Sample records for african honeybees apis

  1. Africanized honeybees are slower learners than their European counterparts

    NASA Astrophysics Data System (ADS)

    Couvillon, Margaret J.; Degrandi-Hoffman, Gloria; Gronenberg, Wulfila

    2010-02-01

    Does cognitive ability always correlate with a positive fitness consequence? Previous research in both vertebrates and invertebrates provides mixed results. Here, we compare the learning and memory abilities of Africanized honeybees ( Apis mellifera scutellata hybrid) and European honeybees ( Apis mellifera ligustica). The range of the Africanized honeybee continues to expand, superseding the European honeybee, which led us to hypothesize that they might possess greater cognitive capabilities as revealed by a classical conditioning assay. Surprisingly, we found that fewer Africanized honeybees learn to associate an odor with a reward. Additionally, fewer Africanized honeybees remembered the association a day later. While Africanized honeybees are replacing European honeybees, our results show that they do so despite displaying a relatively poorer performance on an associative learning paradigm.

  2. A SNP test to identify Africanized honeybees via proportion of 'African' ancestry.

    PubMed

    Chapman, Nadine C; Harpur, Brock A; Lim, Julianne; Rinderer, Thomas E; Allsopp, Michael H; Zayed, Amro; Oldroyd, Benjamin P

    2015-11-01

    The honeybee, Apis mellifera, is the world's most important pollinator and is ubiquitous in most agricultural ecosystems. Four major evolutionary lineages and at least 24 subspecies are recognized. Commercial populations are mainly derived from subspecies originating in Europe (75-95%). The Africanized honeybee is a New World hybrid of A. m. scutellata from Africa and European subspecies, with the African component making up 50-90% of the genome. Africanized honeybees are considered undesirable for bee-keeping in most countries, due to their extreme defensiveness and poor honey production. The international trade in honeybees is restricted, due in part to bans on the importation of queens (and semen) from countries where Africanized honeybees are extant. Some desirable strains from the United States of America that have been bred for traits such as resistance to the mite Varroa destructor are unfortunately excluded from export to countries such as Australia due to the presence of Africanized honeybees in the USA. This study shows that a panel of 95 single nucleotide polymorphisms, chosen to differentiate between the African, Eastern European and Western European lineages, can detect Africanized honeybees with a high degree of confidence via ancestry assignment. Our panel therefore offers a valuable tool to mitigate the risks of spreading Africanized honeybees across the globe and may enable the resumption of queen and bee semen imports from the Americas. © 2015 John Wiley & Sons Ltd.

  3. A variant reference data set for the Africanized honeybee, Apis mellifera

    PubMed Central

    Kadri, Samir M.; Harpur, Brock A.; Orsi, Ricardo O.; Zayed, Amro

    2016-01-01

    The Africanized honeybee (AHB) is a population of Apis mellifera found in the Americas. AHBs originated in 1956 in Rio Clara, Brazil where imported African A. m. scutellata escaped and hybridized with local populations of European A. mellifera. Africanized populations can now be found from Northern Argentina to the Southern United States. AHBs—often referred to as ‘Killer Bees’— are a major concern to the beekeeping industry as well as a model for the evolutionary genetics of colony defence. We performed high coverage pooled-resequencing of 360 diploid workers from 30 Brazilian AHB colonies using Illumina Hi-Seq (150 bp PE). This yielded a high density SNP data set with an average read depth at each site of 20.25 reads. With 3,606,720 SNPs and 155,336 SNPs within 11,365 genes, this data set is the largest genomic resource available for AHBs and will enable high-resolution studies of the population dynamics, evolution, and genetics of this successful biological invader, in addition to facilitating the development of SNP-based tools for identifying AHBs. PMID:27824336

  4. A variant reference data set for the Africanized honeybee, Apis mellifera.

    PubMed

    Kadri, Samir M; Harpur, Brock A; Orsi, Ricardo O; Zayed, Amro

    2016-11-08

    The Africanized honeybee (AHB) is a population of Apis mellifera found in the Americas. AHBs originated in 1956 in Rio Clara, Brazil where imported African A. m. scutellata escaped and hybridized with local populations of European A. mellifera. Africanized populations can now be found from Northern Argentina to the Southern United States. AHBs-often referred to as 'Killer Bees'- are a major concern to the beekeeping industry as well as a model for the evolutionary genetics of colony defence. We performed high coverage pooled-resequencing of 360 diploid workers from 30 Brazilian AHB colonies using Illumina Hi-Seq (150 bp PE). This yielded a high density SNP data set with an average read depth at each site of 20.25 reads. With 3,606,720 SNPs and 155,336 SNPs within 11,365 genes, this data set is the largest genomic resource available for AHBs and will enable high-resolution studies of the population dynamics, evolution, and genetics of this successful biological invader, in addition to facilitating the development of SNP-based tools for identifying AHBs.

  5. Africanization in the United States: replacement of feral European honeybees (Apis mellifera L.) by an African hybrid swarm.

    PubMed

    Pinto, M Alice; Rubink, William L; Patton, John C; Coulson, Robert N; Johnston, J Spencer

    2005-08-01

    The expansion of Africanized honeybees from South America to the southwestern United States in <50 years is considered one of the most spectacular biological invasions yet documented. In the American tropics, it has been shown that during their expansion Africanized honeybees have low levels of introgressed alleles from resident European populations. In the United States, it has been speculated, but not shown, that Africanized honeybees would hybridize extensively with European honeybees. Here we report a continuous 11-year study investigating temporal changes in the genetic structure of a feral population from the southern United States undergoing Africanization. Our microsatellite data showed that (1) the process of Africanization involved both maternal and paternal bidirectional gene flow between European and Africanized honeybees and (2) the panmitic European population was replaced by panmitic mixtures of A. m. scutellata and European genes within 5 years after Africanization. The post-Africanization gene pool (1998-2001) was composed of a diverse array of recombinant classes with a substantial European genetic contribution (mean 25-37%). Therefore, the resulting feral honeybee population of south Texas was best viewed as a hybrid swarm.

  6. Parasitic Cape honeybee workers, Apis mellifera capensis, evade policing

    NASA Astrophysics Data System (ADS)

    Martin, Stephen J.; Beekman, Madeleine; Wossler, Theresa C.; Ratnieks, Francis L. W.

    2002-01-01

    Relocation of the Cape honeybee, Apis mellifera capensis, by bee-keepers from southern to northern South Africa in 1990 has caused widespread death of managed African honeybee, A. m. scutellata, colonies. Apis mellifera capensis worker bees are able to lay diploid, female eggs without mating by means of automictic thelytoky (meiosis followed by fusion of two meiotic products to restore egg diploidy), whereas workers of other honeybee subspecies are able to lay only haploid, male eggs. The A. m. capensis workers, which are parasitizing and killing A. m. scutellata colonies in northern South Africa, are the asexual offspring of a single, original worker in which the small amount of genetic variation observed is due to crossing over during meiosis (P. Kryger, personal communication). Here we elucidate two principal mechanisms underlying this parasitism. Parasitic A. m. capensis workers activate their ovaries in host colonies that have a queen present (queenright colonies), and they lay eggs that evade being killed by other workers (worker policing)-the normal fate of worker-laid eggs in colonies with a queen. This unique parasitism by workers is an instance in which a society is unable to control the selfish actions of its members.

  7. [Staphylococcus aureus infection in Apis mellifera L. (honeybees)].

    PubMed

    Keskin, N

    1989-07-01

    The causative agent of American foulbrood is Bacillus larvae, the causes of the European foulbrood diseases are Streptococcus pluton and Bacillus alvei and the causes of the septicemia are Pseudomonas apiseptica and Escherichia coli in honeybees (Apis mellifera). Apart from the above causative agents in this study, Staphylococcus aureus has been isolated and identified from honeybees (Apis mellifera).

  8. Resolution and sensitivity of the eyes of the Asian honeybees Apis florea, Apis cerana and Apis dorsata.

    PubMed

    Somanathan, Hema; Warrant, Eric J; Borges, Renee M; Wallén, Rita; Kelber, Almut

    2009-08-01

    Bees of the genus Apis are important foragers of nectar and pollen resources. Although the European honeybee, Apis mellifera, has been well studied with respect to its sensory abilities, learning behaviour and role as pollinators, much less is known about the other Apis species. We studied the anatomical spatial resolution and absolute sensitivity of the eyes of three sympatric species of Asian honeybees, Apis cerana, Apis florea and Apis dorsata and compared them with the eyes of A. mellifera. Of these four species, the giant honeybee A. dorsata (which forages during moonlit nights) has the lowest spatial resolution and the most sensitive eyes, followed by A. mellifera, A. cerana and the dwarf honeybee, A. florea (which has the smallest acceptance angles and the least sensitive eyes). Moreover, unlike the strictly diurnal A. cerana and A. florea, A. dorsata possess large ocelli, a feature that it shares with all dim-light bees. However, the eyes of the facultatively nocturnal A. dorsata are much less sensitive than those of known obligately nocturnal bees such as Megalopta genalis in Panama and Xylocopa tranquebarica in India. The differences in sensitivity between the eyes of A. dorsata and other strictly diurnal Apis species cannot alone explain why the former is able to fly, orient and forage at half-moon light levels. We assume that additional neuronal adaptations, as has been proposed for A. mellifera, M. genalis and X. tranquebarica, might exist in A. dorsata.

  9. Transcriptome differences in the hypopharyngeal gland between Western Honeybees (Apis mellifera) and Eastern Honeybees (Apis cerana).

    PubMed

    Liu, Hao; Wang, Zi-Long; Tian, Liu-Qing; Qin, Qiu-Hong; Wu, Xiao-Bo; Yan, Wei-Yu; Zeng, Zhi-Jiang

    2014-08-30

    Apis mellifera and Apis cerana are two sibling species of Apidae. Apis cerana is adept at collecting sporadic nectar in mountain and forest region and exhibits stiffer hardiness and acarid resistance as a result of natural selection, whereas Apis mellifera has the advantage of producing royal jelly. To identify differentially expressed genes (DEGs) that affect the development of hypopharyngeal gland (HG) and/or the secretion of royal jelly between these two honeybee species, we performed a digital gene expression (DGE) analysis of the HGs of these two species at three developmental stages (newly emerged worker, nurse and forager). Twelve DGE-tag libraries were constructed and sequenced using the total RNA extracted from the HGs of newly emerged workers, nurses, and foragers of Apis mellifera and Apis cerana. Finally, a total of 1482 genes in Apis mellifera and 1313 in Apis cerana were found to exhibit an expression difference among the three developmental stages. A total of 1417 DEGs were identified between these two species. Of these, 623, 1072, and 462 genes showed an expression difference at the newly emerged worker, nurse, and forager stages, respectively. The nurse stage exhibited the highest number of DEGs between these two species and most of these were found to be up-regulated in Apis mellifera. These results suggest that the higher yield of royal jelly in Apis mellifera may be due to the higher expression level of these DEGs. In this study, we investigated the DEGs between the HGs of two sibling honeybee species (Apis mellifera and Apis cerana). Our results indicated that the gene expression difference was associated with the difference in the royal jelly yield between these two species. These results provide an important clue for clarifying the mechanisms underlying hypopharyngeal gland development and the production of royal jelly.

  10. Temporal pattern of africanization in a feral honeybee population from Texas inferred from mitochondrial DNA.

    PubMed

    Pinto, M Alice; Rubink, William L; Coulson, Robert N; Patton, John C; Johnston, J Spencer

    2004-05-01

    The invasion of Africanized honeybees (Apis mellifera L.) in the Americas provides a window of opportunity to study the dynamics of secondary contact of subspecies of bees that evolved in allopatry in ecologically distinctive habitats of the Old World. We report here the results of an 11-year mitochondrial DNA survey of a feral honeybee population from southern United States (Texas). The mitochondrial haplotype (mitotype) frequencies changed radically during the 11-year study period. Prior to immigration of Africanized honeybees, the resident population was essentially of eastern and western European maternal ancestry. Three years after detection of the first Africanized swarm there was a mitotype turnover in the population from predominantly eastern European to predominantly A. m. scutellata (ancestor of Africanized honeybees). This remarkable change in the mitotype composition coincided with arrival of the parasitic mite Varroa destructor, which was likely responsible for severe losses experienced by colonies of European ancestry. From 1997 onward the population stabilized with most colonies of A. m. scutellata maternal origin.

  11. Resistance rather than tolerance explains survival of savannah honeybees (Apis mellifera scutellata) to infestation by the parasitic mite Varroa destructor.

    PubMed

    Strauss, Ursula; Dietemann, Vincent; Human, Hannelie; Crewe, Robin M; Pirk, Christian W W

    2016-03-01

    Varroa destructor is considered the most damaging parasite affecting honeybees (Apis mellifera L.). However, some honeybee populations such as the savannah honeybee (Apis mellifera scutellata) can survive mite infestation without treatment. It is unclear if survival is due to resistance mechanisms decreasing parasite reproduction or to tolerance mechanisms decreasing the detrimental effects of mites on the host. This study investigates both aspects by quantifying the reproductive output of V. destructor and its physiological costs at the individual host level. Costs measured were not consistently lower when compared with susceptible honeybee populations, indicating a lack of tolerance. In contrast, reproduction of V. destructor mites was distinctly lower than in susceptible populations. There was higher proportion of infertile individuals and the reproductive success of fertile mites was lower than measured to date, even in surviving populations. Our results suggest that survival of savannah honeybees is based on resistance rather than tolerance to this parasite. We identified traits that may be useful for breeding programmes aimed at increasing the survival of susceptible populations. African honeybees may have benefited from a lack of human interference, allowing natural selection to shape a population of honeybees that is more resistant to Varroa mite infestation.

  12. Insights into social insects from the genome of the honeybee Apis mellifera

    PubMed Central

    2007-01-01

    Here we report the genome sequence of the honeybee Apis mellifera, a key model for social behaviour and essential to global ecology through pollination. Compared with other sequenced insect genomes, the A. mellifera genome has high A+T and CpG contents, lacks major transposon families, evolves more slowly, and is more similar to vertebrates for circadian rhythm, RNA interference and DNA methylation genes, among others. Furthermore, A. mellifera has fewer genes for innate immunity, detoxification enzymes, cuticle-forming proteins and gustatory receptors, more genes for odorant receptors, and novel genes for nectar and pollen utilization, consistent with its ecology and social organization. Compared to Drosophila, genes in early developmental pathways differ in Apis, whereas similarities exist for functions that differ markedly, such as sex determination, brain function and behaviour. Population genetics suggests a novel African origin for the species A. mellifera and insights into whether Africanized bees spread throughout the New World via hybridization or displacement. PMID:17073008

  13. The Africanization of honeybees (Apis mellifera L.) of the Yucatan: a study of a massive hybridization event across time.

    PubMed

    Clarke, Kylea E; Rinderer, Thomas E; Franck, Pierre; Quezada-Euán, Javier G; Oldroyd, Benjamin P

    2002-07-01

    Until recently, African and European subspecies of the honeybee (Apis mellifera L.) had been geographically separated for around 10,000 years. However, human-assisted introductions have caused the mixing of large populations of African and European subspecies in South and Central America, permitting an unprecedented opportunity to study a large-scale hybridization event using molecular analyses. We obtained reference populations from Europe, Africa, and South America and used these to provide baseline information for a microsatellite and mitochondrial analysis of the process of Africanization of the bees of the Yucatan Peninsula, Mexico. The genetic structure of the Yucatecan population has changed dramatically over time. The pre-Africanized Yucatecan population (1985) comprised bees that were most similar to samples from southeastern Europe and northern and western Europe. Three years after the arrival of Africanized bees (1989), substantial paternal gene flow had occurred from feral Africanized drones into the resident European population, but maternal gene flow from the invading Africanized population into the local population was negligible. However by 1998, there was a radical shift with both African nuclear alleles (65%) and African-derived mitochondria (61%) dominating the genomes of domestic colonies. We suggest that although European mitochondria may eventually be driven to extinction in the feral population, stable introgression of European nuclear alleles has occurred.

  14. Genetic variation in natural honeybee populations, Apis mellifera capensis

    NASA Astrophysics Data System (ADS)

    Hepburn, Randall; Neumann, Peter; Radloff, Sarah E.

    2004-09-01

    Genetic variation in honeybee, Apis mellifera, populations can be considerably influenced by breeding and commercial introductions, especially in areas with abundant beekeeping. However, in southern Africa apiculture is based on the capture of wild swarms, and queen rearing is virtually absent. Moreover, the introduction of European subspecies constantly failed in the Cape region. We therefore hypothesize a low human impact on genetic variation in populations of Cape honeybees, Apis mellifera capensis. A novel solution to studying genetic variation in honeybee populations based on thelytokous worker reproduction is applied to test this hypothesis. Environmental effects on metrical morphological characters of the phenotype are separated to obtain a genetic residual component. The genetic residuals are then re-calculated as coefficients of genetic variation. Characters measured included hair length on the abdomen, width and length of wax plate, and three wing angles. The data show for the first time that genetic variation in Cape honeybee populations is independent of beekeeping density and probably reflects naturally occurring processes such as gene flow due to topographic and climatic variation on a microscale.

  15. Rare royal families in honeybees, Apis mellifera

    NASA Astrophysics Data System (ADS)

    Moritz, Robin F. A.; Lattorff, H. Michael G.; Neumann, Peter; Kraus, F. Bernhard; Radloff, Sarah E.; Hepburn, H. Randall

    2005-10-01

    The queen is the dominant female in the honeybee colony, Apis mellifera, and controls reproduction. Queen larvae are selected by the workers and are fed a special diet (royal jelly), which determines caste. Because queens mate with many males a large number of subfamilies coexist in the colony. As a consequence, there is a considerable potential for conflict among the subfamilies over queen rearing. Here we show that honeybee queens are not reared at random but are preferentially reared from rare “royal” subfamilies, which have extremely low frequencies in the colony's worker force but a high frequency in the queens reared.

  16. Genetic diversity of the Dwarf honeybee (Apis florea Fabricius, 1787) populations based on microsatellite markers.

    PubMed

    Asadi, N; Rahimi, A; Ghaheri, M; Kahrizi, D; Bagheri Dehbaghi, M; Khederzadeh, S; Banabazi, M H; Esmaeilkhanian, S; Veisi, B; Geravandi, M; Karim, H; Vaziri, S; Daneshgar, F; Zargooshi, J

    2016-10-31

    Apis florea is one of two species of small, wild honeybee. The present study was conducted to evaluate the genetic diversity of Apis florea honeybee from 48 nests (colonies) using microsatellite markers in the South of Iran. All honeybee samples were analyzed for six microsatellite loci (A88, A107, A7, B124, A113 and A35). The six loci had different numbers of alleles in the sampled colonies ranging from 7 (loci A107) to 3 (loci A7, A35). Gene diversity in Apis florea ranged from 0.491 to 0.595. This range probably reflects the spreading of nests in a large region with a varied climate. Phylogenetic tree showed two distinct clusters including a) Minab region samples and b) Bandar Abbas, Bandar Khamir and Qeshm Island regions. All of these regions are geographically rich, having varied vegetation and climate conditions. Our findings are an important contribution to the methods of studying distribution and conservation of Apis florea.

  17. In vitro effects of thiamethoxam on larvae of Africanized honey bee Apis mellifera (Hymenoptera: Apidae).

    PubMed

    Tavares, Daiana Antonia; Roat, Thaisa Cristina; Carvalho, Stephan Malfitano; Silva-Zacarin, Elaine Cristina Mathias; Malaspina, Osmar

    2015-09-01

    Several investigations have revealed the toxic effects that neonicotinoids can have on Apis mellifera, while few studies have evaluated the impact of these insecticides can have on the larval stage of the honeybee. From the lethal concentration (LC50) of thiamethoxam for the larvae of the Africanized honeybee, we evaluated the sublethal effects of this insecticide on morphology of the brain. After determine the LC50 (14.34 ng/μL of diet) of thiamethoxam, larvae were exposed to a sublethal concentration of thiamethoxam equivalent to 1.43 ng/μL by acute and subchronic exposure. Morphological and immunocytochemistry analysis of the brains of the exposed bees, showed condensed cells and early cell death in the optic lobes. Additional dose-related effects were observed on larval development. Our results show that the sublethal concentrations of thiamethoxam tested are toxic to Africanized honeybees larvae and can modulate the development and consequently could affect the maintenance and survival of the colony. These results represent the first assessment of the effects of thiamethoxam in Africanized honeybee larvae and should contribute to studies on honey bee colony decline. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Addressing the diversity of the honeybee gut symbiont Gilliamella: description of Gilliamella apis sp. nov., isolated from the gut of honeybees (Apis mellifera).

    PubMed

    Ludvigsen, Jane; Porcellato, Davide; Amdam, Gro V; Rudi, Knut

    2018-05-01

    The gut microbiota of honeybees (Apis) and bumblebees (Bombus) include the symbiotic bacterial genus Gilliamella. This genus shows a high degree of functional and genomic diversity and separates into distinct lineages. Gilliamella apicola wkB1 T , which was isolated from Apis, was the first species to be described. Recently four new species, isolated from Bombus, were identified. In this paper, we compare several genomes/strains from previous studies spanning this diversity, which gives insight into the phylogenetic relationship among different Gilliamella species. We show that one lineage, isolated only from Apis, is different from other gilliamellas described, based on average nucleotide identity calculation (about 80 %) and phenotypic characterizations. We propose the new species name for this lineage: Gilliamella apis sp. nov. We present the characterization of the type strain NO3 T (=DSM 105629 T =LMG 30293 T ), a strain isolated from the Western honeybee Apis mellifera, which clusters within this lineage. Cells of strain NO3 T grow best in a microaerophilic atmosphere with enhanced CO2 levels at 36 °C and pH 7.0-7.5. Cells also grow well in anaerobic conditions, but not in aerobic conditions. Cells are approximately 1 µm in length and rod-shaped, and the genomic G+C content is 34.7 mol%. Differential characteristics between strain NO3 T and the different type strains of Gilliamella were revealed based on API kit tests and genomic content comparisons. The main respiratory quinone of strain NO3 T was ubiquinone-8, and the predominant fatty acids were C18 : 1ω7c/C18 : 1ω6c, C16 : 0, consistent with the genus Gilliamella.

  19. Seminal fluid of honeybees contains multiple mechanisms to combat infections of the sexually transmitted pathogen Nosema apis.

    PubMed

    Peng, Yan; Grassl, Julia; Millar, A Harvey; Baer, Boris

    2016-01-27

    The societies of ants, bees and wasps are genetically closed systems where queens only mate during a brief mating episode prior to their eusocial life and males therefore provide queens with a lifetime supply of high-quality sperm. These ejaculates also contain a number of defence proteins that have been detected in the seminal fluid but their function and efficiency have never been investigated in great detail. Here, we used the honeybee Apis mellifera and quantified whether seminal fluid is able to combat infections of the fungal pathogen Nosema apis, a widespread honeybee parasite that is also sexually transmitted. We provide the first empirical evidence that seminal fluid has a remarkable antimicrobial activity against N. apis spores and that antimicrobial seminal fluid components kill spores in multiple ways. The protein fraction of seminal fluid induces extracellular spore germination, which disrupts the life cycle of N. apis, whereas the non-protein fraction of seminal fluid induces a direct viability loss of intact spores. We conclude that males provide their ejaculates with efficient antimicrobial molecules that are able to kill N. apis spores and thereby reduce the risk of disease transmission during mating. Our findings could be of broader significance to master honeybee diseases in managed honeybee stock in the future. © 2016 The Author(s).

  20. Origin of honeybees (Apis mellifera L.) from the Yucatan peninsula inferred from mitochondrial DNA analysis.

    PubMed

    Clarke, K E; Oldroyd, B P; Javier, J; Quezada-Euán, G; Rinderer, T E

    2001-06-01

    Honeybees (Apis mellifera L.) sampled at sites in Europe, Africa and South America were analysed using a mitochondrial DNA restriction fragment length polymorphism (RFLP) marker. These samples were used to provide baseline information for a detailed analysis of the process of Africanization of bees from the neotropical Yucatan peninsula of Mexico. Radical changes in mitochondrial haplotype (mitotype) frequencies were found to have occurred in the 13-year period studied. Prior to the arrival of Africanized bees (1986) the original inhabitants of the Yucatan peninsula appear to have been essentially of southeastern European origin with a smaller proportion having northwestern European ancestry. Three years after the migration of Africanized bees into the area (1989), only very low levels of maternal gene flow from Africanized populations into the resident European populations had occurred. By 1998, however, there was a sizeable increase in the proportion of African mitotypes in domestic populations (61%) with feral populations having 87% of mitotypes classified as African derived. The results suggest that the early stages of Africanization did not involve a rapid replacement of European with African mitotypes and that earlier studies probably overestimated the prevalence of African mitotypes.

  1. Comparison of the energetic stress associated with experimental Nosema ceranae and Nosema apis infection of honeybees (Apis mellifera).

    PubMed

    Martín-Hernández, Raquel; Botías, Cristina; Barrios, Laura; Martínez-Salvador, Amparo; Meana, Aránzazu; Mayack, Christopher; Higes, Mariano

    2011-09-01

    Nosema ceranae is a relatively new and widespread parasite of the western honeybee Apis mellifera that provokes a new form of nosemosis. In comparison to Nosema apis, which has been infecting the honeybee for much longer, N. ceranae seems to have co-evolved less with this host, causing a more virulent disease. Given that N. apis and N. ceranae are obligate intracellular microsporidian parasites, needing host energy to reproduce, energetic stress may be an important factor contributing to the increased virulence observed. Through feeding experiments on caged bees, we show that both mortality and sugar syrup consumption were higher in N. ceranae-infected bees than in N. apis-infected and control bees. The mortality and sugar syrup consumption are also higher in N. apis-infected bees than in controls, but are less than in N. ceranae-infected bees. With both microsporidia, mortality and sugar syrup consumption increased in function of the increasing spore counts administered for infection. The differences in energetic requirements between both Nosema spp. confirm that their metabolic patterns are not the same, which may depend critically on host-parasite interactions and, ultimately, on host pathology. The repercussions of this increased energetic stress may even explain the changes in host behavior due to starvation, lack of thermoregulatory capacity, or higher rates of trophallaxis, which might enhance transmission and bee death.

  2. Antimicrobial activity of plant extracts against the honeybee pathogens, Paenibacillus larvae and Ascosphaera apis and their topical toxicity to Apis mellifera adults.

    PubMed

    Chaimanee, V; Thongtue, U; Sornmai, N; Songsri, S; Pettis, J S

    2017-11-01

    To explore alternative nonchemical control measures against two honeybee pathogens, Paenibacillus larvae and Ascosphaera apis, 37 plant species were screened for antimicrobial activity. The activity of selected plant extracts was screened using an in vitro disc diffusion assay and the minimal inhibitory concentration (MIC) was determined by the broth microdilution method. The results showed that 36 plant extracts had some antibacterial activity on P. larvae by disc diffusion assay. Chromolaena odorata showed the greatest antibacterial activity against P. larvae (MIC 16-64 μg ml -1 ). Of the 37 tested plants, only seven species, Amomum krervanh, Allium sativum, Cinnamomum sp., Piper betle, Piper ribesioides, Piper sarmentosum and Syzygium aromaticum had inhibitory effects on A. apis (MICs of 32-64 μg ml -1 ). The results demonstrated that promising plant extracts were not toxic to adult bees at the concentrations used in this study. The results demonstrate the potential antimicrobial activity of natural products against honeybee diseases caused by P. larvae and A. apis. Chromolaena odorata in particular showed high bioactivity against P. larvae. Further study is recommended to develop these nonchemical treatments against American foulbrood and chalkbrood in honeybees. This work proposes new natural products for the control of American foulbrood and chalkbrood in honeybees. © 2017 The Society for Applied Microbiology.

  3. An abbreviated SNP panel for ancestry assignment of honeybees (Apis mellifera)

    USDA-ARS?s Scientific Manuscript database

    This paper examines whether an abbreviated panel of 37 single nucleotide polymorphisms (SNPs) has the same power as a larger and more expensive panel of 95 SNPs to assign ancestry of honeybees (Apis mellifera) to three ancestral lineages. We selected 37 SNPs from the original 95 SNP panel using alle...

  4. Honeybee (Apis mellifera ligustica) drone embryo proteomes.

    PubMed

    Li, Jianke; Fang, Yu; Zhang, Lan; Begna, Desalegn

    2011-03-01

    Little attention has been paid to the drone honeybee (Apis mellifera ligustica) which is a haploid individual carrying only the set of alleles that it inherits from its mother. Molecular mechanisms underlying drone embryogenesis are poorly understood. This study evaluated protein expression profiles of drone embryogenesis at embryonic ages of 24, 48 and 72h. More than 100 reproducible proteins were analyzed by mass spectrometry on 2D electrophoresis gels. Sixty-two proteins were significantly changed at the selected three experimental age points. Expression of the metabolic energy requirement-related protein peaked at the embryonic age of 48h, whereas development and metabolizing amino acid-related proteins expressed optimally at 72h. Cytoskeleton, protein folding and antioxidant-related proteins were highly expressed at 48 and 72h. Protein networks of the identified proteins were constructed and protein expressions were validated at the transcription level. This first proteomic study of drone embryogenesis in the honeybee may provide geneticists an exact timetable and candidate protein outline for further manipulations of drone stem cells. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  5. Fertility and reproductive rate of Varroa mite, Varroa destructor, in native and exotic honeybee, Apis mellifera L., colonies under Saudi Arabia conditions.

    PubMed

    Alattal, Yehya; AlGhamdi, Ahmad; Single, Arif; Ansari, Mohammad Javed; Alkathiri, Hussien

    2017-07-01

    Varroa mite is the most destructive pest to bee colonies worldwide. In Saudi Arabia, preliminary data indicated high infestation levels in the exotic honeybee colonies; such as Apis mellifera carnica and Apis mellifera ligustica , compared to native honeybee subspecies Apis mellifera jemenitica , which may imply higher tolerance to Varroasis . In this study, fertility and reproductive rate of Varroa mite, Varroa destructor , in capped brood cells of the native honeybee subspecies were investigated and compared with an exotic honeybee subspecies, A. m . carnica . Mite fertility was almost alike (87.5% and 89.4%) in the native and craniolan colonies respectively. Similarly, results did not show significant differences in reproduction rate between both subspecies ( F  = 0.66, Pr >  F  = 0.42). Number of adult Varroa daughters per fertile mother mite was 2.0 and 2.1 for native and craniolan honeybee subspecies respectively. This may indicate that mechanisms of keeping low infestation rates in the native honeybee colonies are not associated with Varroa reproduction. Therefore, potential factors of keeping lower Varroa infestation rates in native honey bee subspecies should be further investigated.

  6. Short-sighted evolution of virulence in parasitic honeybee workers ( Apis mellifera capensis Esch.)

    NASA Astrophysics Data System (ADS)

    Moritz, Robin F. A.; Pirk, Christian W. W.; Hepburn, H. Randall; Neumann, Peter

    2008-06-01

    The short-sighted selection hypothesis for parasite virulence predicts that winners of within-host competition are poorer at transmission to new hosts. Social parasitism by self-replicating, female-producing workers occurs in the Cape honeybee Apis mellifera capensis, and colonies of other honeybee subspecies are susceptible hosts. We found high within-host virulence but low transmission rates in a clone of social parasitic A. m. capensis workers invading the neighbouring subspecies A. m. scutellata. In contrast, parasitic workers from the endemic range of A. m. capensis showed low within-host virulence but high transmission rates. This suggests a short-sighted selection scenario for the host-parasite co-evolution in the invasive range of the Cape honeybee, probably facilitated by beekeeping-assisted parasite transmission in apiaries.

  7. IgE recognition of chimeric isoforms of the honeybee (Apis mellifera) venom allergen Api m 10 evaluated by protein array technology.

    PubMed

    Van Vaerenbergh, Matthias; De Smet, Lina; Rafei-Shamsabadi, David; Blank, Simon; Spillner, Edzard; Ebo, Didier G; Devreese, Bart; Jakob, Thilo; de Graaf, Dirk C

    2015-02-01

    Api m 10 has recently been established as novel major allergen that is recognized by more than 60% of honeybee venom (HBV) allergic patients. Previous studies suggest Api m 10 protein heterogeneity which may have implications for diagnosis and immunotherapy of HBV allergy. In the present study, RT-PCR revealed the expression of at least nine additional Api m 10 transcript isoforms by the venom glands. Two distinct mechanisms are responsible for the generation of these isoforms: while the previously known variant 2 is produced by an alternative splicing event, novel identified isoforms are intragenic chimeric transcripts. To the best of our knowledge, this is the first report of the identification of chimeric transcripts generated by the honeybee. By a retrospective proteomic analysis we found evidence for the presence of several of these isoforms in the venom proteome. Additionally, we analyzed IgE reactivity to different isoforms by protein array technology using sera from HBV allergic patients, which revealed that IgE recognition of Api m 10 is both isoform- and patient-specific. While it was previously demonstrated that the majority of HBV allergic patients display IgE reactivity to variant 2, our study also shows that some patients lacking IgE antibodies for variant 2 display IgE reactivity to two of the novel identified Api m 10 variants, i.e. variants 3 and 4. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. The prevalence of the honeybee brood pathogens Ascosphaera apis, Paenibacillus larvae and Melissococcus plutonius in Spanish apiaries determined with a new multiplex PCR assay

    PubMed Central

    Garrido-Bailón, Encarna; Higes, Mariano; Martínez-Salvador, Amparo; Antúnez, Karina; Botías, Cristina; Meana, Aránzazu; Prieto, Lourdes; Martín-Hernández, Raquel

    2013-01-01

    The microorganisms Ascosphaera apis, Paenibacillus larvae and Melissococcus plutonius are the three most important pathogens that affect honeybee brood. The aim of the present study was to evaluate the prevalence of these pathogens in honeybee colonies and to elucidate their role in the honeybee colony losses in Spain. In order to get it, a multiplex polymerase chain reaction (PCR) assay was developed to simultaneously amplify the16S ribosomal ribonucleic acid (rRNA) gene of P. larvae and M. plutonius, and the 5.8S rRNA gene of A. apis. The multiplex PCR assay provides a quick and specific tool that successfully detected the three infectious pathogens (P. larvae, M. plutonius and A. apis) in brood and adult honeybee samples without the need for microbiological culture. This technique was then used to evaluate the prevalence of these pathogens in Spanish honeybee colonies in 2006 and 2007, revealing our results a low prevalence of these pathogens in most of the geographic areas studied. PMID:23919248

  9. Evaluation of Apis mellifera syriaca Levant Region honeybee conservation using Comparative Genome Hybridization

    USDA-ARS?s Scientific Manuscript database

    Apis mellifera syriaca is the native honeybee subspecies of Jordan and much of the Levant Region. It expresses behavioral adaptations to a regional climate with very high temperatures, nectar dearth in summer, attacks of the Oriental wasp and is resistant to Varroa mites. The A. m. syriaca control r...

  10. Infections of Nosema ceranae in four different honeybee species.

    PubMed

    Chaimanee, Veeranan; Warrit, Natapot; Chantawannakul, Panuwan

    2010-10-01

    The microsporidium Nosema ceranae is detected in honeybees in Thailand for the first time. This endoparasite has recently been reported to infect most Apis mellifera honeybee colonies in Europe, the US, and parts of Asia, and is suspected to have displaced the endemic endoparasite species, Nosema apis, from the western A. mellifera. We collected and identified species of microsporidia from the European honeybee (A. mellifera), the cavity nesting Asian honeybee (Apis cerana), the dwarf Asian honeybee (Apis florea) and the giant Asian honeybee (Apis dorsata) from colonies in Northern Thailand. We used multiplex PCR technique with two pairs of primers to differentiate N. ceranae from N. apis. From 80 A. mellifera samples, 62 (77.5%) were positively identified for the presence of the N. ceranae. Amongst 46 feral colonies of Asian honeybees (A. cerana, A. florea and A. dorsata) examined for Nosema infections, only N. ceranae could be detected. No N. apis was found in our samples. N. ceranae is found to be the only microsporidium infesting honeybees in Thailand. Moreover, we found the frequencies of N. ceranae infection in native bees to be less than that of A. mellifera. Copyright 2010 Elsevier Inc. All rights reserved.

  11. Detection of Illicit Drugs by Trained Honeybees (Apis mellifera).

    PubMed

    Schott, Matthias; Klein, Birgit; Vilcinskas, Andreas

    2015-01-01

    Illegal drugs exacerbate global social challenges such as substance addiction, mental health issues and violent crime. Police and customs officials often rely on specially-trained sniffer dogs, which act as sensitive biological detectors to find concealed illegal drugs. However, the dog "alert" is no longer sufficient evidence to allow a search without a warrant or additional probable cause because cannabis has been legalized in two US states and is decriminalized in many others. Retraining dogs to recognize a narrower spectrum of drugs is difficult and training new dogs is time consuming, yet there are no analytical devices with the portability and sensitivity necessary to detect substance-specific chemical signatures. This means there is currently no substitute for sniffer dogs. Here we describe an insect screening procedure showing that the western honeybee (Apis mellifera) can sense volatiles associated with pure samples of heroin and cocaine. We developed a portable electroantennographic device for the on-site measurement of volatile perception by these insects, and found a positive correlation between honeybee antennal responses and the concentration of specific drugs in test samples. Furthermore, we tested the ability of honeybees to learn the scent of heroin and trained them to show a reliable behavioral response in the presence of a highly-diluted scent of pure heroin. Trained honeybees could therefore be used to complement or replace the role of sniffer dogs as part of an automated drug detection system. Insects are highly sensitive to volatile compounds and provide an untapped resource for the development of biosensors. Automated conditioning as presented in this study could be developed as a platform for the practical detection of illicit drugs using insect-based sensors.

  12. Detection of Illicit Drugs by Trained Honeybees (Apis mellifera)

    PubMed Central

    Schott, Matthias; Klein, Birgit; Vilcinskas, Andreas

    2015-01-01

    Illegal drugs exacerbate global social challenges such as substance addiction, mental health issues and violent crime. Police and customs officials often rely on specially-trained sniffer dogs, which act as sensitive biological detectors to find concealed illegal drugs. However, the dog “alert” is no longer sufficient evidence to allow a search without a warrant or additional probable cause because cannabis has been legalized in two US states and is decriminalized in many others. Retraining dogs to recognize a narrower spectrum of drugs is difficult and training new dogs is time consuming, yet there are no analytical devices with the portability and sensitivity necessary to detect substance-specific chemical signatures. This means there is currently no substitute for sniffer dogs. Here we describe an insect screening procedure showing that the western honeybee (Apis mellifera) can sense volatiles associated with pure samples of heroin and cocaine. We developed a portable electroantennographic device for the on-site measurement of volatile perception by these insects, and found a positive correlation between honeybee antennal responses and the concentration of specific drugs in test samples. Furthermore, we tested the ability of honeybees to learn the scent of heroin and trained them to show a reliable behavioral response in the presence of a highly-diluted scent of pure heroin. Trained honeybees could therefore be used to complement or replace the role of sniffer dogs as part of an automated drug detection system. Insects are highly sensitive to volatile compounds and provide an untapped resource for the development of biosensors. Automated conditioning as presented in this study could be developed as a platform for the practical detection of illicit drugs using insect-based sensors. PMID:26083377

  13. Pollen dispersal of tropical trees (Dinizia excelsa: Fabaceae) by native insects and African honeybees in pristine and fragmented Amazonian rainforest.

    PubMed

    Dick, Christopher W; Etchelecu, Gabriela; Austerlitz, Frédéric

    2003-03-01

    Tropical rainforest trees typically occur in low population densities and rely on animals for cross-pollination. It is of conservation interest therefore to understand how rainforest fragmentation may alter the pollination and breeding structure of remnant trees. Previous studies of the Amazonian tree Dinizia excelsa (Fabaceae) found African honeybees (Apis mellifera scutellata) as the predominant pollinators of trees in highly disturbed habitats, transporting pollen up to 3.2 km between pasture trees. Here, using microsatellite genotypes of seed arrays, we compare outcrossing rates and pollen dispersal distances of (i) remnant D. excelsa in three large ranches, and (ii) a population in undisturbed forest in which African honeybees were absent. Self-fertilization was more frequent in the disturbed habitats (14%, n = 277 seeds from 12 mothers) than in undisturbed forest (10%, n = 295 seeds from 13 mothers). Pollen dispersal was extensive in all three ranches compared to undisturbed forest, however. Using a twogener analysis, we estimated a mean pollen dispersal distance of 1509 m in Colosso ranch, assuming an exponential dispersal function, and 212 m in undisturbed forest. The low effective density of D. excelsa in undisturbed forest (approximately 0.1 trees/ha) indicates that large areas of rainforest must be preserved to maintain minimum viable populations. Our results also suggest, however, that in highly disturbed habitats Apis mellifera may expand genetic neighbourhood areas, thereby linking fragmented and continuous forest populations.

  14. Low fertility, fecundity and numbers of mated female offspring explain the lower reproductive success of the parasitic mite Varroa destructor in African honeybees

    USDA-ARS?s Scientific Manuscript database

    Although Varroa destructor is the most serious ecto-parasite to the honeybee, Apis mellifera L., some honeybee populations such as Apis mellifera scutellata in Kenya can survive mite infestations without treatment. Previously, we reported that grooming behavior could be a potential tolerant mechanis...

  15. Involvement of Phosphorylated "Apis Mellifera" CREB in Gating a Honeybee's Behavioral Response to an External Stimulus

    ERIC Educational Resources Information Center

    Gehring, Katrin B.; Heufelder, Karin; Feige, Janina; Bauer, Paul; Dyck, Yan; Ehrhardt, Lea; Kühnemund, Johannes; Bergmann, Anja; Göbel, Josefine; Isecke, Marlene; Eisenhardt, Dorothea

    2016-01-01

    The transcription factor cAMP-response element-binding protein (CREB) is involved in neuronal plasticity. Phosphorylation activates CREB and an increased level of phosphorylated CREB is regarded as an indicator of CREB-dependent transcriptional activation. In honeybees ("Apis mellifera") we recently demonstrated a particular high…

  16. Molecular mechanisms underlying formation of long-term reward memories and extinction memories in the honeybee (Apis mellifera)

    PubMed Central

    2014-01-01

    The honeybee (Apis mellifera) has long served as an invertebrate model organism for reward learning and memory research. Its capacity for learning and memory formation is rooted in the ecological need to efficiently collect nectar and pollen during summer to ensure survival of the hive during winter. Foraging bees learn to associate a flower's characteristic features with a reward in a way that resembles olfactory appetitive classical conditioning, a learning paradigm that is used to study mechanisms underlying learning and memory formation in the honeybee. Due to a plethora of studies on appetitive classical conditioning and phenomena related to it, the honeybee is one of the best characterized invertebrate model organisms from a learning psychological point of view. Moreover, classical conditioning and associated behavioral phenomena are surprisingly similar in honeybees and vertebrates, suggesting a convergence of underlying neuronal processes, including the molecular mechanisms that contribute to them. Here I review current thinking on the molecular mechanisms underlying long-term memory (LTM) formation in honeybees following classical conditioning and extinction, demonstrating that an in-depth analysis of the molecular mechanisms of classical conditioning in honeybees might add to our understanding of associative learning in honeybees and vertebrates. PMID:25225299

  17. In-Depth N-Glycosylation Reveals Species-Specific Modifications and Functions of the Royal Jelly Protein from Western (Apis mellifera) and Eastern Honeybees (Apis cerana).

    PubMed

    Feng, Mao; Fang, Yu; Han, Bin; Xu, Xiang; Fan, Pei; Hao, Yue; Qi, Yuping; Hu, Han; Huo, Xinmei; Meng, Lifeng; Wu, Bin; Li, Jianke

    2015-12-04

    Royal jelly (RJ), secreted by honeybee workers, plays diverse roles as nutrients and defense agents for honeybee biology and human health. Despite being reported to be glycoproteins, the glycosylation characterization and functionality of RJ proteins in different honeybee species are largely unknown. An in-depth N-glycoproteome analysis and functional assay of RJ produced by Apis mellifera lingustica (Aml) and Apis cerana cerana (Acc) were conducted. RJ produced by Aml yielded 80 nonredundant N-glycoproteins carrying 190 glycosites, of which 23 novel proteins harboring 35 glycosites were identified. For Acc, all 43 proteins glycosylated at 138 glycosites were reported for the first time. Proteins with distinct N-glycoproteomic characteristics in terms of glycoprotein species, number of N-glycosylated sites, glycosylation motif, abundance level of glycoproteins, and N-glycosites were observed in this two RJ samples. The fact that the low inhibitory efficiency of N-glycosylated major royal jelly protein 2 (MRJP2) against Paenibacillus larvae (P. larvae) and the absence of antibacterial related glycosylated apidaecin, hymenoptaecin, and peritrophic matrix in the Aml RJ compared to Acc reveal the mechanism for why the Aml larvae are susceptible to P. larvae, the causative agent of a fatal brood disease (American foulbrood, AFB). The observed antihypertension activity of N-glycosylated MRJP1 in two RJ samples and a stronger activity found in Acc than in Aml reveal that specific RJ protein and modification are potentially useful for the treatment of hypertensive disease for humans. Our data gain novel understanding that the western and eastern bees have evolved species-specific strategies of glycosylation to fine-tune protein activity for optimizing molecular function as nutrients and immune agents for the good of honeybee and influence on the health promoting activity for human as well. This serves as a valuable resource for the targeted probing of the biological

  18. Alternative splicing of a single transcription factor drives selfish reproductive behavior in honeybee workers (Apis mellifera).

    PubMed

    Jarosch, Antje; Stolle, Eckart; Crewe, Robin M; Moritz, Robin F A

    2011-09-13

    In eusocial insects the production of daughters is generally restricted to mated queens, and unmated workers are functionally sterile. The evolution of this worker sterility has been plausibly explained by kin selection theory [Hamilton W (1964) J Theor Biol 7:1-52], and many traits have evolved to prevent conflict over reproduction among the females in an insect colony. In honeybees (Apis mellifera), worker reproduction is regulated by the queen, brood pheromones, and worker policing. However, workers of the Cape honeybee, Apis mellifera capensis, can evade this control and establish themselves as social parasites by activating their ovaries, parthenogenetically producing diploid female offspring (thelytoky) and producing queen-like amounts of queen pheromones. All these traits have been shown to be strongly influenced by a single locus on chromosome 13 [Lattorff HMG, et al. (2007) Biol Lett 3:292-295]. We screened this region for candidate genes and found that alternative splicing of a gene homologous to the gemini transcription factor of Drosophila controls worker sterility. Knocking out the critical exon in a series of RNAi experiments resulted in rapid worker ovary activation-one of the traits characteristic of the social parasites. This genetic switch may be controlled by a short intronic splice enhancer motif of nine nucleotides attached to the alternative splice site. The lack of this motif in parasitic Cape honeybee clones suggests that the removal of nine nucleotides from the altruistic worker genome may be sufficient to turn a honeybee from an altruistic worker into a parasite.

  19. Mating flights select for symmetry in honeybee drones ( Apis mellifera)

    NASA Astrophysics Data System (ADS)

    Jaffé, Rodolfo; Moritz, Robin F. A.

    2010-03-01

    Males of the honeybee ( Apis mellifera) fly to specific drone congregation areas (DCAs), which virgin queens visit in order to mate. From the thousands of drones that are reared in a single colony, only very few succeed in copulating with a queen, and therefore, a strong selection is expected to act on adult drones during their mating flights. In consequence, the gathering of drones at DCAs may serve as an indirect mate selection mechanism, assuring that queens only mate with those individuals having a better flight ability and a higher responsiveness to the queen’s visual and chemical cues. Here, we tested this idea relying on wing fluctuating asymmetry (FA) as a measure of phenotypic quality. By recapturing marked drones at a natural DCA and comparing their size and FA with a control sample of drones collected at their maternal hives, we were able to detect any selection on wing size and wing FA occurring during the mating flights. Although we found no solid evidence for selection on wing size, wing FA was found to be significantly lower in the drones collected at the DCA than in those collected at the hives. Our results demonstrate the action of selection during drone mating flights for the first time, showing that developmental stability can influence the mating ability of honeybee drones. We therefore conclude that selection during honeybee drone mating flights may confer some fitness advantages to the queens.

  20. Mating flights select for symmetry in honeybee drones (Apis mellifera).

    PubMed

    Jaffé, Rodolfo; Moritz, Robin F A

    2010-03-01

    Males of the honeybee (Apis mellifera) fly to specific drone congregation areas (DCAs), which virgin queens visit in order to mate. From the thousands of drones that are reared in a single colony, only very few succeed in copulating with a queen, and therefore, a strong selection is expected to act on adult drones during their mating flights. In consequence, the gathering of drones at DCAs may serve as an indirect mate selection mechanism, assuring that queens only mate with those individuals having a better flight ability and a higher responsiveness to the queen's visual and chemical cues. Here, we tested this idea relying on wing fluctuating asymmetry (FA) as a measure of phenotypic quality. By recapturing marked drones at a natural DCA and comparing their size and FA with a control sample of drones collected at their maternal hives, we were able to detect any selection on wing size and wing FA occurring during the mating flights. Although we found no solid evidence for selection on wing size, wing FA was found to be significantly lower in the drones collected at the DCA than in those collected at the hives. Our results demonstrate the action of selection during drone mating flights for the first time, showing that developmental stability can influence the mating ability of honeybee drones. We therefore conclude that selection during honeybee drone mating flights may confer some fitness advantages to the queens.

  1. Different bees, different needs: how nest-site requirements have shaped the decision-making processes in homeless honeybees (Apis spp.).

    PubMed

    Beekman, Madeleine; Oldroyd, Benjamin P

    2018-05-19

    During reproductive swarming, a honeybee swarm needs to decide on a new nest site and then move to the chosen site collectively. Most studies of swarming and nest-site selection are based on one species, Apis mellifera Natural colonies of A. mellifera live in tree cavities. The quality of the cavity is critical to the survival of a swarm. Other honeybee species nest in the open, and have less strict nest-site requirements, such as the open-nesting dwarf honeybee Apis florea Apis florea builds a nest comprised of a single comb suspended from a twig. For a cavity-nesting species, there is only a limited number of potential nest sites that can be located by a swarm, because suitable sites are scarce. By contrast, for an open-nesting species, there is an abundance of equally suitable twigs. While the decision-making process of cavity-nesting bees is geared towards selecting the best site possible, open-nesting species need to coordinate collective movement towards areas with potential nest sites. Here, we argue that the nest-site selection processes of A. florea and A. mellifera have been shaped by each species' specific nest-site requirements. Both species use the same behavioural algorithm, tuned to allow each species to solve their species-specific problem.This article is part of the theme issue 'Collective movement ecology'. © 2018 The Author(s).

  2. Gigantism in honeybees: Apis cerana queens reared in mixed-species colonies

    NASA Astrophysics Data System (ADS)

    Tan, Ken; Hepburn, H. R.; He, Shaoyu; Radloff, S. E.; Neumann, P.; Fang, Xiang

    2006-07-01

    The development of animals depends on both genetic and environmental effects to a varying extent. Their relative influences can be evaluated in the social insects by raising the intracolonial diversity to an extreme in nests consisting of workers from more than one species. In this study, we studied the effects of mixed honeybee colonies of Apis mellifera and Apis cerana on the rearing of grafted queen larvae of A. cerana. A. mellifera sealed worker brood was introduced into A. cerana colonies and on emergence, the adults were accepted. Then, A. cerana larvae were grafted for queen rearing into two of these mixed-species colonies. Similarly, A. cerana larvae and A. mellifera larvae were also grafted conspecifically as controls. The success rate of A. cerana queen rearing in the test colonies was 64.5%, surpassing all previous attempts at interspecific queen rearing. After emergence, all virgin queens obtained from the three groups ( N=90) were measured morphometrically. The A. cerana queens from the mixed-species colonies differed significantly in size and pigmentation from the A. cerana control queens and closely approximated the A. mellifera queens. It is inferred that these changes in the A. cerana queens reared in the mixed-species colonies can be attributed to feeding by heterospecific nurse bees and/or chemical differences in royal jelly. Our data show a strong impact of environment on the development of queens. The results further suggest that in honeybees the cues for brood recognition can be learned by heterospecific workers after eclosion, thereby providing a novel analogy to slave making in ants.

  3. Function and distribution of 5-HT2 receptors in the honeybee (Apis mellifera).

    PubMed

    Thamm, Markus; Rolke, Daniel; Jordan, Nadine; Balfanz, Sabine; Schiffer, Christian; Baumann, Arnd; Blenau, Wolfgang

    2013-01-01

    Serotonin plays a pivotal role in regulating and modulating physiological and behavioral processes in both vertebrates and invertebrates. In the honeybee (Apis mellifera), serotonin has been implicated in division of labor, visual processing, and learning processes. Here, we present the cloning, heterologous expression, and detailed functional and pharmacological characterization of two honeybee 5-HT2 receptors. Honeybee 5-HT2 receptor cDNAs were amplified from brain cDNA. Recombinant cell lines were established constitutively expressing receptor variants. Pharmacological properties of the receptors were investigated by Ca(2+) imaging experiments. Quantitative PCR was applied to explore the expression patterns of receptor mRNAs. The honeybee 5-HT2 receptor class consists of two subtypes, Am5-HT2α and Am5-HT2β. Each receptor gene also gives rise to alternatively spliced mRNAs that possibly code for truncated receptors. Only activation of the full-length receptors with serotonin caused an increase in the intracellular Ca(2+) concentration. The effect was mimicked by the agonists 5-methoxytryptamine and 8-OH-DPAT at low micromolar concentrations. Receptor activities were blocked by established 5-HT receptor antagonists such as clozapine, methiothepin, or mianserin. High transcript numbers were detected in exocrine glands suggesting that 5-HT2 receptors participate in secretory processes in the honeybee. This study marks the first molecular and pharmacological characterization of two 5-HT2 receptor subtypes in the same insect species. The results presented should facilitate further attempts to unravel central and peripheral effects of serotonin mediated by these receptors.

  4. Function and Distribution of 5-HT2 Receptors in the Honeybee (Apis mellifera)

    PubMed Central

    Thamm, Markus; Rolke, Daniel; Jordan, Nadine; Balfanz, Sabine; Schiffer, Christian; Baumann, Arnd; Blenau, Wolfgang

    2013-01-01

    Background Serotonin plays a pivotal role in regulating and modulating physiological and behavioral processes in both vertebrates and invertebrates. In the honeybee (Apis mellifera), serotonin has been implicated in division of labor, visual processing, and learning processes. Here, we present the cloning, heterologous expression, and detailed functional and pharmacological characterization of two honeybee 5-HT2 receptors. Methods Honeybee 5-HT2 receptor cDNAs were amplified from brain cDNA. Recombinant cell lines were established constitutively expressing receptor variants. Pharmacological properties of the receptors were investigated by Ca2+ imaging experiments. Quantitative PCR was applied to explore the expression patterns of receptor mRNAs. Results The honeybee 5-HT2 receptor class consists of two subtypes, Am5-HT2α and Am5-HT2β. Each receptor gene also gives rise to alternatively spliced mRNAs that possibly code for truncated receptors. Only activation of the full-length receptors with serotonin caused an increase in the intracellular Ca2+ concentration. The effect was mimicked by the agonists 5-methoxytryptamine and 8-OH-DPAT at low micromolar concentrations. Receptor activities were blocked by established 5-HT receptor antagonists such as clozapine, methiothepin, or mianserin. High transcript numbers were detected in exocrine glands suggesting that 5-HT2 receptors participate in secretory processes in the honeybee. Conclusions This study marks the first molecular and pharmacological characterization of two 5-HT2 receptor subtypes in the same insect species. The results presented should facilitate further attempts to unravel central and peripheral effects of serotonin mediated by these receptors. PMID:24324783

  5. Virus Infections of Honeybees Apis Mellifera

    PubMed Central

    Tantillo, Giuseppina; Bottaro, Marilisa; Di Pinto, Angela; Martella, Vito; Di Pinto, Pietro

    2015-01-01

    The health and vigour of honeybee colonies are threatened by numerous parasites (such as Varroa destructor and Nosema spp.) and pathogens, including viruses, bacteria, protozoa. Among honeybee pathogens, viruses are one of the major threats to the health and well-being of honeybees and cause serious concern for researchers and beekeepers. To tone down the threats posed by these invasive organisms, a better understanding of bee viral infections will be of crucial importance in developing effective and environmentally benign disease control strategies. Here we summarize recent progress in the understanding of the morphology, genome organization, transmission, epidemiology and pathogenesis of eight honeybee viruses: Deformed wing virus (DWV) and Kakugo virus (KV); Sacbrood virus (SBV); Black Queen cell virus (BQCV); Acute bee paralysis virus (ABPV); Kashmir bee virus (KBV); Israeli Acute Paralysis Virus (IAPV); Chronic bee paralysis virus (CBPV). The review has been designed to provide researchers in the field with updated information about honeybee viruses and to serve as a starting point for future research. PMID:27800411

  6. Amtyr1: characterization of a gene from honeybee (Apis mellifera) brain encoding a functional tyramine receptor.

    PubMed

    Blenau, W; Balfanz, S; Baumann, A

    2000-03-01

    Biogenic amine receptors are involved in the regulation and modulation of various physiological and behavioral processes in both vertebrates and invertebrates. We have cloned a member of this gene family from the CNS of the honeybee, Apis mellifera. The deduced amino acid sequence is homologous to tyramine receptors cloned from Locusta migratoria and Drosophila melanogaster as well as to an octopamine receptor cloned from Heliothis virescens. Functional properties of the honeybee receptor were studied in stably transfected human embryonic kidney 293 cells. Tyramine reduced forskolin-induced cyclic AMP production in a dose-dependent manner with an EC50 of approximately 130 nM. A similar effect of tyramine was observed in membrane homogenates of honeybee brains. Octopamine also reduced cyclic AMP production in the transfected cell line but was both less potent (EC50 of approximately 3 microM) and less efficacious than tyramine. Receptor-encoding mRNA has a wide-spread distribution in the brain and subesophageal ganglion of the honeybee, suggesting that this tyramine receptor is involved in sensory signal processing as well as in higher-order brain functions.

  7. MALDI Imaging Analysis of Neuropeptides in Africanized Honeybee (Apis mellifera) Brain: Effect of Aggressiveness.

    PubMed

    Pratavieira, Marcel; Menegasso, Anally Ribeiro da Silva; Esteves, Franciele Grego; Sato, Kenny Umino; Malaspina, Osmar; Palma, Mario Sérgio

    2018-05-18

    The aggressiveness in honeybees seems to be regulated by multiple genes, under the influence of different factors, such as polyethism of workers, environmental factors, and response to alarm pheromones, creating a series of behavioral responses. It is suspected that neuropeptides seem to be involved with the regulation of the aggressive behavior. The role of allatostatin and tachykinin-related neuropeptides in honeybee brain during the aggressive behavior is unknown; thus, worker honeybees were stimulated to attack and to sting leather targets hanged in front of the colonies. The aggressive individuals were collected and immediately frozen in liquid nitrogen; the heads were removed, and sliced at sagittal plan. The brain slices were submitted to MALDI-Spectral-Imaging analysis, and the results of the present study reported the processing of the precursors proteins into mature forms of the neuropeptides AmAST A (59-76) (AYTYVSEYKRLPVYNFGL-NH2), AmAST A (69-76) (LPVYNFGL-NH2), AmTRP (88 - 96) (APMGFQGMR-NH2), and AmTRP (254 - 262) (ARMGFHGMR-NH2), which apparently acted in different neuropils of honeybee brain, during the aggressive behavior, possibly playing the neuromodulation of different aspects of this complex behavior. These results were biologically validated performing aggressiveness-related behavioral assays, using young honeybee workers that received 1 ng of AmAST A (69-76) or AmTRP (88 - 96) via hemocele. The young workers that were not expected to be aggressive individuals, presented a complete series of the aggressive behaviors, in presence of the neuropeptides, corroborating the hypothesis that correlates the presence of mature AmASTs A and AmTRPs in honeybee brain with the aggressiveness of this insect.

  8. Anti-fibrinolytic and anti-microbial activities of a serine protease inhibitor from honeybee (Apis cerana) venom.

    PubMed

    Yang, Jie; Lee, Kwang Sik; Kim, Bo Yeon; Choi, Yong Soo; Yoon, Hyung Joo; Jia, Jingming; Jin, Byung Rae

    2017-10-01

    Bee venom contains a variety of peptide constituents, including low-molecular-weight protease inhibitors. While the putative low-molecular-weight serine protease inhibitor Api m 6 containing a trypsin inhibitor-like cysteine-rich domain was identified from honeybee (Apis mellifera) venom, no anti-fibrinolytic or anti-microbial roles for this inhibitor have been elucidated. In this study, we identified an Asiatic honeybee (A. cerana) venom serine protease inhibitor (AcVSPI) that was shown to act as a microbial serine protease inhibitor and plasmin inhibitor. AcVSPI was found to consist of a trypsin inhibitor-like domain that displays ten cysteine residues. Interestingly, the AcVSPI peptide sequence exhibited high similarity to the putative low-molecular-weight serine protease inhibitor Api m 6, which suggests that AcVSPI is an allergen Api m 6-like peptide. Recombinant AcVSPI was expressed in baculovirus-infected insect cells, and it demonstrated inhibitory activity against trypsin, but not chymotrypsin. Additionally, AcVSPI has inhibitory effects against plasmin and microbial serine proteases; however, it does not have any detectable inhibitory effects on thrombin or elastase. Consistent with these inhibitory effects, AcVSPI inhibited the plasmin-mediated degradation of fibrin to fibrin degradation products. AcVSPI also bound to bacterial and fungal surfaces and exhibited anti-microbial activity against fungi as well as gram-positive and gram-negative bacteria. These findings demonstrate the anti-fibrinolytic and anti-microbial roles of AcVSPI as a serine protease inhibitor. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Chemical Composition of Different Botanical Origin Honeys Produced by Sicilian Black Honeybees (Apis mellifera ssp. sicula).

    PubMed

    Mannina, Luisa; Sobolev, Anatoly P; Di Lorenzo, Arianna; Vista, Silvia; Tenore, Gian Carlo; Daglia, Maria

    2015-07-01

    In 2008 a Slow Food Presidium was launched in Sicily (Italy) for an early warning of the risk of extinction of the Sicilian native breed of black honeybee (Apis mellifera L. ssp sicula). Today, the honey produced by these honeybees is the only Sicilian honey produced entirely by the black honeybees. In view of few available data regarding the chemical composition of A. mellifera ssp. sicula honeys, in the present investigation the chemical compositions of sulla honey (Hedysarum coronarium L.) and dill honey (Anethum graveolens L.) were studied with a multimethodological approach, which consists of HPLC-PDA-ESI-MSn and NMR spectroscopy. Moreover, three unifloral honeys (lemon honey (obtained from Citrus limon (L.) Osbeck), orange honey (Citrus arantium L.), and medlar honey (Eriobotrya japonica (Thunb.) Lindl)), with known phenol and polyphenol compositions, were studied with NMR spectroscopy to deepen the knowledge about sugar and amino acid compositions.

  10. Social encapsulation of beetle parasites by Cape honeybee colonies (Apis mellifera capensis Esch.)

    NASA Astrophysics Data System (ADS)

    Neumann, P.; Pirk, C. W. W.; Hepburn, H. R.; Solbrig, A. J.; Ratnieks, F. L. W.; Elzen, P. J.; Baxter, J. R.

    2001-05-01

    Worker honeybees (Apis mellifera capensis) encapsulate the small hive beetle (Aethina tumida), a nest parasite, in propolis (tree resin collected by the bees). The encapsulation process lasts 1-4 days and the bees have a sophisticated guarding strategy for limiting the escape of beetles during encapsulation. Some encapsulated beetles died (4.9%) and a few escaped (1.6%). Encapsulation has probably evolved because the small hive beetle cannot easily be killed by the bees due to its hard exoskeleton and defensive behaviour.

  11. Molecular Mechanisms Underlying Formation of Long-Term Reward Memories and Extinction Memories in the Honeybee ("Apis Mellifera")

    ERIC Educational Resources Information Center

    Eisenhardt, Dorothea

    2014-01-01

    The honeybee ("Apis mellifera") has long served as an invertebrate model organism for reward learning and memory research. Its capacity for learning and memory formation is rooted in the ecological need to efficiently collect nectar and pollen during summer to ensure survival of the hive during winter. Foraging bees learn to associate a…

  12. Bacterial community associated with worker honeybees (Apis mellifera) affected by European foulbrood

    PubMed Central

    Ledvinka, Ondrej; Kamler, Martin; Hortova, Bronislava; Nesvorna, Marta; Tyl, Jan; Titera, Dalibor; Markovic, Martin; Hubert, Jan

    2017-01-01

    Background Melissococcus plutonius is an entomopathogenic bacterium that causes European foulbrood (EFB), a honeybee (Apis mellifera L.) disease that necessitates quarantine in some countries. In Czechia, positive evidence of EFB was absent for almost 40 years, until an outbreak in the Krkonose Mountains National Park in 2015. This occurrence of EFB gave us the opportunity to study the epizootiology of EFB by focusing on the microbiome of honeybee workers, which act as vectors of honeybee diseases within and between colonies. Methods The study included worker bees collected from brood combs of colonies (i) with no signs of EFB (EFB0), (ii) without clinical symptoms but located at an apiary showing clinical signs of EFB (EFB1), and (iii) with clinical symptoms of EFB (EFB2). In total, 49 samples from 27 honeybee colonies were included in the dataset evaluated in this study. Each biological sample consisted of 10 surface-sterilized worker bees processed for DNA extraction. All subjects were analyzed using conventional PCR and by metabarcoding analysis based on the 16S rRNA gene V1–V3 region, as performed through Illumina MiSeq amplicon sequencing. Results The bees from EFB2 colonies with clinical symptoms exhibited a 75-fold-higher incidence of M. plutonius than those from EFB1 asymptomatic colonies. Melissococcus plutonius was identified in all EFB1 colonies as well as in some of the control colonies. The proportions of Fructobacillus fructosus, Lactobacillus kunkeei, Gilliamella apicola, Frischella perrara, and Bifidobacterium coryneforme were higher in EFB2 than in EFB1, whereas Lactobacillus mellis was significantly higher in EFB2 than in EFB0. Snodgrassella alvi and L. melliventris, L. helsingborgensis and, L. kullabergensis exhibited higher proportion in EFB1 than in EFB2 and EFB0. The occurrence of Bartonella apis and Commensalibacter intestini were higher in EFB0 than in EFB2 and EFB1. Enterococcus faecalis incidence was highest in EFB2. Conclusions High

  13. East learns from West: Asiatic honeybees can understand dance language of European honeybees.

    PubMed

    Su, Songkun; Cai, Fang; Si, Aung; Zhang, Shaowu; Tautz, Jürgen; Chen, Shenglu

    2008-06-04

    The honeybee waggle dance, through which foragers advertise the existence and location of a food source to their hive mates, is acknowledged as the only known form of symbolic communication in an invertebrate. However, the suggestion, that different species of honeybee might possess distinct 'dialects' of the waggle dance, remains controversial. Furthermore, it remains unclear whether different species of honeybee can learn from and communicate with each other. This study reports experiments using a mixed-species colony that is composed of the Asiatic bee Apis cerana cerana (Acc), and the European bee Apis mellifera ligustica (Aml). Using video recordings made at an observation hive, we first confirm that Acc and Aml have significantly different dance dialects, even when made to forage in identical environments. When reared in the same colony, these two species are able to communicate with each other: Acc foragers could decode the dances of Aml to successfully locate an indicated food source. We believe that this is the first report of successful symbolic communication between two honeybee species; our study hints at the possibility of social learning between the two honeybee species, and at the existence of a learning component in the honeybee dance language.

  14. RNA-sequence analysis of gene expression from honeybees (Apis mellifera) infected with Nosema ceranae

    PubMed Central

    Fougeroux, André; Petit, Fabien; Anselmo, Anna; Gorni, Chiara; Cucurachi, Marco; Cersini, Antonella; Granato, Anna; Cardeti, Giusy; Formato, Giovanni; Mutinelli, Franco; Giuffra, Elisabetta; Williams, John L.; Botti, Sara

    2017-01-01

    Honeybees (Apis mellifera) are constantly subjected to many biotic stressors including parasites. This study examined honeybees infected with Nosema ceranae (N. ceranae). N. ceranae infection increases the bees energy requirements and may contribute to their decreased survival. RNA-seq was used to investigate gene expression at days 5, 10 and 15 Post Infection (P.I) with N. ceranae. The expression levels of genes, isoforms, alternative transcription start sites (TSS) and differential promoter usage revealed a complex pattern of transcriptional and post-transcriptional gene regulation suggesting that bees use a range of tactics to cope with the stress of N. ceranae infection. N. ceranae infection may cause reduced immune function in the bees by: (i)disturbing the host amino acids metabolism (ii) down-regulating expression of antimicrobial peptides (iii) down-regulation of cuticle coatings and (iv) down-regulation of odorant binding proteins. PMID:28350872

  15. Thelytokous Parthenogenesis in Unmated Queen Honeybees (Apis mellifera capensis): Central Fusion and High Recombination Rates

    PubMed Central

    Oldroyd, Benjamin P.; Allsopp, Michael H.; Gloag, Rosalyn S.; Lim, Julianne; Jordan, Lyndon A.; Beekman, Madeleine

    2008-01-01

    The subspecies of honeybee indigenous to the Cape region of South Africa, Apis mellifera capensis, is unique because a high proportion of unmated workers can lay eggs that develop into females via thelytokous parthenogenesis involving central fusion of meiotic products. This ability allows pseudoclonal lineages of workers to establish, which are presently widespread as reproductive parasites within the honeybee populations of South Africa. Successful long-term propagation of a parthenogen requires the maintenance of heterozygosity at the sex locus, which in honeybees must be heterozygous for the expression of female traits. Thus, in successful lineages of parasitic workers, recombination events are reduced by an order of magnitude relative to meiosis in queens of other honeybee subspecies. Here we show that in unmated A. m. capensis queens treated to induce oviposition, no such reduction in recombination occurs, indicating that thelytoky and reduced recombination are not controlled by the same gene. Our virgin queens were able to lay both arrhenotokous male-producing haploid eggs and thelytokous female-producing diploid eggs at the same time, with evidence that they have some voluntary control over which kind of egg was laid. If so, they are able to influence the kind of second-division meiosis that occurs in their eggs post partum. PMID:18716331

  16. Hygienic and grooming behaviors in African and European honeybees-New damage categories in Varroa destructor

    USDA-ARS?s Scientific Manuscript database

    Varroa destructor is an ectoparasitic pest of honeybees, and a threat to the survival of the apiculture industry. Several studies have shown that unlike European honeybees, African honeybee populations appear to be minimally affected when attacked by this mite. However, little is known about the und...

  17. Host Specificity in the Honeybee Parasitic Mite, Varroa spp. in Apis mellifera and Apis cerana

    PubMed Central

    Beaurepaire, Alexis L.; Dinh, Tam Q.; Cervancia, Cleofas; Moritz, Robin F. A.

    2015-01-01

    The ectoparasitic mite Varroa destructor is a major global threat to the Western honeybee Apis mellifera. This mite was originally a parasite of A. cerana in Asia but managed to spill over into colonies of A. mellifera which had been introduced to this continent for honey production. To date, only two almost clonal types of V. destructor from Korea and Japan have been detected in A. mellifera colonies. However, since both A. mellifera and A. cerana colonies are kept in close proximity throughout Asia, not only new spill overs but also spill backs of highly virulent types may be possible, with unpredictable consequences for both honeybee species. We studied the dispersal and hybridisation potential of Varroa from sympatric colonies of the two hosts in Northern Vietnam and the Philippines using mitochondrial and microsatellite DNA markers. We found a very distinct mtDNA haplotype equally invading both A. mellifera and A. cerana in the Philippines. In contrast, we observed a complete reproductive isolation of various Vietnamese Varroa populations in A. mellifera and A. cerana colonies even if kept in the same apiaries. In light of this variance in host specificity, the adaptation of the mite to its hosts seems to have generated much more genetic diversity than previously recognised and the Varroa species complex may include substantial cryptic speciation. PMID:26248192

  18. A Comparative Study of Relational Learning Capacity in Honeybees (Apis mellifera) and Stingless Bees (Melipona rufiventris)

    PubMed Central

    Moreno, Antonio Mauricio; de Souza, Deisy das Graças; Reinhard, Judith

    2012-01-01

    Background Learning of arbitrary relations is the capacity to acquire knowledge about associations between events or stimuli that do not share any similarities, and use this knowledge to make behavioural choices. This capacity is well documented in humans and vertebrates, and there is some evidence it exists in the honeybee (Apis mellifera). However, little is known about whether the ability for relational learning extends to other invertebrates, although many insects have been shown to possess excellent learning capacities in spite of their small brains. Methodology/Principal Findings Using a symbolic matching-to-sample procedure, we show that the honeybee Apis mellifera rapidly learns arbitrary relations between colours and patterns, reaching 68.2% correct choice for pattern-colour relations and 73.3% for colour-pattern relations. However, Apis mellifera does not transfer this knowledge to the symmetrical relations when the stimulus order is reversed. A second bee species, the stingless bee Melipona rufiventris from Brazil, seems unable to learn the same arbitrary relations between colours and patterns, although it exhibits excellent discrimination learning. Conclusions/Significance Our results confirm that the capacity for learning arbitrary relations is not limited to vertebrates, but even insects with small brains can perform this learning task. Interestingly, it seems to be a species-specific ability. The disparity in relational learning performance between the two bee species we tested may be linked to their specific foraging and recruitment strategies, which evolved in adaptation to different environments. PMID:23251542

  19. A comparative study of relational learning capacity in honeybees (Apis mellifera) and stingless bees (Melipona rufiventris).

    PubMed

    Moreno, Antonio Mauricio; de Souza, Deisy das Graças; Reinhard, Judith

    2012-01-01

    Learning of arbitrary relations is the capacity to acquire knowledge about associations between events or stimuli that do not share any similarities, and use this knowledge to make behavioural choices. This capacity is well documented in humans and vertebrates, and there is some evidence it exists in the honeybee (Apis mellifera). However, little is known about whether the ability for relational learning extends to other invertebrates, although many insects have been shown to possess excellent learning capacities in spite of their small brains. Using a symbolic matching-to-sample procedure, we show that the honeybee Apis mellifera rapidly learns arbitrary relations between colours and patterns, reaching 68.2% correct choice for pattern-colour relations and 73.3% for colour-pattern relations. However, Apis mellifera does not transfer this knowledge to the symmetrical relations when the stimulus order is reversed. A second bee species, the stingless bee Melipona rufiventris from Brazil, seems unable to learn the same arbitrary relations between colours and patterns, although it exhibits excellent discrimination learning. Our results confirm that the capacity for learning arbitrary relations is not limited to vertebrates, but even insects with small brains can perform this learning task. Interestingly, it seems to be a species-specific ability. The disparity in relational learning performance between the two bee species we tested may be linked to their specific foraging and recruitment strategies, which evolved in adaptation to different environments.

  20. East Learns from West: Asiatic Honeybees Can Understand Dance Language of European Honeybees

    PubMed Central

    Su, Songkun; Cai, Fang; Si, Aung; Zhang, Shaowu; Tautz, Jürgen; Chen, Shenglu

    2008-01-01

    The honeybee waggle dance, through which foragers advertise the existence and location of a food source to their hive mates, is acknowledged as the only known form of symbolic communication in an invertebrate. However, the suggestion, that different species of honeybee might possess distinct ‘dialects’ of the waggle dance, remains controversial. Furthermore, it remains unclear whether different species of honeybee can learn from and communicate with each other. This study reports experiments using a mixed-species colony that is composed of the Asiatic bee Apis cerana cerana (Acc), and the European bee Apis mellifera ligustica (Aml). Using video recordings made at an observation hive, we first confirm that Acc and Aml have significantly different dance dialects, even when made to forage in identical environments. When reared in the same colony, these two species are able to communicate with each other: Acc foragers could decode the dances of Aml to successfully locate an indicated food source. We believe that this is the first report of successful symbolic communication between two honeybee species; our study hints at the possibility of social learning between the two honeybee species, and at the existence of a learning component in the honeybee dance language. PMID:18523550

  1. The putative serine protease inhibitor Api m 6 from Apis mellifera venom: recombinant and structural evaluation.

    PubMed

    Michel, Y; McIntyre, M; Ginglinger, H; Ollert, M; Cifuentes, L; Blank, S; Spillner, E

    2012-01-01

    Immunoglobulin (Ig) E-mediated reactions to honeybee venom can cause severe anaphylaxis, sometimes with fatal consequences. Detailed knowledge of the allergic potential of all venom components is necessary to ensure proper diagnosis and treatment of allergy and to gain a better understanding of the allergological mechanisms of insect venoms. Our objective was to undertake an immunochemical and structural evaluation of the putative low-molecular-weight serine protease inhibitor Api m 6, a component of honeybee venom. We recombinantly produced Api m 6 as a soluble protein in Escherichia coli and in Spodoptera frugiperda (Sf9) insect cells.We also assessed specific IgE reactivity of venom-sensitized patients with 2 prokaryotically produced Api m 6 variants using enzyme-linked immunosorbent assay. Moreover, we built a structural model ofApi m 6 and compared it with other protease inhibitor structures to gain insights into the function of Api m 6. In a population of 31 honeybee venom-allergic patients, 26% showed specific IgE reactivity with prokaryotically produced Api m 6, showing it to be a minor but relevant allergen. Molecular modeling of Api m 6 revealed a typical fold of canonical protease inhibitors, supporting the putative function of this venom allergen. Although Api m 6 has a highly variant surface charge, its epitope distribution appears to be similar to that of related proteins. Api m 6 is a honeybee venom component with IgE-sensitizing potential in a fraction of venom-allergic patients. Recombinant Api m 6 can help elucidate individual component-resolved reactivity profiles and increase our understanding of immune responses to low-molecular-weight allergens

  2. Ethanol self-administration in free-flying honeybees (Apis mellifera L.) in an operant conditioning protocol.

    PubMed

    Sokolowski, Michel B C; Abramson, Charles I; Craig, David Philip Arthur

    2012-09-01

    This study examines the effect of ethanol (EtOH) on continuous reinforcement schedules in the free-flying honeybee (Apis mellifera L.). As fermented nectars may be encountered naturally in the environment, we designed an experiment combining the tools of laboratory research with minimal disturbance to the natural life of honeybees. Twenty-five honeybees were trained to fly from their colonies to a fully automated operant chamber with head poking as the operant response. Load size, intervisit interval, and interresponse times (IRTs) served as the dependent variables and were monitored over the course of a daily training session consisting of many visits. Experimental bees were tested using an ABA design in which sucrose only was administered during condition A and a 5% EtOH sucrose solution was administered during condition B. Control bees received sucrose solution only. Most bees continued to forage after EtOH introduction. EtOH significantly reduced the load size and the intervisit interval with no significant effect on IRTs. However, a look on individual data shows large individual differences suggesting the existence of different kinds of behavioral phenotypes linked to EtOH consumption and effects. Our results contribute to the study of EtOH consumption as a normal phenomenon in an ecological context and open the door to schedule-controlled drug self-administration studies in honeybees. Copyright © 2012 by the Research Society on Alcoholism.

  3. Localization of deformed wing virus (DWV) in the brains of the honeybee, Apis mellifera Linnaeus.

    PubMed

    Shah, Karan S; Evans, Elizabeth C; Pizzorno, Marie C

    2009-10-30

    Deformed wing virus (DWV) is a positive-strand RNA virus that infects European honeybees (Apis mellifera L.) and has been isolated from the brains of aggressive bees in Japan. DWV is known to be transmitted both vertically and horizontally between bees in a colony and can lead to both symptomatic and asymptomatic infections in bees. In environmentally stressful conditions, DWV can contribute to the demise of a honeybee colony. The purpose of the current study is to identify regions within the brains of honeybees where DWV replicates using in-situ hybridization. In-situ hybridizations were conducted with both sense and antisense probes on the brains of honeybees that were positive for DWV as measured by real-time RT-PCR. The visual neuropils demonstrated detectable levels of the DWV positive-strand genome. The mushroom bodies and antenna lobe neuropils also showed the presence of the viral genome. Weaker staining with the sense probe in the same regions demonstrates that the antigenome is also present and that the virus is actively replicating in these regions of the brain. These results demonstrate that in bees infected with DWV the virus is replicating in critical regions of the brain, including the neuropils responsible for vision and olfaction. Therefore DWV infection of the brain could adversely affect critical sensory functions and alter normal bee behavior.

  4. Changes in cellular degradation activity in young and old worker honeybees (Apis mellifera).

    PubMed

    Hsu, Chin-Yuan; Chuang, Yu-Lung; Chan, Yu-Pei

    2014-02-01

    The trophocytes and fat cells of honeybees (Apis mellifera) have been used in cellular senescence studies, but the changes of cellular degradation activity with aging in workers are unknown. In this study, cellular degradation activity was evaluated in the trophocytes and fat cells of young and old workers reared in a field hive. The results showed the following: (1) 20S proteosome activity decreased with aging, whereas its expression increased with aging; (2) the expression of microtubule-associated protein 1 light chain 3-II (LC3-II) and the 70 kD heat shock cognate protein (Hsc70) decreased with aging; (3) the size and number of autophagic vacuoles decreased with aging; (4) p62/SQSTM1 and polyubiquitin aggregate expression decreased with aging; (5) lysosomal efficiency decreased with aging; and (6) molecular target of rapamycin (mTOR) expression increased with aging. These results indicate that young workers have higher levels of cellular degradation activity than old workers and that aging results in a decline in the cellular degradation activity in worker honeybees. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. A worldwide survey of genome sequence variation provides insight into the evolutionary history of the honeybee Apis mellifera.

