished natural resources and rising productio...

  15. Low Carbon Rice Farming Practices in the Mekong Delta Yield Significantly Higher Profits and Lower Greenhouse Gas Emissions

    NASA Astrophysics Data System (ADS)

    Rudek, J.; Van Sanh, N.; Tinh, T. K.; Tin, H. Q.; Thu Ha, T.; Pha, D. N.; Cui, T. Q.; Tin, N. H.; Son, N. N.; Thanh, H. H.; Kien, H. T.; Kritee, K.; Ahuja, R.

    2014-12-01

    The Vietnam Low-Carbon Rice Project (VLCRP) seeks to significantly reduce GHG emissions from rice cultivation, an activity responsible for more than 30% of Vietnam's overall GHG emissions, while improving livelihoods for the rice farmer community by decreasing costs and enhancing yield as well as providing supplemental farmer income through the sale of carbon credits. The Mekong Delta makes up 12% of Vietnam's land area, but produces more than 50% of the country's rice, including more than 90% of the rice for export. Rice cultivation is the main source of income for 80% of farmers in the Mekong Delta. VLCRP was launched in late 2012 in the Mekong Delta in two major rice production provinces, Kien Giang and An Giang. To date, VLCRP has completed 11 crop seasons (in Kien Giang and An Giang combined), training over 400 farmer households in applying VLCRP's package of practices (known as 1 Must - 6 Reductions) and building technical capacity to its key stakeholders and rice farmer community leaders. By adopting the 1 Must- 6 Reductions practices (including reduced seeding density, reduced fertilizer and pesticide application, and alternative wetting and drying water management), rice farmers reduce their input costs while maintaining or improving yields, and decreasing greenhouse gas emissions. The VLCRP package of practices also deliver other environmental and social co-benefits, such as reduced water pollution, improved habitat for fishery resources and reduced health risks for farmers through the reduction of agri-chemicals. VLCRP farmers use significantly less inputs (50% reduction in seed, 30% reduction in fertilizer, 40-50% reduction in water) while improving yields 5-10%, leading to an increase in profit from 10% to as high as 60% per hectare. Preliminary results indicate that the 1 Must- 6 Reductions practices have led to approximately 40-65% reductions in greenhouse gas emissions, equivalent to 4 tons of CO2e/ha/yr in An Giang and 35 tons of CO2e/ha/yr in Kien

  16. Could abiotic stress tolerance in wild relatives of rice be used to improve Oryza sativa?

    PubMed

    Atwell, Brian J; Wang, Han; Scafaro, Andrew P

    2014-02-01

    Oryza sativa and Oryza glaberrima have been selected to acquire and partition resources efficiently as part of the process of domestication. However, genetic diversity in cultivated rice is limited compared to wild Oryza species, in spite of 120,000 genotypes being held in gene banks. By contrast, there is untapped diversity in the more than 20 wild species of Oryza, some having been collected from just a few coastal locations (e.g. Oryza schlechteri), while others are widely distributed (e.g. Oryza nivara and Oryza rufipogon). The extent of DNA sequence diversity and phenotypic variation is still being established in wild Oryza, with genetic barriers suggesting a vast range of morphologies and function even within species, such as has been demonstrated for Oryza meridionalis. With increasing climate variability and attempts to make more marginal land arable, abiotic and biotic stresses will be managed over the coming decades by tapping into the genetic diversity of wild relatives of O. sativa. To help create a more targeted approach to sourcing wild rice germplasm for abiotic stress tolerance, we have created a climate distribution map by plotting the natural occurrence of all Oryza species against corresponding temperature and moisture data. We then discuss interspecific variation in phenotype and its significance for rice, followed by a discussion of ways to integrate germplasm from wild relatives into domesticated rice.

  17. Growth promotion and inhibition of the Amazonian wild rice species Oryza grandiglumis to survive flooding.

    PubMed

    Okishio, Takuma; Sasayama, Daisuke; Hirano, Tatsuya; Akimoto, Masahiro; Itoh, Kazuyuki; Azuma, Tetsushi

