Science.gov

Sample records for african honeybees apis

  1. Fertile diploid drones in africanized honeybees, Apis mellifera adansonii.

    PubMed

    Chaud-Netto, J

    1977-02-15

    59 diploid drones of Apis mellifera adansonii, 12-37 days old, were tested for the presence of semen after provoked ejaculation; 13 drones ejaculated semen enough to be used in an instrumental insemination, but only three on them (5%) furnished 1 mm3 of semen. The problems referring to the attainment of descendants from the 2n drones are briefly discussed.

  2. MALDI imaging analysis of neuropeptides in the Africanized honeybee (Apis mellifera) brain: effect of ontogeny.

    PubMed

    Pratavieira, Marcel; da Silva Menegasso, Anally Ribeiro; Garcia, Ana Maria Caviquioli; Dos Santos, Diego Simões; Gomes, Paulo Cesar; Malaspina, Osmar; Palma, Mario Sergio

    2014-06-01

    The occurrence and spatial distribution of the neuropeptides AmTRP-5 and AST-1 in the honeybee brain were monitored via MALDI spectral imaging according to the ontogeny of Africanized Apis mellifera. The levels of these peptides increased in the brains of 0-15 day old honeybees, and this increase was accompanied by an increase in the number of in-hive activities performed by the nurse bees, followed by a decrease in the period from 15 to 25 days of age, in which the workers began to perform activities outside the nest (guarding and foraging). The results obtained in the present investigation suggest that AmTRP-5 acts in the upper region of both pedunculi of young workers, possibly regulating the cell cleaning and brood capping activities. Meanwhile, the localized occurrence of AmTRP-5 and AST-1 in the antennal lobes, subesophageal ganglion, upper region of the medulla, both lobula, and α- and β-lobes of both brain hemispheres in 20 to 25 day old workers suggest that the action of both neuropeptides in these regions may be related to their localized actions in these regions, regulating foraging and guarding activities. Thus, these neuropeptides appear to have some functions in the honeybee brain that are specifically related to the age-related division of labor.

  3. The Africanization of honeybees (Apis mellifera L.) of the Yucatan: a study of a massive hybridization event across time.

    PubMed

    Clarke, Kylea E; Rinderer, Thomas E; Franck, Pierre; Quezada-Euán, Javier G; Oldroyd, Benjamin P

    2002-07-01

    Until recently, African and European subspecies of the honeybee (Apis mellifera L.) had been geographically separated for around 10,000 years. However, human-assisted introductions have caused the mixing of large populations of African and European subspecies in South and Central America, permitting an unprecedented opportunity to study a large-scale hybridization event using molecular analyses. We obtained reference populations from Europe, Africa, and South America and used these to provide baseline information for a microsatellite and mitochondrial analysis of the process of Africanization of the bees of the Yucatan Peninsula, Mexico. The genetic structure of the Yucatecan population has changed dramatically over time. The pre-Africanized Yucatecan population (1985) comprised bees that were most similar to samples from southeastern Europe and northern and western Europe. Three years after the arrival of Africanized bees (1989), substantial paternal gene flow had occurred from feral Africanized drones into the resident European population, but maternal gene flow from the invading Africanized population into the local population was negligible. However by 1998, there was a radical shift with both African nuclear alleles (65%) and African-derived mitochondria (61%) dominating the genomes of domestic colonies. We suggest that although European mitochondria may eventually be driven to extinction in the feral population, stable introgression of European nuclear alleles has occurred.

  4. Side-effects of thiamethoxam on the brain andmidgut of the africanized honeybee Apis mellifera (Hymenopptera: Apidae).

    PubMed

    Oliveira, Regiane Alves; Roat, Thaisa Cristina; Carvalho, Stephan Malfitano; Malaspina, Osmar

    2014-10-01

    The development of agricultural activities coincides with the increased use of pesticides to control pests, which can also be harmful to nontarget insects such as bees. Thus, the goal of this work was assess the toxic effects of thiamethoxam on newly emerged worker bees of Apis mellifera (africanized honeybee-AHB). Initially, we determined that the lethal concentration 50 (LC50 ) of thiamethoxam was 4.28 ng a.i./μL of diet. To determine the lethal time 50 (LT50 ), a survival assay was conducted using diets containing sublethal doses of thiamethoxam equal to 1/10 and 1/100 of the LC50. The group of bees exposed to 1/10 of the LC50 had a 41.2% reduction of lifespan. When AHB samples were analyzed by morphological technique we found the presence of condensed cells in the mushroom bodies and optical lobes in exposed honeybees. Through Xylidine Ponceau technique, we found cells which stained more intensely in groups exposed to thiamethoxam. The digestive and regenerative cells of the midgut from exposed bees also showed morphological and histochemical alterations, like cytoplasm vacuolization, increased apocrine secretion and increased cell elimination. Thus, intoxication with a sublethal doses of thiamethoxam can cause impairment in the brain and midgut of AHB and contribute to the honeybee lifespan reduction.

  5. Africanized honeybees are slower learners than their European counterparts

    NASA Astrophysics Data System (ADS)

    Couvillon, Margaret J.; Degrandi-Hoffman, Gloria; Gronenberg, Wulfila

    2010-02-01

    Does cognitive ability always correlate with a positive fitness consequence? Previous research in both vertebrates and invertebrates provides mixed results. Here, we compare the learning and memory abilities of Africanized honeybees ( Apis mellifera scutellata hybrid) and European honeybees ( Apis mellifera ligustica). The range of the Africanized honeybee continues to expand, superseding the European honeybee, which led us to hypothesize that they might possess greater cognitive capabilities as revealed by a classical conditioning assay. Surprisingly, we found that fewer Africanized honeybees learn to associate an odor with a reward. Additionally, fewer Africanized honeybees remembered the association a day later. While Africanized honeybees are replacing European honeybees, our results show that they do so despite displaying a relatively poorer performance on an associative learning paradigm.

  6. Modification of the brain proteome of Africanized honeybees (Apis mellifera) exposed to a sub-lethal doses of the insecticide fipronil.

    PubMed

    Roat, T C; dos Santos-Pinto, J R A; Dos Santos, L D; Santos, K S; Malaspina, O; Palma, M S

    2014-11-01

    Fipronil is a phenylpyrazole insecticide that is widely used in Brazilian agriculture for pest control. Although honeybees are not targets of fipronil, studies indicate that this pesticide can be harmful to honeybees. To assess the effects of fipronil in the brain of Africanized Apis mellifera workers, this study focused on the toxico-proteome profiling of the brain of newly emerged and aged honeybee workers that were exposed to a sub-lethal dose (10 pg fipronil per day. i.e. (1)/100 of LD50/bee/day during 5 days) of the insecticide. Proteomic analysis identified 25 proteins that were differentially up-regulated or down-regulated when the fipronil-exposed and non-exposed groups were compared. These proteins are potentially related to pathogen susceptibility, neuronal chemical stress, neuronal protein misfolding, and occurrence of apoptosis, ischemia, visual impairment, damaged synapse formation, brain degeneration, memory and learning impairment. The exposure of honeybees to a very low dose of fipronil, even for a short period of time (5 days), was sufficient to cause a series of important neuroproteomic changes in the brains of honeybees.

  7. Temporal variation in the genetic structure of a drone congregation area: an insight into the population dynamics of wild African honeybees (Apis mellifera scutellata).

    PubMed

    Jaffé, R; Dietemann, V; Crewe, R M; Moritz, R F A

    2009-04-01

    The mating system of the honeybee (Apis mellifera) has been regarded as one of the most panmictic in the animal kingdom, with thousands of males aggregating in drone congregation areas (DCAs) that virgin queens visit to mate with tens of partners. Although males from many colonies gather at such congregations, the temporal changes in the colonies contributing drones remain unknown. Yet, changes in the DCAs' genetic structure will ultimately determine population gene flow and effective population size. By repeatedly sampling drones from an African DCA over a period of 3 years, we studied the temporal changes in the genetic structure of a wild honeybee population. Using three sets of tightly linked microsatellite markers, we were able to reconstruct individual queen genotypes with a high accuracy, follow them through time and estimate their rate of replacement. The number of queens contributing drones to the DCA varied from 12 to 72 and was correlated with temperature and rainfall. We found that more than 80% of these queens were replaced by mostly unrelated ones in successive eight months sampling intervals, which resulted in a clear temporal genetic differentiation of the DCA. Our results suggest that the frequent long-range migration of colonies without nest-site fidelity is the main driver of this high queen turnover. DCAs of African honeybees should thus be regarded as extremely dynamic systems which together with migration boost the effective population size and maintain a high genetic diversity in the population.

  8. Temporal variation in the genetic structure of a drone congregation area: an insight into the population dynamics of wild African honeybees (Apis mellifera scutellata).

    PubMed

    Jaffé, R; Dietemann, V; Crewe, R M; Moritz, R F A

    2009-04-01

    The mating system of the honeybee (Apis mellifera) has been regarded as one of the most panmictic in the animal kingdom, with thousands of males aggregating in drone congregation areas (DCAs) that virgin queens visit to mate with tens of partners. Although males from many colonies gather at such congregations, the temporal changes in the colonies contributing drones remain unknown. Yet, changes in the DCAs' genetic structure will ultimately determine population gene flow and effective population size. By repeatedly sampling drones from an African DCA over a period of 3 years, we studied the temporal changes in the genetic structure of a wild honeybee population. Using three sets of tightly linked microsatellite markers, we were able to reconstruct individual queen genotypes with a high accuracy, follow them through time and estimate their rate of replacement. The number of queens contributing drones to the DCA varied from 12 to 72 and was correlated with temperature and rainfall. We found that more than 80% of these queens were replaced by mostly unrelated ones in successive eight months sampling intervals, which resulted in a clear temporal genetic differentiation of the DCA. Our results suggest that the frequent long-range migration of colonies without nest-site fidelity is the main driver of this high queen turnover. DCAs of African honeybees should thus be regarded as extremely dynamic systems which together with migration boost the effective population size and maintain a high genetic diversity in the population. PMID:19368651

  9. Rare royal families in honeybees, Apis mellifera

    NASA Astrophysics Data System (ADS)

    Moritz, Robin F. A.; Lattorff, H. Michael G.; Neumann, Peter; Kraus, F. Bernhard; Radloff, Sarah E.; Hepburn, H. Randall

    2005-10-01

    The queen is the dominant female in the honeybee colony, Apis mellifera, and controls reproduction. Queen larvae are selected by the workers and are fed a special diet (royal jelly), which determines caste. Because queens mate with many males a large number of subfamilies coexist in the colony. As a consequence, there is a considerable potential for conflict among the subfamilies over queen rearing. Here we show that honeybee queens are not reared at random but are preferentially reared from rare “royal” subfamilies, which have extremely low frequencies in the colony's worker force but a high frequency in the queens reared.

  10. Parasitic Cape honeybee workers, Apis mellifera capensis, evade policing.

    PubMed

    Martin, Stephen J; Beekman, Madeleine; Wossler, Theresa C; Ratnieks, Francis L W

    2002-01-10

    Relocation of the Cape honeybee, Apis mellifera capensis, by bee-keepers from southern to northern South Africa in 1990 has caused widespread death of managed African honeybee, A. m. scutellata, colonies. Apis mellifera capensis worker bees are able to lay diploid, female eggs without mating by means of automictic thelytoky (meiosis followed by fusion of two meiotic products to restore egg diploidy), whereas workers of other honeybee subspecies are able to lay only haploid, male eggs. The A. m. capensis workers, which are parasitizing and killing A. m. scutellata colonies in northern South Africa, are the asexual offspring of a single, original worker in which the small amount of genetic variation observed is due to crossing over during meiosis (P. Kryger, personal communication). Here we elucidate two principal mechanisms underlying this parasitism. Parasitic A. m. capensis workers activate their ovaries in host colonies that have a queen present (queenright colonies), and they lay eggs that evade being killed by other workers (worker policing)-the normal fate of worker-laid eggs in colonies with a queen. This unique parasitism by workers is an instance in which a society is unable to control the selfish actions of its members. PMID:11805832

  11. Parasitic Cape honeybee workers, Apis mellifera capensis, evade policing

    NASA Astrophysics Data System (ADS)

    Martin, Stephen J.; Beekman, Madeleine; Wossler, Theresa C.; Ratnieks, Francis L. W.

    2002-01-01

    Relocation of the Cape honeybee, Apis mellifera capensis, by bee-keepers from southern to northern South Africa in 1990 has caused widespread death of managed African honeybee, A. m. scutellata, colonies. Apis mellifera capensis worker bees are able to lay diploid, female eggs without mating by means of automictic thelytoky (meiosis followed by fusion of two meiotic products to restore egg diploidy), whereas workers of other honeybee subspecies are able to lay only haploid, male eggs. The A. m. capensis workers, which are parasitizing and killing A. m. scutellata colonies in northern South Africa, are the asexual offspring of a single, original worker in which the small amount of genetic variation observed is due to crossing over during meiosis (P. Kryger, personal communication). Here we elucidate two principal mechanisms underlying this parasitism. Parasitic A. m. capensis workers activate their ovaries in host colonies that have a queen present (queenright colonies), and they lay eggs that evade being killed by other workers (worker policing)-the normal fate of worker-laid eggs in colonies with a queen. This unique parasitism by workers is an instance in which a society is unable to control the selfish actions of its members.

  12. A SNP test to identify Africanized honeybees via proportion of 'African' ancestry.

    PubMed

    Chapman, Nadine C; Harpur, Brock A; Lim, Julianne; Rinderer, Thomas E; Allsopp, Michael H; Zayed, Amro; Oldroyd, Benjamin P

    2015-11-01

    The honeybee, Apis mellifera, is the world's most important pollinator and is ubiquitous in most agricultural ecosystems. Four major evolutionary lineages and at least 24 subspecies are recognized. Commercial populations are mainly derived from subspecies originating in Europe (75-95%). The Africanized honeybee is a New World hybrid of A. m. scutellata from Africa and European subspecies, with the African component making up 50-90% of the genome. Africanized honeybees are considered undesirable for bee-keeping in most countries, due to their extreme defensiveness and poor honey production. The international trade in honeybees is restricted, due in part to bans on the importation of queens (and semen) from countries where Africanized honeybees are extant. Some desirable strains from the United States of America that have been bred for traits such as resistance to the mite Varroa destructor are unfortunately excluded from export to countries such as Australia due to the presence of Africanized honeybees in the USA. This study shows that a panel of 95 single nucleotide polymorphisms, chosen to differentiate between the African, Eastern European and Western European lineages, can detect Africanized honeybees with a high degree of confidence via ancestry assignment. Our panel therefore offers a valuable tool to mitigate the risks of spreading Africanized honeybees across the globe and may enable the resumption of queen and bee semen imports from the Americas.

  13. Male reproductive parasitism: a factor in the africanization of European honey-bee populations.

    PubMed

    Rinderer, T E; Hellmich, R L; Danka, R G; Collins, A M

    1985-05-31

    Africanized drone honey bees (Apis mellifera) migrate into European honey-bee colonies in large numbers, but Africanized colonies only rarely host drones from other colonies. This migration leads to a strong mating advantage for Africanized bees since it both inhibits European drone production and enhances Africanized drone production.

  14. Honeybee (Apis mellifera ligustica) drone embryo proteomes.

    PubMed

    Li, Jianke; Fang, Yu; Zhang, Lan; Begna, Desalegn

    2011-03-01

    Little attention has been paid to the drone honeybee (Apis mellifera ligustica) which is a haploid individual carrying only the set of alleles that it inherits from its mother. Molecular mechanisms underlying drone embryogenesis are poorly understood. This study evaluated protein expression profiles of drone embryogenesis at embryonic ages of 24, 48 and 72h. More than 100 reproducible proteins were analyzed by mass spectrometry on 2D electrophoresis gels. Sixty-two proteins were significantly changed at the selected three experimental age points. Expression of the metabolic energy requirement-related protein peaked at the embryonic age of 48h, whereas development and metabolizing amino acid-related proteins expressed optimally at 72h. Cytoskeleton, protein folding and antioxidant-related proteins were highly expressed at 48 and 72h. Protein networks of the identified proteins were constructed and protein expressions were validated at the transcription level. This first proteomic study of drone embryogenesis in the honeybee may provide geneticists an exact timetable and candidate protein outline for further manipulations of drone stem cells.

  15. Honeybee (Apis mellifera ligustica) drone embryo proteomes.

    PubMed

    Li, Jianke; Fang, Yu; Zhang, Lan; Begna, Desalegn

    2011-03-01

    Little attention has been paid to the drone honeybee (Apis mellifera ligustica) which is a haploid individual carrying only the set of alleles that it inherits from its mother. Molecular mechanisms underlying drone embryogenesis are poorly understood. This study evaluated protein expression profiles of drone embryogenesis at embryonic ages of 24, 48 and 72h. More than 100 reproducible proteins were analyzed by mass spectrometry on 2D electrophoresis gels. Sixty-two proteins were significantly changed at the selected three experimental age points. Expression of the metabolic energy requirement-related protein peaked at the embryonic age of 48h, whereas development and metabolizing amino acid-related proteins expressed optimally at 72h. Cytoskeleton, protein folding and antioxidant-related proteins were highly expressed at 48 and 72h. Protein networks of the identified proteins were constructed and protein expressions were validated at the transcription level. This first proteomic study of drone embryogenesis in the honeybee may provide geneticists an exact timetable and candidate protein outline for further manipulations of drone stem cells. PMID:21172355

  16. Seasonal prevalence of pathogens and parasites in the savannah honeybee (Apis mellifera scutellata).

    PubMed

    Strauss, Ursula; Human, Hannelie; Gauthier, Laurent; Crewe, Robin M; Dietemann, Vincent; Pirk, Christian W W

    2013-09-01

    The loss of Apis mellifera L. colonies in recent years has, in many regions of the world, been alarmingly high. No single cause has been identified for these losses, but the interactions between several factors (mostly pathogens and parasites) have been held responsible. Work in the Americas on honeybees originating mainly from South Africa indicates that Africanised honeybees are less affected by the interplay of pathogens and parasites. However, little is known about the health status of South African honeybees (A. m. scutellata and A. m. capensis) in relation to pathogens and parasites. We therefore compared the seasonal prevalence of honeybee pathogens (viruses, bacteria, fungi) and parasites (mites, bee lice, wax moth, small hive beetles, A. m. capensis social parasites) between sedentary and migratory A. m. scutellata apiaries situated in the Gauteng region of South Africa. No significant differences were found in the prevalence of pathogens and parasites between sedentary and migratory apiaries. Three (Black queen cell virus, Varroa destructor virus 1 and Israeli acute paralysis virus) of the eight viruses screened were detected, a remarkable difference compared to European honeybees. Even though no bacterial pathogens were detected, Nosema apis and Chalkbrood were confirmed. All of the honeybee parasites were found in the majority of the apiaries with the most common parasite being the Varroa mite. In spite of hosting few pathogens, yet most parasites, A. m. scutellata colonies appeared to be healthy.

  17. What physicians should know about Africanized honeybees.

    PubMed

    Sherman, R A

    1995-12-01

    The Africanized honeybee, popularly known as the "killer bee," is already well established in Texas and has recently entered California and Arizona. As the Africanized honeybee spreads in North America, the medical community must become aware of the problems associated with this insect and ensure that sting emergencies can be handled quickly and appropriately. The major differences between Africanized and European honeybees are that the former are more irritable, they swarm more readily and frequently, they defend their hives more vehemently, and they sting more collectively. It is not the composition nor the volume of an individual bee's venom, but rather the cumulative dose of multiple stings that accounts for the morbidity and mortality associated with Africanized honeybee-sting incidents. Even nonallergic persons are susceptible to the toxic effects of these large combined venom loads. Africanized honeybee-sting victims are treated the same as victims of European honeybee stings. Authorities will prepare for the bees' arrival by expanding public awareness, teaching risk-avoidance behavior, providing for the removal of troublesome hives, and developing sting treatment protocols that can be initiated rapidly in the field or emergency departments. Health care professionals should participate in the educational efforts and in the development of needed emergency response protocols so that the effects of the Africanized honeybee will be merely a nuisance rather than a plague. PMID:8553637

  18. What physicians should know about Africanized honeybees.

    PubMed Central

    Sherman, R A

    1995-01-01

    The Africanized honeybee, popularly known as the "killer bee," is already well established in Texas and has recently entered California and Arizona. As the Africanized honeybee spreads in North America, the medical community must become aware of the problems associated with this insect and ensure that sting emergencies can be handled quickly and appropriately. The major differences between Africanized and European honeybees are that the former are more irritable, they swarm more readily and frequently, they defend their hives more vehemently, and they sting more collectively. It is not the composition nor the volume of an individual bee's venom, but rather the cumulative dose of multiple stings that accounts for the morbidity and mortality associated with Africanized honeybee-sting incidents. Even nonallergic persons are susceptible to the toxic effects of these large combined venom loads. Africanized honeybee-sting victims are treated the same as victims of European honeybee stings. Authorities will prepare for the bees' arrival by expanding public awareness, teaching risk-avoidance behavior, providing for the removal of troublesome hives, and developing sting treatment protocols that can be initiated rapidly in the field or emergency departments. Health care professionals should participate in the educational efforts and in the development of needed emergency response protocols so that the effects of the Africanized honeybee will be merely a nuisance rather than a plague. PMID:8553637

  19. [New Approach to the Mitotype Classification in Black Honeybee Apis mellifera mellifera and Iberian Honeybee Apis mellifera iberiensis].

    PubMed

    Ilyasov, R A; Poskryakov, A V; Petukhov, A V; Nikolenko, A G

    2016-03-01

    The black honeybee Apis mellifera mellifera L. is today the only subspecies of honeybee which is suitable for commercial breeding in the climatic conditions of Northern Europe with long cold winters. The main problem of the black honeybee in Russia and European countries is the preservation of the indigenous gene pool purity, which is lost as a result of hybridization with subspecies, A. m. caucasica, A. m. carnica, A. m. carpatica, and A. m. armeniaca, introduced from southern regions. Genetic identification of the subspecies will reduce the extent of hybridization and provide the gene pool conservation of the black honeybee. Modern classification of the honeybee mitotypes is mainly based on the combined use ofthe DraI restriction endonuclease recognition site polymorphism and sequence polymorphism of the mtDNA COI-COII region. We performed a comparative analysis of the mtDNA COI-COII region sequence polymorphism in the honeybees ofthe evolutionary lineage M from Ural and West European populations of black honeybee A. m. mellifera and Spanish bee A. m. iberiensis. A new approach to the classification of the honeybee M mitotypes was suggested. Using this approach and on the basis of the seven most informative SNPs of the mtDNA COI-COII region, eight honeybee mitotype groups were identified. In addition, it is suggested that this approach will simplify the previously proposed complicated mitotype classification and will make it possible to assess the level of the mitotype diversity and to identify the mitotypes that are the most valuable for the honeybee breeding and rearing. PMID:27281852

  20. Virus Infections of Honeybees Apis Mellifera

    PubMed Central

    Tantillo, Giuseppina; Bottaro, Marilisa; Di Pinto, Angela; Martella, Vito; Di Pinto, Pietro

    2015-01-01

    The health and vigour of honeybee colonies are threatened by numerous parasites (such as Varroa destructor and Nosema spp.) and pathogens, including viruses, bacteria, protozoa. Among honeybee pathogens, viruses are one of the major threats to the health and well-being of honeybees and cause serious concern for researchers and beekeepers. To tone down the threats posed by these invasive organisms, a better understanding of bee viral infections will be of crucial importance in developing effective and environmentally benign disease control strategies. Here we summarize recent progress in the understanding of the morphology, genome organization, transmission, epidemiology and pathogenesis of eight honeybee viruses: Deformed wing virus (DWV) and Kakugo virus (KV); Sacbrood virus (SBV); Black Queen cell virus (BQCV); Acute bee paralysis virus (ABPV); Kashmir bee virus (KBV); Israeli Acute Paralysis Virus (IAPV); Chronic bee paralysis virus (CBPV). The review has been designed to provide researchers in the field with updated information about honeybee viruses and to serve as a starting point for future research. PMID:27800411

  1. Thermal learning in the honeybee, Apis mellifera.

    PubMed

    Hammer, Tobin J; Hata, Curtis; Nieh, James C

    2009-12-01

    Honeybee foragers are exposed to thermal stimuli when collecting food outside and receiving food rewards inside the nest. In both contexts, there is an opportunity for foragers to associate warmth with food rewards. However, honeybee thermal learning is poorly understood. Using an associative learning paradigm (the proboscis extension reflex), we show that honeybees can learn to associate a nectar reward with a heated stimulus applied to the antenna to mimic natural contact with a warm flower or nectar-offering forager. Conditioning with longer inter-trial intervals (ITI) significantly improved learning acquisition. We also trained bees to discriminate between temperatures above (warm) and below (cold) ambient air temperature. Learning acquisition improved by 38% per 10 degrees C increase in absolute stimulus intensity (difference between the rewarded temperature and unrewarded ambient air temperature). However, bees learned positive temperature (warm) significantly better than negative temperature (cold) differences, approximately twice as well for 10 degrees C as compared with a -10 degrees C difference. Thus, thermosensation, a sensory modality that is relatively unexplored in honeybees, could play a role in the acquisition of information from nestmates (social learning) and in foraging decisions influenced by associations between floral temperature and nectar rewards. PMID:19915136

  2. Genetic variation in natural honeybee populations, Apis mellifera capensis

    NASA Astrophysics Data System (ADS)

    Hepburn, Randall; Neumann, Peter; Radloff, Sarah E.

    2004-09-01

    Genetic variation in honeybee, Apis mellifera, populations can be considerably influenced by breeding and commercial introductions, especially in areas with abundant beekeeping. However, in southern Africa apiculture is based on the capture of wild swarms, and queen rearing is virtually absent. Moreover, the introduction of European subspecies constantly failed in the Cape region. We therefore hypothesize a low human impact on genetic variation in populations of Cape honeybees, Apis mellifera capensis. A novel solution to studying genetic variation in honeybee populations based on thelytokous worker reproduction is applied to test this hypothesis. Environmental effects on metrical morphological characters of the phenotype are separated to obtain a genetic residual component. The genetic residuals are then re-calculated as coefficients of genetic variation. Characters measured included hair length on the abdomen, width and length of wax plate, and three wing angles. The data show for the first time that genetic variation in Cape honeybee populations is independent of beekeeping density and probably reflects naturally occurring processes such as gene flow due to topographic and climatic variation on a microscale.

  3. Resistance rather than tolerance explains survival of savannah honeybees (Apis mellifera scutellata) to infestation by the parasitic mite Varroa destructor.

    PubMed

    Strauss, Ursula; Dietemann, Vincent; Human, Hannelie; Crewe, Robin M; Pirk, Christian W W

    2016-03-01

    Varroa destructor is considered the most damaging parasite affecting honeybees (Apis mellifera L.). However, some honeybee populations such as the savannah honeybee (Apis mellifera scutellata) can survive mite infestation without treatment. It is unclear if survival is due to resistance mechanisms decreasing parasite reproduction or to tolerance mechanisms decreasing the detrimental effects of mites on the host. This study investigates both aspects by quantifying the reproductive output of V. destructor and its physiological costs at the individual host level. Costs measured were not consistently lower when compared with susceptible honeybee populations, indicating a lack of tolerance. In contrast, reproduction of V. destructor mites was distinctly lower than in susceptible populations. There was higher proportion of infertile individuals and the reproductive success of fertile mites was lower than measured to date, even in surviving populations. Our results suggest that survival of savannah honeybees is based on resistance rather than tolerance to this parasite. We identified traits that may be useful for breeding programmes aimed at increasing the survival of susceptible populations. African honeybees may have benefited from a lack of human interference, allowing natural selection to shape a population of honeybees that is more resistant to Varroa mite infestation.

  4. Nosema Tolerant Honeybees (Apis mellifera) Escape Parasitic Manipulation of Apoptosis.

    PubMed

    Kurze, Christoph; Le Conte, Yves; Dussaubat, Claudia; Erler, Silvio; Kryger, Per; Lewkowski, Oleg; Müller, Thomas; Widder, Miriam; Moritz, Robin F A

    2015-01-01

    Apoptosis is not only pivotal for development, but also for pathogen defence in multicellular organisms. Although numerous intracellular pathogens are known to interfere with the host's apoptotic machinery to overcome this defence, its importance for host-parasite coevolution has been neglected. We conducted three inoculation experiments to investigate in the apoptotic respond during infection with the intracellular gut pathogen Nosema ceranae, which is considered as potential global threat to the honeybee (Apis mellifera) and other bee pollinators, in sensitive and tolerant honeybees. To explore apoptotic processes in the gut epithelium, we visualised apoptotic cells using TUNEL assays and measured the relative expression levels of subset of candidate genes involved in the apoptotic machinery using qPCR. Our results suggest that N. ceranae reduces apoptosis in sensitive honeybees by enhancing inhibitor of apoptosis protein-(iap)-2 gene transcription. Interestingly, this seems not be the case in Nosema tolerant honeybees. We propose that these tolerant honeybees are able to escape the manipulation of apoptosis by N. ceranae, which may have evolved a mechanism to regulate an anti-apoptotic gene as key adaptation for improved host invasion.

  5. Nosema Tolerant Honeybees (Apis mellifera) Escape Parasitic Manipulation of Apoptosis

    PubMed Central

    Kurze, Christoph; Le Conte, Yves; Dussaubat, Claudia; Erler, Silvio; Kryger, Per; Lewkowski, Oleg; Müller, Thomas; Widder, Miriam; Moritz, Robin F. A.

    2015-01-01

    Apoptosis is not only pivotal for development, but also for pathogen defence in multicellular organisms. Although numerous intracellular pathogens are known to interfere with the host’s apoptotic machinery to overcome this defence, its importance for host-parasite coevolution has been neglected. We conducted three inoculation experiments to investigate in the apoptotic respond during infection with the intracellular gut pathogen Nosema ceranae, which is considered as potential global threat to the honeybee (Apis mellifera) and other bee pollinators, in sensitive and tolerant honeybees. To explore apoptotic processes in the gut epithelium, we visualised apoptotic cells using TUNEL assays and measured the relative expression levels of subset of candidate genes involved in the apoptotic machinery using qPCR. Our results suggest that N. ceranae reduces apoptosis in sensitive honeybees by enhancing inhibitor of apoptosis protein-(iap)-2 gene transcription. Interestingly, this seems not be the case in Nosema tolerant honeybees. We propose that these tolerant honeybees are able to escape the manipulation of apoptosis by N. ceranae, which may have evolved a mechanism to regulate an anti-apoptotic gene as key adaptation for improved host invasion. PMID:26445372

  6. Insights into social insects from the genome of the honeybee Apis mellifera

    PubMed Central

    2007-01-01

    Here we report the genome sequence of the honeybee Apis mellifera, a key model for social behaviour and essential to global ecology through pollination. Compared with other sequenced insect genomes, the A. mellifera genome has high A+T and CpG contents, lacks major transposon families, evolves more slowly, and is more similar to vertebrates for circadian rhythm, RNA interference and DNA methylation genes, among others. Furthermore, A. mellifera has fewer genes for innate immunity, detoxification enzymes, cuticle-forming proteins and gustatory receptors, more genes for odorant receptors, and novel genes for nectar and pollen utilization, consistent with its ecology and social organization. Compared to Drosophila, genes in early developmental pathways differ in Apis, whereas similarities exist for functions that differ markedly, such as sex determination, brain function and behaviour. Population genetics suggests a novel African origin for the species A. mellifera and insights into whether Africanized bees spread throughout the New World via hybridization or displacement. PMID:17073008

  7. The effect of essential oils of sweet fennel and pignut on mortality and learning in africanized honeybees (Apis mellifera L.) (Hymenoptera: Apidae).

    PubMed

    Abramson, Charles I; Wanderley, Paulo A; Wanderley, Maria J A; Silva, José C R; Michaluk, Lynnette M

    2007-01-01

    It was recently discovered that exposure to small concentrations of the essential oils of sweet fennel (Foeniculum vulgare Mill) or pignut [Hyptis suaveolens (L.) Poit] can be used to control aphids. What is not known is whether these oils also influence honeybee behavior. Experiments using both harnessed and free-flying foragers at concentrations used to control aphids showed that bees readily associated the odors with a reward, discriminated between them, and were not repelled. Honeybees, however, would not consume the oils when mixed with sucrose to create an unconditioned stimulus. An experiment in which harnessed bees consumed various concentrations showed that concentrations greater than 50% were detrimental. The experiments reported here provide further evidence supporting the use of conditioning techniques to evaluate the use of essential oils on honey bee behavior.

  8. Mating flights select for symmetry in honeybee drones (Apis mellifera).

    PubMed

    Jaffé, Rodolfo; Moritz, Robin F A

    2010-03-01

    Males of the honeybee (Apis mellifera) fly to specific drone congregation areas (DCAs), which virgin queens visit in order to mate. From the thousands of drones that are reared in a single colony, only very few succeed in copulating with a queen, and therefore, a strong selection is expected to act on adult drones during their mating flights. In consequence, the gathering of drones at DCAs may serve as an indirect mate selection mechanism, assuring that queens only mate with those individuals having a better flight ability and a higher responsiveness to the queen's visual and chemical cues. Here, we tested this idea relying on wing fluctuating asymmetry (FA) as a measure of phenotypic quality. By recapturing marked drones at a natural DCA and comparing their size and FA with a control sample of drones collected at their maternal hives, we were able to detect any selection on wing size and wing FA occurring during the mating flights. Although we found no solid evidence for selection on wing size, wing FA was found to be significantly lower in the drones collected at the DCA than in those collected at the hives. Our results demonstrate the action of selection during drone mating flights for the first time, showing that developmental stability can influence the mating ability of honeybee drones. We therefore conclude that selection during honeybee drone mating flights may confer some fitness advantages to the queens.

  9. Male fitness of honeybee colonies (Apis mellifera L.).

    PubMed

    Kraus, F B; Neumann, P; Scharpenberg, H; van Praagh, J; Moritz, R F A

    2003-09-01

    Honeybees (Apis mellifera L.) have an extreme polyandrous mating system. Worker offspring of 19 naturally mated queens was genotyped with DNA microsatellites, to estimate male reproductive success of 16 drone producing colonies. This allowed for estimating the male mating success on both the colony level and the level of individual drones. The experiment was conducted in a closed population on an isolated island to exclude interferences of drones from unknown colonies. Although all colonies had produced similar numbers of drones, differences among the colonies in male mating success exceeded one order of magnitude. These differences were enhanced by the siring success of individual drones within the offspring of mated queens. The siring success of individual drones was correlated with the mating frequency at the colony level. Thus more successful colonies not only produced drones with a higher chance of mating, but also with a significantly higher proportion of offspring sired than drones from less successful colonies. Although the life cycle of honeybee colonies is very female centred, the male reproductive success appears to be a major driver of natural selection in honeybees.

  10. Mating flights select for symmetry in honeybee drones ( Apis mellifera)

    NASA Astrophysics Data System (ADS)

    Jaffé, Rodolfo; Moritz, Robin F. A.

    2010-03-01

    Males of the honeybee ( Apis mellifera) fly to specific drone congregation areas (DCAs), which virgin queens visit in order to mate. From the thousands of drones that are reared in a single colony, only very few succeed in copulating with a queen, and therefore, a strong selection is expected to act on adult drones during their mating flights. In consequence, the gathering of drones at DCAs may serve as an indirect mate selection mechanism, assuring that queens only mate with those individuals having a better flight ability and a higher responsiveness to the queen’s visual and chemical cues. Here, we tested this idea relying on wing fluctuating asymmetry (FA) as a measure of phenotypic quality. By recapturing marked drones at a natural DCA and comparing their size and FA with a control sample of drones collected at their maternal hives, we were able to detect any selection on wing size and wing FA occurring during the mating flights. Although we found no solid evidence for selection on wing size, wing FA was found to be significantly lower in the drones collected at the DCA than in those collected at the hives. Our results demonstrate the action of selection during drone mating flights for the first time, showing that developmental stability can influence the mating ability of honeybee drones. We therefore conclude that selection during honeybee drone mating flights may confer some fitness advantages to the queens.

  11. From where did the Western honeybee (Apis mellifera) originate?

    PubMed Central

    Han, Fan; Wallberg, Andreas; Webster, Matthew T

    2012-01-01

    The native range of the honeybee Apis mellifera encompasses Europe, Africa, and the Middle East, whereas the nine other species of Apis are found exclusively in Asia. It is therefore commonly assumed that A. mellifera arose in Asia and expanded into Europe and Africa. However, other hypotheses for the origin of A. mellifera have also been proposed based on phylogenetic trees constructed from genetic markers. In particular, an analysis based on >1000 single-nucleotide polymorphism markers placed the root of the tree of A. mellifera subspecies among samples from Africa, suggestive of an out-of-Africa expansion. Here, we re-evaluate the evidence for this and other hypotheses by testing the robustness of the tree topology to different tree-building methods and by removing specimens with a potentially hybrid background. These analyses do not unequivocally place the root of the tree of A. mellifera subspecies within Africa, and are potentially consistent with a variety of hypotheses for honeybee evolution, including an expansion out of Asia. Our analyses also support high divergence between western and eastern European populations of A. mellifera, suggesting they are likely derived from two distinct colonization routes, although the sources of these expansions are still unclear. PMID:22957195

  12. Detection of Illicit Drugs by Trained Honeybees (Apis mellifera).

    PubMed

    Schott, Matthias; Klein, Birgit; Vilcinskas, Andreas

    2015-01-01

    Illegal drugs exacerbate global social challenges such as substance addiction, mental health issues and violent crime. Police and customs officials often rely on specially-trained sniffer dogs, which act as sensitive biological detectors to find concealed illegal drugs. However, the dog "alert" is no longer sufficient evidence to allow a search without a warrant or additional probable cause because cannabis has been legalized in two US states and is decriminalized in many others. Retraining dogs to recognize a narrower spectrum of drugs is difficult and training new dogs is time consuming, yet there are no analytical devices with the portability and sensitivity necessary to detect substance-specific chemical signatures. This means there is currently no substitute for sniffer dogs. Here we describe an insect screening procedure showing that the western honeybee (Apis mellifera) can sense volatiles associated with pure samples of heroin and cocaine. We developed a portable electroantennographic device for the on-site measurement of volatile perception by these insects, and found a positive correlation between honeybee antennal responses and the concentration of specific drugs in test samples. Furthermore, we tested the ability of honeybees to learn the scent of heroin and trained them to show a reliable behavioral response in the presence of a highly-diluted scent of pure heroin. Trained honeybees could therefore be used to complement or replace the role of sniffer dogs as part of an automated drug detection system. Insects are highly sensitive to volatile compounds and provide an untapped resource for the development of biosensors. Automated conditioning as presented in this study could be developed as a platform for the practical detection of illicit drugs using insect-based sensors.

  13. Detection of Illicit Drugs by Trained Honeybees (Apis mellifera)

    PubMed Central

    Schott, Matthias; Klein, Birgit; Vilcinskas, Andreas

    2015-01-01

    Illegal drugs exacerbate global social challenges such as substance addiction, mental health issues and violent crime. Police and customs officials often rely on specially-trained sniffer dogs, which act as sensitive biological detectors to find concealed illegal drugs. However, the dog “alert” is no longer sufficient evidence to allow a search without a warrant or additional probable cause because cannabis has been legalized in two US states and is decriminalized in many others. Retraining dogs to recognize a narrower spectrum of drugs is difficult and training new dogs is time consuming, yet there are no analytical devices with the portability and sensitivity necessary to detect substance-specific chemical signatures. This means there is currently no substitute for sniffer dogs. Here we describe an insect screening procedure showing that the western honeybee (Apis mellifera) can sense volatiles associated with pure samples of heroin and cocaine. We developed a portable electroantennographic device for the on-site measurement of volatile perception by these insects, and found a positive correlation between honeybee antennal responses and the concentration of specific drugs in test samples. Furthermore, we tested the ability of honeybees to learn the scent of heroin and trained them to show a reliable behavioral response in the presence of a highly-diluted scent of pure heroin. Trained honeybees could therefore be used to complement or replace the role of sniffer dogs as part of an automated drug detection system. Insects are highly sensitive to volatile compounds and provide an untapped resource for the development of biosensors. Automated conditioning as presented in this study could be developed as a platform for the practical detection of illicit drugs using insect-based sensors. PMID:26083377

  14. Pollination of rapeseed (Brassica napus) by Africanized honeybees (Hymenoptera: Apidae) on two sowing dates.

    PubMed

    Chambó, Emerson D; De Oliveira, Newton T E; Garcia, Regina C; Duarte-Júnior, José B; Ruvolo-Takasusuki, Maria Claudia C; Toledo, Vagner A

    2014-12-01

    In this study, performed in the western part of the state of Paraná, Brazil, two self-fertile hybrid commercial rapeseed genotypes were evaluated for yield components and physiological quality using three pollination tests and spanning two sowing dates. The treatments consisted of combinations of two rapeseed genotypes (Hyola 61 and Hyola 433), three pollination tests (uncovered area, covered area without insects and covered area containing a single colony of Africanized Apis mellifera honeybees) and two sowing dates (May 25th, 2011 and June 25th, 2011). The presence of Africanized honeybees during flowering time increased the productivity of the rapeseed. Losses in the productivity of the hybrids caused by weather conditions unfavorable for rapeseed development were mitigated through cross-pollination performed by the Africanized honeybees. Weather conditions may limit the foraging activity of Africanized honeybees, causing decreased cross-pollination by potential pollinators, especially the Africanized A. mellifera honeybee. The rapeseed hybrids respond differently depending on the sowing date, and the short-cycle Hyola 433 hybrid is the most suitable hybrid for sowing under less favorable weather conditions. PMID:25590743

  15. Pollination of rapeseed (Brassica napus) by Africanized honeybees (Hymenoptera: Apidae) on two sowing dates.

    PubMed

    Chambó, Emerson D; De Oliveira, Newton T E; Garcia, Regina C; Duarte-Júnior, José B; Ruvolo-Takasusuki, Maria Claudia C; Toledo, Vagner A

    2014-12-01

    In this study, performed in the western part of the state of Paraná, Brazil, two self-fertile hybrid commercial rapeseed genotypes were evaluated for yield components and physiological quality using three pollination tests and spanning two sowing dates. The treatments consisted of combinations of two rapeseed genotypes (Hyola 61 and Hyola 433), three pollination tests (uncovered area, covered area without insects and covered area containing a single colony of Africanized Apis mellifera honeybees) and two sowing dates (May 25th, 2011 and June 25th, 2011). The presence of Africanized honeybees during flowering time increased the productivity of the rapeseed. Losses in the productivity of the hybrids caused by weather conditions unfavorable for rapeseed development were mitigated through cross-pollination performed by the Africanized honeybees. Weather conditions may limit the foraging activity of Africanized honeybees, causing decreased cross-pollination by potential pollinators, especially the Africanized A. mellifera honeybee. The rapeseed hybrids respond differently depending on the sowing date, and the short-cycle Hyola 433 hybrid is the most suitable hybrid for sowing under less favorable weather conditions.

  16. Pheromonal contest between honeybee workers ( Apis mellifera capensis)

    NASA Astrophysics Data System (ADS)

    Moritz, R. F. A.; Simon, U. E.; Crewe, R. M.

    2000-10-01

    Queenless workers of the Cape honeybee ( Apis mellifera capensis) can develop into reproductives termed pseudoqueens. Although they morphologically remain workers they become physiologically queenlike, produce offspring, and secrete mandibular gland pheromones similar to those of true queens. However, after queen loss only very few workers gain pseudoqueen status. A strong intracolonial selection governs which workers start oviposition and which remain sterile. The "queen substance", 9-keto-2(E)-decenoic acid (9-ODA), the dominant compound of the queen's mandibular gland pheromones, suppresses the secretion of queenlike mandibular gland pheromones in workers. It may act as an important signal in pseudoqueen selection. By analysing the mandibular gland pheromones of workers kept in pairs, we found that A. m. capensis workers compete to produce the strongest queen-like signal.

  17. Sperm use economy of honeybee (Apis mellifera) queens.

    PubMed

    Baer, Boris; Collins, Jason; Maalaps, Kristiina; den Boer, Susanne P A

    2016-05-01

    The queens of eusocial ants, bees, and wasps only mate during a very brief period early in life to acquire and store a lifetime supply of sperm. As sperm cannot be replenished, queens have to be highly economic when using stored sperm to fertilize eggs, especially in species with large and long-lived colonies. However, queen fertility has not been studied in detail, so that we have little understanding of how economic sperm use is in different species, and whether queens are able to influence their sperm use. This is surprising given that sperm use is a key factor of eusocial life, as it determines the fecundity and longevity of queens and therefore colony fitness. We quantified the number of sperm that honeybee (Apis mellifera) queens use to fertilize eggs. We examined sperm use in naturally mated queens of different ages and in queens artificially inseminated with different volumes of semen. We found that queens are remarkably efficient and only use a median of 2 sperm per egg fertilization, with decreasing sperm use in older queens. The number of sperm in storage was always a significant predictor for the number of sperm used per fertilization, indicating that queens use a constant ratio of spermathecal fluid relative to total spermathecal volume of 2.364 × 10(-6) to fertilize eggs. This allowed us to calculate a lifetime fecundity for honeybee queens of around 1,500,000 fertilized eggs. Our data provide the first empirical evidence that honeybee queens do not manipulate sperm use, and fertilization failures in worker-destined eggs are therefore honest signals that workers can use to time queen replacement, which is crucial for colony performance and fitness. PMID:27217944

  18. Experimental infection of Apis mellifera honeybees with Nosema ceranae (Microsporidia).

    PubMed

    Higes, Mariano; García-Palencia, Pilar; Martín-Hernández, Raquel; Meana, Aránzazu

    2007-03-01

    In this report, an experimental infection of Apis mellifera by Nosema ceranae, a newly reported microsporidian in this host is described. Nosema free honeybees were inoculated with 125,000 N. ceranae spores, isolated from heavily infected bees. The parasite species was identified by amplification and sequencing the SSUrRNA gene of the administered spores. Three replicate cages of 20 honeybees each were prepared, along with one control cage (n=20) supplied with sugar syrup only. The infection rate was 100% at the dosage administered. The presence of Nosema inside ventricular cells was confirmed in the samples using ultrathin sectioning and transmission electron microscopy. By day 3 p.i. a few cells (4.4%+/-1.2) were observed to be parasitized, whereas by 6 days p.i. more than half of the counted cells (66.4%+/-6) showed different parasite stages, this value increasing on day 7 p.i. (81.5%+/-14.8). Only one control bee died on day 7 p.i. In the infected groups, mortality was not observed until day 6 p.i. (66.7%+/-5.6). Total mortality on day 7 p.i. was 94.1% in the three infected replicates and by day 8 p.i. no infected bee was alive. After the infection, the parasites invaded both the tip of folds and the basal cells of the epithelium and the autoinfective capacity of the spores seemed to spread the infection rapidly between epithelial cells. On day 3 p.i., mature spores could be seen inside host cell tissue implying that the developmental cycle had been completed. The large number of parasitized cells, even the regenerative ones, the presence of autoinfective spores and the high mortality rate demonstrate that N. ceranae is highly pathogenic to Apis mellifera. Possible relation with bee depopulation syndrome is discussed by authors.

  19. The prevalence of parasites and pathogens in Asian honeybees, Apis cerana, in China

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pathogens and parasites threaten the health and well-being of honeybees, key pollinators of agricultural crops and flowers worldwide. We conducted a nationwide survey to determine the occurrence and prevalence of pathogens and parasites in Chinese populations of the Asian honeybee species, Apis cer...

  20. Social waves in giant honeybees ( Apis dorsata) elicit nest vibrations

    NASA Astrophysics Data System (ADS)

    Kastberger, Gerald; Weihmann, Frank; Hoetzl, Thomas

    2013-07-01

    Giant honeybees ( Apis dorsata) nest in the open and have developed a wide array of strategies for colony defence, including the Mexican wave-like shimmering behaviour. In this collective response, the colony members perform upward flipping of their abdomens in coordinated cascades across the nest surface. The time-space properties of these emergent waves are response patterns which have become of adaptive significance for repelling enemies in the visual domain. We report for the first time that the mechanical impulse patterns provoked by these social waves and measured by laser Doppler vibrometry generate vibrations at the central comb of the nest at the basic (=`natural') frequency of 2.156 ± 0.042 Hz which is more than double the average repetition rate of the driving shimmering waves. Analysis of the Fourier spectra of the comb vibrations under quiescence and arousal conditions provoked by mass flight activity and shimmering waves gives rise to the proposal of two possible models for the compound physical system of the bee nest: According to the elastic oscillatory plate model, the comb vibrations deliver supra-threshold cues preferentially to those colony members positioned close to the comb. The mechanical pendulum model predicts that the comb vibrations are sensed by the members of the bee curtain in general, enabling mechanoreceptive signalling across the nest, also through the comb itself. The findings show that weak and stochastic forces, such as general quiescence or diffuse mass flight activity, cause a harmonic frequency spectrum of the comb, driving the comb as an elastic plate. However, shimmering waves provide sufficiently strong forces to move the nest as a mechanical pendulum. This vibratory behaviour may support the colony-intrinsic information hypothesis herein that the mechanical vibrations of the comb provoked by shimmering do have the potential to facilitate immediate communication of the momentary defensive state of the honeybee nest to the

  1. Social waves in giant honeybees (Apis dorsata) elicit nest vibrations.

    PubMed

    Kastberger, Gerald; Weihmann, Frank; Hoetzl, Thomas

    2013-07-01

    Giant honeybees (Apis dorsata) nest in the open and have developed a wide array of strategies for colony defence, including the Mexican wave-like shimmering behaviour. In this collective response, the colony members perform upward flipping of their abdomens in coordinated cascades across the nest surface. The time-space properties of these emergent waves are response patterns which have become of adaptive significance for repelling enemies in the visual domain. We report for the first time that the mechanical impulse patterns provoked by these social waves and measured by laser Doppler vibrometry generate vibrations at the central comb of the nest at the basic (='natural') frequency of 2.156 ± 0.042 Hz which is more than double the average repetition rate of the driving shimmering waves. Analysis of the Fourier spectra of the comb vibrations under quiescence and arousal conditions provoked by mass flight activity and shimmering waves gives rise to the proposal of two possible models for the compound physical system of the bee nest: According to the elastic oscillatory plate model, the comb vibrations deliver supra-threshold cues preferentially to those colony members positioned close to the comb. The mechanical pendulum model predicts that the comb vibrations are sensed by the members of the bee curtain in general, enabling mechanoreceptive signalling across the nest, also through the comb itself. The findings show that weak and stochastic forces, such as general quiescence or diffuse mass flight activity, cause a harmonic frequency spectrum of the comb, driving the comb as an elastic plate. However, shimmering waves provide sufficiently strong forces to move the nest as a mechanical pendulum. This vibratory behaviour may support the colony-intrinsic information hypothesis herein that the mechanical vibrations of the comb provoked by shimmering do have the potential to facilitate immediate communication of the momentary defensive state of the honeybee nest to

  2. Temporal pattern of africanization in a feral honeybee population from Texas inferred from mitochondrial DNA.

    PubMed

    Pinto, M Alice; Rubink, William L; Coulson, Robert N; Patton, John C; Johnston, J Spencer

    2004-05-01

    The invasion of Africanized honeybees (Apis mellifera L.) in the Americas provides a window of opportunity to study the dynamics of secondary contact of subspecies of bees that evolved in allopatry in ecologically distinctive habitats of the Old World. We report here the results of an 11-year mitochondrial DNA survey of a feral honeybee population from southern United States (Texas). The mitochondrial haplotype (mitotype) frequencies changed radically during the 11-year study period. Prior to immigration of Africanized honeybees, the resident population was essentially of eastern and western European maternal ancestry. Three years after detection of the first Africanized swarm there was a mitotype turnover in the population from predominantly eastern European to predominantly A. m. scutellata (ancestor of Africanized honeybees). This remarkable change in the mitotype composition coincided with arrival of the parasitic mite Varroa destructor, which was likely responsible for severe losses experienced by colonies of European ancestry. From 1997 onward the population stabilized with most colonies of A. m. scutellata maternal origin.

  3. Factors affecting the dynamics of the honeybee (Apis mellifera) hybrid zone of South Africa.

    PubMed

    Beekman, M; Allsopp, M H; Wossler, T C; Oldroyd, B P

    2008-01-01

    Hybrid zones are found wherever two populations distinguishable on the basis of heritable characters overlap spatially and temporally and hybridization occurs. If hybrids have lower fitness than the parental types a tension zone may emerge, in which there is a barrier to gene flow between the two parental populations. Here we discuss a hybrid zone between two honeybee subspecies, Apis mellifera capensis and A. m. scutellata and argue that this zone is an example of a tension zone. This tension zone is particularly interesting because A. m. capensis can be a lethal social parasite of A. m. scutellata. However, despite its parasitic potential, A. m. capensis appears to be unable to increase its natural range unassisted. We propose three interlinked mechanisms that could maintain the South African honeybee hybrid zone: (1) low fitness of intercrossed and genetically mixed colonies arising from inadequate regulation of worker reproduction; (2) higher reproductive success of A. m. scutellata via both high dispersal rates into the hybrid zone and increased competitiveness of males, countered by (3) the parasitic nature of A. m. capensis.

  4. Effects of sublethal dose of fipronil on neuron metabolic activity of Africanized honeybees.

    PubMed

    Roat, Thaisa Cristina; Carvalho, Stephan M; Nocelli, Roberta C F; Silva-Zacarin, Elaine C M; Palma, Mario Sérgio; Malaspina, Osmar

    2013-04-01

    Fipronil is a neurotoxic insecticide that inhibits the gamma-aminobutyric acid receptor and can affect gustative perception, olfactory learning, and motor activity of the honeybee Apis mellifera. This study determined the lethal dose (LD50) and the lethal concentration (LC50) for Africanized honeybee and evaluated the toxicity of a sublethal dose of fipronil on neuron metabolic activity by way of histochemical analysis using cytochrome oxidase detection in brains from worker bees of different ages. In addition, the present study investigated the recovery mechanism by discontinuing the oral exposure to fipronil. The results showed that mushroom bodies of aged Africanized honeybees are affected by fipronil, which causes changes in metabolism by increasing the respiratory activity of mitochondria. In antennal lobes, the sublethal dose of fipronil did not cause an increase in metabolic activity. The recovery experiments showed that discontinued exposure to a diet contaminated with fipronil did not lead to recovery of neural activity. Our results show that even at very low concentrations, fipronil is harmful to honeybees and can induce several types of injuries to honeybee physiology.

  5. Relatedness among honeybees (Apis mellifera) of a drone congregation

    PubMed Central

    Baudry, E.; Solignac, M.; Garnery, L.; Gries, M.; Cornuet, J.-M.; Koeniger, N.

    1998-01-01

    The honeybee (Apis mellifera) queen mates during nuptial flights, in the so-called drone congregation area where many males from surrounding colonies gather. Using 20 highly polymorphic microsatellite loci, we studied a sample of 142 drones captured in a congregation close to Oberursel (Germany). A parentage test based on lod score showed that this sample contained one group of four brothers, six groups of three brothers, 20 groups of two brothers and 80 singletons. These values are very close to a Poisson distribution. Therefore, colonies were apparently equally represented in the drone congregation, and calculations showed that the congregation comprised males that originated from about 240 different colonies. This figure is surprisingly high. Considering the density of colonies around the congregation area and the average flight range of males, it suggests that most colonies within the recruitment perimeter delegated drones to the congregation with an equal probability, resulting in an almost perfect panmixis. Consequently, the relatedness between a queen and her mates, and hence the inbreeding coefficient of the progeny, should be minimized. The relatedness among the drones mated to the same queen is also very low, maximizing the genetic diversity among the different patrilines of a colony.

  6. Apolipophorin III from honeybees (Apis cerana) exhibits antibacterial activity.

    PubMed

    Kim, Bo Yeon; Jin, Byung Rae

    2015-04-01

    Apolipophorin III (apoLp-III) is involved in lipid transport and innate immunity in insects. In this study, an apoLp-III protein that exhibits antibacterial activity was identified in honeybees (Apis cerana). A. cerana apoLp-III cDNA encodes a 193 amino acid sequence that shares high identity with other members of the hymenopteran insect apoLp-III family. A. cerana apoLp-III is expressed constitutively in the fat body, epidermis, and venom gland and is detected as a 23-kDa protein. A. cerana apoLp-III expression is induced in the fat body after injection with Escherichia coli, Bacillus thuringiensis, or Beauveria bassiana. However, recombinant A. cerana apoLp-III (expressed in baculovirus-infected insect cells) binds directly to E. coli and B. thuringiensis but not to B. bassiana. Consistent with these findings, A. cerana apoLp-III exhibited antibacterial activity against both Gram-negative and Gram-positive bacteria. These results provide insight into the role of A. cerana apoLp-III during the innate immune response following bacterial infection.

  7. `Special agents' trigger social waves in giant honeybees ( Apis dorsata)

    NASA Astrophysics Data System (ADS)

    Schmelzer, Evelyn; Kastberger, Gerald

    2009-12-01

    Giant honeybees ( Apis dorsata) nest in the open and have therefore evolved a variety of defence strategies. Against predatory wasps, they produce highly coordinated Mexican wavelike cascades termed ‘shimmering’, whereby hundreds of bees flip their abdomens upwards. Although it is well known that shimmering commences at distinct spots on the nest surface, it is still unclear how shimmering is generated. In this study, colonies were exposed to living tethered wasps that were moved in front of the experimental nest. Temporal and spatial patterns of shimmering were investigated in and after the presence of the wasp. The numbers and locations of bees that participated in the shimmering were assessed, and those bees that triggered the waves were identified. The findings reveal that the position of identified trigger cohorts did not reflect the experimental path of the tethered wasp. Instead, the trigger centres were primarily arranged in the close periphery of the mouth zone of the nest, around those parts where the main locomotory activity occurs. This favours the ‘special-agents’ hypothesis that suggest that groups of specialized bees initiate the shimmering.

  8. Host Specificity in the Honeybee Parasitic Mite, Varroa spp. in Apis mellifera and Apis cerana

    PubMed Central

    Beaurepaire, Alexis L.; Dinh, Tam Q.; Cervancia, Cleofas; Moritz, Robin F. A.

    2015-01-01

    The ectoparasitic mite Varroa destructor is a major global threat to the Western honeybee Apis mellifera. This mite was originally a parasite of A. cerana in Asia but managed to spill over into colonies of A. mellifera which had been introduced to this continent for honey production. To date, only two almost clonal types of V. destructor from Korea and Japan have been detected in A. mellifera colonies. However, since both A. mellifera and A. cerana colonies are kept in close proximity throughout Asia, not only new spill overs but also spill backs of highly virulent types may be possible, with unpredictable consequences for both honeybee species. We studied the dispersal and hybridisation potential of Varroa from sympatric colonies of the two hosts in Northern Vietnam and the Philippines using mitochondrial and microsatellite DNA markers. We found a very distinct mtDNA haplotype equally invading both A. mellifera and A. cerana in the Philippines. In contrast, we observed a complete reproductive isolation of various Vietnamese Varroa populations in A. mellifera and A. cerana colonies even if kept in the same apiaries. In light of this variance in host specificity, the adaptation of the mite to its hosts seems to have generated much more genetic diversity than previously recognised and the Varroa species complex may include substantial cryptic speciation. PMID:26248192

  9. Impact of Varroa destructor on honeybee (Apis mellifera scutellata) colony development in South Africa.

    PubMed

    Strauss, Ursula; Pirk, Christian W W; Crewe, Robin M; Human, Hannelie; Dietemann, Vincent

    2015-01-01

    The devastating effects of Varroa destructor Anderson & Trueman on European honeybee colonies (Apis mellifera L.) have been well documented. Not only do these mites cause physical damage to parasitised individuals when they feed on them, they also transmit viruses and other pathogens, weaken colonies and can ultimately cause their death. Nevertheless, not all honeybee colonies are doomed once Varroa mites become established. Some populations, such as the savannah honeybee, A. m. scutellata, have become tolerant after the introduction of the parasite and are able to withstand the presence of these mites without the need for acaricides. In this study, we measured daily Varroa mite fall, Varroa infestation rates of adult honeybees and worker brood, and total Varroa population size in acaricide treated and untreated honeybee colonies. In addition, honeybee colony development was compared between these groups in order to measure the cost incurred by Varroa mites to their hosts. Daily Varroa mite fall decreased over the experimental period with different dynamics in treated and untreated colonies. Varroa infestation rates in treated adult honeybees and brood were lower than in untreated colonies, but not significantly so. Thus, indicating a minimal benefit of treatment thereby suggesting that A. m. scutellata have the ability to maintain mite populations at low levels. We obtained baseline data on Varroa population dynamics in a tolerant honeybee over the winter period. Varroa mites appeared to have a low impact on this honeybee population, given that colony development was similar in the treated and untreated colonies.

  10. Oriental orchid (Cymbidium pumilum) attracts drones of the Japanese honeybee (Apis cerana japonica) as pollinators.

    PubMed

    Sasaki, M; Ono, M; Asada, S; Yoshida, T

    1991-12-01

    The discovery that drones of the Japanese honeybee (Apis cerana japonica) pollinate the oriental orchid (Cymbidium pumilum) is reported. Drones are attracted to the orchid flower aroma mainly during their mating flights in April through May. Some drones cluster on the flower racemes and others insert their heads deep into the flowers. Drones with pollinia on their scutellum visit other orchids, which facilitates pollination. Individual workers and swarming colonies are also strongly attracted by the flower aroma, but the allopatric western honeybee (Apis mellifera) is not attracted.

  11. Spores of Ascosphaera apis contained in wax foundation can infect honeybee brood.

    PubMed

    Flores, J M; Spivak, M; Gutiérrez, I

    2005-06-15

    Chalkbrood disease in honeybees (Apis mellifera L.) is caused by an infection with Ascosphaera apis. Disease expression requires the consumption of fungal spores and a predisposing condition in the susceptible brood. A. apis spores within sheets of wax foundation could be a source of inoculum leading to chalkbrood, but it is also possible that these spores remain confined in the wax and do not contribute to disease. We have resolved this topic by chilling susceptible brood within wax combs built on contaminated foundation (using treatments of spores from 1 mummy and spores from 10 mummies) versus uncontaminated foundation. We found significantly higher levels of chalkbrood in brood exposed to the higher dosage. Our results demonstrate that foundation wax contaminated with spores of A. apis spores may be a source of chalkbrood in honeybee colonies.

  12. Western honeybee drones and workers (Apis mellifera ligustica) have different olfactory mechanisms than eastern honeybees (Apis cerana cerana).

    PubMed

    Woltedji, Dereje; Song, Feifei; Zhang, Lan; Gala, Alemayehu; Han, Bin; Feng, Mao; Fang, Yu; Li, Jianke

    2012-09-01

    The honeybees Apis mellifera ligustica (Aml) and Apis cerana cerana (Acc) are two different western and eastern bee species that evolved in distinct ecologies and developed specific antennal olfactory systems for their survival. Knowledge of how their antennal olfactory systems function in regards to the success of each respective bee species is scarce. We compared the antennal morphology and proteome between respective sexually mature drones and foraging workers of both species using a scanning electron microscope, two-dimensional electrophoresis, mass spectrometry, bioinformatics, and quantitative real-time polymerase chain reaction. Despite the general similarities in antennal morphology of the drone and worker bees between the two species, a total of 106 and 100 proteins altered their expression in the drones' and the workers' antennae, respectively. This suggests that the differences in the olfactory function of each respective bee are supported by the change of their proteome. Of the 106 proteins that altered their expression in the drones, 72 (68%) and 34 (32%) were overexpressed in the drones of Aml and Acc, respectively. The antennae of the Aml drones were built up by the highly expressed proteins that were involved in carbohydrate metabolism and energy production, molecular transporters, antioxidation, and fatty acid metabolism in contrast to the Acc drones. This is believed to enhance the antennal olfactory functions of the Aml drones as compared to the Acc drones during their mating flight. Likewise, of the 100 proteins with expression changes between the worker bees of the two species, 67% were expressed in higher levels in the antennae of Aml worker contrasting to 33% in the Acc worker. The overall higher expressions of proteins related to carbohydrate metabolism and energy production, molecular transporters, and antioxidation in the Aml workers compared with the Acc workers indicate the Aml workers require more antennal proteins for their olfactory

  13. Western honeybee drones and workers (Apis mellifera ligustica) have different olfactory mechanisms than eastern honeybees (Apis cerana cerana).

    PubMed

    Woltedji, Dereje; Song, Feifei; Zhang, Lan; Gala, Alemayehu; Han, Bin; Feng, Mao; Fang, Yu; Li, Jianke

    2012-09-01

    The honeybees Apis mellifera ligustica (Aml) and Apis cerana cerana (Acc) are two different western and eastern bee species that evolved in distinct ecologies and developed specific antennal olfactory systems for their survival. Knowledge of how their antennal olfactory systems function in regards to the success of each respective bee species is scarce. We compared the antennal morphology and proteome between respective sexually mature drones and foraging workers of both species using a scanning electron microscope, two-dimensional electrophoresis, mass spectrometry, bioinformatics, and quantitative real-time polymerase chain reaction. Despite the general similarities in antennal morphology of the drone and worker bees between the two species, a total of 106 and 100 proteins altered their expression in the drones' and the workers' antennae, respectively. This suggests that the differences in the olfactory function of each respective bee are supported by the change of their proteome. Of the 106 proteins that altered their expression in the drones, 72 (68%) and 34 (32%) were overexpressed in the drones of Aml and Acc, respectively. The antennae of the Aml drones were built up by the highly expressed proteins that were involved in carbohydrate metabolism and energy production, molecular transporters, antioxidation, and fatty acid metabolism in contrast to the Acc drones. This is believed to enhance the antennal olfactory functions of the Aml drones as compared to the Acc drones during their mating flight. Likewise, of the 100 proteins with expression changes between the worker bees of the two species, 67% were expressed in higher levels in the antennae of Aml worker contrasting to 33% in the Acc worker. The overall higher expressions of proteins related to carbohydrate metabolism and energy production, molecular transporters, and antioxidation in the Aml workers compared with the Acc workers indicate the Aml workers require more antennal proteins for their olfactory

  14. Involvement of Phosphorylated "Apis Mellifera" CREB in Gating a Honeybee's Behavioral Response to an External Stimulus

    ERIC Educational Resources Information Center

    Gehring, Katrin B.; Heufelder, Karin; Feige, Janina; Bauer, Paul; Dyck, Yan; Ehrhardt, Lea; Kühnemund, Johannes; Bergmann, Anja; Göbel, Josefine; Isecke, Marlene; Eisenhardt, Dorothea

    2016-01-01

    The transcription factor cAMP-response element-binding protein (CREB) is involved in neuronal plasticity. Phosphorylation activates CREB and an increased level of phosphorylated CREB is regarded as an indicator of CREB-dependent transcriptional activation. In honeybees ("Apis mellifera") we recently demonstrated a particular high…

  15. Evaluation of Apis mellifera syriaca Levant Region honeybee conservation using Comparative Genome Hybridization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Apis mellifera syriaca is the native honeybee subspecies of Jordan and much of the Levant Region. It expresses behavioral adaptations to a regional climate with very high temperatures, nectar dearth in summer, attacks of the Oriental wasp and is resistant to Varroa mites. The A. m. syriaca control r...

  16. Comparison of the energetic stress associated with experimental Nosema ceranae and Nosema apis infection of honeybees (Apis mellifera).

    PubMed

    Martín-Hernández, Raquel; Botías, Cristina; Barrios, Laura; Martínez-Salvador, Amparo; Meana, Aránzazu; Mayack, Christopher; Higes, Mariano

    2011-09-01

    Nosema ceranae is a relatively new and widespread parasite of the western honeybee Apis mellifera that provokes a new form of nosemosis. In comparison to Nosema apis, which has been infecting the honeybee for much longer, N. ceranae seems to have co-evolved less with this host, causing a more virulent disease. Given that N. apis and N. ceranae are obligate intracellular microsporidian parasites, needing host energy to reproduce, energetic stress may be an important factor contributing to the increased virulence observed. Through feeding experiments on caged bees, we show that both mortality and sugar syrup consumption were higher in N. ceranae-infected bees than in N. apis-infected and control bees. The mortality and sugar syrup consumption are also higher in N. apis-infected bees than in controls, but are less than in N. ceranae-infected bees. With both microsporidia, mortality and sugar syrup consumption increased in function of the increasing spore counts administered for infection. The differences in energetic requirements between both Nosema spp. confirm that their metabolic patterns are not the same, which may depend critically on host-parasite interactions and, ultimately, on host pathology. The repercussions of this increased energetic stress may even explain the changes in host behavior due to starvation, lack of thermoregulatory capacity, or higher rates of trophallaxis, which might enhance transmission and bee death.

  17. Effects of cold narcosis on memory acquisition, consolidation and retrieval in honeybees (Apis mellifera)

    PubMed Central

    CHEN, Yan-Mei; FU, Yu; HE, Jing; WANG, Jian-Hong

    2014-01-01

    In learning and memory studies on honeybees (Apis mellifera), cold-induced narcosis has been widely used to temporarily immobilize honeybees. In this study, we investigated the effects of cold narcosis on the associative memories in honeybees by using the proboscis extension response (PER) paradigm. Severeimpairments in memory acquisitionwas found when cold narcosis was performed 30 min, instead of 1 h before training. Locomotor activities were reduced when honeybees were tested 15 min, instead of 30 min after cold narcosis. These results indicate that cold narcosis impairs locomotor activities, as well as memory acquisition in a time-dependent manner, but by comparison no such effects on memory retrieval have yet been observed.[0] PMID:24668654

  18. Barbs Facilitate the Helical Penetration of Honeybee (Apis mellifera ligustica) Stingers

    PubMed Central

    Wu, Jianing; Yan, Shaoze; Zhao, Jieliang; Ye, Yuying

    2014-01-01

    The stinger is a very small and efficient device that allows honeybees to perform two main physiological activities: repelling enemies and laying eggs for reproduction. In this study, we explored the specific characteristics of stinger penetration, where we focused on its movements and the effects of it microstructure. The stingers of Italian honeybees (Apis mellifera ligustica) were grouped and fixed onto four types of cubic substrates, before pressing into different substrates. The morphological characteristics of the stinger cross-sections were analyzed before and after penetration by microscopy. Our findings suggest that the honeybee stinger undergoes helical and clockwise rotation during penetration. We also found that the helical penetration of the stinger is associated directly with the spiral distribution of the barbs, thereby confirming that stinger penetration involves an advanced microstructure rather than a simple needle-like apparatus. These results provide new insights into the mechanism of honeybee stinger penetration. PMID:25089826

  19. Effects of cold narcosis on memory acquisition, consolidation and retrieval in honeybees (Apis mellifera).

    PubMed

    Chen, Yan-Mei; Fu, Yu; He, Jing; Wang, Jian-Hong

    2014-03-01

    In learning and memory studies on honeybees (Apis mellifera), cold-induced narcosis has been widely used to temporarily immobilize honeybees. In this study, we investigated the effects of cold narcosis on the associative memories in honeybees by using the proboscis extension response (PER) paradigm. Severe impairments in memory acquisition was found when cold narcosis was performed 30 min, instead of 1 h before training. Locomotor activities were reduced when honeybees were tested 15 min, instead of 30 min after cold narcosis. These results indicate that cold narcosis impairs locomotor activities, as well as memory acquisition in a time-dependent manner, but by comparison no such effects on memory retrieval have yet been observed.[0].

  20. Behavioural mimicry of honeybees (Apis mellifera) by droneflies (Diptera: Syrphidae: Eristalis spp.).

    PubMed Central

    Golding, Y C; Edmunds, M

    2000-01-01

    Droneflies (Syrphidae: Eristalis spp. resemble honeybees (Apis mellifera) in appearance and have often been considered to be Batesian mimics. This study used a focal watch technique in order to compare the foraging behaviour of droneflies Eristalis tenax, Eristalis pertinax, Eristalis arbustorum and Eristalis nemorum) whilst they were feeding on patches of flowers with the behaviour of honeybees and other hymenopterans and dipterans. It was found that, on a range of plant species, the time droneflies spent on individual flowers and the time spent flying between them was more similar to that of honeybees than to the times of other hymenopterans and dipterans. These results suggest that dronefly behaviour has evolved to become more similar to that of honeybees and they support the hypothesis that droneflies are Batesian mimics. PMID:10853733

  1. Behavioural mimicry of honeybees (Apis mellifera) by droneflies (Diptera: Syrphidae: Eristalis spp.).

    PubMed

    Golding, Y C; Edmunds, M

    2000-05-01

    Droneflies (Syrphidae: Eristalis spp. resemble honeybees (Apis mellifera) in appearance and have often been considered to be Batesian mimics. This study used a focal watch technique in order to compare the foraging behaviour of droneflies Eristalis tenax, Eristalis pertinax, Eristalis arbustorum and Eristalis nemorum) whilst they were feeding on patches of flowers with the behaviour of honeybees and other hymenopterans and dipterans. It was found that, on a range of plant species, the time droneflies spent on individual flowers and the time spent flying between them was more similar to that of honeybees than to the times of other hymenopterans and dipterans. These results suggest that dronefly behaviour has evolved to become more similar to that of honeybees and they support the hypothesis that droneflies are Batesian mimics.

  2. Detection of viral sequences in semen of honeybees (Apis mellifera): evidence for vertical transmission of viruses through drones.

    PubMed

    Yue, Constanze; Schröder, Marion; Bienefeld, Kaspar; Genersch, Elke

    2006-06-01

    Honeybees (Apis mellifera) can be attacked by many eukaryotic parasites, and bacterial as well as viral pathogens. Especially in combination with the ectoparasitic mite Varroa destructor, viral honeybee diseases are becoming a major problem in apiculture, causing economic losses worldwide. Several horizontal transmission routes are described for some honeybee viruses. Here, we report for the first time the detection of viral sequences in semen of honeybee drones suggesting mating as another horizontal and/or vertical route of virus transmission. Since artificial insemination and controlled mating is widely used in honeybee breeding, the impact of our findings for disease transmission is discussed.

  3. In vitro effects of thiamethoxam on larvae of Africanized honey bee Apis mellifera (Hymenoptera: Apidae).

    PubMed

    Tavares, Daiana Antonia; Roat, Thaisa Cristina; Carvalho, Stephan Malfitano; Silva-Zacarin, Elaine Cristina Mathias; Malaspina, Osmar

    2015-09-01

    Several investigations have revealed the toxic effects that neonicotinoids can have on Apis mellifera, while few studies have evaluated the impact of these insecticides can have on the larval stage of the honeybee. From the lethal concentration (LC50) of thiamethoxam for the larvae of the Africanized honeybee, we evaluated the sublethal effects of this insecticide on morphology of the brain. After determine the LC50 (14.34 ng/μL of diet) of thiamethoxam, larvae were exposed to a sublethal concentration of thiamethoxam equivalent to 1.43 ng/μL by acute and subchronic exposure. Morphological and immunocytochemistry analysis of the brains of the exposed bees, showed condensed cells and early cell death in the optic lobes. Additional dose-related effects were observed on larval development. Our results show that the sublethal concentrations of thiamethoxam tested are toxic to Africanized honeybees larvae and can modulate the development and consequently could affect the maintenance and survival of the colony. These results represent the first assessment of the effects of thiamethoxam in Africanized honeybee larvae and should contribute to studies on honey bee colony decline. PMID:25985214

  4. High Royal Jelly-Producing Honeybees (Apis mellifera ligustica) (Hymenoptera: Apidae) in China.

    PubMed

    Cao, Lian-Fei; Zheng, Huo-Qing; Pirk, Christian W W; Hu, Fu-Liang; Xu, Zi-Wei

    2016-04-01

    China is the largest producer and exporter of royal jelly (RJ) in the world, supplying >90% of the global market. The high production of RJ in China is principally owing to the high RJ-producing lineage of honeybees (Apis mellifera ligustica Spinola, 1806) established by beekeepers in the 1980s. We describe the development of high royal jelly-producing honeybees and the management of this lineage today. Previous research and recent advances in the genetic characterization of this lineage, and the molecular markers and mechanisms associated with high RJ production are summarized. The gaps in our knowledge and prospects for future research are also highlighted. PMID:26921226

  5. High Royal Jelly-Producing Honeybees (Apis mellifera ligustica) (Hymenoptera: Apidae) in China.

    PubMed

    Cao, Lian-Fei; Zheng, Huo-Qing; Pirk, Christian W W; Hu, Fu-Liang; Xu, Zi-Wei

    2016-04-01

    China is the largest producer and exporter of royal jelly (RJ) in the world, supplying >90% of the global market. The high production of RJ in China is principally owing to the high RJ-producing lineage of honeybees (Apis mellifera ligustica Spinola, 1806) established by beekeepers in the 1980s. We describe the development of high royal jelly-producing honeybees and the management of this lineage today. Previous research and recent advances in the genetic characterization of this lineage, and the molecular markers and mechanisms associated with high RJ production are summarized. The gaps in our knowledge and prospects for future research are also highlighted.

  6. Conservation of Bio synthetic pheromone pathways in honeybees Apis

    NASA Astrophysics Data System (ADS)

    Martin, Stephen J.; Jones, Graeme R.

    Social insects use complex chemical communication systems to govern many aspects of their life. We studied chemical changes in Dufour's gland secretions associated with ovary development in several genotypes of honeybees. We found that C28-C38 esters were associated only with cavity nesting honeybee queens, while the alcohol eicosenol was associated only with their non-laying workers. In contrast, both egg-laying anarchistic workers and all parasitic Cape workers from queenright colonies showed the typical queen pattern (i.e. esters present and eicosenol absent), while egg-laying wild-type and anarchistic workers in queenless colonies showed an intermediate pattern, producing both esters and eicosenol but at intermediate levels. Furthermore, neither esters nor eicosenol were found in aerial nesting honeybee species. Both esters and eicosenol are biosynthetically similar compounds since both are recognizable products of fatty acid biosynthesis. Therefore, we propose that in honeybees the biosynthesis of esters and eicosenol in the Dufour's gland is caste-regulated and this pathway has been conserved over evolutionary time.

  7. Short-sighted evolution of virulence in parasitic honeybee workers ( Apis mellifera capensis Esch.)

    NASA Astrophysics Data System (ADS)

    Moritz, Robin F. A.; Pirk, Christian W. W.; Hepburn, H. Randall; Neumann, Peter

    2008-06-01

    The short-sighted selection hypothesis for parasite virulence predicts that winners of within-host competition are poorer at transmission to new hosts. Social parasitism by self-replicating, female-producing workers occurs in the Cape honeybee Apis mellifera capensis, and colonies of other honeybee subspecies are susceptible hosts. We found high within-host virulence but low transmission rates in a clone of social parasitic A. m. capensis workers invading the neighbouring subspecies A. m. scutellata. In contrast, parasitic workers from the endemic range of A. m. capensis showed low within-host virulence but high transmission rates. This suggests a short-sighted selection scenario for the host-parasite co-evolution in the invasive range of the Cape honeybee, probably facilitated by beekeeping-assisted parasite transmission in apiaries.