    PubMed

    Wallberg, Andreas; Han, Fan; Wellhagen, Gustaf; Dahle, Bjørn; Kawata, Masakado; Haddad, Nizar; Simões, Zilá Luz Paulino; Allsopp, Mike H; Kandemir, Irfan; De la Rúa, Pilar; Pirk, Christian W; Webster, Matthew T

    2014-10-01

    The honeybee Apis mellifera has major ecological and economic importance. We analyze patterns of genetic variation at 8.3 million SNPs, identified by sequencing 140 honeybee genomes from a worldwide sample of 14 populations at a combined total depth of 634×. These data provide insight into the evolutionary history and genetic basis of local adaptation in this species. We find evidence that population sizes have fluctuated greatly, mirroring historical fluctuations in climate, although contemporary populations have high genetic diversity, indicating the absence of domestication bottlenecks. Levels of genetic variation are strongly shaped by natural selection and are highly correlated with patterns of gene expression and DNA methylation. We identify genomic signatures of local adaptation, which are enriched in genes expressed in workers and in immune system- and sperm motility-related genes that might underlie geographic variation in reproduction, dispersal and disease resistance. This study provides a framework for future investigations into responses to pathogens and climate change in honeybees.

  6. Genetic structure of drone congregation areas of Africanized honeybees in southern Brazil

    PubMed Central

    2009-01-01

    As yet, certain aspects of the Africanization process are not well understood, for example, the reproductive behavior of African and European honeybees and how the first Africanized swarms were formed and spread. Drone congregation areas (DCAs) are the ideal place to study honeybee reproduction under natural conditions since hundreds of drones from various colonies gather together in the same geographical area for mating. In the present study, we assessed the genetic structure of seven drone congregations and four commercial European-derived and Africanized apiaries in southern Brazil, employing seven microsatellite loci for this purpose. We also estimated the number of mother-colonies that drones of a specific DCA originated from. Pairwise comparison failed to reveal any population sub-structuring among the DCAs, thus indicating low mutual genetic differentiation. We also observed high genetic similarity between colonies of commercial apiaries and DCAs, besides a slight contribution from a European-derived apiary to a DCA formed nearby. Africanized DCAs seem to have a somewhat different genetic structure when compared to the European. PMID:21637465

  7. Genetic structure of drone congregation areas of Africanized honeybees in southern Brazil.

    PubMed

    Collet, Thais; Cristino, Alexandre Santos; Quiroga, Carlos Fernando Prada; Soares, Ademilson Espencer Egea; Del Lama, Marco Antônio

    2009-10-01

    As yet, certain aspects of the Africanization process are not well understood, for example, the reproductive behavior of African and European honeybees and how the first Africanized swarms were formed and spread. Drone congregation areas (DCAs) are the ideal place to study honeybee reproduction under natural conditions since hundreds of drones from various colonies gather together in the same geographical area for mating. In the present study, we assessed the genetic structure of seven drone congregations and four commercial European-derived and Africanized apiaries in southern Brazil, employing seven microsatellite loci for this purpose. We also estimated the number of mother-colonies that drones of a specific DCA originated from. Pairwise comparison failed to reveal any population sub-structuring among the DCAs, thus indicating low mutual genetic differentiation. We also observed high genetic similarity between colonies of commercial apiaries and DCAs, besides a slight contribution from a European-derived apiary to a DCA formed nearby. Africanized DCAs seem to have a somewhat different genetic structure when compared to the European.

  8. Extreme Recombination Frequencies Shape Genome Variation and Evolution in the Honeybee, Apis mellifera

    PubMed Central

    Wallberg, Andreas; Glémin, Sylvain; Webster, Matthew T.

    2015-01-01

    Meiotic recombination is a fundamental cellular process, with important consequences for evolution and genome integrity. However, we know little about how recombination rates vary across the genomes of most species and the molecular and evolutionary determinants of this variation. The honeybee, Apis mellifera, has extremely high rates of meiotic recombination, although the evolutionary causes and consequences of this are unclear. Here we use patterns of linkage disequilibrium in whole genome resequencing data from 30 diploid honeybees to construct a fine-scale map of rates of crossing over in the genome. We find that, in contrast to vertebrate genomes, the recombination landscape is not strongly punctate. Crossover rates strongly correlate with levels of genetic variation, but not divergence, which indicates a pervasive impact of selection on the genome. Germ-line methylated genes have reduced crossover rate, which could indicate a role of methylation in suppressing recombination. Controlling for the effects of methylation, we do not infer a strong association between gene expression patterns and recombination. The site frequency spectrum is strongly skewed from neutral expectations in honeybees: rare variants are dominated by AT-biased mutations, whereas GC-biased mutations are found at higher frequencies, indicative of a major influence of GC-biased gene conversion (gBGC), which we infer to generate an allele fixation bias 5 – 50 times the genomic average estimated in humans. We uncover further evidence that this repair bias specifically affects transitions and favours fixation of CpG sites. Recombination, via gBGC, therefore appears to have profound consequences on genome evolution in honeybees and interferes with the process of natural selection. These findings have important implications for our understanding of the forces driving molecular evolution. PMID:25902173

  9. Western honeybee drones and workers (Apis mellifera ligustica) have different olfactory mechanisms than eastern honeybees (Apis cerana cerana).

    PubMed

    Woltedji, Dereje; Song, Feifei; Zhang, Lan; Gala, Alemayehu; Han, Bin; Feng, Mao; Fang, Yu; Li, Jianke

    2012-09-07

    The honeybees Apis mellifera ligustica (Aml) and Apis cerana cerana (Acc) are two different western and eastern bee species that evolved in distinct ecologies and developed specific antennal olfactory systems for their survival. Knowledge of how their antennal olfactory systems function in regards to the success of each respective bee species is scarce. We compared the antennal morphology and proteome between respective sexually mature drones and foraging workers of both species using a scanning electron microscope, two-dimensional electrophoresis, mass spectrometry, bioinformatics, and quantitative real-time polymerase chain reaction. Despite the general similarities in antennal morphology of the drone and worker bees between the two species, a total of 106 and 100 proteins altered their expression in the drones' and the workers' antennae, respectively. This suggests that the differences in the olfactory function of each respective bee are supported by the change of their proteome. Of the 106 proteins that altered their expression in the drones, 72 (68%) and 34 (32%) were overexpressed in the drones of Aml and Acc, respectively. The antennae of the Aml drones were built up by the highly expressed proteins that were involved in carbohydrate metabolism and energy production, molecular transporters, antioxidation, and fatty acid metabolism in contrast to the Acc drones. This is believed to enhance the antennal olfactory functions of the Aml drones as compared to the Acc drones during their mating flight. Likewise, of the 100 proteins with expression changes between the worker bees of the two species, 67% were expressed in higher levels in the antennae of Aml worker contrasting to 33% in the Acc worker. The overall higher expressions of proteins related to carbohydrate metabolism and energy production, molecular transporters, and antioxidation in the Aml workers compared with the Acc workers indicate the Aml workers require more antennal proteins for their olfactory

  10. Giant honeybees ( Apis dorsata) mob wasps away from the nest by directed visual patterns

    NASA Astrophysics Data System (ADS)

    Kastberger, Gerald; Weihmann, Frank; Zierler, Martina; Hötzl, Thomas

    2014-11-01

    The open nesting behaviour of giant honeybees ( Apis dorsata) accounts for the evolution of a series of defence strategies to protect the colonies from predation. In particular, the concerted action of shimmering behaviour is known to effectively confuse and repel predators. In shimmering, bees on the nest surface flip their abdomens in a highly coordinated manner to generate Mexican wave-like patterns. The paper documents a further-going capacity of this kind of collective defence: the visual patterns of shimmering waves align regarding their directional characteristics with the projected flight manoeuvres of the wasps when preying in front of the bees' nest. The honeybees take here advantage of a threefold asymmetry intrinsic to the prey-predator interaction: (a) the visual patterns of shimmering turn faster than the wasps on their flight path, (b) they "follow" the wasps more persistently (up to 100 ms) than the wasps "follow" the shimmering patterns (up to 40 ms) and (c) the shimmering patterns align with the wasps' flight in all directions at the same strength, whereas the wasps have some preference for horizontal correspondence. The findings give evidence that shimmering honeybees utilize directional alignment to enforce their repelling power against preying wasps. This phenomenon can be identified as predator driving which is generally associated with mobbing behaviour (particularly known in selfish herds of vertebrate species), which is, until now, not reported in insects.

  11. The proboscis extension reflex to evaluate learning and memory in honeybees ( Apis mellifera): some caveats

    NASA Astrophysics Data System (ADS)

    Frost, Elisabeth H.; Shutler, Dave; Hillier, Neil Kirk

    2012-09-01

    The proboscis extension reflex (PER) is widely used in a classical conditioning (Pavlovian) context to evaluate learning and memory of a variety of insect species. The literature is particularly prodigious for honeybees ( Apis mellifera) with more than a thousand publications. Imagination appears to be the only limit to the types of challenges to which researchers subject honeybees, including all the sensory modalities and a broad diversity of environmental treatments. Accordingly, some remarkable insights have been achieved using PER. However, there are several challenges to evaluating the PER literature that warrant a careful and thorough review. We assess here variation in methods that makes interpretation of studies, even those researching the same question, tenuous. We suggest that the numerous variables that might influence experimental outcomes from PER be thoroughly detailed by researchers. Moreover, the influence of individual variables on results needs to carefully evaluated, as well as among two or more variables. Our intent is to encourage investigation of the influence of numerous variables on PER results.

  12. Chemical composition and antimicrobial activity of honeybee ( Apis mellifera ligustica) propolis from subtropical eastern Australia

    NASA Astrophysics Data System (ADS)

    Massaro, Carmelina Flavia; Simpson, Jack Bruce; Powell, Daniel; Brooks, Peter

    2015-12-01

    Propolis is a material manufactured by bees and contains beeswax, bee salivary secretions and plant resins. Propolis preparations have been used for millennia by humans in food, cosmetics and medicines due to its antibacterial effects. Within the hive, propolis plays an important role in bees' health, with much of its bioactivity largely dependent on the plant resins the bees select for its production. Few chemical studies are available on the chemistry of propolis produced by Australian honeybees ( Apis mellifera, Apidae). This study aimed to determine the chemical composition as well as in vitro antimicrobial effects of propolis harvested from honeybees in subtropical eastern Australia. Honeybee propolis was produced using plastic frames and multiple beehives in two subtropical sites in eastern Australia. Methanolic extracts of propolis were analysed by liquid chromatography with ultraviolet detection and high-resolution mass spectrometry (ultra-high-pressure liquid chromatography (UHPLC)-UV-high-resolution tandem mass spectrometry (HR-MS/MS)) and by gas chromatography mass spectrometry (GC-MS). The resulting chemical data were dereplicated for compound characterisation. The two crude extracts in abs. ethanol were tested in vitro by the agar diffusion and broth dilution methods, using a phenol standard solution as the positive control and abs. ethanol as the negative control. Chemical constituents were identified to be pentacyclic triterpenoids and C-prenylated flavonoids, including Abyssinoflavanone VII, Propolin C and Nymphaeol C. The two propolis crude extracts showed bactericidal effects at the minimal inhibitory concentrations of 0.37-2.04 mg mL-1 against Staphylococcus aureus ATCC 25923. However, the extracts were inactive against Klebsiella pneumoniae ATCC 13883 and Candida albicans ATCC 10231. The antistaphylococcal potential of propolis was discussed, also in relation to honeybees' health, as it warrants further investigations on the social and

  13. Chemical composition and antimicrobial activity of honeybee (Apis mellifera ligustica) propolis from subtropical eastern Australia.

    PubMed

    Massaro, Carmelina Flavia; Simpson, Jack Bruce; Powell, Daniel; Brooks, Peter

    2015-12-01

    Propolis is a material manufactured by bees and contains beeswax, bee salivary secretions and plant resins. Propolis preparations have been used for millennia by humans in food, cosmetics and medicines due to its antibacterial effects. Within the hive, propolis plays an important role in bees' health, with much of its bioactivity largely dependent on the plant resins the bees select for its production. Few chemical studies are available on the chemistry of propolis produced by Australian honeybees (Apis mellifera, Apidae). This study aimed to determine the chemical composition as well as in vitro antimicrobial effects of propolis harvested from honeybees in subtropical eastern Australia. Honeybee propolis was produced using plastic frames and multiple beehives in two subtropical sites in eastern Australia. Methanolic extracts of propolis were analysed by liquid chromatography with ultraviolet detection and high-resolution mass spectrometry (ultra-high-pressure liquid chromatography (UHPLC)-UV-high-resolution tandem mass spectrometry (HR-MS/MS)) and by gas chromatography mass spectrometry (GC-MS). The resulting chemical data were dereplicated for compound characterisation. The two crude extracts in abs. ethanol were tested in vitro by the agar diffusion and broth dilution methods, using a phenol standard solution as the positive control and abs. ethanol as the negative control. Chemical constituents were identified to be pentacyclic triterpenoids and C-prenylated flavonoids, including Abyssinoflavanone VII, Propolin C and Nymphaeol C. The two propolis crude extracts showed bactericidal effects at the minimal inhibitory concentrations of 0.37-2.04 mg mL(-1) against Staphylococcus aureus ATCC 25923. However, the extracts were inactive against Klebsiella pneumoniae ATCC 13883 and Candida albicans ATCC 10231. The antistaphylococcal potential of propolis was discussed, also in relation to honeybees' health, as it warrants further investigations on the social and

  14. Heat-balling wasps by honeybees

    NASA Astrophysics Data System (ADS)

    Ken, Tan; Hepburn, H. R.; Radloff, S. E.; Yusheng, Yu; Yiqiu, Liu; Danyin, Zhou; Neumann, P.

    2005-10-01

    Defensiveness of honeybee colonies of Apis cerana and Apis mellifera (actively balling the wasps but reduction of foraging) against predatory wasps, Vespa velutina, and false wasps was assessed. There were significantly more worker bees in balls of the former than latter. Core temperatures in a ball around a live wasp of A. cerana were significantly higher than those of A. mellifera, and also significantly more when exposed to false wasps. Core temperatures of bee balls exposed to false wasps were significantly lower than those exposed to V. velutina for both A. cerana and for A. mellifera. The lethal thermal limits for V. velutina, A. cerana and A. mellifera were significantly different, so that both species of honeybees have a thermal safety factor in heat-killing such wasp predators. During wasps attacks at the hives measured at 3, 6 and 12 min, the numbers of Apis cerana cerana and Apis cerana indica bees continuing to forage were significantly reduced with increased wasp attack time. Tropical lowland A. c. indica reduced foraging rates significantly more than the highland A. c. cerana bees; but, there was no significant effect on foraging by A. mellifera. The latency to recovery of honeybee foraging was significantly greater the longer the duration of wasp attacks. The results show remarkable thermal fine-tuning in a co-evolving predator prey relationship.

  15. MtDNA COI-COII marker and drone congregation area: an efficient method to establish and monitor honeybee (Apis mellifera L.) conservation centres.

    PubMed

    Bertrand, Bénédicte; Alburaki, Mohamed; Legout, Hélène; Moulin, Sibyle; Mougel, Florence; Garnery, Lionel

    2015-05-01

    Honeybee subspecies have been affected by human activities in Europe over the past few decades. One such example is the importation of nonlocal subspecies of bees which has had an adverse impact on the geographical repartition and subsequently on the genetic diversity of the black honeybee Apis mellifera mellifera. To restore the original diversity of this local honeybee subspecies, different conservation centres were set up in Europe. In this study, we established a black honeybee conservation centre Conservatoire de l'Abeille Noire d'Ile de France (CANIF) in the region of Ile-de-France, France. CANIF's honeybee colonies were intensively studied over a 3-year period. This study included a drone congregation area (DCA) located in the conservation centre. MtDNA COI-COII marker was used to evaluate the genetic diversity of CANIF's honeybee populations and the drones found and collected from the DCA. The same marker (mtDNA) was used to estimate the interactions and the haplotype frequency between CANIF's honeybee populations and 10 surrounding honeybee apiaries located outside of the CANIF. Our results indicate that the colonies of the conservation centre and the drones of the DCA show similar stable profiles compared to the surrounding populations with lower level of introgression. The mtDNA marker used on both DCA and colonies of the conservation centre seems to be an efficient approach to monitor and maintain the genetic diversity of the protected honeybee populations. © 2014 John Wiley & Sons Ltd.

  16. More than royal food - Major royal jelly protein genes in sexuals and workers of the honeybee Apis mellifera.

    PubMed

    Buttstedt, Anja; Moritz, Robin Fa; Erler, Silvio

    2013-11-27

    In the honeybee Apis mellifera, female larvae destined to become a queen are fed with royal jelly, a secretion of the hypopharyngeal glands of young nurse bees that rear the brood. The protein moiety of royal jelly comprises mostly major royal jelly proteins (MRJPs) of which the coding genes (mrjp1-9) have been identified on chromosome 11 in the honeybee's genome. We determined the expression of mrjp1-9 among the honeybee worker caste (nurses, foragers) and the sexuals (queens (unmated, mated) and drones) in various body parts (head, thorax, abdomen). Specific mrjp expression was not only found in brood rearing nurse bees, but also in foragers and the sexuals. The expression of mrjp1 to 7 is characteristic for the heads of worker bees, with an elevated expression of mrjp1-4 and 7 in nurse bees compared to foragers. Mrjp5 and 6 were higher in foragers compared to nurses suggesting functions in addition to those of brood food proteins. Furthermore, the expression of mrjp9 was high in the heads, thoraces and abdomen of almost all female bees, suggesting a function irrespective of body section. This completely different expression profile suggests mrjp9 to code for the most ancestral major royal jelly protein of the honeybee.

  17. A Mathematical Model of Intra-Colony Spread of American Foulbrood in European Honeybees (Apis mellifera L.).

    PubMed

    Jatulan, Eduardo O; Rabajante, Jomar F; Banaay, Charina Gracia B; Fajardo, Alejandro C; Jose, Editha C

    2015-01-01

    American foulbrood (AFB) is one of the severe infectious diseases of European honeybees (Apis mellifera L.) and other Apis species. This disease is caused by a gram-positive, spore-forming bacterium Paenibacillus larvae. In this paper, a compartmental (SI framework) model is constructed to represent the spread of AFB within a colony. The model is analyzed to determine the long-term fate of the colony once exposed to AFB spores. It was found out that without effective and efficient treatment, AFB infection eventually leads to colony collapse. Furthermore, infection thresholds were predicted based on the stability of the equilibrium states. The number of infected cell combs is one of the factors that drive disease spread. Our results can be used to forecast the transmission timeline of AFB infection and to evaluate the control strategies for minimizing a possible epidemic.

  18. A selective sweep in a Varroa destructor resistant honeybee (Apis mellifera) population.

    PubMed

    Lattorff, H Michael G; Buchholz, Josephine; Fries, Ingemar; Moritz, Robin F A

    2015-04-01

    The mite Varroa destructor is one of the most dangerous parasites of the Western honeybee (Apis mellifera) causing enormous colony losses worldwide. Various chemical treatments for the control of the Varroa mite are currently in use, which, however, lead to residues in bee products and often to resistance in mites. This facilitated the exploration of alternative treatment methods and breeding for mite resistant honeybees has been in focus for breeders in many parts of the world with variable results. Another approach has been applied to a honeybee population on Gotland (Sweden) that was exposed to natural selection and survived Varroa-infestation for more than 10years without treatment. Eventually this population became resistant to the parasite by suppressing the reproduction of the mite. A previous QTL mapping study had identified a region on chromosome 7 with major loci contributing to the mite resistance. Here, a microsatellite scan of the significant candidate QTL regions was used to investigate potential footprints of selection in the original population by comparing the study population on Gotland before (2000) and after selection (2007). Genetic drift had caused an extreme loss of genetic diversity in the 2007 population for all genetic markers tested. In addition to this overall reduction of heterozygosity, two loci on chromosome 7 showed an even stronger and significant reduction in diversity than expected from genetic drift alone. Within the selective sweep eleven genes are annotated, one of them being a putative candidate to interfere with reduced mite reproduction. A glucose-methanol-choline oxidoreductase (GMCOX18) might be involved in changing volatiles emitted by bee larvae that might be essential to trigger oogenesis in Varroa. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Temporal genetic structure of a drone congregation area of the giant Asian honeybee ( Apis dorsata)

    NASA Astrophysics Data System (ADS)

    Kraus, F. B.; Koeniger, N.; Tingek, S.; Moritz, R. F. A.

    2005-12-01

    The giant Asian honeybee ( Apis dorsata), like all other members of the genus Apis, has a complex mating system in which the queens and males (drones) mate at spatially defined drone congregation areas (DCAs). Here, we studied the temporal genetic structure of a DCA of A. dorsata over an 8-day time window by the genotyping of sampled drones with microsatellite markers. Analysis of the genotypic data revealed a significant genetic differentiation between 3 sampling days and indicated that the DCA was used by at least two subpopulations at all days in varying proportions. The estimation of the number of colonies which used the DCA ranged between 20 and 40 colonies per subpopulation, depending on the estimation procedure and population. The overall effective population size was estimated as high as N e=140. The DCA seems to counteract known tendencies of A. dorsata for inbreeding within colony aggregations by facilitating gene flow among subpopulations and increasing the effective population size.

  20. Definitive identification of magnetite nanoparticles in the abdomen of the honeybee Apis mellifera

    NASA Astrophysics Data System (ADS)

    Desoil, M.; Gillis, P.; Gossuin, Y.; Pankhurst, Q. A.; Hautot, D.

    2005-01-01

    The biogenic magnetic properties of the honeybee Apis mellifera were investigated with a view to understanding the bee's physiological response to magnetic fields. The magnetisations of bee abdomens on one hand, and heads and thoraxes on the other hand, were measured separately as functions of temperature and field. Both the antiferromagnetic responses of the ferrihydrite cores of the iron storage protein ferritin, and the ferrimagnetic responses of nanoscale magnetite (Fe3O4) particles, were observed. Relatively large magnetite particles (ca. 30 nm or more), capable of retaining a remanent magnetisation at room temperature, were found in the abdomens, but were absent in the heads and thoraxes. In both samples, more than 98% of the iron atoms were due to ferritin.

  1. Relatedness among honeybees (Apis mellifera) of a drone congregation

    PubMed Central

    Baudry, E.; Solignac, M.; Garnery, L.; Gries, M.; Cornuet, J.-M.; Koeniger, N.

    1998-01-01

    The honeybee (Apis mellifera) queen mates during nuptial flights, in the so-called drone congregation area where many males from surrounding colonies gather. Using 20 highly polymorphic microsatellite loci, we studied a sample of 142 drones captured in a congregation close to Oberursel (Germany). A parentage test based on lod score showed that this sample contained one group of four brothers, six groups of three brothers, 20 groups of two brothers and 80 singletons. These values are very close to a Poisson distribution. Therefore, colonies were apparently equally represented in the drone congregation, and calculations showed that the congregation comprised males that originated from about 240 different colonies. This figure is surprisingly high. Considering the density of colonies around the congregation area and the average flight range of males, it suggests that most colonies within the recruitment perimeter delegated drones to the congregation with an equal probability, resulting in an almost perfect panmixis. Consequently, the relatedness between a queen and her mates, and hence the inbreeding coefficient of the progeny, should be minimized. The relatedness among the drones mated to the same queen is also very low, maximizing the genetic diversity among the different patrilines of a colony.

  2. Origin and function of the major royal jelly proteins of the honeybee (Apis mellifera) as members of the yellow gene family.

    PubMed

    Buttstedt, Anja; Moritz, Robin F A; Erler, Silvio

    2014-05-01

    In the honeybee, Apis mellifera, the queen larvae are fed with a diet exclusively composed of royal jelly (RJ), a secretion of the hypopharyngeal gland of young worker bees that nurse the brood. Up to 15% of RJ is composed of proteins, the nine most abundant of which have been termed major royal jelly proteins (MRJPs). Although it is widely accepted that RJ somehow determines the fate of a female larva and in spite of considerable research efforts, there are surprisingly few studies that address the biochemical characterisation and functions of these MRJPs. Here we review the research on MRJPs not only in honeybees but in hymenopteran insects in general and provide metadata analyses on genome organisation of mrjp genes, corroborating previous reports that MRJPs have important functions for insect development and not just a nutritional value for developing honeybee larvae. © 2013 The Authors. Biological Reviews © 2013 Cambridge Philosophical Society.

  3. `Special agents' trigger social waves in giant honeybees ( Apis dorsata)

    NASA Astrophysics Data System (ADS)

    Schmelzer, Evelyn; Kastberger, Gerald

    2009-12-01

    Giant honeybees ( Apis dorsata) nest in the open and have therefore evolved a variety of defence strategies. Against predatory wasps, they produce highly coordinated Mexican wavelike cascades termed ‘shimmering’, whereby hundreds of bees flip their abdomens upwards. Although it is well known that shimmering commences at distinct spots on the nest surface, it is still unclear how shimmering is generated. In this study, colonies were exposed to living tethered wasps that were moved in front of the experimental nest. Temporal and spatial patterns of shimmering were investigated in and after the presence of the wasp. The numbers and locations of bees that participated in the shimmering were assessed, and those bees that triggered the waves were identified. The findings reveal that the position of identified trigger cohorts did not reflect the experimental path of the tethered wasp. Instead, the trigger centres were primarily arranged in the close periphery of the mouth zone of the nest, around those parts where the main locomotory activity occurs. This favours the ‘special-agents’ hypothesis that suggest that groups of specialized bees initiate the shimmering.

  4. Loop-mediated isothermal amplification (LAMP) assays for rapid detection and differentiation of Nosema apis and N. ceranae in honeybees.

    PubMed

    Ptaszyńska, Aneta A; Borsuk, Grzegorz; Woźniakowski, Grzegorz; Gnat, Sebastian; Małek, Wanda

    2014-08-01

    Nosemosis is a contagious disease of honeybees (Apis mellifera) manifested by increased winter mortality, poor spring build-up and even the total extinction of infected bee colonies. In this paper, loop-mediated isothermal amplifications (LAMP) were used for the first time to identify and differentiate N. apis and N. ceranae, the causative agents of nosemosis. LAMP assays were performed at a constant temperature of 60 °C using two sets of six species-specific primers, recognising eight distinct fragments of 16S rDNA gene and GspSSD polymerase with strand displacement activity. The optimal time for LAMP and its Nosema species sensitivity and specificity were assessed. LAMP only required 30 min for robust identification of the amplicons. Ten-fold serial dilutions of total DNA isolated from bees infected with microsporidia were used to determine the detection limit of N. apis and N. ceranae DNAs by LAMP and standard PCR assays. LAMP appeared to be 10(3) -fold more sensitive than a standard PCR in detecting N. apis and N. ceranae. LAMP methods developed by us are highly Nosema species specific and allow to identify and differentiate N. apis and N. ceranae. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  5. Proteomic analysis of honeybee (Apis mellifera L.) pupae head development.

    PubMed

    Zheng, Aijuan; Li, Jianke; Begna, Desalegn; Fang, Yu; Feng, Mao; Song, Feifei

    2011-01-01

    The honeybee pupae development influences its future adult condition as well as honey and royal jelly productions. However, the molecular mechanism that regulates honeybee pupae head metamorphosis is still poorly understood. To further our understand of the associated molecular mechanism, we investigated the protein change of the honeybee pupae head at 5 time-points using 2-D electrophoresis, mass spectrometry, bioinformatics, quantitative real-time polymerase chain reaction and Western blot analysis. Accordingly, 58 protein spots altered their expression across the 5 time points (13-20 days), of which 36 proteins involved in the head organogenesis were upregulated during early stages (13-17 days). However, 22 proteins involved in regulating the pupae head neuron and gland development were upregulated at later developmental stages (19-20 days). Also, the functional enrichment analysis further suggests that proteins related to carbohydrate metabolism and energy production, development, cytoskeleton and protein folding were highly involved in the generation of organs and development of honeybee pupal head. Furthermore, the constructed protein interaction network predicted 33 proteins acting as key nodes of honeybee pupae head growth of which 9 and 4 proteins were validated at gene and protein levels, respectively. In this study, we uncovered potential protein species involved in the formation of honeybee pupae head development along with their specific temporal requirements. This first proteomic result allows deeper understanding of the proteome profile changes during honeybee pupae head development and provides important potential candidate proteins for future reverse genetic research on honeybee pupae head development to improve the performance of related organs.

  6. Dancing to different tunes: heterospecific deciphering of the honeybee waggle dance

    NASA Astrophysics Data System (ADS)

    Tan, K.; Yang, M. X.; Radloff, S. E.; Hepburn, H. R.; Zhang, Z. Y.; Luo, L. J.; Li, H.

    2008-12-01

    Although the structure of the dance language is very similar among species of honeybees, communication of the distance component of the message varies both intraspecifically and interspecifically. However, it is not known whether different honeybee species would attend interspecific waggle dances and, if so, whether they can decipher such dances. Using mixed-species colonies of Apis cerana and Apis mellifera, we show that, despite internal differences in the structure of the waggle dances of foragers, both species attend, and act on the information encoded in each other’s waggle dances but with limited accuracy. These observations indicate that direction and distance communication pre-date speciation in honeybees.

  7. Antimicrobial peptide evolution in the Asiatic honey bee Apis cerana.

    PubMed

    Xu, Peng; Shi, Min; Chen, Xue-Xin

    2009-01-01

    The Asiatic honeybee, Apis cerana Fabricius, is an important honeybee species in Asian countries. It is still found in the wild, but is also one of the few bee species that can be domesticated. It has acquired some genetic advantages and significantly different biological characteristics compared with other Apis species. However, it has been less studied, and over the past two decades, has become a threatened species in China. We designed primers for the sequences of the four antimicrobial peptide cDNA gene families (abaecin, defensin, apidaecin, and hymenoptaecin) of the Western honeybee, Apis mellifera L. and identified all the antimicrobial peptide cDNA genes in the Asiatic honeybee for the first time. All the sequences were amplified by reverse transcriptase-polymerase chain reaction (RT-PCR). In all, 29 different defensin cDNA genes coding 7 different defensin peptides, 11 different abaecin cDNA genes coding 2 different abaecin peptides, 13 different apidaecin cDNA genes coding 4 apidaecin peptides and 34 different hymenoptaecin cDNA genes coding 13 different hymenoptaecin peptides were cloned and identified from the Asiatic honeybee adult workers. Detailed comparison of these four antimicrobial peptide gene families with those of the Western honeybee revealed that there are many similarities in the quantity and amino acid components of peptides in the abaecin, defensin and apidaecin families, while many more hymenoptaecin peptides are found in the Asiatic honeybee than those in the Western honeybee (13 versus 1). The results indicated that the Asiatic honeybee adult generated more variable antimicrobial peptides, especially hymenoptaecin peptides than the Western honeybee when stimulated by pathogens or injury. This suggests that, compared to the Western honeybee that has a longer history of domestication, selection on the Asiatic honeybee has favored the generation of more variable antimicrobial peptides as protection against pathogens.

  8. Conservation of Bio synthetic pheromone pathways in honeybees Apis

    NASA Astrophysics Data System (ADS)

    Martin, Stephen J.; Jones, Graeme R.

    Social insects use complex chemical communication systems to govern many aspects of their life. We studied chemical changes in Dufour's gland secretions associated with ovary development in several genotypes of honeybees. We found that C28-C38 esters were associated only with cavity nesting honeybee queens, while the alcohol eicosenol was associated only with their non-laying workers. In contrast, both egg-laying anarchistic workers and all parasitic Cape workers from queenright colonies showed the typical queen pattern (i.e. esters present and eicosenol absent), while egg-laying wild-type and anarchistic workers in queenless colonies showed an intermediate pattern, producing both esters and eicosenol but at intermediate levels. Furthermore, neither esters nor eicosenol were found in aerial nesting honeybee species. Both esters and eicosenol are biosynthetically similar compounds since both are recognizable products of fatty acid biosynthesis. Therefore, we propose that in honeybees the biosynthesis of esters and eicosenol in the Dufour's gland is caste-regulated and this pathway has been conserved over evolutionary time.

  9. On the Front Line: Quantitative Virus Dynamics in Honeybee (Apis mellifera L.) Colonies along a New Expansion Front of the Parasite Varroa destructor

    PubMed Central

    Mondet, Fanny; de Miranda, Joachim R.; Kretzschmar, Andre; Le Conte, Yves; Mercer, Alison R.

    2014-01-01

    Over the past fifty years, annual honeybee (Apis mellifera) colony losses have been steadily increasing worldwide. These losses have occurred in parallel with the global spread of the honeybee parasite Varroa destructor. Indeed, Varroa mite infestations are considered to be a key explanatory factor for the widespread increase in annual honeybee colony mortality. The host-parasite relationship between honeybees and Varroa is complicated by the mite's close association with a range of honeybee viral pathogens. The 10-year history of the expanding front of Varroa infestation in New Zealand offered a rare opportunity to assess the dynamic quantitative and qualitative changes in honeybee viral landscapes in response to the arrival, spread and level of Varroa infestation. We studied the impact of de novo infestation of bee colonies by Varroa on the prevalence and titres of seven well-characterised honeybee viruses in both bees and mites, using a large-scale molecular ecology approach. We also examined the effect of the number of years since Varroa arrival on honeybee and mite viral titres. The dynamic shifts in the viral titres of black queen cell virus and Kashmir bee virus mirrored the patterns of change in Varroa infestation rates along the Varroa expansion front. The deformed wing virus (DWV) titres in bees continued to increase with Varroa infestation history, despite dropping infestation rates, which could be linked to increasing DWV titres in the mites. This suggests that the DWV titres in mites, perhaps boosted by virus replication, may be a major factor in maintaining the DWV epidemic after initial establishment. Both positive and negative associations were identified for several pairs of viruses, in response to the arrival of Varroa. These findings provide important new insights into the role of the parasitic mite Varroa destructor in influencing the viral landscape that affects honeybee colonies. PMID:25144447

  10. A scientific note on the lactic acid bacterial flora within the honeybee subspecies Apis mellifera (Buckfast), A.m. scutellata, A.m. mellifera, and A.m. monticola

    USDA-ARS?s Scientific Manuscript database

    It was discovered by Olofsson and Vásquez (2008) that a novel lactic acid bacteria (LAB) microbiota with numerous LAB, comprising the genera Lactobacillus and Bifidobacterium, live in a symbiotic relationship with honeybees (Apis mellifera) in their honey stomach. Previous results from 16S rRNA gene...

  11. Selection on worker honeybee responses to queen pheromone (Apis mellifera L.)

    NASA Astrophysics Data System (ADS)

    Pankiw, T.; Winston, Mark L.; Fondrk, M. Kim; Slessor, Keith N.

    Disruptive selection for responsiveness to queen mandibular gland pheromone (QMP) in the retinue bioassay resulted in the production of high and low QMP responding strains of honeybees (Apis mellifera L.). Strains differed significantly in their retinue response to QMP after one generation of selection. By the third generation the high strain was on average at least nine times more responsive than the low strain. The strains showed seasonal phenotypic plasticity such that both strains were more responsive to the pheromone in the spring than in the fall. Directional selection for low seasonal variation indicated that phenotypic plasticity was an additional genetic component to retinue response to QMP. Selection for high and low retinue responsiveness to QMP was not an artifact of the synthetic blend because both strains were equally responsive or non-responsive to whole mandibular gland extracts compared with QMP. The use of these strains clearly pointed to an extra-mandibular source of retinue pheromones (Pankiw et al. 1995; Slessor et al. 1998; Keeling et al. 1999).

  12. Honeybees (Apis mellifera) learn to discriminate the smell of organic compounds from their respective deuterated isotopomers

    PubMed Central

    Gronenberg, Wulfila; Raikhelkar, Ajay; Abshire, Eric; Stevens, Jennifer; Epstein, Eric; Loyola, Karin; Rauscher, Michael; Buchmann, Stephen

    2014-01-01

    The understanding of physiological and molecular processes underlying the sense of smell has made considerable progress during the past three decades, revealing the cascade of molecular steps that lead to the activation of olfactory receptor (OR) neurons. However, the mode of primary interaction of odorant molecules with the OR proteins within the sensory cells is still enigmatic. Two different concepts try to explain these interactions: the ‘odotope hypothesis’ suggests that OR proteins recognize structural aspects of the odorant molecule, whereas the ‘vibration hypothesis’ proposes that intra-molecular vibrations are the basis for the recognition of the odorant by the receptor protein. The vibration hypothesis predicts that OR proteins should be able to discriminate compounds containing deuterium from their common counterparts which contain hydrogen instead of deuterium. This study tests this prediction in honeybees (Apis mellifera) using the proboscis extension reflex learning in a differential conditioning paradigm. Rewarding one odour (e.g. a deuterated compound) with sucrose and not rewarding the respective analogue (e.g. hydrogen-based odorant) shows that honeybees readily learn to discriminate hydrogen-based odorants from their deuterated counterparts and supports the idea that intra-molecular vibrations may contribute to odour discrimination. PMID:24452031

  13. Bee-hawking by the wasp, Vespa velutina, on the honeybees Apis cerana and A. mellifera.

    PubMed

    Tan, K; Radloff, S E; Li, J J; Hepburn, H R; Yang, M X; Zhang, L J; Neumann, P

    2007-06-01

    The vespine wasps, Vespa velutina, specialise in hawking honeybee foragers returning to their nests. We studied their behaviour in China using native Apis cerana and introduced A. mellifera colonies. When the wasps are hawking, A. cerana recruits threefold more guard bees to stave off predation than A. mellifera. The former also utilises wing shimmering as a visual pattern disruption mechanism, which is not shown by A. mellifera. A. cerana foragers halve the time of normal flight needed to dart into the nest entrance, while A. mellifera actually slows down in sashaying flight manoeuvres. V. velutina preferentially hawks A. mellifera foragers when both A. mellifera and A. cerana occur in the same apiary. The pace of wasp-hawking was highest in mid-summer but the frequency of hawking wasps was three times higher at A. mellifera colonies than at the A. cerana colonies. The wasps were taking A. mellifera foragers at a frequency eightfold greater than A. cerana foragers. The final hawking success rates of the wasps were about three times higher for A. mellifera foragers than for A. cerana. The relative success of native A. cerana over European A. mellifera in thwarting predation by the wasp V. velutina is interpreted as the result of co-evolution between the Asian wasp and honeybee, respectively.

  14. Extensive population admixture on drone congregation areas of the giant honeybee, Apis dorsata (Fabricius, 1793).

    PubMed

    Beaurepaire, Alexis L; Kraus, Bernard F; Koeniger, Gudrun; Koeniger, Nikolaus; Lim, Herbert; Moritz, Robin F A

    2014-12-01

    The giant honeybee Apis dorsata often forms dense colony aggregations which can include up to 200 often closely related nests in the same location, setting the stage for inbred matings. Yet, like in all other Apis species, A. dorsata queens mate in mid-air on lek like drone congregation areas (DCAs) where large numbers of males gather in flight. We here report how the drone composition of A. dorsata DCAs facilitates outbreeding, taking into the account both spatial (three DCAs) and temporal (subsequent sampling days) dynamics. We compared the drones' genotypes at ten microsatellite DNA markers with those of the queen genotypes of six drone-producing colonies located close to the DCAs (Tenom, Sabah, Malaysia). None of 430 sampled drones originated from any of these nearby colonies. Moreover, we estimated that 141 unidentified colonies were contributing to the three DCAs. Most of these colonies were participating multiple times in the different locations and/or during the consecutive days of sampling. The drones sampled in the DCAs could be attributed to six subpopulations. These were all admixed in all DCA samples, increasing the effective population size an order of magnitude and preventing matings between potentially related queens and drones.

  15. Analysis of the Waggle Dance Motion of Honeybees for the Design of a Biomimetic Honeybee Robot

    PubMed Central

    Landgraf, Tim; Rojas, Raúl; Nguyen, Hai; Kriegel, Fabian; Stettin, Katja

    2011-01-01

    The honeybee dance “language” is one of the most popular examples of information transfer in the animal world. Today, more than 60 years after its discovery it still remains unknown how follower bees decode the information contained in the dance. In order to build a robotic honeybee that allows a deeper investigation of the communication process we have recorded hundreds of videos of waggle dances. In this paper we analyze the statistics of visually captured high-precision dance trajectories of European honeybees (Apis mellifera carnica). The trajectories were produced using a novel automatic tracking system and represent the most detailed honeybee dance motion information available. Although honeybee dances seem very variable, some properties turned out to be invariant. We use these properties as a minimal set of parameters that enables us to model the honeybee dance motion. We provide a detailed statistical description of various dance properties that have not been characterized before and discuss the role of particular dance components in the commmunication process. PMID:21857906

  16. Social waves in giant honeybees (Apis dorsata) elicit nest vibrations.

    PubMed

    Kastberger, Gerald; Weihmann, Frank; Hoetzl, Thomas

    2013-07-01

    Giant honeybees (Apis dorsata) nest in the open and have developed a wide array of strategies for colony defence, including the Mexican wave-like shimmering behaviour. In this collective response, the colony members perform upward flipping of their abdomens in coordinated cascades across the nest surface. The time-space properties of these emergent waves are response patterns which have become of adaptive significance for repelling enemies in the visual domain. We report for the first time that the mechanical impulse patterns provoked by these social waves and measured by laser Doppler vibrometry generate vibrations at the central comb of the nest at the basic (='natural') frequency of 2.156 ± 0.042 Hz which is more than double the average repetition rate of the driving shimmering waves. Analysis of the Fourier spectra of the comb vibrations under quiescence and arousal conditions provoked by mass flight activity and shimmering waves gives rise to the proposal of two possible models for the compound physical system of the bee nest: According to the elastic oscillatory plate model, the comb vibrations deliver supra-threshold cues preferentially to those colony members positioned close to the comb. The mechanical pendulum model predicts that the comb vibrations are sensed by the members of the bee curtain in general, enabling mechanoreceptive signalling across the nest, also through the comb itself. The findings show that weak and stochastic forces, such as general quiescence or diffuse mass flight activity, cause a harmonic frequency spectrum of the comb, driving the comb as an elastic plate. However, shimmering waves provide sufficiently strong forces to move the nest as a mechanical pendulum. This vibratory behaviour may support the colony-intrinsic information hypothesis herein that the mechanical vibrations of the comb provoked by shimmering do have the potential to facilitate immediate communication of the momentary defensive state of the honeybee nest to

  17. Social waves in giant honeybees ( Apis dorsata) elicit nest vibrations

    NASA Astrophysics Data System (ADS)

    Kastberger, Gerald; Weihmann, Frank; Hoetzl, Thomas

    2013-07-01

    Giant honeybees ( Apis dorsata) nest in the open and have developed a wide array of strategies for colony defence, including the Mexican wave-like shimmering behaviour. In this collective response, the colony members perform upward flipping of their abdomens in coordinated cascades across the nest surface. The time-space properties of these emergent waves are response patterns which have become of adaptive significance for repelling enemies in the visual domain. We report for the first time that the mechanical impulse patterns provoked by these social waves and measured by laser Doppler vibrometry generate vibrations at the central comb of the nest at the basic (=`natural') frequency of 2.156 ± 0.042 Hz which is more than double the average repetition rate of the driving shimmering waves. Analysis of the Fourier spectra of the comb vibrations under quiescence and arousal conditions provoked by mass flight activity and shimmering waves gives rise to the proposal of two possible models for the compound physical system of the bee nest: According to the elastic oscillatory plate model, the comb vibrations deliver supra-threshold cues preferentially to those colony members positioned close to the comb. The mechanical pendulum model predicts that the comb vibrations are sensed by the members of the bee curtain in general, enabling mechanoreceptive signalling across the nest, also through the comb itself. The findings show that weak and stochastic forces, such as general quiescence or diffuse mass flight activity, cause a harmonic frequency spectrum of the comb, driving the comb as an elastic plate. However, shimmering waves provide sufficiently strong forces to move the nest as a mechanical pendulum. This vibratory behaviour may support the colony-intrinsic information hypothesis herein that the mechanical vibrations of the comb provoked by shimmering do have the potential to facilitate immediate communication of the momentary defensive state of the honeybee nest to the

  18. Hygienic and grooming behaviors in African and European honeybees—New damage categories in Varroa destructor

    PubMed Central

    Fombong, Ayuka T.; Yusuf, Abdullahi A.; Pirk, Christian W. W.; Stuhl, Charles

    2017-01-01

    Varroa destructor is an ectoparasitic pest of honeybees, and a threat to the survival of the apiculture industry. Several studies have shown that unlike European honeybees, African honeybee populations appear to be minimally affected when attacked by this mite. However, little is known about the underlying drivers contributing to survival of African honeybee populations against the mite. We hypothesized that resistant behavioral defenses are responsible for the survival of African honeybees against the ectoparasite. We tested this hypothesis by comparing grooming and hygienic behaviors in the African savannah honeybee Apis mellifera scutellata in Kenya and A. mellifera hybrids of European origin in Florida, USA against the mite. Grooming behavior was assessed by determining adult mite infestation levels, daily mite fall per colony and percentage mite damage (as an indicator of adult grooming rate), while hygienic behavior was assessed by determining the brood removal rate after freeze killing a section of the brood. Our results identified two additional undescribed damaged mite categories along with the six previously known damage categories associated with the grooming behavior of both honeybee subspecies. Adult mite infestation level was approximately three-fold higher in A. mellifera hybrids of European origin than in A. m. scutellata, however, brood removal rate, adult grooming rate and daily natural mite fall were similar in both honeybee subspecies. Unlike A. mellifera hybrids of European origin, adult grooming rate and brood removal rate did not correlate with mite infestation levels on adult worker honeybee of A. m. scutellata though they were more aggressive towards the mites than their European counterparts. Our results provide valuable insights into the tolerance mechanisms that contribute to the survival of A. m. scutellata against the mite. PMID:28622341

  19. Effect of Olfactory Stimulus on the Flight Course of a Honeybee, Apis mellifera, in a Wind Tunnel.

    PubMed

    Ikeno, Hidetoshi; Akamatsu, Tadaaki; Hasegawa, Yuji; Ai, Hiroyuki

    2013-12-31

    It is known that the honeybee, Apis mellifera, uses olfactory stimulus as important information for orienting to food sources. Several studies on olfactory-induced orientation flight have been conducted in wind tunnels and in the field. From these studies, optical sensing is used as the main information with the addition of olfactory signals and the navigational course followed by these sensory information. However, it is not clear how olfactory information is reflected in the navigation of flight. In this study, we analyzed the detailed properties of flight when oriented to an odor source in a wind tunnel. We recorded flying bees with a video camera to analyze the flight area, speed, angular velocity and trajectory. After bees were trained to be attracted to a feeder, the flight trajectories with or without the olfactory stimulus located upwind of the feeder were compared. The results showed that honeybees flew back and forth in the proximity of the odor source, and the search range corresponded approximately to the odor spread area. It was also shown that the angular velocity was different inside and outside the odor spread area, and trajectories tended to be bent or curved just outside the area.

  20. Comparative Genomic Analysis for Genetic Variation in Sacbrood Virus of Apis cerana and Apis mellifera Honeybees From Different Regions of Vietnam.

    PubMed

    Reddy, Kondreddy Eswar; Thu, Ha Thi; Yoo, Mi Sun; Ramya, Mummadireddy; Reddy, Bheemireddy Anjana; Lien, Nguyen Thi Kim; Trang, Nguyen Thi Phuong; Duong, Bui Thi Thuy; Lee, Hyun-Jeong; Kang, Seung-Won; Quyen, Dong Van

    2017-09-01

    Sacbrood virus (SBV) is one of the most common viral infections of honeybees. The entire genome sequence for nine SBV infecting honeybees, Apis cerana and Apis mellifera, in Vietnam, namely AcSBV-Viet1, AcSBV-Viet2, AcSBV-Viet3, AmSBV-Viet4, AcSBV-Viet5, AmSBV-Viet6, AcSBV-Viet7, AcSBV-Viet8, and AcSBV-Viet9, was determined. These sequences were aligned with seven previously reported complete genome sequences of SBV from other countries, and various genomic regions were compared. The Vietnamese SBVs (VN-SBVs) shared 91-99% identity with each other, and shared 89-94% identity with strains from other countries. The open reading frames (ORFs) of the VN-SBV genomes differed greatly from those of SBVs from other countries, especially in their VP1 sequences. The AmSBV-Viet6 and AcSBV-Viet9 genome encodes 17 more amino acids within this region than the other VN-SBVs. In a phylogenetic analysis, the strains AmSBV-Viet4, AcSBV-Viet2, and AcSBV-Viet3 were clustered in group with AmSBV-UK, AmSBV-Kor21, and AmSBV-Kor19 strains. Whereas, the strains AmSBV-Viet6 and AcSBV-Viet7 clustered separately with the AcSBV strains from Korea and AcSBV-VietSBM2. And the strains AcSBV-Viet8, AcSBV-Viet1, AcSBV-Viet5, and AcSBV-Viet9 clustered with the AcSBV-India, AcSBV-Kor and AcSBV-VietSBM2. In a Simplot graph, the VN-SBVs diverged stronger in their ORF regions than in their 5' or 3' untranslated regions. The VN-SBVs possess genetic characteristics which are more similar to the Asian AcSBV strains than to AmSBV-UK strain. Taken together, our data indicate that host specificity, geographic distance, and viral cross-infections between different bee species may explain the genetic diversity among the VN-SBVs in A. cerana and A. mellifera and other SBV strains. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  1. Comparative Genomic Analysis for Genetic Variation in Sacbrood Virus of Apis cerana and Apis mellifera Honeybees From Different Regions of Vietnam

    PubMed Central

    Reddy, Kondreddy Eswar; Thu, Ha Thi; Yoo, Mi Sun; Ramya, Mummadireddy; Reddy, Bheemireddy Anjana; Lien, Nguyen Thi Kim; Trang, Nguyen Thi Phuong; Duong, Bui Thi Thuy; Lee, Hyun-Jeong; Kang, Seung-Won

    2017-01-01

    Abstract Sacbrood virus (SBV) is one of the most common viral infections of honeybees. The entire genome sequence for nine SBV infecting honeybees, Apis cerana and Apis mellifera, in Vietnam, namely AcSBV-Viet1, AcSBV-Viet2, AcSBV-Viet3, AmSBV-Viet4, AcSBV-Viet5, AmSBV-Viet6, AcSBV-Viet7, AcSBV-Viet8, and AcSBV-Viet9, was determined. These sequences were aligned with seven previously reported complete genome sequences of SBV from other countries, and various genomic regions were compared. The Vietnamese SBVs (VN-SBVs) shared 91–99% identity with each other, and shared 89–94% identity with strains from other countries. The open reading frames (ORFs) of the VN-SBV genomes differed greatly from those of SBVs from other countries, especially in their VP1 sequences. The AmSBV-Viet6 and AcSBV-Viet9 genome encodes 17 more amino acids within this region than the other VN-SBVs. In a phylogenetic analysis, the strains AmSBV-Viet4, AcSBV-Viet2, and AcSBV-Viet3 were clustered in group with AmSBV-UK, AmSBV-Kor21, and AmSBV-Kor19 strains. Whereas, the strains AmSBV-Viet6 and AcSBV-Viet7 clustered separately with the AcSBV strains from Korea and AcSBV-VietSBM2. And the strains AcSBV-Viet8, AcSBV-Viet1, AcSBV-Viet5, and AcSBV-Viet9 clustered with the AcSBV-India, AcSBV-Kor and AcSBV-VietSBM2. In a Simplot graph, the VN-SBVs diverged stronger in their ORF regions than in their 5′ or 3′ untranslated regions. The VN-SBVs possess genetic characteristics which are more similar to the Asian AcSBV strains than to AmSBV-UK strain. Taken together, our data indicate that host specificity, geographic distance, and viral cross-infections between different bee species may explain the genetic diversity among the VN-SBVs in A. cerana and A. mellifera and other SBV strains. PMID:29117376

  2. Interspecific utilisation of wax in comb building by honeybees

    NASA Astrophysics Data System (ADS)

    Hepburn, H. Randall; Radloff, Sarah E.; Duangphakdee, Orawan; Phaincharoen, Mananya

    2009-06-01

    Beeswaxes of honeybee species share some homologous neutral lipids; but species-specific differences remain. We analysed behavioural variation for wax choice in honeybees, calculated the Euclidean distances for different beeswaxes and assessed the relationship of Euclidean distances to wax choice. We tested the beeswaxes of Apis mellifera capensis, Apis florea, Apis cerana and Apis dorsata and the plant and mineral waxes Japan, candelilla, bayberry and ozokerite as sheets placed in colonies of A. m. capensis, A. florea and A. cerana. A. m. capensis accepted the four beeswaxes but removed Japan and bayberry wax and ignored candelilla and ozokerite. A. cerana colonies accepted the wax of A. cerana, A. florea and A. dorsata but rejected or ignored that of A. m. capensis, the plant and mineral waxes. A. florea colonies accepted A. cerana, A. dorsata and A. florea wax but rejected that of A. m. capensis. The Euclidean distances for the beeswaxes are consistent with currently prevailing phylogenies for Apis. Despite post-speciation chemical differences in the beeswaxes, they remain largely acceptable interspecifically while the plant and mineral waxes are not chemically close enough to beeswax for their acceptance.

  3. Involvement of phosphorylated Apis mellifera CREB in gating a honeybee's behavioral response to an external stimulus

    PubMed Central

    Gehring, Katrin B.; Heufelder, Karin; Feige, Janina; Bauer, Paul; Dyck, Yan; Ehrhardt, Lea; Kühnemund, Johannes; Bergmann, Anja; Göbel, Josefine; Isecke, Marlene

    2016-01-01

    The transcription factor cAMP-response element-binding protein (CREB) is involved in neuronal plasticity. Phosphorylation activates CREB and an increased level of phosphorylated CREB is regarded as an indicator of CREB-dependent transcriptional activation. In honeybees (Apis mellifera) we recently demonstrated a particular high abundance of the phosphorylated honeybee CREB homolog (pAmCREB) in the central brain and in a subpopulation of mushroom body neurons. We hypothesize that these high pAmCREB levels are related to learning and memory formation. Here, we tested this hypothesis by analyzing brain pAmCREB levels in classically conditioned bees and bees experiencing unpaired presentations of conditioned stimulus (CS) and unconditioned stimulus (US). We demonstrate that both behavioral protocols display differences in memory formation but do not alter the level of pAmCREB in bee brains directly after training. Nevertheless, we report that bees responding to the CS during unpaired stimulus presentations exhibit higher levels of pAmCREB than nonresponding bees. In addition, Trichostatin A, a histone deacetylase inhibitor that is thought to enhance histone acetylation by CREB-binding protein, increases the bees’ CS responsiveness. We conclude that pAmCREB is involved in gating a bee's behavioral response driven by an external stimulus. PMID:27084927

  4. Genetic Structure and Potential Environmental Determinants of Local Genetic Diversity in Japanese Honeybees (Apis cerana japonica)

    PubMed Central

    Nagamitsu, Teruyoshi; Yasuda, Mika; Saito-Morooka, Fuki; Inoue, Maki N.; Nishiyama, Mio; Goka, Koichi; Sugiura, Shinji; Maeto, Kaoru; Okabe, Kimiko; Taki, Hisatomo

    2016-01-01

    Declines in honeybee populations have been a recent concern. Although causes of the declines remain unclear, environmental factors may be responsible. We focused on the potential environmental determinants of local populations of wild honeybees, Apis cerana japonica, in Japan. This subspecies has little genetic variation in terms of its mitochondrial DNA sequences, and genetic variations at nuclear loci are as yet unknown. We estimated the genetic structure and environmental determinants of local genetic diversity in nuclear microsatellite genotypes of fathers and mothers, inferred from workers collected at 139 sites. The genotypes of fathers and mothers showed weak isolation by distance and negligible genetic structure. The local genetic diversity was high in central Japan, decreasing toward the peripheries, and depended on the climate and land use characteristics of the sites. The local genetic diversity decreased as the annual precipitation increased, and increased as the proportion of urban and paddy field areas increased. Positive effects of natural forest area, which have also been observed in terms of forager abundance in farms, were not detected with respect to the local genetic diversity. The findings suggest that A. cerana japonica forms a single population connected by gene flow in its main distributional range, and that climate and landscape properties potentially affect its local genetic diversity. PMID:27898704

  5. Extensive population admixture on drone congregation areas of the giant honeybee, Apis dorsata (Fabricius, 1793)

    PubMed Central

    Beaurepaire, Alexis L; Kraus, Bernard F; Koeniger, Gudrun; Koeniger, Nikolaus; Lim, Herbert; Moritz, Robin F A

    2014-01-01

    The giant honeybee Apis dorsata often forms dense colony aggregations which can include up to 200 often closely related nests in the same location, setting the stage for inbred matings. Yet, like in all other Apis species, A. dorsata queens mate in mid-air on lek like drone congregation areas (DCAs) where large numbers of males gather in flight. We here report how the drone composition of A. dorsata DCAs facilitates outbreeding, taking into the account both spatial (three DCAs) and temporal (subsequent sampling days) dynamics. We compared the drones’ genotypes at ten microsatellite DNA markers with those of the queen genotypes of six drone-producing colonies located close to the DCAs (Tenom, Sabah, Malaysia). None of 430 sampled drones originated from any of these nearby colonies. Moreover, we estimated that 141 unidentified colonies were contributing to the three DCAs. Most of these colonies were participating multiple times in the different locations and/or during the consecutive days of sampling. The drones sampled in the DCAs could be attributed to six subpopulations. These were all admixed in all DCA samples, increasing the effective population size an order of magnitude and preventing matings between potentially related queens and drones. PMID:25558361

  6. Temperature dependent virulence of obligate and facultative fungal pathogens of honeybee brood

    USDA-ARS?s Scientific Manuscript database

    Chalkbrood (Ascosphaera apis) and stonebrood (Aspergillus flavus) are well known fungal brood diseases of honeybees (Apis mellifera), but they have hardly been systematically studied because the difficulty of rearing larvae in vitro has precluded controlled experimentation. Chalkbrood is a chronic h...

  7. RNAi-mediated silencing of vitellogenin gene function turns honeybee ( Apis mellifera) workers into extremely precocious foragers

    NASA Astrophysics Data System (ADS)

    Marco Antonio, David Santos; Guidugli-Lazzarini, Karina Rosa; Do Nascimento, Adriana Mendes; Simões, Zilá Luz Paulino; Hartfelder, Klaus

    2008-10-01

    The switch from within-hive activities to foraging behavior is a major transition in the life cycle of a honeybee ( Apis mellifera) worker. A prominent regulatory role in this switch has long been attributed to juvenile hormone (JH), but recent evidence also points to the yolk precursor protein vitellogenin as a major player in behavioral development. In the present study, we injected vitellogenin double-stranded RNA (dsVg) into newly emerged worker bees of Africanized genetic origin and introduced them together with controls into observation hives to record flight behavior. RNA interference-mediated silencing of vitellogenin gene function shifted the onset of long-duration flights (>10 min) to earlier in life (by 3 4 days) when compared with sham and untreated control bees. In fact, dsVg bees were observed conducting such flights extremely precociously, when only 3 days old. Short-duration flights (<10 min), which bees usually perform for orientation and cleaning, were not affected. Additionally, we found that the JH titer in dsVg bees collected after 7 days was not significantly different from the controls. The finding that depletion of the vitellogenin titer can drive young bees to become extremely precocious foragers could imply that vitellogenin is the primary switch signal. At this young age, downregulation of vitellogenin gene activity apparently had little effect on the JH titer. As this unexpected finding stands in contrast with previous results on the vitellogenin/JH interaction at a later age, when bees normally become foragers, we propose a three-step sequence in the constellation of physiological parameters underlying behavioral development.

  8. Depression of brain dopamine and its metabolite after mating in European honeybee (Apis mellifera) queens

    NASA Astrophysics Data System (ADS)

    Harano, Ken-Ichi; Sasaki, Ken; Nagao, Takashi

    2005-07-01

    To explore neuro-endocrinal changes in the brain of European honeybee (Apis mellifera) queens before and after mating, we measured the amount of several biogenic amines, including dopamine and its metabolite in the brain of 6- and 12-day-old virgins and 12-day-old mated queens. Twelve-day-old mated queens showed significantly lower amounts of dopamine and its metabolite (N-acetyldopamine) than both 6- and 12-day-old virgin queens, whereas significant differences in the amounts of these amines were not detected between 6- and 12-day-old virgin queens. These results are explained by down-regulation of both synthesis and secretion of brain dopamine after mating. It is speculated that higher amounts of brain dopamine in virgin queens might be involved in activation of ovarian follicles arrested in previtellogenic stages, as well as regulation of their characteristic behaviors.

  9. Method and device for identifying different species of honeybees

    DOEpatents

    Kerr, Howard T.; Buchanan, Michael E.; Valentine, Kenneth H.

    1989-01-01

    A method and device have been provided for distinguishing Africanized honeybees from European honeybees. The method is based on the discovery of a distinct difference in the acoustical signatures of these two species of honeybees in flight. The European honeybee signature has a fundamental power peak in the 210 to 240 Hz range while the Africanized honeybee signature has a fundamental power peak in the 260 to 290 Hz range. The acoustic signal produced by honeybees is analyzed by means of a detecting device to quickly determine the honeybee species through the detection of the presence of frequencies in one of these distinct ranges. The device includes a microphone for acoustical signal detection which feeds the detected signal into a frequency analyzer which is designed to detect the presence of either of the known fundamental wingbeat frequencies unique to the acoustical signatures of these species as an indication of the identity of the species and indicate the species identity on a readout device.

  10. Lateralization of visual learning in the honeybee.

    PubMed

    Letzkus, Pinar; Boeddeker, Norbert; Wood, Jeff T; Zhang, Shao-Wu; Srinivasan, Mandyam V

    2008-02-23

    Lateralization is a well-described phenomenon in humans and other vertebrates and there are interesting parallels across a variety of different vertebrate species. However, there are only a few studies of lateralization in invertebrates. In a recent report, we showed lateralization of olfactory learning in the honeybee (Apis mellifera). Here, we investigate lateralization of another sensory modality, vision. By training honeybees on a modified version of a visual proboscis extension reflex task, we find that bees learn a colour stimulus better with their right eye.

  11. A comparison of honeybee (Apis mellifera) queen, worker and drone larvae by RNA-Seq.

    PubMed

    He, Xu-Jiang; Jiang, Wu-Jun; Zhou, Mi; Barron, Andrew B; Zeng, Zhi-Jiang

    2017-11-06

    Honeybees (Apis mellifera) have haplodiploid sex determination: males develop from unfertilized eggs and females develop from fertilized ones. The differences in larval food also determine the development of females. Here we compared the total somatic gene expression profiles of 2-day and 4-day-old drone, queen and worker larvae by RNA-Seq. The results from a co-expression network analysis on all expressed genes showed that 2-day-old drone and worker larvae were closer in gene expression profiles than 2-day-old queen larvae. This indicated that for young larvae (2-day-old) environmental factors such as larval diet have a greater effect on gene expression profiles than ploidy or sex determination. Drones had the most distinct gene expression profiles at the 4-day larval stage, suggesting that haploidy, or sex dramatically affects the gene expression of honeybee larvae. Drone larvae showed fewer differences in gene expression profiles at the 2-day and 4-day time points than the worker and queen larval comparisons (598 against 1190 and 1181), suggesting a different pattern of gene expression regulation during the larval development of haploid males compared to diploid females. This study indicates that early in development the queen caste has the most distinct gene expression profile, perhaps reflecting the very rapid growth and morphological specialization of this caste compared to workers and drones. Later in development the haploid male drones have the most distinct gene expression profile, perhaps reflecting the influence of ploidy or sex determination on gene expression. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  12. Quality versus quantity: Foraging decisions in the honeybee (Apis mellifera scutellata) feeding on wildflower nectar and fruit juice.

    PubMed

    Shackleton, Kyle; Balfour, Nicholas J; Al Toufailia, Hasan; Gaioski, Roberto; de Matos Barbosa, Marcela; Silva, Carina A de S; Bento, José M S; Alves, Denise A; Ratnieks, Francis L W

    2016-10-01

    Foraging animals must often decide among resources which vary in quality and quantity. Nectar is a resource that exists along a continuum of quality in terms of sugar concentration and is the primary energy source for bees. Alternative sugar sources exist, including fruit juice, which generally has lower energetic value than nectar. We observed many honeybees ( Apis mellifera scutellata ) foraging on juice from fallen guava ( Psidium guajava ) fruit near others foraging on nectar. To investigate whether fruit and nectar offered contrasting benefits of quality and quantity, we compared honeybee foraging performance on P. guajava fruit versus two wildflowers growing within 50 m, Richardia brasiliensis and Tridax procumbens . Bees gained weight significantly faster on fruit, 2.72 mg/min, than on either flower (0.17 and 0.12 mg/min, respectively). However, the crop sugar concentration of fruit foragers was significantly lower than for either flower (12.4% vs. 37.0% and 22.7%, respectively). Fruit foragers also spent the most time handling and the least time flying, suggesting that fruit juice was energetically inexpensive to collect. We interpret honeybee foraging decisions in the context of existing foraging models and consider how nest-patch distance may be a key factor for central place foragers choosing between resources of contrasting quality and quantity. We also discuss how dilute solutions, such as fruit juice, can help maintain colony sugar-water balance. These results show the benefits of feeding on resources with contrasting quality and quantity and that even low-quality resources have value.

  13. Lethal infection thresholds of Paenibacillus larvae for honeybee drone and worker larvae (Apis mellifera).

    PubMed

    Behrens, Dieter; Forsgren, Eva; Fries, Ingemar; Moritz, Robin F A

    2010-10-01

    We compared the mortality of honeybee (Apis mellifera) drone and worker larvae from a single queen under controlled in vitro conditions following infection with Paenibacillus larvae, a bacterium causing the brood disease American Foulbrood (AFB). We also determined absolute P. larvae cell numbers and lethal titres in deceased individuals of both sexes up to 8 days post infection using quantitative real-time PCR (qPCR). Our results show that in drones the onset of infection induced mortality is delayed by 1 day, the cumulative mortality is reduced by 10% and P. larvae cell numbers are higher than in worker larvae. Since differences in bacterial cell titres between sexes can be explained by differences in body size, larval size appears to be a key parameter for a lethal threshold in AFB tolerance. Both means and variances for lethal thresholds are similar for drone and worker larvae suggesting that drone resistance phenotypes resemble those of related workers. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  14. Presence of Nosema ceranae associated with honeybee queen introductions.

    PubMed

    Muñoz, Irene; Cepero, Almudena; Pinto, Maria Alice; Martín-Hernández, Raquel; Higes, Mariano; De la Rúa, Pilar

    2014-04-01

    Microsporidiosis caused by Nosema species is one of the factors threatening the health of the honeybee (Apis mellifera), which is an essential element in agriculture mainly due to its pollination function. The dispersion of this pathogen may be influenced by many factors, including various aspects of beekeeping management such as introduction of queens with different origin. Herein we study the relation of the presence and distribution of Nosema spp. and the replacement of queens in honeybee populations settled on the Atlantic Canary Islands. While Nosema apis has not been detected, an increase of the presence and distribution of Nosema ceranae during the last decade has been observed in parallel with a higher frequency of foreign queens. On the other hand, a reduction of the number of N. ceranae positive colonies was observed on those islands with continued replacement of queens. We suggest that such replacement could help maintaining low rates of Nosema infection, but healthy queens native to these islands should be used in order to conserve local honeybee diversity. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Worker piping triggers hissing for coordinated colony defence in the dwarf honeybee Apis florea.

    PubMed

    Sen Sarma, Moushumi; Fuchs, Stefan; Werber, Christian; Tautz, Jürgen

    2002-01-01

    Defending a large social insect colony containing several thousands of workers requires the simultaneous action of many individuals. Ideally this action involves communication between the workers, enabling coordinated action and a fast response. The Asian dwarf honeybee, Apis florea, is a small honeybee with an open nesting habit and a comparatively small colony size, features that leave them particularly exposed to predators. We describe here a novel defence response of these bees in which the emission of an initial warning signal from one individual ("piping") is followed 0.3 to 0.7 seconds later by a general response from a large number of bees ("hissing"). Piping is audible to the human ear, with a fundamental frequency of 384 +/- 31Hz and lasting for 0.82 +/- 0.35 seconds. Hissing is a broad band, noisy signal, clearly audible to the human observer and produced by slight but visible movements of the bees' wings. Hissing begins in individuals close to the piping bee, spreads rapidly to neighbours and results in an impressive coordinated crescendo occasionally involving the entire colony. Piping and hissing are accompanied by a marked decrease, or even cessation, of worker activities such as forager dancing and departures from the colony. We show that whereas hissing of the colony can be elicited without piping, the sequential and correlated piping and hissing response is specific to the presence of potential predators close to the colony. We suggest that the combined audio-visual effect of the hissing might deter small predators, while the cessation of flight activity could decrease the risk of predation by birds and insects which prey selectively on flying bees.

  16. Molecular determinants of caste differentiation in the highly eusocial honeybee Apis mellifera.

    PubMed

    Barchuk, Angel R; Cristino, Alexandre S; Kucharski, Robert; Costa, Luciano F; Simões, Zilá L P; Maleszka, Ryszard

    2007-06-18

    In honeybees, differential feeding of female larvae promotes the occurrence of two different phenotypes, a queen and a worker, from identical genotypes, through incremental alterations, which affect general growth, and character state alterations that result in the presence or absence of specific structures. Although previous studies revealed a link between incremental alterations and differential expression of physiometabolic genes, the molecular changes accompanying character state alterations remain unknown. By using cDNA microarray analyses of >6,000 Apis mellifera ESTs, we found 240 differentially expressed genes (DEGs) between developing queens and workers. Many genes recorded as up-regulated in prospective workers appear to be unique to A. mellifera, suggesting that the workers' developmental pathway involves the participation of novel genes. Workers up-regulate more developmental genes than queens, whereas queens up-regulate a greater proportion of physiometabolic genes, including genes coding for metabolic enzymes and genes whose products are known to regulate the rate of mass-transforming processes and the general growth of the organism (e.g., tor). Many DEGs are likely to be involved in processes favoring the development of caste-biased structures, like brain, legs and ovaries, as well as genes that code for cytoskeleton constituents. Treatment of developing worker larvae with juvenile hormone (JH) revealed 52 JH responsive genes, specifically during the critical period of caste development. Using Gibbs sampling and Expectation Maximization algorithms, we discovered eight overrepresented cis-elements from four gene groups. Graph theory and complex networks concepts were adopted to attain powerful graphical representations of the interrelation between cis-elements and genes and objectively quantify the degree of relationship between these entities. We suggest that clusters of functionally related DEGs are co-regulated during caste development in honeybees

  17. Molecular determinants of caste differentiation in the highly eusocial honeybee Apis mellifera

    PubMed Central

    Barchuk, Angel R; Cristino, Alexandre S; Kucharski, Robert; Costa, Luciano F; Simões, Zilá LP; Maleszka, Ryszard

    2007-01-01

    Background In honeybees, differential feeding of female larvae promotes the occurrence of two different phenotypes, a queen and a worker, from identical genotypes, through incremental alterations, which affect general growth, and character state alterations that result in the presence or absence of specific structures. Although previous studies revealed a link between incremental alterations and differential expression of physiometabolic genes, the molecular changes accompanying character state alterations remain unknown. Results By using cDNA microarray analyses of >6,000 Apis mellifera ESTs, we found 240 differentially expressed genes (DEGs) between developing queens and workers. Many genes recorded as up-regulated in prospective workers appear to be unique to A. mellifera, suggesting that the workers' developmental pathway involves the participation of novel genes. Workers up-regulate more developmental genes than queens, whereas queens up-regulate a greater proportion of physiometabolic genes, including genes coding for metabolic enzymes and genes whose products are known to regulate the rate of mass-transforming processes and the general growth of the organism (e.g., tor). Many DEGs are likely to be involved in processes favoring the development of caste-biased structures, like brain, legs and ovaries, as well as genes that code for cytoskeleton constituents. Treatment of developing worker larvae with juvenile hormone (JH) revealed 52 JH responsive genes, specifically during the critical period of caste development. Using Gibbs sampling and Expectation Maximization algorithms, we discovered eight overrepresented cis-elements from four gene groups. Graph theory and complex networks concepts were adopted to attain powerful graphical representations of the interrelation between cis-elements and genes and objectively quantify the degree of relationship between these entities. Conclusion We suggest that clusters of functionally related DEGs are co-regulated during

  18. Honeybee (Apis mellifera)-associated bacterial community affected by American foulbrood: detection of Paenibacillus larvae via microbiome analysis.

    PubMed

    Erban, Tomas; Ledvinka, Ondrej; Kamler, Martin; Nesvorna, Marta; Hortova, Bronislava; Tyl, Jan; Titera, Dalibor; Markovic, Martin; Hubert, Jan

    2017-07-11

    Honeybee (Apis mellifera L.) workers act as passive vectors of Paenibacillus larvae spores, which cause the quarantine disease American foulbrood (AFB). We assessed the relative proportions of P. larvae within the honeybee microbiome using metabarcoding analysis of the 16 S rRNA gene. The microbiome was analyzed in workers outside of the AFB zone (control - AFB0), in workers from asymptomatic colonies in an AFB apiary (AFB1), and in workers from colonies exhibiting clinical AFB symptoms (AFB2). The microbiome was processed for the entire community and for a cut-off microbiome comprising pathogenic/environmental bacteria following the removal of core bacterial sequences; varroosis levels were considered in the statistical analysis. No correlation was observed between AFB status and varroosis level, but AFB influenced the worker bee bacterial community, primarily the pathogenic/environmental bacteria. There was no significant difference in the relative abundance of P. larvae between the AFB1 and AFB0 colonies, but we did observe a 9-fold increase in P. larvae abundance in AFB2 relative to the abundance in AFB1. The relative sequence numbers of Citrobacter freundii and Hafnia alvei were higher in AFB2 and AFB1 than in AFB0, whereas Enterococcus faecalis, Klebsiella oxytoca, Spiroplasma melliferum and Morganella morganii were more abundant in AFB0 and AFB1 than in AFB2.

  19. Oriental orchid (Cymbidium floribundum) attracts the Japanese honeybee (Apis cerana japonica) with a mixture of 3-hydroxyoctanoic acid and 10-hydroxy- (E)-2-decenoic acid.

    PubMed

    Sugahara, Michio; Izutsu, Kazunari; Nishimura, Yasuichiro; Sakamoto, Fumio

    2013-02-01

    The flower of the oriental orchid Cymbidium floribundum is known to attract the Japanese honeybee Apis cerana japonica. This effect is observed not only in workers but also drones and queens; that is, it attracts even swarming and absconding bees. A mixture of 3-hydroxyoctanoic acid (3-HOAA) and 10-hydroxy-(E)-2-decenoic acid (10-HDA) was identified as the active principles from the orchid flower, whereas these compounds individually have no such activity. Both compounds are also mandibular gland components of worker honeybees with related compounds. This strongly supports the idea that orchid flowers mimic bee secretions, although the ecological consequences of this relationship remain unknown. Because the flower is used to capture swarms, the present identification may contribute to the development of new techniques in traditional beekeeping for Japanese bees as well as A. cerana in Southeast Asia.

  20. Risks of neonicotinoid insecticides to honeybees

    PubMed Central

    Fairbrother, Anne; Purdy, John; Anderson, Troy; Fell, Richard

    2014-01-01

    The European honeybee, Apis mellifera, is an important pollinator of agricultural crops. Since 2006, when unexpectedly high colony losses were first reported, articles have proliferated in the popular press suggesting a range of possible causes and raising alarm over the general decline of bees. Suggested causes include pesticides, genetically modified crops, habitat fragmentation, and introduced diseases and parasites. Scientists have concluded that multiple factors in various combinations—including mites, fungi, viruses, and pesticides, as well as other factors such as reduction in forage, poor nutrition, and queen failure—are the most probable cause of elevated colony loss rates. Investigators and regulators continue to focus on the possible role that insecticides, particularly the neonicotinoids, may play in honeybee health. Neonicotinoid insecticides are insect neurotoxicants with desirable features such as broad-spectrum activity, low application rates, low mammalian toxicity, upward systemic movement in plants, and versatile application methods. Their distribution throughout the plant, including pollen, nectar, and guttation fluids, poses particular concern for exposure to pollinators. The authors describe how neonicotinoids interact with the nervous system of honeybees and affect individual honeybees in laboratory situations. Because honeybees are social insects, colony effects in semifield and field studies are discussed. The authors conclude with a review of current and proposed guidance in the United States and Europe for assessing the risks of pesticides to honeybees. PMID:24692231

  1. MRJP microsatellite markers in Africanized Apis mellifera colonies selected on the basis of royal jelly production.

    PubMed

    Parpinelli, R S; Ruvolo-Takasusuki, M C C; Toledo, V A A

    2014-08-28

    It is important to select the best honeybees that produce royal jelly to identify important molecular markers, such as major royal jelly proteins (MRJPs), and hence contribute to the development of new breeding strategies to improve the production of this substance. Therefore, this study focused on evaluating the genetic variability of mrjp3, mrjp5, and mrjp8 and associated allele maintenance during the process of selective reproduction in Africanized Apis mellifera individuals, which were chosen based on royal jelly production. The three loci analyzed were polymorphic, and produced a total of 16 alleles, with 4 new alleles, which were identified at mrjp5. The effective number of alleles at mrjp3 was 3.81. The observed average heterozygosity was 0.4905, indicating a high degree of genetic variability at these loci. The elevated FIS values for mrjp3, mrjp5, and mrjp8 (0.4188, 0.1077, and 0.2847, respectively) indicate an excess of homozygotes. The selection of Africanized A. mellifera queens for royal jelly production has maintained the mrjp3 C, D, and E alleles; although, the C allele occurred at a low frequency. The heterozygosity and FIS values show that the genetic variability of the queens is decreasing at the analyzed loci, generating an excess of homozygotes. However, the large numbers of drones that fertilize the queens make it difficult to develop homozygotes at mrjp3. Mating through instrumental insemination using the drones of known genotypes is required to increase the efficiency of Africanized A. mellifera-breeding programs, and to improve the quality and efficiency of commercial royal jelly apiaries.

  2. The Brazilian Honeybee

    ERIC Educational Resources Information Center

    Michener, Charles D.

    1973-01-01

    Discusses the unusually aggressive Brazilian honeybee, which exhibits many of the attributes of its African antecedants. Describes its abundance and distribution, behaviorial characteristics, future spread, and the potential impact of the Brazilian bee in North America. (JR)

  3. The invasive Korea and Japan types of Varroa destructor, ectoparasitic mites of the Western honeybee (Apis mellifera), are two partly isolated clones

    PubMed Central

    Solignac, Michel; Cornuet, Jean-Marie; Vautrin, Dominique; Le Conte, Yves; Anderson, Denis; Evans, Jay; Cros-Arteil, Sandrine; Navajas, Maria

    2005-01-01

    Varroa destructor, now a major pest of the Western honeybee, Apis mellifera, switched from its original host, the Eastern honeybee, A. cerana, ca. 50 years ago. So far, only two out of several known mitochondrial haplotypes of V. destructor have been found to be capable of reproducing on A. mellifera (Korea and Japan). These haplotypes are associated in almost complete cytonuclear disequilibrium to diagnostic alleles at 11 microsatellite loci. By contrast, microsatellite polymorphism within each type is virtually absent, because of a severe bottleneck at the time of host change. Accordingly, 12 mitochondrial sequences of 5185 nucleotides displayed 0.40% of nucleotide divergence between haplotypes and no intra haplotype variation. Hence, each type has a quasi-clonal structure. The nascent intratype variability is subsequent to the clone formation 50 years ago: in both types the variant alleles differ from the most common by one (in 10 cases), two (five cases) or three (one case) repeated motifs. In addition to individuals of the two ‘pure’ types, five F1 hybrids and 19 recombinant individuals (Japan alleles introgressed into the Korea genetic background) were detected. The existence of F1 and recombinant individuals in admixed populations requires that double infestations of honeybee cells occur in a high proportion but the persistence of pure types suggests a post-zygotic isolation between the two clones. PMID:15734696

  4. Mechanism of action of recombinant Acc-royalisin from royal jelly of Chinese honeybee against gram-positive bacteria

    USDA-ARS?s Scientific Manuscript database

    The antibacterial activity of royalisin, an antimicrobial peptide from the royal jelly produced by honeybees has been addressed extensively. However, its mechanism of action remains unclear. In this study, a recombinant royalisin, RAcc-royalisin from the royal jelly of Chinese honeybee Apis cerana...

  5. Genome-Wide Association Study of a Varroa-Specific Defense Behavior in Honeybees (Apis mellifera)

    PubMed Central

    Spötter, Andreas; Gupta, Pooja; Mayer, Manfred; Reinsch, Norbert

    2016-01-01

    Honey bees are exposed to many damaging pathogens and parasites. The most devastating is Varroa destructor, which mainly affects the brood. A promising approach for preventing its spread is to breed Varroa-resistant honey bees. One trait that has been shown to provide significant resistance against the Varroa mite is hygienic behavior, which is a behavioral response of honeybee workers to brood diseases in general. Here, we report the use of an Affymetrix 44K SNP array to analyze SNPs associated with detection and uncapping of Varroa-parasitized brood by individual worker bees (Apis mellifera). For this study, 22 000 individually labeled bees were video-monitored and a sample of 122 cases and 122 controls was collected and analyzed to determine the dependence/independence of SNP genotypes from hygienic and nonhygienic behavior on a genome-wide scale. After false-discovery rate correction of the P values, 6 SNP markers had highly significant associations with the trait investigated (α < 0.01). Inspection of the genomic regions around these SNPs led to the discovery of putative candidate genes. PMID:26774061

  6. Effect of temperature on the biotic potential of honeybee microsporidia.

    PubMed

    Martín-Hernández, Raquel; Meana, Aránzazu; García-Palencia, Pilar; Marín, Pilar; Botías, Cristina; Garrido-Bailón, Encarna; Barrios, Laura; Higes, Mariano

    2009-04-01

    The biological cycle of Nosema spp. in honeybees depends on temperature. When expressed as total spore counts per day after infection, the biotic potentials of Nosema apis and N. ceranae at 33 degrees C were similar, but a higher proportion of immature stages of N. ceranae than of N. apis were seen. At 25 and 37 degrees C, the biotic potential of N. ceranae was higher than that of N. apis. The better adaptation of N. ceranae to complete its endogenous cycle at different temperatures clearly supports the observation of the different epidemiological patterns.