    2014-09-01

    In Asian cultivated rice (Oryza sativa), distinct mechanisms to survive flooding are activated in two groups of varieties. Submergence-tolerant rice varieties possessing the SUBMERGENCE1A (SUB1A) gene display reduced growth during flash floods at the seedling stage and resume growth after the flood recedes, whereas deepwater rice varieties possessing the SNORKEL1 (SK1) and SNORKEL2 (SK2) genes display enhanced growth based on internodal elongation during prolonged submergence at the mature stage. In this study, we investigated the occurrence of these growth responses to submergence in the wild rice species Oryza grandiglumis, which is native to the Amazon floodplains. When subjected to gradual submergence, adult plants of O. grandiglumis accessions showed enhanced internodal elongation with rising water level and their growth response closely resembled that of deepwater varieties of O. sativa with high floating capacity. On the other hand, when subjected to complete submergence, seedlings of O. grandiglumis accessions displayed reduced shoot growth and resumed normal growth after desubmergence, similar to the response of submergence-tolerant varieties of O. sativa. Neither SUB1A nor the SK genes were detected in the O. grandiglumis accessions. These results indicate that the O. grandiglumis accessions are capable of adapting successfully to flooding by activating two contrasting mechanisms as the situation demands and that each mechanism of adaptation to flooding is not mediated by SUB1A or the SK genes.

  18. Study on allelopathic effects of Rice and Wheat Soil-Like Substrate on several plants

    NASA Astrophysics Data System (ADS)

    Li, Leyuan; Fu, Wenting; He, Wenting; Liu, Hong

    Rice and wheat are the traditional food of Chinese people, and therefore the main crop candidates for bio-regenerative life-support systems. Recycling rice and wheat straw is an important issue concerning the system. In order to decide if the mixed-substrate made of rice and wheat straw is suitable of plant cultivation, Rice and Wheat Soil-Like Substrate was tested in an aqueous extract germination experiment. The effects of different concentrations of aqueous extract on seed vigor, seedling growth and development situations and the physiological and biochemical characteristics of wheat, lettuce and pumpkin were studied, and the presence and degrees of allelopathic effects were analyzed. The test results showed that this type of SLS exerted different degrees of allelopathic effect on wheat and lettuce; this allelopathic effect was related to the concentration of SLS aqueous extract. The most significant phenomenon is that with the increase of aqueous extract concentration, the seed germination, root length and shoot fresh weight of wheat decreased; and every concentration of aqueous extract showed significant inhibition on the root length and root fresh weight of lettuce. However, this type of SLS showed little effect on the growth of pumpkin seedlings. Contents changes of chlorophyll and endogenous hormones in wheat and lettuce seedlings, and the chemical compositions of SLS were measured, and the mechanism of allelopathic effect was preliminarily analyzed.

  19. Growth promotion and inhibition of the Amazonian wild rice species Oryza grandiglumis to survive flooding.

    PubMed

    Okishio, Takuma; Sasayama, Daisuke; Hirano, Tatsuya; Akimoto, Masahiro; Itoh, Kazuyuki; Azuma, Tetsushi

    2014-09-01

    In Asian cultivated rice (Oryza sativa), distinct mechanisms to survive flooding are activated in two groups of varieties. Submergence-tolerant rice varieties possessing the SUBMERGENCE1A (SUB1A) gene display reduced growth during flash floods at the seedling stage and resume growth after the flood recedes, whereas deepwater rice varieties possessing the SNORKEL1 (SK1) and SNORKEL2 (SK2) genes display enhanced growth based on internodal elongation during prolonged submergence at the mature stage. In this study, we investigated the occurrence of these growth responses to submergence in the wild rice species Oryza grandiglumis, which is native to the Amazon floodplains. When subjected to gradual submergence, adult plants of O. grandiglumis accessions showed enhanced internodal elongation with rising water level and their growth response closely resembled that of deepwater varieties of O. sativa with high floating capacity. On the other hand, when subjected to complete submergence, seedlings of O. grandiglumis accessions displayed reduced shoot growth and resumed normal growth after desubmergence, similar to the response of submergence-tolerant varieties of O. sativa. Neither SUB1A nor the SK genes were detected in the O. grandiglumis accessions. These results indicate that the O. grandiglumis accessions are capable of adapting successfully to flooding by activating two contrasting mechanisms as the situation demands and that each mechanism of adaptation to flooding is not mediated by SUB1A or the SK genes. PMID:24893854