  8. Chemical Composition of Different Botanical Origin Honeys Produced by Sicilian Black Honeybees (Apis mellifera ssp. sicula).

    PubMed

    Mannina, Luisa; Sobolev, Anatoly P; Di Lorenzo, Arianna; Vista, Silvia; Tenore, Gian Carlo; Daglia, Maria

    2015-07-01

    In 2008 a Slow Food Presidium was launched in Sicily (Italy) for an early warning of the risk of extinction of the Sicilian native breed of black honeybee (Apis mellifera L. ssp sicula). Today, the honey produced by these honeybees is the only Sicilian honey produced entirely by the black honeybees. In view of few available data regarding the chemical composition of A. mellifera ssp. sicula honeys, in the present investigation the chemical compositions of sulla honey (Hedysarum coronarium L.) and dill honey (Anethum graveolens L.) were studied with a multimethodological approach, which consists of HPLC-PDA-ESI-MSn and NMR spectroscopy. Moreover, three unifloral honeys (lemon honey (obtained from Citrus limon (L.) Osbeck), orange honey (Citrus arantium L.), and medlar honey (Eriobotrya japonica (Thunb.) Lindl)), with known phenol and polyphenol compositions, were studied with NMR spectroscopy to deepen the knowledge about sugar and amino acid compositions.

  9. Comparative proteomic analysis reveals mite (Varroa destructor) resistance-related proteins in Eastern honeybees (Apis cerana).

    PubMed

    Ji, T; Shen, F; Liu, Z; Yin, L; Shen, J; Liang, Q; Luo, Y X

    2015-08-21

    The mite (Varroa destructor) has become the greatest threat to apiculture worldwide. As the original host of the mite, Apis cerana can effectively resist the mite. An increased understanding of the resistance mechanisms of Eastern honeybees against V. destructor may help researchers to protect other species against these parasites. In this study, the proteomes of 4 Apis cerana colonies were analyzed using an isobaric tag for relative and absolute quantitation technology. We determined the differences in gene and protein expression between susceptible and resistant colonies that were either unchallenged or challenged by V. destructor. The results showed that a total of 1532 proteins were identified. Gene Ontology enrichment analysis suggested that the transcription factors and basic metabolic and respiratory processes were efficient and feasible factors controlling this resistance, and 12 differentially expressed proteins were identified in Venn analysis. The results were validated by quantitative polymerase chain reaction. This study may provide insight into the genetic mechanisms underlying the resistance of honeybee to mites.

  10. Genetic reincarnation of workers as queens in the Eastern honeybee Apis cerana

    PubMed Central

    Holmes, M J; Tan, K; Wang, Z; Oldroyd, B P; Beekman, M

    2015-01-01

    Thelytokous parthenogenesis, or the asexual production of female offspring, is rare in the animal kingdom, but relatively common in social Hymenoptera. However, in honeybees, it is only known to be ubiquitous in one subspecies of Apis mellifera, the Cape honeybee, A. mellifera capensis. Here we report the appearance of queen cells in two colonies of the Eastern honeybee Apis cerana that no longer contained a queen or queen-produced brood to rear queens from. A combination of microsatellite genotyping and the timing of the appearance of these individuals excluded the possibility that they had been laid by the original queen. Based on the genotypes of these individuals, thelytokous production by natal workers is the most parsimonious explanation for their existence. Thus, we present the first example of thelytoky in a honeybee outside A. mellifera. We discuss the evolutionary and ecological consequences of thelytoky in A. cerana, in particular the role thelytoky may play in the recent invasions by populations of this species. PMID:25052414

  11. Relational learning in honeybees (Apis mellifera): Oddity and nonoddity discrimination.

    PubMed

    Muszynski, Nicole M; Couvillon, P A

    2015-06-01

    Honeybee learning is surprisingly similar to vertebrate learning and one implication is that the basic associative learning principles are also similar. This research extends the work to more complex cognitive phenomena. Forager bees were trained individually to visit a laboratory window for sucrose. On each training trial for all experiments, bees found three stimuli, two identical and one different. In Experiments 1 and 2, stimuli were three-dimensional two-color patterns, and in Experiments 3 and 4, stimuli were two-color patterns displayed on a computer monitor. Training was trial-unique, that is, a different triad of stimuli was presented on each trial. In Experiments 1 and 3, choice of odd was rewarded and choice of nonodd was punished. In Experiments 2 and 4, choice of nonodd was rewarded and choice of odd was punished. On every trial, the initial choice was recorded and correction permitted. Honeybees learned to choose the odd stimulus in Experiments 1 and 3 and the nonodd stimuli in Experiments 2 and 4. The results provide compelling evidence of oddity and nonoddity learning, often interpreted as relational learning in vertebrates. Whether the mechanism of such learning in honeybees is similar to that of vertebrate species remains to be determined.

  12. Highly efficient integration and expression of piggyBac-derived cassettes in the honeybee (Apis mellifera)

    PubMed Central

    Schulte, Christina; Theilenberg, Eva; Müller-Borg, Marion; Gempe, Tanja; Beye, Martin

    2014-01-01

    Honeybees (Apis mellifera), which are important pollinators of plants, display remarkable individual behaviors that collectively contribute to the organization of a complex society. Advances in dissecting the complex processes of honeybee behavior have been limited in the recent past due to a lack of genetic manipulation tools. These tools are difficult to apply in honeybees because the unit of reproduction is the colony, and many interesting phenotypes are developmentally specified at later stages. Here, we report highly efficient integration and expression of piggyBac-derived cassettes in the honeybee. We demonstrate that 27 and 20% of queens stably transmitted two different expression cassettes to their offspring, which is a 6- to 30-fold increase in efficiency compared with those generally reported in other insect species. This high efficiency implies that an average beekeeping facility with a limited number of colonies can apply this tool. We demonstrated that the cassette stably and efficiently expressed marker genes in progeny under either an artificial or an endogenous promoter. This evidence of efficient expression encourages the use of this system to inhibit gene functions through RNAi in specific tissues and developmental stages by using various promoters. We also showed that the transgenic marker could be used to select transgenic offspring to be employed to facilitate the building of transgenic colonies via the haploid males. We present here the first to our knowledge genetic engineering tool that will efficiently allow for the systematic detection and better understanding of processes underlying the biology of honeybees. PMID:24821811

  13. DNA differences found between Africanized and European honeybees.

    PubMed Central

    Hall, H G

    1986-01-01

    The harmful en masse introduction of Africanized honeybees into the United States will occur within 5 years. Possible means of control are dependent on a reliable way to distinguish the Africanized bees from the extant European bees. Current means of identification are inadequate. Reported here are the encouraging initial results to distinguish the bees by their nuclear DNA. With 9 restriction enzymes and 16 probes, six genetic differences have been found among three samples of European bees from California. Twelve additional differences were detected between the European samples and a sample of Africanized bees from Costa Rica. Images PMID:3014516

  14. Do honeybees, Apis mellifera scutellata, regulate humidity in their nest?

    NASA Astrophysics Data System (ADS)

    Human, Hannelie; Nicolson, Sue W.; Dietemann, Vincent

    2006-08-01

    Honeybees are highly efficient at regulating the biophysical parameters of their hive according to colony needs. Thermoregulation has been the most extensively studied aspect of nest homeostasis. In contrast, little is known about how humidity is regulated in beehives, if at all. Although high humidity is necessary for brood development, regulation of this parameter by honeybee workers has not yet been demonstrated. In the past, humidity was measured too crudely for a regulation mechanism to be identified. We reassess this issue, using miniaturised data loggers that allow humidity measurements in natural situations and at several places in the nest. We present evidence that workers influence humidity in the hive. However, there are constraints on potential regulation mechanisms because humidity optima may vary in different locations of the nest. Humidity could also depend on variable external factors, such as water availability, which further impair the regulation. Moreover, there are trade-offs with the regulation of temperature and respiratory gas exchanges that can disrupt the establishment of optimal humidity levels. As a result, we argue that workers can only adjust humidity within sub-optimal limits.

  15. The prevalence of parasites and pathogens in Asian honeybees Apis cerana in China.

    PubMed

    Li, Jilian; Qin, Haoran; Wu, Jie; Sadd, Ben M; Wang, Xiuhong; Evans, Jay D; Peng, Wenjun; Chen, Yanping

    2012-01-01

    Pathogens and parasites represent significant threats to the health and well-being of honeybee species that are key pollinators of agricultural crops and flowers worldwide. We conducted a nationwide survey to determine the occurrence and prevalence of pathogens and parasites in Asian honeybees, Apis cerana, in China. Our study provides evidence of infections of A. cerana by pathogenic Deformed wing virus (DWV), Black queen cell virus (BQCV), Nosema ceranae, and C. bombi species that have been linked to population declines of European honeybees, A. mellifera, and bumble bees. However, the prevalence of DWV, a virus that causes widespread infection in A. mellifera, was low, arguably a result of the greater ability of A. cerana to resist the ectoprasitic mite Varroa destructor, an efficient vector of DWV. Analyses of microbial communities from the A. cerana digestive tract showed that Nosema infection could have detrimental effects on the gut microbiota. Workers infected by N. ceranae tended to have lower bacterial quantities, with these differences being significant for the Bifidobacterium and Pasteurellaceae bacteria groups. The results of this nationwide screen show that parasites and pathogens that have caused serious problems in European honeybees can be found in native honeybee species kept in Asia. Environmental changes due to new agricultural practices and globalization may facilitate the spread of pathogens into new geographic areas. The foraging behavior of pollinators that are in close geographic proximity likely have played an important role in spreading of parasites and pathogens over to new hosts. Phylogenetic analyses provide insights into the movement and population structure of these parasites, suggesting a bidirectional flow of parasites among pollinators. The presence of these parasites and pathogens may have considerable implications for an observed population decline of Asian honeybees.

  16. The Prevalence of Parasites and Pathogens in Asian Honeybees Apis cerana in China

    PubMed Central

    Li, Jilian; Qin, Haoran; Wu, Jie; Sadd, Ben M.; Wang, Xiuhong; Evans, Jay D.; Peng, Wenjun; Chen, Yanping

    2012-01-01

    Pathogens and parasites represent significant threats to the health and well-being of honeybee species that are key pollinators of agricultural crops and flowers worldwide. We conducted a nationwide survey to determine the occurrence and prevalence of pathogens and parasites in Asian honeybees, Apis cerana, in China. Our study provides evidence of infections of A. cerana by pathogenic Deformed wing virus (DWV), Black queen cell virus (BQCV), Nosema ceranae, and C. bombi species that have been linked to population declines of European honeybees, A. mellifera, and bumble bees. However, the prevalence of DWV, a virus that causes widespread infection in A. mellifera, was low, arguably a result of the greater ability of A. cerana to resist the ectoprasitic mite Varroa destructor, an efficient vector of DWV. Analyses of microbial communities from the A. cerana digestive tract showed that Nosema infection could have detrimental effects on the gut microbiota. Workers infected by N. ceranae tended to have lower bacterial quantities, with these differences being significant for the Bifidobacterium and Pasteurellaceae bacteria groups. The results of this nationwide screen show that parasites and pathogens that have caused serious problems in European honeybees can be found in native honeybee species kept in Asia. Environmental changes due to new agricultural practices and globalization may facilitate the spread of pathogens into new geographic areas. The foraging behavior of pollinators that are in close geographic proximity likely have played an important role in spreading of parasites and pathogens over to new hosts. Phylogenetic analyses provide insights into the movement and population structure of these parasites, suggesting a bidirectional flow of parasites among pollinators. The presence of these parasites and pathogens may have considerable implications for an observed population decline of Asian honeybees. PMID:23144838

  17. Conditioning procedure and color discrimination in the honeybee Apis mellifera

    NASA Astrophysics Data System (ADS)

    Giurfa, Martin

    We studied the influence of the conditioning procedure on color discrimination by free-flying honeybees. We asked whether absolute and differential conditioning result in different discrimination capabilities for the same pairs of colored targets. In absolute conditioning, bees were rewarded on a single color; in differential conditioning, bees were rewarded on the same color but an alternative, non-rewarding, similar color was also visible. In both conditioning procedures, bees learned their respective task and could also discriminate the training stimulus from a novel stimulus that was perceptually different from the trained one. Discrimination between perceptually closer stimuli was possible after differential conditioning but not after absolute conditioning. Differences in attention inculcated by these training procedures may underlie the different discrimination performances of the bees.

  18. PROTEINS OF THE INTEGUMENTARY SYSTEM OF THE HONEYBEE, Apis mellifera.

    PubMed

    Micas, André Fernando Ditondo; Ferreira, Germano Aguiar; Laure, Helen Julie; Rosa, José Cesar; Bitondi, Márcia Maria Gentile

    2016-09-01

    The integument of insects and other arthropods is composed of an inner basal lamina coated by the epidermis, which secretes the bulk of the outer integument layer, the cuticle. The genome sequencing of several insect species has allowed predicting classes of proteins integrating the cuticle. However, only a small proportion of them, as well as other proteins in the integumentary system, have been validated. Using two-dimensional gel electrophoresis coupled with mass spectrometry, we identified 45 different proteins in a total of 112 selected gel spots derived from thoracic integument samples of developing honeybee workers, including 14 cuticular proteins (AmelCPR 3, AmelCPR 12, AmelCPR 16, AmelCPR 27, apidermin 2, apidermin 3, endocuticle structural glycoprotein SgAbd-8-like, LOC100577363, LOC408365, LOC413679, LOC725454, LOC100576916, LOC725838, and peritrophin 3-C analogous). Gene ontology functional analysis revealed that the higher proportions of the identified proteins have molecular functions related to catalytic and structural molecule activities, are involved in metabolic biological processes, and pertain to the protein class of structural or cytoskeletal proteins and hydrolases. It is noteworthy that 26.7% of the identified proteins, including five cuticular proteins, were revealed as protein species resulting from allelic isoforms or derived from posttranslational modifications. Also, 66.7% of the identified cuticular proteins were expressed in more than one developmental phase, thus indicating that they are part of the larval, pupal, and adult cuticle. Our data provide experimental support for predicted honeybee gene products and new information on proteins expressed in the developing integument. PMID:27160491

  19. PROTEINS OF THE INTEGUMENTARY SYSTEM OF THE HONEYBEE, Apis mellifera.

    PubMed

    Micas, André Fernando Ditondo; Ferreira, Germano Aguiar; Laure, Helen Julie; Rosa, José Cesar; Bitondi, Márcia Maria Gentile

    2016-09-01

    The integument of insects and other arthropods is composed of an inner basal lamina coated by the epidermis, which secretes the bulk of the outer integument layer, the cuticle. The genome sequencing of several insect species has allowed predicting classes of proteins integrating the cuticle. However, only a small proportion of them, as well as other proteins in the integumentary system, have been validated. Using two-dimensional gel electrophoresis coupled with mass spectrometry, we identified 45 different proteins in a total of 112 selected gel spots derived from thoracic integument samples of developing honeybee workers, including 14 cuticular proteins (AmelCPR 3, AmelCPR 12, AmelCPR 16, AmelCPR 27, apidermin 2, apidermin 3, endocuticle structural glycoprotein SgAbd-8-like, LOC100577363, LOC408365, LOC413679, LOC725454, LOC100576916, LOC725838, and peritrophin 3-C analogous). Gene ontology functional analysis revealed that the higher proportions of the identified proteins have molecular functions related to catalytic and structural molecule activities, are involved in metabolic biological processes, and pertain to the protein class of structural or cytoskeletal proteins and hydrolases. It is noteworthy that 26.7% of the identified proteins, including five cuticular proteins, were revealed as protein species resulting from allelic isoforms or derived from posttranslational modifications. Also, 66.7% of the identified cuticular proteins were expressed in more than one developmental phase, thus indicating that they are part of the larval, pupal, and adult cuticle. Our data provide experimental support for predicted honeybee gene products and new information on proteins expressed in the developing integument.

  20. Essential oil of Terminalia chebula fruits as a repellent for the indian honeybee Apis florea.

    PubMed

    Naik, Dattatraya G; Puntambekar, Hemalata; Anantpure, Priyanka

    2010-05-01

    Plant-based repellent formulations for honeybees play an important role in the bee management. For this purpose, the essential oil of an Indian medicinal plant, Terminalia chebula, commonly known as Myrobalan, was isolated for the first time. Hitherto unknown chemical constituents of the essential oil were determined by GC/MS. The repellent activity of formulations of the essential oil, tested towards the Indian honeybee Apis florea, was found to be dose dependent. The repellency (DeltaR) increased with the concentration of essential oil in the formulations, reaching a maximum for the formulation containing 50 mg/ml of oil. A further increase in the oil concentration was found to reduce the DeltaR. The screening of formulations of the major essential-oil components identified indicated that formulations of furfural, 5-methylfurfural, tetradecanoic acid, palmitic acid, and oleic acid elicited no response in honeybees. In contrast, the formulations of phenylacetaldehyde were repellent, while those of ethyl cinnamate were attractant. These findings might be an asset for beekeepers to improve the bee management. Attractant formulations are effective to attract bees to the desired areas, thus improving the efficiency of pollination. Repellent formulations are used to repel honeybees, especially when toxic insecticides are sprayed on the fields.

  1. Localization of deformed wing virus (DWV) in the brains of the honeybee, Apis mellifera Linnaeus

    PubMed Central

    2009-01-01

    Background Deformed wing virus (DWV) is a positive-strand RNA virus that infects European honeybees (Apis mellifera L.) and has been isolated from the brains of aggressive bees in Japan. DWV is known to be transmitted both vertically and horizontally between bees in a colony and can lead to both symptomatic and asymptomatic infections in bees. In environmentally stressful conditions, DWV can contribute to the demise of a honeybee colony. The purpose of the current study is to identify regions within the brains of honeybees where DWV replicates using in-situ hybridization. Results In-situ hybridizations were conducted with both sense and antisense probes on the brains of honeybees that were positive for DWV as measured by real-time RT-PCR. The visual neuropils demonstrated detectable levels of the DWV positive-strand genome. The mushroom bodies and antenna lobe neuropils also showed the presence of the viral genome. Weaker staining with the sense probe in the same regions demonstrates that the antigenome is also present and that the virus is actively replicating in these regions of the brain. Conclusion These results demonstrate that in bees infected with DWV the virus is replicating in critical regions of the brain, including the neuropils responsible for vision and olfaction. Therefore DWV infection of the brain could adversely affect critical sensory functions and alter normal bee behavior. PMID:19878557

  2. Characterization of honeybee (Apis mellifera L.) chromosomes using repetitive DNA probes and fluorescence in situ hybridization.

    PubMed

    Beye, M; Moritz, R F

    1995-01-01

    Two different repetitive DNA probes of Apis mellifera and ribosomal DNA from Drosophila melanogaster were used to characterize the chromosomal set of the honeybee (n = 16). The probes were hybridized to chromosome preparations of haploid testis tissue from drone larvae using fluorescence in situ hybridization (FISH). The honeybee probes hybridized to the telomeric (Alu I family) and centromeric region (Ava I family) of most chromosomes. The rDNA probe labeled two chromosomes only. Combination of the three probes yielded labeled patterns allowing us to identify each chromosome of the honeybee individually. This is the first report of an unambiguous identification of the chromosomal set of the honeybee, since classical banding techniques failed to yield clear patterns for identification. The consensus sequence of the centromeric reiterated probe (Ava I family) has a length of about 550 nucleotides and shows no homology to other known sequences. However, the structural organization of a 130-nucleotides long motif forming the unusually homogeneous 550 nucleotides repeat is similar to those found in mammals' repetitive DNAs.

  3. Variability of chemosensory stimuli within honeybee (Apis mellifera) colonies: Differential conditioning assay for discrimination cues.

    PubMed

    Getz, W M; Brückner, D; Smith, K B

    1988-01-01

    Differential training of honeybee workers using the proboscis extension reflex is applied to the problem of evaluating compounds that may potentially provide cues for kin recognition in the honeybeeApis mellifera. These cues were obtained by contaminating glass rods and steel needles with different materials found in the hive. In particular it is shown that workers discriminate between: cuticular waxes from different adult workers; eggs from the same and different hives; similar aged larvae within the same hive; and needles contaminated with the Nasonov gland secretions of different adult workers. It appears that some of these differences are due to phenotypic variation among individuals that cannot be directly attributed to environmental factors. PMID:24277008

  4. Toxins induce 'malaise' behaviour in the honeybee (Apis mellifera).

    PubMed

    Hurst, Victoria; Stevenson, Philip C; Wright, Geraldine A

    2014-10-01

    To avoid poisoning and death when toxins are ingested, the body responds with a suite of physiological detoxification mechanisms accompanied by behaviours that in mammals often include vomiting, nausea, and lethargy. Few studies have characterised whether insects exhibit characteristic 'malaise-like' behaviours in response to intoxication. Here, we used the honeybee to investigate how intoxication produced by injection or ingestion with three toxins with different pharmacological modes of action quinine, amygdalin, and lithium chloride affected behaviour. We found that toxin-induced changes in behaviour were best characterised by more time spent grooming. Bees also had difficulty performing the righting reflex and exhibited specific toxin-induced behaviours such as abdomen dragging and curling up. The expression of these behaviours also depended on whether a toxin had been injected or ingested. When toxins were ingested, they were least 10 times less concentrated in the haemolymph than in the ingested food, suggesting that their absorption through the gut is strongly regulated. Our data show that bees exhibit changes in behaviour that are characteristic of 'malaise' and suggest that physiological signalling of toxicosis is accomplished by multiple post-ingestive pathways in animals.

  5. Social encapsulation of beetle parasites by Cape honeybee colonies (Apis mellifera capensis Esch.)

    NASA Astrophysics Data System (ADS)

    Neumann, P.; Pirk, C. W. W.; Hepburn, H. R.; Solbrig, A. J.; Ratnieks, F. L. W.; Elzen, P. J.; Baxter, J. R.

    2001-05-01

    Worker honeybees (Apis mellifera capensis) encapsulate the small hive beetle (Aethina tumida), a nest parasite, in propolis (tree resin collected by the bees). The encapsulation process lasts 1-4 days and the bees have a sophisticated guarding strategy for limiting the escape of beetles during encapsulation. Some encapsulated beetles died (4.9%) and a few escaped (1.6%). Encapsulation has probably evolved because the small hive beetle cannot easily be killed by the bees due to its hard exoskeleton and defensive behaviour.

  6. Chemical composition and antimicrobial activity of honeybee (Apis mellifera ligustica) propolis from subtropical eastern Australia.

    PubMed

    Massaro, Carmelina Flavia; Simpson, Jack Bruce; Powell, Daniel; Brooks, Peter

    2015-12-01

    Propolis is a material manufactured by bees and contains beeswax, bee salivary secretions and plant resins. Propolis preparations have been used for millennia by humans in food, cosmetics and medicines due to its antibacterial effects. Within the hive, propolis plays an important role in bees' health, with much of its bioactivity largely dependent on the plant resins the bees select for its production. Few chemical studies are available on the chemistry of propolis produced by Australian honeybees (Apis mellifera, Apidae). This study aimed to determine the chemical composition as well as in vitro antimicrobial effects of propolis harvested from honeybees in subtropical eastern Australia. Honeybee propolis was produced using plastic frames and multiple beehives in two subtropical sites in eastern Australia. Methanolic extracts of propolis were analysed by liquid chromatography with ultraviolet detection and high-resolution mass spectrometry (ultra-high-pressure liquid chromatography (UHPLC)-UV-high-resolution tandem mass spectrometry (HR-MS/MS)) and by gas chromatography mass spectrometry (GC-MS). The resulting chemical data were dereplicated for compound characterisation. The two crude extracts in abs. ethanol were tested in vitro by the agar diffusion and broth dilution methods, using a phenol standard solution as the positive control and abs. ethanol as the negative control. Chemical constituents were identified to be pentacyclic triterpenoids and C-prenylated flavonoids, including Abyssinoflavanone VII, Propolin C and Nymphaeol C. The two propolis crude extracts showed bactericidal effects at the minimal inhibitory concentrations of 0.37-2.04 mg mL(-1) against Staphylococcus aureus ATCC 25923. However, the extracts were inactive against Klebsiella pneumoniae ATCC 13883 and Candida albicans ATCC 10231. The antistaphylococcal potential of propolis was discussed, also in relation to honeybees' health, as it warrants further investigations on the social and

  7. Chemical composition and antimicrobial activity of honeybee ( Apis mellifera ligustica) propolis from subtropical eastern Australia

    NASA Astrophysics Data System (ADS)

    Massaro, Carmelina Flavia; Simpson, Jack Bruce; Powell, Daniel; Brooks, Peter

    2015-12-01

    Propolis is a material manufactured by bees and contains beeswax, bee salivary secretions and plant resins. Propolis preparations have been used for millennia by humans in food, cosmetics and medicines due to its antibacterial effects. Within the hive, propolis plays an important role in bees' health, with much of its bioactivity largely dependent on the plant resins the bees select for its production. Few chemical studies are available on the chemistry of propolis produced by Australian honeybees ( Apis mellifera, Apidae). This study aimed to determine the chemical composition as well as in vitro antimicrobial effects of propolis harvested from honeybees in subtropical eastern Australia. Honeybee propolis was produced using plastic frames and multiple beehives in two subtropical sites in eastern Australia. Methanolic extracts of propolis were analysed by liquid chromatography with ultraviolet detection and high-resolution mass spectrometry (ultra-high-pressure liquid chromatography (UHPLC)-UV-high-resolution tandem mass spectrometry (HR-MS/MS)) and by gas chromatography mass spectrometry (GC-MS). The resulting chemical data were dereplicated for compound characterisation. The two crude extracts in abs. ethanol were tested in vitro by the agar diffusion and broth dilution methods, using a phenol standard solution as the positive control and abs. ethanol as the negative control. Chemical constituents were identified to be pentacyclic triterpenoids and C-prenylated flavonoids, including Abyssinoflavanone VII, Propolin C and Nymphaeol C. The two propolis crude extracts showed bactericidal effects at the minimal inhibitory concentrations of 0.37-2.04 mg mL-1 against Staphylococcus aureus ATCC 25923. However, the extracts were inactive against Klebsiella pneumoniae ATCC 13883 and Candida albicans ATCC 10231. The antistaphylococcal potential of propolis was discussed, also in relation to honeybees' health, as it warrants further investigations on the social and

  8. Chemical composition and antimicrobial activity of honeybee (Apis mellifera ligustica) propolis from subtropical eastern Australia.

    PubMed

    Massaro, Carmelina Flavia; Simpson, Jack Bruce; Powell, Daniel; Brooks, Peter

    2015-12-01

    Propolis is a material manufactured by bees and contains beeswax, bee salivary secretions and plant resins. Propolis preparations have been used for millennia by humans in food, cosmetics and medicines due to its antibacterial effects. Within the hive, propolis plays an important role in bees' health, with much of its bioactivity largely dependent on the plant resins the bees select for its production. Few chemical studies are available on the chemistry of propolis produced by Australian honeybees (Apis mellifera, Apidae). This study aimed to determine the chemical composition as well as in vitro antimicrobial effects of propolis harvested from honeybees in subtropical eastern Australia. Honeybee propolis was produced using plastic frames and multiple beehives in two subtropical sites in eastern Australia. Methanolic extracts of propolis were analysed by liquid chromatography with ultraviolet detection and high-resolution mass spectrometry (ultra-high-pressure liquid chromatography (UHPLC)-UV-high-resolution tandem mass spectrometry (HR-MS/MS)) and by gas chromatography mass spectrometry (GC-MS). The resulting chemical data were dereplicated for compound characterisation. The two crude extracts in abs. ethanol were tested in vitro by the agar diffusion and broth dilution methods, using a phenol standard solution as the positive control and abs. ethanol as the negative control. Chemical constituents were identified to be pentacyclic triterpenoids and C-prenylated flavonoids, including Abyssinoflavanone VII, Propolin C and Nymphaeol C. The two propolis crude extracts showed bactericidal effects at the minimal inhibitory concentrations of 0.37-2.04 mg mL(-1) against Staphylococcus aureus ATCC 25923. However, the extracts were inactive against Klebsiella pneumoniae ATCC 13883 and Candida albicans ATCC 10231. The antistaphylococcal potential of propolis was discussed, also in relation to honeybees' health, as it warrants further investigations on the social and

  9. Function and Distribution of 5-HT2 Receptors in the Honeybee (Apis mellifera)

    PubMed Central

    Thamm, Markus; Rolke, Daniel; Jordan, Nadine; Balfanz, Sabine; Schiffer, Christian; Baumann, Arnd; Blenau, Wolfgang

    2013-01-01

    Background Serotonin plays a pivotal role in regulating and modulating physiological and behavioral processes in both vertebrates and invertebrates. In the honeybee (Apis mellifera), serotonin has been implicated in division of labor, visual processing, and learning processes. Here, we present the cloning, heterologous expression, and detailed functional and pharmacological characterization of two honeybee 5-HT2 receptors. Methods Honeybee 5-HT2 receptor cDNAs were amplified from brain cDNA. Recombinant cell lines were established constitutively expressing receptor variants. Pharmacological properties of the receptors were investigated by Ca2+ imaging experiments. Quantitative PCR was applied to explore the expression patterns of receptor mRNAs. Results The honeybee 5-HT2 receptor class consists of two subtypes, Am5-HT2α and Am5-HT2β. Each receptor gene also gives rise to alternatively spliced mRNAs that possibly code for truncated receptors. Only activation of the full-length receptors with serotonin caused an increase in the intracellular Ca2+ concentration. The effect was mimicked by the agonists 5-methoxytryptamine and 8-OH-DPAT at low micromolar concentrations. Receptor activities were blocked by established 5-HT receptor antagonists such as clozapine, methiothepin, or mianserin. High transcript numbers were detected in exocrine glands suggesting that 5-HT2 receptors participate in secretory processes in the honeybee. Conclusions This study marks the first molecular and pharmacological characterization of two 5-HT2 receptor subtypes in the same insect species. The results presented should facilitate further attempts to unravel central and peripheral effects of serotonin mediated by these receptors. PMID:24324783

  10. Seminal fluid of honeybees contains multiple mechanisms to combat infections of the sexually transmitted pathogen Nosema apis.

    PubMed

    Peng, Yan; Grassl, Julia; Millar, A Harvey; Baer, Boris

    2016-01-27

    The societies of ants, bees and wasps are genetically closed systems where queens only mate during a brief mating episode prior to their eusocial life and males therefore provide queens with a lifetime supply of high-quality sperm. These ejaculates also contain a number of defence proteins that have been detected in the seminal fluid but their function and efficiency have never been investigated in great detail. Here, we used the honeybee Apis mellifera and quantified whether seminal fluid is able to combat infections of the fungal pathogen Nosema apis, a widespread honeybee parasite that is also sexually transmitted. We provide the first empirical evidence that seminal fluid has a remarkable antimicrobial activity against N. apis spores and that antimicrobial seminal fluid components kill spores in multiple ways. The protein fraction of seminal fluid induces extracellular spore germination, which disrupts the life cycle of N. apis, whereas the non-protein fraction of seminal fluid induces a direct viability loss of intact spores. We conclude that males provide their ejaculates with efficient antimicrobial molecules that are able to kill N. apis spores and thereby reduce the risk of disease transmission during mating. Our findings could be of broader significance to master honeybee diseases in managed honeybee stock in the future.

  11. Seminal fluid of honeybees contains multiple mechanisms to combat infections of the sexually transmitted pathogen Nosema apis.

    PubMed

    Peng, Yan; Grassl, Julia; Millar, A Harvey; Baer, Boris

    2016-01-27

    The societies of ants, bees and wasps are genetically closed systems where queens only mate during a brief mating episode prior to their eusocial life and males therefore provide queens with a lifetime supply of high-quality sperm. These ejaculates also contain a number of defence proteins that have been detected in the seminal fluid but their function and efficiency have never been investigated in great detail. Here, we used the honeybee Apis mellifera and quantified whether seminal fluid is able to combat infections of the fungal pathogen Nosema apis, a widespread honeybee parasite that is also sexually transmitted. We provide the first empirical evidence that seminal fluid has a remarkable antimicrobial activity against N. apis spores and that antimicrobial seminal fluid components kill spores in multiple ways. The protein fraction of seminal fluid induces extracellular spore germination, which disrupts the life cycle of N. apis, whereas the non-protein fraction of seminal fluid induces a direct viability loss of intact spores. We conclude that males provide their ejaculates with efficient antimicrobial molecules that are able to kill N. apis spores and thereby reduce the risk of disease transmission during mating. Our findings could be of broader significance to master honeybee diseases in managed honeybee stock in the future. PMID:26791609

  12. Temporal genetic structure of a drone congregation area of the giant Asian honeybee (Apis dorsata).

    PubMed

    Kraus, F B; Koeniger, N; Tingek, S; Moritz, R F A

    2005-12-01

    The giant Asian honeybee (Apis dorsata), like all other members of the genus Apis, has a complex mating system in which the queens and males (drones) mate at spatially defined drone congregation areas (DCAs). Here, we studied the temporal genetic structure of a DCA of A. dorsata over an 8-day time window by the genotyping of sampled drones with microsatellite markers. Analysis of the genotypic data revealed a significant genetic differentiation between 3 sampling days and indicated that the DCA was used by at least two subpopulations at all days in varying proportions. The estimation of the number of colonies which used the DCA ranged between 20 and 40 colonies per subpopulation, depending on the estimation procedure and population. The overall effective population size was estimated as high as N (e)=140. The DCA seems to counteract known tendencies of A. dorsata for inbreeding within colony aggregations by facilitating gene flow among subpopulations and increasing the effective population size.

  13. Temporal genetic structure of a drone congregation area of the giant Asian honeybee (Apis dorsata).

    PubMed

    Kraus, F B; Koeniger, N; Tingek, S; Moritz, R F A

    2005-12-01

    The giant Asian honeybee (Apis dorsata), like all other members of the genus Apis, has a complex mating system in which the queens and males (drones) mate at spatially defined drone congregation areas (DCAs). Here, we studied the temporal genetic structure of a DCA of A. dorsata over an 8-day time window by the genotyping of sampled drones with microsatellite markers. Analysis of the genotypic data revealed a significant genetic differentiation between 3 sampling days and indicated that the DCA was used by at least two subpopulations at all days in varying proportions. The estimation of the number of colonies which used the DCA ranged between 20 and 40 colonies per subpopulation, depending on the estimation procedure and population. The overall effective population size was estimated as high as N (e)=140. The DCA seems to counteract known tendencies of A. dorsata for inbreeding within colony aggregations by facilitating gene flow among subpopulations and increasing the effective population size. PMID:16187127

  14. Temporal genetic structure of a drone congregation area of the giant Asian honeybee ( Apis dorsata)

    NASA Astrophysics Data System (ADS)

    Kraus, F. B.; Koeniger, N.; Tingek, S.; Moritz, R. F. A.

    2005-12-01

    The giant Asian honeybee ( Apis dorsata), like all other members of the genus Apis, has a complex mating system in which the queens and males (drones) mate at spatially defined drone congregation areas (DCAs). Here, we studied the temporal genetic structure of a DCA of A. dorsata over an 8-day time window by the genotyping of sampled drones with microsatellite markers. Analysis of the genotypic data revealed a significant genetic differentiation between 3 sampling days and indicated that the DCA was used by at least two subpopulations at all days in varying proportions. The estimation of the number of colonies which used the DCA ranged between 20 and 40 colonies per subpopulation, depending on the estimation procedure and population. The overall effective population size was estimated as high as N e=140. The DCA seems to counteract known tendencies of A. dorsata for inbreeding within colony aggregations by facilitating gene flow among subpopulations and increasing the effective population size.

  15. Giant honeybees (Apis dorsata) mob wasps away from the nest by directed visual patterns.

    PubMed

    Kastberger, Gerald; Weihmann, Frank; Zierler, Martina; Hötzl, Thomas

    2014-11-01

    The open nesting behaviour of giant honeybees (Apis dorsata) accounts for the evolution of a series of defence strategies to protect the colonies from predation. In particular, the concerted action of shimmering behaviour is known to effectively confuse and repel predators. In shimmering, bees on the nest surface flip their abdomens in a highly coordinated manner to generate Mexican wave-like patterns. The paper documents a further-going capacity of this kind of collective defence: the visual patterns of shimmering waves align regarding their directional characteristics with the projected flight manoeuvres of the wasps when preying in front of the bees' nest. The honeybees take here advantage of a threefold asymmetry intrinsic to the prey-predator interaction: (a) the visual patterns of shimmering turn faster than the wasps on their flight path, (b) they "follow" the wasps more persistently (up to 100 ms) than the wasps "follow" the shimmering patterns (up to 40 ms) and (c) the shimmering patterns align with the wasps' flight in all directions at the same strength, whereas the wasps have some preference for horizontal correspondence. The findings give evidence that shimmering honeybees utilize directional alignment to enforce their repelling power against preying wasps. This phenomenon can be identified as predator driving which is generally associated with mobbing behaviour (particularly known in selfish herds of vertebrate species), which is, until now, not reported in insects. PMID:25169944

  16. Giant honeybees (Apis dorsata) mob wasps away from the nest by directed visual patterns

    NASA Astrophysics Data System (ADS)

    Kastberger, Gerald; Weihmann, Frank; Zierler, Martina; Hötzl, Thomas

    2014-08-01

    The open nesting behaviour of giant honeybees (Apis dorsata) accounts for the evolution of a series of defence strategies to protect the colonies from predation. In particular, the concerted action of shimmering behaviour is known to effectively confuse and repel predators. In shimmering, bees on the nest surface flip their abdomens in a highly coordinated manner to generate Mexican wave-like patterns. The paper documents a further-going capacity of this kind of collective defence: the visual patterns of shimmering waves align regarding their directional characteristics with the projected flight manoeuvres of the wasps when preying in front of the bees' nest. The honeybees take here advantage of a threefold asymmetry intrinsic to the prey-predator interaction: (a) the visual patterns of shimmering turn faster than the wasps on their flight path, (b) they "follow" the wasps more persistently (up to 100 ms) than the wasps "follow" the shimmering patterns (up to 40 ms) and (c) the shimmering patterns align with the wasps' flight in all directions at the same strength, whereas the wasps have some preference for horizontal correspondence. The findings give evidence that shimmering honeybees utilize directional alignment to enforce their repelling power against preying wasps. This phenomenon can be identified as predator driving which is generally associated with mobbing behaviour (particularly known in selfish herds of vertebrate species), which is, until now, not reported in insects.

  17. Establishment of a bacterial infection model using the European honeybee, Apis mellifera L.

    PubMed

    Ishii, Kenichi; Hamamoto, Hiroshi; Sekimizu, Kazuhisa

    2014-01-01

    Injection of human pathogenic bacteria (Pseudomonas aeruginosa, Serratia marcescens, Salmonella enterica, Staphylococcus aureus, and Listeria monocytogenes) into the hemocoel of honeybee (Apis mellifera L.) workers kills the infected bees. The bee-killing effects of the pathogens were affected by temperature, and the LD₅₀ values at 37°C were more than 100-fold lower than those at 15°C. Gene-disrupted S. aureus mutants of virulence genes such as agrA, saeS, arlR, srtA, hla, and hlb had attenuated bee-killing ability. Nurse bees were less susceptible than foragers and drones to S. aureus infection. Injection of antibiotics clinically used for humans had therapeutic effects against S. aureus infections of bees, and the ED₅₀ values of these antibiotics were comparable with those determined in mammalian models. Moreover, the effectiveness of orally administered antibiotics was consistent between honeybees and mammals. These findings suggest that the honeybee could be a useful model for assessing the pathogenesis of human-infecting bacteria and the effectiveness of antibiotics. PMID:24587122

  18. Establishment of a bacterial infection model using the European honeybee, Apis mellifera L.

    PubMed

    Ishii, Kenichi; Hamamoto, Hiroshi; Sekimizu, Kazuhisa

    2014-01-01

    Injection of human pathogenic bacteria (Pseudomonas aeruginosa, Serratia marcescens, Salmonella enterica, Staphylococcus aureus, and Listeria monocytogenes) into the hemocoel of honeybee (Apis mellifera L.) workers kills the infected bees. The bee-killing effects of the pathogens were affected by temperature, and the LD₅₀ values at 37°C were more than 100-fold lower than those at 15°C. Gene-disrupted S. aureus mutants of virulence genes such as agrA, saeS, arlR, srtA, hla, and hlb had attenuated bee-killing ability. Nurse bees were less susceptible than foragers and drones to S. aureus infection. Injection of antibiotics clinically used for humans had therapeutic effects against S. aureus infections of bees, and the ED₅₀ values of these antibiotics were comparable with those determined in mammalian models. Moreover, the effectiveness of orally administered antibiotics was consistent between honeybees and mammals. These findings suggest that the honeybee could be a useful model for assessing the pathogenesis of human-infecting bacteria and the effectiveness of antibiotics.

  19. Giant honeybees (Apis dorsata) mob wasps away from the nest by directed visual patterns.

    PubMed

    Kastberger, Gerald; Weihmann, Frank; Zierler, Martina; Hötzl, Thomas

    2014-11-01

    The open nesting behaviour of giant honeybees (Apis dorsata) accounts for the evolution of a series of defence strategies to protect the colonies from predation. In particular, the concerted action of shimmering behaviour is known to effectively confuse and repel predators. In shimmering, bees on the nest surface flip their abdomens in a highly coordinated manner to generate Mexican wave-like patterns. The paper documents a further-going capacity of this kind of collective defence: the visual patterns of shimmering waves align regarding their directional characteristics with the projected flight manoeuvres of the wasps when preying in front of the bees' nest. The honeybees take here advantage of a threefold asymmetry intrinsic to the prey-predator interaction: (a) the visual patterns of shimmering turn faster than the wasps on their flight path, (b) they "follow" the wasps more persistently (up to 100 ms) than the wasps "follow" the shimmering patterns (up to 40 ms) and (c) the shimmering patterns align with the wasps' flight in all directions at the same strength, whereas the wasps have some preference for horizontal correspondence. The findings give evidence that shimmering honeybees utilize directional alignment to enforce their repelling power against preying wasps. This phenomenon can be identified as predator driving which is generally associated with mobbing behaviour (particularly known in selfish herds of vertebrate species), which is, until now, not reported in insects.

  20. Establishment of a Bacterial Infection Model Using the European Honeybee, Apis mellifera L

    PubMed Central

    Ishii, Kenichi; Hamamoto, Hiroshi; Sekimizu, Kazuhisa

    2014-01-01

    Injection of human pathogenic bacteria (Pseudomonas aeruginosa, Serratia marcescens, Salmonella enterica, Staphylococcus aureus, and Listeria monocytogenes) into the hemocoel of honeybee (Apis mellifera L.) workers kills the infected bees. The bee-killing effects of the pathogens were affected by temperature, and the LD50 values at 37°C were more than 100-fold lower than those at 15°C. Gene-disrupted S. aureus mutants of virulence genes such as agrA, saeS, arlR, srtA, hla, and hlb had attenuated bee-killing ability. Nurse bees were less susceptible than foragers and drones to S. aureus infection. Injection of antibiotics clinically used for humans had therapeutic effects against S. aureus infections of bees, and the ED50 values of these antibiotics were comparable with those determined in mammalian models. Moreover, the effectiveness of orally administered antibiotics was consistent between honeybees and mammals. These findings suggest that the honeybee could be a useful model for assessing the pathogenesis of human-infecting bacteria and the effectiveness of antibiotics. PMID:24587122

  1. Giant honeybees ( Apis dorsata) mob wasps away from the nest by directed visual patterns

    NASA Astrophysics Data System (ADS)

    Kastberger, Gerald; Weihmann, Frank; Zierler, Martina; Hötzl, Thomas

    2014-11-01

    The open nesting behaviour of giant honeybees ( Apis dorsata) accounts for the evolution of a series of defence strategies to protect the colonies from predation. In particular, the concerted action of shimmering behaviour is known to effectively confuse and repel predators. In shimmering, bees on the nest surface flip their abdomens in a highly coordinated manner to generate Mexican wave-like patterns. The paper documents a further-going capacity of this kind of collective defence: the visual patterns of shimmering waves align regarding their directional characteristics with the projected flight manoeuvres of the wasps when preying in front of the bees' nest. The honeybees take here advantage of a threefold asymmetry intrinsic to the prey-predator interaction: (a) the visual patterns of shimmering turn faster than the wasps on their flight path, (b) they "follow" the wasps more persistently (up to 100 ms) than the wasps "follow" the shimmering patterns (up to 40 ms) and (c) the shimmering patterns align with the wasps' flight in all directions at the same strength, whereas the wasps have some preference for horizontal correspondence. The findings give evidence that shimmering honeybees utilize directional alignment to enforce their repelling power against preying wasps. This phenomenon can be identified as predator driving which is generally associated with mobbing behaviour (particularly known in selfish herds of vertebrate species), which is, until now, not reported in insects.

  2. Prepro-tachykinin gene expression in the brain of the honeybee Apis mellifera.

    PubMed

    Takeuchi, Hideaki; Yasuda, Akikazu; Yasuda-Kamatani, Yoshimi; Sawata, Miyuki; Matsuo, Yuko; Kato, Azusa; Tsujimoto, Atsumi; Nakajima, Terumi; Kubo, Takeo

    2004-05-01

    We have recently identified a tachykinin-related peptide (AmTRP) from the mushroom bodies (MBs) of the brain of the honeybee Apis mellifera L. by using direct matrix-assisted laser desorption/ionization with time-of-flight mass spectometry and have isolated its cDNA. Here, we have examined prepro-AmTRP gene expression in the honeybee brain by using in situ hybridization. The prepro-AmTRP gene is expressed predominantly in the MBs and in some neurons located in the optic and antennal lobes. cDNA microarray studies have revealed that AmTRP expression is enriched in the MBs compared with other brain regions. There is no difference in AmTRP-expressing cells among worker, queen, and drone brains, suggesting that the cell types that express the prepro-AmTRP gene do not change according to division of labor, sex, or caste. The unique expression pattern of the prepro-AmTRP gene suggests that AmTRPs function as neuromodulators in the MBs of the honeybee brain.

  3. Using Errors by Guard Honeybees (Apis mellifera) to Gain New Insights into Nestmate Recognition Signals.

    PubMed

    Pradella, Duccio; Martin, Stephen J; Dani, Francesca R

    2015-11-01

    Although the honeybee (Apis mellifera) is one of the world most studied insects, the chemical compounds used in nestmate recognition, remains an open question. By exploiting the error prone recognition system of the honeybee, coupled with genotyping, we studied the correlation between cuticular hydrocarbon (CHC) profile of returning foragers and acceptance or rejection behavior by guards. We revealed an average recognition error rate of 14% across 3 study colonies, that is, allowing a non-nestmate colony entry, or preventing a nestmate from entry, which is lower than reported in previous studies. By analyzing CHCs, we found that CHC profile of returning foragers correlates with acceptance or rejection by guarding bees. Although several CHC were identified as potential recognition cues, only a subset of 4 differed consistently for their relative amount between accepted and rejected individuals in the 3 studied colonies. These include a unique group of 2 positional alkene isomers (Z-8 and Z-10), which are almost exclusively produced by the bees Bombus and Apis spp, and may be candidate compounds for further study.

  4. Typing of Melissococcus plutonius isolated from European and Japanese honeybees suggests spread of sequence types across borders and between different Apis species.

    PubMed

    Takamatsu, Daisuke; Morinishi, Keiko; Arai, Rie; Sakamoto, Aya; Okura, Masatoshi; Osaki, Makoto

    2014-06-25

    Melissococcus plutonius is an important pathogen of honeybee larvae and causes European foulbrood (EFB) not only in European honeybees (Apis mellifera) but also in other native honeybees. We recently confirmed the first EFB case in Japanese native honeybees (Apis cerana japonica) and isolated M. plutonius from this case. In this study, to obtain a better understanding of the ecology of M. plutonius and the epidemiology of EFB, we analyzed M. plutonius isolates that originated from European and Japanese honeybees in Japan using an existing multilocus sequence typing scheme. These analyzed Japanese isolates were resolved into six sequence types (STs), three of which were novel STs. Among these six STs, ST3 and ST12 were the two most common and found in isolates from both European and Japanese honeybees (or their environment). Moreover, these two STs were identified not only in Japan but also in other countries, suggesting the spread of some STs across borders and different honeybee species.

  5. Age-related learning deficits can be reversible in honeybees Apis mellifera.

    PubMed

    Baker, Nicholas; Wolschin, Florian; Amdam, Gro V

    2012-10-01

    Many animals are characterized by declining brain function at advanced ages, including honeybees (Apis mellifera). Variation in honeybee social development, moreover, results in individual differences in the progression of aging that may be accelerated, delayed, and sometimes reversed by changes in behavior. Here, we combine manipulations of social development with a measurement of sensory sensitivity, Pavlovian (associative) learning, and a proteomic technique to study the brain of aged honeybees. First, we confirm that sensory sensitivity can remain intact during aging, and that age-associated learning deficits are specific to bees that forage, a behavior typically expressed after a period of nursing activity. These initial data go beyond previous findings by showing how foragers age in social groups of different age compositions and sizes. Thereafter, we establish that learning ability can recover in aged foragers that revert to nursing tasks. Finally, we use liquid chromatography coupled to tandem mass spectrometry (LC-MS(2)) to describe proteomic differences between central brains, from reverted former foragers that varied in recovery of learning performance, and from nurse bees that varied in learning ability but never foraged. We find that recovery is positively associated with levels of stress response/cellular maintenance proteins in the central brain, while variation in learning before aging is negatively associated with the amounts of metabolic enzymes in the brain tissue. Our work provides the strongest evidence, thus far, for reversibility of learning deficits in aged honeybees, and indicates that recovery-related brain plasticity is connected to cellular stress resilience, maintenance and repair processes.

  6. Extreme Recombination Frequencies Shape Genome Variation and Evolution in the Honeybee, Apis mellifera

    PubMed Central

    Wallberg, Andreas; Glémin, Sylvain; Webster, Matthew T.

    2015-01-01

    Meiotic recombination is a fundamental cellular process, with important consequences for evolution and genome integrity. However, we know little about how recombination rates vary across the genomes of most species and the molecular and evolutionary determinants of this variation. The honeybee, Apis mellifera, has extremely high rates of meiotic recombination, although the evolutionary causes and consequences of this are unclear. Here we use patterns of linkage disequilibrium in whole genome resequencing data from 30 diploid honeybees to construct a fine-scale map of rates of crossing over in the genome. We find that, in contrast to vertebrate genomes, the recombination landscape is not strongly punctate. Crossover rates strongly correlate with levels of genetic variation, but not divergence, which indicates a pervasive impact of selection on the genome. Germ-line methylated genes have reduced crossover rate, which could indicate a role of methylation in suppressing recombination. Controlling for the effects of methylation, we do not infer a strong association between gene expression patterns and recombination. The site frequency spectrum is strongly skewed from neutral expectations in honeybees: rare variants are dominated by AT-biased mutations, whereas GC-biased mutations are found at higher frequencies, indicative of a major influence of GC-biased gene conversion (gBGC), which we infer to generate an allele fixation bias 5 – 50 times the genomic average estimated in humans. We uncover further evidence that this repair bias specifically affects transitions and favours fixation of CpG sites. Recombination, via gBGC, therefore appears to have profound consequences on genome evolution in honeybees and interferes with the process of natural selection. These findings have important implications for our understanding of the forces driving molecular evolution. PMID:25902173

  7. Molecular Mechanisms Underlying Formation of Long-Term Reward Memories and Extinction Memories in the Honeybee ("Apis Mellifera")

    ERIC Educational Resources Information Center

    Eisenhardt, Dorothea

    2014-01-01

    The honeybee ("Apis mellifera") has long served as an invertebrate model organism for reward learning and memory research. Its capacity for learning and memory formation is rooted in the ecological need to efficiently collect nectar and pollen during summer to ensure survival of the hive during winter. Foraging bees learn to associate a…

  8. Molecular mechanisms underlying formation of long-term reward memories and extinction memories in the honeybee (Apis mellifera)

    PubMed Central

    2014-01-01

    The honeybee (Apis mellifera) has long served as an invertebrate model organism for reward learning and memory research. Its capacity for learning and memory formation is rooted in the ecological need to efficiently collect nectar and pollen during summer to ensure survival of the hive during winter. Foraging bees learn to associate a flower's characteristic features with a reward in a way that resembles olfactory appetitive classical conditioning, a learning paradigm that is used to study mechanisms underlying learning and memory formation in the honeybee. Due to a plethora of studies on appetitive classical conditioning and phenomena related to it, the honeybee is one of the best characterized invertebrate model organisms from a learning psychological point of view. Moreover, classical conditioning and associated behavioral phenomena are surprisingly similar in honeybees and vertebrates, suggesting a convergence of underlying neuronal processes, including the molecular mechanisms that contribute to them. Here I review current thinking on the molecular mechanisms underlying long-term memory (LTM) formation in honeybees following classical conditioning and extinction, demonstrating that an in-depth analysis of the molecular mechanisms of classical conditioning in honeybees might add to our understanding of associative learning in honeybees and vertebrates. PMID:25225299

  9. Molecular mechanisms underlying formation of long-term reward memories and extinction memories in the honeybee (Apis mellifera).

    PubMed

    Eisenhardt, Dorothea

    2014-10-01

    The honeybee (Apis mellifera) has long served as an invertebrate model organism for reward learning and memory research. Its capacity for learning and memory formation is rooted in the ecological need to efficiently collect nectar and pollen during summer to ensure survival of the hive during winter. Foraging bees learn to associate a flower's characteristic features with a reward in a way that resembles olfactory appetitive classical conditioning, a learning paradigm that is used to study mechanisms underlying learning and memory formation in the honeybee. Due to a plethora of studies on appetitive classical conditioning and phenomena related to it, the honeybee is one of the best characterized invertebrate model organisms from a learning psychological point of view. Moreover, classical conditioning and associated behavioral phenomena are surprisingly similar in honeybees and vertebrates, suggesting a convergence of underlying neuronal processes, including the molecular mechanisms that contribute to them. Here I review current thinking on the molecular mechanisms underlying long-term memory (LTM) formation in honeybees following classical conditioning and extinction, demonstrating that an in-depth analysis of the molecular mechanisms of classical conditioning in honeybees might add to our understanding of associative learning in honeybees and vertebrates.

  10. Odor discrimination in classical conditioning of proboscis extension in two stingless bee species in comparison to Africanized honeybees.

    PubMed

    Mc Cabe, S I; Hartfelder, K; Santana, W C; Farina, W M

    2007-11-01

    Learning in insects has been extensively studied using different experimental approaches. One of them, the proboscis extension response (PER) paradigm, is particularly well suited for quantitative studies of cognitive abilities of honeybees under controlled conditions. The goal of this study was to analyze the capability of three eusocial bee species to be olfactory conditioned in the PER paradigm. We worked with two Brazilian stingless bees species, Melipona quadrifasciata and Scaptotrigona aff. depilis, and with the invasive Africanized honeybee, Apis mellifera. These three species present very different recruitment strategies, which could be related with different odor-learning abilities. We evaluated their gustatory responsiveness and learning capability to discriminate floral odors. Gustatory responsiveness was similar for the three species, although S. aff. depilis workers showed fluctuations along the experimental period. Results for the learning assays revealed that M. quadrifasciata workers can be conditioned to discriminate floral odors in a classical differential conditioning protocol and that this discrimination is maintained 15 min after training. During conditioning, Africanized honeybees presented the highest discrimination, for M. quadrifasciata it was intermediate, and S. aff. depilis bees presented no discrimination. The differences found are discussed considering the putative different learning abilities and procedure effect for each species.

  11. Odor discrimination in classical conditioning of proboscis extension in two stingless bee species in comparison to Africanized honeybees.

    PubMed

    Mc Cabe, S I; Hartfelder, K; Santana, W C; Farina, W M

    2007-11-01

    Learning in insects has been extensively studied using different experimental approaches. One of them, the proboscis extension response (PER) paradigm, is particularly well suited for quantitative studies of cognitive abilities of honeybees under controlled conditions. The goal of this study was to analyze the capability of three eusocial bee species to be olfactory conditioned in the PER paradigm. We worked with two Brazilian stingless bees species, Melipona quadrifasciata and Scaptotrigona aff. depilis, and with the invasive Africanized honeybee, Apis mellifera. These three species present very different recruitment strategies, which could be related with different odor-learning abilities. We evaluated their gustatory responsiveness and learning capability to discriminate floral odors. Gustatory responsiveness was similar for the three species, although S. aff. depilis workers showed fluctuations along the experimental period. Results for the learning assays revealed that M. quadrifasciata workers can be conditioned to discriminate floral odors in a classical differential conditioning protocol and that this discrimination is maintained 15 min after training. During conditioning, Africanized honeybees presented the highest discrimination, for M. quadrifasciata it was intermediate, and S. aff. depilis bees presented no discrimination. The differences found are discussed considering the putative different learning abilities and procedure effect for each species. PMID:17710409

  12. Pollen dispersal of tropical trees (Dinizia excelsa: Fabaceae) by native insects and African honeybees in pristine and fragmented Amazonian rainforest.

    PubMed

    Dick, Christopher W; Etchelecu, Gabriela; Austerlitz, Frédéric

    2003-03-01

    Tropical rainforest trees typically occur in low population densities and rely on animals for cross-pollination. It is of conservation interest therefore to understand how rainforest fragmentation may alter the pollination and breeding structure of remnant trees. Previous studies of the Amazonian tree Dinizia excelsa (Fabaceae) found African honeybees (Apis mellifera scutellata) as the predominant pollinators of trees in highly disturbed habitats, transporting pollen up to 3.2 km between pasture trees. Here, using microsatellite genotypes of seed arrays, we compare outcrossing rates and pollen dispersal distances of (i) remnant D. excelsa in three large ranches, and (ii) a population in undisturbed forest in which African honeybees were absent. Self-fertilization was more frequent in the disturbed habitats (14%, n = 277 seeds from 12 mothers) than in undisturbed forest (10%, n = 295 seeds from 13 mothers). Pollen dispersal was extensive in all three ranches compared to undisturbed forest, however. Using a twogener analysis, we estimated a mean pollen dispersal distance of 1509 m in Colosso ranch, assuming an exponential dispersal function, and 212 m in undisturbed forest. The low effective density of D. excelsa in undisturbed forest (approximately 0.1 trees/ha) indicates that large areas of rainforest must be preserved to maintain minimum viable populations. Our results also suggest, however, that in highly disturbed habitats Apis mellifera may expand genetic neighbourhood areas, thereby linking fragmented and continuous forest populations.

  13. Comb construction in mixed-species colonies of honeybees, Apis cerana and Apis mellifera.

    PubMed

    Yang, Ming-Xian; Tan, Ken; Radloff, Sarah E; Phiancharoen, Mananya; Hepburn, H Randall

    2010-05-01

    Comb building in mixed-species colonies of Apis cerana and Apis mellifera was studied. Two types of cell-size foundation were made from the waxes of these species and inserted into mixed colonies headed either by an A. cerana or an A. mellifera queen. The colonies did not discriminate between the waxes but the A. cerana cell-size foundation was modified during comb building by the workers of both species. In pure A. cerana colonies workers did not accept any foundation but secreted wax and built on foundation in mixed colonies. Comb building is performed by small groups of workers through a mechanism of self-organisation. The two species cooperate in comb building and construct nearly normal combs but they contain many irregular cells. In pure A. mellifera colonies, the A. cerana cell size was modified and the queens were reluctant to lay eggs on such combs. In pure A. cerana colonies, the A. mellifera cell size was built without any modification but these cells were used either for drone brood rearing or for food storing. The principal elements of comb-building behaviour are common to both species, which indicates that they evolved prior to and were conserved after speciation.

  14. Homology differences between complete Sacbrood virus genomes from infected Apis mellifera and Apis cerana honeybees in Korea.

    PubMed

    Reddy, Kondreddy Eswar; Yoo, Mi Sun; Kim, Young-Ha; Kim, Nam-Hee; Ramya, Mummadireddy; Jung, Ha-Na; Thao, Le Thi Bich; Lee, Hee-Soo; Kang, Seung-Won

    2016-04-01

    Sacbrood virus (SBV) represents a serious threat to the health of managed honeybees. We determined four complete SBV genomic sequences (AmSBV-Kor1, AmSBV-Kor2, AcSBV-Kor3, and AcSBV-Kor4) isolated from Apis mellifera and Apis cerana in various regions of South Korea. A phylogenetic tree was constructed from the complete genomic sequences of these Korean SBVs (KSBVs) and 21 previously reported SBV sequences from other countries. Three KSBVs (not AmSBV-Kor1) clustered with previously reported Korean genomes, but separately from SBV genomes from other countries. The KSBVs shared 90-98 % identity, and 89-97 % identity with the genomes from other countries. AmSBV-Kor1 was least similar (~90 % identity) to the other KSBVs, and was most similar to previously reported strains AmSBV-Kor21 (97 %) and AmSBV-UK (93 %). Phylogenetic analysis of the partial VP1 region sequences indicated that SBVs clustered by host species and country of origin. The KSBVs were aligned with nine previously reported complete SBV genomes and compared. The KSBVs were most different from the other genomes at the end of the 5' untranslated region and in the entire open reading frame. A SimPlot graph of the VP1 region confirmed its high variability, especially between the SBVs infecting A. mellifera and A. cerana. In this genomic region, SBVs from A. mellifera species contain an extra continuous 51-nucleotide sequence relative to the SBVs from A. cerana. This genomic diversity may reflect the adaptation of SBV to specific hosts, viral cross-infections, and the spatial distances separating the KSBVs from other SBVs. PMID:26810400

  15. Homology differences between complete Sacbrood virus genomes from infected Apis mellifera and Apis cerana honeybees in Korea.

    PubMed

    Reddy, Kondreddy Eswar; Yoo, Mi Sun; Kim, Young-Ha; Kim, Nam-Hee; Ramya, Mummadireddy; Jung, Ha-Na; Thao, Le Thi Bich; Lee, Hee-Soo; Kang, Seung-Won

    2016-04-01

    Sacbrood virus (SBV) represents a serious threat to the health of managed honeybees. We determined four complete SBV genomic sequences (AmSBV-Kor1, AmSBV-Kor2, AcSBV-Kor3, and AcSBV-Kor4) isolated from Apis mellifera and Apis cerana in various regions of South Korea. A phylogenetic tree was constructed from the complete genomic sequences of these Korean SBVs (KSBVs) and 21 previously reported SBV sequences from other countries. Three KSBVs (not AmSBV-Kor1) clustered with previously reported Korean genomes, but separately from SBV genomes from other countries. The KSBVs shared 90-98 % identity, and 89-97 % identity with the genomes from other countries. AmSBV-Kor1 was least similar (~90 % identity) to the other KSBVs, and was most similar to previously reported strains AmSBV-Kor21 (97 %) and AmSBV-UK (93 %). Phylogenetic analysis of the partial VP1 region sequences indicated that SBVs clustered by host species and country of origin. The KSBVs were aligned with nine previously reported complete SBV genomes and compared. The KSBVs were most different from the other genomes at the end of the 5' untranslated region and in the entire open reading frame. A SimPlot graph of the VP1 region confirmed its high variability, especially between the SBVs infecting A. mellifera and A. cerana. In this genomic region, SBVs from A. mellifera species contain an extra continuous 51-nucleotide sequence relative to the SBVs from A. cerana. This genomic diversity may reflect the adaptation of SBV to specific hosts, viral cross-infections, and the spatial distances separating the KSBVs from other SBVs.

  16. Lethal infection thresholds of Paenibacillus larvae for honeybee drone and worker larvae (Apis mellifera).

    PubMed

    Behrens, Dieter; Forsgren, Eva; Fries, Ingemar; Moritz, Robin F A

    2010-10-01

    We compared the mortality of honeybee (Apis mellifera) drone and worker larvae from a single queen under controlled in vitro conditions following infection with Paenibacillus larvae, a bacterium causing the brood disease American Foulbrood (AFB). We also determined absolute P. larvae cell numbers and lethal titres in deceased individuals of both sexes up to 8 days post infection using quantitative real-time PCR (qPCR). Our results show that in drones the onset of infection induced mortality is delayed by 1 day, the cumulative mortality is reduced by 10% and P. larvae cell numbers are higher than in worker larvae. Since differences in bacterial cell titres between sexes can be explained by differences in body size, larval size appears to be a key parameter for a lethal threshold in AFB tolerance. Both means and variances for lethal thresholds are similar for drone and worker larvae suggesting that drone resistance phenotypes resemble those of related workers.

  17. Lethal infection thresholds of Paenibacillus larvae for honeybee drone and worker larvae (Apis mellifera).

    PubMed

    Behrens, Dieter; Forsgren, Eva; Fries, Ingemar; Moritz, Robin F A

    2010-10-01

    We compared the mortality of honeybee (Apis mellifera) drone and worker larvae from a single queen under controlled in vitro conditions following infection with Paenibacillus larvae, a bacterium causing the brood disease American Foulbrood (AFB). We also determined absolute P. larvae cell numbers and lethal titres in deceased individuals of both sexes up to 8 days post infection using quantitative real-time PCR (qPCR). Our results show that in drones the onset of infection induced mortality is delayed by 1 day, the cumulative mortality is reduced by 10% and P. larvae cell numbers are higher than in worker larvae. Since differences in bacterial cell titres between sexes can be explained by differences in body size, larval size appears to be a key parameter for a lethal threshold in AFB tolerance. Both means and variances for lethal thresholds are similar for drone and worker larvae suggesting that drone resistance phenotypes resemble those of related workers. PMID:20545737

  18. Heritable variation for latent inhibition and its correlation with reversal learning in honeybees (Apis mellifera).

    PubMed

    Chandra, S B; Hosler, J S; Smith, B H

    2000-03-01

    Latent inhibition (LI) in honeybees (Apis mellifera) was studied by using a proboscis extension response conditioning procedure. Individual queens, drones, and workers differed in the degree to which they revealed LI. The authors hypothesized that individual differences would have a substantial genetic basis. Two sets of progeny were established by crossing virgin queens and individual drones, both of which had been selected for differential expression of inhibition. LI was stronger in the progeny from the queens and drones that had shown greater inhibition. The expression of LI was also dependent on environmental factors that are most likely associated with age, foraging experience outside of the colony, or both. Furthermore, there was a correlated response in the speed at which progeny reversed a learned discrimination of 2 odors. These genetic analyses may reveal underlying mechanisms that these 2 learning paradigms have in common.

  19. Heritable variation for latent inhibition and its correlation with reversal learning in honeybees (Apis mellifera).

    PubMed

    Chandra, S B; Hosler, J S; Smith, B H

    2000-03-01

    Latent inhibition (LI) in honeybees (Apis mellifera) was studied by using a proboscis extension response conditioning procedure. Individual queens, drones, and workers differed in the degree to which they revealed LI. The authors hypothesized that individual differences would have a substantial genetic basis. Two sets of progeny were established by crossing virgin queens and individual drones, both of which had been selected for differential expression of inhibition. LI was stronger in the progeny from the queens and drones that had shown greater inhibition. The expression of LI was also dependent on environmental factors that are most likely associated with age, foraging experience outside of the colony, or both. Furthermore, there was a correlated response in the speed at which progeny reversed a learned discrimination of 2 odors. These genetic analyses may reveal underlying mechanisms that these 2 learning paradigms have in common. PMID:10739314

  20. A selective sweep in a Varroa destructor resistant honeybee (Apis mellifera) population.

    PubMed

    Lattorff, H Michael G; Buchholz, Josephine; Fries, Ingemar; Moritz, Robin F A

    2015-04-01

    The mite Varroa destructor is one of the most dangerous parasites of the Western honeybee (Apis mellifera) causing enormous colony losses worldwide. Various chemical treatments for the control of the Varroa mite are currently in use, which, however, lead to residues in bee products and often to resistance in mites. This facilitated the exploration of alternative treatment methods and breeding for mite resistant honeybees has been in focus for breeders in many parts of the world with variable results. Another approach has been applied to a honeybee population on Gotland (Sweden) that was exposed to natural selection and survived Varroa-infestation for more than 10years without treatment. Eventually this population became resistant to the parasite by suppressing the reproduction of the mite. A previous QTL mapping study had identified a region on chromosome 7 with major loci contributing to the mite resistance. Here, a microsatellite scan of the significant candidate QTL regions was used to investigate potential footprints of selection in the original population by comparing the study population on Gotland before (2000) and after selection (2007). Genetic drift had caused an extreme loss of genetic diversity in the 2007 population for all genetic markers tested. In addition to this overall reduction of heterozygosity, two loci on chromosome 7 showed an even stronger and significant reduction in diversity than expected from genetic drift alone. Within the selective sweep eleven genes are annotated, one of them being a putative candidate to interfere with reduced mite reproduction. A glucose-methanol-choline oxidoreductase (GMCOX18) might be involved in changing volatiles emitted by bee larvae that might be essential to trigger oogenesis in Varroa.

  1. Effects of selenium on development, survival, and accumulation in the honeybee (Apis mellifera L.).

    PubMed

    Hladun, Kristen R; Kaftanoglu, Osman; Parker, David R; Tran, Khoa D; Trumble, John T

    2013-11-01

    Apis mellifera L. (Hymenoptera: Apidae) is an important agricultural pollinator in the United States and throughout the world. In areas of selenium (Se) contamination, honeybees may be at risk because of the biotransfer of Se from plant products such as nectar and pollen. Several forms of Se can occur in accumulating plants. In the present study, the toxicity of 4 compounds (selenate, selenite, methylselenocysteine, and selenocystine) to honeybee adult foragers and larvae was assessed using dose-response bioassays. Inorganic forms were more toxic than organic forms for both larvae (lethal concentration [LC50] selenate = 0.72 mg L(-1) , LC50 selenite = 1.0 mg L(-1) , LC50 methylselenocysteine = 4.7 mg L(-1) , LC50 selenocystine = 4.4 mg L(-1) ) and foragers (LC50 selenate = 58 mg L(-1) , LC50 selenite = 58 mg L(-1) , LC50 methylselenocysteine = 161 mg L(-1) , LC50 selenocystine = 148 mg L(-1) ). Inorganic forms of Se caused rapid mortality, and organic forms had sublethal effects on development. Larvae accumulated substantial amounts of Se only at the highest doses, whereas foragers accumulated large quantities at all doses. The present study documented very low larval LC50 values for Se; even modest transfer to brood will likely cause increased development times and mortality. The toxicities of the various forms of Se to honeybee larvae and foragers are discussed in comparison with other insect herbivores and detritivores.

  2. Involvement of phosphorylated Apis mellifera CREB in gating a honeybee's behavioral response to an external stimulus.

    PubMed

    Gehring, Katrin B; Heufelder, Karin; Feige, Janina; Bauer, Paul; Dyck, Yan; Ehrhardt, Lea; Kühnemund, Johannes; Bergmann, Anja; Göbel, Josefine; Isecke, Marlene; Eisenhardt, Dorothea

    2016-05-01

    The transcription factor cAMP-response element-binding protein (CREB) is involved in neuronal plasticity. Phosphorylation activates CREB and an increased level of phosphorylated CREB is regarded as an indicator of CREB-dependent transcriptional activation. In honeybees(Apis mellifera)we recently demonstrated a particular high abundance of the phosphorylated honeybee CREB homolog (pAmCREB) in the central brain and in a subpopulation of mushroom body neurons. We hypothesize that these high pAmCREB levels are related to learning and memory formation. Here, we tested this hypothesis by analyzing brain pAmCREB levels in classically conditioned bees and bees experiencing unpaired presentations of conditioned stimulus (CS) and unconditioned stimulus (US). We demonstrate that both behavioral protocols display differences in memory formation but do not alter the level of pAmCREB in bee brains directly after training. Nevertheless, we report that bees responding to the CS during unpaired stimulus presentations exhibit higher levels of pAmCREB than nonresponding bees. In addition, Trichostatin A, a histone deacetylase inhibitor that is thought to enhance histone acetylation by CREB-binding protein, increases the bees' CS responsiveness. We conclude that pAmCREB is involved in gating a bee's behavioral response driven by an external stimulus. PMID:27084927

  3. Changes in cellular degradation activity in young and old worker honeybees (Apis mellifera).

    PubMed

    Hsu, Chin-Yuan; Chuang, Yu-Lung; Chan, Yu-Pei

    2014-02-01

    The trophocytes and fat cells of honeybees (Apis mellifera) have been used in cellular senescence studies, but the changes of cellular degradation activity with aging in workers are unknown. In this study, cellular degradation activity was evaluated in the trophocytes and fat cells of young and old workers reared in a field hive. The results showed the following: (1) 20S proteosome activity decreased with aging, whereas its expression increased with aging; (2) the expression of microtubule-associated protein 1 light chain 3-II (LC3-II) and the 70 kD heat shock cognate protein (Hsc70) decreased with aging; (3) the size and number of autophagic vacuoles decreased with aging; (4) p62/SQSTM1 and polyubiquitin aggregate expression decreased with aging; (5) lysosomal efficiency decreased with aging; and (6) molecular target of rapamycin (mTOR) expression increased with aging. These results indicate that young workers have higher levels of cellular degradation activity than old workers and that aging results in a decline in the cellular degradation activity in worker honeybees.

  4. The proboscis extension reflex to evaluate learning and memory in honeybees ( Apis mellifera): some caveats

    NASA Astrophysics Data System (ADS)

    Frost, Elisabeth H.; Shutler, Dave; Hillier, Neil Kirk

    2012-09-01

    The proboscis extension reflex (PER) is widely used in a classical conditioning (Pavlovian) context to evaluate learning and memory of a variety of insect species. The literature is particularly prodigious for honeybees ( Apis mellifera) with more than a thousand publications. Imagination appears to be the only limit to the types of challenges to which researchers subject honeybees, including all the sensory modalities and a broad diversity of environmental treatments. Accordingly, some remarkable insights have been achieved using PER. However, there are several challenges to evaluating the PER literature that warrant a careful and thorough review. We assess here variation in methods that makes interpretation of studies, even those researching the same question, tenuous. We suggest that the numerous variables that might influence experimental outcomes from PER be thoroughly detailed by researchers. Moreover, the influence of individual variables on results needs to carefully evaluated, as well as among two or more variables. Our intent is to encourage investigation of the influence of numerous variables on PER results.

  5. Nest-mate recognition template of guard honeybees (Apis mellifera) is modified by wax comb transfer.

    PubMed

    Couvillon, Margaret J; Caple, Jamie P; Endsor, Samuel L; Kärcher, Martin; Russell, Trudy E; Storey, Darren E; Ratnieks, Francis L W

    2007-06-22

    In recognition, discriminators use sensory information to make decisions. For example, honeybee (Apis mellifera) entrance guards discriminate between nest-mates and intruders by comparing their odours with a template of the colony odour. Comb wax plays a major role in honeybee recognition. We measured the rejection rates of nest-mate and non-nest-mate worker bees by entrance guards before and after a unidirectional transfer of wax comb from a 'comb donor' hive to a 'comb receiver' hive. Our results showed a significant effect that occurred in one direction. Guards in the comb receiver hive became more accepting of non-nest-mates from the comb donor hive (rejection decreased from 70 to 47%); however, guards in the comb donor hive did not become more accepting of bees from the comb receiver hive. These data strongly support the hypothesis that the transfer of wax comb increases the acceptance of non-nest-mates not by changing the odour of the bees, but by changing the template used by guards.

  6. Evaluation of Apis mellifera syriaca Levant region honeybee conservation using comparative genome hybridization.

    PubMed

    Haddad, Nizar Jamal; Batainh, Ahmed; Saini, Deepti; Migdadi, Osama; Aiyaz, Mohamed; Manchiganti, Rushiraj; Krishnamurthy, Venkatesh; Al-Shagour, Banan; Brake, Mohammad; Bourgeois, Lelania; De Guzman, Lilia; Rinderer, Thomas; Hamouri, Zayed Mahoud

    2016-06-01

    Apis mellifera syriaca is the native honeybee subspecies of Jordan and much of the Levant region. It expresses behavioral adaptations to a regional climate with very high temperatures, nectar dearth in summer, attacks of the Oriental wasp and is resistant to Varroa mites. The A. m. syriaca control reference sample (CRS) in this study was originally collected and stored since 2001 from "Wadi Ben Hammad", a remote valley in the southern region of Jordan. Morphometric and mitochondrial DNA markers of these honeybees had shown highest similarity to reference A. m. syriaca samples collected in 1952 by Brother Adam of samples collected from the Middle East. Samples 1-5 were collected from the National Center for Agricultural Research and Extension breeding apiary which was established for the conservation of A. m. syriaca. Our objective was to determine the success of an A. m. syriaca honey bee conservation program using genomic information from an array-based comparative genomic hybridization platform to evaluate genetic similarities to a historic reference collection (CRS). Our results had shown insignificant genomic differences between the current population in the conservation program and the CRS indicated that program is successfully conserving A. m. syriaca. Functional genomic variations were identified which are useful for conservation monitoring and may be useful for breeding programs designed to improve locally adapted strains of A. m. syriaca.

  7. Evaluation of Apis mellifera syriaca Levant region honeybee conservation using comparative genome hybridization.

    PubMed

    Haddad, Nizar Jamal; Batainh, Ahmed; Saini, Deepti; Migdadi, Osama; Aiyaz, Mohamed; Manchiganti, Rushiraj; Krishnamurthy, Venkatesh; Al-Shagour, Banan; Brake, Mohammad; Bourgeois, Lelania; De Guzman, Lilia; Rinderer, Thomas; Hamouri, Zayed Mahoud

    2016-06-01

    Apis mellifera syriaca is the native honeybee subspecies of Jordan and much of the Levant region. It expresses behavioral adaptations to a regional climate with very high temperatures, nectar dearth in summer, attacks of the Oriental wasp and is resistant to Varroa mites. The A. m. syriaca control reference sample (CRS) in this study was originally collected and stored since 2001 from "Wadi Ben Hammad", a remote valley in the southern region of Jordan. Morphometric and mitochondrial DNA markers of these honeybees had shown highest similarity to reference A. m. syriaca samples collected in 1952 by Brother Adam of samples collected from the Middle East. Samples 1-5 were collected from the National Center for Agricultural Research and Extension breeding apiary which was established for the conservation of A. m. syriaca. Our objective was to determine the success of an A. m. syriaca honey bee conservation program using genomic information from an array-based comparative genomic hybridization platform to evaluate genetic similarities to a historic reference collection (CRS). Our results had shown insignificant genomic differences between the current population in the conservation program and the CRS indicated that program is successfully conserving A. m. syriaca. Functional genomic variations were identified which are useful for conservation monitoring and may be useful for breeding programs designed to improve locally adapted strains of A. m. syriaca. PMID:27010806

  8. Honeybees (Apis mellifera) learn to discriminate the smell of organic compounds from their respective deuterated isotopomers.