  7. Potential distribution dataset of honeybees in Indian Ocean Islands: Case study of Zanzibar Island.

    PubMed

    Mwalusepo, Sizah; Muli, Eliud; Nkoba, Kiatoko; Nguku, Everlyn; Kilonzo, Joseph; Abdel-Rahman, Elfatih M; Landmann, Tobias; Fakih, Asha; Raina, Suresh

    2017-10-01

    Honeybees ( Apis mellifera ) are principal insect pollinators, whose worldwide distribution and abundance is known to largely depend on climatic conditions. However, the presence records dataset on potential distribution of honeybees in Indian Ocean Islands remain less documented. Presence records in shape format and probability of occurrence of honeybees with different temperature change scenarios is provided in this article across Zanzibar Island. Maximum entropy (Maxent) package was used to analyse the potential distribution of honeybees. The dataset provides information on the current and future distribution of the honey bees in Zanzibar Island. The dataset is of great importance for improving stakeholders understanding of the role of temperature change on the spatial distribution of honeybees.

  8. Comparative study on the dynamics and performances of Apis mellifera jemenitica and imported hybrid honeybee colonies in southwestern Saudi Arabia.

    PubMed

    Al-Ghamdi, Ahmad A; Adgaba, Nuru; Tadesse, Yilma; Getachew, Awraris; Al-Maktary, Anwer A

    2017-07-01

    The aims of this study were to assess the seasonal population dynamics and evaluate the performance of Apis mellifera jemenitica (local bee) and introduced hybrid honeybee colonies in the lowlands and highlands of southwestern Saudi Arabia. Data regarding the performance and population dynamics parameters such as brood and adult bee population, amounts of stored pollen and nectar were gathered from the two races (25 colonies of each) for one year (April 2013 through March 2014), and statistically tested. The results indicated that at low lands, local bee colonies maintained relatively high brood and adult bee populations ( P  < 0.05) than introduced honeybee colonies and produced more ( P  < 0.05) honey. The local bee colonies were able to hoard three times more ( P  < 0.05) pollen and built more ( P  < 0.05) queen cells than introduced bees in both the low and highland areas. The annual survival rate of local bee colonies was almost double ( P  < 0.05) than that of introduced honeybee colonies. Moreover, local bees had greater ( P  < 0.05) adult bee and brood populations than imported, throughout the year. The relatively good performance of local colonies could be due to their long year's adaptation to cope with resource scarcity and unpredictable environmental conditions of the regions. The possible reasons for the dwindling of the imported hybrid colonies could be due to continuing to exhibit adaptive characteristics of their original that might not fit well with the new environment.

  9. Honeybees (Apis mellifera) as a biological barrier for contamination of honey by environmental toxic metals.

    PubMed

    Dżugan, Małgorzata; Wesołowska, Monika; Zaguła, Grzegorz; Kaczmarski, Mateusz; Czernicka, Maria; Puchalski, Czesław

    2018-01-27

    The aim of the study was to investigate the transfer of toxic metals from honeybee workers (Apis mellifera L.) to bee honey in relation to the ecological state of the environment. The materials of the study consisted of samples of honeybee bodies and varietal honeys taken from the same apiary located in three areas: R1-urbanized (16), R2-ecologically clean (16) and R3-industrialized (15) of south-eastern Poland. The contents of 14 elements in all tested samples, including toxic metals (Cd, Pb, Hg, Al, Ni, Tl) as well as bioelements (K, Mg, Ca, Mn, Fe, Zn, Cu, Se), were analysed by the ICP-OES method with prior microwave mineralization. The concentrations of the majority of the studied elements, excluding aluminum and lead, were significantly higher in bee bodies than in honey samples (P < 0.05). The pollution of bee bodies by toxic metals was dependent on the environmental cleanliness, and the most pollution was observed in the industrialized area. The bee body was the most effective barrier for Cd and Tl transfer to the honey, while the level of Ni was similar in both tested materials. The Al concentration was significantly higher in honey than bee bodies (14.81 ± 24.69 and 6.51 ± 5.83 mg kg -1 , respectively), which suggests the possibility of secondary contamination of honey. The greatest sensitivity to heavy metal pollution was observed in honeydew honey compared to nectar honeys (P < 0.05). It was proved for the first time that bees work as biofilters for toxic metals and prevent honey contamination.

  10. Am5-HT7: molecular and pharmacological characterization of the first serotonin receptor of the honeybee (Apis mellifera).

    PubMed

    Schlenstedt, Jana; Balfanz, Sabine; Baumann, Arnd; Blenau, Wolfgang

    2006-09-01

    The biogenic amine serotonin (5-HT) plays a key role in the regulation and modulation of many physiological and behavioural processes in both vertebrates and invertebrates. These functions are mediated through the binding of serotonin to its receptors, of which 13 subtypes have been characterized in vertebrates. We have isolated a cDNA from the honeybee Apis mellifera (Am5-ht7) sharing high similarity to members of the 5-HT(7) receptor family. Expression of the Am5-HT(7) receptor in HEK293 cells results in an increase in basal cAMP levels, suggesting that Am5-HT(7) is expressed as a constitutively active receptor. Serotonin application to Am5-ht7-transfected cells elevates cyclic adenosine 3',5'-monophosphate (cAMP) levels in a dose-dependent manner (EC(50) = 1.1-1.8 nm). The Am5-HT(7) receptor is also activated by 5-carboxamidotryptamine, whereas methiothepin acts as an inverse agonist. Receptor expression has been investigated by RT-PCR, in situ hybridization, and western blotting experiments. Receptor mRNA is expressed in the perikarya of various brain neuropils, including intrinsic mushroom body neurons, and in peripheral organs. This study marks the first comprehensive characterization of a serotonin receptor in the honeybee and should facilitate further analysis of the role(s) of the receptor in mediating the various central and peripheral effects of 5-HT.

  11. Morphofunctional Experience-Dependent Plasticity in the Honeybee Brain

    ERIC Educational Resources Information Center

    Andrione, Mara; Timberlake, Benjamin F.; Vallortigara, Giorgio; Antolini, Renzo; Haase, Albrecht

    2017-01-01

    Repeated or prolonged exposure to an odorant without any positive or negative reinforcement produces experience-dependent plasticity, which results in habituation and latent inhibition. In the honeybee ("Apis mellifera"), it has been demonstrated that, even if the absolute neural representation of an odor in the primary olfactory center,…

  12. Effect of Flumethrin on Survival and Olfactory Learning in Honeybees

    PubMed Central

    Tan, Ken; Yang, Shuang; Wang, Zhengwei; Menzel, Randolf

    2013-01-01

    Flumethrin has been widely used as an acaricide for the control of Varroa mites in commercial honeybee keeping throughout the world for many years. Here we test the mortality of the Asian honeybee Apis cerana cerana after treatment with flumethrin. We also ask (1) how bees react to the odor of flumethrin, (2) whether its odor induces an innate avoidance response, (3) whether its taste transmits an aversive reinforcing component in olfactory learning, and (4) whether its odor or taste can be associated with reward in classical conditioning. Our results show that flumethrin has a negative effect on Apis ceranàs lifespan, induces an innate avoidance response, acts as a punishing reinforcer in olfactory learning, and interferes with the association of an appetitive conditioned stimulus. Furthermore flumethrin uptake within the colony reduces olfactory learning over an extended period of time. PMID:23785490

  13. Effect of Temperature on the Biotic Potential of Honeybee Microsporidia▿

    PubMed Central

    Martín-Hernández, Raquel; Meana, Aránzazu; García-Palencia, Pilar; Marín, Pilar; Botías, Cristina; Garrido-Bailón, Encarna; Barrios, Laura; Higes, Mariano

    2009-01-01

    The biological cycle of Nosema spp. in honeybees depends on temperature. When expressed as total spore counts per day after infection, the biotic potentials of Nosema apis and N. ceranae at 33°C were similar, but a higher proportion of immature stages of N. ceranae than of N. apis were seen. At 25 and 37°C, the biotic potential of N. ceranae was higher than that of N. apis. The better adaptation of N. ceranae to complete its endogenous cycle at different temperatures clearly supports the observation of the different epidemiological patterns. PMID:19233948

  14. Ethanol increases HSP70 concentrations in honeybee (Apis mellifera L.) brain tissue.

    PubMed

    Hranitz, John M; Abramson, Charles I; Carter, Richard P

    2010-05-01

    Previous research on the honeybee ethanol model established how acute ethanol exposure altered function at different levels of organization: behavior and learning, ecology, and physiology. The purpose of this study was to evaluate whether ethanol doses that affect honeybee behavior also induce a significant stress response, measured by heat shock protein 70 (HSP70) concentrations, in honeybee brain tissues. Experiment 1 examined how pretreatment handling influenced brain HSP70 concentrations in three pretreatment groups of bees; immediately after being collected, after being harnessed and fed, and after 22-24h in a harness. HSP70 concentrations did not differ among pretreatment groups within replicates, although we observed significantly different HSP70 concentrations between the two replicates. Experiment 2 investigated the relationship between ethanol dose and brain HSP70 concentrations. Bees were placed in seven experimental groups, the three pretreatment groups as in Experiment 1 and four ethanol-fed groups. Bees in ethanol treatments were fed 1.5M sucrose (control) and 1.5M sucrose-ethanol solutions containing 2.5, 5, and 10% ethanol, allowed to sit for 4h, and dissected brains were assayed for HSP70. We observed ethanol-induced increases in honeybee brain HSP70 concentrations from the control group through the 5% ethanol group. Only bees in the 5% ethanol group had HSP70 concentrations significantly higher than the control group. The inverted U-shaped ethanol dose-HSP70 concentration response curve indicated that ingestion of 2.5% ethanol and 5% ethanol stimulated the stress response, whereas ingestion of 10% ethanol inhibited the stress response. Doses that show maximum HSP70 concentration (5% ethanol) or HSP70 inhibition (10% ethanol) correspond to those (> or =5% ethanol) that also impaired honeybees in previous studies. We conclude that acute ethanol intoxication by solutions containing > or =5% ethanol causes significant ethanol-induced stress in brain

  15. Notch signalling mediates reproductive constraint in the adult worker honeybee

    PubMed Central

    Duncan, Elizabeth J.; Hyink, Otto; Dearden, Peter K.

    2016-01-01

    The hallmark of eusociality is the reproductive division of labour, in which one female caste reproduces, while reproduction is constrained in the subordinate caste. In adult worker honeybees (Apis mellifera) reproductive constraint is conditional: in the absence of the queen and brood, adult worker honeybees activate their ovaries and lay haploid male eggs. Here, we demonstrate that chemical inhibition of Notch signalling can overcome the repressive effect of queen pheromone and promote ovary activity in adult worker honeybees. We show that Notch signalling acts on the earliest stages of oogenesis and that the removal of the queen corresponds with a loss of Notch protein in the germarium. We conclude that the ancient and pleiotropic Notch signalling pathway has been co-opted into constraining reproduction in worker honeybees and we provide the first molecular mechanism directly linking ovary activity in adult worker bees with the presence of the queen. PMID:27485026

  16. Honeybee (Apis cerana) foraging responses to the toxic honey of Tripterygium hypoglaucum (Celastraceae): changing threshold of nectar acceptability.

    PubMed

    Tan, K; Guo, Y H; Nicolson, S W; Radloff, S E; Song, Q S; Hepburn, H R

    2007-12-01

    To investigate honeybee foraging responses to toxic nectar, honey was collected from Apis cerana colonies in the Yaoan county of Yunnan Province, China, during June, when flowers of Tripterygium hypoglaucum were the main nectar source available. Pollen analysis confirmed the origin of the honey, and high-performance liquid chromatography showed the prominent component triptolide to be present at a concentration of 0.61 mug/g +/- 0.11 SD. In cage tests that used young adult worker bees, significantly more of those provided with a diet of T. hypoglaucum honey mixed with sugar powder (1:1) died within 6 d (68.3%) compared to control groups provided with normal honey mixed with sugar powder (15.8%). Honeybees were trained to visit feeders that contained honey of T. hypoglaucum (toxic honey) as the test group and honey of Vicia sativa or Elsholtzia ciliata as control groups (all honeys diluted 1:3 with water). Bees preferred the feeders with normal honey to those with toxic honey, as shown by significantly higher visiting frequencies and longer imbibition times. However, when the feeder of normal honey was removed, leaving only honey of T. hypoglaucum, the foraging bees returned to the toxic honey after a few seconds of hesitation, and both visiting frequency and imbibition time increased to values previously recorded for normal honey. Toxic honey thus became acceptable to the bees in the absence of other nectar sources.

  17. Regional Distribution Models with Lack of Proximate Predictors: Africanized Honeybees Expanding North

    NASA Technical Reports Server (NTRS)

    Jarnevich, Catherine S.; Esaias, Wayne E.; Ma, Peter L. A.; Morisette, Jeffery T.; Nickeson, Jaime E.; Stohlgren, Thomas J.; Holcombe, Tracy R.; Nightingale, Joanne M.; Wolfe, Robert E.; Tan, Bin

    2014-01-01

    Species distribution models have often been hampered by poor local species data, reliance on coarse-scale climate predictors and the assumption that species-environment relationships, even with non-proximate predictors, are consistent across geographical space. Yet locally accurate maps of invasive species, such as the Africanized honeybee (AHB) in North America, are needed to support conservation efforts. Current AHB range maps are relatively coarse and are inconsistent with observed data. Our aim was to improve distribution maps using more proximate predictors (phenology) and using regional models rather than one across the entire range of interest to explore potential differences in drivers.

  18. Regional distribution models with lack of proximate predictors: Africanized honeybees expanding north

    USGS Publications Warehouse

    Jarnevich, Catherine S.; Esaias, Wayne E.; Ma, Peter L.A.; Morisette, Jeffery T.; Nickeson, Jaime E.; Stohlgren, Thomas J.; Holcombe, Tracy R.; Nightingale, Joanne M.; Wolfe, Robert E.; Tan, Bin

    2014-01-01

    Species distribution models have often been hampered by poor local species data, reliance on coarse-scale climate predictors and the assumption that species–environment relationships, even with non-proximate predictors, are consistent across geographical space. Yet locally accurate maps of invasive species, such as the Africanized honeybee (AHB) in North America, are needed to support conservation efforts. Current AHB range maps are relatively coarse and are inconsistent with observed data. Our aim was to improve distribution maps using more proximate predictors (phenology) and using regional models rather than one across the entire range of interest to explore potential differences in drivers.

  19. Forward and Backward Second-Order Pavlovian Conditioning in Honeybees

    ERIC Educational Resources Information Center

    Hussaini, Syed Abid; Komischke, Bernhard; Menzel, Randolf; Lachnit, Harald

    2007-01-01

    Second-order conditioning (SOC) is the association of a neutral stimulus with another stimulus that had previously been combined with an unconditioned stimulus (US). We used classical conditioning of the proboscis extension response (PER) in honeybees ("Apis mellifera") with odors (CS) and sugar (US). Previous SOC experiments in bees were…

  20. Genome characterization, prevalence and distribution of a Macula-like virus from Apis mellifera and Varroa destructor

    USDA-ARS?s Scientific Manuscript database

    Numerous viruses have been detected in honeybees, which can be roughly divided into 14 unique and distinct species-complexes, each with one or more strains or sub-species. Here we present the initial characterization of an entirely new virus species-complex discovered in honeybee (Apis mellifera L.)...

  1. Experimental evidence that honeybees depress wild insect densities in a flowering crop

    PubMed Central

    Herbertsson, Lina; Rundlöf, Maj; Bommarco, Riccardo; Smith, Henrik G.

    2016-01-01

    While addition of managed honeybees (Apis mellifera) improves pollination of many entomophilous crops, it is unknown if it simultaneously suppresses the densities of wild insects through competition. To investigate this, we added 624 honeybee hives to 23 fields of oilseed rape (Brassica napus L.) over 2 years and made sure that the areas around 21 other fields were free from honeybee hives. We demonstrate that honeybee addition depresses the densities of wild insects (bumblebees, solitary bees, hoverflies, marchflies, other flies, and other flying and flower-visiting insects) even in a massive flower resource such as oilseed rape. The effect was independent of the complexity of the surrounding landscape, but increased with the size of the crop field, which suggests that the effect was caused by spatial displacement of wild insects. Our results have potential implications both for the pollination of crops (if displacement of wild pollinators offsets benefits achieved by adding honeybees) and for conservation of wild insects (if displacement results in negative fitness consequences). PMID:27881750

  2. Behavioral studies of learning in the Africanized honey bee (Apis mellifera L.).

    PubMed

    Abramson, Charles I; Aquino, Italo S

    2002-01-01

    Experiments on basic classical conditioning phenomena in adult and young Africanized honey bees (Apis mellifera L.) are described. Phenomena include conditioning to various stimuli, extinction (both unpaired and CS only), conditioned inhibition, color and odor discrimination. In addition to work on basic phenomena, experiments on practical applications of conditioning methodology are illustrated with studies demonstrating the effects of insecticides on learning and the reaction of bees to consumer products. Electron microscope photos are presented of Africanized workers, drones, and queen bees. Possible sub-species differences between Africanized and European bees are discussed. Copyright 2002 S. Karger AG, Basel

  3. Agrochemical synergism imposes higher risk to Neotropical bees than to honeybees

    PubMed Central

    Tomé, Hudson V. V.; Ramos, Gabryele S.; Araújo, Micaele F.; Santana, Weyder C.; Santos, Gil R.; Guedes, Raul Narciso C.; Maciel, Carlos D.; Newland, Philip L.

    2017-01-01

    Bees are key pollinators whose population numbers are declining, in part, owing to the effects of different stressors such as insecticides and fungicides. We have analysed the susceptibility of the Africanized honeybee, Apis mellifera, and the stingless bee, Partamona helleri, to commercial formulations of the insecticides deltamethrin and imidacloprid. The toxicity of fungicides based on thiophanate-methyl and chlorothalonil were investigated individually and in combination, and with the insecticides. Results showed that stingless bees were more susceptible to insecticides than honeybees. The commercial fungicides thiophanate-methyl or chlorothalonil caused low mortality, regardless of concentration; however, their combination was as toxic as imidacloprid to both species, and over 400-fold more toxic than deltamethrin for A. mellifera. There were highly synergistic effects on mortality caused by interactions in the mixture of imidacloprid and the fungicides thiophanate-methyl, chlorothalonil and the combined fungicide formulation in A. mellifera, and also to a lesser extent in P. helleri. By contrast, mixtures of the deltamethrin and the combined fungicide formulation induced high synergy in P. helleri, but had little effect on the mortality of A. mellifera. Differences in physiology and modes of action of agrochemicals are discussed as key factors underlying the differences in susceptibility to agrochemicals. PMID:28280585

  4. Molecular, pharmacological, and signaling properties of octopamine receptors from honeybee (Apis mellifera) brain.

    PubMed

    Balfanz, Sabine; Jordan, Nadine; Langenstück, Teresa; Breuer, Johanna; Bergmeier, Vera; Baumann, Arnd

    2014-04-01

    G protein-coupled receptors are important regulators of cellular signaling processes. Within the large family of rhodopsin-like receptors, those binding to biogenic amines form a discrete subgroup. Activation of biogenic amine receptors leads to transient changes of intracellular Ca²⁺-([Ca²⁺](i)) or 3',5'-cyclic adenosine monophosphate ([cAMP](i)) concentrations. Both second messengers modulate cellular signaling processes and thereby contribute to long-lasting behavioral effects in an organism. In vivo pharmacology has helped to reveal the functional effects of different biogenic amines in honeybees. The phenolamine octopamine is an important modulator of behavior. Binding of octopamine to its receptors causes elevation of [Ca²⁺](i) or [cAMP](i). To date, only one honeybee octopamine receptor that induces Ca²⁺ signals has been molecularly and pharmacologically characterized. Here, we examined the pharmacological properties of four additional honeybee octopamine receptors. When heterologously expressed, all receptors induced cAMP production after binding to octopamine with EC₅₀(s) in the nanomolar range. Receptor activity was most efficiently blocked by mianserin, a substance with antidepressant activity in vertebrates. The rank order of inhibitory potency for potential receptor antagonists was very similar on all four honeybee receptors with mianserin > cyproheptadine > metoclopramide > chlorpromazine > phentolamine. The subroot of octopamine receptors activating adenylyl cyclases is the largest that has so far been characterized in arthropods, and it should now be possible to unravel the contribution of individual receptors to the physiology and behavior of honeybees. © 2013 International Society for Neurochemistry.

  5. Visual generalization in honeybees: evidence of peak shift in color discrimination.

    PubMed

    Martínez-Harms, J; Márquez, N; Menzel, R; Vorobyev, M

    2014-04-01

    In the present study, we investigated color generalization in the honeybee Apis mellifera after differential conditioning. In particular, we evaluated the effect of varying the position of a novel color along a perceptual continuum relative to familiar colors on response biases. Honeybee foragers were differentially trained to discriminate between rewarded (S+) and unrewarded (S-) colors and tested on responses toward the former S+ when presented against a novel color. A color space based on the receptor noise-limited model was used to evaluate the relationship between colors and to characterize a perceptual continuum. When S+ was tested against a novel color occupying a locus in the color space located in the same direction from S- as S+, but further away, the bees shifted their stronger response away from S- toward the novel color. These results reveal the occurrence of peak shift in the color vision of honeybees and indicate that honeybees can learn color stimuli in relational terms based on chromatic perceptual differences.

  6. Duration of the Unconditioned Stimulus in Appetitive Conditioning of Honeybees Differentially Impacts Learning, Long-Term Memory Strength, and the Underlying Protein Synthesis

    ERIC Educational Resources Information Center

    Marter, Kathrin; Grauel, M. Katharina; Lewa, Carmen; Morgenstern, Laura; Buckemüller, Christina; Heufelder, Karin; Ganz, Marion; Eisenhardt, Dorothea

    2014-01-01

    This study examines the role of stimulus duration in learning and memory formation of honeybees ("Apis mellifera"). In classical appetitive conditioning honeybees learn the association between an initially neutral, conditioned stimulus (CS) and the occurrence of a meaningful stimulus, the unconditioned stimulus (US). Thereby the CS…

  7. Uncovering the immune responses of Apis mellifera ligustica larval gut to Ascosphaera apis infection utilizing transcriptome sequencing.

    PubMed

    Chen, Dafu; Guo, Rui; Xu, Xijian; Xiong, Cuiling; Liang, Qin; Zheng, Yanzhen; Luo, Qun; Zhang, Zhaonan; Huang, Zhijian; Kumar, Dhiraj; Xi, Weijun; Zou, Xuan; Liu, Min

    2017-07-20

    Honeybees are susceptible to a variety of diseases, including chalkbrood, which is capable of causing huge losses of both the number of bees and colony productivity. This research is designed to characterize the transcriptome profiles of Ascosphaera apis-treated and un-treated larval guts of Apis mellifera ligustica in an attempt to unravel the molecular mechanism underlying the immune responses of western honeybee larval guts to mycosis. In this study, 24, 296 and 2157 genes were observed to be differentially expressed in A. apis-treated Apis mellifera (4-, 5- and 6-day-old) compared with un-treated larval guts. Moreover, the expression patterns of differentially expressed genes (DEGs) were examined via trend analysis, and subsequently, gene ontology analysis and KEGG pathway enrichment analysis were conducted for DEGs involved in up- and down-regulated profiles. Immunity-related pathways were selected for further analysis, and our results demonstrated that a total of 13 and 50 DEGs were annotated in the humoral immune-related and cellular immune-related pathways, respectively. Additionally, we observed that many DEGs up-regulated in treated guts were part of cellular immune pathways, such as the lysosome, ubiquitin mediated proteolysis, and insect hormone biosynthesis pathways and were induced by A. apis invasion. However, more down-regulated DEGs were restrained. Surprisingly, a majority of DEGs within the Toll-like receptor signaling pathway, and the MAPK signaling pathway were up-regulated in treated guts, while all but two genes involved in the NF-κB signaling pathway were down-regulated, which suggested that most genes involved in humoral immune-related pathways were activated in response to the invasive fungal pathogen. This study's findings provide valuable information regarding the investigation of the molecular mechanism of immunity defenses of A. m. ligustica larval guts to infection with A. apis. Furthermore, these studies lay the groundwork for

  8. Conserving genetic diversity in the honeybee: comments on Harpur et al. (2012).

    PubMed

    De la Rúa, Pilar; Jaffé, Rodolfo; Muñoz, Irene; Serrano, José; Moritz, Robin F A; Kraus, F Bernhard

    2013-06-01

    The article by Harpur et al. (2012) 'Management increases genetic diversity of honey bees via admixture' concludes that '…honey bees do not suffer from reduced genetic diversity caused by management and, consequently, that reduced genetic diversity is probably not contributing to declines of managed Apis mellifera populations'. In the light of current honeybee and beekeeping declines and their consequences for honeybee conservation and the pollination services they provide, we would like to express our concern about the conclusions drawn from the results of Harpur et al. (2012). While many honeybee management practices do not imply admixture, we are convinced that the large-scale genetic homogenization of admixed populations could drive the loss of valuable local adaptations. We also point out that the authors did not account for the extensive gene flow that occurs between managed and wild/feral honeybee populations and raise concerns about the data set used. Finally, we caution against underestimating the importance of genetic diversity for honeybee colonies and highlight the importance of promoting the use of endemic honeybee subspecies in apiculture. © 2013 John Wiley & Sons Ltd.

  9. Movement Analysis of Flexion and Extension of Honeybee Abdomen Based on an Adaptive Segmented Structure

    PubMed Central

    Zhao, Jieliang; Wu, Jianing; Yan, Shaoze

    2015-01-01

    Honeybees (Apis mellifera) curl their abdomens for daily rhythmic activities. Prior to determining this fact, people have concluded that honeybees could curl their abdomen casually. However, an intriguing but less studied feature is the possible unidirectional abdominal deformation in free-flying honeybees. A high-speed video camera was used to capture the curling and to analyze the changes in the arc length of the honeybee abdomen not only in free-flying mode but also in the fixed sample. Frozen sections and environment scanning electron microscope were used to investigate the microstructure and motion principle of honeybee abdomen and to explore the physical structure restricting its curling. An adaptive segmented structure, especially the folded intersegmental membrane (FIM), plays a dominant role in the flexion and extension of the abdomen. The structural features of FIM were utilized to mimic and exhibit movement restriction on honeybee abdomen. Combining experimental analysis and theoretical demonstration, a unidirectional bending mechanism of honeybee abdomen was revealed. Through this finding, a new perspective for aerospace vehicle design can be imitated. PMID:26223946

  10. Experimental evidence that honeybees depress wild insect densities in a flowering crop.

    PubMed

    Lindström, Sandra A M; Herbertsson, Lina; Rundlöf, Maj; Bommarco, Riccardo; Smith, Henrik G

    2016-11-30

    While addition of managed honeybees (Apis mellifera) improves pollination of many entomophilous crops, it is unknown if it simultaneously suppresses the densities of wild insects through competition. To investigate this, we added 624 honeybee hives to 23 fields of oilseed rape (Brassica napus L.) over 2 years and made sure that the areas around 21 other fields were free from honeybee hives. We demonstrate that honeybee addition depresses the densities of wild insects (bumblebees, solitary bees, hoverflies, marchflies, other flies, and other flying and flower-visiting insects) even in a massive flower resource such as oilseed rape. The effect was independent of the complexity of the surrounding landscape, but increased with the size of the crop field, which suggests that the effect was caused by spatial displacement of wild insects. Our results have potential implications both for the pollination of crops (if displacement of wild pollinators offsets benefits achieved by adding honeybees) and for conservation of wild insects (if displacement results in negative fitness consequences). © 2016 The Author(s).

  11. Visual discrimination transfer and modulation by biogenic amines in honeybees.

    PubMed

    Vieira, Amanda Rodrigues; Salles, Nayara; Borges, Marco; Mota, Theo

    2018-05-10

    For more than a century, visual learning and memory have been studied in the honeybee Apis mellifera using operant appetitive conditioning. Although honeybees show impressive visual learning capacities in this well-established protocol, operant training of free-flying animals cannot be combined with invasive protocols for studying the neurobiological basis of visual learning. In view of this, different attempts have been made to develop new classical conditioning protocols for studying visual learning in harnessed honeybees, though learning performance remains considerably poorer than that for free-flying animals. Here, we investigated the ability of honeybees to use visual information acquired during classical conditioning in a new operant context. We performed differential visual conditioning of the proboscis extension reflex (PER) followed by visual orientation tests in a Y-maze. Classical conditioning and Y-maze retention tests were performed using the same pair of perceptually isoluminant chromatic stimuli, to avoid the influence of phototaxis during free-flying orientation. Visual discrimination transfer was clearly observed, with pre-trained honeybees significantly orienting their flights towards the former positive conditioned stimulus (CS+), thus showing that visual memories acquired by honeybees are resistant to context changes between conditioning and the retention test. We combined this visual discrimination approach with selective pharmacological injections to evaluate the effect of dopamine and octopamine in appetitive visual learning. Both octopaminergic and dopaminergic antagonists impaired visual discrimination performance, suggesting that both these biogenic amines modulate appetitive visual learning in honeybees. Our study brings new insight into cognitive and neurobiological mechanisms underlying visual learning in honeybees. © 2018. Published by The Company of Biologists Ltd.

  12. Genetics of reproduction and regulation of honeybee (Apis mellifera L.) social behavior.

    PubMed

    Page, Robert E; Rueppell, Olav; Amdam, Gro V

    2012-01-01

    Honeybees form complex societies with a division of labor for reproduction, nutrition, nest construction and maintenance, and defense. How does it evolve? Tasks performed by worker honeybees are distributed in time and space. There is no central control over behavior and there is no central genome on which selection can act and effect adaptive change. For 22 years, we have been addressing these questions by selecting on a single social trait associated with nutrition: the amount of surplus pollen (a source of protein) that is stored in the combs of the nest. Forty-two generations of selection have revealed changes at biological levels extending from the society down to the level of the gene. We show how we constructed this vertical understanding of social evolution using behavioral and anatomical analyses, physiology, genetic mapping, and gene knockdowns. We map out the phenotypic and genetic architectures of food storage and foraging behavior and show how they are linked through broad epistasis and pleiotropy affecting a reproductive regulatory network that influences foraging behavior. This is remarkable because worker honeybees have reduced reproductive organs and are normally sterile; however, the reproductive regulatory network has been co-opted for behavioral division of labor.

  13. Abscisic acid enhances cold tolerance in honeybee larvae

    PubMed Central

    Sturla, Laura; Guida, Lucrezia; Vigliarolo, Tiziana; Maggi, Matías; Eguaras, Martín; Zocchi, Elena; Lamattina, Lorenzo

    2017-01-01

    The natural composition of nutrients present in food is a key factor determining the immune function and stress responses in the honeybee (Apis mellifera). We previously demonstrated that a supplement of abscisic acid (ABA), a natural component of nectar, pollen, and honey, increases honeybee colony survival overwinter. Here we further explored the role of ABA in in vitro-reared larvae exposed to low temperatures. Four-day-old larvae (L4) exposed to 25°C for 3 days showed lower survival rates and delayed development compared to individuals growing at a standard temperature (34°C). Cold-stressed larvae maintained higher levels of ABA for longer than do larvae reared at 34°C, suggesting a biological significance for ABA. Larvae fed with an ABA-supplemented diet completely prevent the low survival rate due to cold stress and accelerate adult emergence. ABA modulates the expression of genes involved in metabolic adjustments and stress responses: Hexamerin 70b, Insulin Receptor Substrate, Vitellogenin, and Heat Shock Proteins 70. AmLANCL2, the honeybee ABA receptor, is also regulated by cold stress and ABA. These results support a role for ABA increasing the tolerance of honeybee larvae to low temperatures through priming effects. PMID:28381619

  14. Honeybees can discriminate between Monet and Picasso paintings.

    PubMed

    Wu, Wen; Moreno, Antonio M; Tangen, Jason M; Reinhard, Judith

    2013-01-01

    Honeybees (Apis mellifera) have remarkable visual learning and discrimination abilities that extend beyond learning simple colours, shapes or patterns. They can discriminate landscape scenes, types of flowers, and even human faces. This suggests that in spite of their small brain, honeybees have a highly developed capacity for processing complex visual information, comparable in many respects to vertebrates. Here, we investigated whether this capacity extends to complex images that humans distinguish on the basis of artistic style: Impressionist paintings by Monet and Cubist paintings by Picasso. We show that honeybees learned to simultaneously discriminate between five different Monet and Picasso paintings, and that they do not rely on luminance, colour, or spatial frequency information for discrimination. When presented with novel paintings of the same style, the bees even demonstrated some ability to generalize. This suggests that honeybees are able to discriminate Monet paintings from Picasso ones by extracting and learning the characteristic visual information inherent in each painting style. Our study further suggests that discrimination of artistic styles is not a higher cognitive function that is unique to humans, but simply due to the capacity of animals-from insects to humans-to extract and categorize the visual characteristics of complex images.

  15. Abscisic acid enhances cold tolerance in honeybee larvae.

    PubMed

    Ramirez, Leonor; Negri, Pedro; Sturla, Laura; Guida, Lucrezia; Vigliarolo, Tiziana; Maggi, Matías; Eguaras, Martín; Zocchi, Elena; Lamattina, Lorenzo

    2017-04-12

    The natural composition of nutrients present in food is a key factor determining the immune function and stress responses in the honeybee ( Apis mellifera ). We previously demonstrated that a supplement of abscisic acid (ABA), a natural component of nectar, pollen, and honey, increases honeybee colony survival overwinter. Here we further explored the role of ABA in in vitro -reared larvae exposed to low temperatures. Four-day-old larvae (L4) exposed to 25°C for 3 days showed lower survival rates and delayed development compared to individuals growing at a standard temperature (34°C). Cold-stressed larvae maintained higher levels of ABA for longer than do larvae reared at 34°C, suggesting a biological significance for ABA. Larvae fed with an ABA-supplemented diet completely prevent the low survival rate due to cold stress and accelerate adult emergence. ABA modulates the expression of genes involved in metabolic adjustments and stress responses: Hexamerin 70b, Insulin Receptor Substrate, Vitellogenin , and Heat Shock Proteins 70. AmLANCL2, the honeybee ABA receptor, is also regulated by cold stress and ABA. These results support a role for ABA increasing the tolerance of honeybee larvae to low temperatures through priming effects. © 2017 The Author(s).

  16. The absolute configurations of hydroxy fatty acids from the royal jelly of honeybees (Apis mellifera).

    PubMed

    Kodai, Tetsuya; Nakatani, Takafumi; Noda, Naoki

    2011-03-01

    9-Hydroxy-2E-decenoic acid (9-HDA) is a precursor of the queen-produced substance, 9-oxo-2E-decenoic acid (9-ODA), which has various important functions and roles for caste maintenance in honeybee colonies (Apis mellifera). 9-HDA in royal jelly is considered to be a metabolite of 9-ODA produced by worker bees, and it is fed back to the queen who then transforms it into 9-ODA. Recently we found that 9-HDA is present in royal jelly as a mixture of optical isomers (R:S, 2:1). The finding leads us to suspect that chiral fatty acids in royal jelly are precursors of semiochemicals. Rather than looking for semiochemicals in the mandibular glands of the queen bee, this study involves the search for precursors of pheromones from large quantities of royal jelly. Seven chiral hydroxy fatty acids, 9,10-dihydroxy-2E-decenoic, 4,10-dihydroxy-2E-decenoic, 4,9-dihydroxy-2E-decenoic, 3-hydroxydecanoic, 3,9-dihydroxydecanoic, 3,11-dihydroxydodecanoic, and 3,10-dihydroxydecanoic acids were isolated. The absolute configurations of these acids were determined using the modified Mosher's method, and it was revealed that, similar to 9-HDA, five acids are present in royal jelly as mixtures of optical isomers.

  17. Insulin effects on honeybee appetitive behaviour.

    PubMed

    Mengoni Goñalons, Carolina; Guiraud, Marie; de Brito Sanchez, María Gabriela; Farina, Walter M

    2016-10-01

    Worker honeybees (Apis mellifera) carry out multiple tasks throughout their adult lifespan. It has been suggested that the insulin/insulin-like signalling pathway participates in regulating behavioural maturation in eusocial insects. Insulin signalling increases as the honeybee worker transitions from nurse to food processor to forager. As behavioural shifts require differential usage of sensory modalities, our aim was to assess insulin effects on olfactory and gustatory responsiveness as well as on olfactory learning in preforaging honeybee workers of different ages. Adults were reared in the laboratory or in the hive. Immediately after being injected with insulin or vehicle (control), and focusing on the proboscis extension response, bees were tested for their spontaneous response to odours, sucrose responsiveness and ability to discriminate odours through olfactory conditioning. Bees injected with insulin have higher spontaneous odour responses. Sucrose responsiveness and odour discrimination are differentially affected by treatment according to age: whereas insulin increases gustatory responsiveness and diminishes learning abilities of younger workers, it has the opposite effect on older bees. In summary, insulin can improve chemosensory responsiveness in young workers, but also worsens their learning abilities to discriminate odours. The insulin signalling pathway is responsive in young workers, although they are not yet initiating outdoor activities. Our results show strong age-dependent effects of insulin on appetitive behaviour, which uncover differences in insulin signalling regulation throughout the honeybee worker's adulthood. © 2016. Published by The Company of Biologists Ltd.

  18. Do honeybees, Apis mellifera scutellata, regulate humidity in their nest?

    NASA Astrophysics Data System (ADS)

    Human, Hannelie; Nicolson, Sue W.; Dietemann, Vincent

    2006-08-01

    Honeybees are highly efficient at regulating the biophysical parameters of their hive according to colony needs. Thermoregulation has been the most extensively studied aspect of nest homeostasis. In contrast, little is known about how humidity is regulated in beehives, if at all. Although high humidity is necessary for brood development, regulation of this parameter by honeybee workers has not yet been demonstrated. In the past, humidity was measured too crudely for a regulation mechanism to be identified. We reassess this issue, using miniaturised data loggers that allow humidity measurements in natural situations and at several places in the nest. We present evidence that workers influence humidity in the hive. However, there are constraints on potential regulation mechanisms because humidity optima may vary in different locations of the nest. Humidity could also depend on variable external factors, such as water availability, which further impair the regulation. Moreover, there are trade-offs with the regulation of temperature and respiratory gas exchanges that can disrupt the establishment of optimal humidity levels. As a result, we argue that workers can only adjust humidity within sub-optimal limits.

  19. A robotic system for researching social integration in honeybees.

    PubMed

    Griparić, Karlo; Haus, Tomislav; Miklić, Damjan; Polić, Marsela; Bogdan, Stjepan

    2017-01-01

    In this paper, we present a novel robotic system developed for researching collective social mechanisms in a biohybrid society of robots and honeybees. The potential for distributed coordination, as observed in nature in many different animal species, has caused an increased interest in collective behaviour research in recent years because of its applicability to a broad spectrum of technical systems requiring robust multi-agent control. One of the main problems is understanding the mechanisms driving the emergence of collective behaviour of social animals. With the aim of deepening the knowledge in this field, we have designed a multi-robot system capable of interacting with honeybees within an experimental arena. The final product, stationary autonomous robot units, designed by specificaly considering the physical, sensorimotor and behavioral characteristics of the honeybees (lat. Apis mallifera), are equipped with sensing, actuating, computation, and communication capabilities that enable the measurement of relevant environmental states, such as honeybee presence, and adequate response to the measurements by generating heat, vibration and airflow. The coordination among robots in the developed system is established using distributed controllers. The cooperation between the two different types of collective systems is realized by means of a consensus algorithm, enabling the honeybees and the robots to achieve a common objective. Presented results, obtained within ASSISIbf project, show successful cooperation indicating its potential for future applications.

  20. An Investigation of the Migration of Africanized Honey Bees into the Southern United States

    NASA Technical Reports Server (NTRS)

    Navarro, Hector

    1997-01-01

    It is estimated that Apis mellifera scutellata, a honey bee subspecies from Africa, now extends over a 20 million square kilometer range that includes much of South America and practically all of Central America, and recently has been introduced to the southern United States. African honeybees were introduced into Brazil in 1956 by a Brazilian geneticist, Mr. Warwick Kerr. At the insistence of the Brazilian Ministry of Agriculture, in 1957, 26 colonies were accidentally released in a eucalyptus forest outside S5o Paulo. The swelling front of the bees was recorded as traveling between 80 and 500 kilometers a year. David Roubik, one of the original killer bee team members estimated that there were one trillion individual Africanized/African honey bees in Latin America. An estimate that is thought to be conservative.

  1. Visual attention in a complex search task differs between honeybees and bumblebees.

    PubMed

    Morawetz, Linde; Spaethe, Johannes

    2012-07-15

    Mechanisms of spatial attention are used when the amount of gathered information exceeds processing capacity. Such mechanisms have been proposed in bees, but have not yet been experimentally demonstrated. We provide evidence that selective attention influences the foraging performance of two social bee species, the honeybee Apis mellifera and the bumblebee Bombus terrestris. Visual search tasks, originally developed for application in human psychology, were adapted for behavioural experiments on bees. We examined the impact of distracting visual information on search performance, which we measured as error rate and decision time. We found that bumblebees were significantly less affected by distracting objects than honeybees. Based on the results, we conclude that the search mechanism in honeybees is serial like, whereas in bumblebees it shows the characteristics of a restricted parallel-like search. Furthermore, the bees differed in their strategy to solve the speed-accuracy trade-off. Whereas bumblebees displayed slow but correct decision-making, honeybees exhibited fast and inaccurate decision-making. We propose two neuronal mechanisms of visual information processing that account for the different responses between honeybees and bumblebees, and we correlate species-specific features of the search behaviour to differences in habitat and life history.

  2. How to Join a Wave: Decision-Making Processes in Shimmering Behavior of Giant Honeybees (Apis dorsata)

    PubMed Central

    Kastberger, Gerald; Weihmann, Frank; Hoetzl, Thomas; Weiss, Sara E.; Maurer, Michael; Kranner, Ilse

    2012-01-01

    Shimmering is a collective defence behaviour in Giant honeybees (Apis dorsata) whereby individual bees flip their abdomen upwards, producing Mexican wave-like patterns on the nest surface. Bucket bridging has been used to explain the spread of information in a chain of members including three testable concepts: first, linearity assumes that individual “agent bees” that participate in the wave will be affected preferentially from the side of wave origin. The directed-trigger hypothesis addresses the coincidence of the individual property of trigger direction with the collective property of wave direction. Second, continuity describes the transfer of information without being stopped, delayed or re-routed. The active-neighbours hypothesis assumes coincidence between the direction of the majority of shimmering-active neighbours and the trigger direction of the agents. Third, the graduality hypothesis refers to the interaction between an agent and her active neighbours, assuming a proportional relationship in the strength of abdomen flipping of the agent and her previously active neighbours. Shimmering waves provoked by dummy wasps were recorded with high-resolution video cameras. Individual bees were identified by 3D-image analysis, and their strength of abdominal flipping was assessed by pixel-based luminance changes in sequential frames. For each agent, the directedness of wave propagation was based on wave direction, trigger direction, and the direction of the majority of shimmering-active neighbours. The data supported the bucket bridging hypothesis, but only for a small proportion of agents: linearity was confirmed for 2.5%, continuity for 11.3% and graduality for 0.4% of surface bees (but in 2.6% of those agents with high wave-strength levels). The complimentary part of 90% of surface bees did not conform to bucket bridging. This fuzziness is discussed in terms of self-organisation and evolutionary adaptedness in Giant honeybee colonies to respond to rapidly

  3. How to join a wave: decision-making processes in shimmering behavior of Giant honeybees (Apis dorsata).

    PubMed

    Kastberger, Gerald; Weihmann, Frank; Hoetzl, Thomas; Weiss, Sara E; Maurer, Michael; Kranner, Ilse

    2012-01-01

    Shimmering is a collective defence behaviour in Giant honeybees (Apis dorsata) whereby individual bees flip their abdomen upwards, producing Mexican wave-like patterns on the nest surface. Bucket bridging has been used to explain the spread of information in a chain of members including three testable concepts: first, linearity assumes that individual "agent bees" that participate in the wave will be affected preferentially from the side of wave origin. The directed-trigger hypothesis addresses the coincidence of the individual property of trigger direction with the collective property of wave direction. Second, continuity describes the transfer of information without being stopped, delayed or re-routed. The active-neighbours hypothesis assumes coincidence between the direction of the majority of shimmering-active neighbours and the trigger direction of the agents. Third, the graduality hypothesis refers to the interaction between an agent and her active neighbours, assuming a proportional relationship in the strength of abdomen flipping of the agent and her previously active neighbours. Shimmering waves provoked by dummy wasps were recorded with high-resolution video cameras. Individual bees were identified by 3D-image analysis, and their strength of abdominal flipping was assessed by pixel-based luminance changes in sequential frames. For each agent, the directedness of wave propagation was based on wave direction, trigger direction, and the direction of the majority of shimmering-active neighbours. The data supported the bucket bridging hypothesis, but only for a small proportion of agents: linearity was confirmed for 2.5%, continuity for 11.3% and graduality for 0.4% of surface bees (but in 2.6% of those agents with high wave-strength levels). The complimentary part of 90% of surface bees did not conform to bucket bridging. This fuzziness is discussed in terms of self-organisation and evolutionary adaptedness in Giant honeybee colonies to respond to rapidly

  4. Parasite-insecticide interactions: a case study of Nosema ceranae and fipronil synergy on honeybee

    PubMed Central

    Aufauvre, Julie; Biron, David G.; Vidau, Cyril; Fontbonne, Régis; Roudel, Mathieu; Diogon, Marie; Viguès, Bernard; Belzunces, Luc P.; Delbac, Frédéric; Blot, Nicolas

    2012-01-01

    In ecosystems, a variety of biological, chemical and physical stressors may act in combination to induce illness in populations of living organisms. While recent surveys reported that parasite-insecticide interactions can synergistically and negatively affect honeybee survival, the importance of sequence in exposure to stressors has hardly received any attention. In this work, Western honeybees (Apis mellifera) were sequentially or simultaneously infected by the microsporidian parasite Nosema ceranae and chronically exposed to a sublethal dose of the insecticide fipronil, respectively chosen as biological and chemical stressors. Interestingly, every combination tested led to a synergistic effect on honeybee survival, with the most significant impacts when stressors were applied at the emergence of honeybees. Our study presents significant outcomes on beekeeping management but also points out the potential risks incurred by any living organism frequently exposed to both pathogens and insecticides in their habitat. PMID:22442753

  5. Evidence of trapline foraging in honeybees.

    PubMed

    Buatois, Alexis; Lihoreau, Mathieu

    2016-08-15

    Central-place foragers exploiting floral resources often use multi-destination routes (traplines) to maximise their foraging efficiency. Recent studies on bumblebees have showed how solitary foragers can learn traplines, minimising travel costs between multiple replenishing feeding locations. Here we demonstrate a similar routing strategy in the honeybee (Apis mellifera), a major pollinator known to recruit nestmates to discovered food resources. Individual honeybees trained to collect sucrose solution from four artificial flowers arranged within 10 m of the hive location developed repeatable visitation sequences both in the laboratory and in the field. A 10-fold increase of between-flower distances considerably intensified this routing behaviour, with bees establishing more stable and more efficient routes at larger spatial scales. In these advanced social insects, trapline foraging may complement cooperative foraging for exploiting food resources near the hive (where dance recruitment is not used) or when resources are not large enough to sustain multiple foragers at once. © 2016. Published by The Company of Biologists Ltd.

  6. Stable gastric pentadecapeptide BPC 157 in honeybee (Apis mellifera) therapy, to control Nosema ceranae invasions in apiary conditions.

    PubMed

    Tlak Gajger, I; Ribarić, J; Smodiš Škerl, M; Vlainić, J; Sikirić, P

    2018-04-23

    Nosema ceranae can cause major problems, such as immune suppression, gut epithelial cell degeneration, reduced honeybee lifespan, or suddenly colony collapse. As a novel approach in therapy, we hypothesize the stable gastric pentadecapeptide BPC 157 in honeybee therapy, to control N. ceranae invasions in apiary conditions: BPC 157 treated sugar syrup (0.25 L sugar syrup supplemented with 0.1 μg/ml BPC 157), as well as the pure sugar syrup (0.25 L sugar syrup; control), was administered to honeybee colonies in feeders situated under the roof of the hives, during 21 consecutive days, at the end of beekeeping season. The strength of honeybee colonies was increased 20 and 30 days after initial feeding with BPC 157 supplement (Day 1, 36.100 ± 698; Day 20, 64.860 ± 468; Day 30, 53.214 ± 312 estimated number of honeybees), in field conditions. The similar successful outcome occurs with the N. ceranae spore loads counted in the homogenates of sampled adult honeybees (Day 1, 6.286 ± 2.336; Day 20, 3.753 ± 1.835; Day 30, 2.005 ± 1.534 million spores/bee). Accordingly, with the noted increased strength of the colonies fed with sugar syrup supplemented with BPC 157, the number of N. ceranae spores per honeybee gradually decreased as well. Besides, honeybees infected with N. ceranae fed with sugar syrup exhibited severe damage of midgut wall layers and epithelial cells. By contrast, in honeybees infected with N. ceranae fed with sugar syrup supplemented with BPC 157, all damages were markedly attenuated, damages of the outer muscular coat, in particular. In conclusion, the results of the first field trial on diseased honeybee colonies with BPC 157 indicate significant therapeutic effects with the used oral therapy with BPC 157 supplementation. © 2018 John Wiley & Sons Ltd.

  7. Transcriptome Analysis of Honeybee (Apis Mellifera) Haploid and Diploid Embryos Reveals Early Zygotic Transcription during Cleavage

    PubMed Central

    Pires, Camilla Valente; Freitas, Flávia Cristina de Paula; Cristino, Alexandre S.; Dearden, Peter K.; Simões, Zilá Luz Paulino

    2016-01-01

    In honeybees, the haplodiploid sex determination system promotes a unique embryogenesis process wherein females develop from fertilized eggs and males develop from unfertilized eggs. However, the developmental strategies of honeybees during early embryogenesis are virtually unknown. Similar to most animals, the honeybee oocytes are supplied with proteins and regulatory elements that support early embryogenesis. As the embryo develops, the zygotic genome is activated and zygotic products gradually replace the preloaded maternal material. The analysis of small RNA and mRNA libraries of mature oocytes and embryos originated from fertilized and unfertilized eggs has allowed us to explore the gene expression dynamics in the first steps of development and during the maternal-to-zygotic transition (MZT). We localized a short sequence motif identified as TAGteam motif and hypothesized to play a similar role in honeybees as in fruit flies, which includes the timing of early zygotic expression (MZT), a function sustained by the presence of the zelda ortholog, which is the main regulator of genome activation. Predicted microRNA (miRNA)-target interactions indicated that there were specific regulators of haploid and diploid embryonic development and an overlap of maternal and zygotic gene expression during the early steps of embryogenesis. Although a number of functions are highly conserved during the early steps of honeybee embryogenesis, the results showed that zygotic genome activation occurs earlier in honeybees than in Drosophila based on the presence of three primary miRNAs (pri-miRNAs) (ame-mir-375, ame-mir-34 and ame-mir-263b) during the cleavage stage in haploid and diploid embryonic development. PMID:26751956

  8. Comparative psychophysics of bumblebee and honeybee colour discrimination and object detection.

    PubMed

    Dyer, Adrian G; Spaethe, Johannes; Prack, Sabina

    2008-07-01

    Bumblebee (Bombus terrestris) discrimination of targets with broadband reflectance spectra was tested using simultaneous viewing conditions, enabling an accurate determination of the perceptual limit of colour discrimination excluding confounds from memory coding (experiment 1). The level of colour discrimination in bumblebees, and honeybees (Apis mellifera) (based upon previous observations), exceeds predictions of models considering receptor noise in the honeybee. Bumblebee and honeybee photoreceptors are similar in spectral shape and spacing, but bumblebees exhibit significantly poorer colour discrimination in behavioural tests, suggesting possible differences in spatial or temporal signal processing. Detection of stimuli in a Y-maze was evaluated for bumblebees (experiment 2) and honeybees (experiment 3). Honeybees detected stimuli containing both green-receptor-contrast and colour contrast at a visual angle of approximately 5 degrees , whilst stimuli that contained only colour contrast were only detected at a visual angle of 15 degrees . Bumblebees were able to detect these stimuli at a visual angle of 2.3 degrees and 2.7 degrees , respectively. A comparison of the experiments suggests a tradeoff between colour discrimination and colour detection in these two species, limited by the need to pool colour signals to overcome receptor noise. We discuss the colour processing differences and possible adaptations to specific ecological habitats.

  9. Genetic underpinnings of division of labor in the honeybee (Apis mellifera).

    PubMed

    Lattorff, H Michael G; Moritz, Robin F A

    2013-11-01

    Honeybees have been studied for centuries, starting with Aristotle, who wrote the first book about bee breeding. More than 2000 years later, the honeybee entered the genomic era as the first social insect whose genome was sequenced, leading to significant insight into the molecular mechanisms underlying social behavior. In addition, gene expression studies and knockdown using RNAi have extended the understanding of social interactions. Much of the work has focused on caste determination - the mechanism that results in reproductive division of labor, division of labor within the worker caste, and worker reproduction - an essential process underlying eusociality. Here we review the molecular factors involved in caste determination and the differential regulation of caste-specific genes. Recent findings suggest that division of labor is influenced by a small number of loci showing high levels of pleiotropy, suggesting that changes in a small number of genes lead to large changes in the phenotype. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Comparative pollen preferences by africanized honeybees Apis mellifera L. of two colonies in Pará de Minas, Minas Gerais, Brazil.

    PubMed

    da Luz, Cynthia F P; Bacha Junior, Gabriel L; Fonseca, Rafael L S E; Sousa, Priscila R de

    2010-06-01

    The aim of this study was to investigate the polliniferous floral sources used by Apis mellifera (L.) (africanized) in an apiary situated in Pará de Minas, Minas Gerais state, and evaluate the pollen prefences among the beehives. Two beehives of Langstroth type with frontal pollen trap collectors were used. The harvest was made from September 2007 to March 2008, with three samples of pollen pellets colected per month per beehive. The subsamples of 2 grams each were prepared according to the European standard melissopalynological method. A total of 56 pollen types were observed, identifying 43 genus and 32 families. The families that showed the major richness of pollen types were: Mimosaceae (8), Asteraceae (6), Fabaceae (3), Arecaceae (3), Euphorbiaceae (3), Rubiaceae (3), Caesalpiniaceae (2), Moraceae (2) and Myrtaceae (2). The most frequent pollen types (> 45%) were Mimosa scabrella, Myrcia and Sorocea. The results demonstrated a similarity regarding the preferences of floral sources during the major part of the time. There was a distinct utilization of floral sources among the pollen types of minor frequency. In spite of the strong antropic influence, the region showed a great polliniferous variety, which was an indicative of the potential for monofloral as well as heterofloral pollen production.

  11. Developmental regulation of ecdysone receptor (EcR) and EcR-controlled gene expression during pharate-adult development of honeybees (Apis mellifera)

    PubMed Central

    Mello, Tathyana R. P.; Aleixo, Aline C.; Pinheiro, Daniel G.; Nunes, Francis M. F.; Bitondi, Márcia M. G.; Hartfelder, Klaus; Barchuk, Angel R.; Simões, Zilá L. P.

    2014-01-01

    Major developmental transitions in multicellular organisms are driven by steroid hormones. In insects, these, together with juvenile hormone (JH), control development, metamorphosis, reproduction and aging, and are also suggested to play an important role in caste differentiation of social insects. Here, we aimed to determine how EcR transcription and ecdysteroid titers are related during honeybee postembryonic development and what may actually be the role of EcR in caste development of this social insect. In addition, we expected that knocking-down EcR gene expression would give us information on the participation of the respective protein in regulating downstream targets of EcR. We found that in Apis mellifera females, EcR-A is the predominantly expressed variant in postembryonic development, while EcR-B transcript levels are higher in embryos, indicating an early developmental switch in EcR function. During larval and pupal stages, EcR-B expression levels are very low, while EcR-A transcripts are more variable and abundant in workers compared to queens. Strikingly, these transcript levels are opposite to the ecdysteroid titer profile. 20-hydroxyecdysone (20E) application experiments revealed that low 20E levels induce EcR expression during development, whereas high ecdysteroid titers seem to be repressive. By means of RNAi-mediated knockdown (KD) of both EcR transcript variants we detected the differential expression of 234 poly-A+ transcripts encoding genes such as CYPs, MRJPs and certain hormone response genes (Kr-h1 and ftz-f1). EcR-KD also promoted the differential expression of 70 miRNAs, including highly conserved ones (e.g., miR-133 and miR-375), as well honeybee-specific ones (e.g., miR-3745 and miR-3761). Our results put in evidence a broad spectrum of EcR-controlled gene expression during postembryonic development of honeybees, revealing new facets of EcR biology in this social insect. PMID:25566327

  12. Antioxidant activity and irritation property of venoms from Apis species.

    PubMed

    Somwongin, Suvimol; Chantawannakul, Panuwan; Chaiyana, Wantida

    2018-04-01

    Pharmacological effects of bee venom has been reported, however, it has been restricted to the bee venom collected from European honey bee (Apis mellifera). The aim of the present study was to compare the antioxidant activities and irritation properties of venoms collected from four different Apis species in Thailand, which includes Apis cerena (Asian cavity nesting honeybee), Apis florea (dwarf honeybee), Apis dorsata (giant honeybee), and A. mellifera. Melittin content of each bee venom extracts was investigated by using high-performance liquid chromatography. Ferric reducing antioxidant power, 2, 2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid), and 1, 1-diphenyl-2-picrylhydrazyl assay were used to determine the antioxidant activity, whereas, hen's egg test chorioallantoic membrane assay was used to determine the irritation property of each bee venom extracts. Melittin was the major constituent in all bee venom extracts. The melittin content in A. dorsata, A. mellifera, A. florea, and A. cerena were 95.8 ± 3.2%, 76.5 ± 1.9%, 66.3 ± 8.6%, and 56.8 ± 1.8%, respectively. Bee venom extract from A. dorsata possessed the highest antioxidant activity with the inhibition of 41.1 ± 2.2% against DPPH, Trolox equivalent antioxidant capacity of 10.21 ± 0.74 mM Trolox/mg and equivalent concentration (EC 1 ) of 0.35 ± 0.02 mM FeSO 4 /mg. Bee venom extract from A. mellifera exhibited the highest irritation, followed by A. cerena, A. dorsata, and A. florea, respectively. Melittin was the compound responsible for the irritation property of bee venom extracts since it could induce severe irritation (irritation score was 13.7 ± 0.5, at the concentration of 2 mg/ml). The extract from A. dorsata which possessed the highest antioxidant activity showed no irritation up to the concentration of 0.1 mg/ml. Therefore, bee venom extract from A. dorsata at the concentration not more than 0.1 mg/ml would be suggested for using

  13. Comparison of Varroa destructor and Worker Honeybee Microbiota Within Hives Indicates Shared Bacteria.

    PubMed

    Hubert, Jan; Kamler, Martin; Nesvorna, Marta; Ledvinka, Ondrej; Kopecky, Jan; Erban, Tomas

    2016-08-01

    The ectoparasitic mite Varroa destructor is a major pest of the honeybee Apis mellifera. In a previous study, bacteria were found in the guts of mites collected from winter beehive debris and were identified using Sanger sequencing of their 16S rRNA genes. In this study, community comparison and diversity analyses were performed to examine the microbiota of honeybees and mites at the population level. The microbiota of the mites and honeybees in 26 colonies in seven apiaries in Czechia was studied. Between 10 and 50 Varroa females were collected from the bottom board, and 10 worker bees were removed from the peripheral comb of the same beehive. Both bees and mites were surface sterilized. Analysis of the 16S rRNA gene libraries revealed significant differences in the Varroa and honeybee microbiota. The Varroa microbiota was less diverse than was the honeybee microbiota, and the relative abundances of bacterial taxa in the mite and bee microbiota differed. The Varroa mites, but not the honeybees, were found to be inhabited by Diplorickettsia. The relative abundance of Arsenophonus, Morganella, Spiroplasma, Enterococcus, and Pseudomonas was higher in Varroa than in honeybees, and the Diplorickettsia symbiont detected in this study is specific to Varroa mites. The results demonstrated that there are shared bacteria between Varroa and honeybee populations but that these bacteria occur in different relative proportions in the honeybee and mite bacteriomes. These results support the suggestion of bacterial transfer via mites, although only some of the transferred bacteria may be harmful.

  14. Vitellogenins Are New High Molecular Weight Components and Allergens (Api m 12 and Ves v 6) of Apis mellifera and Vespula vulgaris Venom

    PubMed Central

    Blank, Simon; Seismann, Henning; McIntyre, Mareike; Ollert, Markus; Wolf, Sara; Bantleon, Frank I.; Spillner, Edzard

    2013-01-01

    Background/Objectives Anaphylaxis due to hymenoptera stings is one of the most severe clinical outcomes of IgE-mediated hypersensitivity reactions. Although allergic reactions to hymenoptera stings are often considered as a general model for the underlying principles of allergic disease, venom immunotherapy is still hampered by severe systemic side effects and incomplete protection. The identification and detailed characterization of all allergens of hymenoptera venoms might result in an improvement in this field and promote the detailed understanding of the allergological mechanism. Our aim was the identification and detailed immunochemical and allergological characterization of the low abundant IgE-reactive 200 kDa proteins of Apis mellifera and Vespula vulgaris venom. Methods/Principal Findings Tandem mass spectrometry-based sequencing of a 200 kDa venom protein yielded peptides that could be assigned to honeybee vitellogenin. The coding regions of the honeybee protein as well as of the homologue from yellow jacket venom were cloned from venom gland cDNA. The newly identified 200 kDa proteins share a sequence identity on protein level of 40% and belong to the family of vitellogenins, present in all oviparous animals, and are the first vitellogenins identified as components of venom. Both vitellogenins could be recombinantly produced as soluble proteins in insect cells and assessed for their specific IgE reactivity. The particular vitellogenins were recognized by approximately 40% of sera of venom-allergic patients even in the absence of cross-reactive carbohydrate determinants. Conclusion With the vitellogenins of Apis mellifera and Vespula vulgaris venom a new homologous pair of venom allergens was identified and becomes available for future applications. Due to their allergenic properties the honeybee and the yellow jacket venom vitellogenin were designated as allergens Api m 12 and Ves v 6, respectively. PMID:23626765

  15. The transcriptomic changes associated with the development of social parasitism in the honeybee Apis mellifera capensis.

    PubMed

    Aumer, Denise; Mumoki, Fiona N; Pirk, Christian W W; Moritz, Robin F A

    2018-03-20

    Social insects are characterized by the division of labor. Queens usually dominate reproduction, whereas workers fulfill non-reproductive age-dependent tasks to maintain the colony. Although workers are typically sterile, they can activate their ovaries to produce their own offspring. In the extreme, worker reproduction can turn into social parasitism as in Apis mellifera capensis. These intraspecific parasites occupy a host colony, kill the resident queen, and take over the reproductive monopoly. Because they exhibit a queenlike behavior and are also treated like queens by the fellow workers, they are so-called pseudoqueens. Here, we compare the development of parasitic pseudoqueens and social workers at different time points using fat body transcriptome data. Two complementary analysis methods-a principal component analysis and a time course analysis-led to the identification of a core set of genes involved in the transition from a social worker into a highly fecund parasitic pseudoqueen. Comparing our results on pseudoqueens with gene expression data of honeybee queens revealed many similarities. In addition, there was a set of specific transcriptomic changes in the parasitic pseudoqueens that differed from both, queens and social workers, which may be typical for the development of the social parasitism in A. m. capensis.

  16. The transcriptomic changes associated with the development of social parasitism in the honeybee Apis mellifera capensis

    NASA Astrophysics Data System (ADS)

    Aumer, Denise; Mumoki, Fiona N.; Pirk, Christian W. W.; Moritz, Robin F. A.

    2018-04-01

    Social insects are characterized by the division of labor. Queens usually dominate reproduction, whereas workers fulfill non-reproductive age-dependent tasks to maintain the colony. Although workers are typically sterile, they can activate their ovaries to produce their own offspring. In the extreme, worker reproduction can turn into social parasitism as in Apis mellifera capensis. These intraspecific parasites occupy a host colony, kill the resident queen, and take over the reproductive monopoly. Because they exhibit a queenlike behavior and are also treated like queens by the fellow workers, they are so-called pseudoqueens. Here, we compare the development of parasitic pseudoqueens and social workers at different time points using fat body transcriptome data. Two complementary analysis methods—a principal component analysis and a time course analysis—led to the identification of a core set of genes involved in the transition from a social worker into a highly fecund parasitic pseudoqueen. Comparing our results on pseudoqueens with gene expression data of honeybee queens revealed many similarities. In addition, there was a set of specific transcriptomic changes in the parasitic pseudoqueens that differed from both, queens and social workers, which may be typical for the development of the social parasitism in A. m. capensis.

  17. Vitellogenin transcytosis in follicular cells of the honeybee Apis mellifera and the wasp Polistes simillimus.

    PubMed

    Dohanik, Virgínia Teles; Gonçalves, Wagner Gonzaga; Oliveira, Leandro Licursi; Zanuncio, José Cola; Serrão, José Eduardo

    2018-05-13

    Vitellogenin receptor (VgR) is a low-density lipoprotein receptor responsible for the mediated endocytosis of vitellogenin (Vg) during egg formation in insects. The maturing oocyte is enveloped by a follicular epithelium, which has large intercellular spaces during Vg accumulation (patency). However, Vg has been reported in the cytoplasm of follicular cells, indicating that there may be a transcellular route for its transport. This study verified the presence of VgR in the follicular cells of the ovaries of the honeybee Apis mellifera and the wasp Polistes simillimus in order to evaluate if Vg is transported via transcytosis in these insects. Antibodies specific for vitellogenin receptor (anti-VgR), vitellogenin (anti-Vg), and clathrin (anti-Clt) were used for immunolocalization. The results showed the presence of VgR on the apical and basal plasma membranes of follicular cells of the vitellogenic follicles in both species, indicating that VgR may have been transported from the basal to the apical cell domain, followed by its release into the perivitelline space, evidenced by the presence of apical plasma membrane projections containing VgR. Co-localization proved that Vg bind to VgR and that the transport of this protein is mediated by clathrin. These data suggest that, in these social insects, Vg is transported via clathrin-mediated VgR transcytosis in follicular cells.

  18. A fifth major genetic group among honeybees revealed in Syria

    PubMed Central

    2013-01-01

    Background Apiculture has been practiced in North Africa and the Middle-East from antiquity. Several thousand years of selective breeding have left a mosaic of Apis mellifera subspecies in the Middle-East, many uniquely adapted and survived to local environmental conditions. In this study we explore the genetic diversity of A. mellifera from Syria (n = 1258), Lebanon (n = 169) and Iraq (n = 35) based on 14 short tandem repeat (STR) loci in the context of reference populations from throughout the Old World (n = 732). Results Our data suggest that the Syrian honeybee Apis mellifera syriaca occurs in both Syrian and Lebanese territories, with no significant genetic variability between respective populations from Syria and Lebanon. All studied populations clustered within a new fifth independent nuclear cluster, congruent with an mtDNA Z haplotype identified in a previous study. Syrian honeybee populations are not associated with Oriental lineage O, except for sporadic introgression into some populations close to the Turkish and Iraqi borders. Southern Syrian and Lebanese populations demonstrated high levels of genetic diversity compared to the northern populations. Conclusion This study revealed the effects of foreign queen importations on Syrian bee populations, especially for the region of Tartus, where extensive introgression of A. m. anatolica and/or A. m. caucasica alleles were identified. The policy of creating genetic conservation centers for the Syrian subspecies should take into consideration the influence of the oriental lineage O from the northern Syrian border and the large population of genetically divergent indigenous honeybees located in southern Syria. PMID:24314104

  19. A fifth major genetic group among honeybees revealed in Syria.

    PubMed

    Alburaki, Mohamed; Bertrand, Bénédicte; Legout, Hélène; Moulin, Sibyle; Alburaki, Ali; Sheppard, Walter Steven; Garnery, Lionel

    2013-12-06

    Apiculture has been practiced in North Africa and the Middle-East from antiquity. Several thousand years of selective breeding have left a mosaic of Apis mellifera subspecies in the Middle-East, many uniquely adapted and survived to local environmental conditions. In this study we explore the genetic diversity of A. mellifera from Syria (n = 1258), Lebanon (n = 169) and Iraq (n = 35) based on 14 short tandem repeat (STR) loci in the context of reference populations from throughout the Old World (n = 732). Our data suggest that the Syrian honeybee Apis mellifera syriaca occurs in both Syrian and Lebanese territories, with no significant genetic variability between respective populations from Syria and Lebanon. All studied populations clustered within a new fifth independent nuclear cluster, congruent with an mtDNA Z haplotype identified in a previous study. Syrian honeybee populations are not associated with Oriental lineage O, except for sporadic introgression into some populations close to the Turkish and Iraqi borders. Southern Syrian and Lebanese populations demonstrated high levels of genetic diversity compared to the northern populations. This study revealed the effects of foreign queen importations on Syrian bee populations, especially for the region of Tartus, where extensive introgression of A. m. anatolica and/or A. m. caucasica alleles were identified. The policy of creating genetic conservation centers for the Syrian subspecies should take into consideration the influence of the oriental lineage O from the northern Syrian border and the large population of genetically divergent indigenous honeybees located in southern Syria.

  20. Effects of sublethal doses of glyphosate on honeybee navigation.

    PubMed

    Balbuena, María Sol; Tison, Léa; Hahn, Marie-Luise; Greggers, Uwe; Menzel, Randolf; Farina, Walter M

    2015-09-01

    Glyphosate (GLY) is a herbicide that is widely used in agriculture for weed control. Although reports about the impact of GLY in snails, crustaceans and amphibians exist, few studies have investigated its sublethal effects in non-target organisms such as the honeybee Apis mellifera, the main pollen vector in commercial crops. Here, we tested whether exposure to three sublethal concentrations of GLY (2.5, 5 and 10 mg l(-1): corresponding to 0.125, 0.250 and 0.500 μg per animal) affects the homeward flight path of honeybees in an open field. We performed an experiment in which forager honeybees were trained to an artificial feeder, and then captured, fed with sugar solution containing traces of GLY and released from a novel site either once or twice. Their homeward trajectories were tracked using harmonic radar technology. We found that honeybees that had been fed with solution containing 10 mg l(-1) GLY spent more time performing homeward flights than control bees or bees treated with lower concentrations. They also performed more indirect homing flights. Moreover, the proportion of direct homeward flights performed after a second release from the same site increased in control bees but not in treated bees. These results suggest that, in honeybees, exposure to levels of GLY commonly found in agricultural settings impairs the cognitive capacities needed to retrieve and integrate spatial information for a successful return to the hive. Therefore, honeybee navigation is affected by ingesting traces of the most widely used herbicide worldwide, with potential long-term negative consequences for colony foraging success. © 2015. Published by The Company of Biologists Ltd.

  1. Do the honeybee pathogens Nosema ceranae and deformed wing virus act synergistically?

    PubMed Central

    Martin, Stephen J; Hardy, Jennifer; Villalobos, Ethel; Martín-Hernández, Raquel; Nikaido, Scott; Higes, Mariano

    2013-01-01

    The honeybee pathogens Nosema ceranae and deformed wing virus (DWV) cause the collapse of honeybee colonies. Therefore, it is plausible that these two pathogens act synergistically to increase colony losses, since N. ceranae causes damage to the mid-gut epithelial ventricular cells and actively suppresses the honeybees’ immune response, either of which could increase the virulence of viral pathogens within the bee. To test this hypothesis we exploited 322 Hawaiian honeybee colonies for which DWV prevalence and load is known. We determined via PCR that N. ceranae was present in 89–95% of these colonies, with no Nosema apis being detected. We found no significant difference in spore counts in colonies infected with DWV and those in which DWV was not detected, either on any of the four islands or across the entire honeybee population. Furthermore, no significant correlation between DWV loads (ΔCT levels) and N. ceranae spore counts was found, so these two pathogens are not acting synergistically. Although the Hawaiian honeybees have the highest known prevalence of N. ceranae in the world, with average number of spores been 2.7 million per bee, no acute Nosema related problems i.e. large-scale colony deaths, have been reported by Hawaiian beekeepers. PMID:23864563

  2. Queen promiscuity lowers disease within honeybee colonies

    PubMed Central

    Seeley, Thomas D; Tarpy, David R

    2006-01-01

    Most species of social insects have singly mated queens, but in some species each queen mates with numerous males to create a colony with a genetically diverse worker force. The adaptive significance of polyandry by social insect queens remains an evolutionary puzzle. Using the honeybee (Apis mellifera), we tested the hypothesis that polyandry improves a colony's resistance to disease. We established colonies headed by queens that had been artificially inseminated by either one or 10 drones. Later, we inoculated these colonies with spores of Paenibacillus larvae, the bacterium that causes a highly virulent disease of honeybee larvae (American foulbrood). We found that, on average, colonies headed by multiple-drone inseminated queens had markedly lower disease intensity and higher colony strength at the end of the summer relative to colonies headed by single-drone inseminated queens. These findings support the hypothesis that polyandry by social insect queens is an adaptation to counter disease within their colonies. PMID:17015336

  3. Expression of recombinant AccMRJP1 protein from royal jelly of Chinese honeybee in Pichia pastoris and its proliferation activity in an insect cell line

    USDA-ARS?s Scientific Manuscript database

    Main royal jelly protein 1 (MRJP1) is the most abundant member of the main royal jelly protein (MRJP) family among honeybees. Mature MRJP1 cDNA of the Chinese honeybee (Apis cerana cerana MRJP1, or AccMRJP1) was expressed in Pichia pastoris. SDS-PAGE showed that recombinant AccMRJP1 was identical in...

  4. Genetic and biochemical diversity among isolates of Paenibacillus alvei cultured from Australian honeybee (Apis mellifera) colonies.

    PubMed

    Djordjevic, S P; Forbes, W A; Smith, L A; Hornitzky, M A

    2000-03-01

    Twenty-five unique CfoI-generated whole-cell DNA profiles were identified in a study of 30 Paenibacillus alvei isolates cultured from honey and diseased larvae collected from honeybee (Apis mellifera) colonies in geographically diverse areas in Australia. The fingerprint patterns were highly variable and readily discernible from one another, which highlighted the potential of this method for tracing the movement of isolates in epidemiological studies. 16S rRNA gene fragments (length, 1,416 bp) for all 30 isolates were enzymatically amplified by PCR and subjected to restriction analysis with DraI, HinfI, CfoI, AluI, FokI, and RsaI. With each enzyme the restriction profiles of the 16S rRNA genes from all 30 isolates were identical (one restriction fragment length polymorphism [RFLP] was observed in the HinfI profile of the 16S rRNA gene from isolate 17), which confirmed that the isolates belonged to the same species. The restriction profiles generated by using DraI, FokI, and HinfI differentiated P. alvei from the phylogenetically closely related species Paenibacillus macerans and Paenibacillus macquariensis. Alveolysin gene fragments (length, 1, 555 bp) were enzymatically amplified from some of the P. alvei isolates (19 of 30 isolates), and RFLP were detected by using the enzymes CfoI, Sau3AI, and RsaI. Extrachromosomal DNA ranging in size from 1 to 10 kb was detected in 17 of 30 (57%) P. alvei whole-cell DNA profiles. Extensive biochemical heterogeneity was observed among the 28 P. alvei isolates examined with the API 50CHB system. All of these isolates were catalase, oxidase, and Voges-Proskauer positive and nitrate negative, and all produced acid when glycerol, esculin, and maltose were added. The isolates produced variable results for 16 of the 49 biochemical tests; negative reactions were recorded in the remaining 30 assays. The genetic and biochemical heterogeneity in P. alvei isolates may be a reflection of adaptation to the special habitats in which they

  5. Genetic and Biochemical Diversity among Isolates of Paenibacillus alvei Cultured from Australian Honeybee (Apis mellifera) Colonies

    PubMed Central

    Djordjevic, Steven P.; Forbes, Wendy A.; Smith, Lisa A.; Hornitzky, Michael A.

    2000-01-01

    Twenty-five unique CfoI-generated whole-cell DNA profiles were identified in a study of 30 Paenibacillus alvei isolates cultured from honey and diseased larvae collected from honeybee (Apis mellifera) colonies in geographically diverse areas in Australia. The fingerprint patterns were highly variable and readily discernible from one another, which highlighted the potential of this method for tracing the movement of isolates in epidemiological studies. 16S rRNA gene fragments (length, 1,416 bp) for all 30 isolates were enzymatically amplified by PCR and subjected to restriction analysis with DraI, HinfI, CfoI, AluI, FokI, and RsaI. With each enzyme the restriction profiles of the 16S rRNA genes from all 30 isolates were identical (one restriction fragment length polymorphism [RFLP] was observed in the HinfI profile of the 16S rRNA gene from isolate 17), which confirmed that the isolates belonged to the same species. The restriction profiles generated by using DraI, FokI, and HinfI differentiated P. alvei from the phylogenetically closely related species Paenibacillus macerans and Paenibacillus macquariensis. Alveolysin gene fragments (length, 1,555 bp) were enzymatically amplified from some of the P. alvei isolates (19 of 30 isolates), and RFLP were detected by using the enzymes CfoI, Sau3AI, and RsaI. Extrachromosomal DNA ranging in size from 1 to 10 kb was detected in 17 of 30 (57%) P. alvei whole-cell DNA profiles. Extensive biochemical heterogeneity was observed among the 28 P. alvei isolates examined with the API 50CHB system. All of these isolates were catalase, oxidase, and Voges-Proskauer positive and nitrate negative, and all produced acid when glycerol, esculin, and maltose were added. The isolates produced variable results for 16 of the 49 biochemical tests; negative reactions were recorded in the remaining 30 assays. The genetic and biochemical heterogeneity in P. alvei isolates may be a reflection of adaptation to the special habitats in which they

  6. Whole-genome scan in thelytokous-laying workers of the Cape honeybee (Apis mellifera capensis): central fusion, reduced recombination rates and centromere mapping using half-tetrad analysis.

    PubMed Central

    Baudry, Emmanuelle; Kryger, Per; Allsopp, Mike; Koeniger, Nikolaus; Vautrin, Dominique; Mougel, Florence; Cornuet, Jean-Marie; Solignac, Michel

    2004-01-01

    While workers of almost all subspecies of honeybee are able to lay only haploid male eggs, Apis mellifera capensis workers are able to produce diploid female eggs by thelytokous parthenogenesis. Cytological analyses have shown that during parthenogenesis, egg diploidy is restored by fusion of the two central meiotic products. This peculiarity of the Cape bee preserves two products of a single meiosis in the daughters and can be used to map centromere positions using half-tetrad analysis. In this study, we use the thelytokous progenies of A. m. capensis workers and a sample of individuals from a naturally occurring A. m. capensis thelytokous clone to map centromere position for most of the linkage groups of the honeybee. We also show that the recombination rate is reduced by >10-fold during the meiosis of A. m. capensis workers. This reduction is restricted to thelytokous parthenogenesis of capensis workers and is not observed in the meiosis of queen within the same subspecies or in arrhenotokous workers of another subspecies. The reduced rate of recombination seems to be associated with negative crossover interference. These results are discussed in relation to evolution of thelytokous parthenogenesis and maintenance of heterozygosity and female sex after thelytoky. PMID:15166151

  7. Effects of sub-lethal doses of glyphosate on honeybee navigation.

    PubMed

    Sol Balbuena, María; Tison, Léa; Hahn, Marie-Luise; Greggers, Uwe; Menzel, Randolf; Farina, Walter M

    2015-07-10

    Glyphosate (GLY) is a herbicide that is widely used in agriculture for weed control. Although reports about the impact of GLY in snails, crustaceans and amphibians exist, few studies have investigated its sub-lethal effects in non-target organisms such as the honeybee Apis mellifera, the main pollen vector in commercial crops. Here, we tested whether exposure to three sub-lethal concentrations of GLY (2.5, 5 and 10 mg/L corresponding to 0.125, 0.250 and 0.500 µg/animal) affects the homeward flight path of honeybees in an open field. We performed an experiment in which forager honeybees were trained to an artificial feeder, and then captured, fed with sugar solution containing GLY traces and released from a novel site (the release site, RS) either once or twice. Their homeward trajectories were tracked using harmonic radar technology. We found that honeybees that had been fed with solution containing 10 mg/L GLY spent more time performing homeward flights than control bees or bees treated with lower GLY concentrations. They also performed more indirect homing flights. Moreover, the proportion of direct homeward flights performed after a second release at the RS increased in control bees but not in treated bees. These results suggest that, in honeybees, exposure to GLY doses commonly found in agricultural settings impairs the cognitive capacities needed to retrieve and integrate spatial information for a successful return to the hive. Therefore, honeybee navigation is affected by ingesting traces of the most widely used herbicide worldwide, with potential long-term negative consequences for colony foraging success. © 2015. Published by The Company of Biologists Ltd.