  20. Rice responses to rising temperatures--challenges, perspectives and future directions.

    PubMed

    Jagadish, S V K; Murty, M V R; Quick, W P

    2015-09-01

    Phenotypic plasticity in overcoming heat stress-induced damage across hot tropical rice-growing regions is predominantly governed by relative humidity. Expression of transpiration cooling, an effective heat-avoiding mechanism, will diminish with the transition from fully flooded paddies to water-saving technologies, such as direct-seeded and aerobic rice cultivation, thus further aggravating stress damage. This change can potentially introduce greater sensitivity to previously unaffected developmental stages such as floral meristem (panicle) initiation and spikelet differentiation, and further intensify vulnerability at the known sensitive gametogenesis and flowering stages. More than the mean temperature rise, increased variability and a more rapid increase in nighttime temperature compared with the daytime maximum present a greater challenge. This review addresses (1) the importance of vapour pressure deficit under fully flooded paddies and increased vulnerability of rice production to heat stress or intermittent occurrence of combined heat and drought stress under emerging water-saving rice technologies; (2) the major disconnect with high night temperature response between field and controlled environments in terms of spikelet sterility; (3) highlights the most important mechanisms that affect key grain quality parameters, such as chalk formation under heat stress; and finally (4), we model and estimate heat stress-induced spikelet sterility taking South Asia as a case study. PMID:25142172

  1. Sprinkler irrigation of rice fields reduces grain arsenic but enhances cadmium.

    PubMed

    Moreno-Jiménez, Eduardo; Meharg, Andrew A; Smolders, Erik; Manzano, Rebeca; Becerra, Daniel; Sánchez-Llerena, Javier; Albarrán, Ángel; López-Piñero, Antonio

    2014-07-01

    Previous studies have demonstrated that rice cultivated under flooded conditions has higher concentrations of arsenic (As) but lower cadmium (Cd) compared to rice grown in unsaturated soils. To validate such effects over long terms under Mediterranean conditions a field experiment, conducted over 7 successive years was established in SW Spain. The impact of water management on rice production and grain arsenic (As) and cadmium (Cd) was measured, and As speciation was determined to inform toxicity evaluation. Sprinkler irrigation was compared to traditional flooding. Both irrigation techniques resulted in similar grain yields (~3000 kg grain ha(-1)). Successive sprinkler irrigation over 7 years decreased grain total As to one-sixth its initial concentration in the flooded system (0.55 to 0.09 mg As kg(-1)), while one cycle of sprinkler irrigation also reduced grain total As by one-third (0.20 mg kg(-1)). Grain inorganic As concentration increased up to 2 folds under flooded conditions compared to sprinkler irrigated fields while organic As was also lower in sprinkler system treatments, but to a lesser extent. This suggests that methylation is favored under water logging. However, sprinkler irrigation increased Cd transfer to grain by a factor of 10, reaching 0.05 mg Cd kg(-1) in 7 years. Sprinkler systems in paddy fields seem particularly suited for Mediterranean climates and are able to mitigate against excessive As accumulation, but our evidence shows that an increased Cd load in rice grain may result. PMID:24742557

  2. Identification of QTLs and possible candidate genes conferring sheath blight resistance in rice (Oryza sativa L.).

    PubMed

    Yadav, Shailesh; Anuradha, Ghanta; Kumar, Ravi Ranjan; Vemireddy, Lakshminaryana Reddy; Sudhakar, Ravuru; Donempudi, Krishnaveni; Venkata, Durgarani; Jabeen, Farzana; Narasimhan, Yamini Kalinati; Marathi, Balram; Siddiq, Ebrahimali Abubacker

    2015-01-01

    Sheath blight, caused by the pathogenic fungus Rhizoctonia solani Kühn, is one of the most devastating diseases in rice. Breeders have always faced challenges in acquiring reliable and absolute resistance to this disease in existing rice germplasm. In this context, 40 rice germplasm including eight wild, four landraces, twenty- six cultivated and two advanced breeding lines were screened utilizing the colonized bits of typha. Except Tetep and ARC10531 which expressed moderate level of resistance to the disease, none could be found to be authentically resistant. In order to map the quantitative trait loci (QTLs) governing the sheath blight resistance, two mapping populations (F2 and BC1F2) were developed from the cross BPT-5204/ARC10531. Utilizing composite interval mapping analysis, 9 QTLs mapped to five different chromosomes were identified with phenotypic variance ranging from 8.40 to 21.76%. Two SSR markers namely RM336 and RM205 were found to be closely associated with the major QTLs qshb7.3 and qshb9.2 respectively and were attested as well in BC1F2 population by bulk segregant analysis approach. A hypothetical β 1-3 glucanase with other 31 candidate genes were identified in silico utilizing rice database RAP-DB within the identified QTL region qshb9.2. A detailed insight into these candidate genes will facilitate at molecular level the intricate nature of sheath blight, a step forward towards functional genomics.

  3. Rice responses to rising temperatures--challenges, perspectives and future directions.

    PubMed

    Jagadish, S V K; Murty, M V R; Quick, W P

    2015-09-01

    Phenotypic plasticity in overcoming heat stress-induced dama