    PubMed

    Gronenberg, Wulfila; Raikhelkar, Ajay; Abshire, Eric; Stevens, Jennifer; Epstein, Eric; Loyola, Karin; Rauscher, Michael; Buchmann, Stephen

    2014-03-01

    The understanding of physiological and molecular processes underlying the sense of smell has made considerable progress during the past three decades, revealing the cascade of molecular steps that lead to the activation of olfactory receptor (OR) neurons. However, the mode of primary interaction of odorant molecules with the OR proteins within the sensory cells is still enigmatic. Two different concepts try to explain these interactions: the 'odotope hypothesis' suggests that OR proteins recognize structural aspects of the odorant molecule, whereas the 'vibration hypothesis' proposes that intra-molecular vibrations are the basis for the recognition of the odorant by the receptor protein. The vibration hypothesis predicts that OR proteins should be able to discriminate compounds containing deuterium from their common counterparts which contain hydrogen instead of deuterium. This study tests this prediction in honeybees (Apis mellifera) using the proboscis extension reflex learning in a differential conditioning paradigm. Rewarding one odour (e.g. a deuterated compound) with sucrose and not rewarding the respective analogue (e.g. hydrogen-based odorant) shows that honeybees readily learn to discriminate hydrogen-based odorants from their deuterated counterparts and supports the idea that intra-molecular vibrations may contribute to odour discrimination.

  9. One retrieval trial induces reconsolidation in an appetitive learning paradigm in honeybees (Apis mellifera).

    PubMed

    Stollhoff, Nicola; Menzel, Randolf; Eisenhardt, Dorothea

    2008-05-01

    Combining memory retrieval with the application of a protein synthesis-inhibitor leads to an amnestic effect that is referred to as the reconsolidation phenomenon. Several behavioural studies demonstrate that only a few or weak retrieval trials (that do not result in significant extinction) lead to this phenomenon. In contrast, many trials (that result in significant extinction) combined with a protein synthesis inhibitor result in an inhibition of the extinction memory. Based on these findings it was suggested that extinction is the boundary condition for reconsolidation: when extinction is induced the consolidation of the extinction memory is the dominant process. Recently we were not able to confirm this hypothesis in the honeybee (Apis mellifera): we did not find the reconsolidation phenomenon after one retrieval trial, but demonstrated reconsolidation after five retrieval trials that led to extinction. To exclude that this observation resembles a special case in insects we here wanted to know if one retrieval trial induces reconsolidation as it has been demonstrated before in many other species. To do so we used experimental parameters that had been used before to demonstrate consolidation in the honeybee with the exception that this time the protein synthesis-inhibitor was applied 1 h after one memory retrieval instead after acquisition. We thereby demonstrate the reconsolidation phenomenon after one retrieval trial but only when using the doubled dose of protein synthesis-inhibitor that has been used to inhibit consolidation.

  10. Gigantism in honeybees: Apis cerana queens reared in mixed-species colonies

    NASA Astrophysics Data System (ADS)

    Tan, Ken; Hepburn, H. R.; He, Shaoyu; Radloff, S. E.; Neumann, P.; Fang, Xiang

    2006-07-01

    The development of animals depends on both genetic and environmental effects to a varying extent. Their relative influences can be evaluated in the social insects by raising the intracolonial diversity to an extreme in nests consisting of workers from more than one species. In this study, we studied the effects of mixed honeybee colonies of Apis mellifera and Apis cerana on the rearing of grafted queen larvae of A. cerana. A. mellifera sealed worker brood was introduced into A. cerana colonies and on emergence, the adults were accepted. Then, A. cerana larvae were grafted for queen rearing into two of these mixed-species colonies. Similarly, A. cerana larvae and A. mellifera larvae were also grafted conspecifically as controls. The success rate of A. cerana queen rearing in the test colonies was 64.5%, surpassing all previous attempts at interspecific queen rearing. After emergence, all virgin queens obtained from the three groups ( N=90) were measured morphometrically. The A. cerana queens from the mixed-species colonies differed significantly in size and pigmentation from the A. cerana control queens and closely approximated the A. mellifera queens. It is inferred that these changes in the A. cerana queens reared in the mixed-species colonies can be attributed to feeding by heterospecific nurse bees and/or chemical differences in royal jelly. Our data show a strong impact of environment on the development of queens. The results further suggest that in honeybees the cues for brood recognition can be learned by heterospecific workers after eclosion, thereby providing a novel analogy to slave making in ants.

  11. Extensive population admixture on drone congregation areas of the giant honeybee, Apis dorsata (Fabricius, 1793).

    PubMed

    Beaurepaire, Alexis L; Kraus, Bernard F; Koeniger, Gudrun; Koeniger, Nikolaus; Lim, Herbert; Moritz, Robin F A

    2014-12-01

    The giant honeybee Apis dorsata often forms dense colony aggregations which can include up to 200 often closely related nests in the same location, setting the stage for inbred matings. Yet, like in all other Apis species, A. dorsata queens mate in mid-air on lek like drone congregation areas (DCAs) where large numbers of males gather in flight. We here report how the drone composition of A. dorsata DCAs facilitates outbreeding, taking into the account both spatial (three DCAs) and temporal (subsequent sampling days) dynamics. We compared the drones' genotypes at ten microsatellite DNA markers with those of the queen genotypes of six drone-producing colonies located close to the DCAs (Tenom, Sabah, Malaysia). None of 430 sampled drones originated from any of these nearby colonies. Moreover, we estimated that 141 unidentified colonies were contributing to the three DCAs. Most of these colonies were participating multiple times in the different locations and/or during the consecutive days of sampling. The drones sampled in the DCAs could be attributed to six subpopulations. These were all admixed in all DCA samples, increasing the effective population size an order of magnitude and preventing matings between potentially related queens and drones.

  12. Extensive population admixture on drone congregation areas of the giant honeybee, Apis dorsata (Fabricius, 1793).

    PubMed

    Beaurepaire, Alexis L; Kraus, Bernard F; Koeniger, Gudrun; Koeniger, Nikolaus; Lim, Herbert; Moritz, Robin F A

    2014-12-01

    The giant honeybee Apis dorsata often forms dense colony aggregations which can include up to 200 often closely related nests in the same location, setting the stage for inbred matings. Yet, like in all other Apis species, A. dorsata queens mate in mid-air on lek like drone congregation areas (DCAs) where large numbers of males gather in flight. We here report how the drone composition of A. dorsata DCAs facilitates outbreeding, taking into the account both spatial (three DCAs) and temporal (subsequent sampling days) dynamics. We compared the drones' genotypes at ten microsatellite DNA markers with those of the queen genotypes of six drone-producing colonies located close to the DCAs (Tenom, Sabah, Malaysia). None of 430 sampled drones originated from any of these nearby colonies. Moreover, we estimated that 141 unidentified colonies were contributing to the three DCAs. Most of these colonies were participating multiple times in the different locations and/or during the consecutive days of sampling. The drones sampled in the DCAs could be attributed to six subpopulations. These were all admixed in all DCA samples, increasing the effective population size an order of magnitude and preventing matings between potentially related queens and drones. PMID:25558361

  13. Extensive population admixture on drone congregation areas of the giant honeybee, Apis dorsata (Fabricius, 1793)

    PubMed Central

    Beaurepaire, Alexis L; Kraus, Bernard F; Koeniger, Gudrun; Koeniger, Nikolaus; Lim, Herbert; Moritz, Robin F A

    2014-01-01

    The giant honeybee Apis dorsata often forms dense colony aggregations which can include up to 200 often closely related nests in the same location, setting the stage for inbred matings. Yet, like in all other Apis species, A. dorsata queens mate in mid-air on lek like drone congregation areas (DCAs) where large numbers of males gather in flight. We here report how the drone composition of A. dorsata DCAs facilitates outbreeding, taking into the account both spatial (three DCAs) and temporal (subsequent sampling days) dynamics. We compared the drones’ genotypes at ten microsatellite DNA markers with those of the queen genotypes of six drone-producing colonies located close to the DCAs (Tenom, Sabah, Malaysia). None of 430 sampled drones originated from any of these nearby colonies. Moreover, we estimated that 141 unidentified colonies were contributing to the three DCAs. Most of these colonies were participating multiple times in the different locations and/or during the consecutive days of sampling. The drones sampled in the DCAs could be attributed to six subpopulations. These were all admixed in all DCA samples, increasing the effective population size an order of magnitude and preventing matings between potentially related queens and drones. PMID:25558361

  14. A worldwide survey of genome sequence variation provides insight into the evolutionary history of the honeybee Apis mellifera.

    PubMed

    Wallberg, Andreas; Han, Fan; Wellhagen, Gustaf; Dahle, Bjørn; Kawata, Masakado; Haddad, Nizar; Simões, Zilá Luz Paulino; Allsopp, Mike H; Kandemir, Irfan; De la Rúa, Pilar; Pirk, Christian W; Webster, Matthew T

    2014-10-01

    The honeybee Apis mellifera has major ecological and economic importance. We analyze patterns of genetic variation at 8.3 million SNPs, identified by sequencing 140 honeybee genomes from a worldwide sample of 14 populations at a combined total depth of 634×. These data provide insight into the evolutionary history and genetic basis of local adaptation in this species. We find evidence that population sizes have fluctuated greatly, mirroring historical fluctuations in climate, although contemporary populations have high genetic diversity, indicating the absence of domestication bottlenecks. Levels of genetic variation are strongly shaped by natural selection and are highly correlated with patterns of gene expression and DNA methylation. We identify genomic signatures of local adaptation, which are enriched in genes expressed in workers and in immune system- and sperm motility-related genes that might underlie geographic variation in reproduction, dispersal and disease resistance. This study provides a framework for future investigations into responses to pathogens and climate change in honeybees.

  15. In-Depth N-Glycosylation Reveals Species-Specific Modifications and Functions of the Royal Jelly Protein from Western (Apis mellifera) and Eastern Honeybees (Apis cerana).

    PubMed

    Feng, Mao; Fang, Yu; Han, Bin; Xu, Xiang; Fan, Pei; Hao, Yue; Qi, Yuping; Hu, Han; Huo, Xinmei; Meng, Lifeng; Wu, Bin; Li, Jianke

    2015-12-01

    Royal jelly (RJ), secreted by honeybee workers, plays diverse roles as nutrients and defense agents for honeybee biology and human health. Despite being reported to be glycoproteins, the glycosylation characterization and functionality of RJ proteins in different honeybee species are largely unknown. An in-depth N-glycoproteome analysis and functional assay of RJ produced by Apis mellifera lingustica (Aml) and Apis cerana cerana (Acc) were conducted. RJ produced by Aml yielded 80 nonredundant N-glycoproteins carrying 190 glycosites, of which 23 novel proteins harboring 35 glycosites were identified. For Acc, all 43 proteins glycosylated at 138 glycosites were reported for the first time. Proteins with distinct N-glycoproteomic characteristics in terms of glycoprotein species, number of N-glycosylated sites, glycosylation motif, abundance level of glycoproteins, and N-glycosites were observed in this two RJ samples. The fact that the low inhibitory efficiency of N-glycosylated major royal jelly protein 2 (MRJP2) against Paenibacillus larvae (P. larvae) and the absence of antibacterial related glycosylated apidaecin, hymenoptaecin, and peritrophic matrix in the Aml RJ compared to Acc reveal the mechanism for why the Aml larvae are susceptible to P. larvae, the causative agent of a fatal brood disease (American foulbrood, AFB). The observed antihypertension activity of N-glycosylated MRJP1 in two RJ samples and a stronger activity found in Acc than in Aml reveal that specific RJ protein and modification are potentially useful for the treatment of hypertensive disease for humans. Our data gain novel understanding that the western and eastern bees have evolved species-specific strategies of glycosylation to fine-tune protein activity for optimizing molecular function as nutrients and immune agents for the good of honeybee and influence on the health promoting activity for human as well. This serves as a valuable resource for the targeted probing of the biological

  16. Honeybees.

    ERIC Educational Resources Information Center

    Platt, Season, Ed.

    1986-01-01

    The life patterns, behaviors, and functions of the social insects, the honeybees, are presented in this publication. Illustrations and information are offered on the topic areas of: (1) the honeybee society (explaining the jobs of the queen, worker, and drone bees); (2) the hive (describing how the hive is constructed, how new bees develop, and…

  17. Systemic Spread and Propagation of a Plant-Pathogenic Virus in European Honeybees, Apis mellifera

    PubMed Central

    Li, Ji Lian; Cornman, R. Scott; Evans, Jay D.; Pettis, Jeffery S.; Zhao, Yan; Murphy, Charles; Peng, Wen Jun; Wu, Jie; Hamilton, Michele; Boncristiani, Humberto F.; Zhou, Liang; Hammond, John; Chen, Yan Ping

    2014-01-01

    ABSTRACT Emerging and reemerging diseases that result from pathogen host shifts are a threat to the health of humans and their domesticates. RNA viruses have extremely high mutation rates and thus represent a significant source of these infectious diseases. In the present study, we showed that a plant-pathogenic RNA virus, tobacco ringspot virus (TRSV), could replicate and produce virions in honeybees, Apis mellifera, resulting in infections that were found throughout the entire body. Additionally, we showed that TRSV-infected individuals were continually present in some monitored colonies. While intracellular life cycle, species-level genetic variation, and pathogenesis of the virus in honeybee hosts remain to be determined, the increasing prevalence of TRSV in conjunction with other bee viruses from spring toward winter in infected colonies was associated with gradual decline of host populations and winter colony collapse, suggesting the negative impact of the virus on colony survival. Furthermore, we showed that TRSV was also found in ectoparasitic Varroa mites that feed on bee hemolymph, but in those instances the virus was restricted to the gastric cecum of Varroa mites, suggesting that Varroa mites may facilitate the spread of TRSV in bees but do not experience systemic invasion. Finally, our phylogenetic analysis revealed that TRSV isolates from bees, bee pollen, and Varroa mites clustered together, forming a monophyletic clade. The tree topology indicated that the TRSVs from arthropod hosts shared a common ancestor with those from plant hosts and subsequently evolved as a distinct lineage after transkingdom host alteration. This study represents a unique example of viruses with host ranges spanning both the plant and animal kingdoms. PMID:24449751

  18. Insights into female sperm storage from the spermathecal fluid proteome of the honeybee Apis mellifera

    PubMed Central

    Baer, Boris; Eubel, Holger; Taylor, Nicolas L; O'Toole, Nicholas; Millar, A Harvey

    2009-01-01

    Background Female animals are often able to store sperm inside their body - in some species even for several decades. The molecular basis of how females keep non-own cells alive is largely unknown, but since sperm cells are reported to be transcriptionally silenced and, therefore, limited in their ability to maintain their own function, it is likely that females actively participate in sperm maintenance. Because female contributions are likely to be of central importance for sperm survival, molecular insights into the process offer opportunities to observe mechanisms through which females manipulate sperm. Results We used the honeybee, Apis mellifera, in which queens are highly polyandrous and able to maintain sperm viable for several years. We identified over a hundred proteins representing the major constituents of the spermathecal fluid, which females contribute to sperm in storage. We found that the gel profile of proteins from spermathecal fluid is very similar to the secretions of the spermathecal gland and concluded that the spermathecal glands are the main contributors to the spermathecal fluid proteome. A detailed analysis of the spermathecal fluid proteins indicate that they fall into a range of different functional groups, most notably enzymes of energy metabolism and antioxidant defense. A metabolic network analysis comparing the proteins detected in seminal fluid and spermathecal fluid showed a more integrated network is present in the spermathecal fluid that could facilitate long-term storage of sperm. Conclusions We present a large-scale identification of proteins in the spermathecal fluid of honeybee queens and provide insights into the molecular regulation of female sperm storage. PMID:19538722

  19. Economics of comb wax salvage by the red dwarf honeybee, Apis florea.

    PubMed

    Pirk, Christian W W; Crous, Kendall L; Duangphakdee, Orawan; Radloff, Sarah E; Hepburn, Randall

    2011-04-01

    Colonies of Apis florea, which only abscond a short distance, usually return to salvage old nest wax; but, those colonies, and all other honeybee species which go considerably further, do not. Wax salvage would clearly be counter-productive unless the energy input/energy yield threshold was a profitable one. There are two possible trade-offs in this scenario, the trade-off between the energy expended to recover the wax (recovering hypothesis) as against that of replacing the wax by new secretion (replacing hypothesis). In order to compare the two hypotheses, the fuel costs involved in salvaging wax on one return trip, the average flower handling time, flight time and relative values for substituting the salvaged wax with nectar were calculated. Moreover, the energy value of the wax was determined. Net energy gains for salvaged wax were calculated. The energy value of the salvaged wax was 42.7 J/mg, thus too high to be the limiting factor since salvaging costs are only 642.76 mJ/mg (recovering hypothesis). The recovery costs (642.76 mJ/mg) only fall below the replacement costs for absconding distance below 115 m thus supporting the replacing hypothesis. This energetic trade-off between replacing and recycling plus the small absconding range of A. florea might explain why A. florea is probably the only honeybee species known to salvage wax and it parsimoniously explains the underlying reasons why A. florea only salvages wax from the old nest if the new nesting site is less than 100-200 m away-energetically, it pays off to recycle.

  20. Eph Receptor and Ephrin Signaling in Developing and Adult Brain of the Honeybee (Apis mellifera)

    PubMed Central

    Vidovic, Maria; Nighorn, Alan; Koblar, Simon; Maleszka, Ryszard

    2007-01-01

    Roles for Eph receptor tyrosine kinase and ephrin signaling in vertebrate brain development are well established. Their involvement in the modulation of mammalian synaptic structure and physiology is also emerging. However, less is known of their effects on brain development and their function in adult invertebrate nervous systems. Here, we report on the characterization of Eph receptor and ephrin orthologs in the honeybee, Apis mellifera (Am), and their role in learning and memory. In situ hybridization for mRNA expression showed a uniform distribution of expression of both genes across the developing pupal and adult brain. However, in situ labeling with Fc fusion proteins indicated that the AmEphR and Amephrin proteins were differentially localized to cell body regions in the mushroom bodies and the developing neuropiles of the antennal and optic lobes. In adults, AmEphR protein was localized to regions of synaptic contacts in optic lobes, in the glomeruli of antennal lobes, and in the medial lobe of the mushroom body. The latter two regions are involved in olfactory learning and memory in the honeybee. Injections of EphR-Fc and ephrin-Fc proteins into the brains of adult bees, 1 h before olfactory conditioning of the proboscis extension reflex, sig-nificantly reduced memory 24 h later. Experimental amnesia in the group injected with ephrin-Fc was apparent 1 h post-training. Experimental amnesia was also induced by post-training injections with ephrin-Fc suggesting a role in recall. This is the first demonstration that Eph molecules function to regulate the formation of memory in insects. PMID:17443785

  1. Observation system for the control of the hive environment by the honeybee (Apis mellifera).

    PubMed

    Ohashi, Mizue; Okada, Ryuichi; Kimura, Toshifumi; Ikeno, Hidetoshi

    2009-08-01

    The honeybee can control its hive environment to survive drastic changes in the field environment. To study the control of multiple environmental factors by honeybees, in this experiment, we developed a continual and simultaneous monitoring system for the temperature, moisture, and carbon dioxide (CO2) concentration in a honeybee hive. Changes in hive weight, CO2 production rate, and honeybee behavior were also monitored to estimate energy costs and behavioral activity for the environmental regulation. Measurements were conducted in August 2008. We found that the honeybee hive has a microclimate different from the ambient climate, and that the difference was partly accompanied by changes in honeybee activity. Our results also suggest that hive temperature, humidity, and CO2 concentrations are controlled by different mechanisms. Additional monitoring of the hive environment and honeybee behavior for longer periods would enable us to understand the mechanisms of environmental control by honeybees, which is one of the behaviors that define honeybees as social insects.

  2. Risk posed to honeybees (Apis mellifera L, Hymenoptera) by an imidacloprid seed dressing of sunflowers.

    PubMed

    Schmuck, R; Schöning, R; Stork, A; Schramel, O

    2001-03-01

    In a greenhouse metabolism study, sunflowers were seed-treated with radiolabelled imidacloprid in a 700 g kg-1 WS formulation (Gaucho WS 70) at 0.7 mg AI per seed, and the nature of the resulting residues in nectar and pollen was determined. Only the parent compound and no metabolites were detected in nectar and pollen of these seed-treated sunflower plants (limit of detection < 0.001 mg kg-1). In standard LD50 laboratory tests, imidacloprid showed high oral toxicity to honeybees (Apis mellifera), with LD50 values between 3.7 and 40.9 ng per bee, corresponding to a lethal food concentration between 0.14 and 1.57 mg kg-1. The residue level of imidacloprid in nectar and pollen of seed-treated sunflower plants in the field was negligible. Under field-growing conditions no residues were detected (limit of detection: 0.0015 mg kg-1) in either nectar or pollen. There were also no detectable residues in nectar and pollen of sunflowers planted as a succeeding crop in soils which previously had been cropped with imidacloprid seed-treated plants. Chronic feeding experiments with sunflower honey fortified with 0.002, 0.005, 0.010 and 0.020 mg kg-1 imidacloprid were conducted to assess potential long-term adverse effects on honeybee colonies. Testing end-points in this 39-day feeding study were mortality, feeding activity, wax/comb production, breeding performance and colony vitality. Even at the highest test concentration, imidacloprid showed no adverse effects on the development of the exposed bee colonies. This no-adverse-effect concentration of 0.020 mg kg-1 compares with a field residue level of less than 0.0015 mg kg-1 (= limit of detection in the field residue studies) which clearly shows that a sunflower seed dressing with imidacloprid poses no risk to honeybees. This conclusion is confirmed by observations made in more than 10 field studies and several tunnel tests. PMID:11455652

  3. Unexpectedly strong effect of caffeine on the vitality of western honeybees (Apis mellifera).

    PubMed

    Strachecka, A; Krauze, M; Olszewski, K; Borsuk, G; Paleolog, J; Merska, M; Chobotow, J; Bajda, M; Grzywnowicz, K

    2014-11-01

    We examined the influence of caffeine on honeybee lifespan, Nosema resistance, key enzyme activities, metabolic compound concentrations, and total DNA methylation levels. Caffeine slowed age-related metabolic tendencies. Bees that consumed caffeine lived longer and were not infested with Nosema spp. Caffeine-treated workers had higher protein concentrations. The levels increased with aging but they then decreased in older bees. Caffeine increased the activities of antioxidant enzymes (SOD, GPx, CAT, GST), AST, ALT, ALP, neutral proteases, and protease inhibitors, and the concentrations of uric acid, triglycerides, cholesterol, glucose, and Ca2+. Acidic and alkaline protease activities were lower in the bees treated with caffeine. Creatinine and Mg2+ concentrations were higher in the caffeine-treated workers but only up to 14 days of age. Caffeine significantly decreased DNA methylation levels in older bees. The compound could be considered as a natural diet supplement increasing apian resistance to stress factors. Our studies will enhance possibilities of using Apis mellifera as a model organism in gerontological studies.

  4. The moment before touchdown: landing manoeuvres of the honeybee Apis mellifera.

    PubMed

    Evangelista, C; Kraft, P; Dacke, M; Reinhard, J; Srinivasan, M V

    2010-01-15

    Although landing is a crucial part of insect flight, it has attracted relatively little study. Here, we investigate, for the first time, the final moments of a honeybee's (Apis mellifera) landing manoeuvre. Using high-speed video recordings, we analyse the behaviour of bees as they approach and land on surfaces of various orientations. The bees enter a stable hover phase, immediately prior to touchdown. We have quantified behaviour during this hover phase and examined whether it changes as the tilt of the landing surface is varied from horizontal (floor), through sloped (uphill) and vertical (wall), to inverted (ceiling). The bees hover at a remarkably constant distance from the surface, irrespective of its tilt. Body inclination increases progressively as the tilt of the surface is increased, and is accompanied by an elevation of the antennae. The tight correlation between the tilt of the surface, and the orientation of the body and the antennae, indicates that the bee's visual system is capable of inferring the tilt of the surface, and pointing the antennae toward it. Touchdown is initiated by extending the appendage closest to the surface, namely, the hind legs when landing on horizontal or sloping surfaces, and the front legs or antennae when landing on vertical surfaces. Touchdown on inverted surfaces is most likely triggered by a mechanosensory signal from the antennae. Evidently, bees use a landing strategy that is flexibly tailored to the varying topography of the terrain.

  5. Immunoprophylactic effects of administering honeybee (Apis melifera) venom spray against Salmonella gallinarum in broiler chicks.

    PubMed

    Jung, Bock-Gie; Lee, Jin-A; Park, Seong-Beom; Hyun, Pung-Mi; Park, Jin-Kyu; Suh, Guk-Hyun; Lee, Bong-Joo

    2013-10-01

    Antibiotics continue to be used as growth promoters in the poultry industry. Honeybee (Apis melifera) venom (HBV) possesses a number of beneficial biological activities, particularly for regulating the immune system. The aim of the present study was to evaluate the immunoprophylactic effects of HBV against Salmonella Gallinarum in broiler chicks as an initial step towards developing eco-friendly alternatives to reduce antibiotic use. HBV was administered using a spray technique. HBV improved body weight gain, particularly in the presence of infection. Moreover, HBV enhanced antibody production activity against formalin-killed S. Gallinarum. The CD4(+):CD8(+) T lymphocyte ratio, relative mRNA expression levels of interleukin-18 and interferon-γ, and serum lysozyme activity also increased following HBV administration before the infection period as well as during infection. HBV reinforced bacterial clearance and increased survivability against S. Gallinarum. Corresponding pathological analyses demonstrated that the HBV-sprayed group displayed mild and less severe abnormal changes compared with those in the control group. It was presumed that the prophylactic effects of HBV against S. Gallinarum were associated with its non-specific immune response stimulating activity. Thus, HBV may provide an alternative to reduce antibiotic use in the poultry industry. PMID:23719751

  6. Odour coding is bilaterally symmetrical in the antennal lobes of honeybees (Apis mellifera).

    PubMed

    Galizia, C G; Nägler, K; Hölldobler, B; Menzel, R

    1998-09-01

    The primary olfactory neuropil, the antennal lobe (AL) in insects, is organized in glomeruli. Glomerular activity patterns are believed to represent the across-fibre pattern of the olfactory code. These patterns depend on an organized innervation from the afferent receptor cells, and interconnections of local interneurons. It is unclear how the complex organization of the AL is achieved ontogenetically. In this study, we measured the functional activity patterns elicited by stimulation with odours in the right and the left AL of the same honeybee (Apis mellifera) using optical imaging of the calcium-sensitive dye calcium green. We show here that these patterns are bilaterally symmetrical (n=25 bees). This symmetry holds true for all odours tested, irrespective of their role as pheromones or as environmental odours, or whether they were pure substances or complex blends (n=13 odours). Therefore, we exclude that activity dependent mechanisms local to one AL determine the functional glomerular activity. This identity is genetically predetermined. Alternatively, if activity dependent processes are involved, bilateral connections would have to shape symmetry, or, temporal constraints could lead to identical patterns on both sides due to their common history of odour exposure. PMID:9758166

  7. Essential oil of Indian propolis: chemical composition and repellency against the honeybee Apis florea.

    PubMed

    Naik, Dattatraya G; Vaidya, Harshada S; Namjoshi, Tejas P

    2013-04-01

    Hitherto unknown biological properties and the chemical composition of the essential oil isolated from propolis of Indian origin were established. GC/MS Analysis of the essential oil revealed the presence of 32 constituents, of which ten were major compounds, nine had intermediate contents, and 13 were minor compounds. With the exception of six minor constituents, that could not be identified, their identification was based on the comparison of their mass spectra and Kovats retention indices with those listed in the NIST and Wiley mass spectral libraries. Their structural assignment was confirmed by GC/MS co-injection of the essential oil with authentic compounds. Quantification of the components was done by GC-FID analyses. Moreover, the essential oil was shown to possess repellent activity against the honeybee Apis florea. The activity was found to be dose dependent. The average repellency (ΔR) increased with increasing essential-oil concentration up to 24 μg/ml and remained constant for the formulation with the higher concentration. These findings established the chemical constitution of the essential oil and might be useful to beekeepers for the improvement of the bee management.

  8. Molecular and Biological Characterization of Deformed Wing Virus of Honeybees (Apis mellifera L.)

    PubMed Central

    Lanzi, Gaetana; de Miranda, Joachim R.; Boniotti, Maria Beatrice; Cameron, Craig E.; Lavazza, Antonio; Capucci, Lorenzo; Camazine, Scott M.; Rossi, Cesare

    2006-01-01

    Deformed wing virus (DWV) of honeybees (Apis mellifera) is closely associated with characteristic wing deformities, abdominal bloating, paralysis, and rapid mortality of emerging adult bees. The virus was purified from diseased insects, and its genome was cloned and sequenced. The genomic RNA of DWV is 10,140 nucleotides in length and contains a single large open reading frame encoding a 328-kDa polyprotein. The coding sequence is flanked by a 1,144-nucleotide 5′ nontranslated leader sequence and a 317-nucleotide 3′ nontranslated region, followed by a poly(A) tail. The three major structural proteins, VP1 (44 kDa), VP2 (32 kDa), and VP3 (28 kDa), were identified, and their genes were mapped to the N-terminal section of the polyprotein. The C-terminal part of the polyprotein contains sequence motifs typical of well-characterized picornavirus nonstructural proteins: an RNA helicase, a chymotrypsin-like 3C protease, and an RNA-dependent RNA polymerase. The genome organization, capsid morphology, and sequence comparison data indicate that DWV is a member of the recently established genus Iflavirus. PMID:16641291

  9. Selection on worker honeybee responses to queen pheromone (Apis mellifera L.)

    NASA Astrophysics Data System (ADS)

    Pankiw, T.; Winston, Mark L.; Fondrk, M. Kim; Slessor, Keith N.

    Disruptive selection for responsiveness to queen mandibular gland pheromone (QMP) in the retinue bioassay resulted in the production of high and low QMP responding strains of honeybees (Apis mellifera L.). Strains differed significantly in their retinue response to QMP after one generation of selection. By the third generation the high strain was on average at least nine times more responsive than the low strain. The strains showed seasonal phenotypic plasticity such that both strains were more responsive to the pheromone in the spring than in the fall. Directional selection for low seasonal variation indicated that phenotypic plasticity was an additional genetic component to retinue response to QMP. Selection for high and low retinue responsiveness to QMP was not an artifact of the synthetic blend because both strains were equally responsive or non-responsive to whole mandibular gland extracts compared with QMP. The use of these strains clearly pointed to an extra-mandibular source of retinue pheromones (Pankiw et al. 1995; Slessor et al. 1998; Keeling et al. 1999).

  10. Genome-Wide Association Study of a Varroa-Specific Defense Behavior in Honeybees (Apis mellifera).

    PubMed

    Spötter, Andreas; Gupta, Pooja; Mayer, Manfred; Reinsch, Norbert; Bienefeld, Kaspar

    2016-05-01

    Honey bees are exposed to many damaging pathogens and parasites. The most devastating is Varroa destructor, which mainly affects the brood. A promising approach for preventing its spread is to breed Varroa-resistant honey bees. One trait that has been shown to provide significant resistance against the Varroa mite is hygienic behavior, which is a behavioral response of honeybee workers to brood diseases in general. Here, we report the use of an Affymetrix 44K SNP array to analyze SNPs associated with detection and uncapping of Varroa-parasitized brood by individual worker bees (Apis mellifera). For this study, 22 000 individually labeled bees were video-monitored and a sample of 122 cases and 122 controls was collected and analyzed to determine the dependence/independence of SNP genotypes from hygienic and nonhygienic behavior on a genome-wide scale. After false-discovery rate correction of the P values, 6 SNP markers had highly significant associations with the trait investigated (α < 0.01). Inspection of the genomic regions around these SNPs led to the discovery of putative candidate genes.

  11. Immunoprophylactic effects of administering honeybee (Apis melifera) venom spray against Salmonella gallinarum in broiler chicks.

    PubMed

    Jung, Bock-Gie; Lee, Jin-A; Park, Seong-Beom; Hyun, Pung-Mi; Park, Jin-Kyu; Suh, Guk-Hyun; Lee, Bong-Joo

    2013-10-01

    Antibiotics continue to be used as growth promoters in the poultry industry. Honeybee (Apis melifera) venom (HBV) possesses a number of beneficial biological activities, particularly for regulating the immune system. The aim of the present study was to evaluate the immunoprophylactic effects of HBV against Salmonella Gallinarum in broiler chicks as an initial step towards developing eco-friendly alternatives to reduce antibiotic use. HBV was administered using a spray technique. HBV improved body weight gain, particularly in the presence of infection. Moreover, HBV enhanced antibody production activity against formalin-killed S. Gallinarum. The CD4(+):CD8(+) T lymphocyte ratio, relative mRNA expression levels of interleukin-18 and interferon-γ, and serum lysozyme activity also increased following HBV administration before the infection period as well as during infection. HBV reinforced bacterial clearance and increased survivability against S. Gallinarum. Corresponding pathological analyses demonstrated that the HBV-sprayed group displayed mild and less severe abnormal changes compared with those in the control group. It was presumed that the prophylactic effects of HBV against S. Gallinarum were associated with its non-specific immune response stimulating activity. Thus, HBV may provide an alternative to reduce antibiotic use in the poultry industry.

  12. Immunoprophylactic Effects of Administering Honeybee (Apis melifera) Venom Spray against Salmonella Gallinarum in Broiler Chicks

    PubMed Central

    JUNG, Bock-Gie; LEE, Jin-A; PARK, Seong-Beom; HYUN, Pung-Mi; PARK, Jin-Kyu; SUH, Guk-Hyun; LEE, Bong-Joo

    2013-01-01

    ABSTRACT Antibiotics continue to be used as growth promoters in the poultry industry. Honeybee (Apis melifera) venom (HBV) possesses a number of beneficial biological activities, particularly for regulating the immune system. The aim of the present study was to evaluate the immunoprophylactic effects of HBV against Salmonella Gallinarum in broiler chicks as an initial step towards developing eco-friendly alternatives to reduce antibiotic use. HBV was administered using a spray technique. HBV improved body weight gain, particularly in the presence of infection. Moreover, HBV enhanced antibody production activity against formalin-killed S. Gallinarum. The CD4+:CD8+ T lymphocyte ratio, relative mRNA expression levels of interleukin-18 and interferon-γ, and serum lysozyme activity also increased following HBV administration before the infection period as well as during infection. HBV reinforced bacterial clearance and increased survivability against S. Gallinarum. Corresponding pathological analyses demonstrated that the HBV-sprayed group displayed mild and less severe abnormal changes compared with those in the control group. It was presumed that the prophylactic effects of HBV against S. Gallinarum were associated with its non-specific immune response stimulating activity. Thus, HBV may provide an alternative to reduce antibiotic use in the poultry industry. PMID:23719751

  13. Cheaters sometimes prosper: targeted worker reproduction in honeybee (Apis mellifera) colonies during swarming.

    PubMed

    Holmes, Michael J; Oldroyd, Benjamin P; Duncan, Michael; Allsopp, Michael H; Beekman, Madeleine

    2013-08-01

    Kin selection theory predicts that honeybee (Apis mellifera) workers should largely refrain from producing their own offspring, as the workers collectively have higher inclusive fitness if they rear the sons of their mother, the queen. Studies that have quantified levels of ovary activation and reproduction among workers have largely supported this prediction. We sampled pre-emergent male pupae and adult workers from seven colonies at regular intervals throughout the reproductive part of the season. We show that the overall contribution of workers to male (drone) production is 4.2%, nearly 40 times higher than is generally reported, and is highest during reproductive swarming, when an average of 6.2% of the males genotyped are worker-produced. Similarly, workers in our samples were 100 times more likely to have active ovaries than previously assumed. Worker reproduction is seasonally influenced and peaks when colonies are rearing new queens. Not all worker subfamilies contribute equally to reproduction. Instead, certain subfamilies are massively over-represented in drone brood. By laying eggs within the period in which many colonies produce virgin queens, these rare worker subfamilies increase their direct fitness via their well-timed sons. PMID:23889604

  14. Identification and developmental profiles of hexamerins in antenna and hemolymph of the honeybee, Apis mellifera.

    PubMed

    Danty, E; Arnold, G; Burmester, T; Huet, J C; Huet, D; Pernollet, J C; Masson, C

    1998-01-01

    Four distinct hexamerin subunits (referred to as "hexamerins" in the following text) have been identified in the developing honeybee, Apis mellifera, by N-terminal protein sequencing. Hexamerins are abundant in the hemolymph of late larval and early pupal stages, and gradually decline during metamorphosis and adult development. Three hexamerins in the 70 kDa range have been found (Hex70a, Hex70b, Hex70c). In worker and drone, Hex70a is the only hexamerin present in large amount in later adult stages. Hex70b and c exhibit a similar developmental profile, disappearing in the drone just before adult emergence, and in the worker just after. Hex70b or Hex70c are still detectable in the adult queen. Hex80/110 likely exist in at least 3 different subunits, 1 of 110 kDa, and 2 of around 80 kDa, which all share a common N-terminus. They disappear during metamorphosis earlier than Hex70b and c. All these hexamerins have been found also in the antenna, suggesting their utilization in building up of antennal cuticle structures.

  15. The absolute configurations of hydroxy fatty acids from the royal jelly of honeybees (Apis mellifera).

    PubMed

    Kodai, Tetsuya; Nakatani, Takafumi; Noda, Naoki

    2011-03-01

    9-Hydroxy-2E-decenoic acid (9-HDA) is a precursor of the queen-produced substance, 9-oxo-2E-decenoic acid (9-ODA), which has various important functions and roles for caste maintenance in honeybee colonies (Apis mellifera). 9-HDA in royal jelly is considered to be a metabolite of 9-ODA produced by worker bees, and it is fed back to the queen who then transforms it into 9-ODA. Recently we found that 9-HDA is present in royal jelly as a mixture of optical isomers (R:S, 2:1). The finding leads us to suspect that chiral fatty acids in royal jelly are precursors of semiochemicals. Rather than looking for semiochemicals in the mandibular glands of the queen bee, this study involves the search for precursors of pheromones from large quantities of royal jelly. Seven chiral hydroxy fatty acids, 9,10-dihydroxy-2E-decenoic, 4,10-dihydroxy-2E-decenoic, 4,9-dihydroxy-2E-decenoic, 3-hydroxydecanoic, 3,9-dihydroxydecanoic, 3,11-dihydroxydodecanoic, and 3,10-dihydroxydecanoic acids were isolated. The absolute configurations of these acids were determined using the modified Mosher's method, and it was revealed that, similar to 9-HDA, five acids are present in royal jelly as mixtures of optical isomers.

  16. Cheaters sometimes prosper: targeted worker reproduction in honeybee (Apis mellifera) colonies during swarming.

    PubMed

    Holmes, Michael J; Oldroyd, Benjamin P; Duncan, Michael; Allsopp, Michael H; Beekman, Madeleine

    2013-08-01

    Kin selection theory predicts that honeybee (Apis mellifera) workers should largely refrain from producing their own offspring, as the workers collectively have higher inclusive fitness if they rear the sons of their mother, the queen. Studies that have quantified levels of ovary activation and reproduction among workers have largely supported this prediction. We sampled pre-emergent male pupae and adult workers from seven colonies at regular intervals throughout the reproductive part of the season. We show that the overall contribution of workers to male (drone) production is 4.2%, nearly 40 times higher than is generally reported, and is highest during reproductive swarming, when an average of 6.2% of the males genotyped are worker-produced. Similarly, workers in our samples were 100 times more likely to have active ovaries than previously assumed. Worker reproduction is seasonally influenced and peaks when colonies are rearing new queens. Not all worker subfamilies contribute equally to reproduction. Instead, certain subfamilies are massively over-represented in drone brood. By laying eggs within the period in which many colonies produce virgin queens, these rare worker subfamilies increase their direct fitness via their well-timed sons.

  17. Vertical-transmission routes for deformed wing virus of honeybees (Apis mellifera).

    PubMed

    Yue, Constanze; Schröder, Marion; Gisder, Sebastian; Genersch, Elke

    2007-08-01

    Deformed wing virus (DWV) is a viral pathogen of the European honeybee (Apis mellifera), associated with clinical symptoms and colony collapse when transmitted by the ectoparasitic mite Varroa destructor. In the absence of V. destructor, DWV infection does not result in visible symptoms, suggesting that mite-independent transmission results in covert infections. True covert infections are a known infection strategy for insect viruses, resulting in long-term persistence of the virus in the population. They are characterized by the absence of disease symptoms in the presence of the virus and by vertical transmission of the virus. To demonstrate vertical transmission and, hence, true covert infections for DWV, a detailed study was performed on the vertical-transmission routes of DWV. In total, 192 unfertilized eggs originating from eight virgin queens, and the same number of fertilized eggs from the same queens after artificial insemination with DWV-negative (three queens) or DWV-positive (five queens) semen, were analysed individually. The F0 queens and drones and F1 drones and workers were also analysed for viral RNA. By in situ hybridization, viral sequences were detected in the ovary of an F0 queen that had laid DWV-positive unfertilized eggs and was inseminated with DWV-positive semen. In conclusion, vertical transmission of DWV from queens and drones to drone and worker offspring through unfertilized and fertilized eggs, respectively, was demonstrated. Viral sequences in fertilized eggs can originate from the queen, as well as from drones via DWV-positive semen.

  18. mRNA expression and DNA methylation in three key genes involved in caste differentiation in female honeybees (Apis mellifera)

    PubMed Central

    SHAO, Xin-Liang; HE, Shao-Yu; ZHUANG, Xin-Ying; FAN, Ying; LI, Ya-Hui; YAO, Yong-Gang

    2014-01-01

    In honeybee (Apis mellifera) colonies, queens and workers are alternative forms of the adult female honeybee that develop from genetically identical zygotes but that depend on differential nourishment. Queens and workers display distinct morphologies, anatomies and behavior, better known as caste differentiation. Despite some basic insights, the exact mechanism responsible for this phenomenon, especially at the molecular level, remains unclear although some progress has been achieved. In this study, we examined mRNA levels of the TOR (target of rapamycin) and Dnmt3 (DNA methyltransferase 3) genes, closely related to caste differentiation in honeybees. We also investigated mRNA expression of the S6K (similar to RPS6-p70-protein kinase) gene linked closely to organismal growth and development in queen and worker larvae (1-day and 3-day old). Last, we investigated the methylation status of these three genes in corresponding castes. We found no difference in mRNA expression for the three genes between 1st instar queen and worker larvae; however, 3rd instar queen larvae had a higher level of TOR mRNA than worker larvae. Methylation levels of all three genes were lower in queen larvae than worker larvae but the differences were not statistically significant. These findings provide basic data for broadening our understanding of caste differentiation in female honeybees. PMID:24668651

  19. Hovering flight in the honeybee Apis mellifera: kinematic mechanisms for varying aerodynamic forces.

    PubMed

    Vance, Jason T; Altshuler, Douglas L; Dickson, William B; Dickinson, Michael H; Roberts, Stephen P

    2014-01-01

    During hovering flight, animals can increase the wing velocity and therefore the net aerodynamic force per stroke by increasing wingbeat frequency, wing stroke amplitude, or both. The magnitude and orientation of aerodynamic forces are also influenced by the geometric angle of attack, timing of wing rotation, wing contact, and pattern of deviation from the primary stroke plane. Most of the kinematic data available for flying animals are average values for wing stroke amplitude and wingbeat frequency because these features are relatively easy to measure, but it is frequently suggested that the more subtle and difficult-to-measure features of wing kinematics can explain variation in force production for different flight behaviors. Here, we test this hypothesis with multicamera high-speed recording and digitization of wing kinematics of honeybees (Apis mellifera) hovering and ascending in air and hovering in a hypodense gas (heliox: 21% O2, 79% He). Bees employed low stroke amplitudes (86.7° ± 7.9°) and high wingbeat frequencies (226.8 ± 12.8 Hz) when hovering in air. When ascending in air or hovering in heliox, bees increased stroke amplitude by 30%-45%, which yielded a much higher wing tip velocity relative to that during simple hovering in air. Across the three flight conditions, there were no statistical differences in the amplitude of wing stroke deviation, minimum and stroke-averaged geometric angle of attack, maximum wing rotation velocity, or even wingbeat frequency. We employed a quasi-steady aerodynamic model to estimate the effects of wing tip velocity and geometric angle of attack on lift and drag. Lift forces were sensitive to variation in wing tip velocity, whereas drag was sensitive to both variation in wing tip velocity and angle of attack. Bees utilized kinematic patterns that did not maximize lift production but rather maintained lift-to-drag ratio. Thus, our data indicate that, at least for honeybees, the overall time course of wing angles is

  20. Hovering flight in the honeybee Apis mellifera: kinematic mechanisms for varying aerodynamic forces.

    PubMed

    Vance, Jason T; Altshuler, Douglas L; Dickson, William B; Dickinson, Michael H; Roberts, Stephen P

    2014-01-01

    During hovering flight, animals can increase the wing velocity and therefore the net aerodynamic force per stroke by increasing wingbeat frequency, wing stroke amplitude, or both. The magnitude and orientation of aerodynamic forces are also influenced by the geometric angle of attack, timing of wing rotation, wing contact, and pattern of deviation from the primary stroke plane. Most of the kinematic data available for flying animals are average values for wing stroke amplitude and wingbeat frequency because these features are relatively easy to measure, but it is frequently suggested that the more subtle and difficult-to-measure features of wing kinematics can explain variation in force production for different flight behaviors. Here, we test this hypothesis with multicamera high-speed recording and digitization of wing kinematics of honeybees (Apis mellifera) hovering and ascending in air and hovering in a hypodense gas (heliox: 21% O2, 79% He). Bees employed low stroke amplitudes (86.7° ± 7.9°) and high wingbeat frequencies (226.8 ± 12.8 Hz) when hovering in air. When ascending in air or hovering in heliox, bees increased stroke amplitude by 30%-45%, which yielded a much higher wing tip velocity relative to that during simple hovering in air. Across the three flight conditions, there were no statistical differences in the amplitude of wing stroke deviation, minimum and stroke-averaged geometric angle of attack, maximum wing rotation velocity, or even wingbeat frequency. We employed a quasi-steady aerodynamic model to estimate the effects of wing tip velocity and geometric angle of attack on lift and drag. Lift forces were sensitive to variation in wing tip velocity, whereas drag was sensitive to both variation in wing tip velocity and angle of attack. Bees utilized kinematic patterns that did not maximize lift production but rather maintained lift-to-drag ratio. Thus, our data indicate that, at least for honeybees, the overall time course of wing angles is

  1. MtDNA COI-COII marker and drone congregation area: an efficient method to establish and monitor honeybee (Apis mellifera L.) conservation centres.

    PubMed

    Bertrand, Bénédicte; Alburaki, Mohamed; Legout, Hélène; Moulin, Sibyle; Mougel, Florence; Garnery, Lionel

    2015-05-01

    Honeybee subspecies have been affected by human activities in Europe over the past few decades. One such example is the importation of nonlocal subspecies of bees which has had an adverse impact on the geographical repartition and subsequently on the genetic diversity of the black honeybee Apis mellifera mellifera. To restore the original diversity of this local honeybee subspecies, different conservation centres were set up in Europe. In this study, we established a black honeybee conservation centre Conservatoire de l'Abeille Noire d'Ile de France (CANIF) in the region of Ile-de-France, France. CANIF's honeybee colonies were intensively studied over a 3-year period. This study included a drone congregation area (DCA) located in the conservation centre. MtDNA COI-COII marker was used to evaluate the genetic diversity of CANIF's honeybee populations and the drones found and collected from the DCA. The same marker (mtDNA) was used to estimate the interactions and the haplotype frequency between CANIF's honeybee populations and 10 surrounding honeybee apiaries located outside of the CANIF. Our results indicate that the colonies of the conservation centre and the drones of the DCA show similar stable profiles compared to the surrounding populations with lower level of introgression. The mtDNA marker used on both DCA and colonies of the conservation centre seems to be an efficient approach to monitor and maintain the genetic diversity of the protected honeybee populations.

  2. MtDNA COI-COII marker and drone congregation area: an efficient method to establish and monitor honeybee (Apis mellifera L.) conservation centres.

    PubMed

    Bertrand, Bénédicte; Alburaki, Mohamed; Legout, Hélène; Moulin, Sibyle; Mougel, Florence; Garnery, Lionel

    2015-05-01

    Honeybee subspecies have been affected by human activities in Europe over the past few decades. One such example is the importation of nonlocal subspecies of bees which has had an adverse impact on the geographical repartition and subsequently on the genetic diversity of the black honeybee Apis mellifera mellifera. To restore the original diversity of this local honeybee subspecies, different conservation centres were set up in Europe. In this study, we established a black honeybee conservation centre Conservatoire de l'Abeille Noire d'Ile de France (CANIF) in the region of Ile-de-France, France. CANIF's honeybee colonies were intensively studied over a 3-year period. This study included a drone congregation area (DCA) located in the conservation centre. MtDNA COI-COII marker was used to evaluate the genetic diversity of CANIF's honeybee populations and the drones found and collected from the DCA. The same marker (mtDNA) was used to estimate the interactions and the haplotype frequency between CANIF's honeybee populations and 10 surrounding honeybee apiaries located outside of the CANIF. Our results indicate that the colonies of the conservation centre and the drones of the DCA show similar stable profiles compared to the surrounding populations with lower level of introgression. The mtDNA marker used on both DCA and colonies of the conservation centre seems to be an efficient approach to monitor and maintain the genetic diversity of the protected honeybee populations. PMID:25335970

  3. Loop-mediated isothermal amplification (LAMP) assays for rapid detection and differentiation of Nosema apis and N. ceranae in honeybees.

    PubMed

    Ptaszyńska, Aneta A; Borsuk, Grzegorz; Woźniakowski, Grzegorz; Gnat, Sebastian; Małek, Wanda

    2014-08-01

    Nosemosis is a contagious disease of honeybees (Apis mellifera) manifested by increased winter mortality, poor spring build-up and even the total extinction of infected bee colonies. In this paper, loop-mediated isothermal amplifications (LAMP) were used for the first time to identify and differentiate N. apis and N. ceranae, the causative agents of nosemosis. LAMP assays were performed at a constant temperature of 60 °C using two sets of six species-specific primers, recognising eight distinct fragments of 16S rDNA gene and GspSSD polymerase with strand displacement activity. The optimal time for LAMP and its Nosema species sensitivity and specificity were assessed. LAMP only required 30 min for robust identification of the amplicons. Ten-fold serial dilutions of total DNA isolated from bees infected with microsporidia were used to determine the detection limit of N. apis and N. ceranae DNAs by LAMP and standard PCR assays. LAMP appeared to be 10(3) -fold more sensitive than a standard PCR in detecting N. apis and N. ceranae. LAMP methods developed by us are highly Nosema species specific and allow to identify and differentiate N. apis and N. ceranae.

  4. Analysis of the organization and overlap of the visual fields in the compound eye of the honeybee (Apis mellifera).

    PubMed

    Wiitanen, W; Varela, F G

    1971-03-01

    Using the results of an optical analysis, a digital computer technique was developed to analyze the relative excitation produced by arbitrary figures at the rhabdom of the receptors of a compound eye. This technique was applied to several sets of figures for the honeybee (Apis mellifera) and a reasonable agreement was found with behavioral data. Similarly, the significance of a fixed cutoff angle for a visual field was investigated. It is concluded that overlap between neighboring ommatidia is highly significant for visual processing in the apposition eye, contrary to the assumptions of the mosaic theory.

  5. A microsatellite-based linkage map of the honeybee, Apis mellifera L.

    PubMed Central

    Solignac, Michel; Vautrin, Dominique; Baudry, Emmanuelle; Mougel, Florence; Loiseau, Anne; Cornuet, Jean-Marie

    2004-01-01

    A linkage map for the honeybee (Apis mellifera) was constructed mainly from the progeny of two hybrid queens (A. m. ligustica x A. m. mellifera). A total of 541 loci were mapped; 474 were microsatellite loci; a few were additional bands produced during PCRs, one of the two rDNA loci (using ITS), the MDH locus, and three sex-linked markers (Q and FB loci and one RAPD band). Twenty-four linkage groups were estimated of which 5 were minute (between 7.1 and 22.8 cM) and 19 were major groups (>76.5 cM). The number of major linkage groups exceeded by three the number of chromosomes of the complement (n = 16). The sum of the lengths of all linkage groups amounts to 4061 cM to which must be added at least 320 cM to link groups in excess, making a total of at least 4381 cM. The length of the largest linkage group I was 630 cM. The average density of markers was 7.5 cM and the average resolution was about one marker every 300 kb. For most of the large groups, the centromeric region was determined genetically, as described in (accompanying article in this issue), using half-tetrad analysis of thelytokous parthenogens in which diploid restoration occurs through central fusion. Several cases of segregation distortion that appreared to result from deleterious recessives were discovered. A low positive interference was also detected. PMID:15166152

  6. Evidence for Ventilation through Collective Respiratory Movements in Giant Honeybee (Apis dorsata) Nests

    PubMed Central

    Kastberger, Gerald; Waddoup, Dominique; Weihmann, Frank; Hoetzl, Thomas

    2016-01-01

    The Asian giant honeybees (Apis dorsata) build single-comb nests in the open, which makes this species particularly susceptible to environmental strains. Long-term infrared (IR) records documented cool nest regions (CNR) at the bee curtain (nCNR = 207, nnests > 20) distinguished by marked negative gradients (ΔTCNR/d < -3°C / 5 cm) at their margins. CNRs develop and recede within minutes, predominantly at higher ambient temperatures in the early afternoon. The differential size (ΔACNR) and temperature (ΔTCNR) values per time unit correlated mostly positively (RAT > 0) displaying the Venturi effect, which evidences funnel properties of CNRs. The air flows inwards through CNRs, which is verified by the negative spatial gradient ΔTCNR/d, by the positive grading of TCNR with Tamb and lastly by fanners which have directed their abdomens towards CNRs. Rare cases of RAT < 0 (< 3%) document closing processes (for ΔACNR/Δt < -0.4 cm2/s) but also suggest ventilation of the bee curtain (for ΔACNR/Δt > +0.4 cm2/s) displaying “inhalation” and “exhalation” cycling. “Inhalation” could be boosted by bees at the inner curtain layers, which stretch their extremities against the comb enlarging the inner nest lumen and thus causing a pressure fall which drives ambient air inwards through CNR funnels. The relaxing of the formerly “activated” bees could then trigger the “exhalation” process, which brings the bee curtain, passively by gravity, close to the comb again. That way, warm, CO2-enriched nest-borne air is pressed outwards through the leaking mesh of the bee curtain. This ventilation hypothesis is supported by IR imaging and laser vibrometry depicting CNRs in at least four aspects as low-resistance convection funnels for maintaining thermoregulation and restoring fresh air in the nest. PMID:27487188

  7. Evidence for Ventilation through Collective Respiratory Movements in Giant Honeybee (Apis dorsata) Nests.

    PubMed

    Kastberger, Gerald; Waddoup, Dominique; Weihmann, Frank; Hoetzl, Thomas

    2016-01-01

    The Asian giant honeybees (Apis dorsata) build single-comb nests in the open, which makes this species particularly susceptible to environmental strains. Long-term infrared (IR) records documented cool nest regions (CNR) at the bee curtain (nCNR = 207, nnests > 20) distinguished by marked negative gradients (ΔTCNR/d < -3°C / 5 cm) at their margins. CNRs develop and recede within minutes, predominantly at higher ambient temperatures in the early afternoon. The differential size (ΔACNR) and temperature (ΔTCNR) values per time unit correlated mostly positively (RAT > 0) displaying the Venturi effect, which evidences funnel properties of CNRs. The air flows inwards through CNRs, which is verified by the negative spatial gradient ΔTCNR/d, by the positive grading of TCNR with Tamb and lastly by fanners which have directed their abdomens towards CNRs. Rare cases of RAT < 0 (< 3%) document closing processes (for ΔACNR/Δt < -0.4 cm2/s) but also suggest ventilation of the bee curtain (for ΔACNR/Δt > +0.4 cm2/s) displaying "inhalation" and "exhalation" cycling. "Inhalation" could be boosted by bees at the inner curtain layers, which stretch their extremities against the comb enlarging the inner nest lumen and thus causing a pressure fall which drives ambient air inwards through CNR funnels. The relaxing of the formerly "activated" bees could then trigger the "exhalation" process, which brings the bee curtain, passively by gravity, close to the comb again. That way, warm, CO2-enriched nest-borne air is pressed outwards through the leaking mesh of the bee curtain. This ventilation hypothesis is supported by IR imaging and laser vibrometry depicting CNRs in at least four aspects as low-resistance convection funnels for maintaining thermoregulation and restoring fresh air in the nest. PMID:27487188

  8. A Mathematical Model of Intra-Colony Spread of American Foulbrood in European Honeybees (Apis mellifera L.)

    PubMed Central

    Jatulan, Eduardo O.; Rabajante, Jomar F.; Banaay, Charina Gracia B.; Fajardo, Alejandro C.; Jose, Editha C.

    2015-01-01

    American foulbrood (AFB) is one of the severe infectious diseases of European honeybees (Apis mellifera L.) and other Apis species. This disease is caused by a gram-positive, spore-forming bacterium Paenibacillus larvae. In this paper, a compartmental (SI framework) model is constructed to represent the spread of AFB within a colony. The model is analyzed to determine the long-term fate of the colony once exposed to AFB spores. It was found out that without effective and efficient treatment, AFB infection eventually leads to colony collapse. Furthermore, infection thresholds were predicted based on the stability of the equilibrium states. The number of infected cell combs is one of the factors that drive disease spread. Our results can be used to forecast the transmission timeline of AFB infection and to evaluate the control strategies for minimizing a possible epidemic. PMID:26674357

  9. A Mathematical Model of Intra-Colony Spread of American Foulbrood in European Honeybees (Apis mellifera L.).

    PubMed

    Jatulan, Eduardo O; Rabajante, Jomar F; Banaay, Charina Gracia B; Fajardo, Alejandro C; Jose, Editha C

    2015-01-01

    American foulbrood (AFB) is one of the severe infectious diseases of European honeybees (Apis mellifera L.) and other Apis species. This disease is caused by a gram-positive, spore-forming bacterium Paenibacillus larvae. In this paper, a compartmental (SI framework) model is constructed to represent the spread of AFB within a colony. The model is analyzed to determine the long-term fate of the colony once exposed to AFB spores. It was found out that without effective and efficient treatment, AFB infection eventually leads to colony collapse. Furthermore, infection thresholds were predicted based on the stability of the equilibrium states. The number of infected cell combs is one of the factors that drive disease spread. Our results can be used to forecast the transmission timeline of AFB infection and to evaluate the control strategies for minimizing a possible epidemic.

  10. Immunogold Localization of Vitellogenin in the Ovaries, Hypopharyngeal Glands and Head Fat Bodies of Honeybee Workers, Apis Mellifera

    PubMed Central

    Seehuus, Siri-Christine; Norberg, Kari; Krekling, Trygve; Fondrk, Kim; Amdam, Gro V.

    2007-01-01

    Vitellogenin is a yolk precursor protein in most oviparous females. In the advanced eusocial honeybee, Apis mellifera (Hymenoptera: Apidae), vitellogenin has recently attracted much interest as this protein, in addition to a classical function in oocyte development in the reproductive queen caste, has evolved functions in the facultatively sterile female worker caste not documented in other species. However, research on the spatial dynamics of vitellogenin in various tissues is not easily performed with available tools. Here we present an immunogold staining procedure that visualizes honeybee vitellogenin in resin embedded tissue. To establish the protocol, we used ovaries of worker bees from colonies with and without a queen. Under the first condition, vitellogenin is assumed not to be present in the workers' ovaries. Under the second condition, the ovaries of worker bees become vitellogenic, with abundant opportunities for detection of complex patterns of vitellogenin uptake and storage. By use of this experimental setup, the staining method is shown to be both sensitive and specific. To demonstrate the functional significance of the protocol, it was subsequently used to identify vitellogenin protein in the hypopharyngeal glands (brood food producing head glands) of nursing worker bees and in adjacent head fat body cells for the first time. Localization of vitellogenin in these tissues supports previously hypothesized roles of vitellogenin in social behavior. This protocol thus provides deeper insights into the functions of vitellogenin in the honeybee. PMID:20337562

  11. A worldwide survey of genome sequence variation provides insight into the evolutionary history of the honeybee Apis mellifera.

    PubMed

    Wallberg, Andreas; Han, Fan; Wellhagen, Gustaf; Dahle, Bjørn; Kawata, Masakado; Haddad, Nizar; Simões, Zilá Luz Paulino; Allsopp, Mike H; Kandemir, Irfan; De la Rúa, Pilar; Pirk, Christian W; Webster, Matthew T

    2014-10-01

    The honeybee Apis mellifera has major ecological and economic importance. We analyze patterns of genetic variation at 8.3 million SNPs, identified by sequencing 140 honeybee genomes from a worldwide sample of 14 populations at a combined total depth of 634×. These data provide insight into the evolutionary history and genetic basis of local adaptation in this species. We find evidence that population sizes have fluctuated greatly, mirroring historical fluctuations in climate, although contemporary populations have high genetic diversity, indicating the absence of domestication bottlenecks. Levels of genetic variation are strongly shaped by natural selection and are highly correlated with patterns of gene expression and DNA methylation. We identify genomic signatures of local adaptation, which are enriched in genes expressed in workers and in immune system- and sperm motility-related genes that might underlie geographic variation in reproduction, dispersal and disease resistance. This study provides a framework for future investigations into responses to pathogens and climate change in honeybees. PMID:25151355

  12. High-throughput sequencing identification of genes involved with Varroa destructor resistance in the eastern honeybee, Apis cerana.

    PubMed

    Ji, T; Yin, L; Liu, Z; Shen, F; Shen, J

    2014-10-31

    Varroa destructor is the greatest threat to the honeybee Apis mellifera worldwide, while it rarely causes serious harm to its native host, the Eastern honeybee Apis cerana. The genetic mechanisms underlying the resistance of A. cerana to Varroa remain unclear. Thus, understanding the molecular mechanism of resistance to Varroa may provide useful insights for reducing this disease in other organisms. In this study, the transcriptomes of two A. cerana colonies were sequenced using the Illumina Solexa sequencing method. One colony was highly affected by mites, whereas the other colony displayed strong resistance to V. destructor. We determined differences in gene expression in the two colonies after challenging the colonies with V. destructor. After de novo transcriptome assembly, we obtained 91,172 unigenes for A. cerana and found that 288 differentially expressed genes varied by more than 15-fold. A total of 277 unigenes were present at higher levels in the non-affected colony. Genes involved in resistance to Varroa included unigenes related to skeletal muscle movement, olfactory sensitivity, and transcription factors. This suggests that hygienic behavior and grooming behavior may play important roles in the resistance to Varroa.

  13. The prevalence of the honeybee brood pathogens Ascosphaera apis, Paenibacillus larvae and Melissococcus plutonius in Spanish apiaries determined with a new multiplex PCR assay

    PubMed Central

    Garrido-Bailón, Encarna; Higes, Mariano; Martínez-Salvador, Amparo; Antúnez, Karina; Botías, Cristina; Meana, Aránzazu; Prieto, Lourdes; Martín-Hernández, Raquel

    2013-01-01

    The microorganisms Ascosphaera apis, Paenibacillus larvae and Melissococcus plutonius are the three most important pathogens that affect honeybee brood. The aim of the present study was to evaluate the prevalence of these pathogens in honeybee colonies and to elucidate their role in the honeybee colony losses in Spain. In order to get it, a multiplex polymerase chain reaction (PCR) assay was developed to simultaneously amplify the16S ribosomal ribonucleic acid (rRNA) gene of P. larvae and M. plutonius, and the 5.8S rRNA gene of A. apis. The multiplex PCR assay provides a quick and specific tool that successfully detected the three infectious pathogens (P. larvae, M. plutonius and A. apis) in brood and adult honeybee samples without the need for microbiological culture. This technique was then used to evaluate the prevalence of these pathogens in Spanish honeybee colonies in 2006 and 2007, revealing our results a low prevalence of these pathogens in most of the geographic areas studied. PMID:23919248

  14. MRJP microsatellite markers in Africanized Apis mellifera colonies selected on the basis of royal jelly production.

    PubMed

    Parpinelli, R S; Ruvolo-Takasusuki, M C C; Toledo, V A A

    2014-01-01

    It is important to select the best honeybees that produce royal jelly to identify important molecular markers, such as major royal jelly proteins (MRJPs), and hence contribute to the development of new breeding strategies to improve the production of this substance. Therefore, this study focused on evaluating the genetic variability of mrjp3, mrjp5, and mrjp8 and associated allele maintenance during the process of selective reproduction in Africanized Apis mellifera individuals, which were chosen based on royal jelly production. The three loci analyzed were polymorphic, and produced a total of 16 alleles, with 4 new alleles, which were identified at mrjp5. The effective number of alleles at mrjp3 was 3.81. The observed average heterozygosity was 0.4905, indicating a high degree of genetic variability at these loci. The elevated FIS values for mrjp3, mrjp5, and mrjp8 (0.4188, 0.1077, and 0.2847, respectively) indicate an excess of homozygotes. The selection of Africanized A. mellifera queens for royal jelly production has maintained the mrjp3 C, D, and E alleles; although, the C allele occurred at a low frequency. The heterozygosity and FIS values show that the genetic variability of the queens is decreasing at the analyzed loci, generating an excess of homozygotes. However, the large numbers of drones that fertilize the queens make it difficult to develop homozygotes at mrjp3. Mating through instrumental insemination using the drones of known genotypes is required to increase the efficiency of Africanized A. mellifera-breeding programs, and to improve the quality and efficiency of commercial royal jelly apiaries. PMID:25177952

  15. MRJP microsatellite markers in Africanized Apis mellifera colonies selected on the basis of royal jelly production.

    PubMed

    Parpinelli, R S; Ruvolo-Takasusuki, M C C; Toledo, V A A

    2014-08-28

    It is important to select the best honeybees that produce royal jelly to identify important molecular markers, such as major royal jelly proteins (MRJPs), and hence contribute to the development of new breeding strategies to improve the production of this substance. Therefore, this study focused on evaluating the genetic variability of mrjp3, mrjp5, and mrjp8 and associated allele maintenance during the process of selective reproduction in Africanized Apis mellifera individuals, which were chosen based on royal jelly production. The three loci analyzed were polymorphic, and produced a total of 16 alleles, with 4 new alleles, which were identified at mrjp5. The effective number of alleles at mrjp3 was 3.81. The observed average heterozygosity was 0.4905, indicating a high degree of genetic variability at these loci. The elevated FIS values for mrjp3, mrjp5, and mrjp8 (0.4188, 0.1077, and 0.2847, respectively) indicate an excess of homozygotes. The selection of Africanized A. mellifera queens for royal jelly production has maintained the mrjp3 C, D, and E alleles; although, the C allele occurred at a low frequency. The heterozygosity and FIS values show that the genetic variability of the queens is decreasing at the analyzed loci, generating an excess of homozygotes. However, the large numbers of drones that fertilize the queens make it difficult to develop homozygotes at mrjp3. Mating through instrumental insemination using the drones of known genotypes is required to increase the efficiency of Africanized A. mellifera-breeding programs, and to improve the quality and efficiency of commercial royal jelly apiaries.

  16. Phantom alternatives influence food preferences in the eastern honeybee Apis cerana.

    PubMed

    Tan, Ken; Dong, Shihao; Liu, Xiwen; Chen, Weiweng; Wang, Yuchong; Oldroyd, Benjamin P; Latty, Tanya

    2015-03-01

    Most models of animal choice behaviour assume that desirable but unavailable options, such as a high quality, but inhabited nest sites, do not influence an individual's preferences for the remaining options. However, experiments suggest that in mammals, the mere presence of such 'phantom' alternatives can alter, and even reverse, an individual's preferences for other items in a choice set. Phantom alternatives may be widespread in nature, as they occur whenever a resource is visible, but unavailable at the time of choice. They are particularly relevant for nectar-foraging animals, where previously rewarding flowers may sometimes be empty. Here, we investigate the effect of phantom alternatives on feeder preferences in the eastern honeybee, Apis cerana. First, we tested the effects of unattractive and attractive phantom alternatives by presenting individual bees with either a binary choice set containing two feeders that differed strongly in two qualities, but were equally preferred overall ('option 1' and 'option 2'), or a ternary choice set containing option 1, option 2 and one of two phantom types (unattractive and attractive). Secondly, we determined whether phantoms increase (similarity effect) or decrease (dissimilarity effect) preference for phantom-similar choices. In binary trials, bees had no significant preference for option 1 or option 2. However, after encountering an attractive phantom alternative, individual bees preferred option 2. The unattractive phantom did not influence bee preferences. Phantoms consistently changed individual bee preferences in favour of the phantom-similar choice. This means that the presence of an attractive food source, even if it is unavailable, can influence preference relationships between remaining items in the choice set. Our findings highlight the importance of considering the potential for phantom effects when studying the foraging behaviour of animals. Our results are particularly relevant for nectarivores, where

  17. Phantom alternatives influence food preferences in the eastern honeybee Apis cerana.

    PubMed

    Tan, Ken; Dong, Shihao; Liu, Xiwen; Chen, Weiweng; Wang, Yuchong; Oldroyd, Benjamin P; Latty, Tanya

    2015-03-01

    Most models of animal choice behaviour assume that desirable but unavailable options, such as a high quality, but inhabited nest sites, do not influence an individual's preferences for the remaining options. However, experiments suggest that in mammals, the mere presence of such 'phantom' alternatives can alter, and even reverse, an individual's preferences for other items in a choice set. Phantom alternatives may be widespread in nature, as they occur whenever a resource is visible, but unavailable at the time of choice. They are particularly relevant for nectar-foraging animals, where previously rewarding flowers may sometimes be empty. Here, we investigate the effect of phantom alternatives on feeder preferences in the eastern honeybee, Apis cerana. First, we tested the effects of unattractive and attractive phantom alternatives by presenting individual bees with either a binary choice set containing two feeders that differed strongly in two qualities, but were equally preferred overall ('option 1' and 'option 2'), or a ternary choice set containing option 1, option 2 and one of two phantom types (unattractive and attractive). Secondly, we determined whether phantoms increase (similarity effect) or decrease (dissimilarity effect) preference for phantom-similar choices. In binary trials, bees had no significant preference for option 1 or option 2. However, after encountering an attractive phantom alternative, individual bees preferred option 2. The unattractive phantom did not influence bee preferences. Phantoms consistently changed individual bee preferences in favour of the phantom-similar choice. This means that the presence of an attractive food source, even if it is unavailable, can influence preference relationships between remaining items in the choice set. Our findings highlight the importance of considering the potential for phantom effects when studying the foraging behaviour of animals. Our results are particularly relevant for nectarivores, where

  18. Why acquiesce? Worker reproductive parasitism in the Eastern honeybee (Apis cerana).

    PubMed

    Holmes, M J; Tan, K; Wang, Z; Oldroyd, B P; Beekman, M

    2014-05-01

    Most societies are vulnerable to rogue individuals that pursue their own interests at the expense of the collective entity. Societies often protect themselves from selfish behaviour by 'policing', thereby enforcing the interests of the collective over those of individuals. In insect societies, for example, selfish workers can activate their ovaries and lay eggs, exploiting the collective brood rearing system for individual benefit. Policing, usually in the form of oophagy of worker-laid eggs, controls selfish behaviour. Importantly, once an effective system of policing has evolved, the incentive for personal reproduction is lost, and 'reproductive acquiescence' in which ovary activation is rare or absent is predicted to evolve. Studies of social Hymenoptera have largely supported the prediction of worker 'acquiescence'; workers of most species where policing is well developed have inactive ovaries. However, the eastern honeybee Apis cerana appears to be an exception. A. cerana colonies are characterized by highly efficient policing, yet about 5% of workers have active ovaries, even when a queen is present. This suggests that the evolution of acquiescence is incomplete in A. cerana. We regularly sampled male eggs and pupae from four A. cerana colonies. Workers had high levels of ovary activation overall (11.7%), and 3.8% of assignable male eggs and 1.1% of assignable male pupae were worker-laid. We conclude that workers with active ovaries lay their eggs, but these rarely survive to pupation because of intense policing. We then used our findings as well as previously published data on A. cerana and A. mellifera to redo the meta-analysis on which reproductive acquiescence theory is based. Including data on both species did not affect the relationship between effectiveness of policing and levels of worker reproduction. Their inclusion did, however, seriously weaken the relationship between relatedness among workers and levels of worker reproduction. Our work thus

  19. Varroa destructor is an effective vector of Israeli acute paralysis virus in the honeybee, Apis mellifera.

    PubMed

    Di Prisco, Gennaro; Pennacchio, Francesco; Caprio, Emilio; Boncristiani, Humberto F; Evans, Jay D; Chen, Yanping

    2011-01-01

    The Israeli acute paralysis virus (IAPV) is a significant marker of honeybee colony collapse disorder (CCD). In the present work, we provide the first evidence that Varroa destructor is IAPV replication-competent and capable of vectoring IAPV in honeybees. The honeybees became infected with IAPV after exposure to Varroa mites that carried the virus. The copy number of IAPV in bees was positively correlated with the density of Varroa mites and time period of exposure to Varroa mites. Further, we showed that the mite-virus association could possibly reduce host immunity and therefore promote elevated levels of virus replication. This study defines an active role of Varroa mites in IAPV transmission and sheds light on the epidemiology of IAPV infection in honeybees.

  20. A selective sweep in a microsporidian parasite Nosema-tolerant honeybee population, Apis mellifera.

    PubMed

    Huang, Q; Lattorff, H M G; Kryger, P; Le Conte, Y; Moritz, R F A

    2014-04-01

    Nosema is a microsporidian parasite of the honeybee, which infects the epithelial cells of the gut. In Denmark, honeybee colonies have been selectively bred for the absence of Nosema over decades, resulting in a breeding line that is tolerant toward Nosema infections. As the tolerance toward the Nosema infection is a result of artificial selection, we screened chromosome 14 for a selective sweep with microsatellite markers, where a major quantitative trait locus (QTL) had been identified to be involved in the reduction in Nosema spores in the honeybees. By comparing the genetic variability of 10 colonies of the selected honeybee strain with a population sample from 22 unselected colonies, a selective sweep was revealed within the previously identified QTL region. The genetic variability of the swept loci was not only reduced in relation to the flanking markers on chromosome 14 within the selected strain but also significantly reduced compared with the same region in the unselected honeybees. This confirmed the results of the previous QTL mapping for reduced Nosema infections. The success of the selective breeding may have driven the selective sweep found in our study.

  1. On the Front Line: Quantitative Virus Dynamics in Honeybee (Apis mellifera L.) Colonies along a New Expansion Front of the Parasite Varroa destructor

    PubMed Central

    Mondet, Fanny; de Miranda, Joachim R.; Kretzschmar, Andre; Le Conte, Yves; Mercer, Alison R.

    2014-01-01

    Over the past fifty years, annual honeybee (Apis mellifera) colony losses have been steadily increasing worldwide. These losses have occurred in parallel with the global spread of the honeybee parasite Varroa destructor. Indeed, Varroa mite infestations are considered to be a key explanatory factor for the widespread increase in annual honeybee colony mortality. The host-parasite relationship between honeybees and Varroa is complicated by the mite's close association with a range of honeybee viral pathogens. The 10-year history of the expanding front of Varroa infestation in New Zealand offered a rare opportunity to assess the dynamic quantitative and qualitative changes in honeybee viral landscapes in response to the arrival, spread and level of Varroa infestation. We studied the impact of de novo infestation of bee colonies by Varroa on the prevalence and titres of seven well-characterised honeybee viruses in both bees and mites, using a large-scale molecular ecology approach. We also examined the effect of the number of years since Varroa arrival on honeybee and mite viral titres. The dynamic shifts in the viral titres of black queen cell virus and Kashmir bee virus mirrored the patterns of change in Varroa infestation rates along the Varroa expansion front. The deformed wing virus (DWV) titres in bees continued to increase with Varroa infestation history, despite dropping infestation rates, which could be linked to increasing DWV titres in the mites. This suggests that the DWV titres in mites, perhaps boosted by virus replication, may be a major factor in maintaining the DWV epidemic after initial establishment. Both positive and negative associations were identified for several pairs of viruses, in response to the arrival of Varroa. These findings provide important new insights into the role of the parasitic mite Varroa destructor in influencing the viral landscape that affects honeybee colonies. PMID:25144447

  2. On the front line: quantitative virus dynamics in honeybee (Apis mellifera L.) colonies along a new expansion front of the parasite Varroa destructor.

    PubMed

    Mondet, Fanny; de Miranda, Joachim R; Kretzschmar, Andre; Le Conte, Yves; Mercer, Alison R

    2014-08-01

    Over the past fifty years, annual honeybee (Apis mellifera) colony losses have been steadily increasing worldwide. These losses have occurred in parallel with the global spread of the honeybee parasite Varroa destructor. Indeed, Varroa mite infestations are considered to be a key explanatory factor for the widespread increase in annual honeybee colony mortality. The host-parasite relationship between honeybees and Varroa is complicated by the mite's close association with a range of honeybee viral pathogens. The 10-year history of the expanding front of Varroa infestation in New Zealand offered a rare opportunity to assess the dynamic quantitative and qualitative changes in honeybee viral landscapes in response to the arrival, spread and level of Varroa infestation. We studied the impact of de novo infestation of bee colonies by Varroa on the prevalence and titres of seven well-characterised honeybee viruses in both bees and mites, using a large-scale molecular ecology approach. We also examined the effect of the number of years since Varroa arrival on honeybee and mite viral titres. The dynamic shifts in the viral titres of black queen cell virus and Kashmir bee virus mirrored the patterns of change in Varroa infestation rates along the Varroa expansion front. The deformed wing virus (DWV) titres in bees continued to increase with Varroa infestation history, despite dropping infestation rates, which could be linked to increasing DWV titres in the mites. This suggests that the DWV titres in mites, perhaps boosted by virus replication, may be a major factor in maintaining the DWV epidemic after initial establishment. Both positive and negative associations were identified for several pairs of viruses, in response to the arrival of Varroa. These findings provide important new insights into the role of the parasitic mite Varroa destructor in influencing the viral landscape that affects honeybee colonies.