  8. Pattern vision of the honeybee (Apis mellifera): blue and green receptors in the discrimination of translocation.

    PubMed

    Horridge, A

    2000-07-01

    The visual discrimination of horizontal gratings by the honeybee (Apis mellifera) was studied in a Y-choice apparatus with fixed patterns presented vertically at a set range. Translocation in this context is the exchange of the positions of two different colored or black areas. This paper investigates what cues the bees have learned in this task. The patterns, made from combinations of calibrated colored papers, are designed to explore the parts played by the blue and green receptors when the boundary between the two colors provides contrast to only one receptor type. Horizontal translocation is not discriminated without contrast to the green receptors, but up/down translocation can be discriminated whatever the contrast at the boundary. The trained bees were tested on the same patterns made with different papers that included extreme changes in contrast. The results show that discrimination of up/down translocation involves green receptors and also blue receptors. When bees discriminate a translocation that shows contrast to only one type of receptor, they do not use the apparent brightness or the direction of the contrast to that receptor type acting alone. Instead, they discriminate the locations of colored areas irrespective of intensity differences or directions of contrasts. They use some measure of the photon flux at both receptor types and remember the difference between the colors and their locations. Copyright 2000 Academic Press.

  9. Steroid Hormone (20-Hydroxyecdysone) Modulates the Acquisition of Aversive Olfactory Memories in Pollen Forager Honeybees

    ERIC Educational Resources Information Center

    Geddes, Lisa H.; McQuillan, H. James; Aiken, Alastair; Vergoz, Vanina; Mercer, Alison R.

    2013-01-01

    Here, we examine effects of the steroid hormone, 20-hydroxyecdysone (20-E), on associative olfactory learning in the honeybee, "Apis mellifera." 20-E impaired the bees' ability to associate odors with punishment during aversive conditioning, but did not interfere with their ability to associate odors with a food reward (appetitive…

  10. 19 CFR 12.32 - Honeybees and honeybee semen.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Honeybees and honeybee semen. 12.32 Section 12.32 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY SPECIAL CLASSES OF MERCHANDISE Wild Animals, Birds, and Insects § 12.32 Honeybees and honeybee...

  11. 19 CFR 12.32 - Honeybees and honeybee semen.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Honeybees and honeybee semen. 12.32 Section 12.32 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY SPECIAL CLASSES OF MERCHANDISE Wild Animals, Birds, and Insects § 12.32 Honeybees and honeybee...

  12. 19 CFR 12.32 - Honeybees and honeybee semen.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Honeybees and honeybee semen. 12.32 Section 12.32 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY SPECIAL CLASSES OF MERCHANDISE Wild Animals, Birds, and Insects § 12.32 Honeybees and honeybee...

  13. 19 CFR 12.32 - Honeybees and honeybee semen.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Honeybees and honeybee semen. 12.32 Section 12.32 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY SPECIAL CLASSES OF MERCHANDISE Wild Animals, Birds, and Insects § 12.32 Honeybees and honeybee...

  14. 19 CFR 12.32 - Honeybees and honeybee semen.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Honeybees and honeybee semen. 12.32 Section 12.32 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY SPECIAL CLASSES OF MERCHANDISE Wild Animals, Birds, and Insects § 12.32 Honeybees and honeybee...

  15. Proteomic Analysis of Apis cerana and Apis mellifera Larvae Fed with Heterospecific Royal Jelly and by CSBV Challenge

    PubMed Central

    Huang, Xiu; Han, Richou

    2014-01-01

    Chinese honeybee Apis cerana (Ac) is one of the major Asian honeybee species for local apiculture. However, Ac is frequently damaged by Chinese sacbrood virus (CSBV), whereas Apis mellifera (Am) is usually resistant to it. Heterospecific royal jelly (RJ) breeding in two honeybee species may result in morphological and genetic modification. Nevertheless, knowledge on the resistant mechanism of Am to this deadly disease is still unknown. In the present study, heterospecific RJ breeding was conducted to determine the effects of food change on the larval mortality after CSBV infection at early larval stage. 2-DE and MALDI-TOF/TOF MS proteomic technology was employed to unravel the molecular event of the bees under heterospecific RJ breeding and CSBV challenge. The change of Ac larval food from RJC to RJM could enhance the bee resistance to CSBV. The mortality rate of Ac larvae after CSBV infection was much higher when the larvae were fed with RJC compared with the larvae fed with RJM. There were 101 proteins with altered expressions after heterospecific RJ breeding and viral infection. In Ac larvae, 6 differential expression proteins were identified from heterospecific RJ breeding only, 21 differential expression proteins from CSBV challenge only and 7 differential expression proteins from heterospecific RJ breeding plus CSBV challenge. In Am larvae, 17 differential expression proteins were identified from heterospecific RJ breeding only, 26 differential expression proteins from CSBV challenge only and 24 differential expression proteins from heterospecific RJ breeding plus CSBV challenge. The RJM may protect Ac larvae from CSBV infection, probably by activating the genes in energy metabolism pathways, antioxidation and ubiquitin-proteasome system. The present results, for the first time, comprehensively descript the molecular events of the viral infection of Ac and Am after heterospecific RJ breeding and are potentially useful for establishing CSBV resistant

  16. Characterization of the honeybee AmNaV1 channel and tools to assess the toxicity of insecticides.

    PubMed

    Gosselin-Badaroudine, Pascal; Moreau, Adrien; Delemotte, Lucie; Cens, Thierry; Collet, Claude; Rousset, Matthieu; Charnet, Pierre; Klein, Michael L; Chahine, Mohamed

    2015-07-23

    Pollination is important for both agriculture and biodiversity. For a significant number of plants, this process is highly, and sometimes exclusively, dependent on the pollination activity of honeybees. The large numbers of honeybee colony losses reported in recent years have been attributed to colony collapse disorder. Various hypotheses, including pesticide overuse, have been suggested to explain the disorder. Using the Xenopus oocytes expression system and two microelectrode voltage-clamp, we report the functional expression and the molecular, biophysical, and pharmacological characterization of the western honeybee's sodium channel (Apis Mellifera NaV1). The NaV1 channel is the primary target for pyrethroid insecticides in insect pests. We further report that the honeybee's channel is also sensitive to permethrin and fenvalerate, respectively type I and type II pyrethroid insecticides. Molecular docking of these insecticides revealed a binding site that is similar to sites previously identified in other insects. We describe in vitro and in silico tools that can be used to test chemical compounds. Our findings could be used to assess the risks that current and next generation pesticides pose to honeybee populations.

  17. Evidence for Ventilation through Collective Respiratory Movements in Giant Honeybee (Apis dorsata) Nests.

    PubMed

    Kastberger, Gerald; Waddoup, Dominique; Weihmann, Frank; Hoetzl, Thomas

    2016-01-01

    The Asian giant honeybees (Apis dorsata) build single-comb nests in the open, which makes this species particularly susceptible to environmental strains. Long-term infrared (IR) records documented cool nest regions (CNR) at the bee curtain (nCNR = 207, nnests > 20) distinguished by marked negative gradients (ΔTCNR/d < -3°C / 5 cm) at their margins. CNRs develop and recede within minutes, predominantly at higher ambient temperatures in the early afternoon. The differential size (ΔACNR) and temperature (ΔTCNR) values per time unit correlated mostly positively (RAT > 0) displaying the Venturi effect, which evidences funnel properties of CNRs. The air flows inwards through CNRs, which is verified by the negative spatial gradient ΔTCNR/d, by the positive grading of TCNR with Tamb and lastly by fanners which have directed their abdomens towards CNRs. Rare cases of RAT < 0 (< 3%) document closing processes (for ΔACNR/Δt < -0.4 cm2/s) but also suggest ventilation of the bee curtain (for ΔACNR/Δt > +0.4 cm2/s) displaying "inhalation" and "exhalation" cycling. "Inhalation" could be boosted by bees at the inner curtain layers, which stretch their extremities against the comb enlarging the inner nest lumen and thus causing a pressure fall which drives ambient air inwards through CNR funnels. The relaxing of the formerly "activated" bees could then trigger the "exhalation" process, which brings the bee curtain, passively by gravity, close to the comb again. That way, warm, CO2-enriched nest-borne air is pressed outwards through the leaking mesh of the bee curtain. This ventilation hypothesis is supported by IR imaging and laser vibrometry depicting CNRs in at least four aspects as low-resistance convection funnels for maintaining thermoregulation and restoring fresh air in the nest.

  18. Evidence for Ventilation through Collective Respiratory Movements in Giant Honeybee (Apis dorsata) Nests

    PubMed Central

    Kastberger, Gerald; Waddoup, Dominique; Weihmann, Frank; Hoetzl, Thomas

    2016-01-01

    The Asian giant honeybees (Apis dorsata) build single-comb nests in the open, which makes this species particularly susceptible to environmental strains. Long-term infrared (IR) records documented cool nest regions (CNR) at the bee curtain (nCNR = 207, nnests > 20) distinguished by marked negative gradients (ΔTCNR/d < -3°C / 5 cm) at their margins. CNRs develop and recede within minutes, predominantly at higher ambient temperatures in the early afternoon. The differential size (ΔACNR) and temperature (ΔTCNR) values per time unit correlated mostly positively (RAT > 0) displaying the Venturi effect, which evidences funnel properties of CNRs. The air flows inwards through CNRs, which is verified by the negative spatial gradient ΔTCNR/d, by the positive grading of TCNR with Tamb and lastly by fanners which have directed their abdomens towards CNRs. Rare cases of RAT < 0 (< 3%) document closing processes (for ΔACNR/Δt < -0.4 cm2/s) but also suggest ventilation of the bee curtain (for ΔACNR/Δt > +0.4 cm2/s) displaying “inhalation” and “exhalation” cycling. “Inhalation” could be boosted by bees at the inner curtain layers, which stretch their extremities against the comb enlarging the inner nest lumen and thus causing a pressure fall which drives ambient air inwards through CNR funnels. The relaxing of the formerly “activated” bees could then trigger the “exhalation” process, which brings the bee curtain, passively by gravity, close to the comb again. That way, warm, CO2-enriched nest-borne air is pressed outwards through the leaking mesh of the bee curtain. This ventilation hypothesis is supported by IR imaging and laser vibrometry depicting CNRs in at least four aspects as low-resistance convection funnels for maintaining thermoregulation and restoring fresh air in the nest. PMID:27487188

  19. Functional characterization of transmembrane adenylyl cyclases from the honeybee brain.

    PubMed

    Balfanz, Sabine; Ehling, Petra; Wachten, Sebastian; Jordan, Nadine; Erber, Joachim; Mujagic, Samir; Baumann, Arnd

    2012-06-01

    The second messenger cAMP has a pivotal role in animals' physiology and behavior. Intracellular concentrations of cAMP are balanced by cAMP-synthesizing adenylyl cyclases (ACs) and cAMP-cleaving phosphodiesterases. Knowledge about ACs in the honeybee (Apis mellifera) is rather limited and only an ortholog of the vertebrate AC3 isoform has been functionally characterized, so far. Employing bioinformatics and functional expression we characterized two additional honeybee genes encoding membrane-bound (tm)ACs. The proteins were designated AmAC2t and AmAC8. Unlike the common structure of tmACs, AmAC2t lacks the first transmembrane domain. Despite this unusual topography, AmAC2t-activity could be stimulated by norepinephrine and NKH477 with EC(50s) of 0.07 μM and 3 μM. Both ligands stimulated AmAC8 with EC(50s) of 0.24 μM and 3.1 μM. In brain cryosections, intensive staining of mushroom bodies was observed with specific antibodies against AmAC8, an expression pattern highly reminiscent of the Drosophila rutabaga AC. In a current release of the honeybee genome database we identified three additional tmAC- and one soluble AC-encoding gene. These results suggest that (1) the AC-gene family in honeybees is comparably large as in other species, and (2) based on the restricted expression of AmAC8 in mushroom bodies, this enzyme might serve important functions in honeybee behavior. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Sensing the intruder: a quantitative threshold for recognition cues perception in honeybees

    NASA Astrophysics Data System (ADS)

    Cappa, Federico; Bruschini, Claudia; Cipollini, Maria; Pieraccini, Giuseppe; Cervo, Rita

    2014-02-01

    The ability to discriminate among nestmates and non-nestmate is essential to defend social insect colonies from intruders. Over the years, nestmate recognition has been extensively studied in the honeybee Apis mellifera; nevertheless, the quantitative perceptual aspects at the basis of the recognition system represent an unexplored subject in this species. To test the existence of a cuticular hydrocarbons' quantitative perception threshold for nestmate recognition cues, we conducted behavioural assays by presenting different amounts of a foreign forager's chemical profile to honeybees at the entrance of their colonies. We found an increase in the explorative and aggressive responses as the amount of cues increased based on a threshold mechanism, highlighting the importance of the quantitative perceptual features for the recognition processes in A. mellifera.

  1. Proboscis conditioning experiments with honeybees, Apis mellifera caucasica, with butyric acid and DEET mixture as conditioned and unconditioned stimuli.

    PubMed

    Abramson, Charles I; Giray, Tugrul; Mixson, T Andrew; Nolf, Sondra L; Wells, Harrington; Kence, Aykut; Kence, Meral

    2010-01-01

    Three experiments are described investigating whether olfactory repellents DEET and butyric acid can support the classical conditioning of proboscis extension in the honeybee, Apis mellifera caucasica (Hymenoptera: Apidae). In the first experiment DEET and butyric acid readily led to standard acquisition and extinction effects, which are comparable to the use of cinnamon as a conditioned stimulus. These results demonstrate that the odor of DEET or butyric acid is not intrinsically repellent to honey bees. In a second experiment, with DEET and butyric acid mixed with sucrose as an unconditioned stimulus, proboscis conditioning was not established. After several trials, few animals responded to the unconditioned stimulus. These results demonstrate that these chemicals are gustatory repellents when in direct contact. In the last experiment a conditioned suppression paradigm was used. Exposing animals to butyric acid or DEET when the proboscis was extended by direct sucrose stimulation or by learning revealed that retraction of the proboscis was similar to another novel odor, lavender, and in all cases greatest when the animal was not permitted to feed. These results again demonstrate that DEET or butyric acid are not olfactory repellents, and in addition, conditioned suppression is influenced by feeding state of the bee.

  2. Pharmacologic inhibition of phospholipase C in the brain attenuates early memory formation in the honeybee (Apis mellifera L.)

    PubMed Central

    Iino, Shiori; Kubo, Takeo

    2018-01-01

    ABSTRACT Although the molecular mechanisms involved in learning and memory in insects have been studied intensively, the intracellular signaling mechanisms involved in early memory formation are not fully understood. We previously demonstrated that phospholipase C epsilon (PLCe), whose product is involved in calcium signaling, is almost selectively expressed in the mushroom bodies, a brain structure important for learning and memory in the honeybee. Here, we pharmacologically examined the role of phospholipase C (PLC) in learning and memory in the honeybee. First, we identified four genes for PLC subtypes in the honeybee genome database. Quantitative reverse transcription-polymerase chain reaction revealed that, among these four genes, three, including PLCe, were expressed higher in the brain than in sensory organs in worker honeybees, suggesting their main roles in the brain. Edelfosine and neomycin, pan-PLC inhibitors, significantly decreased PLC activities in homogenates of the brain tissues. These drugs injected into the head of foragers significantly attenuated memory acquisition in comparison with the control groups, whereas memory retention was not affected. These findings suggest that PLC in the brain is involved in early memory formation in the honeybee. To our knowledge, this is the first report of a role for PLC in learning and memory in an insect. PMID:29330349

  3. A Test of Transitive Inferences in Free-Flying Honeybees: Unsuccessful Performance Due to Memory Constraints

    ERIC Educational Resources Information Center

    Benard, Julie; Giurfa, Martin

    2004-01-01

    We asked whether honeybees, "Apis mellifera," could solve a transitive inference problem. Individual free-flying bees were conditioned with four overlapping premise pairs of five visual patterns in a multiple discrimination task (A+ vs. B-, B+ vs. C-, C+ vs. D-, D+ vs. E-, where + and - indicate sucrose reward or absence of it,…

  4. Worker honeybee sterility: a proteomic analysis of suppressed ovary activation.

    PubMed

    Cardoen, Dries; Ernst, Ulrich R; Boerjan, Bart; Bogaerts, Annelies; Formesyn, Ellen; de Graaf, Dirk C; Wenseleers, Tom; Schoofs, Liliane; Verleyen, Peter

    2012-05-04

    Eusocial behavior is extensively studied in the honeybee, Apis mellifera, as it displays an extreme form of altruism. Honeybee workers are generally obligatory sterile in a bee colony headed by a queen, but the inhibition of ovary activation is lifted upon the absence of queen and larvae. Worker bees are then able to develop mature, viable eggs. The detailed repressive physiological mechanisms that are responsible for this remarkable phenomenon are as of yet largely unknown. Physiological studies today mainly focus on the transcriptome, while the proteome stays rather unexplored. Here, we present a quantitative 2-dimensional differential gel electrophoresis comparison between activated and inactivated worker ovaries and brains of reproductive and sterile worker bees, including a spot map of ovaries, containing 197 identified spots. Our findings suggest that suppression of ovary activation might involve a constant interplay between primordial oogenesis and subsequent degradation, which is probably mediated through steroid and neuropeptide hormone signaling. Additionally, the observation of higher viral protein loads in both the brains and ovaries of sterile workers is particularly noteworthy. This data set will be of great value for future research unraveling the physiological mechanisms underlying the altruistic sterility in honeybee workers.

  5. Identification and expression analysis of a putative fatty acidbinding protein gene in the Asian honeybee, Apis cerana cerana.

    PubMed

    Yu, Xiaoli; Kang, Mingjiang; Liu, Li; Guo, Xingqi; Xu, Baohua

    2013-01-01

    Fatty acid-binding proteins (FABPs) play pivotal roles in cellular signaling, gene transcription, and lipid metabolism in vertebrates and invertebrates. In this study, a putative FABP gene, referred to as AccFABP, was isolated from the Asian honeybee, Apis cerana cerana Fabricius (Hymenoptera: Apidae). The full-length cDNA consisted of 725 bp, and encoded a protein of 204 amino acids. Homology and phylogenetic analysis indicated that AccFABP was a member of the FABP multifamily. The genomic structure of this gene, which was common among FABP multifamily members, spanned 1,900 bp, and included four exons and three introns. Gene expression analysis revealed that AccFABP was highly expressed in the dark-pigmented phase of pupal development, with peak expression observed in the fat bodies of the dark-pigmented phase pupae. The AccFABP transcripts in the fat body were upregulated by exposure to dietary fatty acids such as conjugated linoleic acid, docosahexaenoic acid, and arachidonic acid. Transcription factor binding sites for Caudal-Related Homeobox and functional CCAAT/enhancer binding site, which were respectively associated with tissue expression and lipid metabolism, were detected in the 5' promoter sequence. The evidence provided in the present study suggests that AccFABP may regulate insect growth and development, and lipid metabolism.

  6. Why acquiesce? Worker reproductive parasitism in the Eastern honeybee (Apis cerana).

    PubMed

    Holmes, M J; Tan, K; Wang, Z; Oldroyd, B P; Beekman, M

    2014-05-01

    Most societies are vulnerable to rogue individuals that pursue their own interests at the expense of the collective entity. Societies often protect themselves from selfish behaviour by 'policing', thereby enforcing the interests of the collective over those of individuals. In insect societies, for example, selfish workers can activate their ovaries and lay eggs, exploiting the collective brood rearing system for individual benefit. Policing, usually in the form of oophagy of worker-laid eggs, controls selfish behaviour. Importantly, once an effective system of policing has evolved, the incentive for personal reproduction is lost, and 'reproductive acquiescence' in which ovary activation is rare or absent is predicted to evolve. Studies of social Hymenoptera have largely supported the prediction of worker 'acquiescence'; workers of most species where policing is well developed have inactive ovaries. However, the eastern honeybee Apis cerana appears to be an exception. A. cerana colonies are characterized by highly efficient policing, yet about 5% of workers have active ovaries, even when a queen is present. This suggests that the evolution of acquiescence is incomplete in A. cerana. We regularly sampled male eggs and pupae from four A. cerana colonies. Workers had high levels of ovary activation overall (11.7%), and 3.8% of assignable male eggs and 1.1% of assignable male pupae were worker-laid. We conclude that workers with active ovaries lay their eggs, but these rarely survive to pupation because of intense policing. We then used our findings as well as previously published data on A. cerana and A. mellifera to redo the meta-analysis on which reproductive acquiescence theory is based. Including data on both species did not affect the relationship between effectiveness of policing and levels of worker reproduction. Their inclusion did, however, seriously weaken the relationship between relatedness among workers and levels of worker reproduction. Our work thus

  7. Lower disease infections in honeybee (Apis mellifera) colonies headed by polyandrous vs monandrous queens

    NASA Astrophysics Data System (ADS)

    Tarpy, David R.; Seeley, Thomas D.

    2006-04-01

    We studied the relationship between genetic diversity and disease susceptibility in honeybee colonies living under natural conditions. To do so, we created colonies in which each queen was artificially inseminated with sperm from either one or ten drones. Of the 20 colonies studied, 80% showed at least one brood disease. We found strong differences between the two types of colonies in the infection intensity of chalkbrood and in the total intensity of all brood diseases (chalkbrood, sacbrood, American foulbrood, and European foulbrood) with both variables lower for the colonies with higher genetic diversity. Our findings demonstrate that disease can be an important factor in the ecology of honeybee colonies and they provide strong support for the disease hypothesis for the evolution of polyandry by social insect queens.

  8. Evaluating exposure and potential effects on honeybee brood (Apis mellifera) development using glyphosate as an example

    PubMed Central

    Thompson, Helen M; Levine, Steven L; Doering, Janine; Norman, Steve; Manson, Philip; Sutton, Peter; von Mérey, Georg

    2014-01-01

    This study aimed to develop an approach to evaluate potential effects of plant protection products on honeybee brood with colonies at realistic worst-case exposure rates. The approach comprised 2 stages. In the first stage, honeybee colonies were exposed to a commercial formulation of glyphosate applied to flowering Phacelia tanacetifolia with glyphosate residues quantified in relevant matrices (pollen and nectar) collected by foraging bees on days 1, 2, 3, 4, and 7 postapplication and glyphosate levels in larvae were measured on days 4 and 7. Glyphosate levels in pollen were approximately 10 times higher than in nectar and glyphosate demonstrated rapid decline in both matrices. Residue data along with foraging rates and food requirements of the colony were then used to set dose rates in the effects study. In the second stage, the toxicity of technical glyphosate to developing honeybee larvae and pupae, and residues in larvae, were then determined by feeding treated sucrose directly to honeybee colonies at dose rates that reflect worst-case exposure scenarios. There were no significant effects from glyphosate observed in brood survival, development, and mean pupal weight. Additionally, there were no biologically significant levels of adult mortality observed in any glyphosate treatment group. Significant effects were observed only in the fenoxycarb toxic reference group and included increased brood mortality and a decline in the numbers of bees and brood. Mean glyphosate residues in larvae were comparable at 4 days after spray application in the exposure study and also following dosing at a level calculated from the mean measured levels in pollen and nectar, showing the applicability and robustness of the approach for dose setting with honeybee brood studies. This study has developed a versatile and predictive approach for use in higher tier honeybee toxicity studies. It can be used to realistically quantify exposure of colonies to pesticides to allow the

  9. Evaluating exposure and potential effects on honeybee brood (Apis mellifera) development using glyphosate as an example.

    PubMed

    Thompson, Helen M; Levine, Steven L; Doering, Janine; Norman, Steve; Manson, Philip; Sutton, Peter; von Mérey, Georg

    2014-07-01

    This study aimed to develop an approach to evaluate potential effects of plant protection products on honeybee brood with colonies at realistic worst-case exposure rates. The approach comprised 2 stages. In the first stage, honeybee colonies were exposed to a commercial formulation of glyphosate applied to flowering Phacelia tanacetifolia with glyphosate residues quantified in relevant matrices (pollen and nectar) collected by foraging bees on days 1, 2, 3, 4, and 7 postapplication and glyphosate levels in larvae were measured on days 4 and 7. Glyphosate levels in pollen were approximately 10 times higher than in nectar and glyphosate demonstrated rapid decline in both matrices. Residue data along with foraging rates and food requirements of the colony were then used to set dose rates in the effects study. In the second stage, the toxicity of technical glyphosate to developing honeybee larvae and pupae, and residues in larvae, were then determined by feeding treated sucrose directly to honeybee colonies at dose rates that reflect worst-case exposure scenarios. There were no significant effects from glyphosate observed in brood survival, development, and mean pupal weight. Additionally, there were no biologically significant levels of adult mortality observed in any glyphosate treatment group. Significant effects were observed only in the fenoxycarb toxic reference group and included increased brood mortality and a decline in the numbers of bees and brood. Mean glyphosate residues in larvae were comparable at 4 days after spray application in the exposure study and also following dosing at a level calculated from the mean measured levels in pollen and nectar, showing the applicability and robustness of the approach for dose setting with honeybee brood studies. This study has developed a versatile and predictive approach for use in higher tier honeybee toxicity studies. It can be used to realistically quantify exposure of colonies to pesticides to allow the

  10. The dynamic association between ovariole loss and sterility in adult honeybee workers

    PubMed Central

    Allsopp, Michael H.; Tan, Ken; Dong, Shihao; Liu, Xiwen; Vergoz, Vanina

    2017-01-01

    In the social insects, ovary state (the presence or absence of mature oocytes) and ovary size (the number of ovarioles) are often used as proxies for the reproductive capacity of an individual worker. Ovary size is assumed to be fixed post-eclosion whereas ovary state is demonstrably plastic post-eclosion. Here, we show that in fact ovary size declines as honeybee workers age. This finding is robust across two honeybee species: Apis mellifera and A. cerana. The ovariole loss is likely to be due to the regression of particular ovarioles via programmed cell death. We also provide further support for the observation that honeybee workers with activated ovaries (mature oocytes present) most commonly have five ovarioles rather than a greater or smaller number. This result suggests that workers with more than five ovarioles are unable to physiologically support more than five activated ovarioles and that workers with fewer than five ovarioles are below a threshold necessary for ovary activation. As a worker's ovariole number declines with age, studies on worker ovariole number need to take this plasticity into account. PMID:28356452

  11. Optic flow informs distance but not profitability for honeybees.

    PubMed

    Shafir, Sharoni; Barron, Andrew B

    2010-04-22

    How do flying insects monitor foraging efficiency? Honeybees (Apis mellifera) use optic flow information as an odometer to estimate distance travelled, but here we tested whether optic flow informs estimation of foraging costs also. Bees were trained to feeders in flight tunnels such that bees experienced the greatest optic flow en route to the feeder closest to the hive. Analyses of dance communication showed that, as expected, bees indicated the close feeder as being further, but they also indicated this feeder as the more profitable, and preferentially visited this feeder when given a choice. We show that honeybee estimates of foraging cost are not reliant on optic flow information. Rather, bees can assess distance and profitability independently and signal these aspects as separate elements of their dances. The optic flow signal is sensitive to the nature of the environment travelled by the bee, and is therefore not a good index of flight energetic costs, but it provides a good indication of distance travelled for purpose of navigation and communication, as long as the dancer and recruit travel similar routes. This study suggests an adaptive dual processing system in honeybees for communicating and navigating distance flown and for evaluating its energetic costs.

  12. Optic flow informs distance but not profitability for honeybees

    PubMed Central

    Shafir, Sharoni; Barron, Andrew B.

    2010-01-01

    How do flying insects monitor foraging efficiency? Honeybees (Apis mellifera) use optic flow information as an odometer to estimate distance travelled, but here we tested whether optic flow informs estimation of foraging costs also. Bees were trained to feeders in flight tunnels such that bees experienced the greatest optic flow en route to the feeder closest to the hive. Analyses of dance communication showed that, as expected, bees indicated the close feeder as being further, but they also indicated this feeder as the more profitable, and preferentially visited this feeder when given a choice. We show that honeybee estimates of foraging cost are not reliant on optic flow information. Rather, bees can assess distance and profitability independently and signal these aspects as separate elements of their dances. The optic flow signal is sensitive to the nature of the environment travelled by the bee, and is therefore not a good index of flight energetic costs, but it provides a good indication of distance travelled for purpose of navigation and communication, as long as the dancer and recruit travel similar routes. This study suggests an adaptive dual processing system in honeybees for communicating and navigating distance flown and for evaluating its energetic costs. PMID:20018787

  13. Honeybee Venom Proteome Profile of Queens and Winter Bees as Determined by a Mass Spectrometric Approach

    PubMed Central

    Danneels, Ellen L.; Van Vaerenbergh, Matthias; Debyser, Griet; Devreese, Bart; de Graaf, Dirk C.

    2015-01-01

    Venoms of invertebrates contain an enormous diversity of proteins, peptides, and other classes of substances. Insect venoms are characterized by a large interspecific variation resulting in extended lists of venom compounds. The venom composition of several hymenopterans also shows different intraspecific variation. For instance, venom from different honeybee castes, more specifically queens and workers, shows quantitative and qualitative variation, while the environment, like seasonal changes, also proves to be an important factor. The present study aimed at an in-depth analysis of the intraspecific variation in the honeybee venom proteome. In summer workers, the recent list of venom proteins resulted from merging combinatorial peptide ligand library sample pretreatment and targeted tandem mass spectrometry realized with a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS/MS). Now, the same technique was used to determine the venom proteome of queens and winter bees, enabling us to compare it with that of summer bees. In total, 34 putative venom toxins were found, of which two were never described in honeybee venoms before. Venom from winter workers did not contain toxins that were not present in queens or summer workers, while winter worker venom lacked the allergen Api m 12, also known as vitellogenin. Venom from queen bees, on the other hand, was lacking six of the 34 venom toxins compared to worker bees, while it contained two new venom toxins, in particularly serine proteinase stubble and antithrombin-III. Although people are hardly stung by honeybees during winter or by queen bees, these newly identified toxins should be taken into account in the characterization of a putative allergic response against Apis mellifera stings. PMID:26529016

  14. A Virulent Strain of Deformed Wing Virus (DWV) of Honeybees (Apis mellifera) Prevails after Varroa destructor-Mediated, or In Vitro, Transmission

    PubMed Central

    Ryabov, Eugene V.; Wood, Graham R.; Fannon, Jessica M.; Moore, Jonathan D.; Bull, James C.; Chandler, Dave; Mead, Andrew; Burroughs, Nigel; Evans, David J.

    2014-01-01

    The globally distributed ectoparasite Varroa destructor is a vector for viral pathogens of the Western honeybee (Apis mellifera), in particular the Iflavirus Deformed Wing Virus (DWV). In the absence of Varroa low levels DWV occur, generally causing asymptomatic infections. Conversely, Varroa-infested colonies show markedly elevated virus levels, increased overwintering colony losses, with impairment of pupal development and symptomatic workers. To determine whether changes in the virus population were due Varroa amplifying and introducing virulent virus strains and/or suppressing the host immune responses, we exposed Varroa-naïve larvae to oral and Varroa-transmitted DWV. We monitored virus levels and diversity in developing pupae and associated Varroa, the resulting RNAi response and transcriptome changes in the host. Exposed pupae were stratified by Varroa association (presence/absence) and virus levels (low/high) into three groups. Varroa-free pupae all exhibited low levels of a highly diverse DWV population, with those exposed per os (group NV) exhibiting changes in the population composition. Varroa-associated pupae exhibited either low levels of a diverse DWV population (group VL) or high levels of a near-clonal virulent variant of DWV (group VH). These groups and unexposed controls (C) could be also discriminated by principal component analysis of the transcriptome changes observed, which included several genes involved in development and the immune response. All Varroa tested contained a diverse replicating DWV population implying the virulent variant present in group VH, and predominating in RNA-seq analysis of temporally and geographically separate Varroa-infested colonies, was selected upon transmission from Varroa, a conclusion supported by direct injection of pupae in vitro with mixed virus populations. Identification of a virulent variant of DWV, the role of Varroa in its transmission and the resulting host transcriptome changes furthers our

  15. Conditional withholding of proboscis extension in honeybees (Apis mellifera) during discriminative punishment.

    PubMed

    Smith, B H; Abramson, C I; Tobin, T R

    1991-12-01

    Proboscis extension conditioning of honeybee workers was used to test the ability of bees to respond to appetitive and aversive stimuli while restrained in a harness that allows subjects to move their antennae and mouthparts (Kuwabara, 1957; Menzel, Erber, & Masuhr, 1974). Subjects were conditioned to discriminate between two odors, one associated with sucrose feeding and the other associated with a 10 V AC shock if they responded to the sucrose unconditioned stimulus (US) in the context of that odor. Most Ss readily learned to respond to the odor followed by sucrose feeding and not to the odor associated with sucrose stimulation plus shock. Furthermore, in the context of the odor associated with shock, significantly more subjects withheld or delayed proboscis extension on stimulation with the sucrose US than they did in the context of the odor associated with feeding. Thus, restrained honeybees can readily learn to avoid shock according to an odor context by withholding proboscis extension to a normally powerful releaser. Analysis of individual learning curves revealed that subjects differed markedly in performance on this task. Some learn the discrimination quickly, whereas others show different kinds of response patterns.

  16. Perceptual and Neural Olfactory Similarity in Honeybees

    PubMed Central

    Sandoz, Jean-Christophe

    2005-01-01

    The question of whether or not neural activity patterns recorded in the olfactory centres of the brain correspond to olfactory perceptual measures remains unanswered. To address this question, we studied olfaction in honeybees Apis mellifera using the olfactory conditioning of the proboscis extension response. We conditioned bees to odours and tested generalisation responses to different odours. Sixteen odours were used, which varied both in their functional group (primary and secondary alcohols, aldehydes and ketones) and in their carbon-chain length (from six to nine carbons).The results obtained by presentation of a total of 16 × 16 odour pairs show that (i) all odorants presented could be learned, although acquisition was lower for short-chain ketones; (ii) generalisation varied depending both on the functional group and the carbon-chain length of odours trained; higher generalisation was found between long-chain than between short-chain molecules and between groups such as primary and secondary alcohols; (iii) for some odour pairs, cross-generalisation between odorants was asymmetric; (iv) a putative olfactory space could be defined for the honeybee with functional group and carbon-chain length as inner dimensions; (v) perceptual distances in such a space correlate well with physiological distances determined from optophysiological recordings of antennal lobe activity. We conclude that functional group and carbon-chain length are inner dimensions of the honeybee olfactory space and that neural activity in the antennal lobe reflects the perceptual quality of odours. PMID:15736975

  17. Drag reduction effects facilitated by microridges inside the mouthparts of honeybee workers and drones.

    PubMed

    Li, Chu-Chu; Wu, Jia-Ning; Yang, Yun-Qiang; Zhu, Ren-Gao; Yan, Shao-Ze

    2016-01-21

    The mouthpart of a honeybee is a natural well-designed micropump that uses a reciprocating glossa through a temporary tube comprising a pair of galeae and labial palpi for loading nectar. The shapes and sizes of mouthparts differ among castes of honeybees, but the diversities of the functional microstructures inside the mouthparts of honeybee workers and drones remain poorly understood. Through scanning electron microscopy, we found the dimensional difference of uniformly distributed microridges on the inner galeae walls of Apis mellifera ligustica workers and drones. Subsequently, we recorded the feeding process of live honeybees by using a specially designed high-speed camera system. Considering the microridges and kinematics of the glossa, we constructed a hydrodynamic model to calculate the friction coefficient of the mouthpart. In addition, we test the drag reduction through the dimensional variations of the microridges on the inner walls of mouthparts. Theoretical estimations of the friction coefficient with respect to dipping frequency show that inner microridges can reduce friction during the feeding process of honeybees. The effects of drag reduction regulated by specific microridges were then compared. The friction coefficients of the workers and drones were found to be 0.011±0.007 (mean±s.d.) and 0.045±0.010, respectively. These results indicate that the mouthparts of workers are more capable of drag reduction compared with those of drones. The difference was analyzed by comparing the foraging behavior of the workers and drones. Workers are equipped with well-developed hypopharyngeal, and their dipping frequency is higher than that of drones. Our research establishes a critical link between microridge dimensions and drag reduction capability during the nectar feeding of honeybees. Our results reveal that microridges inside the mouthparts of honeybee workers and drones reflect the caste-related life cycles of honeybees. Copyright © 2015 Elsevier Ltd

  18. Recent worldwide expansion of Nosema ceranae (Microsporidia) in Apis mellifera populations inferred from multilocus patterns of genetic variation.

    PubMed

    Gómez-Moracho, T; Bartolomé, C; Bello, X; Martín-Hernández, R; Higes, M; Maside, X

    2015-04-01

    Nosema ceranae has been found infecting Apismellifera colonies with increasing frequency and it now represents a major threat to the health and long-term survival of these honeybees worldwide. However, so far little is known about the population genetics of this parasite. Here, we describe the patterns of genetic variation at three genomic loci in a collection of isolates from all over the world. Our main findings are: (i) the levels of genetic polymorphism (πS≈1%) do not vary significantly across its distribution range, (ii) there is substantial evidence for recombination among haplotypes, (iii) the best part of the observed genetic variance corresponds to differences within bee colonies (up to 88% of the total variance), (iv) parasites collected from Asian honeybees (Apis cerana and Apis florea) display significant differentiation from those obtained from Apismellifera (8-16% of the total variance, p<0.01) and (v) there is a significant excess of low frequency variants over neutral expectations among samples obtained from A. mellifera, but not from Asian honeybees. Overall these results are consistent with a recent colonization and rapid expansion of N. ceranae throughout A. mellifera colonies. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Effects of erectable glossal hairs on a honeybee's nectar-drinking strategy

    NASA Astrophysics Data System (ADS)

    Yang, Heng; Wu, Jianing; Yan, Shaoze

    2014-06-01

    With the use of a scanning electron microscope, we observe specific microstructures of the mouthpart of the Italian bee (Apis mellifera ligustica), especially the distribution and dimensions of hairs on its glossa. Considering the erection of glossal hairs for trapping nectar modifies the viscous dipping model in analyzing the drinking strategy of a honeybee. Theoretical estimations of volume intake rates with respect to sucrose solutions of different concentrations agree with experimental data, which indicates that erectable hairs can significantly increase the ability of a bee to acquire nectar efficiently. The comparison with experimental results also indicates that a honeybee may continuously augment its pumping power, rather than keep it constant, to drink nectar with sharply increasing viscosity. Under the modified assumption of increasing working power, we introduce the rate at which working power increases with viscosity and discuss the nature-preferred nectar concentration of 35% by theoretically calculating optimal concentration maximizing energetic intake rates under varying increasing rates. Finally, the ability of the mouthparts of the honeybee to transfer viscous nectar may inspire a concept for transporting microfluidics with a wide range of viscosities.

  20. In-depth phosphoproteomic analysis of royal jelly derived from western and eastern honeybee species.

    PubMed

    Han, Bin; Fang, Yu; Feng, Mao; Lu, Xiaoshan; Huo, Xinmei; Meng, Lifeng; Wu, Bin; Li, Jianke

    2014-12-05

    The proteins in royal jelly (RJ) play a pivotal role in the nutrition, immune defense, and cast determination of honeybee larvae and have a wide range of pharmacological and health-promoting functions for humans as well. Although the importance of post-translational modifications (PTMs) in protein function is known, investigation of protein phosphorylation of RJ proteins is still very limited. To this end, two complementary phosphopeptide enrichment materials (Ti(4+)-IMAC and TiO2) and high-sensitivity mass spectrometry were applied to establish a detailed phosphoproteome map and to qualitatively and quantitatively compare the phosphoproteomes of RJ produced by Apis mellifera ligustica (Aml) and Apis cerana cerana (Acc). In total, 16 phosphoproteins carrying 67 phosphorylation sites were identified in RJ derived from western bees, and nine proteins phosphorylated on 71 sites were found in RJ produced by eastern honeybees. Of which, eight phosphorylated proteins were common to both RJ samples, and the same motif ([S-x-E]) was extracted, suggesting that the function of major RJ proteins as nutrients and immune agents is evolutionary preserved in both of these honeybee species. All eight overlapping phosphoproteins showed significantly higher abundance in Acc-RJ than in Aml-RJ, and the phosphorylation of Jelleine-II (an antimicrobial peptide, TPFKLSLHL) at S(6) in Acc-RJ had stronger antimicrobial properties than that at T(1) in Aml-RJ even though the overall antimicrobial activity of Jelleine-II was found to decrease after phosphorylation. The differences in phosphosites, peptide abundance, and antimicrobial activity of the phosphorylated RJ proteins indicate that the two major honeybee species employ distinct phosphorylation strategies that align with their different biological characteristics shaped by evolution. The phosphorylation of RJ proteins are potentially driven by the activity of extracellular serine/threonine protein kinase FAM20C-like protein (FAM20C

  1. Detection of Methyl Salicylate Transforted by Honeybees (Apis mellifera) Using Solid Phase Microextration (SPME) Fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BENDER, SUSAN FAE ANN; RODACY, PHILIP J.; BARNETT, JAMES L.

    The ultimate goal of many environmental measurements is to determine the risk posed to humans or ecosystems by various contaminants. Conventional environmental monitoring typically requires extensive sampling grids covering several media including air, water, soil and vegetation. A far more efficient, innovative and inexpensive tactic has been found using honeybees as sampling mechanisms. Members from a single bee colony forage over large areas ({approx}2 x 10{sup 6} m{sup 2}), making tens of thousands of trips per day, and return to a fixed location where sampling can be conveniently conducted. The bees are in direct contact with the air, water, soilmore » and vegetation where they encounter and collect any contaminants that are present in gaseous, liquid and particulate form. The monitoring of honeybees when they return to the hive provides a rapid method to assess chemical distributions and impacts (1). The primary goal of this technology is to evaluate the efficiency of the transport mechanism (honeybees) to the hive using preconcentrators to collect samples. Once the extent and nature of the contaminant exposure has been characterized, resources can be distributed and environmental monitoring designs efficiently directed to the most appropriate locations. Methyl salicylate, a chemical agent surrogate was used as the target compound in this study.« less

  2. Proboscis Conditioning Experiments with Honeybees, Apis Mellifera Caucasica, with Butyric Acid and DEET Mixture as Conditioned and Unconditioned Stimuli

    PubMed Central

    Abramson, Charles I.; Giray, Tugrul; Mixson, T. Andrew; Nolf, Sondra L.; Wells, Harrington; Kence, Aykut; Kence, Meral

    2010-01-01

    Three experiments are described investigating whether olfactory repellents DEET and butyric acid can support the classical conditioning of proboscis extension in the honeybee, Apis mellifera caucasica (Hymenoptera: Apidae). In the first experiment DEET and butyric acid readily led to standard acquisition and extinction effects, which are comparable to the use of cinnamon as a conditioned stimulus. These results demonstrate that the odor of DEET or butyric acid is not intrinsically repellent to honey bees. In a second experiment, with DEET and butyric acid mixed with sucrose as an unconditioned stimulus, proboscis conditioning was not established. After several trials, few animals responded to the unconditioned stimulus. These results demonstrate that these chemicals are gustatory repellents when in direct contact. In the last experiment a conditioned suppression paradigm was used. Exposing animals to butyric acid or DEET when the proboscis was extended by direct sucrose stimulation or by learning revealed that retraction of the proboscis was similar to another novel odor, lavender, and in all cases greatest when the animal was not permitted to feed. These results again demonstrate that DEET or butyric acid are not olfactory repellents, and in addition, conditioned suppression is influenced by feeding state of the bee. PMID:20879917

  3. Component resolution reveals additional major allergens in patients with honeybee venom allergy.

    PubMed

    Köhler, Julian; Blank, Simon; Müller, Sabine; Bantleon, Frank; Frick, Marcel; Huss-Marp, Johannes; Lidholm, Jonas; Spillner, Edzard; Jakob, Thilo

    2014-05-01

    Detection of IgE to recombinant Hymenoptera venom allergens has been suggested to improve the diagnostic precision in Hymenoptera venom allergy. However, the frequency of sensitization to the only available recombinant honeybee venom (HBV) allergen, rApi m 1, in patients with HBV allergy is limited, suggesting that additional HBV allergens might be of relevance. We performed an analysis of sensitization profiles of patients with HBV allergy to a panel of HBV allergens. Diagnosis of HBV allergy (n = 144) was based on history, skin test results, and allergen-specific IgE levels to HBV. IgE reactivity to 6 HBV allergens devoid of cross-reactive carbohydrate determinants (CCD) was analyzed by ImmunoCAP. IgE reactivity to rApi m 1, rApi m 2, rApi m 3, nApi m 4, rApi m 5, and rApi m 10 was detected in 72.2%, 47.9%, 50.0%, 22.9%, 58.3%, and 61.8% of the patients with HBV allergy, respectively. Positive results to at least 1 HBV allergen were detected in 94.4%. IgE reactivity to Api m 3, Api m 10, or both was detected in 68.0% and represented the only HBV allergen-specific IgE in 5% of the patients. Limited inhibition of IgE binding by therapeutic HBV and limited induction of Api m 3- and Api m 10-specific IgG4 in patients obtaining immunotherapy supports recent reports on the underrepresentation of these allergens in therapeutic HBV preparations. Analysis of a panel of CCD-free HBV allergens improved diagnostic sensitivity compared with use of rApi m 1 alone, identified additional major allergens, and revealed sensitizations to allergens that have been reported to be absent or underrepresented in therapeutic HBV preparations. Copyright © 2014 The Authors. Published by Mosby, Inc. All rights reserved.

  4. Proteomic analysis in the Dufour's gland of Africanized Apis mellifera workers (Hymenoptera: Apidae).

    PubMed

    Teixeira, Aparecida das Dores; Games, Patricia D; Katz, Benjamin B; Tomich, John M; Zanuncio, José C; Serrão, José Eduardo

    2017-01-01

    The colony of eusocial bee Apis mellifera has a reproductive queen and sterile workers performing tasks such as brood care and foraging. Chemical communication plays a crucial role in the maintenance of sociability in bees with many compounds released by the exocrine glands. The Dufour's gland is a non-paired gland associated with the sting apparatus with important functions in the communication between members of the colony, releasing volatile chemicals that influence workers roles and tasks. However, the protein content in this gland is not well studied. This study identified differentially expressed proteins in the Dufour's glands of nurse and forager workers of A. mellifera through 2D-gel electrophoresis and mass spectrometry. A total of 131 spots showed different expression between nurse and forager bees, and 28 proteins were identified. The identified proteins were categorized into different functions groups including protein, carbohydrate, energy and lipid metabolisms, cytoskeleton-associated proteins, detoxification, homeostasis, cell communication, constitutive and allergen. This study provides new insights of the protein content in the Dufour's gland contributing to a more complete understanding of the biological functions of this gland in honeybees.

  5. Responses to sugar and sugar receptor gene expression in different social roles of the honeybee (Apis mellifera).

    PubMed

    Değirmenci, Laura; Thamm, Markus; Scheiner, Ricarda

    2018-04-01

    Honeybees (Apis mellifera) are well-known for their sophisticated division of labor with each bee performing sequentially a series of social tasks. Colony organization is largely based on age-dependent division of labor. While bees perform several tasks inside the hive such as caring for brood ("nursing"), cleaning or sealing brood cells or producing honey, older bees leave to colony to collect pollen (proteins) and nectar (carbohydrates) as foragers. The most pronounced behavioral transition occurs when nurse bees become foragers. For both social roles, the detection and evaluation of sugars is decisive for optimal task performance. Nurse bees rely on their gustatory senses to prepare brood food, while foragers evaluate a nectar source before starting to collect food from it. To test whether social organization is related to differential sensing of sugars we compared the taste of nurse bees and foragers for different sugars. Searching for molecular correlates for differences in sugar perception, we further quantified expression of gustatory receptor genes in both behavioral groups. Our results demonstrate that nurse bees and foragers perceive and evaluate different sugars differently. Both groups, however, prefer sucrose over fructose. At least part of the taste differences between social roles could be related to a differential expression of taste receptors in the antennae and brain. Our results suggest that differential expression of sugar receptor genes might be involved in regulating division of labor through nutrition-related signaling pathways. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Interpatch foraging in honeybees-rational decision making at secondary hubs based upon time and motivation.

    PubMed

    Najera, Daniel A; McCullough, Erin L; Jander, Rudolf

    2012-11-01

    For honeybees, Apis mellifera, the hive has been well known to function as a primary decision-making hub, a place from which foragers decide among various directions, distances, and times of day to forage efficiently. Whether foraging honeybees can make similarly complex navigational decisions from locations away from the hive is unknown. To examine whether or not such secondary decision-making hubs exist, we trained bees to forage at four different locations. Specifically, we trained honeybees to first forage to a distal site "CT" 100 m away from the hive; if food was present, they fed and then chose to go home. If food was not present, the honeybees were trained to forage to three auxiliary sites, each at a different time of the day: A in the morning, B at noon, and C in the afternoon. The foragers learned to check site CT for food first and then efficiently depart to the correct location based upon the time of day if there was no food at site CT. Thus, the honeybees were able to cognitively map motivation, time, and five different locations (Hive, CT, A, B, and C) in two spatial dimensions; these are the contents of the cognitive map used by the honeybees here. While at site CT, we verified that the honeybees could choose between 4 different directions (to A, B, C, and the Hive) and thus label it as a secondary decision-making hub. The observed decision making uncovered here is inferred to constitute genuine logical operations, involving a branched structure, based upon the premises of motivational state, and spatiotemporal knowledge.

  7. Widespread dispersal of the microsporidian Nosema ceranae, an emergent pathogen of the western honey bee, Apis mellifera.

    PubMed

    Klee, Julia; Besana, Andrea M; Genersch, Elke; Gisder, Sebastian; Nanetti, Antonio; Tam, Dinh Quyet; Chinh, Tong Xuan; Puerta, Francisco; Ruz, José Maria; Kryger, Per; Message, Dejair; Hatjina, Fani; Korpela, Seppo; Fries, Ingemar; Paxton, Robert J

    2007-09-01

    The economically most important honey bee species, Apis mellifera, was formerly considered to be parasitized by one microsporidian, Nosema apis. Recently, [Higes, M., Martín, R., Meana, A., 2006. Nosema ceranae, a new microsporidian parasite in honeybees in Europe, J. Invertebr. Pathol. 92, 93-95] and [Huang, W.-F., Jiang, J.-H., Chen, Y.-W., Wang, C.-H., 2007. A Nosema ceranae isolate from the honeybee Apis mellifera. Apidologie 38, 30-37] used 16S (SSU) rRNA gene sequences to demonstrate the presence of Nosema ceranae in A. mellifera from Spain and Taiwan, respectively. We developed a rapid method to differentiate between N. apis and N. ceranae based on PCR-RFLPs of partial SSU rRNA. The reliability of the method was confirmed by sequencing 29 isolates from across the world (N =9 isolates gave N. apis RFLPs and sequences, N =20 isolates gave N. ceranae RFLPs and sequences; 100% correct classification). We then employed the method to analyze N =115 isolates from across the world. Our data, combined with N =36 additional published sequences demonstrate that (i) N. ceranae most likely jumped host to A. mellifera, probably within the last decade, (ii) that host colonies and individuals may be co-infected by both microsporidia species, and that (iii) N. ceranae is now a parasite of A. mellifera across most of the world. The rapid, long-distance dispersal of N. ceranae is likely due to transport of infected honey bees by commercial or hobbyist beekeepers. We discuss the implications of this emergent pathogen for worldwide beekeeping.

  8. The use of honeybees reared in a thermostatic chamber for aging studies.

    PubMed

    Hsu, Chin-Yuan; Chan, Yu-Pei

    2013-02-01

    Honeybees (Apis mellifera) are an attractive model system for studying aging. However, the aging level of worker honeybees from the field hive is in dispute. To eliminate the influence of task performance and confirm the relationship between chronological age and aging, we reared newly emerged workers in a thermostat at 34°C throughout their lives. A survivorship curve was obtained, indicating that workers can be reared away from the field hive, and the only difference between these workers is age. To confirm that these workers can be used for aging studies, we assayed age-related molecules in the trophocytes and fat cells of young and old workers. Old workers expressed more senescence-associated β-galactosidase, lipofuscin granules, lipid peroxidation, and protein oxidation than young workers. Furthermore, cellular energy metabolism molecules were also assayed. Old workers exhibited less ATP concentration, β-oxidation, and microtubule-associated protein light chain 3 (LC3) than young workers. These results demonstrate that honeybees reared in a thermostatic chamber can be used for aging studies and cellular energy metabolism in the trophocytes and fat cells of workers changes with advancing age.

  9. Reproductive interference between honeybee species in artificial sympatry.

    PubMed

    Remnant, Emily J; Koetz, Anna; Tan, Ken; Hinson, Eloise; Beekman, Madeleine; Oldroyd, Benjamin P

    2014-03-01

    Reproductive isolation between closely related species is often incomplete. The Western honeybee, Apis mellifera, and the Eastern hive bee, Apis cerana, have been allopatric for millions of years, but are nonetheless similar in morphology and behaviour. During the last century, the two species were brought into contact anthropogenically, providing potential opportunities for interspecific matings. Hybrids between A. mellifera and A. cerana are inviable, so natural interspecific matings are of concern because they may reduce the viability of A. cerana and A. mellifera populations - two of the world's most important pollinators. We examined the mating behaviour of A. mellifera and A. cerana queens and drones from Caoba Basin, China and Cairns, Australia. Drone mating flight times overlap in both areas. Analysis of the spermathecal contents of queens with species-specific genetic markers indicated that in Caoba Basin, 14% of A. mellifera queens mated with at least one A. cerana male, but we detected no A. cerana queens that had mated with A. mellifera males. Similarly, in Cairns, no A. cerana queens carried A. mellifera sperm, but one-third of A. mellifera queens had mated with at least one A. cerana male. No hybrid embryos were detected in eggs laid by interspecifically mated A. mellifera queens in either location. However, A. mellifera queens artificially inseminated with A. cerana sperm produced inviable hybrid eggs or unfertilized drones. This suggests that reproductive interference will impact the viability of honeybee populations wherever A. cerana and A. mellifera are in contact. © 2014 John Wiley & Sons Ltd.

  10. Identification of Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus fermentum from honey stomach of honeybee

    PubMed Central

    Tajabadi, Naser; Mardan, Makhdzir; Saari, Nazamid; Mustafa, Shuhaimi; Bahreini, Rasoul; Manap, Mohd Yazid Abdul

    2013-01-01

    This study aimed to isolate and identify Lactobacillus in the honey stomach of honeybee Apis dorsata. Samples of honeybee were collected from A. dorsata colonies in different bee trees and Lactobacillus bacteria isolated from honey stomachs. Ninety two isolates were Gram-stained and tested for catalase reaction. By using bacterial universal primers, the 16S rDNA gene from DNA of bacterial colonies amplified with polymerase chain reaction (PCR). Forty-nine bacterial 16S rDNA gene were sequenced and entrusted in GenBank. Phylogenetic analysis showed they were different phylotypes of Lactobacillus. Two of them were most closely relevant to the previously described species Lactobacillus plantarum. Other two phylotypes were identified to be closely related to Lactobacillus pentosus. However, only one phylotype was found to be distantly linked to the Lactobacillus fermentum. The outcomes of the present study indicated that L. plantarum, L. pentosus, and L. fermentum were the dominant lactobacilli in the honey stomach of honeybee A. dorsata collected during the dry season from Malaysia forest area - specifically “Melaleuca in Terengganu”. PMID:24516438

  11. Identification of Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus fermentum from honey stomach of honeybee.

    PubMed

    Tajabadi, Naser; Mardan, Makhdzir; Saari, Nazamid; Mustafa, Shuhaimi; Bahreini, Rasoul; Manap, Mohd Yazid Abdul

    2013-01-01

    This study aimed to isolate and identify Lactobacillus in the honey stomach of honeybee Apis dorsata. Samples of honeybee were collected from A. dorsata colonies in different bee trees and Lactobacillus bacteria isolated from honey stomachs. Ninety two isolates were Gram-stained and tested for catalase reaction. By using bacterial universal primers, the 16S rDNA gene from DNA of bacterial colonies amplified with polymerase chain reaction (PCR). Forty-nine bacterial 16S rDNA gene were sequenced and entrusted in GenBank. Phylogenetic analysis showed they were different phylotypes of Lactobacillus. Two of them were most closely relevant to the previously described species Lactobacillus plantarum. Other two phylotypes were identified to be closely related to Lactobacillus pentosus. However, only one phylotype was found to be distantly linked to the Lactobacillus fermentum. The outcomes of the present study indicated that L. plantarum, L. pentosus, and L. fermentum were the dominant lactobacilli in the honey stomach of honeybee A. dorsata collected during the dry season from Malaysia forest area - specifically "Melaleuca in Terengganu".

  12. Neural organization and visual processing in the anterior optic tubercle of the honeybee brain.

    PubMed

    Mota, Theo; Yamagata, Nobuhiro; Giurfa, Martin; Gronenberg, Wulfila; Sandoz, Jean-Christophe

    2011-08-10

    The honeybee Apis mellifera represents a valuable model for studying the neural segregation and integration of visual information. Vision in honeybees has been extensively studied at the behavioral level and, to a lesser degree, at the physiological level using intracellular electrophysiological recordings of single neurons. However, our knowledge of visual processing in honeybees is still limited by the lack of functional studies of visual processing at the circuit level. Here we contribute to filling this gap by providing a neuroanatomical and neurophysiological characterization at the circuit level of a practically unstudied visual area of the bee brain, the anterior optic tubercle (AOTu). First, we analyzed the internal organization and neuronal connections of the AOTu. Second, we established a novel protocol for performing optophysiological recordings of visual circuit activity in the honeybee brain and studied the responses of AOTu interneurons during stimulation of distinct eye regions. Our neuroanatomical data show an intricate compartmentalization and connectivity of the AOTu, revealing a dorsoventral segregation of the visual input to the AOTu. Light stimuli presented in different parts of the visual field (dorsal, lateral, or ventral) induce distinct patterns of activation in AOTu output interneurons, retaining to some extent the dorsoventral input segregation revealed by our neuroanatomical data. In particular, activity patterns evoked by dorsal and ventral eye stimulation are clearly segregated into distinct AOTu subunits. Our results therefore suggest an involvement of the AOTu in the processing of dorsoventrally segregated visual information in the honeybee brain.

  13. Cross-modal interaction between visual and olfactory learning in Apis cerana.

    PubMed

    Zhang, Li-Zhen; Zhang, Shao-Wu; Wang, Zi-Long; Yan, Wei-Yu; Zeng, Zhi-Jiang

    2014-10-01

    The power of the small honeybee brain carrying out behavioral and cognitive tasks has been shown repeatedly to be highly impressive. The present study investigates, for the first time, the cross-modal interaction between visual and olfactory learning in Apis cerana. To explore the role and molecular mechanisms of cross-modal learning in A. cerana, the honeybees were trained and tested in a modified Y-maze with seven visual and five olfactory stimulus, where a robust visual threshold for black/white grating (period of 2.8°-3.8°) and relatively olfactory threshold (concentration of 50-25%) was obtained. Meanwhile, the expression levels of five genes (AcCREB, Acdop1, Acdop2, Acdop3, Actyr1) related to learning and memory were analyzed under different training conditions by real-time RT-PCR. The experimental results indicate that A. cerana could exhibit cross-modal interactions between visual and olfactory learning by reducing the threshold level of the conditioning stimuli, and that these genes may play important roles in the learning process of honeybees.

  14. Conditioning procedure and color discrimination in the honeybee Apis mellifera

    NASA Astrophysics Data System (ADS)

    Giurfa, Martin

    We studied the influence of the conditioning procedure on color discrimination by free-flying honeybees. We asked whether absolute and differential conditioning result in different discrimination capabilities for the same pairs of colored targets. In absolute conditioning, bees were rewarded on a single color; in differential conditioning, bees were rewarded on the same color but an alternative, non-rewarding, similar color was also visible. In both conditioning procedures, bees learned their respective task and could also discriminate the training stimulus from a novel stimulus that was perceptually different from the trained one. Discrimination between perceptually closer stimuli was possible after differential conditioning but not after absolute conditioning. Differences in attention inculcated by these training procedures may underlie the different discrimination performances of the bees.

  15. Brood comb as a humidity buffer in honeybee nests

    NASA Astrophysics Data System (ADS)

    Ellis, Michael B.; Nicolson, Sue W.; Crewe, Robin M.; Dietemann, Vincent

    2010-04-01

    Adverse environmental conditions can be evaded, tolerated or modified in order for an organism to survive. During their development, some insect larvae spin cocoons which, in addition to protecting their occupants against predators, modify microclimatic conditions, thus facilitating thermoregulation or reducing evaporative water loss. Silk cocoons are spun by honeybee ( Apis mellifera) larvae and subsequently incorporated into the cell walls of the wax combs in which they develop. The accumulation of this hygroscopic silk in the thousands of cells used for brood rearing may significantly affect nest homeostasis by buffering humidity fluctuations. This study investigates the extent to which the comb may influence homeostasis by quantifying the hygroscopic capacity of the cocoons spun by honeybee larvae. When comb containing cocoons was placed at high humidity, it absorbed 11% of its own mass in water within 4 days. Newly drawn comb composed of hydrophobic wax and devoid of cocoons absorbed only 3% of its own mass. Therefore, the accumulation of cocoons in the comb may increase brood survivorship by maintaining a high and stable humidity in the cells.

  16. Context odor presentation during sleep enhances memory in honeybees.

    PubMed

    Zwaka, Hanna; Bartels, Ruth; Gora, Jacob; Franck, Vivien; Culo, Ana; Götsch, Moritz; Menzel, Randolf

    2015-11-02

    Sleep plays an important role in stabilizing new memory traces after learning [1-3]. Here we investigate whether sleep's role in memory processing is similar in evolutionarily distant species and demonstrate that a context trigger during deep-sleep phases improves memory in invertebrates, as it does in humans. We show that in honeybees (Apis mellifera), exposure to an odor during deep sleep that has been present during learning improves memory performance the following day. Presentation of the context odor during wake phases or novel odors during sleep does not enhance memory. In humans, memory consolidation can be triggered by presentation of a context odor during slow-wave sleep that had been present during learning [3-5]. Our results reveal that deep-sleep phases in honeybees have the potential to prompt memory consolidation, just as they do in humans. This study provides strong evidence for a conserved role of sleep-and how it affects memory processes-from insects to mammals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Interneurons in the Honeybee Primary Auditory Center Responding to Waggle Dance-Like Vibration Pulses.

    PubMed

    Ai, Hiroyuki; Kai, Kazuki; Kumaraswamy, Ajayrama; Ikeno, Hidetoshi; Wachtler, Thomas

    2017-11-01

    Female honeybees use the "waggle dance" to communicate the location of nectar sources to their hive mates. Distance information is encoded in the duration of the waggle phase (von Frisch, 1967). During the waggle phase, the dancer produces trains of vibration pulses, which are detected by the follower bees via Johnston's organ located on the antennae. To uncover the neural mechanisms underlying the encoding of distance information in the waggle dance follower, we investigated morphology, physiology, and immunohistochemistry of interneurons arborizing in the primary auditory center of the honeybee ( Apis mellifera ). We identified major interneuron types, named DL-Int-1, DL-Int-2, and bilateral DL-dSEG-LP, that responded with different spiking patterns to vibration pulses applied to the antennae. Experimental and computational analyses suggest that inhibitory connection plays a role in encoding and processing the duration of vibration pulse trains in the primary auditory center of the honeybee. SIGNIFICANCE STATEMENT The waggle dance represents a form of symbolic communication used by honeybees to convey the location of food sources via species-specific sound. The brain mechanisms used to decipher this symbolic information are unknown. We examined interneurons in the honeybee primary auditory center and identified different neuron types with specific properties. The results of our computational analyses suggest that inhibitory connection plays a role in encoding waggle dance signals. Our results are critical for understanding how the honeybee deciphers information from the sound produced by the waggle dance and provide new insights regarding how common neural mechanisms are used by different species to achieve communication. Copyright © 2017 the authors 0270-6474/17/3710624-12$15.00/0.

  18. Amino acid content and nectar choice by forager honeybees (Apis mellifera L.).

    PubMed

    Bertazzini, Michele; Medrzycki, Piotr; Bortolotti, Laura; Maistrello, Lara; Forlani, Giuseppe

    2010-06-01

    Dual choice feeding tests were performed to determine a preference of forager honeybees for specific amino acids. Artificial nectar containing proline was preferred over those containing only sugars. Nectar containing alanine was preferred on the first day, but preference was no longer significant thereafter. On the contrary, a negative response was found for serine. When the bees were given the choice between two nectars enriched with different compounds, proline was preferred above both alanine and serine, and alanine above serine.

  19. Diversity of honey stores and their impact on pathogenic bacteria of the honeybee, Apis mellifera

    PubMed Central

    Erler, Silvio; Denner, Andreas; Bobiş, Otilia; Forsgren, Eva; Moritz, Robin F A

    2014-01-01

    Honeybee colonies offer an excellent environment for microbial pathogen development. The highest virulent, colony killing, bacterial agents are Paenibacillus larvae causing American foulbrood (AFB), and European foulbrood (EFB) associated bacteria. Besides the innate immune defense, honeybees evolved behavioral defenses to combat infections. Foraging of antimicrobial plant compounds plays a key role for this “social immunity” behavior. Secondary plant metabolites in floral nectar are known for their antimicrobial effects. Yet, these compounds are highly plant specific, and the effects on bee health will depend on the floral origin of the honey produced. As worker bees not only feed themselves, but also the larvae and other colony members, honey is a prime candidate acting as self-medication agent in honeybee colonies to prevent or decrease infections. Here, we test eight AFB and EFB bacterial strains and the growth inhibitory activity of three honey types. Using a high-throughput cell growth assay, we show that all honeys have high growth inhibitory activity and the two monofloral honeys appeared to be strain specific. The specificity of the monofloral honeys and the strong antimicrobial potential of the polyfloral honey suggest that the diversity of honeys in the honey stores of a colony may be highly adaptive for its “social immunity” against the highly diverse suite of pathogens encountered in nature. This ecological diversity may therefore operate similar to the well-known effects of host genetic variance in the arms race between host and parasite. PMID:25505523

  20. The Darwin cure for apiculture? Natural selection and managed honeybee health.

    PubMed

    Neumann, Peter; Blacquière, Tjeerd

    2017-03-01

    Recent major losses of managed honeybee, Apis mellifera, colonies at a global scale have resulted in a multitude of research efforts to identify the underlying mechanisms. Numerous factors acting singly and/or in combination have been identified, ranging from pathogens, over nutrition to pesticides. However, the role of apiculture in limiting natural selection has largely been ignored. This is unfortunate, because honeybees are more exposed to environmental stressors compared to other livestock and management can severely compromise bee health. Here, we briefly review apicultural factors that influence bee health and focus on those most likely interfering with natural selection, which offers a broad range of evolutionary applications for field practice. Despite intense breeding over centuries, natural selection appears to be much more relevant for the health of managed A. mellifera colonies than previously thought. We conclude that sustainable solutions for the apicultural sector can only be achieved by taking advantage of natural selection and not by attempting to limit it.

  1. Does Nosema ceranae Wipe Out Nosema apis in Turkey?

    PubMed

    Ivgin Tunca, Rahşan; Oskay, Devrim; Gosterit, Ayhan; Tekin, Olgay Kaan

    2016-01-01

    The aim of this study was to determine the prevalence of the Nosema ceranae and Nosema apis among apiaries using both spore counts and multiplex PCR and the replacement of N. apis by N. ceranae in some regions of Turkey. A hundred honey bee samples were collected from 99 apiaries in 11 different locations in 2011-2012 in Turkey. Nosema infection degree from collected samples was determined using light microscope and molecular detection of Nosema spp. ( N. ceranae and N. apis ) was performed using specific primers by multiplex PCR. N. ceranae was only found spores in sampling areas using molecular diagnosis. N. apis was not detected in whole sampling areas using both techniques. There are no Nosema spores detected in Konya one location using two techniques. The nucleotide sequences from amplification products of the Nosema infested honeybee samples were (98%) identical with the sequence of N. ceranae for many countries deposited in the GenBank database in this study. The present study illustrated that N. ceranae is the only spores for sampled areas in 2011-2012. The study could also indicate that N. ceranae has been replaced instead of N . apis in Turkey. In addition, the prevalence of N. ceranae and two microsporodia spores effects on honey bee colonies in Turkey were needed to determine with intensive sampling, periodically.

  2. Proteomic analysis in the Dufour’s gland of Africanized Apis mellifera workers (Hymenoptera: Apidae)

    PubMed Central

    2017-01-01

    The colony of eusocial bee Apis mellifera has a reproductive queen and sterile workers performing tasks such as brood care and foraging. Chemical communication plays a crucial role in the maintenance of sociability in bees with many compounds released by the exocrine glands. The Dufour’s gland is a non-paired gland associated with the sting apparatus with important functions in the communication between members of the colony, releasing volatile chemicals that influence workers roles and tasks. However, the protein content in this gland is not well studied. This study identified differentially expressed proteins in the Dufour’s glands of nurse and forager workers of A. mellifera through 2D-gel electrophoresis and mass spectrometry. A total of 131 spots showed different expression between nurse and forager bees, and 28 proteins were identified. The identified proteins were categorized into different functions groups including protein, carbohydrate, energy and lipid metabolisms, cytoskeleton-associated proteins, detoxification, homeostasis, cell communication, constitutive and allergen. This study provides new insights of the protein content in the Dufour’s gland contributing to a more complete understanding of the biological functions of this gland in honeybees. PMID:28542566

  3. Behavioral and Neurophysiological Study of Olfactory Perception and Learning in Honeybees

    PubMed Central

    Sandoz, Jean Christophe

    2011-01-01

    The honeybee Apis mellifera has been a central insect model in the study of olfactory perception and learning for more than a century, starting with pioneer work by Karl von Frisch. Research on olfaction in honeybees has greatly benefited from the advent of a range of behavioral and neurophysiological paradigms in the Lab. Here I review major findings about how the honeybee brain detects, processes, and learns odors, based on behavioral, neuroanatomical, and neurophysiological approaches. I first address the behavioral study of olfactory learning, from experiments on free-flying workers visiting artificial flowers to laboratory-based conditioning protocols on restrained individuals. I explain how the study of olfactory learning has allowed understanding the discrimination and generalization ability of the honeybee olfactory system, its capacity to grant special properties to olfactory mixtures as well as to retain individual component information. Next, based on the impressive amount of anatomical and immunochemical studies of the bee brain, I detail our knowledge of olfactory pathways. I then show how functional recordings of odor-evoked activity in the brain allow following the transformation of the olfactory message from the periphery until higher-order central structures. Data from extra- and intracellular electrophysiological approaches as well as from the most recent optical imaging developments are described. Lastly, I discuss results addressing how odor representation changes as a result of experience. This impressive ensemble of behavioral, neuroanatomical, and neurophysiological data available in the bee make it an attractive model for future research aiming to understand olfactory perception and learning in an integrative fashion. PMID:22163215

  4. A Locomotor Deficit Induced by Sublethal Doses of Pyrethroid and Neonicotinoid Insecticides in the Honeybee Apis mellifera.

    PubMed

    Charreton, Mercédès; Decourtye, Axel; Henry, Mickaël; Rodet, Guy; Sandoz, Jean-Christophe; Charnet, Pierre; Collet, Claude

    2015-01-01

    The toxicity of pesticides used in agriculture towards non-targeted organisms and especially pollinators has recently drawn the attention from a broad scientific community. Increased honeybee mortality observed worldwide certainly contributes to this interest. The potential role of several neurotoxic insecticides in triggering or potentiating honeybee mortality was considered, in particular phenylpyrazoles and neonicotinoids, given that they are widely used and highly toxic for insects. Along with their ability to kill insects at lethal doses, they can compromise survival at sublethal doses by producing subtle deleterious effects. In this study, we compared the bee's locomotor ability, which is crucial for many tasks within the hive (e.g. cleaning brood cells, feeding larvae…), before and after an acute sublethal exposure to one insecticide belonging to the two insecticide classes, fipronil and thiamethoxam. Additionally, we examined the locomotor ability after exposure to pyrethroids, an older chemical insecticide class still widely used and known to be highly toxic to bees as well. Our study focused on young bees (day 1 after emergence) since (i) few studies are available on locomotion at this stage and (ii) in recent years, pesticides have been reported to accumulate in different hive matrices, where young bees undergo their early development. At sublethal doses (SLD48h, i.e. causing no mortality at 48 h), three pyrethroids, namely cypermethrin (2.5 ng/bee), tetramethrin (70 ng/bee), tau-fluvalinate (33 ng/bee) and the neonicotinoid thiamethoxam (3.8 ng/bee) caused a locomotor deficit in honeybees. While the SLD48h of fipronil (a phenylpyrazole, 0.5 ng/bee) had no measurable effect on locomotion, we observed high mortality several days after exposure, an effect that was not observed with the other insecticides. Although locomotor deficits observed in the sublethal range of pyrethroids and thiamethoxam would suggest deleterious effects in the field, the case of

  5. A Locomotor Deficit Induced by Sublethal Doses of Pyrethroid and Neonicotinoid Insecticides in the Honeybee Apis mellifera

    PubMed Central

    Charreton, Mercédès; Decourtye, Axel; Henry, Mickaël; Rodet, Guy; Sandoz, Jean-Christophe; Charnet, Pierre; Collet, Claude

    2015-01-01

    The toxicity of pesticides used in agriculture towards non-targeted organisms and especially pollinators has recently drawn the attention from a broad scientific community. Increased honeybee mortality observed worldwide certainly contributes to this interest. The potential role of several neurotoxic insecticides in triggering or potentiating honeybee mortality was considered, in particular phenylpyrazoles and neonicotinoids, given that they are widely used and highly toxic for insects. Along with their ability to kill insects at lethal doses, they can compromise survival at sublethal doses by producing subtle deleterious effects. In this study, we compared the bee’s locomotor ability, which is crucial for many tasks within the hive (e.g. cleaning brood cells, feeding larvae…), before and after an acute sublethal exposure to one insecticide belonging to the two insecticide classes, fipronil and thiamethoxam. Additionally, we examined the locomotor ability after exposure to pyrethroids, an older chemical insecticide class still widely used and known to be highly toxic to bees as well. Our study focused on young bees (day 1 after emergence) since (i) few studies are available on locomotion at this stage and (ii) in recent years, pesticides have been reported to accumulate in different hive matrices, where young bees undergo their early development. At sublethal doses (SLD48h, i.e. causing no mortality at 48h), three pyrethroids, namely cypermethrin (2.5 ng/bee), tetramethrin (70 ng/bee), tau-fluvalinate (33 ng/bee) and the neonicotinoid thiamethoxam (3.8 ng/bee) caused a locomotor deficit in honeybees. While the SLD48h of fipronil (a phenylpyrazole, 0.5 ng/bee) had no measurable effect on locomotion, we observed high mortality several days after exposure, an effect that was not observed with the other insecticides. Although locomotor deficits observed in the sublethal range of pyrethroids and thiamethoxam would suggest deleterious effects in the field, the case

  6. Field-relevant doses of the systemic insecticide fipronil and fungicide pyraclostrobin impair mandibular and hypopharyngeal glands in nurse honeybees (Apis mellifera).

    PubMed

    Zaluski, Rodrigo; Justulin, Luis Antonio; Orsi, Ricardo de Oliveira

    2017-11-09

    Global decreases in bee populations emphasize the importance of assessing how environmental stressors affect colony maintenance, especially considering the extreme task specialization observed in honeybee societies. Royal jelly, a protein secretion essential to colony nutrition, is produced by nurse honeybees, and development of bee mandibular glands, which comprise a reservoir surrounded by secretory cells and hypopharyngeal glands that are shaped by acini, is directly associated with production of this secretion. Here, we examined individual and combined effects of the systemic fungicide pyraclostrobin and insecticide fipronil in field-relevant doses (850 and 2.5 ppb, respectively) on mandibular and hypopharyngeal glands in nurse honeybees. Six days of pesticide treatment decreased secretory cell height in mandibular glands. When pyraclostrobin and fipronil were combined, the reservoir volume in mandibular glands also decreased. The total number of acini in hypopharyngeal glands was not affected, but pesticide treatment reduced the number of larger acini while increasing smaller acini. These morphological impairments appeared to reduce royal jelly secretion by nurse honeybees and consequently hampered colony maintenance. Overall, pesticide exposure in doses close to those experienced by bees in the field impaired brood-food glands in nurse honeybees, a change that could negatively influence development, survival, and colony maintenance.

  7. Honeybee navigation: following routes using polarized-light cues

    PubMed Central

    Kraft, P.; Evangelista, C.; Dacke, M.; Labhart, T.; Srinivasan, M. V.

    2011-01-01

    While it is generally accepted that honeybees (Apis mellifera) are capable of using the pattern of polarized light in the sky to navigate to a food source, there is little or no direct behavioural evidence that they actually do so. We have examined whether bees can be trained to find their way through a maze composed of four interconnected tunnels, by using directional information provided by polarized light illumination from the ceilings of the tunnels. The results show that bees can learn this task, thus demonstrating directly, and for the first time, that bees are indeed capable of using the polarized-light information in the sky as a compass to steer their way to a food source. PMID:21282174

  8. Honeybees.

    ERIC Educational Resources Information Center

    Platt, Season, Ed.

    1986-01-01

    The life patterns, behaviors, and functions of the social insects, the honeybees, are presented in this publication. Illustrations and information are offered on the topic areas of: (1) the honeybee society (explaining the jobs of the queen, worker, and drone bees); (2) the hive (describing how the hive is constructed, how new bees develop, and…

  9. Estimating the density of honeybee colonies across their natural range to fill the gap in pollinator decline censuses.

    PubMed

    Jaffé, Rodolfo; Dietemann, Vincent; Allsopp, Mike H; Costa, Cecilia; Crewe, Robin M; Dall'olio, Raffaele; DE LA Rúa, Pilar; El-Niweiri, Mogbel A A; Fries, Ingemar; Kezic, Nikola; Meusel, Michael S; Paxton, Robert J; Shaibi, Taher; Stolle, Eckart; Moritz, Robin F A

    2010-04-01

    Although pollinator declines are a global biodiversity threat, the demography of the western honeybee (Apis mellifera) has not been considered by conservationists because it is biased by the activity of beekeepers. To fill this gap in pollinator decline censuses and to provide a broad picture of the current status of honeybees across their natural range, we used microsatellite genetic markers to estimate colony densities and genetic diversity at different locations in Europe, Africa, and central Asia that had different patterns of land use. Genetic diversity and colony densities were highest in South Africa and lowest in Northern Europe and were correlated with mean annual temperature. Confounding factors not related to climate, however, are also likely to influence genetic diversity and colony densities in honeybee populations. Land use showed a significantly negative influence over genetic diversity and the density of honeybee colonies over all sampling locations. In Europe honeybees sampled in nature reserves had genetic diversity and colony densities similar to those sampled in agricultural landscapes, which suggests that the former are not wild but may have come from managed hives. Other results also support this idea: putative wild bees were rare in our European samples, and the mean estimated density of honeybee colonies on the continent closely resembled the reported mean number of managed hives. Current densities of European honeybee populations are in the same range as those found in the adverse climatic conditions of the Kalahari and Saharan deserts, which suggests that beekeeping activities do not compensate for the loss of wild colonies. Our findings highlight the importance of reconsidering the conservation status of honeybees in Europe and of regarding beekeeping not only as a profitable business for producing honey, but also as an essential component of biodiversity conservation.

  10. Neonicotinoid-induced impairment of odour coding in the honeybee

    PubMed Central

    Andrione, Mara; Vallortigara, Giorgio; Antolini, Renzo; Haase, Albrecht

    2016-01-01

    Exposure to neonicotinoid pesticides is considered one of the possible causes of honeybee (Apis mellifera) population decline. At sublethal doses, these chemicals have been shown to negatively affect a number of behaviours, including performance of olfactory learning and memory, due to their interference with acetylcholine signalling in the mushroom bodies. Here we provide evidence that neonicotinoids can affect odour coding upstream of the mushroom bodies, in the first odour processing centres of the honeybee brain, i.e. the antennal lobes (ALs). In particular, we investigated the effects of imidacloprid, the most common neonicotinoid, in the AL glomeruli via in vivo two-photon calcium imaging combined with pulsed odour stimulation. Following acute imidacloprid treatment, odour-evoked calcium response amplitude in single glomeruli decreases, and at the network level the representations of different odours are no longer separated. This demonstrates that, under neonicotinoid influence, olfactory information might reach the mushroom bodies in a form that is already incorrect. Thus, some of the impairments in olfactory learning and memory caused by neonicotinoids could, in fact, arise from the disruption in odor coding and olfactory discrimination ability of the honey bees. PMID:27905515

  11. Application of the combination index (CI)-isobologram equation to research the toxicological interactions of clothianidin, thiamethoxam, and dinotefuran in honeybee, Apis mellifera.

    PubMed

    Liu, Yanmei; Liu, Sihong; Zhang, Hui; Gu, Yanping; Li, Xuesheng; He, Mingyuan; Tan, Huihua

    2017-10-01

    Due to complex pest control scenarios and the needs of agricultural production, different neonicotinoids may be used in certain agricultural applications. Consequently, honeybees may be exposed to these substances through distribution throughout plant tissues via the vascular system through several pathways, such as surface water, the exudates excreted from plants, and air pollution via drift of dust as well as contaminated pollen and nectar. In the current study, the single and combined toxicity of clothianidin, dinotefuran, and thiamethoxam to honeybees was examined after 48 h exposure by the acute oral method and combination index (CI)-isobologram equation. At the 48 h interval, our results showed that 1) the order of toxicities for the single insecticides was ranked as clothianidin > thiamethoxam > dinotefuran and that 2) all binary and ternary combinations showed synergism or additive effect at the effect (f a ) 0.5. Therefore, our results not only provided meaningful guidelines in evaluating the safety risk of the mixtures of the three neonicotinoids towards honeybees but also suggested that there is a significant interest in the study of mixture toxicities of neonicotinoids against honeybees because risk assessment of neonicotinoids against honeybees conducted only in individual insecticides may underestimate the realistic toxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Multifractality in individual honeybee behavior hints at colony-specific social cascades: Reanalysis of radio-frequency identification data from five different colonies

    NASA Astrophysics Data System (ADS)

    Carver, Nicole S.; Kelty-Stephen, Damian G.