  3. Compositions of royal jelly II. Organic acid glycosides and sterols of the royal jelly of honeybees (Apis mellifera).

    PubMed

    Kodai, Tetsuya; Umebayashi, Kazue; Nakatani, Takafumi; Ishiyama, Kaori; Noda, Naoki

    2007-10-01

    Two organic acid glycosides (1, 2) and 16 sterols were isolated from the royal jelly of honeybees (Apis mellifera). The former two were monoglucosides of 10-hydroxy-2E-decenoic and 10-hydroxydecanoic acids. They are the first examples of glycosides isolated from royal jelly. The latter 16 were sterols mainly composed of 28 or 29 carbons. Among them, four compounds were new isofucosterol derivatives, and their structures were characterized as (24Z)-stigmasta-5,24(28)-dien-3beta-ol-7-one (3), (24Z)-stigmasta-5,24(28)-diene-3beta,7beta-diol (4), (24Z)-stigmasta-5,24(28)-diene-3beta,7alpha-diol (5), and (24Z)-stigmast-24(28)-ene-3beta,5alpha,6beta-triol (6) on the basis of various NMR spectroscopic data.

  4. A family of major royal jelly proteins of the honeybee Apis mellifera L.

    PubMed

    Schmitzová, J; Klaudiny, J; Albert, S; Schröder, W; Schreckengost, W; Hanes, J; Júdová, J; Simúth, J

    1998-09-01

    The characterization of major proteins of honeybee larval jelly (49-87 kDa) was performed by the sequencing of new complementary DNAs (cDNAs) obtained from a honeybee head cDNA library, by the determination of N-terminal sequences of the proteins, and by analyses of the newly obtained and known sequence data concerning the proteins. It was found that royal jelly (RJ) and worker jelly (WJ) contain identical major proteins and that all the proteins belong to one protein family designated MRJP (from Major Royal Jelly Proteins). The family consists of five main members (MRJP1, MRJP2, MRJP3, MRJP4, MRJP5). The proteins MRJP3 and MRJP5 are polymorphic. MRJPs account for 82 to 90% of total larval jelly protein, and they contain a relatively high amount of essential amino acids. These findings support the idea that MRJPs play an important role in honeybee nutrition.

  5. Transcriptome Analysis of Honeybee (Apis Mellifera) Haploid and Diploid Embryos Reveals Early Zygotic Transcription during Cleavage

    PubMed Central

    Pires, Camilla Valente; Freitas, Flávia Cristina de Paula; Cristino, Alexandre S.; Dearden, Peter K.; Simões, Zilá Luz Paulino

    2016-01-01

    In honeybees, the haplodiploid sex determination system promotes a unique embryogenesis process wherein females develop from fertilized eggs and males develop from unfertilized eggs. However, the developmental strategies of honeybees during early embryogenesis are virtually unknown. Similar to most animals, the honeybee oocytes are supplied with proteins and regulatory elements that support early embryogenesis. As the embryo develops, the zygotic genome is activated and zygotic products gradually replace the preloaded maternal material. The analysis of small RNA and mRNA libraries of mature oocytes and embryos originated from fertilized and unfertilized eggs has allowed us to explore the gene expression dynamics in the first steps of development and during the maternal-to-zygotic transition (MZT). We localized a short sequence motif identified as TAGteam motif and hypothesized to play a similar role in honeybees as in fruit flies, which includes the timing of early zygotic expression (MZT), a function sustained by the presence of the zelda ortholog, which is the main regulator of genome activation. Predicted microRNA (miRNA)-target interactions indicated that there were specific regulators of haploid and diploid embryonic development and an overlap of maternal and zygotic gene expression during the early steps of embryogenesis. Although a number of functions are highly conserved during the early steps of honeybee embryogenesis, the results showed that zygotic genome activation occurs earlier in honeybees than in Drosophila based on the presence of three primary miRNAs (pri-miRNAs) (ame-mir-375, ame-mir-34 and ame-mir-263b) during the cleavage stage in haploid and diploid embryonic development. PMID:26751956

  6. Effect of Olfactory Stimulus on the Flight Course of a Honeybee, Apis mellifera, in a Wind Tunnel.

    PubMed

    Ikeno, Hidetoshi; Akamatsu, Tadaaki; Hasegawa, Yuji; Ai, Hiroyuki

    2013-12-31

    It is known that the honeybee, Apis mellifera, uses olfactory stimulus as important information for orienting to food sources. Several studies on olfactory-induced orientation flight have been conducted in wind tunnels and in the field. From these studies, optical sensing is used as the main information with the addition of olfactory signals and the navigational course followed by these sensory information. However, it is not clear how olfactory information is reflected in the navigation of flight. In this study, we analyzed the detailed properties of flight when oriented to an odor source in a wind tunnel. We recorded flying bees with a video camera to analyze the flight area, speed, angular velocity and trajectory. After bees were trained to be attracted to a feeder, the flight trajectories with or without the olfactory stimulus located upwind of the feeder were compared. The results showed that honeybees flew back and forth in the proximity of the odor source, and the search range corresponded approximately to the odor spread area. It was also shown that the angular velocity was different inside and outside the odor spread area, and trajectories tended to be bent or curved just outside the area.

  7. Effect of Olfactory Stimulus on the Flight Course of a Honeybee, Apis mellifera, in a Wind Tunnel

    PubMed Central

    Ikeno, Hidetoshi; Akamatsu, Tadaaki; Hasegawa, Yuji; Ai, Hiroyuki

    2013-01-01

    It is known that the honeybee, Apis mellifera, uses olfactory stimulus as important information for orienting to food sources. Several studies on olfactory-induced orientation flight have been conducted in wind tunnels and in the field. From these studies, optical sensing is used as the main information with the addition of olfactory signals and the navigational course followed by these sensory information. However, it is not clear how olfactory information is reflected in the navigation of flight. In this study, we analyzed the detailed properties of flight when oriented to an odor source in a wind tunnel. We recorded flying bees with a video camera to analyze the flight area, speed, angular velocity and trajectory. After bees were trained to be attracted to a feeder, the flight trajectories with or without the olfactory stimulus located upwind of the feeder were compared. The results showed that honeybees flew back and forth in the proximity of the odor source, and the search range corresponded approximately to the odor spread area. It was also shown that the angular velocity was different inside and outside the odor spread area, and trajectories tended to be bent or curved just outside the area. PMID:26462581

  8. Spatial distributions of inorganic elements in honeybees (Apis mellifera L.) and possible relationships to dietary habits and surrounding environmental pollutants.

    PubMed

    Wang, Tsing-Hai; Jian, Chia-Hung; Hsieh, Yi-Kong; Wang, Fu-Nien; Wang, Chu-Fang

    2013-05-29

    In this study, the laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was adopted to determine the distribution of inorganic elements, including Ca, Cu, Fe, Mg, Mn, S, P, Pb, and Zn, in honeybees (Apis melifera L.). Two features are particularly noteworthy. First, it was found there is a significant amount of Fe located at the fringe of the abdomen in worker bees; ultrasonic imaging, scanning electron microscopy, and magnetic resonance imaging revealed that it arose from magnetic Fe-bearing nanoparticles (NPs) having an average diameter of approximately 40 nm. Interestingly, only worker bees contained these magnetic Fe-bearing NPs; no similar features appeared in larvae, pupae, wasps, or drones. Second, a detectable amount of Pb accumulated particularly in the alimentary canals of worker bees. Again, no detectable amounts of Pb in larvae, pupae, drones, or wasps, yet a level of 0.24 ± 0.05 mg/kg of Pb in pollen; therefore, the diet appears to be the primary pathway for environmental pollutants entering the honeybees' food chain.

  9. Reduced ability of ethanol drinkers for social communication in honeybees (Apis mellifera carnica Poll.).

    PubMed

    Bozic, Janko; Abramson, Charles I; Bedencic, Mateja

    2006-04-01

    Foraging behavior was evaluated in honeybees trained to fly to a feeder containing sucrose only, 1% ethanol, 5% ethanol, or 10% ethanol. The results indicated that exposure to ethanol disrupted several types of honeybee social behavior within the hive. Consumption of ethanol at the feeding site reduced waggle dance activity in foraging bees and increased occurrence of tremble dance, food exchange, and self-cleaning behavior. These ethanol-induced changes in behavior may reflect effects on the central nervous system similar to the previously observed effects of food poisoning with sublethal doses of insecticides.

  10. Interactions between Nosema microspores and a neonicotinoid weaken honeybees (Apis mellifera)

    PubMed Central

    Alaux, Cédric; Brunet, Jean-Luc; Dussaubat, Claudia; Mondet, Fanny; Tchamitchan, Sylvie; Cousin, Marianne; Brillard, Julien; Baldy, Aurelie; Belzunces, Luc P; Le Conte, Yves

    2010-01-01

    Global pollinators, like honeybees, are declining in abundance and diversity, which can adversely affect natural ecosystems and agriculture. Therefore, we tested the current hypotheses describing honeybee losses as a multifactorial syndrome, by investigating integrative effects of an infectious organism and an insecticide on honeybee health. We demonstrated that the interaction between the microsporidia Nosema and a neonicotinoid (imidacloprid) significantly weakened honeybees. In the short term, the combination of both agents caused the highest individual mortality rates and energetic stress. By quantifying the strength of immunity at both the individual and social levels, we showed that neither the haemocyte number nor the phenoloxidase activity of individuals was affected by the different treatments. However, the activity of glucose oxidase, enabling bees to sterilize colony and brood food, was significantly decreased only by the combination of both factors compared with control, Nosema or imidacloprid groups, suggesting a synergistic interaction and in the long term a higher susceptibility of the colony to pathogens. This provides the first evidences that interaction between an infectious organism and a chemical can also threaten pollinators, interactions that are widely used to eliminate insect pests in integrative pest management. PMID:20050872

  11. Interactions between Nosema microspores and a neonicotinoid weaken honeybees (Apis mellifera).

    PubMed

    Alaux, Cédric; Brunet, Jean-Luc; Dussaubat, Claudia; Mondet, Fanny; Tchamitchan, Sylvie; Cousin, Marianne; Brillard, Julien; Baldy, Aurelie; Belzunces, Luc P; Le Conte, Yves

    2010-03-01

    Global pollinators, like honeybees, are declining in abundance and diversity, which can adversely affect natural ecosystems and agriculture. Therefore, we tested the current hypotheses describing honeybee losses as a multifactorial syndrome, by investigating integrative effects of an infectious organism and an insecticide on honeybee health. We demonstrated that the interaction between the microsporidia Nosema and a neonicotinoid (imidacloprid) significantly weakened honeybees. In the short term, the combination of both agents caused the highest individual mortality rates and energetic stress. By quantifying the strength of immunity at both the individual and social levels, we showed that neither the haemocyte number nor the phenoloxidase activity of individuals was affected by the different treatments. However, the activity of glucose oxidase, enabling bees to sterilize colony and brood food, was significantly decreased only by the combination of both factors compared with control, Nosema or imidacloprid groups, suggesting a synergistic interaction and in the long term a higher susceptibility of the colony to pathogens. This provides the first evidences that interaction between an infectious organism and a chemical can also threaten pollinators, interactions that are widely used to eliminate insect pests in integrative pest management.

  12. Parasites and Pathogens of the Honeybee (Apis mellifera) and Their Influence on Inter-Colonial Transmission

    PubMed Central

    Frey, Eva; Rosenkranz, Peter; Paxton, Robert J.; Moritz, Robin F. A.

    2015-01-01

    Pathogens and parasites may facilitate their transmission by manipulating host behavior. Honeybee pathogens and pests need to be transferred from one colony to another if they are to maintain themselves in a host population. Inter-colony transmission occurs typically through honeybee workers not returning to their home colony but entering a foreign colony (“drifting”). Pathogens might enhance drifting to enhance transmission to new colonies. We here report on the effects infection by ten honeybee viruses and Nosema spp., and Varroa mite infestation on honeybee drifting. Genotyping of workers collected from colonies allowed us to identify genuine drifted workers as well as source colonies sending out drifters in addition to sink colonies accepting them. We then used network analysis to determine patterns of drifting. Distance between colonies in the apiary was the major factor explaining 79% of drifting. None of the tested viruses or Nosema spp. were associated with the frequency of drifting. Only colony infestation with Varroa was associated with significantly enhanced drifting. More specifically, colonies with high Varroa infestation had a significantly enhanced acceptance of drifters, although they did not send out more drifting workers. Since Varroa-infested colonies show an enhanced attraction of drifting workers, and not only those infected with Varroa and its associated pathogens, infestation by Varroa may also facilitate the uptake of other pests and parasites. PMID:26451849

  13. Parasites and Pathogens of the Honeybee (Apis mellifera) and Their Influence on Inter-Colonial Transmission.

    PubMed

    Forfert, Nadège; Natsopoulou, Myrsini E; Frey, Eva; Rosenkranz, Peter; Paxton, Robert J; Moritz, Robin F A

    2015-01-01

    Pathogens and parasites may facilitate their transmission by manipulating host behavior. Honeybee pathogens and pests need to be transferred from one colony to another if they are to maintain themselves in a host population. Inter-colony transmission occurs typically through honeybee workers not returning to their home colony but entering a foreign colony ("drifting"). Pathogens might enhance drifting to enhance transmission to new colonies. We here report on the effects infection by ten honeybee viruses and Nosema spp., and Varroa mite infestation on honeybee drifting. Genotyping of workers collected from colonies allowed us to identify genuine drifted workers as well as source colonies sending out drifters in addition to sink colonies accepting them. We then used network analysis to determine patterns of drifting. Distance between colonies in the apiary was the major factor explaining 79% of drifting. None of the tested viruses or Nosema spp. were associated with the frequency of drifting. Only colony infestation with Varroa was associated with significantly enhanced drifting. More specifically, colonies with high Varroa infestation had a significantly enhanced acceptance of drifters, although they did not send out more drifting workers. Since Varroa-infested colonies show an enhanced attraction of drifting workers, and not only those infected with Varroa and its associated pathogens, infestation by Varroa may also facilitate the uptake of other pests and parasites.

  14. Evaluating exposure and potential effects on honeybee brood (Apis mellifera) development using glyphosate as an example.

    PubMed

    Thompson, Helen M; Levine, Steven L; Doering, Janine; Norman, Steve; Manson, Philip; Sutton, Peter; von Mérey, Georg

    2014-07-01

    This study aimed to develop an approach to evaluate potential effects of plant protection products on honeybee brood with colonies at realistic worst-case exposure rates. The approach comprised 2 stages. In the first stage, honeybee colonies were exposed to a commercial formulation of glyphosate applied to flowering Phacelia tanacetifolia with glyphosate residues quantified in relevant matrices (pollen and nectar) collected by foraging bees on days 1, 2, 3, 4, and 7 postapplication and glyphosate levels in larvae were measured on days 4 and 7. Glyphosate levels in pollen were approximately 10 times higher than in nectar and glyphosate demonstrated rapid decline in both matrices. Residue data along with foraging rates and food requirements of the colony were then used to set dose rates in the effects study. In the second stage, the toxicity of technical glyphosate to developing honeybee larvae and pupae, and residues in larvae, were then determined by feeding treated sucrose directly to honeybee colonies at dose rates that reflect worst-case exposure scenarios. There were no significant effects from glyphosate observed in brood survival, development, and mean pupal weight. Additionally, there were no biologically significant levels of adult mortality observed in any glyphosate treatment group. Significant effects were observed only in the fenoxycarb toxic reference group and included increased brood mortality and a decline in the numbers of bees and brood. Mean glyphosate residues in larvae were comparable at 4 days after spray application in the exposure study and also following dosing at a level calculated from the mean measured levels in pollen and nectar, showing the applicability and robustness of the approach for dose setting with honeybee brood studies. This study has developed a versatile and predictive approach for use in higher tier honeybee toxicity studies. It can be used to realistically quantify exposure of colonies to pesticides to allow the

  15. Genetic structure of drone congregation areas of Africanized honeybees in southern Brazil.

    PubMed

    Collet, Thais; Cristino, Alexandre Santos; Quiroga, Carlos Fernando Prada; Soares, Ademilson Espencer Egea; Del Lama, Marco Antônio

    2009-10-01

    As yet, certain aspects of the Africanization process are not well understood, for example, the reproductive behavior of African and European honeybees and how the first Africanized swarms were formed and spread. Drone congregation areas (DCAs) are the ideal place to study honeybee reproduction under natural conditions since hundreds of drones from various colonies gather together in the same geographical area for mating. In the present study, we assessed the genetic structure of seven drone congregations and four commercial European-derived and Africanized apiaries in southern Brazil, employing seven microsatellite loci for this purpose. We also estimated the number of mother-colonies that drones of a specific DCA originated from. Pairwise comparison failed to reveal any population sub-structuring among the DCAs, thus indicating low mutual genetic differentiation. We also observed high genetic similarity between colonies of commercial apiaries and DCAs, besides a slight contribution from a European-derived apiary to a DCA formed nearby. Africanized DCAs seem to have a somewhat different genetic structure when compared to the European.

  16. Genetic structure of drone congregation areas of Africanized honeybees in southern Brazil.

    PubMed

    Collet, Thais; Cristino, Alexandre Santos; Quiroga, Carlos Fernando Prada; Soares, Ademilson Espencer Egea; Del Lama, Marco Antônio

    2009-10-01

    As yet, certain aspects of the Africanization process are not well understood, for example, the reproductive behavior of African and European honeybees and how the first Africanized swarms were formed and spread. Drone congregation areas (DCAs) are the ideal place to study honeybee reproduction under natural conditions since hundreds of drones from various colonies gather together in the same geographical area for mating. In the present study, we assessed the genetic structure of seven drone congregations and four commercial European-derived and Africanized apiaries in southern Brazil, employing seven microsatellite loci for this purpose. We also estimated the number of mother-colonies that drones of a specific DCA originated from. Pairwise comparison failed to reveal any population sub-structuring among the DCAs, thus indicating low mutual genetic differentiation. We also observed high genetic similarity between colonies of commercial apiaries and DCAs, besides a slight contribution from a European-derived apiary to a DCA formed nearby. Africanized DCAs seem to have a somewhat different genetic structure when compared to the European. PMID:21637465

  17. Genetic structure of drone congregation areas of Africanized honeybees in southern Brazil

    PubMed Central

    2009-01-01

    As yet, certain aspects of the Africanization process are not well understood, for example, the reproductive behavior of African and European honeybees and how the first Africanized swarms were formed and spread. Drone congregation areas (DCAs) are the ideal place to study honeybee reproduction under natural conditions since hundreds of drones from various colonies gather together in the same geographical area for mating. In the present study, we assessed the genetic structure of seven drone congregations and four commercial European-derived and Africanized apiaries in southern Brazil, employing seven microsatellite loci for this purpose. We also estimated the number of mother-colonies that drones of a specific DCA originated from. Pairwise comparison failed to reveal any population sub-structuring among the DCAs, thus indicating low mutual genetic differentiation. We also observed high genetic similarity between colonies of commercial apiaries and DCAs, besides a slight contribution from a European-derived apiary to a DCA formed nearby. Africanized DCAs seem to have a somewhat different genetic structure when compared to the European. PMID:21637465

  18. Origin and function of the major royal jelly proteins of the honeybee (Apis mellifera) as members of the yellow gene family.

    PubMed

    Buttstedt, Anja; Moritz, Robin F A; Erler, Silvio

    2014-05-01

    In the honeybee, Apis mellifera, the queen larvae are fed with a diet exclusively composed of royal jelly (RJ), a secretion of the hypopharyngeal gland of young worker bees that nurse the brood. Up to 15% of RJ is composed of proteins, the nine most abundant of which have been termed major royal jelly proteins (MRJPs). Although it is widely accepted that RJ somehow determines the fate of a female larva and in spite of considerable research efforts, there are surprisingly few studies that address the biochemical characterisation and functions of these MRJPs. Here we review the research on MRJPs not only in honeybees but in hymenopteran insects in general and provide metadata analyses on genome organisation of mrjp genes, corroborating previous reports that MRJPs have important functions for insect development and not just a nutritional value for developing honeybee larvae.

  19. Defensive behaviour of Apis mellifera against Vespa velutina in France: testing whether European honeybees can develop an effective collective defence against a new predator.

    PubMed

    Arca, Mariangela; Papachristoforou, Alexandros; Mougel, Florence; Rortais, Agnès; Monceau, Karine; Bonnard, Olivier; Tardy, Pascal; Thiéry, Denis; Silvain, Jean-François; Arnold, Gérard

    2014-07-01

    We investigated the prey-predator interactions between the European honeybee, Apis mellifera, and the invasive yellow-legged hornet, Vespa velutina, which first invaded France in 2004 and thereafter spread to neighbouring European countries (Spain, Portugal and Italy). Our goal was to determine how successfully honeybees are able to defend their colonies against their new predator in Europe. Experiments were conducted in the southwest of France-the point of entry of the hornet in Europe-under natural and semi-controlled field conditions. We investigated a total of eight apiaries and 95 colonies subjected to either low or high levels of predation. We analyzed hornet predatory behaviour and collective response of colonies under attack. The results showed that A. mellifera in France exhibit an inefficient and unorganized defence against V. velutina, unlike in other regions of Europe and other areas around the globe where honeybees have co-evolved with their natural Vespa predators. PMID:24857979

  20. Genetic evaluation of a novel system for controlled mating of the honeybee, Apis mellifera.

    PubMed

    Oxley, Peter R; Hinhumpatch, Pantip; Gloag, Rosalyn; Oldroyd, Benjamin P

    2010-01-01

    Many apiculturally important traits of the honeybee have medium to high heritabilities and are therefore capable of strong response to selection. However, the natural mating system of honeybees makes it difficult to exclude unselected males from matings and necessitates expensive procedures like artificial insemination or isolated mating stations. By manipulating ambient light and temperature, an Australian queen breeder has developed a novel system that delays the flight time of selected queens and drones. To assess the efficacy of this "Horner system," drones and their assumed worker offspring were genotyped using microsatellite loci to test whether the workers were exclusively sired by the selected drones. The Horner system was found to provide at least 85% control of matings, equivalent to a 48% increase in the selection differential, when queens and drones are selected in a breeding program.

  1. Nasonov pheromone of the honeybee.Apis mellifera L. (Hymenoptera, Apidae) : IV. Comparative electroantennogram responses.

    PubMed

    Williams, I H; Pickett, J A; Martin, A P

    1982-02-01

    Electroantennogram (EAG) responses from worker honeybee antennae were obtained for each Nasonov component. Response amplitudes to 10 μg of components correlated well with reported relative abilities to attract foragers in the field. EAG responses of worker, queen, and drone antennae to natural pheromone were consistently greater than to synthetic pheromone, a difference only partly explained by enzymic conversion of geraniol to (E)-citral during preparation of natural extracts.

  2. Detection of Methyl Salicylate Transforted by Honeybees (Apis mellifera) Using Solid Phase Microextration (SPME) Fibers

    SciTech Connect

    BENDER, SUSAN FAE ANN; RODACY, PHILIP J.; BARNETT, JAMES L.; BENDER, GARY L.

    2001-12-01

    The ultimate goal of many environmental measurements is to determine the risk posed to humans or ecosystems by various contaminants. Conventional environmental monitoring typically requires extensive sampling grids covering several media including air, water, soil and vegetation. A far more efficient, innovative and inexpensive tactic has been found using honeybees as sampling mechanisms. Members from a single bee colony forage over large areas ({approx}2 x 10{sup 6} m{sup 2}), making tens of thousands of trips per day, and return to a fixed location where sampling can be conveniently conducted. The bees are in direct contact with the air, water, soil and vegetation where they encounter and collect any contaminants that are present in gaseous, liquid and particulate form. The monitoring of honeybees when they return to the hive provides a rapid method to assess chemical distributions and impacts (1). The primary goal of this technology is to evaluate the efficiency of the transport mechanism (honeybees) to the hive using preconcentrators to collect samples. Once the extent and nature of the contaminant exposure has been characterized, resources can be distributed and environmental monitoring designs efficiently directed to the most appropriate locations. Methyl salicylate, a chemical agent surrogate was used as the target compound in this study.

  3. Identification of two piwi genes and their expression profile in honeybee, Apis mellifera.

    PubMed

    Liao, Zhen; Jia, Qidong; Li, Fei; Han, Zhaojun

    2010-06-01

    Piwi genes play an important role in regulating spermatogenesis and oogenesis because they participate in the biogenesis of piRNAs, a new class of noncoding RNAs. However, these genes are not well understood in most insects. To understand the function of piwi genes in honeybee reproduction, we amplified two full-length piwi-like genes, Am-aub and Am-ago3. Both the cloned Am-aub and Am-ago3 genes contained typical PAZ and PIWI domains and active catalytic motifs "Asp-Asp-Asp/His/Glu/Lys," suggesting that the two piwi-like genes possessed slicer activity. We examined the expression levels of Am-aub and Am-ago3 in workers, queens, drones, and female larvae by quantitative PCR. Am-aub was more abundant than Am-ago3 in all the tested samples. Both Am-aub and Am-ago3 were highly expressed in drones but not in workers and queens. The significant finding was that the larval food stream influenced the expression of Piwi genes in adult honeybees. This helps to understand the nutritional control of reproductive status in honeybees at the molecular level.

  4. Genetics of reproduction and regulation of honeybee (Apis mellifera L.) social behavior.

    PubMed

    Page, Robert E; Rueppell, Olav; Amdam, Gro V

    2012-01-01

    Honeybees form complex societies with a division of labor for reproduction, nutrition, nest construction and maintenance, and defense. How does it evolve? Tasks performed by worker honeybees are distributed in time and space. There is no central control over behavior and there is no central genome on which selection can act and effect adaptive change. For 22 years, we have been addressing these questions by selecting on a single social trait associated with nutrition: the amount of surplus pollen (a source of protein) that is stored in the combs of the nest. Forty-two generations of selection have revealed changes at biological levels extending from the society down to the level of the gene. We show how we constructed this vertical understanding of social evolution using behavioral and anatomical analyses, physiology, genetic mapping, and gene knockdowns. We map out the phenotypic and genetic architectures of food storage and foraging behavior and show how they are linked through broad epistasis and pleiotropy affecting a reproductive regulatory network that influences foraging behavior. This is remarkable because worker honeybees have reduced reproductive organs and are normally sterile; however, the reproductive regulatory network has been co-opted for behavioral division of labor.

  5. Diversity of honey stores and their impact on pathogenic bacteria of the honeybee, Apis mellifera

    PubMed Central

    Erler, Silvio; Denner, Andreas; Bobiş, Otilia; Forsgren, Eva; Moritz, Robin F A

    2014-01-01

    Honeybee colonies offer an excellent environment for microbial pathogen development. The highest virulent, colony killing, bacterial agents are Paenibacillus larvae causing American foulbrood (AFB), and European foulbrood (EFB) associated bacteria. Besides the innate immune defense, honeybees evolved behavioral defenses to combat infections. Foraging of antimicrobial plant compounds plays a key role for this “social immunity” behavior. Secondary plant metabolites in floral nectar are known for their antimicrobial effects. Yet, these compounds are highly plant specific, and the effects on bee health will depend on the floral origin of the honey produced. As worker bees not only feed themselves, but also the larvae and other colony members, honey is a prime candidate acting as self-medication agent in honeybee colonies to prevent or decrease infections. Here, we test eight AFB and EFB bacterial strains and the growth inhibitory activity of three honey types. Using a high-throughput cell growth assay, we show that all honeys have high growth inhibitory activity and the two monofloral honeys appeared to be strain specific. The specificity of the monofloral honeys and the strong antimicrobial potential of the polyfloral honey suggest that the diversity of honeys in the honey stores of a colony may be highly adaptive for its “social immunity” against the highly diverse suite of pathogens encountered in nature. This ecological diversity may therefore operate similar to the well-known effects of host genetic variance in the arms race between host and parasite. PMID:25505523

  6. The genetic architecture of sucrose responsiveness in the honeybee (Apis mellifera L.).

    PubMed

    Rueppell, Olav; Chandra, Sathees B C; Pankiw, Tanya; Fondrk, M Kim; Beye, Martin; Hunt, Greg; Page, Robert E

    2006-01-01

    One of the best examples of a natural behavioral syndrome is the pollen-hoarding syndrome in honeybees that ties together multiple behavioral phenotypes, ranging from foraging behavior to behavioral ontogeny and learning performance. A central behavioral factor is the bees' responsiveness to sucrose, measured as their proboscis extension reflex. This study examines the genetics of this trait in diploid worker and haploid male honeybees (drones) to learn more about the genetic architecture of the overall behavioral syndrome, using original strains selected for pollen-hoarding behavior. We show that a significant proportion of the phenotypic variability is determined by genotype in males and workers. Second, our data present overwhelming evidence for pleiotropic effects of previously identified quantitative trait loci for foraging behavior (pln-QTL) and epistatic interactions among them. Furthermore, we report on three genomic QTL scans (two reciprocal worker backcrosses and one drone hybrid population) derived from our selection strains. We present at least one significant and two putative new QTL directly affecting the sucrose response of honeybees. Thus, this study demonstrates the modular genetic architecture of behavioral syndromes in general, and elucidates the genetic architecture of the pollen-hoarding behavioral syndrome in particular. Understanding this behavioral syndrome is important for understanding the division of labor in social insects and social evolution itself.

  7. The effects of spinosad, a naturally derived insect control agent, to the honeybee (Apis melifera).

    PubMed

    Miles, M; Mayes, M; Dutton, R

    2002-01-01

    Spinosad is a novel insect control agent derived by fermentation of the Actinomycete bacterium, Saccharopolyspora spinosa. Spinosad controls many caterpillar pests in vines, pome fruit and vegetables (including tomatoes and peppers), thrips in tomatoes, peppers and ornamental cultivation and dipterous leafminers in vegetables and ornamentals. Application rates vary between 25 to 100 g of active substance per hectare (g as/ha) and 4.8 to 36 g of active substance per hectolitre (g as/hL) depending on the crop and target pest. It is important that plant protection products are authorized for use only in ways that do not pose an unacceptable risk of harm to honeybees. For this purpose testing was performed to enable the safety of spinosad to be evaluated. The effects of spinosad to honeybees have been extensively researched. Testing has been performed under a variety of conditions in a range of countries globally. Studies to determine the acute toxicity of spinosad under laboratory conditions were conducted to generate LD50 or LC50 values for oral and contact routes of administration. These demonstrated that spinosad was highly toxic to worker honeybees under worst case laboratory conditions and that the oral route of exposure provided the greater risk. Residue tests conducted under laboratory, semi-field and field conditions on worker honeybees foraging on treated foliage indicated that dry product residues were harmless. Therefore the effects seen in the laboratory acute toxicity tests did not translate to a more realistic exposure scenario indicating that safe use patterns for the product can be developed. Semi-field cage studies have also demonstrated that spinosad was safe to bees when applied to flowering crops during periods of bee activity. The majority of studies conducted have indicated that spinosad does not adversely affect honeybee behaviour, brood or queen. It can be concluded that spinosad when used according to the approved product label recommendations

  8. How to Join a Wave: Decision-Making Processes in Shimmering Behavior of Giant Honeybees (Apis dorsata)

    PubMed Central

    Kastberger, Gerald; Weihmann, Frank; Hoetzl, Thomas; Weiss, Sara E.; Maurer, Michael; Kranner, Ilse

    2012-01-01

    Shimmering is a collective defence behaviour in Giant honeybees (Apis dorsata) whereby individual bees flip their abdomen upwards, producing Mexican wave-like patterns on the nest surface. Bucket bridging has been used to explain the spread of information in a chain of members including three testable concepts: first, linearity assumes that individual “agent bees” that participate in the wave will be affected preferentially from the side of wave origin. The directed-trigger hypothesis addresses the coincidence of the individual property of trigger direction with the collective property of wave direction. Second, continuity describes the transfer of information without being stopped, delayed or re-routed. The active-neighbours hypothesis assumes coincidence between the direction of the majority of shimmering-active neighbours and the trigger direction of the agents. Third, the graduality hypothesis refers to the interaction between an agent and her active neighbours, assuming a proportional relationship in the strength of abdomen flipping of the agent and her previously active neighbours. Shimmering waves provoked by dummy wasps were recorded with high-resolution video cameras. Individual bees were identified by 3D-image analysis, and their strength of abdominal flipping was assessed by pixel-based luminance changes in sequential frames. For each agent, the directedness of wave propagation was based on wave direction, trigger direction, and the direction of the majority of shimmering-active neighbours. The data supported the bucket bridging hypothesis, but only for a small proportion of agents: linearity was confirmed for 2.5%, continuity for 11.3% and graduality for 0.4% of surface bees (but in 2.6% of those agents with high wave-strength levels). The complimentary part of 90% of surface bees did not conform to bucket bridging. This fuzziness is discussed in terms of self-organisation and evolutionary adaptedness in Giant honeybee colonies to respond to rapidly

  9. Antennal Transcriptome and Differential Expression Analysis of Five Chemosensory Gene Families from the Asian Honeybee Apis cerana cerana

    PubMed Central

    Zhao, Huiting; Du, Yali; Gao, Pengfei; Wang, Shujie; Pan, Jianfang; Jiang, Yusuo

    2016-01-01

    Chemosensory genes play a central role in sensing chemical signals and guiding insect behavior. The Chinese honeybee, Apis cerana cerana, is one of the most important insect species in China in terms of resource production, and providing high-quality products for human consumption, and also serves as an important pollinator. Communication and foraging behavior of worker bees is likely linked to a complex chemosensory system. Here, we used transcriptome sequencing on adult A. c. cerana workers of different ages to identify the major chemosensory gene families and the differentially expressed genes(DEGs), and to investigate their expression profiles. A total of 109 candidate chemosensory genes in five gene families were identified from the antennal transcriptome assemblies, including 17 OBPs, 6 CSPs, 74 ORs, 10 IRs, and 2SNMPs, in which nineteen DEGs were screened and their expression values at different developmental stages were determined in silico. No chemosensory transcript was specific to a certain developmental period. Thirteen DEGs were upregulated and 6were downregulated. We created extensive expression profiles in six major body tissues using qRT-PCR and found that most DEGs were exclusively or primarily expressed in antennae. Others were abundantly expressed in the other tissues, such as head, thorax, abdomen, legs, and wings. Interestingly, when a DEG was highly expressed in the thorax, it also had a high level of expression in legs, but showed a lowlevel in antennae. This study explored five chemoreceptor superfamily genes using RNA-Seq coupled with extensive expression profiling of DEGs. Our results provide new insights into the molecular mechanism of odorant detection in the Asian honeybee and also serve as an extensive novel resource for comparing and investigating olfactory functionality in hymenopterans. PMID:27776190

  10. Amelα8 subunit knockdown in the mushroom body vertical lobes impairs olfactory retrieval in the honeybee, Apis mellifera.

    PubMed

    Louis, Thierry; Musso, Pierre-Yves; de Oliveira, Sabrina Barbosa; Garreau, Lucile; Giurfa, Martin; Raymond, Valérie; Gauthier, Monique

    2012-11-01

    We studied the involvement of the α8 subunit of nicotinic acetylcholine receptors (nAChRs) in olfactory learning and memory in Apis mellifera. We have previously shown, by injecting different nicotinic antagonists into the bee brain, that pharmacologically different subtypes of nAChRs are important for honeybee memory -α-bungarotoxin-sensitive receptors are necessary for memory consolidation and mecamylamine-sensitive receptors are involved in retrieval processes. Here, we took advantage of the honeybee genome sequencing and the development of a small interfering RNA (siRNA) tool to focus on the role of the α8 subunit, which has been shown to be expressed in brain areas important for olfactory learning, such as the antennal lobes and mushroom bodies. We first demonstrated the efficacy of the siRNA tool by showing a decrease of the α8 protein level at 6 h after brain injection of α8 siRNA. We then tested the general role of this subunit in olfactory conditioning, using brain systemic or localized siRNA injections in the antennal lobes or the calyces and vertical lobes of the mushroom bodies. These injections were performed at either 6 h before the learning acquisition or 6 h before the memory test. The most prominent result was that 6-h pre-test injection of siRNA in the mushroom body vertical lobes impaired memory retrieval at 24 and 48 h post-training. This indicated the importance of cholinergic extrinsic neurons and nAChRs containing the α8 subunit for this process.

  11. Aging and demographic plasticity in response to experimental age structures in honeybees (Apis mellifera L).

    PubMed

    Rueppell, Olav; Linford, Robyn; Gardner, Preston; Coleman, Jennifer; Fine, Kari

    2008-08-01

    Honeybee colonies are highly integrated functional units characterized by a pronounced division of labor. Division of labor among workers is mainly age-based, with younger individuals focusing on in-hive tasks and older workers performing the more hazardous foraging activities. Thus, experimental disruption of the age composition of the worker hive population is expected to have profound consequences for colony function. Adaptive demography theory predicts that the natural hive age composition represents a colony-level adaptation and thus results in optimal hive performance. Alternatively, the hive age composition may be an epiphenomenon, resulting from individual life history optimization. We addressed these predictions by comparing individual worker longevity and brood production in hives that were composed of a single age cohort, two distinct age cohorts, and hives that had a continuous, natural age distribution. Four experimental replicates showed that colonies with a natural age composition did not consistently have a higher life expectancy and/or brood production than the single cohort or double cohort hives. Instead, a complex interplay of age structure, environmental conditions, colony size, brood production, and individual mortality emerged. A general trade-off between worker life expectancy and colony productivity was apparent, and the transition from in-hive tasks to foraging was the most significant predictor of worker lifespan irrespective of the colony age structure. We conclude that the natural age structure of honeybee hives is not a colony-level adaptation. Furthermore, our results show that honeybees exhibit pronounced demographic plasticity in addition to behavioral plasticity to react to demographic disturbances of their societies.

  12. Honeybees (Apis mellifera) Learn Color Discriminations via Differential Conditioning Independent of Long Wavelength (Green) Photoreceptor Modulation

    PubMed Central

    Wijesekara Witharanage, Randika; Rosa, Marcello G. P.

    2012-01-01

    Background Recent studies on colour discrimination suggest that experience is an important factor in how a visual system processes spectral signals. In insects it has been shown that differential conditioning is important for processing fine colour discriminations. However, the visual system of many insects, including the honeybee, has a complex set of neural pathways, in which input from the long wavelength sensitive (‘green’) photoreceptor may be processed either as an independent achromatic signal or as part of a trichromatic opponent-colour system. Thus, a potential confound of colour learning in insects is the possibility that modulation of the ‘green’ photoreceptor could underlie observations. Methodology/Principal Findings We tested honeybee vision using light emitting diodes centered on 414 and 424 nm wavelengths, which limit activation to the short-wavelength-sensitive (‘UV’) and medium-wavelength-sensitive (‘blue’) photoreceptors. The absolute irradiance spectra of stimuli was measured and modelled at both receptor and colour processing levels, and stimuli were then presented to the bees in a Y-maze at a large visual angle (26°), to ensure chromatic processing. Sixteen bees were trained over 50 trials, using either appetitive differential conditioning (N = 8), or aversive-appetitive differential conditioning (N = 8). In both cases the bees slowly learned to discriminate between the target and distractor with significantly better accuracy than would be expected by chance. Control experiments confirmed that changing stimulus intensity in transfers tests does not significantly affect bee performance, and it was possible to replicate previous findings that bees do not learn similar colour stimuli with absolute conditioning. Conclusion Our data indicate that honeybee colour vision can be tuned to relatively small spectral differences, independent of ‘green’ photoreceptor contrast and brightness cues. We thus show that colour vision

  13. Functional morphology of the divided compound eye of the honeybee drone (Apis mellifera).

    PubMed

    Menzel, J G; Wunderer, H; Stavenga, D G

    1991-01-01

    Using different approaches, the functional morphology of the compound eye of the honeybee drone was examined. The drone exhibits an extended acute zone in the dorsal part of its eye. The following specializations were found here: enlarged facet diameters; smaller interommatidial angles; red-leaky screening pigment; enlarged rhabdom diameters; photopigment composition different from the drone's ventral eye region and the worker bee's eye. Thus, similar to other male insects, the drone compound eye is divided into a male-specific dorsal part and a ventral part resembling the worker bee's eye. The functional significance of the sex-specific acute zone is discussed with respect to mating behaviour. PMID:18621175

  14. Functional morphology of the divided compound eye of the honeybee drone (Apis mellifera).

    PubMed

    Menzel, J G; Wunderer, H; Stavenga, D G

    1991-01-01

    Using different approaches, the functional morphology of the compound eye of the honeybee drone was examined. The drone exhibits an extended acute zone in the dorsal part of its eye. The following specializations were found here: enlarged facet diameters; smaller interommatidial angles; red-leaky screening pigment; enlarged rhabdom diameters; photopigment composition different from the drone's ventral eye region and the worker bee's eye. Thus, similar to other male insects, the drone compound eye is divided into a male-specific dorsal part and a ventral part resembling the worker bee's eye. The functional significance of the sex-specific acute zone is discussed with respect to mating behaviour.

  15. Differential antennal proteome comparison of adult honeybee drone, worker and queen (Apis mellifera L.).

    PubMed

    Fang, Yu; Song, Feifei; Zhang, Lan; Aleku, Dereje Woltedji; Han, Bin; Feng, Mao; Li, Jianke

    2012-01-01

    To understand the olfactory mechanism of honeybee antennae in detecting specific volatile compounds in the atmosphere, antennal proteome differences of drone, worker and queen were compared using 2-DE, mass spectrometry and bioinformatics. Therefore, 107 proteins were altered their expressions in the antennae of drone, worker and queen bees. There were 54, 21 and 32 up-regulated proteins in the antennae of drone, worker and queen, respectively. Proteins upregulated in the drone antennae were involved in fatty acid metabolism, antioxidation, carbohydrate metabolism and energy production, protein folding and cytoskeleton. Proteins upregulated in the antennae of worker and queen bees were related to carbohydrate metabolism and energy production while molecular transporters were upregulated in the queen antennae. Our results explain the role played by the antennae of drone is to aid in perceiving the queen sexual pheromones, in the worker antennae to assist for food search and social communication and in the queen antennae to help pheromone communication with the worker and the drone during the mating flight. This first proteomic study significantly extends our understanding of honeybee olfactory activities and the possible mechanisms played by the antennae in response to various environmental, social, biological and biochemical signals.

  16. [Study on foraging behaviors of honeybee Apis mellifera based on RFID technology].

    PubMed

    Tian, Liu-Qing; He, Xu-Jiang; Wu, Xiao-Bo; Gan, Hai-Yan; Han, Xu; Liu, Hao; Zeng, Zhi-Jiang

    2014-03-01

    Honeybee foragers can flexibly adjust their out-hive activities to ensure growth and reproduction of the colony. In order to explore the characteristics of honey bees foraging behaviors, in this study, their flight activities were monitored 24 hours per day for a duration of 38 days, using an radio frequency identification (RFID) system designed and manufactured by the Honeybee Research Institute of Jiangxi Agricultural University in cooperation with the Guangzhou Invengo Information Technology Co., Ltd. Our results indicated that 63.4% and 64.5% of foragers were found rotating more than one day off during the foraging period in two colonies, and 22.5% and 26.4% of the total foraging days were used for rest respectively. Further, although the total foraging time between rotating day-off foragers and continuously working foragers was equal, the former had a significant longer lifespan than the latter. Additionally, the lifespan of the early developed foragers was significantly lower than that of the normally developed foragers. This study enriched the content of foraging behaviors of honey bees, and it could be used as the basis for the further explorations on evolutionary mechanism of foraging behaviors of eusocial insects.

  17. Differential antennal proteome comparison of adult honeybee drone, worker and queen (Apis mellifera L.).

    PubMed

    Fang, Yu; Song, Feifei; Zhang, Lan; Aleku, Dereje Woltedji; Han, Bin; Feng, Mao; Li, Jianke

    2012-01-01

    To understand the olfactory mechanism of honeybee antennae in detecting specific volatile compounds in the atmosphere, antennal proteome differences of drone, worker and queen were compared using 2-DE, mass spectrometry and bioinformatics. Therefore, 107 proteins were altered their expressions in the antennae of drone, worker and queen bees. There were 54, 21 and 32 up-regulated proteins in the antennae of drone, worker and queen, respectively. Proteins upregulated in the drone antennae were involved in fatty acid metabolism, antioxidation, carbohydrate metabolism and energy production, protein folding and cytoskeleton. Proteins upregulated in the antennae of worker and queen bees were related to carbohydrate metabolism and energy production while molecular transporters were upregulated in the queen antennae. Our results explain the role played by the antennae of drone is to aid in perceiving the queen sexual pheromones, in the worker antennae to assist for food search and social communication and in the queen antennae to help pheromone communication with the worker and the drone during the mating flight. This first proteomic study significantly extends our understanding of honeybee olfactory activities and the possible mechanisms played by the antennae in response to various environmental, social, biological and biochemical signals. PMID:21982827

  18. The Circuitry of Olfactory Projection Neurons in the Brain of the Honeybee, Apis mellifera

    PubMed Central

    Zwaka, Hanna; Münch, Daniel; Manz, Gisela; Menzel, Randolf; Rybak, Jürgen

    2016-01-01

    In the honeybee brain, two prominent tracts – the medial and the lateral antennal lobe tract – project from the primary olfactory center, the antennal lobes (ALs), to the central brain, the mushroom bodies (MBs), and the protocerebral lobe (PL). Intracellularly stained uniglomerular projection neurons were reconstructed, registered to the 3D honeybee standard brain atlas, and then used to derive the spatial properties and quantitative morphology of the neurons of both tracts. We evaluated putative synaptic contacts of projection neurons (PNs) using confocal microscopy. Analysis of the patterns of axon terminals revealed a domain-like innervation within the MB lip neuropil. PNs of the lateral tract arborized more sparsely within the lips and exhibited fewer synaptic boutons, while medial tract neurons occupied broader regions in the MB calyces and the PL. Our data show that uPNs from the medial and lateral tract innervate both the core and the cortex of the ipsilateral MB lip but differ in their innervation patterns in these regions. In the mushroombody neuropil collar we found evidence for ALT boutons suggesting the collar as a multi modal input site including olfactory input similar to lip and basal ring. In addition, our data support the conclusion drawn in previous studies that reciprocal synapses exist between PNs, octopaminergic-, and GABAergic cells in the MB calyces. For the first time, we found evidence for connections between both tracts within the AL. PMID:27746723

  19. The olfactory memory of the honeybee Apis mellifera. II. Blocking between odorants in binary mixtures.

    PubMed

    Smith, B H; Cobey, S

    1994-10-01

    Proboscis extension conditioning of honeybee workers was used to study the processing of odorants when bees were conditioned to binary mixtures. Responses to a set of pure floral odors and pheromones after conditioning have already been described. When bees are conditioned to certain mixtures of odorants, the response to both components is equal to that when they are tested alone. However, mixtures of an aliphatic aldehyde and an alcohol elicit asymmetric response patterns; that is, the response to the aldehyde is much stronger than that to the alcohol. A bee's response to the alcohol after it had been trained in an aldehyde background is significantly lower than when the bee is trained to respond to the same alcohol in the background of another odorant. Such response patterns are not necessarily caused by a behavioral decrement resulting from a compound-unique perceptual effect produced by the mixture. Furthermore, studies of blocking show that behavioral acquisition in response to one component can be hindered or blocked by pretraining with the other component. These results suggest that honeybees can perceive the individual components of some binary mixtures. The similarities in neural processing in olfactory systems of vertebrates and invertebrates mean that such studies could elucidate behavioral mechanisms of olfaction in a wide phylogenetic spectrum of animals. PMID:7964421

  20. Regional Distribution Models with Lack of Proximate Predictors: Africanized Honeybees Expanding North

    NASA Technical Reports Server (NTRS)

    Jarnevich, Catherine S.; Esaias, Wayne E.; Ma, Peter L. A.; Morisette, Jeffery T.; Nickeson, Jaime E.; Stohlgren, Thomas J.; Holcombe, Tracy R.; Nightingale, Joanne M.; Wolfe, Robert E.; Tan, Bin

    2014-01-01

    Species distribution models have often been hampered by poor local species data, reliance on coarse-scale climate predictors and the assumption that species-environment relationships, even with non-proximate predictors, are consistent across geographical space. Yet locally accurate maps of invasive species, such as the Africanized honeybee (AHB) in North America, are needed to support conservation efforts. Current AHB range maps are relatively coarse and are inconsistent with observed data. Our aim was to improve distribution maps using more proximate predictors (phenology) and using regional models rather than one across the entire range of interest to explore potential differences in drivers.

  1. Regional distribution models with lack of proximate predictors: Africanized honeybees expanding north

    USGS Publications Warehouse

    Jarnevich, Catherine S.; Esaias, Wayne E.; Ma, Peter L.A.; Morisette, Jeffery T.; Nickeson, Jaime E.; Stohlgren, Thomas J.; Holcombe, Tracy R.; Nightingale, Joanne M.; Wolfe, Robert E.; Tan, Bin

    2014-01-01

    Species distribution models have often been hampered by poor local species data, reliance on coarse-scale climate predictors and the assumption that species–environment relationships, even with non-proximate predictors, are consistent across geographical space. Yet locally accurate maps of invasive species, such as the Africanized honeybee (AHB) in North America, are needed to support conservation efforts. Current AHB range maps are relatively coarse and are inconsistent with observed data. Our aim was to improve distribution maps using more proximate predictors (phenology) and using regional models rather than one across the entire range of interest to explore potential differences in drivers.

  2. Proboscis Conditioning Experiments with Honeybees, Apis Mellifera Caucasica, with Butyric Acid and DEET Mixture as Conditioned and Unconditioned Stimuli

    PubMed Central

    Abramson, Charles I.; Giray, Tugrul; Mixson, T. Andrew; Nolf, Sondra L.; Wells, Harrington; Kence, Aykut; Kence, Meral

    2010-01-01

    Three experiments are described investigating whether olfactory repellents DEET and butyric acid can support the classical conditioning of proboscis extension in the honeybee, Apis mellifera caucasica (Hymenoptera: Apidae). In the first experiment DEET and butyric acid readily led to standard acquisition and extinction effects, which are comparable to the use of cinnamon as a conditioned stimulus. These results demonstrate that the odor of DEET or butyric acid is not intrinsically repellent to honey bees. In a second experiment, with DEET and butyric acid mixed with sucrose as an unconditioned stimulus, proboscis conditioning was not established. After several trials, few animals responded to the unconditioned stimulus. These results demonstrate that these chemicals are gustatory repellents when in direct contact. In the last experiment a conditioned suppression paradigm was used. Exposing animals to butyric acid or DEET when the proboscis was extended by direct sucrose stimulation or by learning revealed that retraction of the proboscis was similar to another novel odor, lavender, and in all cases greatest when the animal was not permitted to feed. These results again demonstrate that DEET or butyric acid are not olfactory repellents, and in addition, conditioned suppression is influenced by feeding state of the bee. PMID:20879917

  3. Proboscis conditioning experiments with honeybees, Apis mellifera caucasica, with butyric acid and DEET mixture as conditioned and unconditioned stimuli.

    PubMed

    Abramson, Charles I; Giray, Tugrul; Mixson, T Andrew; Nolf, Sondra L; Wells, Harrington; Kence, Aykut; Kence, Meral

    2010-01-01

    Three experiments are described investigating whether olfactory repellents DEET and butyric acid can support the classical conditioning of proboscis extension in the honeybee, Apis mellifera caucasica (Hymenoptera: Apidae). In the first experiment DEET and butyric acid readily led to standard acquisition and extinction effects, which are comparable to the use of cinnamon as a conditioned stimulus. These results demonstrate that the odor of DEET or butyric acid is not intrinsically repellent to honey bees. In a second experiment, with DEET and butyric acid mixed with sucrose as an unconditioned stimulus, proboscis conditioning was not established. After several trials, few animals responded to the unconditioned stimulus. These results demonstrate that these chemicals are gustatory repellents when in direct contact. In the last experiment a conditioned suppression paradigm was used. Exposing animals to butyric acid or DEET when the proboscis was extended by direct sucrose stimulation or by learning revealed that retraction of the proboscis was similar to another novel odor, lavender, and in all cases greatest when the animal was not permitted to feed. These results again demonstrate that DEET or butyric acid are not olfactory repellents, and in addition, conditioned suppression is influenced by feeding state of the bee.

  4. Discovery of 3-methyl-2-buten-1-yl acetate, a new alarm component in the sting apparatus of Africanized honeybees.

    PubMed

    Hunt, Greg J; Wood, Karl V; Guzmán-Novoa, Ernesto; Lee, Hsiupu D; Rothwell, Arlene P; Bonham, Connie C

    2003-02-01

    We analyzed the alarm pheromone components from five colonies of Africanized honeybees and three colonies of European honeybees collected in Mexico. Analyses revealed a novel alarm pheromone component that was only present in appreciable quantities in the Africanized bee samples. Analysis of the mass spectrum and subsequent synthesis confirmed that this compound is 3-methyl-2-buten-1-yl acetate (3M2BA), an unsaturated derivative of IPA. In Africanized honeybees, sampling from stings of guards showed that 3M2BA was present at levels of 0-38% the amount of isoamyl acetate (IPA). Behavioral assays from three colonies each of Africanized and European bees showed that 3M2BA recruited worker bees from hives of both Africanized bees and European bees at least as efficiently as isopentyl acetate IPA, a compound widely reported to have the highest activity for releasing alarm and stinging behavior in honeybees. However, a mixture of of 3M2BA and IPA (1:2) recruited bees more efficiently than either of the compounds alone. None of the compounds differed in their efficacy for inducing bees to pursue the observers. PMID:12737269

  5. Honeybee (Apis mellifera L.) queen feces: Source of a pheromone that repels worker bees.

    PubMed

    Post, D C; Page, R E; Erickson, E H

    1987-03-01

    When placed in a small observation arena with workers, most young virgin honeybee queens released fecal (hindgut) material during agonistic interactions with workers and with each other. On release of this material, workers moved to the sides of the arena and groomed themselves. Bioassays of virgin queen fecal material demonstrated that it contains pheromone that repels workers and stimulates grooming behavior. Pheromone was present only in the feces of virgin queens that were more than 24 hr old and less than 2 weeks old. Feces of 2- to 4-day-old workers and virgin queens more than 2 weeks old did not elicit an avoidance response by workers. Moreover, the feces of young virgin queens had a strong fragrance, while that of older queens had a rancid odor and that of young workers had no detectable odor.

  6. Foraging reactivation in the honeybee Apis mellifera L.: factors affecting the return to known nectar sources

    NASA Astrophysics Data System (ADS)

    Gil, Mariana; Farina, Walter Marcelo

    2002-05-01

    This paper addresses, what determines that experienced forager honeybees return to places where they have previously exploited nectar. Although there was already some evidence that dance and trophallaxis can cause bees to return to feed, the fraction of unemployed foragers that follow dance or receive food from employed foragers before revisiting the feeder was unknown. We found that 27% of the experienced foragers had no contact with the returning foragers inside the hive. The most common interactions were dance following (64%) and trophallaxis (21%). The great variability found in the amount of interactions suggests that individual bees require different stimulation before changing to the foraging mode. This broad disparity negatively correlated with the number of days after marking at the feeder, a variable that is closely related to the foraging experience, suggesting that a temporal variable might affect the decision-making in reactivated foragers.

  7. Reassessing the role of the honeybee (Apis mellifera) Dufour's gland in egg marking

    NASA Astrophysics Data System (ADS)

    Martin, Stephen; Jones, Graeme; Châline, Nicolas; Middleton, Helen; Ratnieks, Francis

    2002-10-01

    Dufour's gland secretion may allow worker honeybees to discriminate between queen-laid and worker-laid eggs. To investigate this, we combined the chemical analysis of individually treated eggs with an egg removal bioassay. We partitioned queen Dufour's gland into hydrocarbon and ester fractions. The bioassay showed that worker-laid eggs treated with either whole gland extract, ester fraction or synthetic gland esters were removed more slowly than untreated worker-laid eggs. However, the effect only lasted up to 20 h. Worker-laid eggs treated with the hydrocarbon fraction were removed at the same rate as untreated eggs. The amount of ester which reduced the egg removal rate was far higher than that naturally found on queen-laid or worker-laid eggs, and at natural ester levels no effect was found. Our results indicate that esters or hydrocarbons probably do not function as the signal by which eggs can be discriminated.

  8. Walking patterns induced by learned odors in the honeybee, Apis mellifera L.

    PubMed

    Yamashita, Toshiya; Haupt, S Shuichi; Ikeno, Hidetoshi; Ai, Hiroyuki

    2016-01-01

    The odor localization strategy induced by odors learned via differential conditioning of the proboscis extension response was investigated in honeybees. In response to reward-associated but not non-reward-associated odors, learners walked longer paths than non-learners and control bees. When orange odor reward association was learned, the path length and the body turn angles were small during odor stimulation and greatly increased after stimulation ceased. In response to orange odor, bees walked locally with alternate left and right turns during odor stimulation to search for the reward-associated odor source. After odor stimulation, bees walked long paths with large turn angles to explore the odor plume. For clove odor, learning-related modulations of locomotion were less pronounced, presumably due to a spontaneous preference for orange in the tested population of bees. This study is the first to describe how an odor-reward association modulates odor-induced walking in bees. PMID:26567342

  9. Microspectrophotometry of single rhabdoms in the retina of the honeybee drone (Apis mellifera male).

    PubMed

    Muri, R B; Jones, G J

    1983-10-01

    The relative absorption spectra of the bistable photopigment of single rhabdoms from the dorsal region of the retina of the honeybee drone were obtained using slices of retina fixed in glutaraldehyde; less accurate measurements on unfixed tissue gave difference spectra that were similar to those for fixed retinae. The method used was based on measurements of absorbance changes during saturating adaptations of the visual pigment to different monochromatic lights. It is similar to previous methods based on measurements of difference spectra amplitudes, but is simpler to use and more accurate. The predominant pigment has states that absorb maximally at 446 (rhodopsin) and 505 nm (metarhodopsin). In addition, there is a small amount of another pigment whose two states absorb maximally at approximately 340 (UV) and 460 nm.

  10. A new antigenic marker specifically labels a subpopulation of the class II Kenyon cells in the brain of the European honeybee Apis mellifera

    PubMed Central

    Watanabe, Takayuki; Kubo, Takeo

    2015-01-01

    The mushroom bodies are the higher-order integration center in the insect brain and are involved in higher brain functions such as learning and memory. In the social hymenopteran insects such as honeybees, the mushroom bodies are the prominent brain structures. The mushroom bodies are composed of lobed neuropils formed by thousands of parallel-projecting axons of intrinsic neurons, and the lobes are divided into parallel subdivisions. In the present paper, we report a new antigenic marker to label a single layer in the vertical lobes of the European honeybee Apis mellifera. In the brain of A. mellifera, a monoclonal antibody (mAb) 15C3, which was originally developed against an insect ecdysone receptor (EcR) protein, immunolabels a single layer of the vertical lobes that correspond to the most dorsal layer of the γ-lobe. The 15C3 mAb recognizes a single ~200 kDa protein expressed in the adult honeybee brain. In addition, the 15C3 mAb immunoreactivity was also observed in the lobes of the developing pupal mushroom bodies. Since γ-lobe is well known to their extensive reorganization that occurs during metamorphosis in Drosophila, the novel antigenic marker for the honeybee γ-lobe allows us to investigate morphological changes of the mushroom bodies during metamorphosis. PMID:27493518

  11. Oriental orchid (Cymbidium floribundum) attracts the Japanese honeybee (Apis cerana japonica) with a mixture of 3-hydroxyoctanoic acid and 10-hydroxy- (E)-2-decenoic acid.

    PubMed

    Sugahara, Michio; Izutsu, Kazunari; Nishimura, Yasuichiro; Sakamoto, Fumio

    2013-02-01

    The flower of the oriental orchid Cymbidium floribundum is known to attract the Japanese honeybee Apis cerana japonica. This effect is observed not only in workers but also drones and queens; that is, it attracts even swarming and absconding bees. A mixture of 3-hydroxyoctanoic acid (3-HOAA) and 10-hydroxy-(E)-2-decenoic acid (10-HDA) was identified as the active principles from the orchid flower, whereas these compounds individually have no such activity. Both compounds are also mandibular gland components of worker honeybees with related compounds. This strongly supports the idea that orchid flowers mimic bee secretions, although the ecological consequences of this relationship remain unknown. Because the flower is used to capture swarms, the present identification may contribute to the development of new techniques in traditional beekeeping for Japanese bees as well as A. cerana in Southeast Asia.

  12. Optimization of γ-aminobutyric acid production by Lactobacillus plantarum Taj-Apis362 from honeybees.

    PubMed

    Tajabadi, Naser; Ebrahimpour, Afshin; Baradaran, Ali; Rahim, Raha Abdul; Mahyudin, Nor Ainy; Manap, Mohd Yazid Abdul; Bakar, Fatimah Abu; Saari, Nazamid

    2015-04-15

    Dominant strains of lactic acid bacteria (LAB) isolated from honey bees were evaluated for their γ-aminobutyric acid (GABA)-producing ability. Out of 24 strains, strain Taj-Apis362 showed the highest GABA-producing ability (1.76 mM) in MRS broth containing 50 mM initial glutamic acid cultured for 60 h. Effects of fermentation parameters, including initial glutamic acid level, culture temperature, initial pH and incubation time on GABA production were investigated via a single parameter optimization strategy. The optimal fermentation condition for GABA production was modeled using response surface methodology (RSM). The results showed that the culture temperature was the most significant factor for GABA production. The optimum conditions for maximum GABA production by Lactobacillus plantarum Taj-Apis362 were an initial glutamic acid concentration of 497.97 mM, culture temperature of 36 °C, initial pH of 5.31 and incubation time of 60 h, which produced 7.15 mM of GABA. The value is comparable with the predicted value of 7.21 mM.

  13. Optimization of γ-aminobutyric acid production by Lactobacillus plantarum Taj-Apis362 from honeybees.

    PubMed

    Tajabadi, Naser; Ebrahimpour, Afshin; Baradaran, Ali; Rahim, Raha Abdul; Mahyudin, Nor Ainy; Manap, Mohd Yazid Abdul; Bakar, Fatimah Abu; Saari, Nazamid

    2015-01-01

    Dominant strains of lactic acid bacteria (LAB) isolated from honey bees were evaluated for their γ-aminobutyric acid (GABA)-producing ability. Out of 24 strains, strain Taj-Apis362 showed the highest GABA-producing ability (1.76 mM) in MRS broth containing 50 mM initial glutamic acid cultured for 60 h. Effects of fermentation parameters, including initial glutamic acid level, culture temperature, initial pH and incubation time on GABA production were investigated via a single parameter optimization strategy. The optimal fermentation condition for GABA production was modeled using response surface methodology (RSM). The results showed that the culture temperature was the most significant factor for GABA production. The optimum conditions for maximum GABA production by Lactobacillus plantarum Taj-Apis362 were an initial glutamic acid concentration of 497.97 mM, culture temperature of 36 °C, initial pH of 5.31 and incubation time of 60 h, which produced 7.15 mM of GABA. The value is comparable with the predicted value of 7.21 mM. PMID:25884548

  14. An alarm pheromone modulates appetitive olfactory learning in the honeybee (apis mellifera).

    PubMed

    Urlacher, Elodie; Francés, Bernard; Giurfa, Martin; Devaud, Jean-Marc

    2010-01-01

    In honeybees, associative learning is embedded in a social context as bees possess a highly complex social organization in which communication among individuals is mediated by dance behavior informing about food sources, and by a high variety of pheromones that maintain the social links between individuals of a hive. Proboscis extension response conditioning is a case of appetitive learning, in which harnessed bees learn to associate odor stimuli with sucrose reward in the laboratory. Despite its recurrent use as a tool for uncovering the behavioral, cellular, and molecular bases underlying associative learning, the question of whether social signals (pheromones) affect appetitive learning has not been addressed in this experimental framework. This situation contrasts with reports underlining that foraging activity of bees is modulated by alarm pheromones released in the presence of a potential danger. Here, we show that appetitive learning is impaired by the sting alarm pheromone (SAP) which, when released by guards, recruits foragers to defend the hive. This effect is mimicked by the main component of SAP, isopentyl acetate, is dose-dependent and lasts up to 24 h. Learning impairment is specific to alarm signal exposure and is independent of the odorant used for conditioning. Our results suggest that learning impairment may be a response to the biological significance of SAP as an alarm signal, which would detract bees from responding to any appetitive stimuli in a situation in which such responses would be of secondary importance. PMID:20838475

  15. An Alarm Pheromone Modulates Appetitive Olfactory Learning in the Honeybee (Apis Mellifera)

    PubMed Central

    Urlacher, Elodie; Francés, Bernard; Giurfa, Martin; Devaud, Jean-Marc

    2010-01-01

    In honeybees, associative learning is embedded in a social context as bees possess a highly complex social organization in which communication among individuals is mediated by dance behavior informing about food sources, and by a high variety of pheromones that maintain the social links between individuals of a hive. Proboscis extension response conditioning is a case of appetitive learning, in which harnessed bees learn to associate odor stimuli with sucrose reward in the laboratory. Despite its recurrent use as a tool for uncovering the behavioral, cellular, and molecular bases underlying associative learning, the question of whether social signals (pheromones) affect appetitive learning has not been addressed in this experimental framework. This situation contrasts with reports underlining that foraging activity of bees is modulated by alarm pheromones released in the presence of a potential danger. Here, we show that appetitive learning is impaired by the sting alarm pheromone (SAP) which, when released by guards, recruits foragers to defend the hive. This effect is mimicked by the main component of SAP, isopentyl acetate, is dose-dependent and lasts up to 24 h. Learning impairment is specific to alarm signal exposure and is independent of the odorant used for conditioning. Our results suggest that learning impairment may be a response to the biological significance of SAP as an alarm signal, which would detract bees from responding to any appetitive stimuli in a situation in which such responses would be of secondary importance. PMID:20838475

  16. An alarm pheromone modulates appetitive olfactory learning in the honeybee (apis mellifera).

    PubMed

    Urlacher, Elodie; Francés, Bernard; Giurfa, Martin; Devaud, Jean-Marc

    2010-01-01

    In honeybees, associative learning is embedded in a social context as bees possess a highly complex social organization in which communication among individuals is mediated by dance behavior informing about food sources, and by a high variety of pheromones that maintain the social links between individuals of a hive. Proboscis extension response conditioning is a case of appetitive learning, in which harnessed bees learn to associate odor stimuli with sucrose reward in the laboratory. Despite its recurrent use as a tool for uncovering the behavioral, cellular, and molecular bases underlying associative learning, the question of whether social signals (pheromones) affect appetitive learning has not been addressed in this experimental framework. This situation contrasts with reports underlining that foraging activity of bees is modulated by alarm pheromones released in the presence of a potential danger. Here, we show that appetitive learning is impaired by the sting alarm pheromone (SAP) which, when released by guards, recruits foragers to defend the hive. This effect is mimicked by the main component of SAP, isopentyl acetate, is dose-dependent and lasts up to 24 h. Learning impairment is specific to alarm signal exposure and is independent of the odorant used for conditioning. Our results suggest that learning impairment may be a response to the biological significance of SAP as an alarm signal, which would detract bees from responding to any appetitive stimuli in a situation in which such responses would be of secondary importance.

  17. Quantitative trait loci associated with reversal learning and latent inhibition in honeybees (Apis mellifera).

    PubMed

    Chandra, S B; Hunt, G J; Cobey, S; Smith, B H

    2001-05-01

    A study was conducted to identify quantitative trait loci (QTLs) that affect learning in honeybees. Two F1 supersister queens were produced from a cross between two established lines that had been selected for differences in the speed at which they reverse a learned discrimination between odors. Different families of haploid drones from two of these F1 queens were evaluated for two kinds of learning performance--reversal learning and latent inhibition--which previously showed correlated selection responses. Random amplified polymorphic DNA markers were scored from recombinant, haploid drone progeny that showed extreme manifestations of learning performance. Composite interval mapping procedures identified two QTLs for reversal learning (lrn2 and lrn3: LOD, 2.45 and 2.75, respectively) and one major QTL for latent inhibition (lrn1: LOD, 6.15). The QTL for latent inhibition did not map to either of the linkage groups that were associated with reversal learning. Identification of specific genes responsible for these kinds of QTL associations will open up new windows for better understanding of genes involved in learning and memory.

  18. Trophallaxis in filled-crop honeybees (Apis mellifera L.): food-loading time affects unloading behaviour

    NASA Astrophysics Data System (ADS)

    Wainselboim, A. J.; Farina, W. M.

    Honeybees ingested 50% w/w (1.8M) sucrose solution at a rate feeder offering either 16.5, 32.5 or 65 μl/min. While the time spent ingesting solution at the feeder decreased significantly with increasing flow of solution, bees attained maximum crop loads with this range of flows. Different parameters related to mouth-to-mouth food exchange (trophallaxis) showed important modulations as the offered flow of solution was incremented. Trophallactic transfer rate, i.e. the speed at which liquid food is transferred from donor to recipient bee, was found to increase along with increasing profitability at the rate feeder. In the present case, food source profitability could have been evaluated by foragers either by measuring the time invested in ingesting the solution, or by direct assessment of the flow rate of the feeder. Thus it seems that perception of profitability conditions at the food sourcesuffices for later representation in the hive through trophallactic contacts, independently of crop-filling state.

  19. The Optics of the Compound Eye of the Honeybee (Apis mellifera)

    PubMed Central

    Varela, Francisco G.; Wiitanen, Wayne

    1970-01-01

    The optical system of the compound eye of the worker honeybee, as a representative of the closed-rhabdom type of eye, was investigated and its function analyzed. Measurements of refractive indices of the elements of the optical system were made with an interference microscope. With the use of the resulting measurements, the optical system was analyzed by means of a ray-tracing procedure implemented for the IBM 7094 digital computer, and by means of the Gaussian thick lens formulae. The more detailed results of the ray-tracing technique were used for further analyses. Direct visual confirmation of the focal point was obtained. The rhabdom and the surrounding zone of lower refractive index act together as a wave guide, as demonstrated by the presence of several wave guide modes in the rhabdom. An admittance function was defined as the percentage of the rays reaching the rhabdom with respect to those entering the ommatidium. Good agreement with experimental results was found. The characterization of the visual field of an ommatidium by means of an admittance function permits the analysis of the influence of different stimuli on the eye. PMID:5520506

  20. Differentially methylated obligatory epialleles modulate context-dependent LAM gene expression in the honeybee Apis mellifera.

    PubMed

    Wedd, Laura; Kucharski, Robert; Maleszka, Ryszard

    2016-01-01

    Differential intragenic methylation in social insects has been hailed as a prime mover of environmentally driven organismal plasticity and even as evidence for genomic imprinting. However, very little experimental work has been done to test these ideas and to prove the validity of such claims. Here we analyze in detail differentially methylated obligatory epialleles of a conserved gene encoding lysosomal α-mannosidase (AmLAM) in the honeybee. We combined genotyping of progenies derived from colonies founded by single drone inseminated queens, ultra-deep allele-specific bisulfite DNA sequencing, and gene expression to reveal how sequence variants, DNA methylation, and transcription interrelate. We show that both methylated and non-methylated states of AmLAM follow Mendelian inheritance patterns and are strongly influenced by polymorphic changes in DNA. Increased methylation of a given allele correlates with higher levels of context-dependent AmLAM expression and appears to affect the transcription of an antisense long noncoding RNA. No evidence of allelic imbalance or imprinting involved in this process has been found. Our data suggest that by generating alternate methylation states that affect gene expression, sequence variants provide organisms with a high level of epigenetic flexibility that can be used to select appropriate responses in various contexts. This study represents the first effort to integrate DNA sequence variants, gene expression, and methylation in a social insect to advance our understanding of their relationships in the context of causality. PMID:26507253

  1. Differentially methylated obligatory epialleles modulate context-dependent LAM gene expression in the honeybee Apis mellifera

    PubMed Central

    Wedd, Laura; Kucharski, Robert; Maleszka, Ryszard

    2016-01-01

    ABSTRACT Differential intragenic methylation in social insects has been hailed as a prime mover of environmentally driven organismal plasticity and even as evidence for genomic imprinting. However, very little experimental work has been done to test these ideas and to prove the validity of such claims. Here we analyze in detail differentially methylated obligatory epialleles of a conserved gene encoding lysosomal α-mannosidase (AmLAM) in the honeybee. We combined genotyping of progenies derived from colonies founded by single drone inseminated queens, ultra-deep allele-specific bisulfite DNA sequencing, and gene expression to reveal how sequence variants, DNA methylation, and transcription interrelate. We show that both methylated and non-methylated states of AmLAM follow Mendelian inheritance patterns and are strongly influenced by polymorphic changes in DNA. Increased methylation of a given allele correlates with higher levels of context-dependent AmLAM expression and appears to affect the transcription of an antisense long noncoding RNA. No evidence of allelic imbalance or imprinting involved in this process has been found. Our data suggest that by generating alternate methylation states that affect gene expression, sequence variants provide organisms with a high level of epigenetic flexibility that can be used to select appropriate responses in various contexts. This study represents the first effort to integrate DNA sequence variants, gene expression, and methylation in a social insect to advance our understanding of their relationships in the context of causality. PMID:26507253

  2. Locomotion and the pollen hoarding behavioral syndrome of the honeybee (Apis mellifera L.).

    PubMed

    Humphries, M A; Fondrk, M K; Page, R E

    2005-07-01

    Honeybees selected for the colony level phenotype of storing large quantities of pollen (pollen hoarding) in the nest exhibit greater walking activity than those selected against pollen hoarding. In this study, we use a simple walking assay to demonstrate that walking activity increases with the proportion of high pollen-hoarding alleles in pure and backcrossed strains of bees (high-strain bees > offspring generated from a high backcross > offspring generated from a low backcross > low-strain bees). The trait is heritable but is not associated with markers linked to three quantitative trait loci (QTL) mapped for their effects on pollen hoarding with demonstrated pleiotropic effects on pollen and nectar foraging and learning behavior. However, locomotion in non-selected bees is correlated with responsiveness to sucrose, a trait that correlates with foraging and learning behavior. We propose that pollen-hoarding behavior involves a syndrome of behavioral traits with complex genetic and regulatory architectures that span sensory sensitivity, foraging behavior, and learning. We propose that locomotor activity is the component of this syndrome and reflects the early maturation of the bees that become pollen foragers.

  3. Differentially methylated obligatory epialleles modulate context-dependent LAM gene expression in the honeybee Apis mellifera.

    PubMed

    Wedd, Laura; Kucharski, Robert; Maleszka, Ryszard

    2016-01-01

    Differential intragenic methylation in social insects has been hailed as a prime mover of environmentally driven organismal plasticity and even as evidence for genomic imprinting. However, very little experimental work has been done to test these ideas and to prove the validity of such claims. Here we analyze in detail differentially methylated obligatory epialleles of a conserved gene encoding lysosomal α-mannosidase (AmLAM) in the honeybee. We combined genotyping of progenies derived from colonies founded by single drone inseminated queens, ultra-deep allele-specific bisulfite DNA sequencing, and gene expression to reveal how sequence variants, DNA methylation, and transcription interrelate. We show that both methylated and non-methylated states of AmLAM follow Mendelian inheritance patterns and are strongly influenced by polymorphic changes in DNA. Increased methylation of a given allele correlates with higher levels of context-dependent AmLAM expression and appears to affect the transcription of an antisense long noncoding RNA. No evidence of allelic imbalance or imprinting involved in this process has been found. Our data suggest that by generating alternate methylation states that affect gene expression, sequence variants provide organisms with a high level of epigenetic flexibility that can be used to select appropriate responses in various contexts. This study represents the first effort to integrate DNA sequence variants, gene expression, and methylation in a social insect to advance our understanding of their relationships in the context of causality.

  4. Transcriptional responses in eastern honeybees (Apis cerana) infected with mites, Varroa destructor.

    PubMed

    Ji, T; Yin, L; Liu, Z; Liang, Q; Luo, Y; Shen, J; Shen, F

    2014-10-31

    The Varroa destructor mite has become the greatest threat to Apis mellifera health worldwide, but rarely causes serious damage to its native host Apis cerana. Understanding the resistance mechanisms of eastern bees against Varroa mites will help researchers determine how to protect other species from this organism. The A. cerana genome has not been previously sequenced; hence, here we sequenced the A. cerana nurse workers transcriptome and monitored the differential gene expression of A. cerana bees challenged by V. destructor. Using de novo transcriptome assembly, we obtained 91,172 unigenes (transcripts) for A. cerana. Differences in gene expression levels between the unchallenged (Con) and challenged (Con2) samples were estimated, and a total of 36,691 transcripts showed a 2-fold difference (at least) between the 2 libraries. A total of 272 differentially expressed genes showed differences greater than 15-fold, and 265 unigenes were present at higher levels in Con2 than in Con. Among the upregulated unigenes in the Con2 colony, genes related to skeletal muscle movement (troponin and calcium-transporting ATPase), olfactory sensitivity (odorant binding proteins, and Down syndrome cell adhesion molecule gene) and transcription factors (cyclic adenosine monophosphate-responsive element-binding protein and transcription factor mblk-1) appeared to be involved in Varroa resistance. Real-time polymerase chain reaction was performed to validate these differentially expressed genes screened by the sequencing approach, and sufficient consistency was observed between the two methods. These findings strongly support that hygienic and grooming behaviors play important roles in Varroa resistance.

  5. Sulfur single-wavelength anomalous diffraction crystal structure of a pheromone-binding protein from the honeybee Apis mellifera L.

    PubMed

    Lartigue, Audrey; Gruez, Arnaud; Briand, Loïc; Blon, Florence; Bézirard, Valérie; Walsh, Martin; Pernollet, Jean-Claude; Tegoni, Mariella; Cambillau, Christian

    2004-02-01

    Pheromone binding proteins (PBPs) are small helical proteins ( approximately 13-17 kDa) present in several sensory organs from moth and other insect species. They are involved in the transport of pheromones from the sensillar lymph to the olfactory receptors. We report here the crystal structure of a PBP (Amel-ASP1) originating from the honey-bee (Apis mellifera) antennae and expressed as recombinant protein in the yeast Pichia pastoris. Crystals of Amel-ASP1 were obtained at pH 5.5 using the nano-drops technique of crystallization with a novel optimization procedure, and the structure was solved initially with the single-wavelength anomalous diffraction technique using sulfur anomalous dispersion. The structure of Amel-ASP1 has been refined at 1.6-A resolution. Its fold is roughly similar to that of other PBP/odorant binding proteins, presenting six helices and three disulfide bridges. Contrary to the PBPs from Bombyx mori (Sandler, B. H., Nikonova, L., Leal, W. S., and Clardy, J. (2000) Chem. Biol. 7, 143-151) and Leucophea maderae (Lartigue, A., Gruez, A., Spinelli, S., Riviere, S., Brossut, R., Tegoni, M., and Cambillau, C. (2003) J. Biol. Chem. 278, 30213-30218), the extended C terminus folds into the protein and forms a wall of the internal hydrophobic cavity. Its backbone groups establish two hydrogen bonds with a serendipitous ligand, n-butyl-benzene-sulfonamide, an additive used in plastics. This mode of binding might, however, mimic that used by one of the pheromonal blend components and illustrates the binding versatility of PBPs.