    2017-02-01

    Honeybees (Apis mellifera) exhibit complex coordination and interaction across multiple behaviors such as swarming. This coordination among honeybees in the same colony is remarkably similar to the concept of informational cascades. The multifractal geometry of cascades suggests that multifractal measures of individual honeybee activity might carry signatures of these colony-wide coordinations. The present work reanalyzes time stamps of entrances to and exits from the hive captured by radio-frequency identification (RFID) sensors reading RFID tags on individual bees. Indeed, both multifractal spectrum width for individual bees' inter-reading interval series and differences of those widths from surrogates significantly predicted not just whether the individual bee's hive had a mesh enclosure but also predicted the specific membership of individual bees in one of five colonies. The significant effects of multifractality in matching honeybee activity to type of colony and, further, matching individual honeybees to their exact home colony suggests that multifractality quantifies key features of the colony-wide interactions across many scales. This relevance of multifractality to predicting colony type or colony membership adds additional credence to the cascade metaphor for colony organization. Perhaps, multifractality provides a new tool for exploring the relationship between individual organisms and larger, more complex social behaviors.

  13. Comparative Analyses of Cu-Zn Superoxide Dismutase (SOD1) and Thioredoxin Reductase (TrxR) at the mRNA Level between Apis mellifera L. and Apis cerana F. (Hymenoptera: Apidae) Under Stress Conditions.

    PubMed

    Koo, Hyun-Na; Lee, Soon-Gyu; Yun, Seung-Hwan; Kim, Hyun Kyung; Choi, Yong Soo; Kim, Gil-Hah

    2016-01-01

    This study compared stress-induced expression of Cu-Zn superoxide dismutase (SOD1) and thioredoxin reductase (TrxR) genes in the European honeybee Apis mellifera L. and Asian honeybee Apis cerana F. Expression of both SOD1 and TrxR rapidly increased up to 5 h after exposure to cold (4 °C) or heat (37 °C) treatment and then gradually decreased, with a stronger effect induced by cold stress in A. mellifera compared with A. cerana. Injection of stress-inducing substances (methyl viologen, [MV] and H2O2) also increased SOD1 and TrxR expression in both A. mellifera and A. cerana, and this effect was more pronounced with MV than H2O2. Additionally, we heterologously expressed the A. mellifera and A. cerana SOD1 and TrxR proteins in an Escherichia coli expression system, and detection by SDS-PAGE, confirmed by Western blotting using anti-His tag antibodies, revealed bands at 16 and 60 kDa, respectively. Our results show that the expression patterns of SOD1 and TrxR differ between A. mellifera and A. cerana under conditions of low or high temperature as well as oxidative stress. © The Author 2016. Published by Oxford University Press on behalf of the Entomological Society of America.

  14. Effects of high voltage transmission lines on honeybees: a feasibility study. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenberg, B.

    1977-07-01

    Methodology is described for the investigation of the effects of electric fields generated by high-tension power lines on honeybees (Apis mellifera L.). The parameters to be measured include colony population, honey stores, amount of acoustical noise generated by the bees, in-hive temperature, incidence of queen cell production, and tendency to swarm. Accompanying dosimetric support includes in-hive electric field measurements, development of shielding to eliminate the electric field from selected colonies, analysis of the acoustical data, and periodic checks on the ambient electric field present under the line and at the control site.

  15. Differential antennal proteome comparison of adult honeybee drone, worker and queen (Apis mellifera L.).

    PubMed

    Fang, Yu; Song, Feifei; Zhang, Lan; Aleku, Dereje Woltedji; Han, Bin; Feng, Mao; Li, Jianke

    2012-01-04

    To understand the olfactory mechanism of honeybee antennae in detecting specific volatile compounds in the atmosphere, antennal proteome differences of drone, worker and queen were compared using 2-DE, mass spectrometry and bioinformatics. Therefore, 107 proteins were altered their expressions in the antennae of drone, worker and queen bees. There were 54, 21 and 32 up-regulated proteins in the antennae of drone, worker and queen, respectively. Proteins upregulated in the drone antennae were involved in fatty acid metabolism, antioxidation, carbohydrate metabolism and energy production, protein folding and cytoskeleton. Proteins upregulated in the antennae of worker and queen bees were related to carbohydrate metabolism and energy production while molecular transporters were upregulated in the queen antennae. Our results explain the role played by the antennae of drone is to aid in perceiving the queen sexual pheromones, in the worker antennae to assist for food search and social communication and in the queen antennae to help pheromone communication with the worker and the drone during the mating flight. This first proteomic study significantly extends our understanding of honeybee olfactory activities and the possible mechanisms played by the antennae in response to various environmental, social, biological and biochemical signals. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  16. Evidence of Apis cerana Sacbrood virus Infection in Apis mellifera

    PubMed Central

    Gong, Hong-Ri; Chen, Xiu-Xian; Chen, Yan Ping; Hu, Fu-Liang; Zhang, Jiang-Lin; Lin, Zhe-Guang; Yu, Ji-Wei

    2016-01-01

    Sacbrood virus (SBV) is one of the most destructive viruses in the Asian honeybee Apis cerana but is much less destructive in Apis mellifera. In previous studies, SBV isolates infecting A. cerana (AcSBV) and SBV isolates infecting A. mellifera (AmSBV) were identified as different serotypes, suggesting a species barrier in SBV infection. In order to investigate this species isolation, we examined the presence of SBV infection in 318 A. mellifera colonies and 64 A. cerana colonies, and we identified the genotypes of SBV isolates. We also performed artificial infection experiments under both laboratory and field conditions. The results showed that 38 A. mellifera colonies and 37 A. cerana colonies were positive for SBV infection. Phylogenetic analysis based on RNA-dependent RNA polymerase (RdRp) gene sequences indicated that A. cerana isolates and most A. mellifera isolates formed two distinct clades but two strains isolated from A. mellifera were clustered with the A. cerana isolates. In the artificial-infection experiments, AcSBV negative-strand RNA could be detected in both adult bees and larvae of A. mellifera, although there were no obvious signs of the disease, demonstrating the replication of AcSBV in A. mellifera. Our results suggest that AcSBV is able to infect A. mellifera colonies with low prevalence (0.63% in this study) and pathogenicity. This work will help explain the different susceptibilities of A. cerana and A. mellifera to sacbrood disease and is potentially useful for guiding beekeeping practices. PMID:26801569

  17. Bee-hawking by the wasp, Vespa velutina, on the honeybees Apis cerana and A. mellifera

    NASA Astrophysics Data System (ADS)

    Tan, K.; Radloff, S. E.; Li, J. J.; Hepburn, H. R.; Yang, M. X.; Zhang, L. J.; Neumann, P.

    2007-06-01

    The vespine wasps, Vespa velutina, specialise in hawking honeybee foragers returning to their nests. We studied their behaviour in China using native Apis cerana and introduced A. mellifera colonies. When the wasps are hawking, A. cerana recruits threefold more guard bees to stave off predation than A. mellifera. The former also utilises wing shimmering as a visual pattern disruption mechanism, which is not shown by A. mellifera. A. cerana foragers halve the time of normal flight needed to dart into the nest entrance, while A. mellifera actually slows down in sashaying flight manoeuvres. V. velutina preferentially hawks A. mellifera foragers when both A. mellifera and A. cerana occur in the same apiary. The pace of wasp-hawking was highest in mid-summer but the frequency of hawking wasps was three times higher at A. mellifera colonies than at the A. cerana colonies. The wasps were taking A. mellifera foragers at a frequency eightfold greater than A. cerana foragers. The final hawking success rates of the wasps were about three times higher for A. mellifera foragers than for A. cerana. The relative success of native A. cerana over European A. mellifera in thwarting predation by the wasp V. velutina is interpreted as the result of co-evolution between the Asian wasp and honeybee, respectively.

  18. Laurel leaf extracts for honeybee pest and disease management: antimicrobial, microsporicidal, and acaricidal activity.

    PubMed

    Damiani, Natalia; Fernández, Natalia J; Porrini, Martín P; Gende, Liesel B; Álvarez, Estefanía; Buffa, Franco; Brasesco, Constanza; Maggi, Matías D; Marcangeli, Jorge A; Eguaras, Martín J

    2014-02-01

    A diverse set of parasites and pathogens affects productivity and survival of Apis mellifera honeybees. In beekeeping, traditional control by antibiotics and molecules of synthesis has caused problems with contamination and resistant pathogens. In this research, different Laurus nobilis extracts are tested against the main honeybee pests through an integrated point of view. In vivo effects on bee survival are also evaluated. The ethanol extract showed minimal inhibitory concentration (MIC) values of 208 to 416 μg/mL, having the best antimicrobial effect on Paenibacillus larvae among all substances tested. Similarly, this leaf extract showed a significant antiparasitic activity on Varroa destructor, killing 50 % of mites 24 h after a 30-s exposure, and on Nosema ceranae, inhibiting the spore development in the midgut of adult bees ingesting 1 × 10(4) μg/mL of extract solution. Both ethanol extract and volatile extracts (essential oil, hydrolate, and its main component) did not cause lethal effects on adult honeybees. Thus, the absence of topical and oral toxicity of the ethanol extract on bees and the strong antimicrobial, microsporicidal, and miticidal effects registered in this study place this laurel extract as a promising integrated treatment of bee diseases and stimulates the search for other bioactive phytochemicals from plants.

  19. Honeybees as a model for the study of visually guided flight, navigation, and biologically inspired robotics.

    PubMed

    Srinivasan, Mandyam V

    2011-04-01

    Research over the past century has revealed the impressive capacities of the honeybee, Apis mellifera, in relation to visual perception, flight guidance, navigation, and learning and memory. These observations, coupled with the relative ease with which these creatures can be trained, and the relative simplicity of their nervous systems, have made honeybees an attractive model in which to pursue general principles of sensorimotor function in a variety of contexts, many of which pertain not just to honeybees, but several other animal species, including humans. This review begins by describing the principles of visual guidance that underlie perception of the world in three dimensions, obstacle avoidance, control of flight speed, and orchestrating smooth landings. We then consider how navigation over long distances is accomplished, with particular reference to how bees use information from the celestial compass to determine their flight bearing, and information from the movement of the environment in their eyes to gauge how far they have flown. Finally, we illustrate how some of the principles gleaned from these studies are now being used to design novel, biologically inspired algorithms for the guidance of unmanned aerial vehicles.

  20. Effects of Sublethal Doses of Imidacloprid on Young Adult Honeybee Behaviour.

    PubMed

    Mengoni Goñalons, Carolina; Farina, Walter Marcelo

    2015-01-01

    Imidacloprid (IMI), a neonicotinoid used for its high selective toxicity to insects, is one of the most commonly used pesticides. However, its effect on beneficial insects such as the honeybee Apis mellifera L is still controversial. As young adult workers perform in-hive duties that are crucial for colony maintenance and survival, we aimed to assess the effect of sublethal IMI doses on honeybee behaviour during this period. Also, because this insecticide acts as a cholinergic-nicotinic agonist and these pathways take part in insect learning and memory processes; we used IMI to assess their role and the changes they suffer along early adulthood. We focused on appetitive behaviours based on the proboscis extension response. Laboratory reared adults of 2 to 10 days of age were exposed to sublethal IMI doses (0.25 or 0.50ng) administered orally or topically prior to behavioural assessment. Modification of gustatory responsiveness and impairment of learning and memory were found as a result of IMI exposure. These outcomes differed depending on age of evaluation, type of exposure and IMI dose, being the youngest bees more sensitive and the highest oral dose more toxic. Altogether, these results imply that IMI administered at levels found in agroecosystems can reduce sensitivity to reward and impair associative learning in young honeybees. Therefore, once a nectar inflow with IMI traces is distributed within the hive, it could impair in-door duties with negative consequences on colony performance.

  1. Effects of Sublethal Doses of Imidacloprid on Young Adult Honeybee Behaviour

    PubMed Central

    Mengoni Goñalons, Carolina; Farina, Walter Marcelo

    2015-01-01

    Imidacloprid (IMI), a neonicotinoid used for its high selective toxicity to insects, is one of the most commonly used pesticides. However, its effect on beneficial insects such as the honeybee Apis mellifera L is still controversial. As young adult workers perform in-hive duties that are crucial for colony maintenance and survival, we aimed to assess the effect of sublethal IMI doses on honeybee behaviour during this period. Also, because this insecticide acts as a cholinergic-nicotinic agonist and these pathways take part in insect learning and memory processes; we used IMI to assess their role and the changes they suffer along early adulthood. We focused on appetitive behaviours based on the proboscis extension response. Laboratory reared adults of 2 to 10 days of age were exposed to sublethal IMI doses (0.25 or 0.50ng) administered orally or topically prior to behavioural assessment. Modification of gustatory responsiveness and impairment of learning and memory were found as a result of IMI exposure. These outcomes differed depending on age of evaluation, type of exposure and IMI dose, being the youngest bees more sensitive and the highest oral dose more toxic. Altogether, these results imply that IMI administered at levels found in agroecosystems can reduce sensitivity to reward and impair associative learning in young honeybees. Therefore, once a nectar inflow with IMI traces is distributed within the hive, it could impair in-door duties with negative consequences on colony performance. PMID:26488410

  2. Genome-wide scans between two honeybee populations reveal putative signatures of human-mediated selection.

    PubMed

    Parejo, M; Wragg, D; Henriques, D; Vignal, A; Neuditschko, M

    2017-12-01

    Human-mediated selection has left signatures in the genomes of many domesticated animals, including the European dark honeybee, Apis mellifera mellifera, which has been selected by apiculturists for centuries. Using whole-genome sequence information, we investigated selection signatures in spatially separated honeybee subpopulations (Switzerland, n = 39 and France, n = 17). Three different test statistics were calculated in windows of 2 kb (fixation index, cross-population extended haplotype homozygosity and cross-population composite likelihood ratio) and combined into a recently developed composite selection score. Applying a stringent false discovery rate of 0.01, we identified six significant selective sweeps distributed across five chromosomes covering eight genes. These genes are associated with multiple molecular and biological functions, including regulation of transcription, receptor binding and signal transduction. Of particular interest is a selection signature on chromosome 1, which corresponds to the WNT4 gene, the family of which is conserved across the animal kingdom with a variety of functions. In Drosophila melanogaster, WNT4 alleles have been associated with differential wing, cross vein and abdominal phenotypes. Defining phenotypic characteristics of different Apis mellifera ssp., which are typically used as selection criteria, include colour and wing venation pattern. This signal is therefore likely to be a good candidate for human mediated-selection arising from different applied breeding practices in the two managed populations. © 2017 The Authors. Animal Genetics published by John Wiley & Sons Ltd on behalf of Stichting International Foundation for Animal Genetics.

  3. Classical conditioning of proboscis extension in harnessed Africanized honey bee queens (Apis mellifera L.).

    PubMed

    Aquino, Italo S; Abramson, Charles I; Soares, Ademilson E E; Fernandes, Andrea Cardoso; Benbassat, Danny

    2004-06-01

    Experiments are reported on learning in virgin Africanized honey bee queens (Apis mellifera L.). Queens restrained in a "Pavlovian harness" received a pairing of hexanal odor with a 1.8-M feeding of sucrose solution. Compared to explicitly unpaired controls, acquisition was rapid in reaching about 90%. Acquisition was also rapid in queens receiving an unconditioned stimulus of "bee candy" or an unconditioned stimulus administered by worker bees. During extinction the conditioned response declines. The steepest decline was observed in queens receiving an unconditioned stimulus of bee candy. These findings extend previous work on learning of Afrianized honey bee workers to a population of queen bees.

  4. Triazines facilitate neurotransmitter release of synaptic terminals located in hearts of frog (Rana ridibunda) and honeybee (Apis mellifera) and in the ventral nerve cord of a beetle (Tenebrio molitor).

    PubMed

    Papaefthimiou, Chrisovalantis; Zafeiridou, Georgia; Topoglidi, Aglaia; Chaleplis, George; Zografou, Stella; Theophilidis, George

    2003-07-01

    Three triazine herbicides, atrazine, simazine and metribuzine, and some of their major metabolites (cyanuric acid and 6-azauracil) were investigated for their action on synaptic terminals using three different isolated tissue preparations from the atria of the frog, Rana ridibunda, the heart of the honeybee, Apis mellifera macedonica, and the ventral nerve cord of the beetle, Tenebrio molitor. The results indicate that triazines facilitate the release of neurotransmitters from nerve terminals, as already reported for the mammalian central nervous system. The no observed effect concentration, the maximum concentration of the herbicide diluted in the saline that has no effect on the physiological properties of the isolated tissue, was estimated for each individual preparation. According to their relative potency, the three triazines tested can be ranked as follows: atrazine (cyanuric acid), simazine>metribuzine (6-azauracil). The action of these compounds on the cholinergic (amphibians, insects), adrenergic (amphibian) and octopaminergic (insects) synaptic terminals is discussed.

  5. Insight into the substrate specificity change caused by the Y227H mutation of α-glucosidase III from the European honeybee (Apis mellifera) through molecular dynamics simulations.

    PubMed

    Na Ayutthaya, Pratchaya Pramoj; Chanchao, Chanpen; Chunsrivirot, Surasak

    2018-01-01

    Honey from the European honeybee, Apis mellifera, is produced by α-glucosidases (HBGases) and is widely used in food, pharmaceutical, and cosmetic industries. Categorized by their substrate specificities, HBGases have three isoforms: HBGase I, II and III. Previous experimental investigations showed that wild-type HBGase III from Apis mellifera (WT) preferred sucrose to maltose as a substrate, while the Y227H mutant (MT) preferred maltose to sucrose. This mutant can potentially be used for malt hydrolysis because it can efficiently hydrolyze maltose. In this work, to elucidate important factors contributing to substrate specificity of this enzyme and gain insight into how the Y227H mutation causes substrate specificity change, WT and MT homology models were constructed, and sucrose/maltose was docked into active sites of the WT and MT. AMBER14 was employed to perform three independent molecular dynamics runs for these four complexes. Based on the relative binding free energies calculated by the MM-GBSA method, sucrose is better than maltose for WT binding, while maltose is better than sucrose for MT binding. These rankings support the experimentally observed substrate specificity that WT preferred sucrose to maltose as a substrate, while MT preferred maltose to sucrose, suggesting the importance of binding affinity for substrate specificity. We also found that the Y227H mutation caused changes in the proximities between the atoms necessary for sucrose/maltose hydrolysis that may affect enzyme efficiency in the hydrolysis of sucrose/maltose. Moreover, the per-residue binding free energy decomposition results show that Y227/H227 may be a key residue for preference binding of sucrose/maltose in the WT/MT active site. Our study provides important and novel insight into the binding of sucrose/maltose in the active site of Apis mellifera HBGase III and into how the Y227H mutation leads to the substrate specificity change at the molecular level. This knowledge could be

  6. Spider movement, UV reflectance and size, but not spider crypsis, affect the response of honeybees to Australian crab spiders.

    PubMed

    Llandres, Ana L; Rodríguez-Gironés, Miguel A

    2011-02-16

    According to the crypsis hypothesis, the ability of female crab spiders to change body colour and match the colour of flowers has been selected because flower visitors are less likely to detect spiders that match the colour of the flowers used as hunting platform. However, recent findings suggest that spider crypsis plays a minor role in predator detection and some studies even showed that pollinators can become attracted to flowers harbouring Australian crab spider when the UV contrast between spider and flower increases. Here we studied the response of Apis mellifera honeybees to the presence of white or yellow Thomisus spectabilis Australian crab spiders sitting on Bidens alba inflorescences and also the response of honeybees to crab spiders that we made easily detectable painting blue their forelimbs or abdomen. To account for the visual systems of crab spider's prey, we measured the reflectance properties of the spiders and inflorescences used for the experiments. We found that honeybees did not respond to the degree of matching between spiders and inflorescences (either chromatic or achromatic contrast): they responded similarly to white and yellow spiders, to control and painted spiders. However spider UV reflection, spider size and spider movement determined honeybee behaviour: the probability that honeybees landed on spider-harbouring inflorescences was greatest when the spiders were large and had high UV reflectance or when spiders were small and reflected little UV, and honeybees were more likely to reject inflorescences if spiders moved as the bee approached the inflorescence. Our study suggests that only the large, but not the small Australian crab spiders deceive their preys by reflecting UV light, and highlights the importance of other cues that elicited an anti-predator response in honeybees.

  7. Spider Movement, UV Reflectance and Size, but Not Spider Crypsis, Affect the Response of Honeybees to Australian Crab Spiders

    PubMed Central

    Llandres, Ana L.; Rodríguez-Gironés, Miguel A.

    2011-01-01

    According to the crypsis hypothesis, the ability of female crab spiders to change body colour and match the colour of flowers has been selected because flower visitors are less likely to detect spiders that match the colour of the flowers used as hunting platform. However, recent findings suggest that spider crypsis plays a minor role in predator detection and some studies even showed that pollinators can become attracted to flowers harbouring Australian crab spider when the UV contrast between spider and flower increases. Here we studied the response of Apis mellifera honeybees to the presence of white or yellow Thomisus spectabilis Australian crab spiders sitting on Bidens alba inflorescences and also the response of honeybees to crab spiders that we made easily detectable painting blue their forelimbs or abdomen. To account for the visual systems of crab spider's prey, we measured the reflectance properties of the spiders and inflorescences used for the experiments. We found that honeybees did not respond to the degree of matching between spiders and inflorescences (either chromatic or achromatic contrast): they responded similarly to white and yellow spiders, to control and painted spiders. However spider UV reflection, spider size and spider movement determined honeybee behaviour: the probability that honeybees landed on spider-harbouring inflorescences was greatest when the spiders were large and had high UV reflectance or when spiders were small and reflected little UV, and honeybees were more likely to reject inflorescences if spiders moved as the bee approached the inflorescence. Our study suggests that only the large, but not the small Australian crab spiders deceive their preys by reflecting UV light, and highlights the importance of other cues that elicited an anti-predator response in honeybees. PMID:21359183

  8. Oxidative stress and anti-oxidant enzyme activities in the trophocytes and fat cells of queen honeybees (Apis mellifera).

    PubMed

    Hsieh, Yu-Shan; Hsu, Chin-Yuan

    2013-08-01

    Trophocytes and fat cells of queen honeybees have been used for delayed cellular senescence studies, but their oxidative stress and anti-oxidant enzyme activities with advancing age are unknown. In this study, we assayed reactive oxygen species (ROS) and anti-oxidant enzymes in the trophocytes and fat cells of young and old queens. Young queens had lower ROS levels, lower superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities, and higher thioredoxin reductase (TR) activity compared to old queens. These results show that oxidative stress and anti-oxidant enzyme activities in trophocytes and fat cells increase with advancing age in queens and suggest that an increase in oxidative stress and a consequent increase in stress defense mechanisms are associated with the longevity of queen honeybees.

  9. Honey bees (Apis mellifera ligustica) swing abdomen to dissipate residual flying energy landing on a wall

    NASA Astrophysics Data System (ADS)

    Zhao, Jieliang; Huang, He; Yan, Shaoze

    2017-03-01

    Whether for insects or for aircrafts, landing is one of the indispensable links in the verification of airworthiness safety. The mechanisms by which insects achieve a fast and stable landing remain unclear. An intriguing example is provided by honeybees (Apis mellifera ligustica), which use the swinging motion of their abdomen to dissipate residual flying energy and to achieve a smooth, stable, and quick landing. By using a high-speed camera, we observed that touchdown is initiated by honeybees extending their front legs or antennae and then landing softly on a wall. After touchdown, they swing the rest of their bodies until all flying energy is dissipated. We suggested a simplified model with mass-spring dampers for the body of the honeybee and revealed the mechanism of flying energy transfer and dissipation in detail. Results demonstrate that body translation and abdomen swinging help honeybees dissipate residual flying energy and orchestrate smooth landings. The initial kinetic energy of flying is transformed into the kinetic energy of the abdomen's rotary movement. Then, the kinetic energy of rotary movement is converted into thermal energy during the swinging cycle. This strategy provides more insight into the mechanism of insect flying, which further inspires better design on aerial vehicle with better landing performance.

  10. Whole-genome resequencing of honeybee drones to detect genomic selection in a population managed for royal jelly.

    PubMed

    Wragg, David; Marti-Marimon, Maria; Basso, Benjamin; Bidanel, Jean-Pierre; Labarthe, Emmanuelle; Bouchez, Olivier; Le Conte, Yves; Vignal, Alain

    2016-06-03

    Four main evolutionary lineages of A. mellifera have been described including eastern Europe (C) and western and northern Europe (M). Many apiculturists prefer bees from the C lineage due to their docility and high productivity. In France, the routine importation of bees from the C lineage has resulted in the widespread admixture of bees from the M lineage. The haplodiploid nature of the honeybee Apis mellifera, and its small genome size, permits affordable and extensive genomics studies. As a pilot study of a larger project to characterise French honeybee populations, we sequenced 60 drones sampled from two commercial populations managed for the production of honey and royal jelly. Results indicate a C lineage origin, whilst mitochondrial analysis suggests two drones originated from the O lineage. Analysis of heterozygous SNPs identified potential copy number variants near to genes encoding odorant binding proteins and several cytochrome P450 genes. Signatures of selection were detected using the hapFLK haplotype-based method, revealing several regions under putative selection for royal jelly production. The framework developed during this study will be applied to a broader sampling regime, allowing the genetic diversity of French honeybees to be characterised in detail.

  11. Whole-genome resequencing of honeybee drones to detect genomic selection in a population managed for royal jelly

    PubMed Central

    Wragg, David; Marti-Marimon, Maria; Basso, Benjamin; Bidanel, Jean-Pierre; Labarthe, Emmanuelle; Bouchez, Olivier; Le Conte, Yves; Vignal, Alain

    2016-01-01

    Four main evolutionary lineages of A. mellifera have been described including eastern Europe (C) and western and northern Europe (M). Many apiculturists prefer bees from the C lineage due to their docility and high productivity. In France, the routine importation of bees from the C lineage has resulted in the widespread admixture of bees from the M lineage. The haplodiploid nature of the honeybee Apis mellifera, and its small genome size, permits affordable and extensive genomics studies. As a pilot study of a larger project to characterise French honeybee populations, we sequenced 60 drones sampled from two commercial populations managed for the production of honey and royal jelly. Results indicate a C lineage origin, whilst mitochondrial analysis suggests two drones originated from the O lineage. Analysis of heterozygous SNPs identified potential copy number variants near to genes encoding odorant binding proteins and several cytochrome P450 genes. Signatures of selection were detected using the hapFLK haplotype-based method, revealing several regions under putative selection for royal jelly production. The framework developed during this study will be applied to a broader sampling regime, allowing the genetic diversity of French honeybees to be characterised in detail. PMID:27255426

  12. CaMKII knockdown affects both early and late phases of olfactory long-term memory in the honeybee.

    PubMed

    Scholl, Christina; Kübert, Natalie; Muenz, Thomas S; Rössler, Wolfgang

    2015-12-01

    Honeybees are able to solve complex learning tasks and memorize learned information for long time periods. The molecular mechanisms mediating long-term memory (LTM) in the honeybee Apis mellifera are, to a large part, still unknown. We approached this question by investigating the potential function of the calcium/calmodulin-dependent protein kinase II (CaMKII), an enzyme known as a 'molecular memory switch' in vertebrates. CaMKII is able to switch to a calcium-independent constitutively active state, providing a mechanism for a molecular memory and has further been shown to play an essential role in structural synaptic plasticity. Using a combination of knockdown by RNA interference and pharmacological manipulation, we disrupted the function of CaMKII during olfactory learning and memory formation. We found that learning, memory acquisition and mid-term memory were not affected, but all manipulations consistently resulted in an impaired LTM. Both early LTM (24 h after learning) and late LTM (72 h after learning) were significantly disrupted, indicating the necessity of CaMKII in two successive stages of LTM formation in the honeybee. © 2015. Published by The Company of Biologists Ltd.

  13. Effect of 1,3-1,6 β-Glucan on Natural and Experimental Deformed Wing Virus Infection in Newly Emerged Honeybees (Apis mellifera ligustica)

    PubMed Central

    Sagona, Simona; Carrozza, Maria Luisa; Forzan, Mario; Pizzurro, Federica; Bibbiani, Carlo; Miragliotta, Vincenzo; Abramo, Francesca; Millanta, Francesca; Bagliacca, Marco; Poli, Alessandro; Felicioli, Antonio

    2016-01-01

    The Western Honeybee is a key pollinator for natural as well as agricultural ecosystems. In the last decade massive honeybee colony losses have been observed worldwide, the result of a complex syndrome triggered by multiple stress factors, with the RNA virus Deformed Wing Virus (DWV) and the mite Varroa destructor playing crucial roles. The mite supports replication of DWV to high titers, which exert an immunosuppressive action and correlate with the onset of the disease. The aim of this study was to investigate the effect of 1,3–1,6 β-glucan, a natural innate immune system modulator, on honeybee response to low-titer natural and high-titer experimental DWV infection. As the effects exerted by ß-glucans can be remarkably different, depending on the target organism and the dose administered, two parallel experiments were performed, where 1,3–1,6 ß-glucan at a concentration of 0.5% and 2% respectively, was added to the diet of three cohorts of newly emerged honeybees, which were sampled from a Varroa-free apiary and harboured a low endogenous DWV viral titer. Each cohort was subjected to one of the following experimental treatments: no injection, injection of a high-copy number DWV suspension into the haemocel (experimental DWV infection) or injection of PBS into the haemocoel (physical injury). Control bees fed a ß-glucan-free diet were subjected to the same treatments. Viral load, survival rate, haemocyte populations and phenoloxidase activity of each experimental group were measured and compared. The results indicated that oral administration of 0.5% ß-glucan to naturally infected honeybees was associated with a significantly decrease of the number of infected bees and viral load they carried, and with a significant increase of the survival rate, suggesting that this natural immune modulator molecule might contribute to increase honeybee resistance to viral infection. PMID:27829027

  14. Evidence of Apis cerana Sacbrood virus Infection in Apis mellifera.

    PubMed

    Gong, Hong-Ri; Chen, Xiu-Xian; Chen, Yan Ping; Hu, Fu-Liang; Zhang, Jiang-Lin; Lin, Zhe-Guang; Yu, Ji-Wei; Zheng, Huo-Qing

    2016-04-01

    Sacbrood virus(SBV) is one of the most destructive viruses in the Asian honeybee Apis cerana but is much less destructive in Apis mellifera In previous studies, SBV isolates infecting A. cerana(AcSBV) and SBV isolates infecting A. mellifera(AmSBV) were identified as different serotypes, suggesting a species barrier in SBV infection. In order to investigate this species isolation, we examined the presence of SBV infection in 318A. mellifera colonies and 64A. cerana colonies, and we identified the genotypes of SBV isolates. We also performed artificial infection experiments under both laboratory and field conditions. The results showed that 38A. mellifera colonies and 37A. cerana colonies were positive for SBV infection. Phylogenetic analysis based on RNA-dependent RNA polymerase (RdRp) gene sequences indicated that A. cerana isolates and most A. mellifera isolates formed two distinct clades but two strains isolated fromA. mellifera were clustered with theA. cerana isolates. In the artificial-infection experiments, AcSBV negative-strand RNA could be detected in both adult bees and larvae ofA. mellifera, although there were no obvious signs of the disease, demonstrating the replication of AcSBV inA. mellifera Our results suggest that AcSBV is able to infectA. melliferacolonies with low prevalence (0.63% in this study) and pathogenicity. This work will help explain the different susceptibilities ofA. cerana and A. melliferato sacbrood disease and is potentially useful for guiding beekeeping practices. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  15. Cyclic Nucleotide-Gated Channels, Calmodulin, Adenylyl Cyclase, and Calcium/Calmodulin-Dependent Protein Kinase II Are Required for Late, but Not Early, Long-Term Memory Formation in the Honeybee

    ERIC Educational Resources Information Center

    Matsumoto, Yukihisa; Sandoz, Jean-Christophe; Devaud, Jean-Marc; Lormant, Flore; Mizunami, Makoto; Giurfa, Martin

    2014-01-01

    Memory is a dynamic process that allows encoding, storage, and retrieval of information acquired through individual experience. In the honeybee "Apis mellifera," olfactory conditioning of the proboscis extension response (PER) has shown that besides short-term memory (STM) and mid-term memory (MTM), two phases of long-term memory (LTM)…

  16. Optimization of crystals from nanodrops: crystallization and preliminary crystallographic study of a pheromone-binding protein from the honeybee Apis mellifera L.

    PubMed

    Lartigue, Audrey; Gruez, Arnaud; Briand, Loïc; Pernollet, Jean-Claude; Spinelli, Silvia; Tegoni, Mariella; Cambillau, Christian

    2003-05-01

    Pheromone-binding proteins (PBPs) are small helical proteins ( approximately 13-17 kDa) present in various sensory organs from moths and other insect species. They are involved in the transport of pheromones from the sensillar lymph to the olfactory receptors. Here, crystals of a PBP (Amel-ASP1) originating from honeybee (Apis mellifera L.) antennae and expressed as recombinant protein using the yeast Pichia pastoris are reported. Crystals of Amel-ASP1 have been obtained by the sitting-drop vapour-diffusion method using a nanodrop-dispensing robot under the following conditions: 200 nl of 40 mg ml(-1) protein solution in 10 mM Tris, 25 mM NaCl pH 8.0 was mixed with 100 nl of well solution containing 0.15 M sodium citrate, 1.5 M ammonium sulfate pH 5.5. The protein crystallizes in space group C222(1), with unit-cell parameters a = 74.8, b = 85.8, c = 50.2 A. With one molecule in the asymmetric unit, V(M) is 3.05 A(3) Da(-1) and the solvent content is 60%. A complete data set has been collected at 1.6 A resolution on beamline ID14-2 (ESRF, Grenoble). The nanodrop crystallization technique used with a novel optimization procedure made it possible to consume small amounts of protein and to obtain a unique crystal per nanodrop, suitable directly for data collection in-house or at a synchrotron-radiation source.

  17. Post-embryonic changes in the hindgut of honeybee Apis mellifera workers: Morphology, cuticle deposition, apoptosis, and cell proliferation.

    PubMed

    Gonçalves, Wagner Gonzaga; Fernandes, Kenner Morais; Santana, Weyder Cristiano; Martins, Gustavo Ferreira; Zanuncio, José Cola; Serrão, José Eduardo

    2017-11-15

    In insects, the hindgut is a homeostatic region of the digestive tract, divided into pylorus, ileum, and rectum, that reabsorbs water, ions, and small molecules produced during hemolymph filtration. The hindgut anatomy in bee larvae is different from that of adult workers. This study reports the morphological changes and cellular events that occur in the hindgut during the metamorphosis of the honeybee Apis mellifera. We describe the occurrence of autophagosomes and the ultrastructure of the epithelial cells and cuticle, suggesting that cuticular degradation begins in prepupae, with the cuticle being reabsorbed and recycled by autophagosomes in white- and pink-eyed pupae, followed by the deposition of new cuticle in light-brown-eyed pupae. In L5S larvae and prepupae, the hindgut undergoes cell proliferation in the anterior and posterior ends. In the pupae, the pylorus, ileum, and rectum regions are differentiated, and cell proliferation ceases in dark-brown-eyed pupae. Apoptosis occurs in the hindgut from the L5S larval to the pink-eyed pupal stage. In light-brown- and dark-brown-eyed pupae, the ileum epithelium changes from pseudostratified to simple only after the production of the basal lamina, whereas the rectal epithelium is always flattened. In black-eyed pupae, ileum epithelial cells have large vacuoles and subcuticular spaces, while in adult forager workers these cells have long invaginations in the cell apex and many mitochondria, indicating a role in the transport of compounds. Our findings show that hindgut morphogenesis is a dynamic process, with tissue remodeling and cellular events taking place for the formation of different regions of the organ, the reconstruction of a new cuticle, and the remodeling of visceral muscles. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Quantitative proteomics reveals divergent responses in Apis mellifera worker and drone pupae to parasitization by Varroa destructor.

    PubMed

    Surlis, Carla; Carolan, James C; Coffey, Mary; Kavanagh, Kevin

    Varroa destructor is a haemophagous ectoparasite of honeybees and is considered a major causal agent of colony losses in Europe and North America. Although originating in Eastern Asia where it parasitizes Apis cerana, it has shifted hosts to the western honeybee Apis mellifera on which it has a greater deleterious effect on the individual and colony level. To investigate this important host-parasite interaction and to determine whether Varroa causes different effects on different castes we conducted a label free quantitative proteomic analysis of Varroa-parasitized and non-parasitized drone and worker Apis mellifera pupae. 1195 proteins were identified in total, of which 202 and 250 were differentially abundant in parasitized drone and worker pupae, respectively. Both parasitized drone and worker pupae displayed reduced abundance in proteins associated with the cuticle, lipid transport and innate immunity. Proteins involved in metabolic processes were more abundant in both parasitized castes although the response in workers was more pronounced. A number of caste specific responses were observed including differential abundance of numerous cytoskeletal and muscle proteins, which were of higher abundance in parasitized drones in comparison to parasitized workers. Proteins involved in fatty acid and carbohydrate metabolism were more abundant in parasitized workers as were a large number of ribosomal proteins highlighting either potentially divergent responses to Varroa or a different strategy by the mite when parasitizing the different castes. This data improves our understanding of this interaction and may provide a basis for future studies into improvements to therapy and control of Varroasis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Miniature Brain Decision Making in Complex Visual Environments

    DTIC Science & Technology

    2008-07-18

    release; distribution unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT The grantee investigated, using the honeybee ( Apis mellifera ) as a model...successful for understanding face processing in both human adults and infants. Individual honeybees ( Apis mellifera ) were trained with...for 30 bees (group 3) of the target stimuli. Bernard J, Stach S, Giurfa M (2007) Categorization of visual stimuli in the honeybee Apis mellifera

  20. Lactobacillus panisapium sp. nov., from honeybee Apis cerana bee bread.

    PubMed

    Wang, Cong; Huang, Yan; Li, Li; Guo, Jun; Wu, Zhengyun; Deng, Yu; Dai, Lirong; Ma, Shichun

    2018-03-01

    A novel facultatively anaerobic, Gram-stain-positive, non-motile, non-spore-forming, catalase-negative bacterium of the genus Lactobacillus, designated strain Bb 2-3 T , was isolated from bee bread of Apis cerana collected from a hive in Kunming, China. The strain was regular rod-shaped. Optimal growth occurred at 37 °C, pH 6.5 with 5.0 g l -1 NaCl. The predominant fatty acids were C18 : 1ω9c, C16 : 0 and C19 : 0 iso. Respiratory quinones were not detected. Seven glycolipids, three lipids, phosphatidylglycerol and diphosphatidylglycerol were detected. The peptidoglycan type A4α l-Lys-d-Asp was determined. Strain Bb 2-3 T was closely related to Lactobacillus bombicola DSM 28793 T , Lactobacillus apis LMG 26964 T and Lactobacillus helsingborgensis DSM 26265 T , with 97.8, 97.6 and 97.0 % 16S rRNA gene sequence similarity, respectively. A comparison of two housekeeping genes, rpoA and pheS, revealed that strain Bb 2-3 T was well separated from the reference strains of species of the genus Lactobacillus. The average nucleotide identity between strain Bb 2-3 T and the type strains of closely related species was lower than the 95-96 % threshold value for delineation of genomic prokaryotic species. The G+C content of the genomic DNA of strain Bb 2-3 T was 37.4 mol%. On the basis of phenotypic, chemotaxonomic and phylogenetic analyses, strain Bb 2-3 T is proposed to represent a novel species of the genus Lactobacillus, for which we propose the name Lactobacillus panisapium sp. nov. The type strain is Bb 2-3 T (=DSM 102188 T =ACCC 19955 T ).

  1. High sample throughput genotyping for estimating C-lineage introgression in the dark honeybee: an accurate and cost-effective SNP-based tool.

    PubMed

    Henriques, Dora; Browne, Keith A; Barnett, Mark W; Parejo, Melanie; Kryger, Per; Freeman, Tom C; Muñoz, Irene; Garnery, Lionel; Highet, Fiona; Jonhston, J Spencer; McCormack, Grace P; Pinto, M Alice

    2018-06-04

    The natural distribution of the honeybee (Apis mellifera L.) has been changed by humans in recent decades to such an extent that the formerly widest-spread European subspecies, Apis mellifera mellifera, is threatened by extinction through introgression from highly divergent commercial strains in large tracts of its range. Conservation efforts for A. m. mellifera are underway in multiple European countries requiring reliable and cost-efficient molecular tools to identify purebred colonies. Here, we developed four ancestry-informative SNP assays for high sample throughput genotyping using the iPLEX Mass Array system. Our customized assays were tested on DNA from individual and pooled, haploid and diploid honeybee samples extracted from different tissues using a diverse range of protocols. The assays had a high genotyping success rate and yielded accurate genotypes. Performance assessed against whole-genome data showed that individual assays behaved well, although the most accurate introgression estimates were obtained for the four assays combined (117 SNPs). The best compromise between accuracy and genotyping costs was achieved when combining two assays (62 SNPs). We provide a ready-to-use cost-effective tool for accurate molecular identification and estimation of introgression levels to more effectively monitor and manage A. m. mellifera conservatories.

  2. Honeybees (Apis mellifera) Learn Color Discriminations via Differential Conditioning Independent of Long Wavelength (Green) Photoreceptor Modulation

    PubMed Central

    Wijesekara Witharanage, Randika; Rosa, Marcello G. P.

    2012-01-01

    Background Recent studies on colour discrimination suggest that experience is an important factor in how a visual system processes spectral signals. In insects it has been shown that differential conditioning is important for processing fine colour discriminations. However, the visual system of many insects, including the honeybee, has a complex set of neural pathways, in which input from the long wavelength sensitive (‘green’) photoreceptor may be processed either as an independent achromatic signal or as part of a trichromatic opponent-colour system. Thus, a potential confound of colour learning in insects is the possibility that modulation of the ‘green’ photoreceptor could underlie observations. Methodology/Principal Findings We tested honeybee vision using light emitting diodes centered on 414 and 424 nm wavelengths, which limit activation to the short-wavelength-sensitive (‘UV’) and medium-wavelength-sensitive (‘blue’) photoreceptors. The absolute irradiance spectra of stimuli was measured and modelled at both receptor and colour processing levels, and stimuli were then presented to the bees in a Y-maze at a large visual angle (26°), to ensure chromatic processing. Sixteen bees were trained over 50 trials, using either appetitive differential conditioning (N = 8), or aversive-appetitive differential conditioning (N = 8). In both cases the bees slowly learned to discriminate between the target and distractor with significantly better accuracy than would be expected by chance. Control experiments confirmed that changing stimulus intensity in transfers tests does not significantly affect bee performance, and it was possible to replicate previous findings that bees do not learn similar colour stimuli with absolute conditioning. Conclusion Our data indicate that honeybee colour vision can be tuned to relatively small spectral differences, independent of ‘green’ photoreceptor contrast and brightness cues. We thus show that colour vision

  3. Component-resolved evaluation of the content of major allergens in therapeutic extracts for specific immunotherapy of honeybee venom allergy

    PubMed Central

    Blank, Simon; Etzold, Stefanie; Darsow, Ulf; Schiener, Maximilian; Eberlein, Bernadette; Russkamp, Dennis; Wolf, Sara; Graessel, Anke; Biedermann, Tilo; Ollert, Markus; Schmidt-Weber, Carsten B.

    2017-01-01

    ABSTRACT Allergen-specific immunotherapy is the only curative treatment of honeybee venom (HBV) allergy, which is able to protect against further anaphylactic sting reactions. Recent analyses on a molecular level have demonstrated that HBV represents a complex allergen source that contains more relevant major allergens than formerly anticipated. Moreover, allergic patients show very diverse sensitization profiles with the different allergens. HBV-specific immunotherapy is conducted with HBV extracts which are derived from pure venom. The allergen content of these therapeutic extracts might differ due to natural variations of the source material or different down-stream processing strategies of the manufacturers. Since variations of the allergen content of therapeutic HBV extracts might be associated with therapeutic failure, we adressed the component-resolved allergen composition of different therapeutic grade HBV extracts which are approved for immunotherapy in numerous countries. The extracts were analyzed for their content of the major allergens Api m 1, Api m 2, Api m 3, Api m 5 and Api m 10. Using allergen-specific antibodies we were able to demonstrate the underrepresentation of relevant major allergens such as Api m 3, Api m 5 and Api m 10 in particular therapeutic extracts. Taken together, standardization of therapeutic extracts by determination of the total allergenic potency might imply the intrinsic pitfall of losing information about particular major allergens. Moreover, the variable allergen composition of different therapeutic HBV extracts might have an impact on therapy outcome and the clinical management of HBV-allergic patients with specific IgE to particular allergens. PMID:28494206

  4. Proteome and phosphoproteome analysis of honeybee (Apis mellifera) venom collected from electrical stimulation and manual extraction of the venom gland

    PubMed Central

    2013-01-01

    Background Honeybee venom is a complicated defensive toxin that has a wide range of pharmacologically active compounds. Some of these compounds are useful for human therapeutics. There are two major forms of honeybee venom used in pharmacological applications: manually (or reservoir disrupting) extracted glandular venom (GV), and venom extracted through the use of electrical stimulation (ESV). A proteome comparison of these two venom forms and an understanding of the phosphorylation status of ESV, are still very limited. Here, the proteomes of GV and ESV were compared using both gel-based and gel-free proteomics approaches and the phosphoproteome of ESV was determined through the use of TiO2 enrichment. Results Of the 43 proteins identified in GV, < 40% were venom toxins, and > 60% of the proteins were non-toxic proteins resulting from contamination by gland tissue damage during extraction and bee death. Of the 17 proteins identified in ESV, 14 proteins (>80%) were venom toxic proteins and most of them were found in higher abundance than in GV. Moreover, two novel proteins (dehydrogenase/reductase SDR family member 11-like and histone H2B.3-like) and three novel phosphorylation sites (icarapin (S43), phospholipase A-2 (T145), and apamin (T23)) were identified. Conclusions Our data demonstrate that venom extracted manually is different from venom extracted using ESV, and these differences may be important in their use as pharmacological agents. ESV may be more efficient than GV as a potential pharmacological source because of its higher venom protein content, production efficiency, and without the need to kill honeybee. The three newly identified phosphorylated venom proteins in ESV may elicit a different immune response through the specific recognition of antigenic determinants. The two novel venom proteins extend our proteome coverage of honeybee venom. PMID:24199871

  5. What is the main driver of ageing in long-lived winter honeybees: antioxidant enzymes, innate immunity, or vitellogenin?

    PubMed

    Aurori, Cristian M; Buttstedt, Anja; Dezmirean, Daniel S; Mărghitaş, Liviu A; Moritz, Robin F A; Erler, Silvio

    2014-06-01

    To date five different theories compete in explaining the biological mechanisms of senescence or ageing in invertebrates. Physiological, genetical, and environmental mechanisms form the image of ageing in individuals and groups. Social insects, especially the honeybee Apis mellifera, present exceptional model systems to study developmentally related ageing. The extremely high phenotypic plasticity for life expectancy resulting from the female caste system provides a most useful system to study open questions with respect to ageing. Here, we used long-lived winter worker honeybees and measured transcriptional changes of 14 antioxidative enzyme, immunity, and ageing-related (insulin/insulin-like growth factor signaling pathway) genes at two time points during hibernation. Additionally, worker bees were challenged with a bacterial infection to test ageing- and infection-associated immunity changes. Gene expression levels for each group of target genes revealed that ageing had a much higher impact than the bacterial challenge, notably for immunity-related genes. Antimicrobial peptide and antioxidative enzyme genes were significantly upregulated in aged worker honeybees independent of bacterial infections. The known ageing markers vitellogenin and IlP-1 were opposed regulated with decreasing vitellogenin levels during ageing. The increased antioxidative enzyme and antimicrobial peptide gene expression may contribute to a retardation of senescence in long-lived hibernating worker honeybees. © The Author 2013. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Effects of field-realistic doses of glyphosate on honeybee appetitive behaviour.

    PubMed

    Herbert, Lucila T; Vázquez, Diego E; Arenas, Andrés; Farina, Walter M

    2014-10-01

    Glyphosate (GLY) is a broad-spectrum herbicide used for weed control. The sub-lethal impact of GLY on non-target organisms such as insect pollinators has not yet been evaluated. Apis mellifera is the main pollinator in agricultural environments and is a well-known model for behavioural research. Honeybees are also accurate biosensors of environmental pollutants and their appetitive behavioural response is a suitable tool with which to test sub-lethal effects of agrochemicals. We studied the effects of field-realistic doses of GLY on honeybees exposed chronically or acutely to the herbicide. We focused on sucrose sensitivity, elemental and non-elemental associative olfactory conditioning of the proboscis extension response (PER), and foraging-related behaviour. We found a reduced sensitivity to sucrose and learning performance for the groups chronically exposed to GLY concentrations within the range of recommended doses. When olfactory PER conditioning was performed with sucrose reward with the same GLY concentrations (acute exposure), elemental learning and short-term memory retention decreased significantly compared with controls. Non-elemental associative learning was also impaired by an acute exposure to GLY traces. Altogether, these results imply that GLY at concentrations found in agro-ecosystems as a result of standard spraying can reduce sensitivity to nectar reward and impair associative learning in honeybees. However, no effect on foraging-related behaviour was found. Therefore, we speculate that successful forager bees could become a source of constant inflow of nectar with GLY traces that could then be distributed among nestmates, stored in the hive and have long-term negative consequences on colony performance. © 2014. Published by The Company of Biologists Ltd.

  7. Decision-making in honeybee swarms based on quality and distance information of candidate nest sites.

    PubMed

    Laomettachit, Teeraphan; Termsaithong, Teerasit; Sae-Tang, Anuwat; Duangphakdee, Orawan

    2015-01-07

    In the nest-site selection process of honeybee swarms, an individual bee performs a waggle dance to communicate information about direction, quality, and distance of a discovered site to other bees at the swarm. Initially, different groups of bees dance to represent different potential sites, but eventually the swarm usually reaches an agreement for only one site. Here, we model the nest-site selection process in honeybee swarms of Apis mellifera and show how the swarms make adaptive decisions based on a trade-off between the quality and distance to candidate nest sites. We use bifurcation analysis and stochastic simulations to reveal that the swarm's site distance preference is moderate>near>far when the swarms choose between low quality sites. However, the distance preference becomes near>moderate>far when the swarms choose between high quality sites. Our simulations also indicate that swarms with large population size prefer nearer sites and, in addition, are more adaptive at making decisions based on available information compared to swarms with smaller population size. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Diet-related gut bacterial dysbiosis correlates with impaired development, increased mortality and Nosema disease in the honeybee (Apis mellifera).

    PubMed

    Maes, Patrick W; Rodrigues, Pedro A P; Oliver, Randy; Mott, Brendon M; Anderson, Kirk E

    2016-11-01

    Dysbiosis, defined as unhealthy shifts in bacterial community composition, can lower the colonization resistance of the gut to intrinsic pathogens. Here, we determined the effect of diet age and type on the health and bacterial community composition of the honeybee (Apis mellifera). We fed newly emerged bees fresh or aged diets, and then recorded host development and bacterial community composition from four distinct regions of the hosts' digestive tract. Feeding fresh pollen or fresh substitute, we found no difference in host mortality, diet consumption, development or microbial community composition. In contrast, bees fed aged diets suffered impaired development, increased mortality and developed a significantly dysbiotic microbiome. The consumption of aged diets resulted in a significant reduction in the core ileum bacterium Snodgrassella alvi and a corresponding increase in intrinsic pathogen Frischella perrara. Moreover, the relative abundance of S. alvi in the ileum was positively correlated with host survival and development. The inverse was true for both F. perrara and Parasacharibacter apium. Collectively, our findings suggest that the early establishment of S. alvi is associated with healthy nurse development and potentially excludes F. perrara and P. apium from the ileum. Although at low abundance, establishment of the common midgut pathogen Nosema spp. was significantly associated with ileum dysbiosis and associated host deficiencies. Moreover, dysbiosis in the ileum was reflected in the rectum, mouthparts and hypopharyngeal glands, suggesting a systemic host effect. Our findings demonstrate that typically occurring alterations in diet quality play a significant role in colony health and the establishment of a dysbiotic gut microbiome. © Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  9. 7 CFR 760.210 - Honeybee payment calculations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... provided in § 760.203(g), based on 60 percent of the producer's actual cost for honeybee feed that was: (1... producer's actual replacement cost for a honeybee colony that was damaged or destroyed due to an eligible... feed for an eligible honeybee colony, as provided in § 760.204(g); (b) An eligible honeybee producer...

  10. Honeybee society destruction by losing control of self-reproduction

    NASA Astrophysics Data System (ADS)

    Zhang, Peipei; Su, Beibei; He, Da-Ren

    2004-03-01

    Recently the mechanism of the damage caused by invasion of Apis mellifera capensis honeybee into the normal A. M. Scutellata colonies became interesting for scientists due to the fact that the mechanism may resemble those of cancer vicious hyperplasia, spreading of some epidemic, and turbulence of society induced by some bad society groups. For the mechanism, we suggest a new guess, which means that the losing control of self-reproduction disturbs and throws information structure of the society into confuse. We also simulate the damage process with a cellular automata based on the idea. The simulation shows that the process is equivalent to a non-equilibrium percolation phase transition. This discussion remind us that the management and monitor on the information network between society members may be a more effective way for avoiding the overflow of the destructor sub-colonies.

  11. Ceropegia sandersonii Mimics Attacked Honeybees to Attract Kleptoparasitic Flies for Pollination.

    PubMed

    Heiduk, Annemarie; Brake, Irina; von Tschirnhaus, Michael; Göhl, Matthias; Jürgens, Andreas; Johnson, Steven D; Meve, Ulrich; Dötterl, Stefan

    2016-10-24

    Four to six percent of plants, distributed over different angiosperm families, entice pollinators by deception [1]. In these systems, chemical mimicry is often used as an efficient way to exploit the olfactory preferences of animals for the purpose of attracting them as pollinators [2,3]. Here, we report a very specific type of chemical mimicry of a food source. Ceropegia sandersonii (Apocynaceae), a deceptive South African plant with pitfall flowers, mimics attacked honeybees. We identified kleptoparasitic Desmometopa flies (Milichiidae) as the main pollinators of C. sandersonii. These flies are well known to feed on honeybees that are eaten by spiders, which we thus predicted as the model chemically mimicked by the plant. Indeed, we found that the floral scent of C. sandersonii is comparable to volatiles released from honeybees when under simulated attack. Moreover, many of these shared compounds elicited physiological responses in antennae of pollinating Desmometopa flies. A mixture of four compounds-geraniol, 2-heptanone, 2-nonanol, and (E)-2-octen-1-yl acetate-was highly attractive to the flies. We conclude that C. sandersonii is specialized on kleptoparasitic fly pollinators by deploying volatiles linked to the flies' food source, i.e., attacked and/or freshly killed honeybees. The blend of compounds emitted by C. sandersonii is unusual among flowering plants and lures kleptoparasitic flies into the trap flowers. This study describes a new example of how a plant can achieve pollination through chemical mimicry of the food sources of adult carnivorous animals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Food to some, poison to others - honeybee royal jelly and its growth inhibiting effect on European Foulbrood bacteria.

    PubMed

    Vezeteu, Thomas V; Bobiş, Otilia; Moritz, Robin F A; Buttstedt, Anja

    2017-02-01

    Honeybee colonies (Apis mellifera) serve as attractive hosts for a variety of pathogens providing optimal temperatures, humidity, and an abundance of food. Thus, honeybees have to deal with pathogens throughout their lives and, even as larvae they are affected by severe brood diseases like the European Foulbrood caused by Melissococcus plutonius. Accordingly, it is highly adaptive that larval food jelly contains antibiotic compounds. However, although food jelly is primarily consumed by bee larvae, studies investigating the antibiotic effects of this jelly have largely concentrated on bacterial human diseases. In this study, we show that royal jelly fed to queen larvae and added to the jelly of drone and worker larvae, inhibits not only the growth of European Foulbrood-associated bacteria but also its causative agent M. plutonius. This effect is shown to be caused by the main protein (major royal jelly protein 1) of royal jelly. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  13. Interactive Effects of Large- and Small-Scale Sources of Feral Honey-Bees for Sunflower in the Argentine Pampas

    PubMed Central

    Sáez, Agustín; Sabatino, Malena; Aizen, Marcelo A.

    2012-01-01

    Pollinators for animal pollinated crops can be provided by natural and semi-natural habitats, ranging from large vegetation remnants to small areas of non-crop land in an otherwise highly modified landscape. It is unknown, however, how different small- and large-scale habitat patches interact as pollinator sources. In the intensively managed Argentine Pampas, we studied the additive and interactive effects of large expanses (up to 2200 ha) of natural habitat, represented by untilled isolated “sierras”, and narrow (3–7 m wide) strips of semi-natural habitat, represented by field margins, as pollinator sources for sunflower (Helianthus annus). We estimated visitation rates by feral honey-bees, Apis mellifera, and native flower visitors (as a group) at 1, 5, 25, 50 and 100 m from a field margin in 17 sunflower fields 0–10 km distant from the nearest sierra. Honey-bees dominated the pollinator assemblage accounting for >90% of all visits to sunflower inflorescences. Honey-bee visitation was strongly affected by proximity to the sierras decreasing by about 70% in the most isolated fields. There was also a decline in honey-bee visitation with distance from the field margin, which was apparent with increasing field isolation, but undetected in fields nearby large expanses of natural habitat. The probability of observing a native visitor decreased with isolation from the sierras, but in other respects visitation by flower visitors other than honey-bees was mostly unaffected by the habitat factors assessed in this study. Overall, we found strong hierarchical and interactive effects between the study large and small-scale pollinator sources. These results emphasize the importance of preserving natural habitats and managing actively field verges in the absence of large remnants of natural habitat for improving pollinator services. PMID:22303477

  14. Interactive effects of large- and small-scale sources of feral honey-bees for sunflower in the Argentine Pampas.

    PubMed

    Sáez, Agustín; Sabatino, Malena; Aizen, Marcelo A

    2012-01-01

    Pollinators for animal pollinated crops can be provided by natural and semi-natural habitats, ranging from large vegetation remnants to small areas of non-crop land in an otherwise highly modified landscape. It is unknown, however, how different small- and large-scale habitat patches interact as pollinator sources. In the intensively managed Argentine Pampas, we studied the additive and interactive effects of large expanses (up to 2200 ha) of natural habitat, represented by untilled isolated "sierras", and narrow (3-7 m wide) strips of semi-natural habitat, represented by field margins, as pollinator sources for sunflower (Helianthus annus). We estimated visitation rates by feral honey-bees, Apis mellifera, and native flower visitors (as a group) at 1, 5, 25, 50 and 100 m from a field margin in 17 sunflower fields 0-10 km distant from the nearest sierra. Honey-bees dominated the pollinator assemblage accounting for >90% of all visits to sunflower inflorescences. Honey-bee visitation was strongly affected by proximity to the sierras decreasing by about 70% in the most isolated fields. There was also a decline in honey-bee visitation with distance from the field margin, which was apparent with increasing field isolation, but undetected in fields nearby large expanses of natural habitat. The probability of observing a native visitor decreased with isolation from the sierras, but in other respects visitation by flower visitors other than honey-bees was mostly unaffected by the habitat factors assessed in this study. Overall, we found strong hierarchical and interactive effects between the study large and small-scale pollinator sources. These results emphasize the importance of preserving natural habitats and managing actively field verges in the absence of large remnants of natural habitat for improving pollinator services.

  15. Sex and Caste-Specific Variation in Compound Eye Morphology of Five Honeybee Species

    PubMed Central

    Streinzer, Martin; Brockmann, Axel; Nagaraja, Narayanappa; Spaethe, Johannes

    2013-01-01

    Ranging from dwarfs to giants, the species of honeybees show remarkable differences in body size that have placed evolutionary constrains on the size of sensory organs and the brain. Colonies comprise three adult phenotypes, drones and two female castes, the reproductive queen and sterile workers. The phenotypes differ with respect to tasks and thus selection pressures which additionally constrain the shape of sensory systems. In a first step to explore the variability and interaction between species size-limitations and sex and caste-specific selection pressures in sensory and neural structures in honeybees, we compared eye size, ommatidia number and distribution of facet lens diameters in drones, queens and workers of five species (Apis andreniformis, A. florea, A. dorsata, A. mellifera, A. cerana). In these species, male and female eyes show a consistent sex-specific organization with respect to eye size and regional specialization of facet diameters. Drones possess distinctly enlarged eyes with large dorsal facets. Aside from these general patterns, we found signs of unique adaptations in eyes of A. florea and A. dorsata drones. In both species, drone eyes are disproportionately enlarged. In A. dorsata the increased eye size results from enlarged facets, a likely adaptation to crepuscular mating flights. In contrast, the relative enlargement of A. florea drone eyes results from an increase in ommatidia number, suggesting strong selection for high spatial resolution. Comparison of eye morphology and published mating flight times indicates a correlation between overall light sensitivity and species-specific mating flight times. The correlation suggests an important role of ambient light intensities in the regulation of species-specific mating flight times and the evolution of the visual system. Our study further deepens insights into visual adaptations within the genus Apis and opens up future perspectives for research to better understand the timing mechanisms

  16. Reproductive biology of Varroa destructor in Africanized honey bees (Apis mellifera).

    PubMed

    Calderón, R A; van Veen, J W; Sommeijer, M J; Sanchez, L A

    2010-04-01

    Since its first contact with Apis mellifera, the population dynamics of the parasitic mite Varroa destructor varies from one region to another. In many regions of the world, apiculture has come to depend on the use of acaricides, because of the extensive damage caused by varroa to bee colonies. At present, the mite is considered to contribute to the recent decline of honey bee colonies in North America and Europe. Because in tropical climates worker brood rearing and varroa reproduction occurs all year round, it could be expected that here the impact of the parasite will be even more devastating. Yet, this has not been the case in tropical areas of South America. In Brazil, varroa was introduced more than 30 years ago and got established at low levels of infestation, without causing apparent damage to apiculture with Africanized honey bees (AHB). The tolerance of AHB to varroa is apparently attributable, at least in part, to resistance in the bees. The low fertility of this parasite in Africanized worker brood and the grooming and hygienic behavior of the bees are referred as important factors in keeping mite infestation low in the colonies. It has also been suggested that the type of mite influences the level of tolerance in a honey bee population. The Korea haplotype is predominant in unbalanced host-parasite systems, as exist in Europe, whereas in stable systems, as in Brazil, the Japan haplotype used to predominate. However, the patterns of varroa genetic variation have changed in Brazil. All recently sampled mites were of the Korea haplotype, regardless whether the mites had reproduced or not. The fertile mites on AHB in Brazil significantly increased from 56% in the 1980s to 86% in recent years. Nevertheless, despite the increased fertility, no increase in mite infestation rates in the colonies has been detected so far. A comprehensive literature review of varroa reproduction data, focusing on fertility and production of viable female mites, was conducted to

  17. Walking patterns induced by learned odors in the honeybee, Apis mellifera L.

    PubMed

    Yamashita, Toshiya; Haupt, S Shuichi; Ikeno, Hidetoshi; Ai, Hiroyuki

    2016-01-01

    The odor localization strategy induced by odors learned via differential conditioning of the proboscis extension response was investigated in honeybees. In response to reward-associated but not non-reward-associated odors, learners walked longer paths than non-learners and control bees. When orange odor reward association was learned, the path length and the body turn angles were small during odor stimulation and greatly increased after stimulation ceased. In response to orange odor, bees walked locally with alternate left and right turns during odor stimulation to search for the reward-associated odor source. After odor stimulation, bees walked long paths with large turn angles to explore the odor plume. For clove odor, learning-related modulations of locomotion were less pronounced, presumably due to a spontaneous preference for orange in the tested population of bees. This study is the first to describe how an odor-reward association modulates odor-induced walking in bees. © 2016. Published by The Company of Biologists Ltd.

  18. Blue colour preference in honeybees distracts visual attention for learning closed shapes.

    PubMed

    Morawetz, Linde; Svoboda, Alexander; Spaethe, Johannes; Dyer, Adrian G

    2013-10-01

    Spatial vision is an important cue for how honeybees (Apis mellifera) find flowers, and previous work has suggested that spatial learning in free-flying bees is exclusively mediated by achromatic input to the green photoreceptor channel. However, some data suggested that bees may be able to use alternative channels for shape processing, and recent work shows conditioning type and training length can significantly influence bee learning and cue use. We thus tested the honeybees' ability to discriminate between two closed shapes considering either absolute or differential conditioning, and using eight stimuli differing in their spectral characteristics. Consistent with previous work, green contrast enabled reliable shape learning for both types of conditioning, but surprisingly, we found that bees trained with appetitive-aversive differential conditioning could additionally use colour and/or UV contrast to enable shape discrimination. Interestingly, we found that a high blue contrast initially interferes with bee shape learning, probably due to the bees innate preference for blue colours, but with increasing experience bees can learn a variety of spectral and/or colour cues to facilitate spatial learning. Thus, the relationship between bee pollinators and the spatial and spectral cues that they use to find rewarding flowers appears to be a more rich visual environment than previously thought.

  19. Autosomal and Mitochondrial Adaptation Following Admixture: A Case Study on the Honeybees of Reunion Island

    PubMed Central

    Wragg, David; Techer, Maéva Angélique; Canale-Tabet, Kamila; Basso, Benjamin; Bidanel, Jean-Pierre; Labarthe, Emmanuelle; Bouchez, Olivier; Le Conte, Yves; Clémencet, Johanna; Delatte, Hélène

    2018-01-01

    Abstract The honeybee population of the tropical Reunion Island is a genetic admixture of the Apis mellifera unicolor subspecies, originally described in Madagascar, and of European subspecies, mainly A. m. carnica and A. m. ligustica, regularly imported to the island since the late 19th century. We took advantage of this population to study genetic admixing of the tropical-adapted indigenous and temperate-adapted European genetic backgrounds. Whole genome sequencing of 30 workers and 6 males from Reunion, compared with samples from Europe, Madagascar, Mauritius, Rodrigues, and the Seychelles, revealed the Reunion honeybee population to be composed on an average of 53.2 ± 5.9% A. m. unicolor nuclear genomic background, the rest being mainly composed of A. m. carnica and to a lesser extent A. m. ligustica. In striking contrast to this, only 1 out of the 36 honeybees from Reunion had a mitochondrial genome of European origin, suggesting selection has favored the A. m. unicolor mitotype, which is possibly better adapted to the island’s bioclimate. Local ancestry was determined along the chromosomes for all Reunion samples, and a test for preferential selection for the A. m. unicolor or European background revealed 15 regions significantly associated with the A. m. unicolor lineage and 9 regions with the European lineage. Our results provide insights into the long-term consequences of introducing exotic specimen on the nuclear and mitochondrial genomes of locally adapted populations. PMID:29202174

  20. Effectiveness of tilmicosin against Paenibacillus larvae, the causal agent of American Foulbrood disease of honeybees.

    PubMed

    Reynaldi, Francisco J; Albo, Graciela N; Alippi, Adriana M

    2008-11-25

    American Foulbrood (AFB) of honeybees (Apis mellifera L.), caused by the Gram-positive bacterium Paenibacillus larvae is one of the most serious diseases affecting the larval and pupal stages of honeybees (A. mellifera L.). The aim of the present work was to asses the response of 23 strains of P. larvae from diverse geographical origins to tilmicosin, a macrolide antibiotic developed for exclusive use in veterinary medicine, by means of the minimal inhibitory concentration (MIC) and the agar diffusion test (ADT). All the strains tested were highly susceptible to tilmicosin with MIC values ranging between 0.0625 and 0.5 microg ml(-1), and with MIC(50) and MIC(90) values of 0.250 microg ml(-1). The ADT tests results for 23 P. larvae strains tested showed that all were susceptible to tilmicosin with inhibition zones around 15 microg tilmicosin disks ranging between 21 and 50mm in diameter. Oral acute toxicity of tilmicosin was evaluated and the LD(50) values obtained demonstrated that it was virtually non-toxic for adult bees and also resulted non-toxic for larvae when compared with the normal brood mortality. Dosage of 1000 mg a.i. of tilmicosin applied in a 55 g candy resulted in a total suppression of AFB clinical signs in honeybee colonies 60 days after initial treatment. To our knowledge, this is the first report of the effectiveness of tilmicosin against P. larvae both in vitro and in vivo.

  1. Biased gene expression in early honeybee larval development

    PubMed Central

    2013-01-01

    Background Female larvae of the honeybee (Apis mellifera) develop into either queens or workers depending on nutrition. This nutritional stimulus triggers different developmental trajectories, resulting in adults that differ from each other in physiology, behaviour and life span. Results To understand how these trajectories are established we have generated a comprehensive atlas of gene expression throughout larval development. We found substantial differences in gene expression between worker and queen-destined larvae at 6 hours after hatching. Some of these early changes in gene expression are maintained throughout larval development, indicating that caste-specific developmental trajectories are established much earlier than previously thought. Within our gene expression data we identified processes that potentially underlie caste differentiation. Queen-destined larvae have higher expression of genes involved in transcription, translation and protein folding early in development with a later switch to genes involved in energy generation. Using RNA interference, we were able to demonstrate that one of these genes, hexamerin 70b, has a role in caste differentiation. Both queen and worker developmental trajectories are associated with the expression of genes that have alternative splice variants, although only a single variant of a gene tends to be differentially expressed in a given caste. Conclusions Our data, based on the biases in gene expression early in development together with published data, supports the idea that caste development in the honeybee consists of two phases; an initial biased phase of development, where larvae can still switch to the other caste by differential feeding, followed by commitment to a particular developmental trajectory. PMID:24350621

  2. Proteomics Improves the New Understanding of Honeybee Biology.

    PubMed

    Hora, Zewdu Ararso; Altaye, Solomon Zewdu; Wubie, Abebe Jemberie; Li, Jianke

    2018-04-11

    The honeybee is one of the most valuable insect pollinators, playing a key role in pollinating wild vegetation and agricultural crops, with significant contribution to the world's food production. Although honeybees have long been studied as model for social evolution, honeybee biology at the molecular level remained poorly understood until the year 2006. With the availability of the honeybee genome sequence and technological advancements in protein separation, mass spectrometry, and bioinformatics, aspects of honeybee biology such as developmental biology, physiology, behavior, neurobiology, and immunology have been explored to new depths at molecular and biochemical levels. This Review comprehensively summarizes the recent progress in honeybee biology using proteomics to study developmental physiology, task transition, and physiological changes in some of the organs, tissues, and cells based on achievements from the authors' laboratory in this field. The research advances of honeybee proteomics provide new insights for understanding of honeybee biology and future research directions.

  3. Toxicity and motor changes in Africanized honey bees (Apis mellifera L.) exposed to fipronil and imidacloprid.

    PubMed

    Bovi, Thaís S; Zaluski, Rodrigo; Orsi, Ricardo O

    2018-01-01

    This study evaluated the in vitro toxicity and motor activity changes in African-derived adult honey bees (Apis mellifera L.) exposed to lethal or sublethal doses of the insecticides fipronil and imidacloprid. Mortality of bees was assessed to determine the ingestion and contact lethal dose for 24 h using probit analysis. Motor activities in bees exposed to lethal (LD50) and sublethal doses (1/500th of the lethal dose) of both insecticides were evaluated in a behavioral observation box at 1 and 4 h. Ingestion and contact lethal doses of fipronil were 0.2316 ? 0.0626 and 0.0080 ? 0.0021 μg/bee, respectively. Ingestion and contact lethal doses of imidacloprid were 0.1079 ? 0.0375 and 0.0308 ? 0.0218 μg/bee, respectively. Motor function of bees exposed to lethal doses of fipronil and imidacloprid was impaired; exposure to sublethal doses of fipronil but not imidacloprid impaired motor function. The insecticides evaluated in this study were highly toxic to African-derived A. mellifera and caused impaired motor function in these pollinators.

  4. Api m 10, a genuine A. mellifera venom allergen, is clinically relevant but underrepresented in therapeutic extracts.

    PubMed

    Blank, S; Seismann, H; Michel, Y; McIntyre, M; Cifuentes, L; Braren, I; Grunwald, T; Darsow, U; Ring, J; Bredehorst, R; Ollert, M; Spillner, E

    2011-10-01

    Generalized systemic reactions to stinging hymenoptera venom constitute a potentially fatal condition in venom-allergic individuals. Hence, the identification and characterization of all allergens is imperative for improvement of diagnosis and design of effective immunotherapeutic approaches. Our aim was the immunochemical characterization of the carbohydrate-rich protein Api m 10, an Apis mellifera venom component and putative allergen, with focus on the relevance of glycosylation. Furthermore, the presence of Api m 10 in honeybee venom (HBV) and licensed venom immunotherapy preparations was addressed. Api m 10 was produced as soluble, aglycosylated protein in Escherichia coli and as differentially glycosylated protein providing a varying degree of fucosylation in insect cells. IgE reactivity and basophil activation of allergic patients were analyzed. For detection of Api m 10 in different venom preparations, a monoclonal human IgE antibody was generated. Both, the aglycosylated and the glycosylated variant of Api m 10 devoid of cross-reactive carbohydrate determinants (CCD), exhibited IgE reactivity with approximately 50% of HBV-sensitized patients. A corresponding reactivity could be documented for the activation of basophils. Although the detection of the native protein in crude HBV suggested content comparable to other relevant allergens, three therapeutical HBV extracts lacked detectable amounts of this component. Api m 10 is a genuine allergen of A. mellifera venom with IgE sensitizing potential in a significant fraction of allergic patients independent of CCD reactivity. Thus, Api m 10 could become a key element for component-resolved diagnostic tests and improved immunotherapeutic approaches in hymenoptera venom allergy. © 2011 John Wiley & Sons A/S.

  5. Duration of the unconditioned stimulus in appetitive conditioning of honeybees differentially impacts learning, long-term memory strength, and the underlying protein synthesis

    PubMed Central

    Marter, Kathrin; Grauel, M. Katharina; Lewa, Carmen; Morgenstern, Laura; Buckemüller, Christina; Heufelder, Karin; Ganz, Marion

    2014-01-01

    This study examines the role of stimulus duration in learning and memory formation of honeybees (Apis mellifera). In classical appetitive conditioning honeybees learn the association between an initially neutral, conditioned stimulus (CS) and the occurrence of a meaningful stimulus, the unconditioned stimulus (US). Thereby the CS becomes a predictor for the US eliciting a conditioned response (CR). Here we study the role of US duration in classical conditioning by examining honeybees conditioned with different US durations. We quantify the CR during acquisition, memory retention, and extinction of the early long-term memory (eLTM), and examine the molecular mechanisms of eLTM by interfering with protein synthesis. We find that the US duration affects neither the probability nor the strength of the CR during acquisition, eLTM retention, and extinction 24 h after conditioning. However, we find that the resistance to extinction 24 h after conditioning is susceptible to protein synthesis inhibition depending on the US duration. We conclude that the US duration does not affect the predictability of the US but modulates the protein synthesis underlying the eLTM's strength. Thus, the US duration differentially impacts learning, eLTM strength, and its underlying protein synthesis. PMID:25403456

  6. Africanization of a feral honey bee (Apis mellifera) population in South Texas: does a decade make a difference?

    PubMed

    Rangel, Juliana; Giresi, Melissa; Pinto, Maria Alice; Baum, Kristen A; Rubink, William L; Coulson, Robert N; Johnston, John Spencer

    2016-04-01

    The arrival to the United States of the Africanized honey bee, a hybrid between European subspecies and the African subspecies Apis mellifera scutellata, is a remarkable model for the study of biological invasions. This immigration has created an opportunity to study the dynamics of secondary contact of honey bee subspecies from African and European lineages in a feral population in South Texas. An 11-year survey of this population (1991-2001) showed that mitochondrial haplotype frequencies changed drastically over time from a resident population of eastern and western European maternal ancestry, to a population dominated by the African haplotype. A subsequent study of the nuclear genome showed that the Africanization process included bidirectional gene flow between European and Africanized honey bees, giving rise to a new panmictic mixture of A. m. scutellata- and European-derived genes. In this study, we examined gene flow patterns in the same population 23 years after the first hybridization event occurred. We found 28 active colonies inhabiting 92 tree cavities surveyed in a 5.14 km(2) area, resulting in a colony density of 5.4 colonies/km(2). Of these 28 colonies, 25 were of A. m. scutellata maternal ancestry, and three were of western European maternal ancestry. No colonies of eastern European maternal ancestry were detected, although they were present in the earlier samples. Nuclear DNA revealed little change in the introgression of A. m. scutellata-derived genes into the population compared to previous surveys. Our results suggest this feral population remains an admixed swarm with continued low levels of European ancestry and a greater presence of African-derived mitochondrial genetic composition.

  7. Identification of Multiple Loci Associated with Social Parasitism in Honeybees

    PubMed Central

    Pirk, Christian W.; Allsopp, Mike H.

    2016-01-01

    In colonies of the honeybee Apis mellifera, the queen is usually the only reproductive female, which produces new females (queens and workers) by laying fertilized eggs. However, in one subspecies of A. mellifera, known as the Cape bee (A. m. capensis), worker bees reproduce asexually by thelytoky, an abnormal form of meiosis where two daughter nucleii fuse to form single diploid eggs, which develop into females without being fertilized. The Cape bee also exhibits a suite of phenotypes that facilitate social parasitism whereby workers lay such eggs in foreign colonies so their offspring can exploit their resources. The genetic basis of this switch to social parasitism in the Cape bee is unknown. To address this, we compared genome variation in a sample of Cape bees with other African populations. We find genetic divergence between these populations to be very low on average but identify several regions of the genome with extreme differentiation. The regions are strongly enriched for signals of selection in Cape bees, indicating that increased levels of positive selection have produced the unique set of derived phenotypic traits in this subspecies. Genetic variation within these regions allows unambiguous genetic identification of Cape bees and likely underlies the genetic basis of social parasitism. The candidate loci include genes involved in ecdysteroid signaling and juvenile hormone and dopamine biosynthesis, which may regulate worker ovary activation and others whose products localize at the centrosome and are implicated in chromosomal segregation during meiosis. Functional analysis of these loci will yield insights into the processes of reproduction and chemical signaling in both parasitic and non-parasitic populations and advance understanding of the process of normal and atypical meiosis. PMID:27280405

  8. Identification of Multiple Loci Associated with Social Parasitism in Honeybees.

    PubMed

    Wallberg, Andreas; Pirk, Christian W; Allsopp, Mike H; Webster, Matthew T

    2016-06-01

    In colonies of the honeybee Apis mellifera, the queen is usually the only reproductive female, which produces new females (queens and workers) by laying fertilized eggs. However, in one subspecies of A. mellifera, known as the Cape bee (A. m. capensis), worker bees reproduce asexually by thelytoky, an abnormal form of meiosis where two daughter nucleii fuse to form single diploid eggs, which develop into females without being fertilized. The Cape bee also exhibits a suite of phenotypes that facilitate social parasitism whereby workers lay such eggs in foreign colonies so their offspring can exploit their resources. The genetic basis of this switch to social parasitism in the Cape bee is unknown. To address this, we compared genome variation in a sample of Cape bees with other African populations. We find genetic divergence between these populations to be very low on average but identify several regions of the genome with extreme differentiation. The regions are strongly enriched for signals of selection in Cape bees, indicating that increased levels of positive selection have produced the unique set of derived phenotypic traits in this subspecies. Genetic variation within these regions allows unambiguous genetic identification of Cape bees and likely underlies the genetic basis of social parasitism. The candidate loci include genes involved in ecdysteroid signaling and juvenile hormone and dopamine biosynthesis, which may regulate worker ovary activation and others whose products localize at the centrosome and are implicated in chromosomal segregation during meiosis. Functional analysis of these loci will yield insights into the processes of reproduction and chemical signaling in both parasitic and non-parasitic populations and advance understanding of the process of normal and atypical meiosis.

  9. Differential responses of Africanized and European honey bees (Apis mellifera) to viral replication following mechanical transmission or Varroa destructor parasitism.

    PubMed

    Hamiduzzaman, Mollah Md; Guzman-Novoa, Ernesto; Goodwin, Paul H; Reyes-Quintana, Mariana; Koleoglu, Gun; Correa-Benítez, Adriana; Petukhova, Tatiana

    2015-03-01

    For the first time, adults and brood of Africanized and European honey bees (Apis mellifera) were compared for relative virus levels over 48 h following Varroa destructor parasitism or injection of V. destructor homogenate. Rates of increase of deformed wing virus (DWV) for Africanized versus European bees were temporarily lowered for 12h with parasitism and sustainably lowered over the entire experiment (48 h) with homogenate injection in adults. The rates were also temporarily lowered for 24h with parasitism but were not affected by homogenate injection in brood. Rates of increase of black queen cell virus (BQCV) for Africanized versus European bees were similar with parasitism but sustainably lowered over the entire experiment with homogenate injection in adults and were similar for parasitism and homogenate injection in brood. Analyses of sac brood bee virus and Israeli acute paralysis virus were limited as detection did not occur after both homogenate injection and parasitism treatment, or levels were not significantly higher than those following control buffer injection. Lower rates of replication of DWV and BQCV in Africanized bees shows that they may have greater viral resistance, at least early after treatment. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. An Early Sensitive Period Induces Long-Lasting Plasticity in the Honeybee Nervous System

    PubMed Central

    Grosso, Juan P.; Barneto, Jesica A.; Velarde, Rodrigo A.; Pagano, Eduardo A.; Zavala, Jorge A.; Farina, Walter M.