  6. Brain modulation of Dufour's gland ester biosynthesis in vitro in the honeybee ( Apis mellifera)

    NASA Astrophysics Data System (ADS)

    Katzav-Gozansky, Tamar; Hefetz, Abraham; Soroker, Victoria

    2007-05-01

    Caste-specific pheromone biosynthesis is a prerequisite for reproductive skew in the honeybee. Nonetheless, this process is not hardwired but plastic, in that egg-laying workers produce a queen-like pheromone. Studies with Dufour’s gland pheromone revealed that, in vivo, workers’ gland biosynthesis matches the social status of the worker, i.e., sterile workers showed a worker-like pattern whereas fertile workers showed a queen-like pattern (production of the queen-specific esters). However, when incubated in vitro, the gland spontaneously exhibits the queen-like pattern, irrespective of its original worker type, prompting the notion that ester production in workers is under inhibitory control that is queen-dependent. We tested this hypothesis by exposing queen or worker Dufour’s glands in vitro to brain extracts of queens, queenright (sterile) workers and males. Unexpectedly, worker brain extracts activated the queen-like esters biosynthesis in workers’ Dufour’s gland. This stimulation was gender-specific; queen or worker brains demonstrated a stimulatory activity, but male brains did not. Queen gland could not be further stimulated. Bioassays with heated and filtered extracts indicate that the stimulatory brain factor is below 3,000 Da. We suggest that pheromone production in Dufour’s gland is under dual, negative positive control. Under queenright conditions, the inhibitor is released and blocks ester biosynthesis, whereas under queenless conditions, the activator is released, activating ester biosynthesis in the gland. This is consistent with the hypothesis that queenright workers are unequivocally recognized as non-fertile, whereas queenless workers try to become “false queens” as part of the reproductive competition.

  7. Glycogen in honeybee queens, workers and drones (Apis mellifera carnica Pollm.).

    PubMed

    Crailsheim, K; Panzenböck, U

    1997-02-21

    Honey bees (Apis mellifera carnica Pollm.) have low glycogen reserves in summer. Upon emergence drones have significantly larger amounts per unit weight when emerging, than workers; perhaps as adaption to the risk of not being fed as intensely as young workers. Maximum content was 0.23mg for workers (28d), and 0.59mg for drones (after emergence). Workers have relatively constant glycogen contents during their life, and very young drones have more glycogen than older ones. Young queens are similar to workers. In workers and queens in summer the greatest amounts of glycogen are found in the thorax. When the bees start flying (6th-8th day of life), drones have the highest amounts in the head (probably to supply their eyes), and upon maturity, drones have the least glycogen in the abdomen.Workers in winter show different glycogen values depending on whether they are active bees from the core area (0.23mg) or inactive ones from the outer surface of the winter cluster (0.37mg). They use glycogen from the thorax and the abdomen for their ongoing energy need.

  8. How does the mite Varroa destructor kill the honeybee Apis mellifera? Alteration of cuticular hydrcarbons and water loss in infested honeybees.

    PubMed

    Annoscia, Desiderato; Del Piccolo, Fabio; Nazzi, Francesco

    2012-12-01

    Several factors threaten the health of honeybees; among them the parasitic mite Varroa destructor and the Deformed Wing Virus play a major role. Recently, the dangerous interplay between the mite and the virus was studied in detail and the transition, triggered by mite feeding, from a benign covert infection to a devastating viral outbreak, characterized by an intense viral replication, associated with some characteristic symptoms, was described. In order to gain insight into the events preceding that crucial transition we carried out standardized lab experiments aiming at studying the effects of parasitization in asymptomatic bees to establish a relationship between such effects and bee mortality. It appears that parasitization alters the capacity of the honeybee to regulate water exchange; this, in turn, has severe effects on bee survival. These results are discussed in light of possible novel strategies aiming at mitigating the impact of the parasite on honeybee health.

  9. Virulence and polar tube protein genetic diversity of Nosema ceranae (Microsporidia) field isolates from Northern and Southern Europe in honeybees (Apis mellifera iberiensis).

    PubMed

    Van der Zee, Romee; Gómez-Moracho, Tamara; Pisa, Lennard; Sagastume, Soledad; García-Palencia, Pilar; Maside, Xulio; Bartolomé, Carolina; Martín-Hernández, Raquel; Higes, Mariano

    2014-08-01

    Infection of honeybees by the microsporidian Nosema ceranae is considered to be one of the factors underlying the increased colony losses and decreased honey production seen in recent years. However, these effects appear to differ in function of the climatic zone, the distinct beekeeping practices and the honeybee species employed. Here, we compared the response of Apis mellifera iberiensis worker bees to experimental infection with field isolates of N. ceranae from an Oceanic climate zone in Northern Europe (Netherlands) and from a Mediterranean region of Southern Europe (Spain). We found a notable but non-significant trend (P = 0.097) towards higher honeybee survival for bees infected with N. ceranae from the Netherlands, although no differences were found between the two isolates in terms of anatomopathological lesions in infected ventricular cells or the morphology of the mature and immature stages of the parasite. In addition, the population genetic survey of the N. ceranae PTP3 locus revealed high levels of genetic diversity within each isolate, evidence for meiotic recombination, and no signs of differentiation between the Dutch and Spanish populations. A cross-infection study is needed to further explore the differences in virulence observed between the two N. ceranae populations in field conditions.

  10. The invasive Korea and Japan types of Varroa destructor, ectoparasitic mites of the Western honeybee (Apis mellifera), are two partly isolated clones

    PubMed Central

    Solignac, Michel; Cornuet, Jean-Marie; Vautrin, Dominique; Le Conte, Yves; Anderson, Denis; Evans, Jay; Cros-Arteil, Sandrine; Navajas, Maria

    2005-01-01

    Varroa destructor, now a major pest of the Western honeybee, Apis mellifera, switched from its original host, the Eastern honeybee, A. cerana, ca. 50 years ago. So far, only two out of several known mitochondrial haplotypes of V. destructor have been found to be capable of reproducing on A. mellifera (Korea and Japan). These haplotypes are associated in almost complete cytonuclear disequilibrium to diagnostic alleles at 11 microsatellite loci. By contrast, microsatellite polymorphism within each type is virtually absent, because of a severe bottleneck at the time of host change. Accordingly, 12 mitochondrial sequences of 5185 nucleotides displayed 0.40% of nucleotide divergence between haplotypes and no intra haplotype variation. Hence, each type has a quasi-clonal structure. The nascent intratype variability is subsequent to the clone formation 50 years ago: in both types the variant alleles differ from the most common by one (in 10 cases), two (five cases) or three (one case) repeated motifs. In addition to individuals of the two ‘pure’ types, five F1 hybrids and 19 recombinant individuals (Japan alleles introgressed into the Korea genetic background) were detected. The existence of F1 and recombinant individuals in admixed populations requires that double infestations of honeybee cells occur in a high proportion but the persistence of pure types suggests a post-zygotic isolation between the two clones. PMID:15734696

  11. Behavioral studies of learning in the Africanized honey bee (Apis mellifera L.).

    PubMed

    Abramson, Charles I; Aquino, Italo S

    2002-01-01

    Experiments on basic classical conditioning phenomena in adult and young Africanized honey bees (Apis mellifera L.) are described. Phenomena include conditioning to various stimuli, extinction (both unpaired and CS only), conditioned inhibition, color and odor discrimination. In addition to work on basic phenomena, experiments on practical applications of conditioning methodology are illustrated with studies demonstrating the effects of insecticides on learning and the reaction of bees to consumer products. Electron microscope photos are presented of Africanized workers, drones, and queen bees. Possible sub-species differences between Africanized and European bees are discussed.

  12. A scientific note on the lactic acid bacterial flora within the honeybee subspecies Apis mellifera (Buckfast), A.m. scutellata, A.m. mellifera, and A.m. monticola

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It was discovered by Olofsson and Vásquez (2008) that a novel lactic acid bacteria (LAB) microbiota with numerous LAB, comprising the genera Lactobacillus and Bifidobacterium, live in a symbiotic relationship with honeybees (Apis mellifera) in their honey stomach. Previous results from 16S rRNA gene...

  13. Fever in honeybee colonies

    NASA Astrophysics Data System (ADS)

    Starks, P. T.; Blackie, Caroline A.; Seeley, Thomas D.

    Honeybees, Apis spp., maintain elevated temperatures inside their nests to accelerate brood development and to facilitate defense against predators. We present an additional defensive function of elevating nest temperature: honeybees generate a brood-comb fever in response to colonial infection by the heat-sensitive pathogen Ascosphaera apis. This response occurs before larvae are killed, suggesting that either honeybee workers detect the infection before symptoms are visible, or that larvae communicate the ingestion of the pathogen. This response is a striking example of convergent evolution between this "superorganism" and other fever-producing animals.

  14. Morphometric and genetic changes in a population of Apis mellifera after 34 years of Africanization.

    PubMed

    Francoy, T M; Wittmann, D; Steinhage, V; Drauschke, M; Müller, S; Cunha, D R; Nascimento, A M; Figueiredo, V L C; Simões, Z L P; De Jong, D; Arias, M C; Gonçalves, L S

    2009-01-01

    Though the replacement of European bees by Africanized honey bees in tropical America has attracted considerable attention, little is known about the temporal changes in morphological and genetic characteristics in these bee populations. We examined the changes in the morphometric and genetic profiles of an Africanized honey bee population collected near where the original African swarms escaped, after 34 years of Africanization. Workers from colonies sampled in 1968 and in 2002 were morphometrically analyzed using relative warps analysis and an Automatic Bee Identification System (ABIS). All the colonies had their mitochondrial DNA identified. The subspecies that mixed to form the Africanized honey bees were used as a comparison for the morphometric analysis. The two morphometric approaches showed great similarity of Africanized bees with the African subspecies, Apis mellifera scutellata, corroborating with other markers. We also found the population of 1968 to have the pattern of wing venation to be more similar to A. m. scutellata than the current population. The mitochondrial DNA of European origin, which was very common in the 1968 population, was not found in the current population, indicating selective pressure replacing the European with the African genome in this tropical region. Both morphometric methodologies were very effective in discriminating the A. mellifera groups; the non-linear analysis of ABIS was the most successful in identifying the bees, with more than 94% correct classifications. PMID:19554770

  15. Spontaneous recovery from extinction depends on the reconsolidation of the acquisition memory in an appetitive learning paradigm in the honeybee (Apis mellifera).

    PubMed

    Stollhoff, Nicola; Menzel, Randolf; Eisenhardt, Dorothea

    2005-05-01

    Memory retrieval initiates two consolidation processes: consolidation of an extinction memory and reconsolidation of the acquisition memory. The strength of the consolidation processes depends on both the strength of the acquisition memory and the strength of retrieval trials and is correlated with its sensitivity to inhibition. We demonstrate that in the honeybee (Apis mellifera), memory retrieval of a consolidated appetitive olfactory memory leads to both consolidation processes, depending on the number of retrieval trials. Spontaneous recovery from extinction is induced by many (five), but not by few (one and two), retrieval trials. Spontaneous recovery is blocked by emetine, an inhibitor of protein synthesis. We conclude that reconsolidation of the acquisition memory underlies spontaneous recovery.

  16. Separation, characterization and sexual heterogeneity of multiple putative odorant-binding proteins in the honeybee Apis mellifera L. (Hymenoptera: Apidea).

    PubMed

    Danty, E; Arnold, G; Huet, J C; Huet, D; Masson, C; Pernollet, J C

    1998-02-01

    According to precise molar mass determined by mass spectrometry and N-terminal sequence, some 25 odorant-binding-like proteins were characterized from the antennae and legs of worker and drone honeybees. Antennal specific proteins, composed of six different molecules, were classified into three subclasses according to N-terminal sequence homology. The major sexual difference was shown to lie in the relative abundance of these antennal specific proteins and in the occurrence of a drone-specific isoform. At least 19 other related proteins were found to occur in antennae and legs, forming another class showing homology with insect OBP. Genotype comparison of two honeybee races revealed a variability limited to this second class. Provided that these odorant-binding-like proteins are indeed able to bind odorants or pheromones, the question of whether their peculiar multiplicity contributes to the remarkable capacity of the honeybee to discriminate among a wide range of odor molecules is raised.

  17. Ability of honeybee, Apis mellifera, to detect and discriminate odors of varieties of canola (Brassica rapa and Brassica napus) and snapdragon flowers (Antirrhinum majus).

    PubMed

    Wright, Geraldine A; Skinner, Bethany D; Smith, Brian H

    2002-04-01

    Honeybees (Apis mellifera) use odors to identify and discriminate among flowers during foraging. This series of experiments examined the ability of bees to detect and discriminate among the floral odors of different varieties of two species of canola (Brassica rapa and Brassica napus) and also among three varieties of snapdragons (Antirhinnum majus). Individual worker honeybees were trained using a proboscis extension assay. The ability of bees to distinguish a floral odor from an air stimulus during training increased as the number of flowers used during training increased. Bees conditioned to the odor of one variety of flower were asked to discriminate it from the odors of other flowers in two different training assays. Bees were unable to discriminate among flowers at the level of variety in a randomized presentation of a reinforced floral odor and an unreinforced floral odor. In the second type of assay, bees were trained with one floral variety for 40 trials without reinforcement and then tested with the same variety or with other varieties and species. If a bee had been trained with a variety of canola, it was unable to differentiate the odor of one canola flower from the odor of other canola flowers, but it could differentiate canola from the odor of a snapdragon flower. Bees trained with the odor of snapdragon flowers readily differentiated the odor of one variety of a snapdragon from the odor of other varieties of snapdragons and also canola flowers. Our study suggests that both intensity and odor quality affect the ability of honeybees to differentiate among floral perfumes.

  18. Variable induction of vitellogenin genes in the varroa mite, Varroa destructor (Anderson & Trueman), by the honeybee, Apis mellifera L, host and its environment.

    PubMed

    Cabrera Cordon, A R; Shirk, P D; Duehl, A J; Evans, J D; Teal, P E A

    2013-02-01

    Transcript levels of vitellogenins (Vgs) in the varroa mite, Varroa destructor (Anderson & Trueman), were variably induced by interactions between the developing honeybee, Apis mellifera L, as a food source and the capped honeybee cell environment. Transcripts for two Vgs of varroa mites were sequenced and putative Vg protein products characterized. Sequence analysis of VdVg1 and VdVg2 proteins showed that each had greater similarity with Vg1 and Vg2 proteins from ticks, respectively, than between themselves and were grouped separately by phylogenetic analyses. This suggests there was a duplication of the ancestral acarine Vg gene prior to the divergence of the mites and ticks. Low levels of transcript were detected in immature mites, males and phoretic females. Following cell invasion by phoretic females, VdVg1 and VdVg2 transcript levels were up-regulated after cell capping to a maximum at the time of partial cocoon formation by the honeybee. During oviposition the two transcripts were differentially expressed with higher levels of VdVg2 being observed. A bioassay based on assessing the transcript levels was established. Increases in VdVg1 and VdVg2 transcripts were induced experimentally in phoretic females when they were placed inside a cell containing an early metamorphosing last instar bee but not when exposed to the metamorphosing bee alone. The variable response of Vg expression to the food source as well as environmental cues within the capped cell demonstrates that perturbation of host-parasite interactions may provide avenues to disrupt the reproductive cycle of the varroa mites and prevent varroasis.

  19. Differential expressions of nuclear proteomes between honeybee (Apis mellifera L.) Queen and Worker Larvae: a deep insight into caste pathway decisions.

    PubMed

    Begna, Desalegn; Han, Bin; Feng, Mao; Fang, Yu; Li, Jianke

    2012-02-01

    Honeybees (Apis mellifera L.) possess individuals (castes) in their colonies, to which specific tasks are allocated. Owing to a difference in nutrition, the young female larvae develop into either a fertile queen or a sterile worker. Despite a series of investigations on the underlying mechanisms of honeybee caste polyphenism, information on proteins and enzymes involved in DNA and RNA regulation in the nucleus is still missing. The techniques of nuclear protein enrichment, two-dimensional electrophoresis, mass spectrometry and bioinformatics were applied to understand the nuclear proteome changes in response to changes in environmental settings (nutrition and time) during the early developmental stages at the third (72 h), fourth (96 h), and fifth (120 h) instars of the two caste intended larvae. A total of 120 differentially expressed nuclear proteins were identified in both caste intended larvae during these developmental stages. The third, fourth and fifth instars of queen prospective larvae expressed 69%, 84%, and 68% of the proteins that had altered expression, respectively. Particularly, the prospective queen larvae up-regulated most of the proteins with nuclear functions. In general, this changing nuclear proteome of the two caste intended larvae over the three developmental stages suggests variations in DNA and RNA regulating proteins and enzymes. These variations of proteins and enzymes involved in DNA and RNA regulation in response to differential nutrition between the two caste intended larvae lead the two caste larvae to pursue different developmental trajectories. Hence, this first data set of the nuclear proteome helps us to explore the innermost biological makings of queen and worker bee castes as early as before the 72 h (3rd instar). Also, it provides new insights into the honeybee's polymorphism at nuclear proteome level and paves new ways to understand mechanisms of caste decision in other eusocial insects.

  20. [Sudden die-off of honeybee colonies].

    PubMed

    Muz, Mustafa N

    2008-01-01

    Apis mellifera is used for honeybee keeping all over Turkey. Recently, honeybees have been suddenly disappearing for no apparent reason. It is presumed that some viral and parasitic honeybee pathogens are responsible for this. No medical research has been conducted to determine the pathologic causes of the sudden die-off of the honeybee colonies in Turkey as yet. This is of urgent importance for future of the honeybee industry.

  1. In situ localization of heat-shock and histone proteins in honey-bee (Apis mellifera l.) larvae infected with Paenibacillus larvae.

    PubMed

    Gregorc, A; Bowen, I D

    1999-01-01

    The immunohistochemical localization of the heat shock proteins (Hsp70 and Hsp90) and histone protein in healthy and Paenibacillus larvae infected honeybee (Apis mellifera L.) larvae has been studied. Hsp70 was found in the nuclei and the cytoplasm of infected midgut, salivary gland cells and haemocytes, but not in uninfected larvae. Hsp90 was localized in both infected and uninfected cells. Exposed histone proteins were localized in the nuclei of dying uninfected cells undergoing programmed cell death. The distribution of histone protein in uninfected cells of midgut, salivary gland, and other tissues was nuclear and indicative of normal programmed cell death at levels between 1 and 5%. After applying histone protein antibodies to P. larvae infected honeybee larvae, the DAB based reaction product was located in the nuclei or immediate surroundings of all larval cells. The Hsp70, Hsp90 and histone protein distribution patterns are discussed in relation to the morphological, cytochemical and immunocytochemical characteristics of programmed cell death and pathological necrosis. Results produced by methyl green-pyronin staining confirm an elevation of RNA levels in normal programmed cell death and a reduced staining for RNA in necrotic infected cells. PMID:10562442

  2. Laboratory bioassays on the impact of cadmium, copper and lead on the development and survival of honeybee (Apis mellifera L.) larvae and foragers.

    PubMed

    Di, Ning; Hladun, Kristen R; Zhang, Kai; Liu, Tong-Xian; Trumble, John T

    2016-06-01

    Honeybees (Apis mellifera L.) have been widely distributed around the world to serve as pollinators for agriculture. They can encounter metal pollutants through various routes of exposure, including foraging on contaminated plant resources. Chronic and acute toxicity tests were conducted on larvae using artificial diets and on foragers using solutions of 50% sucrose, which contained cadmium (Cd), copper (Cu) and lead (Pb). We found that mortality increased in both larvae and foragers in a dose-dependent manner. Control larvae had higher relative growth indices (RGI) from day 6 to day 10 compared to all metal treatments, demonstrating substantial negative effects of metals on development. Copper was the least toxic to larvae with an LC50 of 6.97 mg L(-1). For foragers, Pb had the highest LC50, which was 345 mg L(-1). Foragers and larvae accumulated substantial quantities of all metals, and subsequent sucrose consumption decreased after dosing. Overall, honeybee larvae and foragers suffered detrimental effects when they were exposed to ecologically-relevant concentrations of Cd, Cu and Pb. PMID:27011322

  3. RNA localization in the honeybee (Apis mellifera) oocyte reveals insights about the evolution of RNA localization mechanisms.

    PubMed

    Wilson, Megan J; Dearden, Peter K

    2013-03-15

    Subcellular localization of RNAs is a critical biological process for generation of cellular asymmetries for many cell types and a critical step in axis determination during the early development of animals. We have identified transcripts localized to the anterior and posterior of honeybee oocyte using laser capture microscopy and microarray analysis. Analysis of orthologous transcripts in Drosophila indicates that many do not show a conserved pattern of localization. By microinjecting fluorescently labeled honeybee transcripts into Drosophila egg chambers we show that these RNAs become localized in a similar manner to their localization in honeybee oocytes, indicating conservation of the localization machinery. Thus while the mechanisms for localizing RNA are conserved, the complement of localized RNAs are not. We propose that this complement of localized RNAs may change relatively rapidly through the loss or evolution of signal sequences detected by the conserved localization machinery, and show this has occurred in one transcript that is localized in a novel way in the honeybee. Our proposal, that the acquisition of novel RNA localization is relatively easy to evolve, has implications for the evolution of symmetry breaking mechanisms that trigger axis formation and development in animal embryos.

  4. Learning in the Africanized honey bee: Apis mellifera L.

    PubMed

    Abramson, C I; Aquino, I S; Silva, M C; Price, J M

    1997-09-01

    Several series of experiments are reported that investigate learning in the Africanized honey bee. In the first series, classical conditioning of proboscis extension was studied by confining bees to small metal tubes where they received pairings of an odor with a 3-s feeding of sucrose. After a number of odor-sucrose pairings, the bees began to extend their proboscis to the odor. Controls include Unpaired, Discrimination, and Pseudoconditioning Groups. This technique was used to look at conditioning to a light CS, and to the odors of beeswax, geraniol, citral, and hexanal. The results indicate that acquisition was best when sucrose was paired with the odor of beeswax. Conditioning to the remaining odors was roughly similar, but acquisition did not occur using a light. In a second series of experiments, odors were no longer followed by sucrose feedings and the conditioned response slowly disappeared. With the exception of geraniol as a CS, this extinction effect did not occur if the animals continued to be fed on an unpaired schedule. In a third series of experiments, conditioned inhibition was demonstrated when geraniol was used as conditioned stimuli, but no effect was found when the odors of hexanal, citral and wax were used. In a fourth series of experiments, unrestrained bees flew back and forth from the laboratory to the hive, where they were taught to distinguish targets based on color and odor. With this technique, color and odor discrimination in the Africanized bees was demonstrated. In addition, it was found that more intruder bees visited the experimental station when the stimuli used were olfactory rather than visual.

  5. Analysis of the Differentiation of Kenyon Cell Subtypes Using Three Mushroom Body-Preferential Genes during Metamorphosis in the Honeybee (Apis mellifera L.).

    PubMed

    Suenami, Shota; Paul, Rajib Kumar; Takeuchi, Hideaki; Okude, Genta; Fujiyuki, Tomoko; Shirai, Kenichi; Kubo, Takeo

    2016-01-01

    The adult honeybee (Apis mellifera L.) mushroom bodies (MBs, a higher center in the insect brain) comprise four subtypes of intrinsic neurons: the class-I large-, middle-, and small-type Kenyon cells (lKCs, mKCs, and sKCs, respectively), and class-II KCs. Analysis of the differentiation of KC subtypes during metamorphosis is important for the better understanding of the roles of KC subtypes related to the honeybee behaviors. In the present study, aiming at identifying marker genes for KC subtypes, we used a cDNA microarray to comprehensively search for genes expressed in an MB-preferential manner in the honeybee brain. Among the 18 genes identified, we further analyzed three genes whose expression was enriched in the MBs: phospholipase C epsilon (PLCe), synaptotagmin 14 (Syt14), and discs large homolog 5 (dlg5). Quantitative reverse transcription-polymerase chain reaction analysis revealed that expression of PLCe, Syt14, and dlg5 was more enriched in the MBs than in the other brain regions by approximately 31-, 6.8-, and 5.6-fold, respectively. In situ hybridization revealed that expression of both Syt14 and dlg5 was enriched in the lKCs but not in the mKCs and sKCs, whereas expression of PLCe was similar in all KC subtypes (the entire MBs) in the honeybee brain, suggesting that Syt14 and dlg5, and PLCe are available as marker genes for the lKCs, and all KC subtypes, respectively. In situ hybridization revealed that expression of PLCe is already detectable in the class-II KCs at the larval fifth instar feeding stage, indicating that PLCe expression is a characteristic common to the larval and adult MBs. In contrast, expression of both Syt14 and dlg5 became detectable at the day three pupa, indicating that Syt14 and dlg5 expressions are characteristic to the late pupal and adult MBs and the lKC specific molecular characteristics are established during the late pupal stages. PMID:27351839

  6. Analysis of the Differentiation of Kenyon Cell Subtypes Using Three Mushroom Body-Preferential Genes during Metamorphosis in the Honeybee (Apis mellifera L.)

    PubMed Central

    Okude, Genta; Fujiyuki, Tomoko; Shirai, Kenichi; Kubo, Takeo

    2016-01-01

    The adult honeybee (Apis mellifera L.) mushroom bodies (MBs, a higher center in the insect brain) comprise four subtypes of intrinsic neurons: the class-I large-, middle-, and small-type Kenyon cells (lKCs, mKCs, and sKCs, respectively), and class-II KCs. Analysis of the differentiation of KC subtypes during metamorphosis is important for the better understanding of the roles of KC subtypes related to the honeybee behaviors. In the present study, aiming at identifying marker genes for KC subtypes, we used a cDNA microarray to comprehensively search for genes expressed in an MB-preferential manner in the honeybee brain. Among the 18 genes identified, we further analyzed three genes whose expression was enriched in the MBs: phospholipase C epsilon (PLCe), synaptotagmin 14 (Syt14), and discs large homolog 5 (dlg5). Quantitative reverse transcription-polymerase chain reaction analysis revealed that expression of PLCe, Syt14, and dlg5 was more enriched in the MBs than in the other brain regions by approximately 31-, 6.8-, and 5.6-fold, respectively. In situ hybridization revealed that expression of both Syt14 and dlg5 was enriched in the lKCs but not in the mKCs and sKCs, whereas expression of PLCe was similar in all KC subtypes (the entire MBs) in the honeybee brain, suggesting that Syt14 and dlg5, and PLCe are available as marker genes for the lKCs, and all KC subtypes, respectively. In situ hybridization revealed that expression of PLCe is already detectable in the class-II KCs at the larval fifth instar feeding stage, indicating that PLCe expression is a characteristic common to the larval and adult MBs. In contrast, expression of both Syt14 and dlg5 became detectable at the day three pupa, indicating that Syt14 and dlg5 expressions are characteristic to the late pupal and adult MBs and the lKC specific molecular characteristics are established during the late pupal stages. PMID:27351839

  7. Proteome and phosphoproteome analysis of honeybee (Apis mellifera) venom collected from electrical stimulation and manual extraction of the venom gland

    PubMed Central

    2013-01-01

    Background Honeybee venom is a complicated defensive toxin that has a wide range of pharmacologically active compounds. Some of these compounds are useful for human therapeutics. There are two major forms of honeybee venom used in pharmacological applications: manually (or reservoir disrupting) extracted glandular venom (GV), and venom extracted through the use of electrical stimulation (ESV). A proteome comparison of these two venom forms and an understanding of the phosphorylation status of ESV, are still very limited. Here, the proteomes of GV and ESV were compared using both gel-based and gel-free proteomics approaches and the phosphoproteome of ESV was determined through the use of TiO2 enrichment. Results Of the 43 proteins identified in GV, < 40% were venom toxins, and > 60% of the proteins were non-toxic proteins resulting from contamination by gland tissue damage during extraction and bee death. Of the 17 proteins identified in ESV, 14 proteins (>80%) were venom toxic proteins and most of them were found in higher abundance than in GV. Moreover, two novel proteins (dehydrogenase/reductase SDR family member 11-like and histone H2B.3-like) and three novel phosphorylation sites (icarapin (S43), phospholipase A-2 (T145), and apamin (T23)) were identified. Conclusions Our data demonstrate that venom extracted manually is different from venom extracted using ESV, and these differences may be important in their use as pharmacological agents. ESV may be more efficient than GV as a potential pharmacological source because of its higher venom protein content, production efficiency, and without the need to kill honeybee. The three newly identified phosphorylated venom proteins in ESV may elicit a different immune response through the specific recognition of antigenic determinants. The two novel venom proteins extend our proteome coverage of honeybee venom. PMID:24199871

  8. Mandibular gland components of european and africanized honey bee queens (Apis mellifera L.).

    PubMed

    Pankiw, T; Winston, M L; Plettner, E; Slessor, K N; Pettis, J S; Taylor, O R

    1996-04-01

    The composition of the five-component honey bee queen mandibular gland pheromone (QMP) of mated European honey bee queens was compared to those of virgin and drone-laying (i.e., laying only haploid unfertilized eggs that develop into males), European queens and Africanized mated queens. QMP of mated European queens showed significantly greater quantities of individual components than all queen types compared, except for a significantly greater quantity of 9-hydroxy-(E)-2-decenoic acid (9-HDA) found in Africanized queens. Glands of European drone-laying queens contained quantities intermediate between virgin and mated queens, reflecting their intermediate reproductive state and age. QMP ontogeny shifts from a high proportion of 9-keto-(E)-2-decenoic acid (ODA) in young unmated queens to roughly equal proportions of ODA and 9-HDA in mated queens. A biosynthetic shift occurs after mating that results in a greater proportion of 9-HDA, methylp-hydroxybenzoate (HOB), and 4-hydroxy-3-methoxyphenylethanol (HVA) production, accompanied by a decreased proportion of ODA. Africanized QMP proportions of ODA and 9-HDA were significantly different from European queens. A quantitative definition of a "queen equivalent" of QMP is proposed for the various queen types, and a standard queen equivalent for mated European honeybee queen mandibular gland pheromone is adopted as 200µg ODA, 80µg 9-HDA, 20µg HOB, and 2 µg HVA.

  9. Classical conditioning of proboscis extension in harnessed Africanized honey bee queens (Apis mellifera L.).

    PubMed

    Aquino, Italo S; Abramson, Charles I; Soares, Ademilson E E; Fernandes, Andrea Cardoso; Benbassat, Danny

    2004-06-01

    Experiments are reported on learning in virgin Africanized honey bee queens (Apis mellifera L.). Queens restrained in a "Pavlovian harness" received a pairing of hexanal odor with a 1.8-M feeding of sucrose solution. Compared to explicitly unpaired controls, acquisition was rapid in reaching about 90%. Acquisition was also rapid in queens receiving an unconditioned stimulus of "bee candy" or an unconditioned stimulus administered by worker bees. During extinction the conditioned response declines. The steepest decline was observed in queens receiving an unconditioned stimulus of bee candy. These findings extend previous work on learning of Afrianized honey bee workers to a population of queen bees.

  10. Classical conditioning of proboscis extension in harnessed Africanized honey bee queens (Apis mellifera L.).

    PubMed

    Aquino, Italo S; Abramson, Charles I; Soares, Ademilson E E; Fernandes, Andrea Cardoso; Benbassat, Danny

    2004-06-01

    Experiments are reported on learning in virgin Africanized honey bee queens (Apis mellifera L.). Queens restrained in a "Pavlovian harness" received a pairing of hexanal odor with a 1.8-M feeding of sucrose solution. Compared to explicitly unpaired controls, acquisition was rapid in reaching about 90%. Acquisition was also rapid in queens receiving an unconditioned stimulus of "bee candy" or an unconditioned stimulus administered by worker bees. During extinction the conditioned response declines. The steepest decline was observed in queens receiving an unconditioned stimulus of bee candy. These findings extend previous work on learning of Afrianized honey bee workers to a population of queen bees. PMID:15362396

  11. A Locomotor Deficit Induced by Sublethal Doses of Pyrethroid and Neonicotinoid Insecticides in the Honeybee Apis mellifera

    PubMed Central

    Charreton, Mercédès; Decourtye, Axel; Henry, Mickaël; Rodet, Guy; Sandoz, Jean-Christophe; Charnet, Pierre; Collet, Claude

    2015-01-01

    The toxicity of pesticides used in agriculture towards non-targeted organisms and especially pollinators has recently drawn the attention from a broad scientific community. Increased honeybee mortality observed worldwide certainly contributes to this interest. The potential role of several neurotoxic insecticides in triggering or potentiating honeybee mortality was considered, in particular phenylpyrazoles and neonicotinoids, given that they are widely used and highly toxic for insects. Along with their ability to kill insects at lethal doses, they can compromise survival at sublethal doses by producing subtle deleterious effects. In this study, we compared the bee’s locomotor ability, which is crucial for many tasks within the hive (e.g. cleaning brood cells, feeding larvae…), before and after an acute sublethal exposure to one insecticide belonging to the two insecticide classes, fipronil and thiamethoxam. Additionally, we examined the locomotor ability after exposure to pyrethroids, an older chemical insecticide class still widely used and known to be highly toxic to bees as well. Our study focused on young bees (day 1 after emergence) since (i) few studies are available on locomotion at this stage and (ii) in recent years, pesticides have been reported to accumulate in different hive matrices, where young bees undergo their early development. At sublethal doses (SLD48h, i.e. causing no mortality at 48h), three pyrethroids, namely cypermethrin (2.5 ng/bee), tetramethrin (70 ng/bee), tau-fluvalinate (33 ng/bee) and the neonicotinoid thiamethoxam (3.8 ng/bee) caused a locomotor deficit in honeybees. While the SLD48h of fipronil (a phenylpyrazole, 0.5 ng/bee) had no measurable effect on locomotion, we observed high mortality several days after exposure, an effect that was not observed with the other insecticides. Although locomotor deficits observed in the sublethal range of pyrethroids and thiamethoxam would suggest deleterious effects in the field, the case

  12. A Locomotor Deficit Induced by Sublethal Doses of Pyrethroid and Neonicotinoid Insecticides in the Honeybee Apis mellifera.

    PubMed

    Charreton, Mercédès; Decourtye, Axel; Henry, Mickaël; Rodet, Guy; Sandoz, Jean-Christophe; Charnet, Pierre; Collet, Claude

    2015-01-01

    The toxicity of pesticides used in agriculture towards non-targeted organisms and especially pollinators has recently drawn the attention from a broad scientific community. Increased honeybee mortality observed worldwide certainly contributes to this interest. The potential role of several neurotoxic insecticides in triggering or potentiating honeybee mortality was considered, in particular phenylpyrazoles and neonicotinoids, given that they are widely used and highly toxic for insects. Along with their ability to kill insects at lethal doses, they can compromise survival at sublethal doses by producing subtle deleterious effects. In this study, we compared the bee's locomotor ability, which is crucial for many tasks within the hive (e.g. cleaning brood cells, feeding larvae…), before and after an acute sublethal exposure to one insecticide belonging to the two insecticide classes, fipronil and thiamethoxam. Additionally, we examined the locomotor ability after exposure to pyrethroids, an older chemical insecticide class still widely used and known to be highly toxic to bees as well. Our study focused on young bees (day 1 after emergence) since (i) few studies are available on locomotion at this stage and (ii) in recent years, pesticides have been reported to accumulate in different hive matrices, where young bees undergo their early development. At sublethal doses (SLD48h, i.e. causing no mortality at 48 h), three pyrethroids, namely cypermethrin (2.5 ng/bee), tetramethrin (70 ng/bee), tau-fluvalinate (33 ng/bee) and the neonicotinoid thiamethoxam (3.8 ng/bee) caused a locomotor deficit in honeybees. While the SLD48h of fipronil (a phenylpyrazole, 0.5 ng/bee) had no measurable effect on locomotion, we observed high mortality several days after exposure, an effect that was not observed with the other insecticides. Although locomotor deficits observed in the sublethal range of pyrethroids and thiamethoxam would suggest deleterious effects in the field, the case of

  13. A virulent strain of deformed wing virus (DWV) of honeybees (Apis mellifera) prevails after Varroa destructor-mediated, or in vitro, transmission.

    PubMed

    Ryabov, Eugene V; Wood, Graham R; Fannon, Jessica M; Moore, Jonathan D; Bull, James C; Chandler, Dave; Mead, Andrew; Burroughs, Nigel; Evans, David J

    2014-06-01

    The globally distributed ectoparasite Varroa destructor is a vector for viral pathogens of the Western honeybee (Apis mellifera), in particular the Iflavirus Deformed Wing Virus (DWV). In the absence of Varroa low levels DWV occur, generally causing asymptomatic infections. Conversely, Varroa-infested colonies show markedly elevated virus levels, increased overwintering colony losses, with impairment of pupal development and symptomatic workers. To determine whether changes in the virus population were due Varroa amplifying and introducing virulent virus strains and/or suppressing the host immune responses, we exposed Varroa-naïve larvae to oral and Varroa-transmitted DWV. We monitored virus levels and diversity in developing pupae and associated Varroa, the resulting RNAi response and transcriptome changes in the host. Exposed pupae were stratified by Varroa association (presence/absence) and virus levels (low/high) into three groups. Varroa-free pupae all exhibited low levels of a highly diverse DWV population, with those exposed per os (group NV) exhibiting changes in the population composition. Varroa-associated pupae exhibited either low levels of a diverse DWV population (group VL) or high levels of a near-clonal virulent variant of DWV (group VH). These groups and unexposed controls (C) could be also discriminated by principal component analysis of the transcriptome changes observed, which included several genes involved in development and the immune response. All Varroa tested contained a diverse replicating DWV population implying the virulent variant present in group VH, and predominating in RNA-seq analysis of temporally and geographically separate Varroa-infested colonies, was selected upon transmission from Varroa, a conclusion supported by direct injection of pupae in vitro with mixed virus populations. Identification of a virulent variant of DWV, the role of Varroa in its transmission and the resulting host transcriptome changes furthers our

  14. A Virulent Strain of Deformed Wing Virus (DWV) of Honeybees (Apis mellifera) Prevails after Varroa destructor-Mediated, or In Vitro, Transmission

    PubMed Central

    Ryabov, Eugene V.; Wood, Graham R.; Fannon, Jessica M.; Moore, Jonathan D.; Bull, James C.; Chandler, Dave; Mead, Andrew; Burroughs, Nigel; Evans, David J.

    2014-01-01

    The globally distributed ectoparasite Varroa destructor is a vector for viral pathogens of the Western honeybee (Apis mellifera), in particular the Iflavirus Deformed Wing Virus (DWV). In the absence of Varroa low levels DWV occur, generally causing asymptomatic infections. Conversely, Varroa-infested colonies show markedly elevated virus levels, increased overwintering colony losses, with impairment of pupal development and symptomatic workers. To determine whether changes in the virus population were due Varroa amplifying and introducing virulent virus strains and/or suppressing the host immune responses, we exposed Varroa-naïve larvae to oral and Varroa-transmitted DWV. We monitored virus levels and diversity in developing pupae and associated Varroa, the resulting RNAi response and transcriptome changes in the host. Exposed pupae were stratified by Varroa association (presence/absence) and virus levels (low/high) into three groups. Varroa-free pupae all exhibited low levels of a highly diverse DWV population, with those exposed per os (group NV) exhibiting changes in the population composition. Varroa-associated pupae exhibited either low levels of a diverse DWV population (group VL) or high levels of a near-clonal virulent variant of DWV (group VH). These groups and unexposed controls (C) could be also discriminated by principal component analysis of the transcriptome changes observed, which included several genes involved in development and the immune response. All Varroa tested contained a diverse replicating DWV population implying the virulent variant present in group VH, and predominating in RNA-seq analysis of temporally and geographically separate Varroa-infested colonies, was selected upon transmission from Varroa, a conclusion supported by direct injection of pupae in vitro with mixed virus populations. Identification of a virulent variant of DWV, the role of Varroa in its transmission and the resulting host transcriptome changes furthers our

  15. Variations in chemical mimicry by the ectoparasitic mite Varroa jacobsoni according to the developmental stage of the host honey-bee Apis mellifera.

    PubMed

    Martin, C; Salvy, M; Provost, E; Bagnères, A; Roux, M; Crauser, D; Clement, J; Le Conte, Y

    2001-03-15

    The ectoparasitic mite Varroa jacobsoni poses a major threat to the survival of European honey-bee populations. Development of effective control methods is therefore much needed. Study of interspecific chemical communication between the parasite and host is a particularly promising avenue of research. Previous study has shown that the cuticular hydrocarbons of the parasite mite Varroa jacobsoni are qualitatively identical to those of its honey-bee host Apis mellifera (Nation J.L., Sanford M.T., Milne K., 1992. Cuticular hydrocarbons from Varroa jacobsoni. Experimental and Applied Acarology 16, 331-344). The purpose of the present study was to compare the cuticular hydrocarbon patterns of the two species at different stages of bee development. Cuticular components were identified by gas chromatography/mass spectrometry. The proportion of each component was calculated at three stages of bee development (larvae, pupa, emerging bee). The degree of chemical mimicry between the parasite and host was evaluated by multivariate analyses using the resulting proportions for each category of individuals. There were four main findings. The first was that the proportions of some components are different at the larval, pupal and imago stage of bee development. Second, Varroa profiles vary depending on the developmental stage of the host. Third, the cuticular profile of adult mites is more similar to that of the stage of the host than that of later and/or earlier stages except for parasites collected from emerging adult bees. Fourth, the degree of mimicry by Varroa is greater during larval and pupal stages than during the emerging adult bee stages. The role of chemical mimicry - although it is not perfect - in enabling parasites to infest bee colonies by the parasite is discussed.

  16. Developmental regulation of ecdysone receptor (EcR) and EcR-controlled gene expression during pharate-adult development of honeybees (Apis mellifera).

    PubMed

    Mello, Tathyana R P; Aleixo, Aline C; Pinheiro, Daniel G; Nunes, Francis M F; Bitondi, Márcia M G; Hartfelder, Klaus; Barchuk, Angel R; Simões, Zilá L P

    2014-01-01

    Major developmental transitions in multicellular organisms are driven by steroid hormones. In insects, these, together with juvenile hormone (JH), control development, metamorphosis, reproduction and aging, and are also suggested to play an important role in caste differentiation of social insects. Here, we aimed to determine how EcR transcription and ecdysteroid titers are related during honeybee postembryonic development and what may actually be the role of EcR in caste development of this social insect. In addition, we expected that knocking-down EcR gene expression would give us information on the participation of the respective protein in regulating downstream targets of EcR. We found that in Apis mellifera females, EcR-A is the predominantly expressed variant in postembryonic development, while EcR-B transcript levels are higher in embryos, indicating an early developmental switch in EcR function. During larval and pupal stages, EcR-B expression levels are very low, while EcR-A transcripts are more variable and abundant in workers compared to queens. Strikingly, these transcript levels are opposite to the ecdysteroid titer profile. 20-hydroxyecdysone (20E) application experiments revealed that low 20E levels induce EcR expression during development, whereas high ecdysteroid titers seem to be repressive. By means of RNAi-mediated knockdown (KD) of both EcR transcript variants we detected the differential expression of 234 poly-A(+) transcripts encoding genes such as CYPs, MRJPs and certain hormone response genes (Kr-h1 and ftz-f1). EcR-KD also promoted the differential expression of 70 miRNAs, including highly conserved ones (e.g., miR-133 and miR-375), as well honeybee-specific ones (e.g., miR-3745 and miR-3761). Our results put in evidence a broad spectrum of EcR-controlled gene expression during postembryonic development of honeybees, revealing new facets of EcR biology in this social insect.

  17. Developmental regulation of ecdysone receptor (EcR) and EcR-controlled gene expression during pharate-adult development of honeybees (Apis mellifera)

    PubMed Central

    Mello, Tathyana R. P.; Aleixo, Aline C.; Pinheiro, Daniel G.; Nunes, Francis M. F.; Bitondi, Márcia M. G.; Hartfelder, Klaus; Barchuk, Angel R.; Simões, Zilá L. P.

    2014-01-01

    Major developmental transitions in multicellular organisms are driven by steroid hormones. In insects, these, together with juvenile hormone (JH), control development, metamorphosis, reproduction and aging, and are also suggested to play an important role in caste differentiation of social insects. Here, we aimed to determine how EcR transcription and ecdysteroid titers are related during honeybee postembryonic development and what may actually be the role of EcR in caste development of this social insect. In addition, we expected that knocking-down EcR gene expression would give us information on the participation of the respective protein in regulating downstream targets of EcR. We found that in Apis mellifera females, EcR-A is the predominantly expressed variant in postembryonic development, while EcR-B transcript levels are higher in embryos, indicating an early developmental switch in EcR function. During larval and pupal stages, EcR-B expression levels are very low, while EcR-A transcripts are more variable and abundant in workers compared to queens. Strikingly, these transcript levels are opposite to the ecdysteroid titer profile. 20-hydroxyecdysone (20E) application experiments revealed that low 20E levels induce EcR expression during development, whereas high ecdysteroid titers seem to be repressive. By means of RNAi-mediated knockdown (KD) of both EcR transcript variants we detected the differential expression of 234 poly-A+ transcripts encoding genes such as CYPs, MRJPs and certain hormone response genes (Kr-h1 and ftz-f1). EcR-KD also promoted the differential expression of 70 miRNAs, including highly conserved ones (e.g., miR-133 and miR-375), as well honeybee-specific ones (e.g., miR-3745 and miR-3761). Our results put in evidence a broad spectrum of EcR-controlled gene expression during postembryonic development of honeybees, revealing new facets of EcR biology in this social insect. PMID:25566327

  18. Pyrethroids and Nectar Toxins Have Subtle Effects on the Motor Function, Grooming and Wing Fanning Behaviour of Honeybees (Apis mellifera).

    PubMed

    Oliver, Caitlin J; Softley, Samantha; Williamson, Sally M; Stevenson, Philip C; Wright, Geraldine A

    2015-01-01

    Sodium channels, found ubiquitously in animal muscle cells and neurons, are one of the main target sites of many naturally-occurring, insecticidal plant compounds and agricultural pesticides. Pyrethroids, derived from compounds found only in the Asteraceae, are particularly toxic to insects and have been successfully used as pesticides including on flowering crops that are visited by pollinators. Pyrethrins, from which they were derived, occur naturally in the nectar of some flowering plant species. We know relatively little about how such compounds--i.e., compounds that target sodium channels--influence pollinators at low or sub-lethal doses. Here, we exposed individual adult forager honeybees to several compounds that bind to sodium channels to identify whether these compounds affect motor function. Using an assay previously developed to identify the effect of drugs and toxins on individual bees, we investigated how acute exposure to 10 ng doses (1 ppm) of the pyrethroid insecticides (cyfluthrin, tau-fluvalinate, allethrin and permethrin) and the nectar toxins (aconitine and grayanotoxin I) affected honeybee locomotion, grooming and wing fanning behaviour. Bees exposed to these compounds spent more time upside down and fanning their wings. They also had longer bouts of standing still. Bees exposed to the nectar toxin, aconitine, and the pyrethroid, allethrin, also spent less time grooming their antennae. We also found that the concentration of the nectar toxin, grayanotoxin I (GTX), fed to bees affected the time spent upside down (i.e., failure to perform the righting reflex). Our data show that low doses of pyrethroids and other nectar toxins that target sodium channels mainly influence motor function through their effect on the righting reflex of adult worker honeybees.

  19. Pyrethroids and Nectar Toxins Have Subtle Effects on the Motor Function, Grooming and Wing Fanning Behaviour of Honeybees (Apis mellifera)

    PubMed Central

    Williamson, Sally M.; Stevenson, Philip C.; Wright, Geraldine A.

    2015-01-01

    Sodium channels, found ubiquitously in animal muscle cells and neurons, are one of the main target sites of many naturally-occurring, insecticidal plant compounds and agricultural pesticides. Pyrethroids, derived from compounds found only in the Asteraceae, are particularly toxic to insects and have been successfully used as pesticides including on flowering crops that are visited by pollinators. Pyrethrins, from which they were derived, occur naturally in the nectar of some flowering plant species. We know relatively little about how such compounds—i.e., compounds that target sodium channels—influence pollinators at low or sub-lethal doses. Here, we exposed individual adult forager honeybees to several compounds that bind to sodium channels to identify whether these compounds affect motor function. Using an assay previously developed to identify the effect of drugs and toxins on individual bees, we investigated how acute exposure to 10 ng doses (1 ppm) of the pyrethroid insecticides (cyfluthrin, tau-fluvalinate, allethrin and permethrin) and the nectar toxins (aconitine and grayanotoxin I) affected honeybee locomotion, grooming and wing fanning behaviour. Bees exposed to these compounds spent more time upside down and fanning their wings. They also had longer bouts of standing still. Bees exposed to the nectar toxin, aconitine, and the pyrethroid, allethrin, also spent less time grooming their antennae. We also found that the concentration of the nectar toxin, grayanotoxin I (GTX), fed to bees affected the time spent upside down (i.e., failure to perform the righting reflex). Our data show that low doses of pyrethroids and other nectar toxins that target sodium channels mainly influence motor function through their effect on the righting reflex of adult worker honeybees. PMID:26280999

  20. Proteome Analysis Unravels Mechanism Underling the Embryogenesis of the Honeybee Drone and Its Divergence with the Worker (Apis mellifera lingustica).

    PubMed

    Fang, Yu; Feng, Mao; Han, Bin; Qi, Yuping; Hu, Han; Fan, Pei; Huo, Xinmei; Meng, Lifeng; Li, Jianke

    2015-09-01

    The worker and drone bees each contain a separate diploid and haploid genetic makeup, respectively. Mechanisms regulating the embryogenesis of the drone and its mechanistic difference with the worker are still poorly understood. The proteomes of the two embryos at three time-points throughout development were analyzed by applying mass spectrometry-based proteomics. We identified 2788 and 2840 proteins in the worker and drone embryos, respectively. The age-dependent proteome driving the drone embryogenesis generally follows the worker's. The two embryos however evolve a distinct proteome setting to prime their respective embryogenesis. The strongly expressed proteins and pathways related to transcriptional-translational machinery and morphogenesis at 24 h drone embryo relative to the worker, illustrating the earlier occurrence of morphogenesis in the drone than worker. These morphogenesis differences remain through to the middle-late stage in the two embryos. The two embryos employ distinct antioxidant mechanisms coinciding with the temporal-difference organogenesis. The drone embryo's strongly expressed cytoskeletal proteins signify key roles to match its large body size. The RNAi induced knockdown of the ribosomal protein offers evidence for the functional investigation of gene regulating of honeybee embryogenesis. The data significantly expand novel regulatory mechanisms governing the embryogenesis, which is potentially important for honeybee and other insects.

  1. Effect of a thymol application on olfactory memory and gene expression levels in the brain of the honeybee Apis mellifera.

    PubMed

    Bonnafé, Elsa; Drouard, Florian; Hotier, Lucie; Carayon, Jean-Luc; Marty, Pierre; Treilhou, Michel; Armengaud, Catherine

    2015-06-01

    Essential oils are used by beekeepers to control the Varroa mites that infest honeybee colonies. So, bees can be exposed to thymol formulations in the hive. The effects of the monoterpenoid thymol were explored on olfactory memory and gene expression in the brain of the honeybee. In bees previously exposed to thymol (10 or 100 ng/bee), the specificity of the response to the conditioned stimulus (CS) was lost 24 h after learning. Besides, the octopamine receptor OA1 gene Amoa1 showed a significant decrease of expression 3 h after exposure with 10 or 100 ng/bee of thymol. With the same doses, expression of Rdl gene, coding for a GABA receptor subunit, was not significantly modified but the trpl gene was upregulated 1 and 24 h after exposure to thymol. These data indicated that the genes coding for the cellular targets of thymol could be rapidly regulated after exposure to this molecule. Memory and sensory processes should be investigated in bees after chronic exposure in the hive to thymol-based preparations.

  2. South American native bumblebees (Hymenoptera: Apidae) infected by Nosema ceranae (Microsporidia), an emerging pathogen of honeybees (Apis mellifera).

    PubMed

    Plischuk, Santiago; Martín-Hernández, Raquel; Prieto, Lourdes; Lucía, Mariano; Botías, Cristina; Meana, Aránzazu; Abrahamovich, Alberto H; Lange, Carlos; Higes, Mariano

    2009-04-01

    As pollination is a critical process in both human-managed and natural terrestrial ecosystems, pollinators provide essential services to both nature and humans. Pollination is mainly due to the action of different insects, such as the bumblebee and the honeybee. These important ecological and economic roles have led to widespread concern over the recent decline in pollinator populations that has been detected in many regions of the world. While this decline has been attributed in some cases to changes in the use of agricultural land, the effects of parasites could play a significant role in the reduction of these populations. For the first time, we describe here the presence of Nosema ceranae, an emerging honeybee pathogen, in three species of Argentine native bumblebees. A total of 455 bumblebees belonging to six species of genus Bombus were examined. PCR results showed that three of the species are positive to N. ceranae (Bombus atratus, Bombus morio and Bombus bellicosus). We discuss the appearance of this pathogen in the context of the population decline of this pollinators.

  3. A Survey of Imidacloprid Levels in Water Sources Potentially Frequented by Honeybees (Apis mellifera) in the Eastern USA.

    PubMed

    Johnson, J D; Pettis, J S

    2014-01-01

    Imidacloprid, a water-soluble neonicotinoid pesticide used globally in many applications, has been the subject of numerous studies (1) to determine its sublethal effects (5-100 ppb, LD50 ∼200 ppb) on honeybees. This study was undertaken to determine, by ELISA assay, the presence of imidacloprid in water sources potentially frequented by honeybees in urban, suburban, and rural environments across the state of Maryland. Eighteen sites (six samples/site) were chosen which spanned diverse habitats including golf courses, nursery, livestock and crop farms, residential neighborhoods, and cityscapes. Hives were present either at or within 0.5 miles of each site. Imidacloprid was quantifiable in 8 % of the samples at sublethal levels (7-131 ppb). They were not clustered at any one type of site. Results for 13 % of the samples were at the threshold of detection; all others were below the detection limit of the assay (<0.2 ppb).

  4. Proteome Analysis Unravels Mechanism Underling the Embryogenesis of the Honeybee Drone and Its Divergence with the Worker (Apis mellifera lingustica).

    PubMed

    Fang, Yu; Feng, Mao; Han, Bin; Qi, Yuping; Hu, Han; Fan, Pei; Huo, Xinmei; Meng, Lifeng; Li, Jianke

    2015-09-01

    The worker and drone bees each contain a separate diploid and haploid genetic makeup, respectively. Mechanisms regulating the embryogenesis of the drone and its mechanistic difference with the worker are still poorly understood. The proteomes of the two embryos at three time-points throughout development were analyzed by applying mass spectrometry-based proteomics. We identified 2788 and 2840 proteins in the worker and drone embryos, respectively. The age-dependent proteome driving the drone embryogenesis generally follows the worker's. The two embryos however evolve a distinct proteome setting to prime their respective embryogenesis. The strongly expressed proteins and pathways related to transcriptional-translational machinery and morphogenesis at 24 h drone embryo relative to the worker, illustrating the earlier occurrence of morphogenesis in the drone than worker. These morphogenesis differences remain through to the middle-late stage in the two embryos. The two embryos employ distinct antioxidant mechanisms coinciding with the temporal-difference organogenesis. The drone embryo's strongly expressed cytoskeletal proteins signify key roles to match its large body size. The RNAi induced knockdown of the ribosomal protein offers evidence for the functional investigation of gene regulating of honeybee embryogenesis. The data significantly expand novel regulatory mechanisms governing the embryogenesis, which is potentially important for honeybee and other insects. PMID:26260241

  5. South American native bumblebees (Hymenoptera: Apidae) infected by Nosema ceranae (Microsporidia), an emerging pathogen of honeybees (Apis mellifera).

    PubMed

    Plischuk, Santiago; Martín-Hernández, Raquel; Prieto, Lourdes; Lucía, Mariano; Botías, Cristina; Meana, Aránzazu; Abrahamovich, Alberto H; Lange, Carlos; Higes, Mariano

    2009-04-01

    As pollination is a critical process in both human-managed and natural terrestrial ecosystems, pollinators provide essential services to both nature and humans. Pollination is mainly due to the action of different insects, such as the bumblebee and the honeybee. These important ecological and economic roles have led to widespread concern over the recent decline in pollinator populations that has been detected in many regions of the world. While this decline has been attributed in some cases to changes in the use of agricultural land, the effects of parasites could play a significant role in the reduction of these populations. For the first time, we describe here the presence of Nosema ceranae, an emerging honeybee pathogen, in three species of Argentine native bumblebees. A total of 455 bumblebees belonging to six species of genus Bombus were examined. PCR results showed that three of the species are positive to N. ceranae (Bombus atratus, Bombus morio and Bombus bellicosus). We discuss the appearance of this pathogen in the context of the population decline of this pollinators. PMID:23765744

  6. Functional and topographic segregation of glomeruli revealed by local staining of antennal sensory neurons in the honeybee Apis mellifera.

    PubMed

    Nishino, Hiroshi; Nishikawa, Michiko; Mizunami, Makoto; Yokohari, Fumio

    2009-07-10

    In the primary olfactory center of animals, glomeruli are the relay stations where sensory neurons expressing cognate odorant receptors converge onto interneurons. In cockroaches, moths, and honeybees, sensory afferents from sensilla on the anterodorsal surface and the posteroventral surface of the flagellum form two nerves of almost equal thicknesses. In this study, double labeling of the two nerves, or proximal/distal regions of the nerves, with fluorescent dyes was used to investigate topographic organization of sensory afferents in the honeybee. The sensory neurons of ampullaceal sensilla responsive to CO2, coelocapitular sensilla responsive to hygrosensory, and thermosensory stimuli and coeloconic sensilla of unknown function were characterized with large somata and supplied thick axons exclusively to the ventral nerve. Correspondingly, all glomeruli innervated by sensory tract (T) 4 received thick axonal processes exclusively from the ventral nerve. Almost all T1-3 glomeruli received a similar number of sensory afferents from the two nerves. In the macroglomerular complexes of the drone, termination fields of afferents from the two nerves almost completely overlapped; this differs from moths and cockroaches, which show heterogeneous terminations in the glomerular complex. In T1-3 glomeruli, sensory neurons originating from more distal flagellar segments tended to terminate within the inner regions of the cortical layer. These results suggest that some degree of somatotopic organization of sensory afferents exist in T1-3 glomeruli, and part of T4 glomeruli serve for processing of hygro- and thermosensory signals.

  7. Hyperalgesic and edematogenic effects of peptides isolated from the venoms of honeybee (Apis mellifera) and neotropical social wasps (Polybia paulista and Protonectarina sylveirae).

    PubMed

    Brigatte, P; Cury, Y; de Souza, B M; Baptista-Saidemberg, N B; Saidemberg, D M; Gutierrez, V P; Palma, Mario Sérgio

    2011-01-01

    Stings by bees and wasps, including Brazilian species, are a severe public health problem. The local reactions observed after the envenoming includes typical inflammatory response and pain. Several studies have been performed to identify the substances, including peptides that are responsible for such phenomena. The aim of the present study is to characterize the possible nociceptive (hyperalgesic) and edematogenic effects of some peptides isolated from the venoms of the honeybee (Apis mellifera) and the social wasps Polybia paulista and Protonectarina sylveirae, in addition to characterize some of the mechanisms involved in these phenomena. For this purpose, different doses of the peptides mellitin (Apis mellifera), Polybia-MP-I, N-2-Polybia-MP-I (Polybia paulista), Protonectarina-MP-NH2 and Protonectarina-MP-OH (Protonectarina sylveirae) were injected into the hind paw of mice. Hyperalgesia and edema were determined after peptide application, by using an electronic von Frey apparatus and a paquimeter. Carrageenin and saline were used as controls. Results showed that melittin, Polybia-MP-I, N-2-Polybia-MP-I, Protonectarina-MP-NH(2) and Protonectarina-MP-OH peptides produced a dose- and time-related hyperalgesic and edematogenic responses. Both phenomena are detected 2 h after melittin, Polybia-MP-I, N-2-Polybia-MP-I injection; their effects lasted until 8 h. In order to evaluate the role of prostanoids and the involvement of lipidic mediators in hyperalgesia induced by the peptides, indomethacin and zileuton were used. Results showed that zileuton blocked peptide-induced hyperalgesia and induced a decrease of the edematogenic response. On the other hand, indomethacin did not interfere with these phenomena. These results indicate that melittin, Polybia-MP-I, N-2-Polybia-MP-I, Protonectarina-MP-NH(2), and Protonectarina-MP-OH peptides could contribute to inflammation and pain induced by insect venoms.

  8. The Brazilian Honeybee

    ERIC Educational Resources Information Center

    Michener, Charles D.

    1973-01-01

    Discusses the unusually aggressive Brazilian honeybee, which exhibits many of the attributes of its African antecedants. Describes its abundance and distribution, behaviorial characteristics, future spread, and the potential impact of the Brazilian bee in North America. (JR)

  9. Morphological alterations induced by boric acid and fipronil in the midgut of worker honeybee (Apis mellifera L.) larvae : Morphological alterations in the midgut of A. mellifera.

    PubMed

    da Silva Cruz, Aline; da Silva-Zacarin, Elaine C M; Bueno, Odair C; Malaspina, Osmar

    2010-04-01

    Morphological alterations, by means of histological and ultrastructural analysis, have been used to determine the effects of boric acid and fipronil on midgut tissues of honeybee worker, Apis mellifera L. larvae. In order to observe possible morphological alterations in the midgut, two groups of bioassays were performed. In the first one, the larvae were chronically treated with different concentrations of boric acid added to the food (1.0, 2.5 and 7.5 mg/g). In the second group, the larvae were fed with diets containing different concentrations of fipronil (0.1 and 1 microg/g) and compared with control groups without these chemical compounds. In the first bioassay, the larvae were collected on day 3 and in the second bioassay on day 4, when the mortality rate obtained in the toxicological bioassay was not very high. The larval midguts were removed and processed for morphological analyses using a light and transmission electron microscopy. We observed cytoplasmic vacuolizations, with the absence of autophagic vacuoles, and chromatinic compacting in most of the cells in the groups treated with pesticides. The morphological alterations were far greater in the larvae treated with boric acid than in the larvae treated with fipronil. Our data suggest that the midgut cell death observed was in response to boric acid and fipronil action. This study significantly improves the understanding of the toxicological effect of these insecticides from the ecotoxicological perspective.

  10. Influence of age and juvenile hormone on brain dopamine level in male honeybee (Apis mellifera): association with reproductive maturation.

    PubMed

    Harano, Ken-ichi; Sasaki, Ken; Nagao, Takashi; Sasaki, Masami

    2008-05-01

    Dopamine (DA) is a major functional biogenic amine in insects and has been suggested to regulate reproduction in female honeybees. However, its function has not been investigated in male drones. To clarify developmental changes of DA in drones, brain DA levels were investigated at various ages and showed a similar pattern to the previously reported juvenile hormone (JH) hemolymph titer. The DA level was lowest at emergence and peaked at day 7 or 8, followed by decline. Application of JH analog increased brain DA levels in young drones (2-4-days-old), suggesting regulation of DA by JH in drones. In young drones, maturation of male reproductive organs closely matched the increase in brain DA. The dry weight of testes decreased and that of seminal vesicles increased from emergence to day 8. The dry weight of mucus glands increased up to day 4. Consequently, DA regulated by JH might have reproductive behavior and/or physiological functions in drones.

  11. MicroRNA signatures characterizing caste-independent ovarian activity in queen and worker honeybees (Apis mellifera L.).

    PubMed

    Macedo, L M F; Nunes, F M F; Freitas, F C P; Pires, C V; Tanaka, E D; Martins, J R; Piulachs, M-D; Cristino, A S; Pinheiro, D G; Simões, Z L P

    2016-06-01

    Queen and worker honeybees differ profoundly in reproductive capacity. The queen of this complex society, with 200 highly active ovarioles in each ovary, is the fertile caste, whereas the workers have approximately 20 ovarioles as a result of receiving a different diet during larval development. In a regular queenright colony, the workers have inactive ovaries and do not reproduce. However, if the queen is sensed to be absent, some of the workers activate their ovaries, producing viable haploid eggs that develop into males. Here, a deep-sequenced ovary transcriptome library of reproductive workers was used as supporting data to assess the dynamic expression of the regulatory molecules and microRNAs (miRNAs) of reproductive and nonreproductive honeybee females. In this library, most of the differentially expressed miRNAs are related to ovary physiology or oogenesis. When we quantified the dynamic expression of 19 miRNAs in the active and inactive worker ovaries and compared their expression in the ovaries of virgin and mated queens, we noted that some miRNAs (miR-1, miR-31a, miR-13b, miR-125, let-7 RNA, miR-100, miR-276, miR-12, miR-263a, miR-306, miR-317, miR-92a and miR-9a) could be used to identify reproductive and nonreproductive statuses independent of caste. Furthermore, integrative gene networks suggested that some candidate miRNAs function in the process of ovary activation in worker bees. PMID:26853694

  12. Transmedulla Neurons in the Sky Compass Network of the Honeybee (Apis mellifera) Are a Possible Site of Circadian Input.

    PubMed

    Zeller, Maximilian; Held, Martina; Bender, Julia; Berz, Annuska; Heinloth, Tanja; Hellfritz, Timm; Pfeiffer, Keram

    2015-01-01

    Honeybees are known for their ability to use the sun's azimuth and the sky's polarization pattern for spatial orientation. Sky compass orientation in bees has been extensively studied at the behavioral level but our knowledge about the underlying neuronal systems and mechanisms is very limited. Electrophysiological studies in other insect species suggest that neurons of the sky compass system integrate information about the polarization pattern of the sky, its chromatic gradient, and the azimuth of the sun. In order to obtain a stable directional signal throughout the day, circadian changes between the sky polarization pattern and the solar azimuth must be compensated. Likewise, the system must be modulated in a context specific way to compensate for changes in intensity, polarization and chromatic properties of light caused by clouds, vegetation and landscape. The goal of this study was to identify neurons of the sky compass pathway in the honeybee brain and to find potential sites of circadian and neuromodulatory input into this pathway. To this end we first traced the sky compass pathway from the polarization-sensitive dorsal rim area of the compound eye via the medulla and the anterior optic tubercle to the lateral complex using dye injections. Neurons forming this pathway strongly resembled neurons of the sky compass pathway in other insect species. Next we combined tracer injections with immunocytochemistry against the circadian neuropeptide pigment dispersing factor and the neuromodulators serotonin, and γ-aminobutyric acid. We identified neurons, connecting the dorsal rim area of the medulla to the anterior optic tubercle, as a possible site of neuromodulation and interaction with the circadian system. These neurons have conspicuous spines in close proximity to pigment dispersing factor-, serotonin-, and GABA-immunoreactive neurons. Our data therefore show for the first time a potential interaction site between the sky compass pathway and the circadian

  13. Transmedulla Neurons in the Sky Compass Network of the Honeybee (Apis mellifera) Are a Possible Site of Circadian Input

    PubMed Central

    Zeller, Maximilian; Held, Martina; Bender, Julia; Berz, Annuska; Heinloth, Tanja; Hellfritz, Timm; Pfeiffer, Keram

    2015-01-01

    Honeybees are known for their ability to use the sun’s azimuth and the sky’s polarization pattern for spatial orientation. Sky compass orientation in bees has been extensively studied at the behavioral level but our knowledge about the underlying neuronal systems and mechanisms is very limited. Electrophysiological studies in other insect species suggest that neurons of the sky compass system integrate information about the polarization pattern of the sky, its chromatic gradient, and the azimuth of the sun. In order to obtain a stable directional signal throughout the day, circadian changes between the sky polarization pattern and the solar azimuth must be compensated. Likewise, the system must be modulated in a context specific way to compensate for changes in intensity, polarization and chromatic properties of light caused by clouds, vegetation and landscape. The goal of this study was to identify neurons of the sky compass pathway in the honeybee brain and to find potential sites of circadian and neuromodulatory input into this pathway. To this end we first traced the sky compass pathway from the polarization-sensitive dorsal rim area of the compound eye via the medulla and the anterior optic tubercle to the lateral complex using dye injections. Neurons forming this pathway strongly resembled neurons of the sky compass pathway in other insect species. Next we combined tracer injections with immunocytochemistry against the circadian neuropeptide pigment dispersing factor and the neuromodulators serotonin, and γ-aminobutyric acid. We identified neurons, connecting the dorsal rim area of the medulla to the anterior optic tubercle, as a possible site of neuromodulation and interaction with the circadian system. These neurons have conspicuous spines in close proximity to pigment dispersing factor-, serotonin-, and GABA-immunoreactive neurons. Our data therefore show for the first time a potential interaction site between the sky compass pathway and the circadian

  14. MicroRNA signatures characterizing caste-independent ovarian activity in queen and worker honeybees (Apis mellifera L.).

    PubMed

    Macedo, L M F; Nunes, F M F; Freitas, F C P; Pires, C V; Tanaka, E D; Martins, J R; Piulachs, M-D; Cristino, A S; Pinheiro, D G; Simões, Z L P

    2016-06-01

    Queen and worker honeybees differ profoundly in reproductive capacity. The queen of this complex society, with 200 highly active ovarioles in each ovary, is the fertile caste, whereas the workers have approximately 20 ovarioles as a result of receiving a different diet during larval development. In a regular queenright colony, the workers have inactive ovaries and do not reproduce. However, if the queen is sensed to be absent, some of the workers activate their ovaries, producing viable haploid eggs that develop into males. Here, a deep-sequenced ovary transcriptome library of reproductive workers was used as supporting data to assess the dynamic expression of the regulatory molecules and microRNAs (miRNAs) of reproductive and nonreproductive honeybee females. In this library, most of the differentially expressed miRNAs are related to ovary physiology or oogenesis. When we quantified the dynamic expression of 19 miRNAs in the active and inactive worker ovaries and compared their expression in the ovaries of virgin and mated queens, we noted that some miRNAs (miR-1, miR-31a, miR-13b, miR-125, let-7 RNA, miR-100, miR-276, miR-12, miR-263a, miR-306, miR-317, miR-92a and miR-9a) could be used to identify reproductive and nonreproductive statuses independent of caste. Furthermore, integrative gene networks suggested that some candidate miRNAs function in the process of ovary activation in worker bees.

  15. A circadian neuropeptide PDF in the honeybee, Apis mellifera: cDNA cloning and expression of mRNA.

    PubMed

    Sumiyoshi, Miho; Sato, Seiji; Takeda, Yukimasa; Sumida, Kazunori; Koga, Keita; Itoh, Tsunao; Nakagawa, Hiroyuki; Shimohigashi, Yasuyuki; Shimohigashi, Miki

    2011-12-01

    Pigment-dispersing factor (PDF) is a pacemaker hormone regulating the locomotor rhythm in insects. In the present study, we cloned the cDNAs encoding the Apis PDF precursor protein, and found that there are at least seven different pdf mRNAs yielded by an alternative splicing site and five alternative polyadenylation sites in the 5'UTR and 3'UTR regions. The amino acid sequence of Apis PDF peptide has a characteristic novel amino acid residue, aspargine (Asn), at position 17. Quantitative real-time PCR of total and 5'UTR insertion-type pdf mRNAs revealed, for the first time, that the expression levels change in a circadian manner with a distinct trough at the beginning of night in LD conditions, and at the subjective night under DD conditions. In contrast, the expression level of 5'UTR deletion-type pdf mRNAs was about half of that of the insertion type, and the expression profile failed to show a circadian rhythm. As the expression profile of the total pdf mRNA exhibited a circadian rhythm, transcription regulated at the promoter region was supposed to be controlled by some of the clock components. Whole mount in situ hybridization revealed that 14 lateral neurons at the frontal margin of the optic lobe express these mRNA isoforms. PDF expressing cells examined with a newly produced antibody raised against Apis PDF were also found to have a dense supply of axon terminals in the optic lobes and the central brain. PMID:22132787

  16. Caps and gaps: a computer model for studies on brood incubation strategies in honeybees (Apis mellifera carnica)

    NASA Astrophysics Data System (ADS)

    Fehler, Manuel; Kleinhenz, Marco; Klügl, Franziska; Puppe, Frank; Tautz, Jürgen

    2007-08-01

    In addition to heat production on the comb surface, honeybee workers frequently visit open cells (“gaps”) that are scattered throughout the sealed brood area, and enter them to incubate adjacent brood cells. We examined the efficiency of this heating strategy under different environmental conditions and for gap proportions from 0 to 50%. For gap proportions from 4 to 10%, which are common to healthy colonies, we find a significant reduction in the incubation time per brood cell to maintain the correct temperature. The savings make up 18 to 37% of the time, which would be required for this task in completely sealed brood areas without any gaps. For unnatural high proportions of gaps (>20%), which may be the result of inbreeding or indicate a poor condition of the colony, brood nest thermoregulation becomes less efficient, and the incubation time per brood cell has to increase to maintain breeding temperature. Although the presence of gaps is not essential to maintain an optimal brood nest temperature, a small number of gaps make heating more economical by reducing the time and energy that must be spent on this vital task. As the benefit depends on the availability, spatial distribution and usage of gaps by the bees, further studies need to show the extent to which these results apply to real colonies.

  17. Experimental bacteriophage treatment of honeybees (Apis mellifera) infected with Paenibacillus larvae, the causative agent of American Foulbrood Disease

    PubMed Central

    Yost, Diane G.; Tsourkas, Philippos; Amy, Penny S.

    2016-01-01

    ABSTRACT American Foulbrood Disease (AFB) is an infection of honeybees caused by the bacterium Paenibacillus larvae. One potential remedy involves using biocontrol, such as bacteriophages (phages) to lyse P. larvae. Therefore, bacteriophages specific for P. larvae were isolated to determine their efficacy in lysing P. larvae cells. Samples from soil, beehive materials, cosmetics, and lysogenized P. larvae strains were screened; of 157 total samples, 28 were positive for at least one P. larvae bacteriophage, with a total of 30. Newly isolated bacteriophages were tested for the ability to lyse each of 11 P. larvae strains. Electron microscopy demonstrated that the phage isolates were from the family Siphoviridae. Seven phages with the broadest host ranges were combined into a cocktail for use in experimental treatments of infected bee larvae; both prophylactic and post-infection treatments were conducted. Results indicated that although both pre- and post-treatments were effective, prophylactic administration of the phages increased the survival of larvae more than post-treatment experiments. These preliminary experiments demonstrate the likelihood that phage therapy could be an effective method to control AFB. PMID:27144085

  18. Mushroom body extrinsic neurons in the honeybee (Apis mellifera) brain integrate context and cue values upon attentional stimulus selection

    PubMed Central

    Filla, Ina

    2015-01-01

    Multimodal GABA-immunoreactive feedback neurons in the honeybee brain connecting the output region of the mushroom body with its input are expected to tune the input to the mushroom body in an experience-dependent way. These neurons are known to change their rate responses to learned olfactory stimuli. In this work we ask whether these neurons also transmit learned attentional effects during multisensory integration. We find that a visual context and an olfactory cue change the rate responses of these neurons after learning according to the associated values of both context and cue. The learned visual context promotes attentional response selection by enhancing olfactory stimulus valuation at both the behavioral and the neural level. During a rewarded visual context, bees reacted faster and more reliably to a rewarded odor. We interpreted this as the result of the observed enhanced neural discharge toward the odor. An unrewarded context reduced already low rate responses to the unrewarded odor. In addition to stimulus valuation, these feedback neurons generate a neural error signal after an incorrect behavioral response. This might act as a learning signal in feedback neurons. All of these effects were exclusively found in trials in which the animal prepares for a motor response that happens during attentional stimulus selection. We discuss possible implications of the results for the feedback connections of the mushroom body. PMID:26224779

  19. Age at Which Larvae Are Orphaned Determines Their Development into Typical or Rebel Workers in the Honeybee (Apis mellifera L.)

    PubMed Central

    2015-01-01

    In the honeybee, diploid larvae fed with royal jelly develop into reproductive queens, whereas larvae fed with royal jelly for three days only and subsequently with honey and pollen develop into facultatively sterile workers. A recent study showed that worker larvae fed in a queenless colony develop into another female polyphenic form: rebel workers. These rebel workers are more queenlike and have greater reproductive potential than normal workers. However, it was unclear whether larvae orphaned at any time during their feeding period can develop into rebels. To answer this question, the anatomical features of newly emerged workers reared in queenless conditions at different ages during the larval period were evaluated. Our results showed that larvae orphaned during the final four or more days of their feeding life develop into rebel workers with more ovarioles in their ovaries, smaller hypopharyngeal glands, and larger mandibular and Dufour’s glands compared with typical workers with low reproductive potential that were reared with a queen or orphaned at the third to last or a later day of feeding life. PMID:25880669

  20. A new gene, SRP16, differentially expressed in the spermathecae of honeybee queens (Apis mellifera) related with reproduction status.

    PubMed

    Wu, Liming; Wuxiang, Danping; Zheng, Huoqing; Li, Jilian; Pan, Gang

    2012-12-01

    Honey bee queens have the ability to store sperm in spermathecae for fertilizing eggs throughout their life. To investigate mechanisms for sperm storage in Apis mellifera, we employed suppression subtractive hybridization (SSH) to find differentially expressed fragments in spermathecae between virgin queens and newly mated queens. A new gene, named SRP16, was obtained by joining the SSH products with 5'-RACE and 3'-RACE. SRP16 is predicted to encode a 41 kDa protein with 363 amino acid residues. Its expression was found in the spermathecae dominantly in honey bee queens but not in honey bee workers, with the highest expression found in spermathecae of virgin and newly mated queens. SRP16 expression was weak in other tissues of queens other than in the spermathecae and showed no obvious change with reproductive status of queens. The results suggest that SRP16 may play important roles in sperm storage and honey bee reproduction.

  1. The transmission of deformed wing virus between honeybees (Apis mellifera L.) by the ectoparasitic mite varroa jacobsoni Oud

    PubMed

    Bowen-Walker; Martin; Gunn

    1999-01-01

    Under field conditions, Varroa jacobsoni were shown to be highly effective vectors of deformed wing virus (DWV) between bees. Adult female mites obtained from honeybee pupae naturally infected with DWV contained virus titers many times in excess of those found in their hosts and, beyond that, which might be expected from a concentration effect. It is therefore possible that DWV may be capable of replicating within V. jacobsoni. Bees which tested positive for DWV exhibited characteristic morphological deformity and/or they died during pupation. Asymptomatic bees had much lower virus titers than those which were deformed or had died during pupation. It is therefore suggested that for DWV to cause pathology it must be present in pupae above a certain concentration. The amount of DWV vectored by V. jacobsoni will depend on the mites' level of infection, which will in turn depend on whether they had fed previously on dead or deformed bees and also on the rate of replication of the virus within the mites. Consequently, developing bees infested with large numbers of mites could suffer a high incidence of deformity if the mites are heavily infected or harbor an especially virulent strain of virus. A positive relationship was found between increasing numbers of mites on individual bees and the incidence of morphological deformity and death. This probably reflected the large number of viral particles transmitted by the mites, which resulted in many multiply infested bees dying before emergence. These results demonstrate the importance of the role of viruses when considering the pathology of V. jacobsoni and that much of the pathology previously associated with the effects of mite feeding could be attributed directly to secondary pathogens vectored by V. jacobsoni. Copyright 1999 Academic Press. PMID:9878295

  2. The transmission of deformed wing virus between honeybees (Apis mellifera L.) by the ectoparasitic mite varroa jacobsoni Oud

    PubMed

    Bowen-Walker; Martin; Gunn

    1999-01-01

    Under field conditions, Varroa jacobsoni were shown to be highly effective vectors of deformed wing virus (DWV) between bees. Adult female mites obtained from honeybee pupae naturally infected with DWV contained virus titers many times in excess of those found in their hosts and, beyond that, which might be expected from a concentration effect. It is therefore possible that DWV may be capable of replicating within V. jacobsoni. Bees which tested positive for DWV exhibited characteristic morphological deformity and/or they died during pupation. Asymptomatic bees had much lower virus titers than those which were deformed or had died during pupation. It is therefore suggested that for DWV to cause pathology it must be present in pupae above a certain concentration. The amount of DWV vectored by V. jacobsoni will depend on the mites' level of infection, which will in turn depend on whether they had fed previously on dead or deformed bees and also on the rate of replication of the virus within the mites. Consequently, developing bees infested with large numbers of mites could suffer a high incidence of deformity if the mites are heavily infected or harbor an especially virulent strain of virus. A positive relationship was found between increasing numbers of mites on individual bees and the incidence of morphological deformity and death. This probably reflected the large number of viral particles transmitted by the mites, which resulted in many multiply infested bees dying before emergence. These results demonstrate the importance of the role of viruses when considering the pathology of V. jacobsoni and that much of the pathology previously associated with the effects of mite feeding could be attributed directly to secondary pathogens vectored by V. jacobsoni. Copyright 1999 Academic Press.

  3. Differences in long-term memory stability and AmCREB level between forward and backward conditioned honeybees (Apis mellifera)

    PubMed Central

    Felsenberg, Johannes; Dyck, Yan; Feige, Janina; Ludwig, Jenny; Plath, Jenny Aino; Froese, Anja; Karrenbrock, Melanie; Nölle, Anna; Heufelder, Karin; Eisenhardt, Dorothea

    2015-01-01

    In classical conditioning a predictive relationship between a neutral stimulus (conditioned stimulus; CS) and a meaningful stimulus (unconditioned stimulus; US) is learned when the CS precedes the US. In backward conditioning the sequence of the stimuli is reversed. In this situation animals might learn that the CS signals the end or the absence of the US. In honeybees 30 min and 24 h following backward conditioning a memory for the excitatory and inhibitory properties of the CS could be retrieved, but it remains unclear whether a late long-term memory is formed that can be retrieved 72 h following backward conditioning. Here we examine this question by studying late long-term memory formation in forward and backward conditioning of the proboscis extension response (PER). We report a difference in the stability of memory formed upon forward and backward conditioning with the same number of conditioning trials. We demonstrate a transcription-dependent memory 72 h after forward conditioning but do not observe a 72 h memory after backward conditioning. Moreover we find that protein degradation is differentially involved in memory formation following these two conditioning protocols. We report differences in the level of a transcription factor, the cAMP response element binding protein (CREB) known to induce transcription underlying long-term memory formation, following forward and backward conditioning. Our results suggest that these alterations in CREB levels might be regulated by the proteasome. We propose that the differences observed are due to the sequence of stimulus presentation between forward and backward conditioning and not to differences in the strength of the association of both stimuli. PMID:25964749

  4. Induced thiacloprid insensitivity in honeybees (Apis mellifera L.) is associated with up-regulation of detoxification genes.

    PubMed

    Alptekin, S; Bass, C; Nicholls, C; Paine, M J I; Clark, S J; Field, L; Moores, G D

    2016-04-01

    Honey bees, Apis mellifera, are markedly less sensitive to neonicotinoid insecticides containing a cyanoimino pharmacophore than to those with a nitroimino group. Although previous work has suggested that this results from enhanced metabolism of the former by detoxification enzymes, the specific enzyme(s) involved remain to be characterized. In this work, a pretreatment of honey bees with a sublethal dose of thiacloprid resulted in induced insensitivity to the same compound immediately following thiacloprid feeding. A longer pretreatment time resulted in no, or increased, sensitivity. Transcriptome profiling, using microarrays, identified a number of genes encoding detoxification enzymes that were over-expressed significantly in insecticide-treated bees compared with untreated controls. These included five P450s, CYP6BE1, CYP305D1, CYP6AS5, CYP315A1, CYP301A1, and a carboxyl/cholinesterase (CCE) CCE8. Four of these P450s were functionally expressed in Escherichia coli and their ability to metabolize thiacloprid examined by liquid chromatography-mass spectrometry (LC-MS) analysis. PMID:26790026

  5. Supplementing with vitamin C the diet of honeybees (Apis mellifera carnica) parasitized with Varroa destructor: effects on antioxidative status.

    PubMed

    Farjan, Marek; Łopieńska-Biernat, Elżbieta; Lipiński, Zbigniew; Dmitryjuk, Małgorzata; Żółtowska, Krystyna

    2014-05-01

    We studied a total of eight developmental stages of capped brood and newly emerged workers of Apis mellifera carnica colonies naturally parasitized with Varroa destructor. During winter and early spring four colonies were fed syrup containing 1.8 mg vitamin C kg(-1) (ascorbic acid group; group AA) while four colonies were fed syrup without the vitamin C (control group C). Selected elements of the antioxidative system were analysed including total antioxidant status (TAS), glutathione content and antioxidative enzyme activities (superoxide dismutase, catalase, peroxidase and glutathione S-transferase). Body weight, protein content and indices of infestation were also determined. The prevalence (8.11%) and intensity (1·15 parasite per bee) of the infestation were lower in group AA compared with group C (11.3% and 1.21, respectively). Changes in the indicators of antioxidative stress were evidence for the strengthening of the antioxidative system in the brood by administration of vitamin C. In freshly emerged worker bees of group AA, despite the infestation, protein content, TAS, and the activity of all antioxidative enzymes had significantly higher values in relation to group C.

  6. Induced thiacloprid insensitivity in honeybees (Apis mellifera L.) is associated with up-regulation of detoxification genes.

    PubMed

    Alptekin, S; Bass, C; Nicholls, C; Paine, M J I; Clark, S J; Field, L; Moores, G D

    2016-04-01

    Honey bees, Apis mellifera, are markedly less sensitive to neonicotinoid insecticides containing a cyanoimino pharmacophore than to those with a nitroimino group. Although previous work has suggested that this results from enhanced metabolism of the former by detoxification enzymes, the specific enzyme(s) involved remain to be characterized. In this work, a pretreatment of honey bees with a sublethal dose of thiacloprid resulted in induced insensitivity to the same compound immediately following thiacloprid feeding. A longer pretreatment time resulted in no, or increased, sensitivity. Transcriptome profiling, using microarrays, identified a number of genes encoding detoxification enzymes that were over-expressed significantly in insecticide-treated bees compared with untreated controls. These included five P450s, CYP6BE1, CYP305D1, CYP6AS5, CYP315A1, CYP301A1, and a carboxyl/cholinesterase (CCE) CCE8. Four of these P450s were functionally expressed in Escherichia coli and their ability to metabolize thiacloprid examined by liquid chromatography-mass spectrometry (LC-MS) analysis.

  7. A novel approach for the management of the chalkbrood disease infesting honeybee Apis mellifera L. (Hymenoptera: Apidae) colonies in Egypt.

    PubMed

    Mourad, A K; Zaghloul, O A; El Kady, Magda B; Nemat, F M; Morsy, M E

    2005-01-01

    Except for, very few articles regarding the influence of some organic acids on the causative pathogen, Ascosphaera apis Maassen, no other studies pertaining to the management of the chalkbrood disease were performed, so far in Egypt. Laboratory investigations indicated that the fungicides, i.e (Galben C 46%, Radomil gold pluse WP 42.5% and Daconil 2787) at their recommended rates did not exert any effect on the mycelical growth of the fungus. Therefore, these fungicides were completely excluded from the subsequent apiary trials. As to the Mycostatin, it was found clearly that this mycostatic compound was effective at the rates of 50.000 and 100.000 IU. Regarding the essential oils (ceder, clove, peppermint, parsley, black cumin, garden rocket, and ricin), ceder oil surpassed the other oils and materials in controlling the subject disease. It is peculiar that no studies on the efficacy of ceder are available in the literature, so the present work using ceder oil is recorded for the first time worldwide. Thymol substance at the rate of 2% showed also a great success in managing the CHB disease. Baised on the obtained results, the promising materials in controlling the disease could be arranged according to their efficacy in a descending order as follows: ceder oil>thymol>mycostatin and oxalic acid, so these highly effective materials were again tested under the apiary conditions. Outdoors (apiary) studies revealed that ceder oil 4% gave 100% reduction in mummies numbers. Reductions in number of fallen mummies ranged from 63.22 to 96.94, 18.93 to 81.74, and 10.11 to 68.16%, on average, for thymol, mycostatin, and oxalic acid, respectively. From the practical point of view, thymol could be recommended for controlling the CHB disease, as it is the cheapest material and proved to increase the brood nest as well. In addition, thymol has other uses in the field of apiculture.

  8. The effect of insecticides on learning in the Africanized honey bee (Apis mellifera L.).

    PubMed

    Abramson, C I; Aquino, I S; Ramalho, F S; Price, J M

    1999-11-01

    The present study was designed to examine the effects of endosulfan, decis, baytroid, and sevin on the learning ability of Africanized honey bees (Apis mellifera L.). Although these insecticides were recommended by the government of Brazil to control the cotton boll weevil, the effects on bees have been unknown. Results of the present research show that: (1) bees readily consume each of the pesticides when placed in a sucrose solution; (2) the odors of the pesticides are not repellent to bees, and such odors can serve as conditioned stimuli; (3) learning occurs to various degrees when the insecticides are combined with the sucrose solution and used as an unconditioned stimulus; and (4) feeding the insecticides to the bees 1 h prior to conditioning leads to differing mortality. Because of the importance of bees for honey production, as well as pollination of cotton and other crops, recommendations are made for the use of decis and other measures for boll weevil control.http://link. springer-ny.com/link/service/journals/00244/bibs/37n4p529.++ +html

  9. Cytotoxic effects of thiamethoxam in the midgut and malpighian tubules of Africanized Apis mellifera (Hymenoptera: Apidae).

    PubMed

    Catae, Aline Fernanda; Roat, Thaisa Cristina; De Oliveira, Regiane Alves; Nocelli, Roberta Cornélio Ferreira; Malaspina, Osmar

    2014-04-01

    Due to its expansion, agriculture has become increasingly dependent on the use of pesticides. However, the indiscriminate use of insecticides has had additional effects on the environment. These products have a broad spectrum of action, and therefore the insecticide affects not only the pests but also non-target insects such as bees, which are important pollinators of agricultural crops and natural environments. Among the most used pesticides, the neonicotinoids are particularly harmful. One of the neonicotinoids of specific concern is thiamethoxam, which is used on a wide variety of crops and is toxic to bees. Thus, this study aimed to analyze the effects of this insecticide in the midgut and Malpighian tubule cells of Africanized Apis mellifera. Newly emerged workers were exposed until 8 days to a diet containing a sublethal dose of thiamethoxam equal to 1/10 of LC₅₀ (0.0428 ng a.i./l L of diet). The bees were dissected and the organs were processed for transmission electron microscopy. The results showed that thiamethoxam is cytotoxic to midgut and Malpighian tubules. In the midgut, the damage was more evident in bees exposed to the insecticide on the first day. On the eighth day, the cells were ultrastructurally intact suggesting a recovery of this organ. The Malpighian tubules showed pronounced alterations on the eighth day of exposure of bees to the insecticide. This study demonstrates that the continuous exposure to a sublethal dose of thiamethoxam can impair organs that are used during the metabolism of the insecticide.

  10. Reproductive biology of Varroa destructor in Africanized honey bees (Apis mellifera).

    PubMed

    Calderón, R A; van Veen, J W; Sommeijer, M J; Sanchez, L A

    2010-04-01

    Since its first contact with Apis mellifera, the population dynamics of the parasitic mite Varroa destructor varies from one region to another. In many regions of the world, apiculture has come to depend on the use of acaricides, because of the extensive damage caused by varroa to bee colonies. At present, the mite is considered to contribute to the recent decline of honey bee colonies in North America and Europe. Because in tropical climates worker brood rearing and varroa reproduction occurs all year round, it could be expected that here the impact of the parasite will be even more devastating. Yet, this has not been the case in tropical areas of South America. In Brazil, varroa was introduced more than 30 years ago and got established at low levels of infestation, without causing apparent damage to apiculture with Africanized honey bees (AHB). The tolerance of AHB to varroa is apparently attributable, at least in part, to resistance in the bees. The low fertility of this parasite in Africanized worker brood and the grooming and hygienic behavior of the bees are referred as important factors in keeping mite infestation low in the colonies. It has also been suggested that the type of mite influences the level of tolerance in a honey bee population. The Korea haplotype is predominant in unbalanced host-parasite systems, as exist in Europe, whereas in stable systems, as in Brazil, the Japan haplotype used to predominate. However, the patterns of varroa genetic variation have changed in Brazil. All recently sampled mites were of the Korea haplotype, regardless whether the mites had reproduced or not. The fertile mites on AHB in Brazil significantly increased from 56% in the 1980s to 86% in recent years. Nevertheless, despite the increased fertility, no increase in mite infestation rates in the colonies has been detected so far. A comprehensive literature review of varroa reproduction data, focusing on fertility and production of viable female mites, was conducted to

  11. Reproductive biology of Varroa destructor in Africanized honey bees (Apis mellifera).

    PubMed

    Calderón, R A; van Veen, J W; Sommeijer, M J; Sanchez, L A

    2010-04-01

    Since its first contact with Apis mellifera, the population dynamics of the parasitic mite Varroa destructor varies from one region to another. In many regions of the world, apiculture has come to depend on the use of acaricides, because of the extensive damage caused by varroa to bee colonies. At present, the mite is considered to contribute to the recent decline of honey bee colonies in North America and Europe. Because in tropical climates worker brood rearing and varroa reproduction occurs all year round, it could be expected that here the impact of the parasite will be even more devastating. Yet, this has not been the case in tropical areas of South America. In Brazil, varroa was introduced more than 30 years ago and got established at low levels of infestation, without causing apparent damage to apiculture with Africanized honey bees (AHB). The tolerance of AHB to varroa is apparently attributable, at least in part, to resistance in the bees. The low fertility of this parasite in Africanized worker brood and the grooming and hygienic behavior of the bees are referred as important factors in keeping mite infestation low in the colonies. It has also been suggested that the type of mite influences the level of tolerance in a honey bee population. The Korea haplotype is predominant in unbalanced host-parasite systems, as exist in Europe, whereas in stable systems, as in Brazil, the Japan haplotype used to predominate. However, the patterns of varroa genetic variation have changed in Brazil. All recently sampled mites were of the Korea haplotype, regardless whether the mites had reproduced or not. The fertile mites on AHB in Brazil significantly increased from 56% in the 1980s to 86% in recent years. Nevertheless, despite the increased fertility, no increase in mite infestation rates in the colonies has been detected so far. A comprehensive literature review of varroa reproduction data, focusing on fertility and production of viable female mites, was conducted to

  12. "Double-trick" visual and chemical mimicry by the juvenile orchid mantis hymenopus coronatus used in predation of the oriental honeybee apis cerana.

    PubMed

    Mizuno, Takafumi; Yamaguchi, Susumu; Yamamoto, Ichiro; Yamaoka, Ryohei; Akino, Toshiharu

    2014-12-01

    It has long been hypothesized that the flower-like appearance of the juvenile orchid mantis is used as visual camouflage to capture flower-visiting insects, although it is doubtful whether such morphological resemblance alone could increase their success in hunting. We confirmed that juvenile female orchid mantes often succeed in capturing oriental honeybees, while adult females often fail. Since most of the honeybees approached the juveniles from the front, we hypothesized that juvenile orchid mantes might attract honeybees by emitting some volatile chemical cues. Gas chromatography-mass spectrometry analyses revealed that the mantes' mandibular adducts contained 3-hydroxyoctanoic acid (3HOA) and 10-hydroxy-(E)-2-decenoic acid (10HDA), both of which are also features of the pheromone communication of the oriental honeybee. We also successfully detected 3HOA emitted in the head space air only at the time when the juvenile mantes were attempting to capture their prey. Field bioassay showed that the Oriental Honeybee predominantly preferred to visit dummies impregnated with a mixture of the appropriate amounts and ratios of 3HOA and 10HDA. We therefore conclude that the juvenile mantes utilize these as allelochemicals to trick and attract oriental honeybees.

  13. Genetic structure of Balearic honeybee populations based on microsatellite polymorphism

    PubMed Central

    De la Rúa, Pilar; Galián, José; Serrano, José; Moritz, Robin FA

    2003-01-01

    The genetic variation of honeybee colonies collected in 22 localities on the Balearic Islands (Spain) was analysed using eight polymorphic microsatellite loci. Previous studies have demonstrated that these colonies belong either to the African or west European evolutionary lineages. These populations display low variability estimated from both the number of alleles and heterozygosity values, as expected for the honeybee island populations. Although genetic differentiation within the islands is low, significant heterozygote deficiency is present, indicating a subpopulation genetic structure. According to the genetic differentiation test, the honeybee populations of the Balearic Islands cluster into two groups: Gimnesias (Mallorca and Menorca) and Pitiusas (Ibiza and Formentera), which agrees with the biogeography postulated for this archipelago. The phylogenetic analysis suggests an Iberian origin of the Balearic honeybees, thus confirming the postulated evolutionary scenario for Apis mellifera in the Mediterranean basin. The microsatellite data from Formentera, Ibiza and Menorca show that ancestral populations are threatened by queen importations, indicating that adequate conservation measures should be developed for protecting Balearic bees. PMID:12729553

  14. Reproduction of Varroa destructor in worker brood of Africanized honey bees (Apis mellifera).

    PubMed

    Medina, Luis Medina; Martin, Stephen J; Espinosa-Montaño, Laura; Ratnieks, Francis L W

    2002-01-01

    Reproduction and population growth of Varroa destructor was studied in ten naturally infested, Africanized honey bee (AHB) (Apis mellifera) colonies in Yucatan, Mexico. Between February 1997 and January 1998 monthly records of the amount of pollen, honey, sealed worker and drone brood were recorded. In addition, mite infestation levels of adult bees and worker brood and the fecundity of the mites reproducing in worker cells were determined. The mean number of sealed worker brood cells (10,070 +/- 1,790) remained fairly constant over the experimental period in each colony. However, the presence and amount of sealed drone brood was very variable. One colony had drone brood for 10 months and another for only 1 month. Both the mean infestation level of worker brood (18.1 +/- 8.4%) and adult bees (3.5 +/- 1.3%) remained fairly constant over the study period and did not increase rapidly as is normally observed in European honey bees. In fact, the estimated mean number of mites fell from 3,500 in February 1997 to 2,380 in January 1998. In May 2000 the mean mite population in the study colonies was still only 1,821 mites. The fertility level of mites in this study was much higher (83-96%) than in AHB in Brazil (25-57%). and similar to that found in EHB (76-94%). Mite fertility remained high throughout the entire study and was not influenced by the amount of pollen, honey or worker brood in the colonies.

  15. Infections of Nosema ceranae in four different honeybee species.

    PubMed

    Chaimanee, Veeranan; Warrit, Natapot; Chantawannakul, Panuwan

    2010-10-01

    The microsporidium Nosema ceranae is detected in honeybees in Thailand for the first time. This endoparasite has recently been reported to infect most Apis mellifera honeybee colonies in Europe, the US, and parts of Asia, and is suspected to have displaced the endemic endoparasite species, Nosema apis, from the western A. mellifera. We collected and identified species of microsporidia from the European honeybee (A. mellifera), the cavity nesting Asian honeybee (Apis cerana), the dwarf Asian honeybee (Apis florea) and the giant Asian honeybee (Apis dorsata) from colonies in Northern Thailand. We used multiplex PCR technique with two pairs of primers to differentiate N. ceranae from N. apis. From 80 A. mellifera samples, 62 (77.5%) were positively identified for the presence of the N. ceranae. Amongst 46 feral colonies of Asian honeybees (A. cerana, A. florea and A. dorsata) examined for Nosema infections, only N. ceranae could be detected. No N. apis was found in our samples. N. ceranae is found to be the only microsporidium infesting honeybees in Thailand. Moreover, we found the frequencies of N. ceranae infection in native bees to be less than that of A. mellifera.

  16. Triazines facilitate neurotransmitter release of synaptic terminals located in hearts of frog (Rana ridibunda) and honeybee (Apis mellifera) and in the ventral nerve cord of a beetle (Tenebrio molitor).

    PubMed

    Papaefthimiou, Chrisovalantis; Zafeiridou, Georgia; Topoglidi, Aglaia; Chaleplis, George; Zografou, Stella; Theophilidis, George

    2003-07-01

    Three triazine herbicides, atrazine, simazine and metribuzine, and some of their major metabolites (cyanuric acid and 6-azauracil) were investigated for their action on synaptic terminals using three different isolated tissue preparations from the atria of the frog, Rana ridibunda, the heart of the honeybee, Apis mellifera macedonica, and the ventral nerve cord of the beetle, Tenebrio molitor. The results indicate that triazines facilitate the release of neurotransmitters from nerve terminals, as already reported for the mammalian central nervous system. The no observed effect concentration, the maximum concentration of the herbicide diluted in the saline that has no effect on the physiological properties of the isolated tissue, was estimated for each individual preparation. According to their relative potency, the three triazines tested can be ranked as follows: atrazine (cyanuric acid), simazine>metribuzine (6-azauracil). The action of these compounds on the cholinergic (amphibians, insects), adrenergic (amphibian) and octopaminergic (insects) synaptic terminals is discussed.

  17. Whole-genome scan in thelytokous-laying workers of the Cape honeybee (Apis mellifera capensis): central fusion, reduced recombination rates and centromere mapping using half-tetrad analysis.

    PubMed Central

    Baudry, Emmanuelle; Kryger, Per; Allsopp, Mike; Koeniger, Nikolaus; Vautrin, Dominique; Mougel, Florence; Cornuet, Jean-Marie; Solignac, Michel

    2004-01-01

    While workers of almost all subspecies of honeybee are able to lay only haploid male eggs, Apis mellifera capensis workers are able to produce diploid female eggs by thelytokous parthenogenesis. Cytological analyses have shown that during parthenogenesis, egg diploidy is restored by fusion of the two central meiotic products. This peculiarity of the Cape bee preserves two products of a single meiosis in the daughters and can be used to map centromere positions using half-tetrad analysis. In this study, we use the thelytokous progenies of A. m. capensis workers and a sample of individuals from a naturally occurring A. m. capensis thelytokous clone to map centromere position for most of the linkage groups of the honeybee. We also show that the recombination rate is reduced by >10-fold during the meiosis of A. m. capensis workers. This reduction is restricted to thelytokous parthenogenesis of capensis workers and is not observed in the meiosis of queen within the same subspecies or in arrhenotokous workers of another subspecies. The reduced rate of recombination seems to be associated with negative crossover interference. These results are discussed in relation to evolution of thelytokous parthenogenesis and maintenance of heterozygosity and female sex after thelytoky. PMID:15166151

  18. Africanization of a feral honey bee (Apis mellifera) population in South Texas: does a decade make a difference?

    PubMed

    Rangel, Juliana; Giresi, Melissa; Pinto, Maria Alice; Baum, Kristen A; Rubink, William L; Coulson, Robert N; Johnston, John Spencer

    2016-04-01

    The arrival to the United States of the Africanized honey bee, a hybrid between European subspecies and the African subspecies Apis mellifera scutellata, is a remarkable model for the study of biological invasions. This immigration has created an opportunity to study the dynamics of secondary contact of honey bee subspecies from African and European lineages in a feral population in South Texas. An 11-year survey of this population (1991-2001) showed that mitochondrial haplotype frequencies changed drastically over time from a resident population of eastern and western European maternal ancestry, to a population dominated by the African haplotype. A subsequent study of the nuclear genome showed that the Africanization process included bidirectional gene flow between European and Africanized honey bees, giving rise to a new panmictic mixture of A. m. scutellata- and European-derived genes. In this study, we examined gene flow patterns in the same population 23 years after the first hybridization event occurred. We found 28 active colonies inhabiting 92 tree cavities surveyed in a 5.14 km(2) area, resulting in a colony density of 5.4 colonies/km(2). Of these 28 colonies, 25 were of A. m. scutellata maternal ancestry, and three were of western European maternal ancestry. No colonies of eastern European maternal ancestry were detected, although they were present in the earlier samples. Nuclear DNA revealed little change in the introgression of A. m. scutellata-derived genes into the population compared to previous surveys. Our results suggest this feral population remains an admixed swarm with continued low levels of European ancestry and a greater presence of African-derived mitochondrial genetic composition.

  19. Africanization of a feral honey bee (Apis mellifera) population in South Texas: does a decade make a difference?

    PubMed

    Rangel, Juliana; Giresi, Melissa; Pinto, Maria Alice; Baum, Kristen A; Rubink, William L; Coulson, Robert N; Johnston, John Spencer

    2016-04-01

    The arrival to the United States of the Africanized honey bee, a hybrid between European subspecies and the African subspecies Apis mellifera scutellata, is a remarkable model for the study of biological invasions. This immigration has created an opportunity to study the dynamics of secondary contact of honey bee subspecies from African and European lineages in a feral population in South Texas. An 11-year survey of this population (1991-2001) showed that mitochondrial haplotype frequencies changed drastically over time from a resident population of eastern and western European maternal ancestry, to a population dominated by the African haplotype. A subsequent study of the nuclear genome showed that the Africanization process included bidirectional gene flow between European and Africanized honey bees, giving rise to a new panmictic mixture of A. m. scutellata- and European-derived genes. In this study, we examined gene flow patterns in the same population 23 years after the first hybridization event occurred. We found 28 active colonies inhabiting 92 tree cavities surveyed in a 5.14 km(2) area, resulting in a colony density of 5.4 colonies/km(2). Of these 28 colonies, 25 were of A. m. scutellata maternal ancestry, and three were of western European maternal ancestry. No colonies of eastern European maternal ancestry were detected, although they were present in the earlier samples. Nuclear DNA revealed little change in the introgression of A. m. scutellata-derived genes into the population compared to previous surveys. Our results suggest this feral population remains an admixed swarm with continued low levels of European ancestry and a greater presence of African-derived mitochondrial genetic composition. PMID:27069571

  20. Role of the Varroa mite in honeybee (Apis mellifera) colony loss: A case study for adverse outcome pathway development with a nonchemical stressor

    EPA Science Inventory

    Significant honeybee colony losses have been reported across North America and Europe in recent years. A number of factors, both chemical and nonchemical, have been associated with such losses. Adverse outcome pathways (AOPs) provide a conceptual framework to describe and evalu...

  1. Alcohol dehydrogenase polymorphism in Apis mellifera.

    PubMed

    Martins, E; Mestriner, M A; Contel, E P

    1977-04-01

    A polymorphic system of ADH isozymes is described in the honeybee Apis mellifera. Three and six different electrophoretic patterns were found, respectively, in drone and worker pupae analysis. The data indicate that the ADH isozymes are controlled by three alleles, Adh-1(1), Adh-1(2), and Adh-1(3). The frequency of the Adh-1 alleles is different in two analyzed subspecies, Apis mellifera adansonii (African bees) and Apis mellifera ligustica (Italian bees). In the African bees, the frequencies are 0.256 and 0.697 for Adh-1(1) and Adh-1(2), respectively. In the Italian bees, these values are shown to be 0.902 and 0.098, respectively. The allele Adh-1(3) was not detected in the Italian bee population. The effect of NAD on the resolution of this system was investigated, and only one region of ADH activity was obtained in drone pupae analysis when NAD was used in the gels. However, two different regions of activity were observed in the same samples, in the absence of the coenzyme. ADH activity was not detected in young larvae, but it increased to a maximum in prepupal and white-eyed pupal phases. It then declined progressively to total absence in the emerging bees.

  2. Africanized honey bees (Apis mellifera) have low infestation levels of the mite Varroa destructor in different ecological regions in Mexico.

    PubMed

    Medina-Flores, C A; Guzmán-Novoa, E; Hamiduzzaman, M M; Aréchiga-Flores, C F; López-Carlos, M A

    2014-02-21

    Honey bee (Apis mellifera) colonies of African and European descent were compared for levels of Varroa destructor infestation in 3 different ecological regions in Mexico. The 300 colonies that were studied were located in subtropical, temperate sub-humid, and temperate dry climates. The morphotype and mitotype of adult bees as well as their rates of infestation by varroa mites were determined. Additionally, the number of combs with brood and covered with bees was recorded for each colony. The highest frequency of colonies that were classified as African-derived was found in the subtropical environment, whereas the lowest occurred in the temperate dry region. Overall, the colonies of African genotype had significantly lower mite infestation rates (3.5±0.34%) than the colonies of European genotype (4.7±0.49%) regardless of the region sampled. Significant effects of genotype and region on Varroa infestation rates were evident, and there were no differences in bee population or capped brood between genotypes. Mite infestation levels were significantly lower in the colonies of the temperate dry region than in the colonies of the other 2 regions. These results are discussed within the context of results from studies that were previously conducted in Brazil. This is the first study that demonstrates the effects of Africanization and ecological environment on V. destructor infestation rates in honey bee colonies in North America.

  3. Differential responses of Africanized and European honey bees (Apis mellifera) to viral replication following mechanical transmission or Varroa destructor parasitism.

    PubMed

    Hamiduzzaman, Mollah Md; Guzman-Novoa, Ernesto; Goodwin, Paul H; Reyes-Quintana, Mariana; Koleoglu, Gun; Correa-Benítez, Adriana; Petukhova, Tatiana

    2015-03-01

    For the first time, adults and brood of Africanized and European honey bees (Apis mellifera) were compared for relative virus levels over 48 h following Varroa destructor parasitism or injection of V. destructor homogenate. Rates of increase of deformed wing virus (DWV) for Africanized versus European bees were temporarily lowered for 12h with parasitism and sustainably lowered over the entire experiment (48 h) with homogenate injection in adults. The rates were also temporarily lowered for 24h with parasitism but were not affected by homogenate injection in brood. Rates of increase of black queen cell virus (BQCV) for Africanized versus European bees were similar with parasitism but sustainably lowered over the entire experiment with homogenate injection in adults and were similar for parasitism and homogenate injection in brood. Analyses of sac brood bee virus and Israeli acute paralysis virus were limited as detection did not occur after both homogenate injection and parasitism treatment, or levels were not significantly higher than those following control buffer injection. Lower rates of replication of DWV and BQCV in Africanized bees shows that they may have greater viral resistance, at least early after treatment.

  4. Differential responses of Africanized and European honey bees (Apis mellifera) to viral replication following mechanical transmission or Varroa destructor parasitism.

    PubMed

    Hamiduzzaman, Mollah Md; Guzman-Novoa, Ernesto; Goodwin, Paul H; Reyes-Quintana, Mariana; Koleoglu, Gun; Correa-Benítez, Adriana; Petukhova, Tatiana

    2015-03-01

    For the first time, adults and brood of Africanized and European honey bees (Apis mellifera) were compared for relative virus levels over 48 h following Varroa destructor parasitism or injection of V. destructor homogenate. Rates of increase of deformed wing virus (DWV) for Africanized versus European bees were temporarily lowered for 12h with parasitism and sustainably lowered over the entire experiment (48 h) with homogenate injection in adults. The rates were also temporarily lowered for 24h with parasitism but were not affected by homogenate injection in brood. Rates of increase of black queen cell virus (BQCV) for Africanized versus European bees were similar with parasitism but sustainably lowered over the entire experiment with homogenate injection in adults and were similar for parasitism and homogenate injection in brood. Analyses of sac brood bee virus and Israeli acute paralysis virus were limited as detection did not occur after both homogenate injection and parasitism treatment, or levels were not significantly higher than those following control buffer injection. Lower rates of replication of DWV and BQCV in Africanized bees shows that they may have greater viral resistance, at least early after treatment. PMID:25527405

  5. Concentrated expression of Ca2+/ calmodulin-dependent protein kinase II and protein kinase C in the mushroom bodies of the brain of the honeybee Apis mellifera L.

    PubMed

    Kamikouchi, A; Takeuchi, H; Sawata, M; Natori, S; Kubo, T

    2000-02-21

    We have previously used the differential display method to identify a gene that is expressed preferentially in the mushroom bodies of worker honeybees and to show that it encodes a putative inositol 1,4,5-trisphosphate receptor (IP3R) homologue (Kamikouchi et al. [1998] Biochem. Biophys. Res. Commun. 242:181-186). In the present study, we examined whether the expression of some of the genes for proteins involved in the intracellular Ca2+ signal transduction is also concentrated in the mushroom bodies of the honeybee by isolating cDNA fragments that encode the Ca2+/calmodulin-dependent protein kinase II (CaMKII) and protein kinase C (PKC) homologues of the honeybee. In situ hybridization analysis revealed that the expression of these genes was also concentrated in the mushroom bodies of the honeybee brain: The CaMKII gene was expressed preferentially in the large-type Kenyon cells of the mushroom bodies, whereas that for PKC was expressed in both the large and small types of Kenyon cells. The expression of the genes for IP3R and CaMKII was concentrated in the mushroom bodies of the queen and drone as well as in those of the worker bee. Furthermore, the enzymatic activities of CaMKII and PKC were found to be higher in the mushroom bodies/central bodies than in the optic and antennal lobes of the worker bee brain. These results suggest that the function of the intracellular Ca2+ signal transduction is enhanced in Kenyon cells in comparison to other neuronal cell types in the honeybee brain.

  6. (Collection of high quality acoustical records for honeybees)

    SciTech Connect

    Kerr, H.T.; Buchanan, M.E.

    1987-02-19

    High quality acoustical data records were collected for both European and Africanized honeybees under various field conditions. This data base was needed for more rigorous evaluation of a honeybee identification technique previously developed by the travelers from preliminary data sets. Laboratory-grade recording equipment was used to record sounds made by honeybees in and near their nests and during foraging flights. Recordings were obtained from European and Africanized honeybees in the same general environment. Preliminary analyses of the acoustical data base clearly support the general identification algorithm: Africanized honeybee noise has significantly higher frequency content than does European honeybee noise. As this algorithm is refined, it may result in the development of a simple field-portable device for identifying subspecies of honeybees. Further, the honeybee's acoustical signals appear to be correlated with specific colony conditions. Understanding these variations may have enormous benefit for entomologists and for the beekeeping industry.

  7. Lesions caused by Africanized honeybee stings in three cattle in Brazil.

    PubMed

    Caldas, Saulo Andrade; Graça, Flávio Augusto Soares; de Barros, Júlia Soares Monteiro; Rolim, Márcia Farias; Peixoto, Tiago da Cunha; Peixoto, Paulo Vargas

    2013-01-01

    We report three cases of stings by Africanized bees in cattle in the state of Rio de Janeiro, Brazil. Erythema, subcutaneous edema, necrosis accompanied by skin detachment, and subsequent skin regeneration were observed, especially on the head and dewlap. Histopathological examinations performed 45 days later revealed complete skin reepithelialization with moderate dermal fibrosis. The clinical picture and differential diagnosis are discussed in the present manuscript, with a focus on photosensitization, which causes cutaneous lesions on the head (sequela) with cicatricial curving of the ears and can be very similar to what is observed in cattle attacked by swarms of bees. The distinction between photosensitization and bee sting lesions can be made with a focus on history and clinical and pathological aspects. PMID:23968247

  8. In Situ Hybridization Analysis of the Expression of Futsch, Tau, and MESK2 Homologues in the Brain of the European Honeybee (Apis mellifera L.)

    PubMed Central

    Kaneko, Kumi; Nakaoka, Takayoshi; Paul, Rajib Kumar; Fujiyuki, Tomoko; Shirai, Kenichi; Wakamoto, Akiko; Tsuboko, Satomi; Takeuchi, Hideaki; Kubo, Takeo

    2010-01-01

    Background The importance of visual sense in Hymenopteran social behavior is suggested by the existence of a Hymenopteran insect-specific neural circuit related to visual processing and the fact that worker honeybee brain changes morphologically according to its foraging experience. To analyze molecular and neural bases that underlie the visual abilities of the honeybees, we used a cDNA microarray to search for gene(s) expressed in a neural cell-type preferential manner in a visual center of the honeybee brain, the optic lobes (OLs). Methodology/Principal Findings Expression analysis of candidate genes using in situ hybridization revealed two genes expressed in a neural cell-type preferential manner in the OLs. One is a homologue of Drosophila futsch, which encodes a microtubule-associated protein and is preferentially expressed in the monopolar cells in the lamina of the OLs. The gene for another microtubule-associated protein, tau, which functionally overlaps with futsch, was also preferentially expressed in the monopolar cells, strongly suggesting the functional importance of these two microtubule-associated proteins in monopolar cells. The other gene encoded a homologue of Misexpression Suppressor of Dominant-negative Kinase Suppressor of Ras 2 (MESK2), which might activate Ras/MAPK-signaling in Drosophila. MESK2 was expressed preferentially in a subclass of neurons located in the ventral region between the lamina and medulla neuropil in the OLs, suggesting that this subclass is a novel OL neuron type characterized by MESK2-expression. These three genes exhibited similar expression patterns in the worker, drone, and queen brains, suggesting that they function similarly irrespective of the honeybee sex or caste. Conclusions Here we identified genes that are expressed in a monopolar cell (Amfutsch and Amtau) or ventral medulla-preferential manner (AmMESK2) in insect OLs. These genes may aid in visualizing neurites of monopolar cells and ventral medulla cells, as

  9. The effects of four insect growth-regulating (IGR) insecticides on honeybee (Apis mellifera L.) colony development, queen rearing and drone sperm production.

    PubMed

    Thompson, Helen M; Wilkins, Selwyn; Battersby, Alastair H; Waite, Ruth J; Wilkinson, David

    2005-10-01

    This study assessed the effects of exposure to IGRs on the long-term development of the honeybee colony, viability of queens and sperm production in drones and integrated the data into a honeybee population model. Colonies treated with diflubenzuron resulted in a short-term reduction in the numbers of adult bees and brood. Colonies treated with fenoxycarb declined during the season earlier and started the season slower. The number of queens that successfully mated and laid eggs was affected in the fenoxycarb treatment group but there were no significant differences in the drone sperm counts between the colonies. An existing honeybee population model was modified to include exposure to IGRs. In the model, fenoxycarb reduced the winter size of the colony, with the greatest effects following a June or an August application. Assuming a 'larvae per nurse bee' ratio of 1.5 for brood rearing capability, the reduction in winter size of a colony following a fenoxycarb application was at its worst about 8%. However, even if only those bees reared within 2 weeks of the IGR being applied are subject to premature ageing, this might significantly reduce the size of over-wintering colonies, and increase the chance of the bee population dwindling and dying in late winter or early spring. PMID:16160749

  10. The effects of four insect growth-regulating (IGR) insecticides on honeybee (Apis mellifera L.) colony development, queen rearing and drone sperm production.

    PubMed

    Thompson, Helen M; Wilkins, Selwyn; Battersby, Alastair H; Waite, Ruth J; Wilkinson, David

    2005-10-01

    This study assessed the effects of exposure to IGRs on the long-term development of the honeybee colony, viability of queens and sperm production in drones and integrated the data into a honeybee population model. Colonies treated with diflubenzuron resulted in a short-term reduction in the numbers of adult bees and brood. Colonies treated with fenoxycarb declined during the season earlier and started the season slower. The number of queens that successfully mated and laid eggs was affected in the fenoxycarb treatment group but there were no significant differences in the drone sperm counts between the colonies. An existing honeybee population model was modified to include exposure to IGRs. In the model, fenoxycarb reduced the winter size of the colony, with the greatest effects following a June or an August application. Assuming a 'larvae per nurse bee' ratio of 1.5 for brood rearing capability, the reduction in winter size of a colony following a fenoxycarb application was at its worst about 8%. However, even if only those bees reared within 2 weeks of the IGR being applied are subject to premature ageing, this might significantly reduce the size of over-wintering colonies, and increase the chance of the bee population dwindling and dying in late winter or early spring.

  11. The olfactory memory of the honeybee Apis mellifera. III. Bilateral sensory input is necessary for induction and expression of olfactory blocking.

    PubMed

    Thorn, R S; Smith, B H

    1997-07-01

    The associative learning phenomenon termed 'blocking' demonstrates that animals do not necessarily associate a conditioned stimulus (e.g. X) with reinforcement if X is coincident with a second conditioned stimulus (e.g. A) that had already been associated with the same reinforcement. Blocking therefore represents a tactic that animals can use to modulate associative learning in order to focus on the most predictive stimuli at the expense of novel ones. Using an olfactory blocking paradigm in the honeybee, we investigated the mechanistic basis for olfactory blocking. We show that removing input from one antenna eliminates the blocking of one odor by another. Since antennal sensory neurons only project to the ipsilateral antennal lobe in the honeybee, more central processing regions of the brain than the antennae must be crucial for establishing blocking. Further experiments show that this bilateral interaction between brain hemispheres is crucial during both the induction and the expression of blocking. This result implies that blocking involves an active inhibition of odor association and recall, and that this inhibition is mediated by a structure that spans both brain hemispheres. This interpretation is consistent with a role for identified bilateral modulatory neurons in the production of blocking.

  12. Lactobacillus apinorum sp. nov., Lactobacillus mellifer sp. nov., Lactobacillus mellis sp. nov., Lactobacillus melliventris sp. nov., Lactobacillus kimbladii sp. nov., Lactobacillus helsingborgensis sp. nov. and Lactobacillus kullabergensis sp. nov., isolated from the honey stomach of the honeybee Apis mellifera.

    PubMed

    Olofsson, Tobias C; Alsterfjord, Magnus; Nilson, Bo; Butler, Eile; Vásquez, Alejandra

    2014-09-01

    We previously discovered a symbiotic lactic acid bacterial (LAB) microbiota in the honey stomach of the honeybee Apis mellifera. The microbiota was composed of several phylotypes of Bifidobacterium and Lactobacillus. 16S rRNA gene sequence analyses and phenotypic and genetic characteristics revealed that the phylotypes isolated represent seven novel species. One grouped with Lactobacillus kunkeei and the others belong to the Lactobacillus buchneri and Lactobacillus delbrueckii subgroups of Lactobacillus. We propose the names Lactobacillus apinorum sp. nov., Lactobacillus mellifer sp. nov., Lactobacillus mellis sp. nov., Lactobacillus melliventris sp. nov., Lactobacillus kimbladii sp. nov., Lactobacillus helsingborgensis sp. nov. and Lactobacillus kullabergensis sp. nov. for these novel species, with the respective type strains being Fhon13N(T) ( = DSM 26257(T) = CCUG 63287(T)), Bin4N(T) ( = DSM 26254(T) = CCUG 63291(T)), Hon2N(T) ( = DSM 26255(T) = CCUG 63289(T)), Hma8N(T) ( = DSM 26256(T) = CCUG 63629(T)), Hma2N(T) ( = DSM 26263(T) = CCUG 63633(T)), Bma5N(T) ( = DSM 26265(T) = CCUG 63301(T)) and Biut2N(T) ( = DSM 26262(T) = CCUG 63631(T)).

  13. Lactobacillus apinorum sp. nov., Lactobacillus mellifer sp. nov., Lactobacillus mellis sp. nov., Lactobacillus melliventris sp. nov., Lactobacillus kimbladii sp. nov., Lactobacillus helsingborgensis sp. nov. and Lactobacillus kullabergensis sp. nov., isolated from the honey stomach of the honeybee Apis mellifera

    PubMed Central

    Alsterfjord, Magnus; Nilson, Bo; Butler, Èile; Vásquez, Alejandra

    2014-01-01

    We previously discovered a symbiotic lactic acid bacterial (LAB) microbiota in the honey stomach of the honeybee Apis mellifera. The microbiota was composed of several phylotypes of Bifidobacterium and Lactobacillus. 16S rRNA gene sequence analyses and phenotypic and genetic characteristics revealed that the phylotypes isolated represent seven novel species. One grouped with Lactobacillus kunkeei and the others belong to the Lactobacillus buchneri and Lactobacillus delbrueckiisubgroups of Lactobacillus. We propose the names Lactobacillus apinorum sp. nov., Lactobacillus mellifer sp. nov., Lactobacillus mellis sp. nov., Lactobacillus melliventris sp. nov., Lactobacillus kimbladii sp. nov., Lactobacillus helsingborgensis sp. nov. and Lactobacillus kullabergensis sp. nov. for these novel species, with the respective type strains being Fhon13NT ( = DSM 26257T = CCUG 63287T), Bin4NT ( = DSM 26254T = CCUG 63291T), Hon2NT ( = DSM 26255T = CCUG 63289T), Hma8NT ( = DSM 26256T = CCUG 63629T), Hma2NT ( = DSM 26263T = CCUG 63633T), Bma5NT ( = DSM 26265T = CCUG 63301T) and Biut2NT ( = DSM 26262T = CCUG 63631T). PMID:24944337

  14. Identification and analysis of the minimal promoter activity of a novel noncoding nuclear RNA gene, AncR-1, from the honeybee (Apis mellifera L.)

    PubMed Central

    SAWATA, MIYUKI; TAKEUCHI, HIDEAKI; KUBO, TAKEO

    2004-01-01

    Previously, we identified a gene for a noncoding nuclear RNA, termed Ks-1, that is expressed preferentially in a restricted set of neurons in the honeybee brain. In the present study, we identified another novel gene, termed AncR-1, whose transcripts were localized to nuclei in the whole cortex region of the honeybee brain, as a candidate novel noncoding nuclear RNA gene. RNA fluorescent in situ hybridization revealed that AncR-1 and Ks-1 transcripts were located in a distinct portion of a single neural nucleus, suggesting that they have distinct functions in brain neurons. cDNA cloning revealed that the AncR-1 transcripts were up to 7 kb in size, had mRNA-like structures, and were alternatively spliced. The reporter assay using Drosophila SL-2 cells demonstrated that a TATA box-like sequence located −30 bp upstream of the 5′ end of AncR-1 cDNA had promoter activity. None of the alternatively spliced AncR-1 cDNA variants contained significant open reading frames, strongly suggesting that AncR-1 transcripts function as novel noncoding nuclear RNAs. Furthermore, in situ hybridization revealed that AncR-1 was expressed not only in the brain but also in the sex organs in the queen and drones and in the hypopharyngeal glands and oenocytes of the worker bees, suggesting that AncR-1 is involved in diverse organ functions. Some of the AncR-1 transcripts enriched in the nuclei of the hypopharyngeal glands were polyadenylated, indicating the presence of mRNA-like AncR-1 transcripts in the nuclei. PMID:15208441

  15. Antioxidant supplementation can reduce the survival costs of excess amino acid intake in honeybees.

    PubMed

    Archer, C Ruth; Köhler, Angela; Pirk, Christian W W; Oosthuizen, Vinette; Apostolides, Zeno; Nicolson, Susan W

    2014-12-01

    Over-consuming amino acids is associated with reduced survival in many species, including honeybees. The mechanisms responsible for this are unclear but one possibility is that excessive intake of amino acids increases oxidative damage. If this is the case, antioxidant supplementation may help reduce the survival costs of high amino acid intake. We tested this hypothesis in African honeybees (Apis mellifera scutellata) using the major antioxidant in green tea, epigallocatechin-3-gallate (EGCG). We first determined the dose-range of EGCG that improved survival of caged honeybees fed sucrose solution. We then provided bees with eight diets that differed in their ratio of essential amino acids (EAA) to carbohydrate (C) (0:1, 1:250, 1:100, 1:75, 1:50, 1:25, 1:10, 1:5 EAA:C) and also in their EGCG dose (0.0 or 0.4 mM). We found that bees fed sucrose only solution survived better than bees fed EAA diets. Despite this, bees preferred a diet that contained intermediate ratios of EAA:C (ca. 1:25), which may represent the high demands for nitrogen of developing nurse bees. EGCG supplementation improved honeybee survival but only at an intermediate dose (0.3-0.5 mM) and in bees fed low EAA diets (1:250, 1:100 EAA:C). That EGCG counteracted the lifespan reducing effects of eating low EAA diets suggests that oxidative damage may be involved in the association between EAAs and lifespan in honeybees. However, that EGCG had no effect on survival in bees fed high EAA diets suggests that there are other physiological costs of over-consuming EAAs in honeybees.

  16. Method and device for identifying different species of honeybees

    DOEpatents

    Kerr, Howard T.; Buchanan, Michael E.; Valentine, Kenneth H.

    1989-01-01

    A method and device have been provided for distinguishing Africanized honeybees from European honeybees. The method is based on the discovery of a distinct difference in the acoustical signatures of these two species of honeybees in flight. The European honeybee signature has a fundamental power peak in the 210 to 240 Hz range while the Africanized honeybee signature has a fundamental power peak in the 260 to 290 Hz range. The acoustic signal produced by honeybees is analyzed by means of a detecting device to quickly determine the honeybee species through the detection of the presence of frequencies in one of these distinct ranges. The device includes a microphone for acoustical signal detection which feeds the detected signal into a frequency analyzer which is designed to detect the presence of either of the known fundamental wingbeat frequencies unique to the acoustical signatures of these species as an indication of the identity of the species and indicate the species identity on a readout device.

  17. Effects of Nosema ceranae and thiametoxam in Apis mellifera: A comparative study in Africanized and Carniolan honey bees.

    PubMed

    Gregorc, Ales; Silva-Zacarin, Elaine C M; Carvalho, Stephan Malfitano; Kramberger, Doris; Teixeira, Erica W; Malaspina, Osmar

    2016-03-01

    Multiple stressors, such as chemicals and pathogens, are likely to be detrimental for the health and lifespan of Apis mellifera, a bee species frequently exposed to both factors in the field and inside hives. The main objective of the present study was to evaluate comparatively the health of Carniolan and Africanized honey bees (AHB) co-exposed to thiamethoxam and Nosema ceranae (N. ceranae) spores. Newly-emerged worker honey bees were exposed solely with different sublethal doses of thiamethoxam (2% and 0.2% of LD50 for AHB), which could be consumed by bees under field conditions. Toxicity tests for the Carniolan bees were performed, and the LD50 of thiamethoxam for Carniolan honey bees was 7.86 ng bee(-1). Immunohistological analyses were also performed to detect cell death in the midgut of thiamethoxam and/or N. ceranae treated bees. Thiamethoxam exposure had no negative impact on Nosema development in experimental conditions, but it clearly inhibited cell death in the midgut of thiamethoxam and Nosema-exposed bees, as demonstrated by immunohistochemical data. Indeed, thiamethoxam exposure only had a minor synergistic toxic effect on midgut tissue when applied as a low dose simultaneously with N. ceranae to AHB and Carniolan honey bees, in comparison with the effect caused by both stressors separately. Our data provides insights into the effects of the neonicotenoid thiamethoxam on the AHB and Carniolan honey bee life span, as well as the effects of simultaneous application of thiamethoxam and N. ceranae spores to honey bees.

  18. Thymol as an alternative to pesticides: persistence and effects of Apilife Var on the phototactic behavior of the honeybee Apis mellifera.

    PubMed

    Carayon, Jean-Luc; Téné, Nathan; Bonnafé, Elsa; Alayrangues, Julie; Hotier, Lucie; Armengaud, Catherine; Treilhou, Michel

    2014-04-01

    Thymol is a natural substance increasingly used as an alternative to pesticides in the fight against the Varroa destructor mite. Despite the effectiveness of this phenolic monoterpene against Varroa, few articles have covered the negative or side effects of thymol on bees. In a previous study, we have found an impairment of phototaxis in honeybees following application of sublethal doses of thymol-lower or equal to 100 ng/bee-under laboratory conditions. The present work shows the same behavioral effects on bees from hives treated with Apilife Var®, a veterinary drug containing 74 % thymol, with a decrease in phototactic behavior observed 1 day after treatment. Thus, thymol causes disruption of bee phototactic behavior both under laboratory conditions as well as in beehives. The bee exposure dose in treated hives was quantified using gas chromatography coupled to mass spectrometry (GC-MS), giving a median value of 4.3 μg per body 24 h after treatment, with 11 ng in the brain. The thymol level in 20 organic waxes from hives treated with Apilife Var® was also measured and showed that it persists in waxes (around 10 mg/kg) 1 year after treatment. Thus, in the light of (1) behavioral data obtained under laboratory conditions and in beehives, (2) the persistence of thymol in waxes, and (3) the high load on bees, it would appear important to study the long-term effects of thymol in beehives.

  19. Nutrition and dopamine: An intake of tyrosine in royal jelly can affect the brain levels of dopamine in male honeybees (Apis mellifera L.).

    PubMed

    Sasaki, Ken

    2016-04-01

    Precursors of neuroactive substances can be obtained from dietary sources, which can affect the resulting production of such substances in the brain. In social species, an intake of the precursor in food could be controlled by social interactions. To test the effects of dietary tyrosine on the brain dopamine levels in social insect colonies, male and worker honeybees were fed tyrosine or royal jelly under experimental conditions and the brain levels of dopamine and its metabolite were then measured. The results showed that the levels of dopamine and its metabolite in the brains of 4- and 8-day-old workers and 8-day-old males were significantly higher in tyrosine-fed bees than in control bees, but the levels in 4-day-old males were not. The brain levels of dopamine and its metabolite in 4- and 8-day-old males and workers were significantly higher in royal jelly-fed bees than in control bees, except for one group of 4-day-old workers. Food exchanges with workers were observed in males during 1-3 days, but self-feedings were also during 5-7 days. These results suggest that the brain levels of dopamine in males can be controlled by an intake of tyrosine in food via exchanging food with nestmates and by self-feeding. PMID:26868722

  20. Expression analysis of Egr-1 ortholog in metamorphic brain of honeybee (Apis mellifera L.): Possible evolutionary conservation of roles of Egr in eye development in vertebrates and insects.

    PubMed

    Ugajin, Atsushi; Watanabe, Takayuki; Uchiyama, Hironobu; Sasaki, Tetsuhiko; Yajima, Shunsuke; Ono, Masato

    2016-09-16

    Specific genes quickly transcribed after extracellular stimuli without de novo protein synthesis are known as immediate early genes (IEGs) and are thought to contribute to learning and memory processes in the mature nervous system of vertebrates. A recent study revealed that the homolog of Early growth response protein-1 (Egr-1), which is one of the best-characterized vertebrate IEGs, shared similar properties as a neural activity-dependent gene in the adult brain of insects. With regard to the roles of vertebrate Egr-1 in neural development, the contribution to the development and growth of visual systems has been reported. However, in insects, the expression dynamics of the Egr-1 homologous gene during neural development remains poorly understood. Our expression analysis demonstrated that AmEgr, a honeybee homolog of Egr-1, was transiently upregulated in the developing brain during the early to mid pupal stages. In situ hybridization and 5-bromo-2'-deoxyuridine (BrdU) immunohistochemistry revealed that AmEgr was mainly expressed in post-mitotic cells in optic lobes, the primary visual center of the insect brain. These findings suggest the evolutionarily conserved role of Egr homologs in the development of visual systems in vertebrates and insects.

  1. Nutrition and dopamine: An intake of tyrosine in royal jelly can affect the brain levels of dopamine in male honeybees (Apis mellifera L.).

    PubMed

    Sasaki, Ken

    2016-04-01

    Precursors of neuroactive substances can be obtained from dietary sources, which can affect the resulting production of such substances in the brain. In social species, an intake of the precursor in food could be controlled by social interactions. To test the effects of dietary tyrosine on the brain dopamine levels in social insect colonies, male and worker honeybees were fed tyrosine or royal jelly under experimental conditions and the brain levels of dopamine and its metabolite were then measured. The results showed that the levels of dopamine and its metabolite in the brains of 4- and 8-day-old workers and 8-day-old males were significantly higher in tyrosine-fed bees than in control bees, but the levels in 4-day-old males were not. The brain levels of dopamine and its metabolite in 4- and 8-day-old males and workers were significantly higher in royal jelly-fed bees than in control bees, except for one group of 4-day-old workers. Food exchanges with workers were observed in males during 1-3 days, but self-feedings were also during 5-7 days. These results suggest that the brain levels of dopamine in males can be controlled by an intake of tyrosine in food via exchanging food with nestmates and by self-feeding.

  2. Expression analysis of Egr-1 ortholog in metamorphic brain of honeybee (Apis mellifera L.): Possible evolutionary conservation of roles of Egr in eye development in vertebrates and insects.

    PubMed

    Ugajin, Atsushi; Watanabe, Takayuki; Uchiyama, Hironobu; Sasaki, Tetsuhiko; Yajima, Shunsuke; Ono, Masato

    2016-09-16

    Specific genes quickly transcribed after extracellular stimuli without de novo protein synthesis are known as immediate early genes (IEGs) and are thought to contribute to learning and memory processes in the mature nervous system of vertebrates. A recent study revealed that the homolog of Early growth response protein-1 (Egr-1), which is one of the best-characterized vertebrate IEGs, shared similar properties as a neural activity-dependent gene in the adult brain of insects. With regard to the roles of vertebrate Egr-1 in neural development, the contribution to the development and growth of visual systems has been reported. However, in insects, the expression dynamics of the Egr-1 homologous gene during neural development remains poorly understood. Our expression analysis demonstrated that AmEgr, a honeybee homolog of Egr-1, was transiently upregulated in the developing brain during the early to mid pupal stages. In situ hybridization and 5-bromo-2'-deoxyuridine (BrdU) immunohistochemistry revealed that AmEgr was mainly expressed in post-mitotic cells in optic lobes, the primary visual center of the insect brain. These findings suggest the evolutionarily conserved role of Egr homologs in the development of visual systems in vertebrates and insects. PMID:27392711

  3. Social versus individual behaviour: a comparative approach to thermal behaviour of the honeybee (Apis mellifera L.) and the American cockroach (Periplaneta americana L.).

    PubMed

    Grodzicki, Przemysław; Caputa, Michał

    2005-03-01

    To study the relationship between the individual and social thermoregulatory behaviour, we used honeybee workers and American cockroaches. Single insects or groups of 10-20 individuals were placed in a temperature gradient chamber, and their thermal preference was recorded for 48 h under natural summer photoperiod. Single bees showed diurnal changes in selected ambient temperature, which culminated at 14:00 reaching 34+/-2 degrees C, and then slowly decreased, reaching a nocturnal minimum of 28+/-2 degrees C at 04:00. In contrast, the zenith of temperature selected by groups of bees (31+/-1 degrees C) was reached at 04:00 and the nadir (29+/-2 degrees C) was recorded at 14:00. Groups of bees clustered together during the night time, and dispersed during intense day time activity. Such changes were absent in groups of cockroaches. Cockroaches selected an ambient temperature of 30+/-1 degrees C both during day and night. In conclusion, there is a striking analogy in the diurnal thermal behaviour between a colony of bees and mammals. During their nychthemeral rest phase, both of them select higher temperatures than during the activity phase and, simultaneously, they reduce their overall surface area of heat loss to conserve metabolic heat. Therefore, the colony behaves as a homeothermic superorganism. In contrast, a single bee, isolated from the colony, utilizes a heterothermic strategy to save energy for a morning warm up. PMID:15749114

  4. Endangered Honeybee

    ERIC Educational Resources Information Center

    Bourne, Russell

    1975-01-01

    Because of pesticides, the disappearance of open farmland, chemical fertilizers, and our own indifference and ignorance, the number of United States honeybee colonies has been reduced an average of 2 percent per year. (BT)

  5. The activity of carbohydrate-degrading enzymes in the development of brood and newly emerged workers and drones of the Carniolan honeybee, Apis mellifera carnica.

    PubMed

    Żółtowska, Krystyna; Lipiński, Zbigniew; Łopieńska-Biernat, Elżbieta; Farjan, Marek; Dmitryjuk, Małgorzata

    2012-01-01

    The activity of glycogen Phosphorylase and carbohydrate hydrolyzing enzymes α-amylase, glucoamylase, trehalase, and sucrase was studied in the development of the Carniolan honey bee, Apis mellifera carnica Pollman (Hymenoptera: Apidae), from newly hatched larva to freshly emerged imago of worker and drone. Phosphorolytic degradation of glycogen was significantly stronger than hydrolytic degradation in all developmental stages. Developmental profiles of hydrolase activity were similar in both sexes of brood; high activity was found in unsealed larvae, the lowest in prepupae followed by an increase in enzymatic activity. Especially intensive increases in activity occurred in the last stage of pupae and newly emerged imago. Besides α-amylase, the activities of other enzymes were higher in drone than in worker broods. Among drones, activity of glucoamylase was particularly high, ranging from around three times higher in the youngest larvae to 13 times higher in the oldest pupae. This confirms earlier suggestions about higher rates of metabolism in drone broods than in worker broods.

  6. Poly D,L-lactide-co-glycolide (PLGA) nanoparticle-encapsulated honeybee (Apis melifera) venom promotes clearance of Salmonella enterica serovar Typhimurium infection in experimentally challenged pigs through the up-regulation of T helper type 1 specific immune responses.

    PubMed

    Lee, Jin-A; Jung, Bock-Gie; Kim, Tae-Hoon; Kim, Yun-Mi; Park, Min-Ho; Hyun, Pung-mi; Jeon, Jong-woon; Park, Jin-kyu; Cho, Cheong-Weon; Suh, Guk-Hyun; Lee, Bong-Joo

    2014-10-15

    Honeybee (Apis melifera) venom (HBV), which includes melittin and lipid-soluble ingredients (chrysin and pinocembrin), elicited increases in the CD4(+)/CD8(+) T lymphocyte ratio, relative mRNA expression levels of the T helper type 1 (Th 1) cytokines (interferon-γ and IL-12) and reinforced viral clearance of an experimental porcine reproductive and respiratory syndrome (PRRS) virus infection in our previous study. On the basis of that previous study, we have now developed poly-d,l-lactide-co-glycolide (PLGA)-encapsulated HBV nanoparticles (P-HBV) for longer sustained release of HBV. We administered P-HBV to pigs via the rectal route, and then evaluated the potential immune-enhancing and bacterial clearance effects of P-HBV against Salmonella enterica serovar Typhimurium. The CD4(+)/CD8(+) lymphocyte ratio, proliferative capacity of peripheral blood lymphocytes and relative mRNA expression levels of IFN-γ and IL-12 (produced mainly by Th1 lymphocytes) were significantly increased in the P-HBV group up to 2 weeks post-administration of P-HBV. After S. Typhimurium infection, the P-HBV group showed a marked reduction in microbial burden in feces and all tissue samples (including the ileum, cecum, colon, and mesenteric lymph node (MLN)), a significant increase in Th 1 cytokines (IFN-γ, IL-2, and IL-12) and a marked decrease in a Th 2 cytokine (IL-4) in all tissue samples and peripheral blood lymphocytes. Thus, P-HBV may be a promising strategy for immune enhancement and prevention of S. Typhimurium or other bacterial infections.

  7. Sociochemical alteration of honeybee hoarding behavior.

    PubMed

    Rinderer, T E

    1982-05-01

    Hoarding experiments were conducted with honeybees (Apis mellifera L.) in cages containing comb treated with either 2-heptanone, isopentyl acetate, citral, or geraniol. 2-Heptanone increased hoarding rates; isopentyl acetate decreased hoarding rates; citral and geraniol had no observed effect. PMID:24415185

  8. Proteomic Analysis Reveals the Molecular Underpinnings of Mandibular Gland Development and Lipid Metabolism in Two Lines of Honeybees (Apis mellifera ligustica).

    PubMed

    Huo, Xinmei; Wu, Bin; Feng, Mao; Han, Bin; Fang, Yu; Hao, Yue; Meng, Lifeng; Wubie, Abebe Jenberie; Fan, Pei; Hu, Han; Qi, Yuping; Li, Jianke

    2016-09-01

    The mandibular glands (MGs) of honeybee workers are vital for the secretion of lipids, for both larval nutrition and pheromones. However, knowledge of how the proteome controls MG development and functionality at the different physiological stages of worker bees is still lacking. We characterized and compared the proteome across different ages of MGs in Italian bees (ITBs) and Royal Jelly (RJ) bees (RJBs), the latter being a line bred for increasing RJ yield, originating from the ITB. All 2000 proteins that were shared by differently aged MGs in both bee lines (>4000 proteins identified in all) were strongly enriched in metabolizing protein, nucleic acid, small molecule, and lipid functional groups. The fact that these shared proteins are enriched in similar groups in both lines suggests that they are essential for basic cellular maintenance and MG functions. However, great differences were found when comparing the proteome across different MG phases in each line. In newly emerged bees (NEBs), the unique and highly abundant proteins were enriched in protein synthesis, cytoskeleton, and development related functional groups, suggesting their importance to initialize young MG development. In nurse bees (NBs), specific and highly abundant proteins were mainly enriched in substance transport and lipid synthesis, indicating their priority may be in priming high secretory activity in lipid synthesis as larval nutrition. The unique and highly abundant proteins in forager bees (FBs) were enriched in lipid metabolism, small molecule, and carbohydrate metabolism. This indicates their emphasis on 2-heptanone synthesis as an alarm pheromone to enhance colony defense or scent marker for foraging efficiency. Furthermore, a wide range of different biological processes was observed between ITBs and RJBs at different MG ages. Both bee stocks may adapt different proteome programs to drive gland development and functionality. The RJB nurse bee has reshaped its proteome by enhancing

  9. Proteomic Analysis Reveals the Molecular Underpinnings of Mandibular Gland Development and Lipid Metabolism in Two Lines of Honeybees (Apis mellifera ligustica).

    PubMed

    Huo, Xinmei; Wu, Bin; Feng, Mao; Han, Bin; Fang, Yu; Hao, Yue; Meng, Lifeng; Wubie, Abebe Jenberie; Fan, Pei; Hu, Han; Qi, Yuping; Li, Jianke

    2016-09-01

    The mandibular glands (MGs) of honeybee workers are vital for the secretion of lipids, for both larval nutrition and pheromones. However, knowledge of how the proteome controls MG development and functionality at the different physiological stages of worker bees is still lacking. We characterized and compared the proteome across different ages of MGs in Italian bees (ITBs) and Royal Jelly (RJ) bees (RJBs), the latter being a line bred for increasing RJ yield, originating from the ITB. All 2000 proteins that were shared by differently aged MGs in both bee lines (>4000 proteins identified in all) were strongly enriched in metabolizing protein, nucleic acid, small molecule, and lipid functional groups. The fact that these shared proteins are enriched in similar groups in both lines suggests that they are essential for basic cellular maintenance and MG functions. However, great differences were found when comparing the proteome across different MG phases in each line. In newly emerged bees (NEBs), the unique and highly abundant proteins were enriched in protein synthesis, cytoskeleton, and development related functional groups, suggesting their importance to initialize young MG development. In nurse bees (NBs), specific and highly abundant proteins were mainly enriched in substance transport and lipid synthesis, indicating their priority may be in priming high secretory activity in lipid synthesis as larval nutrition. The unique and highly abundant proteins in forager bees (FBs) were enriched in lipid metabolism, small molecule, and carbohydrate metabolism. This indicates their emphasis on 2-heptanone synthesis as an alarm pheromone to enhance colony defense or scent marker for foraging efficiency. Furthermore, a wide range of different biological processes was observed between ITBs and RJBs at different MG ages. Both bee stocks may adapt different proteome programs to drive gland development and functionality. The RJB nurse bee has reshaped its proteome by enhancing

  10. Toxicological, Biochemical, and Histopathological Analyses Demonstrating That Cry1C and Cry2A Are Not Toxic to Larvae of the Honeybee, Apis mellifera.

    PubMed

    Wang, Yuan-Yuan; Li, Yun-He; Huang, Zachary Y; Chen, Xiu-Ping; Romeis, Jörg; Dai, Ping-Li; Peng, Yu-Fa

    2015-07-15

    The honey bee, Apis mellifera, is commonly used as a test species for the regulatory risk assessment of insect-resistant genetically engineered (IRGE) plants. In the current study, a dietary exposure assay was developed, validated, and used to assess the potential toxicity of Cry1C and Cry2A proteins from Bacillus thuringiensis (Bt) to A. mellifera larvae; Cry1C and Cry2A are produced by different IRGE crops. The assay, which uses the soybean trypsin inhibitor (SBTI) as a positive control and bovine serum albumin (BSA) as a negative control, was used to measure the responses of A. mellifera larvae to high concentrations of Cry1C and Cry2A. Survival was reduced and development was delayed when larvae were fed SBTI (1 mg/g diet) but were unaffected when larvae were fed BSA (400 μg/g), Cry1C (50 μg/g), or Cry2A (400 μg/g). The enzymatic activities of A. mellifera larvae were not altered and their midgut brush border membranes (BBMs) were not damaged after being fed with diets containing BSA, Cry1C, or Cry2A; however, enzymatic activities were increased and BBMs were damaged when diets contained SBTI. The study confirms that Cry1C and Cry2A have no acute toxicity to A. mellifera larvae at concentrations >10 times higher than those detected in pollen from Bt plants. PMID:26084400

  11. Evaluation of pesticide toxicity at their field recommended doses to honeybees, Apis cerana and A. mellifera through laboratory, semi-field and field studies.

    PubMed

    Stanley, Johnson; Sah, Khushboo; Jain, S K; Bhatt, J C; Sushil, S N

    2015-01-01

    A series of experiments were carried out to determine the acute toxicity of pesticides in the laboratory, toxicity through spray on flowering plants of mustard (Tier II evaluation) and field on both Apis cerana and A. mellifera bees. The overall mortality of honey bees through topical (direct contact) were found significantly higher than that of indirect filter paper contamination assays. Insecticides viz., chlorpyriphos, dichlorvos, malathion, profenofos, monocrotophos and deltamethrin when exposed directly or indirectly at their field recommended doses caused very high mortality up to 100% to both the bees at 48 HAT. The insecticides that caused less mortality through filter paper contamination viz., flubendiamide, methyl demeton, imidacloprid and thiamethoxam caused very high morality through direct exposure. Apart from all the fungicides tested, carbendazim, mancozeb, chlorothalonil and propiconazole, insecticides acetamiprid and endosulfan were found safer to both the bees either by direct or indirect exposures. Tier II evaluation by spray of pesticides at their field recommended doses on potted mustard plants showed monocrotophos as the highly toxic insecticide with 100% mortality even with 1h of exposure followed by thiamethoxam, dichlorvos, profenofos and chlorpyriphos which are not to be recommended for use in pollinator attractive flowering plants. Acetamiprid and endosulfan did not cause any repellent effect on honey bees in the field trials endorse the usage of acetamiprid against sucking pest in flowering plants. PMID:25150969

  12. The Activity of Carbohydrate-Degrading Enzymes in the Development of Brood and Newly Emerged workers and Drones of the Carniolan Honeybee, Apis mellifera carnica

    PubMed Central

    Żółtowska, Krystyna; Lipiński, Zbigniew; Łopieńska-Biernat, Elżbieta; Farjan, Marek; Dmitryjuk, Małgorzata

    2012-01-01

    The activity of glycogen Phosphorylase and carbohydrate hydrolyzing enzymes α-amylase, glucoamylase, trehalase, and sucrase was studied in the development of the Carniolan honey bee, Apis mellifera carnica Pollman (Hymenoptera: Apidae), from newly hatched larva to freshly emerged imago of worker and drone. Phosphorolytic degradation of glycogen was significantly stronger than hydrolytic degradation in all developmental stages. Developmental profiles of hydrolase activity were similar in both sexes of brood; high activity was found in unsealed larvae, the lowest in prepupae followed by an increase in enzymatic activity. Especially intensive increases in activity occurred in the last stage of pupae and newly emerged imago. Besides α-amylase, the activities of other enzymes were higher in drone than in worker broods. Among drones, activity of glucoamylase was particularly high, ranging from around three times higher in the youngest larvae to 13 times higher in the oldest pupae. This confirms earlier suggestions about higher rates of metabolism in drone broods than in worker broods. PMID:22943407

  13. Evaluation of pesticide toxicity at their field recommended doses to honeybees, Apis cerana and A. mellifera through laboratory, semi-field and field studies.

    PubMed

    Stanley, Johnson; Sah, Khushboo; Jain, S K; Bhatt, J C; Sushil, S N

    2015-01-01

    A series of experiments were carried out to determine the acute toxicity of pesticides in the laboratory, toxicity through spray on flowering plants of mustard (Tier II evaluation) and field on both Apis cerana and A. mellifera bees. The overall mortality of honey bees through topical (direct contact) were found significantly higher than that of indirect filter paper contamination assays. Insecticides viz., chlorpyriphos, dichlorvos, malathion, profenofos, monocrotophos and deltamethrin when exposed directly or indirectly at their field recommended doses caused very high mortality up to 100% to both the bees at 48 HAT. The insecticides that caused less mortality through filter paper contamination viz., flubendiamide, methyl demeton, imidacloprid and thiamethoxam caused very high morality through direct exposure. Apart from all the fungicides tested, carbendazim, mancozeb, chlorothalonil and propiconazole, insecticides acetamiprid and endosulfan were found safer to both the bees either by direct or indirect exposures. Tier II evaluation by spray of pesticides at their field recommended doses on potted mustard plants showed monocrotophos as the highly toxic insecticide with 100% mortality even with 1h of exposure followed by thiamethoxam, dichlorvos, profenofos and chlorpyriphos which are not to be recommended for use in pollinator attractive flowering plants. Acetamiprid and endosulfan did not cause any repellent effect on honey bees in the field trials endorse the usage of acetamiprid against sucking pest in flowering plants.

  14. Managed European-Derived Honey Bee, Apis mellifera sspp, Colonies Reduce African-Matriline Honey Bee, A. m. scutellata, Drones at Regional Mating Congregations.

    PubMed

    Mortensen, Ashley N; Ellis, James D

    2016-01-01

    African honey bees (Apis mellifera scutellata) dramatically changed the South American beekeeping industry as they rapidly spread through the Americas following their introduction into Brazil. In the present study, we aimed to determine if the management of European-derived honey bees (A. mellifera sspp.) could reduce the relative abundance of African-matriline drones at regional mating sites known as drone congregation areas (DCAs). We collected 2,400 drones at six DCAs either 0.25 km or >2.8 km from managed European-derived honey bee apiaries. The maternal ancestry of each drone was determined by Bgl II enzyme digestion of an amplified portion of the mitochondrial Cytochrome b gene. Furthermore, sibship reconstruction via nuclear microsatellites was conducted for a subset of 1,200 drones to estimate the number of colonies contributing drones to each DCA. Results indicate that DCAs distant to managed European apiaries (>2.8 km) had significantly more African-matriline drones (34.33% of the collected drones had African mitochondrial DNA) than did DCAs close (0.25 km) to managed European apiaries (1.83% of the collected drones had African mitochondrial DNA). Furthermore, nuclear sibship reconstruction demonstrated that the reduction in the proportion of African matriline drones at DCAs near apiaries was not simply an increase in the number of European matriline drones at the DCAs but also the result of fewer African matriline colonies contributing drones to the DCAs. Our data demonstrate that the management of European honey bee colonies can dramatically influence the proportion of drones with African matrilines at nearby drone congregation areas, and would likely decreasing the probability that virgin European queens will mate with African drones at those drone congregation areas.

  15. Managed European-Derived Honey Bee, Apis mellifera sspp, Colonies Reduce African-Matriline Honey Bee, A. m. scutellata, Drones at Regional Mating Congregations.

    PubMed

    Mortensen, Ashley N; Ellis, James D

    2016-01-01

    African honey bees (Apis mellifera scutellata) dramatically changed the South American beekeeping industry as they rapidly spread through the Americas following their introduction into Brazil. In the present study, we aimed to determine if the management of European-derived honey bees (A. mellifera sspp.) could reduce the relative abundance of African-matriline drones at regional mating sites known as drone congregation areas (DCAs). We collected 2,400 drones at six DCAs either 0.25 km or >2.8 km from managed European-derived honey bee apiaries. The maternal ancestry of each drone was determined by Bgl II enzyme digestion of an amplified portion of the mitochondrial Cytochrome b gene. Furthermore, sibship reconstruction via nuclear microsatellites was conducted for a subset of 1,200 drones to estimate the number of colonies contributing drones to each DCA. Results indicate that DCAs distant to managed European apiaries (>2.8 km) had significantly more African-matriline drones (34.33% of the collected drones had African mitochondrial DNA) than did DCAs close (0.25 km) to managed European apiaries (1.83% of the collected drones had African mitochondrial DNA). Furthermore, nuclear sibship reconstruction demonstrated that the reduction in the proportion of African matriline drones at DCAs near apiaries was not simply an increase in the number of European matriline drones at the DCAs but also the result of fewer African matriline colonies contributing drones to the DCAs. Our data demonstrate that the management of European honey bee colonies can dramatically influence the proportion of drones with African matrilines at nearby drone congregation areas, and would likely decreasing the probability that virgin European queens will mate with African drones at those drone congregation areas. PMID:27518068

  16. Rearing Africanized honey bee (Apis mellifera L.) brood under laboratory conditions.

    PubMed

    Silva, I C; Message, D; Cruz, C D; Campos, L A O; Sousa-Majer, M J

    2009-01-01

    We developed a method for rearing larvae of Africanized bees under laboratory conditions to determine the amount of diet needed during larval development to obtain a worker bee. We started with larvae 18-24 h old, which were transferred to polyethylene cell cups and fed for five days. We found that the amount of diet needed for successful larval development was: 4, 15, 25, 50, and 70 microl during the first to fifth days, respectively. The survival rate to the adult stage was 88.6% when the larvae received the daily amount of diet divided into two feedings, and 80% when they received only one feeding per day. The adult weight obtained in the laboratory, when the larvae received the daily amount of diet in a single dose, did not differ from those that were developed under field conditions (our control). All adults that we obtained in laboratory appeared to be normal. This technique has the potential to facilitate studies on brood pathogens, resistance mechanisms to diseases and also might be useful to test the impacts of transgenic products on honey bee brood. PMID:19551650

  17. Managed European-Derived Honey Bee, Apis mellifera sspp, Colonies Reduce African-Matriline Honey Bee, A. m. scutellata, Drones at Regional Mating Congregations

    PubMed Central

    Mortensen, Ashley N.; Ellis, James D.