    2018-01-01

    The effect of early experiences on the brain during a sensitive period exerts a long-lasting influence on the mature individual. Despite behavioral and neural plasticity caused by early experiences having been reported in the honeybee Apis mellifera, the presence of a sensitive period in which associative experiences lead to pronounced modifications in the adult nervous system is still unclear. Laboratory-reared bees were fed with scented food within specific temporal windows and were assessed for memory retention, in the regulation of gene expression related to the synaptic formation and in the olfactory perception of their antennae at 17 days of age. Bees were able to retain a food-odor association acquired 5–8 days after emergence, but not before, and showed better retention than those exposed to an odor at 9–12 days. In the brain, the odor-rewarded experiences that occurred at 5–8 days of age boosted the expression levels of the cell adhesion proteins neurexin 1 (Nrx1) and neuroligin 2 (Nlg2) involved in synaptic strength. At the antennae, the experiences increased the electrical response to a novel odor but not to the one experienced. Therefore, a sensitive period that induces long-lasting behavioral, functional and structural changes is found in adult honeybees. PMID:29449804

  11. An Early Sensitive Period Induces Long-Lasting Plasticity in the Honeybee Nervous System.

    PubMed

    Grosso, Juan P; Barneto, Jesica A; Velarde, Rodrigo A; Pagano, Eduardo A; Zavala, Jorge A; Farina, Walter M

    2018-01-01

    The effect of early experiences on the brain during a sensitive period exerts a long-lasting influence on the mature individual. Despite behavioral and neural plasticity caused by early experiences having been reported in the honeybee Apis mellifera , the presence of a sensitive period in which associative experiences lead to pronounced modifications in the adult nervous system is still unclear. Laboratory-reared bees were fed with scented food within specific temporal windows and were assessed for memory retention, in the regulation of gene expression related to the synaptic formation and in the olfactory perception of their antennae at 17 days of age. Bees were able to retain a food-odor association acquired 5-8 days after emergence, but not before, and showed better retention than those exposed to an odor at 9-12 days. In the brain, the odor-rewarded experiences that occurred at 5-8 days of age boosted the expression levels of the cell adhesion proteins neurexin 1 ( Nrx1 ) and neuroligin 2 ( Nlg2 ) involved in synaptic strength. At the antennae, the experiences increased the electrical response to a novel odor but not to the one experienced. Therefore, a sensitive period that induces long-lasting behavioral, functional and structural changes is found in adult honeybees.

  12. Optimization of γ-aminobutyric acid production by Lactobacillus plantarum Taj-Apis362 from honeybees.

    PubMed

    Tajabadi, Naser; Ebrahimpour, Afshin; Baradaran, Ali; Rahim, Raha Abdul; Mahyudin, Nor Ainy; Manap, Mohd Yazid Abdul; Bakar, Fatimah Abu; Saari, Nazamid

    2015-04-15

    Dominant strains of lactic acid bacteria (LAB) isolated from honey bees were evaluated for their γ-aminobutyric acid (GABA)-producing ability. Out of 24 strains, strain Taj-Apis362 showed the highest GABA-producing ability (1.76 mM) in MRS broth containing 50 mM initial glutamic acid cultured for 60 h. Effects of fermentation parameters, including initial glutamic acid level, culture temperature, initial pH and incubation time on GABA production were investigated via a single parameter optimization strategy. The optimal fermentation condition for GABA production was modeled using response surface methodology (RSM). The results showed that the culture temperature was the most significant factor for GABA production. The optimum conditions for maximum GABA production by Lactobacillus plantarum Taj-Apis362 were an initial glutamic acid concentration of 497.97 mM, culture temperature of 36 °C, initial pH of 5.31 and incubation time of 60 h, which produced 7.15 mM of GABA. The value is comparable with the predicted value of 7.21 mM.

  13. The Wisdom of Honeybee Defenses Against Environmental Stresses

    PubMed Central

    Li, Guilin; Zhao, Hang; Liu, Zhenguo; Wang, Hongfang; Xu, Baohua; Guo, Xingqi

    2018-01-01

    As one of the predominant pollinator, honeybees provide important ecosystem service to crops and wild plants, and generate great economic benefit for humans. Unfortunately, there is clear evidence of recent catastrophic honeybee colony failure in some areas, resulting in markedly negative environmental and economic effects. It has been demonstrated that various environmental stresses, including both abiotic and biotic stresses, functioning singly or synergistically, are the potential drivers of colony collapse. Honeybees can use many defense mechanisms to decrease the damage from environmental stress to some extent. Here, we synthesize and summarize recent advances regarding the effects of environmental stress on honeybees and the wisdom of honeybees to respond to external environmental stress. Furthermore, we provide possible future research directions about the response of honeybees to various form of stressors. PMID:29765357

  14. MicroRNA signatures characterizing caste-independent ovarian activity in queen and worker honeybees (Apis mellifera L.).

    PubMed

    Macedo, L M F; Nunes, F M F; Freitas, F C P; Pires, C V; Tanaka, E D; Martins, J R; Piulachs, M-D; Cristino, A S; Pinheiro, D G; Simões, Z L P

    2016-06-01

    Queen and worker honeybees differ profoundly in reproductive capacity. The queen of this complex society, with 200 highly active ovarioles in each ovary, is the fertile caste, whereas the workers have approximately 20 ovarioles as a result of receiving a different diet during larval development. In a regular queenright colony, the workers have inactive ovaries and do not reproduce. However, if the queen is sensed to be absent, some of the workers activate their ovaries, producing viable haploid eggs that develop into males. Here, a deep-sequenced ovary transcriptome library of reproductive workers was used as supporting data to assess the dynamic expression of the regulatory molecules and microRNAs (miRNAs) of reproductive and nonreproductive honeybee females. In this library, most of the differentially expressed miRNAs are related to ovary physiology or oogenesis. When we quantified the dynamic expression of 19 miRNAs in the active and inactive worker ovaries and compared their expression in the ovaries of virgin and mated queens, we noted that some miRNAs (miR-1, miR-31a, miR-13b, miR-125, let-7 RNA, miR-100, miR-276, miR-12, miR-263a, miR-306, miR-317, miR-92a and miR-9a) could be used to identify reproductive and nonreproductive statuses independent of caste. Furthermore, integrative gene networks suggested that some candidate miRNAs function in the process of ovary activation in worker bees. © 2016 The Royal Entomological Society.

  15. Industrial apiculture in the Jordan valley during Biblical times with Anatolian honeybees

    PubMed Central

    Bloch, Guy; Francoy, Tiago M.; Wachtel, Ido; Panitz-Cohen, Nava; Fuchs, Stefan; Mazar, Amihai

    2010-01-01

    Although texts and wall paintings suggest that bees were kept in the Ancient Near East for the production of precious wax and honey, archaeological evidence for beekeeping has never been found. The Biblical term “honey” commonly was interpreted as the sweet product of fruits, such as dates and figs. The recent discovery of unfired clay cylinders similar to traditional hives still used in the Near East at the site of Tel Reov in the Jordan valley in northern Israel suggests that a large-scale apiary was located inside the town, dating to the 10th–early 9th centuries B.C.E. This paper reports the discovery of remains of honeybee workers, drones, pupae, and larvae inside these hives. The exceptional preservation of these remains provides unequivocal identification of the clay cylinders as the most ancient beehives yet found. Morphometric analyses indicate that these bees differ from the local subspecies Apis mellifera syriaca and from all subspecies other than A. m. anatoliaca, which presently resides in parts of Turkey. This finding suggests either that the Western honeybee subspecies distribution has undergone rapid change during the last 3,000 years or that the ancient inhabitants of Tel Reov imported bees superior to the local bees in terms of their milder temper and improved honey yield. PMID:20534519

  16. Industrial apiculture in the Jordan valley during Biblical times with Anatolian honeybees.

    PubMed

    Bloch, Guy; Francoy, Tiago M; Wachtel, Ido; Panitz-Cohen, Nava; Fuchs, Stefan; Mazar, Amihai

    2010-06-22

    Although texts and wall paintings suggest that bees were kept in the Ancient Near East for the production of precious wax and honey, archaeological evidence for beekeeping has never been found. The Biblical term "honey" commonly was interpreted as the sweet product of fruits, such as dates and figs. The recent discovery of unfired clay cylinders similar to traditional hives still used in the Near East at the site of Tel Re ov in the Jordan valley in northern Israel suggests that a large-scale apiary was located inside the town, dating to the 10th-early 9th centuries B.C.E. This paper reports the discovery of remains of honeybee workers, drones, pupae, and larvae inside these hives. The exceptional preservation of these remains provides unequivocal identification of the clay cylinders as the most ancient beehives yet found. Morphometric analyses indicate that these bees differ from the local subspecies Apis mellifera syriaca and from all subspecies other than A. m. anatoliaca, which presently resides in parts of Turkey. This finding suggests either that the Western honeybee subspecies distribution has undergone rapid change during the last 3,000 years or that the ancient inhabitants of Tel Re ov imported bees superior to the local bees in terms of their milder temper and improved honey yield.

  17. Honey loading for pollen collection: regulation of crop content in honeybee pollen foragers on leaving hive

    NASA Astrophysics Data System (ADS)

    Harano, Ken-ichi; Mitsuhata-Asai, Akiko; Sasaki, Masami

    2014-07-01

    Before foraging honeybees leave the hive, each bee loads its crop with some amount of honey "fuel" depending on the distance to the food source and foraging experience. For pollen collection, there is evidence that foragers carry additional honey as "glue" to build pollen loads. This study examines whether pollen foragers of the European honeybee Apis mellifera regulate the size of the crop load according to food-source distances upon leaving the hive and how foraging experience affects load regulation. The crop contents of bees foraging on crape myrtle Lagerstroemia indica, which has no nectary, were larger than those foraging on nectar from other sources, confirming a previous finding that pollen foragers carry glue in addition to fuel honey from the hive. Crop contents of both waggle dancers and dance followers showed a significant positive correlation with waggle-run durations. These results suggest that bees carry a distance-dependent amount of fuel honey in addition to a fixed amount of glue honey. Crop contents on leaving the hive were statistically larger in dancers than followers. Based on these results, we suggest that pollen foragers use information obtained through foraging experience to adjust crop contents on leaving the hive.

  18. Honey loading for pollen collection: regulation of crop content in honeybee pollen foragers on leaving hive.

    PubMed

    Harano, Ken-ichi; Mitsuhata-Asai, Akiko; Sasaki, Masami

    2014-07-01

    Before foraging honeybees leave the hive, each bee loads its crop with some amount of honey "fuel" depending on the distance to the food source and foraging experience. For pollen collection, there is evidence that foragers carry additional honey as "glue" to build pollen loads. This study examines whether pollen foragers of the European honeybee Apis mellifera regulate the size of the crop load according to food-source distances upon leaving the hive and how foraging experience affects load regulation. The crop contents of bees foraging on crape myrtle Lagerstroemia indica, which has no nectary, were larger than those foraging on nectar from other sources, confirming a previous finding that pollen foragers carry glue in addition to fuel honey from the hive. Crop contents of both waggle dancers and dance followers showed a significant positive correlation with waggle-run durations. These results suggest that bees carry a distance-dependent amount of fuel honey in addition to a fixed amount of glue honey. Crop contents on leaving the hive were statistically larger in dancers than followers. Based on these results, we suggest that pollen foragers use information obtained through foraging experience to adjust crop contents on leaving the hive.

  19. Pyrethroids and Nectar Toxins Have Subtle Effects on the Motor Function, Grooming and Wing Fanning Behaviour of Honeybees (Apis mellifera).

    PubMed

    Oliver, Caitlin J; Softley, Samantha; Williamson, Sally M; Stevenson, Philip C; Wright, Geraldine A

    2015-01-01

    Sodium channels, found ubiquitously in animal muscle cells and neurons, are one of the main target sites of many naturally-occurring, insecticidal plant compounds and agricultural pesticides. Pyrethroids, derived from compounds found only in the Asteraceae, are particularly toxic to insects and have been successfully used as pesticides including on flowering crops that are visited by pollinators. Pyrethrins, from which they were derived, occur naturally in the nectar of some flowering plant species. We know relatively little about how such compounds--i.e., compounds that target sodium channels--influence pollinators at low or sub-lethal doses. Here, we exposed individual adult forager honeybees to several compounds that bind to sodium channels to identify whether these compounds affect motor function. Using an assay previously developed to identify the effect of drugs and toxins on individual bees, we investigated how acute exposure to 10 ng doses (1 ppm) of the pyrethroid insecticides (cyfluthrin, tau-fluvalinate, allethrin and permethrin) and the nectar toxins (aconitine and grayanotoxin I) affected honeybee locomotion, grooming and wing fanning behaviour. Bees exposed to these compounds spent more time upside down and fanning their wings. They also had longer bouts of standing still. Bees exposed to the nectar toxin, aconitine, and the pyrethroid, allethrin, also spent less time grooming their antennae. We also found that the concentration of the nectar toxin, grayanotoxin I (GTX), fed to bees affected the time spent upside down (i.e., failure to perform the righting reflex). Our data show that low doses of pyrethroids and other nectar toxins that target sodium channels mainly influence motor function through their effect on the righting reflex of adult worker honeybees.

  20. SNPs selected by information content outperform randomly selected microsatellite loci for delineating genetic identification and introgression in the endangered dark European honeybee (Apis mellifera mellifera).

    PubMed

    Muñoz, Irene; Henriques, Dora; Jara, Laura; Johnston, J Spencer; Chávez-Galarza, Julio; De La Rúa, Pilar; Pinto, M Alice

    2017-07-01

    The honeybee (Apis mellifera) has been threatened by multiple factors including pests and pathogens, pesticides and loss of locally adapted gene complexes due to replacement and introgression. In western Europe, the genetic integrity of the native A. m. mellifera (M-lineage) is endangered due to trading and intensive queen breeding with commercial subspecies of eastern European ancestry (C-lineage). Effective conservation actions require reliable molecular tools to identify pure-bred A. m. mellifera colonies. Microsatellites have been preferred for identification of A. m. mellifera stocks across conservation centres. However, owing to high throughput, easy transferability between laboratories and low genotyping error, SNPs promise to become popular. Here, we compared the resolving power of a widely utilized microsatellite set to detect structure and introgression with that of different sets that combine a variable number of SNPs selected for their information content and genomic proximity to the microsatellite loci. Contrary to every SNP data set, microsatellites did not discriminate between the two lineages in the PCA space. Mean introgression proportions were identical across the two marker types, although at the individual level, microsatellites' performance was relatively poor at the upper range of Q-values, a result reflected by their lower precision. Our results suggest that SNPs are more accurate and powerful than microsatellites for identification of A. m. mellifera colonies, especially when they are selected by information content. © 2016 John Wiley & Sons Ltd.

  1. Face Recognition and Processing in a Mini Brain

    DTIC Science & Technology

    2007-09-28

    flying honeybees ( Apis mellifera ) as a model to understand how a non-mammalian brain learns to recognise human faces. Individual bees were trained...understand how a non-mammalian brain processes human faces is the honeybee (J Exp Biol 2005 v208p4709). Individual free flying honeybees ( Apis ... mellifera ) were provided with differential conditioning to achromatic target and distractor face images. Bee acquisition reached >70% correct choices

  2. The complete mitochondrial genome of the invasive Africanized Honey Bee, Apis mellifera scutellata (Insecta: Hymenoptera: Apidae).

    PubMed

    Gibson, Joshua D; Hunt, Greg J

    2016-01-01

    The complete mitochondrial genome from an Africanized honey bee population (AHB, derived from Apis mellifera scutellata) was assembled and analyzed. The mitogenome is 16,411 bp long and contains the same gene repertoire and gene order as the European honey bee (13 protein coding genes, 22 tRNA genes and 2 rRNA genes). ND4 appears to use an alternate start codon and the long rRNA gene is 48 bp shorter in AHB due to a deletion in a terminal AT dinucleotide repeat. The dihydrouracil arm is missing from tRNA-Ser (AGN) and tRNA-Glu is missing the TV loop. The A + T content is comparable to the European honey bee (84.7%), which increases to 95% for the 3rd position in the protein coding genes.

  3. Honeybee males use highly concentrated nectar as fuel for mating flights.

    PubMed

    Hayashi, Masaki; Nakamura, Jun; Sasaki, Ken; Harano, Ken-Ichi

    Honeybees use nectar held in the crop as their main source of energy for flight but the mass of the crop nectar load may be a cost burden. This study investigated whether males of the honeybee Apis mellifera adjust their nectar fuel load and concentration to enhance the success of mating flights. When the crop content was compared between males staying in the hive and those departing, the latter group had the larger volume (median, 5.0μl; range, 0.0-17.8μl) and higher concentration (median, 71.6%; range, 49.0%-77.6%), indicating that departing males load concentrated nectar as fuel before mating flights. Moreover, the crop nectar concentration was significantly higher in departing males than in departing workers. These results suggest that concentrated nectar is advantageous to males because it provides more sugar for energy at lower mass and secures longer or more effective mating flights for higher chance of reproductive success. No significant effect of age was detected in crop volume, and concentration and amount of dissolved sugars in the crop content. In addition, laboratory experiments showed that males had only about 5μl of nectar in the crop soon after feeding, irrespective of fed volume (5-15μl), suggesting they do not hold much nectar in the crop but send it rapidly to the midgut, unlike workers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Pesticide residues in honeybees, honey and bee pollen by LC-MS/MS screening: reported death incidents in honeybees.

    PubMed

    Kasiotis, Konstantinos M; Anagnostopoulos, Chris; Anastasiadou, Pelagia; Machera, Kyriaki

    2014-07-01

    The aim of this study was to investigate reported cases of honeybee death incidents with regard to the potential interrelation to the exposure to pesticides. Thus honeybee, bee pollen and honey samples from different areas of Greece were analyzed for the presence of pesticide residues. In this context an LC-ESI-MS/MS multiresidue method of total 115 analytes of different chemical classes such as neonicotinoids, organophosphates, triazoles, carbamates, dicarboximides and dinitroanilines in honeybee bodies, honey and bee pollen was developed and validated. The method presents good linearity over the ranges assayed with correlation coefficient values r(2)≥0.99, recoveries ranging for all matrices from 59 to 117% and precision (RSD%) values ranging from 4 to 27%. LOD and LOQ values ranged - for honeybees, honey and bee pollen - from 0.03 to 23.3 ng/g matrix weight and 0.1 up to 78 ng/g matrix weight, respectively. Therefore this method is sufficient to act as a monitoring tool for the determination of pesticide residues in cases of suspected honeybee poisoning incidents. From the analysis of the samples the presence of 14 active substances was observed in all matrices with concentrations ranging for honeybees from 0.3 to 81.5 ng/g, for bee pollen from 6.1 to 1273 ng/g and for honey one sample was positive to carbendazim at 1.6 ng/g. The latter confirmed the presence of such type of compounds in honeybee body and apicultural products. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Biologically Inspired Strategies, Algorithms and Hardware for Visual Guidance of Autonomous Helicopters

    DTIC Science & Technology

    2011-05-02

    Dacke, J. Reinhard and M.V. Srinivasan (2010) The moment before touchdown: Landing manoeuvres of the honeybee Apis mellifera . Journal of Experimental...moment before touchdown: Landing manoeuvres of the honeybee Apis mellifera . Journal of Experimental Biology 213, 262-270. M.V. Srinivasan (2010

  6. Antennal tactile learning in the honeybee: effect of nicotinic antagonists on memory dynamics.

    PubMed

    Dacher, M; Lagarrigue, A; Gauthier, M

    2005-01-01

    Restrained worker honeybees (Apis mellifera L.) are able to learn to associate antennal-scanning of a metal plate with a sucrose reinforcement delivered to the mouthparts. Learning occurs reliably in a single association of the two sensory stimuli. The involvement of nicotinic pathways in memory formation and retrieval processes was tested by injecting, into the whole brain through the median ocellus, either mecamylamine (0.6 microg per bee) or alpha-bungarotoxin (2.4 ng per bee). Saline served as a control. Mecamylamine injected 10 min before the retrieval test impairs the retention level tested 3 h and 24 h after single- or multi-trial learning. Retrieval tests performed at various times after the injection show that the blocking effect of mecamylamine lasts about 1 h. The drug has no effect on the reconsolidation or extinction processes. Mecamylamine injected 10 min before conditioning impairs single-trial learning but has no effect on five-trial learning and on the consolidation process. By contrast, alpha-bungarotoxin only impairs the formation of long-term memory (24 h) induced by the five-trial learning and has no effect on medium-term memory (3 h), on single-trial learning or on the retrieval process. Hence, owing to previous data, at least two kinds of nicotinic receptors seem to be involved in honeybee memory, an alpha-bungarotoxin-sensitive and an alpha-bungarotoxin-insensitive receptor. Our results extend to antennal mechanosensory conditioning the role of the cholinergic system that we had previously described for olfactory conditioning in the honeybee. Moreover, we describe here in this insect a pharmacological dissociation between alpha-bungarotoxin sensitive long-term memory and alpha-bungarotoxin insensitive medium-term memory, the last one being affected by mecamylamine.

  7. Effect of honeybee broods (queen-bee different lineage) moving on disease development at various beehive types and allergy reaction cause in humans.

    PubMed

    Tucak, Zvonimir; Periskić, Marin

    2005-06-01

    The change of the location of the beehives on the diverse honeyfull pastures is the usual apiarists activity in the Republic of Croatia. The main reasons are the climatic and vegetation diversity, and richness of the floral composition, with numerous bee forage plants. Our study aimed to detect consequences of honeybee broods (Queen-bee of different lineage) moving, from one habitat to another at various type of beehives. The Alberti-Znidersic (AZ), Langstroth-Root (LR) and Dadant-Blatt (DB) beehive types, constructed of (lime-tree), have been used. After the bee forage on the Oilseed Rape in the beginning of April, the honeybee brood has been veterinary inspected (based on the Law of animal health protection in the Republic of Croatia) for varrosis, nosemosis and American foulbrood diseases. The same procedure was done after bee forage (False acacia) at the end of May. All of the honeybees belong to the European race Apis mellifera carnica. The results of the study pointed out that different beehive types and the Queen-bee lineage (natural and selected) affect development of disease inside the honeybee brood, during the relocation and change from one dominant bee forage plants to another. Certain allergy reactions occurring in people can be caused by the pollen of some honefull plants such as birch, grasses, ragweed, goldenrod and hazel. Such cases are also included in our investigations. Beekeepers and nature lovers sensitive to pollen allergens of some honeyfull plants should, in some calendar period, avoid ecological milieu with such plants.

  8. Characterization of the 5-HT1A receptor of the honeybee (Apis mellifera) and involvement of serotonin in phototactic behavior.

    PubMed

    Thamm, Markus; Balfanz, Sabine; Scheiner, Ricarda; Baumann, Arnd; Blenau, Wolfgang

    2010-07-01

    Serotonin plays a key role in modulating various physiological and behavioral processes in both protostomes and deuterostomes. The vast majority of serotonin receptors belong to the superfamily of G-protein-coupled receptors. We report the cloning of a cDNA from the honeybee (Am5-ht1A) sharing high similarity with members of the 5-HT(1) receptor class. Activation of Am5-HT(1A) by serotonin inhibited the production of cAMP in a dose-dependent manner (EC(50) = 16.9 nM). Am5-HT(1A) was highly expressed in brain regions known to be involved in visual information processing. Using in vivo pharmacology, we could demonstrate that Am5-HT(1A) receptor ligands had a strong impact on the phototactic behavior of individual bees. The data presented here mark the first comprehensive study-from gene to behavior-of a 5-HT(1A) receptor in the honeybee, paving the way for the eventual elucidation of additional roles of this receptor subtype in the physiology and behavior of this social insect.

  9. Effect of a thymol application on olfactory memory and gene expression levels in the brain of the honeybee Apis mellifera.

    PubMed

    Bonnafé, Elsa; Drouard, Florian; Hotier, Lucie; Carayon, Jean-Luc; Marty, Pierre; Treilhou, Michel; Armengaud, Catherine

    2015-06-01

    Essential oils are used by beekeepers to control the Varroa mites that infest honeybee colonies. So, bees can be exposed to thymol formulations in the hive. The effects of the monoterpenoid thymol were explored on olfactory memory and gene expression in the brain of the honeybee. In bees previously exposed to thymol (10 or 100 ng/bee), the specificity of the response to the conditioned stimulus (CS) was lost 24 h after learning. Besides, the octopamine receptor OA1 gene Amoa1 showed a significant decrease of expression 3 h after exposure with 10 or 100 ng/bee of thymol. With the same doses, expression of Rdl gene, coding for a GABA receptor subunit, was not significantly modified but the trpl gene was upregulated 1 and 24 h after exposure to thymol. These data indicated that the genes coding for the cellular targets of thymol could be rapidly regulated after exposure to this molecule. Memory and sensory processes should be investigated in bees after chronic exposure in the hive to thymol-based preparations.

  10. Inter-individual variation in nutrient balancing in the honeybee (Apis mellifera).

    PubMed

    Reade, Abbie J; Naug, Dhruba

    2016-12-01

    The Geometric Framework approach in nutritional ecology postulates that animals attempt to balance the consumption of different nutrients rather than simply maximizing energetic gain. The intake target with respect to each nutrient maximizes fitness in a specific dimension and any difference between individuals in intake target therefore represents alternative behavioral and fitness maximization strategies. Nutritional interactions are a central component of all social groups and any inter-individual variation in intake target should therefore have a significant influence on social dynamics. Using the honeybee colony as an experimental model, we quantified differences in the carbohydrate intake target of individual foragers using a capillary feeder (CAFE) assay. Our results show that the bees did not simply maximize their net energetic gain, but combined sugar and water in their diet in a way that brought them to an intake target equivalent to a 33% sucrose solution. Although the mean intake target with respect to the nutrients sucrose and water was the same under different food choice regimens, there was significant inter-individual variation in intake target and the manner in which individuals reached this target, a variation which suggests different levels of tolerance to nutrient imbalance. We discuss our results in the context of how colony performance may be influenced by the different nutrient balancing strategies of individual members and how such nutritional constraints could have contributed to the evolution of sociality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Ecological and evolutionary approaches to managing honeybee disease.

    PubMed

    Brosi, Berry J; Delaplane, Keith S; Boots, Michael; de Roode, Jacobus C

    2017-09-01

    Honeybee declines are a serious threat to global agricultural security and productivity. Although multiple factors contribute to these declines, parasites are a key driver. Disease problems in honeybees have intensified in recent years, despite increasing attention to addressing them. Here we argue that we must focus on the principles of disease ecology and evolution to understand disease dynamics, assess the severity of disease threats, and control these threats via honeybee management. We cover the ecological context of honeybee disease, including both host and parasite factors driving current transmission dynamics, and then discuss evolutionary dynamics including how beekeeping management practices may drive selection for more virulent parasites. We then outline how ecological and evolutionary principles can guide disease mitigation in honeybees, including several practical management suggestions for addressing short- and long-term disease dynamics and consequences.

  12. Airflow and optic flow mediate antennal positioning in flying honeybees

    PubMed Central

    Roy Khurana, Taruni; Sane, Sanjay P

    2016-01-01

    To maintain their speeds during navigation, insects rely on feedback from their visual and mechanosensory modalities. Although optic flow plays an essential role in speed determination, it is less reliable under conditions of low light or sparse landmarks. Under such conditions, insects rely on feedback from antennal mechanosensors but it is not clear how these inputs combine to elicit flight-related antennal behaviours. We here show that antennal movements of the honeybee, Apis mellifera, are governed by combined visual and antennal mechanosensory inputs. Frontal airflow, as experienced during forward flight, causes antennae to actively move forward as a sigmoidal function of absolute airspeed values. However, corresponding front-to-back optic flow causes antennae to move backward, as a linear function of relative optic flow, opposite the airspeed response. When combined, these inputs maintain antennal position in a state of dynamic equilibrium. DOI: http://dx.doi.org/10.7554/eLife.14449.001 PMID:27097104

  13. Endangered Honeybee

    ERIC Educational Resources Information Center

    Bourne, Russell

    1975-01-01

    Because of pesticides, the disappearance of open farmland, chemical fertilizers, and our own indifference and ignorance, the number of United States honeybee colonies has been reduced an average of 2 percent per year. (BT)

  14. Morphological alterations induced by boric acid and fipronil in the midgut of worker honeybee (Apis mellifera L.) larvae : Morphological alterations in the midgut of A. mellifera.

    PubMed

    da Silva Cruz, Aline; da Silva-Zacarin, Elaine C M; Bueno, Odair C; Malaspina, Osmar

    2010-04-01

    Morphological alterations, by means of histological and ultrastructural analysis, have been used to determine the effects of boric acid and fipronil on midgut tissues of honeybee worker, Apis mellifera L. larvae. In order to observe possible morphological alterations in the midgut, two groups of bioassays were performed. In the first one, the larvae were chronically treated with different concentrations of boric acid added to the food (1.0, 2.5 and 7.5 mg/g). In the second group, the larvae were fed with diets containing different concentrations of fipronil (0.1 and 1 microg/g) and compared with control groups without these chemical compounds. In the first bioassay, the larvae were collected on day 3 and in the second bioassay on day 4, when the mortality rate obtained in the toxicological bioassay was not very high. The larval midguts were removed and processed for morphological analyses using a light and transmission electron microscopy. We observed cytoplasmic vacuolizations, with the absence of autophagic vacuoles, and chromatinic compacting in most of the cells in the groups treated with pesticides. The morphological alterations were far greater in the larvae treated with boric acid than in the larvae treated with fipronil. Our data suggest that the midgut cell death observed was in response to boric acid and fipronil action. This study significantly improves the understanding of the toxicological effect of these insecticides from the ecotoxicological perspective.

  15. Flight restriction prevents associative learning deficits but not changes in brain protein-adduct formation during honeybee ageing.

    PubMed

    Tolfsen, Christina C; Baker, Nicholas; Kreibich, Claus; Amdam, Gro V

    2011-04-15

    Honeybees (Apis mellifera) senesce within 2 weeks after they discontinue nest tasks in favour of foraging. Foraging involves metabolically demanding flight, which in houseflies (Musca domestica) and fruit flies (Drosophila melanogaster) is associated with markers of ageing such as increased mortality and accumulation of oxidative damage. The role of flight in honeybee ageing is incompletely understood. We assessed relationships between honeybee flight activity and ageing by simulating rain that confined foragers to their colonies most of the day. After 15 days on average, flight-restricted foragers were compared with bees with normal (free) flight: one group that foraged for ∼15 days and two additional control groups, for flight duration and chronological age, that foraged for ∼5 days. Free flight over 15 days on average resulted in impaired associative learning ability. In contrast, flight-restricted foragers did as well in learning as bees that foraged for 5 days on average. This negative effect of flight activity was not influenced by chronological age or gustatory responsiveness, a measure of the bees' motivation to learn. Contrasting their intact learning ability, flight-restricted bees accrued the most oxidative brain damage as indicated by malondialdehyde protein adduct levels in crude cytosolic fractions. Concentrations of mono- and poly-ubiquitinated brain proteins were equal between the groups, whereas differences in total protein amounts suggested changes in brain protein metabolism connected to forager age, but not flight. We propose that intense flight is causal to brain deficits in aged bees, and that oxidative protein damage is unlikely to be the underlying mechanism.

  16. Flight restriction prevents associative learning deficits but not changes in brain protein-adduct formation during honeybee ageing

    PubMed Central

    Tolfsen, Christina C.; Baker, Nicholas; Kreibich, Claus; Amdam, Gro V.

    2011-01-01

    SUMMARY Honeybees (Apis mellifera) senesce within 2 weeks after they discontinue nest tasks in favour of foraging. Foraging involves metabolically demanding flight, which in houseflies (Musca domestica) and fruit flies (Drosophila melanogaster) is associated with markers of ageing such as increased mortality and accumulation of oxidative damage. The role of flight in honeybee ageing is incompletely understood. We assessed relationships between honeybee flight activity and ageing by simulating rain that confined foragers to their colonies most of the day. After 15 days on average, flight-restricted foragers were compared with bees with normal (free) flight: one group that foraged for ∼15 days and two additional control groups, for flight duration and chronological age, that foraged for ∼5 days. Free flight over 15 days on average resulted in impaired associative learning ability. In contrast, flight-restricted foragers did as well in learning as bees that foraged for 5 days on average. This negative effect of flight activity was not influenced by chronological age or gustatory responsiveness, a measure of the bees' motivation to learn. Contrasting their intact learning ability, flight-restricted bees accrued the most oxidative brain damage as indicated by malondialdehyde protein adduct levels in crude cytosolic fractions. Concentrations of mono- and poly-ubiquitinated brain proteins were equal between the groups, whereas differences in total protein amounts suggested changes in brain protein metabolism connected to forager age, but not flight. We propose that intense flight is causal to brain deficits in aged bees, and that oxidative protein damage is unlikely to be the underlying mechanism. PMID:21430210

  17. The Magnetic Attraction of Honeybee Navigation.

    ERIC Educational Resources Information Center

    Ayres, David

    1991-01-01

    Discussed are the division of labor, defenses, genetics and evolution, communication, and navigation power of honeybees. The scientific and cross-curricular themes that can be offered using the economically important honeybee are described. Research that suggests that bees may be flying magnets is also discussed. (KR)

  18. In situ hybridization analysis of the expression of futsch, tau, and MESK2 homologues in the brain of the European honeybee (Apis mellifera L.).

    PubMed

    Kaneko, Kumi; Hori, Sayaka; Morimoto, Mai M; Nakaoka, Takayoshi; Paul, Rajib Kumar; Fujiyuki, Tomoko; Shirai, Kenichi; Wakamoto, Akiko; Tsuboko, Satomi; Takeuchi, Hideaki; Kubo, Takeo

    2010-02-16

    The importance of visual sense in Hymenopteran social behavior is suggested by the existence of a Hymenopteran insect-specific neural circuit related to visual processing and the fact that worker honeybee brain changes morphologically according to its foraging experience. To analyze molecular and neural bases that underlie the visual abilities of the honeybees, we used a cDNA microarray to search for gene(s) expressed in a neural cell-type preferential manner in a visual center of the honeybee brain, the optic lobes (OLs). Expression analysis of candidate genes using in situ hybridization revealed two genes expressed in a neural cell-type preferential manner in the OLs. One is a homologue of Drosophila futsch, which encodes a microtubule-associated protein and is preferentially expressed in the monopolar cells in the lamina of the OLs. The gene for another microtubule-associated protein, tau, which functionally overlaps with futsch, was also preferentially expressed in the monopolar cells, strongly suggesting the functional importance of these two microtubule-associated proteins in monopolar cells. The other gene encoded a homologue of Misexpression Suppressor of Dominant-negative Kinase Suppressor of Ras 2 (MESK2), which might activate Ras/MAPK-signaling in Drosophila. MESK2 was expressed preferentially in a subclass of neurons located in the ventral region between the lamina and medulla neuropil in the OLs, suggesting that this subclass is a novel OL neuron type characterized by MESK2-expression. These three genes exhibited similar expression patterns in the worker, drone, and queen brains, suggesting that they function similarly irrespective of the honeybee sex or caste. Here we identified genes that are expressed in a monopolar cell (Amfutsch and Amtau) or ventral medulla-preferential manner (AmMESK2) in insect OLs. These genes may aid in visualizing neurites of monopolar cells and ventral medulla cells, as well as in analyzing the function of these neurons.

  19. Managed European-Derived Honey Bee, Apis mellifera sspp, Colonies Reduce African-Matriline Honey Bee, A. m. scutellata, Drones at Regional Mating Congregations.

    PubMed

    Mortensen, Ashley N; Ellis, James D

    2016-01-01

    African honey bees (Apis mellifera scutellata) dramatically changed the South American beekeeping industry as they rapidly spread through the Americas following their introduction into Brazil. In the present study, we aimed to determine if the management of European-derived honey bees (A. mellifera sspp.) could reduce the relative abundance of African-matriline drones at regional mating sites known as drone congregation areas (DCAs). We collected 2,400 drones at six DCAs either 0.25 km or >2.8 km from managed European-derived honey bee apiaries. The maternal ancestry of each drone was determined by Bgl II enzyme digestion of an amplified portion of the mitochondrial Cytochrome b gene. Furthermore, sibship reconstruction via nuclear microsatellites was conducted for a subset of 1,200 drones to estimate the number of colonies contributing drones to each DCA. Results indicate that DCAs distant to managed European apiaries (>2.8 km) had significantly more African-matriline drones (34.33% of the collected drones had African mitochondrial DNA) than did DCAs close (0.25 km) to managed European apiaries (1.83% of the collected drones had African mitochondrial DNA). Furthermore, nuclear sibship reconstruction demonstrated that the reduction in the proportion of African matriline drones at DCAs near apiaries was not simply an increase in the number of European matriline drones at the DCAs but also the result of fewer African matriline colonies contributing drones to the DCAs. Our data demonstrate that the management of European honey bee colonies can dramatically influence the proportion of drones with African matrilines at nearby drone congregation areas, and would likely decreasing the probability that virgin European queens will mate with African drones at those drone congregation areas.

  20. Disease dynamics of honeybees with Varroa destructor as parasite and virus vector.

    PubMed

    Kang, Yun; Blanco, Krystal; Davis, Talia; Wang, Ying; DeGrandi-Hoffman, Gloria

    2016-05-01

    The worldwide decline in honeybee colonies during the past 50 years has often been linked to the spread of the parasitic mite Varroa destructor and its interaction with certain honeybee viruses carried by Varroa mites. In this paper, we propose a honeybee-mite-virus model that incorporates (1) parasitic interactions between honeybees and the Varroa mites; (2) five virus transmission terms between honeybees and mites at different stages of Varroa mites: from honeybees to honeybees, from adult honeybees to the phoretic mites, from brood to the reproductive mites, from the reproductive mites to brood, and from adult honeybees to the phoretic mites; and (3) Allee effects in the honeybee population generated by its internal organization such as division of labor. We provide completed local and global analysis for the full system and its subsystems. Our analytical and numerical results allow us have a better understanding of the synergistic effects of parasitism and virus infections on honeybee population dynamics and its persistence. Interesting findings from our work include: (a) due to Allee effects experienced by the honeybee population, initial conditions are essential for the survival of the colony. (b) Low adult honeybees to brood ratios have destabilizing effects on the system which generate fluctuating dynamics that lead to a catastrophic event where both honeybees and mites suddenly become extinct. This catastrophic event could be potentially linked to Colony Collapse Disorder (CCD) of honeybee colonies. (c) Virus infections may have stabilizing effects on the system, and parasitic mites could make disease more persistent. Our model illustrates how the synergy between the parasitic mites and virus infections consequently generates rich dynamics including multiple attractors where all species can coexist or go extinct depending on initial conditions. Our findings may provide important insights on honeybee viruses and parasites and how to best control them

  1. RFID tracking of sublethal effects of two neonicotinoid insecticides on the foraging behavior of Apis mellifera.

    PubMed

    Schneider, Christof W; Tautz, Jürgen; Grünewald, Bernd; Fuchs, Stefan

    2012-01-01

    The development of insecticides requires valid risk assessment procedures to avoid causing harm to beneficial insects and especially to pollinators such as the honeybee Apis mellifera. In addition to testing according to current guidelines designed to detect bee mortality, tests are needed to determine possible sublethal effects interfering with the animal's vitality and behavioral performance. Several methods have been used to detect sublethal effects of different insecticides under laboratory conditions using olfactory conditioning. Furthermore, studies have been conducted on the influence insecticides have on foraging activity and homing ability which require time-consuming visual observation. We tested an experimental design using the radiofrequency identification (RFID) method to monitor the influence of sublethal doses of insecticides on individual honeybee foragers on an automated basis. With electronic readers positioned at the hive entrance and at an artificial food source, we obtained quantifiable data on honeybee foraging behavior. This enabled us to efficiently retrieve detailed information on flight parameters. We compared several groups of bees, fed simultaneously with different dosages of a tested substance. With this experimental approach we monitored the acute effects of sublethal doses of the neonicotinoids imidacloprid (0.15-6 ng/bee) and clothianidin (0.05-2 ng/bee) under field-like circumstances. At field-relevant doses for nectar and pollen no adverse effects were observed for either substance. Both substances led to a significant reduction of foraging activity and to longer foraging flights at doses of ≥0.5 ng/bee (clothianidin) and ≥1.5 ng/bee (imidacloprid) during the first three hours after treatment. This study demonstrates that the RFID-method is an effective way to record short-term alterations in foraging activity after insecticides have been administered once, orally, to individual bees. We contribute further information on the

  2. RFID Tracking of Sublethal Effects of Two Neonicotinoid Insecticides on the Foraging Behavior of Apis mellifera

    PubMed Central

    Schneider, Christof W.; Tautz, Jürgen; Grünewald, Bernd; Fuchs, Stefan

    2012-01-01

    The development of insecticides requires valid risk assessment procedures to avoid causing harm to beneficial insects and especially to pollinators such as the honeybee Apis mellifera. In addition to testing according to current guidelines designed to detect bee mortality, tests are needed to determine possible sublethal effects interfering with the animal's vitality and behavioral performance. Several methods have been used to detect sublethal effects of different insecticides under laboratory conditions using olfactory conditioning. Furthermore, studies have been conducted on the influence insecticides have on foraging activity and homing ability which require time-consuming visual observation. We tested an experimental design using the radiofrequency identification (RFID) method to monitor the influence of sublethal doses of insecticides on individual honeybee foragers on an automated basis. With electronic readers positioned at the hive entrance and at an artificial food source, we obtained quantifiable data on honeybee foraging behavior. This enabled us to efficiently retrieve detailed information on flight parameters. We compared several groups of bees, fed simultaneously with different dosages of a tested substance. With this experimental approach we monitored the acute effects of sublethal doses of the neonicotinoids imidacloprid (0.15–6 ng/bee) and clothianidin (0.05–2 ng/bee) under field-like circumstances. At field-relevant doses for nectar and pollen no adverse effects were observed for either substance. Both substances led to a significant reduction of foraging activity and to longer foraging flights at doses of ≥0.5 ng/bee (clothianidin) and ≥1.5 ng/bee (imidacloprid) during the first three hours after treatment. This study demonstrates that the RFID-method is an effective way to record short-term alterations in foraging activity after insecticides have been administered once, orally, to individual bees. We contribute further information on

  3. So Near and Yet So Far: Harmonic Radar Reveals Reduced Homing Ability of Nosema Infected Honeybees

    PubMed Central

    Wolf, Stephan; McMahon, Dino P.; Lim, Ka S.; Pull, Christopher D.; Clark, Suzanne J.; Paxton, Robert J.; Osborne, Juliet L.

    2014-01-01

    Pathogens may gain a fitness advantage through manipulation of the behaviour of their hosts. Likewise, host behavioural changes can be a defence mechanism, counteracting the impact of pathogens on host fitness. We apply harmonic radar technology to characterize the impact of an emerging pathogen - Nosema ceranae (Microsporidia) - on honeybee (Apis mellifera) flight and orientation performance in the field. Honeybees are the most important commercial pollinators. Emerging diseases have been proposed to play a prominent role in colony decline, partly through sub-lethal behavioural manipulation of their hosts. We found that homing success was significantly reduced in diseased (65.8%) versus healthy foragers (92.5%). Although lost bees had significantly reduced continuous flight times and prolonged resting times, other flight characteristics and navigational abilities showed no significant difference between infected and non-infected bees. Our results suggest that infected bees express normal flight characteristics but are constrained in their homing ability, potentially compromising the colony by reducing its resource inputs, but also counteracting the intra-colony spread of infection. We provide the first high-resolution analysis of sub-lethal effects of an emerging disease on insect flight behaviour. The potential causes and the implications for both host and parasite are discussed. PMID:25098331

  4. The cyanobacterial neurotoxin beta-N-methylamino-L-alanine (BMAA) induces neuronal and behavioral changes in honeybees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okle, Oliver, E-mail: oliver.okle@uni-konstanz.de; Rath, Lisa; Galizia, C. Giovanni

    The cyanobacterially produced neurotoxin beta-N-methylamino-L-alanine (BMAA) is thought to induce amyotrophic lateral sclerosis/Parkinsonism dementia complex (ALS/PDC)-like symptoms. However, its mechanism of action and its pathway of intoxication are yet unknown. In vivo animal models suitable for investigating the neurotoxic effect of BMAA with applicability to the human are scarce. Hence, we used the honeybee (Apis mellifera) since its nervous system is relatively simple, yet having cognitive capabilities. Bees fed with BMAA-spiked sugar water had an increased mortality rate and a reduced ability to learn odors in a classical conditioning paradigm. Using {sup 14}C-BMAA we demonstrated that BMAA is biologically availablemore » to the bee, and is found in the head, thorax and abdomen with little to no excretion. BMAA is also transferred from one bee to the next via trophallaxis resulting in an exposure of the whole beehive. BMAA bath application directly onto the brain leads to an altered Ca{sup 2+} homeostasis and to generation of reactive oxygen species. These behavioral and physiological observations suggest that BMAA may have effects on bee brains similar to those assumed to occur in humans. Therefore the bee could serve as a surrogate model system for investigating the neurological effects of BMAA. - Highlights: • Investigating of neurotoxic effects of BMAA in honeybees • BMAA impairs ALS markers (ROS, Ca{sup 2+}, learning, memory, odor) in bees. • A method for the observation of ROS development in living bees brain was established. • Honeybees are a suitable model to explore neurodegenerative processes. • Neurotoxic BMAA can be spread in bee populations by trophallaxis.« less

  5. Honeybees show adaptive reactions to ethanol exposure.

    PubMed

    Miler, Krzysztof; Kuszewska, Karolina; Privalova, Valeriya; Woyciechowski, Michal

    2018-06-07

    The honeybee is being developed as a simple invertebrate model for alcohol-related studies. To date, several effects of ethanol consumption have been demonstrated in honeybees, but the tolerance effect, one of the hallmarks of alcohol overuse, has never been shown. Here, we confirm our hypothesis that the response to ethanol (in terms of motor impairment) is lower in bees that have previously experienced intoxication than in bees encountering ethanol for the first time, indicating that the chronic tolerance effect occurs in honeybees. Furthermore, we investigated the basis of this effect and found that it likely results from conditioned compensatory responses to cues associated with ethanol delivery. Our findings significantly improve our understanding of the suitability of honeybees as models for alcoholism-related research and underline the first and foremost function of all conditioned reactions - their adaptive value.

  6. Expert explanations of honeybee losses in areas of extensive agriculture in France: Gaucho® compared with other supposed causal factors

    NASA Astrophysics Data System (ADS)

    Maxim, L.; van der Sluijs, J. P.

    2010-01-01

    Debates on causality are at the core of controversies as regards environmental changes. The present paper presents a new method for analyzing controversies on causality in a context of social debate and the results of its empirical testing. The case study used is the controversy as regards the role played by the insecticide Gaucho®, compared with other supposed causal factors, in the substantial honeybee (Apis mellifera L.) losses reported to have occurred in France between 1994 and 2004. The method makes use of expert elicitation of the perceived strength of evidence regarding each of Bradford Hill's causality criteria, as regards the link between each of eight possible causal factors identified in attempts to explain each of five signs observed in honeybee colonies. These judgments are elicited from stakeholders and experts involved in the debate, i.e., representatives of Bayer Cropscience, of the Ministry of Agriculture, of the French Food Safety Authority, of beekeepers and of public scientists. We show that the intense controversy observed in confused and passionate public discourses is much less salient when the various arguments are structured using causation criteria. The contradictions between the different expert views have a triple origin: (1) the lack of shared definition and quantification of the signs observed in colonies; (2) the lack of specialist knowledge on honeybees; and (3) the strategic discursive practices associated with the lack of trust between experts representing stakeholders having diverging stakes in the case.

  7. A circadian neuropeptide PDF in the honeybee, Apis mellifera: cDNA cloning and expression of mRNA.

    PubMed

    Sumiyoshi, Miho; Sato, Seiji; Takeda, Yukimasa; Sumida, Kazunori; Koga, Keita; Itoh, Tsunao; Nakagawa, Hiroyuki; Shimohigashi, Yasuyuki; Shimohigashi, Miki

    2011-12-01

    Pigment-dispersing factor (PDF) is a pacemaker hormone regulating the locomotor rhythm in insects. In the present study, we cloned the cDNAs encoding the Apis PDF precursor protein, and found that there are at least seven different pdf mRNAs yielded by an alternative splicing site and five alternative polyadenylation sites in the 5'UTR and 3'UTR regions. The amino acid sequence of Apis PDF peptide has a characteristic novel amino acid residue, aspargine (Asn), at position 17. Quantitative real-time PCR of total and 5'UTR insertion-type pdf mRNAs revealed, for the first time, that the expression levels change in a circadian manner with a distinct trough at the beginning of night in LD conditions, and at the subjective night under DD conditions. In contrast, the expression level of 5'UTR deletion-type pdf mRNAs was about half of that of the insertion type, and the expression profile failed to show a circadian rhythm. As the expression profile of the total pdf mRNA exhibited a circadian rhythm, transcription regulated at the promoter region was supposed to be controlled by some of the clock components. Whole mount in situ hybridization revealed that 14 lateral neurons at the frontal margin of the optic lobe express these mRNA isoforms. PDF expressing cells examined with a newly produced antibody raised against Apis PDF were also found to have a dense supply of axon terminals in the optic lobes and the central brain.

  8. Biomimetic Chemosensor: Designing Peptide Recognition Elements for Surface Functionalization of Carbon Nanotube Field Effect Transistors (Postprint)

    DTIC Science & Technology

    2009-12-01

    Protein from the Honeybee Apis mellifera L. J. Biol. Chem. 2004, 279, 4459– 4464. 12. Mead, J. C. New Scientist 2007, November issue. 13. Inscentinel...of explo- sives and other analytes.12,13 The antennal-specific protein-1 (ASP1), an OBP from honeybee, Apis mel- lifera, contains a C-terminal tail

  9. Widespread exploitation of the honeybee by early Neolithic farmers.

    PubMed

    Roffet-Salque, Mélanie; Regert, Martine; Evershed, Richard P; Outram, Alan K; Cramp, Lucy J E; Decavallas, Orestes; Dunne, Julie; Gerbault, Pascale; Mileto, Simona; Mirabaud, Sigrid; Pääkkönen, Mirva; Smyth, Jessica; Šoberl, Lucija; Whelton, Helen L; Alday-Ruiz, Alfonso; Asplund, Henrik; Bartkowiak, Marta; Bayer-Niemeier, Eva; Belhouchet, Lotfi; Bernardini, Federico; Budja, Mihael; Cooney, Gabriel; Cubas, Miriam; Danaher, Ed M; Diniz, Mariana; Domboróczki, László; Fabbri, Cristina; González-Urquijo, Jesus E; Guilaine, Jean; Hachi, Slimane; Hartwell, Barrie N; Hofmann, Daniela; Hohle, Isabel; Ibáñez, Juan J; Karul, Necmi; Kherbouche, Farid; Kiely, Jacinta; Kotsakis, Kostas; Lueth, Friedrich; Mallory, James P; Manen, Claire; Marciniak, Arkadiusz; Maurice-Chabard, Brigitte; Mc Gonigle, Martin A; Mulazzani, Simone; Özdoğan, Mehmet; Perić, Olga S; Perić, Slaviša R; Petrasch, Jörg; Pétrequin, Anne-Marie; Pétrequin, Pierre; Poensgen, Ulrike; Pollard, C Joshua; Poplin, François; Radi, Giovanna; Stadler, Peter; Stäuble, Harald; Tasić, Nenad; Urem-Kotsou, Dushka; Vuković, Jasna B; Walsh, Fintan; Whittle, Alasdair; Wolfram, Sabine; Zapata-Peña, Lydia; Zoughlami, Jamel

    2015-11-12

    The pressures on honeybee (Apis mellifera) populations, resulting from threats by modern pesticides, parasites, predators and diseases, have raised awareness of the economic importance and critical role this insect plays in agricultural societies across the globe. However, the association of humans with A. mellifera predates post-industrial-revolution agriculture, as evidenced by the widespread presence of ancient Egyptian bee iconography dating to the Old Kingdom (approximately 2400 BC). There are also indications of Stone Age people harvesting bee products; for example, honey hunting is interpreted from rock art in a prehistoric Holocene context and a beeswax find in a pre-agriculturalist site. However, when and where the regular association of A. mellifera with agriculturalists emerged is unknown. One of the major products of A. mellifera is beeswax, which is composed of a complex suite of lipids including n-alkanes, n-alkanoic acids and fatty acyl wax esters. The composition is highly constant as it is determined genetically through the insect's biochemistry. Thus, the chemical 'fingerprint' of beeswax provides a reliable basis for detecting this commodity in organic residues preserved at archaeological sites, which we now use to trace the exploitation by humans of A. mellifera temporally and spatially. Here we present secure identifications of beeswax in lipid residues preserved in pottery vessels of Neolithic Old World farmers. The geographical range of bee product exploitation is traced in Neolithic Europe, the Near East and North Africa, providing the palaeoecological range of honeybees during prehistory. Temporally, we demonstrate that bee products were exploited continuously, and probably extensively in some regions, at least from the seventh millennium cal BC, likely fulfilling a variety of technological and cultural functions. The close association of A. mellifera with Neolithic farming communities dates to the early onset of agriculture and may provide

  10. Assessment of heavy metal pollution in Córdoba (Spain) by biomonitoring foraging honeybee.

    PubMed

    Gutiérrez, Miriam; Molero, Rafael; Gaju, Miquel; van der Steen, Josef; Porrini, Claudio; Ruiz, José Antonio

    2015-10-01

    Due to features that make them outstanding environmental bioindicator, colonies of Apis mellifera are being used to study environmental pollution. The primary objective of this research was to use honeybee colonies to identify heavy metals and determine their utility for environmental management. Five stations each with two A. mellifera hives were strategically located in urban, industrial, agricultural and forested areas within the municipality of Córdoba (Spain), and foraging bees were collected from April to December in 2007, 2009 and 2010 to analyse spatial and temporal variation in Pb, Cr, Ni and Cd pollution. Metal concentrations, in milligram per kilogram of honeybee, were determined by inductively coupled plasma-atomic emission spectrometry and graphite furnace atomic absorption spectrophotometry. Significant differences in concentrations were found among the various locations and periods. The highest number of values exceeding the upper reference thresholds proposed for this study (Pb, 0.7 mg/kg; Cr, 0.12 mg/kg; Ni, 0.3 mg/kg; and Cd, 0.1 mg/kg) was observed for Pb and Cr (6.25% respectively), station S4 (13.22%), year 2007 (20.83%) and in months of May and July (11.90% each). Regarding the Cd, which was analysed only in 2010, the highest number of values exceeding the upper reference thresholds was 40%. Biomonitoring with colonies of A. mellifera could contribute to improved surveillance and control systems for atmospheric pollution by integrating qualitative and quantitative assessments, thus facilitating prevention and readiness in the event of environmental crises.

  11. Side-Specificity of Olfactory Learning in the Honeybee: Generalization between Odors and Sides

    PubMed Central

    Sandoz, Jean-Christophe; Menzel, Randolf

    2001-01-01

    Honeybees (Apis mellifera) can be trained to associate an odor stimulus with a sucrose reward. The neural structures involved in the detection and integration of olfactory stimuli are represented bilaterally in the brain. Little is known about the respective roles of the two sides of the brain in olfactory learning. Does each side learn independently of the other, or do they communicate, and if so, to what extent and at what level of neural integration? We addressed these questions using the proboscis extension response (PER) conditioning paradigm applied in a preparation that allows the separation of the two input sides during olfactory stimulations. Bees conditioned to two odorants A and B, one being learned on each side (A+/B+ training), showed in extinction tests rather unspecific responses: They responded to both odorants on both sides. This could be attributable to either a transfer of the learned information between sides, or to a generalization between odorants on each side. By subjecting bees to conditioning on one side only (A+/0 training), we found that the learned information is indeed transferred between sides. However, when bees were trained explicitly to give opposite values to the two odorants on the two sides (A+B−/B+A− training), they showed clear side-specific response patterns to these odorants. These results are used in the elaboration of a functional model of laterality of olfactory learning and memory processing in the honeybee brain. PMID:11584076

  12. Role of the Varroa mite in honeybee (Apis mellifera) colony loss: A case study for adverse outcome pathway development with a nonchemical stressor

    EPA Science Inventory

    Significant honeybee colony losses have been reported across North America and Europe in recent years. A number of factors, both chemical and nonchemical, have been associated with such losses. Adverse outcome pathways (AOPs) provide a conceptual framework to describe and evalu...

  13. Neonicotinoid pesticides can reduce honeybee colony genetic diversity

    PubMed Central

    Troxler, Aline; Retschnig, Gina; Gauthier, Laurent; Straub, Lars; Moritz, Robin F. A.; Neumann, Peter; Williams, Geoffrey R.

    2017-01-01

    Neonicotinoid insecticides can cause a variety of adverse sub-lethal effects in bees. In social species such as the honeybee, Apis mellifera, queens are essential for reproduction and colony functioning. Therefore, any negative effect of these agricultural chemicals on the mating success of queens may have serious consequences for the fitness of the entire colony. Queens were exposed to the common neonicotinoid pesticides thiamethoxam and clothianidin during their developmental stage. After mating, their spermathecae were dissected to count the number of stored spermatozoa. Furthermore, their worker offspring were genotyped with DNA microsatellites to determine the number of matings and the genotypic composition of the colony. Colonies providing the male mating partners were also inferred. Both neonicotinoid and control queens mated with drones originating from the same drone source colonies, and stored similar number of spermatozoa. However, queens reared in colonies exposed to both neonicotinoids experienced fewer matings. This resulted in a reduction of the genetic diversity in their colonies (i.e. higher intracolonial relatedness). As decreased genetic diversity among worker bees is known to negatively affect colony vitality, neonicotinoids may have a cryptic effect on colony health by reducing the mating frequency of queens. PMID:29059234

  14. Multiple pesticide residues in live and poisoned honeybees - Preliminary exposure assessment.

    PubMed

    Kiljanek, Tomasz; Niewiadowska, Alicja; Gaweł, Marta; Semeniuk, Stanisław; Borzęcka, Milena; Posyniak, Andrzej; Pohorecka, Krystyna

    2017-05-01

    Study combines data about the exposure of honeybees to pesticides from plant protection products and veterinary medicinal products. Residues of 200 pesticide and pesticide metabolites in 343 live and 74 poisoned honeybee samples, obtained during the years of 2014-2015, were determined by LC-MS/MS and GC-MS/MS. In 44% of live honeybee 48 different pesticide residues were found, mainly amitraz metabolites (DMF, DMPF) and chlorpyrifos. In 98% of poisoned honeybee 57 pesticides and metabolites were detected, mainly chlorpyrifos, dimethoate and clothianidin. In total 84 different pesticides were detected both in live and poisoned honeybees, they indicate 30 various modes of action. Differences between mean number of pesticide residues detected in live and poisoned honeybees clearly indicate the impact of multiple pesticides on honeybee health. Possible impact of systemic fungicides on the health of honeybees was studied. Applicability of hazard quotient counted as ratio between concentration of pesticides in honeybees and lethal dose in the interpretation whether detected concentration indicates acute toxic effects was shown. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Infection of Melissococcus plutonius clonal complex 12 strain in European honeybee larvae is essentially confined to the digestive tract

    PubMed Central

    TAKAMATSU, Daisuke; SATO, Masumi; YOSHIYAMA, Mikio

    2015-01-01

    Melissococcus plutonius is an important pathogen that causes European foulbrood (EFB) in honeybee larvae. Recently, we discovered a group of M. plutonius strains that are phenotypically and genetically distinct from other strains. These strains belong to clonal complex (CC) 12, as determined by multilocus sequence typing analysis, and show atypical cultural and biochemical characteristics in vitro compared with strains of other CCs tested. Although EFB is considered to be a purely intestinal infection according to early studies, it is unknown whether the recently found CC12 strains cause EFB by the same pathomechanism. In this study, to obtain a better understanding of EFB, we infected European honeybee (Apis mellifera) larvae per os with a well-characterized CC12 strain, DAT561, and analyzed the larvae histopathologically. Ingested DAT561 was mainly localized in the midgut lumen surrounded by the peritrophic matrix (PM) in the larvae. In badly affected larvae, the PM and midgut epithelial cells degenerated, and some bacterial cells were detected outside of the midgut. However, they did not proliferate in the deep tissues actively. By immunohistochemical analysis, the PM was stained with anti-M. plutonius serum in most of the DAT561-infected larvae. In some larvae, luminal surfaces of the PM were more strongly stained than the inside. These results suggest that infection of CC12 strain in honeybee larvae is essentially confined to the intestine. Moreover, our results imply the presence of M. plutonius-derived substances diffusing into the larval tissues in the course of infection. PMID:26256232

  16. Proteome Analysis Unravels Mechanism Underling the Embryogenesis of the Honeybee Drone and Its Divergence with the Worker (Apis mellifera lingustica).

    PubMed

    Fang, Yu; Feng, Mao; Han, Bin; Qi, Yuping; Hu, Han; Fan, Pei; Huo, Xinmei; Meng, Lifeng; Li, Jianke

    2015-09-04

    The worker and drone bees each contain a separate diploid and haploid genetic makeup, respectively. Mechanisms regulating the embryogenesis of the drone and its mechanistic difference with the worker are still poorly understood. The proteomes of the two embryos at three time-points throughout development were analyzed by applying mass spectrometry-based proteomics. We identified 2788 and 2840 proteins in the worker and drone embryos, respectively. The age-dependent proteome driving the drone embryogenesis generally follows the worker's. The two embryos however evolve a distinct proteome setting to prime their respective embryogenesis. The strongly expressed proteins and pathways related to transcriptional-translational machinery and morphogenesis at 24 h drone embryo relative to the worker, illustrating the earlier occurrence of morphogenesis in the drone than worker. These morphogenesis differences remain through to the middle-late stage in the two embryos. The two embryos employ distinct antioxidant mechanisms coinciding with the temporal-difference organogenesis. The drone embryo's strongly expressed cytoskeletal proteins signify key roles to match its large body size. The RNAi induced knockdown of the ribosomal protein offers evidence for the functional investigation of gene regulating of honeybee embryogenesis. The data significantly expand novel regulatory mechanisms governing the embryogenesis, which is potentially important for honeybee and other insects.

  17. Managed European-Derived Honey Bee, Apis mellifera sspp, Colonies Reduce African-Matriline Honey Bee, A. m. scutellata, Drones at Regional Mating Congregations

    PubMed Central

    Mortensen, Ashley N.; Ellis, James D.

    2016-01-01

    African honey bees (Apis mellifera scutellata) dramatically changed the South American beekeeping industry as they rapidly spread through the Americas following their introduction into Brazil. In the present study, we aimed to determine if the management of European-derived honey bees (A. mellifera sspp.) could reduce the relative abundance of African-matriline drones at regional mating sites known as drone congregation areas (DCAs). We collected 2,400 drones at six DCAs either 0.25 km or >2.8 km from managed European-derived honey bee apiaries. The maternal ancestry of each drone was determined by Bgl II enzyme digestion of an amplified portion of the mitochondrial Cytochrome b gene. Furthermore, sibship reconstruction via nuclear microsatellites was conducted for a subset of 1,200 drones to estimate the number of colonies contributing drones to each DCA. Results indicate that DCAs distant to managed European apiaries (>2.8 km) had significantly more African−matriline drones (34.33% of the collected drones had African mitochondrial DNA) than did DCAs close (0.25 km) to managed European apiaries (1.83% of the collected drones had African mitochondrial DNA). Furthermore, nuclear sibship reconstruction demonstrated that the reduction in the proportion of African matriline drones at DCAs near apiaries was not simply an increase in the number of European matriline drones at the DCAs but also the result of fewer African matriline colonies contributing drones to the DCAs. Our data demonstrate that the management of European honey bee colonies can dramatically influence the proportion of drones with African matrilines at nearby drone congregation areas, and would likely decreasing the probability that virgin European queens will mate with African drones at those drone congregation areas. PMID:27518068

  18. Concentrations of imidacloprid and thiamethoxam in pollen, nectar and leaves from seed-dressed cotton crops and their potential risk to honeybees (Apis mellifera L.).

    PubMed

    Jiang, Jiangong; Ma, Dicheng; Zou, Nan; Yu, Xin; Zhang, Zhengqun; Liu, Feng; Mu, Wei

    2018-06-01

    Neonicotinoid insecticides (NIs) have recently been recognized as co-factors in the decline of honeybee colonies because most neonicotinoids are systemic and can transfer into the pollen and nectar of many pollinated crops. In this study, we collected pollen, nectar and leaves from a cotton crop treated with imidacloprid and thiamethoxam to measure the residue levels of these two NIs at different application doses during the flowering period. Then, the residual data were used to assess the risk posed by the systemic insecticides to honeybees following mandated methods published by the European Food Safety Authority (EFSA), and a highly toxic risk to honeybees was highlighted. Imidacloprid was found in both pollen and nectar samples, whereas thiamethoxam was found in 90% of pollen samples and over 60% of nectar samples. Analysis of the pollen and nectar revealed residual amounts of imidacloprid ranging from 1.61 to 64.58 ng g -1 in the pollen and from not detected (ND) to 1.769 ng g -1 in the nectar. By comparison, the thiamethoxam concentrations in pollen and nectar ranged from ND to 14.521 ng g -1 and from ND to 4.285 ng g -1 , respectively. The results of this study provide information on the transfer of two NIs from seed treatment to areas of the plant and provides an understanding of the potential exposure of the bee and other pollinators to systemic insecticides. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Parallel representation of stimulus identity and intensity in a dual pathway model inspired by the olfactory system of the honeybee.

    PubMed

    Schmuker, Michael; Yamagata, Nobuhiro; Nawrot, Martin Paul; Menzel, Randolf

    2011-01-01

    The honeybee Apis mellifera has a remarkable ability to detect and locate food sources during foraging, and to associate odor cues with food rewards. In the honeybee's olfactory system, sensory input is first processed in the antennal lobe (AL) network. Uniglomerular projection neurons (PNs) convey the sensory code from the AL to higher brain regions via two parallel but anatomically distinct pathways, the lateral and the medial antenno-cerebral tract (l- and m-ACT). Neurons innervating either tract show characteristic differences in odor selectivity, concentration dependence, and representation of mixtures. It is still unknown how this differential stimulus representation is achieved within the AL network. In this contribution, we use a computational network model to demonstrate that the experimentally observed features of odor coding in PNs can be reproduced by varying lateral inhibition and gain control in an otherwise unchanged AL network. We show that odor coding in the l-ACT supports detection and accurate identification of weak odor traces at the expense of concentration sensitivity, while odor coding in the m-ACT provides the basis for the computation and following of concentration gradients but provides weaker discrimination power. Both coding strategies are mutually exclusive, which creates a tradeoff between detection accuracy and sensitivity. The development of two parallel systems may thus reflect an evolutionary solution to this problem that enables honeybees to achieve both tasks during bee foraging in their natural environment, and which could inspire the development of artificial chemosensory devices for odor-guided navigation in robots.

  20. BEEHAVE: a systems model of honeybee colony dynamics and foraging to explore multifactorial causes of colony failure

    PubMed Central

    Becher, Matthias A; Grimm, Volker; Thorbek, Pernille; Horn, Juliane; Kennedy, Peter J; Osborne, Juliet L

    2014-01-01

    A notable increase in failure of managed European honeybee Apis mellifera L. colonies has been reported in various regions in recent years. Although the underlying causes remain unclear, it is likely that a combination of stressors act together, particularly varroa mites and other pathogens, forage availability and potentially pesticides. It is experimentally challenging to address causality at the colony scale when multiple factors interact. In silico experiments offer a fast and cost-effective way to begin to address these challenges and inform experiments. However, none of the published bee models combine colony dynamics with foraging patterns and varroa dynamics. We have developed a honeybee model, BEEHAVE, which integrates colony dynamics, population dynamics of the varroa mite, epidemiology of varroa-transmitted viruses and allows foragers in an agent-based foraging model to collect food from a representation of a spatially explicit landscape. We describe the model, which is freely available online (www.beehave-model.net). Extensive sensitivity analyses and tests illustrate the model's robustness and realism. Simulation experiments with various combinations of stressors demonstrate, in simplified landscape settings, the model's potential: predicting colony dynamics and potential losses with and without varroa mites under different foraging conditions and under pesticide application. We also show how mitigation measures can be tested. Synthesis and applications. BEEHAVE offers a valuable tool for researchers to design and focus field experiments, for regulators to explore the relative importance of stressors to devise management and policy advice and for beekeepers to understand and predict varroa dynamics and effects of management interventions. We expect that scientists and stakeholders will find a variety of applications for BEEHAVE, stimulating further model development and the possible inclusion of other stressors of potential importance to honeybee

  1. BEEHAVE: a systems model of honeybee colony dynamics and foraging to explore multifactorial causes of colony failure.

    PubMed

    Becher, Matthias A; Grimm, Volker; Thorbek, Pernille; Horn, Juliane; Kennedy, Peter J; Osborne, Juliet L

    2014-04-01

    A notable increase in failure of managed European honeybee Apis mellifera L. colonies has been reported in various regions in recent years. Although the underlying causes remain unclear, it is likely that a combination of stressors act together, particularly varroa mites and other pathogens, forage availability and potentially pesticides. It is experimentally challenging to address causality at the colony scale when multiple factors interact. In silico experiments offer a fast and cost-effective way to begin to address these challenges and inform experiments. However, none of the published bee models combine colony dynamics with foraging patterns and varroa dynamics.We have developed a honeybee model, BEEHAVE, which integrates colony dynamics, population dynamics of the varroa mite, epidemiology of varroa-transmitted viruses and allows foragers in an agent-based foraging model to collect food from a representation of a spatially explicit landscape.We describe the model, which is freely available online (www.beehave-model.net). Extensive sensitivity analyses and tests illustrate the model's robustness and realism. Simulation experiments with various combinations of stressors demonstrate, in simplified landscape settings, the model's potential: predicting colony dynamics and potential losses with and without varroa mites under different foraging conditions and under pesticide application. We also show how mitigation measures can be tested. Synthesis and applications . BEEHAVE offers a valuable tool for researchers to design and focus field experiments, for regulators to explore the relative importance of stressors to devise management and policy advice and for beekeepers to understand and predict varroa dynamics and effects of management interventions. We expect that scientists and stakeholders will find a variety of applications for BEEHAVE, stimulating further model development and the possible inclusion of other stressors of potential importance to honeybee colony

  2. DyninstAPI Patches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LeGendre, M.

    2012-04-01

    We are seeking a code review of patches against DyninstAPI 8.0. DyninstAPI is an open source binary instrumentation library from the University of Wisconsin and University of Maryland. Our patches port DyninstAPI to the BlueGene/P and BlueGene/Q systems, as well as fix DyninstAPI bugs and implement minor new features in DyninstAPI.

  3. Do honeybees shape the bacterial community composition in floral nectar?

    PubMed

    Aizenberg-Gershtein, Yana; Izhaki, Ido; Halpern, Malka

    2013-01-01

    Floral nectar is considered the most important reward animal-pollinated plants offer to attract pollinators. Here we explore whether honeybees, which act as pollinators, affect the composition of bacterial communities in the nectar. Nectar and honeybees were sampled from two plant species: Amygdalus communis and Citrus paradisi. To prevent the contact of nectar with pollinators, C. paradisi flowers were covered with net bags before blooming (covered flowers). Comparative analysis of bacterial communities in the nectar and on the honeybees was performed by the 454-pyrosequencing technique. No significant differences were found among bacterial communities in honeybees captured on the two different plant species. This resemblance may be due to the presence of dominant bacterial OTUs, closely related to the Arsenophonus genus. The bacterial communities of the nectar from the covered and uncovered C. paradisi flowers differed significantly; the bacterial communities on the honeybees differed significantly from those in the covered flowers' nectar, but not from those in the uncovered flowers' nectar. We conclude that the honeybees may introduce bacteria into the nectar and/or may be contaminated by bacteria introduced into the nectar by other sources such as other pollinators and nectar thieves.

  4. Do Honeybees Shape the Bacterial Community Composition in Floral Nectar?

    PubMed Central

    Aizenberg-Gershtein, Yana; Izhaki, Ido; Halpern, Malka

    2013-01-01

    Floral nectar is considered the most important reward animal-pollinated plants offer to attract pollinators. Here we explore whether honeybees, which act as pollinators, affect the composition of bacterial communities in the nectar. Nectar and honeybees were sampled from two plant species: Amygdalus communis and Citrus paradisi. To prevent the contact of nectar with pollinators, C. paradisi flowers were covered with net bags before blooming (covered flowers). Comparative analysis of bacterial communities in the nectar and on the honeybees was performed by the 454-pyrosequencing technique. No significant differences were found among bacterial communities in honeybees captured on the two different plant species. This resemblance may be due to the presence of dominant bacterial OTUs, closely related to the Arsenophonus genus. The bacterial communities of the nectar from the covered and uncovered C. paradisi flowers differed significantly; the bacterial communities on the honeybees differed significantly from those in the covered flowers’ nectar, but not from those in the uncovered flowers’ nectar. We conclude that the honeybees may introduce bacteria into the nectar and/or may be contaminated by bacteria introduced into the nectar by other sources such as other pollinators and nectar thieves. PMID:23844027

  5. Foraging reactivation in the honeybee Apis mellifera L.: factors affecting the return to known nectar sources

    NASA Astrophysics Data System (ADS)

    Gil, Mariana; Farina, Walter Marcelo

    2002-05-01

    This paper addresses, what determines that experienced forager honeybees return to places where they have previously exploited nectar. Although there was already some evidence that dance and trophallaxis can cause bees to return to feed, the fraction of unemployed foragers that follow dance or receive food from employed foragers before revisiting the feeder was unknown. We found that 27% of the experienced foragers had no contact with the returning foragers inside the hive. The most common interactions were dance following (64%) and trophallaxis (21%). The great variability found in the amount of interactions suggests that individual bees require different stimulation before changing to the foraging mode. This broad disparity negatively correlated with the number of days after marking at the feeder, a variable that is closely related to the foraging experience, suggesting that a temporal variable might affect the decision-making in reactivated foragers.

  6. Altitude control in honeybees: joint vision-based learning and guidance.

    PubMed

    Portelli, Geoffrey; Serres, Julien R; Ruffier, Franck

    2017-08-23

    Studies on insects' visual guidance systems have shed little light on how learning contributes to insects' altitude control system. In this study, honeybees were trained to fly along a double-roofed tunnel after entering it near either the ceiling or the floor of the tunnel. The honeybees trained to hug the ceiling therefore encountered a sudden change in the tunnel configuration midways: i.e. a "dorsal ditch". Thus, the trained honeybees met a sudden increase in the distance to the ceiling, corresponding to a sudden strong change in the visual cues available in their dorsal field of view. Honeybees reacted by rising quickly and hugging the new, higher ceiling, keeping a similar forward speed, distance to the ceiling and dorsal optic flow to those observed during the training step; whereas bees trained to follow the floor kept on following the floor regardless of the change in the ceiling height. When trained honeybees entered the tunnel via the other entry (the lower or upper entry) to that used during the training step, they quickly changed their altitude and hugged the surface they had previously learned to follow. These findings clearly show that trained honeybees control their altitude based on visual cues memorized during training. The memorized visual cues generated by the surfaces followed form a complex optic flow pattern: trained honeybees may attempt to match the visual cues they perceive with this memorized optic flow pattern by controlling their altitude.

  7. Olfactory Blocking and Odorant Similarity in the Honeybee

    ERIC Educational Resources Information Center

    Gerber, Bertram; Giurfa, Martin; Guerrieri, Fernando; Lachnit, Harald

    2005-01-01

    Blocking occurs when previous training with a stimulus A reduces (blocks) subsequent learning about a stimulus B, when A and B are trained in compound. The question of whether blocking exists in olfactory conditioning of proboscis extension reflex (PER) in honeybees is under debate. The last published accounts on blocking in honeybees state that…

  8. Persistence of subclinical deformed wing virus infections in honeybees following Varroa mite removal and a bee population turnover

    PubMed Central

    Semberg, Emilia; Forsgren, Eva; de Miranda, Joachim R.

    2017-01-01

    Deformed wing virus (DWV) is a lethal virus of honeybees (Apis mellifera) implicated in elevated colony mortality rates worldwide and facilitated through vector transmission by the ectoparasitic mite Varroa destructor. Clinical, symptomatic DWV infections are almost exclusively associated with high virus titres during pupal development, usually acquired through feeding by Varroa mites when reproducing on bee pupae. Control of the mite population, generally through acaricide treatment, is essential for breaking the DWV epidemic and minimizing colony losses. In this study, we evaluated the effectiveness of remedial mite control on clearing DWV from a colony. DWV titres in adult bees and pupae were monitored at 2 week intervals through summer and autumn in acaricide-treated and untreated colonies. The DWV titres in Apistan treated colonies was reduced 1000-fold relative to untreated colonies, which coincided with both the removal of mites and also a turnover of the bee population in the colony. This adult bee population turnover is probably more critical than previously realized for effective clearing of DWV infections. After this initial reduction, subclinical DWV titres persisted and even increased again gradually during autumn, demonstrating that alternative non-Varroa transmission routes can maintain the DWV titres at significant subclinical levels even after mite removal. The implications of these results for practical recommendations to mitigate deleterious subclinical DWV infections and improving honeybee health management are discussed. PMID:28686725

  9. Deformed wing virus implicated in overwintering honeybee colony losses.

    PubMed

    Highfield, Andrea C; El Nagar, Aliya; Mackinder, Luke C M; Noël, Laure M-L J; Hall, Matthew J; Martin, Stephen J; Schroeder, Declan C

    2009-11-01

    The worldwide decline in honeybee colonies during the past 50 years has often been linked to the spread of the parasitic mite Varroa destructor and its interaction with certain honeybee viruses. Recently in the United States, dramatic honeybee losses (colony collapse disorder) have been reported; however, there remains no clear explanation for these colony losses, with parasitic mites, viruses, bacteria, and fungal diseases all being proposed as possible candidates. Common characteristics that most failing colonies share is a lack of overt disease symptoms and the disappearance of workers from what appears to be normally functioning colonies. In this study, we used quantitative PCR to monitor the presence of three honeybee viruses, deformed wing virus (DWV), acute bee paralysis virus (ABPV), and black queen cell virus (BQCV), during a 1-year period in 15 asymptomatic, varroa mite-positive honeybee colonies in Southern England, and 3 asymptomatic colonies confirmed to be varroa mite free. All colonies with varroa mites underwent control treatments to ensure that mite populations remained low throughout the study. Despite this, multiple virus infections were detected, yet a significant correlation was observed only between DWV viral load and overwintering colony losses. The long-held view has been that DWV is relatively harmless to the overall health status of honeybee colonies unless it is in association with severe varroa mite infestations. Our findings suggest that DWV can potentially act independently of varroa mites to bring about colony losses. Therefore, DWV may be a major factor in overwintering colony losses.

  10. Honey bees (Hymenoptera: Apidae) of African origin exist in non-africanized areas of the southern United States: evidence from mitochondrial DNA

    Treesearch

    M.A. Pinto; W.S. Sheppard; J.S. Johnston; W.L. Rubink; R.N. Coulson; N.M. Schiff; I. Kandemir; J.C. Patton

    2007-01-01

    Descendents of Apis mellifera scutellata Lepeletier (Hymenoptera: Apidae) (the Africanized honey bee) arrived in the United States in 1990. Whether this was the first introduction is uncertain. A survey of feral honey bees from non-Africanized areas of the southern United States revealed three colonies (from Georgia, Texas, and New Mexico) with a...

  11. Transmedulla Neurons in the Sky Compass Network of the Honeybee (Apis mellifera) Are a Possible Site of Circadian Input

    PubMed Central

    Zeller, Maximilian; Held, Martina; Bender, Julia; Berz, Annuska; Heinloth, Tanja; Hellfritz, Timm; Pfeiffer, Keram

    2015-01-01

    Honeybees are known for their ability to use the sun’s azimuth and the sky’s polarization pattern for spatial orientation. Sky compass orientation in bees has been extensively studied at the behavioral level but our knowledge about the underlying neuronal systems and mechanisms is very limited. Electrophysiological studies in other insect species suggest that neurons of the sky compass system integrate information about the polarization pattern of the sky, its chromatic gradient, and the azimuth of the sun. In order to obtain a stable directional signal throughout the day, circadian changes between the sky polarization pattern and the solar azimuth must be compensated. Likewise, the system must be modulated in a context specific way to compensate for changes in intensity, polarization and chromatic properties of light caused by clouds, vegetation and landscape. The goal of this study was to identify neurons of the sky compass pathway in the honeybee brain and to find potential sites of circadian and neuromodulatory input into this pathway. To this end we first traced the sky compass pathway from the polarization-sensitive dorsal rim area of the compound eye via the medulla and the anterior optic tubercle to the lateral complex using dye injections. Neurons forming this pathway strongly resembled neurons of the sky compass pathway in other insect species. Next we combined tracer injections with immunocytochemistry against the circadian neuropeptide pigment dispersing factor and the neuromodulators serotonin, and γ-aminobutyric acid. We identified neurons, connecting the dorsal rim area of the medulla to the anterior optic tubercle, as a possible site of neuromodulation and interaction with the circadian system. These neurons have conspicuous spines in close proximity to pigment dispersing factor-, serotonin-, and GABA-immunoreactive neurons. Our data therefore show for the first time a potential interaction site between the sky compass pathway and the circadian

  12. Transmedulla Neurons in the Sky Compass Network of the Honeybee (Apis mellifera) Are a Possible Site of Circadian Input.