    2016-01-01

    African honey bees (Apis mellifera scutellata) dramatically changed the South American beekeeping industry as they rapidly spread through the Americas following their introduction into Brazil. In the present study, we aimed to determine if the management of European-derived honey bees (A. mellifera sspp.) could reduce the relative abundance of African-matriline drones at regional mating sites known as drone congregation areas (DCAs). We collected 2,400 drones at six DCAs either 0.25 km or >2.8 km from managed European-derived honey bee apiaries. The maternal ancestry of each drone was determined by Bgl II enzyme digestion of an amplified portion of the mitochondrial Cytochrome b gene. Furthermore, sibship reconstruction via nuclear microsatellites was conducted for a subset of 1,200 drones to estimate the number of colonies contributing drones to each DCA. Results indicate that DCAs distant to managed European apiaries (>2.8 km) had significantly more African−matriline drones (34.33% of the collected drones had African mitochondrial DNA) than did DCAs close (0.25 km) to managed European apiaries (1.83% of the collected drones had African mitochondrial DNA). Furthermore, nuclear sibship reconstruction demonstrated that the reduction in the proportion of African matriline drones at DCAs near apiaries was not simply an increase in the number of European matriline drones at the DCAs but also the result of fewer African matriline colonies contributing drones to the DCAs. Our data demonstrate that the management of European honey bee colonies can dramatically influence the proportion of drones with African matrilines at nearby drone congregation areas, and would likely decreasing the probability that virgin European queens will mate with African drones at those drone congregation areas. PMID:27518068

  18. Diet effects on honeybee immunocompetence.

    PubMed

    Alaux, Cédric; Ducloz, François; Crauser, Didier; Le Conte, Yves

    2010-08-23

    The maintenance of the immune system can be costly, and a lack of dietary protein can increase the susceptibility of organisms to disease. However, few studies have investigated the relationship between protein nutrition and immunity in insects. Here, we tested in honeybees (Apis mellifera) whether dietary protein quantity (monofloral pollen) and diet diversity (polyfloral pollen) can shape baseline immunocompetence (IC) by measuring parameters of individual immunity (haemocyte concentration, fat body content and phenoloxidase activity) and glucose oxidase (GOX) activity, which enables bees to sterilize colony and brood food, as a parameter of social immunity. Protein feeding modified both individual and social IC but increases in dietary protein quantity did not enhance IC. However, diet diversity increased IC levels. In particular, polyfloral diets induced higher GOX activity compared with monofloral diets, including protein-richer diets. These results suggest a link between protein nutrition and immunity in honeybees and underscore the critical role of resource availability on pollinator health.

  19. Apidaecins: antibacterial peptides from honeybees.

    PubMed Central

    Casteels, P; Ampe, C; Jacobs, F; Vaeck, M; Tempst, P

    1989-01-01

    Although insects lack the basic entities of the vertebrate immune system, such as lymphocytes and immunoglobulins, they have developed alternative defence mechanisms against infections. Different types of peptide factors, exhibiting bactericidal activity, have been detected in some insect species. These humoral factors are induced upon infection. The present report describes the discovery of the apidaecins, isolated from lymph fluid of the honeybee (Apis mellifera). The apidaecins represent a new family of inducible peptide antibiotics with the following basic structure: GNNRP(V/I)YIPQPRPPHPR(L/I). These heat-stable, non-helical peptides are active against a wide range of plant-associated bacteria and some human pathogens, through a bacteriostatic rather than a lytic process. Chemically synthesized apidaecins display the same bactericidal activity as their natural counterparts. While only active antibacterial peptides are detectable in adult honeybee lymph, bee larvae contain considerable amounts of inactive precursor molecules. PMID:2676519

  20. Identification of kakusei, a Nuclear Non-Coding RNA, as an Immediate Early Gene from the Honeybee, and Its Application for Neuroethological Study

    PubMed Central

    Kiya, Taketoshi; Ugajin, Atsushi; Kunieda, Takekazu; Kubo, Takeo

    2012-01-01

    The honeybee is a social insect that exhibits various social behaviors. To elucidate the neural basis of honeybee behavior, we detected neural activity in freely-moving honeybee workers using an immediate early gene (IEG) that is expressed in a neural activity-dependent manner. In European honeybees (Apis mellifera), we identified a novel nuclear non-coding RNA, termed kakusei, as the first insect IEG, and revealed the neural activity pattern in foragers. In addition, we isolated a homologue of kakusei, termed Acks, from the Japanese honeybee (Apis cerana), and detected active neurons in workers fighting with the giant hornet. PMID:23443077

  1. Heat-balling wasps by honeybees

    NASA Astrophysics Data System (ADS)

    Ken, Tan; Hepburn, H. R.; Radloff, S. E.; Yusheng, Yu; Yiqiu, Liu; Danyin, Zhou; Neumann, P.

    2005-10-01

    Defensiveness of honeybee colonies of Apis cerana and Apis mellifera (actively balling the wasps but reduction of foraging) against predatory wasps, Vespa velutina, and false wasps was assessed. There were significantly more worker bees in balls of the former than latter. Core temperatures in a ball around a live wasp of A. cerana were significantly higher than those of A. mellifera, and also significantly more when exposed to false wasps. Core temperatures of bee balls exposed to false wasps were significantly lower than those exposed to V. velutina for both A. cerana and for A. mellifera. The lethal thermal limits for V. velutina, A. cerana and A. mellifera were significantly different, so that both species of honeybees have a thermal safety factor in heat-killing such wasp predators. During wasps attacks at the hives measured at 3, 6 and 12 min, the numbers of Apis cerana cerana and Apis cerana indica bees continuing to forage were significantly reduced with increased wasp attack time. Tropical lowland A. c. indica reduced foraging rates significantly more than the highland A. c. cerana bees; but, there was no significant effect on foraging by A. mellifera. The latency to recovery of honeybee foraging was significantly greater the longer the duration of wasp attacks. The results show remarkable thermal fine-tuning in a co-evolving predator prey relationship.

  2. Risks of neonicotinoid insecticides to honeybees.

    PubMed

    Fairbrother, Anne; Purdy, John; Anderson, Troy; Fell, Richard

    2014-04-01

    The European honeybee, Apis mellifera, is an important pollinator of agricultural crops. Since 2006, when unexpectedly high colony losses were first reported, articles have proliferated in the popular press suggesting a range of possible causes and raising alarm over the general decline of bees. Suggested causes include pesticides, genetically modified crops, habitat fragmentation, and introduced diseases and parasites. Scientists have concluded that multiple factors in various combinations-including mites, fungi, viruses, and pesticides, as well as other factors such as reduction in forage, poor nutrition, and queen failure-are the most probable cause of elevated colony loss rates. Investigators and regulators continue to focus on the possible role that insecticides, particularly the neonicotinoids, may play in honeybee health. Neonicotinoid insecticides are insect neurotoxicants with desirable features such as broad-spectrum activity, low application rates, low mammalian toxicity, upward systemic movement in plants, and versatile application methods. Their distribution throughout the plant, including pollen, nectar, and guttation fluids, poses particular concern for exposure to pollinators. The authors describe how neonicotinoids interact with the nervous system of honeybees and affect individual honeybees in laboratory situations. Because honeybees are social insects, colony effects in semifield and field studies are discussed. The authors conclude with a review of current and proposed guidance in the United States and Europe for assessing the risks of pesticides to honeybees. PMID:24692231

  3. Risks of neonicotinoid insecticides to honeybees

    PubMed Central

    Fairbrother, Anne; Purdy, John; Anderson, Troy; Fell, Richard

    2014-01-01

    The European honeybee, Apis mellifera, is an important pollinator of agricultural crops. Since 2006, when unexpectedly high colony losses were first reported, articles have proliferated in the popular press suggesting a range of possible causes and raising alarm over the general decline of bees. Suggested causes include pesticides, genetically modified crops, habitat fragmentation, and introduced diseases and parasites. Scientists have concluded that multiple factors in various combinations—including mites, fungi, viruses, and pesticides, as well as other factors such as reduction in forage, poor nutrition, and queen failure—are the most probable cause of elevated colony loss rates. Investigators and regulators continue to focus on the possible role that insecticides, particularly the neonicotinoids, may play in honeybee health. Neonicotinoid insecticides are insect neurotoxicants with desirable features such as broad-spectrum activity, low application rates, low mammalian toxicity, upward systemic movement in plants, and versatile application methods. Their distribution throughout the plant, including pollen, nectar, and guttation fluids, poses particular concern for exposure to pollinators. The authors describe how neonicotinoids interact with the nervous system of honeybees and affect individual honeybees in laboratory situations. Because honeybees are social insects, colony effects in semifield and field studies are discussed. The authors conclude with a review of current and proposed guidance in the United States and Europe for assessing the risks of pesticides to honeybees. PMID:24692231

  4. Risks of neonicotinoid insecticides to honeybees.

    PubMed

    Fairbrother, Anne; Purdy, John; Anderson, Troy; Fell, Richard

    2014-04-01

    The European honeybee, Apis mellifera, is an important pollinator of agricultural crops. Since 2006, when unexpectedly high colony losses were first reported, articles have proliferated in the popular press suggesting a range of possible causes and raising alarm over the general decline of bees. Suggested causes include pesticides, genetically modified crops, habitat fragmentation, and introduced diseases and parasites. Scientists have concluded that multiple factors in various combinations-including mites, fungi, viruses, and pesticides, as well as other factors such as reduction in forage, poor nutrition, and queen failure-are the most probable cause of elevated colony loss rates. Investigators and regulators continue to focus on the possible role that insecticides, particularly the neonicotinoids, may play in honeybee health. Neonicotinoid insecticides are insect neurotoxicants with desirable features such as broad-spectrum activity, low application rates, low mammalian toxicity, upward systemic movement in plants, and versatile application methods. Their distribution throughout the plant, including pollen, nectar, and guttation fluids, poses particular concern for exposure to pollinators. The authors describe how neonicotinoids interact with the nervous system of honeybees and affect individual honeybees in laboratory situations. Because honeybees are social insects, colony effects in semifield and field studies are discussed. The authors conclude with a review of current and proposed guidance in the United States and Europe for assessing the risks of pesticides to honeybees.

  5. Bioassay of compounds derived from the honeybee sting.

    PubMed

    Collins, A M; Blum, M S

    1982-02-01

    Nine compounds identified from honeybee,Apis mettifera L., sting extracts and one compound identified from the honeybee mandibular gland were evaluated in a standardized laboratory test for their effectiveness in eliciting an alarm response from caged honeybees. Two,n-decyl acetate and benzyl alcohol, were judged ineffective as alarm pheromones. The remaining eight-2-nonanol, isopentyl acetate,n-butyl acetate,n-hexyl acetate, benzyl acetate, isopentyl alcohol, andn-octyl acetate from the sting and 2-heptanone from the mandibular gland-produced responses of similar frequency and strength. PMID:24414957

  6. Bee-hawking by the wasp, Vespa velutina, on the honeybees Apis cerana and A. mellifera

    NASA Astrophysics Data System (ADS)

    Tan, K.; Radloff, S. E.; Li, J. J.; Hepburn, H. R.; Yang, M. X.; Zhang, L. J.; Neumann, P.

    2007-06-01

    The vespine wasps, Vespa velutina, specialise in hawking honeybee foragers returning to their nests. We studied their behaviour in China using native Apis cerana and introduced A. mellifera colonies. When the wasps are hawking, A. cerana recruits threefold more guard bees to stave off predation than A. mellifera. The former also utilises wing shimmering as a visual pattern disruption mechanism, which is not shown by A. mellifera. A. cerana foragers halve the time of normal flight needed to dart into the nest entrance, while A. mellifera actually slows down in sashaying flight manoeuvres. V. velutina preferentially hawks A. mellifera foragers when both A. mellifera and A. cerana occur in the same apiary. The pace of wasp-hawking was highest in mid-summer but the frequency of hawking wasps was three times higher at A. mellifera colonies than at the A. cerana colonies. The wasps were taking A. mellifera foragers at a frequency eightfold greater than A. cerana foragers. The final hawking success rates of the wasps were about three times higher for A. mellifera foragers than for A. cerana. The relative success of native A. cerana over European A. mellifera in thwarting predation by the wasp V. velutina is interpreted as the result of co-evolution between the Asian wasp and honeybee, respectively.

  7. The Genetic Basis of Transgressive Ovary Size in Honeybee Workers

    PubMed Central

    Linksvayer, Timothy A.; Rueppell, Olav; Siegel, Adam; Kaftanoglu, Osman; Page, Robert E.; Amdam, Gro V.

    2009-01-01

    Ovarioles are the functional unit of the female insect reproductive organs and the number of ovarioles per ovary strongly influences egg-laying rate and fecundity. Social evolution in the honeybee (Apis mellifera) has resulted in queens with 200–360 total ovarioles and workers with usually 20 or less. In addition, variation in ovariole number among workers relates to worker sensory tuning, foraging behavior, and the ability to lay unfertilized male-destined eggs. To study the genetic architecture of worker ovariole number, we performed a series of crosses between Africanized and European bees that differ in worker ovariole number. Unexpectedly, these crosses produced transgressive worker phenotypes with extreme ovariole numbers that were sensitive to the social environment. We used a new selective pooled DNA interval mapping approach with two Africanized backcrosses to identify quantitative trait loci (QTL) underlying the transgressive ovary phenotype. We identified one QTL on chromosome 11 and found some evidence for another QTL on chromosome 2. Both QTL regions contain plausible functional candidate genes. The ovariole number of foragers was correlated with the sugar concentration of collected nectar, supporting previous studies showing a link between worker physiology and foraging behavior. We discuss how the phenotype of extreme worker ovariole numbers and the underlying genetic factors we identified could be linked to the development of queen traits. PMID:19620393

  8. Dancing to different tunes: heterospecific deciphering of the honeybee waggle dance

    NASA Astrophysics Data System (ADS)

    Tan, K.; Yang, M. X.; Radloff, S. E.; Hepburn, H. R.; Zhang, Z. Y.; Luo, L. J.; Li, H.

    2008-12-01

    Although the structure of the dance language is very similar among species of honeybees, communication of the distance component of the message varies both intraspecifically and interspecifically. However, it is not known whether different honeybee species would attend interspecific waggle dances and, if so, whether they can decipher such dances. Using mixed-species colonies of Apis cerana and Apis mellifera, we show that, despite internal differences in the structure of the waggle dances of foragers, both species attend, and act on the information encoded in each other’s waggle dances but with limited accuracy. These observations indicate that direction and distance communication pre-date speciation in honeybees.

  9. Analysis of the Waggle Dance Motion of Honeybees for the Design of a Biomimetic Honeybee Robot

    PubMed Central

    Landgraf, Tim; Rojas, Raúl; Nguyen, Hai; Kriegel, Fabian; Stettin, Katja

    2011-01-01

    The honeybee dance “language” is one of the most popular examples of information transfer in the animal world. Today, more than 60 years after its discovery it still remains unknown how follower bees decode the information contained in the dance. In order to build a robotic honeybee that allows a deeper investigation of the communication process we have recorded hundreds of videos of waggle dances. In this paper we analyze the statistics of visually captured high-precision dance trajectories of European honeybees (Apis mellifera carnica). The trajectories were produced using a novel automatic tracking system and represent the most detailed honeybee dance motion information available. Although honeybee dances seem very variable, some properties turned out to be invariant. We use these properties as a minimal set of parameters that enables us to model the honeybee dance motion. We provide a detailed statistical description of various dance properties that have not been characterized before and discuss the role of particular dance components in the commmunication process. PMID:21857906

  10. Concurrent infestations by Aethina tumida and Varroa destructor alters thermoregulation in Apis mellifera winter clusters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The small hive beetle, Aethina tumida, and the ectoparasitic mite, Varroa destructor, are parasites of the honeybee, Apis mellifera. Both parasites overwinter in honeybee colonies. The efficacy of thermoregulation might be reduced in beetle and mite infested clusters, due to altered activity of host...

  11. Deciding on a new home: how do honeybees agree?

    PubMed

    Britton, N F; Franks, N R; Pratt, S C; Seeley, T D

    2002-07-01

    A swarm of honeybees (Apis mellifera) is capable of selecting one nest-site when faced with a choice of several. We adapt classical mathematical models of disease, information and competing beliefs to such decision-making processes. We show that the collective decision may be arrived at without the necessity for any bee to make any comparison between sites. PMID:12079662

  12. Forward and Backward Second-Order Pavlovian Conditioning in Honeybees

    ERIC Educational Resources Information Center

    Hussaini, Syed Abid; Komischke, Bernhard; Menzel, Randolf; Lachnit, Harald

    2007-01-01

    Second-order conditioning (SOC) is the association of a neutral stimulus with another stimulus that had previously been combined with an unconditioned stimulus (US). We used classical conditioning of the proboscis extension response (PER) in honeybees ("Apis mellifera") with odors (CS) and sugar (US). Previous SOC experiments in bees were…

  13. Mechanism of action of recombinant Acc-royalisin from royal jelly of Chinese honeybee against gram-positive bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The antibacterial activity of royalisin, an antimicrobial peptide from the royal jelly produced by honeybees has been addressed extensively. However, its mechanism of action remains unclear. In this study, a recombinant royalisin, RAcc-royalisin from the royal jelly of Chinese honeybee Apis cerana...

  14. Notch signalling mediates reproductive constraint in the adult worker honeybee

    PubMed Central

    Duncan, Elizabeth J.; Hyink, Otto; Dearden, Peter K.

    2016-01-01

    The hallmark of eusociality is the reproductive division of labour, in which one female caste reproduces, while reproduction is constrained in the subordinate caste. In adult worker honeybees (Apis mellifera) reproductive constraint is conditional: in the absence of the queen and brood, adult worker honeybees activate their ovaries and lay haploid male eggs. Here, we demonstrate that chemical inhibition of Notch signalling can overcome the repressive effect of queen pheromone and promote ovary activity in adult worker honeybees. We show that Notch signalling acts on the earliest stages of oogenesis and that the removal of the queen corresponds with a loss of Notch protein in the germarium. We conclude that the ancient and pleiotropic Notch signalling pathway has been co-opted into constraining reproduction in worker honeybees and we provide the first molecular mechanism directly linking ovary activity in adult worker bees with the presence of the queen. PMID:27485026

  15. Notch signalling mediates reproductive constraint in the adult worker honeybee.

    PubMed

    Duncan, Elizabeth J; Hyink, Otto; Dearden, Peter K

    2016-01-01

    The hallmark of eusociality is the reproductive division of labour, in which one female caste reproduces, while reproduction is constrained in the subordinate caste. In adult worker honeybees (Apis mellifera) reproductive constraint is conditional: in the absence of the queen and brood, adult worker honeybees activate their ovaries and lay haploid male eggs. Here, we demonstrate that chemical inhibition of Notch signalling can overcome the repressive effect of queen pheromone and promote ovary activity in adult worker honeybees. We show that Notch signalling acts on the earliest stages of oogenesis and that the removal of the queen corresponds with a loss of Notch protein in the germarium. We conclude that the ancient and pleiotropic Notch signalling pathway has been co-opted into constraining reproduction in worker honeybees and we provide the first molecular mechanism directly linking ovary activity in adult worker bees with the presence of the queen. PMID:27485026

  16. Deformed wing virus is a recent global epidemic in honeybees driven by Varroa mites.

    PubMed

    Wilfert, L; Long, G; Leggett, H C; Schmid-Hempel, P; Butlin, R; Martin, S J M; Boots, M

    2016-02-01

    Deformed wing virus (DWV) and its vector, the mite Varroa destructor, are a major threat to the world's honeybees. Although the impact of Varroa on colony-level DWV epidemiology is evident, we have little understanding of wider DWV epidemiology and the role that Varroa has played in its global spread. A phylogeographic analysis shows that DWV is globally distributed in honeybees, having recently spread from a common source, the European honeybee Apis mellifera. DWV exhibits epidemic growth and transmission that is predominantly mediated by European and North American honeybee populations and driven by trade and movement of honeybee colonies. DWV is now an important reemerging pathogen of honeybees, which are undergoing a worldwide manmade epidemic fueled by the direct transmission route that the Varroa mite provides. PMID:26912700

  17. Deformed wing virus is a recent global epidemic in honeybees driven by Varroa mites.

    PubMed

    Wilfert, L; Long, G; Leggett, H C; Schmid-Hempel, P; Butlin, R; Martin, S J M; Boots, M

    2016-02-01

    Deformed wing virus (DWV) and its vector, the mite Varroa destructor, are a major threat to the world's honeybees. Although the impact of Varroa on colony-level DWV epidemiology is evident, we have little understanding of wider DWV epidemiology and the role that Varroa has played in its global spread. A phylogeographic analysis shows that DWV is globally distributed in honeybees, having recently spread from a common source, the European honeybee Apis mellifera. DWV exhibits epidemic growth and transmission that is predominantly mediated by European and North American honeybee populations and driven by trade and movement of honeybee colonies. DWV is now an important reemerging pathogen of honeybees, which are undergoing a worldwide manmade epidemic fueled by the direct transmission route that the Varroa mite provides.

  18. Effect of temperature on the biotic potential of honeybee microsporidia.

    PubMed

    Martín-Hernández, Raquel; Meana, Aránzazu; García-Palencia, Pilar; Marín, Pilar; Botías, Cristina; Garrido-Bailón, Encarna; Barrios, Laura; Higes, Mariano

    2009-04-01

    The biological cycle of Nosema spp. in honeybees depends on temperature. When expressed as total spore counts per day after infection, the biotic potentials of Nosema apis and N. ceranae at 33 degrees C were similar, but a higher proportion of immature stages of N. ceranae than of N. apis were seen. At 25 and 37 degrees C, the biotic potential of N. ceranae was higher than that of N. apis. The better adaptation of N. ceranae to complete its endogenous cycle at different temperatures clearly supports the observation of the different epidemiological patterns.

  19. Effect of Temperature on the Biotic Potential of Honeybee Microsporidia▿

    PubMed Central

    Martín-Hernández, Raquel; Meana, Aránzazu; García-Palencia, Pilar; Marín, Pilar; Botías, Cristina; Garrido-Bailón, Encarna; Barrios, Laura; Higes, Mariano

    2009-01-01

    The biological cycle of Nosema spp. in honeybees depends on temperature. When expressed as total spore counts per day after infection, the biotic potentials of Nosema apis and N. ceranae at 33°C were similar, but a higher proportion of immature stages of N. ceranae than of N. apis were seen. At 25 and 37°C, the biotic potential of N. ceranae was higher than that of N. apis. The better adaptation of N. ceranae to complete its endogenous cycle at different temperatures clearly supports the observation of the different epidemiological patterns. PMID:19233948

  20. A descriptive study of the prevalence of parasites and pathogens in Chinese black honeybees.

    PubMed

    Peng, Wenjun; Li, Jilian; Zhao, Yazhou; Chen, Yanping; Zeng, Zhijiang

    2015-09-01

    The Chinese black honey bee is a distinct honey bee subspecies distributed in the Xinjiang, Heilongjiang and Jilin Provinces of China. We conducted a study to investigate the genetic origin and the parasite/pathogen profile on Chinese black honeybees. The phylogenetic analysis indicated that Chinese black honeybees were two distinct groups: one group of bees formed a distinct clade that was most similar to Apis mellifera mellifera and the other group was a hybrid of the subspecies, Apis mellifera carnica, Apis mellifera anatolica and Apis mellifera caucasica. This suggests that the beekeeping practices might have promoted gene flow between different subspecies. Screening for pathogens and parasites showed that Varroa destructor and viruses were detected at low prevalence in Chinese black honeybees, compared with Italian bees. Further, a population of pure breeding black honeybees, A. m. mellifera, displayed a high degree of resistance to Varroa. No Varroa mites or Deformed wing virus could be detected in any examined bee colonies. This finding suggests that a population of pure breeding Chinese black honeybees possess some natural resistance to Varroa and indicated the need or importance for the conservation of the black honeybees in China.

  1. A descriptive study of the prevalence of parasites and pathogens in Chinese black honeybees.

    PubMed

    Peng, Wenjun; Li, Jilian; Zhao, Yazhou; Chen, Yanping; Zeng, Zhijiang

    2015-09-01

    The Chinese black honey bee is a distinct honey bee subspecies distributed in the Xinjiang, Heilongjiang and Jilin Provinces of China. We conducted a study to investigate the genetic origin and the parasite/pathogen profile on Chinese black honeybees. The phylogenetic analysis indicated that Chinese black honeybees were two distinct groups: one group of bees formed a distinct clade that was most similar to Apis mellifera mellifera and the other group was a hybrid of the subspecies, Apis mellifera carnica, Apis mellifera anatolica and Apis mellifera caucasica. This suggests that the beekeeping practices might have promoted gene flow between different subspecies. Screening for pathogens and parasites showed that Varroa destructor and viruses were detected at low prevalence in Chinese black honeybees, compared with Italian bees. Further, a population of pure breeding black honeybees, A. m. mellifera, displayed a high degree of resistance to Varroa. No Varroa mites or Deformed wing virus could be detected in any examined bee colonies. This finding suggests that a population of pure breeding Chinese black honeybees possess some natural resistance to Varroa and indicated the need or importance for the conservation of the black honeybees in China. PMID:26291681

  2. Method and device for identifying different species of honeybees

    SciTech Connect

    Kerr, H.T.; Buchanan, M.E.; Valentine, K.H.

    1989-10-24

    A method and device have been provided for distinguishing Africanized honeybees from European honeybees. The method is based on the discovery of a distinct difference in the acoustical signatures of these two species of honeybees in flight. The European honeybee signature has a fundamental power peak in the 210 to 240 Hz range while the Africanized honeybee signature has a fundamental power peak in the 260 to 290 Hz range. The acoustic signal produced by honeybees is analyzed by means of a detecting device to quickly determine the honeybee species through the detection of the presence of frequencies in one of these distinct ranges. The device includes a microphone for acoustical signal detection which feeds the detected signal into a frequency analyzer which is designed to detect the presence of either of the known fundamental wingbeat frequencies unique to the acoustical signatures of these species as an indication of the identity of the species and indicate the species identity on a readout device. 8 figs.

  3. Royalactin induces queen differentiation in honeybees.

    PubMed

    Kamakura, Masaki

    2011-05-26

    The honeybee (Apis mellifera) forms two female castes: the queen and the worker. This dimorphism depends not on genetic differences, but on ingestion of royal jelly, although the mechanism through which royal jelly regulates caste differentiation has long remained unknown. Here I show that a 57-kDa protein in royal jelly, previously designated as royalactin, induces the differentiation of honeybee larvae into queens. Royalactin increased body size and ovary development and shortened developmental time in honeybees. Surprisingly, it also showed similar effects in the fruitfly (Drosophila melanogaster). Mechanistic studies revealed that royalactin activated p70 S6 kinase, which was responsible for the increase of body size, increased the activity of mitogen-activated protein kinase, which was involved in the decreased developmental time, and increased the titre of juvenile hormone, an essential hormone for ovary development. Knockdown of epidermal growth factor receptor (Egfr) expression in the fat body of honeybees and fruitflies resulted in a defect of all phenotypes induced by royalactin, showing that Egfr mediates these actions. These findings indicate that a specific factor in royal jelly, royalactin, drives queen development through an Egfr-mediated signalling pathway. PMID:21516106

  4. Hygienic Behavior of Africanized Honey Bees Apis mellifera Directed towards Brood in Old and New Combs during Diurnal and Nocturnal Periods

    PubMed Central

    Pereira, Rogério A.; Morais, Michelle M.; Francoy, Tiago M.; Gonçalves, Lionel S.

    2013-01-01

    Hygienic behavior in honey bees, Apis mellifera, is measured by determining the rate at which the bees uncap and remove dead sealed brood. We analyzed individual behavior of house-cleaning Africanized honey bees in order to focus on some poorly understood aspects of hygienic behavior. Two observation hives, each with approximately 3,000 individually marked bees, were used in this study. The efficiency of hygienic behavior was evaluated in hygienic and non-hygienic strains of bees using two types of combs (new and old), as well as at different periods of the day (night and day). We also recorded the age of workers that performed this task of removing dead brood. In both strains, the workers that performed tasks related to hygienic behavior were within the same age cohort; we found no influence of age on the amount of time dedicated to the task, independent of the type of comb or period of the day. The total time from perforation of the cell capping until the dead brood had been completely removed, and was significantly shorter during daytime than at night. Hygienic behavior directed towards dead brood in new combs was also significantly more efficient (faster) than for brood in old combs. The type of comb had significantly more effect than did the time of day. We conclude that the type of comb and time of day should be taken into consideration when evaluating hygienic behavior in honey bees. PMID:26462521

  5. Evidence of trapline foraging in honeybees.

    PubMed

    Buatois, Alexis; Lihoreau, Mathieu

    2016-08-15

    Central-place foragers exploiting floral resources often use multi-destination routes (traplines) to maximise their foraging efficiency. Recent studies on bumblebees have showed how solitary foragers can learn traplines, minimising travel costs between multiple replenishing feeding locations. Here we demonstrate a similar routing strategy in the honeybee (Apis mellifera), a major pollinator known to recruit nestmates to discovered food resources. Individual honeybees trained to collect sucrose solution from four artificial flowers arranged within 10 m of the hive location developed repeatable visitation sequences both in the laboratory and in the field. A 10-fold increase of between-flower distances considerably intensified this routing behaviour, with bees establishing more stable and more efficient routes at larger spatial scales. In these advanced social insects, trapline foraging may complement cooperative foraging for exploiting food resources near the hive (where dance recruitment is not used) or when resources are not large enough to sustain multiple foragers at once. PMID:27307487

  6. Evidence of trapline foraging in honeybees.

    PubMed

    Buatois, Alexis; Lihoreau, Mathieu

    2016-08-15

    Central-place foragers exploiting floral resources often use multi-destination routes (traplines) to maximise their foraging efficiency. Recent studies on bumblebees have showed how solitary foragers can learn traplines, minimising travel costs between multiple replenishing feeding locations. Here we demonstrate a similar routing strategy in the honeybee (Apis mellifera), a major pollinator known to recruit nestmates to discovered food resources. Individual honeybees trained to collect sucrose solution from four artificial flowers arranged within 10 m of the hive location developed repeatable visitation sequences both in the laboratory and in the field. A 10-fold increase of between-flower distances considerably intensified this routing behaviour, with bees establishing more stable and more efficient routes at larger spatial scales. In these advanced social insects, trapline foraging may complement cooperative foraging for exploiting food resources near the hive (where dance recruitment is not used) or when resources are not large enough to sustain multiple foragers at once.

  7. Queen promiscuity lowers disease within honeybee colonies.

    PubMed

    Seeley, Thomas D; Tarpy, David R

    2007-01-01

    Most species of social insects have singly mated queens, but in some species each queen mates with numerous males to create a colony with a genetically diverse worker force. The adaptive significance of polyandry by social insect queens remains an evolutionary puzzle. Using the honeybee (Apis mellifera), we tested the hypothesis that polyandry improves a colony's resistance to disease. We established colonies headed by queens that had been artificially inseminated by either one or 10 drones. Later, we inoculated these colonies with spores of Paenibacillus larvae, the bacterium that causes a highly virulent disease of honeybee larvae (American foulbrood). We found that, on average, colonies headed by multiple-drone inseminated queens had markedly lower disease intensity and higher colony strength at the end of the summer relative to colonies headed by single-drone inseminated queens. These findings support the hypothesis that polyandry by social insect queens is an adaptation to counter disease within their colonies.

  8. Genome characterization, prevalence and distribution of a Macula-like virus from Apis mellifera and Varroa destructor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Numerous viruses have been detected in honeybees, which can be roughly divided into 14 unique and distinct species-complexes, each with one or more strains or sub-species. Here we present the initial characterization of an entirely new virus species-complex discovered in honeybee (Apis mellifera L.)...

  9. An Investigation of the Migration of Africanized Honey Bees into the Southern United States

    NASA Technical Reports Server (NTRS)

    Navarro, Hector

    1997-01-01

    It is estimated that Apis mellifera scutellata, a honey bee subspecies from Africa, now extends over a 20 million square kilometer range that includes much of South America and practically all of Central America, and recently has been introduced to the southern United States. African honeybees were introduced into Brazil in 1956 by a Brazilian geneticist, Mr. Warwick Kerr. At the insistence of the Brazilian Ministry of Agriculture, in 1957, 26 colonies were accidentally released in a eucalyptus forest outside S5o Paulo. The swelling front of the bees was recorded as traveling between 80 and 500 kilometers a year. David Roubik, one of the original killer bee team members estimated that there were one trillion individual Africanized/African honey bees in Latin America. An estimate that is thought to be conservative.

  10. Differential proteomic analysis of midguts from Nosema ceranae-infected honeybees reveals manipulation of key host functions.

    PubMed

    Vidau, Cyril; Panek, Johan; Texier, Catherine; Biron, David G; Belzunces, Luc P; Le Gall, Morgane; Broussard, Cédric; Delbac, Frédéric; El Alaoui, Hicham

    2014-09-01

    Many invasive pathogens effectively bypass the insect defenses to ensure the completion of their life cycle. Among those, an invasive microsporidian species, Nosema ceranae, can cause nosemosis in honeybees. N. ceranae was first described in the Asian honeybee Apis cerana and is suspected to be involved in Western honeybee (Apis mellifera) declines worldwide. The midgut of honeybees is the first barrier against N. ceranae attacks. To bring proteomics data on honeybee/N. ceranae crosstalk and more precisely to decipher the worker honeybee midgut response after an oral inoculation of N. ceranae (10days post-infection), we used 2D-DIGE (2-Dimensional Differential In-Gel Electrophoresis) combined with mass spectrometry. Forty-five protein spots produced by the infected worker honeybee group were shown to be differentially expressed when compared to the uninfected group; 14 were subsequently identified by mass spectrometry. N. ceranae mainly caused a modulation of proteins involved in three key host biological functions: (i) energy production, (ii) innate immunity (reactive oxygen stress) and (iii) protein regulation. The modulation of these host biological functions suggests that N. ceranae creates a zone of "metabolic habitat modification" in the honeybee midgut favoring its development by enhancing availability of nutrients and reducing the worker honeybee defense.

  11. Comparison of Varroa destructor and Worker Honeybee Microbiota Within Hives Indicates Shared Bacteria.

    PubMed

    Hubert, Jan; Kamler, Martin; Nesvorna, Marta; Ledvinka, Ondrej; Kopecky, Jan; Erban, Tomas

    2016-08-01

    The ectoparasitic mite Varroa destructor is a major pest of the honeybee Apis mellifera. In a previous study, bacteria were found in the guts of mites collected from winter beehive debris and were identified using Sanger sequencing of their 16S rRNA genes. In this study, community comparison and diversity analyses were performed to examine the microbiota of honeybees and mites at the population level. The microbiota of the mites and honeybees in 26 colonies in seven apiaries in Czechia was studied. Between 10 and 50 Varroa females were collected from the bottom board, and 10 worker bees were removed from the peripheral comb of the same beehive. Both bees and mites were surface sterilized. Analysis of the 16S rRNA gene libraries revealed significant differences in the Varroa and honeybee microbiota. The Varroa microbiota was less diverse than was the honeybee microbiota, and the relative abundances of bacterial taxa in the mite and bee microbiota differed. The Varroa mites, but not the honeybees, were found to be inhabited by Diplorickettsia. The relative abundance of Arsenophonus, Morganella, Spiroplasma, Enterococcus, and Pseudomonas was higher in Varroa than in honeybees, and the Diplorickettsia symbiont detected in this study is specific to Varroa mites. The results demonstrated that there are shared bacteria between Varroa and honeybee populations but that these bacteria occur in different relative proportions in the honeybee and mite bacteriomes. These results support the suggestion of bacterial transfer via mites, although only some of the transferred bacteria may be harmful.

  12. Comparison of Varroa destructor and Worker Honeybee Microbiota Within Hives Indicates Shared Bacteria.

    PubMed

    Hubert, Jan; Kamler, Martin; Nesvorna, Marta; Ledvinka, Ondrej; Kopecky, Jan; Erban, Tomas

    2016-08-01

    The ectoparasitic mite Varroa destructor is a major pest of the honeybee Apis mellifera. In a previous study, bacteria were found in the guts of mites collected from winter beehive debris and were identified using Sanger sequencing of their 16S rRNA genes. In this study, community comparison and diversity analyses were performed to examine the microbiota of honeybees and mites at the population level. The microbiota of the mites and honeybees in 26 colonies in seven apiaries in Czechia was studied. Between 10 and 50 Varroa females were collected from the bottom board, and 10 worker bees were removed from the peripheral comb of the same beehive. Both bees and mites were surface sterilized. Analysis of the 16S rRNA gene libraries revealed significant differences in the Varroa and honeybee microbiota. The Varroa microbiota was less diverse than was the honeybee microbiota, and the relative abundances of bacterial taxa in the mite and bee microbiota differed. The Varroa mites, but not the honeybees, were found to be inhabited by Diplorickettsia. The relative abundance of Arsenophonus, Morganella, Spiroplasma, Enterococcus, and Pseudomonas was higher in Varroa than in honeybees, and the Diplorickettsia symbiont detected in this study is specific to Varroa mites. The results demonstrated that there are shared bacteria between Varroa and honeybee populations but that these bacteria occur in different relative proportions in the honeybee and mite bacteriomes. These results support the suggestion of bacterial transfer via mites, although only some of the transferred bacteria may be harmful. PMID:27129319

  13. Nosema ceranae has been present in Brazil for more than three decades infecting Africanized honey bees.

    PubMed

    Teixeira, Erica Weinstein; Santos, Lubiane Guimarães Dos; Sattler, Aroni; Message, Dejair; Alves, Maria Luisa Teles Marques Florencio; Martins, Marta Fonseca; Grassi-Sella, Marina Lopes; Francoy, Tiago Mauricio

    2013-11-01

    Until the mid-1990s, the only microsporidium known to infect bees of the genus Apis was Nosema apis. A second species, Nosema ceranae, was first identified in 1996 from Asian honey bees; it is postulated that this parasite was transmitted from the Asian honey bee, Apis cerana, to the European honey bee, Apis mellifera. Currently, N. ceranae is found on all continents and has often been associated with honey bee colony collapse and other reports of high bee losses. Samples of Africanized drones collected in 1979, preserved in alcohol, were analyzed by light microscopy to count spores and were subjected to DNA extraction, after which duplex PCR was conducted. All molecular analyses (triplicate) indicated that the drones were infected with both N. ceranae and N. apis. PCR products were sequenced and matched to sequences reported in the GenBank (Acc. Nos. JQ639316.1 and JQ639301.1). The venation pattern of the wings of these males was compared to those of the current population living in the same area and with the pattern of drones collected in 1968 from Ribeirão Preto, SP, Brazil, from a location close to where African swarms first escaped in 1956. The morphometric results indicated that the population collected in 1979 was significantly different from the current living population, confirming its antiquity. Considering that the use of molecular tools for identifying Nosema species is relatively recent, it is possible that previous reports of infections (which used only light microscopy, without ultrastructural analysis) wrongly identified N. ceranae as N. apis. Although we can conclude that N. ceranae has been affecting Africanized honeybees in Brazil for at least 34 years, the impact of this pathogen remains unclear.

  14. Expression of recombinant AccMRJP1 protein from royal jelly of Chinese honeybee in Pichia pastoris and its proliferation activity in an insect cell line

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Main royal jelly protein 1 (MRJP1) is the most abundant member of the main royal jelly protein (MRJP) family among honeybees. Mature MRJP1 cDNA of the Chinese honeybee (Apis cerana cerana MRJP1, or AccMRJP1) was expressed in Pichia pastoris. SDS-PAGE showed that recombinant AccMRJP1 was identical in...

  15. Duration of the Unconditioned Stimulus in Appetitive Conditioning of Honeybees Differentially Impacts Learning, Long-Term Memory Strength, and the Underlying Protein Synthesis

    ERIC Educational Resources Information Center

    Marter, Kathrin; Grauel, M. Katharina; Lewa, Carmen; Morgenstern, Laura; Buckemüller, Christina; Heufelder, Karin; Ganz, Marion; Eisenhardt, Dorothea

    2014-01-01

    This study examines the role of stimulus duration in learning and memory formation of honeybees ("Apis mellifera"). In classical appetitive conditioning honeybees learn the association between an initially neutral, conditioned stimulus (CS) and the occurrence of a meaningful stimulus, the unconditioned stimulus (US). Thereby the CS…

  16. Africanization in the United States

    PubMed Central

    Pinto, M. Alice; Rubink, William L.; Patton, John C.; Coulson, Robert N.; Johnston, J. Spencer

    2005-01-01

    The expansion of Africanized honeybees from South America to the southwestern United States in <50 years is considered one of the most spectacular biological invasions yet documented. In the American tropics, it has been shown that during their expansion Africanized honeybees have low levels of introgressed alleles from resident European populations. In the United States, it has been speculated, but not shown, that Africanized honeybees would hybridize extensively with European honeybees. Here we report a continuous 11-year study investigating temporal changes in the genetic structure of a feral population from the southern United States undergoing Africanization. Our microsatellite data showed that (1) the process of Africanization involved both maternal and paternal bidirectional gene flow between European and Africanized honeybees and (2) the panmitic European population was replaced by panmitic mixtures of A. m. scutellata and European genes within 5 years after Africanization. The post-Africanization gene pool (1998–2001) was composed of a diverse array of recombinant classes with a substantial European genetic contribution (mean 25–37%). Therefore, the resulting feral honeybee population of south Texas was best viewed as a hybrid swarm. PMID:15937139

  17. Parasite resistance and tolerance in honeybees at the individual and social level.

    PubMed

    Kurze, Christoph; Routtu, Jarkko; Moritz, Robin F A

    2016-08-01

    Organisms living in large groups, such as social insects, are particularly vulnerable to parasite transmission. However, they have evolved diverse defence mechanisms which are not only restricted to the individual's immune response, but also include social defences. Here, we review cases of adaptations at the individual and social level in the honeybee Apis mellifera against the ectoparasitic mite Varroa destructor and the endoparasitic microsporidians Nosema ceranae and Nosema apis. They are considered important threats to honeybee health worldwide. We highlight how individual resistance may result in tolerance at the colony level and vice versa.

  18. Effect of flumethrin on survival and olfactory learning in honeybees.

    PubMed

    Tan, Ken; Yang, Shuang; Wang, Zhengwei; Menzel, Randolf

    2013-01-01

    Flumethrin has been widely used as an acaricide for the control of Varroa mites in commercial honeybee keeping throughout the world for many years. Here we test the mortality of the Asian honeybee Apis cerana cerana after treatment with flumethrin. We also ask (1) how bees react to the odor of flumethrin, (2) whether its odor induces an innate avoidance response, (3) whether its taste transmits an aversive reinforcing component in olfactory learning, and (4) whether its odor or taste can be associated with reward in classical conditioning. Our results show that flumethrin has a negative effect on Apis ceranàs lifespan, induces an innate avoidance response, acts as a punishing reinforcer in olfactory learning, and interferes with the association of an appetitive conditioned stimulus. Furthermore flumethrin uptake within the colony reduces olfactory learning over an extended period of time.

  19. Effect of Flumethrin on Survival and Olfactory Learning in Honeybees

    PubMed Central

    Tan, Ken; Yang, Shuang; Wang, Zhengwei; Menzel, Randolf

    2013-01-01

    Flumethrin has been widely used as an acaricide for the control of Varroa mites in commercial honeybee keeping throughout the world for many years. Here we test the mortality of the Asian honeybee Apis cerana cerana after treatment with flumethrin. We also ask (1) how bees react to the odor of flumethrin, (2) whether its odor induces an innate avoidance response, (3) whether its taste transmits an aversive reinforcing component in olfactory learning, and (4) whether its odor or taste can be associated with reward in classical conditioning. Our results show that flumethrin has a negative effect on Apis ceranàs lifespan, induces an innate avoidance response, acts as a punishing reinforcer in olfactory learning, and interferes with the association of an appetitive conditioned stimulus. Furthermore flumethrin uptake within the colony reduces olfactory learning over an extended period of time. PMID:23785490

  20. Interspecific utilisation of wax in comb building by honeybees

    NASA Astrophysics Data System (ADS)

    Hepburn, H. Randall; Radloff, Sarah E.; Duangphakdee, Orawan; Phaincharoen, Mananya

    2009-06-01

    Beeswaxes of honeybee species share some homologous neutral lipids; but species-specific differences remain. We analysed behavioural variation for wax choice in honeybees, calculated the Euclidean distances for different beeswaxes and assessed the relationship of Euclidean distances to wax choice. We tested the beeswaxes of Apis mellifera capensis, Apis florea, Apis cerana and Apis dorsata and the plant and mineral waxes Japan, candelilla, bayberry and ozokerite as sheets placed in colonies of A. m. capensis, A. florea and A. cerana. A. m. capensis accepted the four beeswaxes but removed Japan and bayberry wax and ignored candelilla and ozokerite. A. cerana colonies accepted the wax of A. cerana, A. florea and A. dorsata but rejected or ignored that of A. m. capensis, the plant and mineral waxes. A. florea colonies accepted A. cerana, A. dorsata and A. florea wax but rejected that of A. m. capensis. The Euclidean distances for the beeswaxes are consistent with currently prevailing phylogenies for Apis. Despite post-speciation chemical differences in the beeswaxes, they remain largely acceptable interspecifically while the plant and mineral waxes are not chemically close enough to beeswax for their acceptance.

  1. Interspecific utilisation of wax in comb building by honeybees.

    PubMed

    Hepburn, H Randall; Radloff, Sarah E; Duangphakdee, Orawan; Phaincharoen, Mananya

    2009-06-01

    Beeswaxes of honeybee species share some homologous neutral lipids; but species-specific differences remain. We analysed behavioural variation for wax choice in honeybees, calculated the Euclidean distances for different beeswaxes and assessed the relationship of Euclidean distances to wax choice. We tested the beeswaxes of Apis mellifera capensis, Apis florea, Apis cerana and Apis dorsata and the plant and mineral waxes Japan, candelilla, bayberry and ozokerite as sheets placed in colonies of A. m. capensis, A. florea and A. cerana. A. m. capensis accepted the four beeswaxes but removed Japan and bayberry wax and ignored candelilla and ozokerite. A. cerana colonies accepted the wax of A. cerana, A. florea and A. dorsata but rejected or ignored that of A. m. capensis, the plant and mineral waxes. A. florea colonies accepted A. cerana, A. dorsata and A. florea wax but rejected that of A. m. capensis. The Euclidean distances for the beeswaxes are consistent with currently prevailing phylogenies for Apis. Despite post-speciation chemical differences in the beeswaxes, they remain largely acceptable interspecifically while the plant and mineral waxes are not chemically close enough to beeswax for their acceptance.

  2. Fipronil and imidacloprid reduce honeybee mitochondrial activity.

    PubMed

    Nicodemo, Daniel; Maioli, Marcos A; Medeiros, Hyllana C D; Guelfi, Marieli; Balieira, Kamila V B; De Jong, David; Mingatto, Fábio E

    2014-09-01

    Bees have a crucial role in pollination; therefore, it is important to determine the causes of their recent decline. Fipronil and imidacloprid are insecticides used worldwide to eliminate or control insect pests. Because they are broad-spectrum insecticides, they can also affect honeybees. Many researchers have studied the lethal and sublethal effects of these and other insecticides on honeybees, and some of these studies have demonstrated a correlation between the insecticides and colony collapse disorder in bees. The authors investigated the effects of fipronil and imidacloprid on the bioenergetic functioning of mitochondria isolated from the heads and thoraces of Africanized honeybees. Fipronil caused dose-dependent inhibition of adenosine 5'-diphosphate-stimulated (state 3) respiration in mitochondria energized by either pyruvate or succinate, albeit with different potentials, in thoracic mitochondria; inhibition was strongest when respiring with complex I substrate. Fipronil affected adenosine 5'-triphosphate (ATP) production in a dose-dependent manner in both tissues and substrates, though with different sensitivities. Imidacloprid also affected state-3 respiration in both the thorax and head, being more potent in head pyruvate-energized mitochondria; it also inhibited ATP production. Fipronil and imidacloprid had no effect on mitochondrial state-4 respiration. The authors concluded that fipronil and imidacloprid are inhibitors of mitochondrial bioenergetics, resulting in depleted ATP. This action can explain the toxicity of these compounds to honeybees.

  3. Honeybee (Apis mellifera) Venom Reinforces Viral Clearance during the Early Stage of Infection with Porcine Reproductive and Respiratory Syndrome Virus through the Up-Regulation of Th1-Specific Immune Responses

    PubMed Central

    Lee, Jin-A; Kim, Yun-Mi; Hyun, Pung-Mi; Jeon, Jong-Woon; Park, Jin-Kyu; Suh, Guk-Hyun; Jung, Bock-Gie; Lee, Bong-Joo

    2015-01-01

    Porcine reproductive and respiratory syndrome (PRRS) is a chronic and immunosuppressive viral disease that is responsible for substantial economic losses for the swine industry. Honeybee venom (HBV) is known to possess several beneficial biological properties, particularly, immunomodulatory effects. Therefore, this study aimed at evaluating the effects of HBV on the immune response and viral clearance during the early stage of infection with porcine reproductive and respiratory syndrome virus (PRRSV) in pigs. HBV was administered via three routes of nasal, neck, and rectal and then the pigs were inoculated with PRRSV intranasally. The CD4+/CD8+ cell ratio and levels of interferon (IFN)-γ and interleukin (IL)-12 were significantly increased in the HBV-administered healthy pigs via nasal and rectal administration. In experimentally PRRSV-challenged pigs with virus, the viral genome load in the serum, lung, bronchial lymph nodes and tonsil was significantly decreased, as was the severity of interstitial pneumonia, in the nasal and rectal administration group. Furthermore, the levels of Th1 cytokines (IFN-γ and IL-12) were significantly increased, along with up-regulation of pro-inflammatory cytokines (TNF-α and IL-1β) with HBV administration. Thus, HBV administration—especially via the nasal or rectal route—could be a suitable strategy for immune enhancement and prevention of PRRSV infection in pigs. PMID:26008237

  4. Nosema spp. infections cause no energetic stress in tolerant honeybees.

    PubMed

    Kurze, Christoph; Mayack, Christopher; Hirche, Frank; Stangl, Gabriele I; Le Conte, Yves; Kryger, Per; Moritz, Robin F A

    2016-06-01

    Host-pathogen coevolution leads to reciprocal adaptations, allowing pathogens to increase host exploitation or hosts to minimise costs of infection. As pathogen resistance is often associated with considerable costs, tolerance may be an evolutionary alternative. Here, we examined the effect of two closely related and highly host dependent intracellular gut pathogens, Nosema apis and Nosema ceranae, on the energetic state in Nosema tolerant and sensitive honeybees facing the infection. We quantified the three major haemolymph carbohydrates fructose, glucose, and trehalose using high-performance liquid chromatography (HPLC) as a measure for host energetic state. Trehalose levels in the haemolymph were negatively associated with N. apis infection intensity and with N. ceranae infection regardless of the infection intensity in sensitive honeybees. Nevertheless, there was no such association in Nosema spp. infected tolerant honeybees. These findings suggest that energy availability in tolerant honeybees was not compromised by the infection. This result obtained at the individual level may also have implications at the colony level where workers in spite of a Nosema infection can still perform as well as healthy bees, maintaining colony efficiency and productivity. PMID:26976406

  5. Nosema spp. infections cause no energetic stress in tolerant honeybees.

    PubMed

    Kurze, Christoph; Mayack, Christopher; Hirche, Frank; Stangl, Gabriele I; Le Conte, Yves; Kryger, Per; Moritz, Robin F A

    2016-06-01

    Host-pathogen coevolution leads to reciprocal adaptations, allowing pathogens to increase host exploitation or hosts to minimise costs of infection. As pathogen resistance is often associated with considerable costs, tolerance may be an evolutionary alternative. Here, we examined the effect of two closely related and highly host dependent intracellular gut pathogens, Nosema apis and Nosema ceranae, on the energetic state in Nosema tolerant and sensitive honeybees facing the infection. We quantified the three major haemolymph carbohydrates fructose, glucose, and trehalose using high-performance liquid chromatography (HPLC) as a measure for host energetic state. Trehalose levels in the haemolymph were negatively associated with N. apis infection intensity and with N. ceranae infection regardless of the infection intensity in sensitive honeybees. Nevertheless, there was no such association in Nosema spp. infected tolerant honeybees. These findings suggest that energy availability in tolerant honeybees was not compromised by the infection. This result obtained at the individual level may also have implications at the colony level where workers in spite of a Nosema infection can still perform as well as healthy bees, maintaining colony efficiency and productivity.

  6. Perceptual and Neural Olfactory Similarity in Honeybees

    PubMed Central

    2005-01-01

    The question of whether or not neural activity patterns recorded in the olfactory centres of the brain correspond to olfactory perceptual measures remains unanswered. To address this question, we studied olfaction in honeybees Apis mellifera using the olfactory conditioning of the proboscis extension response. We conditioned bees to odours and tested generalisation responses to different odours. Sixteen odours were used, which varied both in their functional group (primary and secondary alcohols, aldehydes and ketones) and in their carbon-chain length (from six to nine carbons).The results obtained by presentation of a total of 16 × 16 odour pairs show that (i) all odorants presented could be learned, although acquisition was lower for short-chain ketones; (ii) generalisation varied depending both on the functional group and the carbon-chain length of odours trained; higher generalisation was found between long-chain than between short-chain molecules and between groups such as primary and secondary alcohols; (iii) for some odour pairs, cross-generalisation between odorants was asymmetric; (iv) a putative olfactory space could be defined for the honeybee with functional group and carbon-chain length as inner dimensions; (v) perceptual distances in such a space correlate well with physiological distances determined from optophysiological recordings of antennal lobe activity. We conclude that functional group and carbon-chain length are inner dimensions of the honeybee olfactory space and that neural activity in the antennal lobe reflects the perceptual quality of odours. PMID:15736975

  7. Detection of adulterated honey produced by honeybee (Apis mellifera L.) colonies fed with different levels of commercial industrial sugar (C₃ and C₄ plants) syrups by the carbon isotope ratio analysis.

    PubMed

    Guler, Ahmet; Kocaokutgen, Hasan; Garipoglu, Ali V; Onder, Hasan; Ekinci, Deniz; Biyik, Selim

    2014-07-15

    In the present study, one hundred pure and adulterated honey samples obtained from feeding honeybee colonies with different levels (5, 20 and 100 L/colony) of various commercial sugar syrups including High Fructose Corn Syrup 85 (HFCS-85), High Fructose Corn Syrup 55 (HFCS-55), Bee Feeding Syrup (BFS), Glucose Monohydrate Sugar (GMS) and Sucrose Sugar (SS) were evaluated in terms of the δ(13)C value of honey and its protein, difference between the δ(13)C value of protein and honey (Δδ(13)C), and C4% sugar ratio. Sugar type, sugar level and the sugar type*sugar level interaction were found to be significant (P<0.001) regarding the evaluated characteristics. Adulterations could not be detected in the 5L/colony syrup level of all sugar types when the δ(13)C value of honey, Δδ(13)C (protein-honey), and C4% sugar ratio were used as criteria according to the AOAC standards. However, it was possible to detect the adulteration by using the same criteria in the honeys taken from the 20 and 100 L/colony of HFCS-85 and the 100L/colony of HFCS-55. Adulteration at low syrup level (20 L/colony) was more easily detected when the fructose content of HFCS syrup increased. As a result, the official methods (AOAC, 978.17, 1995; AOAC, 991.41, 1995; AOAC 998.12, 2005) and Internal Standard Carbon Isotope Ratio Analysis could not efficiently detect the indirect adulteration of honey obtained by feeding the bee colonies with the syrups produced from C3 plants such as sugar beet (Beta vulgaris) and wheat (Triticium vulgare). For this reason, it is strongly needed to develop novel methods and standards that can detect the presence and the level of indirect adulterations.

  8. Detection of adulterated honey produced by honeybee (Apis mellifera L.) colonies fed with different levels of commercial industrial sugar (C₃ and C₄ plants) syrups by the carbon isotope ratio analysis.

    PubMed

    Guler, Ahmet; Kocaokutgen, Hasan; Garipoglu, Ali V; Onder, Hasan; Ekinci, Deniz; Biyik, Selim

    2014-07-15

    In the present study, one hundred pure and adulterated honey samples obtained from feeding honeybee colonies with different levels (5, 20 and 100 L/colony) of various commercial sugar syrups including High Fructose Corn Syrup 85 (HFCS-85), High Fructose Corn Syrup 55 (HFCS-55), Bee Feeding Syrup (BFS), Glucose Monohydrate Sugar (GMS) and Sucrose Sugar (SS) were evaluated in terms of the δ(13)C value of honey and its protein, difference between the δ(13)C value of protein and honey (Δδ(13)C), and C4% sugar ratio. Sugar type, sugar level and the sugar type*sugar level interaction were found to be significant (P<0.001) regarding the evaluated characteristics. Adulterations could not be detected in the 5L/colony syrup level of all sugar types when the δ(13)C value of honey, Δδ(13)C (protein-honey), and C4% sugar ratio were used as criteria according to the AOAC standards. However, it was possible to detect the adulteration by using the same criteria in the honeys taken from the 20 and 100 L/colony of HFCS-85 and the 100L/colony of HFCS-55. Adulteration at low syrup level (20 L/colony) was more easily detected when the fructose content of HFCS syrup increased. As a result, the official methods (AOAC, 978.17, 1995; AOAC, 991.41, 1995; AOAC 998.12, 2005) and Internal Standard Carbon Isotope Ratio Analysis could not efficiently detect the indirect adulteration of honey obtained by feeding the bee colonies with the syrups produced from C3 plants such as sugar beet (Beta vulgaris) and wheat (Triticium vulgare). For this reason, it is strongly needed to develop novel methods and standards that can detect the presence and the level of indirect adulterations. PMID:24594168

  9. Real World: Honeybees

    NASA Video Gallery

    Join NASA scientists and beekeepers in a citizen science project to collect important data about climate change. Learn how honeybees pollinate over 130 crops in the United States each year and what...

  10. Disease associations between honeybees and bumblebees as a threat to wild pollinators.

    PubMed

    Fürst, M A; McMahon, D P; Osborne, J L; Paxton, R J; Brown, M J F

    2014-02-20

    Emerging infectious diseases (EIDs) pose a risk to human welfare, both directly and indirectly, by affecting managed livestock and wildlife that provide valuable resources and ecosystem services, such as the pollination of crops. Honeybees (Apis mellifera), the prevailing managed insect crop pollinator, suffer from a range of emerging and exotic high-impact pathogens, and population maintenance requires active management by beekeepers to control them. Wild pollinators such as bumblebees (Bombus spp.) are in global decline, one cause of which may be pathogen spillover from managed pollinators like honeybees or commercial colonies of bumblebees. Here we use a combination of infection experiments and landscape-scale field data to show that honeybee EIDs are indeed widespread infectious agents within the pollinator assemblage. The prevalence of deformed wing virus (DWV) and the exotic parasite Nosema ceranae in honeybees and bumblebees is linked; as honeybees have higher DWV prevalence, and sympatric bumblebees and honeybees are infected by the same DWV strains, Apis is the likely source of at least one major EID in wild pollinators. Lessons learned from vertebrates highlight the need for increased pathogen control in managed bee species to maintain wild pollinators, as declines in native pollinators may be caused by interspecies pathogen transmission originating from managed pollinators.

  11. Disease associations between honeybees and bumblebees as a threat to wild pollinators.

    PubMed

    Fürst, M A; McMahon, D P; Osborne, J L; Paxton, R J; Brown, M J F

    2014-02-20

    Emerging infectious diseases (EIDs) pose a risk to human welfare, both directly and indirectly, by affecting managed livestock and wildlife that provide valuable resources and ecosystem services, such as the pollination of crops. Honeybees (Apis mellifera), the prevailing managed insect crop pollinator, suffer from a range of emerging and exotic high-impact pathogens, and population maintenance requires active management by beekeepers to control them. Wild pollinators such as bumblebees (Bombus spp.) are in global decline, one cause of which may be pathogen spillover from managed pollinators like honeybees or commercial colonies of bumblebees. Here we use a combination of infection experiments and landscape-scale field data to show that honeybee EIDs are indeed widespread infectious agents within the pollinator assemblage. The prevalence of deformed wing virus (DWV) and the exotic parasite Nosema ceranae in honeybees and bumblebees is linked; as honeybees have higher DWV prevalence, and sympatric bumblebees and honeybees are infected by the same DWV strains, Apis is the likely source of at least one major EID in wild pollinators. Lessons learned from vertebrates highlight the need for increased pathogen control in managed bee species to maintain wild pollinators, as declines in native pollinators may be caused by interspecies pathogen transmission originating from managed pollinators. PMID:24553241

  12. 19 CFR 12.32 - Honeybees and honeybee semen.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Honeybees and honeybee semen. 12.32 Section 12.32 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY SPECIAL CLASSES OF MERCHANDISE Wild Animals, Birds, and Insects § 12.32 Honeybees and...

  13. 19 CFR 12.32 - Honeybees and honeybee semen.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Honeybees and honeybee semen. 12.32 Section 12.32 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY SPECIAL CLASSES OF MERCHANDISE Wild Animals, Birds, and Insects § 12.32 Honeybees and...

  14. 19 CFR 12.32 - Honeybees and honeybee semen.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Honeybees and honeybee semen. 12.32 Section 12.32 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY SPECIAL CLASSES OF MERCHANDISE Wild Animals, Birds, and Insects § 12.32 Honeybees and...

  15. 19 CFR 12.32 - Honeybees and honeybee semen.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Honeybees and honeybee semen. 12.32 Section 12.32 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY SPECIAL CLASSES OF MERCHANDISE Wild Animals, Birds, and Insects § 12.32 Honeybees and...

  16. 19 CFR 12.32 - Honeybees and honeybee semen.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Honeybees and honeybee semen. 12.32 Section 12.32 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY SPECIAL CLASSES OF MERCHANDISE Wild Animals, Birds, and Insects § 12.32 Honeybees and...

  17. Identification of Multiple Loci Associated with Social Parasitism in Honeybees.

    PubMed

    Wallberg, Andreas; Pirk, Christian W; Allsopp, Mike H; Webster, Matthew T

    2016-06-01

    In colonies of the honeybee Apis mellifera, the queen is usually the only reproductive female, which produces new females (queens and workers) by laying fertilized eggs. However, in one subspecies of A. mellifera, known as the Cape bee (A. m. capensis), worker bees reproduce asexually by thelytoky, an abnormal form of meiosis where two daughter nucleii fuse to form single diploid eggs, which develop into females without being fertilized. The Cape bee also exhibits a suite of phenotypes that facilitate social parasitism whereby workers lay such eggs in foreign colonies so their offspring can exploit their resources. The genetic basis of this switch to social parasitism in the Cape bee is unknown. To address this, we compared genome variation in a sample of Cape bees with other African populations. We find genetic divergence between these populations to be very low on average but identify several regions of the genome with extreme differentiation. The regions are strongly enriched for signals of selection in Cape bees, indicating that increased levels of positive selection have produced the unique set of derived phenotypic traits in this subspecies. Genetic variation within these regions allows unambiguous genetic identification of Cape bees and likely underlies the genetic basis of social parasitism. The candidate loci include genes involved in ecdysteroid signaling and juvenile hormone and dopamine biosynthesis, which may regulate worker ovary activation and others whose products localize at the centrosome and are implicated in chromosomal segregation during meiosis. Functional analysis of these loci will yield insights into the processes of reproduction and chemical signaling in both parasitic and non-parasitic populations and advance understanding of the process of normal and atypical meiosis. PMID:27280405

  18. Identification of Multiple Loci Associated with Social Parasitism in Honeybees

    PubMed Central

    Pirk, Christian W.; Allsopp, Mike H.

    2016-01-01

    In colonies of the honeybee Apis mellifera, the queen is usually the only reproductive female, which produces new females (queens and workers) by laying fertilized eggs. However, in one subspecies of A. mellifera, known as the Cape bee (A. m. capensis), worker bees reproduce asexually by thelytoky, an abnormal form of meiosis where two daughter nucleii fuse to form single diploid eggs, which develop into females without being fertilized. The Cape bee also exhibits a suite of phenotypes that facilitate social parasitism whereby workers lay such eggs in foreign colonies so their offspring can exploit their resources. The genetic basis of this switch to social parasitism in the Cape bee is unknown. To address this, we compared genome variation in a sample of Cape bees with other African populations. We find genetic divergence between these populations to be very low on average but identify several regions of the genome with extreme differentiation. The regions are strongly enriched for signals of selection in Cape bees, indicating that increased levels of positive selection have produced the unique set of derived phenotypic traits in this subspecies. Genetic variation within these regions allows unambiguous genetic identification of Cape bees and likely underlies the genetic basis of social parasitism. The candidate loci include genes involved in ecdysteroid signaling and juvenile hormone and dopamine biosynthesis, which may regulate worker ovary activation and others whose products localize at the centrosome and are implicated in chromosomal segregation during meiosis. Functional analysis of these loci will yield insights into the processes of reproduction and chemical signaling in both parasitic and non-parasitic populations and advance understanding of the process of normal and atypical meiosis. PMID:27280405

  19. Identification of Multiple Loci Associated with Social Parasitism in Honeybees.

    PubMed

    Wallberg, Andreas; Pirk, Christian W; Allsopp, Mike H; Webster, Matthew T

    2016-06-01

    In colonies of the honeybee Apis mellifera, the queen is usually the only reproductive female, which produces new females (queens and workers) by laying fertilized eggs. However, in one subspecies of A. mellifera, known as the Cape bee (A. m. capensis), worker bees reproduce asexually by thelytoky, an abnormal form of meiosis where two daughter nucleii fuse to form single diploid eggs, which develop into females without being fertilized. The Cape bee also exhibits a suite of phenotypes that facilitate social parasitism whereby workers lay such eggs in foreign colonies so their offspring can exploit their resources. The genetic basis of this switch to social parasitism in the Cape bee is unknown. To address this, we compared genome variation in a sample of Cape bees with other African populations. We find genetic divergence between these populations to be very low on average but identify several regions of the genome with extreme differentiation. The regions are strongly enriched for signals of selection in Cape bees, indicating that increased levels of positive selection have produced the unique set of derived phenotypic traits in this subspecies. Genetic variation within these regions allows unambiguous genetic identification of Cape bees and likely underlies the genetic basis of social parasitism. The candidate loci include genes involved in ecdysteroid signaling and juvenile hormone and dopamine biosynthesis, which may regulate worker ovary activation and others whose products localize at the centrosome and are implicated in chromosomal segregation during meiosis. Functional analysis of these loci will yield insights into the processes of reproduction and chemical signaling in both parasitic and non-parasitic populations and advance understanding of the process of normal and atypical meiosis.

  20. A Test of Transitive Inferences in Free-Flying Honeybees: Unsuccessful Performance Due to Memory Constraints

    ERIC Educational Resources Information Center

    Benard, Julie; Giurfa, Martin

    2004-01-01

    We asked whether honeybees, "Apis mellifera," could solve a transitive inference problem. Individual free-flying bees were conditioned with four overlapping premise pairs of five visual patterns in a multiple discrimination task (A+ vs. B-, B+ vs. C-, C+ vs. D-, D+ vs. E-, where + and - indicate sucrose reward or absence of it, respectively). They…

  1. Steroid Hormone (20-Hydroxyecdysone) Modulates the Acquisition of Aversive Olfactory Memories in Pollen Forager Honeybees

    ERIC Educational Resources Information Center

    Geddes, Lisa H.; McQuillan, H. James; Aiken, Alastair; Vergoz, Vanina; Mercer, Alison R.

    2013-01-01

    Here, we examine effects of the steroid hormone, 20-hydroxyecdysone (20-E), on associative olfactory learning in the honeybee, "Apis mellifera." 20-E impaired the bees' ability to associate odors with punishment during aversive conditioning, but did not interfere with their ability to associate odors with a food reward (appetitive…

  2. Parasite-insecticide interactions: a case study of Nosema ceranae and fipronil synergy on honeybee

    PubMed Central

    Aufauvre, Julie; Biron, David G.; Vidau, Cyril; Fontbonne, Régis; Roudel, Mathieu; Diogon, Marie; Viguès, Bernard; Belzunces, Luc P.; Delbac, Frédéric; Blot, Nicolas

    2012-01-01

    In ecosystems, a variety of biological, chemical and physical stressors may act in combination to induce illness in populations of living organisms. While recent surveys reported that parasite-insecticide interactions can synergistically and negatively affect honeybee survival, the importance of sequence in exposure to stressors has hardly received any attention. In this work, Western honeybees (Apis mellifera) were sequentially or simultaneously infected by the microsporidian parasite Nosema ceranae and chronically exposed to a sublethal dose of the insecticide fipronil, respectively chosen as biological and chemical stressors. Interestingly, every combination tested led to a synergistic effect on honeybee survival, with the most significant impacts when stressors were applied at the emergence of honeybees. Our study presents significant outcomes on beekeeping management but also points out the potential risks incurred by any living organism frequently exposed to both pathogens and insecticides in their habitat. PMID:22442753

  3. Parasite-insecticide interactions: a case study of Nosema ceranae and fipronil synergy on honeybee.

    PubMed

    Aufauvre, Julie; Biron, David G; Vidau, Cyril; Fontbonne, Régis; Roudel, Mathieu; Diogon, Marie; Viguès, Bernard; Belzunces, Luc P; Delbac, Frédéric; Blot, Nicolas

    2012-01-01

    In ecosystems, a variety of biological, chemical and physical stressors may act in combination to induce illness in populations of living organisms. While recent surveys reported that parasite-insecticide interactions can synergistically and negatively affect honeybee survival, the importance of sequence in exposure to stressors has hardly received any attention. In this work, Western honeybees (Apis mellifera) were sequentially or simultaneously infected by the microsporidian parasite Nosema ceranae and chronically exposed to a sublethal dose of the insecticide fipronil, respectively chosen as biological and chemical stressors. Interestingly, every combination tested led to a synergistic effect on honeybee survival, with the most significant impacts when stressors were applied at the emergence of honeybees. Our study presents significant outcomes on beekeeping management but also points out the potential risks incurred by any living organism frequently exposed to both pathogens and insecticides in their habitat.

  4. Neonicotinoid-Coated Zea mays Seeds Indirectly Affect Honeybee Performance and Pathogen Susceptibility in Field Trials.

    PubMed

    Alburaki, Mohamed; Boutin, Sébastien; Mercier, Pierre-Luc; Loublier, Yves; Chagnon, Madeleine; Derome, Nicolas

    2015-01-01

    Thirty-two honeybee (Apis mellifera) colonies were studied in order to detect and measure potential in vivo effects of neonicotinoid pesticides used in cornfields (Zea mays spp) on honeybee health. Honeybee colonies were randomly split on four different agricultural cornfield areas located near Quebec City, Canada. Two locations contained cornfields treated with a seed-coated systemic neonicotinoid insecticide while the two others were organic cornfields used as control treatments. Hives were extensively monitored for their performance and health traits over a period of two years. Honeybee viruses (brood queen cell virus BQCV, deformed wing virus DWV, and Israeli acute paralysis virus IAPV) and the brain specific expression of a biomarker of host physiological stress, the Acetylcholinesterase gene AChE, were investigated using RT-qPCR. Liquid chromatography-mass spectrometry (LC-MS) was performed to detect pesticide residues in adult bees, honey, pollen, and corn flowers collected from the studied hives in each location. In addition, general hive conditions were assessed by monitoring colony weight and brood development. Neonicotinoids were only identified in corn flowers at low concentrations. However, honeybee colonies located in neonicotinoid treated cornfields expressed significantly higher pathogen infection than those located in untreated cornfields. AChE levels showed elevated levels among honeybees that collected corn pollen from treated fields. Positive correlations were recorded between pathogens and the treated locations. Our data suggests that neonicotinoids indirectly weaken honeybee health by inducing physiological stress and increasing pathogen loads. PMID:25993642

  5. Neonicotinoid-Coated Zea mays Seeds Indirectly Affect Honeybee Performance and Pathogen Susceptibility in Field Trials.

    PubMed

    Alburaki, Mohamed; Boutin, Sébastien; Mercier, Pierre-Luc; Loublier, Yves; Chagnon, Madeleine; Derome, Nicolas

    2015-01-01

    Thirty-two honeybee (Apis mellifera) colonies were studied in order to detect and measure potential in vivo effects of neonicotinoid pesticides used in cornfields (Zea mays spp) on honeybee health. Honeybee colonies were randomly split on four different agricultural cornfield areas located near Quebec City, Canada. Two locations contained cornfields treated with a seed-coated systemic neonicotinoid insecticide while the two others were organic cornfields used as control treatments. Hives were extensively monitored for their performance and health traits over a period of two years. Honeybee viruses (brood queen cell virus BQCV, deformed wing virus DWV, and Israeli acute paralysis virus IAPV) and the brain specific expression of a biomarker of host physiological stress, the Acetylcholinesterase gene AChE, were investigated using RT-qPCR. Liquid chromatography-mass spectrometry (LC-MS) was performed to detect pesticide residues in adult bees, honey, pollen, and corn flowers collected from the studied hives in each location. In addition, general hive conditions were assessed by monitoring colony weight and brood development. Neonicotinoids were only identified in corn flowers at low concentrations. However, honeybee colonies located in neonicotinoid treated cornfields expressed significantly higher pathogen infection than those located in untreated cornfields. AChE levels showed elevated levels among honeybees that collected corn pollen from treated fields. Positive correlations were recorded between pathogens and the treated locations. Our data suggests that neonicotinoids indirectly weaken honeybee health by inducing physiological stress and increasing pathogen loads.

  6. Movement Analysis of Flexion and Extension of Honeybee Abdomen Based on an Adaptive Segmented Structure

    PubMed Central

    Zhao, Jieliang; Wu, Jianing; Yan, Shaoze

    2015-01-01

    Honeybees (Apis mellifera) curl their abdomens for daily rhythmic activities. Prior to determining this fact, people have concluded that honeybees could curl their abdomen casually. However, an intriguing but less studied feature is the possible unidirectional abdominal deformation in free-flying honeybees. A high-speed video camera was used to capture the curling and to analyze the changes in the arc length of the honeybee abdomen not only in free-flying mode but also in the fixed sample. Frozen sections and environment scanning electron microscope were used to investigate the microstructure and motion principle of honeybee abdomen and to explore the physical structure restricting its curling. An adaptive segmented structure, especially the folded intersegmental membrane (FIM), plays a dominant role in the flexion and extension of the abdomen. The structural features of FIM were utilized to mimic and exhibit movement restriction on honeybee abdomen. Combining experimental analysis and theoretical demonstration, a unidirectional bending mechanism of honeybee abdomen was revealed. Through this finding, a new perspective for aerospace vehicle design can be imitated. PMID:26223946

  7. Neonicotinoid-Coated Zea mays Seeds Indirectly Affect Honeybee Performance and Pathogen Susceptibility in Field Trials

    PubMed Central

    Alburaki, Mohamed; Boutin, Sébastien; Mercier, Pierre-Luc; Loublier, Yves; Chagnon, Madeleine; Derome, Nicolas

    2015-01-01

    Thirty-two honeybee (Apis mellifera) colonies were studied in order to detect and measure potential in vivo effects of neonicotinoid pesticides used in cornfields (Zea mays spp) on honeybee health. Honeybee colonies were randomly split on four different agricultural cornfield areas located near Quebec City, Canada. Two locations contained cornfields treated with a seed-coated systemic neonicotinoid insecticide while the two others were organic cornfields used as control treatments. Hives were extensively monitored for their performance and health traits over a period of two years. Honeybee viruses (brood queen cell virus BQCV, deformed wing virus DWV, and Israeli acute paralysis virus IAPV) and the brain specific expression of a biomarker of host physiological stress, the Acetylcholinesterase gene AChE, were investigated using RT-qPCR. Liquid chromatography-mass spectrometry (LC-MS) was performed to detect pesticide residues in adult bees, honey, pollen, and corn flowers collected from the studied hives in each location. In addition, general hive conditions were assessed by monitoring colony weight and brood development. Neonicotinoids were only identified in corn flowers at low concentrations. However, honeybee colonies located in neonicotinoid treated cornfields expressed significantly higher pathogen infection than those located in untreated cornfields. AChE levels showed elevated levels among honeybees that collected corn pollen from treated fields. Positive correlations were recorded between pathogens and the treated locations. Our data suggests that neonicotinoids indirectly weaken honeybee health by inducing physiological stress and increasing pathogen loads. PMID:25993642

  8. Effects of sublethal doses of glyphosate on honeybee navigation.

    PubMed

    Balbuena, María Sol; Tison, Léa; Hahn, Marie-Luise; Greggers, Uwe; Menzel, Randolf; Farina, Walter M

    2015-09-01

    Glyphosate (GLY) is a herbicide that is widely used in agriculture for weed control. Although reports about the impact of GLY in snails, crustaceans and amphibians exist, few studies have investigated its sublethal effects in non-target organisms such as the honeybee Apis mellifera, the main pollen vector in commercial crops. Here, we tested whether exposure to three sublethal concentrations of GLY (2.5, 5 and 10 mg l(-1): corresponding to 0.125, 0.250 and 0.500 μg per animal) affects the homeward flight path of honeybees in an open field. We performed an experiment in which forager honeybees were trained to an artificial feeder, and then captured, fed with sugar solution containing traces of GLY and released from a novel site either once or twice. Their homeward trajectories were tracked using harmonic radar technology. We found that honeybees that had been fed with solution containing 10 mg l(-1) GLY spent more time performing homeward flights than control bees or bees treated with lower concentrations. They also performed more indirect homing flights. Moreover, the proportion of direct homeward flights performed after a second release from the same site increased in control bees but not in treated bees. These results suggest that, in honeybees, exposure to levels of GLY commonly found in agricultural settings impairs the cognitive capacities needed to retrieve and integrate spatial information for a successful return to the hive. Therefore, honeybee navigation is affected by ingesting traces of the most widely used herbicide worldwide, with potential long-term negative consequences for colony foraging success.