    PubMed

    Zeller, Maximilian; Held, Martina; Bender, Julia; Berz, Annuska; Heinloth, Tanja; Hellfritz, Timm; Pfeiffer, Keram

    2015-01-01

    Honeybees are known for their ability to use the sun's azimuth and the sky's polarization pattern for spatial orientation. Sky compass orientation in bees has been extensively studied at the behavioral level but our knowledge about the underlying neuronal systems and mechanisms is very limited. Electrophysiological studies in other insect species suggest that neurons of the sky compass system integrate information about the polarization pattern of the sky, its chromatic gradient, and the azimuth of the sun. In order to obtain a stable directional signal throughout the day, circadian changes between the sky polarization pattern and the solar azimuth must be compensated. Likewise, the system must be modulated in a context specific way to compensate for changes in intensity, polarization and chromatic properties of light caused by clouds, vegetation and landscape. The goal of this study was to identify neurons of the sky compass pathway in the honeybee brain and to find potential sites of circadian and neuromodulatory input into this pathway. To this end we first traced the sky compass pathway from the polarization-sensitive dorsal rim area of the compound eye via the medulla and the anterior optic tubercle to the lateral complex using dye injections. Neurons forming this pathway strongly resembled neurons of the sky compass pathway in other insect species. Next we combined tracer injections with immunocytochemistry against the circadian neuropeptide pigment dispersing factor and the neuromodulators serotonin, and γ-aminobutyric acid. We identified neurons, connecting the dorsal rim area of the medulla to the anterior optic tubercle, as a possible site of neuromodulation and interaction with the circadian system. These neurons have conspicuous spines in close proximity to pigment dispersing factor-, serotonin-, and GABA-immunoreactive neurons. Our data therefore show for the first time a potential interaction site between the sky compass pathway and the circadian

  13. Six quantitative trait loci influence task thresholds for hygienic behaviour in honeybees (Apis mellifera).

    PubMed

    Oxley, Peter R; Spivak, Marla; Oldroyd, Benjamin P

    2010-04-01

    Honeybee hygienic behaviour provides colonies with protection from many pathogens and is an important model system of the genetics of a complex behaviour. It is a textbook example of complex behaviour under simple genetic control: hygienic behaviour consists of two components--uncapping a diseased brood cell, followed by removal of the contents--each of which are thought to be modulated independently by a few loci of medium to large effect. A worker's genetic propensity to engage in hygienic tasks affects the intensity of the stimulus required before she initiates the behaviour. Genetic diversity within colonies leads to task specialization among workers, with a minority of workers performing the majority of nest-cleaning tasks. We identify three quantitative trait loci that influence the likelihood that workers will engage in hygienic behaviour and account for up to 30% of the phenotypic variability in hygienic behaviour in our population. Furthermore, we identify two loci that influence the likelihood that a worker will perform uncapping behaviour only, and one locus that influences removal behaviour. We report the first candidate genes associated with engaging in hygienic behaviour, including four genes involved in olfaction, learning and social behaviour, and one gene involved in circadian locomotion. These candidates will allow molecular characterization of this distinctive behavioural mode of disease resistance, as well as providing the opportunity for marker-assisted selection for this commercially significant trait.

  14. Imidacloprid intensifies its impact on honeybee and bumblebee cellular immune response when challenged with LPS (lippopolysacharide) of Escherichia coli.

    PubMed

    Walderdorff, Louise; Laval-Gilly, Philippe; Bonnefoy, Antoine; Falla-Angel, Jaïro

    2018-07-01

    Insect hemocytes play an important role in insects' defense against environmental stressors as they are entirely dependent on their innate immune system for pathogen defense. In recent years a dramatic decline of pollinators has been reported in many countries. The drivers of this declines appear to be associated with pathogen infections like viruses, bacteria or fungi in combination with pesticide exposure. The aim of this study was thus to investigate the impact of imidacloprid, a neonicotinoid insecticide, on the cellular immune response of two pollinators (Apis mellifera and Bombus terrestris) during simultaneous immune activation with LPS (lipopolysaccharide) of Escherichia coli. For this purpose the phagocytosis capacity as well as the production of H 2 O 2 and NO of larval hemocytes, exposed to five different imidacloprid concentrations in vitro, was measured. All used pesticide concentrations showed a weakening effect on phagocytosis with but also without LPS activation. Imidacloprid decreased H 2 O 2 and increased NO production in honeybees. Immune activation by LPS clearly reinforced the effect of imidacloprid on the immune response of hemocytes in all three immune parameters tested. Bumblebee hemocytes appeared more sensitive to imidacloprid during phagocytosis assays while imidacloprid showed a greater impact on honeybee hemocytes during H 2 O 2 and NO production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Honeybee product therapeutic as stem cells homing for ovary failure.

    PubMed

    Safitri, Erma; Widiyatno, Thomas V; Prasetyo, R Heru

    2016-11-01

    Complexity of the method of isolation, cultivation in vitro and the expensive cost of transplantation process of stem cells, it would require an innovation to homing and differentiation of stem cells and increase folliculogenesis. The stem cells homing was achieved through the provision of food or beverages derived from natural materials like honeybee product. Through honeybee product, there will be homing of stem cells and accompany with the sources from the body itself will take place in regeneration of the ovary. Female rats model of degenerative ovary was obtained through food fasting but still have drinking water for 5 days. It caused malnutrition and damage of the ovarian tissue. The administration of 50% honeybee product (T1) was performed for 10 consecutive days, while the positive control group (T0+) was fasted and not given honeybee product and the negative control (T0-) not fasted and without honeybee product. Observations were taken for homing of stem cells, raised of folliculogenesis, differentiation of stem cells, and regeneration of the ovarian tissue using routine H&E staining. Homing of stem cells shown the vascular endothelial growth factor and granulocyte colony-stimulating factor expression; enhancement of folliculogenesis was indicated by an increase of follicle dee Graaf count; enhancement of differentiation of stem cells was indicated by growth differentiation factor-9 expression; and regeneration of ovarian tissue indicated by intact ovarian tissue with growing follicles. Honeybee product can be induced endogenous stem cells in regeneration of ovary failure due to malnutrition.

  16. How Do Honeybees Attract Nestmates Using Waggle Dances in Dark and Noisy Hives?

    PubMed Central

    Hasegawa, Yuji; Ikeno, Hidetoshi

    2011-01-01

    It is well known that honeybees share information related to food sources with nestmates using a dance language that is representative of symbolic communication among non-primates. Some honeybee species engage in visually apparent behavior, walking in a figure-eight pattern inside their dark hives. It has been suggested that sounds play an important role in this dance language, even though a variety of wing vibration sounds are produced by honeybee behaviors in hives. It has been shown that dances emit sounds primarily at about 250–300 Hz, which is in the same frequency range as honeybees' flight sounds. Thus the exact mechanism whereby honeybees attract nestmates using waggle dances in such a dark and noisy hive is as yet unclear. In this study, we used a flight simulator in which honeybees were attached to a torque meter in order to analyze the component of bees' orienting response caused only by sounds, and not by odor or by vibrations sensed by their legs. We showed using single sound localization that honeybees preferred sounds around 265 Hz. Furthermore, according to sound discrimination tests using sounds of the same frequency, honeybees preferred rhythmic sounds. Our results demonstrate that frequency and rhythmic components play a complementary role in localizing dance sounds. Dance sounds were presumably developed to share information in a dark and noisy environment. PMID:21603608

  17. Migration effects on population dynamics of the honeybee-mite interactions

    USDA-ARS?s Scientific Manuscript database

    Honeybees are amazing and highly beneficial insect species that play important roles in undisturbed and agricultural ecosystems. Unfortunately, honeybees are increasingly threatened by numerous factors, most notably the parasitic Varroa mite (Varroa destructor Anderson and Trueman). A recent field s...

  18. Independence and interdependence in collective decision making: an agent-based model of nest-site choice by honeybee swarms

    PubMed Central

    List, Christian; Elsholtz, Christian; Seeley, Thomas D.

    2008-01-01

    Condorcet's jury theorem shows that when the members of a group have noisy but independent information about what is best for the group as a whole, majority decisions tend to outperform dictatorial ones. When voting is supplemented by communication, however, the resulting interdependencies between decision makers can strengthen or undermine this effect: they can facilitate information pooling, but also amplify errors. We consider an intriguing non-human case of independent information pooling combined with communication: the case of nest-site choice by honeybee (Apis mellifera) swarms. It is empirically well documented that when there are different nest sites that vary in quality, the bees usually choose the best one. We develop a new agent-based model of the bees' decision process and show that its remarkable reliability stems from a particular interplay of independence and interdependence between the bees. PMID:19073474

  19. Landscape context alters cost of living in honeybee metabolism and feeding

    PubMed Central

    Dixon, Kingsley W.; Didham, Raphael K.; Bradshaw, S. Donald

    2017-01-01

    Field metabolic rate (FMR) links the energy budget of an animal with the constraints of its ecosystem, but is particularly difficult to measure for small organisms. Landscape degradation exacerbates environmental adversity and reduces resource availability, imposing higher costs of living for many organisms. Here, we report a significant effect of landscape degradation on the FMR of free-flying Apis mellifera, estimated using 86Rb radio-isotopic turnover. We validated the relationship between 86Rb kb and metabolic rate for worker bees in the laboratory using flow-through respirometry. We then released radioisotopically enriched individuals into a natural woodland and a heavily degraded and deforested plantation. FMRs of worker bees in natural woodland vegetation were significantly higher than in a deforested landscape. Nectar consumption, estimated using 22Na radio-isotopic turnover, also differed significantly between natural and degraded landscapes. In the deforested landscape, we infer that the costs of foraging exceeded energetic availability, and honeybees instead foraged less and depended more on stored resources in the hive. If this is generally the case with increasing landscape degradation, this will have important implications for the provision of pollination services and the effectiveness and resilience of ecological restoration practice. PMID:28179522

  20. Hexagonal comb cells of honeybees are not produced via a liquid equilibrium process

    NASA Astrophysics Data System (ADS)

    Bauer, Daniel; Bienefeld, Kaspar

    2013-01-01

    The nests of European honeybees ( Apis mellifera) are organised into wax combs that contain many cells with a hexagonal structure. Many previous studies on comb-building behaviour have been made in order to understand how bees produce this geometrical structure; however, it still remains a mystery. Direct construction of hexagons by bees was suggested previously, while a recent hypothesis postulated the self-organised construction of hexagonal comb cell arrays; however, infrared and thermographic video observations of comb building in the present study failed to support the self-organisation hypothesis because bees were shown to be engaged in direct construction. Bees used their antennae, mandibles and legs in a regular sequence to manipulate the wax, while some bees supported their work by actively warming the wax. During the construction of hexagonal cells, the wax temperature was between 33.6 and 37.6 °C. This is well below 40 °C, i.e. the temperature at which wax is assumed to exist in the liquid equilibrium that is essential for self-organised building.

  1. Antimicrobial activity of honey of africanized bee (Apis mellifera) and stingless bee, tiuba (Melipona fasciculata) against strains of Escherichia coli, Pseudomona aeruginosa and Staphylococcus aureus

    NASA Astrophysics Data System (ADS)

    Tenório, Eleuza Gomes; Alves, Natália Furtado; Mendes, Bianca Evanita Pimenta

    2017-11-01

    The objective of this study was to investigate the antimicrobial activity of honey of Africanized bees (Apis mellifera) and stingless bees (Melipona fasciculata), produced under the same flowering conditions, in municipalities of Baixada Maranhese, Brazil, against strains of pathogenic bacteria, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. In each municipality, the apiary and meliponario were less than 150 meters away from each other. The Kirby-Bauer method, and the diffusion technique of the agar plate through the extension of the inhibition in millimeters were used. The test results were negative for all samples, which did not demonstrate antimicrobial activity in any of the microorganisms tested.

  2. Reconciling laboratory and field assessments of neonicotinoid toxicity to honeybees

    PubMed Central

    Henry, Mickaël; Cerrutti, Nicolas; Aupinel, Pierrick; Decourtye, Axel; Gayrard, Mélanie; Odoux, Jean-François; Pissard, Aurélien; Rüger, Charlotte; Bretagnolle, Vincent

    2015-01-01

    European governments have banned the use of three common neonicotinoid pesticides due to insufficiently identified risks to bees. This policy decision is controversial given the absence of clear consistency between toxicity assessments of those substances in the laboratory and in the field. Although laboratory trials report deleterious effects in honeybees at trace levels, field surveys reveal no decrease in the performance of honeybee colonies in the vicinity of treated fields. Here we provide the missing link, showing that individual honeybees near thiamethoxam-treated fields do indeed disappear at a faster rate, but the impact of this is buffered by the colonies' demographic regulation response. Although we could ascertain the exposure pathway of thiamethoxam residues from treated flowers to honeybee dietary nectar, we uncovered an unexpected pervasive co-occurrence of similar concentrations of imidacloprid, another neonicotinoid normally restricted to non-entomophilous crops in the study country. Thus, its origin and transfer pathways through the succession of annual crops need be elucidated to conveniently appraise the risks of combined neonicotinoid exposures. This study reconciles the conflicting laboratory and field toxicity assessments of neonicotinoids on honeybees and further highlights the difficulty in actually detecting non-intentional effects on the field through conventional risk assessment methods. PMID:26582026

  3. Reconciling laboratory and field assessments of neonicotinoid toxicity to honeybees.

    PubMed

    Henry, Mickaël; Cerrutti, Nicolas; Aupinel, Pierrick; Decourtye, Axel; Gayrard, Mélanie; Odoux, Jean-François; Pissard, Aurélien; Rüger, Charlotte; Bretagnolle, Vincent

    2015-11-22

    European governments have banned the use of three common neonicotinoid pesticides due to insufficiently identified risks to bees. This policy decision is controversial given the absence of clear consistency between toxicity assessments of those substances in the laboratory and in the field. Although laboratory trials report deleterious effects in honeybees at trace levels, field surveys reveal no decrease in the performance of honeybee colonies in the vicinity of treated fields. Here we provide the missing link, showing that individual honeybees near thiamethoxam-treated fields do indeed disappear at a faster rate, but the impact of this is buffered by the colonies' demographic regulation response. Although we could ascertain the exposure pathway of thiamethoxam residues from treated flowers to honeybee dietary nectar, we uncovered an unexpected pervasive co-occurrence of similar concentrations of imidacloprid, another neonicotinoid normally restricted to non-entomophilous crops in the study country. Thus, its origin and transfer pathways through the succession of annual crops need be elucidated to conveniently appraise the risks of combined neonicotinoid exposures. This study reconciles the conflicting laboratory and field toxicity assessments of neonicotinoids on honeybees and further highlights the difficulty in actually detecting non-intentional effects on the field through conventional risk assessment methods. © 2015 The Author(s).

  4. Using an abstract geometry in virtual reality to explore choice behaviour: visual flicker preferences in honeybees.

    PubMed

    Van De Poll, Matthew N; Zajaczkowski, Esmi L; Taylor, Gavin J; Srinivasan, Mandyam V; van Swinderen, Bruno

    2015-11-01

    Closed-loop paradigms provide an effective approach for studying visual choice behaviour and attention in small animals. Different flying and walking paradigms have been developed to investigate behavioural and neuronal responses to competing stimuli in insects such as bees and flies. However, the variety of stimulus choices that can be presented over one experiment is often limited. Current choice paradigms are mostly constrained as single binary choice scenarios that are influenced by the linear structure of classical conditioning paradigms. Here, we present a novel behavioural choice paradigm that allows animals to explore a closed geometry of interconnected binary choices by repeatedly selecting among competing objects, thereby revealing stimulus preferences in an historical context. We used our novel paradigm to investigate visual flicker preferences in honeybees (Apis mellifera) and found significant preferences for 20-25 Hz flicker and avoidance of higher (50-100 Hz) and lower (2-4 Hz) flicker frequencies. Similar results were found when bees were presented with three simultaneous choices instead of two, and when they were given the chance to select previously rejected choices. Our results show that honeybees can discriminate among different flicker frequencies and that their visual preferences are persistent even under different experimental conditions. Interestingly, avoided stimuli were more attractive if they were novel, suggesting that novelty salience can override innate preferences. Our recursive virtual reality environment provides a new approach to studying visual discrimination and choice behaviour in animals. © 2015. Published by The Company of Biologists Ltd.

  5. Associative Mechanosensory Conditioning of the Proboscis Extension Reflex in Honeybees

    ERIC Educational Resources Information Center

    Giurfa, Martin; Malun, Dagmar

    2004-01-01

    The present work introduces a form of associative mechanosensory conditioning of the proboscis extension reflex (PER) in honeybees. In our paradigm, harnessed honeybees learn the elemental association between mechanosensory, antennal stimulation and a reward of sucrose solution delivered to the proboscis. Thereafter, bees extend their proboscis to…

  6. Histone deacetylase inhibitor treatment restores memory-related gene expression and learning ability in neonicotinoid-treated Apis mellifera.

    PubMed

    Hu, Y-T; Tang, C-K; Wu, C-P; Wu, P-C; Yang, E-C; Tai, C-C; Wu, Y-L

    2018-04-25

    Apis mellifera plays crucial roles in maintaining the balance of global ecosystems and stability of agricultural systems by helping pollination of flowering plants, including many crops. In recent years, this balance has been disrupted greatly by some pesticides, which results in great losses of honeybees worldwide. Previous studies have found that pesticide-caused memory loss might be one of the major reasons for colony loss. Histone deacetylase inhibitors (HDACis) are chemical compounds that inhibit the activity of histone deacetylases and are known to cause hyperacetylation of histone cores and influence gene expression. In our study, the HDACi sodium butyrate was applied to honeybees as a dietary supplement. The effect of sodium butyrate on the expression profiles of memory-related genes was analysed by quantitative reverse transcription PCR. The results revealed that this HDACi had up-regulation effects on most of the memory-related genes in bees, even in bees treated with imidacloprid. In addition, using the proboscis extension reflex to evaluate olfactory learning in bees, we found that this HDACi boosted the memory formation of bees after impairment owing to imidacloprid exposure. This study investigated the association between gene expression and memory formation from an epigenetic perspective. Additionally, we further demonstrate the possibility of enhancing bee learning using HDACis and provide initial data for future research. © 2018 The Royal Entomological Society.

  7. Gentle Africanized bees on an oceanic island

    PubMed Central

    Rivera-Marchand, Bert; Oskay, Devrim; Giray, Tugrul

    2012-01-01

    Oceanic islands have reduced resources and natural enemies and potentially affect life history traits of arriving organisms. Among the most spectacular invasions in the Western hemisphere is that of the Africanized honeybee. We hypothesized that in the oceanic island Puerto Rico, Africanized bees will exhibit differences from the mainland population such as for defensiveness and other linked traits. We evaluated the extent of Africanization through three typical Africanized traits: wing size, defensive behavior, and resistance to Varroa destructor mites. All sampled colonies were Africanized by maternal descent, with over 65% presence of European alleles at the S-3 nuclear locus. In two assays evaluating defense, Puerto Rican bees showed low defensiveness similar to European bees. In morphology and resistance to mites, Africanized bees from Puerto Rico are similar to other Africanized bees. In behavioral assays on mechanisms of resistance to Varroa, we directly observed that Puerto Rican Africanized bees groomed-off and bit the mites as been observed in other studies. In no other location, Africanized bees have reduced defensiveness while retaining typical traits such as wing size and mite resistance. This mosaic of traits that has resulted during the invasion of an oceanic island has implications for behavior, evolution, and agriculture. PMID:23144660

  8. Non-random nectar unloading interactions between foragers and their receivers in the honeybee hive

    NASA Astrophysics Data System (ADS)

    Goyret, Joaquín; Farina, Walter M.

    2005-09-01

    Nectar acquisition in the honeybee Apis mellifera is a partitioned task in which foragers gather nectar and bring it to the hive, where nest mates unload via trophallaxis (i.e. mouth-to-mouth transfer) the collected food for further storage. Because forager mates exploit different feeding places simultaneously, this study addresses the question of whether nectar unloading interactions between foragers and hive-bees are established randomly, as it is commonly assumed. Two groups of foragers were trained to exploit a different scented food source for 5 days. We recorded their trophallaxes with hive-mates, marking the latter ones according to the forager group they were unloading. We found non-random probabilities for the occurrence of trophallaxes between experimental foragers and hive-bees, instead, we found that trophallactic interactions were more likely to involve groups of individuals which had formerly interacted orally. We propose that olfactory cues present in the transferred nectar promoted the observed bias, and we discuss this bias in the context of the organization of nectar acquisition: a partitioned task carried out in a decentralized insect society.

  9. From antenna to antenna: lateral shift of olfactory memory recall by honeybees.

    PubMed

    Rogers, Lesley J; Vallortigara, Giorgio

    2008-06-04

    Honeybees, Apis mellifera, readily learn to associate odours with sugar rewards and we show here that recall of the olfactory memory, as demonstrated by the bee extending its proboscis when presented with the trained odour, involves first the right and then the left antenna. At 1-2 hour after training using both antennae, recall is possible mainly when the bee uses its right antenna but by 6 hours after training a lateral shift has occurred and the memory can now be recalled mainly when the left antenna is in use. Long-term memory one day after training is also accessed mainly via the left antenna. This time-dependent shift from right to left antenna is also seen as side biases in responding to odour presented to the bee's left or right side. Hence, not only are the cellular events of memory formation similar in bees and vertebrate species but also the lateralized networks involved may be similar. These findings therefore seem to call for remarkable parallel evolution and suggest that the proper functioning of memory formation in a bilateral animal, either vertebrate or invertebrate, requires lateralization of processing.

  10. Honeybee Foraging, Nectar Secretion, and Honey Potential of Wild Jujube Trees, Ziziphus nummularia.

    PubMed

    Alqarni, A S

    2015-06-01

    Ziziphus trees are of economic importance due to their aggregated value (source of fruits and timber) and are the most important melliferous plants in the Arabian Peninsula. Interaction between honeybees and Ziziphus nummularia was investigated by assessing foraging, flower phenology, nectar secretion, and honey potential. It is demonstrate that both the native Apis mellifera jemenitica Ruttner and the exotic Apis mellifera carnica Pollmann foraged on Z. nummularia flowers. Bee foraging for nectar and pollen was low (2 ± 0.7 workers/200 flowers/3 min) during early morning and increased to a peak in the afternoon (100 ± 15 workers/200 flowers/3 min). Remarkable foraging activity was recorded during high temperature (35°C) and low humidity (20%) conditions. Foraging for nectar collection was more distinct than that for pollen. The flowering of Z. nummularia was gradual, and was characterized by some flowers that opened and secreted nectar early before sunrise, whereas other flowers remained opened until sunrise. The flowers lasted 2 days, with 83% of nectar secreted in the first day. The peak of nectar secretion was recorded at noon under hot and dry conditions. The lowest amount of nectar was secreted during sunrise under mild temperature (24°C) and humidity (31%) conditions. Under optimum conditions, it is assumed that the average sugar mass was 0.321 ± 0.03 mg TSS/flower, while the total sugar mass was 27.65 ± 11 g/tree. The average honey production potential of tested Z. nummularia was approximately 2.998 kg/tree and 749.475 kg/ha in the main flowering season.

  11. Colorectal Cancer in Young African Americans: Is it time to revisit guidelines and prevention?

    PubMed Central

    Ashktorab, Hassan; Vilmenay, Kimberly; Brim, Hassan; Laiyemo, Adeyinka O; Kibreab, Angesom; Nouraie, Mehdi

    2016-01-01

    Previous studies have suggested an increase in the incidence of colorectal cancer (CRC) in young adults (younger than 50 years). Among older people, African Americans have disproportionally higher CRC incidence and mortality. It is unclear if this CRC disparity also applies to CRC diagnosed among young people Methods Using the Surveillance, Epidemiology, and End Results (SEER) cancer registries, a population-based cancer registry covering 25.6% of the United States’ African American population, we identified patients diagnosed with CRC between the years of 2000-2012. The age-adjusted rates for non-Hispanic whites (NHW), African Americans and Asian Pacific Islanders (API) were calculated for the age categories 20-24, 25-29, 30-34, 35-39, and 40-44. Results CRC age-adjusted incidence is increasing among all three racial groups and was higher for African Americans compared to NHW and API across all years 2000-2012 (P<0.001). Stage IV CRC was higher in African Americans compared with NHW while there was higher stage III CRC in API compared with NHWs. Conclusion CRC incidence is increasing among the young in all racial groups under study. This increase in frequency of CRC is true among young African American adults who display highly advanced tumors in comparison to other races. While the present attention to screening seems to have decreased CRC prevalence in individuals older than 50, special attention needs to be addressed to young African American adults as well, to counter the observed trend, as they have the highest incidence of CRC among young population groups by race/ethnicity. PMID:27278956

  12. The sex determination gene shows no founder effect in the giant honey bee, Apis dorsata.

    PubMed

    Liu, Zhi Yong; Wang, Zi Long; Yan, Wei Yu; Wu, Xiao Bo; Zeng, Zhi Jiang; Huang, Zachary Y

    2012-01-01

    All honey bee species (Apis spp) share the same sex determination mechanism using the complementary sex determination (csd) gene. Only individuals heterogeneous at the csd allele develop into females, and the homozygous develop into diploid males, which do not survive. The honeybees are therefore under selection pressure to generate new csd alleles. Previous studies have shown that the csd gene is under balancing selection. We hypothesize that due to the long separation from the mainland of Hainan Island, China, that the giant honey bees (Apis dorsata) should show a founder effect for the csd gene, with many different alleles clustered together, and these would be absent on the mainland. We sampled A. dorsata workers from both Hainan and Guangxi Provinces and then cloned and sequenced region 3 of the csd gene and constructed phylogenetic trees. We failed to find any clustering of the csd alleles according to their geographical origin, i.e. the Hainan and Guangxi samples did not form separate clades. Further analysis by including previously published csd sequences also failed to show any clade-forming in both the Philippines and Malaysia. Results from this study and those from previous studies did not support the expectations of a founder effect. We conclude that because of the extremely high mating frequency of A. dorsata queens, a founder effect does not apply in this species.

  13. Brain modulation of Dufour's gland ester biosynthesis in vitro in the honeybee ( Apis mellifera)

    NASA Astrophysics Data System (ADS)

    Katzav-Gozansky, Tamar; Hefetz, Abraham; Soroker, Victoria

    2007-05-01

    Caste-specific pheromone biosynthesis is a prerequisite for reproductive skew in the honeybee. Nonetheless, this process is not hardwired but plastic, in that egg-laying workers produce a queen-like pheromone. Studies with Dufour’s gland pheromone revealed that, in vivo, workers’ gland biosynthesis matches the social status of the worker, i.e., sterile workers showed a worker-like pattern whereas fertile workers showed a queen-like pattern (production of the queen-specific esters). However, when incubated in vitro, the gland spontaneously exhibits the queen-like pattern, irrespective of its original worker type, prompting the notion that ester production in workers is under inhibitory control that is queen-dependent. We tested this hypothesis by exposing queen or worker Dufour’s glands in vitro to brain extracts of queens, queenright (sterile) workers and males. Unexpectedly, worker brain extracts activated the queen-like esters biosynthesis in workers’ Dufour’s gland. This stimulation was gender-specific; queen or worker brains demonstrated a stimulatory activity, but male brains did not. Queen gland could not be further stimulated. Bioassays with heated and filtered extracts indicate that the stimulatory brain factor is below 3,000 Da. We suggest that pheromone production in Dufour’s gland is under dual, negative positive control. Under queenright conditions, the inhibitor is released and blocks ester biosynthesis, whereas under queenless conditions, the activator is released, activating ester biosynthesis in the gland. This is consistent with the hypothesis that queenright workers are unequivocally recognized as non-fertile, whereas queenless workers try to become “false queens” as part of the reproductive competition.

  14. Energy saving strategies of honeybees in dipping nectar.

    PubMed

    Wu, Jianing; Yang, Heng; Yan, Shaoze

    2015-10-08

    The honeybee's drinking process has generally been simplified because of its high speed and small scale. In this study, we clearly observed the drinking cycle of the Italian honeybee using a specially designed high-speed camera system. We analysed the pattern of glossal hair erection and the movement kinematics of the protracting tongue (glossa). Results showed that the honeybee used two special protraction strategies to save energy. First, the glossal hairs remain adpressed until the end of the protraction, which indicates that the hydraulic resistance is reduced to less than 1/3 of that in the case if the hairs remain erect. Second, the glossa protracts with a specific velocity profile and we quantitatively demonstrated that this moving strategy helps reduce the total energy needed for protraction compared with the typical form of protraction with constant acceleration and deceleration. These findings suggest effective methods to optimise the control policies employed by next-generation microfluidic pumps.

  15. Ratios of colony mass to thermal conductance of tree and man-made nest enclosures of Apis mellifera: implications for survival, clustering, humidity regulation and Varroa destructor

    NASA Astrophysics Data System (ADS)

    Mitchell, Derek

    2016-05-01

    In the absence of human intervention, the honeybee ( Apis mellifera L.) usually constructs its nest in a tree within a tall, narrow, thick-walled cavity high above the ground (the enclosure); however, most research and apiculture is conducted in the thin-walled, squat wooden enclosures we know as hives. This experimental research, using various hives and thermal models of trees, has found that the heat transfer rate is approximately four to seven times greater in the hives in common use, compared to a typical tree enclosure in winter configuration. This gives a ratio of colony mass to lumped enclosure thermal conductance (MCR) of less than 0.8 kgW-1 K for wooden hives and greater than 5 kgW-1 K for tree enclosures. This result for tree enclosures implies higher levels of humidity in the nest, increased survival of smaller colonies and lower Varroa destructor breeding success. Many honeybee behaviours previously thought to be intrinsic may only be a coping mechanism for human intervention; for example, at an MCR of above 2 kgW-1 K, clustering in a tree enclosure may be an optional, rare, heat conservation behaviour for established colonies, rather than the compulsory, frequent, life-saving behaviour that is in the hives in common use. The implied improved survival in hives with thermal properties of tree nests may help to solve some of the problems honeybees are currently facing in apiculture.

  16. Nursing protects honeybee larvae from secondary metabolites of pollen

    PubMed Central

    Lucchetti, Matteo A.; Kilchenmann, Verena; Glauser, Gaetan; Praz, Christophe

    2018-01-01

    The pollen of many plants contains toxic secondary compounds, sometimes in concentrations higher than those found in the flowers or leaves. The ecological significance of these compounds remains unclear, and their impact on bees is largely unexplored. Here, we studied the impact of pyrrolizidine alkaloids (PAs) found in the pollen of Echium vulgare on honeybee adults and larvae. Echimidine, a PA present in E. vulgare pollen, was isolated and added to the honeybee diets in order to perform toxicity bioassays. While adult bees showed relatively high tolerance to PAs, larvae were much more sensitive. In contrast to other bees, the honeybee larval diet typically contains only traces of pollen and consists predominantly of hypopharyngeal and mandibular secretions produced by nurse bees, which feed on large quantities of pollen-containing bee bread. We quantified the transfer of PAs to nursing secretions produced by bees that had previously consumed bee bread supplemented with PAs. The PA concentration in these secretions was reduced by three orders of magnitude as compared to the PA content in the nurse diet and was well below the toxicity threshold for larvae. Our results suggest that larval nursing protects honeybee larvae from the toxic effect of secondary metabolites of pollen. PMID:29563265

  17. Nursing protects honeybee larvae from secondary metabolites of pollen.

    PubMed

    Lucchetti, Matteo A; Kilchenmann, Verena; Glauser, Gaetan; Praz, Christophe; Kast, Christina

    2018-03-28

    The pollen of many plants contains toxic secondary compounds, sometimes in concentrations higher than those found in the flowers or leaves. The ecological significance of these compounds remains unclear, and their impact on bees is largely unexplored. Here, we studied the impact of pyrrolizidine alkaloids (PAs) found in the pollen of Echium vulgare on honeybee adults and larvae. Echimidine, a PA present in E. vulgare pollen, was isolated and added to the honeybee diets in order to perform toxicity bioassays. While adult bees showed relatively high tolerance to PAs, larvae were much more sensitive. In contrast to other bees, the honeybee larval diet typically contains only traces of pollen and consists predominantly of hypopharyngeal and mandibular secretions produced by nurse bees, which feed on large quantities of pollen-containing bee bread. We quantified the transfer of PAs to nursing secretions produced by bees that had previously consumed bee bread supplemented with PAs. The PA concentration in these secretions was reduced by three orders of magnitude as compared to the PA content in the nurse diet and was well below the toxicity threshold for larvae. Our results suggest that larval nursing protects honeybee larvae from the toxic effect of secondary metabolites of pollen. © 2018 The Authors.

  18. Honeybee economics: optimisation of foraging in a variable world.

    PubMed

    Stabentheiner, Anton; Kovac, Helmut

    2016-06-20

    In honeybees fast and efficient exploitation of nectar and pollen sources is achieved by persistent endothermy throughout the foraging cycle, which means extremely high energy costs. The need for food promotes maximisation of the intake rate, and the high costs call for energetic optimisation. Experiments on how honeybees resolve this conflict have to consider that foraging takes place in a variable environment concerning microclimate and food quality and availability. Here we report, in simultaneous measurements of energy costs, gains, and intake rate and efficiency, how honeybee foragers manage this challenge in their highly variable environment. If possible, during unlimited sucrose flow, they follow an 'investment-guided' ('time is honey') economic strategy promising increased returns. They maximise net intake rate by investing both own heat production and solar heat to increase body temperature to a level which guarantees a high suction velocity. They switch to an 'economizing' ('save the honey') optimisation of energetic efficiency if the intake rate is restricted by the food source when an increased body temperature would not guarantee a high intake rate. With this flexible and graded change between economic strategies honeybees can do both maximise colony intake rate and optimise foraging efficiency in reaction to environmental variation.

  19. Honeybees Prefer to Steer on a Smooth Wall With Tetrapod Gaits

    PubMed Central

    Zhao, Jieliang; Zhu, Fei; Yan, Shaoze

    2018-01-01

    Abstract Insects are well equipped in walking on complex three-dimensional terrain, allowing them to overcome obstacles or catch prey. However, the gait transition for insects steering on a wall remains unexplored. Here, we find that honeybees adopted a tetrapod gait to change direction when climbing a wall. On the contrary to the common tripod gait, honeybees propel their body forward by synchronously stepping with both middle legs and then both front legs. This process ensures the angle of the central axis of the honeybee to be consistent with the crawling direction. Interestingly, when running in an alternating tripod gait, the central axis of honeybee sways around the center of mass under alternating tripod gait to maintain stability. Experimental results show that tripod, tetrapod, and random gaits result in the amazing consensus harmony on the climbing speed and gait stability, whether climbing on a smooth wall or walking on smooth ground. PMID:29722862

  20. Collective fluid mechanics of honeybee nest ventilation

    NASA Astrophysics Data System (ADS)

    Gravish, Nick; Combes, Stacey; Wood, Robert J.; Peters, Jacob

    2014-11-01

    Honeybees thermoregulate their brood in the warm summer months by collectively fanning their wings and creating air flow through the nest. During nest ventilation workers flap their wings in close proximity in which wings continuously operate in unsteady oncoming flows (i.e. the wake of neighboring worker bees) and near the ground. The fluid mechanics of this collective aerodynamic phenomena are unstudied and may play an important role in the physiology of colony life. We have performed field and laboratory observations of the nest ventilation wing kinematics and air flow generated by individuals and groups of honeybee workers. Inspired from these field observations we describe here a robotic model system to study collective flapping wing aerodynamics. We microfabricate arrays of 1.4 cm long flapping wings and observe the air flow generated by arrays of two or more fanning robotic wings. We vary phase, frequency, and separation distance among wings and find that net output flow is enhanced when wings operate at the appropriate phase-distance relationship to catch shed vortices from neighboring wings. These results suggest that by varying position within the fanning array honeybee workers may benefit from collective aerodynamic interactions during nest ventilation.

  1. Agricultural landscape and pesticide effects on honey bee (Hymenoptera: Apidae) biological traits

    USDA-ARS?s Scientific Manuscript database

    Sixteen honeybee (Apis mellifera L.) colonies were placed in four different agricultural landscapes in order to study the in situ effects of the agricultural and pesticide exposure on honeybee health. Colonies were located in three different agricultural areas with varying levels of agricultural in...

  2. Landscape context alters cost of living in honeybee metabolism and feeding.

    PubMed

    Tomlinson, Sean; Dixon, Kingsley W; Didham, Raphael K; Bradshaw, S Donald

    2017-02-08

    Field metabolic rate (FMR) links the energy budget of an animal with the constraints of its ecosystem, but is particularly difficult to measure for small organisms. Landscape degradation exacerbates environmental adversity and reduces resource availability, imposing higher costs of living for many organisms. Here, we report a significant effect of landscape degradation on the FMR of free-flying Apis mellifera , estimated using 86 Rb radio-isotopic turnover. We validated the relationship between 86 Rb k b and metabolic rate for worker bees in the laboratory using flow-through respirometry. We then released radioisotopically enriched individuals into a natural woodland and a heavily degraded and deforested plantation. FMRs of worker bees in natural woodland vegetation were significantly higher than in a deforested landscape. Nectar consumption, estimated using 22 Na radio-isotopic turnover, also differed significantly between natural and degraded landscapes. In the deforested landscape, we infer that the costs of foraging exceeded energetic availability, and honeybees instead foraged less and depended more on stored resources in the hive. If this is generally the case with increasing landscape degradation, this will have important implications for the provision of pollination services and the effectiveness and resilience of ecological restoration practice. © 2017 The Author(s).

  3. Genome-wide analysis of signatures of selection in populations of African honey bees (Apis mellifera) using new web-based tools.

    PubMed

    Fuller, Zachary L; Niño, Elina L; Patch, Harland M; Bedoya-Reina, Oscar C; Baumgarten, Tracey; Muli, Elliud; Mumoki, Fiona; Ratan, Aakrosh; McGraw, John; Frazier, Maryann; Masiga, Daniel; Schuster, Stephen; Grozinger, Christina M; Miller, Webb

    2015-07-10

    With the development of inexpensive, high-throughput sequencing technologies, it has become feasible to examine questions related to population genetics and molecular evolution of non-model species in their ecological contexts on a genome-wide scale. Here, we employed a newly developed suite of integrated, web-based programs to examine population dynamics and signatures of selection across the genome using several well-established tests, including F ST, pN/pS, and McDonald-Kreitman. We applied these techniques to study populations of honey bees (Apis mellifera) in East Africa. In Kenya, there are several described A. mellifera subspecies, which are thought to be localized to distinct ecological regions. We performed whole genome sequencing of 11 worker honey bees from apiaries distributed throughout Kenya and identified 3.6 million putative single-nucleotide polymorphisms. The dense coverage allowed us to apply several computational procedures to study population structure and the evolutionary relationships among the populations, and to detect signs of adaptive evolution across the genome. While there is considerable gene flow among the sampled populations, there are clear distinctions between populations from the northern desert region and those from the temperate, savannah region. We identified several genes showing population genetic patterns consistent with positive selection within African bee populations, and between these populations and European A. mellifera or Asian Apis florea. These results lay the groundwork for future studies of adaptive ecological evolution in honey bees, and demonstrate the use of new, freely available web-based tools and workflows ( http://usegalaxy.org/r/kenyanbee ) that can be applied to any model system with genomic information.

  4. Mouthpart grooming behavior in honeybees: Kinematics and sectionalized friction between foreleg tarsi and proboscises.

    PubMed

    Linghu, Zelin; Wu, Jianing; Wang, Changlong; Yan, Shaoze

    2015-11-01

    The mouthpart of a honeybee is prone to contamination by granular particles such as pollen or dirt from the field. To clean the contaminated mouthparts, a honeybee swings its foreleg tarsi forward and backward to brush the proboscis continuously, sweeping the contaminant from the surfaces of the labial palpi, galeae, and bushy haired tongue (glossa). This grooming behavior has been documented but the dynamic characteristics therein have not been investigated yet. We quantified the grooming behavior of a honeybee from the perspective of kinematic and tribological properties. We captured high-speed videos that recorded the mouthpart grooming patterns of honeybees from the front and side views and measured the friction on the grooming surfaces using a precision dynamometer. During grooming, a honeybee first positions the mouthpart and then places a pair of foreleg tarsi to the tubular-folded galea. The tarsi press the galea and labial palpi and slide downward while keeping close contact with the galea. Then, the hairy glossa stretches out of the temporary tube with the glossa setae erected. The tarsi slowly slide down when grooming the glossa. In the return stroke of grooming, the foreleg tarsi detach from the mouthpart and retreat swiftly. Friction analysis shows that the honeybees can coordinate the velocity of the foreleg tarsi to the sectionalized tribological property of the tarsus-mouthpart interface. The specific grooming pattern enables honeybees to save energy and resist wear, resulting in a possible highly evolved grooming strategy. These findings lead to further understanding of the honeybee's grooming behavior facilitated by the special motion kinematics and friction characteristics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Quantum chemical study on the stability of honeybee queen pheromone against atmospheric factors.

    PubMed

    Shi, Rongwei; Liu, Fanglin

    2016-06-01

    The managed honeybee, Apis mellifera, has been experienced a puzzling event, termed as colony collapse disorder (CCD), in which worker bees abruptly disappear from their hives. Potential factors include parasites, pesticides, malnutrition, and environmental stresses. However, so far, no definitive relationship has been established between specific causal factors and CCD events. Here we theoretically test whether atmospheric environment could disturb the chemical communication between the queen and their workers in a colony. A quantum chemistry method has been used to investigate for the stability of the component of A. mellifera queen mandibular pheromone (QMP), (E)-9-keto-2-decenoic acid (9-ODA), against atmospheric water and free radicals. The results show that 9-ODA is less likely to react with water due to the high barrier heights (~36.5 kcal · mol(-1)) and very low reaction rates. However, it can easily react with triplet oxygen and hydroxyl radicals because of low or negative energy barriers. Thus, the atmospheric free radicals may disturb the chemical communication between the queen and their daughters in a colony. Our pilot study provides new insight for the cause of CCD, which has been reported throughout the world.

  6. Single Honeybee Silk Protein Mimics Properties of Multi-Protein Silk

    PubMed Central

    Sutherland, Tara D.; Church, Jeffrey S.; Hu, Xiao; Huson, Mickey G.; Kaplan, David L.; Weisman, Sarah

    2011-01-01

    Honeybee silk is composed of four fibrous proteins that, unlike other silks, are readily synthesized at full-length and high yield. The four silk genes have been conserved for over 150 million years in all investigated bee, ant and hornet species, implying a distinct functional role for each protein. However, the amino acid composition and molecular architecture of the proteins are similar, suggesting functional redundancy. In this study we compare materials generated from a single honeybee silk protein to materials containing all four recombinant proteins or to natural honeybee silk. We analyse solution conformation by dynamic light scattering and circular dichroism, solid state structure by Fourier Transform Infrared spectroscopy and Raman spectroscopy, and fiber tensile properties by stress-strain analysis. The results demonstrate that fibers artificially generated from a single recombinant silk protein can reproduce the structural and mechanical properties of the natural silk. The importance of the four protein complex found in natural silk may lie in biological silk storage or hierarchical self-assembly. The finding that the functional properties of the mature material can be achieved with a single protein greatly simplifies the route to production for artificial honeybee silk. PMID:21311767

  7. New Asian Types of Varroa Destructor: A Potential New Threat for World Apiculture.

    USDA-ARS?s Scientific Manuscript database

    The invasion of the Western honeybee (Apis mellifera) by the Varroa mite (Varroa destructor) is attributed to two haplotypes (K and J) that shifted last century from their primary Eastern honeybee host (A. cerana) in north-east Asia. Molecular evidence indicates that both haplotypes are two partiall...

  8. Genetic characterization of the honeybee ectoparasitic mite Varroa destructor from Benin (West Africa) using mitochondrial and microsatellite markers.

    PubMed

    Kelomey, Aude E; Paraiso, Armand; Sina, Haziz; Legout, Hélène; Garnery, Lionel; Baba-Moussa, Lamine

    2017-05-01

    Varroa destructor is one of the scourges of global beekeeping. It was detected for the first time in Benin in 2011 on the honeybee Apis mellifera adansonii. The aim of this study was to identify the strain of Varroa sp. found and study its genetic diversity. In total 183 Varroa mites were sampled in 21 municipalities in Benin. The COI intergenic region of each mite mtDNA was amplified by PCR. The SacI restriction enzyme was used to determine the strains of Varroa sp. Only the Korean (K) haplotype, identical to the most prevalent strain in Africa, was detected. Analysis of the genetic diversity of Varroa mites with eight microsatellite loci (Simple Sequence Repeats) indicated a very low diversity of genotypes. Thus, V. destructor populations from Benin appear to make up a single group. Their clonal wealth ranges from 0.00 to 0.47. This study is an important step forward in the monitoring of the infestation of V. destructor.

  9. Pollination efficiency of Apis mellifera Linnaeus, 1758 (Hymenoptera, Apidae) on the monoecious plants Jatropha mollissima (Pohl) Baill. and Jatropha mutabilis (Pohl) Baill. (Euphorbiaceae) in a semi-arid Caatinga area, northeastern Brazil.

    PubMed

    Neves, E L; Viana, B F

    2011-02-01

    Previous studies have shown the superior competitive ability of honeybees compared with native bees in the exploitation of floral resources and nesting sites besides their low efficiency in pollinating native plant species. However, there is little evidence of the effect of this invading species on autochthonous plant populations in natural environments. Thus experiments were performed to test the pollination efficiency of honeybees in two species of Jatropha (Euphorbiaceae), J. mollissima (Pohl) Baill. and J. mutabilis (Pohl) Baill., after a single flower visitation. Samplings were carried out between March and April 2006 in a hyperxerophilous shrub-arboreal Caatinga at Estação Biológica de Canudos, Bahia (9º 56´ 34" S, 38º 59´ 17" W), the property of Fundação Biodiversitas. Apis mellifera was efficient at pollinating J. mollissima (100%) and J. mutabilis (85%). This high efficiency may be explained by 1) the simple floral characteristics of both plant species, which facilitate access to the sexual organs of the plant; and 2) the body size of A. mellifera that fits the flower's dimensions.

  10. Honeybee Odometry: Performance in Varying Natural Terrain

    PubMed Central

    Tautz, Juergen; Zhang, Shaowu; Spaethe, Johannes; Brockmann, Axel; Si, Aung

    2004-01-01

    Recent studies have shown that honeybees flying through short, narrow tunnels with visually textured walls perform waggle dances that indicate a much greater flight distance than that actually flown. These studies suggest that the bee's “odometer” is driven by the optic flow (image motion) that is experienced during flight. One might therefore expect that, when bees fly to a food source through a varying outdoor landscape, their waggle dances would depend upon the nature of the terrain experienced en route. We trained honeybees to visit feeders positioned along two routes, each 580 m long. One route was exclusively over land. The other was initially over land, then over water and, finally, again over land. Flight over water resulted in a significantly flatter slope of the waggle-duration versus distance regression, compared to flight over land. The mean visual contrast of the scenes was significantly greater over land than over water. The results reveal that, in outdoor flight, the honeybee's odometer does not run at a constant rate; rather, the rate depends upon the properties of the terrain. The bee's perception of distance flown is therefore not absolute, but scene-dependent. These findings raise important and interesting questions about how these animals navigate reliably. PMID:15252454

  11. Variation in and responses to brood pheromone of the honey bee (Apis mellifera L.).

    PubMed

    Metz, Bradley N; Pankiw, Tanya; Tichy, Shane E; Aronstein, Katherine A; Crewe, Robin M

    2010-04-01

    The 10 fatty acid ester components of brood pheromone were extracted from larvae of different populations of USA and South African honey bees and subjected to gas chromatography-mass spectrometry quantitative analysis. Extractable amounts of brood pheromone were not significantly different by larval population; however, differences in the proportions of components enabled us to classify larval population of 77% of samples correctly by discriminant analysis. Honeybee releaser and primer pheromone responses to USA, Africanized and-European pheromone blends were tested. Texas-Africanized and Georgia-European colonies responded with a significantly greater ratio of returning pollen foragers when treated with a blend from the same population than from a different population. There was a significant interaction of pheromone blend by adult population source among Georgia-European bees for modulation of sucrose response threshold, a primer response. Brood pheromone blend variation interacted with population for pollen foraging response of colonies, suggesting a self recognition cue for this pheromone releaser behavior. An interaction of pheromone blend and population for priming sucrose response thresholds among workers within the first week of adult life suggested a more complex interplay of genotype, ontogeny, and pheromone blend.

  12. Scientists train honeybees to detect explosives

    ScienceCinema

    None

    2017-12-09

    Members of the Los Alamos National Laboratory Stealthy Insect Sensor Project team have been able to harness the honeybee's exceptional olfactory sense by using the bees' natural reaction to nectar, a proboscis extension reflex (sticking out their tongue)

  13. Scientists train honeybees to detect explosives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2008-03-21

    Members of the Los Alamos National Laboratory Stealthy Insect Sensor Project team have been able to harness the honeybee's exceptional olfactory sense by using the bees' natural reaction to nectar, a proboscis extension reflex (sticking out their tongue)

  14. The dance of the honeybee: how do honeybees dance to transfer food information effectively?

    PubMed

    Okada, R; Ikeno, H; Sasayama, Noriko; Aonuma, H; Kurabayashi, D; Ito, E

    2008-01-01

    A honeybee informs her nestmates of the location of a flower she has visited by a unique behavior called a "waggle dance." On a vertical comb, the direction of the waggle run relative to gravity indicates the direction to the food source relative to the sun in the field, and the duration of the waggle run indicates the distance to the food source. To determine the detailed biological features of the waggle dance, we observed worker honeybee behavior in the field. Video analysis showed that the bee does not dance in a single or random place in the hive but waggled several times in one place and then several times in another. It also showed that the information of the waggle dance contains a substantial margin of error. Angle and duration of waggle runs varied from run to run, with the range of +/-15 degrees and +/-15%, respectively, even in a series of waggle dances of a single individual. We also found that most dance followers that listen to the waggle dance left the dancer after one or two sessions of listening.

  15. [Assessment of hypersensitivity to honey-bee venom in beekeepers by skin tests].

    PubMed

    Becerril-Ángeles, Martín; Núñez-Velázquez, Marco; Marín-Martínez, Javier

    2013-01-01

    Beekeepers are exposed to frequent honey-bee stings, and have the risk to develop hypersensitivity to bee venom, but long-term exposure can induce immune tolerance in them. Up to 30% of beekeepers show positive skin tests with honey-bee venom. The prevalence of systemic reactions to bee stings in beekeepers is from 14% to 42%. To know the prevalence of hypersensitivity to honeybee venom in Mexican beekeepers and non-beekeepers by the use of skin tests. A group of 139 beekeepers and a group of 60 non-beekeeper volunteers had a history and physical related to age, sex, family and personal atopic history and time of exposure to bee stings. Both groups received intradermal skin tests with honey-bee venom, 0.1 mcg/mL and 1 mcg/mL, and histamine sulphate 0.1 mg/mL and Evans solution as controls. The skin tests results of both groups were compared by chi-squared test. Of the group of beekeepers, 116 were men (83%) and 23 women, average age was 39.3 years, had atopic family history 28% and personal atopy 13%, average time of exposure to bee stings was 10.9 years, skin tests with honey-bee venom were positive in 16.5% and 11% at 1 mcg/mL and 0.1 mcg/mL, respectively. In the non-beekeepers group venom skin tests were positive in 13.3% and 6.7% at 1 mcg/mL and 0.1 mcg/mL. We did not find significant differences between the two venom concentrations tested in both groups, neither in the number of positive skin tests between the two groups. We found hypersensivity to honey-bee venom slightly higher in the beekeepers than in the group apparently not exposed. Both honey-bee venom concentrations used did not show difference in the results of the skin tests. The similarity of skin tests positivity between both groups could be explained by immune tolerance due to continued exposure of beekeepers.

  16. The Sex Determination Gene Shows No Founder Effect in the Giant Honey Bee, Apis dorsata

    PubMed Central

    Yan, Wei Yu; Wu, Xiao Bo; Zeng, Zhi Jiang; Huang, Zachary Y.

    2012-01-01

    Background All honey bee species (Apis spp) share the same sex determination mechanism using the complementary sex determination (csd) gene. Only individuals heterogeneous at the csd allele develop into females, and the homozygous develop into diploid males, which do not survive. The honeybees are therefore under selection pressure to generate new csd alleles. Previous studies have shown that the csd gene is under balancing selection. We hypothesize that due to the long separation from the mainland of Hainan Island, China, that the giant honey bees (Apis dorsata) should show a founder effect for the csd gene, with many different alleles clustered together, and these would be absent on the mainland. Methodology/Principal Findings We sampled A. dorsata workers from both Hainan and Guangxi Provinces and then cloned and sequenced region 3 of the csd gene and constructed phylogenetic trees. We failed to find any clustering of the csd alleles according to their geographical origin, i.e. the Hainan and Guangxi samples did not form separate clades. Further analysis by including previously published csd sequences also failed to show any clade-forming in both the Philippines and Malaysia. Conclusions/Significance Results from this study and those from previous studies did not support the expectations of a founder effect. We conclude that because of the extremely high mating frequency of A. dorsata queens, a founder effect does not apply in this species. PMID:22511940

  17. Experimental bacteriophage treatment of honeybees (Apis mellifera) infected with Paenibacillus larvae, the causative agent of American Foulbrood Disease

    PubMed Central

    Yost, Diane G.; Tsourkas, Philippos; Amy, Penny S.

    2016-01-01

    ABSTRACT American Foulbrood Disease (AFB) is an infection of honeybees caused by the bacterium Paenibacillus larvae. One potential remedy involves using biocontrol, such as bacteriophages (phages) to lyse P. larvae. Therefore, bacteriophages specific for P. larvae were isolated to determine their efficacy in lysing P. larvae cells. Samples from soil, beehive materials, cosmetics, and lysogenized P. larvae strains were screened; of 157 total samples, 28 were positive for at least one P. larvae bacteriophage, with a total of 30. Newly isolated bacteriophages were tested for the ability to lyse each of 11 P. larvae strains. Electron microscopy demonstrated that the phage isolates were from the family Siphoviridae. Seven phages with the broadest host ranges were combined into a cocktail for use in experimental treatments of infected bee larvae; both prophylactic and post-infection treatments were conducted. Results indicated that although both pre- and post-treatments were effective, prophylactic administration of the phages increased the survival of larvae more than post-treatment experiments. These preliminary experiments demonstrate the likelihood that phage therapy could be an effective method to control AFB. PMID:27144085

  18. Aggressive reproductive competition among hopelessly queenless honeybee workers triggered by pheromone signaling

    NASA Astrophysics Data System (ADS)

    Malka, O.; Shnieor, S.; Katzav-Gozansky, T.; Hefetz, A.

    2008-06-01

    In the honeybee, Apis mellifera, the queen monopolizes reproduction, while the sterile workers cooperate harmoniously in nest maintenance. However, under queenless (QL) conditions, cooperation collapses and reproductive competition among workers ensues. This is mediated through aggression and worker oviposition, as well as shifts in pheromones, from worker to queen-like composition. Many studies suggest a dichotomy between conflict resolution through aggression or through pheromonal signaling. In this paper, we demonstrate that both phenomena comprise essential components of reproductive competition and that pheromone signaling actually triggers the onset of aggression. We kept workers as QL groups until first aggression was observed and subsequently determined the contestants’ reproductive status and content of the mandibular (MG) and Dufour’s glands (DG). In groups in which aggression occurred early, the attacked bee had consistently more queen-like pheromone in both the MG and DG, although both contestants had undeveloped ovaries. In groups with late aggression, the attacked bee had consistently larger oocytes and more queen-like pheromone in the DG, but not the MG. We suggest that at early stages of competition, the MG secretion is utilized to establish dominance and that the DG provides an honest fertility signal. We further argue that it is the higher amount of DG pheromone that triggers aggression.

  19. Towards a systems approach for understanding honeybee decline: a stocktaking and synthesis of existing models.

    PubMed

    Becher, Matthias A; Osborne, Juliet L; Thorbek, Pernille; Kennedy, Peter J; Grimm, Volker

    2013-08-01

    The health of managed and wild honeybee colonies appears to have declined substantially in Europe and the United States over the last decade. Sustainability of honeybee colonies is important not only for honey production, but also for pollination of crops and wild plants alongside other insect pollinators. A combination of causal factors, including parasites, pathogens, land use changes and pesticide usage, are cited as responsible for the increased colony mortality.However, despite detailed knowledge of the behaviour of honeybees and their colonies, there are no suitable tools to explore the resilience mechanisms of this complex system under stress. Empirically testing all combinations of stressors in a systematic fashion is not feasible. We therefore suggest a cross-level systems approach, based on mechanistic modelling, to investigate the impacts of (and interactions between) colony and land management.We review existing honeybee models that are relevant to examining the effects of different stressors on colony growth and survival. Most of these models describe honeybee colony dynamics, foraging behaviour or honeybee - varroa mite - virus interactions.We found that many, but not all, processes within honeybee colonies, epidemiology and foraging are well understood and described in the models, but there is no model that couples in-hive dynamics and pathology with foraging dynamics in realistic landscapes. Synthesis and applications . We describe how a new integrated model could be built to simulate multifactorial impacts on the honeybee colony system, using building blocks from the reviewed models. The development of such a tool would not only highlight empirical research priorities but also provide an important forecasting tool for policy makers and beekeepers, and we list examples of relevant applications to bee disease and landscape management decisions.

  20. Impact of Nosema ceranae and Nosema apis on individual worker bees of the two host species (Apis cerana and Apis mellifera) and regulation of host immune response.

    PubMed

    Sinpoo, Chainarong; Paxton, Robert J; Disayathanoowat, Terd; Krongdang, Sasiprapa; Chantawannakul, Panuwan

    Nosema apis and Nosema ceranae are obligate intracellular microsporidian parasites infecting midgut epithelial cells of host adult honey bees, originally Apis mellifera and Apis cerana respectively. Each microsporidia cross-infects the other host and both microsporidia nowadays have a worldwide distribution. In this study, cross-infection experiments using both N. apis and N. ceranae in both A. mellifera and A. cerana were carried out to compare pathogen proliferation and impact on hosts, including host immune response. Infection by N. ceranae led to higher spore loads than by N. apis in both host species, and there was greater proliferation of microsporidia in A. mellifera compared to A. cerana. Both N. apis and N. ceranae were pathogenic in both host Apis species. N. ceranae induced subtly, though not significantly, higher mortality than N. apis in both host species, yet survival of A. cerana was no different to that of A. mellifera in response to N. apis or N. ceranae. Infections of both host species with N. apis and N. ceranae caused significant up-regulation of AMP genes and cellular mediated immune genes but did not greatly alter apoptosis-related gene expression. In this study, A. cerana enlisted a higher immune response and displayed lower loads of N. apis and N. ceranae spores than A. mellifera, suggesting it may be better able to defend itself against microsporidia infection. We caution against over-interpretation of our results, though, because differences between host and parasite species in survival were insignificant and because size differences between microsporidia species and between host Apis species may alternatively explain the differential proliferation of N. ceranae in A. mellifera. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Behavioral genomics of honeybee foraging and nest defense

    NASA Astrophysics Data System (ADS)

    Hunt, Greg J.; Amdam, Gro V.; Schlipalius, David; Emore, Christine; Sardesai, Nagesh; Williams, Christie E.; Rueppell, Olav; Guzmán-Novoa, Ernesto; Arechavaleta-Velasco, Miguel; Chandra, Sathees; Fondrk, M. Kim; Beye, Martin; Page, Robert E.

    2007-04-01

    The honeybee has been the most important insect species for study of social behavior. The recently released draft genomic sequence for the bee will accelerate honeybee behavioral genetics. Although we lack sufficient tools to manipulate this genome easily, quantitative trait loci (QTLs) that influence natural variation in behavior have been identified and tested for their effects on correlated behavioral traits. We review what is known about the genetics and physiology of two behavioral traits in honeybees, foraging specialization (pollen versus nectar), and defensive behavior, and present evidence that map-based cloning of genes is more feasible in the bee than in other metazoans. We also present bioinformatic analyses of candidate genes within QTL confidence intervals (CIs). The high recombination rate of the bee made it possible to narrow the search to regions containing only 17-61 predicted peptides for each QTL, although CIs covered large genetic distances. Knowledge of correlated behavioral traits, comparative bioinformatics, and expression assays facilitated evaluation of candidate genes. An overrepresentation of genes involved in ovarian development and insulin-like signaling components within pollen foraging QTL regions suggests that an ancestral reproductive gene network was co-opted during the evolution of foraging specialization. The major QTL influencing defensive/aggressive behavior contains orthologs of genes involved in central nervous system activity and neurogenesis. Candidates at the other two defensive-behavior QTLs include modulators of sensory signaling ( Am5HT 7 serotonin receptor, AmArr4 arrestin, and GABA-B-R1 receptor). These studies are the first step in linking natural variation in honeybee social behavior to the identification of underlying genes.

  2. The Biology and Control of the Greater Wax Moth, Galleria mellonella.

    PubMed

    Kwadha, Charles A; Ong'amo, George O; Ndegwa, Paul N; Raina, Suresh K; Fombong, Ayuka T

    2017-06-09

    The greater wax moth, Galleria mellonella Linnaeus , is a ubiquitous pest of the honeybee, Apis mellifera Linnaeus, and Apis cerana Fabricius . The greater wax moth larvae burrow into the edge of unsealed cells with pollen, bee brood, and honey through to the midrib of honeybee comb. Burrowing larvae leave behind masses of webs which causes galleriasis and later absconding of colonies. The damage caused by G. mellonella larvae is severe in tropical and sub-tropical regions, and is believed to be one of the contributing factors to the decline in both feral and wild honeybee populations. Previously, the pest was considered a nuisance in honeybee colonies, therefore, most studies have focused on the pest as a model for in vivo studies of toxicology and pathogenicity. It is currently widespread, especially in Africa, and the potential of transmitting honeybee viruses has raised legitimate concern, thus, there is need for more studies to find sustainable integrated management strategies. However, our knowledge of this pest is limited. This review provides an overview of the current knowledge on the biology, distribution, economic damage, and management options. In addition, we provide prospects that need consideration for better understanding and management of the pest.

  3. [Determination of 10-HDA in honeybee body by HPLC].

    PubMed

    Fan, H; He, C; Han, H

    1999-05-01

    In the present work we found that in the honeybee body there exists an unsaturated fatty acid, trans-10-hydroxy-2-decenoic acid (10-HDA), which was known only to be present in royal jelly. We established the analytical method of 10-HDA in honeybee body by HPLC and simplified the extraction method of 10-HDA. In the optimum conditions the linear range of detection was 10-1,000 ng, the correlation coefficient was 0.9998, the recovery was 96.5%-99.2% and the detectable limit was 0.53 microgram/g.

  4. Thermoregulation of water foraging honeybees--balancing of endothermic activity with radiative heat gain and functional requirements.

    PubMed

    Kovac, Helmut; Stabentheiner, Anton; Schmaranzer, Sigurd

    2010-12-01

    Foraging honeybees are subjected to considerable variations of microclimatic conditions challenging their thermoregulatory ability. Solar heat is a gain in the cold but may be a burden in the heat. We investigated the balancing of endothermic activity with radiative heat gain and physiological functions of water foraging Apis mellifera carnica honeybees in the whole range of ambient temperatures (T(a)) and solar radiation they are likely to be exposed in their natural environment in Middle Europe. The mean thorax temperature (T(th)) during foraging stays was regulated at a constantly high level (37.0-38.5 °C) in a broad range of T(a) (3-30 °C). At warmer conditions (T(a)=30-39 °C) T(th) increased to a maximal level of 45.3 °C. The endothermic temperature excess (difference of T(body)-T(a) of living and dead bees) was used to assess the endogenously generated temperature elevation as a correlate of energy turnover. Up to a T(a) of ∼30 °C bees used solar heat gain for a double purpose: to reduce energetic expenditure and to increase T(th) by about 1-3 °C to improve force production of flight muscles. At higher T(a) they exhibited cooling efforts to get rid of excess heat. A high T(th) also allowed regulation of the head temperature high enough to guarantee proper function of the bees' suction pump even at low T(a). This shortened the foraging stays and this way reduced energetic costs. With decreasing T(a) bees also reduced arrival body weight and crop loading to do both minimize costs and optimize flight performance. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Androgenic effect of honeybee drone milk in castrated rats: roles of methyl palmitate and methyl oleate.

    PubMed

    Seres, A B; Ducza, E; Báthori, M; Hunyadi, A; Béni, Z; Dékány, M; Hajagos-Tóth, J; Verli, J; Gáspár, Róbert

    2014-04-28

    Numerous honeybee (Apis mellifera) products have been used in traditional medicine to treat infertility and to increase vitality in both men and women. Drone milk (DM) is a relatively little-known honeybee product with a putative sexual hormone effect. The oestrogenic effect of a fraction of DM has recently been reported in rats. However, no information is available on the androgenic effects of DM. The purpose of the present study was to determine the androgen-like effect of DM in male rats and to identify effective compounds. A modified Hershberger assay was used to investigate the androgenic effect of crude DM, and the plasma level of testosterone was measured. The prostatic mRNA and protein expression of Spot14-like androgen-inducible protein (SLAP) were also examined with real-time PCR and Western blot techniques. GC-MS and NMR spectroscopic investigations were performed to identify the active components gained by bioactivity-guided fractionation. The crude DM increased the relative weights of the androgen-dependent organs and the plasma testosterone level in castrated rats and these actions were flutamide-sensitive. DM increased the tissue mRNA and protein level of SLAP, providing further evidence of its androgen-like character. After bioactivity-guided fractionation, two fatty acid esters, methyl palmitate (MP) and methyl oleate (MO), were identified as active compounds. MP alone showed an androgenic effect, whereas MO increased the weight of androgen-sensitive tissues and the plasma testosterone level only in combination. The experimental data of DM and its active compounds (MO and MP) show androgenic activity confirming the traditional usage of DM. DM or MP or/and MO treatments may project a natural mode for the therapy of male infertility. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. The Role of Vision and Mechanosensation in Insect Flight Control

    DTIC Science & Technology

    2012-01-01

    intensity. We used bumblebees (Bombus terrestris), honeybees ( Apis mellifera ), the common wasp (Vespa vulgaris), hornets (Vespa crabro) flies (Mousca...bees ( Apis mellifera L.). J. Exp. Biol. 209, 978-984. Beyeler, A., Zufferey, J.-C. and Floreano, D. (2009). Vision-based control of near- obstacle

  7. Towards a systems approach for understanding honeybee decline: a stocktaking and synthesis of existing models

    PubMed Central

    Becher, Matthias A; Osborne, Juliet L; Thorbek, Pernille; Kennedy, Peter J; Grimm, Volker

    2013-01-01

    The health of managed and wild honeybee colonies appears to have declined substantially in Europe and the United States over the last decade. Sustainability of honeybee colonies is important not only for honey production, but also for pollination of crops and wild plants alongside other insect pollinators. A combination of causal factors, including parasites, pathogens, land use changes and pesticide usage, are cited as responsible for the increased colony mortality. However, despite detailed knowledge of the behaviour of honeybees and their colonies, there are no suitable tools to explore the resilience mechanisms of this complex system under stress. Empirically testing all combinations of stressors in a systematic fashion is not feasible. We therefore suggest a cross-level systems approach, based on mechanistic modelling, to investigate the impacts of (and interactions between) colony and land management. We review existing honeybee models that are relevant to examining the effects of different stressors on colony growth and survival. Most of these models describe honeybee colony dynamics, foraging behaviour or honeybee – varroa mite – virus interactions. We found that many, but not all, processes within honeybee colonies, epidemiology and foraging are well understood and described in the models, but there is no model that couples in-hive dynamics and pathology with foraging dynamics in realistic landscapes. Synthesis and applications. We describe how a new integrated model could be built to simulate multifactorial impacts on the honeybee colony system, using building blocks from the reviewed models. The development of such a tool would not only highlight empirical research priorities but also provide an important forecasting tool for policy makers and beekeepers, and we list examples of relevant applications to bee disease and landscape management decisions. PMID:24223431

  8. Generalization in visual recognition by the honeybee (Apis mellifera): a review and explanation.

    PubMed

    Horridge, Adrian

    2009-06-01

    During a century of studies on honeybee vision, generalization was the word for the acceptance of an unfamiliar pattern in the place of the training pattern, or the ability to learn a common factor in a group of related patterns. The ideas that bees generalize one pattern for another, detect similarity and differences, or form categories, were derived from the use of the same terms in the human cognitive sciences. Recent work now reveals a mechanistic explanation for bees. Small groups of ommatidia converge upon feature detectors that respond selectively to certain parameters that are in the pattern: modulation in the receptors, edge orientations, or to areas of black or colour. Within each local region of the eye the responses of each type of feature detector are summed to form a cue. The cues are therefore not in the pattern, but are local totals in the bee. Each cue has a quality, a quantity and a position on the eye, like a neuron response. This summation of edge detector responses destroys the local pattern based on edge orientation but preserves a coarse, sparse and simplified version of the panorama. In order of preference, the cues are: local receptor modulation, positions of well-separated black areas, a small black spot, colour and positions of the centres of each cue, radial edges, the averaged edge orientation and tangential edges. A pattern is always accepted by a trained bee that detects the expected cues in the expected places and no unexpected cues. The actual patterns are irrelevant. Therefore we have an explanation of generalization that is based on experimental testing of trained bees, not by analogy with other animals. Historically, generalization appeared when the training patterns were regularly interchanged to make the bees examine them. This strategy forced the bees to ignore parameters outside the training pattern, so that learning was restricted to one local eye region. This in turn limited the memory to one cue of each type, so that

  9. The bite of the honeybee: 2-heptanone secreted from honeybee mandibles during a bite acts as a local anaesthetic in insects and mammals.

    PubMed

    Papachristoforou, Alexandros; Kagiava, Alexia; Papaefthimiou, Chrisovalantis; Termentzi, Aikaterini; Fokialakis, Nikolas; Skaltsounis, Alexios-Leandros; Watkins, Max; Arnold, Gérard; Theophilidis, George

    2012-01-01

    Honeybees secrete 2-heptanone (2-H) from their mandibular glands when they bite. Researchers have identified several possible functions: 2-H could act as an alarm pheromone to recruit guards and soldiers, it could act as a chemical marker, or it could have some other function. The actual role of 2-H in honeybee behaviour remains unresolved. In this study, we show that 2-H acts as an anaesthetic in small arthropods, such as wax moth larva (WML) and Varroa mites, which are paralysed after a honeybee bite. We demonstrated that honeybee mandibles can penetrate the cuticle of WML, introducing less than one nanolitre of 2-H into the WML open circulatory system and causing instantaneous anaesthetization that lasts for a few minutes. The first indication that 2-H acts as a local anaesthetic was that its effect on larval response, inhibition and recovery is very similar to that of lidocaine. We compared the inhibitory effects of 2-H and lidocaine on voltage-gated sodium channels. Although both compounds blocked the hNav1.6 and hNav1.2 channels, lidocaine was slightly more effective, 2.82 times, on hNav.6. In contrast, when the two compounds were tested using an ex vivo preparation-the isolated rat sciatic nerve-the function of the two compounds was so similar that we were able to definitively classify 2-H as a local anaesthetic. Using the same method, we showed that 2-H has the fastest inhibitory effect of all alkyl-ketones tested, including the isomers 3- and 4-heptanone. This suggests that natural selection may have favoured 2-H over other, similar compounds because of the associated fitness advantages it confers. Our results reveal a previously unknown role of 2-H in honeybee defensive behaviour and due to its minor neurotoxicity show potential for developing a new local anaesthetic from a natural product, which could be used in human and veterinary medicine.

  10. Agricultural Policies Exacerbate Honeybee Pollination Service Supply-Demand Mismatches Across Europe

    PubMed Central

    Breeze, Tom D.; Vaissière, Bernard E.; Bommarco, Riccardo; Petanidou, Theodora; Seraphides, Nicos; Kozák, Lajos; Scheper, Jeroen; Biesmeijer, Jacobus C.; Kleijn, David; Gyldenkærne, Steen; Moretti, Marco; Holzschuh, Andrea; Steffan-Dewenter, Ingolf; Stout, Jane C.; Pärtel, Meelis; Zobel, Martin; Potts, Simon G.

    2014-01-01

    Declines in insect pollinators across Europe have raised concerns about the supply of pollination services to agriculture. Simultaneously, EU agricultural and biofuel policies have encouraged substantial growth in the cultivated area of insect pollinated crops across the continent. Using data from 41 European countries, this study demonstrates that the recommended number of honeybees required to provide crop pollination across Europe has risen 4.9 times as fast as honeybee stocks between 2005 and 2010. Consequently, honeybee stocks were insufficient to supply >90% of demands in 22 countries studied. These findings raise concerns about the capacity of many countries to cope with major losses of wild pollinators and highlight numerous critical gaps in current understanding of pollination service supplies and demands, pointing to a pressing need for further research into this issue. PMID:24421873

  11. The African honey bee: factors contributing to a successful biological invasion.

    PubMed

    Scott Schneider, Stanley; DeGrandi-Hoffman, Gloria; Smith, Deborah Roan

    2004-01-01

    The African honey bee subspecies Apis mellifera scutellata has colonized much of the Americas in less than 50 years and has largely replaced European bees throughout its range in the New World. The African bee therefore provides an excellent opportunity to examine the factors that influence invasion success. We provide a synthesis of recent research on the African bee, concentrating on its ability to displace European honey bees. Specifically, we consider (a) the genetic composition of the expanding population and the symmetry of gene flow between African and European bees, (b) the mechanisms that favor the preservation of the African genome, and (c) the possible range and impact of the African bee in the United States.

  12. The preferences of the honeybee (Apis mellifera) for different visual cues during the learning process.

    PubMed

    Horridge, Adrian

    2007-09-01

    By working with very simple images, a number of different visual cues used by the honeybee have been described over the past decades. In most of the work, the bees had no control over the choice of the images, and it was not clear whether they learned the rewarded pattern or the difference between two images. Preferences were known to exist when untrained bees selected one pattern from a variety of them, but because the preferences of the bees were ignored, it was not possible to understand how natural images displaying several cues were detected. The preferences were also essential to make a computer model of the visual system. Therefore experiments were devised to show the order of preference for the known cues in the training situation. Freely flying bees were trained to discriminate between a rewarded target with one pattern on the left side and a different one on the right, versus a white or neutral target. This arrangement gave the bees a choice of what to learn. Tests showed that in some cases they learned two or three cues simultaneously; in other cases the bees learned one, or they preferred to avoid the unrewarded target. By testing with different combinations of patterns, it was possible to put the cues into an order of preference. Of the known cues, loosely or tightly attached to eye coordinates, a black or blue spot was the most preferred, followed by strong modulation caused by edges, the orientation of parallel bars, six equally spaced spokes, a clean white target, and then a square cross and a ring. A patch of blue colour was preferred to yellow.

  13. Plant microRNAs in larval food regulate honeybee caste development

    PubMed Central

    Zhou, Zhen; Kong, Yan; Liang, Hongwei; Lin, Zheguang; Luo, Jun; Zheng, Huoqing; Wan, Ping; Zhang, Junfeng; Zen, Ke; Chen, Jiong; Hu, Fuliang; Zhang, Chen-Yu; Ren, Jie

    2017-01-01

    The major environmental determinants of honeybee caste development come from larval nutrients: royal jelly stimulates the differentiation of larvae into queens, whereas beebread leads to worker bee fate. However, these determinants are not fully characterized. Here we report that plant RNAs, particularly miRNAs, which are more enriched in beebread than in royal jelly, delay development and decrease body and ovary size in honeybees, thereby preventing larval differentiation into queens and inducing development into worker bees. Mechanistic studies reveal that amTOR, a stimulatory gene in caste differentiation, is the direct target of miR162a. Interestingly, the same effect also exists in non-social Drosophila. When such plant RNAs and miRNAs are fed to Drosophila larvae, they cause extended developmental times and reductions in body weight and length, ovary size and fecundity. This study identifies an uncharacterized function of plant miRNAs that fine-tunes honeybee caste development, offering hints for understanding cross-kingdom interaction and co-evolution. PMID:28859085

  14. Plant microRNAs in larval food regulate honeybee caste development.

    PubMed

    Zhu, Kegan; Liu, Minghui; Fu, Zheng; Zhou, Zhen; Kong, Yan; Liang, Hongwei; Lin, Zheguang; Luo, Jun; Zheng, Huoqing; Wan, Ping; Zhang, Junfeng; Zen, Ke; Chen, Jiong; Hu, Fuliang; Zhang, Chen-Yu; Ren, Jie; Chen, Xi

    2017-08-01

    The major environmental determinants of honeybee caste development come from larval nutrients: royal jelly stimulates the differentiation of larvae into queens, whereas beebread leads to worker bee fate. However, these determinants are not fully characterized. Here we report that plant RNAs, particularly miRNAs, which are more enriched in beebread than in royal jelly, delay development and decrease body and ovary size in honeybees, thereby preventing larval differentiation into queens and inducing development into worker bees. Mechanistic studies reveal that amTOR, a stimulatory gene in caste differentiation, is the direct target of miR162a. Interestingly, the same effect also exists in non-social Drosophila. When such plant RNAs and miRNAs are fed to Drosophila larvae, they cause extended developmental times and reductions in body weight and length, ovary size and fecundity. This study identifies an uncharacterized function of plant miRNAs that fine-tunes honeybee caste development, offering hints for understanding cross-kingdom interaction and co-evolution.

  15. How Honeybees Defy Gravity with Royal Jelly to Raise Queens.

    PubMed

    Buttstedt, Anja; Mureşan, Carmen I; Lilie, Hauke; Hause, Gerd; Ihling, Christian H; Schulze, Stefan-H; Pietzsch, Markus; Moritz, Robin F A

    2018-04-02

    The female sex in honeybees (Apis spp.) comprises a reproductive queen and a sterile worker caste. Nurse bees feed all larvae progressively with a caste-specific food jelly until the prepupal stage. Only those larvae that are exclusively fed a large amount of royal jelly (RJ) develop into queens [1]. RJ is a composite secretion of two specialized head glands: the mandibular glands, which produce mainly fatty acids [2], and the hypopharyngeal glands, which contribute proteins, primarily belonging to the major royal jelly protein (MRJP) family [3]. Past research on RJ has focused on its nutritional function and overlooked its central role with regard to the orientation of the larva in the royal brood cell. Whereas workers are reared in the regular horizontal cells of the comb, the queen cells are specifically built outside of the normal comb area to accommodate for the larger queen [4, 5]. These cells hang freely along the bottom of the comb and are vertically oriented, opening downward [6]. Queen larvae are attached by their RJ diet to the cell ceiling. Thus, the physical properties of RJ are central to successful retention of larvae in the cell. Here, we show that the main protein of RJ (MRJP1) polymerizes in complex with another protein, apisimin, into long fibrous structures that build the basis for the high viscosity of RJ to hold queen larvae on the RJ surface. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  16. Modelling the spread of American foulbrood in honeybees

    PubMed Central

    Datta, Samik; Bull, James C.; Budge, Giles E.; Keeling, Matt J.

    2013-01-01

    We investigate the spread of American foulbrood (AFB), a disease caused by the bacterium Paenibacillus larvae, that affects bees and can be extremely damaging to beehives. Our dataset comes from an inspection period carried out during an AFB epidemic of honeybee colonies on the island of Jersey during the summer of 2010. The data include the number of hives of honeybees, location and owner of honeybee apiaries across the island. We use a spatial SIR model with an underlying owner network to simulate the epidemic and characterize the epidemic using a Markov chain Monte Carlo (MCMC) scheme to determine model parameters and infection times (including undetected ‘occult’ infections). Likely methods of infection spread can be inferred from the analysis, with both distance- and owner-based transmissions being found to contribute to the spread of AFB. The results of the MCMC are corroborated by simulating the epidemic using a stochastic SIR model, resulting in aggregate levels of infection that are comparable to the data. We use this stochastic SIR model to simulate the impact of different control strategies on controlling the epidemic. It is found that earlier inspections result in smaller epidemics and a higher likelihood of AFB extinction. PMID:24026473

  17. The Influence of Gustatory and Olfactory Experiences on Responsiveness to Reward in the Honeybee

    PubMed Central

    Ramírez, Gabriela P.; Martínez, Andrés S.; Fernández, Vanesa M.; Corti Bielsa, Gonzalo; Farina, Walter M.

    2010-01-01

    Background Honeybees (Apis mellifera) exhibit an extraordinarily tuned division of labor that depends on age polyethism. This adjustment is generally associated with the fact that individuals of different ages display different response thresholds to given stimuli, which determine specific behaviors. For instance, the sucrose-response threshold (SRT) which largely depends on genetic factors may also be affected by the nectar sugar content. However, it remains unknown whether SRTs in workers of different ages and tasks can differ depending on gustatory and olfactory experiences. Methodology Groups of worker bees reared either in an artificial environment or else in a queen-right colony, were exposed to different reward conditions at different adult ages. Gustatory response scores (GRSs) and odor-memory retrieval were measured in bees that were previously exposed to changes in food characteristics. Principal Findings Results show that the gustatory responses of pre-foraging-aged bees are affected by changes in sucrose solution concentration and also to the presence of an odor provided it is presented as scented sucrose solution. In contrast no differences in worker responses were observed when presented with odor only in the rearing environment. Fast modulation of GRSs was observed in older bees (12–16 days of age) which are commonly involved in food processing tasks within the hive, while slower modulation times were observed in younger bees (commonly nurse bees, 6–9 days of age). This suggests that older food-processing bees have a higher plasticity when responding to fluctuations in resource information than younger hive bees. Adjustments in the number of trophallaxis events were also found when scented food circulated inside the nest, and this was positively correlated with the differences in timing observed in gustatory responsiveness and memory retention for hive bees of different age classes. Conclusions This work demonstrates the accessibility of

  18. Comparative virulence and competition between Nosema apis and Nosema ceranae in honey bees (Apis mellifera).

    PubMed

    Milbrath, Meghan O; van Tran, Toan; Huang, Wei-Fong; Solter, Leellen F; Tarpy, David R; Lawrence, Frank; Huang, Zachary Y

    2015-02-01

    Honey bees (Apis mellifera) are infected by two species of microsporidia: Nosema apis and Nosemaceranae. Epidemiological evidence indicates that N. ceranae may be replacing N. apis globally in A. mellifera populations, suggesting a potential competitive advantage of N. ceranae. Mixed infections of the two species occur, and little is known about the interactions among the host and the two pathogens that have allowed N. ceranae to become dominant in most geographical areas. We demonstrated that mixed Nosema species infections negatively affected honey bee survival (median survival=15-17days) more than single species infections (median survival=21days and 20days for N. apis and N. ceranae, respectively), with median survival of control bees of 27days. We found similar rates of infection (percentage of bees with active infections after inoculation) for both species in mixed infections, with N. apis having a slightly higher rate (91% compared to 86% for N. ceranae). We observed slightly higher spore counts in bees infected with N. ceranae than in bees infected with N. apis in single microsporidia infections, especially at the midpoint of infection (day 10). Bees with mixed infections of both species had higher spore counts than bees with single infections, but spore counts in mixed infections were highly variable. We did not see a competitive advantage for N. ceranae in mixed infections; N. apis spore counts were either higher or counts were similar for both species and more N. apis spores were produced in 62% of bees inoculated with equal dosages of the two microsporidian species. N. ceranae does not, therefore, appear to have a strong within-host advantage for either infectivity or spore growth, suggesting that direct competition in these worker bee mid-guts is not responsible for its apparent replacement of N. apis. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Side-Specific Reward Memories in Honeybees

    ERIC Educational Resources Information Center

    Gil, Mariana; Menzel, Randolf; De Marco, Rodrigo J.

    2009-01-01

    We report a hitherto unknown form of side-specific learning in honeybees. We trained bees individually by coupling gustatory and mechanical stimulation of each antenna with either increasing or decreasing volumes of sucrose solution offered to the animal's proboscis along successive learning trials. Next, we examined their proboscis extension…

  20. Flow currents and ventilation in Langstroth beehives due to brood thermoregulation efforts of honeybees.

    PubMed

    Sudarsan, Rangarajan; Thompson, Cody; Kevan, Peter G; Eberl, Hermann J

    2012-02-21

    Beekeepers universally agree that ensuring sufficient ventilation is vital for sustaining a thriving, healthy honeybee colony. Despite this fact, surprisingly little is known about the ventilation and flow patterns in bee hives. We take a first step towards developing a model-based approach that uses computational fluid dynamics to simulate natural ventilation flow inside a standard Langstroth beehive. A 3-D model of a Langstroth beehive with one brood chamber and one honey super was constructed and inside it the honeybee colony was distributed among different clusters each occupying the different bee-spaces between frames in the brood chamber. For the purpose of modeling, each honeybee cluster was treated as an air-saturated porous medium with constant porosity. Heat and mass transfer interactions of the honeybees with the air, the outcome of metabolism, were captured in the porous medium model as source and sink terms appearing in the governing equations of fluid dynamics. The temperature of the brood that results from the thermoregulation efforts of the colony is applied as a boundary condition for the governing equations. The governing equations for heat, mass transport and fluid flow were solved using Fluent(©), a commercially available CFD program. The results from the simulations indicate that (a) both heat and mass transfer resulting from honeybee metabolism play a vital role in determining the structure of the flow inside the beehive and mass transfer cannot be neglected, (b) at low ambient temperatures, the nonuniform temperature profile on comb surfaces that results from brood incubation enhances flow through the honeybee cluster which removes much of the carbon-dioxide produced by the cluster resulting in lower carbon-dioxide concentration next to the brood, (c) increasing ambient (outside) air temperature causes ventilation flow rate to drop resulting in weaker flow inside the beehive. Flow visualization indicates that at low ambient air temperatures

  1. Oxygen consumption and body temperature of active and resting honeybees.

    PubMed

    Stabentheiner, Auton; Vollmann, Jutta; Kovac, Helmut; Crailsheim, Karl

    2003-09-01

    We measured the energy turnover (oxygen consumption) of honeybees (Apis mellifera carnica), which were free to move within Warburg vessels. Oxygen consumption of active bees varied widely depending on ambient temperature and level of activity, but did not differ between foragers (>18 d) and middle-aged hive bees (7-10 d). In highly active bees, which were in an endothermic state ready for flight, it decreased almost linearly, from a maximum of 131.4 microl O(2) min(-1) at 15 degrees C ambient temperature to 81.1 microl min(-1) at 25 degrees C, and reached a minimum of 29.9 microl min(-1) at 40 degrees C. In bees with low activity, it decreased from 89.3 microl O(2) min(-1) at 15 degrees C to 47.9 microl min(-1) at 25 degrees C and 14.7 microl min(-1) at 40 degrees C. Thermographic measurements of body temperature showed that with increasing activity, the bees invested more energy to regulate the thorax temperature at increasingly higher levels (38.8-41.2 degrees C in highly active bees) and were more accurate. Resting metabolism was determined in young bees of 1-7 h age, which are not yet capable of endothermic heat production with their flight muscles. Their energy turnover increased from 0.21 microl O(2) min(-1) at 10 degrees C to 0.38 microl min(-1) at 15 degrees C, 1.12 microl min(-1) at 25 degrees C, and 3.03 microl min(-1) at 40 degrees C. At 15, 25 and 40 degrees C, this was 343, 73 and 10 times below the values of the highly active bees, respectively. The Q(10) value of the resting bees, however, was not constant but varied in a U-shaped manner with ambient temperature. It decreased from 4.24 in the temperature range 11-21 degrees C to 1.35 in the range 21-31 degrees C, and increased again to 2.49 in the range 30-40 degrees C. We conclude that attempts to describe the temperature dependence of the resting metabolism of honeybees by Q(10) values can lead to considerable errors if the measurements are performed at only two temperatures. An acceptable

  2. Volatile organic compounds of Thai honeys produced from several floral sources by different honey bee species.

    PubMed

    Pattamayutanon, Praetinee; Angeli, Sergio; Thakeow, Prodpran; Abraham, John; Disayathanoowat, Terd; Chantawannakul, Panuwan

    2017-01-01

    The volatile organic compounds (VOCs) of four monofloral and one multifloral of Thai honeys produced by Apis cerana, Apis dorsata and Apis mellifera were analyzed by headspace solid-phase microextraction (HS-SPME) followed by gas chromatography and mass spectrometry (GC-MS). The floral sources were longan, sunflower, coffee, wild flowers (wild) and lychee. Honey originating from longan had more VOCs than all other floral sources. Sunflower honey had the least numbers of VOCs. cis-Linalool oxide, trans-linalool oxide, ho-trienol, and furan-2,5-dicarbaldehyde were present in all the honeys studied, independent of their floral origin. Interestingly, 2-phenylacetaldehyde was detected in all honey sample except longan honey produced by A. cerana. Thirty-two VOCs were identified as possible floral markers. After validating differences in honey volatiles from different floral sources and honeybee species, the results suggest that differences in quality and quantity of honey volatiles are influenced by both floral source and honeybee species. The group of honey volatiles detected from A. cerana was completely different from those of A. mellifera and A. dorsata. VOCs could therefore be applied as chemical markers of honeys and may reflect preferences of shared floral sources amongst different honeybee species.

  3. Small hive beetles survive in honeybee prisons by behavioural mimicry

    NASA Astrophysics Data System (ADS)

    Ellis, J. D.; Pirk, C. W. W.; Hepburn, H. R.; Kastberger, G.; Elzen, P. J.

    2002-05-01

    We report the results of a simple experiment to determine whether honeybees feed their small hive beetle nest parasites. Honeybees incarcerate the beetles in cells constructed of plant resins and continually guard them. The longevity of incarcerated beetles greatly exceeds their metabolic reserves. We show that survival of small hive beetles derives from behavioural mimicry by which the beetles induce the bees to feed them trophallactically. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at htpp://dx.doi.org/10.1007/s00114-002-0326-y.

  4. Caps and gaps: a computer model for studies on brood incubation strategies in honeybees (Apis mellifera carnica)

    NASA Astrophysics Data System (ADS)

    Fehler, Manuel; Kleinhenz, Marco; Klügl, Franziska; Puppe, Frank; Tautz, Jürgen

    2007-08-01

    In addition to heat production on the comb surface, honeybee workers frequently visit open cells (“gaps”) that are scattered throughout the sealed brood area, and enter them to incubate adjacent brood cells. We examined the efficiency of this heating strategy under different environmental conditions and for gap proportions from 0 to 50%. For gap proportions from 4 to 10%, which are common to healthy colonies, we find a significant reduction in the incubation time per brood cell to maintain the correct temperature. The savings make up 18 to 37% of the time, which would be required for this task in completely sealed brood areas without any gaps. For unnatural high proportions of gaps (>20%), which may be the result of inbreeding or indicate a poor condition of the colony, brood nest thermoregulation becomes less efficient, and the incubation time per brood cell has to increase to maintain breeding temperature. Although the presence of gaps is not essential to maintain an optimal brood nest temperature, a small number of gaps make heating more economical by reducing the time and energy that must be spent on this vital task. As the benefit depends on the availability, spatial distribution and usage of gaps by the bees, further studies need to show the extent to which these results apply to real colonies.

  5. Effects of Oxalic Acid on Apis mellifera (Hymenoptera: Apidae)

    PubMed Central

    Rademacher, Eva; Harz, Marika; Schneider, Saskia

    2017-01-01

    Oxalic acid dihydrate is used to treat varroosis of Apis mellifera. This study investigates lethal and sublethal effects of oxalic acid dihydrate on individually treated honeybees kept in cages under laboratory conditions as well as the distribution in the colony. After oral application, bee mortality occurred at relatively low concentrations (No Observed Adverse Effect Level (NOAEL) 50 µg/bee; Lowest Observed Adverse Effect Level (LOAEL) 75 µg/bee) compared to the dermal treatment (NOAEL 212.5 µg/bee; LOAEL 250 µg/bee). The dosage used in regular treatment via dermal application (circa 175 µg/bee) is below the LOAEL, referring to mortality derived in the laboratory. However, the treatment with oxalic acid dihydrate caused sublethal effects: This could be demonstrated in an increased responsiveness to water, decreased longevity and a reduction in pH-values in the digestive system and the hemolymph. The shift towards stronger acidity after treatment confirms that damage to the epithelial tissue and organs is likely to be caused by hyperacidity. The distribution of oxalic acid dihydrate within a colony was shown by macro-computed tomography; it was rapid and consistent. The increased density of the individual bee was continuous for at least 14 days after the treatment indicating the presence of oxalic acid dihydrate in the hive even long after a treatment. PMID:28783129

  6. Age structure is critical to the population dynamics and survival of honeybee colonies

    PubMed Central

    Betti, M. I.; Wahl, L. M.

    2016-01-01

    Age structure is an important feature of the division of labour within honeybee colonies, but its effects on colony dynamics have rarely been explored. We present a model of a honeybee colony that incorporates this key feature, and use this model to explore the effects of both winter and disease on the fate of the colony. The model offers a novel explanation for the frequently observed phenomenon of ‘spring dwindle’, which emerges as a natural consequence of the age-structured dynamics. Furthermore, the results indicate that a model taking age structure into account markedly affects the predicted timing and severity of disease within a bee colony. The timing of the onset of disease with respect to the changing seasons may also have a substantial impact on the fate of a honeybee colony. Finally, simulations predict that an infection may persist in a honeybee colony over several years, with effects that compound over time. Thus, the ultimate collapse of the colony may be the result of events several years past. PMID:28018627

  7. Age structure is critical to the population dynamics and survival of honeybee colonies.

    PubMed

    Betti, M I; Wahl, L M; Zamir, M

    2016-11-01

    Age structure is an important feature of the division of labour within honeybee colonies, but its effects on colony dynamics have rarely been explored. We present a model of a honeybee colony that incorporates this key feature, and use this model to explore the effects of both winter and disease on the fate of the colony. The model offers a novel explanation for the frequently observed phenomenon of 'spring dwindle', which emerges as a natural consequence of the age-structured dynamics. Furthermore, the results indicate that a model taking age structure into account markedly affects the predicted timing and severity of disease within a bee colony. The timing of the onset of disease with respect to the changing seasons may also have a substantial impact on the fate of a honeybee colony. Finally, simulations predict that an infection may persist in a honeybee colony over several years, with effects that compound over time. Thus, the ultimate collapse of the colony may be the result of events several years past.

  8. Protein and Peptide Composition of Male Accessory Glands of Apis mellifera Drones Investigated by Mass Spectrometry

    PubMed Central

    Gorshkov, Vladimir; Blenau, Wolfgang; Koeniger, Gudrun; Römpp, Andreas; Vilcinskas, Andreas; Spengler, Bernhard

    2015-01-01

    In honeybees, reproductive females usually mate early in their life with more than 10 males in free flight, often within 10 minutes, and then store male gametes for up to five years. Because of the extreme polyandry and mating in free flight special adaptations in males are most likely. We present here the results of an investigation of the protein content of four types of male reproductive glands from the Western honeybee (Apis mellifera) drone, namely seminal vesicles (secretion in ejaculate), as well as bulbus, cornua and mucus glands (secretions for the mating plug). Using high resolution and accuracy mass spectrometry and a combination of database searching and de novo sequencing techniques it was possible to identify 50 different proteins in total, inside all mentioned glands, except in the mucus gland. Most of the proteins are unique for a specific gland type, only one of them (H9KEY1/ATP synthase subunit O) was found in three glands, and 7 proteins were found in two types of glands. The identified proteins represent a wide variety of biological functions and can be assigned to several physiological classes, such as protection, energy generation, maintaining optimal conditions, associated mainly with vesicula seminalis; signaling, cuticle proteins, icarpin and apolipoproteins located mainly in the bulbus and cornua glands; and some other classes. Most of the discovered proteins were not found earlier during investigation of semen, seminal fluid and tissue of reproductive glands of the bee drone. Moreover, we provide here the origin of each protein. Thus, the presented data might shed light on the role of each reproductive gland. PMID:25955586

  9. Protein and Peptide Composition of Male Accessory Glands of Apis mellifera Drones Investigated by Mass Spectrometry.

    PubMed

    Gorshkov, Vladimir; Blenau, Wolfgang; Koeniger, Gudrun; Römpp, Andreas; Vilcinskas, Andreas; Spengler, Bernhard

    2015-01-01

    In honeybees, reproductive females usually mate early in their life with more than 10 males in free flight, often within 10 minutes, and then store male gametes for up to five years. Because of the extreme polyandry and mating in free flight special adaptations in males are most likely. We present here the results of an investigation of the protein content of four types of male reproductive glands from the Western honeybee (Apis mellifera) drone, namely seminal vesicles (secretion in ejaculate), as well as bulbus, cornua and mucus glands (secretions for the mating plug). Using high resolution and accuracy mass spectrometry and a combination of database searching and de novo sequencing techniques it was possible to identify 50 different proteins in total, inside all mentioned glands, except in the mucus gland. Most of the proteins are unique for a specific gland type, only one of them (H9KEY1/ATP synthase subunit O) was found in three glands, and 7 proteins were found in two types of glands. The identified proteins represent a wide variety of biological functions and can be assigned to several physiological classes, such as protection, energy generation, maintaining optimal conditions, associated mainly with vesicula seminalis; signaling, cuticle proteins, icarpin and apolipoproteins located mainly in the bulbus and cornua glands; and some other classes. Most of the discovered proteins were not found earlier during investigation of semen, seminal fluid and tissue of reproductive glands of the bee drone. Moreover, we provide here the origin of each protein. Thus, the presented data might shed light on the role of each reproductive gland.

  10. The Biology and Control of the Greater Wax Moth, Galleria mellonella

    PubMed Central

    Kwadha, Charles A.; Ong’amo, George O.; Ndegwa, Paul N.; Raina, Suresh K.; Fombong, Ayuka T.

    2017-01-01

    The greater wax moth, Galleria mellonella Linnaeus, is a ubiquitous pest of the honeybee, Apis mellifera Linnaeus, and Apis cerana Fabricius. The greater wax moth larvae burrow into the edge of unsealed cells with pollen, bee brood, and honey through to the midrib of honeybee comb. Burrowing larvae leave behind masses of webs which causes galleriasis and later absconding of colonies. The damage caused by G. mellonella larvae is severe in tropical and sub-tropical regions, and is believed to be one of the contributing factors to the decline in both feral and wild honeybee populations. Previously, the pest was considered a nuisance in honeybee colonies, therefore, most studies have focused on the pest as a model for in vivo studies of toxicology and pathogenicity. It is currently widespread, especially in Africa, and the potential of transmitting honeybee viruses has raised legitimate concern, thus, there is need for more studies to find sustainable integrated management strategies. However, our knowledge of this pest is limited. This review provides an overview of the current knowledge on the biology, distribution, economic damage, and management options. In addition, we provide prospects that need consideration for better understanding and management of the pest. PMID:28598383

  11. Enhancement of chronic bee paralysis virus levels in honeybees acute exposed to imidacloprid: A Chinese case study.

    PubMed

    Diao, Qingyun; Li, Beibei; Zhao, Hongxia; Wu, Yanyan; Guo, Rui; Dai, Pingli; Chen, Dafu; Wang, Qiang; Hou, Chunsheng

    2018-07-15

    Though honeybee populations have not yet been reported to be largely lost in China, many stressors that affect the health of honeybees have been confirmed. Honeybees inevitably come into contact with environmental stressors that are not intended to target honeybees, such as pesticides. Although large-scale losses of honeybee colonies are thought to be associated with viruses, these viruses usually lead to covert infections and to not cause acute damage if the bees do not encounter outside stressors. To reveal the potential relationship between acute pesticides and viruses, we applied different doses of imidacloprid to adult bees that were primarily infected with low levels (4.3×10 5 genome copies) of chronic bee paralysis virus (CBPV) to observe whether the acute oral toxicity of imidacloprid was able to elevate the level of CBPV. Here, we found that the titer of CBPV was significantly elevated in adult bees after 96h of acute treatment with imidacloprid at the highest dose 66.9ng/bee compared with other treatments and controls. Our study provides clear evidence that exposure to acute high doses of imidacloprid in honeybees persistently infected by CBPV can exert a remarkably negative effect on honeybee survival. These results imply that acute environmental stressors might be one of the major accelerators causing rapid viral replication, which may progress to cause mass proliferation and dissemination and lead to colony decline. The present study will be useful for better understanding the harm caused by this pesticide, especially regarding how honeybee tolerance to the viral infection might be altered by acute pesticide exposure. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Abstraction and Encoding of Sensory Information

    DTIC Science & Technology

    1975-01-25

    of the visual system of the honeybee ( Apis mellifera ). II. The lamina. J. Ultras:ruct. Res. 31, .178-194 (1970). Varela, F.G.; Wiitanen, W.: The optics...on other insects, e.g. the bee Apis (Kunze 1961), the fruitfly Drosophila (Gotz 1964-1973), the housefly Musca (Fermi und Reichardt 1963, review

  13. Honeybees Produce Millimolar Concentrations of Non-Neuronal Acetylcholine for Breeding: Possible Adverse Effects of Neonicotinoids.

    PubMed

    Wessler, Ignaz; Gärtner, Hedwig-Annabel; Michel-Schmidt, Rosmarie; Brochhausen, Christoph; Schmitz, Luise; Anspach, Laura; Grünewald, Bernd; Kirkpatrick, Charles James

    2016-01-01

    The worldwide use of neonicotinoid pesticides has caused concern on account of their involvement in the decline of bee populations, which are key pollinators in most ecosystems. Here we describe a role of non-neuronal acetylcholine (ACh) for breeding of Apis mellifera carnica and a so far unknown effect of neonicotinoids on non-target insects. Royal jelly or larval food are produced by the hypopharyngeal gland of nursing bees and contain unusually high ACh concentrations (4-8 mM). ACh is extremely well conserved in royal jelly or brood food because of the acidic pH of 4.0. This condition protects ACh from degradation thus ensuring delivery of intact ACh to larvae. Raising the pH to ≥5.5 and applying cholinesterase reduced the content of ACh substantially (by 75-90%) in larval food. When this manipulated brood was tested in artificial larval breeding experiments, the survival rate was higher with food supplemented by 100% with ACh (6 mM) than with food not supplemented with ACh. ACh release from the hypopharyngeal gland and its content in brood food declined by 80%, when honeybee colonies were exposed for 4 weeks to high concentrations of the neonicotinoids clothianidin (100 parts per billion [ppb]) or thiacloprid (8,800 ppb). Under these conditions the secretory cells of the gland were markedly damaged and brood development was severely compromised. Even field-relevant low concentrations of thiacloprid (200 ppb) or clothianidin (1 and 10 ppb) reduced ACh level in the brood food and showed initial adverse effects on brood development. Our findings indicate a hitherto unknown target of neonicotinoids to induce adverse effects on non-neuronal ACh which should be considered when re-assessing the environmental risks of these compounds. To our knowledge this is a new biological mechanism, and we suggest that, in addition to their well documented neurotoxic effects, neonicotinoids may contribute to honeybee colony losses consecutive to a reduction of the ACh content in

  14. Honeybee foraging in differentially structured landscapes.

    PubMed

    Steffan-Dewenter, Ingolf; Kuhn, Arno

    2003-03-22

    Honeybees communicate the distance and location of resource patches by bee dances, but this spatial information has rarely been used to study their foraging ecology. We analysed, for the first time to the best of the authors' knowledge, foraging distances and dance activities of honeybees in relation to landscape structure, season and colony using a replicated experimental approach on a landscape scale. We compared three structurally simple landscapes characterized by a high proportion of arable land and large patches, with three complex landscapes with a high proportion of semi-natural perennial habitats and low mean patch size. Four observation hives were placed in the centre of the landscapes and switched at regular intervals between the six landscapes from the beginning of May to the end of July. A total of 1137 bee dances were observed and decoded. Overall mean foraging distance was 1526.1 +/- 37.2 m, the median 1181.5 m and range 62.1-10037.1 m. Mean foraging distances of all bees and foraging distances of nectar-collecting bees did not significantly differ between simple and complex landscapes, but varied between month and colonies. Foraging distances of pollen-collecting bees were significantly larger in simple (1743 +/- 95.6 m) than in complex landscapes (1543.4 +/- 71 m) and highest in June when resources were scarce. Dancing activity, i.e. the number of observed bee dances per unit time, was significantly higher in complex than in simple landscapes, presumably because of larger spatial and temporal variability of resource patches in complex landscapes. The results facilitate an understanding of how human landscape modification may change the evolutionary significance of bee dances and ecological interactions, such as pollination and competition between honeybees and other bee species.

  15. Poly D,L-lactide-co-glycolide (PLGA) nanoparticle-encapsulated honeybee (Apis melifera) venom promotes clearance of Salmonella enterica serovar Typhimurium infection in experimentally challenged pigs through the up-regulation of T helper type 1 specific immune responses.

    PubMed

    Lee, Jin-A; Jung, Bock-Gie; Kim, Tae-Hoon; Kim, Yun-Mi; Park, Min-Ho; Hyun, Pung-mi; Jeon, Jong-woon; Park, Jin-kyu; Cho, Cheong-Weon; Suh, Guk-Hyun; Lee, Bong-Joo

    2014-10-15

    Honeybee (Apis melifera) venom (HBV), which includes melittin and lipid-soluble ingredients (chrysin and pinocembrin), elicited increases in the CD4(+)/CD8(+) T lymphocyte ratio, relative mRNA expression levels of the T helper type 1 (Th 1) cytokines (interferon-γ and IL-12) and reinforced viral clearance of an experimental porcine reproductive and respiratory syndrome (PRRS) virus infection in our previous study. On the basis of that previous study, we have now developed poly-d,l-lactide-co-glycolide (PLGA)-encapsulated HBV nanoparticles (P-HBV) for longer sustained release of HBV. We administered P-HBV to pigs via the rectal route, and then evaluated the potential immune-enhancing and bacterial clearance effects of P-HBV against Salmonella enterica serovar Typhimurium. The CD4(+)/CD8(+) lymphocyte ratio, proliferative capacity of peripheral blood lymphocytes and relative mRNA expression levels of IFN-γ and IL-12 (produced mainly by Th1 lymphocytes) were significantly increased in the P-HBV group up to 2 weeks post-administration of P-HBV. After S. Typhimurium infection, the P-HBV group showed a marked reduction in microbial burden in feces and all tissue samples (including the ileum, cecum, colon, and mesenteric lymph node (MLN)), a significant increase in Th 1 cytokines (IFN-γ, IL-2, and IL-12) and a marked decrease in a Th 2 cytokine (IL-4) in all tissue samples and peripheral blood lymphocytes. Thus, P-HBV may be a promising strategy for immune enhancement and prevention of S. Typhimurium or other bacterial infections. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Mast Cells Can Enhance Resistance to Snake and Honeybee Venoms

    NASA Astrophysics Data System (ADS)

    Metz, Martin; Piliponsky, Adrian M.; Chen, Ching-Cheng; Lammel, Verena; Åbrink, Magnus; Pejler, Gunnar; Tsai, Mindy; Galli, Stephen J.

    2006-07-01

    Snake or honeybee envenomation can cause substantial morbidity and mortality, and it has been proposed that the activation of mast cells by snake or insect venoms can contribute to these effects. We show, in contrast, that mast cells can significantly reduce snake-venom-induced pathology in mice, at least in part by releasing carboxypeptidase A and possibly other proteases, which can degrade venom components. Mast cells also significantly reduced the morbidity and mortality induced by honeybee venom. These findings identify a new biological function for mast cells in enhancing resistance to the morbidity and mortality induced by animal venoms.

  17. Range and Frequency of Africanized Honey Bees in California (USA)

    PubMed Central

    Kono, Yoshiaki; Kohn, Joshua R.

    2015-01-01

    Africanized honey bees entered California in 1994 but few accounts of their northward expansion or their frequency relative to European honey bees have been published. We used mitochondrial markers and morphometric analyses to determine the prevalence of Africanized honeybees in San Diego County and their current northward progress in California west of the Sierra Nevada crest. The northernmost African mitotypes detected were approximately 40 km south of Sacramento in California’s central valley. In San Diego County, 65% of foraging honey bee workers carry African mitochondria and the estimated percentage of Africanized workers using morphological measurements is similar (61%). There was no correlation between mitotype and morphology in San Diego County suggesting Africanized bees result from bidirectional hybridization. Seventy percent of feral hives, but only 13% of managed hives, sampled in San Diego County carried the African mitotype indicating that a large fraction of foraging workers in both urban and rural San Diego County are feral. We also found a single nucleotide polymorphism at the DNA barcode locus COI that distinguishes European and African mitotypes. The utility of this marker was confirmed using 401 georeferenced honey bee sequences from the worldwide Barcode of Life Database. Future censuses can determine whether the current range of the Africanized form is stable, patterns of introgression at nuclear loci, and the environmental factors that may limit the northern range of the Africanized honey bee. PMID:26361047

  18. Bumblebees (Bombus terrestris) and honeybees (Apis mellifera) prefer similar colours of higher spectral purity over trained colours.

    PubMed

    Rohde, Katja; Papiorek, Sarah; Lunau, Klaus

    2013-03-01

    Differences in the concentration of pigments as well as their composition and spatial arrangement cause intraspecific variation in the spectral signature of flowers. Known colour preferences and requirements for flower-constant foraging bees predict different responses to colour variability. In experimental settings, we simulated small variations of unicoloured petals and variations in the spatial arrangement of colours within tricoloured petals using artificial flowers and studied their impact on the colour choices of bumblebees and honeybees. Workers were trained to artificial flowers of a given colour and then given the simultaneous choice between three test colours: either the training colour, one colour of lower and one of higher spectral purity, or the training colour, one colour of lower and one of higher dominant wavelength; in all cases the perceptual contrast between the training colour and the additional test colours was similarly small. Bees preferred artificial test flowers which resembled the training colour with the exception that they preferred test colours with higher spectral purity over trained colours. Testing the behaviour of bees at artificial flowers displaying a centripetal or centrifugal arrangement of three equally sized colours with small differences in spectral purity, bees did not prefer any type of artificial flowers, but preferentially choose the most spectrally pure area for the first antenna contact at both types of artificial flowers. Our results indicate that innate preferences for flower colours of high spectral purity in pollinators might exert selective pressure on the evolution of flower colours.

  19. PedVizApi: a Java API for the interactive, visual analysis of extended pedigrees.

    PubMed

    Fuchsberger, Christian; Falchi, Mario; Forer, Lukas; Pramstaller, Peter P

    2008-01-15

    PedVizApi is a Java API (application program interface) for the visual analysis of large and complex pedigrees. It provides all the necessary functionality for the interactive exploration of extended genealogies. While available packages are mostly focused on a static representation or cannot be added to an existing application, PedVizApi is a highly flexible open source library for the efficient construction of visual-based applications for the analysis of family data. An extensive demo application and a R interface is provided. http://www.pedvizapi.org

  20. Therapeutic Properties of Bioactive Compounds from Different Honeybee Products

    PubMed Central

    Cornara, Laura; Biagi, Marco; Xiao, Jianbo; Burlando, Bruno

    2017-01-01

    Honeybees produce honey, royal jelly, propolis, bee venom, bee pollen, and beeswax, which potentially benefit to humans due to the bioactives in them. Clinical standardization of these products is hindered by chemical variability depending on honeybee and botanical sources, but different molecules have been isolated and pharmacologically characterized. Major honey bioactives include phenolics, methylglyoxal, royal jelly proteins (MRJPs), and oligosaccharides. In royal jelly there are antimicrobial jelleins and royalisin peptides, MRJPs, and hydroxy-decenoic acid derivatives, notably 10-hydroxy-2-decenoic acid (10-HDA), with antimicrobial, anti-inflammatory, immunomodulatory, neuromodulatory, metabolic syndrome preventing, and anti-aging activities. Propolis contains caffeic acid phenethyl ester and artepillin C, specific of Brazilian propolis, with antiviral, immunomodulatory, anti-inflammatory and anticancer effects. Bee venom consists of toxic peptides like pain-inducing melittin, SK channel blocking apamin, and allergenic phospholipase A2. Bee pollen is vitaminic, contains antioxidant and anti-inflammatory plant phenolics, as well as antiatherosclerotic, antidiabetic, and hypoglycemic flavonoids, unsaturated fatty acids, and sterols. Beeswax is widely used in cosmetics and makeup. Given the importance of drug discovery from natural sources, this review is aimed at providing an exhaustive screening of the bioactive compounds detected in honeybee products and of their curative or adverse biological effects. PMID:28701955

  1. Antibiotic exposure perturbs the gut microbiota and elevates mortality in honeybees

    PubMed Central

    Shaffer, Zack; Moran, Nancy A.

    2017-01-01

    Gut microbiomes play crucial roles in animal health, and shifts in the gut microbial community structure can have detrimental impacts on hosts. Studies with vertebrate models and human subjects suggest that antibiotic treatments greatly perturb the native gut community, thereby facilitating proliferation of pathogens. In fact, persistent infections following antibiotic treatment are a major medical issue. In apiculture, antibiotics are frequently used to prevent bacterial infections of larval bees, but the impact of antibiotic-induced dysbiosis (microbial imbalance) on bee health and susceptibility to disease has not been fully elucidated. Here, we evaluated the effects of antibiotic exposure on the size and composition of honeybee gut communities. We monitored the survivorship of bees following antibiotic treatment in order to determine if dysbiosis of the gut microbiome impacts honeybee health, and we performed experiments to determine whether antibiotic exposure increases susceptibility to infection by opportunistic pathogens. Our results show that antibiotic treatment can have persistent effects on both the size and composition of the honeybee gut microbiome. Antibiotic exposure resulted in decreased survivorship, both in the hive and in laboratory experiments in which bees were exposed to opportunistic bacterial pathogens. Together, these results suggest that dysbiosis resulting from antibiotic exposure affects bee health, in part due to increased susceptibility to ubiquitous opportunistic pathogens. Not only do our results highlight the importance of the gut microbiome in honeybee health, but they also provide insights into how antibiotic treatment affects microbial communities and host health. PMID:28291793

  2. Alfalfa (Medicago sativa L.) seed yield in relation to phosphorus fertilization and honeybee pollination.

    PubMed

    Al-Kahtani, Saad Naser; Taha, El-Kazafy Abdou; Al-Abdulsalam, Mohammed

    2017-07-01

    This investigation was conducted at the Agricultural and Veterinary Training and Research Station, King Faisal University, Al-Ahsa, Saudi Arabia, during the alfalfa growing season in 2014. The study aimed to evaluate the impact of phosphorus fertilization and honeybee pollination on alfalfa seed production. The experiment was divided into 9 treatments of open pollination, honeybee pollination, and non-pollination with three different levels (0, 300 or 600 kg P 2 O 5 /ha/year) of triple super phosphate. All vegetative growth attributes of Hassawi alfalfa were significantly higher in the non-insect pollination plots, while the yield and yield component traits were significantly higher with either open pollination or honeybee pollination in parallel with the increasing level of phosphorus fertilizer up to 600 kg P 2 O 5 /ha/year in light salt-affected loamy sand soils. There was no seed yield in Hassawi alfalfa without insect pollination. Therefore, placing honeybee colonies near the fields of Hassawi alfalfa and adding 600 kg P 2 O 5 /ha/year can increase seed production.

  3. Characterization of an Enantioselective Odorant Receptor in the Yellow Fever Mosquito Aedes aegypti

    DTIC Science & Technology

    2009-09-15

    between insect pheromone receptors expressed in Xenopus oocytes and their cognate pheromone ligands [24,43]. The honey bee Apis mellifera OR11 (AmOR11...136–142. 12. Laska M, Galizia CG (2001) Enantioselectivity of odor perception in honeybees ( Apis mellifera carnica). Behav Neurosci 115: 632–639. 13...Culex quinquefasciatus. Insect Biochem Mol Biol 36: 169–176. 23. Robertson HM, Wanner KW (2006) The chemoreceptor superfamily in the honey bee, Apis

  4. Honeybee colony disorder in crop areas: the role of pesticides and viruses.

    PubMed

    Simon-Delso, Noa; San Martin, Gilles; Bruneau, Etienne; Minsart, Laure-Anne; Mouret, Coralie; Hautier, Louis

    2014-01-01

    As in many other locations in the world, honeybee colony losses and disorders have increased in Belgium. Some of the symptoms observed rest unspecific and their causes remain unknown. The present study aims to determine the role of both pesticide exposure and virus load on the appraisal of unexplained honeybee colony disorders in field conditions. From July 2011 to May 2012, 330 colonies were monitored. Honeybees, wax, beebread and honey samples were collected. Morbidity and mortality information provided by beekeepers, colony clinical visits and availability of analytical matrix were used to form 2 groups: healthy colonies and colonies with disorders (n = 29, n = 25, respectively). Disorders included: (1) dead colonies or colonies in which part of the colony appeared dead, or had disappeared; (2) weak colonies; (3) queen loss; (4) problems linked to brood and not related to any known disease. Five common viruses and 99 pesticides (41 fungicides, 39 insecticides and synergist, 14 herbicides, 5 acaricides and metabolites) were quantified in the samples.The main symptoms observed in the group with disorders are linked to brood and queens. The viruses most frequently found are Black Queen Cell Virus, Sac Brood Virus, Deformed Wing Virus. No significant difference in virus load was observed between the two groups. Three acaricides, 5 insecticides and 13 fungicides were detected in the analysed samples. A significant correlation was found between the presence of fungicide residues and honeybee colony disorders. A significant positive link could also be established between the observation of disorder and the abundance of crop surface around the beehive. According to our results, the role of fungicides as a potential stressor for honeybee colonies should be further studied, either by their direct and/or indirect impacts on bees and bee colonies.

  5. Honeybee Colony Disorder in Crop Areas: The Role of Pesticides and Viruses

    PubMed Central

    Simon-Delso, Noa; San Martin, Gilles; Bruneau, Etienne; Minsart, Laure-Anne; Mouret, Coralie; Hautier, Louis

    2014-01-01

    As in many other locations in the world, honeybee colony losses and disorders have increased in Belgium. Some of the symptoms observed rest unspecific and their causes remain unknown. The present study aims to determine the role of both pesticide exposure and virus load on the appraisal of unexplained honeybee colony disorders in field conditions. From July 2011 to May 2012, 330 colonies were monitored. Honeybees, wax, beebread and honey samples were collected. Morbidity and mortality information provided by beekeepers, colony clinical visits and availability of analytical matrix were used to form 2 groups: healthy colonies and colonies with disorders (n = 29, n = 25, respectively). Disorders included: (1) dead colonies or colonies in which part of the colony appeared dead, or had disappeared; (2) weak colonies; (3) queen loss; (4) problems linked to brood and not related to any known disease. Five common viruses and 99 pesticides (41 fungicides, 39 insecticides and synergist, 14 herbicides, 5 acaricides and metabolites) were quantified in the samples.The main symptoms observed in the group with disorders are linked to brood and queens. The viruses most frequently found are Black Queen Cell Virus, Sac Brood Virus, Deformed Wing Virus. No significant difference in virus load was observed between the two groups. Three acaricides, 5 insecticides and 13 fungicides were detected in the analysed samples. A significant correlation was found between the presence of fungicide residues and honeybee colony disorders. A significant positive link could also be established between the observation of disorder and the abundance of crop surface around the beehive. According to our results, the role of fungicides as a potential stressor for honeybee colonies should be further studied, either by their direct and/or indirect impacts on bees and bee colonies. PMID:25048715

  6. Honeybees Learn Odour Mixtures via a Selection of Key Odorants

    PubMed Central

    Reinhard, Judith; Sinclair, Michael; Srinivasan, Mandyam V.; Claudianos, Charles

    2010-01-01

    Background The honeybee has to detect, process and learn numerous complex odours from her natural environment on a daily basis. Most of these odours are floral scents, which are mixtures of dozens of different odorants. To date, it is still unclear how the bee brain unravels the complex information contained in scent mixtures. Methodology/Principal Findings This study investigates learning of complex odour mixtures in honeybees using a simple olfactory conditioning procedure, the Proboscis-Extension-Reflex (PER) paradigm. Restrained honeybees were trained to three scent mixtures composed of 14 floral odorants each, and then tested with the individual odorants of each mixture. Bees did not respond to all odorants of a mixture equally: They responded well to a selection of key odorants, which were unique for each of the three scent mixtures. Bees showed less or very little response to the other odorants of the mixtures. The bees' response to mixtures composed of only the key odorants was as good as to the original mixtures of 14 odorants. A mixture composed of the other, non-key-odorants elicited a significantly lower response. Neither an odorant's volatility or molecular structure, nor learning efficiencies for individual odorants affected whether an odorant became a key odorant for a particular mixture. Odorant concentration had a positive effect, with odorants at high concentration likely to become key odorants. Conclusions/Significance Our study suggests that the brain processes complex scent mixtures by predominantly learning information from selected key odorants. Our observations on key odorant learning lend significant support to previous work on olfactory learning and mixture processing in honeybees. PMID:20161714

  7. Mechanisms, functions and ecology of colour vision in the honeybee.

    PubMed

    Hempel de Ibarra, N; Vorobyev, M; Menzel, R

    2014-06-01

    Research in the honeybee has laid the foundations for our understanding of insect colour vision. The trichromatic colour vision of honeybees shares fundamental properties with primate and human colour perception, such as colour constancy, colour opponency, segregation of colour and brightness coding. Laborious efforts to reconstruct the colour vision pathway in the honeybee have provided detailed descriptions of neural connectivity and the properties of photoreceptors and interneurons in the optic lobes of the bee brain. The modelling of colour perception advanced with the establishment of colour discrimination models that were based on experimental data, the Colour-Opponent Coding and Receptor Noise-Limited models, which are important tools for the quantitative assessment of bee colour vision and colour-guided behaviours. Major insights into the visual ecology of bees have been gained combining behavioural experiments and quantitative modelling, and asking how bee vision has influenced the evolution of flower colours and patterns. Recently research has focussed on the discrimination and categorisation of coloured patterns, colourful scenes and various other groupings of coloured stimuli, highlighting the bees' behavioural flexibility. The identification of perceptual mechanisms remains of fundamental importance for the interpretation of their learning strategies and performance in diverse experimental tasks.

  8. Working against gravity: horizontal honeybee waggle runs have greater angular scatter than vertical waggle runs

    PubMed Central

    Couvillon, Margaret J.; Phillipps, Hunter L. F.; Schürch, Roger; Ratnieks, Francis L. W.

    2012-01-01

    The presence of noise in a communication system may be adaptive or may reflect unavoidable constraints. One communication system where these alternatives are debated is the honeybee (Apis mellifera) waggle dance. Successful foragers communicate resource locations to nest-mates by a dance comprising repeated units (waggle runs), which repetitively transmit the same distance and direction vector from the nest. Intra-dance waggle run variation occurs and has been hypothesized as a colony-level adaptation to direct recruits over an area rather than a single location. Alternatively, variation may simply be due to constraints on bees' abilities to orient waggle runs. Here, we ask whether the angle at which the bee dances on vertical comb influences waggle run variation. In particular, we determine whether horizontal dances, where gravity is not aligned with the waggle run orientation, are more variable in their directional component. We analysed 198 dances from foragers visiting natural resources and found support for our prediction. More horizontal dances have greater angular variation than dances performed close to vertical. However, there is no effect of waggle run angle on variation in the duration of waggle runs, which communicates distance. Our results weaken the hypothesis that variation is adaptive and provide novel support for the constraint hypothesis. PMID:22513277

  9. Working against gravity: horizontal honeybee waggle runs have greater angular scatter than vertical waggle runs.

    PubMed

    Couvillon, Margaret J; Phillipps, Hunter L F; Schürch, Roger; Ratnieks, Francis L W

    2012-08-23

    The presence of noise in a communication system may be adaptive or may reflect unavoidable constraints. One communication system where these alternatives are debated is the honeybee (Apis mellifera) waggle dance. Successful foragers communicate resource locations to nest-mates by a dance comprising repeated units (waggle runs), which repetitively transmit the same distance and direction vector from the nest. Intra-dance waggle run variation occurs and has been hypothesized as a colony-level adaptation to direct recruits over an area rather than a single location. Alternatively, variation may simply be due to constraints on bees' abilities to orient waggle runs. Here, we ask whether the angle at which the bee dances on vertical comb influences waggle run variation. In particular, we determine whether horizontal dances, where gravity is not aligned with the waggle run orientation, are more variable in their directional component. We analysed 198 dances from foragers visiting natural resources and found support for our prediction. More horizontal dances have greater angular variation than dances performed close to vertical. However, there is no effect of waggle run angle on variation in the duration of waggle runs, which communicates distance. Our results weaken the hypothesis that variation is adaptive and provide novel support for the constraint hypothesis.

  10. Beyond 9-ODA: sex pheromone communication in the European honey bee Apis mellifera L.

    PubMed

    Brockmann, Axel; Dietz, Daniel; Spaethe, Johannes; Tautz, Jürgen

    2006-03-01

    The major component of the mandibular gland secretion of queen honeybees (Apis mellifera L.), 9-ODA ((2E)-9-oxodecenoic acid), has been known for more than 40 yr to function as a long-range sex pheromone, attracting drones at congregation areas and drone flyways. Tests of other mandibular gland components failed to demonstrate attraction. It remained unclear whether these components served any function in mating behavior. We performed dual-choice experiments, using a rotating drone carousel, to test the attractiveness of 9-ODA compared to mixtures of 9-ODA with three other most abundant components in virgin queen mandibular gland secretions: (2E)-9-hydroxydecenoic acid (9-HDA), (2E)-10-hydroxydecenoic acid (10-HDA), and p-hydroxybenzoate (HOB). We found no differences in the number of drones attracted to 9-ODA or the respective mixtures over a distance. However, adding 9-HDA and 10-HDA, or 9-HDA, 10-HDA, and HOB to 9-ODA increased the number of drones making contact with the baited dummy. On the basis of these results, we suggest that at least 9-HDA and 10-HDA are additional components of the sex pheromone blend of A. mellifera.

  11. Honeybees, Butterflies, and Ladybugs: Partners to Plants

    ERIC Educational Resources Information Center

    Campbell, Ashley

    2009-01-01

    Honeybees, butterflies, and ladybugs all have fascinating mutually beneficial relationships with plants and play important ecosystem roles. Children also love these creatures. But how do we teach children about these symbiotic interactions and help them appreciate their vital roles in our environment? One must is to give children direct experience…

  12. Restful API Architecture Based on Laravel Framework

    NASA Astrophysics Data System (ADS)

    Chen, Xianjun; Ji, Zhoupeng; Fan, Yu; Zhan, Yongsong

    2017-10-01

    Web service has been an industry standard tech for message communication and integration between heterogeneous systems. RESTFUL API has become mainstream web service development paradigm after SOAP, how to effectively construct RESTFUL API remains a research hotspots. This paper presents a development model of RESTFUL API construction based on PHP language and LARAVEL framework. The key technical problems that need to be solved during the construction of RESTFUL API are discussed, and implementation details based on LARAVEL are given.

  13. The role of epistatic interactions underpinning resistance to parasitic Varroa mites in haploid honey bee (Apis mellifera) drones.

    PubMed

    Conlon, Benjamin H; Frey, Eva; Rosenkranz, Peter; Locke, Barbara; Moritz, Robin F A; Routtu, Jarkko

    2018-06-01

    The Red Queen hypothesis predicts that host-parasite coevolutionary dynamics can select for host resistance through increased genetic diversity, recombination and evolutionary rates. However, in haplodiploid organisms such as the honeybee (Apis mellifera), models suggest the selective pressure is weaker than in diploids. Haplodiploid sex determination, found in A. mellifera, can allow deleterious recessive alleles to persist in the population through the diploid sex with negative effects predominantly expressed in the haploid sex. To overcome these negative effects in haploid genomes, epistatic interactions have been hypothesized to play an important role. Here, we use the interaction between A. mellifera and the parasitic mite Varroa destructor to test epistasis in the expression of resistance, through the inhibition of parasite reproduction, in haploid drones. We find novel loci on three chromosomes which explain over 45% of the resistance phenotype. Two of these loci interact only additively, suggesting their expression is independent of each other, but both loci interact epistatically with the third locus. With drone offspring inheriting only one copy of the queen's chromosomes, the drones will only possess one of two queen alleles throughout the years-long lifetime of the honeybee colony. Varroa, in comparison, completes its highly inbred reproductive cycle in a matter of weeks, allowing it to rapidly evolve resistance. Faced with the rapidly evolving Varroa, a diversity of pathways and epistatic interactions for the inhibition of Varroa reproduction could therefore provide a selective advantage to the high levels of recombination seen in A. mellifera. This allows for the remixing of phenotypes despite a fixed queen genotype. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  14. Fighting Off Wound Pathogens in Horses with Honeybee Lactic Acid Bacteria.

    PubMed

    Olofsson, Tobias C; Butler, Éile; Lindholm, Christina; Nilson, Bo; Michanek, Per; Vásquez, Alejandra

    2016-10-01

    In the global perspective of antibiotic resistance, it is urgent to find potent topical antibiotics for the use in human and animal infection. Healing of equine wounds, particularly in the limbs, is difficult due to hydrostatic factors and exposure to environmental contaminants, which can lead to heavy bio-burden/biofilm formation and sometimes to infection. Therefore, antibiotics are often prescribed. Recent studies have shown that honeybee-specific lactic acid bacteria (LAB), involved in honey production, and inhibit human wound pathogens. The aim of this pilot study was to investigate the effects on the healing of hard-to-heal equine wounds after treatment with these LAB symbionts viable in a heather honey formulation. For this, we included ten horses with wound duration of >1 year, investigated the wound microbiota, and treated wounds with the novel honeybee LAB formulation. We identified the microbiota using MALDI-TOF mass spectrometry and DNA sequencing. In addition, the antimicrobial properties of the honeybee LAB formulation were tested against all wound isolates in vitro. Our results indicate a diverse wound microbiota including fifty-three bacterial species that showed 90 % colonization by at least one species of Staphylococcus. Treatment with the formulation promoted wound healing in all cases already after the first application and the wounds were either completely healed (n = 3) in less than 20 days or healing was in progress. Furthermore, the honeybee LAB formulation inhibited all pathogens when tested in vitro. Consequently, this new treatment option presents as a powerful candidate for the topical treatment of hard-to-heal wounds in horses.

  15. Social learning of floral odours inside the honeybee hive.

    PubMed

    Farina, Walter M; Grüter, Christoph; Díaz, Paula C

    2005-09-22

    A honeybee hive serves as an information centre in which communication among bees allows the colony to exploit the most profitable resources in a continuously changing environment. The best-studied communication behaviour in this context is the waggle dance performed by returning foragers, which encodes information about the distance and direction to the food source. It has been suggested that another information cue, floral scents transferred within the hive, is also important for recruitment to food sources, as bee recruits are more strongly attracted to odours previously brought back by foragers in both honeybees and bumble-bees. These observations suggested that honeybees learn the odour from successful foragers before leaving the hive. However, this has never been shown directly and the mechanisms and properties of the learning process remain obscure. We tested the learning and memory of recruited bees in the laboratory using the proboscis extension response (PER) paradigm, and show that recruits indeed learn the nectar odours brought back by foragers by associative learning and retrieve this memory in the PER paradigm. The associative nature of this learning reveals that information was gained during mouth-to-mouth contacts among bees (trophallaxis). Results further suggest that the information is transferred to long-term memory. Associative learning of food odours in a social context may help recruits to find a particular food source faster.

  16. Understanding the Logics of Pheromone Processing in the Honeybee Brain: From Labeled-Lines to Across-Fiber Patterns

    PubMed Central

    Sandoz, Jean-Christophe; Deisig, Nina; de Brito Sanchez, Maria Gabriela; Giurfa, Martin

    2007-01-01

    Honeybees employ a very rich repertoire of pheromones to ensure intraspecific communication in a wide range of behavioral contexts. This communication can be complex, since the same compounds can have a variety of physiological and behavioral effects depending on the receiver. Honeybees constitute an ideal model to study the neurobiological basis of pheromonal processing, as they are already one of the most influential animal models for the study of general odor processing and learning at behavioral, cellular and molecular levels. Accordingly, the anatomy of the bee brain is well characterized and electro- and opto-physiological recording techniques at different stages of the olfactory circuit are possible in the laboratory. Here we review pheromone communication in honeybees and analyze the different stages of olfactory processing in the honeybee brain, focusing on available data on pheromone detection, processing and representation at these different stages. In particular, we argue that the traditional distinction between labeled-line and across-fiber pattern processing, attributed to pheromone and general odors respectively, may not be so clear in the case of honeybees, especially for social-pheromones. We propose new research avenues for stimulating future work in this area. PMID:18958187

  17. Sublethal effects of acaricides and Nosema ceranae infection on immune related gene expression in honeybees.

    PubMed

    Garrido, Paula Melisa; Porrini, Martín Pablo; Antúnez, Karina; Branchiccela, Belén; Martínez-Noël, Giselle María Astrid; Zunino, Pablo; Salerno, Graciela; Eguaras, Martín Javier; Ieno, Elena

    2016-04-26

    Nosema ceranae is an obligate intracellular parasite and the etiologic agent of Nosemosis that affects honeybees. Beside the stress caused by this pathogen, honeybee colonies are exposed to pesticides under beekeeper intervention, such as acaricides to control Varroa mites. These compounds can accumulate at high concentrations in apicultural matrices. In this work, the effects of parasitosis/acaricide on genes involved in honeybee immunity and survival were evaluated. Nurse bees were infected with N. ceranae and/or were chronically treated with sublethal doses of coumaphos or tau-fluvalinate, the two most abundant pesticides recorded in productive hives. Our results demonstrate the following: (1) honeybee survival was not affected by any of the treatments; (2) parasite development was not altered by acaricide treatments; (3) coumaphos exposure decreased lysozyme expression; (4) N. ceranae reduced levels of vitellogenin transcripts independently of the presence of acaricides. However, combined effects among stressors on imagoes were not recorded. Sublethal doses of acaricides and their interaction with other ubiquitous parasites in colonies, extending the experimental time, are of particular interest in further research work.

  18. Recognition of mite-infested brood by honeybee (Apis mellifera) workers may involve thermal sensing.

    PubMed

    Bauer, Daniel; Wegener, Jakob; Bienefeld, Kaspar

    2018-05-01

    Hygienic behavior, i.e. the removal of diseased or damaged brood by worker honey bees (Apis mellifera), is seen as one of the principal behavioral elements of this species' social immunity. Identification of the stimuli that trigger it would be helpful in searching for biochemical and molecular markers of this important breeding trait. While many studies at the genomic, transcriptomic, and behavioral level have pointed to the implication of chemical cues, we here hypothesized that thermal cues are alternatively/additionally involved. To test this hypothesis, we first measured whether infestation by the mite Varroa destructor (a condition known to induce hygienic behavior) leads to a thermal gradient between affected and unaffected brood. We found that infested brood cells were between 0.03 and 0.19 °C warmer than uninfested controls. Next, we tested whether artificially heating an area of a brood comb would increase the removal of infested or uninfested brood as compared to an unheated control area, and found that this was not the case. Finally, we investigated whether the heating of individual brood cells, as opposed to comb areas, would influence brood removal from cells adjacent to the heated one. This was the case for uninfested, though not for infested cells. We conclude that infestation by V. destructor leads to a heating of brood cells that should be perceivable by bees, and that small-scale temperature gradients can influence brood removal. This makes it appear possible that thermal cues play a role in triggering hygienic behavior of honey bees directed at varroa-infested larvae/pupae, although our results are insufficient to prove such an involvement. Copyright © 2018. Published by Elsevier Ltd.

  19. Honeybees Increase Fruit Set in Native Plant Species Important for Wildlife Conservation

    NASA Astrophysics Data System (ADS)

    Cayuela, Luis; Ruiz-Arriaga, Sarah; Ozers, Christian P.

    2011-11-01

    Honeybee colonies are declining in some parts of the world. This may have important consequences for the pollination of crops and native plant species. In Spain, as in other parts of Europe, land abandonment has led to a decrease in the number of non professional beekeepers, which aggravates the problem of honeybee decline as a result of bee diseases In this study, we investigated the effects of honeybees on the pollination of three native plant species in northern Spain, namely wildcherry Prunus avium L., hawthorn Crataegus monogyna Jacq., and bilberry Vaccinium myrtillus L. We quantified fruit set of individuals from the target species along transects established from an apiary outwards. Half the samples were bagged in a nylon mesh to avoid insect pollination. Mixed-effects models were used to test the effect of distance to the apiary on fruit set in non-bagged samples. The results showed a negative significant effect of distance from the apiary on fruit set for hawthorn and bilberry, but no significant effects were detected for wildcherry. This suggests that the use of honeybees under traditional farming practices might be a good instrument to increase fruit production of some native plants. This may have important consequences for wildlife conservation, since fruits, and bilberries in particular, constitute an important feeding resource for endangered species, such as the brown bear Ursus arctos L. or the capercaillie Tetrao urogallus cantabricus L.

  20. Honeybees increase fruit set in native plant species important for wildlife conservation.

    PubMed

    Cayuela, Luis; Ruiz-Arriaga, Sarah; Ozers, Christian P

    2011-11-01

    Honeybee colonies are declining in some parts of the world. This may have important consequences for the pollination of crops and native plant species. In Spain, as in other parts of Europe, land abandonment has led to a decrease in the number of non professional beekeepers, which aggravates the problem of honeybee decline as a result of bee diseases In this study, we investigated the effects of honeybees on the pollination of three native plant species in northern Spain, namely wildcherry Prunus avium L., hawthorn Crataegus monogyna Jacq., and bilberry Vaccinium myrtillus L. We quantified fruit set of individuals from the target species along transects established from an apiary outwards. Half the samples were bagged in a nylon mesh to avoid insect pollination. Mixed-effects models were used to test the effect of distance to the apiary on fruit set in non-bagged samples. The results showed a negative significant effect of distance from the apiary on fruit set for hawthorn and bilberry, but no significant effects were detected for wild cherry. This suggests that the use of honeybees under traditional farming practices might be a good instrument to increase fruit production of some native plants. This may have important consequences for wildlife conservation, since fruits, and bilberries in particular, constitute an important feeding resource for endangered species, such as the brown bear Ursus arctos L. or the capercaillie Tetrao urogallus cantabricus L.

  1. A new multiplex PCR protocol to detect mixed trypanosomatid infections in species of Apis and Bombus.

    PubMed

    Bartolomé, Carolina; Buendía, María; Benito, María; De la Rúa, Pilar; Ornosa, Concepción; Martín-Hernández, Raquel; Higes, Mariano; Maside, Xulio

    2018-05-01

    Trypanosomatids are highly prevalent pathogens of Hymenoptera; however, most molecular methods used to detect them in Apis and Bombus spp. do not allow the identification of the infecting species, which then becomes expensive and time consuming. To overcome this drawback, we developed a multiplex PCR protocol to readily identify in a single reaction the main trypanosomatids present in these hymenopterans (Lotmaria passim, Crithidia mellificae and Crithidia bombi), which will facilitate the study of their epidemiology and transmission dynamics. A battery of primers, designed to simultaneously amplify fragments of the RNA polymerase II large subunit (RPB1) of L. passim, the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) of C. mellificae and the DNA topoisomerase II (TOPII) of C. bombi, was tested for target specificity under single and mixed template conditions using DNA extracted from cell cultures (L. passim ATCC PRA403; C. mellificae ATCC 30254) and from a bumblebee specimen infected with C. bombi only (14_349). Once validated, the performance of the method was assessed using DNA extractions from seven Apis mellifera (Linnaeus, 1758) and five Bombus terrestris (Linnaeus, 1758) field samples infected with trypanosomatids whose identity had been previously determined by PCR-cloning and sequencing (P-C-S). The new method confirmed the results obtained by P-C-S: two of the honeybee samples were parasitized by L. passim, C. mellificae and C. bombi at the same time, whereas the other five were infected with L. passim only. The method confirmed the simultaneous presence of L. passim and C. mellificae in two B. terrestris, where these parasites had not previously been reported. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Predicting Honeybee Colony Failure: Using the BEEHAVE Model to Simulate Colony Responses to Pesticides

    PubMed Central

    2015-01-01

    To simulate effects of pesticides on different honeybee (Apis mellifera L.) life stages, we used the BEEHAVE model to explore how increased mortalities of larvae, in-hive workers, and foragers, as well as reduced egg-laying rate, could impact colony dynamics over multiple years. Stresses were applied for 30 days, both as multiples of the modeled control mortality and as set percentage daily mortalities to assess the sensitivity of the modeled colony both to small fluctuations in mortality and periods of low to very high daily mortality. These stresses simulate stylized exposure of the different life stages to nectar and pollen contaminated with pesticide for 30 days. Increasing adult bee mortality had a much greater impact on colony survival than mortality of bee larvae or reduction in egg laying rate. Importantly, the seasonal timing of the imposed mortality affected the magnitude of the impact at colony level. In line with the LD50, we propose a new index of “lethal imposed stress”: the LIS50 which indicates the level of stress on individuals that results in 50% colony mortality. This (or any LISx) is a comparative index for exploring the effects of different stressors at colony level in model simulations. While colony failure is not an acceptable protection goal, this index could be used to inform the setting of future regulatory protection goals. PMID:26444386

  3. Does the Earth's Magnetic Field Serve as a Reference for Alignment of the Honeybee Waggle Dance?

    PubMed Central

    Lambinet, Veronika; Hayden, Michael E.; Bieri, Marco; Gries, Gerhard

    2014-01-01

    The honeybee (Apis mellifera) waggle dance, which is performed inside the hive by forager bees, informs hive mates about a potent food source, and recruits them to its location. It consists of a repeated figure-8 pattern: two oppositely directed turns interspersed by a short straight segment, the “waggle run”. The waggle run consists of a single stride emphasized by lateral waggling motions of the abdomen. Directional information pointing to a food source relative to the sun's azimuth is encoded in the angle between the waggle run line and a reference line, which is generally thought to be established by gravity. Yet, there is tantalizing evidence that the local (ambient) geomagnetic field (LGMF) could play a role. We tested the effect of the LGMF on the recruitment success of forager bees by placing observation hives inside large Helmholtz coils, and then either reducing the LGMF to 2% or shifting its apparent declination. Neither of these treatments reduced the number of nest mates that waggle dancing forager bees recruited to a feeding station located 200 m north of the hive. These results indicate that the LGMF does not act as the reference for the alignment of waggle-dancing bees. PMID:25541731

  4. Infra-Population and -Community Dynamics of the Parasites Nosema apis and Nosema ceranae, and Consequences for Honey Bee (Apis mellifera) Hosts

    PubMed Central

    Williams, Geoffrey R.; Shutler, Dave; Burgher-MacLellan, Karen L.; Rogers, Richard E. L.

    2014-01-01

    Nosema spp. fungal gut parasites are among myriad possible explanations for contemporary increased mortality of western honey bees (Apis mellifera, hereafter honey bee) in many regions of the world. Invasive Nosema ceranae is particularly worrisome because some evidence suggests it has greater virulence than its congener N. apis. N. ceranae appears to have recently switched hosts from Asian honey bees (Apis cerana) and now has a nearly global distribution in honey bees, apparently displacing N. apis. We examined parasite reproduction and effects of N. apis, N. ceranae, and mixed Nosema infections on honey bee hosts in laboratory experiments. Both infection intensity and honey bee mortality were significantly greater for N. ceranae than for N. apis or mixed infections; mixed infection resulted in mortality similar to N. apis parasitism and reduced spore intensity, possibly due to inter-specific competition. This is the first long-term laboratory study to demonstrate lethal consequences of N. apis and N. ceranae and mixed Nosema parasitism in honey bees, and suggests that differences in reproduction and intra-host competition may explain apparent heterogeneous exclusion of the historic parasite by the invasive species. PMID:24987989

  5. Infra-population and -community dynamics of the parasites Nosema apis and Nosema ceranae, and consequences for honey bee (Apis mellifera) hosts.

    PubMed

    Williams, Geoffrey R; Shutler, Dave; Burgher-MacLellan, Karen L; Rogers, Richard E L

    2014-01-01

    Nosema spp. fungal gut parasites are among myriad possible explanations for contemporary increased mortality of western honey bees (Apis mellifera, hereafter honey bee) in many regions of the world. Invasive Nosema ceranae is particularly worrisome because some evidence suggests it has greater virulence than its congener N. apis. N. ceranae appears to have recently switched hosts from Asian honey bees (Apis cerana) and now has a nearly global distribution in honey bees, apparently displacing N. apis. We examined parasite reproduction and effects of N. apis, N. ceranae, and mixed Nosema infections on honey bee hosts in laboratory experiments. Both infection intensity and honey bee mortality were significantly greater for N. ceranae than for N. apis or mixed infections; mixed infection resulted in mortality similar to N. apis parasitism and reduced spore intensity, possibly due to inter-specific competition. This is the first long-term laboratory study to demonstrate lethal consequences of N. apis and N. ceranae and mixed Nosema parasitism in honey bees, and suggests that differences in reproduction and intra-host competition may explain apparent heterogeneous exclusion of the historic parasite by the invasive species.

  6. Selection of Apis mellifera workers by the parasitic mite Varroa destructor using host cuticular hydrocarbons.

    PubMed

    Del Piccolo, F; Nazzi, F; Della Vedova, G; Milani, N

    2010-05-01

    The parasitic mite, Varroa destructor, is the most important threat for apiculture in most bee-keeping areas of the world. The mite is carried to the bee brood cell, where it reproduces, by a nurse bee; therefore the selection of the bee stage by the parasite could influence its reproductive success. This study investigates the role of the cuticular hydrocarbons of the European honeybee (Apis mellifera) in host-selection by the mite. Preliminary laboratory bioassays confirmed the preference of the varroa mite for nurse bees over pollen foragers. GC-MS analysis of nurse and pollen bees revealed differences in the cuticular hydrocarbons of the two stages; in particular, it appeared that pollen bees have more (Z)-8-heptadecene than nurse bees. Laboratory experiments showed that treatment of nurse bees with 100 ng of the pure compound makes them repellent to the varroa mite. These results suggest that the mite can exploit the differences in the cuticular composition of its host for a refined selection that allows it to reach a brood cell and start reproduction. The biological activity of the alkene encourages further investigations for the development of novel control techniques based on this compound.

  7. Population Genetics of Nosema apis and Nosema ceranae: One Host (Apis mellifera) and Two Different Histories

    PubMed Central

    Maside, Xulio; Gómez-Moracho, Tamara; Jara, Laura; Martín-Hernández, Raquel; De la Rúa, Pilar; Higes, Mariano; Bartolomé, Carolina

    2015-01-01

    Two microsporidians are known to infect honey bees: Nosema apis and Nosema ceranae. Whereas population genetics data for the latter have been released in the last few years, such information is still missing for N. apis. Here we analyze the patterns of nucleotide polymorphism at three single-copy loci (PTP2, PTP3 and RPB1) in a collection of Apis mellifera isolates from all over the world, naturally infected either with N. apis (N = 22) or N. ceranae (N = 23), to provide new insights into the genetic diversity, demography and evolution of N. apis, as well as to compare them with evidence from N. ceranae. Neutral variation in N. apis and N. ceranae is of the order of 1%. This amount of diversity suggests that there is no substantial differentiation between the genetic content of the two nuclei present in these parasites, and evidence for genetic recombination provides a putative mechanism for the flow of genetic information between chromosomes. The analysis of the frequency spectrum of neutral variants reveals a significant surplus of low frequency variants, particularly in N. ceranae, and suggests that the populations of the two pathogens are not in mutation-drift equilibrium and that they have experienced a population expansion. Most of the variation in both species occurs within honey bee colonies (between 62%-90% of the total genetic variance), although in N. apis there is evidence for differentiation between parasites isolated from distinct A. mellifera lineages (20%-34% of the total variance), specifically between those collected from lineages A and C (or M). This scenario is consistent with a long-term host-parasite relationship and contrasts with the lack of differentiation observed among host-lineages in N. ceranae (< 4% of the variance), which suggests that the spread of this emergent pathogen throughout the A. mellifera worldwide population is a recent event. PMID:26720131

  8. Population Genetics of Nosema apis and Nosema ceranae: One Host (Apis mellifera) and Two Different Histories.

    PubMed

    Maside, Xulio; Gómez-Moracho, Tamara; Jara, Laura; Martín-Hernández, Raquel; De la Rúa, Pilar; Higes, Mariano; Bartolomé, Carolina

    2015-01-01

    Two microsporidians are known to infect honey bees: Nosema apis and Nosema ceranae. Whereas population genetics data for the latter have been released in the last few years, such information is still missing for N. apis. Here we analyze the patterns of nucleotide polymorphism at three single-copy loci (PTP2, PTP3 and RPB1) in a collection of Apis mellifera isolates from all over the world, naturally infected either with N. apis (N = 22) or N. ceranae (N = 23), to provide new insights into the genetic diversity, demography and evolution of N. apis, as well as to compare them with evidence from N. ceranae. Neutral variation in N. apis and N. ceranae is of the order of 1%. This amount of diversity suggests that there is no substantial differentiation between the genetic content of the two nuclei present in these parasites, and evidence for genetic recombination provides a putative mechanism for the flow of genetic information between chromosomes. The analysis of the frequency spectrum of neutral variants reveals a significant surplus of low frequency variants, particularly in N. ceranae, and suggests that the populations of the two pathogens are not in mutation-drift equilibrium and that they have experienced a population expansion. Most of the variation in both species occurs within honey bee colonies (between 62%-90% of the total genetic variance), although in N. apis there is evidence for differentiation between parasites isolated from distinct A. mellifera lineages (20%-34% of the total variance), specifically between those collected from lineages A and C (or M). This scenario is consistent with a long-term host-parasite relationship and contrasts with the lack of differentiation observed among host-lineages in N. ceranae (< 4% of the variance), which suggests that the spread of this emergent pathogen throughout the A. mellifera worldwide population is a recent event.

  9. Impact of Chronic Neonicotinoid Exposure on Honeybee Colony Performance and Queen Supersedure

    PubMed Central

    Sandrock, Christoph; Tanadini, Matteo; Tanadini, Lorenzo G.; Fauser-Misslin, Aline; Potts, Simon G.; Neumann, Peter

    2014-01-01

    Background Honeybees provide economically and ecologically vital pollination services to crops and wild plants. During the last decade elevated colony losses have been documented in Europe and North America. Despite growing consensus on the involvement of multiple causal factors, the underlying interactions impacting on honeybee health and colony failure are not fully resolved. Parasites and pathogens are among the main candidates, but sublethal exposure to widespread agricultural pesticides may also affect bees. Methodology/Principal Findings To investigate effects of sublethal dietary neonicotinoid exposure on honeybee colony performance, a fully crossed experimental design was implemented using 24 colonies, including sister-queens from two different strains, and experimental in-hive pollen feeding with or without environmentally relevant concentrations of thiamethoxam and clothianidin. Honeybee colonies chronically exposed to both neonicotinoids over two brood cycles exhibited decreased performance in the short-term resulting in declining numbers of adult bees (−28%) and brood (−13%), as well as a reduction in honey production (−29%) and pollen collections (−19%), but colonies recovered in the medium-term and overwintered successfully. However, significantly decelerated growth of neonicotinoid-exposed colonies during the following spring was associated with queen failure, revealing previously undocumented long-term impacts of neonicotinoids: queen supersedure was observed for 60% of the neonicotinoid-exposed colonies within a one year period, but not for control colonies. Linked to this, neonicotinoid exposure was significantly associated with a reduced propensity to swarm during the next spring. Both short-term and long-term effects of neonicotinoids on colony performance were significantly influenced by the honeybees’ genetic background. Conclusions/Significance Sublethal neonicotinoid exposure did not provoke increased winter losses. Yet

  10. Physiological State Influences the Social Interactions of Two Honeybee Nest Mates

    PubMed Central

    Wright, Geraldine A.; Lillvis, Joshua L.; Bray, Helen J.; Mustard, Julie A.

    2012-01-01

    Physiological state profoundly influences the expression of the behaviour of individuals and can affect social interactions between animals. How physiological state influences food sharing and social behaviour in social insects is poorly understood. Here, we examined the social interactions and food sharing behaviour of honeybees with the aim of developing the honeybee as a model for understanding how an individual's state influences its social interactions. The state of individual honeybees was manipulated by either starving donor bees or feeding them sucrose or low doses of ethanol to examine how a change in hunger or inebriation state affected the social behaviours exhibited by two closely-related nestmates. Using a lab-based assay for measuring individual motor behaviour and social behaviour, we found that behaviours such as antennation, willingness to engage in trophallaxis, and mandible opening were affected by both hunger and ethanol intoxication. Inebriated bees were more likely to exhibit mandible opening, which may represent a form of aggression, than bees fed sucrose alone. However, intoxicated bees were as willing to engage in trophallaxis as the sucrose-fed bees. The effects of ethanol on social behaviors were dose-dependent, with higher doses of ethanol producing larger effects on behaviour. Hungry donor bees, on the other hand, were more likely to engage in begging for food and less likely to antennate and to display mandible opening. We also found that when nestmates received food from donors previously fed ethanol, they began to display evidence of inebriation, indicating that ethanol can be retained in the crop for several hours and that it can be transferred between honeybee nestmates during trophallaxis. PMID:22427864

  11. Plant origin of Okinawan propolis: honeybee behavior observation and phytochemical analysis

    NASA Astrophysics Data System (ADS)

    Kumazawa, Shigenori; Nakamura, Jun; Murase, Masayo; Miyagawa, Mariko; Ahn, Mok-Ryeon; Fukumoto, Shuichi

    2008-08-01

    Propolis is a natural resinous product collected by honeybees from certain plants. It has gained popularity as a food and alternative medicine. Poplar and Baccharis are well known as the source plants of European and Brazilian propolis, respectively. However, the propolis from Okinawa, Japan, contains some prenylflavonoids not seen in other regions such as Europe and Brazil, suggesting that the plant origin of Okinawan propolis is a particular plant that grows in Okinawa. To identify the plant origin of Okinawan propolis, we observed the behavior of honeybees as they collected material from plants and caulked it inside the hive. Honeybees scraped resinous material from the surface of plant fruits of Macaranga tanarius and brought it back to their hive to use it as propolis. We collected samples of the plant and propolis, and compared their constituents by high-performance liquid chromatography with a photo-diode array detector. We also compared their 1,1-diphenyl-2-picryl-hydrazyl radical scavenging activity. The chemical constituents and biological activity of the ethanol extracts of the plant did not differ from those of propolis. This indicates directly that the plant origin of Okinawan propolis is M. tanarius.

  12. Energy saving strategies of honeybees in dipping nectar

    PubMed Central

    Wu, Jianing; Yang, Heng; Yan, Shaoze

    2015-01-01

    The honeybee’s drinking process has generally been simplified because of its high speed and small scale. In this study, we clearly observed the drinking cycle of the Italian honeybee using a specially designed high-speed camera system. We analysed the pattern of glossal hair erection and the movement kinematics of the protracting tongue (glossa). Results showed that the honeybee used two special protraction strategies to save energy. First, the glossal hairs remain adpressed until the end of the protraction, which indicates that the hydraulic resistance is reduced to less than 1/3 of that in the case if the hairs remain erect. Second, the glossa protracts with a specific velocity profile and we quantitatively demonstrated that this moving strategy helps reduce the total energy needed for protraction compared with the typical form of protraction with constant acceleration and deceleration. These findings suggest effective methods to optimise the control policies employed by next-generation microfluidic pumps. PMID:26446300

  13. Keeping their distance? Odor response patterns along the concentration range

    PubMed Central

    Strauch, Martin; Ditzen, Mathias; Galizia, C. Giovanni

    2012-01-01

    We investigate the interplay of odor identity and concentration coding in the antennal lobe (AL) of the honeybee Apis mellifera. In this primary olfactory center of the honeybee brain, odors are encoded by the spatio-temporal response patterns of olfactory glomeruli. With rising odor concentration, further glomerular responses are recruited into the patterns, which affects distances between the patterns. Based on calcium-imaging recordings, we found that such pattern broadening renders distances between glomerular response patterns closer to chemical distances between the corresponding odor molecules. Our results offer an explanation for the honeybee's improved odor discrimination performance at higher odor concentrations. PMID:23087621

  14. Israeli acute paralysis virus in Africanized honey bees in southeastern Brazilian Apiaries

    USDA-ARS?s Scientific Manuscript database

    Honey bee losses in Brazil have been observed over the past few years. These losses share somewhat similar symptoms with the syndrome known as Colony Collapse Disorder (CCD) in the USA. After more than a half century of introgression from Apis mellifera subsp. scutellata, Africanized honey bees have...

  15. Modeling colony collapse disorder in honeybees as a contagion.

    PubMed

    Kribs-Zaleta, Christopher M; Mitchell, Christopher

    2014-12-01

    Honeybee pollination accounts annually for over $14 billion in United States agriculture alone. Within the past decade there has been a mysterious mass die-off of honeybees, an estimated 10 million beehives and sometimes as much as 90% of an apiary. There is still no consensus on what causes this phenomenon, called Colony Collapse Disorder, or CCD. Several mathematical models have studied CCD by only focusing on infection dynamics. We created a model to account for both healthy hive dynamics and hive extinction due to CCD, modeling CCD via a transmissible infection brought to the hive by foragers. The system of three ordinary differential equations accounts for multiple hive population behaviors including Allee effects and colony collapse. Numerical analysis leads to critical hive sizes for multiple scenarios and highlights the role of accelerated forager recruitment in emptying hives during colony collapse.

  16. Developmental stability, age at onset of foraging and longevity of Africanized honey bees (Apis mellifera L.) under heat stress (Hymenoptera: Apidae).

    PubMed

    Medina, Rubén G; Paxton, Robert J; De Luna, Efraín; Fleites-Ayil, Fernando A; Medina Medina, Luis A; Quezada-Euán, José Javier G

    2018-05-01

    Beekeeping with the western honey bee (Apis mellifera) is important in tropical regions but scant information is available on the possible consequences of global warming for tropical beekeeping. We evaluated the effect of heat stress on developmental stability, the age at onset of foraging (AOF) and longevity in Africanized honey bees (AHBs) in the Yucatan Peninsula of Mexico, one of the main honey producing areas in the Neotropics, where high temperatures occur in spring and summer. To do so, we reared worker AHB pupae under a fluctuating temperature regime, simulating current tropical heatwaves, with a high temperature peak of 40.0 °C for 1 h daily across six days, and compared them to control pupae reared at stable temperatures of 34.0-35.5 °C. Heat stress did not markedly affect overall body size, though the forewing of heat-stressed bees was slightly shorter than controls. However, bees reared under heat stress showed significantly greater fluctuating asymmetry (FA) in forewing shape. Heat stress also decreased AOF and reduced longevity. Our results show that changes occur in the phenotype and behavior of honey bees under heat stress, with potential consequences for colony fitness. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Magnetic Material Arrangement In Apis Mellifera Abdomens

    DTIC Science & Technology

    2002-04-01

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP014406 TITLE: Magnetic Material Arrangement In Apis Mellifera Abdomens...Magnetic Material Arrangement In Apis Mellifera Abdomens Darci M. S. Esquivel, Eliane Wajnberg, Geraldo R. Cernicchiaro, Daniel Acosta-Avalos’ and B.E...transition (52 K- 91 K). Hysteresis curves of Apis mellifera abdomens organized parallel and perpendicular to the applied magnetic field were obtained

  18. From honeybees to Internet servers: biomimicry for distributed management of Internet hosting centers.

    PubMed

    Nakrani, Sunil; Tovey, Craig

    2007-12-01

    An Internet hosting center hosts services on its server ensemble. The center must allocate servers dynamically amongst services to maximize revenue earned from hosting fees. The finite server ensemble, unpredictable request arrival behavior and server reallocation cost make server allocation optimization difficult. Server allocation closely resembles honeybee forager allocation amongst flower patches to optimize nectar influx. The resemblance inspires a honeybee biomimetic algorithm. This paper describes details of the honeybee self-organizing model in terms of information flow and feedback, analyzes the homology between the two problems and derives the resulting biomimetic algorithm for hosting centers. The algorithm is assessed for effectiveness and adaptiveness by comparative testing against benchmark and conventional algorithms. Computational results indicate that the new algorithm is highly adaptive to widely varying external environments and quite competitive against benchmark assessment algorithms. Other swarm intelligence applications are briefly surveyed, and some general speculations are offered regarding their various degrees of success.

  19. Improving the API dissolution rate during pharmaceutical hot-melt extrusion I: Effect of the API particle size, and the co-rotating, twin-screw extruder screw configuration on the API dissolution rate.

    PubMed

    Li, Meng; Gogos, Costas G; Ioannidis, Nicolas

    2015-01-15

    The dissolution rate of the active pharmaceutical ingredients in pharmaceutical hot-melt extrusion is the most critical elementary step during the extrusion of amorphous solid solutions - total dissolution has to be achieved within the short residence time in the extruder. Dissolution and dissolution rates are affected by process, material and equipment variables. In this work, we examine the effect of one of the material variables and one of the equipment variables, namely, the API particle size and extruder screw configuration on the API dissolution rate, in a co-rotating, twin-screw extruder. By rapidly removing the extruder screws from the barrel after achieving a steady state, we collected samples along the length of the extruder screws that were characterized by polarized optical microscopy (POM) and differential scanning calorimetry (DSC) to determine the amount of undissolved API. Analyses of samples indicate that reduction of particle size of the API and appropriate selection of screw design can markedly improve the dissolution rate of the API during extrusion. In addition, angle of repose measurements and light microscopy images show that the reduction of particle size of the API can improve the flowability of the physical mixture feed and the adhesiveness between its components, respectively, through dry coating of the polymer particles by the API particles. Copyright © 2014. Published by Elsevier B.V.

  20. Effects of Nosema apis, N. ceranae, and coinfections on honey bee (Apis mellifera) learning and memory

    PubMed Central

    Charbonneau, Lise R.; Hillier, Neil Kirk; Rogers, Richard E. L.; Williams, Geoffrey R.; Shutler, Dave

    2016-01-01

    Western honey bees (Apis mellifera) face an increasing number of challenges that in recent years have led to significant economic effects on apiculture, with attendant consequences for agriculture. Nosemosis is a fungal infection of honey bees caused by either Nosema apis or N. ceranae. The putative greater virulence of N. ceranae has spurred interest in understanding how it differs from N. apis. Little is known of effects of N. apis or N. ceranae on honey bee learning and memory. Following a Pavlovian model that relies on the proboscis extension reflex, we compared acquisition learning and long-term memory recall of uninfected (control) honey bees versus those inoculated with N. apis, N. ceranae, or both. We also tested whether spore intensity was associated with variation in learning and memory. Neither learning nor memory differed among treatments. There was no evidence of a relationship between spore intensity and learning, and only limited evidence of a negative effect on memory; this occurred only in the co-inoculation treatment. Our results suggest that if Nosema spp. are contributing to unusually high colony losses in recent years, the mechanism by which they may affect honey bees is probably not related to effects on learning or memory, at least as assessed by the proboscis extension reflex. PMID:26961062