  9. Evidence of Apis cerana Sacbrood virus Infection in Apis mellifera

    PubMed Central

    Gong, Hong-Ri; Chen, Xiu-Xian; Chen, Yan Ping; Hu, Fu-Liang; Zhang, Jiang-Lin; Lin, Zhe-Guang; Yu, Ji-Wei

    2016-01-01

    Sacbrood virus (SBV) is one of the most destructive viruses in the Asian honeybee Apis cerana but is much less destructive in Apis mellifera. In previous studies, SBV isolates infecting A. cerana (AcSBV) and SBV isolates infecting A. mellifera (AmSBV) were identified as different serotypes, suggesting a species barrier in SBV infection. In order to investigate this species isolation, we examined the presence of SBV infection in 318 A. mellifera colonies and 64 A. cerana colonies, and we identified the genotypes of SBV isolates. We also performed artificial infection experiments under both laboratory and field conditions. The results showed that 38 A. mellifera colonies and 37 A. cerana colonies were positive for SBV infection. Phylogenetic analysis based on RNA-dependent RNA polymerase (RdRp) gene sequences indicated that A. cerana isolates and most A. mellifera isolates formed two distinct clades but two strains isolated from A. mellifera were clustered with the A. cerana isolates. In the artificial-infection experiments, AcSBV negative-strand RNA could be detected in both adult bees and larvae of A. mellifera, although there were no obvious signs of the disease, demonstrating the replication of AcSBV in A. mellifera. Our results suggest that AcSBV is able to infect A. mellifera colonies with low prevalence (0.63% in this study) and pathogenicity. This work will help explain the different susceptibilities of A. cerana and A. mellifera to sacbrood disease and is potentially useful for guiding beekeeping practices. PMID:26801569

  10. Presence of Nosema ceranae associated with honeybee queen introductions.

    PubMed

    Muñoz, Irene; Cepero, Almudena; Pinto, Maria Alice; Martín-Hernández, Raquel; Higes, Mariano; De la Rúa, Pilar

    2014-04-01

    Microsporidiosis caused by Nosema species is one of the factors threatening the health of the honeybee (Apis mellifera), which is an essential element in agriculture mainly due to its pollination function. The dispersion of this pathogen may be influenced by many factors, including various aspects of beekeeping management such as introduction of queens with different origin. Herein we study the relation of the presence and distribution of Nosema spp. and the replacement of queens in honeybee populations settled on the Atlantic Canary Islands. While Nosema apis has not been detected, an increase of the presence and distribution of Nosema ceranae during the last decade has been observed in parallel with a higher frequency of foreign queens. On the other hand, a reduction of the number of N. ceranae positive colonies was observed on those islands with continued replacement of queens. We suggest that such replacement could help maintaining low rates of Nosema infection, but healthy queens native to these islands should be used in order to conserve local honeybee diversity.

  11. Presence of Nosema ceranae associated with honeybee queen introductions.

    PubMed

    Muñoz, Irene; Cepero, Almudena; Pinto, Maria Alice; Martín-Hernández, Raquel; Higes, Mariano; De la Rúa, Pilar

    2014-04-01

    Microsporidiosis caused by Nosema species is one of the factors threatening the health of the honeybee (Apis mellifera), which is an essential element in agriculture mainly due to its pollination function. The dispersion of this pathogen may be influenced by many factors, including various aspects of beekeeping management such as introduction of queens with different origin. Herein we study the relation of the presence and distribution of Nosema spp. and the replacement of queens in honeybee populations settled on the Atlantic Canary Islands. While Nosema apis has not been detected, an increase of the presence and distribution of Nosema ceranae during the last decade has been observed in parallel with a higher frequency of foreign queens. On the other hand, a reduction of the number of N. ceranae positive colonies was observed on those islands with continued replacement of queens. We suggest that such replacement could help maintaining low rates of Nosema infection, but healthy queens native to these islands should be used in order to conserve local honeybee diversity. PMID:24568841

  12. How natural infection by Nosema ceranae causes honeybee colony collapse.

    PubMed

    Higes, Mariano; Martín-Hernández, Raquel; Botías, Cristina; Bailón, Encarna Garrido; González-Porto, Amelia V; Barrios, Laura; Del Nozal, M Jesús; Bernal, José L; Jiménez, Juan J; Palencia, Pilar García; Meana, Aránzazu

    2008-10-01

    In recent years, honeybees (Apis mellifera) have been strangely disappearing from their hives, and strong colonies have suddenly become weak and died. The precise aetiology underlying the disappearance of the bees remains a mystery. However, during the same period, Nosema ceranae, a microsporidium of the Asian bee Apis cerana, seems to have colonized A. mellifera, and it's now frequently detected all over the world in both healthy and weak honeybee colonies. For first time, we show that natural N. ceranae infection can cause the sudden collapse of bee colonies, establishing a direct correlation between N. ceranae infection and the death of honeybee colonies under field conditions. Signs of colony weakness were not evident until the queen could no longer replace the loss of the infected bees. The long asymptomatic incubation period can explain the absence of evident symptoms prior to colony collapse. Furthermore, our results demonstrate that healthy colonies near to an infected one can also become infected, and that N. ceranae infection can be controlled with a specific antibiotic, fumagillin. Moreover, the administration of 120 mg of fumagillin has proven to eliminate the infection, but it cannot avoid reinfection after 6 months. We provide Koch's postulates between N. ceranae infection and a syndrome with a long incubation period involving continuous death of adult bees, non-stop brood rearing by the bees and colony loss in winter or early spring despite the presence of sufficient remaining pollen and honey.

  13. Cheating honeybee workers produce royal offspring

    PubMed Central

    Jordan, Lyndon A; Allsopp, Michael H; Oldroyd, Benjamin P; Wossler, Theresa C; Beekman, Madeleine

    2007-01-01

    The Cape bee (Apis mellifera capensis) is unique among honeybees in that workers can lay eggs that instead of developing into males develop into females via thelytokous parthenogenesis. We show that this ability allows workers to compete directly with the queen over the production of new queens. Genetic analyses using microsatellites revealed that 23 out of 39 new queens produced by seven colonies were offspring of workers and not the resident queen. Of these, eight were laid by resident workers, but the majority were offspring of parasitic workers from other colonies. The parasites were derived from several clonal lineages that entered the colonies and successfully targeted queen cells for parasitism. Hence, these parasitic workers had the potential to become genetically reincarnated as queens. Of the daughter queens laid by the resident queen, three were produced asexually, suggesting that queens can ‘choose’ to produce daughter queens clonally and thus have the potential for genetic immortality. PMID:18048282

  14. Microsporidia infecting Apis mellifera: coexistence or competition. Is Nosema ceranae replacing Nosema apis?

    PubMed

    Martín-Hernández, Raquel; Botías, Cristina; Bailón, Encarna Garrido; Martínez-Salvador, Amparo; Prieto, Lourdes; Meana, Aránzazu; Higes, Mariano

    2012-08-01

    Nosema ceranae has been suggested to be replacing Nosema apis in some populations of Apis mellifera honeybees. However, this replacement from one to the other is not supported when studying the distribution and prevalence of both microsporidia in professional apiaries in Spanish territories (transverse study), their seasonal pattern in experimental hives with co-infection or their prevalence at individual level (either in worker bees or drones). Nevertheless, N.ceranae has shown to present a higher prevalence at all the studied levels that could indicate any advantage for its development over N.apis or that it is more adapted to Spanish conditions. Also, both microsporidia show a different pattern of preference for its development according to the prevalence in the different Spanish bioclimatic belts studied. Finally, the fact that all analyses were carried out using an Internal PCR Control (IPC) newly developed guarantees the confidence of the data extracted from the PCR analyses. This IPC provides a useful tool for laboratory detection of honeybee pathogens.

  15. Anatomy of the Honeybee

    ERIC Educational Resources Information Center

    Postiglione, Ralph

    1977-01-01

    In this insect morphology exercise, students study the external anatomy of the worker honeybee. The structures listed and illustrated are discussed in relation to their functions. A goal of the exercise is to establish the bee as a well-adapted, social insect. (MA)

  16. Detection of bright and dim colours by honeybees.

    PubMed

    Hempel De Ibarra, N; Vorobyev, M; Brandt, R; Giurfa, M

    2000-11-01

    Honeybees, Apis mellifera, were trained to detect coloured disks with either a strong or a weak intensity difference against the background. Green, blue, ultraviolet-reflecting white and grey papers were reciprocally combined as targets or backgrounds, providing strong chromatic and/or achromatic cues. The behavioural performance of the honeybees was always symmetrical for both reciprocal target/background combinations of a colour pair, thus showing that target detection is independent of whether the colour is presented as a background or as a target in combination with the other colour. Bright targets against dim backgrounds and vice versa were detected more reliably than dim target/background combinations. This result favours the general assumption that the detectability of a coloured stimulus increases with increasing intensity.

  17. Self Assessment in Insects: Honeybee Queens Know Their Own Strength

    PubMed Central

    Hepburn, Colleen; Hepburn, H. Randall; Jin, Shui-Hua; Crewe, Robin M.; Radloff, Sarah E.; Hu, Fu-Liang; Pirk, Christian W. W.

    2008-01-01

    Contests mediate access to reproductive opportunities in almost all species of animals. An important aspect of the evolution of contests is the reduction of the costs incurred during intra-specific encounters to a minimum. However, escalated fights are commonly lethal in some species like the honeybee, Apis mellifera. By experimentally reducing honeybee queens' fighting abilities, we demonstrate that they refrain from engaging in lethal contests that typically characterize their reproductive dominance behavior and coexist peacefully within a colony. This suggests that weak queens exploit an alternative reproductive strategy and provides an explanation for rare occurrences of queen cohabitation in nature. Our results further indicate that self-assessment, but not mutual assessment of fighting ability occurs prior to and during the agonistic encounters. PMID:18183293

  18. Genetic Variation in Virulence among Chalkbrood Strains Infecting Honeybees

    PubMed Central

    Vojvodic, Svjetlana; Jensen, Annette B.; Markussen, Bo; Eilenberg, Jørgen; Boomsma, Jacobus J.

    2011-01-01

    Ascosphaera apis causes chalkbrood in honeybees, a chronic disease that reduces the number of viable offspring in the nest. Although lethal for larvae, the disease normally has relatively low virulence at the colony level. A recent study showed that there is genetic variation for host susceptibility, but whether Ascosphaera apis strains differ in virulence is unknown. We exploited a recently modified in vitro rearing technique to infect honeybee larvae from three colonies with naturally mated queens under strictly controlled laboratory conditions, using four strains from two distinct A. apis clades. We found that both strain and colony of larval origin affected mortality rates. The strains from one clade caused 12–14% mortality while those from the other clade induced 71–92% mortality. Larvae from one colony showed significantly higher susceptibility to chalkbrood infection than larvae from the other two colonies, confirming the existence of genetic variation in susceptibility across colonies. Our results are consistent with antagonistic coevolution between a specialized fungal pathogen and its host, and suggest that beekeeping industries would benefit from more systematic monitoring of this chronic stress factor of their colonies. PMID:21966406

  19. Making good choices with variable information: a stochastic model for nest-site selection by honeybees.

    PubMed

    Perdriau, Benjamin S; Myerscough, Mary R

    2007-04-22

    A density-dependent Markov process model is constructed for information transfer among scouts during nest-site selection by honeybees (Apis mellifera). The effects of site quality, competition between sites and delays in site discovery are investigated. The model predicts that bees choose the better of two sites more reliably when both sites are of low quality than when both sites are of high quality and that delay in finding a second site has most effect on the final choice when both sites are of high quality. The model suggests that stochastic effects in honeybee nest-site selection confer no advantage on the swarm. PMID:17301012

  20. DyninstAPI Patches

    2012-04-01

    We are seeking a code review of patches against DyninstAPI 8.0. DyninstAPI is an open source binary instrumentation library from the University of Wisconsin and University of Maryland. Our patches port DyninstAPI to the BlueGene/P and BlueGene/Q systems, as well as fix DyninstAPI bugs and implement minor new features in DyninstAPI.

  1. Field assessment of Bt cry1Ah corn pollen on the survival, development and behavior of Apis mellifera ligustica.

    PubMed

    Dai, Ping-Li; Zhou, Wei; Zhang, Jie; Cui, Hong-Juan; Wang, Qiang; Jiang, Wei-Yu; Sun, Ji-Hu; Wu, Yan-Yan; Zhou, Ting

    2012-05-01

    Honeybees may be exposed to insecticidal proteins from transgenic plants via pollen. An assessment of the impact of such exposures on the honeybee is an essential part of the risk assessment process for transgenic Bacillus thuringiensis corn. A field trial was conducted to evaluate the effect of transgenic Bt cry1Ah corn on the honeybee Apis mellifera ligustica. Colonies of honeybees were moved to Bt or non-Bt corn fields during anthesis and then sampled to record their survival, development and behavior. No differences in immature stages, worker survival, bee body weight, hypopharyngeal gland weight, colony performance, foraging activity or olfactory learning abilities were detected between colonies that were placed in non-Bt corn fields and those placed in Bt corn fields. We conclude that cry1Ah corn carries no risk for the survival, development, colony performance or behavior of the honeybee A. mellifera ligustica. PMID:22364780

  2. Do the honeybee pathogens Nosema ceranae and deformed wing virus act synergistically?

    PubMed

    Martin, Stephen J; Hardy, Jennifer; Villalobos, Ethel; Martín-Hernández, Raquel; Nikaido, Scott; Higes, Mariano

    2013-08-01

    The honeybee pathogens Nosema ceranae and deformed wing virus (DWV) cause the collapse of honeybee colonies. Therefore, it is plausible that these two pathogens act synergistically to increase colony losses, since N.ceranae causes damage to the mid-gut epithelial ventricular cells and actively suppresses the honeybees' immune response, either of which could increase the virulence of viral pathogens within the bee. To test this hypothesis we exploited 322 Hawaiian honeybee colonies for which DWV prevalence and load is known. We determined via PCR that N.ceranae was present in 89-95% of these colonies, with no Nosema apis being detected. We found no significant difference in spore counts in colonies infected with DWV and those in which DWV was not detected, either on any of the four islands or across the entire honeybee population. Furthermore, no significant correlation between DWV loads (ΔCT levels) and N.ceranae spore counts was found, so these two pathogens are not acting synergistically. Although the Hawaiian honeybees have the highest known prevalence of N.ceranae in the world, with average number of spores been 2.7 million per bee, no acute Nosema related problems i.e. large-scale colony deaths, have been reported by Hawaiian beekeepers.

  3. Quantitative Neuropeptidome Analysis Reveals Neuropeptides Are Correlated with Social Behavior Regulation of the Honeybee Workers.

    PubMed

    Han, Bin; Fang, Yu; Feng, Mao; Hu, Han; Qi, Yuping; Huo, Xinmei; Meng, Lifeng; Wu, Bin; Li, Jianke

    2015-10-01

    Neuropeptides play vital roles in orchestrating neural communication and physiological modulation in organisms, acting as neurotransmitters, neuromodulators, and neurohormones. The highly evolved social structure of honeybees is a good system for understanding how neuropeptides regulate social behaviors; however, much knowledge on neuropeptidomic variation in the age-related division of labor remains unknown. An in-depth comparison of the brain neuropeptidomic dynamics over four time points of age-related polyethism was performed on two strains of honeybees, the Italian bee (Apis mellifera ligustica, ITb) and the high royal jelly producing bee (RJb, selected for increasing royal jelly production for almost four decades from the ITb in China). Among the 158 identified nonredundant neuropeptides, 77 were previously unreported, significantly expanding the coverage of the honeybee neuropeptidome. The fact that 14 identical neuropeptide precursors changed their expression levels during the division of labor in both the ITb and RJb indicates they are highly related to task transition of honeybee workers. These observations further suggest the two lines of bees employ a similar neuropeptidome modification to tune their respective physiology of age polyethism via regulating excretory system, circadian clock system, and so forth. Noticeably, the enhanced level of neuropeptides implicated in regulating water homeostasis, brood pheromone recognition, foraging capacity, and pollen collection in RJb signify the fact that neuropeptides are also involved in the regulation of RJ secretion. These findings gain novel understanding of honeybee neuropeptidome correlated with social behavior regulation, which is potentially important in neurobiology for honeybees and other insects.

  4. Drag reduction effects facilitated by microridges inside the mouthparts of honeybee workers and drones.

    PubMed

    Li, Chu-Chu; Wu, Jia-Ning; Yang, Yun-Qiang; Zhu, Ren-Gao; Yan, Shao-Ze

    2016-01-21

    The mouthpart of a honeybee is a natural well-designed micropump that uses a reciprocating glossa through a temporary tube comprising a pair of galeae and labial palpi for loading nectar. The shapes and sizes of mouthparts differ among castes of honeybees, but the diversities of the functional microstructures inside the mouthparts of honeybee workers and drones remain poorly understood. Through scanning electron microscopy, we found the dimensional difference of uniformly distributed microridges on the inner galeae walls of Apis mellifera ligustica workers and drones. Subsequently, we recorded the feeding process of live honeybees by using a specially designed high-speed camera system. Considering the microridges and kinematics of the glossa, we constructed a hydrodynamic model to calculate the friction coefficient of the mouthpart. In addition, we test the drag reduction through the dimensional variations of the microridges on the inner walls of mouthparts. Theoretical estimations of the friction coefficient with respect to dipping frequency show that inner microridges can reduce friction during the feeding process of honeybees. The effects of drag reduction regulated by specific microridges were then compared. The friction coefficients of the workers and drones were found to be 0.011±0.007 (mean±s.d.) and 0.045±0.010, respectively. These results indicate that the mouthparts of workers are more capable of drag reduction compared with those of drones. The difference was analyzed by comparing the foraging behavior of the workers and drones. Workers are equipped with well-developed hypopharyngeal, and their dipping frequency is higher than that of drones. Our research establishes a critical link between microridge dimensions and drag reduction capability during the nectar feeding of honeybees. Our results reveal that microridges inside the mouthparts of honeybee workers and drones reflect the caste-related life cycles of honeybees.

  5. Drag reduction effects facilitated by microridges inside the mouthparts of honeybee workers and drones.

    PubMed

    Li, Chu-Chu; Wu, Jia-Ning; Yang, Yun-Qiang; Zhu, Ren-Gao; Yan, Shao-Ze

    2016-01-21

    The mouthpart of a honeybee is a natural well-designed micropump that uses a reciprocating glossa through a temporary tube comprising a pair of galeae and labial palpi for loading nectar. The shapes and sizes of mouthparts differ among castes of honeybees, but the diversities of the functional microstructures inside the mouthparts of honeybee workers and drones remain poorly understood. Through scanning electron microscopy, we found the dimensional difference of uniformly distributed microridges on the inner galeae walls of Apis mellifera ligustica workers and drones. Subsequently, we recorded the feeding process of live honeybees by using a specially designed high-speed camera system. Considering the microridges and kinematics of the glossa, we constructed a hydrodynamic model to calculate the friction coefficient of the mouthpart. In addition, we test the drag reduction through the dimensional variations of the microridges on the inner walls of mouthparts. Theoretical estimations of the friction coefficient with respect to dipping frequency show that inner microridges can reduce friction during the feeding process of honeybees. The effects of drag reduction regulated by specific microridges were then compared. The friction coefficients of the workers and drones were found to be 0.011±0.007 (mean±s.d.) and 0.045±0.010, respectively. These results indicate that the mouthparts of workers are more capable of drag reduction compared with those of drones. The difference was analyzed by comparing the foraging behavior of the workers and drones. Workers are equipped with well-developed hypopharyngeal, and their dipping frequency is higher than that of drones. Our research establishes a critical link between microridge dimensions and drag reduction capability during the nectar feeding of honeybees. Our results reveal that microridges inside the mouthparts of honeybee workers and drones reflect the caste-related life cycles of honeybees. PMID:26542139

  6. Antimicrosporidian activity of sulphated polysaccharides from algae and their potential to control honeybee nosemosis.

    PubMed

    Roussel, M; Villay, A; Delbac, F; Michaud, P; Laroche, C; Roriz, D; El Alaoui, H; Diogon, M

    2015-11-20

    Nosemosis is one of the most common and widespread diseases of adult honeybees. The causative agents, Nosema apis and Nosema ceranae, belong to microsporidia some obligate intracellular eukaryotic parasites. In this study, 10 sulphated polysaccharides from algae were evaluated for their antimicrosporidian activity. They were first shown to inhibit the in vitro growth of the mammal microsporidian model, Encephalitozoon cuniculi. The most efficient polysaccharides were then tested for their ability to inhibit the growth of Nosema ceranae in experimentally-infected adult honeybees. Two polysaccharides extracted from Porphyridium spp. did not show any toxicity in honeybees and one of them allowed a decrease of both parasite load and mortality rate due to N. ceranae infection. A decrease in parasite abundance but not in mortality rate was also observed with an iota carrageenan. Our results are promising and suggest that algal sulphated polysaccharides could be used to prevent and/or control bee nosemosis.

  7. Gene expression of ecdysteroid-regulated gene E74 of the honeybee in ovary and brain.

    PubMed

    Paul, R K; Takeuchi, H; Matsuo, Y; Kubo, T

    2005-01-01

    To facilitate studies of hormonal control in the honeybee (Apis mellifera L.), a cDNA for a honeybee homologue of the ecdysteroid-regulated gene E74 (AmE74) was isolated and its expression was analysed. Northern blot analysis indicated strong expression in the adult queen abdomen, and no significant expression in the adult drone and worker abdomens. In situ hybridization demonstrated that this gene was expressed selectively in the ovary and gut in the queen abdomen. Furthermore, this gene was also expressed selectively in subsets of mushroom body interneurones in the brain of the adult worker bees. These findings suggest that AmE74 is involved in neural function as well as in reproduction in adult honeybees.

  8. Africanized honey bees are slowere learners than their European counterparts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The range of Africanized honeybees continues to expand, superseding the common European honeybees in the southern United States. Are superior learning and memory the reason for their ecological success? Surprisingly, a comparison in a classical conditioning test of the two bee races shows that few...

  9. Phylogenetic analysis of Nosema ceranae isolated from European and Asian honeybees in Northern Thailand.

    PubMed

    Chaimanee, Veeranan; Chen, Yanping; Pettis, Jeffery S; Scott Cornman, R; Chantawannakul, Panuwan

    2011-07-01

    Nosema ceranae was found to infect four different host species including the European honeybee (A. mellifera) and the Asian honeybees (Apis florea, A. cerana and Apis dorsata) collected from apiaries and forests in Northern Thailand. Significant sequence variation in the polar tube protein (PTP1) gene of N. ceranae was observed with N. ceranae isolates from A. mellifera and A. cerana, they clustered into the same phylogenetic lineage. N. ceranae isolates from A. dorsata and A. florea were grouped into two other distinct clades. This study provides the first elucidation of a genetic relationship among N. ceranae strains isolated from different host species and demonstrates that the N. ceranae PTP gene was shown to be a suitable and reliable marker in revealing genetic relationships within species.

  10. Broom and honeybees in Australia: an alien liaison.

    PubMed

    Simpson, S R; Gross, C L; Silberbauer, L X

    2005-09-01

    Facilitative interactions between non-indigenous species are gaining recognition as a major driver of invasion success. Cytisus scoparius (L.) Link (Fabaceae), or Scotch broom, is a cosmopolitan invasive shrub that lacks the capacity for vegetative reproduction and is a good model to study facilitative interactions. Its success in pioneer environments is determined by constraints on its reproduction. We determined whether pollinators were required for seed set in C. scoparius at Barrington Tops, NSW, Australia, where the species has infested ca. 14,000 ha across the plateau. Field and laboratory experiments showed that C. scoparius is an obligate outcrossing species at Barrington Tops. Monitoring of plants (10.7 h) showed that the flowers of C. scoparius have to be tripped to effect seed set and the only pollinator to do this was the introduced honeybee, Apis mellifera L. Most floral visits by honeybees result in fruit set (84 %) and because fruits have many ovules (10 - 18 per ovary) a single bee on an average foraging day can effect the production of over 6000 seeds. A review of C. scoparius pollination across four continents revealed major differences in pollen quantity, which may explain differences in the efficiencies of honeybees as pollinators of C. scoparius. The incorporation of pollinator management in an integrated approach for the control of C. scoparius is discussed.

  11. Optic flow informs distance but not profitability for honeybees

    PubMed Central

    Shafir, Sharoni; Barron, Andrew B.

    2010-01-01

    How do flying insects monitor foraging efficiency? Honeybees (Apis mellifera) use optic flow information as an odometer to estimate distance travelled, but here we tested whether optic flow informs estimation of foraging costs also. Bees were trained to feeders in flight tunnels such that bees experienced the greatest optic flow en route to the feeder closest to the hive. Analyses of dance communication showed that, as expected, bees indicated the close feeder as being further, but they also indicated this feeder as the more profitable, and preferentially visited this feeder when given a choice. We show that honeybee estimates of foraging cost are not reliant on optic flow information. Rather, bees can assess distance and profitability independently and signal these aspects as separate elements of their dances. The optic flow signal is sensitive to the nature of the environment travelled by the bee, and is therefore not a good index of flight energetic costs, but it provides a good indication of distance travelled for purpose of navigation and communication, as long as the dancer and recruit travel similar routes. This study suggests an adaptive dual processing system in honeybees for communicating and navigating distance flown and for evaluating its energetic costs. PMID:20018787

  12. Reproduction, social behavior, and aging trajectories in honeybee workers.

    PubMed

    Dixon, Luke; Kuster, Ryan; Rueppell, Olav

    2014-02-01

    While a negative correlation between reproduction and life span is commonly observed, specialized reproductive individuals outlive their non-reproductive nestmates in all eusocial species, including the honeybee, Apis mellifera (L). The consequences of reproduction for individual life expectancy can be studied directly by comparing reproductive and non-reproductive workers. We quantified the life span consequences of reproduction in honeybee workers by removal of the queen to trigger worker reproduction. Furthermore, we observed the social behavior of large cohorts of workers under experimental and control conditions to test for associations with individual life expectancy. Worker life expectancy was moderately increased by queen removal. Queenless colonies contained a few long-lived workers, and oviposition behavior was associated with a strong reduction in mortality risk, indicating that a reproductive role confers a significant survival advantage. This finding is further substantiated by an association between brood care behavior and worker longevity that depends on the social environment. In contrast, other in-hive activities, such as fanning, trophallaxis, and allogrooming did not consistently affect worker life expectancy. The influence of foraging varied among replicates. An earlier age of transitioning from in-hive tasks to outside foraging was always associated with shorter life spans, in accordance with previous studies. In sum, our studies quantify how individual mortality is affected by particular social roles and colony environments and demonstrate interactions between the two. The exceptional, positive association between reproduction and longevity in honeybees extends to within-caste plasticity, which may be exploited for mechanistic studies.

  13. Bee bread increases honeybee haemolymph protein and promote better survival despite of causing higher Nosema ceranae abundance in honeybees.

    PubMed

    Basualdo, Marina; Barragán, Sergio; Antúnez, Karina

    2014-08-01

    Adequate protein nutrition supports healthy honeybees and reduces the susceptibility to disease. However little is known concerning the effect of the diet on Nosema ceranae development, an obligate intracellular parasite that disturbs the protein metabolism of honeybees (Apis mellifera). Here we tested the effect of natural (bee bread) and non-natural protein diets (substitute) on haemolymph proteins titers of honeybee and N. ceranae spore production. The natural diet induced higher levels of protein and parasite development, but the survival of bees was also higher than with non-natural diets. The data showed that the administration of an artificially high nutritious diet in terms of crude protein content is not sufficient to promote healthy bees; rather the protein ingested should be efficiently assimilated. The overall results support the idea that the physiological condition of the bees is linked to protein levels in the haemolymph, which affects the tolerance to parasite; consequently the negative impact of the parasite on host fitness is not associated only with the level of infection.

  14. Bee bread increases honeybee haemolymph protein and promote better survival despite of causing higher Nosema ceranae abundance in honeybees.

    PubMed

    Basualdo, Marina; Barragán, Sergio; Antúnez, Karina

    2014-08-01

    Adequate protein nutrition supports healthy honeybees and reduces the susceptibility to disease. However little is known concerning the effect of the diet on Nosema ceranae development, an obligate intracellular parasite that disturbs the protein metabolism of honeybees (Apis mellifera). Here we tested the effect of natural (bee bread) and non-natural protein diets (substitute) on haemolymph proteins titers of honeybee and N. ceranae spore production. The natural diet induced higher levels of protein and parasite development, but the survival of bees was also higher than with non-natural diets. The data showed that the administration of an artificially high nutritious diet in terms of crude protein content is not sufficient to promote healthy bees; rather the protein ingested should be efficiently assimilated. The overall results support the idea that the physiological condition of the bees is linked to protein levels in the haemolymph, which affects the tolerance to parasite; consequently the negative impact of the parasite on host fitness is not associated only with the level of infection. PMID:24992539

  15. A fifth major genetic group among honeybees revealed in Syria

    PubMed Central

    2013-01-01

    Background Apiculture has been practiced in North Africa and the Middle-East from antiquity. Several thousand years of selective breeding have left a mosaic of Apis mellifera subspecies in the Middle-East, many uniquely adapted and survived to local environmental conditions. In this study we explore the genetic diversity of A. mellifera from Syria (n = 1258), Lebanon (n = 169) and Iraq (n = 35) based on 14 short tandem repeat (STR) loci in the context of reference populations from throughout the Old World (n = 732). Results Our data suggest that the Syrian honeybee Apis mellifera syriaca occurs in both Syrian and Lebanese territories, with no significant genetic variability between respective populations from Syria and Lebanon. All studied populations clustered within a new fifth independent nuclear cluster, congruent with an mtDNA Z haplotype identified in a previous study. Syrian honeybee populations are not associated with Oriental lineage O, except for sporadic introgression into some populations close to the Turkish and Iraqi borders. Southern Syrian and Lebanese populations demonstrated high levels of genetic diversity compared to the northern populations. Conclusion This study revealed the effects of foreign queen importations on Syrian bee populations, especially for the region of Tartus, where extensive introgression of A. m. anatolica and/or A. m. caucasica alleles were identified. The policy of creating genetic conservation centers for the Syrian subspecies should take into consideration the influence of the oriental lineage O from the northern Syrian border and the large population of genetically divergent indigenous honeybees located in southern Syria. PMID:24314104

  16. Transcriptome Analyses of the Honeybee Response to Nosema ceranae and Insecticides

    PubMed Central

    Aufauvre, Julie; Misme-Aucouturier, Barbara; Viguès, Bernard; Texier, Catherine; Delbac, Frédéric; Blot, Nicolas

    2014-01-01

    Honeybees (Apis mellifera) are constantly exposed to a wide variety of environmental stressors such as parasites and pesticides. Among them, Nosema ceranae and neurotoxic insecticides might act in combination and lead to a higher honeybee mortality. We investigated the molecular response of honeybees exposed to N. ceranae, to insecticides (fipronil or imidacloprid), and to a combination of both stressors. Midgut transcriptional changes induced by these stressors were measured in two independent experiments combining a global RNA-Seq transcriptomic approach with the screening of the expression of selected genes by quantitative RT-PCR. Although N. ceranae-insecticide combinations induced a significant increase in honeybee mortality, we observed that they did not lead to a synergistic effect. According to gene expression profiles, chronic exposure to insecticides had no significant impact on detoxifying genes but repressed the expression of immunity-related genes. Honeybees treated with N. ceranae, alone or in combination with an insecticide, showed a strong alteration of midgut immunity together with modifications affecting cuticle coatings and trehalose metabolism. An increasing impact of treatments on gene expression profiles with time was identified suggesting an absence of stress recovery which could be linked to the higher mortality rates observed. PMID:24646894

  17. Transcriptome analyses of the honeybee response to Nosema ceranae and insecticides.

    PubMed

    Aufauvre, Julie; Misme-Aucouturier, Barbara; Viguès, Bernard; Texier, Catherine; Delbac, Frédéric; Blot, Nicolas

    2014-01-01

    Honeybees (Apis mellifera) are constantly exposed to a wide variety of environmental stressors such as parasites and pesticides. Among them, Nosema ceranae and neurotoxic insecticides might act in combination and lead to a higher honeybee mortality. We investigated the molecular response of honeybees exposed to N. ceranae, to insecticides (fipronil or imidacloprid), and to a combination of both stressors. Midgut transcriptional changes induced by these stressors were measured in two independent experiments combining a global RNA-Seq transcriptomic approach with the screening of the expression of selected genes by quantitative RT-PCR. Although N. ceranae-insecticide combinations induced a significant increase in honeybee mortality, we observed that they did not lead to a synergistic effect. According to gene expression profiles, chronic exposure to insecticides had no significant impact on detoxifying genes but repressed the expression of immunity-related genes. Honeybees treated with N. ceranae, alone or in combination with an insecticide, showed a strong alteration of midgut immunity together with modifications affecting cuticle coatings and trehalose metabolism. An increasing impact of treatments on gene expression profiles with time was identified suggesting an absence of stress recovery which could be linked to the higher mortality rates observed.

  18. Do the honeybee pathogens Nosema ceranae and deformed wing virus act synergistically?

    PubMed Central

    Martin, Stephen J; Hardy, Jennifer; Villalobos, Ethel; Martín-Hernández, Raquel; Nikaido, Scott; Higes, Mariano

    2013-01-01

    The honeybee pathogens Nosema ceranae and deformed wing virus (DWV) cause the collapse of honeybee colonies. Therefore, it is plausible that these two pathogens act synergistically to increase colony losses, since N. ceranae causes damage to the mid-gut epithelial ventricular cells and actively suppresses the honeybees’ immune response, either of which could increase the virulence of viral pathogens within the bee. To test this hypothesis we exploited 322 Hawaiian honeybee colonies for which DWV prevalence and load is known. We determined via PCR that N. ceranae was present in 89–95% of these colonies, with no Nosema apis being detected. We found no significant difference in spore counts in colonies infected with DWV and those in which DWV was not detected, either on any of the four islands or across the entire honeybee population. Furthermore, no significant correlation between DWV loads (ΔCT levels) and N. ceranae spore counts was found, so these two pathogens are not acting synergistically. Although the Hawaiian honeybees have the highest known prevalence of N. ceranae in the world, with average number of spores been 2.7 million per bee, no acute Nosema related problems i.e. large-scale colony deaths, have been reported by Hawaiian beekeepers. PMID:23864563

  19. First detection of Paenibacillus larvae the causative agent of American Foulbrood in a Ugandan honeybee colony.

    PubMed

    Chemurot, Moses; Brunain, Marleen; Akol, Anne M; Descamps, Tine; de Graaf, Dirk C

    2016-01-01

    Paenibacillus larvae is a highly contagious and often lethal widely distributed pathogen of honeybees, Apis mellifera but has not been reported in eastern Africa to date. We investigated the presence of P. larvae in the eastern and western highland agro-ecological zones of Uganda by collecting brood and honey samples from 67 honeybee colonies in two sampling occasions and cultivated them for P. larvae. Also, 8 honeys imported and locally retailed in Uganda were sampled and cultivated for P. larvae. Our aim was to establish the presence and distribution of P. larvae in honeybee populations in the two highland agro-ecological zones of Uganda and to determine if honeys that were locally retailed contained this lethal pathogen. One honeybee colony without clinical symptoms for P. larvae in an apiary located in a protected area of the western highlands of Uganda was found positive for P. larvae. The strain of this P. larvae was genotyped and found to be ERIC I. In order to compare its virulence with P. larvae reference strains, in vitro infection experiments were conducted with carniolan honeybee larvae from the research laboratory at Ghent University, Belgium. The results show that the virulence of the P. larvae strain found in Uganda was at least equally high. The epidemiological implication of the presence of P. larvae in a protected area is discussed. PMID:27468390

  20. Lysophosphatidylcholine acts in the constitutive immune defence against American foulbrood in adult honeybees.

    PubMed

    Riessberger-Gallé, Ulrike; Hernández-López, Javier; Rechberger, Gerald; Crailsheim, Karl; Schuehly, Wolfgang

    2016-01-01

    Honeybee (Apis mellifera) imagines are resistant to the Gram-positive bacterium Paenibacillus larvae (P. larvae), causative agent of American foulbrood (AFB), whereas honeybee larvae show susceptibility against this pathogen only during the first 48 h of their life. It is known that midgut homogenate of adult honeybees as well as a homogenate of aged larvae exhibit strong anti-P. larvae activity. A bioactivity-guided LC-HRMS analysis of midgut homogenate resulted in the identification of 1-oleoyl-sn-glycero-3-phosphocholine (LPC) pointing to a yet unknown immune defence in adult honeybees against P. larvae. Antimicrobial activity of LPC was also demonstrated against Melissococcus plutonius, causative agent of European Foulbrood. To demonstrate an AFB-preventive effect of LPC in larvae, artificially reared larvae were supplemented with LPC to evaluate its toxicity and to assess whether, after infection with P. larvae spores, LPC supplementation prevents AFB infection. 10 μg LPC per larva applied for 3 d significantly lowered mortality due to AFB in comparison to controls. A potential delivery route of LPC to the larvae in a colony via nurse bees was assessed through a tracking experiment using fluorescent-labelled LPC. This yet undescribed and non-proteinous defense of honeybees against P. larvae may offer new perspectives for a treatment of AFB without the utilization of classic antibiotics. PMID:27480379

  1. Lysophosphatidylcholine acts in the constitutive immune defence against American foulbrood in adult honeybees.

    PubMed

    Riessberger-Gallé, Ulrike; Hernández-López, Javier; Rechberger, Gerald; Crailsheim, Karl; Schuehly, Wolfgang

    2016-01-01

    Honeybee (Apis mellifera) imagines are resistant to the Gram-positive bacterium Paenibacillus larvae (P. larvae), causative agent of American foulbrood (AFB), whereas honeybee larvae show susceptibility against this pathogen only during the first 48 h of their life. It is known that midgut homogenate of adult honeybees as well as a homogenate of aged larvae exhibit strong anti-P. larvae activity. A bioactivity-guided LC-HRMS analysis of midgut homogenate resulted in the identification of 1-oleoyl-sn-glycero-3-phosphocholine (LPC) pointing to a yet unknown immune defence in adult honeybees against P. larvae. Antimicrobial activity of LPC was also demonstrated against Melissococcus plutonius, causative agent of European Foulbrood. To demonstrate an AFB-preventive effect of LPC in larvae, artificially reared larvae were supplemented with LPC to evaluate its toxicity and to assess whether, after infection with P. larvae spores, LPC supplementation prevents AFB infection. 10 μg LPC per larva applied for 3 d significantly lowered mortality due to AFB in comparison to controls. A potential delivery route of LPC to the larvae in a colony via nurse bees was assessed through a tracking experiment using fluorescent-labelled LPC. This yet undescribed and non-proteinous defense of honeybees against P. larvae may offer new perspectives for a treatment of AFB without the utilization of classic antibiotics.

  2. Lysophosphatidylcholine acts in the constitutive immune defence against American foulbrood in adult honeybees

    PubMed Central

    Riessberger-Gallé, Ulrike; Hernández-López, Javier; Rechberger, Gerald; Crailsheim, Karl; Schuehly, Wolfgang

    2016-01-01

    Honeybee (Apis mellifera) imagines are resistant to the Gram-positive bacterium Paenibacillus larvae (P. larvae), causative agent of American foulbrood (AFB), whereas honeybee larvae show susceptibility against this pathogen only during the first 48 h of their life. It is known that midgut homogenate of adult honeybees as well as a homogenate of aged larvae exhibit strong anti-P. larvae activity. A bioactivity-guided LC-HRMS analysis of midgut homogenate resulted in the identification of 1-oleoyl-sn-glycero-3-phosphocholine (LPC) pointing to a yet unknown immune defence in adult honeybees against P. larvae. Antimicrobial activity of LPC was also demonstrated against Melissococcus plutonius, causative agent of European Foulbrood. To demonstrate an AFB-preventive effect of LPC in larvae, artificially reared larvae were supplemented with LPC to evaluate its toxicity and to assess whether, after infection with P. larvae spores, LPC supplementation prevents AFB infection. 10 μg LPC per larva applied for 3 d significantly lowered mortality due to AFB in comparison to controls. A potential delivery route of LPC to the larvae in a colony via nurse bees was assessed through a tracking experiment using fluorescent-labelled LPC. This yet undescribed and non-proteinous defense of honeybees against P. larvae may offer new perspectives for a treatment of AFB without the utilization of classic antibiotics. PMID:27480379

  3. Comparative psychophysics of bumblebee and honeybee colour discrimination and object detection.

    PubMed

    Dyer, Adrian G; Spaethe, Johannes; Prack, Sabina

    2008-07-01

    Bumblebee (Bombus terrestris) discrimination of targets with broadband reflectance spectra was tested using simultaneous viewing conditions, enabling an accurate determination of the perceptual limit of colour discrimination excluding confounds from memory coding (experiment 1). The level of colour discrimination in bumblebees, and honeybees (Apis mellifera) (based upon previous observations), exceeds predictions of models considering receptor noise in the honeybee. Bumblebee and honeybee photoreceptors are similar in spectral shape and spacing, but bumblebees exhibit significantly poorer colour discrimination in behavioural tests, suggesting possible differences in spatial or temporal signal processing. Detection of stimuli in a Y-maze was evaluated for bumblebees (experiment 2) and honeybees (experiment 3). Honeybees detected stimuli containing both green-receptor-contrast and colour contrast at a visual angle of approximately 5 degrees , whilst stimuli that contained only colour contrast were only detected at a visual angle of 15 degrees . Bumblebees were able to detect these stimuli at a visual angle of 2.3 degrees and 2.7 degrees , respectively. A comparison of the experiments suggests a tradeoff between colour discrimination and colour detection in these two species, limited by the need to pool colour signals to overcome receptor noise. We discuss the colour processing differences and possible adaptations to specific ecological habitats.

  4. Biomonitoring with honeybees of heavy metals and pesticides in nature reserves of the Marche Region (Italy).

    PubMed

    Ruschioni, Sara; Riolo, Paola; Minuz, Roxana Luisa; Stefano, Mariassunta; Cannella, Maddalena; Porrini, Claudio; Isidoro, Nunzio

    2013-08-01

    The aim of this study was to carry out biomonitoring with honeybees (Apis mellifera L.) to assess the presence of pesticides and heavy metals (cadmium, chromium, nickel, lead) in all of the ten nature reserves of the Marche Region (central–eastern Italy). The study was carried out during the spring and summer seasons when the honeybees were active, over 3 years (2008–2010). Twenty-two colonies of honeybees bred in hives were used. Samples of live and dead honeybees and of honey were collected from 11 sampling stations from May to October in each year. No pesticide pollution was found. Significant differences in heavy metal concentrations were found among years, months and sites, and in particular situations. The analysis reveals that high heavy-metal concentrations occurred exclusively in live honeybees. For the seasonal averages, the most detected heavy metal was chromium, which exceeded the threshold more often than for the other elements, followed by cadmium and lead; nickel never exceeded the threshold. The data are discussed with an evaluation of the natural and anthropic sources taken from the literature and from local situations that were likely to involve heavy metal pollution.

  5. Interpatch foraging in honeybees-rational decision making at secondary hubs based upon time and motivation.

    PubMed

    Najera, Daniel A; McCullough, Erin L; Jander, Rudolf

    2012-11-01

    For honeybees, Apis mellifera, the hive has been well known to function as a primary decision-making hub, a place from which foragers decide among various directions, distances, and times of day to forage efficiently. Whether foraging honeybees can make similarly complex navigational decisions from locations away from the hive is unknown. To examine whether or not such secondary decision-making hubs exist, we trained bees to forage at four different locations. Specifically, we trained honeybees to first forage to a distal site "CT" 100 m away from the hive; if food was present, they fed and then chose to go home. If food was not present, the honeybees were trained to forage to three auxiliary sites, each at a different time of the day: A in the morning, B at noon, and C in the afternoon. The foragers learned to check site CT for food first and then efficiently depart to the correct location based upon the time of day if there was no food at site CT. Thus, the honeybees were able to cognitively map motivation, time, and five different locations (Hive, CT, A, B, and C) in two spatial dimensions; these are the contents of the cognitive map used by the honeybees here. While at site CT, we verified that the honeybees could choose between 4 different directions (to A, B, C, and the Hive) and thus label it as a secondary decision-making hub. The observed decision making uncovered here is inferred to constitute genuine logical operations, involving a branched structure, based upon the premises of motivational state, and spatiotemporal knowledge.

  6. Differential protein expression analysis following olfactory learning in Apis cerana.

    PubMed

    Zhang, Li-Zhen; Yan, Wei-Yu; Wang, Zi-Long; Guo, Ya-Hui; Yi, Yao; Zhang, Shao-Wu; Zeng, Zhi-Jiang

    2015-11-01

    Studies of olfactory learning in honeybees have helped to elucidate the neurobiological basis of learning and memory. In this study, protein expression changes following olfactory learning in Apis cerana were investigated using isobaric tags for relative and absolute quantification (iTRAQ) technology. A total of 2406 proteins were identified from the trained and untrained groups. Among these proteins, 147 were differentially expressed, with 87 up-regulated and 60 down-regulated in the trained group compared with the untrained group. These results suggest that the differentially expressed proteins may be involved in the regulation of olfactory learning and memory in A. cerana. The iTRAQ data can provide information on the global protein expression patterns associated with olfactory learning, which will facilitate our understanding of the molecular mechanisms of learning and memory of honeybees. PMID:26427996

  7. Differential protein expression analysis following olfactory learning in Apis cerana.

    PubMed

    Zhang, Li-Zhen; Yan, Wei-Yu; Wang, Zi-Long; Guo, Ya-Hui; Yi, Yao; Zhang, Shao-Wu; Zeng, Zhi-Jiang

    2015-11-01

    Studies of olfactory learning in honeybees have helped to elucidate the neurobiological basis of learning and memory. In this study, protein expression changes following olfactory learning in Apis cerana were investigated using isobaric tags for relative and absolute quantification (iTRAQ) technology. A total of 2406 proteins were identified from the trained and untrained groups. Among these proteins, 147 were differentially expressed, with 87 up-regulated and 60 down-regulated in the trained group compared with the untrained group. These results suggest that the differentially expressed proteins may be involved in the regulation of olfactory learning and memory in A. cerana. The iTRAQ data can provide information on the global protein expression patterns associated with olfactory learning, which will facilitate our understanding of the molecular mechanisms of learning and memory of honeybees.

  8. Honeybee methodology, cognition, and theory: recording local directional decisions in interpatch foraging and interpreting their theoretical relevance.

    PubMed

    Najera, Daniel A; Jander, Rudolf

    2012-03-01

    Investigations made into the cognitive decision making of honeybees (Apis mellifera) traveling from one flower patch to another flower patch (interpatch foraging) are few. To facilitate such research, we present methods to artificially emulate interpatch foraging and quantify the immediate decision making of honeybees (within 50 cm) choosing to fly an interpatch path. These "Interpatch Methods" are validated, applied, and shown to produce novel information for the field of honeybee spatial cognition. Generally, we demonstrate that a single foraging cohort of honeybees is shown to be capable of making decisions based upon different sets of learned cues, in the exact same context. Specifically, both terminal beacon orientation cues and compass navigation cues can guide the cognitive decision making of interpatch foraging honeybees; our bees chose both cues equally. Finally, the theoretical importance of decision making for interpatch paths is compared with the other foraging paths (outward and homing) with respect to the information available to recruited foragers and scout foragers. We conclude that the ability to analyze interpatch foraging is critical for a more complete understanding of honeybee foraging cognition and that our methods are capable of providing that understanding.

  9. Organization and potential function of the mrjp3 locus in four honeybee species.

    PubMed

    Albertová, Viera; Su, Songkun; Brockmann, Axel; Gadau, Jürgen; Albert, Stefan

    2005-10-01

    Royal jelly is a nutritious secretion produced by nurse honeybees to provision queens and growing larvae. Major proteins of royal jelly are mutually similar, and they all belong to the MRJP/yellow protein family (pfam03022). The mrjp3 loci in four traditional honeybee species (Apis mellifera, Apis cerana,Apis dorsata, and Apis florea) were sequenced and found to share high sequence and structural similarities. PCR analyses confirmed the presence of an extensive repetitive region, which showed size and sequence polymorphisms in all species. The evolutionary history of mrjp genes and their repetitive regions was reconstructed from their nucleotide sequences. The analyses proved that the repeat region appeared early in the evolution of the mrjp gene family and that the extreme elongation of the repeat is mrjp3 specific. In the MRJPs was documented a correlation between nitrogen content and repeat length. Therefore, it is argued that the repeat occurred due to a selection for an increase in nitrogen storage for a more efficient nutrition of queens and larvae.

  10. A comparison of the reproductive ability of Varroa destructor (Mesostigmata:Varroidae) in worker and drone brood of Africanized honey bees (Apis mellifera).

    PubMed

    Calderón, Rafael A; Zamora, Luis G; Van Veen, Johan W; Quesada, Mariela V

    2007-01-01

    Colony infestation by the parasitic mite, Varroa destructor is one of the most serious problems for beekeeping worldwide. In order to reproduce varroa females, enter worker or drone brood shortly before the cell is sealed. To test the hypothesis that, due to the preference of mites to invade drone brood to reproduce, a high proportion of the mite reproduction should occur in drone cells, a comparative study of mite reproductive rate in worker and drone brood of Africanized honey bees (AHB) was done for 370 mites. After determining the number, developmental stage and sex of the offspring in worker cells, the foundress female mite was immediately transferred into an uninfested drone cell. Mite fertility in single infested worker and drone brood cells was 76.5 and 79.3%, respectively. There was no difference between the groups (X(2)= 0.78, P = 0.37). However, one of the most significant differences in mite reproduction was the higher percentage of mites producing viable offspring (cells that contain one live adult male and at least one adult female mite) in drone cells (38.1%) compared to worker cells (13.8%) (X(2)= 55.4, P < 0.01). Furthermore, a high level of immature offspring occurred in worker cells and not in drone cells (X(2)= 69, P < 0.01). Although no differences were found in the percentage of non-reproducing mites, more than 74% (n = 85) of the mites that did not reproduce in worker brood, produced offspring when they were transferred to drone brood.

  11. A comparison of the reproductive ability of Varroa destructor (Mesostigmata:Varroidae) in worker and drone brood of Africanized honey bees (Apis mellifera).

    PubMed

    Calderón, Rafael A; Zamora, Luis G; Van Veen, Johan W; Quesada, Mariela V

    2007-01-01

    Colony infestation by the parasitic mite, Varroa destructor is one of the most serious problems for beekeeping worldwide. In order to reproduce varroa females, enter worker or drone brood shortly before the cell is sealed. To test the hypothesis that, due to the preference of mites to invade drone brood to reproduce, a high proportion of the mite reproduction should occur in drone cells, a comparative study of mite reproductive rate in worker and drone brood of Africanized honey bees (AHB) was done for 370 mites. After determining the number, developmental stage and sex of the offspring in worker cells, the foundress female mite was immediately transferred into an uninfested drone cell. Mite fertility in single infested worker and drone brood cells was 76.5 and 79.3%, respectively. There was no difference between the groups (X(2)= 0.78, P = 0.37). However, one of the most significant differences in mite reproduction was the higher percentage of mites producing viable offspring (cells that contain one live adult male and at least one adult female mite) in drone cells (38.1%) compared to worker cells (13.8%) (X(2)= 55.4, P < 0.01). Furthermore, a high level of immature offspring occurred in worker cells and not in drone cells (X(2)= 69, P < 0.01). Although no differences were found in the percentage of non-reproducing mites, more than 74% (n = 85) of the mites that did not reproduce in worker brood, produced offspring when they were transferred to drone brood. PMID:17828439

  12. Apis cerana japonica discriminates between floral color phases of the oriental orchid, Cymbidium floribundum.

    PubMed

    Sugahara, Michio; Minamoto, Toshifumi; Fuchikawa, Taro; Michinomae, Masanao; Shimizu, Isamu

    2010-12-01

    Foragers of the Japanese honeybee (Apis cerana japonica) were attracted by flowers of an oriental orchid (Cymbidium floribundum) and were observed to carry the pollinia on their scutella. After the removal of pollinia from the flowers, their labial color changed from white to reddish brown. Both artificial removal of pollinia and ethrel treatment of the flowers also induced this labial color change. Labia in color-changed flowers showed a decreased reflectance of wavelengths less than 670 nm compared to control intact flower. Both reflectance irradiance spectra and ultraviolet photographs showed that only the nectar guide in white (unchanged) flowers reflected ultraviolet light, and that this reflectance decreased with labial color change. Dual choice experiments showed that the honeybee foragers preferentially visited flowers having white labia rather than reddish brown. We suggest that Japanese honeybees discriminate between the floral phases of C. floribundum using color vision.

  13. Estimating the density of honeybee colonies across their natural range to fill the gap in pollinator decline censuses.

    PubMed

    Jaffé, Rodolfo; Dietemann, Vincent; Allsopp, Mike H; Costa, Cecilia; Crewe, Robin M; Dall'olio, Raffaele; DE LA Rúa, Pilar; El-Niweiri, Mogbel A A; Fries, Ingemar; Kezic, Nikola; Meusel, Michael S; Paxton, Robert J; Shaibi, Taher; Stolle, Eckart; Moritz, Robin F A

    2010-04-01

    Although pollinator declines are a global biodiversity threat, the demography of the western honeybee (Apis mellifera) has not been considered by conservationists because it is biased by the activity of beekeepers. To fill this gap in pollinator decline censuses and to provide a broad picture of the current status of honeybees across their natural range, we used microsatellite genetic markers to estimate colony densities and genetic diversity at different locations in Europe, Africa, and central Asia that had different patterns of land use. Genetic diversity and colony densities were highest in South Africa and lowest in Northern Europe and were correlated with mean annual temperature. Confounding factors not related to climate, however, are also likely to influence genetic diversity and colony densities in honeybee populations. Land use showed a significantly negative influence over genetic diversity and the density of honeybee colonies over all sampling locations. In Europe honeybees sampled in nature reserves had genetic diversity and colony densities similar to those sampled in agricultural landscapes, which suggests that the former are not wild but may have come from managed hives. Other results also support this idea: putative wild bees were rare in our European samples, and the mean estimated density of honeybee colonies on the continent closely resembled the reported mean number of managed hives. Current densities of European honeybee populations are in the same range as those found in the adverse climatic conditions of the Kalahari and Saharan deserts, which suggests that beekeeping activities do not compensate for the loss of wild colonies. Our findings highlight the importance of reconsidering the conservation status of honeybees in Europe and of regarding beekeeping not only as a profitable business for producing honey, but also as an essential component of biodiversity conservation.

  14. Native Prey and Invasive Predator Patterns of Foraging Activity: The Case of the Yellow-Legged Hornet Predation at European Honeybee Hives

    PubMed Central

    Monceau, Karine; Arca, Mariangela; Leprêtre, Lisa; Mougel, Florence; Bonnard, Olivier; Silvain, Jean-François; Maher, Nevile; Arnold, Gérard; Thiéry, Denis

    2013-01-01

    Contrary to native predators, which have co-evolved with their prey, alien predators often benefit from native prey naïveté. Vespa velutina, a honeybee predator originating from Eastern China, was introduced into France just before 2004. The present study, based on video recordings of two beehives at an early stage of the invasion process, intends to analyse the alien hornet hunting behaviour on the native prey, Apis mellifera, and to understand the interaction between the activity of the predator and the prey during the day and the season. Chasing hornets spent most of their time hovering facing the hive, to catch flying honeybees returning to the hive. The predation pressure increased during the season confirming previous study based on predator trapping. The number of honeybee captures showed a maximum peak for an intermediate number of V. velutina, unrelated to honeybee activity, suggesting the occurrence of competition between hornets. The number of honeybees caught increased during midday hours while the number of hornets did not vary, suggesting an increase in their efficacy. These results suggest that the impact of V. velutina on honeybees is limited by its own biology and behaviour and did not match the pattern of activity of its prey. Also, it could have been advantageous during the invasion, limiting resource depletion and thus favouring colonisation. This lack of synchronization may also be beneficial for honeybee colonies by giving them an opportunity to increase their activity when the hornets are less effective. PMID:23823754

  15. Draft genome sequence of the Algerian bee Apis mellifera intermissa

    PubMed Central

    Haddad, Nizar Jamal; Loucif-Ayad, Wahida; Adjlane, Noureddine; Saini, Deepti; Manchiganti, Rushiraj; Krishnamurthy, Venkatesh; AlShagoor, Banan; Batainh, Ahmed Mahmud; Mugasimangalam, Raja

    2015-01-01

    Apis mellifera intermissa is the native honeybee subspecies of Algeria. A. m. intermissa occurs in Tunisia, Algeria and Morocco, between the Atlas and the Mediterranean and Atlantic coasts. This bee is very important due to its high ability to adapt to great variations in climatic conditions and due to its preferable cleaning behavior. Here we report the draft genome sequence of this honey bee, its Whole Genome Shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession JSUV00000000. The 240-Mb genome is being annotated and analyzed. Comparison with the genome of other Apis mellifera sub-species promises to yield insights into the evolution of adaptations to high temperature and resistance to Varroa parasite infestation. PMID:26484171

  16. Outcome of Colonization of Apis mellifera by Nosema ceranae▿

    PubMed Central

    Martín-Hernández, Raquel; Meana, Aránzazu; Prieto, Lourdes; Salvador, Amparo Martínez; Garrido-Bailón, Encarna; Higes, Mariano

    2007-01-01

    A multiplex PCR-based method, in which two small-subunit rRNA regions are simultaneously amplified in a single reaction, was designed for parallel detection of honeybee microsporidians (Nosema apis and Nosema ceranae). Each of two pairs of primers exclusively amplified the 16S rRNA targeted gene of a specific microsporidian. The multiplex PCR assay was useful for specific detection of the two species of microsporidians related to bee nosemosis, not only in purified spores but also in honeybee homogenates and in naturally infected bees. The multiplex PCR assay was also able to detect coinfections by the two species. Screening of bee samples from Spain, Switzerland, France, and Germany using the PCR technique revealed a greater presence of N. ceranae than of N. apis in Europe, although both species are widely distributed. From the year 2000 onward, statistically significant differences have been found in the proportions of Nosema spp. spore-positive samples collected between and within years. In the first period examined (1999 to 2002), the smallest number of samples diagnosed as Nosema positive was found during the summer months, showing clear seasonality in the diagnosis, which is characteristic of N. apis. From 2003 onward a change in the tendency resulted in an increase in Nosema-positive samples in all months until 2005, when a total absence of seasonality was detected. A significant causative association between the presence of N. ceranae and hive depopulation clearly indicates that the colonization of Apis mellifera by N. ceranae is related to bee losses. PMID:17675417

  17. A parent-of-origin effect on honeybee worker ovary size

    PubMed Central

    Oldroyd, Benjamin P.; Allsopp, Michael H.; Roth, Katherine M.; Remnant, Emily J.; Drewell, Robert A.; Beekman, Madeleine

    2014-01-01

    Apis mellifera capensis is unique among honeybees in that unmated workers can produce pseudo-clonal female offspring via thelytokous parthenogenesis. Workers use this ability to compete among themselves and with their queen to be the mother of new queens. Males could therefore enhance their reproductive success by imprinting genes that enhance fertility in their daughter workers. This possibility sets the scene for intragenomic conflict between queens and drones over worker reproductive traits. Here, we show a strong parent-of-origin effect for ovary size (number of ovarioles) in reciprocal crosses between two honeybee subspecies, A. m. capensis and Apis mellifera scutellata. In this cross, workers with an A. m. capensis father had 30% more ovarioles than genotypically matched workers with an A. m. scutellata father. Other traits we measured (worker weight at emergence and the presence/absence of a spermatheca) are influenced more by rearing conditions than by parent-of-origin effects. Our study is the first to show a strong epigenetic (or, less likely, cytoplasmic maternal) effect for a reproductive trait in the honeybee and suggests that a search for parent-of-origin effects in other social insects may be fruitful. PMID:24285196

  18. Detection of neural activity in the brains of Japanese honeybee workers during the formation of a "hot defensive bee ball".

    PubMed

    Ugajin, Atsushi; Kiya, Taketoshi; Kunieda, Takekazu; Ono, Masato; Yoshida, Tadaharu; Kubo, Takeo

    2012-01-01

    Anti-predator behaviors are essential to survival for most animals. The neural bases of such behaviors, however, remain largely unknown. Although honeybees commonly use their stingers to counterattack predators, the Japanese honeybee (Apis cerana japonica) uses a different strategy to fight against the giant hornet (Vespa mandarinia japonica). Instead of stinging the hornet, Japanese honeybees form a "hot defensive bee ball" by surrounding the hornet en masse, killing it with heat. The European honeybee (A. mellifera ligustica), on the other hand, does not exhibit this behavior, and their colonies are often destroyed by a hornet attack. In the present study, we attempted to analyze the neural basis of this behavior by mapping the active brain regions of Japanese honeybee workers during the formation of a hot defensive bee ball. First, we identified an A. cerana homolog (Acks = Apis cerana kakusei) of kakusei, an immediate early gene that we previously identified from A. mellifera, and showed that Acks has characteristics similar to kakusei and can be used to visualize active brain regions in A. cerana. Using Acks as a neural activity marker, we demonstrated that neural activity in the mushroom bodies, especially in Class II Kenyon cells, one subtype of mushroom body intrinsic neurons, and a restricted area between the dorsal lobes and the optic lobes was increased in the brains of Japanese honeybee workers involved in the formation of a hot defensive bee ball. In addition, workers exposed to 46°C heat also exhibited Acks expression patterns similar to those observed in the brains of workers involved in the formation of a hot defensive bee ball, suggesting that the neural activity observed in the brains of workers involved in the hot defensive bee ball mainly reflects thermal stimuli processing. PMID:22431987

  19. DIRAC RESTful API

    NASA Astrophysics Data System (ADS)

    Casajus Ramo, A.; Graciani Diaz, R.; Tsaregorodtsev, A.

    2012-12-01

    The DIRAC framework for distributed computing has been designed as a flexible and modular solution that can be adapted to the requirements of any community. Users interact with DIRAC via command line, using the web portal or accessing resources via the DIRAC python API. The current DIRAC API requires users to use a python version valid for DIRAC. Some communities have developed their own software solutions for handling their specific workload, and would like to use DIRAC as their back-end to access distributed computing resources easily. Many of these solutions are not coded in python or depend on a specific python version. To solve this gap DIRAC provides a new language agnostic API that any software solution can use. This new API has been designed following the RESTful principles. Any language with libraries to issue standard HTTP queries may use it. GSI proxies can still be used to authenticate against the API services. However GSI proxies are not a widely adopted standard. The new DIRAC API also allows clients to use OAuth for delegating the user credentials to a third party solution. These delegated credentials allow the third party software to query to DIRAC on behalf of the users. This new API will further expand the possibilities communities have to integrate DIRAC into their distributed computing models.

  20. Airflow and optic flow mediate antennal positioning in flying honeybees.

    PubMed

    Roy Khurana, Taruni; Sane, Sanjay P

    2016-01-01

    To maintain their speeds during navigation, insects rely on feedback from their visual and mechanosensory modalities. Although optic flow plays an essential role in speed determination, it is less reliable under conditions of low light or sparse landmarks. Under such conditions, insects rely on feedback from antennal mechanosensors but it is not clear how these inputs combine to elicit flight-related antennal behaviours. We here show that antennal movements of the honeybee, Apis mellifera, are governed by combined visual and antennal mechanosensory inputs. Frontal airflow, as experienced during forward flight, causes antennae to actively move forward as a sigmoidal function of absolute airspeed values. However, corresponding front-to-back optic flow causes antennae to move backward, as a linear function of relative optic flow, opposite the airspeed response. When combined, these inputs maintain antennal position in a state of dynamic equilibrium. PMID:27097104

  1. Airflow and optic flow mediate antennal positioning in flying honeybees.

    PubMed

    Roy Khurana, Taruni; Sane, Sanjay P

    2016-01-01

    To maintain their speeds during navigation, insects rely on feedback from their visual and mechanosensory modalities. Although optic flow plays an essential role in speed determination, it is less reliable under conditions of low light or sparse landmarks. Under such conditions, insects rely on feedback from antennal mechanosensors but it is not clear how these inputs combine to elicit flight-related antennal behaviours. We here show that antennal movements of the honeybee, Apis mellifera, are governed by combined visual and antennal mechanosensory inputs. Frontal airflow, as experienced during forward flight, causes antennae to actively move forward as a sigmoidal function of absolute airspeed values. However, corresponding front-to-back optic flow causes antennae to move backward, as a linear function of relative optic flow, opposite the airspeed response. When combined, these inputs maintain antennal position in a state of dynamic equilibrium.

  2. Nutritional control of reproductive status in honeybees via DNA methylation.

    PubMed

    Kucharski, R; Maleszka, J; Foret, S; Maleszka, R

    2008-03-28

    Fertile queens and sterile workers are alternative forms of the adult female honeybee that develop from genetically identical larvae following differential feeding with royal jelly. We show that silencing the expression of DNA methyltransferase Dnmt3, a key driver of epigenetic global reprogramming, in newly hatched larvae led to a royal jelly-like effect on the larval developmental trajectory; the majority of Dnmt3 small interfering RNA-treated individuals emerged as queens with fully developed ovaries. Our results suggest that DNA methylation in Apis is used for storing epigenetic information, that the use of that information can be differentially altered by nutritional input, and that the flexibility of epigenetic modifications underpins, profound shifts in developmental fates, with massive implications for reproductive and behavioral status.

  3. Airflow and optic flow mediate antennal positioning in flying honeybees

    PubMed Central

    Roy Khurana, Taruni; Sane, Sanjay P

    2016-01-01

    To maintain their speeds during navigation, insects rely on feedback from their visual and mechanosensory modalities. Although optic flow plays an essential role in speed determination, it is less reliable under conditions of low light or sparse landmarks. Under such conditions, insects rely on feedback from antennal mechanosensors but it is not clear how these inputs combine to elicit flight-related antennal behaviours. We here show that antennal movements of the honeybee, Apis mellifera, are governed by combined visual and antennal mechanosensory inputs. Frontal airflow, as experienced during forward flight, causes antennae to actively move forward as a sigmoidal function of absolute airspeed values. However, corresponding front-to-back optic flow causes antennae to move backward, as a linear function of relative optic flow, opposite the airspeed response. When combined, these inputs maintain antennal position in a state of dynamic equilibrium. DOI: http://dx.doi.org/10.7554/eLife.14449.001 PMID:27097104

  4. Dancing for Food: The Language of the Honeybees.

    ERIC Educational Resources Information Center

    D'Agostino, Jo Beth; And Others

    1994-01-01

    Presents an activity that teaches children the language of the honeybee--and which transforms the classroom into a honeybee colony. Children mimic the foraging behavior of honeybees and learn to appreciate the importance of community effort among animals. (PR)

  5. Honeybees prefer warmer nectar and less viscous nectar, regardless of sugar concentration

    PubMed Central

    Nicolson, Susan W.; de Veer, Leo; Köhler, Angela; Pirk, Christian W. W.

    2013-01-01

    The internal temperature of flowers may be higher than air temperature, and warmer nectar could offer energetic advantages for honeybee thermoregulation, as well as being easier to drink owing to its lower viscosity. We investigated the responses of Apis mellifera scutellata (10 colonies) to warmed 10% w/w sucrose solutions, maintained at 20–35°C, independent of low air temperatures, and to 20% w/w sucrose solutions with the viscosity increased by the addition of the inert polysaccharide Tylose (up to the equivalent of 34.5% sucrose). Honeybee crop loads increased with nectar temperature, as did the total consumption of sucrose solutions over 2 h by all bees visiting the feeders. In addition, the preference of marked honeybees shifted towards higher nectar temperatures with successive feeder visits. Crop loads were inversely proportional to the viscosity of the artificial nectar, as was the total consumption of sucrose solutions over 2 h. Marked honeybees avoided higher nectar viscosities with successive feeder visits. Bees thus showed strong preferences for both warmer and less viscous nectar, independent of changes in its sugar concentration. Bees may benefit from foraging on nectars that are warmer than air temperature for two reasons that are not mutually exclusive: reduced thermoregulatory costs and faster ingestion times due to the lower viscosity. PMID:23902913

  6. Climate rather than geography separates two European honeybee subspecies.

    PubMed

    Coroian, Cristian O; Muñoz, Irene; Schlüns, Ellen A; Paniti-Teleky, Orsolya R; Erler, Silvio; Furdui, Emilia M; Mărghitaş, Liviu A; Dezmirean, Daniel S; Schlüns, Helge; de la Rúa, Pilar; Moritz, Robin F A

    2014-05-01

    Both climatic and geographical factors play an important role for the biogeographical distribution of species. The Carpathian mountain ridge has been suggested as a natural geographical divide between the two honeybee subspecies Apis mellifera carnica and A. m. macedonica. We sampled one worker from one colony each at 138 traditional apiaries located across the Carpathians spanning from the Hungarian plains to the Danube delta. All samples were sequenced at the mitochondrial tRNA(Leu)-cox2 intergenic region and genotyped at twelve microsatellite loci. The Carpathians had only limited impact on the biogeography because both subspecies were abundant on either side of the mountain ridge. In contrast, subspecies differentiation strongly correlated with the various temperature zones in Romania. A. m. carnica is more abundant in regions with the mean average temperature below 9 °C, whereas A. m. macedonica honeybees are more frequent in regions with mean temperatures above 9 °C. This range selection may have impact on the future biogeography in the light of anticipated global climatic changes.

  7. Virus infection causes specific learning deficits in honeybee foragers

    PubMed Central

    Iqbal, Javaid; Mueller, Uli

    2007-01-01

    In both mammals and invertebrates, virus infections can impair a broad spectrum of physiological functions including learning and memory formation. In contrast to the knowledge on the conserved mechanisms underlying learning, the effects of virus infection on different aspects of learning are barely known. We use the honeybee (Apis mellifera), a well-established model system for studying learning, to investigate the impact of deformed wing virus (DWV) on learning. Injection of DWV into the haemolymph of forager leads to a RT-PCR detectable DWV signal after 3 days. The detailed behavioural analysis of DWV-infected honeybees shows an increased responsiveness to water and low sucrose concentrations, an impaired associative learning and memory formation, but intact non-associative learning like sensitization and habituation. This contradicts all present studies in non-infected bees, where increased sucrose responsiveness is linked to improved associative learning and to changes in non-associative learning. Thus, DWV seems to interfere with molecular mechanism of learning by yet unknown processes that may include viral effects on the immune system and on gene expression. PMID:17439851

  8. Context odor presentation during sleep enhances memory in honeybees.

    PubMed

    Zwaka, Hanna; Bartels, Ruth; Gora, Jacob; Franck, Vivien; Culo, Ana; Götsch, Moritz; Menzel, Randolf

    2015-11-01

    Sleep plays an important role in stabilizing new memory traces after learning [1-3]. Here we investigate whether sleep's role in memory processing is similar in evolutionarily distant species and demonstrate that a context trigger during deep-sleep phases improves memory in invertebrates, as it does in humans. We show that in honeybees (Apis mellifera), exposure to an odor during deep sleep that has been present during learning improves memory performance the following day. Presentation of the context odor during wake phases or novel odors during sleep does not enhance memory. In humans, memory consolidation can be triggered by presentation of a context odor during slow-wave sleep that had been present during learning [3-5]. Our results reveal that deep-sleep phases in honeybees have the potential to prompt memory consolidation, just as they do in humans. This study provides strong evidence for a conserved role of sleep-and how it affects memory processes-from insects to mammals.

  9. Altruistic behavior by egg-laying worker honeybees.

    PubMed

    Naeger, Nicholas L; Peso, Marianne; Even, Naïla; Barron, Andrew B; Robinson, Gene E

    2013-08-19

    If a honeybee (Apis mellifera) colony loses its queen, worker bees develop their ovaries and produce male offspring [1]. Kin selection theory predicts that the degree of altruism in queenless colonies should be reduced because the relatedness of workers to a hivemate's offspring is less in queenless colonies than it is to the daughters of the queen in queenright colonies [2-4]. To explore this hypothesis, we examined the behavior and physiology of queenless egg-laying workers. Queenless bees engaged in both personal reproduction and the social foraging and defense tasks that benefited their colony. Laying workers also had larger brood-food-producing and wax glands, showing metabolic investments in both colony maintenance and personal reproduction. Whereas in queenright colonies there is a very clear age-based pattern of division of labor between workers, in queenless colonies the degree of individual specialization was much reduced. Queenless colonies functioned as a collective of reproductive and behaviorally generalist bees that cooperatively maintained and defended their nest. This social structure is similar to that observed in a number of primitively social bee species [5]. Laying workers therefore show a mix of selfish personal reproduction and altruistic cooperative behavior, and the queenless state reveals previously unrecognized plasticity in honeybee social organization.

  10. Context odor presentation during sleep enhances memory in honeybees.

    PubMed

    Zwaka, Hanna; Bartels, Ruth; Gora, Jacob; Franck, Vivien; Culo, Ana; Götsch, Moritz; Menzel, Randolf

    2015-11-01

    Sleep plays an important role in stabilizing new memory traces after learning [1-3]. Here we investigate whether sleep's role in memory processing is similar in evolutionarily distant species and demonstrate that a context trigger during deep-sleep phases improves memory in invertebrates, as it does in humans. We show that in honeybees (Apis mellifera), exposure to an odor during deep sleep that has been present during learning improves memory performance the following day. Presentation of the context odor during wake phases or novel odors during sleep does not enhance memory. In humans, memory consolidation can be triggered by presentation of a context odor during slow-wave sleep that had been present during learning [3-5]. Our results reveal that deep-sleep phases in honeybees have the potential to prompt memory consolidation, just as they do in humans. This study provides strong evidence for a conserved role of sleep-and how it affects memory processes-from insects to mammals. PMID:26592345

  11. Brood comb as a humidity buffer in honeybee nests

    NASA Astrophysics Data System (ADS)

    Ellis, Michael B.; Nicolson, Sue W.; Crewe, Robin M.; Dietemann, Vincent

    2010-04-01

    Adverse environmental conditions can be evaded, tolerated or modified in order for an organism to survive. During their development, some insect larvae spin cocoons which, in addition to protecting their occupants against predators, modify microclimatic conditions, thus facilitating thermoregulation or reducing evaporative water loss. Silk cocoons are spun by honeybee ( Apis mellifera) larvae and subsequently incorporated into the cell walls of the wax combs in which they develop. The accumulation of this hygroscopic silk in the thousands of cells used for brood rearing may significantly affect nest homeostasis by buffering humidity fluctuations. This study investigates the extent to which the comb may influence homeostasis by quantifying the hygroscopic capacity of the cocoons spun by honeybee larvae. When comb containing cocoons was placed at high humidity, it absorbed 11% of its own mass in water within 4 days. Newly drawn comb composed of hydrophobic wax and devoid of cocoons absorbed only 3% of its own mass. Therefore, the accumulation of cocoons in the comb may increase brood survivorship by maintaining a high and stable humidity in the cells.

  12. Reproductive interference between honeybee species in artificial sympatry.

    PubMed

    Remnant, Emily J; Koetz, Anna; Tan, Ken; Hinson, Eloise; Beekman, Madeleine; Oldroyd, Benjamin P

    2014-03-01

    Reproductive isolation between closely related species is often incomplete. The Western honeybee, Apis mellifera, and the Eastern hive bee, Apis cerana, have been allopatric for millions of years, but are nonetheless similar in morphology and behaviour. During the last century, the two species were brought into contact anthropogenically, providing potential opportunities for interspecific matings. Hybrids between A. mellifera and A. cerana are inviable, so natural interspecific matings are of concern because they may reduce the viability of A. cerana and A. mellifera populations - two of the world's most important pollinators. We examined the mating behaviour of A. mellifera and A. cerana queens and drones from Caoba Basin, China and Cairns, Australia. Drone mating flight times overlap in both areas. Analysis of the spermathecal contents of queens with species-specific genetic markers indicated that in Caoba Basin, 14% of A. mellifera queens mated with at least one A. cerana male, but we detected no A. cerana queens that had mated with A. mellifera males. Similarly, in Cairns, no A. cerana queens carried A. mellifera sperm, but one-third of A. mellifera queens had mated with at least one A. cerana male. No hybrid embryos were detected in eggs laid by interspecifically mated A. mellifera queens in either location. However, A. mellifera queens artificially inseminated with A. cerana sperm produced inviable hybrid eggs or unfertilized drones. This suggests that reproductive interference will impact the viability of honeybee populations wherever A. cerana and A. mellifera are in contact.

  13. Reproductive interference between honeybee species in artificial sympatry.

    PubMed

    Remnant, Emily J; Koetz, Anna; Tan, Ken; Hinson, Eloise; Beekman, Madeleine; Oldroyd, Benjamin P

    2014-03-01

    Reproductive isolation between closely related species is often incomplete. The Western honeybee, Apis mellifera, and the Eastern hive bee, Apis cerana, have been allopatric for millions of years, but are nonetheless similar in morphology and behaviour. During the last century, the two species were brought into contact anthropogenically, providing potential opportunities for interspecific matings. Hybrids between A. mellifera and A. cerana are inviable, so natural interspecific matings are of concern because they may reduce the viability of A. cerana and A. mellifera populations - two of the world's most important pollinators. We examined the mating behaviour of A. mellifera and A. cerana queens and drones from Caoba Basin, China and Cairns, Australia. Drone mating flight times overlap in both areas. Analysis of the spermathecal contents of queens with species-specific genetic markers indicated that in Caoba Basin, 14% of A. mellifera queens mated with at least one A. cerana male, but we detected no A. cerana queens that had mated with A. mellifera males. Similarly, in Cairns, no A. cerana queens carried A. mellifera sperm, but one-third of A. mellifera queens had mated with at least one A. cerana male. No hybrid embryos were detected in eggs laid by interspecifically mated A. mellifera queens in either location. However, A. mellifera queens artificially inseminated with A. cerana sperm produced inviable hybrid eggs or unfertilized drones. This suggests that reproductive interference will impact the viability of honeybee populations wherever A. cerana and A. mellifera are in contact. PMID:24443879

  14. Multiple host shifts by the emerging honeybee parasite, Varroa jacobsoni.

    PubMed

    Roberts, J M K; Anderson, D L; Tay, W T

    2015-05-01

    Host shifts are a key mechanism of parasite evolution and responsible for the emergence of many economica